

Lecture Notes in Computer Science 7387
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marco Brambilla Takehiro Tokuda
Robert Tolksdorf (Eds.)

Web Engineering

12th International Conference, ICWE 2012
Berlin, Germany, July 23-27, 2012
Proceedings

13

Volume Editors

Marco Brambilla
Politecnico di Milano, Dipartimento di Elettronica e Informazione
Via Ponzio 34/5, 20133, Milano, Italy
E-mail: marco.brambilla@polimi.it

Takehiro Tokuda
Tokyo Institute of Technology, Department of Computer Science
2-12-1 Oookayama, Tokyo 152-8552, Japan
E-mail: tokuda@cs.titech.ac.jp

Robert Tolksdorf
Freie Universität Berlin, Institut für Informatik
Königin-Luise-Strasse 24-26, 14195 Berlin, Germany
E-mail: tolk@ag-nbi.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31752-1 e-ISBN 978-3-642-31753-8
DOI 10.1007/978-3-642-31753-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012941612

CR Subject Classification (1998): H.3.5, H.3.3, H.3, H.4, D.2.1, D.2, J.1, H.5.3, H.5,
H.2.8, I.2.6, I.2.4, C.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The crucial role of the Web in every aspect of contemporary societies and of
everyday life is clearly visible at a global scale. Web engineering strives to ac-
complish the wish of an accessible, universal and affordable virtual platform
where people and applications can smoothly interact. To this end, Web engi-
neering systematically applies the knowledge and techniques of a large range of
disciplines, spanning from computer science to social sciences.

This volume contains the proceedings of the 12th International Conference
on Web Engineering (ICWE2012), which was held in Berlin, Germany, in July
2012. Berlin has an outstanding research landscape in computer science. The
Freie Universität Berlin and three large universities in and surrounding Berlin
offer computer science and information systems degrees. Berlin and Potsdam
host various world-renown research institutions. The upcoming EU Knowledge
Innovation Center on ICT as part of the European Institute of Technology will
be located in Berlin. This makes Berlin a perfect place for researchers and prac-
titioners to meet and discuss innovation in ICT in general and on the Web in
particular. The ICWE conferences represent first-class forums for the Web en-
gineering community. ICWE is endorsed by the International World Wide Web
Conference Committee (IW3C2) and the International Society for Web Engineer-
ing (ISWE). Previous editions took place at Paphos (Cyprus), Vienna (Austria),
San Sebastian (Spain), Yorktown Heights, NY (USA), Como (Italy), Palo Alto,
CA (USA), Sydney (Australia), Munich (Germany), Oviedo (Spain), Santa Fe
(Argentina), and Cáceres (Spain).

This year’s call for papers attracted 98 submissions from 37 countries. Paper
topics cover a broad range of areas, namely, Web modeling, linked data man-
agement, Web services, mashups, AJAX, user interfaces, personalization, search,
social networks and so on. Submitted papers were reviewed by at least three re-
viewers from the Program Committee comprising 69 experts in Web engineering.
Based on their reviews, 20 submissions were accepted as full papers (acceptance
rate of 20%) and 15 submissions were accepted as short papers (acceptance rate
of 15%). In addition, six posters, 12 demos, and five tutorials were also part
of the conference program. The conference hosted a keynote by Richard Soley,
president of OMG, on the impact of standardization on the Web and Web engi-
neering activities. Several co-hosted workshops offered a venue for specialists to
discuss on-going research and devise future research agendas.

VI Preface

Such an eventful program would not have been possible without the involve-
ment of a large number of people and institutions. We would like to express our
deep gratitude to Freie Universität Berlin as the local organizer. We are also in-
debted to Geert-Jan Houben, who acted as liaison to ISWE and ICWE Steering
Committee, and to Bebo White, who acted as liaison to the IW3C2.

Berlin Marco Brambilla
Summer 2012 Takehiro Tokuda

Robert Tolksdorf

Organization

General Chair

Robert Tolksdorf Freie Universität Berlin

Program Chairs

Marco Brambilla Politecnico di Milano
Takehiro Tokuda Tokyo Institute of Technology

ICWE Steering Committee Liaison

Geert-Jan Houben TU Delft

Workshop Chairs

Michael Grossniklaus Portland State University
Manuel Wimmer TU Wien

Tutorial Chairs

Maria Bielikova Slovak University of Technology
Fabian Abel TU Delft

Demo and Poster Chairs

Stefan Pietschmann TU Dresden
Sven Casteleyn Universidad Politecnica de Valencia

PhD Mentoring

Irene Garrigs University of Alicante
Oscar Pastor Universidad Politécnica de Valencia

Local Chair

Markus Luczak-Rösch Freie Universität Berlin

VIII Organization

Program Committee

Silvia Abrahao Universidad Politecnica de Valencia
Sören Auer Universität Leipzig
Fernando Bellas Titular Professor of University
Boualem Benatallah University of New South Wales
Davide Bolchini Indiana University
Alessandro Bozzon Politecnico di Milano
Marco Brambilla Politecnico di Milano
Jordi Cabot INRIA-École des Mines de Nantes
Coral Calero Universidad de Castilla-La Mancha
Fabio Casati University of Trento
Key-Sun Choi KAIST
Richard Cyganiak Digital Enterprise Research Institute,

NUI Galway
Florian Daniel University of Trento
Olga De Troyer Vrije Universiteit Brussel
Damiano Distante Unitelma Sapienza University
Peter Dolog Aalborg University
Suzanne Embury University of Manchester
Flavius Frasincar Erasmus University Rotterdam
Piero Fraternali Politecnico di Milano
Martin Gaedke Chemnitz University of Technology
Irene Garrigos University of Alicante
Dragan Gasevic Athabasca University
Athula Ginige University of Western Sydney
Michael Grossniklaus Portland State University
Volker Gruhn Universität Duisburg-Essen
Hao Han National Institute of Informatics
Simon Harper University of Manchester
Andreas Harth AIFB, Karlsruhe Institute of Technology
Olaf Hartig Humboldt-Universität zu Berlin
Bernhard Haslhofer Cornell University Information Science
Martin Hepp Bundeswehr University Munich, Germany
Geert-Jan Houben TU Delft
Gerti Kappel Vienna University of Technology
In-Young Ko Korea Advanced Institute of Science and

Technology
Nora Koch Ludwig Maximilians University of Munich
Frank Leymann Institute of Architecture of Application

Systems
Steffen Lohmann Universidad Carlos III de Madrid
Markus Luczak-Rösch Freie Universität Berlin
Maristella Matera Politecnico di Milano

Organization IX

Santiago Meliá University of Alicante
Hamid Motahari HP Labs
Wolfgang Nejdl L3S and University of Hannover
Axel-Cyrille Ngonga Ngomo University of Leipzig
Luis Olsina GIDIS and National University of La Pampa
Satoshi Oyama Hokkaido University
George Pallis University of Cyprus
Oscar Pastor Lopez Valencia
Cesare Pautasso University of Lugano, Switzerland
Vicente Pelechano Universidad Politecnica de Valencia
Alfonso Pierantonio University of L’Aquila
Matthias Quasthoff Hasso-Plattner-Institut
I.V. Ramakrishnan SUNY Stony Brook
Gustavo Rossi LIFIA-F. Informatica, UNLP
Fernando Sanchez-Figueroa Universidad de Extremadura
Felix Sasaki FH Potsdam / W3C German-Austrian Office
Fumiko Satoh IBM Tokyo Research Laboratory
Daniel Schwabe PUC-Rio
Juan F. Sequeda The University of Texas at Austin
Michael Sheng University of Adelaide
Weisong Shi Wayne State University
Tetsuya Suzuki Shibaura Institute of Technology, Saitama,

Japan
Takehiro Tokuda Tokyo Institute of Technology
Robert Tolksdorf Freie Universität Berlin
Riccardo Torlone Roma Tre University
Jean Vanderdonckt Université catholique de Louvain
Erik Wilde UC Berkeley
Marco Winckler ICS-IRIT, Université Paul Sabtier
Bin Xu DCST, Tsinghua University
Ying Zhang The University of New South Wales, Sydney

Poster and Demo Track Program Committee

Fabian Abel Web Information Systems, TU Delft
Sören Auer Universität Leipzig
Devis Bianchini University of Brescia
Maria Bielikova Slovak University of Technology in Bratislava
Alessandro Bozzon Politecnico di Milano
Marco Brambilla Politecnico di Milano
Sven Casteleyn Universitat Politècnica de València
Richard Chbeir LE2I-CNRS
Florian Daniel University of Trento
Oscar Diaz University of the Basque Country
Peter Dolog Aalborg University
Flavius Frasincar Erasmus University Rotterdam

X Organization

Irene Garrigos University of Alicante
Gerti Kappel Vienna University of Technology
Nora Koch Ludwig Maximilians University of Munich
Maristella Matera Politecnico di Milano
Santiago Melia University of Alicante
Cesare Pautasso University of Lugano, Switzerland
Stefan Pietschmann Technische Universität Dresden
Gustavo Rossi LIFIA-F. Informatica, UNLP
Fernando Sánchez Figueroa Universidad de Extremadura
Takehiro Tokuda Tokyo Institute of Technology
Robert Tolksdorf Freie Universität Berlin, Networked

Information Systems
Antonio Vallecillo University of Malaga
William Van Woensel Vrije Universiteit Brussel
Marco Winckler ICS-IRIT, Université Paul Sabtier
Jürgen Ziegler University of Duisburg-Essen

Additional Reviewers

Aguilar, Jose Alfonso
Ahmed, Faisal
Asadi, Mohsen
Becker, Pablo
Benner, Marian
Bislimovka, Bojana
Blanco Bueno, Carlos
Book, Matthias
Brosch, Petra
Busch, Marianne
Bühmann, Lorenz
Caballero, Ismael
Chen, Alex
Clemente, Pedro J.
Conejero, Jose Maria
Danylevych, Olha
Di Ruscio, Davide
Diez, David
Eramo, Romina
Feng, Song
Fernandez, Adrian
Fons, Joan
Garcia, Felix
Ge, Mouzhi
Grapenthin, Simon
Haag, Florian
Haupt, Florian

Hellmann, Sebastian
Imran, Muhammad
Iovino, Ludovico
Islam, Asiful
Janusz, Daniel
Kovanovic, Vitomir
Kovatsch, Matthias
Kuznetsova, Polina
Langer, Philip
Lew, Philip
Linaje, Marino
Ma, Jiangang
Mathew, Sujith Samuel
Mayrhofer, Dieter
Mazón, Jose-Norberto
Melnyk, Valentyn
Mohabbati, Bardia
Molina, Hernan
Morales-Chaparro,

Rober
Noor, Talal
Nowak, Alexander
Oosterman, Jasper
Paulheim, Heiko
Peternier, Achille
Polo, Macario
Preciado, Juan Carlos

Qin, Yongrui
Rodriguez, Carlos
Rodriguez-Castro,

Benedicto
Rodriguez-Echeverria,

Roberto
Roy Chowdhury, Soudip
Satoh, Fumiko
Schleicher, Daniel
Serrano, Manuel
Shekarpour, Saeedeh
Soi, Stefano
Soviak, Andrii
Stadtmüller, Steffen
Trent, Scott
Valderas, Pedro
Vigo, Markel
Wagner, Sebastian
Weippl, Edgar
Wimmer, Manuel
Xie, Dong
Yao, Lina
Yu, Weiren
Zaveri, Amapali
Zhang, Chenyuan
Zor, Sema

Organization XI

Silver Sponsors

SparxSystems Software GmbH
Handelskai 340 Top 5 / Ecke Marathonweg
A-1020 Wien
Tel.: +43 (0)662 90 600 2041
Fax: +43 (0)662 90 333 3041
e-Mail: sales@sparxsystems.eu

WebRatio
Piazza Cadorna, 10
20123 Milano
Tel.: +39 02 3671 4280
Fax: +39 02 3671 4291
e-Mail: contact@webratio.com

Table of Contents

Social Networks and Collaboration

Reusable Awareness Widgets for Collaborative Web Applications –
A Non-invasive Approach . 1

Matthias Heinrich, Franz Josef Grüneberger, Thomas Springer, and
Martin Gaedke

News-Topic Oriented Hashtag Recommendation in Twitter Based on
Characteristic Co-occurrence Word Detection . 16

Feng Xiao, Tomoya Noro, and Takehiro Tokuda

Crowdsourced Web Engineering and Design . 31
Michael Nebeling, Stefania Leone, and Moira C. Norrie

Tagging

Scaling Pair-Wise Similarity-Based Algorithms in Tagging Spaces 46
Damir Vandic, Flavius Frasincar, and Frederik Hogenboom

Methodologies for Improved Tag Cloud Generation with Clustering 61
Martin Leginus, Peter Dolog, Ricardo Lage, and Frederico Durao

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 76
Devis Bianchini, Valeria De Antonellis, and Michele Melchiori

Personalization and Personal Systems

Opening Personalization to Partners: An Architecture of Participation
for Websites . 91

Cristóbal Arellano, Oscar Dı́az, and Jon Iturrioz

Role-Based Access Control for Model-Driven Web Applications 106
Mairon Belchior, Daniel Schwabe, and Fernando Silva Parreiras

Recovering Role-Based Access Control Security Models from Dynamic
Web Applications . 121

Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

Search

Diversification for Multi-domain Result Sets . 137
Alessandro Bozzon, Marco Brambilla, Piero Fraternali, and
Marco Tagliasacchi

XIV Table of Contents

Twinder: A Search Engine for Twitter Streams . 153
Ke Tao, Fabian Abel, Claudia Hauff, and Geert-Jan Houben

Social Event Detection on Twitter . 169
Elena Ilina, Claudia Hauff, Ilknur Celik, Fabian Abel, and
Geert-Jan Houben

Temporal Semantic Centrality for the Analysis of Communication
Networks . 177

Damien Leprovost, Lylia Abrouk, Nadine Cullot, and
David Gross-Amblard

Web Modeling

Systematic Evolution of WebML Models by Coupled
Transformations . 185

Manuel Wimmer, Nathalie Moreno, and Antonio Vallecillo

From Requirements to Web Applications in an Agile Model-Driven
Approach . 200

Julián Grigera, José Mat́ıas Rivero, Esteban Robles Luna,
Franco Giacosa, and Gustavo Rossi

Assessment of Effort Reduction due to Model-to-Model Transformations
in the Web Domain . 215

Nora Koch, Alexander Knapp, and Sergej Kozuruba

Evaluating the Impact of a Model-Driven Web Engineering Approach
on the Productivity and the Satisfaction of Software Development
Teams . 223

Yulkeidi Mart́ınez, Cristina Cachero, and Santiago Meliá

AJAX and User Interfaces

JSART: JavaScript Assertion-Based Regression Testing 238
Shabnam Mirshokraie and Ali Mesbah

A Framework for the Development of Haptic-Enhanced Web
Applications . 253

Sara Comai, Davide Mazza, and Andrea Guarinoni

Supporting Users Tasks with Personal Information Management and
Web Forms Augmentation . 268

Sergio Firmenich, Vincent Gaits, Silvia Gordillo,
Gustavo Rossi, and Marco Winckler

Table of Contents XV

Web Services

Model-Based Service Discovery and Orchestration for OSLC Services
in Tool Chains . 283

Matthias Biehl, Wenqing Gu, and Frédéric Loiret

On the Systematic Development of Domain-Specific Mashup Tools for
End Users . 291

Muhammad Imran, Stefano Soi, Felix Kling, Florian Daniel,
Fabio Casati, and Maurizio Marchese

Adding Non-functional Preferences to Service Discovery 299
Fernando Lemos, Daniela Grigori, and Mokrane Bouzeghoub

A Semantic Scoring Approach for Service Offers . 307
Ikbel Guidara, Kaouthar Fakhfakh, and Tarak Chaari

Rich Communication Patterns for Mashups . 315
Stefan Pietschmann, Martin Voigt, and Klaus Meißner

Supporting View Transition Design of Smartphone Applications Using
Web Templates . 323

Kazuki Nishiura, Yuta Maezawa, Fuyuki Ishikawa, and
Shinichi Honiden

Web Crawling

Turn the Page: Automated Traversal of Paginated Websites 332
Tim Furche, Giovanni Grasso, Andrey Kravchenko, and
Christian Schallhart

WebSelF: A Web Scraping Framework . 347
Jakob G. Thomsen, Erik Ernst, Claus Brabrand, and
Michael Schwartzbach

A Statistical Approach for Efficient Crawling of Rich Internet
Applications . 362

Mustafa Emre Dincturk, Suryakant Choudhary,
Gregor von Bochmann, Guy-Vincent Jourdan, and
Iosif Viorel Onut

Recording and Replaying Navigations on AJAX Web Sites 370
Alberto Bartoli, Eric Medvet, and Marco Mauri

Web and Linked Data Management

Leveraging User Modeling on the Social Web with Linked Data 378
Fabian Abel, Claudia Hauff, Geert-Jan Houben, and Ke Tao

XVI Table of Contents

ViP2P: Efficient XML Management in DHT Networks 386
Konstantinos Karanasos, Asterios Katsifodimos,
Ioana Manolescu, and Spyros Zoupanos

Online Change Estimation Models for Dynamic Web Resources:
A Case-Study of RSS Feed Refresh Strategies . 395

Roxana Horincar, Bernd Amann, and Thierry Artières

Active Learning of Expressive Linkage Rules for the Web of Data 411
Robert Isele, Anja Jentzsch, and Christian Bizer

Extracting Navigational Models from Struts-Based Web Applications . . . 419
Roberto Rodŕıguez-Echeverŕıa, José Maŕıa Conejero,
Pedro J. Clemente, Maŕıa Dolores Villalobos, and
Fernando Sánchez-Figueroa

Posters

Towards a Method for Unsupervised Web Information Extraction 427
Hassan A. Sleiman and Rafael Corchuelo

Web-Based Tool Integration: A Web Augmentation Approach 431
Oscar Dı́az, Josune De Sosa, Cristóbal Arellano, and
Salvador Trujillo

Clustering Visually Similar Web Page Elements for Structured Web
Data Extraction . 435

Tomas Grigalis, Lukas Radvilavičius, Antanas Čenys, and
Juozas Gordevičius

Improving Toponym Extraction and Disambiguation Using Feedback
Loop . 439

Mena B. Habib and Maurice van Keulen

GeForMTjs: A JavaScript Library Based on a Domain Specific
Language for Multi-touch Gestures . 444

Dietrich Kammer, Dana Henkens, and Rainer Groh

SemaKoDE: Hybrid System for Knowledge Discovery in Sensor-Based
Smart Environments . 448

Stefan Negru

Demos

WebREd: A Model-Driven Tool for Web Requirements Specification
and Optimization . 452

José Alfonso Aguilar Calderon, Irene Garrigós, Sven Casteleyn, and
Jose-Norberto Mazón

Table of Contents XVII

Answering Fuzzy Preference Queries over Data Web Services 456
Soumaya Amdouni, Mahmoud Barhamgi, Djamal Benslimane,
Allel Hadjali, Karim Benouaret, and Rim Faiz

UsiWSC: Framework for Supporting an Interactive Web Service
Composition . 461

Mohamed Boukhebouze, Waldemar P. Ferreira Neto,
Erbin Lim, and Philippe Thiran

Sticklet: An End-User Client-Side Augmentation-Based Mashup Tool . . . 465
Oscar Dı́az and Cristóbal Arellano

NDT-Suite: A Model-Based Suite for the Application of NDT 469
Julián Alberto Garćıa-Garćıa, Manuel Alba Ortega,
Laura Garćıa-Borgoñon, and Maria Jose Escalona

Enriching Web Applications with Collaboration Support Using
Dependency Injection . 473

Matthias Heinrich, Franz Josef Grüneberger, Thomas Springer, and
Martin Gaedke

XFormsDB: A Declarative Web Application Framework 477
Markku Laine, Denis Shestakov, and Petri Vuorimaa

A Framework for Service Discovery Based on Structural Similarity and
Quality Satisfaction . 481

Fernando Lemos, Ahmed Gater, Daniela Grigori, and
Mokrane Bouzeghoub

WebTribe: Dynamic Community Analysis from Online Forums 486
Damien Leprovost, Lylia Abrouk, and David Gross-Amblard

MIGROS: A Model-Driven Transformation Approach of the User
Experience of Legacy Applications . 490

Luca Mainetti, Roberto Paiano, and Andrea Pandurino

Crowdsourced Web Site Evaluation with CrowdStudy 494
Michael Nebeling, Maximilian Speicher, Michael Grossniklaus, and
Moira C. Norrie

Web Service Composition Reuse through Shared Process Fragment
Libraries . 498

David Schumm, Dimitrios Dentsas, Michael Hahn,
Dimka Karastoyanova, Frank Leymann, and Mirko Sonntag

XVIII Table of Contents

Tutorials

Engineering the Evaluation Approach to Fit Different Web Project and
Organization Needs . 502

Luis Olsina

Epidemic Intelligence: For the Crowd, by the Crowd 504
Avaré Stewart and Ernesto Diaz

An Introduction to SPARQL and Queries over Linked Data 506
Olaf Hartig

Natural Language Processing for the Web . 508
Silvia Quarteroni

The Web of Data for E-Commerce in Brief . 510
Martin Hepp

Author Index . 513

Reusable Awareness Widgets for Collaborative

Web Applications – A Non-invasive Approach

Matthias Heinrich1, Franz Josef Grüneberger1,
Thomas Springer2, and Martin Gaedke3

1 SAP Research, Germany
{matthias.heinrich,franz.josef.grueneberger}@sap.com

2 Department of Computer Science,
Dresden University of Technology, Germany

thomas.springer@tu-dresden.de
3 Department of Computer Science,

Chemnitz University of Technology, Germany
martin.gaedke@cs.tu-chemnitz.de

Abstract. Creating awareness about other users’ activities in a shared
workspace is crucial to support efficient collaborative work. Even though
the development of awareness widgets such as participant lists, telepoint-
ers or radar views is a costly and complex endeavor, awareness wid-
get reuse is largely neglected. Collaborative applications either integrate
specific awareness widgets or leverage existing awareness toolkits which
require major source code adaptations and thus, are not suited to rapidly
enrich existing web applications.

Therefore, we propose a generic awareness infrastructure promoting
an accelerated, cost-efficient development of awareness widgets as well as
a non-invasive integration of awareness support into existing web applica-
tions. To validate our approach, we demonstrate the integration of three
developed awareness widgets in four collaborative web editors. Further-
more, we expose insights about the development of reusable awareness
widgets and discuss the limitations of the devised awareness infrastruc-
ture.

1 Introduction

Collaborative web applications such as Google Docs have become pervasive in
our daily lives since they expose a rich feature set, provide broad device sup-
port and offer instant accessibility without inducing time-consuming installation
procedures. Commonly, those collaborative real-time applications allow mul-
tiple users to edit the same document concurrently which requires workspace
awareness support. Workspace awareness is defined as the “up-to-the-moment
understanding of another person’s interaction with the shared space” [1] and in
essence, it enables effective collaborative work [2] by answering the “who, what,
and where” questions (e.g. who is in the workspace, what are the other partic-
ipants doing, where are they working). Examples of widely adopted awareness

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 M. Heinrich et al.

Fig. 1. Screenshots of application-specific awareness widgets extracted from Google
Docs, Codoxware and EtherPad

widgets supporting collaborative work are participant lists, telepointers, radar
views, etc. (cf. Figure 1).

Even though multi-user applications largely offer the same set of aware-
ness widgets (e.g. most collaborative applications provide some kind of par-
ticipant list) and software reuse has been advocated for decades [3], there are no
web frameworks accommodating out-of-the-box awareness support and promot-
ing a non-invasive integration approach. Thus, developers re-implement aware-
ness widgets for each collaborative web application or face massive source code
changes adopting awareness toolkits, in particular, if existing applications are
enriched. Both approaches entail major development efforts and costs.

Therefore, we devised a generic awareness infrastructure (GAI) that on the
one hand side simplifies the development of awareness widgets by providing
basic awareness services. On the other hand side, the GAI promotes the reuse of
awareness widgets facilitating a non-invasive integration approach. The widget
reuse is achieved by anchoring the GAI in various W3C specifications (e.g. CSS
Object Model [4], DOM Core [5] or DOM Events specification [6]). Consequently,
standards-based web applications are able to leverage the GAI including the
library of reusable awareness widgets.

The main contributions of this paper are three-fold:

– We propose a generic awareness infrastructure facilitating non-invasive
awareness support for standards-based web applications.

– We expose a development blueprint supporting developers to devise novel
reusable awareness widgets for web applications.

– We evaluate the generic awareness infrastructure by incorporating three im-
plemented awareness widgets into four collaborative web applications and
discuss the limitations of the proposed approach.

The rest of this paper is organized as follows: Section 2 elaborates on the chal-
lenges devising reusable awareness widgets. Section 3 illustrates the GAI archi-
tecture and introduces the development blueprint for novel reusable awareness
widgets. While Section 4 presents the validation of the GAI approach, Section 5
carves out strengths and limitations. Section 6 compares our work to the state-
of-the-art and Section 7 exhibits conclusions.

Reusable Awareness Widgets for Collaborative Web Applications 3

2 Challenges

Devising a generic solution instead of an application-specific one imposes addi-
tional challenges since universal solutions have to abstract from certain specifics
to aspects that hold for an entire class of applications. Characteristics that
are especially challenging while developing generic awareness support for web-
applications are

1. the diversity of collaborative web applications,
2. the multitude of available browsers, and
3. the proliferation of web-enabled devices.

The diversity of collaborative web applications embraces aspects like the tar-
geted runtime engine (e.g. standards-based browser runtime or plug-in technol-
ogy based one) and the addressed application domain (e.g. text editing, graphics
editing, etc.). Considering the variety of plug-in technologies (e.g. Adobe Flash,
Java Applets or Microsoft Silverlight) and their slipping importance with re-
spect to web engineering, we will primarily try to tackle this challenge for W3C
standards-based applications.

Another aspect that a generic awareness solution should take into account are
the various browser implementations. Since the set of available browsers in its
entirety also encompasses peculiar implementations such as text browsers (e.g.
Lynx) we will focus on modern browsers (e.g. Apple Safari 5, Google Chrome
16, Mozilla Firefox 10) that cover a wide range of novel HTML5 features.

In the age of tablets and smartphones, the third challenge – supporting a
myriad of web-enabled devices – becomes even more important since an ever
increasing share of web traffic is generated by tablets and mobile devices. Because
awareness widgets are part of the application’s user interface, device aspects such
as screen size and interaction mode (e.g. touch, mouse or keyboard interaction)
are the crucial ones which have to be considered by a generic awareness solution.

3 Generic Awareness Infrastructure

In this section, we introduce an approach enabling application-agnostic aware-
ness support which is materialized by the generic awareness infrastructure. Fur-
thermore, we expose a specific development blueprint for developing reusable
awareness widgets.

To devise an approach for generic awareness support, we set out to identify
an abstract editor architecture and carved out the editor components depicted
in Figure 2(a). All web-based editors, except plug-in based solutions, adhere to
this architecture that divides the application stack in application-specific and
application-agnostic artifacts. While the editor components (e.g. the user inter-
face) and the associated editor APIs are specific to each editor, the standardized
W3C APIs (e.g. DOM API [5]) and the underlying document object model
(DOM) are application-agnostic. Awareness widgets using editor APIs directly
(e.g. to keep track of document changes) turn out to be application-specific. In

4 M. Heinrich et al.

��������	
��������������������������������

������������������
�
��������
�������
�����������������	�

���������	
��������
����	���

����������������
����
�����
������������
�����������������	��

�
��������	���

	������������������������������
	������������������������������

������

� !

�������	�

����	�� �		

������

� !

�������	�

����	���		

������ ������"�����

	
�������
"������

� !
"#���"������

$%%� $%%�

$%%� $%%�

������

� !

�������	�

����	��

	
��������"������ "#��&�����������"������

'�(')(

Fig. 2. a) Abstract architecture of web-based editors as well as approaches to anchor
awareness support and b) Overview of the generic awareness infrastructure for web
applications

contrast, awareness widgets leveraging the standardized W3C API layer (cf. Fig-
ure 2(a)) are application-agnostic and consequently capable of serving multiple
web editors.

Therefore, we claim that anchoring awareness support at a standardized layer
is the key to create an application-agnostic solution. Moreover, taking into ac-
count that W3C APIs are implemented in most modern browsers for PCs, tablets
or even smartphones and that recently developed collaborative web-applications
are predominantly standards-based, we conclude that the aforementioned chal-
lenges can be overcome.

The proposed approach to link awareness support to well-established W3C
APIs is embodied in the generic awareness infrastructure illustrated in
Figure 2(b). The distributed collaboration system consists of a server and an
arbitrary number of clients. Clients comprise the very same application stack
shown in Figure 2(a) associated with one additional component denoted as the
generic awareness adapter (GAA). The GAA comprises registered awareness
widgets and is devoted to execute three essential tasks:

1. Initializing registered awareness widgets.
2. Pushing collected awareness information from registered awareness widgets

to the server.
3. Receiving, interpreting and eventually visualizing awareness information

from other clients by means of registered awareness widgets.

To distribute awareness information among all clients, the central server prop-
agates the respective data sets. Additionally, the server provides concurrency
control services encompassing the synchronization of various DOM instances as
well as a conflict resolution mechanism which is able to resolve potential con-
flicts arising if numerous participants change the same document artifacts (e.g.
a graphic or a phrase) simultaneously. Even though the generic DOM synchro-
nization service is a crucial part of the collaboration system, details which were
specified in [7] are beyond the scope of the paper.

Reusable Awareness Widgets for Collaborative Web Applications 5

������
���	
��
���������
������	���	����
�
�������
���������		
����
����������
����	
���
�������
����������������	��������������������
������������	
�	����	��
��	���
�	�	��� ��!	�������
�����������	����"�!��	���������
��
�
��#�	�$����
��������
��������
�������

��������	�
�
���	�

���	�
�
�����

���	�
�
�����

���	�
�
�������

���	�
�
����

���	�
�
���

���	�
�
��

���������
�����
������
������
�����������
������
��������������
�������
���
��
���������������������
�����������������

Fig. 3. HTML page of a minimal web editor and the corresponding DOM tree

3.1 Generic Awareness Adapter

The generic awareness adapter depicted in Figure 2(b) is the key component of
the GAI and primarily in charge of accommodating awareness widgets as well as
providing essential services to those widgets. Arbitrary widgets (e.g. telepoint-
ers, radar views) that adhere to a specific development blueprint (cf. Section 3.2)
can be registered at the GAA. Once the registration is successful, awareness wid-
gets have to be initialized before they actually capture and visualize awareness
information.

In the following paragraphs, we illustrate the integration of the GAA into
existing web applications and describe the setup as well as the operation’s mode
of the GAA.

Integration: The GAA pursues a lightweight integration approach to ease the
process of converting existing editors to awareness-enabled editors. To accom-
plish the integration, a specific JavaScript file named “gaa.js” has to be em-
bedded in the HTML code of the original web application (cf. Figure 3). The
awareness integration process operates non-invasively meaning that the original
JavaScript source code is not subject to changes. That implies that develop-
ers don’t have to become familiar with the internal source code of the original
application and can thus accomplish the integration of awareness support in a
lightweight and rapid fashion.

Setup: Once the “gaa.js” is successfully embedded in the HTML application
and the browser loaded the modified collaborative application, the GAA will be
initialized. The initialization phase comprises the following tasks:

– Setup an HTTP communication channel connecting client and server to allow
pushing and receiving awareness information.

– Establish session and user management (e.g. assign a color to each partici-
pant to create a color coding adoptable by telepointers and other widgets).

6 M. Heinrich et al.

– Generate global identifiers for all relevant DOM nodes to have a uniform
referencing mechanism (e.g. a newly inserted text node can therefore be
addressed using the very same identifier at all sites).

– Initialize registered awareness widgets.

Operation: After the initialization, the GAA switches into its operation’s
mode where awareness information captured by different widgets is serialized
and propagated to the server. Besides sending awareness messages, the recep-
tion of awareness-related data is also accomplished by the GAA. Received data
is deserialized and forwarded to registered awareness widgets. All message ex-
changes are based on the JavaScript Object Notation (JSON) which is beneficial
since it is a standardized format [8] with standardized methods for serialization
(JSON.stringify()) and deserialization (JSON.parse()). Note that messages
sent from the GAA are propagated by the server (cf. Figure 2(b)) to all clients
except the sender client.

3.2 Awareness Widget Blueprint

The awareness widget blueprint serves as a guideline for awareness widget devel-
opers. We have adopted this blueprint for our widget development but it may also
serve other web developers. The blueprint divides each widget in three compo-
nents (initialization, capturing and visualization component) and reassures that
implemented widgets are reusable. The widget implementation is illustrated pro-
viding a concrete example revisiting the minimal text editor shown in Figure 3.
The text editor allows to modify the text of the <h1> and <p> elements because
the contenteditable attribute of the embracing <div> element is set to true.

Initialization Component: As stated before, the blueprint divides each aware-
ness widget into three building blocks whereas the initialization component is in
charge of the following tasks:

– Visualization Setup: Create a visualization context for the awareness widget
and render an initial visualization.1

– Event Listener Registration: Add event listeners to the awareness root (iden-
tified by the GAA) to record modifications in the shared workspace.

Setting up the initial visualization for awareness widgets demands the creation
and positioning of an additional <div> container that acts as an encapsulated
awareness model which is not interwoven with the actual document model. All

1 The Separation of Concerns (SoC) principle [9] has to be enforced to prevent syn-
chronization issues. The document model accommodating the content artifacts (e.g.
text or graphical shapes) is subject to continuous synchronizations to assure all
participants are working on a consistent document. In contrast, the visualization of
awareness widgets is client-specific (e.g. the radar view depends on the local scrolling
position) and therefore should be encapsulated and excluded from all sync processes.

Reusable Awareness Widgets for Collaborative Web Applications 7

awareness-related visualizations (e.g. the telepointer cursor, the input highlight-
ing, etc.) are drawn onto this special overlay. Besides the creation of the visual-
ization layer, additional tasks required by specific awareness widgets are executed
upon request. For instance, a radar view widget might copy a DOM subtree into
its visualization layer (i.e. the extra <div> element) to build a miniature view
or a highlighting widget for SVG [10] tools might clone the SVG root element
to build up a special SVG tree for shapes highlighting remotely created shapes.

To keep track of modifications in the shared workspace, awareness widgets
have to register event listeners. As mentioned before, compatibility with the ma-
jority of web applications has to be ensured in order to devise a reusable solution.
Therefore, awareness widgets directly leverage standardized DOM Events [6]. We
identified three groups of DOM events (1) mouse events (e.g. click,
mouseover), (2) keyboard events (e.g. keydown, keyup) and (3) mutation events
(e.g. DOMNodeInserted, DOMAttrModified) that are relevant since they trigger
important awareness-related application updates. For example, semantic cursors
have to be adapted upon DOMCharacterDataModified events, telepointer posi-
tions have to be updated on mousemove events and document history widgets
have to be refreshed if DOMNodeInserted events are fired. The setup of event han-
dlers can be accomplished by means of the element.addEventListener(...)

method.
Suppose we want to enrich the text editor depicted in Figure 3 with a prim-

itive awareness widget that highlights newly entered characters at all remote
clients. This entails the following implementation tasks. First, an additional
<div> container encapsulating the visualization artifacts has to be created which
is straightforward (document.createElement("div")). Second, the insertion of
characters has to be monitored and therefore event handlers have to be attached
to the <div> node which is illustrated in Figure 4(a). Note that the listener
registration does not require to add listeners to each individual DOM node since
installed event listeners also listen to changes of the respective child nodes. In
our example, the attached event handler would also listen to modifications of
the <h1> or <p> node.

Capturing Component: After the initialization, local changes are recorded
by a capture component that gathers changes for dedicated awareness widgets.
The main objectives of the capture component are:

– Awareness Information Filtering: Retrieve essential awareness information
from the vast set of data provided by registered event handlers

– Data Preparation: Prepare relevant awareness information for the message
transfer.

Gathering and filtering awareness-related information is accomplished by event
handlers registered during the initialization. As soon as event handlers are called,
awareness information is prepared according to the requirements of awareness
widgets. In some cases, the information capturing is trivial since Event objects [6]
directly expose the required properties. For example, a telepointer could capture

8 M. Heinrich et al.

�������	
�����������
����

������������	�
�����	����	�����	���
��������	���	
����
����
���
����	����������
	����
�����	��������
������
�
	���	���	
����
����
���
����	�
	�����
	����
�����	�
	���
������
�
���	�
�������
	����
��
��	�
���
���	�
��
� ������������	���	
������	�����������
���
���	�
��
�!	��
	���	���	
������	�
	������
��"�#��
�
��
������	�
��
�%��	��	����
	��
�����
�
�����������
	����
��
!�
�
	��&���&��
���'�
���
��&���&�(��
�������
��&�
��&�(��
����
���
��&�
����&�(��
����
�����
��&)����&�(��
���)�����
��&*��+����	�&�(��
��
��&���	�
�,
�
	��&�(�	�	

�-
�����������'�
��
������
	��*��'����
	������������
-�

�
�������
�����������
����

������
���	�
�����	����	����
���	�
�������
	���
�
�
����	����
���	�
.��/��
�00�
�����1
���	�
��	��������	��	���2 3�
-�

�����
	���
�!�
�
	�%'4��&����&�����!�
	�5���
	
��
�&637�������
�6���7�����
�&��������
���	�
������
��

�����
��	���������
����

�
�������(��
�����
	����
�(���	�
��������	���	
�����
	����
����
���
�����(��
��
�����
�������
	����
���������	���	
���
������
��(���	�
������3���
�
�-�

	��(����
�����
	����
�(���	�
�
	���	���	
�����
	����
����
���
�����(��
��
�����
�������
	����
��
	���	���	
���
������
��(���	�
�
	�3���
�
�-
-

Fig. 4. Minimal awareness implementation capable of highlighting local text changes
at all remote clients

the X- and Y-coordinates by retrieving the screenX and screenY attributes from
the MouseEvent object. However, this is only appropriate for strict what you see
is what I see (WYSIWIS) tools [11] where all clients share the same window
size, viewport, etc. In relaxed WYSIWIS environments [11] where participants
might have different viewports, zoom levels, etc., the information capturing is
much more complex and cannot leverage window coordinates (e.g. highlighting
a word at zoom level 100 covers a different screen area than highlighting the
same word at a zoom level of 200 percent). Therefore, advanced mechanisms are
required to calculate positions. A robust way to capture fine grained positioning
values is offered by the HTML Editing API [12]. It defines selections in HTML
documents that can be obtained using the window.getSelection() method.
The call returns a Selection object that exposes either the caret position or
the text selection potentially spanning across multiple elements. It can comprise
one or more Range objects [13] (indicated by the rangeCount property). Each
Range object represents a contiguous part of the selection. In order to reconstruct
selections or caret positions, the start and end of every Range object have to be
transmitted to other clients.

The preparation of update messages is the second important capture task.
Awareness information has to be serialized before the data transmission can take
place. Therefore, JSON-compliant objects are employed as data containers com-
bining all relevant awareness information. These JSON objects are then passed
to the GAA which eventually serializes these objects and sends out awareness
update messages.

Regarding the example of the minimal text editor, the capture mechanism
would be triggered upon text modifications affecting the <h1> or <p> node.
This capture mechanism is defined in the captureChanges function depicted
in Figure 4(a). First, the getSelection method retrieves a list of Range ob-
jects representing currently selected DOM elements. If the caret resides in the
<h1> or <p> node, there is only one Range instance that is retrieved through

Reusable Awareness Widgets for Collaborative Web Applications 9

getRangeAt(0). This Range instance is exploited to create a JSON object as
illustrated in Figure 4(b). The JSON message contains information about the
affected node (id), the caret position (offset), etc. After the message construc-
tion, the JSON string is transferred to the server.

Visualization Component: The third building block of the proposed blueprint
is the visualization component which processes and eventually renders incoming
awareness information. In detail, this component carries out the following tasks:

– Awareness Information Processing: Distribute, interpret and render received
awareness information.

– Awareness Information Re-Rendering: Refresh UIs of awareness widgets
upon local change events.

Awareness widgets receive its data via JSON-compliant data exchange objects
that were created by the GAA during the deserialization of awareness mes-
sages. Data exchange objects contain awareness information collected by the
capturing component. For example, a data object dedicated for an input high-
lighting widget might carry information about the captured range of newly
inserted characters. If this information has been passed to the specific widget,
the visualization process can start. First, a new Range object has to be created
(document.createRange()). Second, the start and end of the range have to be
set invoking range.setStart(startNode, startOffset) and range.setEnd

(endNode, endOffset) respectively. The start and end nodes can be obtained
via document.getElementById(...) using the identifiers stored in the data ex-
change object. After these two initial steps, the visualization engine can profit
from the rich APIs specified in the CSS Object Model Standard [4]. It
enriches existing DOM interfaces like Document, Window or Element with so-
phisticated functions like caretPositionFromPoint(), getClientRects(), etc.
The range.getClientRects() method, for instance, returns a collection of
ClientRect objects that serve as a representation for the range’s occupied screen
area. Each rectangle exposes read-only left, top, right and bottom properties.
These properties and its assigned values are used as CSS properties for the es-
tablished <div> overlay element. Note, that this <div> element can be styled
according to your application’s look and feel since solely CSS properties have
to be changed. The defined procedure ensures the correct handling of relaxed
WYSIWIS situations, because abstract awareness information is interpreted lo-
cally and therefore adapted to the local environment (e.g. zoom level, viewport,
etc.). For graphics tools a rectangular highlighting of the modified DOM ele-
ment might not be appropriate. In particular, inline SVG graphics embedded in
the DOM tree require advanced highlighting mechanisms. A compelling way to
highlight SVG elements is to first clone the affected SVG element to the <div>

overlay container of the corresponding awareness widget. Afterwards the cloned
SVG element can be styled, i.e. its properties (e.g. fill or stroke color) are cleared
and then a new stroke is created. Setting the stroke-width and stroke-color

properties completes the sophisticated SVG highlighting.

10 M. Heinrich et al.

If local changes occur (e.g. window size modifications, scrolling, etc.) the
awareness visualization has to be re-rendered to adapt to the updated envi-
ronment. To keep track of those local changes, additional event listeners have to
be registered while initializing the awareness widget.

In the introduced example, the simple awareness widget has to highlight the
characters recently entered by the remote user. Figure 4(c) illustrates the re-
quired steps. In summary, a new rectangular <div> element is constructed that
has the same dimensions and coordinates as the newly created characters. Di-
mensions and coordinates fetched from the deserialized Range object are applied
to the created <div> by assigning a CSS style.

4 Validation

To assess the reusability of awareness widgets which were devised leveraging the
GAI approach, we opted for a two-step validation. First, we implemented three
example widgets according to the presented architecture blueprint (cf. Section 3).
Second, we incorporated these awareness widgets bundled with the configured
GAA into four collaborative web editors.

In the first step aiming to produce exemplary awareness widgets – due to
resource restrictions – we had to choose three awareness widgets from the mul-
titude of common widgets. Therefore, we based our selection on a classification
dividing widgets in extrinsic and intrinsic ones. Extrinsic awareness widgets are
encapsulated in a single UI container and do not intermingle with the UI rep-
resenting the document content (e.g. participant list, radar view or document
history). Intrinsic awareness widgets are intermingled with the UI representing
the document content (e.g. input highlighting, semantic cursor or telepointer).
Besides taking into account the classification, we also wanted to cover the preva-
lent application domains (i.e. shared editing and shared drawing). Therefore, we
decided to build widgets exposing the following characteristics: (1) intrinsic for
shared editing as well as (2) intrinsic for shared drawing and (3) extrinsic for
arbitrary collaborative applications. Correspondingly, we developed (1) an input
highlighting widget for text editors as well as (2) an input highlighting widget
for graphics editors and (3) a generic participant list.

To test the three developed awareness widgets, we set out to find collabo-
rative editors lacking awareness support. Existing multi-user editors were not
appropriate since they already offer awareness features to some extent. Hence,
we chose to convert available single-user applications into multi-user applica-
tions and leveraged the transformation approach described in [7] that produces
shared editing tools featuring document synchronization and conflict resolution.
The produced collaborative web editors were suitable test applications since they
did not provide any awareness support. According to our proposition, we trans-
formed editors from different application domains including two text editors and
two graphics editors. In the following paragraph, we briefly introduce the four
web applications that were successfully converted to collaborative applications.

Reusable Awareness Widgets for Collaborative Web Applications 11

���������	�
����

���������	�
����

����������
����

����������
����

�������	
��

�����
�����

Fig. 5. User interfaces of the web-based text editors CKEditor [14] and TinyMCE [15]
enriched with awareness support (changes by the remote user Jane are highlighted red)

CKEditor [14] and TinyMCE [15] are two popular web-based text editors
offering common features such as text formatting, image insertion or text align-
ment. Both editors were enhanced with the very same participant list widget
as well as an input highlighting widget (cf. Figure 5). Input highlighting is ac-
complished by adding a colored overlay to newly created characters for a certain
period of time. The color overlay corresponds to the color coding established in
the participant list. SVG-edit [16] and FNISVGEditor [17] are editors for scal-
able vector graphics providing common graphics tools to accomplish reoccurring
drawing tasks such as create lines, ellipses or rectangles. Both editors incorpo-
rated a participant list widget and an input highlighting widget (cf. Figure 6).
Note that the input highlighting widget differs from the text input highlight-
ing. In contrast to emphasizing newly created characters, in this case, recently
created shapes (e.g. circles, rectangles) are subject to highlighting.

Eventually, we could show that it is feasible to reuse awareness widgets by in-
corporating them non-invasively in four distinct collaborative applications. The
editor screenshots depicted in Figure 5 and Figure 6 demo the achieved aware-
ness support. Furthermore, the resulting collaborative editors are demonstrated
on our GAI demo page http://vsr.informatik.tu-chemnitz.de/demo/GAI/.
Note that during the widget integration some issues were encountered. One class

http://vsr.informatik.tu-chemnitz.de/demo/GAI/

12 M. Heinrich et al.

���������	�
���� ����������
����� ���������	�
���� ����������
�����

�����������	 ����
�������	��

Fig. 6. User interfaces of the graphics editors SVG-edit [16] and FNISVGEditor [17]
enriched with awareness support (changes by the remote user Jane are highlighted red)

of issues was related to the positioning of highlighted ranges. Since the document
viewport establishes an extra coordinate system that is embedded in the browser
window coordinate system, coordinate calculations have to take offsets into ac-
count. Another identified issue was discovered incorporating the participant list
widget. The proposed approach to draw the participant list on an extra overlay
layer requires an empty window portion which is not always the case. Therefore,
the participant list has to be embedded directly into the application layer. The
outlined issues could all be solved configuring the GAI accordingly.

5 Discussion

In our validation, we illustrated the strength of the GAI approach. A major
advantage is the provisioning of awareness support at infrastructure level. Once
implemented, the awareness features supported by our GAI are reusable by nu-
merous applications from different domains. Moreover, the creation of awareness
widgets is also simplified. Widgets can exploit awareness information supplied
by the GAA and mediated by the GAI. Therefore, development effort and time
for awareness widget implementations are significantly reduced in contrast to
conventional approaches.

We also showed in our validation the non-invasive integration of awareness
widgets into existing collaborative applications. Extrinsic as well as intrinsic
widgets were successfully integrated without having to change the source code of
the original application. Moreover, the devised awareness widgets were adopted
in different applications of the same domain and even across domains which
demonstrates the high reusability of GAA widgets.

However, the gained experience developing numerous GAA-compliant aware-
ness widgets revealed two critical limitations that are immanent to the proposed
GAI approach:

Reusable Awareness Widgets for Collaborative Web Applications 13

Application Model not Represented in the DOM: The defined GAI implemen-
tation and in particular the information capturing components rely on standard-
ized DOM events that are fired if the DOM is manipulated. If this notification
mechanism is somehow bypassed and not actively producing events anymore,
the GAI information tracking cannot operate properly and eventually, regis-
tered awareness widgets are affected since required awareness information is not
supplied. For example, if one part of the application is implemented using a
plug-in technology (e.g. Adobe Flash or Microsoft Silverlight), changes affecting
a plug-in internal data structure do not emanate DOM events and thus aware-
ness information cannot be retrieved. Therefore, it is mandatory that the editor
document and its content (e.g. the text of a text editor or the shapes of a graphics
editor) are represented as a part of the DOM.

Cross-Browser Inconsistencies: Differing browser engines (e.g. Apple Safari,
Google Chrome, etc.) are not fully consistent with respect to their model rep-
resentation (i.e. the DOM) even though they request and render the very same
serialized HTML file (e.g. an element is represented as one single node in one
browser engine and as multiple nodes in another browser engine). This can break
the global identification scheme and impair the awareness information associa-
tion. For instance, adding a line break to a text embedded in an HTML textarea

results in a Text node split. Removing this line break once again is handled dif-
ferently by different browser engines. While some engines merge the text nodes,
other browser engines keep two separate text nodes.

Even though the GAI approach entails some limitations, we argue that a
standards-based solution such as the GAI can efficiently tackle the aforemen-
tioned challenges (cf. Section 2). In particular in the light of the HTML5 move-
ment where standards are aggressively pushed and rapidly adopted.

6 Related Work

Our GAI approach is related to work in two major research domains, namely full-
fledged collaboration frameworks and user interface (UI) toolkits accommodating
also awareness support.

UI toolkits like the Multi-User Awareness UI Toolkit (MAUI Toolkit) [18],
WatchMyPhone [19] or GroupKit [20] provide sets of awareness-ready UI com-
ponents and also facilitate document synchronization. Most of the approaches
are tailored to a particular runtime environment. While the MAUI Toolkit tar-
gets the Java runtime, WatchMyPhone is a solution dedicated for the Android
platform. Even though some toolkits encapsulate functionality like the distribu-
tion of awareness information into generic components, there is a tight coupling
between UI controls and awareness support. Thus, reusability of awareness wid-
gets is achieved at the design phase rather than at the runtime phase. Developers
have to become familiar with the applications’ source code and eventually are
asked to replace standard UI controls with their collaborative counterparts. In
contrast, our non-invasive GAI approach allows to incorporate awareness fea-
tures in a rapid and cost-efficient manner since it only involves the integration
of an extra JavaScript file without requiring source code changes.

14 M. Heinrich et al.

Advanced frameworks for the development of collaborative applications like
Apache Wave [21], BeWeeVee [22] or CEFX [23] focus on the provisioning of
concurrency control mechanisms but neglect the aspect of awareness support.
In our approach the generic awareness support is embedded into the GAI which
decouples the UI layer from the awareness support. This increases reusability of
awareness support and results in reduced effort for developing awareness widgets
on top of the GAI.

7 Conclusion

Workspace awareness is a key feature for collaborative real-time applications
enabling effective collaborative work. At the present time, well-established and
pervasively available collaborative web applications like Google Docs implement
awareness features in an application-specific manner, even if the same set of
awareness widgets could be shared among various applications. As a result, the
time and resource consuming task of implementing and testing awareness widgets
is repeated again and again.

In this paper, we presented an application-agnostic approach for the creation
of out-of-the-box awareness widgets which are reusable in collaborative web ap-
plications. Our solution is based on the idea to anchor basic awareness support
at the application-independent level of standardized W3C APIs. The proposed
generic awareness infrastructure captures information about user interactions at
this generic level and mediates it to all participating users via a server host-
ing the awareness service as well as the concurrency control service. As part
of the generic awareness infrastructure, generic awareness adapters are able to
incorporate arbitrary awareness widgets which have to be developed following a
predefined development blueprint.

To validate our approach, we implemented a set of awareness widgets which
have been integrated into four collaborative web editors for text and graphics. As
demonstrated in our validation, created awareness widgets cannot only be used
for the development of new collaborative web-applications; in particular, they are
tailored for the incorporation into existing ones. Since awareness widgets can be
adopted within several applications of the same domain (e.g. input highlighting
widget) or even across application domains (e.g. generic participant list) our
approach ensures reusability of awareness features to a large extent.

In future work, we will extend the set of available awareness widgets to create a
base for performance and user studies. Especially, the quality/impact of provided
awareness features will be explored in detail.

References

1. Gutwin, C., Greenberg, S.: A Descriptive Framework of Workspace Awareness for
Real-Time Groupware. Computer Supported Cooperative Work 11(3-4), 411–446
(2002)

Reusable Awareness Widgets for Collaborative Web Applications 15

2. Gutwin, C., Stark, G., Greenberg, S.: Support for Workspace Awareness in Edu-
cational Groupware. In: CSCL, pp. 147–156 (1995)

3. Sommerville, I.: Software Engineering, 9th edn. Addison Wesley (2010)
4. van Kesteren, A.: CSSOM View Module, http://www.w3.org/TR/2011/

WD-cssom-view-20110804/ (working draft August 4, 2011)
5. Hors, A.L., Hégaret, P.L.: Document Object Model (DOM) Level 3 Core Specifi-

cation (2004), http://www.w3.org/TR/DOM-Level-3-Core/
6. Schepers, D., Rossi, J.: Document Object Model (DOM) Level 3 Events Specifica-

tion (2011), http://www.w3.org/TR/DOM-Level-3-Events/
7. Heinrich, M., Lehmann, F., Springer, T., Gaedke, M.: Exploiting single-user web

applications for shared editing: a generic transformation approach. In: WWW, pp.
1057–1066 (2012)

8. Crockford, D.: The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627 (Informational) (July 2006)

9. Hürsch, W.L., Lopes, C.V.: Separation of Concerns. Technical report (1995)
10. Ferraiolo, J.: Scalable Vector Graphics (SVG) 1.0 Specification (2001),

http://www.w3.org/TR/SVG10/

11. Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., Tatar, D.: WYSIWIS Revised:
Early Experiences with Multiuser Interfaces. ACM Trans. Inf. Syst. 5, 147–167
(1987)

12. Gregor, A.: HTML Editing APIs, Work in Progress.
http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html (last update Jan-
uary 19, 2012)

13. Kesselman, J., Robie, J., Champion, M., Sharpe, P., Apparao, V., Wood, L.:
Document Object Model (DOM) Level 2 Traversal and Range Specification (2000),
http://www.w3.org/TR/DOM-Level-2-Traversal-Range/

14. CKSource: CKEditor - WYSIWYG Text and HTML Editor for the Web (2011),
http://ckeditor.com/

15. Moxiecode Systems: TinyMCE - JavaScript WYSIWYG Editor (2011),
http://www.tinymce.com/

16. Schiller, J., Rusnak, P.: SVG-edit - A Complete Vector Graphics Editor in the
Browser (2011),
http://code.google.com/p/svg-edit/

17. Leppa, A.: FNISVGEditor - JavaScript-based Online Editor for SVG Graphics
(2010), http://code.google.com/p/fnisvgeditor/

18. Hill, J., Gutwin, C.: The MAUI Toolkit: Groupware Widgets for Group Awareness.
In: Computer-Supported Cooperative Work, pp. 5–6 (2004)

19. Bendel, S., Schuster, D.: Providing Developer Support for Implementing Collab-
orative Mobile Applications. In: Third International Workshop on Pervasive Col-
laboration and Social Networking, PerCol 2012 (2012)

20. Roseman, M., Greenberg, S.: Building Real-Time Groupware with GroupKit, a
Groupware Toolkit. ACM Trans. Comput.-Hum. Interact. 3, 66–106 (1996)

21. Apache Software Foundation: Apache Wave (2011),
http://incubator.apache.org/wave/

22. BeWeeVee: BeWeeVee - Life Collaboration Framework (2011),
http://www.beweevee.com

23. Gerlicher, A.: Collaborative Editing Framework for XML (2009),
http://sourceforge.net/projects/cefx/

http://www.w3.org/TR/2011/WD-cssom-view-20110804/
http://www.w3.org/TR/2011/WD-cssom-view-20110804/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/SVG10/
http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html
http://www.w3.org/TR/DOM-Level-2-Traversal-Range/
http://ckeditor.com/
http://www.tinymce.com/
http://code.google.com/p/svg-edit/
http://code.google.com/p/fnisvgeditor/
http://incubator.apache.org/wave/
http://www.beweevee.com
http://sourceforge.net/projects/cefx/

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 16–30, 2012.
© Springer-Verlag Berlin Heidelberg 2012

News-Topic Oriented Hashtag Recommendation
in Twitter Based on Characteristic Co-occurrence

Word Detection

Feng Xiao, Tomoya Noro, and Takehiro Tokuda

Department of Computer Science, Tokyo Institute of Technology, Japan
Meguro, Tokyo 152-8552, Japan

{xiao,noro,tokuda}@tt.cs.titech.ac.jp

Abstract. Hashtags, which started to be widely used since 2007, are always uti-
lized to mark keywords in tweets to categorize messages and form conversation
for topics in Twitter. However, it is hard for users to use hashtags for sharing
their opinions/interests/comments for their interesting topics. In this paper, we
present a new approach for recommending news-topic oriented hashtags to help
Twitter users easily join the conversation about news topics in Twitter. We first
detect topic-specific informative words co-occurring with a given target word,
which we call characteristic co-occurrence words, from news articles to form a
vector for representing the news topic. Then by creating a hashtag vector based
on tweets with the same hashtag, we calculate the similarity between these two
vectors and recommend hashtags of high similarity scores with the news topic.
Experimental results show that our approach could recommend hashtags which
are highly relevant to the news topics, helping users share their tweets with oth-
ers in Twitter.

Keywords: Social Media, hashtags, tweet, characteristic co-occurrence word,
clustering, news topic, Twitter.

1 Introduction

News articles, as a traditional medium for distributing information all over the world,
have been increasingly impacted by a new way of information delivery called social
media. Social networking services, such as Twitter, Facebook, and Digg, provide
plenty of ways for users to share information with others. For example, since Twitter
was launched in July 2006, the number of users and messages, called tweets, in-
creased dramatically. Most of tweets in Twitter often concern topics of headline news
or persistent news [1], making Twitter a suitable and important data resource for post-
ing/receiving breaking news and opinions.

Currently, a lot of tools/functions are provided to help news agencies/users easily
share news information in Twitter. Most of news websites provide Tweet Button in
their Web pages to help readers easily share news articles with their followers. Ret-
weet function greatly accelerates the spreading speed of information and mention
function using @username help Twitter users exchange information directly with

 News-Topic Oriented Hashtag Recommendation in Twitter 17

others. Hashtags (the # symbol prefixed to a short character string) are widely used to
categorize and joint tweets together based on a certain topic and make your tweets
more easily searchable by other users with the same interest.

However, it is hard for Twitter users to use hashtags in their tweets properly when
they want to share contents or their opinions/interests/comments for news topics. For
many news websites, they do not provide any hashtag in tweets when users click the
Tweet Button on their Web pages, which means users’ sharing could only be seen by
their followers and might not reach far to the others. Other news websites append
hashtags automatically while most of them are not for the purpose of helping users
share their tweets or too unique. Some of news websites use their formal name (such
as “#CNN”) as the hashtag in every tweet from the Tweet Button of their news Web
page no matter what the topic the news article reports. Such a kind of hashtag could
only help these sites watch the information spreading in Twitter or promote reputation
for advertising. Other news websites like Yahoo! Japan News provide hashtags such
as “#yjfc_wall_street_protest” when users post tweets from news Web pages report-
ing protest in Wall Street while such a kind of hashtags might only be used by Yahoo!
Japan readers and is not widely used by other users.

It is also very hard for Twitter users to create/select proper hashtags by themselves.
Users try to create hashtags which they took for granted that these hashtags should be
widely used for topics while the truth might be just on the contrary. For example, “#
Wall_Street_Protest” might be thought as a meaningful hashtag used in tweets talking
about the protest in Wall Street, but we found that no one uses this hashtag in his
tweets up to the point of writing this paper. Users could search for some topic-related
keywords and read all those responded tweets to find hashtags that relate to the topic.
However, there might be too many hashtags contained in those responded tweets,
relating to more than one topic, that users may have no idea which hashtags should be
chosen. If all else fails, users may have to add the # symbol prefixed to every word in
their tweets; wishing one of these hashtags could be the one which is widely used by
others for the topic in Twitter. However, such a behavior would make the tweets hard
to read and impolite. The users may be taken as tweet spammers.

Fig. 1. System structure of the news-topic oriented hashtag recommendation

18 F. Xiao, T. Noro, and T. Tokuda

In this paper, we present a new approach for recommending hashtags to the user
who wants to join the conversation for a news topic by using hashtags in Twitter after
he/she searches for the news topic by a keyword (we refer to it as target word in this
paper) but has no idea which hashtag could be used. The whole system structure is
depicted in Figure 1. In our approach, we first collect news articles and news-related
tweets published in a certain period of time concurrently. Then news articles are clus-
tered into topics. News-related tweets including mentioned or tagged screen names of
news agencies (e.g. @CNN, #CNN) are concatenated based on the hashtags and a
vector for representing each hashtag is created. After the target word has been pro-
vided, news topics that relate to the target word are selected and a vector is created for
representing each of the news topics. We calculate the similarity score between each
news-topic vector and each hashtag vector, and hashtags with high similarity scores
are recommended for the news topic.

To represent news topics that relate to the target word, we propose a new method
named Probabilistic Inside-Outside Log (P-IOLog) method to detect characteristic
co-occurrence words from news articles. Characteristic co-occurrence words are top-
ic-specific words which provide information for news topics related to the target word
and could be detected based on the assumption that characteristic co-occurrence
words should often co-occur with the target word in news articles while they are less
likely to appear when the target word is not contained. Words with their scores de-
tected by our P-IOLog method are used to create news-topic vectors. We also extend
this P-IOLog method for hashtags to detect informative words co-occurring with the
hashtags in tweets and all these detected words with their scores are used to create
hashtag vectors. We refer to the extended method as P-IOLogH method.

Notice that our approach is trying to recommend hashtags which have been created
and used in tweets. New hashtag generation is not our goal. Also we are trying to help
users who want to share their opinions/interests/comments and join conversations for
news topics in Twitter. Other kinds of Twitter users, such as bots, are not considered.

The organization of the rest of this paper is as follows. We present related work in
the next section. In Section 3, we describe our method for detecting characteristic
co-occurrence words with the target word, named Probabilistic Inside-Outside Log
(P-IOLog) method, and how to create news-topic vectors based on these detected
words. In Section 4, we propose two methods (TF-IHF and P-IOLogH) to weight
words co-occurring with hashtags for creating hashtag vectors and explain how to get
recommended hashtags for news topics. Experimental results and evaluations are
described in Section 5. In Section 6 we make the conclusion with directions for future
research.

2 Related Work

Hashtags in Twitter are one special type of a more general concept, tag, which is an
important feature for many social networking services. People could create tags with
few taxonomic constraints to categorize resources for later browsing, or to describe
resources for searching. Many approaches for tag recommendation in social network-
ing services have been proposed recently. They are mainly classified into two classes.

 News-Topic Oriented Hashtag Recommendation in Twitter 19

One class of these approaches focuses on the relationship between tags and their
associated resources, and recommends tags to a newly added resource. One applica-
tion in this class is the tag recommendation system for weblog. Brooks et al. [2] try to
select words in blog posts that have high TF-IDF scores to be used as tags, and find
that those tags are more representative than human-assigned ones. Mishne G. [3] and
TagAssist [4] recommend tags to a new blog post by providing tags in those old blog
posts which have high TF-IDF similarity with the new one. These approaches rec-
ommend tags in similar resources by using techniques from Information Retrieval
(e.g. TF-IDF). However, these methods are no longer effective for recommending
hashtags in Twitter because TF-IDF reduces the chance of relevant tweets to be se-
lected since the tweet length is limited and their contents have less information [5].

Other approaches exploit tag co-occurrence patterns through a history of tag as-
signments in a collaborative tagging environment when the resource with which the
tag was associated is hard to retrieve such as audio, video, and image. Sigurbjornsson
et al. [6] recommend tags for each user-defined tag for photos based on tag co-
occurrence in Flickr. Wartena et al. [7] proposed another approach to calculate the
similarity between tag co-occurrence distribution and the user profile. Tags with high
similarity are recommended to the user. Belem et al. [8] extended tag co-occurrence
exploiting and considered about terms extracted from other textual features such as
title and description. All these approaches are based on two assumptions: tags are
assigned to resources beforehand and most of resources have two or more tags1. How-
ever, most of tweets in Twitter only contain one or even no hashtag. For example, in
all news-related tweets collected on December 20th 2011, 88.6% of tweets contain one
or no hashtag. Exploiting tag co-occurrence in tweets becomes impossible due to the
small number of tweets containing two or more hashtags.

Recently, researchers found out that hashtags in Twitter play a different role com-
pared to tags in other social networking services. Huang et al. [9] compared user tag-
ging behaviors between Twitter and Delicious. They found out that hashtags in Twit-
ter are used to join discussions on existing topics while in Delicious tags are used to
re-access resources. Our approach is based on the conversational nature of hashtags
and tries to recommend hashtags to help users join the conversation about the news
topic so that users do not need to be “exposed” to too many hashtags

Approaches for hashtag retrieval/recommendation in Twitter have been proposed
while there are some problems still existed. Weng et al. [10] proposed methods for
modeling the interestingness of hashtags by studying how hashtags are discussed
within and across communities, but they do not correlate hashtags with topics in
which users are interested. Correa et al. [11] proposed a new approach for recom-
mending tags to other social networking services such as Flickr and YouTube, using
hashtags and terms in tweets. Our approach is different because we correlate Twitter
with traditional news media, not other social networking services. Efron M. [12] and
Wagner C. et al. [13] proposed new approaches to retrieve useful hashtags after a
keyword is given. However, one keyword may relate to more than one topic and all

1 Flickr allows its users to add 75 tags per photo at most; In YouTube the total length of your

tag list is limited to 500-character.

20 F. Xiao, T. Noro, and T. Tokuda

hashtags related to different topics would be mixed together. Also, ranking hashtags
based on their in-degree in [13] would make some general hashtags (e.g. #tech) be
ranked higher, which is still not helpful. Zangerle et al. [14] proposed a method to
recommend hashtags to users’ inputted contents by calculating similarities between
newly inputted contents and old tweets based on TF-IDF. Hashtags which frequently
appear in old tweets with high similarities are recommended. However, similarity
among tweets is hard to decide by simply relying on those common words since se-
mantics and synonyms are not considered. Also, due to the huge number of tweets,
TFIDF is no longer a good choice because the IDF part would dominate the final
score, assigning large score to the word which appears scarcely (e.g. misspelling).

Other approaches interweaving traditional news media with social networking
services have also been proposed for Topic Detection and Tracking [15, 16], news
recommendation [17], and user profile construction [18]. To the best of our know-
ledge, our approach is the first one trying to recommend hashtags for news topics in
which users are interested.

3 Characteristic Co-occurrence Word for News Topic

A news topic is a group of news articles published in a period of time (for example:
one day) reporting about the same recent event in the world. Traditional method for
representing the news topic is to define a centroid vector which is calculated by aver-
aging vectors of all news articles in this topic under the Vector Space Model [19].
Each vector dimension corresponds to a separate term in news articles and term
weights are calculated by the TF-IDF. Although TF-IDF works well in many tasks
such as Information Retrieval, it is no longer the best choice for our approach. Firstly,
TF-IDF is a query-independent term weighting method, which means the term weight
doesn’t change no matter what the query is. Secondly, TF-IDF is a topic-independent
method. The term which appears in most news articles of a news topic should be
weighted higher while TF-IDF could not reflect this idea. At last, even news articles
of the same news topic may share many common terms, a news topic may contain
thousands of separate terms, which would greatly increase the computation.In order to
solve these problems, we propose a new method for detecting characteristic co-
occurrence words of news topics with the target word which is queried by users. Cha-
racteristic co-occurrence words are those words which provide important information
for news topics related to the target word. Our method for detecting characteristic co-
occurrence words is based on two assumptions:

• Characteristic co-occurrence word w should often co-occur with the target word t
in news articles; we take it as the Inside part.

• Characteristic co-occurrence word w should not always appear in news articles
without the target word t; we take it as the Outside part.

Based on these two assumptions, words often appearing in news articles including the
target word while being less likely to appear in news articles without the target word
are taken as the characteristic co-occurrence words. However, all of news articles con-
taining the target word do not always deal with the same news topic and characteristic

 News-Topic Oriented Hashtag Recommendation in Twitter 21

co-occurrence words related to different news topics will be mixed together. Also,
some words which often co-occur with the target word regardless of the news topic
(e.g. Obama and White House) should be excluded since those words provide little
information for a specific news topic.

In order to solve these problems, we firstly clustered news articles and those ar-
ticles which related to the same news topic are hopefully put into the same group
while news articles related to different news topics would be partitioned into different
ones. Then we can detect characteristic co-occurrence words for every news topic
related to the target word separately without a mixture of words. The procedure is
depicted in the Figure 2(a). When dealing with one news topic, all news articles con-
taining the target word in this topic are taken as the Inside part while all the other
news articles regardless of existence of the target word are taken as the Outside part.
Words co-occurring with the target word regardless of the topic are excluded under
this way.

To reflect our idea, we introduce Probabilistic Inside-Outside Log method to calcu-
late the score of word w co-occurring with the target word t in topic c as follows.

 P-IOLog(w,t,c) = log
| (1)

 | (2)

 – (3)

where df(w) is the number of news articles containing w. df(w∧t∧c) is the number of
news articles not only containing both w and t, but also belonging to the news topic c.
df(w∧¬(t∧c)) is the number of news articles containing w but not containing t or not
being assigned to news topic c (Figure 2(b)). N is the total number of news articles
and sp is a smoothing parameter which ranges from 0 to 1. The P-IOLog score will
vary from log (sp) to log (1/sp). The larger the score is, the more likely the word w is a
characteristic co-occurrence word with the target word t for news topic c.

(a) Characteristic co-occurrence word detection for news topic (b) Probabilistic Inside-Outside Log

method

Fig. 2. Procedure of characteristic co-occurrence word detection for news-topic

22 F. Xiao, T. Noro, and T. Tokuda

For every news topic related to the target word, we select the target word t and
top-(n-1) words whose P-IOLog scores are larger than the others to create a news-
topic vector. The news-topic vector’s dimension is n and the term weight for every
dimension is defined as the normalized P-IOLog score. They are created as follows.

 , , , … , (4)

P IOLog , ,P IOL , , … P IOL , , (5)

where cti is the normalized weight for word wi. , is the vector for representing
news topic c that relates to the target word t. The weight of the target word t is as-
signed as the maximum value of P-IOLog.

Compared with other methods for calculating co-occurrence coefficients, our P-
IOLog method is an asymmetric method while some others are symmetric measures
(e.g. Jaccard). However, for detecting characteristic co-occurrence words which are
topic-specific, detected words should be query and topic-dependent while symmetric
measures could not reflect this idea. Also, unlike other asymmetric methods such as
DF-IDF, our method considers not the raw word co-occurrence frequency, but the
co-occurrence probability in news articles with/without the target word. Detailed ex-
periments of comparison could be found in [20].

4 News-Topic Oriented Hashtag Recommendation

In order to find news-topic oriented hashtags, one intuitive way is to retrieve tweets
related to a news topic and recommend commonly used hashtags among these tweets.
However, tweet content is limited within 140 characters, which means there is far not
enough information in a single tweet to decide whether the tweet relates to the news
topic. Also, traditional way as TF-IDF for weighting terms is no longer effective for
short text which has been pointed out [5].

Our method to recommend news-topic oriented hashtags is based on two assump-
tions:

• Tweets containing recommended hashtags should relate to the news topic.
• Recommended hashtags should be widely used by Twitter users when they discuss

the news topic.

For the first assumption, when Twitter users are discussing a news topic, some infor-
mative words of this news topic would be likely to be used in their tweets. The second
assumption means that when one hashtag is widely used for a news topic in Twitter,
users would use this hashtag to exchange information about the news topic from dif-
ferent perspectives, which means more informative words of the news topic are likely
to be used in users’ tweets.

 News-Topic Oriented Hashtag Recommendation in Twitter 23

Based on these two assumptions, we concatenate all tweets which contain the same
hashtag and a hashtag vector is created based on concatenated contents of tweets.
Each dimension of the hashtag vector corresponds to a separate term in the concate-
nated contents of tweets. We propose two different methods to calculate the term
weight for the hashtag vector.

4.1 Term Frequency-Inverted Hashtag Frequency (TF-IHF)

Term Frequency-Inverted Hashtag Frequency (TF-IHF) is a variation of TF-IDF
measure which considers not only the term frequency in a single document, but also
the general importance of terms. TF-IHF score will be calculated as follows.

 TF IHF , TF IHF ∑ log |HT|| ∈ | (6)

where wi is the term to which the TF-IHF score corresponds and htj is the hashtag.
|HT| gives the total number of hashtags in the dataset and hd means the concatenated
contents of tweets containing the same hashtag htd where d ∈ {1, …, |HT|}. ni is the
number of times wi appears in hj and k is the total number of separate terms in hj.
TF-IHF value ranges from 0 to log|HT| and high value would be reached when wi
frequently appears in the concatenated contents of tweets for hashtag htj and rarely co-
occur with other hashtags.

However, TF-IHF does not consider about the number of tweets containing both
term wi and hashtag htj, which might cause a bias towards terms appearing many
times in a few tweets with the hashtag. These terms might get higher TF-IHF scores
compared to the others which appear in more tweets with the hashtag but only occur
once in each tweet.

4.2 Probabilistic Inside-Outside Log Method for Hashtags (P-IOLogH)

To conquer the problem in TF-IHF method, we extend our idea in section 3 and apply
those two assumptions for tweets. Our Probabilistic Inside-Outside Log method for
hashtags (P-IOLogH) takes those tweets containing hashtag htj as the Inside part and
tweets containing other hashtags as the Outside part. Terms which often co-occur with
hashtag htj in tweets of the Inside part while not so often appear in tweets with other
hashtags in the Outside part would be taken as the characteristic co-occurrence words
with the hashtag and assigned a high term weight. P-IOLogH score will be calculated
as follows.

 P-IOLogH(,) = log (7)

 P T F T F (8)

24 F. Xiao, T. Noro, and T. Tokuda

 P T F T F T F (9)

where TweetFrequency(wi∧htj) gives the number of tweets containing both term wi
and hashtag htj. NTht means the total number of tweets containing hashtags in the
database. The P-IOLogH score get a value ranging from log(sp) to log(1/sp) with sp as
the smoothing parameter. The larger the P-IOLogH score is, the more likely term wi is
the characteristic co-occurrence word with the hashtag and be more informative.

4.3 Hashtag Vector Creation and Similarity Calculation

For every hashtag, tweets which contain the same hashtag are concatenated to form
contents. Term weight for each separate term in the concatenated contents would be
calculated by TF-IHF and P-IOLogH. Top-n words whose term weights are larger
than the others are selected to create the hashtag vector. Value in each dimension of
the hashtag vector is normalized to make the norm of the vector equals to 1.

Our two assumptions for hashtag recommendation result in a high cosine similarity
between the news-topic vector and the hashtag vector. Hashtags whose vectors have
high similarity with the news-topic vector should be recommended to users who wish
to join the conversation about the news topic in Twitter.

5 Experiment and Evaluation

5.1 Description of the Dataset

In order to validate the effectiveness of our approach on real-world data, news dataset
and news-related tweet dataset are prepared for the experiment. News dataset contains
10,855 news articles crawled from 96 news sites (21 countries/regions) on December
20th, 2011. However, due to the huge number of tweets for different topics in Twitter,
it is hard to retrieve all those tweets related to news topics. Our solution is to manual-
ly select 54 active Twitter accounts of news agencies and collect tweets which are
posted by these accounts or contain mentioned/tagged screen names of these accounts
(e.g. @CNN, #CNN) by using Twitter Streaming API [21]. At last we collected
124,481 tweets on December 20th, 2011 to create our news-related tweet dataset. Al-
though there might be some other tweets related to news topics, collecting those
tweets by formal Information Retrieval technologies is no longer effective due to the
limited length of a tweet and a trade-off has to be made.

5.2 Experimental Setup

News articles in our news dataset are parsed by using TreeTagger [22] and Stanford
Named Entity Recognizer (SNER) [23]. All nouns, proper nouns, foreign words,
verbs and adjectives are picked up for representing each news article under Vector

 News-Topic Oriented Hashtag Recommendation in Twitter 25

Space Model as TF-IDF vector. Then all news articles are clustered based on their
cosine similarities. News articles relating to the same news topic are hopefully
grouped into the same cluster with a predefined similarity threshold of 0.22. To
represent the news topic, traditional TF-IDF method and P-IOLog method in Section
3 are used to weight terms to create a news-topic vector. For the TF-IDF method, we
calculated the centroid vector of all news article vectors for this topic and top-n words
in the centroid vector which have higher TF-IDF scores were selected to create the
news-topic vector, we refer to it as VTD-N. We also selected top-n words whose term
weights were calculated by the P-IOLog method of Equation 1 and the news-topic
vector was created by these top-n words in Equation 4, we refer to it as VIO-N. Words
which are informative and tightly related to the news topic should be selected in these
top-n words with larger term weight than the others.

Tweets in the news-related tweet dataset are also preprocessed. Firstly, tweets
which contain no hashtag or are written in non-English languages are excluded by
checking the main language in the publisher’s profile as “en”. Secondly we filtered
out all formal retweets and include tweets which have been retweeted in the dataset
because Twitter users are not allowed to modify tweet contents when they use formal
“Retweet” function and hashtags in those retweets may not reflect the original idea of
Twitter users. At last 20,094 tweets remain after this step. Thirdly, for every hashtag
in those tweets, we concatenate contents of all tweets which contain the same hashtag
while mention, URL, and hashtags are removed. Hashtags appearing in less than 10
tweets are considered un-valuable and excluded. Up to now, 433 hashtags and their
corresponding concatenated tweet contents have been got. We also use TreeTagger
and SNER to parse concatenated contents of tweets into terms and created hashtag
vectors. Here TF-IHF and P-IOLogH which have been described in Section 4 are used
to weight terms and top-n terms whose term weights are larger than the others are
selected to create the hashtag vector. Smoothing parameter sp in both P-IOLog and P-
IOLogH are set as 0.05. Finally we got two vectors for every hashtag: VTH-N is the
vector whose term weight is calculated by the TF-IHF and VIH-N is the vector whose
term weight is the score of P-IOLogH.

We chose “Republican”, “North Korea”, “Syria”, and “protester” as the target
words. For each target word, news topics which contain more than half of news ar-
ticles including the target word are selected and summaries of these news topics are
described in Table 1.

For each news topic, we set four experiments with different combinations of term
weighting methods to calculate similarities between news topics and hashtags.

• Exp. 1: VTD-N•VTH-N; term weight for news-topic vector is the TF-IDF score and
term weight for hashtag vector is the TF-IHF score.

• Exp. 2: VTD-N•VIH-N; term weight for news-topic vector is the TF-IDF score and
term weight for hashtag vector is the P-IOLogH score.

• Exp. 3: VIO-N•VTH-N; term weight for news-topic vector is the P-IOLog score and
term weight for hashtag vector is the TF-IHF score.

• Exp. 4: VIO-N•VIH-N; term weight for news-topic vector is the P-IOLog score and
term weight for hashtag vector is the P-IOLogH score.

26 F. Xiao, T. Noro, and T. Tokuda

Table 1. Summary of each news topic

ID Summary

News topics for “Republican”

R1 Iowa Republican caucus

R2 House Republicans refused to extend payroll tax cut bill.

News topics for “North Korea”

NK1 World worried about power transition after Kim Jong-il’s death.

NK2 World stock market affected by Kim Jong-il’s death.

News topic for “Syria”

S1 Syria allowed Arab observers into the country to end crisis.

News topic for “protester”

P1 Egyptian army started to clear Tahrir Square with force.

In each experiment, top-n words whose term weights are larger than the others for
news topics and hashtags are selected to create vectors with n taking the value of 50,
100, and 200. Methods which outperform others are considered ranking those topic-
specific informative words higher and hashtags recommended by these methods are
considered more proper for the news topic.

5.3 Assessments

To evaluate recommended hashtags from four experiments, we ask assessors to judge
the relevance of the recommended hashtags to each news topic. To help our assessors
better understand the news topic, they could scan/search for any information if they
need to make a proper decision. The whole procedure is depicted as below.

1. Three assessors are asked to read at least ten news articles which are carefully se-
lected for each news topic so that these news articles can cover the main contents
of the news topic to make them understand the news topic.

2. Top-15 hashtags with largest similarities recommended by each of four experi-
ments are mixed to form a hashtag list for each news topic. Assessors judge the
relevance of each hashtag in this list to the news topic on a three-point scale: high-
ly relevant, partially relevant and irrelevant. They can use any tool (e.g. TagDef,
Google) to find definitions for hashtags.

3. For each news topic, hashtags which are judged as highly relevant by at least two
assessors are defined as highly relevant hashtags. We also define relevant hashtags
as they should not be judged as irrelevant by any of assessors. Notice that highly
relevant hashtags are a sub-set of relevant hashtags.

 News-Topic Oriented Hashtag Recommendation in Twitter 27

Table 2. Recommended hashtags for R1 using top-50 words, and evaluation results

Exp.1 Exp.2 Exp.3 Exp.4
teaparty iacaucus teaparty iacaucus

teamfollowback gop2012 trms trms
tcot ronpaul iacaucus gop2012

ronpaul politics ronpaul gop
gop gop gop2012 ronpaul

politics trms gop gingrich
trms teaparty tcot politics

iacaucus tlot teamfollowback fitn
gop2012 fitn gingrich teaparty
topnews tcot politics tlot

snn gingrich tlot huntsman
gingrich teamfollowback mittromney tcot

tlot p2 romney romney
fitn foxnews nh p2

iowa nh fitn teamfollowback
Highly Relevant
Hashtags (HR)

gop2012, gingrich, tcot, ronpaul, iacaucus

Relevant Hashtags
(R)

huntsman, gop2012, gingrich, newt, tcot, politics.
gop,mittromney, fitn, iowa, ronpaul, iacaucus, teaparty

For example, ”#iacaucus” was judged as a highly relevant hashtag because tweets
containing this hashtag mainly talked about the Iowa Caucus of Republicans. Howev-
er, “#gop” which is often used to mark tweets about Republican was considered as
relevant hashtags because it also relates to other Republican issues. Hashtags such as
“#topnews” used for other purposes were judged as irrelevant. Finally we got 26 high-
ly relevant hashtags and 59 relevant hashtags for six news topics.

To evaluate performances of four experiments for six news topics, we use Preci-
sion as the evaluation metric under two-levels:

• Precision at highly relevance (P@HR): P@HR is the fraction of top-Nhr rec-
ommended hashtags in each experiment that are highly relevant hashtags, where
Nhr is the number of highly relevant hashtags for the news topic.

• Precision at relevance (P@R): P@R is the fraction of top-Nr recommended hash-
tags in the experiment that are judged as relevant hashtags, where Nr is the number
of relevant hashtags for the news topic.

The experiment whose P@HR and P@R values are both larger than the others should
be considered as the best one for recommending hashtags. If some experiments share
the same value of P@HR, the experiment whose P@R value is larger outperforms.
We only evaluate Precision here because Recall and F-measure share the same value
in our experiments.

5.4 Experimental Result

We select top-n words (n = 50, 100, 200) whose term weights are larger than the oth-
ers by using different term weighting methods to create vectors for representing news
topics and hashtags. Four experiments described in Section 5.2 are evaluated based on
precision metric under two-levels for six news topics (R1, R2, NK1, NK2, S1, P1).

28 F. Xiao, T. Noro, and T. Tokuda

Table 3. Experiment results of P@HR and P@R with their average precisions (Ave@HR,
Ave@R) for six news topics (R1, R2, NK1, NK2, S1, P1) by four experiments (Exp.1 – Exp.4)

 P@HR
Ave@HR

P@R
Ave@R

HR

top50

top100

top200

R

top50

top100

top200

R1

Exp.1

5

0.4 0.6 0.6 0.533

13

0.615 0.615 0.615 0.615
Exp.2 0.6 0.8 0.8 0.733 0.692 0.769 0.692 0.7179
Exp.3 0.6 0.4 0.4 0.466 0.692 0.692 0.615 0.6667
Exp.4 0.6 0.6 0.8 0.666 0.769 0.846 0.692 0.7692

R2

Exp.1

2

1 1 1 1

8

0.625 0.625 0.625 0.625
Exp.2 1 1 1 1 0.75 0.75 0.625 0.7083
Exp.3 1 1 1 1 0.625 0.75 0.625 0.6667
Exp.4 1 1 1 1 0.75 0.75 0.75 0.75

NK1

Exp.1

3

0.333 0.333 0.3333 0.333

11

0.454 0.636 0.636 0.5758
Exp.2 0.666 0.666 0.666 0.666 0.636 0.727 0.727 0.697
Exp.3 0.666 1 0.666 0.777 0.727 0.727 0.727 0.7273
Exp.4 1 1 1 1 0.727 0.818 0.818 0.7879

NK2

Exp.1

4

0.5 0.5 0.25 0.416

8

0.375 0.375 0.375 0.375
Exp.2 0.5 0.5 0.5 0.5 0.375 0.5 0.5 0.4583
Exp.3 0.25 0.5 0.75 0.5 0.5 0.75 0.75 0.6667
Exp.4 0.75 0.75 0.75 0.75 0.625 0.75 0.875 0.75

S1

Exp.1

4

0.75 0.75 0.75 0.75

9

0.666 0.556 0.556 0.5926
Exp.2 0.5 0.5 0.5 0.5 0.666 0.667 0.556 0.6297
Exp.3 0.75 0.75 0.75 0.75 0.666 0.667 0.778 0.7037
Exp.4 0.75 0.75 0.75 0.75 0.777 0.778 0.778 0.7778

P1

Exp.1

8

0.875 0.75 0.75 0.791

10

0.7 0.7 0.7 0.7
Exp.2 0.875 0.875 0.875 0.875 0.7 0.7 0.8 0.7333
Exp.3 0.875 0.875 0.75 0.833 0.9 0.9 0.9 0.9
Exp.4 0.875 0.875 0.875 0.875 0.8 0.9 0.9 0.8667

Table 2 gives a detailed example about top-15 recommended hashtags for news
topic R1 from four experiments and assessors’ judgment results. For example, there
are 5 hashtags considered as highly relevant hashtags by assessors (Nhr). Among top-5
hashtags recommended by Exp. 4, 3 of them (iacaucus, gop2012, ronpaul) belong to
the highly relevant hashtag and the precision at highly relevance (P@HR) is calcu-
lated as 3 divided by 5. Also, there are only 2 hashtags (tcot, ronpaul) out of top-5
hashtags recommended by Exp. 1 taken as highly relevant hashtags and the P@HR
should be 2 divided by 5. Precision at relevance (P@R) is calculated in the same way.
For each experiment, average precision values (Ave@HR, Ave@R) are calculated
with different n values. Table 3 gives out final evaluation results for four experiments
among six news topics. Bold numbers are the largest average precision values for
highly relevant and relevant hashtags while columns of HR and R give out the num-
ber of highly relevant and relevant hashtags for each news topic.

Exp. 4 which applies our proposed methods based on Inside and Outside assump-
tions to both news topics (Section 3) and hashtags (Section 4.2) has a larger average
precision value than the others in most cases, which means hashtags recommended by
the Exp.4 are more meaningful than hashtags recommended by other experiments.
Although Exp. 4 shares the same Ave@HR value with other experiments in R2 and
S1, it outperforms others in Ave@R, which also means Exp. 4 performs better. By
applying our proposed methods for hashtags or news topics in Exp. 2 and Exp. 3,

 News-Topic Oriented Hashtag Recommendation in Twitter 29

results show an improvement, although they still perform not so well compared to
Exp. 4. These improvements also prove that our Probabilistic Inside-Outside Log
methods for both news-topics and hashtags have positive affection to the final results.
By varying the value of n for top-n words which are used to build the vectors, we can
also observe that Exp.4 outperforms others with different n values ranging from 50 to
200, which proves that our proposed methods are more likely to rank informative
words higher than the others. Applying our proposed methods only for hashtags or
news topics in Exp.2 and Exp.3 could also partially improve the results with different
n values compared to the Exp.1 due to the outperformance of our methods.

6 Conclusion

In this paper, we presented an approach for recommending hashtags in Twitter on
news topics searched for an input target word. As basic components of the approach,
we also proposed a method for detecting/weighting characteristic words co-occurring
with the target word in news articles and two methods for detecting/weighting charac-
teristic words co-occurring with a hashtag in tweets. Experimental results shown that
our proposed methods for both news-topics and hashtags could recommend more
news-topic relevant hashtags than the other methods such as TF-IDF.

The current system could recommend existed hashtags only for news topics while
other topics which have been discussed in Twitter without reported by news agencies
are unable to get recommended hashtags. In the future, we are planning to deal with
not only news topics, but also other topics discussed by Twitter users. Also, in some
cases, the current system returns too many hashtags and it is difficult for us to select
appropriate hashtags from them. We think that hashtags used by influential Twitter
users in the topic of interest are more likely to be recognized by others and the hash-
tags should be ranked higher. Finding influential Twitter users for hashtag recom-
mendation would be another research direction we are considering.

References

1. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media?
In: Proc. of the 19th Int. Conf. on World Wide Web, Raleigh, North Carolina, USA (2010)

2. Brooks, C.H., Montanez, N.: Improved Annotation of the Blogosphere via Autotagging
and Hierarchical Clustering. In: Proc. of the 15th Int. Conf. on World Wide Web, Edin-
burgh, UK (2006)

3. Mishne, G.: AutoTag: A Collaborative Approach to Automated Tag Assignment for Web-
log Posts. In: Proc. of the 15th Int. Conf. on World Wide Web, Edinburgh, UK (2006)

4. Sood, S.C., Owsley, S.H., Hammond, K.J., Birnbaum, L.: TagAssist: Automatic Tag Sug-
gestion for Blog Posts. In: Int. Conf. on Weblogs and Social Media (2007)

5. Singhal, A., Buckley, C., Mitra, M.: Pivoted Document Length Normalization. In: 19th
Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR 1996), pp. 21–29. ACM (1996)

6. Sigurbjornsson, B., van Zwol, R.: Flickr Tag Recommendation based on Collective Know-
ledge. In: Proc. of the 17th Int. Conf. on World Wide Web, Beijing, China (2008)

30 F. Xiao, T. Noro, and T. Tokuda

7. Wartena, C., Brussee, R., Wibbels, M.: Using Tag Co-Occurrence for Recommendation.
In: Proc. of Int. Conf. on Intelligent System Design and Application (ISDA 2009), Pisa, It-
aly (November 2009)

8. Belem, F., Martins, E., Pontes, T., Almeida, J., Goncalces, M.: Associative Tag Recom-
mendation Exploiting Multiple Textual Features. In: Proc. of the 34th Int. ACM SIGIR
Conf. on Research and Development in Information Retrieval, Beijing, China (July 2011)

9. Huang, J., Thornton, K.M., Efthimiadis, E.N.: Conversational Tagging in Twitter. In: Proc.
of the 21st ACM Conf. on Hypertext and Hypermedia, Toronto, Ontario, Canada (2010)

10. Weng, J., Lim, E.-P., He, Q., Leung, C.W.-K.: What Do People Want in Microblogs?
Measuring Interestingness of Hashtags in Twitter. In: Proc. of the 2010 IEEE Int. Conf. on
Data Mining, ICDM 2010, pp. 1121–1126 (2010)

11. Correa, D., Sureka, A.: Mining Tweets for Tag Recommendation on Social Media. In:
Proc. of the 3rd Int. Workshop on Search and Mining User-Generated Contents, SMUC
2011, Glasgow, Scotland, UK (2011)

12. Efron, M.: Hashtag Retrieval in a Microblogging Environment. In: Proc. of the 33rd Int.
ACM SIGIR Conf. on Research and Development in Information Retrieval, ACM SIGIR
2010, Geneva, Switzerland (2010)

13. Wagner, C., Strohmaier, M.: The Wisdom in Tweetonomies: Acquiring Latent Conceptual
Structures from Social Awareness Streams. In: Proc. of the 3rd International Semantic
Search Workshop, p. 6. ACM (2010)

14. Zangerle, E., Gassler, W., Specht, G.: Recommending #-Tags in Twitter. In: Proc. of the
Workshop on Semantic Adaptive Social Web, UMAP 2011, Gerona, Spain (2011)

15. Phuvipadawat, S., Murata, T.: Detecting a Multi-Level Content Similarity from Micro-
blogs Based on Community Structures and Named Entities. Journal of Emerging Technol-
ogies in Web Intelligence 3(1) (February 2011)

16. Sankaranarayanan, J., Samet, H., Heitler, B.E., Lieberman, M.D., Sperling, J.: TwitterS-
tand: News in Tweets. In: Proc. of the 17th ACM SIGSPATIAL Int. Conf. on Advances in
Geographic Information System, ACM GIS, Seattle, WA, USA (November 2009)

17. Phelan, O., McCarthy, K., Smyth, B.: Using Twitter to Recommend Real-Time Topical
News. In: Proc. of the 3rd ACM Conf. on Recommender Systems, ACM RecSys, New
York, NY, USA (October 2009)

18. Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Semantic Enrichment of Twitter Posts for User
Profile Construction on the Social Web. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia,
B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644,
pp. 375–389. Springer, Heidelberg (2011)

19. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Com-
munications of the ACM 18(11), 613–620 (1975)

20. Xiao, F., Noro, T., Tokuda, T.: Detection of Characteristic Co-Occurrence Words from
News Articles on the Web. In: 21st European-Japanese Conference on Information Model-
ling and Knowledge Base, vol. 1, pp. 242–258 (June 2011)

21. Twitter Streaming API, https://dev.twitter.com/docs/streaming-api
22. Schmid, H.: Probabilistic Part-of-Speech Tagging Using Decision Trees. In: First Interna-

tional Conference on New Methods in Natural Language Processing, pp. 44–49 (1994)
23. Stanford Named Entity Recognizer,

http://nlp.stanford.edu/software/CRF-NER.shtml

Crowdsourced Web Engineering and Design

Michael Nebeling, Stefania Leone, and Moira C. Norrie

Institute of Information Systems, ETH Zurich,
CH-8092 Zurich, Switzerland

{nebeling,leone,norrie}@inf.ethz.ch

Abstract. We present an approach for the lightweight development of
web information systems based on the idea of involving crowds in the
underlying engineering and design processes. Our approach is designed
to support developers as well as non-technical end-users in composing
data-driven web interfaces in a plug-n-play manner. To enable this, we
introduce the notion of crowdsourced web site components whose design
can gradually evolve as they get associated with more data and function-
ality contributed by the crowd. Hence, required components must not
necessarily pre-exist or be developed by the application designer alone,
but can also be created on-demand by publishing an open call to the
crowd that may in response provide multiple alternative solutions. The
potential of the approach is illustrated based on two initial experiments.

Keywords: Lightweight web engineering, end-user development, crowd-
sourcing.

1 Introduction

Crowdsourcing is currently an important topic in both research and industry.
The term was originally coined in an article by Jeff Howe [1] and refers to the
idea of outsourcing some kind of task to a larger group of people in the form of
an open call. In a software engineering context, it is typically used to refer to
crowdsourced systems [2] which provide a kernel application that other develop-
ers, or even the increasingly larger community of end-users with programming
experience, can complement and extend with new peripheral services and system
functionality. Two popular examples in a web engineering context are Facebook1

and WordPress2 where many parts in the form of small applications, plugins and
themes are developed by the community. However, there is currently no dedi-
cated support in web engineering tools for making use of crowdsourcing.

By contrast, within the HCI community, recent work has been directed to-
wards crowd-powered systems that aim to embed crowds directly into interfaces
as a way of supporting collective problem solving through crowdsourcing und
human computation [3]. Paid micro-task crowdsourcing markets such as Ama-
zon Mechanical Turk3 play an important role in enabling this research since

1 http://www.facebook.com
2 http://www.wordpress.org
3 http://mturk.com

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 31–45, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.facebook.com
http://www.wordpress.org
http://mturk.com

32 M. Nebeling, S. Leone, and M.C. Norrie

studies established it as a viable platform for crowdsourcing experiments [4].
Hence, our goal is to build on these ideas and bring them to the web engineering
community.

Given the proliferation of powerful Web 2.0 platforms such as WordPress
and advanced mashup tools, e.g. [5,6], end-users are increasingly provided with
support for building web information systems in a plug-n-play manner. How-
ever, there is relatively little support if the required web site components do
not already exist somewhere on the web. Therefore, we decided to investigate
a systematic approach to engineering web applications based on the mashup
paradigm even if they are designed from scratch. At the same time, the goal
is to support the whole range from less experienced end-users to expert web
developers as well as the complete design-build-evaluate cycle by providing sup-
port for crowdsourcing at all stages of design. This work builds on previous
research on a crowdsourced platform for information system development [7,8]
and crowdsourced web site adaptation [9] and extends it towards our proposal
for crowdsourced web engineering. In the same sense, it is also related to recent
work on crowdsourcing web usability tests before and after deployment [10].

In this paper, we present a first platform and design environment as well as
two possible crowdsourcing models for the lightweight composition and crowd-
sourced design of new web applications based on the proposed paradigm. To
facilitate this, our approach also supports the plug-n-play style of composing
web applications similar to WordPress and advanced mashup editors. In con-
trast to these approaches, however, we build on a new notion of crowdsourced
web site components that support the evolution of content, presentation and be-
haviour by continuously refining their design with the help of the crowd. Similar
to programmableweb.com or userscripts.org, this may work as a community-
based design approach just by itself, but we also present an integration of our
design environment with Mechanical Turk so that crowd workers can directly
contribute. The requester can then review and choose from suggested design al-
ternatives to be used in their own applications, as well as starting new iterations
based on the best results so far.

Section 2 presents the background to this work. We introduce our crowd-
sourcing approach along with the platform in Section 3. We then present a first
realisation of our proposal in Section 4, followed by the implementation in Sec-
tion 5. Section 6 reports an initial evaluation of the approach for two simple
examples, while concluding remarks are presented in Section 8.

2 Background

There are numerous frameworks and development environments for building web
information systems. Early approaches have focused on supporting developers
in the systematic engineering of web information systems by designing applica-
tions at a higher level of abstraction. For example, web methodologies such as
WebML [11], UWE [12] and Hera [13] build on a set of different models to de-
scribe the structural, navigational and presentation aspects of web information

Crowdsourced Web Engineering and Design 33

systems. Models are typically defined graphically and most methodologies offer
a platform for application generation and deployment according to the model
definitions. However, while these model-driven approaches are generally very
powerful, they follow a bottom-up development method that usually starts from
the data model. The focus is therefore on modelling rather than designing which
is less appropriate for web designers and non-technical end-users.

In contrast, other research has focused on end-user development of web-based
information systems by providing application editors that are closer to a WYSI-
WYG approach [14,15]. The WYSIWYG editor presented in [14] supports web
information system development using a top-down approach, where a user starts
by specifying the presentation layer and creating forms that represent domain
entities, from which the underlying system is then generated. However, the pre-
sentation is restricted to forms and there is no support for rich UI controls.
In [15], a more advanced WYSIWYG visualiser and editor for managing struc-
tured datasets based on an active document paradigm is presented. Here, data
is stored alongside structure and presentation as an active document, which
basically corresponds to a web page.

With the new proliferation of web platforms and services, there has been an
increasing trend of building web mashups that integrate and visualise informa-
tion aggregated from various distributed web data sources rather than designing
applications from scratch. In a first response, visual mashup editors such as
Yahoo Pipes4, MashMaker [16] and Mash-o-matic [17] have been designed to
enable general mashup creation, such as the aggregation of feeds and data visu-
alisation on a map, through the graphical composition and integration of data
from different sources. However, while most mashup editors help users integrate
information from distributed sources, they do not provide the basic infrastruc-
ture to facilitate the design and composition of new applications for their own
data, which is one of the scenarios supported by our approach. An exception is
MashArt [5] which is a platform that combines the ideas of web information sys-
tem development and mashups. MashArt enables advanced users to create their
own applications through the composition of user interface, application and data
components. The focus is on supporting the integration of existing presentation
components based on event-based composition, where components can react to
events of other components.

Recently, DashMash [6] was introduced as a graphical mashup editor for creat-
ing new components based on the same event-based approach, but with increased
support for end-users. For example, while composing a system from existing ser-
vices, DashMash can recommend other services that could also be useful in the
current design context. However, it is not clear who defines and configures avail-
able services and how the approach can scale to supporting the development of
complex web applications. To this end, the work presented in [18] may, in prin-
ciple, provide an interesting solution based on Firecrow—a web site component
extraction tool that can liberate selected interface controls from existing web
sites while preserving their functionality. However, the focus of this work is on

4 http://pipes.yahoo.com/pipes/

http://pipes.yahoo.com/pipes/

34 M. Nebeling, S. Leone, and M.C. Norrie

extraction rather than reuse and, due to the complexity and diversity of modern
web interfaces, there are many critical edge cases, in particular when it comes to
extracting relevant JavaScript code. This approach therefore provides no general
solution. In addition, there is currently no specific tool support for reusing and
embedding extracted components in existing web pages.

The focus of recent work has been on end-user development approaches and
specifically the combination of existing web application components as well as
the aggregation of web data from various existing sources. We build on this re-
search, but also take some of the ideas further. The goal is to support application
designers in general, which may be non-technical end-users, but also experienced
developers, by leveraging crowdsourcing as part of the development process. On
the one hand, we envision crowdsourcing scenarios that support end-users by
asking the crowd to contribute new web site components with tailored func-
tionality. On the other hand, the crowd may also provide alternative designs or
iterate over existing ones, which can support developer creativity and increase
quality. In both cases, the idea is that the underlying system functionality and
application design can evolve and adapt with the help of crowdsourced contri-
butions. This is in contrast to mashup editors, where the focus lies on service
composition rather than refinement and evolution.

3 Crowdsourced Web Engineering and Design

Our approach to engineering web information systems with the help of crowd-
sourcing is based on two aspects. First, we support component-based composition
of applications by associating user interface controls with data in a plug-n-play
style. Second, we promote a crowdsourcing paradigm for the development, shar-
ing and reuse of web site components. We will first introduce the crowdsourced
component concept, followed by the design and composition processes it enables
and the underlying crowdsourcing models.

Figure 1 illustrates the component concept. In our approach, we distinguish
between the information component part and the user interface component part
that together describe an application component. Information components define
the data as well as the schema which consists of both structural and behavioural

UI Component

Information
Component

Composition Logic

Artefacts Composition Application
Component

Application
ComponentUI ControlUI Control

UI
Component

Data
DataInformation

Component

UI Control

Data

UI Control

Data

UI
Component

Information
Component

Fig. 1. Crowdsourced Web Site Components Concept

Crowdsourced Web Engineering and Design 35

information. They can therefore be regarded as components that provide data
as well as facilities to manage that data [7]. On the other hand, user inter-
face components define static presentation aspects and dynamic user interface
behaviour. They can hence be either basic templates for presenting content or
more advanced form-based controls and widgets that allow a user to view, work
with and manipulate the information.

Further, the processes of designing interface components and linking them to
information components are supported from within a design environment that
is directly embedded in the web site. As illustrated in Fig. 2a, the process of
designing interface components is facilitated by allowing application designers
to adapt, compose and group interface elements in order to build more complex
ones. For example, in the first step, the designer may choose an image compo-
nent and associate it with a label to build an image preview. The composition
process illustrated in Fig. 2b then allows designers to associate the resulting
interface components with information. This involves binding the data provided
by information components to the interface component. Both processes along
with other features of our design tool are described in detail in the next section.

Step 1

Step 2

Step 3

(a) Design Process

Class Name ImageWidget

Template

Parameters url: URI
label: String

<?xml version="1.0" encoding="UTF-8"?>
<info-comp>
 <data>
 <content>photo.jpg</content>
 <type>URI</type>
 </data> ...
 <schema>...</schema>
</info-comp>

(b) Composition Process

Fig. 2. Development Processes based on Crowdsourced Web Site Components

Moreover, our component concept is designed to support the evolution of
components in that both the interface and information component parts can
be defined in multiple versions. Here, versions may be alternative solutions or
refinements of previous ones [19]. Each of these versions in turn may either be
created by the same application designer or be contributed from others through
a form of crowdsourcing. Due to the way in which we defined the component
concept, the resulting flexibility is reflected at both the information management
and user interface levels. There are therefore several possibilities of making use
of crowdsourcing based on the concept.

– Crowdsourcing Information Components. Application data as well as
the schema that describes the data may be crowdsourced. For data

36 M. Nebeling, S. Leone, and M.C. Norrie

crowdsourcing, it is possible to automatically generate a data input user
interface based on the component schema to allow crowds to contribute
data [20]. Crowdsourcing data is particularly useful for data that is not di-
rectly accessible over the web or if existing extraction algorithms are insuffi-
cient. These are also two cases where mashup solutions would fail since they
require existing interfaces and data sources. Furthermore, it is also possible
to crowdsource the schema. One way to do this is through the sharing of
schemas from existing applications within a community and enabling their
reuse in new applications. This is discussed in detail in [8] and therefore
not the focus of this paper. However, since information components define
schema and data, both crowdsourcing ideas are enabled by our concept.

– Crowdsourcing Interface Components. Crowdsourcing could also be
used in several ways at the user interface design level. For example,
non-technical end-users may not be able to develop their own web site com-
ponents, but could build on those that have been contributed by more ex-
perienced developers. At the same time, experienced application developers
could benefit from crowdsourcing by getting design feedback and specifically
asking for new design proposals. The focus of our previous work in this re-
spect was on increasing the adaptivity of user interfaces by asking end-users
to contribute variations of the layout suitable to their particular use con-
text [9]. We build on these techniques, but extend them in two ways. First,
to allow for new design ideas that go beyond customisation of existing user
interface parts, we developed more flexible tools that enable application de-
signers to add new interface elements or change and replace existing ones
with alternatives. Second, we designed a simple means of supporting the
definition of new user interface components from scratch. To enable this, a
placeholder component is provided that the application designer can specify
up to a certain level and which may then be realised and refined through
crowdsourcing. Note that placeholder components may be used at the pre-
sentation as well as the content level in order to let both aspects of an
application component evolve. However, in the scope of this paper, we focus
on the idea of crowdsourcing interface rather than information components.

As indicated in previous examples, our approach supports two different crowd-
sourcing models that complement each other.

– Sharing and Reuse. The first is based on the idea of building a common
component library to enable the sharing and reuse of components within
a community. Given the component concept, it is possible to share either
information or interface components, or both, and this with or without data.
This allows application designers to contribute as well as benefit from shared
components within the community.

– Active Crowdsourcing. The second model is based on services provided
by paid crowdsourcing markets like Mechanical Turk. This then turns the
previous, indirect crowdsourcing model into an active request-response cy-
cle that enables the application designer to directly call on the crowd by

Crowdsourced Web Engineering and Design 37

publishing requests to the crowdsourcing service. Moreover, this model also
gives control over additional parameters such as the number of workers to
contribute to the design process as well as time and cost.

The two models are complementary since both can contribute to having a larger
library of shared components. While this is obvious in the first case, also in the
latter case it can be supported by sharing crowdsourced components again with
the community. The models can therefore work independently, but may more
effectively be combined by leveraging both the application developer community
as well as involving paid, external crowds.

Community-

based

Component

Library

Researcher Website

Photo
News

Publications

Description

Teaching

Events

Design

Active

Crowdsourcing

Call to Crowd

Publication

Component

Publication

Component

Publication

Component

Crowd Response

Publication Component

Specification

Discovery and Inspection

Reuse

Sharing and

Reuse

Publication

Component

Crowd Workers

Fig. 3. Crowdsourcing Models illustrated for an Example Web Site

Figure 3 summarises the ideas behind our crowdsourced web engineering ap-
proach and illustrates them for the scenario of creating a researcher web page. In
the example, the application designer decides to use the crowd for the design of a
publications component and may choose from two complementary crowdsourcing
models. On the one hand, the application designer may access the community-
based component library and search for a suitable component to be reused. On
the other hand, the designer may issue an open call to the crowd and select a
component from the crowd response. Application designers are encouraged to
combine the two models and share components received through the open call
in the community-based component library.

4 Crowdsourcing Platform and CrowdDesign Prototype

For crowdsourced web application development based on the new component
concept and the crowdsourcing models presented in the previous sections, we
have developed a crowdsourcing platform and web-based design environment,
CrowdDesign. The underlying architecture is illustrated in Fig. 4.

The platform is responsible for orchestrating the definition and sharing of
both information and interface components. Likewise, two separate libraries of
shared components, one for information components and one for interface com-
ponents, are maintained by the platform. Application designers can access these

38 M. Nebeling, S. Leone, and M.C. Norrie

Information Library

Name

Photos

Publication

…

Description

This com...

…

…

Crowdsourcing Platform

Discovery and Inspection System

UI Library

Name

Tree

Slideshow

…

Description

This com...

…

…

Kernel System

CrowdDesign

Information

Designer

Interface

Designer

Information

Web

Information

System

Crowdsourcing

Invocation

Service

Amazon

Mechanical Turk

share

reuse

call

response

...

Fig. 4. Architecture

libraries either directly through the discovery and inspection system offered by
the platform, or transparently through the development environment when de-
signing applications. Each application designer contributing to the aforemen-
tioned crowdsourcing scenarios is provided with a local CrowdDesign instance
running on the client machine. The platform services are exposed through the
visual design environment of CrowdDesign that is composed of two parts. The
first part is an information designer that supports the definition of informa-
tion components as presented in [8]. The second is an interface designer for the
customisation of existing components and the definition of new interface compo-
nents. The design tools therefore enable the design process in terms of definition
and maintenance of instances of each component type as well as their compo-
sition to application components. Web applications based on our approach are
directly hosted by the platform and run from within CrowdDesign, but they
can also be deployed separately as standalone web information systems using
the same kernel system. The integration with Mechanical Turk is facilitated by
the crowdsourcing invocation service as an intermediary which may be extended
with support for other crowdsourcing markets.

The CrowdDesign prototype is divided into several different areas shown in
Fig. 5. The client area in the centre is the workspace where application designers
can design and compose applications. On the left, the designer has access to the
library of user interface components shared within the community. As mentioned
previously, these may include basic user interface form controls, such as lists
and buttons, as well as more complex widgets such as image slideshows or video
players. On the right, the application designer has access to their own or shared
information components that are organised by type and can be browsed and
accessed via a hierarchical navigation.

The application designer initiates the actual composition process by simply
dragging components from the information library and dropping them on in-
terface elements in the workspace. CrowdDesign then performs an automatic
mapping between the user interface component and the information component
depending on supported parameters and the data type. For example, a picture
view component may define two parameters, namely a URL for the image and
text for the label. The application designer can then associate text components

Crowdsourced Web Engineering and Design 39

Fig. 5. CrowdDesign Tool

with the picture view in order to set the label as well as an image URL to link to
the actual image. For some widgets such as the image slideshow from previous
examples, it is also possible to associate a collection of images with the control in
a single interaction if the underlying presentation template provides support for
array parameters. Note that the application designer can also customise and edit
the suggested mapping in a separate dialog (not shown here), which is usually
optional, but may be required in the case of ambiguities.

In our current prototype, we use a rather simple representation of both inter-
face and information components. Both types of components are identified by a
component descriptor. Interface components are represented as a parametrised
template that defines presentation as well as behaviour using a combination of
HTML, CSS and JavaScript. Information components define the content in the
form of semi-structured data in XML format. Application designers may sim-
ply add new information components by uploading corresponding XML files.
New interface components can be defined programmatically and imported into
the workspace. As shown in Fig. 6, this is supported by allowing application
designers to specify supported parameters and the corresponding presentation
template as well as uploading required resource files. On the other hand, in-
terface components from the interface library can be added to the workspace
via drag-n-drop. Workspace components can be resized and positioned freely as
required. Alternatively, they may also be anchored at the edges of other compo-
nents in the interface. The difference is that, in the first case, the position and
size within the workspace are only defined in terms of CSS, while in the latter,
CrowdDesign also manages the underlying HTML DOM tree to maintain a fully
functional web interface. This is based on the techniques presented in [9].

In addition, the application designer can formulate an active crowdsourc-
ing request by providing a description of the task and desired result for a new

40 M. Nebeling, S. Leone, and M.C. Norrie

Fig. 6. New Widget Dialog and Simple Crowdsourcing Interface

interface component. Alternatively, the designer may formulate a task based on
an existing component. In both cases, a placeholder is first used in the workspace,
while CrowdDesign can automatically submit requests to Mechanical Turk on
behalf of the application designer and periodically check for responses. For the
integration with Mechanical Turk, the application designer needs to specify ad-
ditional parameters such as the number of tasks to be generated, maximum work
time and the payment to be awarded for each response the application designer
accepts after review.

On Mechanical Turk, workers interested in CrowdDesign tasks are then first
shown the task description and any other information provided by the applica-
tion designer. Should they choose to accept the task, they are forwarded to a
CrowdDesign sandbox providing access to selected parts of the workspace and
the tools necessary to contribute to the task. By default, CrowdDesign is config-
ured to show both the interface and information components that are relevant
and to allow for customisation of the existing parts as well as adding new com-
ponents using the aforementioned CrowdDesign features. As shown in Fig. 7a,
responses collected from workers can be previewed by the application designer
who may accept or reject the results after exploring them in more detail. Each
accepted contribution is automatically imported into the application designer’s
local CrowdDesign workspace and payment will be issued to the respective
worker via the Mechanical Turk platform.

Note that workspace components can be removed simply by dragging them
onto the trash bin shown in the top area of Fig. 5. This supports the idea of
rapidly prototyping new components by building on relevant parts of existing
ones. It is therefore also possible to merge and benefit from several crowd solu-
tions. Likewise, components may again be recycled from the bin. Moreover, only
the link between selected interface and information components may be revoked
by clicking the unlink button.

Finally, application designers can save the state of the workspace so that it
can be reaccessed in later sessions. Each workspace state is described by an ad-
ditional XML manifest file and versioned separately together with the respective
component descriptors. Further, the current workspace may also be exported as
a new user interface component that will then appear in the interface library.

Crowdsourced Web Engineering and Design 41

(a) Crowd Response Dialog (b) Application Sharing

Fig. 7. Features for Reviewing and Sharing of Components

This can be done locally for the application designer to reuse the component in
other applications or globally within the community [8]. As illustrated in Fig. 7b,
we offer the possibility of exporting and sharing new user interface components
either with or without data. In the case that data is shared, the user inter-
face component is shared together with the associated information components
as a snapshot so that all parts can be reused independent of how the source
components may evolve as part of other operations.

5 Implementation

The community platform is implemented on the server-side using PHP based on
the open-source CakePHP framework5 in combination with a MySQL database.
On the other hand, our web site design tool, CrowdDesign, is implemented us-
ing client-side technologies HTML, CSS3 and JavaScript based on the popular
jQuery framework6. Much of the interface design functionality is based on the
implementation of [9], while the information designer is currently simplified to
a basic visual data explorer building on AJAX techniques to fetch data on de-
mand as well as PHP’s support for file uploads of new information components
specified in XML.

The integration with Mechanical Turk is based on the MTurk API to gen-
erate and submit new component-related tasks, retrieve completed work, and
approve or deny that work. Instead of building on MTurk’s in-built question-
response API, we use an external question in order to wrap the developer’s
request. CrowdDesign can be configured to be either embedded into an HTML
iframe or opened in a new window. To keep a record of workers that contributed

5 http://cakephp.org
6 http://jquery.com

http://cakephp.org
http://jquery.com

42 M. Nebeling, S. Leone, and M.C. Norrie

new components, we use MTurk’s internal task assignment code to identify each
CrowdDesign sandbox as well as associating it with the corresponding compo-
nent versions to coordinate the import into the respective CrowdDesign instance.

6 Evaluation

We evaluated the basic functionality of CrowdDesign in two smaller experiments.
The first experiment was conducted with the help of members of our group and
designed to simulate a community-based design approach. In this experiment,
one of the members got the task of designing a web page featuring his research
profile together with the help of others. The other members got the task of brows-
ing web pages of researchers and extracting common components and sharing
them in the library. To keep the experiment simple, screenshots rather than
fully-functional components were sufficient.

Fig. 8. Intermediate Design and Selected Community Answers

Figure 8 shows a screenshot of the workspace with an intermediary design
of the researcher’s homepage. At this stage, the application designer structured
the page into several components. Some of the components were rapidly pro-
totyped using his own data, such as the photo, biography and contact details,
while others, such as the news and events components, have only been sketched
using labelled placeholder components. In the centre, the application designer
started to design a component for listing his publications. Five members of our
group participated in this experiment and some of them contributed several com-
ponents with different designs and functionality as input for developing such a
publication component.

Crowdsourced Web Engineering and Design 43

Also shown in the figure are three of the crowdsourced publication compo-
nents originating from web sites of research groups in our institute. While all
components list the publication details as well as a link to an electronic copy of
each publication, there are also several differences that the designer may take
into account for developing his own component. For example, the first crowd-
sourced publication component lists publications in reverse chronological order
grouped by year and users can scroll through the list. In contrast, the solution
in the middle displays publications only for a selected year and a bibtex entry is
also provided. The last solution paginates the list of publications and provides
navigation controls similar to database browsers. An additional functionality in
this solution is that publications can also be rated.

In the second experiment, we used an active crowdsourcing model and instead
built on Mechanical Turk. Here, the general task was to design a new search
component for finding content within a web page. For this experiment, we issued
a call for an interface component in which we specified that it should present a
simple search interface and include the necessary JavaScript to run the query.
The call was issued via Mechanical Turk with a 15 minute request for 5 workers
at 50 cents each. Workers were presented a minimal CrowdDesign interface to
upload the required resources and enter the necessary code. Figure 9 shows three
of the answers we received in response. The first two are rather simple form
interfaces making use of only HTML. While they both catered for basic search
functionality using JavaScript, the code provided by the crowd only worked for
certain browsers. The third is a solution that relies on an open-source JavaScript
plugin that is cross-browser compatible. Moreover, the interface uses a more
sophisticated popup-based design and also allows to search backwards.

Fig. 9. Worker Responses for Simple Search Component Experiment

7 Discussion

Even though our evaluation is still preliminary, it already showed that our new
idea of crowdsourced web engineering and design is generally fruitful and that a
system like CrowdDesign could facilitate the task of crowdsourcing the design of
new application components. While our first experiment targeted a community-
based design approach, it still left a single developer in charge. However, with

44 M. Nebeling, S. Leone, and M.C. Norrie

the ideas and tools presented in this paper, it is in principle possible to enable
the co-development of components and to allow multiple application design-
ers to work on and develop for the same web site. This would then provide a
first basis for additional ideas of participatory design. The second experiment
provided first insights into the different roles crowdsourcing could play for the
proposed approach. As mentioned previously, it can be used both to support
non-technical users to develop complex application components by building on
the contributions provided by others. At the same time, it could allow even
advanced developers to benefit from the design input of other users and gener-
ate new ideas. Generally, it is important to see how our use of crowdsourcing
allows us to overcome some of the limitations of previous approaches. For exam-
ple, content extraction is typically found to be difficult given that most existing
components on the web are tightly woven into the hosting web sites and rely on
a combination of HTML, CSS and JavaScript. While there are some tools such
as Firecrow [18] that can be used to extract interface controls from existing web
sites, it is still hard to fully automate the extraction process and also difficult to
support the integration with new web sites. We argue that our approach based
on crowdsourcing principles can provide a solution for such problems since ex-
perienced developers can do the extraction and package the components in such
a way that they can easily be integrated with new web sites. Platforms such as
programmableweb.com that are maintained by an active community show that
this is not only feasible in principle, but also has the ability to scale in practice.

To enable future experiments with such ideas, we plan on making the tool and
platform proposed in this paper available to the community. This would then also
allow other researchers to explore the ideas of collaborativeweb design and to lever-
age crowdsourcing for hard problems such as component extraction from existing
web sites.

8 Conclusion

We have presented an approach for crowdsourced web engineering and design as
well as the enabling concept, platformand design environment.Our focus has so far
been on the architectural and tool support.The supported crowdsourcing scenarios
naturally make the approach dynamic and scalable. As a consequence, a number
of issues may emerge, such as motivational incentives to contribute, quality con-
trol and security mechanisms as well as general questions of authorship and credit.
These could be investigated based on our proposal and the first realisation pre-
sented in this paper. At the same time, we plan to extend and explore the presented
techniques mainly along two directions. First, we plan to foster the engineering as-
pects of our approach and find ways of improving the technical quality of crowd-
sourced contributions. Second, we will investigate new possibilities enabled by our
approach such as support for creativity and participatory design.

Acknowledgements. We would like to thank our IS Lab 2011 students and
Kazuhiro Komoda for their help with the implementation of the prototype pre-
sented in this paper.

Crowdsourced Web Engineering and Design 45

References

1. Howe, J.: The Rise of Crowdsourcing. Wired 14(6) (2006)
2. Kazman, R., Chen, H.M.: The Metropolis Model: A New Logic for Development

of Crowdsourced Systems. CACM 52(7) (2009)
3. Quinn, A.J., Bederson, B.B.: Human Computation: A Survey and Taxonomy of a

Growing Field. In: Proc. CHI (2011)
4. Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing User Studies With Mechanical Turk.

In: Proc. CHI (2008)
5. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:

Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
428–443. Springer, Heidelberg (2009)

6. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,
C.: DashMash: A Mashup Environment for End User Development. In: Auer, S.,
Dı́az, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166.
Springer, Heidelberg (2011)

7. Leone, S., Geel, M., Norrie, M.C.: Managing Personal Information through Infor-
mation Components. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP,
vol. 72, pp. 1–14. Springer, Heidelberg (2011)

8. Leone, S., Norrie, M.C.: Constructing eCommerce Systems from Shared Micro-
Schemas. In: Proc. CoopIS (2011)

9. Nebeling, M., Norrie, M.C.: Tools and Architectural Support for Crowdsourced
Adaptation of Web Interfaces. In: Auer, S., Dı́az, O., Papadopoulos, G.A. (eds.)
ICWE 2011. LNCS, vol. 6757, pp. 243–257. Springer, Heidelberg (2011)

10. Nebeling, M., Speicher, M., Grossniklaus, M., Norrie, M.C.: Crowdsourced Web
Site Evaluation with CrowdStudy. In: Brambilla, M., Tokuda, T., Tolksdorf, R.
(eds.) ICWE 2012. LNCS, vol. 7387, pp. 494–497. Springer, Heidelberg (2012)

11. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc. (2002)

12. Hennicker, R., Koch, N.: A UML-Based Methodology for Hypermedia Design. In:
Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 410–424.
Springer, Heidelberg (2000)

13. Vdovják, R., Frăsincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. JWE 1(1-2) (2003)

14. Yang, F., Gupta, N., Botev, C., Churchill, E.F., Levchenko,G., Shanmugasundaram,
J.: WYSIWYGDevelopment of Data DrivenWeb Applications. PVLDB 1(1) (2008)

15. Karger,D.R.,Ostler, S., Lee,R.:TheWebPage as aWYSIWYGEnd-UserCustomiz-
able Database-backed Information Management Application. In: Proc. UIST (2009)

16. Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., Gandhi, P.: Intel Mash Maker:
join the web. SIGMOD 36(4) (2007)

17. Murthy, S., Maier, D., Delcambre, L.: Mash-o-Matic. In: Proc. DocEng. (2006)
18. Maras, J., Štula, M., Carlson, J.: Reusing Web Application User-Interface Controls.

In: Auer, S., Dı́az, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757,
pp. 228–242. Springer, Heidelberg (2011)

19. Grossniklaus, M., Norrie, M.: An Object-Oriented Version Model for Context-
Aware Data Management. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bar-
tolini, C., Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 398–409.
Springer, Heidelberg (2007)

20. Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: An-
swering Queries with Crowdsourcing. In: Proc. SIGMOD (2011)

Scaling Pair-Wise Similarity-Based

Algorithms in Tagging Spaces

Damir Vandic, Flavius Frasincar, and Frederik Hogenboom

Erasmus University Rotterdam,
P.O. Box 1738, NL-3000 DR, Rotterdam, The Netherlands

{vandic,frasincar,fhogenboom}@ese.eur.nl

Abstract. Users of Web tag spaces, e.g., Flickr, find it difficult to get
adequate search results due to syntactic and semantic tag variations. In
most approaches that address this problem, the cosine similarity between
tags plays a major role. However, the use of this similarity introduces a
scalability problem as the number of similarities that need to be com-
puted grows quadratically with the number of tags. In this paper, we
propose a novel algorithm that filters insignificant cosine similarities in
linear time complexity with respect to the number of tags. Our approach
shows a significant reduction in the number of calculations, which makes
it possible to process larger tag data sets than ever before. To evaluate
our approach, we used a data set containing 51 million pictures and 112
million tag annotations from Flickr.

1 Introduction

Due to the ever increasing amount of data readily available on the Web, the devel-
opment of applications exploiting this data flourishes as never before. However,
because of the data abundance, an increasing number of these Web
applications suffers from scalability issues. These developments have caused the
focus of recent Web research to shift to scalability aspects. Social Web appli-
cations (e.g., in the area of products, photos, videos, links, etc.) also face these
scalability issues. The reason why these systems do not scale well is because
they often use pair-wise similarity measures (e.g., cosine similarity, Dice coef-
ficient, Jaccard coefficient, etc.) [9,10]. This introduces scalability problems as
the number of pair-wise similarities that have to be computed (i.e., the number
of unique pairs) grows quadratically with the number of vectors. As a result of
this, the algorithms that use these pair-wise similarities have at least O(n2) time
complexity, where n is the number of input vectors.

The fact that an algorithm has O(n2) complexity makes it difficult to apply
it on large data sets. An area where this becomes evident are the social tagging
systems, where users can assign tags to Web resources. These Web resources can
be for example URLs (e.g., Delicious), images (e.g., Flickr), and videos (e.g.,
YouTube). Because users can use any tag they want, the number of distinct
tags is enormous. Besides the number of unique tags, the number of resources is
also growing fast. For example, let us consider Flickr, which is a Web site where

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 46–60, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Scaling Pair-Wise Similarity-Based Algorithms in Tagging Spaces 47

users can upload pictures and assign tags to them. In 2011, Flickr had 6 billion
pictures in their database [11]. Now imagine that Flickr needs to compute the
similarity between all (unique) pairs of pictures. Let us assume that Flickr is
able to compute 100 billion pairs per second. Even at this speed, it would take
a little less than 6 years to compute all combinations1. From this computation,
we can see that there is a need to deal with pair-wise similarity computations
for such large amounts of high-dimensional data.

In this paper, we focus on the scalability issue that arises with the compu-
tation of pair-wise similarities in tagging spaces (e.g., Flickr). We present an
algorithm that approximately filters insignificant similarity pairs (i.e., similari-
ties that are relatively low). The proposed algorithm is not exact but it has lin-
ear time complexity with respect to the number of input vectors and is therefore
applicable to large amounts of input vectors. We report the results for the cosine
similarity applied on a large Flickr data set, but our approach is applicable to
any similarity measure that uses the dot product between two vectors.

The structure of this paper is as follows. We present the related work in
Section 2. In Section 3, we define the problem in more detail and present our
algorithm using a synthetic data set and the cosine similarity used as similarity
measure. We evaluate our approach on a real data set and present the results in
Section 4. Last, in Section 5, we draw conclusions and present future work.

2 Related Work

The cosine similarity is a popular similarity measure that is widely used across
different domains. In particular, we can find many approaches in the tagging
spaces domain that are that are making use of this similarity [5,7,9,10]. The
reason for this is that the cosine similarity has proven to give stable results
for tagging data sets. The drawback of using the cosine similarity is that it
introduces scalability issues, as nowadays the number of tags and resources is
growing fast. Because all similarity pairs have to be computed, the approaches
that use the cosine similarity have at least O(n2) time complexity, where n is
the number of tags of resources.

In the literature we can find several approaches that aim to address the scal-
ability issue of computing pair-wise similarities. A technique that is related to
our approach is the Locality Sensitive Hashing (LSH) technique, presented in
[6]. LSH is a well-known approximate algorithm that is used to find clusters
of similar objects. For example, it can be used to perform approximate nearest
neighbour search. LSH generates n projections of the data on randomly cho-
sen dimensions. After that, for each vector in the data set and each previously
computed projection, a hash is determined using the vector features that are
presented in that particular projection. The similarity pairs are constructed by
finding all vector pairs that have a matching hash along the same projection.

1 If C = ((6× 109)2 − (6× 109))× 0.5 ≈ 1.8× 1019 unique combinations, and we can
process 100 × 109 combinations per second, then it takes approximately C/(100 ×
109)/(60× 60× 24× 365) ≈ 5.71 years to compute all similarities.

48 D. Vandic, F. Frasincar, and F. Hogenboom

The key difference between LSH and our approach is that our approach has
guaranteed linear time complexity with respect to the number of input vectors,
while LSH has a polynomial pre-processing time.

The authors of [2] take a different approach to the similarity search problem.
They propose an exact technique which is able to precisely find all pairs that have
a similarity above some threshold. This approach uses an inverted index where
the inverted indices are dynamically built and a score accumulation method is
used to collect the similarity values. The difference between our approach and
this approach is that we propose an approximate algorithm that gives good
results with the focus on reducing the computational effort, while the authors of
[2] propose an exact algorithm that works with a given threshold. Furthermore,
the approach in [2] has not been evaluated on data sets obtained from tagging
spaces.

Although not directly related to our research, there are approaches from the
database community that address a similar problem, which are worth mention-
ing. For example, the authors of [3] depart from traditional database design to
more flexible database design that is more suited for parallel algorithms. These
parallel algorithms are used for the purpose of speeding up the computation of
pair-wise similarities (e.g., cosine similarity). In this paper we focus on efficient
the computation of similarities in a sequential execution.

3 Algorithm

In this section, we explain in detail the proposed algorithm, which aims at
reducing the number of cosine computations. The proposed algorithm has some
similar characteristics to LSH, as it also uses a hash function to cluster poten-
tially similar objects, but differs on many aspects. For example, we use only one
hash function, which results in a binary encoding of the vector that indicates
where the significant parts of the vector reside. Furthermore, we have only one
corresponding hash value for each vector.

As already mentioned, our algorithm is tailored and evaluated for tag spaces.
Algorithms and applications for tag spaces often use a so-called tag co-occurrence
matrix. A tag co-occurrence matrix is a n× n matrix C, where n is the number
of tags, and Cij denotes how often tag i and tag j have co-occurred in the data
set (e.g., on pictures). Note that co-occurrences matrices are symmetrical, i.e.,
Cij = Cji.

Let us consider the tag co-occurrence matrix shown in Table 1(a). From the
table, we can see for example that tag 0 and 3 occur together in total 3 times.
The character “-” represents 0 as we define the co-occurrence of a tag with itself
to be 0. We used the symbol “-” to differentiate from the case where two tags
(not identical) do not co-occur with each other (co-occurrence labelled with 0).
The total number of similarity pairs, given n tags, is (n2 − n)× 0.5. For the co-
occurrence matrix in Table 1(a), we have to compute (6× 6− 6)/2 = 15 cosine
similarities.

Scaling Pair-Wise Similarity-Based Algorithms in Tagging Spaces 49

Table 1. An example of a tag co-occurrence matrix, shown in (a). The co-occurrence
matrix is split in two equally sized parts, shown in (b) and (c).

(a)

Tag 0 1 2 3 4 5

0 - 2 1 5 2 0
1 2 - 7 1 1 0
2 1 7 - 3 0 2
3 5 1 3 - 1 0
4 2 1 0 1 - 6
5 0 0 2 0 6 -

(b)

Tag 1 2 3

0 2 1 5
1 - 7 1
2 7 - 3
3 1 3 -
4 1 0 1
5 0 2 0

(c)

Tag 0 4 5

0 - 2 0
1 2 1 0
2 1 0 2
3 5 1 0
4 2 - 6
5 0 6 -

In practice, a tag co-occurrence matrix is sparse, i.e., it contains many zero
values. This is because a tag on average only co-occurs with a small subset of the
total set of tags. We can make use of this sparsity property in order to improve
the scalability of any pair-wise similarity measure that is dependent on the dot
product between two vectors. For example, the dot product between vectors a
and b gives the cosine similarity, assuming the data is normalized to unit length
vectors. This makes the cosine similarity a candidate for our algorithm. In the
rest of this section, we explain our algorithm in the context of tag spaces, where
input vectors are tag co-occurrence vectors.

The basic idea of our algorithm is to construct clusters of tag vectors from
the original matrix, based on the position of the non-zero values. Because the
matrix is symmetrical, it does not matter whether we cluster the columns or
rows of the matrix, but for sake of clarity we assume that we cluster the columns.
Tables 1(b) and 1(c) show two possible partitions (i.e., clusters) that could be
obtained from the co-occurrence matrix that is shown in Table 1(a). For these two
smaller matrices, we calculate the similarity only for the pairs within a cluster.
For example, we do not compute the similarity between tag 3 and tag 4, as
they appear in different clusters. Using this approach, the number of similarity
computations that have to performed is ((3 × 3 − 3)/2) × 2 = 6. This is a
reduction of 60% on the total number of computations, as we have to compute
the similarity only for 6 pairs instead of 15 pairs.

In order to cluster each column (i.e., tag vector) from the co-occurrence ma-
trix, we compute a hash value for each column. This is done by first split-
ting each column in a predefined number of equally sized parts. Then, for each
column, the relative weight of each part is computed. This is done by dividing
the sum of the values in a part by the sum of the values for the whole column.
After that, the columns are clustered based on the most important parts. The
most important parts are defined by the smallest set of parts for which the sum
of values in the parts is larger than some predefined percentage of the total
column sum. This process is best explained with an example. Suppose we have
the tag vector [0, 6, 4, 0, 0, 0, 1, 0]T. Now, consider we choose to split this column
representation in 4 parts. For each of these 4 parts, we compute the sum of the
values in that part, as shown in Table 2(a). The next step is to calculate the

50 D. Vandic, F. Frasincar, and F. Hogenboom

Table 2. Table (a) shows the part scores and (b) the part statistics for vector
[0, 6, 4, 0, 0, 0, 1, 0]T. We can see that the first and second part are the most impor-
tant parts of this vector.

(a)

Part Sum Indices

1 6 0, 1
2 4 2, 3
3 0 4, 5
4 1 6, 7

(b)

Part Score Hash

1 0.545 1
2 0.364 1
3 0 0
4 0.091 0

total sum of the vector values and represent the previously determined sums as
percentages of the total sum, which we call the relative score. In our example, the
total sum is found by taking the sum of the values in the parts 6+4+0+1 = 11.
After dividing the computed sum for each part by the total sum, we obtain the
relative scores, as shown in column 2 of Table 2(b).

The goal of the proposed algorithm is to cluster columns that have the same
distribution of important parts, i.e., parts that have a large relative score. The
algorithm pursues this goal because the similarity between two vectors will be
high if the two vectors have the same important parts, assuming that the sim-
ilarity measure depends on the dot product between two vectors (such as the
cosine similarity). If two vectors do not share the same important parts, i.e.,
there are not many indices for which the vectors both have non-zero values, the
similarity will be low. In order to cluster the tag columns based on this criteria,
we compute a hash value based on the distribution of the relative scores of the
parts. This is performed by creating a binary representation of each column of
relative scores, where each part in the column is represented by a bit.

We define the parameter α as the minimum sum of relative scores for each
column. We select the minimum number of parts for which the sum of the scores
is larger than α. First, we sort the relative scores of each vector parts. In the
previous example, if α = 0.75 (75%), we first add part 1 (with a score of 0.545)
to our list. As we do not reach 0.75 yet, we add the next largest part to our list,
which is part 2 in this example. Now, we have selected 0.545 + 0.364 = 0.909,
which is larger than α. We can set the bits for parts 1 and 2 to 1, Table 2(b)
shows the binary representation for our example in the third column. Again, we
can observe that for this vector the most important parts are at the top, as the
value for the top two parts is 1 and for the two bottom parts it is 0.

Algorithm 1 gives the previously described process in pseudo-code. The
algorithm defines the function s(t, k), which computes the relative part scores
for a tag t using k parts, and the function h(sc, α), which is used to compute the
binary hash for a vector with scores sc and using a threshold α. For the h(sc, α)
function, we currently use the quick sort algorithm to sort the k part scores after
which we select the top scores based on the α threshold. Because quick sort has
an average O (p log(p)) time complexity, with p being the size of the sorted list,
one can verify that our algorithm has time complexity O (n (k log k)), where n is

Scaling Pair-Wise Similarity-Based Algorithms in Tagging Spaces 51

Algorithm 1. Hash-based clustering algorithm

Require: The input: a tag co-occurrence matrix T
Require: The algorithm parameters:

– k, in how many parts the vector should be splitted,
– α, the minimum percentage of the total column sum required to compute the

binary representation.

Require: The algorithm functions:

– s(t, k), computes the relative part scores for a tag t, using k parts,
– h(sc, α), computes the hash for a vector with relative scores sc, using threshold

α.

1: for each tag column t ∈ T do
2: C = {} {C is a set of (cluster,hash) pairs}
3: scoret = s(t, k) {vector with part scores of tag t}
4: hasht = h(scoret, α) {binary encoding of tag t}
5: if ∃c s.t. (c, hash) ∈ C ∧ hasht = hash then
6: c = c ∪ {t} {add t to existing cluster}
7: else
8: c′ = {t} {otherwise, a new cluster is created}
9: C = C ∪ {(c′, hasht)} {add to set of clusters the newly created cluster}
10: end if
11: end for

the number of tags and k is the number of parts. This means that our algorithm
performs linear in time with respect to the number of tags.

There is a trade-off between the number of clusters and the accuracy of the
algorithm. If we have a low number of clusters, the number of skipped high
cosines will be relatively small but the reduction in the number of computations
would be also small. For a small data set, splitting the matrix in 2 will give
sufficient discriminant power, while a large matrix might need a split into 10 or
even 20 parts. An important aspect of the algorithm is the parameter k, i.e., the
number of parts a column is split into. For a given k, one can show that there
are 2k − 1 possible binary hash representations. Because the number of clusters
is dependant on the number of possible binary representations, the parameter
k can be used to control the trade-off between the number of clusters and the
accuracy of the algorithm.

The idea of the algorithm is to find clusters of columns such that the similar-
ity between two tags located in different clusters is minimized. In this way, the
algorithm indirectly selects column pairs for which one has to compute the simi-
larity (intra-cluster tags) and column pairs for which the similarity is set to zero,
i.e., pairs that are skipped (inter-cluster tags). The distribution of the number of
columns in the clusters is important for the number of similarity pairs that are
skipped. Ideally, one would like to have clusters that contain an equal number
of tag columns. In this way, the number of similarity pairs that are skipped is

52 D. Vandic, F. Frasincar, and F. Hogenboom

maximized. One can show that for n → ∞, the reduction → 1/m, assuming that
the clusters are equally sized2. The maximal number of clusters is 2k − 1, where
k is the number of parts.

In order to improve the ‘recall’ of the algorithm (i.e., not skipping high similar-
ity pairs), we experiment with a heuristic that identifies clusters that potentially
may have many high cosines and are difficult to be processed by our algorithm.
One approach would be to remove the columns from our algorithm that have a
value sum greater than some threshold. The idea behind this is that the higher
the sum, the more the tag is co-occurring with other tags. For this group of tags
that are removed from the data set, we have to compute all pair-wise similarities
with all other tags. The advantage of this approach is that less high similarities
are skipped. The downside of this approach is that the number of computations
that has to be performed increases. There is a clear trade-off between the num-
ber of computations and the number of skipped high similarities, as will become
more clear in the evaluation.

4 Evaluation

For our experiments, we used a Flickr data set that has been gathered by the
authors of [4]. The original data set contains 319,686 users, 1,607,879 tags,
28,153,045 pictures, and 112,900,000 annotations. We have selected a threshold
on the number of times a tag is used. In the end, we selected the top occurring
50,000 tags. The reason for selecting the frequently occurring tags is that we
want to eliminate the low-end outliers, which seldom co-occur with other tags
and thus pollute the clustering process. At the same time we want to keep the
data set size small enough in order to perform a brute force evaluation of all
cosines for reference purposes. To be able to evaluate the performance of our
algorithm, we needed to compute all cosines for this subset, which is in total
1,249,975,000 cosine computations. The used data set contains approximately
10 times more cosines between 0 and 0.1 than cosines between 0.1 and 0.2. This
shows that there are many tags that are not similar to each other, which is
common for data sets obtained from tagging spaces.

4.1 Experiments

In order to evaluate our algorithm, we have designed an experimental setup that
covers a broad range of parameter combinations. Table 3 shows the ranges for
different parameters that were used in the experiments. The total number of
experiments is the number of unique combinations of the parameters, as shown
in Table 3. For the parameter k, i.e., the number of parts a vector is split into,
we chose a range of 3 to 50, with a step size of 1. For α, we chose the range
0.05 to 0.95, with a step size of 0.05. For the filter type (excluding a number

2 With n being the number of input vectors and m the number of clusters, we have

reduction(n,m) =

(
(n/m)2 − (n/m)

)× 0.5

(n2 − n)× 0.5
×m =

(n−m)

m(n− 1)
, lim
n→∞

(n−m)

m(n− 1)
=

1

m
.

Scaling Pair-Wise Similarity-Based Algorithms in Tagging Spaces 53

Table 3. Experimental setup

Parameter Range

k (parts count) min: 3, max: 50, step size: 1
α (hash threshold) min: 0.05, max: 0.95, step size: 0.05
filter type magnitude / sum
filter threshold min: 50,000, max: 200,000, step size: 10,000

of tags from the algorithm), we have experimented with two approaches. In the
first filter type approach we left out all tags that have a magnitude larger than
a certain threshold and in the second approach we left out all tags that have a
sum larger than a certain threshold. The last row of Table 3, the filter threshold,
indicates the threshold used in the filter type. We varied the threshold for both
the magnitude filter and the sum filter, from 50,0000 to 200,000 with a step size
of 10,000.

In total, we performed 30,720 experiment runs (this is the total amount of
unique parameter combinations). For each experiment run, we execute our clus-
tering algorithm and store the resulting clusters. Using the clusters, we determine
which tag pairs should be skipped, i.e., the similarity should be assumed to be 0.
After determining which tag pair similarities are set to 0, we record the actual
similarity values of these tag pairs for reference purposes. We also compute the
average similarity of pairs of tags in the same cluster, which usually results in
high similarities.

4.2 Results

Figure 1 gives an overview of the results. The figure shows, for different skipped
cosine thresholds, the trade-off between the percentage of similarity pairs that
has to be computed and the percentage of cosines that is higher than the thresh-
old. So if a point is located on (0.4, 0.1) then this means that 40% of the original
number of computations has to be done (60% is skipped in total), but you skip
10% of the important cosines. The ‘important’ cosines are defined to be higher
than the threshold used in the evaluation (0.4, 0.5, 0.6, 0.7, 0.8, and 0.9). For the
tags that passed the magnitude/sum filter, we compute all pair-wise similarities
to the other tags, as we do not use these tags in our clustering algorithm. The
values that are reported for the x-axis include these combinations. Each point
in a sub-plot of Figure 1 represents a parameter combination obtained from the
experimental setup shown in Table 3. The ideal situation would be to have low
values for both the x-axis as the y-axis (as close as possible to the origin), because
then one has to compute relatively a small amount of the original computations
while a low amount of the important cosine similarities is skipped.

We can make the two important observations from the results presented in
Figure 1. First, it is clear that as the percentage of total similarity pairs that has
to be computed increases, the percentage of skipped high cosines decreases. This
is as expected because the probability of skipping important cosines trivially be-
comes smaller when more similarity pairs are computed. Second, we observe that

54 D. Vandic, F. Frasincar, and F. Hogenboom

Fig. 1. In this figure we see a scatter plot of parameter combinations for different
thresholds, with the x-axis showing the reduction of the total number of computations
and the y-axis the percentage of skipped high cosines

for cosine similarities ranging from 0.5 and higher, the algorithm is capable of
just computing approximately 30% of the total number of computations while
skipping a relatively low number of high cosines, i.e., approximately 18%. For
the cases when ‘high’ cosines are considered to be 0.6 and higher, the results
are even better. The algorithm is able to compute the significant cosines by just

Scaling Pair-Wise Similarity-Based Algorithms in Tagging Spaces 55

computing approximately 18% of the total number of combinations while just
skipping 10% of the high ones. We find this already to be useful in computationally-
intensive Web applications based on pair-wise similarities. When we consider
higher thresholds we observe that the percentage of skipped high cosines fur-
ther decreases. For example, for the case when cosines are considered to be high
from 0.7 and onwards, the percentage of skipped high cosines is below 3% when
computing 18% of the total number of combinations.

Although it is a bit difficult to see from Figure 1, the results show that if the
user allows for less freedom in skipping high cosines (i.e., cosines higher than
0.6), the algorithm can be tuned to achieve a high cosine skipping percentage of
approximately 5%, while having to compute around 30% of the original number
of cosine similarities. As one can notice here, our algorithm can be tuned to meet
various conditions. This shows the flexibility of our algorithm and its applicabil-
ity to a wide range of Web applications (e.g., applications where a good trade-off
between speed and quality is necessary, applications where speed is more impor-
tant than quality, applications where similarity quality is more important than
speed, etc.).

In order to understand how the parameters of our clustering algorithm influ-
ence the results, we have performed parameter sensitivity analysis. Table 4 shows
information on some points (i.e., parameter combinations) from the plots given
in Figure 1. We have chosen a few points that are interesting and need further
explanation. The first part of Table 4 shows for each threshold the point that is
closest to the origin. These points are the ‘optimal’ points when one gives equal
weight to the percentage of computed cosines and to the percentage of skipped
high cosines. For the thresholds 0.5 and 0.6, we notice that the optimal value
for parameter k is 7 and the optimal value for parameter α is 0.2. The number

Table 4. This table shows a few interesting parameter combinations and their perfor-
mance (e.g., the points that are closest to the origin) for each considered threshold. The
first part of the table shows for each threshold the point that is closest to the origin.
The second part of the table shows some points that might be useful in an application
context where quality is more important than speed.

Threshold Computations Skipped high Number k α Filter type Filtered count
to be done cosines of clusters “sum >”

0.4 27.5% 27.1% 6 5 0.2 40,000 3.87%
0.5 17.5% 22.9% 29 7 0.2 40,000 3.87%
0.6 17.5% 11.3% 29 7 0.2 40,000 3.87%
0.7 14.2% 8.8% 37 8 0.2 40,000 3.87%
0.8 11.5% 5.6% 56 10 0.2 40,000 3.87%
0.9 8.0% 1.0% 1309 14 0.3 40,000 3.87%

0.4 76.9% 9.5% 7 3 0.85 40,000 3.87%
0.5 40.8% 14.3% 4 3 0.3 40,000 3.87%
0.6 22.5% 9.3% 6 5 0.2 40,000 3.87%
0.7 17.5% 2.7% 29 7 0.2 40,000 3.87%
0.8 17.5% 0.0% 29 7 0.2 40,000 3.87%
0.9 8.2% 0.0% 2803 22 0.2 40,000 3.87%

56 D. Vandic, F. Frasincar, and F. Hogenboom

of clusters that is obtained using these parameter values is 29. The theoretical
reduction (with the percentage of computations that have to be performed) is
therefore 1/29 ≈ 0.03 for these two cases. For both the thresholds 0.5 and 0.6,
we can also see that the observed reduction resulted in having to perform 17.5%
of the total number of computations, which is approximately 6 times higher
than the theoretical number of computations that could have been performed.
This is probably due to the fact that there is still a large number of ‘popular’
tags present in the data set. The presence of these often occurring tags results
in one or more large clusters. This makes the total reduction in the number of
computations lower, as the tags are unequally distributed among the clusters.

The second part of Table 4 shows some points that might be useful in an
application context. The reason for choosing these points is that they give a
good trade-off between the number of computations and the skipping of high
cosines, giving more weight to the latter. We can observe, for example, that for
an application where high cosines are the ones that are higher than 0.4, it is
necessary to compute approximately 76% of the cosines (and to have less than
10% skipped high cosines). The parameters for this situation are k = 3 and
α = 0.85. If we consider a different situation, where high cosines are the ones
that are higher than 0.7, the optimal parameters change. With k = 7 and α = 0.2
the algorithm is able to skip a relatively small amount (i.e., 2.7%) of the high
cosines while computing just 17.5% of the cosines. In this way we retain most of
the high cosines while performing a minimal amount of computations.

From the table we can also immediately notice that there is one filter that
seems to give the best results, as for all rows this filter is found to be the optimal
one. For this data set, this filtering is achieved by leaving out all tags of which
the sum is greater than 40,000. The other filter, a threshold on the magnitude
of a vector, seemed to give worse results. One final observation we can make
is that the k parameter is more important and influential than the α param-
eter when considering the optimal points shown in the upper part of Table 4.
The α parameter only seems to play an important role when considering a low
threshold for high cosines. For the other situations, the parameter k determines
the performance of the algorithm. A possible explanation of this is that the k
determines the number of possible binary hash representations, and thus is the
most influential parameter for the performance of the algorithm.

In order to understand in more detail how the parameters affect the perfor-
mance of our algorithm, we also visualize a part of the sensitivity results. First,
we focus on the reduction aspect of the algorithm, i.e., the factors that deter-
mine how many computations are skipped. Figure 2 shows a plot on the x-axis
the considered values for the parameter k and on the y-axis the reduction of
the number of computations as percentages. The different series in the plot each
represent a value for the α parameter, as indicated by the legend. What we can
observe from this figure is that in general the percentage of total combinations
that has to be computed exponentially decreases as the number of parts (k)
increases. We should note that an asymptotic behaviour seems to be present in
this plot, i.e., when k is larger than 10, the percentage of total combinations

Scaling Pair-Wise Similarity-Based Algorithms in Tagging Spaces 57

Fig. 2. A plot that shows the relationship between the values for parameters k and α
and the reduction of the number of computations

that has to be computed in general does not increase nor decrease. This can
be explained by the fact that for k > 10 the number of possible binary hash
representations becomes so large, that the upper bound of the actual number of
unique hash representation for our data set is achieved.

We can further notice that α = 0.2 converges the slowest. In Table 4 we
already saw that 0.2 was the optimal setting for α in most cases. This stresses
again the trade-off between the computation reduction power of the algorithm
and the quality of the results. Figure 2 shows that even though the line α = 0.2 is
the slowest one converging, the overall reduction on the number of computations
is relatively large and not much different from the other settings. One can note
that for low values of k (less than 10), medium values of α (0.4 and 0.6) tend to
provide for a better reduction in the number of cosines to be computed. Figure 2
also confirms our findings that the α parameter is not the ultimate determining
factor of the performance of our algorithm.

Last, we have analysed how the parameters of the clustering algorithm influ-
ence the percentage of skipped high cosines, where we again consider different
thresholds for the definition of a ‘high’ cosine similarity. Figure 3 shows 6 plots,
one for each threshold, where the plots are similar to the plot in Figure 2, with
the exception that the y-axis is now the percentage of skipped cosines for a par-
ticular threshold. From the figure we can observe that the percentage of skipped
cosines grows with respect to the number of splits of a vector (parameter k).
This is because of the number of clusters increases with k and thus the proba-
bility of skipping a high similarity increases. As a result of this, in general it is
desirable to choose low values for k when it is more important not to skip high
similarity pairs than to reduce the computational effort. When we consider the
different α values, one can notice that a value of 0.2 gives the lowest amount
of skipped high cosines, across all k values and considered cosine threshold val-
ues, something we already noticed in Table 4. Another observation is that for
a threshold value of 0.7 or larger there are parameter combinations for which
no high cosines are skipped. Although the number of computations is probably

58 D. Vandic, F. Frasincar, and F. Hogenboom

Fig. 3. An overview of how the parameters k (number of parts) and α (hash threshold),
for different thresholds, influence the skipped high cosines

high for these parameter combination, we still find it useful as it does decrease
the computation time. Last, we can also observe that the asymptotic behaviour
becomes less visible as we increase the threshold that defines what a ‘high’ cosine
similarity is.

We have chosen to implement our algorithm and the experiments in Python.
In order to efficiently deal with matrix algebra, we have made heavily use of the
NumPy library [8]. For efficiently storing and querying large amounts of data, we
have used PyTables [1]. PyTables provides an easy to use Python interface to the
HDF5 file format, which is a data model for flexible and efficient input/output
operations. The experiments were run on a cluster with nodes that had CPUs
equivalent to a 2.5-3.5 GHz 2007 Xeon with 8 GB RAM. Each node was as-
signed to perform experiments for a set of parameter combinations. By running

Scaling Pair-Wise Similarity-Based Algorithms in Tagging Spaces 59

our code on 120 nodes, we cut down the computing time for the experiments
and the computation of the cosine similarity for all pairs (our reference) from
approximately 40 days to 5 hours.

5 Conclusions

In this paper we focused on the scalability issue that arises with the computation
of pair-wise similarities in large tag spaces, such as Flickr. The main problem is
that the number of similarity computations grows quadratically with the number
of input vectors. Besides being large, the data sets in tagging space problems
are usually sparse.

We have presented an algorithm that intelligently makes use of the sparsity of
the data in order to cluster similar input vectors. In order to filter insignificant
similarity pairs (i.e., similarities that are relatively low) we only compute the
similarities between vectors that are located in the same cluster. The proposed
algorithm performs the clustering of the input vectors in linear time with respect
to the number of input vectors. This allows our approach to be applicable to large
and sparse data sets.

For the evaluation of our solution we report the results for the cosine similarity
on a large Flickr data set, although our approach is applicable to any similarity
measures that are based on the dot product between two vectors. We have used
an experimental setup that covers a broad range of parameter combinations.
The results presented in this paper show that our algorithm can be valuable
for many approaches that use pair-wise similarities based on the dot product
(e.g., cosine similarity). The algorithm is, for example, capable of reducing the
computational effort with more than 70% while not skipping more than 18% of
the cosines that are larger than 0.5.

In order to gain more insight in how exactly the algorithm can be tuned,
we performed an in-depth sensitivity analysis. From the results of this sensitiv-
ity analysis we can conclude that our proposed clustering algorithm is tunable
and therefore applicable in many contexts. We have found that with respect to
parameter k, the percentage of similarities that have to be computed is a de-
creasing function and the percentage of skipped high similarities is an increasing
function. This means that if a high value for k is chosen, the algorithm produces
better results with respect to the percentage of total similarities that have to be
computed. When a low value for k is chosen, the algorithm skips a smaller num-
ber of high similarities. As for the parameter α, we have found that the effect
on the performance of the algorithm is smaller than that of the parameter k. In
general, there exists an optimal pair of values for k and α. The optimal values
tend to be on the lower side of the considered values scale. Also, we find that
increasing these values does not yield better results as the clustering algorithm
performance seems to saturate at some point.

As future work one can consider the use of a clustering algorithm (e.g., 1-
NN using kd-trees) for the binary hash representations of vectors as an extra

60 D. Vandic, F. Frasincar, and F. Hogenboom

step in our approach. We would first like to investigate whether the overall
performance of the algorithm is increased, and second, how the time complexity
of the algorithm is changed by this extra step.

Acknowledgment. The authors are partially sponsored by the NWO Mozaiek
project 017.007.142: Semantic Web Enhanced Product Search (SWEPS) and
NWO Physical Sciences Free Competition project 612.001.009: Financial Events
Recognition in News for Algorithmic Trading (FERNAT).

References

1. Alted, F., Vilata, I., et al.: PyTables: Hierarchical Datasets in Python (2012),
http://www.pytables.org

2. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling Up All Pairs Similarity Search. In: 16th
International Conference on World Wide Web (WWW 2007), pp. 131–140. ACM
Press (2007)

3. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton, C.: MAD Skills: New
Analysis Practices for Big Data. VLDB Endowment 2(2), 1481–1492 (2009)

4. Görlitz, O., Sizov, S., Staab, S.: Pints: Peer-to-peer Infrastructure for Tagging
Systems. In: 7th International Conference on Peer-to-Peer Systems (IPTPS 2008),
pp. 19–19 (2008)

5. Halpin, H., Robu, V., Shepherd, H.: The Complex Dynamics of Collaborative Tag-
ging. In: 16th International Conference on World Wide Web (WWW 2007), pp.
211–220 (2007)

6. Indyk, P., Motwani, R.: Approximate Nearest Neighbors. In: 13th Annual ACM
Symposium on Theory of Computing (STOC 1998), pp. 604–613. ACM Press
(1998)

7. Li, X., Guo, L., Zhao, Y.E.: Tag-Based Social Interest Discovery. In: 17th Inter-
national Conference on World Wide Web (WWW 2008), pp. 675–684. ACM Press
(2008)

8. Oliphant, T.E.: Python for Scientific Computing. Science & Engineering 9(3), 10–
20 (2007)

9. Radelaar, J., Boor, A.-J., Vandic, D., van Dam, J.-W., Hogenboom, F., Frasincar,
F.: Improving the Exploration of Tag Spaces Using Automated Tag Clustering. In:
Auer, S., Dı́az, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp.
274–288. Springer, Heidelberg (2011)

10. Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: Fran-
coni, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639.
Springer, Heidelberg (2007)

11. TechRadar: Flickr reaches 6 billion photo uploads (2012),
http://www.techradar.com/news/internet/web/

flickr-reaches-6-billion-photo-uploads-988294

http://www.pytables.org
http://www.techradar.com/news/internet/web/flickr-reaches-6-billion-photo-uploads-988294
http://www.techradar.com/news/internet/web/flickr-reaches-6-billion-photo-uploads-988294

Methodologies for Improved Tag Cloud

Generation with Clustering

Martin Leginus, Peter Dolog, Ricardo Lage, and Frederico Durao

Department of Computer Science, Aalborg University,
Selma Lagerlofs Vej 300

{mleginus,dolog,riclage}@cs.aau.dk, freddurao@gmail.com
http://iwis.cs.aau.dk/

Abstract. Tag clouds are useful means for navigation in the social web
systems. Usually the systems implement the tag cloud generation based
on tag popularity which is not always the best method. In this paper
we propose methodologies on how to combine clustering into the tag
cloud generation to improve coverage and overlap. We study several clus-
tering algorithms to generate tag clouds. We show that by extending
cloud generation based on tag popularity with clustering we slightly im-
prove coverage. We also show that if the cloud is generated by clustering
independently of the tag popularity baseline we minimize overlap and
increase coverage. In the first case we therefore provide more items for a
user to explore. In the second case we provide more diverse items for a
user to explore. We experiment with the methodologies on two different
datasets: Delicious and Bibsonomy. The methodologies perform slightly
better on bibsonomy due to its specific focus. The best performing is the
hierarchical clustering.

1 Introduction

Tags are textual labels users use in social web sites, such as Flickr, Technorati
and del.icio.us, for annotating information resources. They can be assigned freely
to these resources to help remind a user of the intended meaning to him or her.
Tags are also typically aggregated by social web sites into tag clouds. These are
visual elements that highlight certain tags by different users, assisting them in
the navigation of the web site [14, 19]. However, the tags in the tag clouds are
mostly presented alphabetically, with their font size weighted according to their
frequency. These popularity based tag clouds [21,19,6] have at least the following
limitations:

– First, syntactical variations of tags i.e., typos, singular and plural forms and
compounded tags that share the same semantical meaning are not addressed.
Therefore, the coverage of a tag cloud is lower as syntactically different tags
are not aggregated.

– Moreover, a tag cloud can contain syntactical variations of the same tag
which leads to redundancy.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 61–75, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://iwis.cs.aau.dk/

62 M. Leginus et al.

– Finally, the most popular tags typically have a broader meaning, covering
redundantly a certain set of documents which results into a low diversity
of tags.

To address these limitations and attempt to improve the quality of tag clouds, we
experiment with different clustering techniques. Due to the resource demanding
nature of quality assessment of tag clouds performed by users, [23] introduced
synthetic measures of quality based on tag cloud properties, such as coverage and
overlap. Coverage measures a proportion of documents tagged with a particular
tag with respect to the all considered documents. The overlap is a measure which
captures to which extent different tags considered in comparison are associated
the same resources and what is the proportion of the same resources with respect
to all considered resources. In our previous paper [4] we have already shown
that a specific kind of clustering, spectral clustering, has an effect on tag cloud
generation and on its properties such as coverage, relevance, and overlap.

The contributions of this paper can be summarized as follows:

– We propose two new methodologies on how to integrate clustering into tag
cloud generation methods, further improving coverage and overlap.

– Within the second methodology, we compare four different clustering algo-
rithms and show that the hierarchical clustering performs the best.

– We introduce a new synthetic metric - chained coverage - which combines
coverage and overlap together.

We experiment on two different datasets, Delicious and Bibsonomy. The first one
is a general purpose collaborative resource tagging system. The second one is a
specific tagging system for scientific literature. We show that on the Delicious
dataset, the hierarchical clustering algorithm obtained a 12.4% improvement on
coverage over the second best performing algorithm we tested.

The remainder of this paper is organized as follows. Section 2 positions our
work with respect to related findings in the literature. Section 3 provides a back-
ground on clustering techniques we are embedding in the studied methodologies.
Section 4 describes our contribution in two methodologies we have designed for
the generation of tag clouds. Section 5 describes experimental set up and re-
sults which we gained from the experiments. Section 6 summarizes the paper
achievements and roadmap to future work.

2 Related Work

Research on tag clouds has concentrated on methods for rendering and presen-
tation aspects [2, 19]. In [19], the authors perform a number of experiments to
assess the effects of semantic versus alphabetical and random arrangements of
tags in tag clouds. The outcome shows that clustered tag clouds can provide
improvements over random layouts in specific search tasks and that they tend
to increase the attention toward tags in small fonts compared to other layouts.
They also claim that tag cloud layout does not seem to influence the ability

Methodologies for Improved Tag Cloud Generation with Clustering 63

to remember tags. Our focus is different. We decouple the presentation aspects
from the selection of tags for the tag clouds generation. We study and apply
clustering but we experiment with methodologies on how to combine clustering
into the process of selection and generation of the tag cloud and not only in its
rendering process. By doing so we enable a combination of different methods for
tag selection generation and tag cloud rendering.

Random and alphabetical ordering of tags in a tag cloud was tested in [6].
Hierarchical browsing [15] looks at how to structure the layout of a tag cloud.
Studies on the font size, weight, intensity and position of tags in the cloud are
studied in [3, 11, 18]. In this paper we study the selection of tags for tag cloud
generation. We implement a popularity and coverage based visualization method
which renders the tag cloud as one approach and not as a main goal of research.
However, the aforementioned approaches can be utilized for presentation of tags
selected for a tag cloud in our approach as well.

Sinclair et al. [21] consider tag clouds as useful retrieval interface when a user’s
searching task is not specific. In order to build the tag cloud, their approach
results in displaying the top 70 most-used tags in the database. The size of each
tag in the cloud is proportional to the log of its frequency, which follow a power
law distribution. In our work, 8 tag clouds varying in number of tags enclosed
are tested. We try to find out which number of tags in the tag cloud improved
the tag cloud properties the most, which is a new findings in comparison to [21].
Further, although the size of each tag is not considered for rendering purposes,
the tag relevancy is calculated and determined by its popularity in the corpus,
i.e. the most frequent tags are more relevant over the less popular ones. We
extend the popularity/usage based approaches for tag selection with clustering
and as we also show in experiments with improvements.

[20] the authors deal with tag redundancy and ambiguity through a hierarchi-
cal agglomerative clustering of tags for recommendations. Hierarchical clustering
is studied in our work as well as is the tag redundancy in the syntactical pre-
clustering using the Levenhstein distance. However, the focus and end product
is different from the work of [20], as is the methodology where we apply the
clustering.

[23] proposes different tags selection algorithms for tag clouds. Our method
differ in the way the selection is performed. [23] do not apply clustering. Our
objective function for computing clusters and representative tags for the tag
clouds in the second methodology also differ. As a result, our generated tag
clouds result in a more diverse tags thus a user can explore and browse more
topics from the generated tag cloud.

[7,4] propose to group semantically related tags and depict them in a tag cloud
near by with similar color. Such approach provides better orientation in the tag
cloud as related tags can be easier identified by users. Tags are clustered based
on their co-occurrences. Similarly, our proposed tag cloud generation method
also groups similar tags. However, our approach is more robust as syntactically
similar tags are firstly pre-clustered (grouping singular, plural or misspellings of
tags) similarly as proposed in [22]. It leads to tag space reduction as resulted tag

64 M. Leginus et al.

cloud does not contain syntactically similar tags. In the second phase, tags are
similarly clustered based on tags co-occurrences but our proposed approach also
considers retrieved semantic distances from WordNet dictionary if available.

[12] benefit from ”syntagmatic” relations based on co-occurrences similarity
and subsequent clustering to generate semantically enhanced tag cloud. The
elementary tasks of their approach are the calculation of tag similarities and
subsequent clustering. Our work differs, first methodologically as a combination
of clustering and popularity, and second as a study to find out which clustering
approach performs the best.

3 Clustering Techniques

In the following section, we present several clustering techniques that are uti-
lized in the process of tag cloud generation. Firstly, we introduce syntactical
pre-clustering based on Levenhstein distance. Then, we present three differ-
ent clustering techniques. The first two proposed approaches(Correlated Feature
Hashing and Complete linkage hierarchical clustering) cluster tags according to
their co-occurrence based similarities. The third (K-means) algorithm considers
each tag from a tag space as feature vector. These techniques were proposed and
described in [16].

3.1 Syntactical Pre-clustering

Syntactical pre-clustering filters out items with typographical misspellings un-
necessary plural and singular forms of the same item and also compounded items
from two different terms connected with some separator. These redundant items
would occupy an item set unnecessarily as they would have the same seman-
tical meaning. Levenhstein distance is first computed for each term pair from
the initial term space. The distance between two terms measures the number of
required changes (substitution, insertion and deletion of a character are allowed
operations) to transform one term into another. We justify its use because it
attains significantly better results than Hamming distance as shown in [5].

3.2 Correlated Feature Hashing

We propose to reduce a tag space with hashing function that is similar to the
proposed technique in [1] where authors successfully reduced dictionary size by
utilizing hashing. The idea is to share and group tags with similar meaning.

We sort the tags used within the system according to the frequency of usage
such that t1 is the most frequent tag and tT is the least frequent. For each tag
ti ∈ 1, . . . , T is calculated DICE coefficient with respect to each tag tj ∈ 1, . . . ,K
among the top K most frequent tags. The DICE coefficient is defined as:

DICE(ti, tj) =
2.cocr(ti, tj)

ocr(ti) + ocr(tj)
(1)

Methodologies for Improved Tag Cloud Generation with Clustering 65

where cocr(ti, tj) denotes the number of co-occurrences for tags ti and tj , ocr(ti)
and ocr(tj) is the total number of tag ti and tj assignments respectively. For
each tag ti, we sort the K scores in descending order such that Sp(ti) ∈ 1, . . . ,K
represents the tag of the p-th largest DICE score DICE(ti, Sp(ti)). We can then
use hash kernel approximation defined as:

Φ̄tj (x) =
∑

ti∈T :h(ti)=tj

Φti(x) (2)

and given by a hash function:

h(ti) = S1(ti) (3)

The described approach is replacing each tag ti with the tag S1(ti). We have
reduced tag space from all T tags to the K most frequent tags.

3.3 Complete Linkage Hierarchical Clustering

In the second approach we utilize Complete linkage agglomerative hierarchical
clustering technique [10]. In the beginning, each entry that should be clustered
is considered as single cluster. For each cluster is computed Dice similarity (see
Formula 1) with all other clusters. The cluster with the highest similarity to
the considered cluster is merged with the cluster. When clusters contain more
tags, the lowest similarity between two tags from those clusters is considered
for the merging step. The aggregation of clusters repeats until the single cluster
is obtained. The final clustering structure is denoted also as dendrogram. The
required number of clusters is obtained by cutting a dendrogram at a certain
level such that a given number of clusters is obtained.

3.4 K-means

The following clustering technique differs from the previous in such a way that
each tag is expressed in n-dimensional vector space where the i-th dimension
corresponds to the i-th item resi (in a similar way as in [17, 9]).

We denote T = {t1, t2 . . . , t|T |} as the set of all distinct tags that are clustered
and R = {res1, res2 . . . resn} the set of all items that are tagged with tags from
T . Let f(t, resi) be equal to a frequency of a tag t assigned to item resi otherwise
it is equal to 0. Then, the vector representation of tag t is:

t = (f(t, res1), f(t, res2), . . . , f(t, resn)) (4)

Once, tags from T are expressed as n-dimensional vectors, we proceed with the
cluster analysis. The K-means is a simple well known clustering technique that
groups objects from a given set into k clusters (given a priori). The clustering of
a tag space with the K-means algorithm is computed as follows:

66 M. Leginus et al.

1. Each tag from a tag space T is expressed as n-dimensional vector. According
to the size of the tag space and user requirements an amount of clusters is
set to k.

2. It randomly places k centroids such that a distance from each other is max-
imized.

3. Each tag from the tag space is bound to the nearest centroid.
4. New centroids are computed as the mean value of tags vectors grouped with a

given centroid. It continues with the step 3, until new centroids are identical
with the centroids from the previous iteration.

We obtained k disjoint clusters of tags so we can proceed with the selection of
tags for the tag cloud generation. The results of K-means algorithm depend on
used distance measure - we exploit only Cosine distance as it attains the best
results [16].

4 Methodologies for Improved Tag Cloud Generation
with Clustering

In this section, we present common metrics that measure different aspects of a
tag cloud. Next, we introduce our two methodologies for tag cloud generation
that attempts to improve the tag clouds according to the presented metrics.

4.1 Tag Cloud Metrics

The quality of tag clouds is usually assessed by the users that subjectively rate
the structure and arrangement of tags in the cloud. However, such users based
assessments are expensive and hardly available. To overcome this limitation, we
use synthetic metrics for evaluation of different aspects of a generated tag cloud.
Such metrics allow to measure the quality of tag clouds and, as a consequence,
various tag selection algorithms can be utilized to maximize considered metrics.
In this work, we consider 2 well-known metrics, coverage and overlap, introduced
in [23]. Furthermore, we introduce a new metric chained coverage which is uti-
lized in the proposed methodologies. For the following definitions consider D as
a set of exiting documents, T as the whole set of existing tags and Dt as the set
of documents assigned to a tag t ∈ T .

The first metric is coverage, defined as:

Coverage(t) =
|Dt|
|Da|

, (5)

where |Dt| is the number of documents assigned to a tag t and |Da| is the number
of all documents that are considered during a tag cloud generation process. The
metric ranges between 0 and 1. When a coverage for a particular tag t is close to
1, the majority of considered documents was annotated with a tag t. We utilize
this metric during the selection process to maximize number of documents that
can be accessed directly by exploring a tag cloud.

Methodologies for Improved Tag Cloud Generation with Clustering 67

Overlap of Tc: Different tags in Tc may be assigned with the same item in
DTc . The overlap metric captures the extent of such redundancy. Thus, given
ti ∈ Tc and tj ∈ Tc, we define the overlap over(Tc) of Tc as:

Overlap(Tc) = avgti �=tj

|Dti ∩Dtj |
min{|Dti |, |Dtj |}

, (6)

If over(Tc) is close to 0, then the intersections of documents annotated by de-
picted tags are small and such tag clouds are more diverse.

There exist different selection techniques that try to optimize a given met-
rics which result into enriched tag clouds. In this work, we propose two new
methodologies that improve introduced metrics. Furthermore, we introduce a
new metric chained coverage that captures how many documents are covered by
a considered tag given that documents covered by previously selected tags are
not considered. This metric combines coverage and overlap altogether and pro-
vides simpler decision-making during the tag selection for the tag cloud. Chained
coverage is given as:

Chained coverage(t|Ts) =
|Dt \DTs |

|Da|
, (7)

where DTs is a set of documents covered by previously selected tags Ts. The
proposed metric can be understood as combination of the classical coverage with
the zero overlap with the respect to the previously selected tags. We assume that
the diversity of the tag cloud is desired property as users are not interested in
retrieving redundant documents covered by different tags. Therefore, the goal is
to maximize a chained coverage of each tag used for the tag cloud generation.
The metric simplifies a selection process of tags as instead of optimizing two
independent metrics i.e., coverage and overlap we maximize only the chained
coverage.

4.2 Syntactical Pre-clustering of Tags

Social tagging systems collect heterogeneous tags assigned by the users to the
resources of the system. Tags in these systems can have the same semantical
meaning however they are syntactically different i.e., typos, singular and plural
forms and compounded tags. For example, when we look at the 20 most frequent
tags of Delicious dataset (introduced in Section 5) and identified that they have
at least 6 and at most 20 different syntactical alternatives in the whole tag space
are present. Tags like Web design, web-design, webDesign or *webdesign can be
aggregated and represented only with the most frequent tag webdesign.

To remove from the tag cloud syntactically different tags with the same seman-
tical meaning, we propose a methodology that aggregates syntactically similar
tags into clusters. In the tag cloud generation process, obtained clusters can
be represented only with the most frequent tag which can have the following
benefits:

68 M. Leginus et al.

– The coverage of the depicted tag in the tag cloud improve as it covers all
documents annotated with the syntactically different tags from the given
cluster

– Generated tag cloud does not contain syntactical variations of the same term
as only the most frequent tag from each cluster is considered. Therefore, it
allows to create a more diverse tag cloud, i.e., lower overlap between depicted
tags.

In our method, syntactical pre-clustering introduced in Section 3.1 is used in
the following manner. Levenhstein distance is first computed for each tag pair
from the initial tag space. The edit distance between two tags measures the
number of required changes (substitution, insertion and deletion of a character
are allowed operations) to transform one tag into another. We justify its use
because it attains significantly better results than Hamming distance as shown
in [5].

Once, an edit distance is calculated, the tag space is divided into clusters.
Each group contains only tags where the Levenhstein distance is equal or lower
than a defined threshold (a number of maximum changes to transform a tag from
the tag pair into a second tag). Then, the most frequent tag for each cluster is
selected and is used in all further computations. It represents all other tags from
a considered cluster.

In the end, our goal is that syntactical pre-clustering will affect the structure
of the generated tag cloud in the sense that depicted tags are semantically more
diverse.

4.3 Improving Coverage and Diversity of Tag Clouds with
Clustering

The second methodology aggregates semantically related tags into a disjoint
group. Each cluster can be perceived as a latent topic described with the related
tags. The goal of cluster analysis is to cover all available topics in the tag space
and as a consequence map it into a generated tag cloud to achieve maximal
diversity of depicted tags. The methodology is motivated due to the drawback
of the usual approach (denoted also as a baseline approach) where only the most
frequent tags are considered. The selection of the most popular tags results
into a tag cloud with terms that have too broad meaning. Therefore, depicted
tags cover redundantly a certain set of documents i.e, the overlap of such tag
cloud is unnecessary high. For instance a tag cloud generated from the top-25
most frequent tags from Bibsonomy dataset [13] contains tags as public, video,
Media, books, blog or search. Obviously, such tags have general meaning or no
information value for users. Moreover, often are assigned to the documents in
combination with other frequent tags. The possible solution is to minimize a
number of tags with the general meaning and additionally select popular but
more specific tags as the objective is to preserve the coverage and minimize
overlap of the tag cloud.

The aforementioned drawbacks of tag clouds generated from the most pop-
ular tags are addressed with the combination of cluster analysis of tags and

Methodologies for Improved Tag Cloud Generation with Clustering 69

maximization of the introduced metric – chained coverage. The former one pro-
vides basis for a diversity of a generated tag cloud by assuring that all latent
topics within the tag space are captured. The latter one suppresses tags with the
general meaning and instead selects popular but specific tags. The maximization
of the chained coverage promotes (specific) tags with the high coverage of not
yet covered documents by previously selected tags. On the other hand frequent
tags with low chained coverage (general meaning) are omitted.

We explore different approaches of tags selection from the created clusters.
The method based on selecting one tag with the highest coverage from each
cluster generates more diverse tag clouds. However, the coverage is lower or
comparable to the baseline approach as the chained coverage of generated clus-
ters follows a power law distribution. Thus, majority of clusters belong to the
long tail of such distribution.

Therefore, we propose a technique (see Algorithm 1) that selects tags propor-
tionaly from each cluster. The provided tags are syntactically grouped and sub-
sequently semantically clustered by one of the introduced clustering technique.
The number of clusters is equal to the tag cloud size. The obtained clusters are
sorted by chained coverage in descending order. The chained coverage of each
cluster is given by previously explored clusters starting from cluster with the
highest coverage. The method computes the number of tags to be selected from
the cluster based on the chained coverage of a given cluster given the tag cloud
size. From each cluster is selected a number of tags with the highest chained
coverage. The goal is to cover a given cluster as good as possible in terms of
coverage and overlap. The selection based on maximization of chained coverage
satisfies such requirements. The method terminates when the number of selected
tags is equal to the tag cloud size.

4.4 Tag Cloud Generation

Once, the tags are selected according to our proposed methodologies, they
are depicted in the tag cloud. Semantically related tags from the same clus-
ter are displayed with the same color which is specific for each cluster. Such tags
are also located near each other and it allows to explore tags in more convenient
way. Location and particular color of tags from the identical cluster results into a
tag cloud which is semantically structured and as was shown in [8]. This presen-
tation structure differs from the most common visualization of tag clouds where
tags are alphabetically sorted. It allows to differentiate main topics in the tag
cloud and also users can perceive and notice semantic relations between tags in
neighbourhood [8]. Moreover, it helps to understand connections between tags,
for example, tags cucumber and Spain are hardly interpretable in alphabetically
sorted tag cloud. However, if they are depicted together with the tag E.coli a
user can easily assume that these tags are related to E.coli outbreak.

Personalized Tag Cloud Generation: Another benefit of performed cluster
analysis is a possibility to generate personalized tag clouds. Such tag cloud is an

70 M. Leginus et al.

Input: tags, tagCloudSize
Output: selectedTags
tags ← syntacticalClustering(tags);1

clusters ← semanticalClustering(tags,tagCloudSize);2

clusters ← sortClustersByChainedCoverage(clusters);3

foreach cluster in clusters do4

tagsToSelect ← cluster.chainedCoverage(exploredClusters) · tagCloudSize5

for i=1 to tagsToSelect do6

foreach tag in cluster do7

if tag.chainedCoverage(selectedTags) is highest in the cluster then8

if tag.chainedCoverage(selectedTags) > threshold then9

selectedTags ← selectedTags + tag;10

end11

end12

end13

if size of selectedTags > tagCloudSize then14

return [selectedTags]15

end16

exploredClusters ← exploredClusters + cluster;17

end18

Algorithm 1. The methodology for tag cloud generation

adapted version of the above-mentioned general tag cloud model. User’s prefer-
ences are incorporated into the tag cloud such that tags related to user’s tags
are preferred over others. The selection of similar tags is performed by retrieving
tags from the clusters that contain at least one of the user’s tags. However, in
this work we do not evaluate proposed methodologies on the personalized tag
clouds.

5 Experiments

We investigate the improvements of the proposed methodologies in terms of cov-
erage and overlap of generated tag clouds. The proposed techniques are evaluated
on the BibSonomy dataset [13] and the snapshot of Delicious dataset which con-
sists of bookmarking activity on www.delicious.com from 8th till 16th of Septem-
ber 2009. Bibsonomy dataset contains 5794 distinct users, 802045 items and
204850 tags. The total number of tagging posts is 2555080. The snapshot of De-
licious dataset contains 187359 users, 185401 unique tags and 355525 bookmarks.
The total number of tagging posts is 2046868. The evaluation is conducted on
the above-described datasets as they represent the most popular collaborative
tagging systems of Web nowadays.

All the experiments are conducted on Ubuntu Server 11.10 64-bit operating
system running on Intel Xeon X3460 CPU 2.8GHz with 8 GB RAM. The tag
cloud generation methodologies and clustering techniques are implemented in
Java 6 and source code and all results are available on our website1.
1 http://people.cs.aau.dk/~mleginus/icwe2012/

http://people.cs.aau.dk/~mleginus/icwe2012/

Methodologies for Improved Tag Cloud Generation with Clustering 71

25 50 75 100 125 150 175 200

0.6

0.7

0.8

0.9

Delicious

Number of tags in the tag cloud

C
o

v
e
ra

g
e

Baseline Syntactical clustering

25 50 75 100 125 150 175 200

0.4

0.6

0.8

Bibsonomy

Number of tags in the tag cloud

C
o

v
e
ra

g
e

25 50 75 100 125 150 175 200
0.02

0.04

0.06

0.08

0.1

0.12

Delicious

Number of tags in the tag cloud

O
v

e
rl

a
p

25 50 75 100 125 150 175 200

0.02

0.04

0.06

Bibsonomy

Number of tags in the tag cloud
O

v
e

rl
a

p

Fig. 1. Coverage and overlap results for baseline (red) and pre-clustering (black) meth-
ods and their corresponding logarithmic fit

5.1 Syntactical Pre-clustering of Tags

Table 1 summarizes the mean values of both methods in both datasets in terms
of coverage and overlap. Results show that the coverage of the syntactical pre-
clustering of tags is better than the baseline on the two datasets we tested.
Coverage had a 5% (5079 documents) increase on BiSonomy dataset and 3.5%
(3072 documents) increase on Delicious. Overlap, on the other hand, had similar
results. Pre-clustering on BibSonomy had slightly higher mean but the values
were practically the same on Delicious. One explanation but the higher means on

Table 1. Mean values of coverage and overlap for the baseline and syntactical pre-
clustering methods on BibSonomy and Delicious datasets

Coverage Overlap

Dataset Baseline Pre-Clustering Baseline Pre-Clustering
BibSonomy 0.586 0.616 0.022 0.025
Delicious 0.776 0.803 0.059 0.060

Delicious is the different nature of both datasets. BibSonomy is a more specific
dataset, containing domain-specific tags. Delicious, on the other hand, is used
by a wider variety of users on different domains.

Next, we looked at how the two methodologies perform as a function of the
number of tags in the tag cloud. Figure 1 shows these results. In both methods,
as number of tags increases, coverage and overlap improves in a logarithmic
fashion. In fact, the logarithmic curve fits almost perfectly (R-square > 0.98,
p-value < 0.001) in all cases. That means that coverage and overlap improve
significantly after tag clouds with 75 tags but then stabilizes. Note that coverage
of the syntactical pre-clustering improves over the baseline as the number of

72 M. Leginus et al.

tags increase. This is specially the case in the BibSonomy dataset. In the case of
overlap, the values stay almost identical on the Delicious dataset. On BibSonomy,
overlap is worse with the pre-clustering method for tag clouds with few tags but
improves as the number of tags increase.

Overall, these results indicate that by using the pre-clustering method, cover-
age of tag clouds improve. We consider it positive to note that overlap remains
similar to the baseline as the number of tags in the tag cloud increases. This
indicates a solid improvement of the coverage of the tag clouds generated.

5.2 Improving Coverage and Diversity of Tag Clouds with
Clustering

We compare the proposed methodology with the baseline algorithm on both
datasets. In this work, the tag cloud generation considers the whole tag space
and all available resources of the social tagging systems. However, the generated
tag cloud consists from at most 200 tags and not frequent tags can be omitted.
Therefore, without loss of generality, we prune considered datasets. The eval-
uated methods utilize tags that were assigned by users at least 50 times and
related documents that were annotated at least 5 times. For both techniques,
we iteratively increase a number of tags in the tag cloud starting with 25 till
200 tags with the step 25. The results are presented in the following Figure. 2.
The proposed methodology improves the coverage on both datasets. Similarly,
the overlap of generated tag clouds is decreased. The best performing clustering
technique is hierarchical clustering which computes a tag pairs co-occurrences.
The obtained clusters consist of semantically related tags and as consequence

25 50 75 100 125 150 175 200

0.6

0.7

0.8

0.9

Delicious

Number of tags in the tag cloud

C
o

v
e
ra

g
e

25 50 75 100 125 150 175 200
0.02

0.04

0.06

0.08

0.1

0.12

Delicious

Number of tags in the tag cloud

O
v

e
rl

a
p

25 50 75 100 125 150 175 200

0.4

0.5

0.6

0.7

0.8

Bibsonomy

Number of tags in the tag cloud

C
o

v
e
ra

g
e

25 50 75 100 125 150 175 200
0

0.02

0.04

Bibsonomy

Number of tags in the tag cloud

O
v

e
rl

a
p

Baseline K-means Hierarchical Feature hashing

Fig. 2. Improvements of coverage and overlap on Bibsonomy and Delicious datasets
with different clustering techniques and their corresponding logarithmic fit

Methodologies for Improved Tag Cloud Generation with Clustering 73

a tag space is uniformly covered by these clusters. Feature hashing improves
metrics insignificantly in comparison to the baseline method. The drawback of
this clustering method is that aggregates all tags to the top-k most frequent
tags which can be considered as centroids of generated clusters. The most fre-
quent tags are often semantically similar and it negatively affects the structure
of obtained clusters. K-means clustering represents each tag as a feature vector.
and the size of features is number of documents. As the number of features is
enormous, the computation of distances between tags results into a creation of
clusters with semantically not related tags. Another drawback is the random
placement of the initial centroids of clusters that significantly affects a final
structure of clusters.

In average, the proposed methodology improves the coverage with 12.4% on
Delicious and 3.01% on Bibsonomy dataset. The improvements of coverage can
be expressed also with the number of additionally covered documents. The tag
clouds generated by the methodology cover additional 2794 documents on De-
licious and 56508 documents on Bibsonomy. The diversity of tag clouds is also
improved which can be observed by decreased overlap

The average improvements are presented in the following Tables 2 and 3.
The main reason of improvements is the introduced maximization of chained

Table 2. Mean values of coverage for the baseline and different clustering methods on
BibSonomy and Delicious datasets

Coverage

Dataset Baseline K-means Hierarchical Feature hashing
BibSonomy 0.6285 0.6756 0.7064 0.6741
Delicious 0.8112 0.8139 0.8362 0.8171

Table 3. Mean values of overlap for the baseline and different clustering methods on
BibSonomy and Delicious datasets

Overlap

Dataset Baseline K-means Hierarchical Feature hashing
BibSonomy 0.0245 0.0194 0.0185 0.0204
Delicious 0.0731 0.0543 0.0637 0.0631

coverage. The metric significantly simplifies the selection process of tags for the
tag cloud as it maximizes coverage and minimizes overlap of generated tag cloud
altogether. The overall coverage is equal to the chained coverage of the whole
tag cloud. Therefore, the presentation of the chained coverage is unnecessary
however, it is a core factor of achieved improvements.

Although the experiments were carried out using the Delicious and Bibson-
omy dataset, other datasets should be also evaluated. Statistical properties of
each dataset differ therefore, we assume that our methods could be succesfully
aplied on other folksonomy based datasets. However, this needs to be empirically
proved.

74 M. Leginus et al.

6 Conclusion and Future Work

In this work, we propose two different methodologies for an enhanced tag cloud
generation. The former one improves the coverage of the tag clouds by aggrega-
tion of syntactically similar tags. Moreover, it prohibits a depiction of the syn-
tactically similar tags and as a consequence additional tags can be selected for
the generated tag cloud. It results into more diverse structure of the tag clouds.
The latter methodology improves coverage and decreases overlap of tag clouds.
Introduced metric – chained coverage simplifies a selection process and the opti-
mization of coverage and overlap is straightforward. The utilization of clustering
techniques allow to divide the tag space into disjoint groups which allows to
select more diverse tags from the obtained clusters. The best improvements are
attained with hierarchical clustering that computes tag pairs co-occurrences and
produces the most reasonable clusters. The proposed methodology produces tag
clouds that cover As a future work we intend to explore possible new metrics
that would incorporate well-known metrics altogether and in a such way simplify
a selection process of tags.

Acknowledgements. This work has been supported by FP7 ICT project M-Eco:
Medical Ecosystem Personalized Event-Based Surveillance under grant No. 247829.

References

1. Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa, K., Qi, Y., Chapelle,
O., Weinberger, K.: Learning to rank with (a lot of) word features. Information
Retrieval 13(3), 291–314 (2010)

2. Bateman, S., Gutwin, C., Nacenta, M.: Seeing things in the clouds: the effect of
visual features on tag cloud selections. In: Proceedings of the Nineteenth ACM
Conference on Hypertext and Hypermedia, HT 2008, pp. 193–202. ACM, New
York (2008)

3. Bateman, S., Gutwin, C., Nacenta, M.: Seeing things in the clouds: the effect of
visual features on tag cloud selections. In: Proceedings of the Nineteenth ACM
Conference on Hypertext and Hypermedia, HT 2008, pp. 193–202. ACM, New
York (2008)

4. Durao, F., Dolog, P., Leginus, M., Lage, R.: SimSpectrum: A Similarity Based
Spectral Clustering Approach to Generate a Tag Cloud. In: Harth, A., Koch, N.
(eds.) ICWE 2011. LNCS, vol. 7059, pp. 145–154. Springer, Heidelberg (2012)

5. Echarte, F., Astrain, J.J., Córdoba, A., Villadangos, J.: Pattern Matching Tech-
niques to Identify Syntactic Variations of Tags in Folksonomies. In: Lytras, M.D.,
Damiani, E., Tennyson, R.D. (eds.) WSKS 2008. LNCS (LNAI), vol. 5288, pp.
557–564. Springer, Heidelberg (2008)

6. Halvey, M.J., Keane, M.T.: An assessment of tag presentation techniques. In: Pro-
ceedings of the 16th International Conference on World Wide Web, WWW 2007,
pp. 1313–1314. ACM, New York (2007)

7. Hassan-Montero, Y., Herrero-Solana, V.: Improving tag-clouds as visual informa-
tion retrieval interfaces. In: INSCIT 2006 Conference, Meŕıda (2006)

Methodologies for Improved Tag Cloud Generation with Clustering 75

8. Hassan-Montero, Y., Herrero-Solana, V.: Improving tag-clouds as visual informa-
tion retrieval interfaces. In: International Conference on Multidisciplinary Infor-
mation Sciences and Technologies, Citeseer, pp. 25–28 (2006)

9. Huang, A.: Similarity measures for text document clustering. In: Proceedings of the
Sixth New Zealand Computer Science Research Student Conference (NZCSRSC
2008), Christchurch, New Zealand, pp. 49–56 (2008)

10. Johnson, S.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)
11. Kaser, O., Lemire, D.: Tag-cloud drawing: Algorithms for cloud visualization.

CoRR, abs/cs/0703109 (2007)
12. Knautz, K., Soubusta, S., Stock, W.G.: Tag clusters as information retrieval inter-

faces. In: HICSS, pp. 1–10 (2010)
13. Knowledge and U. o. K. Data Engineering Group: Benchmark folksonomy data

from bibsonomy, version of January 1 (2010)
14. Kuo, B.Y.-L., Hentrich, T., Good, B.M., Wilkinson, M.D.: Tag clouds for summa-

rizing web search results. In: Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, pp. 1203–1204. ACM, New York (2007)

15. Kuo, B.Y.-L., Hentrich, T., Good, B.M., Wilkinson, M.D.: Tag clouds for summa-
rizing web search results. In: Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, pp. 1203–1204. ACM, New York (2007)

16. Leginus, M., Zemaitis, V.: Speeding up tensor based recommenders with clustered
tag space and improving quality of recommendations with non-negative tensor
factorization. Master’s thesis, Aalborg University (2011)

17. Ramage, D., Heymann, P., Manning, C., Garcia-Molina, H.: Clustering the tagged
web. In: Proceedings of the Second ACM International Conference on Web Search
and Data Mining, pp. 54–63. ACM (2009)

18. Rivadeneira, A.W., Gruen, D.M., Muller, M.J., Millen, D.R.: Getting our head in
the clouds: toward evaluation studies of tagclouds. In: Proceedings of the SIGCHI
Conference on Human factors in Computing Systems, CHI 2007, pp. 995–998.
ACM, New York (2007)

19. Schrammel, J., Leitner, M., Tscheligi, M.: Semantically structured tag clouds: an
empirical evaluation of clustered presentation approaches. In: Proceedings of the
27th International Conference on Human Factors in Computing Systems, CHI 2009,
pp. 2037–2040. ACM, New York (2009)

20. Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation
in social tagging systems using hierarchical clustering. In: Proceedings of the 2008
ACM Conference on Recommender Systems, RecSys 2008, pp. 259–266. ACM, New
York (2008)

21. Sinclair, J., Cardew-Hall, M.: The folksonomy tag cloud: when is it useful? J. Inf.
Sci. 34, 15–29 (2008)

22. van Dam, J., Vandic, D., Hogenboom, F., Frasincar, F.: Searching and browsing
tag spaces using the semantic tag clustering search framework. In: 2010 IEEE
Fourth International Conference on Semantic Computing (ICSC), pp. 436–439.
IEEE (2010)

23. Venetis, P., Koutrika, G., Garcia-Molina, H.: On the selection of tags for tag clouds.
In: Proceedings of the Fourth ACM International Conference on Web Search and
Data Mining, WSDM 2011, pp. 835–844 (2011)

Semantic Collaborative Tagging

for Web APIs Sharing and Reuse

Devis Bianchini, Valeria De Antonellis, and Michele Melchiori

Dept. of Information Engineering University of Brescia
Via Branze, 38 - 25123 Brescia, Italy

{bianchin,deantone,melchior}@ing.unibs.it

Abstract. Sharing and reuse of Web APIs for fast development of Web
applications require advanced searching facilities to enable Web design-
ers to find the Web APIs they need. In this paper we describe a Web
API semantic collaborative tagging system to be implemented on top of
the public ProgrammableWeb Web API repository. The system is de-
signed to be used in a social context: the designers can take actively part
in the semantic tagging of Web APIs, thus sharing their experience in
developing their own Web applications. Moreover, they can exploit new
searching facilities to find out relevant Web APIs according to different
search scenarios and reuse them for fast deployment of new applications.
To this aim, they rely in an hybrid fashion on the semantic tags and on
the collective knowledge derived from past designers’ experiences. Proper
matching and ranking metrics are defined and applied during Web API
searching.

1 Introduction

Sharing and reuse of Web APIs is becoming a very popular way to quickly
develop Web mashups, that is, low-cost, personalized Web applications, designed
and implemented to be used for short periods of time (also referred as situational
applications). To this aim, the ProgrammableWeb API public repository has
been made available, where Web API providers share their own components
and Web designers can look for Web APIs they need to compose new Web
applications without implementing them from scratch. The repository registers
almost 5,800 Web APIs (a number that is continuously growing1) and presents
methods to programmatically retrieve the registered Web APIs and also to track
all the mashups which have been developed starting from them. Currently, the
repository contains more than 6,600 Web mashups.

In this context, enabling Web designers to effectively find Web APIs they need
is becoming a more and more crucial asset. Some solutions propose the definition
of component models [1,2] to support fast Web application development. Other
solutions suggest the introduction of a Web API semantic characterization to

1 See http://www.programmableweb.com/: the last access on April 30th, 2012 counts
5,792 Web APIs.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 76–90, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 77

face issues such as the heterogeneity across Web API descriptions [3]. However,
the use of new Web API models on top of the ProgrammableWeb repository,
although improves Web API retrieval and composition, introduces an additional
learning effort for Web API providers who must adopt the models. Such an
additional requirement is often not feasible in a social scenario, where the average
skill of Web designers prevents from using complex models other than common
Web programming technologies. In this paper we propose a lightweight semantic
tagging system to be deployed on top of the ProgrammableWeb repository to be
used in a social context. Web designers can take actively part in the semantic
tagging of Web APIs, thus sharing their experience in developing their own
Web applications, going beyond the limitations of traditional tags, which lack
in facing ambiguities such as polisemy and omonyms. Moreover, Web designers
can also exploit the search facilities of the system to find out relevant Web APIs
according to different search scenarios and reuse them for fast deployment of
new applications. To this aim, they rely in an hybrid fashion on the semantic
tags and on the collective knowledge derived from past designers’ experiences in
developing mashups.

In the next section we describe the scenarios which motivated our work.
Section 3 contains a formalization of proper matching and ranking metrics based
on the Web API semantic tags and collective knowledge to be applied during
search. In Section 4 we describe the implementation of the proposed system.
Section 5 shows a preliminary validation of the system and a comparison with
the state of the art. Section 6 closes the paper.

2 Motivations and Open Issues

Consider a simple example. Danielle is a designer who aims at building a Web
application for her friends, to share pictures by posting photos on the Web site
and showing with marks on a map the locations where photos have been taken.
Danielle does not want to implement the Web application from scratch, since,
for instance, the design of a Web interface for displaying points on a map is a
time-consuming task and Danielle does not have time and the required advanced
skills. Nevertheless, already available Web APIs, such as the Google Maps APIs,
have been implemented for this purpose. She has to search for existing Web
APIs to post pictures and personalize maps and has to properly wire them in
the mashup. She inspects the ProgrammableWeb repository (see Figure 1), where
she can: (i) find Web APIs by specifying keywords that will be matched against
the descriptions associated with available Web APIs in the repository; (ii) filter
available Web APIs according to their category, the company which proposed
the APIs, the adopted protocols and data formats; (iii) find mashups composed
of the available Web APIs. On ProgrammableWeb Danielle can not:

1. specify both the features of the Web APIs to search for and of the Web
mashups which the Web APIs will be used in, to perform more advanced
search; for instance, Danielle can not specify that she needs a mapping Web

78 D. Bianchini, V. De Antonellis, and M. Melchiori

Fig. 1. An example of Web API search on ProgrammableWeb.com

API to be used in combination with a Web API for posting pictures; if she
looks for a mapping Web API, the system returns about 210 results, which
can be restricted to 11 results by selecting the most famous Google company
(see Figure 1), but not all the returned APIs enable the definition of markers
for displaying points on a map;

2. avoid limitations of traditional tag-based search, specifically false positives
and false negatives due to the tag polisemy (that is, the same tag refers
to different concepts) and tag omonyms (i.e., the same concept is pointed
out using different tags); false positives are APIs incorrectly included among
the search results, they are affected by polisemy; false negatives are APIs
incorrectly excluded from search results, they are affected by omonyms;

3. be assisted in more articulated developing scenarios, where Danielle needs a
proactive support for her search; for instance, let us suppose that Danielle
already has at her disposal a Web mashup which combines a Web API for
searching sightseeing locations and a Web API to display them on a map;
ProgrammableWeb is neither able to proactively suggest different APIs that
can be substituted to the sightseeing search API and properly wired with the
map API (thus minimizing the efforts required to adapt the new Web API
into the existing mashup) nor can suggest other Web APIs (e.g., a Twitter
API) to be added to the mashup, because of many existing mashups where
Web designers put together such kinds of Web APIs.

3 Semantic and Social Characterization of Web APIs

Given the open issues highlighted above, we inferred the need of both a se-
mantic characterization of Web APIs, to face polisemy and omonyms problems,

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 79

and a social characterization of Web APIs, to rely on the past experiences of
Web designers and enable the support for more articulated developing scenarios
(see point 3 in Section 2). Formally, we denote a Web API description W as
〈WSem,WSoc〉, where WSem and WSoc are the semantic and social characteri-
zation of W , respectively.

3.1 Semantic Characterization

The semantic characterization of a Web API W is defined as follows:

WSem = 〈cW , {tW}, {mW}〉 (1)

The elements of such a characterization are discussed in the following and are
extracted both from the contents of the ProgrammableWeb repository and from
the information provided by the designers.

Web API category cW . It is used to provide a high level classification of
the Web API. We rely on the classification of Web APIs provided by Pro-
grammableWeb, composed of 67 categories such as mapping, payment, search.

Web API semantic tags tW . Tags are used to provide a fine-grained semantic
characterization of the Web API. To this purpose, we rely on tags defined by the
designers who adopted the Web API. During the assignment of such tags, sense
disambiguation techniques based on the WordNet [4] lexical system are applied.
In WordNet the meaning of terms is defined by means of synsets. Each synset
has a human readable definition and a set of synonyms. In our model, a Web
API semantic tag tW is a triple, composed of: (i) the term itself (namely, t0W)
extracted from WordNet; (ii) the set tsynW of all the terms in the same synset
of t0W ; (iii) the human readable definition tdW associated with the synset. The
designer is supported in the selection of the synset to better specify the meaning
of a tag as shown in Section 4.

Web mashup semantic tags mW . When the Web API is tagged, the designer
is also required to add a set of semantic tags mW that describe the Web mashup
where the Web API has been used. The semantic tags mW has the same struc-
ture of semantic tags in {tW}.

An example of semantic characterization of the Flickr Web API to be used
in a file sharing application could be the following:

FlickrSem = 〈Photos, {〈photo, {photograph, exposure, picture, pic}, ”a representation of a person

or scene in the form of a print or transparent slide or in digital format”〉},
{〈file, {date file}, ”a set of related records (either written or electronic) kept together”〉,
〈sharing, {}, ”using or enjoying something jointly with others”〉}

Web API category, semantic tags in {tW} and Web mashup semantic tags in
{mW} will be used to empower the Web API search by applying advanced
matching techniques described in Section 3.4.

80 D. Bianchini, V. De Antonellis, and M. Melchiori

3.2 Social Characterization

In a Web 2.0 context, the suggestion of a Web API to be used in a mashup should
also consider as relevant past experiences of the designers who adopted the Web
APIs in their mashups. We denote these aspects as the social characterization
of the Web API W :

WSoc = {d∈DW |d = 〈σ, μ, {Wk}〉} (2)

where, for each designer d∈DW , who used the Web API W , σ is the designer’s
skill for developing Web applications and μ is a quantitative rating (within the
range [0,1]) given by the designer to the Web API W . Social characterization
of the Web API W is further refined by asking the designer, during semantic
tagging, to specify other Web APIs Wk that he/she used together with W in the
same Web mashup. It is worth mentioning that if a Web API has been adopted
by designers with high skill, the system should better rank such Web API with
respect to the other ones among the search results. The skill σ is collected during
designer’s registration to the system (see Section 4). A set of options are proposed
to be selected by the designer, ranging from unexperienced to expert, and are
uniformly mapped into the [0,1] range, with unexperienced=0 and expert=1.
The capability of the system to automatically update the designers’ skills on the
basis of the number of developed mashups and their complexity (for instance,
based on the size of developed mashups as the number of included APIs) will
be investigated as future work. Also the set {Wk} could be loaded directly from
the mashups stored on ProgrammableWeb if the Web designer is registered on
the repository Web site.

The value of μ is selected by the designer according to the 9-point Scoring
System2. This scoring system has few rating options (only nine) to increase
potential reliability and consistency and with sufficient range and appropriate
anchors to encourage designers to use the full scale. During the rating, we pro-
vided the designer with the set of options that are mapped into the [0,1] range,
as shown in Table 1.

Table 1. The 9-point Scoring System for the classification of designers’ Web API rating

Rating (additional guidance on strengths/weaknesses) Score

Poor (completely useless and wrong) 0.2
Marginal (several problems during execution) 0.3
Fair (slow and cumbersome) 0.4
Satisfactory (small performance penalty) 0.5
Good (minimum application requirements are satisfied) 0.6
Very Good (good performance and minimum application requirements are satisfied) 0.7
Excellent (discreet performance and satisfying functionalities) 0.8
Outstanding (very good performances and functionalities) 0.9
Exceptional (very good performances and functionalities and easy to use) 1.0

2 http://www.nhlbi.nih.gov/funding/policies/nine point scoring system and

program project review.htm.

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 81

An example of social characterization of two photo sharing Web APIs, Flickr
and 23hq.com, used in Web applications like the one described in the motivating
scenarios, is the following:

Flickr d1 = 〈1 (expert), 0.7 (excellent), {GoogleMaps, del.icio.us}〉
d2 = 〈1 (expert), 0.6 (very good), {GoogleMaps}〉

23hq.com d3 = 〈1 (expert), 0.4 (satisfactory), {GoogleMaps, SilverlightStreaming, YouTube}〉
d4 = 〈0.5 (medium), 0.6 (very good), {YouTube, Twitter, GoogleMaps, del.icio.us, Amazon}〉

In the example, Flickr has been rated as excellent and very good by two
experts, while 23hq.com as satisfactory by an expert and very good by a medium-
skilled designer. All the designers used these Web APIs in past applications
together with the Google Maps API. Social characterization of the available Web
APIs in the ProgrammableWeb repository is exploited for ranking purposes after
search. Given a set of Web APIs among search results, they are ranked according
to the ratings of other designers that used such APIs in the past, taking into
account their skills. Ranking metrics will be detailed in Section 3.4.

3.3 Web APIs Search Scenarios

The semantic and social characterization of Web APIs described above enable
to match a request Wr against the WSem and WSoc of available Web APIs in
the repository and to rank the search results with respect to designers’ skills and
ratings. Formally, we define a request Wr for a Web API as follows:

Wr = 〈crW , {trW}, {mr
W}, {Wh}〉 (3)

where crW is the requested category, {trW} is a set of semantic tags specified for
the Web API to search for, {mr

W} is a set of semantic tags featuring the Web
mashup in which the Web API to search for should be used, if any, {Wh} is the
set of Web APIs already included in such a mashup, if any, which the Web API
to search for should be wired with. We distinguish two different search scenarios:

– in the first scenario, Danielle is looking for a Web API to start the devel-
opment of a new Web mashup; to this aim, she specifies a category crW and
a set of semantic tags {trW}; Danielle has not in mind any mashup where
the Web API to search for should be used; the request is formalized as
Wr

1 = 〈crW , {trW}〉; we denote this scenario as simple search; a variant of this
scenario is the one where Danielle has already in mind a set of semantic tags
{mr

W} which denote the mashup where the Web API to search for should be
used; the request is formalized as Wr

2 = 〈crW , {trW}, {mr
W}〉 and we denote

this variant as advanced search;
– in a second scenario, Danielle has already built or started the construction

of a Web mashup, composed of a set of Web APIs {Wh}, but she has to
complete it and the system could suggest the best Web API that can be
wired with the other Web APIs already within the mashup; the request is
formalized asWr

3 = 〈crW , {trW}, {mr
W}, {Wh}〉 and we denote it as completion

search; in a variant of this scenario, Danielle has no preferences on the Web

82 D. Bianchini, V. De Antonellis, and M. Melchiori

API to search for (i.e., {trW} is empty) and she totally relies on the system
that should proactively suggest to Danielle which APIs could be added on the
basis of the semantic tags {mr

W} on the mashup that is being developed, the
set {Wh} of Web APIs already included in the mashup and past experiences
of mashups, registered within the repository; in this case, the request is
formalized as Wr

4 = 〈{mr
W}, {Wh}〉 and we denote it as proactive completion

search.

For instance, an example of request formulated in the completion search scenario
to find a Web API in the category Photos to be used for picture sharing together
with the Google Maps Web API can be represented as follows:

Wr = 〈Photos, {〈picture, {photograph, photo, exposure, pic}, ”a representation of a person

or scene in the form of a print or transparent slide or in digital format”〉},
{〈picture, {photograph, photo, exposure, pic}, ”a representation of a person

or scene in the form of a print or transparent slide or in digital format”〉,
〈sharing, {}, ”using or enjoying something jointly with others”〉}, {GoogleMaps}〉

where {trW} = {picture} and {mr
W} = {picture, sharing}. The designer is

supported in the formulation of the request by the same sense disambiguation
techniques used during semantic tagging, as explained in Section 4.

3.4 Web APIs Matching and Ranking

The search scenarios introduced above can be satisfied by applying a set of
metrics that are used to compare the affinity between categories, semantic tags
and mashups in which the Web APIs must be included. The matching and
ranking model we adopted in our system is defined by the following elements:

Γ = 〈Wr, {W}, target, Sim(), ρ〉 (4)

where Wr is the request, {W} is the set of semantic and social characterization
of available Web APIs W in the repository (W = 〈WSem,WSoc〉), target is the
kind of search (simple, advanced, completion, proactive completion), Sim(Wr,W)
is the similarity measure used to evaluate candidate Web APIs as search re-
sults and ρ is the ranking function for search results. The matching measure
Sim(Wr,W) is based on the semantic characterization WSem of W and is com-
posed of the following elements.

Category similarity. The similarity between the category crW of Wr and the
category cW of WSem is inferred from the ProgrammableWeb repository; since
no hierarchies are defined among the available categories, advanced semantic-
driven techniques (such as category subsumption checking) can not be used;
nevertheless, we consider the two categories as more similar as the number of
Web APIs that are categorized in both the categories, denoted with |crW∩cW |,
increases with respect to the overall number of Web APIs classified in crW ,

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 83

denoted with |crW |, and in cW , denoted with |cW |; formally, the category simi-
larity is defined as follows:

Simc(c
r
W , cW) =

2 · |crW∩cW |
|crW |+ |cW | (5)

Semantic tag affinity. Semantic tag affinity applied between two tags t1 and
t2, denoted with TagSim(t1, t2)∈[0, 1], is used to state how much similar they
are with respect to the WordNet lexical system. In WordNet the synsets used to
define the meaning of terms are related by eighteen different kinds of relation-
ships. Some relationships have been designed to refine search capabilities and
enhance the navigation of the net of terms in the lexical system. In particular,
hyponymy/hypernymy relations are used to represent the specialization/general-
ization relationship between two terms: for instance, station wagon is a more
specific term with respect to automobile; this means that there is a semantic
affinity between station wagon and automobile, that is, if a user is looking for
an automobile, also those resources that have been tagged with the station wagon
term can be considered relevant. According to this viewpoint, we state that the
affinity between two tags t1 and t2 is maximum if the tags belong to the same
synset; otherwise, if they belong to different synsets, a path of hyponymy/hy-
pernymy relations which connects the two synsets is searched: the highest the
number of relationships in this path, the lowest is semantic tag affinity, that is:

TagSim(t1, t2) =

⎧
⎨

⎩

1 if t1 and t2 belong to the same synset

0.8L if there are L hyponymy/hypernymy relations between t1 and t2
0 otherwise

(6)

The value 0.8 has been proved to be optimal in our experiments on WordNet
terms affinity [5]. Nevertheless, it can be parameterized (within the range [0,1])
and set by the designer. The affinity between two semantic tags t1 and t2 is eval-
uated considering t01 and t02, while the list of synonyms and the human readable
description in the t1 and t2 definitions are used to speed up TagSim evaluation
and to enable the identification of the synsets within WordNet. The tag affinity
between two sets of semantic tags T1 and T2 is evaluated by computing the se-
mantic tag affinity between each pairs of tags, one from T1 and one from T2 by
applying the Dice formula [6]:

Simt(T1, T2) =
2 ·

∑
t1∈T1,t2∈T2

TagSim(t1, t2)

|T1|+ |T2|
(7)

This is used to evaluate the total affinity Simt({trW}, {tW}) between semantic
tags used to annotate the Web APIs and Simt({mr

W}, {mW}) between seman-
tic tags used to annotate the mashups. Pairs to be considered for the Simt

computation are selected according to a maximization function that relies on
the assignment in bipartite graphs. For instance, there exists a path of length
L = 2 between terms picture and file in WordNet, therefore Simt({picture,
sharing},{file, sharing}) is evaluated as [2 · (0.82 + 1.0)]/4 = 0.82.

84 D. Bianchini, V. De Antonellis, and M. Melchiori

The final matching measure Sim(Wr,W) is computed as:

Sim(Wr,W) = ω1 · Simc(c
r
W , cW) + ω2 · Simt({trW}, {tW})

+ω3 · Simt({mr
W}, {mW}) ∈ [0, 1]

(8)

where 0≤ωi≤1, with i = 1, 2, 3, and
∑3

i=1 ωi = 1 are weights set according to the
target, as shown in Table 2. Setup experiments showed that the category is only
a coarse-grained entry point to look for Web APIs in the repository (this explains
the low values for ω1 weight). For instance, the Sim(Wr, Flickr) between the
sample request Wr shown in Section 3.3 and the FlickrSem characterization
shown in Section 3.1 is computed as follows:

Sim(Wr, Flickr) = 0.2 · 1.0 + 0.4 · 0.82 + 0.4 · 2 · 1.0
2

= 0.928 (9)

Table 2. The setup of ωi weights for computation of matching measure Sim(Wr,W)

Target Request Wr Weights setup

Simple Wr
1 = 〈crW , {trW}〉 ω1 = 0.4, ω2 = 0.6, ω3 = 0.0

Advanced Wr
2 = 〈crW , {trW}, {mr

W}〉 ω1 = 0.2, ω2 = ω3 = 0.4
Completion Wr

3 = 〈crW , {trW}, {mr
W}, {Wh}〉 ω1 = 0.2, ω2 = ω3 = 0.4

Proactive completion Wr
4 = 〈{mr

W}, {Wh}〉 ω1 = ω2 = 0.0, ω3 = 1.0

The Web APIs included in the search results (which we denote with {W ′}⊆{W})
are those whose overall similarity is equal or greater than a threshold γ exper-
imentally set. The Web APIs {W ′} are ranked according to the social charac-
terization of each W ′. In particular, the ranking function ρ : {W ′} �→ [0, 1]
takes into account the past experiences of designers in using the W ′ Web API
(ρ1(W ′)) and the ratings given by the designers to W ′ (ρ2(W ′)). Depending on
the declared skills, past experiences and ratings of more expert designers are
considered as more relevant for ranking search results. In particular, we define
ρ(W ′) = α · ρ1(W ′) + β · ρ2(W ′). In the performed preliminary experiments, the
weights α and β are both set to 0.5 to give the same relevance to the two aspects.

The computation of ρ1(W ′) is different if the request Wr contains the set
{Wh} of the Web APIs already included in the mashup in which the Web API to
search for should be used (completion or proactive completion search scenarios)
or not (simple/advanced search scenarios). In the first case, let be {Wi

k} the
Web APIs included by the i-th designer di∈DW′ in the same mashup where
he/she used W ′. We use the degree of overlapping between {Wh} and {W i

k}, to
quantify the closeness of mashup in which W ′ has been used and the mashup
where W ′ will be used, through the same rationale applied to category similarity
in formula (5), that is:

Simm({Wh}, {W i
k}) =

2 · |{Wh}∩{W i
k}|

|{Wh}|+ |{W i
k}|

∈ [0, 1] (10)

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 85

where |·| denotes the number of Web APIs in the set and |{Wh}∩{W i
k}| denotes

the number of common Web APIs in the two sets. The computation of ρ1(W ′)
is then performed as follows:

ρ1(W ′) = 1−
∑

i(1− σi · Simm({Wh}, {W i
k}))

|DW′ | ∈ [0, 1] (11)

where σi is the declared skill of designer di∈DW′ . The formula above ensures
that the past experiences of more expert designers have a higher impact on
the ρ1(W ′) computation. Intuitively, the closest the σi and Simm({Wh}, {W i

k})
values to 1 (maximum value) for all the designers di, the closest the second
member in formula (11) to zero, that is, the ranking ρ1(W ′) assumes the best
value. For instance:

ρ1(Flickr) = 1−
(1− 1.0 · 2·1.0

3) + (1− 1.0 · 2·1.0
2)

2
= 0.833 (12)

The value ρ1(23hq.com) is computed in the same way and is equal to 0.334.
If we consider the simple or advanced search scenario, where {Wh} = ∅, we
simplify formula (11) by putting Simm({Wh}, {W i

k}) to 1, that is, ρ1(W ′) =
1 − [

∑
i(1 − σi)]/|DW′ |. The Web API W ′ is ranked better if all the designers

who adopted it have high development skill.
The computation of ρ2(W ′) follows the same rationale, considering in this

case the rating μi given by the designer di to the Web API W ′, that is:

ρ2(W ′) = 1−
∑

i(1− σi · μi)

|DW′ | ∈ [0, 1] (13)

For instance, ρ2(Flickr) = 1− [(1− 0.7) + (1 − 0.6)]/2 = 0.65.

4 The System Implementation

A designer can access our system using the search facilities to find out relevant
Web APIs according to the search scenarios introduced above. Alternatively,
he/she can register himself/herself in the system and he/she can take actively
part in the semantic and social characterization of Web APIs he/she used. The
architectural overview of our system is shown in Figure 2. The Web API Se-
mantic Tagging and Search interfaces are PHP pages accessed through the Web
browser and interact with: (i) the ProgrammableWeb APIs for retrieving basic
information on Web APIs and Web mashups from the repository3; (ii) the Web
API Storage module, where semantic and social characterization of Web APIs
are stored together with designers’ development skills and ratings and match-
ing and ranking routines are implemented; (iii) the WordNet lexical system for
sense disambiguation. We rely on a WordNet version made available for J2EE

3 api.programmableweb.com/.

86 D. Bianchini, V. De Antonellis, and M. Melchiori

platform, therefore we implemented the sense disambiguation module as a Web
service to enable communication between PHP pages and Java classes. Interac-
tions with the other modules are managed with the AJAX technology to ensure
good performances of the Web interfaces.

Fig. 2. Architecture of the Web API semantic collaborative tagging system

4.1 The Web API Semantic Collaborative Tagging

The Web API Semantic Tagging interface is implemented to manage the inter-
action of the designer during the semantic and social characterization of Web
APIs after registration and authentication. Designer’s registration is required
to setup the development skill, authentication enables the system to associate
the characterization of the Web API with the designer’s profile. The designer
is guided in a set of steps in the semantic and social characterization of the
Web API (see Figure 3). On the top, the details of the Web API extracted from
ProgrammableWeb are shown, together with the category which the Web API
belongs to. On the bottom, four tabs which correspond to the four steps of the
Web API semantic and social characterization are shown: the specification of se-
mantic tags on the Web API; the optional specification of semantic tags on the
Web mashup which the Web API has been used in; the optional specification of
other Web APIs, among the ones registered in ProgrammableWeb, which have
been used together with the current one in the Web mashup; the rating of the
Web API, mapped into the numeric scores as shown in Table 1. In particular,
the figure shows the first step. A text field is provided to enter the tag. As the
designer inputs the characters of the term he/she wants to specify for tagging,
the system provides an automatic completion mechanism based on the set of
terms contained in WordNet. Starting from the tag specified by the designer,
the Sense Disambiguation Module queries WordNet and retrieves all the synsets
that contain that term and shows the semantic tags list.

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 87

Fig. 3. The Web API Semantic Tagging interface

4.2 The Web API Search Interface

The Web API Search interface presents the same steps described for the Web
API Semantic Tagging interface (except for the rating step) to specify the request
Wr. The designer can be either authenticated in the system or not, to execute a
semantic tagging-based search. The designer’s authentication could be explored
to provide targeted search results, adapted to the skill and past Web mashups
developed by the designer. This functionality has not been developed yet, but we
plan to introduce it into future versions of the system. Different search modalities
(basic, advanced, completion, proactive completion) can be chosen by the designer
to enable/disable the tabs for specifying the Wr elements.

5 Related Work and Evaluation Issues

Some authors proposed the use of models to define Web APIs and the way they
are composed in a Web mashup to empower their reuse and sharing. In [7] an
abstract component model and a composition model are proposed, expressed
by means of an XML-based language, for the construction of dashboards. In
particular, components abstract the descriptions of enterprise internal services,
public APIs and Web resources from technical details. Other efforts based their
recommendations upon models. In [8] the formal model based on Datalog rules
defined in [1] is proposed to capture all the aspects of a mashup component
(called mashlet). In this model authors also consider the mashups that have
been implemented using the Web API which is being modeled, but do not rely
on other social aspects such as ratings and designers’ expertise: when the designer

88 D. Bianchini, V. De Antonellis, and M. Melchiori

selects a mashlet, the system suggests other mashlets to be connected on the ba-
sis of recurrent patterns of components in the existing mashups. In [3] semantic
annotations have been proposed to enrich Web API modeling in presence of high
heterogeneity and proper metrics based on such annotations have been defined
to improve recommendations on Web API retrieval and aggregation. This model
has been extended in [9] with traditional API tagging to exploit collective knowl-
edge for Web API recommendation, but also in this case ratings and designers’
expertise are not taken into account. Although such models enable more precise
metrics for Web API retrieval and the (semi)automatic generation of the glue
code for deploying the final mashup, their use is not always feasible in a social
context, where Web designers’ expertise is mainly focused on Web programming
technologies, and the ever growing addition of new Web APIs which present an
high heterogeneity hampers the definition of proper wrappers to load Web API
descriptions inside the model itself. In such a context, the adoption of Datalog
rules to describe Web APIs and mashups [1] or of XML-based, abstract models
for Web API description and composition [3,7] should be further investigated.
In [10], a faceted classification of unstructured Web APIs and a ranking algo-
rithm to improve their retrieval are proposed. The classification and searching
solutions are based on IR techniques. The proposal provides a coarse-grained
discovery mechanism and adopts components descriptions as published on Pro-
grammableWeb, without any further semantic characterization of components.
In this paper, we also rely on the information stored on ProgrammableWeb,
but we extend Web API descriptions with additional facets based on semantic
tagging and on the past experiences of designers who adopted the Web APIs
in their own mashups. With respect to approaches on semantic tagging of Web
pages [11] and social search engines, such as Yahoo My Web 2.0, the semantic
and social characterization of Web APIs on top of ProgrammableWeb must take
into account not only each single resource (i.e., Web API) to be recommended,
but also the way they are wired together within Web applications or mashups,
thus raising additional aspects also related to the Web 3.0 context.

Preliminary evaluation. We performed an initial evaluation on the precision
of the semantic tagging system in retrieving relevant Web APIs and on the rank-
ing procedure. We focused on the application domain of the running example:
we considered a subset of 395 Web APIs grouped in the Entertainment, File
Sharing, Mapping and Photos categories of ProgrammableWeb repository; we
collected a subset of mashups from the same repository, among the ones built
with the selected Web APIs, and the corresponding developers (for example, the
Flickr Web API has been used in about 602 mashups owned by 302 developers,
while 23hq.com has been used by 4 developers in 8 mashups); we performed
semantic tagging starting from the keywords extracted from the Web APIs and
Web mashups descriptions; finally, we classified developers’ skills on the basis
of the number of mashups and APIs they own. After semantic and social char-
acterization, we performed four different kinds of search, corresponding to the
four search scenarios. We manually built twelve requests Wr like the sample one

Semantic Collaborative Tagging for Web APIs Sharing and Reuse 89

Table 3. Search results collected during the preliminary evaluation of the system (PW
= ProgrammableWeb)

Search tags # of retrieved Precision Recall Relevant APIs in the
APIs first 20 results

photo, 83 APIs 85% 79% 15
sharing (233 on PW) (33% on PW) (40% on PW) (9 on PW)
picture, 83 APIs 85% 79% 15
sharing (30 on PW) (22.5% on PW) (19% on PW) (6 on PW)

shown in Section 3.3 and we manually classified relevant Web APIs by carefully
analyzing Web API descriptions in the ProgrammableWeb repository and the
mashups where Web APIs have been used. We performed search experiments
on our systems and directly on ProgrammableWeb, using the first elements in
{trW} and {mr

W} as normal keywords without considering synonyms and human-
readable descriptions. The obtained results are like the ones presented in Table 3,
where we showed the output for the request Wr used in Section 3.3.

We evaluated the precision (number of relevant results among the retrieved
ones) and the recall (number of relevant results that are retrieved). Experiments
showed as our system presents better search results and, in particular, presents
relevant results in the first positions of the search outcome. Increased precision
is due to the adoption of sense disambiguation techniques, that enable to discard
not relevant Web APIs, while increased recall is obtained thanks to the inclusion
among search results of those Web APIs that have been annotated with tags that
are synonyms of the ones specified during search. For example, it is interesting
to underline that, if we change the search tag photo with picture, the perfor-
mances of our system do not change due to the exploitation of synsets, while
ProgrammableWeb returns worse search results (e.g., it does not return Flickr

Web API). More in-depth tests with designers will be performed in future work,
after a long-term interactions of designers with the system.

6 Conclusions

In this paper we described the functional architecture of a Web API seman-
tic tagging system to be deployed on top of the public ProgrammableWeb API
repository. The system is designed to be used in a social context: the designers
can take actively part into the semantic tagging of Web APIs, thus sharing their
experience in developing their own Web applications. Moreover, they can exploit
the search facilities of the system to find out relevant Web APIs according to
different search scenarios and reuse them for fast deployment of new applica-
tions. To this aim, they rely in an hybrid fashion on the semantic tags and on
the collective knowledge derived from past designers’ experiences. The proposed
system does not require the application of complex models for Web API descrip-
tion, while ensuring extensibility, for example by adding further features beyond
the semantic ones (such as the one defined in [10]) or additional sources for sense
disambiguation (such as DBPedia), thus improving the precision and recall of

90 D. Bianchini, V. De Antonellis, and M. Melchiori

the searching procedure. The final product will be a Web API and Web mashup
sharing and reuse system, built on top of common social applications, in Web
2.0 and Web 3.0 contexts.

References

1. Abiteboul, S., Greenshpan, O., Milo, T.: Modeling the Mashup Space. In: Proc. of
the Workshop on Web Information and Data Management, pp. 87–94 (2008)

2. Bislimovska, B., Bozzon, A., Brambilla, M., Fraternali, P.: Graph-Based Search
over Web Application Model Repositories. In: Auer, S., Dı́az, O., Papadopoulos,
G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 90–104. Springer, Heidelberg (2011)

3. Bianchini, D., De Antonellis, V., Melchiori, M.: Semantics-Enabled Web API Or-
ganization and Recommendation. In: De Troyer, O., Bauzer Medeiros, C., Billen,
R., Hallot, P., Simitsis, A., Van Mingroot, H. (eds.) ER Workshops 2011. LNCS,
vol. 6999, pp. 34–43. Springer, Heidelberg (2011)

4. Fellbaum, C.: Wordnet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

5. Bianchini, D., De Antonellis, V., Melchiori, M.: Flexible Semantic-based Service
Matchmaking and Discovery. World Wide Web Journal 11(2), 227–251 (2008)

6. van Rijsbergen, C.J.: Information Retrieval. Butterworth (1979)
7. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,

C.: DashMash: A Mashup Environment for End User Development. In: Auer, S.,
Dı́az, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166.
Springer, Heidelberg (2011)

8. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for Mashups. In: Proc. of
the 35th Int. Conference on Very Large DataBases (VLDB 2009), Lyon, France,
pp. 538–549 (2009)

9. Melchiori, M.: Hybrid techniques for Web APIs recommendation. In: Proceedings
of the 1st International Workshop on Linked Web Data Management, pp. 17–23
(2011)

10. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A., Verma, K.: A Faceted
Classification Based Approach to Search and Rank Web APIs. In: Proc. of Inter-
national Conference on Web Services (ICWS 2008), Beijing, China, pp. 177–184
(2008)

11. Marchetti, A., Tesconi, M., Ronzano, F., Rosella, M., Minutoli, S.: SemKey: A
Semantic Collaborative Tagging System. In: Proc. of WWW 2007 Workshop on
Tagging and Metadata for Social Information Organization, Banff, Canada (2007)

Opening Personalization to Partners:
An Architecture of Participation for Websites

Cristóbal Arellano, Oscar Díaz, and Jon Iturrioz

ONEKIN Research Group, University of the Basque Country (UPV/EHU),
San Sebastián, Spain

{cristobal.arellano,oscar.diaz,jon.iturrioz}@ehu.es
http://www.onekin.org/

Abstract. Open innovation and collaborative development are
attracting considerable attention as new software construction models.
Traditionally, website code is a “wall garden” hidden from partners. In
the other extreme, you can move to open source where the entirety
of the code is disclosed. A middle way is to expose just those parts
where collaboration might report the highest benefits. Personalization
can be one of those parts. Partners might be better positioned to
foresee new ways to adapt/extend your website based on their own
resources and knowledge of their customer base. We coin the term
“Open Personalization” to refer to those practises and architectures that
permit partners to inject their own personalization rules. We identify
four main requirements for OP architectures, namely, resilience (i.e.
partner rules should be sheltered from website upgrades, and vice
versa), affordability (easy contribution), hot deployment (anytime rule
addition), and scalability. The paper shows the approach’s feasibility
using .NET.

Keywords: Personalization, Open Development, .NET, MEF.

1 Introduction

Web personalization refers to making a Web site more responsive to the unique
and individual needs of each user [4]. It accounts for important usability
and productivity gains, specifically for organizational websites. Here, it is
important to notice that organizations seldom work in isolation. Organizations
establish (contractual) relationships with their partners to achieve their goals.
Suppliers, collaborators, associates and the like are common terms to reflect
these ecosystems. Hence, it is just natural that these relationships commonly
surface the website of these organizations. Corporate websites tend to include
data about the logistics, payment or providers, which do not represent the kernel
of the corporate activity but collaborate to fulfil the corporate’s objectives.
Even an ephemeral activity such as a conference organization includes in its
website, data about hotel partners, proceeding publishers or sponsors which
might all be subject to contractual agreements. In this setting, this work

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 91–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

92 C. Arellano, O. Díaz, and J. Iturrioz

addresses the following research question: How is Web personalization affected by
the collaborative nature of the organization activities to which the website gives
support to?

Traditional personalization assumes a centralized approach. The website
master (the “who”) decides the personalization rules (the “what”), normally at
the inception of the website (the “when”). In this context, partners tend to be
mere stakeholders who do not actively participate in the development of the
website. However, personalization opportunities might be difficult to foresee by
the website master. Indeed, as documented in [2], a large rate of interesting
innovations comes from the users/partners once the system is in operation. This
scenario is also akin to open innovation [8], and the client-shared-source software
model where vendors let partners access the source code through a common
platform [14]. By its very nature, personalization is a perfect candidate for being
subject to “open innovation”. In addition, resource scarcity makes the website
master only incorporate major enhancements while a more active participation
of the partners could also serve the long tail.

Therefore, we want custom extensions to be built by any partner instead
of being left only to the web master. We introduce the notion of Open
Personalization (OP) as a means for partners to collaborate in the
personalization of the website. The premise is that owners might be willing
to open their websites provided (1) minimal additional burden is required and
(2), ability of partners to contribute with valuable and up-to-date content for
the website users (even if outside the website business model). OP might lead
to new business models where openness might be subject to agreements on
how to split potential revenues similar to the way Google AdWords works. This
model can be of interest when partner relationships surface the website of the
host. This includes online portals that offer third-party products such as travel
agencies (with partnership with resorts and air carriers) or department stores
(with partnership with logistic companies).

This paper’s main contribution rests on proving the technical feasibility of
such approach by introducing an OP architecture for .NET. First, we identify
a set of quality criteria for OP architectures (Section 3). Next, we address
the realization of OP from the partners’ perspective (i.e. definition of their
own personalization strategies) and the host viewpoint (i.e. how to safely
disclose code) in Sections 4 and 5, respectively. Section 6 revises the OP
architecture along the requirements previously set. We start by confronting
“closed personalization” versus “open personalization”.

2 “Closed Personalization” versus “Open Personalization”

Typically, Web design methods define three main models: the Domain Model,
in which the structure of the domain data is defined; the Navigation Model, in
which the structure and behaviour of the navigation view over the domain data is
defined, and finally, the Presentation Model, in which the layout of the generated
hypermedia presentation is defined. On these grounds, personalization rules are

Opening Personalization to Partners 93

defined that adapt any of the three models based on the characteristics of the
current user. This implies the introduction of two additional models: the User
Model (e.g. demographic data, relevant behaviour while interacting with the
site, etc.) and the Personalization Model. Broadly, the Personalization Model
commonly resembles that of condition-action rules. The condition basically
checks the state of the Domain Model and the current User Model. The action
impacts the navigation structure and presentation, and might also update the
user information specified in the User Model.

Distinct commercial tools (e.g. ILog JRules, LikeMinds, WebSphere, Rainbow,
Infusionsoft) help to define and manage the personalization strategy. These tools
might play the role of frameworks (providing an enhanced container where to run
your code) or IDEs (helping in generating the code). No matter the approach,
the generated code commonly follows the Model-View-Controller pattern. For
the case of .NET, the mapping goes as follows: (1) the Domain Model is realized
as a set of C# classes, (2) the User Model is kept in a special class known
as the ProfileBase; (3) the Navigation Model is supported through Controller
classes which can check the Model classes (including ProfileBase) and decide
which content to pass to the View through ViewData, a system-defined variable
for Controller-View data passing; (4) the Presentation Model is realized as a
set of Web Forms which provide the appropriate renderings for the data kept
in ViewData. In this setting, a personalization rule commonly ends up being
realized as part of the Controller, and impacting the View.

As an example, consider the ICWE’09 conference website. The website
basically contains standard information for conferences, i.e. papers, keynotes,
accommodations, etc. It is a one-size-fits-all solution where all attendees get
the very same content. We have extended the original site with login so that
role-based personalization is now possible based on whether the current user is
a PC member, a session chair or an author. For instance, additional banquet
information can be displayed when login as an attendee with a full passport.
This example illustrates “closed personalization”: the Web administrator (the
“who”) decides the personalization rules (the “what”), normally at the inception
of the website (the “when”). More sophisticated approaches such as those based
on configurations or detection of access patterns (i.e. adaptive and adaptable
techniques [3]) are a step ahead but they are still centrally foreseen and developed
by the host designer. Of course, partners can participate as stakeholders, and
contribute with some personalization scenarios. Some examples follow for the
ICWE website:

– Barceló Resorts FACILITATES a 50% discount on room booking over the
weekend, PROVIDED the attendee holds a full passport,

– Springer-Verlag FACILITATES a 10% discount on books authored by the
seminars’ speakers, PROVIDED the attendee is registered for this seminar,

– The Tourism Information Office FACILITATES information about cultural
activities on the city during the free slots left by the conference program.

Supporting (and maintaining) these scenarios still rests on the host’s shoulders.
This setting is not without bumps. First, owner’s lack of motivation. The website

94 C. Arellano, O. Díaz, and J. Iturrioz

owner might regard previous scenarios as not aligned with its business model
(e.g. room offers might not attract more conference attendees) and hence, not
paying-off the effort. Second, partnership might be dynamic, being set once
the website is in operation (e.g. pending agreements with the publisher). For
instance, the aforementioned rule by Springer-Verlag might require updating
not just the View but also the Controller, and even the User Model if seminar
attendance is not recorded. As a result, partner rules might end up not being
supported by the website. This is not good for any of the actors. End users lose:
they will not get the discounts or overlook interesting data. Partners lose: they
miss an opportunity to drive more customers to their services. Website owners
lose: the website reduces its “stickiness”, missing the chance to become a true
data hub for the subject at hand (e.g. the ICWE conference).

Open Personalization (OP) pursuits to engage external partners in the
personalization endeavour: partners introduce their rules on their own with
minimal impact on the owner side. This arrangement makes more economical
sense. Partners might regard OP as a chance to increase their own revenues by
personalizing their offerings in those websites that serve as a conduit for their
products/services (e.g. room offers when booked through the conference website).
On the other side, the owner can be willing to facilitate (rather than develop)
such initiatives for the good of its customers as long as its involvement is limited.
However, OP should not be viewed only as a way to share the maintenance
cost but as an enabler of and means for truly collaborative solutions and lasting
partner relationships. In this paper however, we focus on the technical feasibility
of OP.

3 Open Personalization: Requirements

Open APIs are one of the hallmarks of the Web2.0 whereby Web applications
disclosure their data silos. However, “opening data” is not the same that “opening
personalization”. Personalization requires not only access to the data but also
adaptation in the content/navigation/layout of the website. OP would then
mean to offer (controlled) access to the User/Domain Model (better said, their
implementation counterparts) and the (regulated) introduction of the partners’
personalization rules (hereafter referred to as “mods”). This basically calls for
“an architecture of participation”. This term was coined by Tim O’Reilly “to
describe the nature of systems that are designed for user contribution” [12].
O’Reilly writes that “those that have built large development communities have
done so because they have a modular architecture that allows easy participation
by independent or loosely coordinated developers”. OP is then about creating a
community with your partners.

Based on these observations, we introduce the following quality criteria (and
driven requirements) for “an architecture of participation” for OP:

– Resilience. Mods should be shelter from changes in the underlying website,
and vice versa, partners’ code should not make the website break apart.

Opening Personalization to Partners 95

– Extensibility. OP departs from some model-driven approaches where
personalization is decided at design time and captured through models.
Mods can be added/deleted as partnership agreements change throughout
the lifetime of the website.

– Scalability. Growing amount of mods should be handled in a capable
manner.

– Affordability. Partner effort should be minimized. Designs based on widely
adopted programming paradigms stand the best chance of success. Intricate
and elaborated programming practices might payoff when used internally,
but the advantage can be diluted when partners face a steep learning curve.
The more partners you expect to attract, the simpler it must be and the
more universal the required tools should be.

As a proof of concept, next section introduces “an architecture of participation”
for .NET driven by the aforementioned requirements.

4 Open Personalization: Specification

OP is about disclosing code for partners to inlay their mods. Therefore, we
risk existing mods to fall apart when the underlying website is upgraded (i.e.
the code changes), hence putting an additional maintenance cost on partners.
Isolation solutions should be sought to ensure that the evolution of the website
has minimal impact on the existing mods. Among .NET artefacts (i.e. the Model
classes, the Web Forms and the Controller classes), Model classes are certainly
the most stable part of a Web application. Therefore, mods pivot around Model
classes. Those classes that are amenable to participate in a mod are said to
support a Modding Concept.

A Modding Concept is a Model Class whose rendering realization (i.e.
Web Forms) is amenable to be leveraged by a partner through a mod ,
i.e. an HTML fragment to be injected into the appropriate Web Forms.

The latter still suggests that mods might be affected by changes in Web
Forms. To ensure decoupling, all interactions between Web Forms and mods are
conducted through events. Model classes are manipulated through traditional
set/get methods. In addition, those classes playing the role of Modding Concepts
have an additional interface, the Modding Interface, which holds1:

– Publishing Events, which notify about instances of Modding Concepts
(e.g. Accommodation) being rendered by the website. For instance, the event
LoadAccommodation is produced by the host everytime an accommodation
is rendered. This event can be consumed by a mod through a handler (a.k.a.
listener).

1 The terminology of “processing events” and “publishing events” is widely used for
event-based components such as portlets [10].

96 C. Arellano, O. Díaz, and J. Iturrioz

Fig. 1. Domain classes annotated to become Modding Concepts

– Processing Events (a.k.a. actions), which are those that output an HTML
fragment. For instance, the event AddViewModAccommodation provides
a HTML fragment to be injected in those places where Accommodation
instances are rendered. Therefore, mods can decide what to add but
not where to add it. The latter is up to the host. For instance, the
AddViewModAccommodation event is produced by a mod but it is let to
the host decide where to handle it.

This notion of Modding Concept aims at minimizing the impact of OP for owners
and partners alike. This is the topic of the next subsections.

4.1 Impact on the Host: Making a Website Mod-Aware

The additional effort required for a traditional website to become mod-aware
is: (1) annotating the Model classes and (2), introducing place holders to locate
mod output in Views (i.e. Web Forms).

Annotating Model Classes. Model classes can be decorated with the
annotation [ModdingConcept]. Figure 1 shows the case for the ICWE website:
the class Accommodation becomes a Modding Concept. [ModdingConcept]

Opening Personalization to Partners 97

Fig. 2. Mod-aware Views: the ASPX includes a place holder that accesses the
AccommodationMod (line 8)

annotations produce Modding Interfaces. These interfaces are termed after
the annotated class (e.g. the Accommodation class will generate the
IModdingConceptAccommodation interface). This interface collects all the
events to mod Accommodation. Event names are obtained from the event
type (Load) plus the class name as a suffix (e.g. LoadAccommodation,
AddViewModAccommodation). Each annotation introduces an event type. So
far, publishing events are limited to “Load” whereas processing events include
“AddViewMod”. The latter outputs an HTML fragment hence, its payload is
HTML-typed [15]. For instance, modding an “Accommodation” is set to be
of type HTMLTableCellElement, meaning that mods to Accommodation need
to be compliant with this type. This introduces a type-like mechanism for
modding regulation. It can then be checked whether this payloadType is fulfilled,
and if not so, ignores the mod but still renders the rest of the page. If
Accommodation is rendered in different Views with different HTML requirements
then, different AddViewModAccommodation events can be defined associated
with distinct HTML types. It is also worth noticing that not all properties of a
modding class might be visible. Properties available for mods are annotated as
[ModdingProperty].

Introducing Place Holders in Views. A View is mod-aware if it foresees
the existence of mods that can produce additional HTML fragments to be
inlayed in the View. This is so achieved using place holders. Commonly, Views
that render Modding Concepts should cater for this situation, though this is
up to the host. Figure 2 provides a View that renders Accommodation data.
Since Accommodation is a Modding Concept, this View introduces a place
holder (line 8). In .NET, data passing between the Controller and the View
is achieved through the system variable ViewData. This variable holds an array
for each possible type of data that can be passed. By convention, this array is
indexed based on the type of the variable (e.g. ViewData[“Accommodations”]
conveys accommodations). Likewise, we use the convention of adding the prefix
“AddViewMod” to the concept (e.g. AddViewModAccommodation) to refer to the
information passed from the mod to the View (through the Controller). In this
case, the content is an HTML fragment. The View retrieves this fragment, and

98 C. Arellano, O. Díaz, and J. Iturrioz

Fig. 3. Mods as plugins that import Modding Interfaces (line 8)

places it as appropriate. The only aspect known in advance is the type of the
HTML fragment as indicated in the event payload when annotating the Modding
Concepts.

4.2 Impact on Partners: Defining Mods

Unlike the open-source approach, OP restricts code access through the Modding
Interfaces. Mod expressiveness is that of monotonic additions to the content of
the host. Deletions are not permitted. Implementation wise, this means mods
can extend the content of existing Views, and add new Views & Controllers.

Extending Existing Views. The programming model for mods is event-based.
First, a mod subscribes to publishing events to collect data about the User Model
and the Domain Model that is going to be rendered. Second, a mod signals
processing events to indicate the availability of an HTML fragment ready to
be injected in the current View. Therefore, the mod is totally unaware of all,
the Model classes, the Controllers and the Web Forms that are in operation.
From the mod perspective, the website is wrapped as a set of Modding Concepts
and their corresponding events. Figure 3 shows the mod to be provided by the
hotel partner for the rule: “a 50% discount on room booking over the weekend is
offered, provided the attendee holds a full passport”:

Opening Personalization to Partners 99

Fig. 4. A mod that introduces a new View & Controller. In the up side, the host’s
View links to the partner’s View and the rendering of the partner’s View. In the down
side the partner’s View code refers to the host template (i.e. MasterPageFile).

– a mod works upon Modding Concepts (e.g. Accommodation and Profile).
This implies obtaining the classes for the corresponding interfaces
(e.g. IModdingConceptAccommodation and IModdingConceptProfile, line 6).
These classes’ instances are obtained dynamically using dependency injection
(see next section). This explains the [ImportingConstructor] annotation.

– a mod can subscribe to Publishing Events
(e.g. LoadProfile, LoadAccommodation). This entails associating a handler
to each Publishing Event of interest (lines 11, 12).

– a mod can signal Processing Events (e.g. AddViewModAccommodation).
This signal is enacted in the context of a personalization rule. This rule
is just a method (e.g. barceloPersonalization) which proceeds along three
stages: (1) checks the pertinent aspects of the User Model and Domain
Model as obtained from the Publishing Events (e.g. variables “profile” and
“accommodation”); (2) constructs the event payload (i.e. an HTML fragment)
and creates the event at hand; and finally (3), signals the Processing Event.

Adding New Views and Controllers. In the previous example, the output of
the mod could have contained links to Views with additional information (e.g.
room pictures). Figure 4 provides an example. These Views are kept as part of the
ICWE website but they are provided by the partners. This requires the partner
not only to extend host Views with “hooks” (i.e. a link to the partner View), but
also to facilitate his own View and Controller. Partners’ Controllers are like host
Controllers. Partners’ Views are like any other View except that they refer to the
(rendering) template of the host so that the look&feel and non-contextual links of
the hosting site are preserved (see Figure 4). This permits the partner’s Views to
link back to the rest of the website.

100 C. Arellano, O. Díaz, and J. Iturrioz

Fig. 5. Decoupling the Core from the Periphery : a model of the involved concepts

5 Open Personalization: Architecture

This section introduces the main architectural elements that ground the
semantics of the [ModdingConcept] annotation. That is, the artefacts and
associations to be generated as a result of a Domain Concept being turned
into a Modding Concept. Specifically, each annotation automatically outputs the
following types of artefacts: Wrappers, Crosscuts and Modding Interfaces.

Figure 5 outlines the main artefacts and conceptual relationships of our
architecture. An Open Application contains a Core, a Frontier and a
Periphery. The Core stands for the traditional architecture along the Model-
View-Controller pattern. The Periphery includes the Mods provided by the
Partners. Finally, the Frontier mediates between the Core and the Periphery
through Modding Interfaces. Modding Interfaces encapsulates Model classes
through events. Publishing Events are <consumed> by the Mods but
<produced> by the Core. Alternatively, Processing Events are <produced>
by Mods but <consumed> by the Core.

Mods impact on the Core. This impact is supported by different means
depending on the nature of the artefact at hand. For Model class, the impact
is in terms of a Wrapper: a class that becomes a Modding Concept is
encapsulated so that only modding properties can become event payloads. For
Controller classes, the impact is supported as a Crosscut for each of the class
methods. Each method handles a Web Form (i.e. denoted in the code as “return
View(webFormName)”). The Crosscut is “an aspect” that extends the base
method with an “after advice” with two duties: (1) raising a Publishing event
for each concept instance to be loaded by the Web Form (e.g. hotel Barceló),
and (2), handling the Processing Events raised by the mods. Finally, the View
(i.e. the Web Forms) requires the introduction of PlaceHolders where the mod
output is to be injected.

Opening Personalization to Partners 101

So far, the description seems to suggest that the Core knows in advance the
mods to be instantiated. However, this is not the case: mods can be added
at anytime. This implies hot deployment, i.e. the ability of adding new mods
to a running Web server without causing any downtime or without restarting
the server. The Core cannot have an explicit dependency on mods. Inversion
of Control and Dependency Injection are two related ways to break apart
dependencies in your applications [6]. Inversion of Control (IoC) means that
objects do not create other objects on which they rely to do their work. Instead,
they get the objects that they need from an outside source. Dependency Injection
(DI) means that this is done without the object intervention, usually by the
“assembler” that passes constructor parameters and set properties. The assembler
is a lightweight object that assembles different components in the system, in
order to produce a cohesive and useful service.

In our architecture, Controllers are the component in charge of instantiating
the mods. However, these instantiation are not achieved directly by the
Controllers but through an assembler. That is, Controllers become IoC compliant
components (a.k.a. parts), i.e. they do not go off and get other components
that they need in order to do their job. Instead, a Controller declares these
dependencies, and the assembler supplies them. Hence, the name Hollywood
Principle: “do not call us, we will call you”. The control of the dependencies for
a given Controller is inverted. It is no longer the Controller itself that establishes
its own dependencies on the mods, but the assembler.

6 Revising the OP Requirements

Resilience. Mods should be resilient to View upgrades. This is the rationale of
the Modding Interface: changes in the content or layout of a View should not
impact the mod. Even if a concept (e.g. Accommodation) is no longer rendered,
the mod will still raise the event, but no View will care for it. No dangling
references come up. The mod becomes redundant but not faulty. And vice versa,
new Views can be introduced where Accommodation data is rendered. This has
no impact in the mod. Just the payload of the signalled event (i.e. the HTML
fragment) will now start being injected in the place holder of the new View. This
place holder should accept HTML fragments of the type being outputted by the
mod. Otherwise, some disruption might occur that might eventually impact the
rendering.

Extensibility. Mods can dynamically be added/deleted as partnership
agreements change. Existing Model classes left outside partner agreements in the
first round, might become Modding Concepts by just adding the corresponding
annotations. However, this will require stopping the website to update the
annotations and re-compile the code. This also raises the need for authorization
mechanism so that not all partners will have access to all modding events. Grant
and revoke privileges would be issued by the owner based on agreements with
his partners. This is not yet available.

102 C. Arellano, O. Díaz, and J. Iturrioz

Fig. 6. Latency introduced by distinct OP factors (clockwise from bottom left):
#Processing Events, #Publishing Events, #Plugins, and finally, the combined effect
of all three

Scalability. Mods should not deteriorate the site performance. OP rests on a
flexible architecture where (1) mods are installed dynamically and (2), mods
interact with the Core through events. Both mechanisms trade flexibility for
efficiency. Specifically, satisfying a URL request for a particular page now
requires four additional steps: (1) instantiating the mod plugins at hand, (2)
generating a publishing event for each Modding Concept in this page, (3) issuing
a processing event for each mod that wants to contribute, and (4), capturing such
processing events by the Controller at hand. As a general rule, end users should
not pay a performance penalty for mods that are installed but not used during
the current request. This section describes the results of a stress testing (a.k.a.
load testing) of the OP architecture. The study evaluates the additional latency
introduced when the ICWE site becomes mod-aware.

Stress testing entails a process of creating a demand on service, and
measuring its response. Specifically, we measure the service that outputs the
“Accommodation” page. The ICWE application has been deployed in an IIS
7.0 on Intel Core2 Duo T7500 2.2 GHz CPU with 4GB of memory. The
test is conducted through Microsoft Web Capacity Analysis Tool (WCAT), a
free lightweight HTTP load generation tool which is used to test performance

Opening Personalization to Partners 103

and scalability of IIS and ASP.NET applications [7]. WCAT is configured as
follows: 30 seconds to warmup (no data collection)2, 120 seconds of duration
of simultaneous requests, 10 seconds to cooldown (no data collection), range of
{1, 50, 100} virtual clients (concurrent clients over the same page), and finally,
request stands for the petition of the “Accommodation” page.

The experiment is parameterized along the number of mods, the number of
publishing event occurrences and the number of processing event occurrences for
the request at hand. Figure 6 depicts the "time to last byte" metric for these
three factors. For the ICWE-with-no-modding, the “Accommodation” request
accounts for 2 msec. On top of it, OP introduces some affordable overheads.
As suggested by the bottom right chart about the combined effect of the three
factors, the event-based mechanism has minimal impact (i.e. the plateau in the
charts stands for increases in the #events but keeping the #plugins constant).
By contrast, the #plugins reveals itself as the factor with larger impact. Along
the lines of IoC, each request implies to instantiate the involved plugins for
the Controller at hand. For a hundred simultaneous requests, the impact of 1,
10, 20 plugins account for an increase of 5%, 33% and 64%, respectively. To
be perfectly honest, we seldom envisage a scenario where a page is subject to
over 20 plugins. We do not foresee more than 3/4 plugins per page on average,
and this would represent a 15% penalty. Notice, that this number is just for
satisfying the request, not to be confused to the elapsed time that the end user
experiments. If normalized with the elapsed time (typically around 1300 msec.),
the OP architecture represents around a 2% of increment for the most common
envisaged scenarios.

Affordability. Mods should be easy to develop and maintain. Mods follow an
event-driven style of programming. That is, the logic is split between event
handlers and event producers. This is particularly helpful in our context where
these event roles can be naturally split between partners and owners: partners
focus on what should be the custom reaction (i.e. processing events) for the
rendering of Modding Concepts, while owners focus on signalling when Modding
Concepts are displayed (i.e. the Publishing events). This certainly leads to
cleaner code. On the downside, the flow of the program is usually less obvious.

7 Related Work

Extensible architectures are a long-standing aim in software [11,5]. As a first
requirement for in-house development, extensibility is becoming a must to
integrate code from third parties. The motivation here is “to integrate and build
on existing work, by writing only the specialized code that differentiates them
from their competition” [1]. The ability to respond quickly to rapid changes

2 WCAT uses a “warm-up” period in order to allow the Web Server to achieve steady
state before taking measurements of throughput, response time and performance
counters. For instance there is a slight delay on first request on ASP.NET sites when
Just-In-Time (JIT) compilation is performed.

104 C. Arellano, O. Díaz, and J. Iturrioz

in requirements, upgradeability, and support for integrating other vendors’
components at any time, all create an additional push for flexible and extensible
applications, and grounds the work of Web architectures such as PLUX .NET
[9], that resembles MEF, the .NET library we utilize to support OP. In the Java
realm, the Open Services Gateway Initiative (OSGI) [16] framework propose
a dynamic component model for Java, i.e. a way for components (known as
bundles) to be started, stopped, updated and uninstalled without the need to
reboot the system. OSGI also includes a way to define dependencies between
bundles but it does not preclude any communication mechanism between
components. Compared with an OSGI-like architecture, our approach rests on
a "core component" (i.e. the website) and a set of "satellite components" where
the interaction is only permitted from the core to the satellites. From this
perspective, our approach is more rigid but it reflects the asymmetric relationship
between the website owner and the third parties.

More akin with the OP vision is SAFE [13] an architecture of Web Application
extensibility aimed at permitting users to personalize websites. SAFE is based
on a hierarchical programming model based on f-units (the component model).
An f-unit clusters all code fragments for a specific functionality within a web
page, including the business logic, the visual appearance, and the interaction
with users or other f-units. A web page is modelled as a so-called “activation
tree” in which f-units are organized hierarchically, and activation flows top-down
(naturally corresponding to the hierarchical DOM structure of an HTML page).
Thus, a user who would like to personalize an application simply has to replace an
existing f-unit with a new f-unit of her choice. Such customizations are dynamic
in that f-units are registered and activated without stopping the running system.
F-units contain SQL statements and this serves to support an implicit interaction
between f-units sharing the same data. The bottom line is that SAFE proposes
a more innovative mean for open participation by introducing a hierarchical
model to web programming. This is simultaneously the main benefit, but also
jeopardy, of SAFE. By contrast, we advocate for a more evolutionary approach.
OP only makes the assumption of the MVC pattern and code annotation,
and uses the well-known event-based programming model as the interaction
mechanism. Capitalizing on existing techniques and programming models will
certainly facilitate partner participation. The challenge is not only on pluggable
components/f-units/mods but also affordable, risk-controlled technology that
facilitates partner engagement. We use an existing technology (.NET) and
use annotations to leverage from the general-purpose technology to domain-
specific concepts. This motivates the conceptual leveragement of Model Classes
into Modding Concepts. The notion of Modding Concept attempts to reduce
the conceptual gap for partners and owners to understand each other while
maximising decoupling by using events as the interaction mean.

8 Conclusions

Fostering a win-win relationship between website owners and partners,
substantiates the efforts of Open Personalization (OP). This paper’s goal was

Opening Personalization to Partners 105

to demonstrate that OP is feasible with existing technologies such as .NET.
Though proving feasibility requires focusing on a specific platform, the approach
is easily generalizable to any framework that supports “Inversion of Control”. As
future development, we plan to look into ways for partners to extend the User
Model (i.e. the profile base). The profile base as designed by the host, might be
insufficient to conduct some mods. Permitting partners to seamless define and
collect additional user information through the website is certainly a challenge.
Besides the technical challenges, OP also introduces new business models that
need to be investigated.

Acknowledgements. This work is co-supported by the Spanish Ministry
of Education, and the European Social Fund under contract TIN2011-23839
(Scriptongue).

References

1. Birsan, D.: On Plug-ins and Extensible Architectures. ACM Queue 3, 40–46 (2005)
2. Bloomberg, J.: Events vs. services. ZapThink white paper (2004)
3. Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. User Modeling

and User Adapted Interaction 6, 87–129 (1996)
4. Cingil, I., Dogac, A., Azgin, A.: A Broader Approach to Personalization.

Communications of the ACM 43, 136–141 (2000)
5. Erl, T.: A Comparison of Goals - Increased Extensibility. In: SOA Principles of

Service Design, p. 451. Prentice Hall (2007)
6. Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern

(January 2004), http://martinfowler.com/articles/injection.html
7. Friedman, E.M., Rosenberg, J.L.: Web Load Testing Made Easy: Testing with

WCAT and WAST for Windows Applications. In: Proceesings of the 29th
International CMG Conference, Dallas, Texas, USA, pp. 57–82 (December 2003)

8. Hippel, E.V.: Open source software projects as user innovation networks. In:
Proceedings of the Open Source Software: Economics, Law and Policy, Toulouse,
France (June 2002)

9. Jahn, M., Wolfinger, R., Mössenböck, H.: Extending Web Applications with Client
and Server Plug-ins. In: Software Engineering, pp. 33–44 (2010)

10. JCP: JSR 168: Portlet Specification Version 1.0 (2003),
http://www.jcp.org/en/jsr/detail?id=168

11. Oberndorf, P.: Community-wide Reuse of Architectural Assets. In: Software
Architecture in Practice. Addison-Wesley (1997)

12. O’Reilly, T.: The Architecture of Participation (June 2004), http://oreilly.com/
pub/a/oreilly/tim/articles/architecture_of_participation.html

13. Reischuk, R.M., Backes, M., Gehrke, J.: SAFE Extensibility for Data-Driven Web
Applications. In: Proceedings of the 21st World Wide Web Conference, Lyon,
France, pp. 799–808 (April 2012)

14. Riepula, M.: Sharing Source Code with Clients: A Hybrid Business and
Development Model. IEEE Software 28, 36–41 (2011)

15. Robie, J., Hors, A.L., Nicol, G., Hégaret, P.L., Champion, M., Wood, L., Byrne,
S.: Document Object Model (DOM) Level 2 Core Specification. Tech. rep., W3C
(2000)

16. The OSGi Alliance: OSGi Service Platform Core Specification, Release 4.3 (2011)

http://martinfowler.com/articles/injection.html
http://www.jcp.org/en/jsr/detail?id=168
http://oreilly.com/pub/a/oreilly/tim/articles/architecture_of_participation.html
http://oreilly.com/pub/a/oreilly/tim/articles/architecture_of_participation.html

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 106–120, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Role-Based Access Control
for Model-Driven Web Applications

Mairon Belchior 1, Daniel Schwabe1, and Fernando Silva Parreiras2

1 Department of Informatics, PUC-Rio.,
Rua Marques de Sao Vicente, 225. Rio de Janeiro, RJ 22453-900, Brazil

2 Faculty of Business Sciences − FACE, FUMEC University,
Av. Afonso Pena 3880, 30130-009, Belo Horizonte, Brazil

mbelchior,dschwabe@inf.puc-rio.br,fernando.parreiras@fumec.br

Abstract. The Role-based Access Control (RBAC) model provides a safe and
efficient way to manage access to information of an organization, while
reducing the complexity and cost of security administration in large networked
applications. However, Web Engineering frameworks that treat access control
models as first-class citizens are still lacking so far. In this paper, we integrate
the RBAC model in the design method of Semantic Web applications. More
specifically, this work presents an extension of the SHDM method (Semantic
Hypermedia Design Method), where these access control models were included
and seamlessly integrated with the other models of this method. The proposed
model allows the specification of semantic access control policies. SHDM is a
model-driven approach to design Web applications for the Semantic Web. This
extension was implemented in the Synth environment, which is an application
development environment that supports designs using SHDM

Keywords: SHDM, Access Control Model, RBAC, Semantic Web, Ontology.

1 Introduction

Web engineering is a discipline that promotes systematic approaches for dealing with
multiple aspects of the process of developing Web applications. Over the years,
frameworks like, WebML (Web Modeling Language) [2], UWE (UML-based Web
Engineering) [7], OOHDM (Object-Oriented Hypermedia Design Method) [10], Hera
[11], and SHDM (Semantic Hypermedia Design Method) [9] have been incrementally
improved for dealing with challenges inherent in Web applications.

Access control has long been identified as a necessary feature in applications,
notably using models such as Role-based Access Control model (RBAC) [12,3]. Such
access control models aim at simplifying security management and at providing
constructs for specifying policies.

Although access control models have been investigated over the years, the
seamless integration of access control models with Web Engineering frameworks has
not gained as much attention as the integration of other models within Web
Engineering like domain, navigation and interface models. In this scenario, the
question that arises is: What are the connection points of a seamless integration
between access control modeling and Web application modeling languages?

 Role-Based Access Control for Model-Driven Web Applications 107

This seamless integration enables Web engineers to handle access control elements
such as users, resources and rights as first-class citizens. It provides a mechanism for
specifying and validating user access to resources in a declarative matter.

The challenge of integrating access control modeling and Web application
modeling languages lies in the differences between underlying formalisms of each
aspect. Access control models typically rely on formalisms such as the Web ontology
language (OWL) as underlying formalism. In contrast, Web application modeling
approaches cannot commit to such an expressive language and often rely on RDF to
define concepts, properties and relations.

Proposed solutions like [4, 5, 6] use OWL to represent the role-based access
control model and, thus, to describe resources. The problem with these approaches
arises when a resource in the RBAC model requires the reification of many objects in
the domain model. This problem hampers integrated reasoning with both RBAC
models and Web application models.

We extend current work by proposing an approach for connecting RBAC models
with RDF-based Web application models, such as the Semantic Hypermedia Design
Method (SHDM). We treat access control concepts as first-class citizens in the
SHDM approach, which enables users to specify, validate and implement access
control models seamlessly integrated with domain and business logic models.

We present our approach in this paper as follows. After describing the example we
are going to use through the paper in Section 2, we present our approach for
integrating access control modeling and Web application modeling in Section 3. We
discuss the implementation and proof of concept in Section 41. Section 5 presents the
related work and with Section 6 we draw some conclusions and discuss future work.

2 Running Example

To help illustrate the concepts discussed in the paper, we use a running example of a
simplified Conference Review Management System, which provides a set of services
to run a conference. Activities are carried out by roles, as follows:

a) Conference Chairs (CC) – create a conference, providing name, place, dates, and
nominating one or more PC Chairs;

b) PC Chairs (PCC) – responsible for assembling the Program Committee; invite
Senior and regular PC Members; assign/de-assign papers for review by PC
members; assign/de-assign papers for Senior Reviewers to coordinate reviews
from regular reviewers; accept/reject papers;

c) Senior reviewer (SR)– Responsible for overseeing the reviews of assigned
papers by regular reviewers; summarize reviews making recommendation to PC
Chairs for acceptance/rejection;

d) Reviewer (R) – Responsible for producing a review for each paper assigned to
him/her;

e) Author (A) – Responsible for creating/removing submissions; producing final
copy of paper if accepted; queries the acceptance status of her/his paper.

1 A demo of Synth with Access Control, with the running example can be found in http://
www.tecweb.inf.puc-rio.br/navigation/context/o_e1a8b079@0?p=

108 M. Belchior , D. Schwabe, and F. Silva Parreiras

A snippet of the Domain Model for this application is shown in Fig. 1.

Fig. 1. A Domain Model for the Conference Management System

There are many policies applicable in this domain. In the following, we illustrate
some that incorporate semantic concepts of the domain, such as “conflict of interest”.

1. Reviewers and Senior Reviewers may also be Authors.
2. Nobody is allowed to see any information about a paper for which there is a

conflict of interest.
3. A conflict of interest for a reviewer R with respect to a given paper occurs if

• R is an author of the paper;
• R is in the same Department/Lab/Group/Project as co-author S of the

paper;
• R and S have co-authored another paper submitted to the same conference.

4. A Reviewer can only see other reviews of a paper assigned to her/him if she/he
has already entered his/her own review for that paper.

Next we present our proposed RBAC model, and then discuss how it has been
integrated with the SHDM design method.

 Role-Based Access Control for Model-Driven Web Applications 109

3 Integrating SHDM and Role-Based Access Control

An access control mechanism is usually composed of two parts: authentication,
responsible for verifying user identity, and authorization, responsible for granting
user access to system objects.

Existing approaches for modeling access control share a core set of concepts: they
essentially refer to a User in the role of Subject, having some kind of Permission to
execute an Operation on an Object. A well-known approach for modeling access
control rules is the Role-based Access Control (RBAC) [12] model, which allows
defining policies based on the subject like competence, interest and privilege.

With the rise of the Semantic Web, several techniques like [4, 6, 5] have
investigated the usage of OWL for representing RBAC models, which has led to
multiple alternatives for creating a formal representation of RBAC models. In this
section, we describe the modeling approach we propose for integration with a Web
Engineering method. The reader might notice that the solution proposed for
integrating RBAC models and a Web Engineering framework is independent of the
approach used for the latter. Therefore, it is possible to apply the proposed technique
in other configurations of RBAC and other Web Engineering frameworks.

3.1 The RBAC Model

An approach for modeling RBAC using OWL is proposed by [5], named RowlBAC.
They develop two different approaches to represent the RBAC model using the OWL
language, including the concepts of subject, role, object, actions and associations
defined by roles. The first approach specifies roles as classes and subclasses, while the
second approach, the roles are represented as properties. The model of access control
implemented in this work is based on the second approach, as it is simpler and more
concise.

Fig. 2 depicts a diagram with the main concepts and properties of the second
approach. Roles are represented as instances of the class Role. A role hierarchy is
defined by the property subRole(Role, Role), which is an owl:TransitiveProperty.
The property supRole(Role, Role) is the inverse of (owl:inverseOf) subRoleOf(Role,
Role). The relation between a Subject and a Role is defined by the property
role(Subject, Role). The binding between access permissions and roles is done by the
properties rbac:permitted and rbac:prohibited, that connect a role (rbac:Role) to a
permitted action (rbac:PermittedAction), and to a prohibited action
(rbac:ProhibitedAction), respectively.

Not all components of the RBAC model can be specified using OWL DL. Rules in
N3Logic were added to the RBAC ontology to define the hierarchy of roles, the static
and dynamic constraints, activation and deactivation of roles and permissions
associated with roles.

In this paper, we extend the SHDM method to include a new model, the Access
Control Model as an addition to the existing Behavior Model.

The Access Control Model is composed of primitives responsible for the
description of concepts related to access control, such as subject, the subject's role,
permission, object and operation.

110 M. Belchior , D. Schwabe, and F. Silva Parreiras

Fig. 2. The RBAC vocabulary

We have modified the ROWLBack model as follows:

• The property rbac:subject is no longer an owl:FunctionalProperty, because
a certain action (rbac:Action) can be performed by more than one user (rbac:
Subject) who has permission to perform this action. For example, the actions
rbac:createReview, rbac:editReview, rbac:downloadPaper and
rbac:context can be performed by myconference:DanielSchwabe. This
property became rbac2:subject in our model;

• The property rbac:object also ceased to be an owl:FunctionalProperty
because an action (rbac:Action) may be related to more than one object
(rbac:Object). For example, the action rbac:createReview can be applied
to rbac:paperA, rbac:paperD and rbac:paperM as objects of this action.
This property became rbac2:object;

• The property rbac2:relatedOperation was added to the model to represent
which operation (shdm:Operation) defined in the Operation Model of the
SHDM is being controlled;

• Classes rbac:PermittedRoleActivation and rbac:ProhibitedRole
Activation are not used by this model, therefore they have been removed;

 Role-Based Access Control for Model-Driven Web Applications 111

The property rbac2:relatedOperation is used to represent which operation
(shdm:Operation) defined in the SDHM Operation Model is being tracked. The code
below shows an example of the definition of this property using N3.

rbac:createReview rbac2:relatedOperation shdm:createReview .

The property shdm:relatedAction was added to the SHDM Operation Model to
represent that an shdm:Operation resource has a corresponding rbac:Action, which
means that the shdm:Operation is controlled by the application using the primitives
of the RBAC access control model.

The association between Roles in the RBAC model and the classes in the Domain
Model of SHDM is achieved using the rdfs:subClassOf property, as illustrated in
Fig. 2 with the foaf:Person class.

3.2 Defining Rules

In order to identify the permission to execute a certain action (rbac:Action), we have
used N3Logic rules following the same approach as Finin et al. N3Logic is a
formalism that allows rules to be incorporated in RDF (Resource Description
Framework) [13]. N3Logic uses the syntax Notation3 (or N3), and extends the RDF
model to include a set of predicates, e.g., implications, quantified variables, nested
graphs, functions and built-ins.

Our approach adds the rule shown below to check if an action (rbac:Action) has an
object (rbac:Object). If so, this action is of type rbac:ActionWithObject. The
N3Logic rules below, on the right check whether a subject has the permission to
perform a certain action on a certain object.

#Check if action has object
{ ?A a ?RACTION ;
 rbac2:subject ?S ;
 rbac2:object ?O .

 ?RACTION a rbac:Action .
 ?S a rbac:Subject .
 ?O a rbac:Object .

} => { ?A a rbac:ActionWithObject } .

#Permission checking
{?A a ?RACTION ;
 rbac2:subject ?S ;
 rbac2:object ?O .
 ?RACTION a rbac:Action .
 ?S a rbac:Subject .
 ?O a rbac:Object .

?Role rbac:permitted ?RACTION .
?S rbac:activeRole ?ROLE .
?RACTION rbac2:object ?O
?A a rbac:ActionWithObject .

} => { ?A a rbac:PermittedAction;

rbac2:subject ?S;
rbac2:object ?O
rbac2:action ?RACTION } .

3.3 Modeling Rules for Policies

An access policy is a set of rules that are evaluated to determine whether a user has
the right to access a given object. The access policy specifies who is allowed to

112 M. Belchior , D. Schwabe, and F. Silva Parreiras

perform what action on which object depending on (i) properties of the user who
made the request, (ii) object properties, (iii) parameters of the action, and (iv)
background factors (such as time) [14].

The class rule:Rule reifies the concept of access control policies. It has properties
of type DatatypeProperty such as rule: rule_name: defines the name of the rule;
rule: rule_title: define a title for the rule; rule: rule_code: defines the specification
of the rule; rule: rule_language: defines the language used to specify rules.

Besides these, we consider three additional properties: properties:rule_role,
rule:rule_action and rule_object that are used to identify, respectively, the role
(rbac:Role), action (rbac:Action) and the object of the action (rbac:Object) on which
the rule applies. Examples of rules specifying access policies are shown in section 4.5.

4 Implementation Architecture

A modular software architecture for Access Control was designed as shown in Fig. 3.
The architecture is divided into two parts: the Authentication Mechanism that is
responsible for identifying the user to the system, and the Authorization Mechanism
that determines what the user is allowed to do within the system. There are three
modules: Authentication Module, Permission Module and Inference Module,
represented as gray boxes; white boxes represent the components of the architecture.

The Authentication Module is responsible for performing an authentication
protocol, such as FOAF + SSL2 protocol or OpenID protocol3. The Permission

Fig. 3. Conceptual Architecture for Access Control

2 See http:// www.w3.org/wiki/Foaf+ssl
3 See http://openid.net

 Role-Based Access Control for Model-Driven Web Applications 113

Module should be able to define all access control concepts and policies of the
application. The Access Control Model Interpreter maintains and interprets the
Access Control and Policy models described by their corresponding ontologies.

The inference module includes a rule inference engine responsible for inferring
new facts from existing facts, which effectively evaluate the access control rules. We
used the Euler proof engine4 that supports N3 rules as the inference engine.

The proposed access control system implemented in this work computes the
permissions specified in the policies to generate an Access Control List (ACL) [8],
represented in the ACL model. This allows for efficient runtime execution, since
permissions are read directly from the ACL to decide about authorization, which was
previously generated running the reasoner only once.

To be authenticated, a user must provide her credentials to the Authentication
Protocol. If the information given is correct, the user is authenticated and the URI
representing this user is stored in the application session.

After authentication, the user may request permission to access some resource
controlled by the application by providing what operation the user wants to perform
on which object, if it exists. The application will check if a permission is present in
the ACL model, and if so, the user is authorized to perform the operation. Otherwise,
an error message will appear to the user. The ACL needs to be updated whenever a
user changes any data. When this occurs, the Consistency Maintainer component of
the architecture is triggered, to maintain the permission's consistency in the ACL
Model, re-evaluating the policies applicable for that user, and the ACL is regenerated
by the ACL Generator component, materializing new inferred permissions. The steps
for policy reevaluation are shown in Fig. 3.

The OpenID protocol was used for Authentication. It was chosen because it has
support for popular services such as MyOpenID, Google, Yahoo!, etc.

4.1 Integration in the Synth Development Environment

Synth is a development environment for building applications that are modeled
according to SHDM. It provides a set of modules that receives, as input, models
generated in each step of SHDM and produces, as output, the hypermedia application
described by these models. Synth also provides an authoring environment that
facilitates the adding and editing of these models through a GUI that can run on any
Web browser [1]. Synth was implemented with Ruby on Rails, which is an MVC
framework for Web applications development. With this work, the Synth architecture
was extended to include the Access Control Module.

4.2 Software Architecture of Synth

The software architecture of Synth consists of five modular components: domain,
navigation, behavior, interfaces, and persistence modules. They are responsible for

4 See http://eulergui.svn.sourceforge.net/viewvc/
eulergui/trunk/eulergui/ html/documentation.html

114 M. Belchior , D. Schwabe, and F. Silva Parreiras

maintaining and interpreting each of the models generated in each phase of SHDM
method. Each module is composed by a model described in a corresponding ontology in
RDFS or OWL, and an interpreter that gives semantics to the models, in addition to the
basic semantics of RDFS and OWL, in which they are represented [1]. These modules
work together, interpreting their models and communicating with each other, in order to
generate the application runtime in accordance with the definitions of each model.

The Access Control module was embodied in the Synth architecture and is
responsible for generating the authorization decisions for the application. It maintains
and interprets the Access Control and Policy models described by their corresponding
ontologies. The Behavior Model Interpreter was extended to handle the Access
Control List, checking the permissions in ACL Model whenever an operation is
performed. The existing Behavior Model in SHDM, as implemented in Synth, already
allows defining a pre-condition to activate an Operation; applying the ACL
permissions was implemented simply as a pre-loaded pre-condition on all operations.

Fig. 4 shows a conceptual view of the extended Synth software architecture. The
gray boxes represent the modules and the white boxes represent the components of
each module. The light gray box is the Access Control Module included in the
architecture.

Fig. 4. Conceptual view of the Synth software architecture extended with the Access Control
Module

The Behavior Module handles all business logic operations of the application. The
Behavior Model Interpreter uses the Access Control Module to determine whether or not
an operation can be executed, and the Access Control Model Interpreter queries the

 Role-Based Access Control for Model-Driven Web Applications 115

Behavior Model to obtain a set of RDF resources related to the activated operation and its
parameters. Similarly, the Access Control Model Interpreter queries the Domain Model
to obtain application domain data on which the access control policies are applied.

4.3 Permissions Generation

The generation of access control list (ACL) is achieved in the following steps:

1. A set of possible authorization questions testing if a user has permission
to perform an operation on a particular object is generated, by activating
all possible roles assigned to this user;

2. Rules in N3Logic to create the ACL resources are generated;
3. The Euler proof engine is activated taking as input all application data and

all rules in N3Logic defined in authoring environment.
4. The permissions returned by inference engine containing the RDF

resources in the ACL model are added to Synth's database.

The ACL rules in step 2 are generated as follows:
For each access control rule defined in authoring environment with a consequent

stating the action is an rbac:PermittedAction, an ACL rule is created with the code
whose structure follows the example shown below. The statement
"<Access_Control/rulesResult.n3> log:semantics F" associates the inferred
triples to F, according to the N3Logic semantics [13].

The sentences (a) "A rbac:action RACTION." and (b) "A a
rbac:PermittedActionRBAC." are added to assert that (a) the action is used by the
ACL Model and that (b) this action must be permitted by the RBAC Model.

@forAll F, S, O, A, RACTION .
{ <Access_Control/rulesResult.n3> log:semantics F .
 F log:includes {
 A a rbac:Action ;
 rbac2:subject S ;
 rbac2:object O.

 A a rbac:createReview .
 S rbac:activeRole rbac:reviewer_role .
 O a foaf:Document .

 A a rbac:PermittedActionRBAC .
 A rbac:action RACTION .

 A a rbac:PermittedAction .
 } .
} => { [a acl:Authorization ;
 acl:mode RACTION ;
 acl:agent S ;
 acl:accessTo O] } .

116 M. Belchior , D. Schwabe, and F. Silva Parreiras

Notice that if F doesn't include the statement "A a rbac:PermittedAction.", no
ACL triples are generated. When accessing the ACL, the absence of authorization is
taken as failure.

Occasionally an action can be inferred as permitted and prohibited at the same
time. For example, suppose a person is assigned to both reviewer and author roles.
Suppose also that there is a policy that defines that an author cannot view the
navigational context that lists the papers a reviewer can review, and there is another
policy that defines that reviewers can access all navigational contexts of the
application. Therefore, when this reviewer is authenticated, all the roles assigned to
him will be activated, and then when he tries to navigate to the context described
above, whose navigation's semantic is given by the operation shdm:context, such
action will be both an rbac:PermittedAction and an rbac:ProhibitedAction at the
same time. There are two approaches – conservative and liberal - to deal with this
situation to decide which permission should be given. The liberal approach chooses
the prohibited action (i.e., everything is permitted unless explicitly stated otherwise)
while the conservative approach (everything is denied unless explicitly stated
otherwise) selects the permitted action. A parameter in the ACL generation module
allows choosing one of these approaches.

4.4 Policy Examples

The policies stated in section 2 can be now defined using N3Logic rules, as used in
the Synth environment.

The policy that a Reviewer is not allowed to review a paper by an author from the
same institution (one kind of conflict of interest) is defined as follows (left column).

{ ?A a rbac:Action ;
 rbac2:subject ?S ;
 rbac2:object ?O .
 ?A a rbac:createReview .
 ?S rbac:activeRole

rbac:reviewer_role .
 ?O a foaf:Document .

 ?S myconference:assigned_to ?O .

 ?AUTHOR rbac:role rbac:author_role

.
 ?AUTHOR myconference:isAuthorOf

?O .

 ?AUTHOR myconference:memberOf

?I1 .
 ?S myconference:memberOf ?I2 .

 ?I1 log:uri ?URI1 .
 ?I2 log:uri ?URI2 .
 ?URI1 log:equalTo ?URI2 .

} => { ?A a rbac:ProhibitedAction } .

{ ?A a rbac:Action ;
 rbac2:subject ?S ;
 rbac2:object ?O .
?A a rbac:createReview .
?S rbac:activeRole rbac:reviewer_role
.
?O a foaf:Document .

?S myconference:assigned_to ?O .
?AUTHOR rbac:role rbac:author_role .
?AUTHOR myconference:isAuthorOf
?O .
?AUTHOR myconference:isAuthorOf
?O2 .

?O log:uri ?URI1 .
?O2 log:uri ?URI2 .
?URI1 log:notequalTo ?URI2 .
?S myconference:isAuthorOf ?O2 .

} => { ?A a rbac:ProhibitedAction } .

 Role-Based Access Control for Model-Driven Web Applications 117

The right column shows another similar policy regarding conflict of interest, which
states that a reviewer cannot review a paper of a co-author of his/hers, would be very
similar, looking at the myconference:isAuthorOf property for two different papers,
O and O2.

A third example is the policy whereby a Reviewer can only see other reviews of a
paper assigned to her/him if s/he has already entered his/her own review for that
paper. This is stated as

{ ?A a rbac:Action ;
 rbac2:subject ?S ;
 rbac2:object ?0 .
 ?A a rbac:context .
 ?S rbac:activeRole

rbac:reviewer_role .
 ?O a myconference:Review .

 ?REV a myconference:Review .
 ?S myconference:produce ?REV .
 ?REV myconference:belongTo ?D .

 ?D a foaf:Document .
 ?O myconference:belongTo ?D .
 ?S myconference:assigned_to ?D
.

} => { ?A a rbac:PermittedAction } .

4.5 Evaluation

We carried out some preliminary evaluations to determine the overhead of Access
Control in Synth. The performance tests were run on a Intel Core i5 CPU M 450 2.40
GHz with 4GB of RAM using Windows 7 Professional 64-bit. Fig. 5 depicts the
performance time to query the ACL Model 100 times to access the permission for
random access requests for 10 different contexts, where the ACL Model had 217
resources. The fluctuations in the beginning can be attributed to “start up” effects of
the simulation as it was run in several separate runs.

Fig. 5. Time to query the ACL Model

Fig. 6 shows the time to execute all policies (13 plus those used by the RBAC
model and those used for ACL generation) access control rules in the example
application 50 times by adding a constant number of resources in each run. As
expected, the evaluation time grows with the number of data elements added to the
database. Note that we currently use a naïve policy re-evaluation strategy.

118 M. Belchior , D. Schwabe, and F. Silva Parreiras

Fig. 6. Time to reevaluate all policies after a change in the database

5 Related Work

Several researchers have investigated the integration of access control with languages
related to Web Engineering. In this section, we compare them with our proposal.

Mühleisen et al [15] developed an access control system that allows the use of
rules defined in a language created by the authors based on SWRL (Semantic Web
Rule Language). However, this language does not follow the RBAC principles and
does not allow for modeling any further aspects of the system.

Hollenbach et al [16] developed a system to control access based on ACLs.
Although it is possible to model domain aspects, this system does not support the
formulation of access control policies.

Finin et all [5] presented two approaches to express the components of the RBAC
model using OWL. The main disadvantage of this approach is that each change on the
authorization requires a new execution of the inference rules, making the
authorization process costly.

Ferrini et al [4] also modeled the RBAC model using OWL and access control
policies using XACML in an integrated manner. However, both approaches commit
to the principles of OWL, which restricts applications when the closed-world
assumption is required.

Knechtel et al [6] show an approach to model an extension of the RBAC model
called RBAC-CH, using OWL. RBAC-CH is an access control model that extends the
RBAC model by adding a hierarchy of object classes. To evaluate policies using this
approach, the inference engine based on OWL is executed once, and the inferred
axioms are the available at runtime. However, the authors do not take into account the
static and dynamic constraints of the RBAC model, nor do they allow rules for
building policies.

Finally, it should be noted that none of the approaches above has been integrated
with a Web Engineering method, and is supported by an authoring environment.

 Role-Based Access Control for Model-Driven Web Applications 119

6 Conclusions

In this paper, we have presented a novel approach for handling the integration of role-
based access control and Web Engineering frameworks. By providing the bridges
between these two approaches, we enable Web engineers to specify access control
policies at the same level of domain knowledge as well as navigation knowledge.
Additionally, we allow for access control models and other Web Engineering models
to evolve independently. Our contribution extends the body of knowledge in the field
by identifying the links between RBAC and Web Engineering and providing
mechanisms for representing the underlying constraints.

There are several extensions we continue to work on. First, extending the policy
model to be able to handle dynamic policies, which cannot be evaluated at runtime;
second, we want to investigate more opportunistic strategies for incremental policy
re-evaluation, so that only affected policies are re-executed when data changes. A
third extension can also optimize the ACL, by including the actual role in the ACL
itself. Finally, we want to provide a better authoring environment for policies to help
end users understand complex sets of policies.

Acknowledgments. Daniel Schwabe was partially supported by CNPq (WebScience
INCT). Mairon Belchior was partially supported by a grant from CAPES. Fernando
Silva Parreiras was partially funded by FP7-PEOPLE-2009-IRSES, under grant
number 24761.

References

1. de Souza Bomfim, M.H., Schwabe, D.: Design and Implementation of Linked Data
Applications Using SHDM and Synth. In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.)
ICWE 2011. LNCS, vol. 6757, pp. 121–136. Springer, Heidelberg (2011)

2. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. In: Procs of the WWW9 Conf., Amsterdam (May 2000)

3. Ferraiolo, D., Chandramouli, R., Kuhn, D.R.: Role-based access control, 2nd edn. Ebrary,
INC., vol. xix, p. 381. Artech House, Boston (2007)

4. Ferrini, R., Bertino, E.: Supporting RBAC with XACML+OWL. In: Proceedings of the
14th ACM Symposium on Access Control Models and Technologies, SACMAT 2009,
Stresa, Italy, June 03-05, pp. 145–154. ACM, New York (2009)

5. Finin, T., Joshi, A., Kagal, L., Niu, J., Sandhu, R., Winsborough, W., Thuraisingham, B.:
Rowlbac: representing role based access control in OWL. In: Proceedings of the 13th
ACM Symposium on Access Control Models and Technologies, SACMAT 2008, Estes
Park, CO, USA, June 11-13, pp. 73–82. ACM, New York (2008)

6. Knechtel, M., Hladik, J.: RBAC authorization decision with DL reasoning. In: Proceedings
of the IADIS International Conference WWW/Internet, pp. 169–176 (2008)

7. Koch, N., Kraus, A.: The Expressive Power of UML-based Web Engineering. In:
Proceedings of the 2nd International Workshop on Web-Oriented Software Technology
(IWOOST 2002), CYTED, pp. 105–119 (2002)

8. Lampson, B.W.: Dynamic Protection Structures. In: AFIPS Conference Proceedings,
vol. 35 (1969)

120 M. Belchior , D. Schwabe, and F. Silva Parreiras

9. Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. In: Proceedings of
LA-Web 2003, Santiago, Chile, pp. 93–102. IEEE Press (November 2003)

10. Schwabe, D., Rossi, G.: An object-oriented approach to Web-based application design.
Theory and Practice of Object Systems (TAPOS), 207–225 (October 1998)

11. Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. Journal of Web Engineering 2(1&2), 3–26 (2003)

12. Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST model for role-based access control:
Towards a unified standard. In: Proceedings of the Fifth ACM Workshop on Role-Based
Access Control, Berlin, pp. 47–63 (July 2000)

13. Berners-Lee, T., Connolly, D., Kagal, L., Hendler, J., Schraf, Y.: N3Logic: A Logical
Framework for the World Wide Web. Journal of Theory and Practice of Logic
Programming (TPLP), Special Issue on Logic Programming and the Web (2008)

14. Bonatti, P.A., De Coi, J.L., Olmedilla, D., Sauro, L.: Rule-Based Policy Representations
and Reasoning. In: Bry, F., Małuszyński, J. (eds.) Semantic Techniques for the Web.
LNCS, vol. 5500, pp. 201–232. Springer, Heidelberg (2009)

15. Mühleisen, H., Kost, M., Freytag, J.-C.: SWRL-based Access Policies for Linked Data. In:
SPOT 2010 2nd Workshop on Trust and Privacy on the Social and Semantic Web,
Heraklion, Greece (2010)

16. Hollenbach, J., Presbrey, J., Berners-Lee, T.: Using RDF Metadata To Enable Access
Control on the Social Semantic Web. In: Workshop on Collaborative Construction,
Management and Linking of Structured Knowledge (CK 2009) (ISWC 2009), Washington,
DC (2009)

Recovering Role-Based Access Control Security

Models from Dynamic Web Applications

Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

School of Computing, Queens University,
Kingston, Ontario, Canada

{alalfi,cordy,dean}@cs.queensu.ca

Abstract. Security of dynamic web applications is a serious issue. While
Model Driven Architecture (MDA) techniques can be used to generate
applications with given access control security properties, analysis of
existing web applications is more problematic. In this paper we present a
model transformation technique to automatically construct a role-based
access control (RBAC) security model of dynamic web applications from
previously recovered structural and behavioral models. The SecureUML
model generated by this technique can be used to check for security
properties of the original application. We demonstrate our approach by
constructing an RBAC security model of PhpBB, a popular internet
bulletin board system.

1 Introduction

Models provide a formal basis to specify various properties of software, such
as access control properties. When the application is later generated from the
model, developers have a reasonable expectation that these properties will be
implemented in the software. However, determining the access control properties
of an existing software application is a non-trivial task. We can try to verify the
properties directly on the source code, or we can recover a model from the
code that is amenable to analysis. One particular area of interest is dynamic
web applications, which are often designed to interact with the general public
and thus are directly accessible to a wide variety of attackers. In many current
web applications, access control policies are spread throughout the application,
making understanding and maintaining them a difficult task [1].

Security and vulnerability analysis of dynamic web applications is not new.
Pistoia et al. [2] survey a variety of techniques that check for vulnerabilities such
as SQL injection and cross site scripting. Alafi et al. [3] present a comprehensive
survey of models and methods for web application verification and testing. They
found that while models were built to analyze static and dynamic properties of
the system, none of the surveyed techniques were able to model or check the
access control policies of dynamic web applications.

In this paper we use TXL [4], a source transformation tool, to transform
previously recovered structural and behavioral models [5, 6, 7, 8] to a role-based
access control (RBAC) [9] model. The target model, a SecureUML [10] model

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 121–136, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 M.H. Alalfi, J.R. Cordy, and T.R. Dean

expressed in XMI 2.1, can then be used to check that the desired access control
properties are correctly implemented in the code. TXL is a source transformation
language originally used at the source code level, but recently shown to be useful
in transforming models [11, 12]. Such transformations are applicable to large
models, including heterogeneous models that integrate components in a variety of
languages. Using source transformation techniques allows us to integrate diverse
models, to map platform-independent models to platform-specific ones, and to
handle other tasks that involve dealing with multiple meta-models at once.

The key contributions of this paper are:

– An approach and tool to automatically recover security models from dynamic
web applications using source transformation technology.

– A demonstration of the approach to recover a role-based security model from
a widely used real world web application, PhpBB.

This paper is organized as follows: Section 2 introduces PhpBB as a running ex-
ample used to demonstrate our technique and explains why it is an appropriate
choice. We give an overview of our reverse engineering approach to recovering
security models from a dynamic web applications in Section 3. The construc-
tion of a SecureUML security model from recovered structural and behavioral
models is presented in Section 4. Section 5 highlights the advantages of the
transformation-based approach in considering the correctness and completeness
of the recovered models. Section 6 reviews related work, and Section 7 concludes
the paper and presents directions for future work.

2 Running Example

We demonstrate our technique on PhpBB 2.0 [13], an internet bulletin board
system used as a running example throughout the paper. Our focus is on recov-
ering security models from production web applications, whose recovered models
are much too large to show in a paper. Hence we show only snippets of the re-
covered models and concentrate on only three roles to illustrate our approach.
In practice our method efficiently recovers complete RBAC models for multiple
roles from production dynamic web applications of any size.

Our present implementation, or rather the front end that recovers the struc-
tural and behavioral models, is designed to handle web applications built using
Apache, PHP and MySQL. Our choice of this combination is based on the pop-
ularity and predominance of these technologies on the web [14, 15, 16]. While
we have thus far concentrated on these technologies, our overall approach is
not technology dependent and can be extended to other choices as well. The
security model construction approach of this paper is also not limited to auto-
matically recovered models. It can be used to construct security models from any
structural and behavioral models that conform to the meta-models provided in
Figure 3, including those crafted by hand or using MDA authoring tools.

Recovering RBAC Security Models from Dynamic Web Applications 123

3 Overview

Figure 1 shows the general framework of our technique to convert the structural
and behavioral models into a SecureUML security model. The work described in
this paper is part of a larger toolset to analyze role-based access control which
begins with automated recovery of structural and behavioral models described
in detail elsewhere [5, 6, 7, 8]. The lower left (SQL2XMI) represents our au-
tomated recovery of the structural model (represented by an ER Data Model)
from the application’s schema source, while the upper left (PHP2XMI, WAFA,
DWASTIC) represents the automated recovery of the application’s behavioral
model (represented by a sequence diagram) using a combination of static and dy-
namic analysis. In this section we give a brief overview of the reverse engineering
of these models, which is described in full in other papers.

The remainder of Figure 1 describes the model transformation process which
is the subject of this paper. We begin by building a dictionary of of the entities
that will form the core of the security model. We use this dictionary of entities
to identify the attributes, relations and constrained events affecting them in the
recovered models. These are then mapped to a SecureUML security model, an
example of which is shown in Figure 2. This transformation process is presented
in detail in Section 4.

The model recovery process begins with a static analysis to recover a struc-
tural model of the application resources as they pertain to the user’s use of
systems, applications and business processes. While UML is considered the stan-
dard for application modelling, there is no corresponding open standard for data
modeling. SQL2XMI [6] is the technique we use to automatically transform an
SQL DDL schema to a UML 2.1 ER diagram. The top part of Figure 3 shows the
meta-model for the recovered UML-ER data model representing the structure
of the application.

The second part of the model recovery uses a combination of static and dy-
namic analysis to recover a behavioral model of the application (Figure 3). A
set of three tools, PHP2XMI [5], WAFA [8] and DWASTIC [7] is used to re-
cover this model. First, PHP2XMI uses source transformation to instrument the

UML2.0
Sequence
Diagram

UML2.0
ER

Data Model

DWASTIC

SQL2XMI

Entities

Entities
Attributes &

Relations

Secure
Resources

Constrained
Events

on entities

Constrained
Permissions

XMI 2.0
Grammar

Extraction &
Mapping Rules

Grammar
Overrides

TXL Program

Extraction & Filtration�

Match & extract�

Identify & Extract�

Map & Construct�

Map & Construct�
UML2.

a Mod

ntitie

Role

0..n

0..n

SecureUML
Model

Elements

PHP2XMI&
WAFA

UML2.0
SecureUML

Model cureU

Combine and Construct�

Fig. 1. PHP2SecureUML Framework

124 M.H. Alalfi, J.R. Cordy, and T.R. Dean

<<Permission>>

AnonymousPerm

ViewFs(): Forum

ViewTs(): Topics

ViewTPosts():Posts

Register():String

<<Permission>>

RegisteredPerm

RPostReply: Posts

EditSelfPost(): Posts

DeleteSelfPost()::Posts

AddPoll: Posts

SubmitVote(): Posts

Logout():Forum

<<Entity>>

Forum

ForumID: int

<<Entity>>

Topics

TopicID: Int

<<Entity>>

Posts

PostID: int

<<User>>

Bob

<<User>>

Alice

<<Role>

Anonymous User

<<Role>>

Registered User

SessionID: String

<<Subject Assignment>>

<<Subject Assignment>>

Fig. 2. An example SecureUML model

code and exercises it to recover the permissions associated with each user role,
representing the result as a UML sequence diagram.

This sequence diagram is then extended by WAFA, which recovers a fine-
grained interaction model from the application. From the point of view of user
interaction, the secured resources are represented by lifelines for the web pages
delivered by the application. The diagrams operations are used to map the differ-
ent type of access allowable to the user over the applications secured resources.
All aspects of this access are captured as either operations parameters or con-
straints. These include the accesss type, timestamp, condition, return value, and
unique id. The unique id is to identify the accesss relation with the source code
and the source page. Message names encode a combination of these values in a
single string. The lower part of Figure 3 shows the recovered elements (shaded)
based on the UML sequence diagram meta-model. The black dashed line repre-
sents the relation between the recovered sequence and ER diagrams, where each
entity in the ER diagram (secure resource) is mapped to a class in the sequence
diagram represented as a lifeline.

Because our behavioral model recovery uses dynamic analysis to explore the
behavior of the application, a measure of completeness for the recovered behav-
ioral model is required. For this purpose, we have developed DWASTIC, a tool
that augments the dynamic analysis with additional code coverage instrumen-
tation. DWASTIC uses several coverage criteria specialized for web applications
to help ensure that all pages and potential interactions are explored. It provides
a direct way to trace those parts of code that are not covered by test cases,
and serves as a coverage measure for extraction of the access control security
model. The accuracy of the results is both hand verified and robust since it is
automatically back-checked at run time.

Recovering RBAC Security Models from Dynamic Web Applications 125

4 SecureUML Model Construction

In the previous section we briefly outlined how SQL2XMI, WAFA and PHP2XMI
help us to recover UML-based structural and behavioral models from web ap-
plications, and how DWASTIC provides a measure of coverage. In this work
we use the relevant elements of these two recovered models to construct a role-
based (RBAC) security model that conforms to the SecureUML [10] meta-model
(middle of Figure 3).

SecureUML is an implementation of the Model Driven Security approach,
a specialization of Model Driven Architecture. It explicitly integrates security
aspects into the application’s models and provides support for model trans-
formation. The approach has been proposed to bridge the representation gap
between the graphical languages used for specifying application design models,

<<Entity>>

<<Relation>>

<<Attribute>>

<<FK>><<PK>>

ownedAttribute

associationtype

memberEnd

0..n

2..n

0..n0..1

Name: ColumnName

Type: ColumnID
Name: TableName

Our UML 2.0 ER Data Model

<
<

s
te

re
o
ty

SecureUML meta-model

Operation
(from Kernel)

1 *
SendOperationEvent

constraint
Parameter

ownedParameter
**

Class
ownedOperation

Association class

<<stereotype>>

UML 2.0 Sequence

diagram meta-modelpreconditions

y
p
e
>

>

*

*
*

+/owned
Element

+/owner
0..1

Element
(from Kernel)

+/ownedComment

0..1

Comment
(from Kernel)

NamedElement
(from Kernel)

name: String

visibility: VisibilityKind

(from Kernel)

Signal
(from Communications)

+/signature

TypeElement
(from Kernel)

Type
(from Kernel)

0..1

+/type

1 * SendSignalEvent

SendOperationEvent

0..1 0..1

MessageEnd

MessageEvent
(from Communications)

1

+start +finish

MessageOccurrence

Specification
Execution

Specification

ExecutionOccurrence

Specification

* *

ConnectableElement
(from InternalStructures)

ConnectorEnd
(from InternalStructures)

*

1

+/represents
0..1

*

ValueSpecification

2..*

Connector
(from InternalStructures) 0..1

*

+argument*

0..1 0..1

+send
Event

+receive
Event

Message

/messageKind: MessageKind

messageSort: MessageSort

Event
(from Communications)

1

Occurrence

SpecificationLifeline

Fig. 3. UML2.0 Structural and behavioral meta-models and their mappings to the
SecureUML [10] meta-model

126 M.H. Alalfi, J.R. Cordy, and T.R. Dean

such as UML, and the textual languages used to specify security models. It is
built on a modular schema that comprises three basic elements: a language for
security policy specification; a language for design model construction; and a di-
alect for defining integration points in these two languages. The abstract syntax
for SecureUML is based on role-based access control (RBAC) [9]. It defines a
meta-model that extends RBAC with authorization constraints to enable formal
specification of access control policies that depend on dynamic aspects of the
system, such as the access date or the values of the system’s environment vari-
ables. The modeling notation for SecureUML is based on a UML profile that uses
UML stereotypes and tagged values to represent the abstract syntax elements in
the meta-model schema. Users, groups, and roles are represented as classes with
stereotypes � User 	, � Group 	 and � Role 	 respectively, and permission
is represented as an association class with a � Permission 	 stereotype.

Figure 2 shows an example of a SecureUML model for a web forum applica-
tion. The diagram shows two users in different roles who are permitted different
sets of actions based on their roles. Bob, who is an anonymous user, is per-
mitted to access the forum entities using read operations. So, Bob can access a
forum via ViewForum(), read a forums’ topics via ViewTopic(), read topic posts
via ViewTPosts(), and can register in a forum. Alice, who is a registered user
of the forum, can not only perform all the operations available to Bob but is
also permitted write access to the forum. Thus, she can also reply to posts via
RPostReply(), edit her own posts using EditSelfPost(), and so on.

Our work defines a mapping from the recovered structural and behavioral
meta-models to the target SecureUML meta-model which forms the basis of
our transformation. Figure 3 shows the relationship between the UML-sequence
diagram meta-model and our UML 2.0 data meta-model. The Entity element
in the UML data meta-model corresponds to the Class element of the sequence
diagram meta-model via a stereotype relationship, represented as a dotted line in
the figure. Based on this relationship, the structural information for each entity
in the sequence diagram can be pulled from the data model.

We implement this phase as a model transformation encoded as a sequence
of source transformations in TXL [4]. Although the model transformation pro-
cess accepts models as an input and generates models as output, where each of
these conforms to a specific meta-model and reflects a particular view of the sys-
tem, we can implement the transformation process between source and target
models as a source-to-source transformation as long as they can be serialized
into a text-based format. Fortunately, this can be easily done by most modeling
tools, including ArgoUML and RSA, using the XMI export and import facility.
While modeling tools often use different versions of XMI, TXL grammars can
be adapted to accept and manipulate a range of XMI versions, and can generate
multiple versions of the serialized models to match a range of modeling tools.

4.1 Entity Extraction and Filtration

The set of classes (entities) in the sequence diagram is the abstract represen-
tation of the diagram’s lifelines and maps to the application’s secure resources,

Recovering RBAC Security Models from Dynamic Web Applications 127

which include the application server, browser session, and database-backend en-
tities. In this first step these elements are identified and filtered to remove any
redundancies, using source transformation.

We have developed a TXL grammar for XMI schemas which enables the ma-
nipulation of models that conform to the UML sequence diagram (SD), UML-
based ER diagram and SecureUML meta-models. The process accepts as input
a serialization of both the SD and ER models, and uses a rooted set of source
transformation rules to enable the model’s manipulation, integration and trans-
formation to construct the target security model.

The transformation begins by searching for the set of secure resources that
are engaged in the interaction behavior modeled by the SD. These elements are
represented abstractly as a set of classes, and graphically as a set of lifelines.
The corresponding source transformation rule (Figure 5) matches all SD class
elements in the XMI representation and filters out any redundant ones. Redun-
dancies can occur due to the fact that multiple secured resources receiving the
same set of actions are represented as a single class and modeled using a single
lifeline. The names of these resources are combined into a single string which rep-
resents the class name. Thus the transformation rule must refactor the combined
string to identify the names of the corresponding secure resources.

Figure 4 presents a snippet of a recovered sequence diagram showing the
results of the the first step of our approach, the list of entities engaged in the in-
teraction. Some of the entities shown in the diagram snippet are: {phbbb forums,

Fig. 4. A snippet of the UML2.0 Entity-level sequence diagram for PhpBB 2.0 gener-
ated by WAFA and PHP2XMI

128 M.H. Alalfi, J.R. Cordy, and T.R. Dean

% Search for class elements in the sequence diagram
deconstruct PackagedElement

’< ’packagedElement ’xmi:type = XmiType [stringlit]
’xmi: ’id = ClassID [stringlit]
’name = ClassName [stringlit] ’>
owndOp [repeat XMItoken]

’</ ’packagedElement ’>
where

XmiType [= "uml:Class"] [= "uml:Actor"]

Fig. 5. A small part of the TXL rule to extract class elements from the behavioral
model sequence diagram. This pattern matches all Class and Actor elements in the
XMI 2.0 representation of the recovered sequence diagram for the web application.

% Search the structural model for a matching Entity description
% for the EntityName extracted from the behvioural model
match * [repeat XMItoken]

’< ’packagedElement ’xmi:type = "uml:Class"
’xmi: ’id = EntityName ’name ’= ClassName [stringlit] ’>
owndAttrib [repeat XMItoken]

’</ ’packagedElement ’>
More [repeat XMItoken]

% Extract the entity’s owned attributes
construct OwnedAttribElements [repeat owned Attribute]

_ [^ owndAttrib]

% And its owned attribute relations
construct OwnedAttribRelElements [repeat owned AttributeRel]

_ [^ owndAttrib]

Fig. 6. A small part of the TXL rule to extract the attributes and relations associated
with each entity from the structural ER data model. This pattern matches the ele-
ments in the XMI 2.0 representation of the recovered structural diagram for the web
application corresponding to the entities extracted from the behavioral model.

phpbb auth access, phpbb user group, phpbb users, Browser Sessions, Applica-
tion Server}. Note that the set of entities representing the third lifeline has
been re-factored into separate entities.

4.2 Entity Attribute and Relation Extraction

Once the set of secure resource elements engaged in interaction behavior has
been identified, another source transformation rule is applied to each of the
identified elements (Figure 6). This subrule consults the UML ER diagram to
search for structural information relevant to those elements, including attributes
and relations with other resources.

Conceptually, the transformation rule searches for all class elements with the
Entity stereotype in the ER model that matches one of the entities identified in
the previous section. It extracts the entities’ attribute elements and associations
with other entities in the identified set. The result of this phase is an ER diagram
of the secure resources engaged in interactions in a particular browsing session.

In our running example, the set of entities extracted in the previous step
is used to extract the entities’ attributes and relations from the recovered ER
diagram of the system, a snippet of which is shown in Figure 7. This step is
necessary so that Entities, attributes and relations not relevant to the target

Recovering RBAC Security Models from Dynamic Web Applications 129

Fig. 7. A snippet of the recovered ER data model diagram for PhpBB 2.0

security model (i.e., not involved in the interactions) are filtered out and not ex-
tracted. Thus the {Topic, Post} entities, in the ER diagram (Figure 7) and their
attributes and relations will not be included in the artifacts used to construct
the diagram representing the secure resources.

As an example, some of the attributes and relations extracted by this step for
the phpbb forums entity are: {<< PK >> forum id, cat id, forum name}, and the
association attribute between phpbb forums and phpbb auth access. Note that
relations between phpbb forums and phpbb topics, phpbb posts are not recovered
because they are not part of the interactions described in our example.

130 M.H. Alalfi, J.R. Cordy, and T.R. Dean

4.3 Constrained Event Extraction

The set of permissions allowed on each of the recovered entities (i.e., secure
resources) is modeled as the message receive events of the corresponding lifeline.
Each recipient event element in the sequence diagram meta-model is represented
as an operation which may be associated with parameters and constraints. The
next source transformation rule receives as a parameter the set of recovered
resources, matches the elements of the serialized sequence diagram, and whenever
a class with the same resource name is matched, identifies and extracts the set of
all operation elements associated with the class, along with its parameters and
constraints (Figure 8).

The rule then constructs the meta-model elements of SecureUML to represent
the recovered permissions. Each operation element and its parameters is mapped
to a permission action, and operation constraints are mapped to authorization
constraints. The rule constructs an association class to represent the set of re-
covered operations for each specific resource. The association class is marked as
a permission stereotype to reflect its security semantics.

For each entity in the resulting secure resources diagram of the previous step,
the set of actions, action constraints and other relevant parameters are extracted.
For instance, for the phpbb forum entity, these artifacts are:

Action : Select(allattributes).
Constraint(forum id = $forum id).
T imestamp(1247604868).
ActionIdInCode(viewForum, 366).

where viewForum is the page name and 366 the operation ID in the source code.

% Identify and extract operation elements corresponding to
% extracted secure resources
deconstruct ownedOp

’<’ownedRule ’xmi:type ’= "uml:Constraint"
’xmi:id ’= ConsID [attvalue]
’name ’= AcName [attvalue]
’constrainedElement ’= ConstElm [attvalue] ’>

<’specification ’xmi:type ’= "uml:OpaqueExpression"
’xmi:id ’= ConsExprID [attvalue]
’name ’= ConsExprName [attvalue] ’/’>

’</’ownedRule’>
ownedOp2 [repeat XMItoken]

Fig. 8. A small part of the TXL rule to extract operation elements corresponding
to identified resources from the recovered behavioral model sequence diagram. This
pattern matches ownedRule elements in the XMI 2.0 representation of the recovered
sequence diagram corresponding to each secure resource identified in the previous step.

4.4 SecureUML Model Element Construction

The previous steps have identified all the security elements necessary to construct
the RBAC security model. In this step, we construct a security model that con-
forms to the SecureUML meta-model shown in Figure 3. A set of transformation
rules is used to construct the security model, in which the extracted sequence

Recovering RBAC Security Models from Dynamic Web Applications 131

Fig. 9. An example generated SecureUML model instance for PhpBB 2.0

diagram’s operations are mapped into permissions, operation constraints into
authorization constraints, and the entities of the ER data model into resources.

In the SecureUML notation, the representation of resources is left open, so
that developers can decide later which elements of the system they consider se-
cure and to which they want to apply access constraints. These elements are
defined using a dialect. In section 4.2, we identified the secure resources and
represented them as an ER diagram. In section 4.3, we recovered the permission-
action pairs and authorization constraints, and represented them as an associa-
tion class with parameters and preconditions. Using a final TXL transformation
rule, two association links are created: one that connects the association class,
stereotyped by permissions, with the entity (resource) affected by the permis-
sion’s actions; and a second that connects the acting role with the constructed
association class.

In our running example, Figure 1 shows snippets of the resulting SecureUML
model. For instance, an association class with name phpbb forum is constructed
with permission stereotype and attached to the entity forum, and the browser
session entity represents the user role accessing the forum. The final result is
a complete SecureUML model of the web application which can be checked for
security properties using a standard model checker or custom analysis. In our

132 M.H. Alalfi, J.R. Cordy, and T.R. Dean

case, the resulting SecureUML model is transformed once again into a Prolog
formal model checked using Prolog rules to find potential access role violations.

5 Correctness and Completeness of the Recovered Model

One of the advantages of using a formal source transformation system for deriv-
ing and exploring security models from source code is that it is easier to reason
about completeness and correctness of the tools. By contrast with hand-coded
analyzers implemented in Java or C, source transformation rules can be tested
and verified piecewise.

Because source transformations are based on parsing technology, the well-
formedness of the results is guaranteed. TXL transformation rules are simply
incapable of producing a result that does not conform to the syntactic forms of
the target grammar/metamodel. The question of the semantic soundness of the
constructed security model is also made simpler using a source transformation
technique. Rather than having to reason about an entire hand-coded analysis
program all at once, each TXL source transformation rule can be considered
independently of the others. Whether the entire transformation is correct then
becomes just a question of whether the set of rules forms a complete transforma-
tion, which can be checked separately. In our system this question is addressed by
separating the process into a sequence of separate source transformation steps.
Because each step yields a concrete intermediate text file representation that the
next step parses as input, erroneous or incomplete results of a step are typically
caught immediately by the next step. For example, if the data model extracted
from the web application’s schema is missing anything, there will be unresolved
links when integrating the models that will make this fact immediately evident
in the next transformation step.

Using source transformation rules to analyze the schema, source code and
behavioral models also assists in guaranteeing completeness. For example, the
TXL parser syntactically identifies all references to the SQL database in the
source code, and the transformation rule for analyzing them simply transforms
them to an instrumented form. The question of whether we have missed any
database interactions in the extracted model is therefore easy to evaluate, simply
by counting the number of SQL interactions in the model and comparing it to the
number identified by the parser in the source. Dynamic behavioral completeness
is handled by including coverage counters in the instrumentation, implemented
using the DWASTIC tool discussed in section 3.

Our approach has been validated in a case study to extract RBAC security
models from PhpBB 2.0. Table 1 presents some statistics on the size of the
recovered models for two roles: anonymous (guest) user and registered user.
The table presents results in terms of the number of resulting model elements as
described in Section 2. These results are based on an ER diagram consisting of 30
entities, 370 attributes, and 55 relations, and a sequence diagram with a partial
behavioural coverage of 50% of PhpBB 2.0 by page access and an average of %20
by back end access (to database and server environment variables). Even with

Recovering RBAC Security Models from Dynamic Web Applications 133

Table 1. Sizes of recovered SecureUML models for the anonymous and registered user
roles in PhpBB 2.0

Anonymous (Guest User) Role
Entities Attributes Relations Operations Permissions Constraints Parameters

12 191 36 321 14 1465 9567

Registered User Role
Entities Attributes Relations Operations Permissions Constraints Parameters

15 249 62 59294 24 28304 177627

this relatively low percentage of coverage we can notice the variation in the size
of the recovered SecureUML models, specifically for the number of operations,
constraints and parameters, which reflects the fact that registered users have
significantly more access than guest users.

A more detailed evaluation of the recovered models will be presented in [17],
where the resulting models are transformed into a formal Prolog model and
checked for security properties. We are also working on validating the approach
using a larger case study, recovering RBAC security models for the educational
support web application Moodle.

6 Related Work

Most of the early literature on web application security concentrates on the
process of modeling the design of the web applications. It proposes forward
engineering-based methods designed to simplify the process of building highly
interactive web applications [18, 19, 20, 21]. Other research uses reverse engineer-
ing methods to extract models from existing web applications in order to support
their maintenance and evolution [22, 23, 24], However, few approaches recover
security models from web applications, and in particular access control security
models. In Alalfi et al. [3] we survey the state of the art in these techniques.

The most relevant related approach in this domain is the Letarte and Merlo
approach [25] which uses static analysis to extract a simple role model from PHP
code, and more specifically from database statements. Changes in authoriza-
tion level in the code are modeled using an inter-procedural control flow graph
with three kinds of edges: positive-authorization (change to admin), negative-
authorization (change to user), and generic (no change in security level). A pre-
defined authorization pattern is used to identify transfer of control in the code
and changes in authorization level in the extracted model. Unlike our approach,
the Letarte and Merlo approach simplifies to only two roles (admin vs. user) for
which access may or may not be granted to database statements. The model is
based on an application-dependent authorization pattern and does not provide
any link back to the source code.

Other approaches have been proposed to recover models and/or check for ac-
cess control properties for domains other than web applications, with a focus on
Java based applications. Koved et al. [26] use context sensitive data and control
flow analysis to construct an Access Right Invocation graph, which represents

134 M.H. Alalfi, J.R. Cordy, and T.R. Dean

the authorization model of the code. This enables identification of classes in
each path that contain a call to the Java 2 security authorization subsystems.
The approach is used to automatically compute the access rights requirements
at each program point in mobile Java applications such as applets and servlets.

Pistoia et al. [2] statically construct a call graph to represent the flow of au-
thorization in an application by over-approximating method calls and identifying
access-restricted methods. The graph is used as the basis of several security anal-
yses, including detecting if the application’s RBAC security policy is restrictive
or permissive. The authors generate reports on code locations that have incon-
sistencies and suggest a replacement policy to eliminate the vulnerabilities. The
approach is implemented as a part of IBM’s Enterprise Security Policy Evaluator
and has been evaluated on a number of Java EE applications.

Mendling et al. [27] propose a meta-model integration approach to enhance
the security features of Business Process Management Systems that operate
using Web Services (BPEL). The meta-model elements of web services’ BPEL
are mapped to RBAC elements. Roles and partners in BPEL, which represent
the sets of operations that are carried out during a business process, are mapped
into RBAC roles. Activities, which provide a channel for an external party to
send a message to a BPEL, are mapped into RBAC permissions. The authors
develop an XSTL transformation script to extract an XML description of roles
and permissions from a BPEL process definition which enables the definition
and enforcement of RBAC polices and constraints.

There has been only a little work on UML-based security modeling [28, 29,
30, 31] . The focus of UMLsec [28] is on modeling security issues such as data
confidentiality and integrity. Basin et al. propose Model Driven Security (MDS)
and its tool SecureUML [30] to integrate security models into system models.
The authors first specify a secure modeling language for modeling access con-
trol requirements and embed it as an extension of UML Class diagrams. The
authors of authUML [29] take a step back and focus on analyzing access con-
trol requirements before proceeding to the design modeling to ensure consistent,
conflict-free and complete requirements.

The Ahn and Hu method [31] differs from the above approaches in using
standard UML to represent access control features of the security model. They
provide policy validation based on Object constraint Language (OCL) and a role-
based constraint language (RCL2000) [32], and then translate the security model
to enforcement code. These efforts are forward engineering approaches, while the
real need is for a reverse engineering approach that recovers and analyzes access
control polices in existing applications. This is the focus of our work.

7 Conclusions and Future Work

In this paper we have presented an approach and a tool, PHP2SecureUML, to
recover a role-based access control (RBAC) security model from automatically
recovered structural and behavioral models of dynamic web applications. We
use source transformation technology to implement the model-to-model trans-
formation and composition. The resulting model can be used to check for RBAC

Recovering RBAC Security Models from Dynamic Web Applications 135

security properties in the application under test. We demonstrated our approach
on recovering RBAC security models for a medium-sized production web appli-
cation, PhpBB 2.0. In our current work we are using the generated models to
support web application security analysis, testing, maintenance and reengineer-
ing, using PhpBB 2.0 as an example, and we have recently begun a similar study
of role-base security in the popular production educational support system Moo-
dle. We are also planning to conduct a large scale evaluation to better test the
effectiveness of our method, and to extend and adapt our approach to address
other security analysis tasks.

References

[1] Project, O.W.A.S.: The Top Ten Most Critical Web Application Security Vulnera-
bilities, https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

(last access November 26, 2011)
[2] Pistoia, M., Flynn, R.J., Koved, L., Sreedhar, V.C.: Interprocedural Analysis for

Privileged Code Placement and Tainted Variable Detection. In: Gao, X.-X. (ed.)
ECOOP 2005. LNCS, vol. 3586, pp. 362–386. Springer, Heidelberg (2005)

[3] Alalfi, M., Cordy, J., Dean, T.: Modeling methods for web application verification
and testing: State of the art. Softw. Test. Verif. Reliab. 19, 265–296 (2009)

[4] Cordy, J.R.: The TXL source transformation language. Science of Computer Pro-
gramming 61, 190–210 (2006)

[5] Alalfi, M.H., Cordy, J.R., Dean, T.R.: Automated Reverse Engineering of UML Se-
quence Diagrams for Dynamic Web Applications. In: ICSTW, pp. 295–302 (2009)

[6] Alalfi, M.H., Cordy, J.R., Dean, T.R.: SQL2XMI: Reverse Engineering of UML-ER
Diagrams from Relational Database Schemas. In: WCRE, pp. 187–191 (2008)

[7] Alalfi, M.H., Cordy, J.R., Dean, T.R.: Automating Coverage Metrics for Dynamic
Web Applications. In: CSMR, pp. 51–60 (2010)

[8] Alalfi, M.H., Cordy, J.R., Dean, T.R.: WAFA: Fine-grained Dynamic Analysis of
Web Applications. In: WSE, pp. 41–50 (2009)

[9] Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based Access Control
Models. IEEE Computer 29, 38–47 (1996)

[10] Basin, D.A.: Model Driven Security. In: ARES, p. 4 (2006)
[11] Paige, R., Radjenovic, A.: Towards Model Transformation with TXL. In: First

Intl. Workshop on Metamodeling for MDA, pp. 163–177 (2003)
[12] Liang, H., Dingel, J.: A Practical Evaluation of Using TXL for Model Transforma-

tion. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452,
pp. 245–264. Springer, Heidelberg (2009)

[13] phpBB Group: PhpBB, http://www.phpbb.com/ (last access November 27, 2011)
[14] Netcraft Ltd: web server survey (November 2011), http://news.netcraft.com/

archives/2011/01/12/january-2011-web-server-survey-4.html (last access
November 26, 2011)

[15] PHP Group: PHP usage Stats for (April 2007), http://www.php.net/usage.php
(last access November 26, 2011)

[16] MySQL: MySQLMarket Share, http://www.mysql.com/why-mysql/marketshare/
(last access November 26, 2011)

[17] Alalfi, M., Cordy, J., Dean, T.: Automated Testing of Role-based Security Models
Recovered from Dynamic Web Applications. In: WSE (2012) (submitted)

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.phpbb.com/
http://news.netcraft.com/archives/2011/01/12/january-2011-web-server-survey-4.html
http://news.netcraft.com/archives/2011/01/12/january-2011-web-server-survey-4.html
http://www.php.net/usage.php
http://www.mysql.com/why-mysql/marketshare/

136 M.H. Alalfi, J.R. Cordy, and T.R. Dean

[18] Garzotto, F., Paolini, P., Schwabe, D.: HDM - A Model-Based Approach to Hy-
pertext Application Design. ACM Trans. Inf. Syst. 11, 1–26 (1993)

[19] Schwabe, D., Rossi, G.: An object oriented approach to Web-based applications
design. Theor. Pract. Object Syst. 4, 207–225 (1998)

[20] De Troyer, O., Leune, C.J.: WSDM: A User Centered Design Method for Web
Sites. Computer Networks 30, 85–94 (1998)

[21] Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. In: WWW, pp. 137–157 (2000)

[22] Hassan, A.E., Holt, R.C.: Architecture recovery of web applications. In: ICSE, pp.
349–359 (2002)

[23] Antoniol, G., Penta, M.D., Zazzara, M.: Understanding Web Applications through
Dynamic Analysis. In: IWPC, pp. 120–131 (2004)

[24] Di Lucca, G.A., Di Penta, M.: Integrating Static and Dynamic Analysis to improve
the Comprehension of Existing Web Applications. In: WSE, pp. 87–94 (2005)

[25] Letarte, D., Merlo, E.: Extraction of Inter-procedural Simple Role Privilege Mod-
els from PHP Code. In: WCRE, pp. 187–191 (2009)

[26] Koved, L., Pistoia, M., Kershenbaum, A.: Access rights analysis for Java. In:
OOPSLA, pp. 359–372 (2002)

[27] Mendling, J., Strembeck, M., Stermsek, G., Neumann, G.: An Approach to Extract
RBAC Models from BPEL4WS Processes. In: WETICE, pp. 81–86 (2004)

[28] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

[29] Alghathbar, K., Wijesekera, D.: authUML: a three-phased framework to analyze
access control specifications in use cases. In: FMSE, pp. 77–86 (2003)

[30] Basin, D.A., Clavel, M., Egea, M.: A decade of model-driven security. In: SAC-
MAT, pp. 1–10 (2011)

[31] Ahn, G.J., Hu, H.: Towards realizing a formal RBAC model in real systems. In:
SACMAT, pp. 215–224 (2007)

[32] Ahn, G.J., Sandhu, R.S.: Role-based authorization constraints specification. ACM
Trans. Inf. Syst. Secur. 3, 207–226 (2000)

Diversification for Multi-domain Result Sets

Alessandro Bozzon, Marco Brambilla, Piero Fraternali, and Marco Tagliasacchi

Politecnico di Milano, Piazza Leonardo Da Vinci, 32 - 20133 Milano, Italy
{bozzon,mbrambil,fraterna,tagliasa}@elet.polimi.it

Abstract. Multi-domain search answers to queries spanning multiple
entities, like “Find a hotel in Milan close to a concert venue, a museum
and a good restaurant”, by producing ranked sets of entity combinations
that maximize relevance, measured by a function expressing the user’s
preferences. Due to the combinatorial nature of results, good entity in-
stances (e.g., five stars hotels) tend to appear repeatedly in top-ranked
combinations. To improve the quality of the result set, it is important
to balance relevance with diversity, which promotes different, yet almost
equally relevant, entities in the top-k combinations. This paper explores
two different notions of diversity for multi-domain result sets, compares
experimentally alternative algorithms for the trade-off between relevance
and diversity, and performs a user study for evaluating the utility of di-
versification in multi-domain queries.

1 Introduction

Multi-domain search tries to respond to queries that involve multiple correlated
concepts, like “Find an affordable house in a city with low criminality index,
good schools and medical services” . Multi-domain search has the potential of
bridging the gap between general purpose search engines, which are able to
retrieve instances of at most one entity at a time (e.g., cities, products), and
vertical search applications in specific domains (e.g., trip planning, real estate),
which can correlate only a fixed set of information sources. Formally, multi-
domain queries can be represented as rank-join queries over a set of relations,
representing the wrapped data sources [11][14]. Each item in the result set is
a combination of objects that satisfy the join and selection conditions, and the
result set is ranked according to a scoring function, which can be expressed as
a combination of local relevance criteria formulated on objects or associations
(e.g., price or rating for a hotel, distance between the conference venue, hotel,
and restaurant). Due to the combinatorial nature of multi-domain search, the
number of combinations in the result set is normally very high, and strongly
relevant objects tend to combine repeatedly with many other concepts, requiring
the user to scroll down the list of results deeply to see alternative, maybe only
slightly less relevant, objects.

As a running example, consider a multi-domain search scenarios where three
data sources are wrapped by the following relations:Hotel(HName, HLoc, HRating,
HPrice), Restaurant(RName, RLoc, RRating, RPrice), Museum(MName, MLoc,
MRating, MPrice).

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 137–152, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

138 A. Bozzon et al.

Table 1. Top-K result set based on relevance

Hotel Restaurant Museum S(a)(τ, q)
HName HPrice RName RPrice MName MPrice Total price

τ1 Hotel Amadeus �35 Miyako �25 Galleria d’Arte Moderna �0 �60
τ2 Hotel Amadeus �35 Miyako �25 Museo Civico di Milano �0 �60
τ3 Hotel Amadeus �35 Miyako �25 Museo di Storia Contemp. �0 �60
τ4 Hotel Amadeus �35 Porca Vacca �25 Galleria d’Arte Moderna �0 �60
τ5 Hotel Amadeus �35 Porca Vacca �25 Museo Civico di Milano �0 �60
τ6 Hotel Amadeus �35 Porca Vacca �25 Orto Botanico di Brera �0 �60
τ7 Hotel Amadeus �35 Spontini 6 �25 Galleria d’Arte Moderna �0 �60
τ8 Hotel Amadeus �35 Spontini 6 �25 Museo Civico di Milano �0 �60
τ9 Hotel Amadeus �35 Spontini 6 �25 Orto Botanico di Brera �0 �60
τ10 Hotel Amadeus �35 Spontini 6 �25 Museo di Storia Contemp. �0 �60

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

Hotel price
P

e
rc

e
n
ta

g
e

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

Museum price

P
e
rc

e
n
ta

g
e

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

Restaurant price

P
e
rc

e
n
ta

g
e

Fig. 1. Score distribution of Table 1 result
set

A query issued with a mobile phone
aims at finding combinations within a
short distance from the user location
and good ratings, to be returned in
order of total price. If we suppose to
find 100 hotels and restaurants and 20
events, and assume a 10% selectivity
of the join and selection condition on
distance and minimum rating, a to-
tal number of 20000 combinations can
be used to build the top-K result set.
Supposing to show only 10 combina-
tions disregarding the relevance of the constituent objects, up to 30 distinct
objects out of 220 can be presented (14%). However, in real situations, the
composition of the top-K results also depends on relevance, which decreases
diversity.

For illustration, Table 1 shows a result set, which contains the top-10 combi-
nations ranked according to total price. We observe that the result is rather poor
in terms of diversity, as only 1 hotel, 3 restaurants and 4 museums are repre-
sented. Indeed, the number of distinct objects that appear in the top-K results
is sensitive to the distribution of attribute values used to compute the score of
the combination. In our case, the price range of good-rated hotels is larger than
the price ranges of restaurants and events, as illustrated in Figure 1. Hence,
budget hotels will appear repeatedly in the top-K list, lowering the number of
distinct objects seen by the user. The same observation applies when, fixed an
hotel, one considers the price range of restaurants compared to the price range
of museums. This empirical observation is supported by Theorem 1 discussed
later in this paper.

Improving the diversity of the result set is the aim of diversification, which can
be defined in the context of multi-domain search as the selection of K elements
out of a universe of N combinations, so to maximize a quality criterion that
combines the relevance and the diversity of the objects of distinct types seen by
the user. In this respect, Table 2 shows an example of result set with diversified
combinations. We observe that the set does not necessarily contain the top-10

Diversification for Multi-domain Result Sets 139

Table 2. Top-K result set based on relevance and diversity

Hotel Restaurant Museum S(a)(τ, q)
HName HPrice RName RPrice MName MPrice Total price

τ1 Hotel Amadeus �35 Miyako �25 Galleria d’Arte Moderna �0 �60
τ2 Hotel Amadeus �35 Porca Vacca �25 Museo di Storia Contemp. �0 �60
τ3 Hotel Amadeus �35 Miyako �25 Orto Botanico di Brera �0 �60
τ4 Hotel Nazioni �36 Miyako �25 Galleria d’Arte Moderna �0 �61
τ5 Hotel Nazioni �36 The Dhaba �25 Orto Botanico di Brera �0 �61
τ6 Hotel Nazioni �36 Spontini 6 �25 Pad. d’Arte Contemp. �2 �63
τ7 Hotel Zefiro �39 Matto Bacco �25 Galleria d’Arte Moderna �0 �64
τ8 Hotel Zefiro �39 Porca Vacca �25 Museo Civico di Milano �0 �64
τ9 Hotel Nazioni �36 Porca Vacca �25 Museo della Perma. �6 �67
τ10 Hotel Zefiro �39 Miyako �25 Museo di Storia Naturale �3 �67

combinations in terms of total price. Nevertheless, the result is much richer: 3
hotels, 5 restaurants and 7 museums are selected.

The contributions of the paper can be summarized as follows: (a) We dis-
cuss the problem of diversification in the context of multi-domain search, an
area made quite interesting by the increasing availability of public “joinable”
Web data sources. (b) We formalize multi-domain diversification and propose
two criteria for comparing combinations (categorical and quantitative diversity).
(c) Result diversification is NP-hard also in the multi-domain context; we there-
fore experimentally study the behavior of three known greedy algorithms, testing
the hypothesis that the diversification algorithms improve the quality of the re-
sult set with respect to a baseline constituted by the selection of the most relevant
K combinations. (d) We formally analyze under which conditions diversification
can be potentially effective in improving the quality of the results. In particular,
we consider the impact of the score distributions on the diversity of the result set
which includes the top-K combinations based on relevance only. (e) We evaluate
the perception and utility of diversification in multi-domain search with a user
study that focuses on explicit comparison of result sets diversified according to
different algorithms.

The organization of the paper is as follows: Section 2 presents the formaliza-
tion of the problem and introduces different diversity measures for combinations;
Section 3 illustrates the results of the experimental activity; Section 4 discusses
previous work; Section 5 concludes and discusses future work.

2 Multi-domain Diversification

Consider a set of relations R1, R2, . . . , Rn, where each Ri denotes the result set
returned by invoking a search service σi over a Web data source. Each tuple
ti ∈ Ri =< a1i , a

2
i , . . . , a

mi

i > has schema Ri(A
1
i : D1i , . . . , A

mi

i : Dmi

i), where
Ami

i is an attribute of relation Ri and Dmi

i is the associated domain. As usual
in measurement theory, we distinguish the domains Dki into categorical, when
values admit only equality test, and quantitative, when values can be organized
in vectors embedded in a metric space.

A multi-domain query over the search services σ1, . . . σn is defined as a join
query q = R1 �� . . . �� Rn over the relations R1, . . . , Rn, where the join

140 A. Bozzon et al.

predicate can be arbitrary. We call combination an element of the join τ =
t1 �� · · · �� tn =< a11, a

2
1, . . . , a

m1
1 , . . . , a1n, a

2
n, . . . , a

mn
n >, and result set R the set

of combinations satisfying the query q.

2.1 Relevance

The goal of multi-domain search is to support the user in selecting one or more
combinations from the result set of a multi-domain query, so to maximize the
satisfaction of his information seeking task. To this end, combinations can be
presented in order of relevance. The relevance of a combination with respect to
the query q can be expressed quantitatively by means of a user-defined (possibly
non-monotone) relevance score function S(τ, q), which can be assumed to be
normalized in the [0, 1] range, where 1 indicates the highest relevance. When the
result set R is sorted, e.g. in descending order of relevance, τk indicates the k-th
combination of R.

Example 1. With respect to the relations introduced in Section 1, consider a
function city(), which returns the city where the geographical coordinates of a lo-
cation belong to, and the multi-domain query q = select * fromHotel, Restaurant,
Museum where city(HLoc) = Milan ∧ city(RLoc) = city(HLoc) ∧ city(MLoc) =
city(HLoc). The following relevance score functions could be used to rank ho-
tel, restaurant and museum triples: (a) The overall price of the combination:
S(a)(τ, q) = sum(HPrice[th], RPrice[tr], MPrice[tm]). (b) The average rating for
the hotel and the restaurant, S(b)(τ, q) = avg(HRating[th], RRating[tr]). (c) The
distance of the shortest path that connects the hotel, the restaurant and the
museum: S(c)(τ, q) = fdistance(HLoc[th], RLoc[tr], MLoc[tm]).

Note that S(a) and S(b) are simple linear (thus monotone) functions based
solely on a subset of the attribute values of the constituent tuples, whereas S(c)

uses a more complex function, not necessarily monotone, that might incorporate
external knowledge (e.g. road maps).

2.2 Diversity

An implicit goal of multi-domain search is to present to the user a set of com-
binations that expresses a good coverage of the population of the constituent
entities. Coverage can be improved by avoiding in the result set combinations
that are too similar, according to some definition of similarity. Two different
criteria can be employed to express the similarity (or symmetrically, the diver-
sity) of combinations: (a) Categorical diversity: two combinations are compared
based on the equality of the values of one or more categorical attributes of the
tuples that constitute them. As a special case, categorical diversity can be based
on the key attributes: this means evaluating if an object (or sub-combination
of objects) is repeated in the two combinations. (b) Quantitative diversity: the
diversity of two combinations is defined as their distance, expressed by some
metric function.

Diversification for Multi-domain Result Sets 141

In both cases, for each pair of combinations τu and τv, it is possible to define
a diversity measure δ : R×R → [0, 1], normalized in the [0, 1] interval, where 0
indicates maximum similarity.

Definition 1. Let A
ji,1
i , . . . , A

ji,di
i be a subset of di attributes of relation Ri and

vi(τ) = [a
ji,1
i , . . . , a

ji,di
i]T the projection of a combination τ on such attributes.

Categorical diversity is defined as follows:

δ(τu, τv) = 1− 1

n

n∑
i=1

�vi(τu)=vi(τv) (1)

where n is the number of relations Ri and � is the indicator function, returning
one when the predicate is satisfied.

Intuitively, categorical diversity is the percentage of tuples in two combinations

that do not coincide on the attributes A
ji,1
i , . . . , A

ji,di
i . When these attributes are

the key, categorical diversity can be interpreted as the percentage of objects that
appear only in one of the two combinations.

Definition 2. Let vi(τ) be as in Definition 1. Let v(τ) = [v1(τ), . . . ,vn(τ)]
T =

[v1(τ), . . . , vd(τ)]
T denote the concatenation of length d = d1 + . . .+ dn of such

vectors. Given d user-defined weights w1 . . . , wd and a normalization constant
δmax, quantitative diversity is defined as:

δ(τu, τv) =
1

δmax

p

√√√√ d∑
l=1

wl|vl(τu)− vl(τv)|p (2)

Quantitative diversity between combinations τu, τv is formalized as the (weighted)
lp-norm of the difference between the vectors v(τu) and v(τv). The normaliza-
tion constant can be chosen, e.g., as the maximum distance value between pairs
of combinations in the result set.

Example 2. A categorical diversity function can be computed by defining vh(τ) =
[HName(τ)], vr(τ) = [RName(τ)] and vm(τ) = [MName(τ)]. As an example, con-
sider the combinations of Table 2. Then, δ(τ1, τ2) = 2/3, δ(τ1, τ3) = 1/3 and
δ(τ1, τ6) = 1.

A quantitative diversity function based on the hotel, restaurant and mu-
seum rating attributes can be defined as follows: let p = 1, wl = 1, and
v1(τ) = [HRating(τ)], v2(τ) = [RRating(τ)] and v3(τ) = [MRating(τ)]. As an
example, consider the combinations of Table 2. Then, v(τ1) = [35, 25, 0], v(τ3) =
[36, 25, 0] and v(τ6) = [36, 25, 2]. Then δ(τ1, τ3) = 1/δmax, δ(τ1, τ6) = 3/δmax and
δ(τ3, τ6) = 2/δmax.

2.3 Computing Relevant and Diverse Combinations

Based on the notion of diversity, it is possible to address the problem of extract-
ing from the result set of a multi-domain query the top-K most relevant and

142 A. Bozzon et al.

diverse combinations. Let N = |R| denote the number of combinations in the
result set and RK ⊆ R the subset of combinations that are presented to the
user, where K = |RK |. We are interested in identifying a subset RK which is
both relevant and diverse. Fixing the relevance score S(·, q), the dissimilarity
function δ(·, ·), and a given integer K, we aim at selecting a set RK ⊆ R of
combinations, which is the solution of the following optimization problem [8]:

R∗
K = argmax

RK⊆R,|RK |=K

F (RK , S(·, q), δ(·, ·)) (3)

where F (·) is an objective function that takes into account both relevance and
diversity. Two commonly used objective functions are MaxSum (Equation 4) and
MaxMin (Equation 5), as defined in [8]

F (RK) = (K − 1)
∑

τ∈RK

S(τ, q) + 2λ
∑

τu,τv∈RK

δ(τu, τv) (4)

F (RK) = min
τ∈RK

S(τ, q) + λ min
τu,τv∈RK

δ(τu, τv) (5)

where λ > 0 is a parameter specifying the trade-off between relevance and
diversity.

Solving problem (3) when the objective function is given in (4) or (5) is NP-
hard, as it can be reduced to the minimum k-center problem [9]. Nevertheless,
greedy algorithms exist [8], which give a 2-approximation solution in polynomial
time. Algorithm 1 and Algorithm 2 give, respectively, the greedy algorithms for
MaxSum and MaxMin. In both cases the underlying idea is to create an auxiliary
function δ′(·, ·) and iteratively construct the solution by incrementally adding
combinations in such a way as to locally maximize the given objective function.

Algorithm 1. Greedy algorithm for MaxSum.

Input : Set of combinations R, K
Output: Selected combinations RK

begin1

Define δ′(τu, τv) = S(τu, q) + S(τv, q) + 2λδ(τu, τv)2

Initialize the set RK = ∅, U = R3

for c = 1 : �K/2� do4

Find (τu, τv) = argmax
x,y∈U

δ′(x, y) Set RK = RK ∪ {τu, τv} Set
5

U = U \ {τu, τv}
end6

If K is odd, add an arbitrary combination to RK7

end8

Another objective function, closely related to the aforementioned ones, isMax-
imal Marginal Relevance (MMR), initially proposed in [1]. Indeed, MMR implicitly
maximizes an hybrid objective function whereby relevance scores are summed
together, while the minimum distance between pairs of objects is controlled.

Diversification for Multi-domain Result Sets 143

The algorithm originally proposed in [1] is identical to Algorithm 2, where line
6 is replaced by

τ∗ = argmax
τ∈RnRK

{
S(τ, q) + λ min

x∈RK

δ(τ, x)

}
(6)

and at line 4 the set RK is initialized with the most relevant combination.

Algorithm 2. Greedy algorithm for MaxMin.

Input : Set of combinations R, K
Output: Selected combinations RK

begin1

Define δ′(τu, τv) = 1
2
(S(τu, q) + S(τv, q)) + λδ(τu, τv)2

Initialize the set RK = ∅3

Find (τu, τv) = argmax
x,y∈R

δ′(x, y) and set RK = {τu, τv}
4

while |RK | < K do5

τ∗ = argmax
τ∈R\RK

minx∈RK δ′(τ, x)
6

Set RK = RK ∪ {τ∗}7

end8

end9

Note that for λ = 0 all algorithms return a result set which consists of the
top-K combinations with the highest score, thus neglecting diversity.

2.4 When Diversification Helps

The score function and the diversity function both work on the attribute values
of tuples. The question arises about the circumstances in which the ranking func-
tion alone would already guarantee a sufficiently varied result set, thus lowering
the utility of diversification. The intuition is that when the attributes used in the
ranking function have values distributed with comparable variance in the input
relations, then the relevance score performs better at sampling the population
than when attribute values are distributed with large variance differences. The
following result formalizes this intuition and provides a guideline for deciding if
diversification is needed. For simplicity, we consider two relations R1 and R2,
with a population of N1 and N2 tuples, respectively.

Theorem 1. Given a positive integer K ∈ N
+, a score function S(τ, q) =

w1s1(t1)+w2s2(t2), a set RK that contains the K combinations with the highest
score S(τ, q). Let D1(K) (resp. D2(K)) be the expected number of distinct tuples
of relation R1 (resp. R2) represented in RK . If the values of the score functions
s1(), s2() are uniformly distributed in intervals of width Δ1 (resp. Δ2), then
D1(K)/D2(K) = (w2Δ2N1)/(w1Δ1N2).

Proof. The value of the local score si = si(ti) can be regarded as sampled
from a probability density function psi(si). We want to determine the and
D1(K)/D2(K) given the score distributions ps1(s1) and ps2(s2).

144 A. Bozzon et al.

Let ni(si) denote the number of tuples in Ri that exceed the value of si. Note
that, given a deterministically chosen score value s̃i, ni(s̃i) is a discrete random
variable, whose expected value can be expressed as

E[ni(s̃i)] = n̄i(s̃i) = Ni (1− Psi(s̃i)) (7)

where Psi(s̃i) is the cumulative density function of the random variable si eval-
uated at s̃i. The value of Di(θ) (number of tuples of Ri contributing to the top
combinations, i.e. those whose score s1 + s2 exceeds θ) can be determined as
follows

Di(θ) =
√
βE [n̄i(si)| s1 + s2 > θ]

=
√
β

∫ +∞

−∞
n̄i(si)psi(si|s1 + s2 > θ)dsi (8)

where β ∈ [0, 1] denotes the join selectivity, i.e. |R1 �� R2|/|R1 × R2|, assuming
that the join predicate does not depend on the scores. In order to determine
psi(si|s1 + s2 > θ) we leverage Bayes’s theorem

psi(si|s1 + s2 > θ) =
psi(s1 + s2 > θ|si)psi(si)

Pr{s1 + s2 > θ} (9)

where

Pr{s1 + s2 > θ} = p(s2 > θ − s1) = 1− Ps2(θ − s1)

= p(s1 > θ − s2) = 1− Ps1(θ − s2) (10)

and
p(s1 + s2 > θ) = 1− Ps1+s2(θ) (11)

Therefore

Di(θ) =
√
β

∫ +∞

−∞
Ni (1− Psi(si))

(1− Ps̄i(θ − si)) psi(si)

1− Ps1+s2(θ)
(12)

Rewriting the previous expression, we obtain:

Di(θ) =
√
β

Ni

1− Ps1+s2(θ)

∫ +∞

−∞
psi(si) (1− Psi(si)) ·

·
(
1− Psī(θ − si)

)
dsi (13)

where P̄si(si) = 1− Psi(si) and the integral can be compactly written in terms
of a convolution product, that is, [(P̄si · psi) ∗ P̄sī](θ).

The value of Di(θ) can be readily evaluated for simple distributions, e.g. uni-
form distributions of the scores, i.e. si ∼ U [si, s̄i]. In this case, θ ∈ [θmin, θmax] =
[s1 + s2, s̄1 + s̄2]. Note that, for each value of θ, the expected number of combi-
nations whose score exceeds θ is given by

K(θ) =
β

N1N2
(1− Ps1+s2(θ)) (14)

Diversification for Multi-domain Result Sets 145

We are interested to the case when K is small, thus θ � θmax. Let Δi = s̄i − si.
When θ ∈ [max{θmax −Δ1, θmax −Δ2}, θmax], the integral in (13) evaluates to

Di(θ) =

√
βNi

1− Ps1+s2(θ)

1

24Δ2
iΔī

(s̄1 + s̄2 + θ)
3

(15)

Therefore, the ratio D1(θ)/D2(θ) simplyfies to

D1(θ)

D2(θ)
=

N1

N2

Δ2

Δ1
(16)

Since there is a one-to-one mapping between K and θ,

D1(K)

D2(K)
=

D1(θ)

D2(θ)
=

N1

N2

Δ2

Δ1
(17)

The case in which the scoring function is weighted, i.e. w1s1 + w2s2, can be
reduced to the result above, by defining a new random variable ŝi = wisi, such
that ŝi ∼ U [wisi, wis̄i] and Δ̂i = wiΔi. Therefore:

D1(K)

D2(K)
=

N1

N2

w2Δ2

w1Δ1
(18)

According to Theorem 1 the ratio of the number of tuples from relation R1 and
R2 in the top-K combinations is inversely proportional to the ratio of the score
ranges. The result holds both when combinations are computed with the Carte-
sian product and with a join with arbitrary predicate. This observation can be
used to determine the self-diversification power implicit in the distribution of
data and in the ranking function and, indirectly, to assess the expected improve-
ment that can be obtained with diversification, with respect to the case in which
only the relevance score function is used to build the result set.

Say that N1 = N2 and w1 = w2; if if the variance of the scores is the same
in both input relations (i.e. Δ1 = Δ2) then D1(K) = D2(K), i.e. the number of
distinct tuples extracted from R1 and R2 in the top combinations is the same,
regardless the average score (i.e., even if E[s1] �= E[s2]). Therefore, the result set
computed based on relevance only already picks up tuples evenly from the input
relations and, if the sizes of the populations are comparable, diversification is
not expected to help much.

If, instead, the number of distinct tuples extracted from R1 contributing to the
top combinations is Δ2/Δ1 larger than the number of tuples extracted from R2

(i.e. Δ1 < Δ2), then D1(K) > D2(K), i.e. tuples coming from the distribution
characterized by the largest variance tend to be under-represented in the top
combinations. Hence, diversification is expected to help, especially when Δ2 �
Δ1 or, viceversa, Δ1 � Δ2.

3 Experiments

Multi-domain search deals with combinations of objects; therefore, the evalua-
tion of diversity in multi-domain result sets must assess the ability of a given

146 A. Bozzon et al.

algorithm to retrieve useful and diverse tuples within the first K results in the
query answer. In this section we elaborate on the performance of the diversifi-
cation algorithms described in Section 2 (MMR, MaxSum,MaxMin). We calculated a
set of quantitative objective metrics, and we conducted a subjective user study.
All the algorithms were evaluated using a λ = 1, thus giving equal importance
to both diversity and ranking.

A well-knownmetrics for relevance in diversified result sets is the α-Discounted
Cumulative Gain (α-DCGK) [3], which measures the usefulness (gain) of a doc-
ument based on its position in the result list and its novelty w.r.t. the previous
results in the ranking. In the original formulation of α-DCGK , documents are
composed by a set of information nuggets. In the context of multi-domain result-
sets, the α-DCGK can be defined by assimilating an information nugget to a
tuple ti ∈ Ri, where R1, . . . , Rn are the relations involved in a multi-domain
query. Therefore, we define α-DCGK as:

α-DCGK =
K∑

k=1

∑n
i=1 J(τk, ti)(1 − α)rti,k−1

log2(1 + j)
(19)

where J(τk, ti) returns 1 when tuple ti appears in a combination τk at position
k in the result set and 0 otherwise. J is defined as J(τk, ti) = �πRi

(τk)=ti , where

πRi denotes the projection over the attributes of Ri, and rti,k−1 =
∑k−1

j=1 J(τj , ti)
quantifies the number of combinations up to position k−1 that contain the tuple
ti. In our experiments, α is set to 0.5 to evaluate novelty and relevance equally.

Sub-topic recall at rank K (S-RecallK) [16] is a recall measure for search
results related to several sub-topics, often applied to evaluate diversification
algorithms [4]. In multi-domain search, a tuple in a combination can be assim-
ilated to a subtopic in a document. Therefore, multi-domain recall at rank K
(MD-RecallK), defined next, measures, for each relation Ri involved in a query
(with i = 1 . . . n) and for all rank positions k from 1 to K, the set of distinct
tuples (Rk

i = {ti ∈ Ri|∃j ≤ k. πRi(τj) = ti}) retrieved in the result set, with
respect to the entire population of the relation (|Ri|).

MD-RecallK =

n∏
i=1

| ∪K
k=1 R

k
i |

|Ri|
(20)

3.1 Implementation and Datasets

We extended an existing architecture for multi-domain search application devel-
opment [2] with a diversification component embedding the algorithms described
in Section 2. Experiment has been performed on two usage scenarios. In the first
scenario – Night Out (NO) – a user looks for a museum, a restaurant, and a hotel
in Milan. We created a dataset consisting of the Hotel (50 tuples), Restaurant
(50 tuples), and Museum (50 tuples) relations, where the initial 125,000 combi-
nations have been pruned by removing all the triples for which the total walking
distance from the Central Station in Milan is greater than 4 Km, which leaves

Diversification for Multi-domain Result Sets 147

5000 combinations. We computed the mutual location distances, and we defined
three quantitative relevance scores – the combination cost, the total walking
distance, and the average ratings (see Example 1).

In the Study Abroad (SA) scenario, a user looks for a U.S. university, con-
sidering the rating of the university, the quality of life in the area, and the
overall cost, including accommodation. The supporting dataset consists of three
relations University (60 US universities with their academic quality score1, walk-
ability score of the surroundings2, and average tuition fee), State (including their
crime rate), and Flat (1200 flats). Joins were performed on the state attribute,
yielding a dataset of 5100 combination. We defined three relevance scores: the
overall yearly expenditure, a “quality” index3, and the distance between the
university and the flat.

3.2 Discussion

The evaluation covers both the Night Out and Study Abroad scenarios presented
in Section 3.1. To avoid query-dependent bias, results are averaged over multiple
experiments in each scenario. For the categorical case, 3 experiments have been
performed, each of them applying one of the score functions described in Section
3.1, and diversification according to categorical distance. For the quantitative
case, 6 experiments have been performed: for each score function in Section
3.1 the value computed by the remaining ones are, in turn, used to evaluate
quantitative distance as in Equation 2.

Figure 2 shows α-DCGK and MD-RecallK for the result sets obtained with
no diversification and with the diversification algorithms MMR, MaxSum, and
MaxMin, applying both categorical and quantitative distances. Each data point
of the X-axis represents the k-th element in the result-set. The Y-axes repre-
sent, respectively, the values of α-DCGK (Figure 2(a,b,e,f)) and ofMD-RecallK
(Figure 2(c,d,g,h)).

MMR and MaxMin always outperform the un-diversified baseline when used with
the categorical diversity function both in terms of α-DCGK and MD-RecallK ;
MaxSum instead does not provide significant improvements with respect to the
baseline. One can also notice that MMR and MaxMin offer similar performance:
this is not surprising, as the greedy algorithms for the two objective functions
are also very similar.

For quantitative distance, instead, all algorithms provide similar performance.
In particular MMR and MaxMin degrade their performance with respect to categor-
ical distance, and behave only slightly better than the baseline. This may also be
influenced by the chosen quality measures (α-DCGK andMD-RecallK), that are
based on diversity of extracted objects and therefore are more suited to evaluate

1 Source:
http://archive.ics.uci.edu/ml/machine-learning-databases/university/

2 WalkScore - http://www.walkscore.com/
3 A function of the academic quality score, the walkability index of a university and
the crime rate in a state.

http://archive.ics.uci.edu/ml/machine-learning-databases/university/
http://www.walkscore.com/

148 A. Bozzon et al.

� � �� �� �� �� ��
�

�

�

	

��

��

��

��

�	

�� ���������������������

�
�

�

�

�

� � �� �� �� �� ��
�

�

�

	

��

��

��

��

�	

�� ������������������� ��

�
�

�
�

�

� � �� �� �� �� ��
�

�!��

�!�

�!��

�!�

�!��

�� ���������������������

"
�

#
$

�
%

&&

�

�

� � �� �� �� �� ��
�

�!��

�!�

�!��

�!�

�!��

'� ������������������� ��

"
�

#
$

�
%

&&

�

�

� � �� �� �� �� ��
�

�

�

	

��

��

��

��

�	

�� �(��')�%����'�������������

�
�

�

�

�

� � �� �� �� �� ��
�

�

�

	

��

��

��

��

�	

*� �(��')�%����'����������� ��

�
�

�

�

�

� � �� �� �� �� ��
�

�!���

�!��

�!���

�!��

�!���

�!��

�!���

�!��

�� �(��')�%����'�������������

"
�

#
$

�
%

&&
�

�

� � �� �� �� �� ��
�

�!���

�!��

�!���

�!��

�!���

�!��

�!���

�!��

�� �(��')�%����'����������� ��

"
�

#
$

�
%

&&

�

�

""#
"�+"��
"�+(�,
����� !

""#
"�+"��
"�+(�,
����� !

""#
"�+"��
"�+(�,
����� !

""#
"�+"��
"�+(�,
����� !

""#
"�+"��
"�+(�,
����� !

""#
"�+"��
"�+(�,
����� !

""#
"�+"��
"�+(�,
����� !

""#
"�+"��
"�+(�,
����� !

Fig. 2. Quantitative evaluation results. Night Out dataset: α-DCGK for (a) categorical
and (b) quantitative distances; MD-RecallK for (c) categorical and (d) quantitative
distances. Study Abroad dataset: α-DCGK for (e) categorical and (f) quantitative
distances; MD-RecallK for (g) categorical and (h) quantitative distances.

categorical diversification. Nonetheless, we notice an overall coherent behavior of
MMR and MaxMin in all settings; likewise, MaxSum consistently performs similarly to
the un-diversified case. Overall, these results support the hypothesis that diversi-
fication algorithms can improve the quality of multi-domain result sets.

3.3 User Study

Weconducted an (uncontrolled) user study focused on explicit comparison of result
sets diversified according to the selected algorithms: users were asked to directly
compare two alternative result sets (displaying 10 combinations each) and to select
the one that, in their opinion, provided the best quality and variety of the items.
As quantitative analysis provided evidence that MMR and MaxMinalgorithms clearly
outperformed the baseline when adopting categorical distance, we decided to con-
sider only categorical distance for the user study; we also decided not to include
MaxMin in the evaluation as its performance was comparable to MMR.

The study addressed both the scenarios Night Out and Study Abroad as
described in Section 3.1. To avoid bias on the data instances, we generated
10 different subsets from the original result sets of each scenario, and then we
applied separately the diversification algorithms to all of them. To avoid the
effect of possible learning bias, the two scenarios were performed in random
order; each user was shown two options among the three calculated result sets
(un-diversified, MMR and MaxSum), in a round-robin fashion. The users could select
their preferred result set in each scenario; they had unlimited time for completing
the task. Each preference counted as a vote to the respective algorithm. The test
was performed by 74 users, among which 25% were students and 75% were either
search experts from industry or academia.

Diversification for Multi-domain Result Sets 149

��� ������ ��� 	
�� ������ 	
��
�

�

��

��

��

��

��

�
��
��
��
��
��

	��������

��� ������ ��� 	
�� ������ 	
��
�

�

��

��

��

��

��

�
��
��
��
��
��

������ ��
��

Fig. 3. Direct comparison user study: Preferences assigned to the different resultsets

Figure 3 shows the results of the voting. All the pairwise comparisons were
subject to a binomial test, where the null hypothesis was that the preferences for
both algorithms were equally likely to be expressed by the user. The perceived
quality reflects quite well the quantitative results described in Section 3.2: result
sets produced with the MMR algorithm were perceived to have higher quality
and variety than both MaxSum and the un-diversified result (at significance level
α = 0.01). Conversely, the MaxSum algorithm was not significantly found better
than the un-diversified result-set, as also suggested by the fact that the null
hypothesis cannot be rejected.

The user experiment confirmed the considerations emerged from the quanti-
tative evaluation, thus suggesting a user-perceivable benefit in the adoption of
diversifications algorithm in multi-domain search applications.

4 Related Work

The evolution of search systems towards the extraction of structured information
from Web content have been widely addressed in several recent works (e.g. Con-
cept search [7]). Multi-domain search [2] focuses on processing queries involving
several topics and domains on Web data sources. The present work explores di-
versification in this context, as a mean for improving the utility of result sets
made of associated entity instances.

Result diversification is a well-investigated topic; [6] provides a survey of exist-
ing approaches, while [8] discusses a systematic axiomatization of the problem,
that is the base of the formalization of multi-domain diversification in Section
2. A broad distinction can be done between the contributions that focus on
diversifying search results for document collections (e.g. [12]) and those that
concentrate instead on structured data sets [10,13,15].

Our work is mostly related to diversification applied to structured data. In
this field, diversification in multiple dimensions is addressed in [5], where the
problem is reduced to MMR by collapsing diversity dimensions in one composite
similarity function. The work in [15] examines the diversification of structured
results sets as produced by queries in online shopping applications. The paper
shows how to solve exactly the problem of picking K out of N products so to
minimize an attribute-based notion of similarity and discusses an efficient im-
plementation technique based on tree traversal. Multi-domain diversification, as

150 A. Bozzon et al.

discussed in this paper, is a broader problem; it could be partially reduced to
prefix-based diversification only in the case of categorical diversity, by choosing
an arbitrary order for the categorical attributes used to measure combination
diversity. Keyword search in structured databases is addressed in [4], where di-
versification is not applied to result sets, but to query interpretations, which
are assumed to be available from the knowledge of the database content and
query logs. The multi-domain search applications addressed in this paper as-
sume for simplicity unambiguous queries and thus a fixed interpretation, but
could reuse the interpretation diversification approach of [4] to cope for multi-
domain searches with more than one possible interpretation. A recent related
work is [13], which applies to the selection of Web services characterized by their
non-functional properties. The authors introduced a novel diversification objec-
tive, MaxCov, which leads to the selection of items with high relevance score,
such that the remaining ones are not too far from any of the elements of the
diversified result set. We plan the testing of MaxCov as part of the future work.

Finally, the work [10] investigates the diversification of structured data from
a different perspective: the selection of a limited number of features that can
maximally highlight the differences among multiple result sets. Although the
problem is apparently different from multi-domain search (the actual goal of
[10] is to find a set of attribute values that maximally differentiates a number of
input results set, respecting a size upper bound) identifying the best attributes
to use for ranking and diversification is relevant to multi-domain search as well,
and we have started addressing it by studying how the distribution of attribute
values affects the capability of the ranking function to sample the population of
the input relations evenly.

5 Conclusions

Multi-domain search is a promising trend in search applications; however, to
preserve the current ability of search engines to squeeze in one page the most
interesting results, the combinatorial explosion of result sets formed by several
correlated entity instances must be tamed. In this paper, we have investigated
the problem of multi-domain result set diversification, by showing how the di-
versification techniques well studied in the context of IR can be extended to
support this class of applications. We experimentally tested three algorithms
for the trade-off between relevance and diversity, and showing that they can
introduced a significant degree of diversification in the result set; a user study
demonstrated a positive perception of the utility of diversification by users.

In the future, we plan to extend this work in several directions. On the
methodological side, we plan to better investigate the interplay between the
score function and the similarity measure (beyond the simple case of uniform
data distribution studied in Section 2), so to propose a methodology for the
selection of the most promising scoring and diversity functions. On the architec-
ture side, we will investigate issues like the design of appropriate data and index
structures for efficient diversification, relevance and diversity-aware caching of

Diversification for Multi-domain Result Sets 151

results, and the thorough evaluation of the overhead of diversification. Finally,
we plan a careful graphical user interface design and a novel round of user testing
of the multi-domain search concept, this time using online data and real users.

Acknowledgments. This research is partially supported by the Search Com-
puting (SeCo) project, funded by European Research Council, under the IDEAS
Advanced Grants program; by the Cubrik Project, an IP funded within the EC
7FP; and by the BPM4People SME Capacities project. We wish to thank all the
participants to the user study and all the projects contributors.

References

1. Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reorder-
ing documents and producing summaries. In: SIGIR 1998: Proceedings of the 21st
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 335–336. ACM, New York (1998)

2. Ceri, S., Brambilla, M.: Search Computing Systems. In: Pernici, B. (ed.) CAiSE
2010. LNCS, vol. 6051, pp. 1–6. Springer, Heidelberg (2010)

3. Clarke, C.L., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher,
S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In:
SIGIR 2008: Proceedings of the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 659–666. ACM, New
York (2008)

4. Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: Divq: diversification for key-
word search over structured databases. In: SIGIR 2010: Proceeding of the 33rd
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 331–338. ACM, New York (2010)

5. Dou, Z., Hu, S., Chen, K., Song, R., Wen, J.-R.: Multi-dimensional search result
diversification. In: Proceedings of the Fourth ACM International Conference on
Web Search and Data Mining, WSDM 2011, pp. 475–484. ACM, New York (2011)

6. Drosou, M., Pitoura, E.: Search result diversification. SIGMOD Rec. 39(1), 41–47
(2010)

7. Giunchiglia, F., Kharkevich, U., Zaihrayeu, I.: Concept search: Semantics enabled
syntactic search. In: SemSearch, pp. 109–123 (2008)

8. Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In:
WWW 2009: Proceedings of the 18th International Conference on World Wide
Web, pp. 381–390. ACM, New York (2009)

9. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theo-
retical Computer Science 38, 293–306 (1985)

10. Liu, Z., Sun, P., Chen, Y.: Structured search result differentiation. Proc. VLDB
Endow. 2(1), 313–324 (2009)

11. Martinenghi, D., Tagliasacchi, M.: Proximity rank join. PVLDB 3(1), 352–363
(2010)

12. Rafiei, D., Bharat, K., Shukla, A.: Diversifying web search results. In: WWW 2010:
Proceedings of the 19th International Conference on World Wide Web, pp. 781–
790. ACM, New York (2010)

13. Skoutas, D., Alrifai, M., Nejdl, W.: Re-ranking web service search results under
diverse user preferences. In: PersDB 2010 (September 2010)

152 A. Bozzon et al.

14. Soliman, M.A., Ilyas, I.F., Saleeb, M.: Building ranked mashups of unstructured
sources with uncertain information. PVLDB 3(1), 826–837 (2010)

15. Vee, E., Srivastava, U., Shanmugasundaram, J., Bhat, P., Yahia, S.A.: Efficient
computation of diverse query results. In: ICDE 2008: Proceedings of the 2008 IEEE
24th International Conference on Data Engineering, pp. 228–236. IEEE Computer
Society, Washington, DC (2008)

16. Zhai, C.X., Cohen, W.W., Lafferty, J.: Beyond independent relevance: methods
and evaluation metrics for subtopic retrieval. In: SIGIR 2003: Proceedings of the
26th Annual International ACM SIGIR Conference on Research and Development
in Informaion Retrieval, pp. 10–17. ACM, New York (2003)

Twinder: A Search Engine for Twitter Streams

Ke Tao, Fabian Abel, Claudia Hauff, and Geert-Jan Houben

Web Information Systems, Delft University of Technology
{k.tao,f.abel,c.hauff,g.j.p.m.houben}@tudelft.nl

Abstract. How can one effectively identify relevant messages in the
hundreds of millions of Twitter messages that are posted every day? In
this paper, we aim to answer this fundamental research question and
introduce Twinder, a scalable search engine for Twitter streams. The
Twinder search engine exploits various features to estimate the relevance
of Twitter messages (tweets) for a given topic. Among these features are
both topic-sensitive features such as measures that compute the semantic
relatedness between a tweet and a topic as well as topic-insensitive fea-
tures which characterize a tweet with respect to its syntactical, semantic,
sentiment and contextual properties. In our evaluations, we investigate
the impact of the different features on retrieval performance. Our results
prove the effectiveness of the Twinder search engine - we show that in
particular semantic features yield high precision and recall values of more
than 35% and 45% respectively.

1 Introduction

Microblogging sites such as Twitter1 have emerged as large information sources
for exploring and discussing news-related topics [1]. Twitter is also used as a
major platform for publishing and disseminating information related to various
topics such as politics or sport events2. For trending topics, thousands of Twitter
messages (tweets) are posted per second. Moreover, the number of posts pub-
lished per day typically exceeds several hundred million3. Thus, searching for
tweets that are relevant to a given topic is a non-trivial research challenge.

Teevan et al. revealed that users exhibit a different search behaviour on Twit-
ter compared to Web search [2]. For example, keyword queries on Twitter are
significantly shorter than those issued for Web search: on Twitter people typi-
cally use 1.64 words to search while on the Web they use, on average, 3.08 words.
This can be explained by the length limitation of 140 characters per Twitter mes-
sage: as long keyword queries easily become too restrictive, people tend to use
broader and fewer keywords for searching.

Given the drawbacks of keyword search as provided by Twitter, researchers
recently started to investigate alternative search interfaces. Bernstein et al. [3]
presented Eddi, an interface which categorizes the tweets in the personal timeline

1 http://twitter.com/
2 http://yearinreview.twitter.com/en/tps.html
3 http://blog.twitter.com/2011/06/200-million-tweets-per-day.html

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 153–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://twitter.com/
http://yearinreview.twitter.com/en/tps.html
http://blog.twitter.com/2011/06/200-million-tweets-per-day.html

154 K. Tao et al.

of a user into topics and provides access to these tweets by means of tag clouds.
In previous work [4], we studied the utility of a faceted search interface for
Twitter that allows users to explore topics along different facets such as persons
or locations. Moreover, researchers explored various solutions for representing
Twitter search results [5], for ranking Web pages that are currently trending
on Twitter [6] or for recommending Twitter conversations [7]. However, none of
these works focuses on engineering search engines for microblogging data that
allow for estimating the relevance of tweets for a given topic.

In this work, we tackle this challenge and introduce Twinder, a scalable search
engine for Social Web and Twitter streams in particular. Twinder analyzes var-
ious features to estimate the relevance of a tweet for a given topic ranging from
syntactical characteristics as proposed by [8] (e.g. presence of URLs) to seman-
tic and contextual information (e.g. semantic distance to topic). We explore
both topic-insensitive features, which can be pre-computed independently from
a given topic on a cloud computing infrastructure4, and topic-sensitive features,
which are calculated at query time. To analyze the effectiveness of the different
features and to investigate how well Twinder can deliver tweets which are inter-
esting and relevant to a given topic, we evaluated Twinder on a large benchmark
dataset of more than 16 million tweets that features relevance judgements for a
set of 49 topics. The main contributions of this paper are:

– We present Twinder, a search engine for Twitter streams that analyzes var-
ious features in order to identify tweets that are relevant for a given topic.
Twinder is designed to run in a cloud computing infrastructure (Section 3).

– We propose methods for extracting novel features from Twitter messages
that allow Twinder to predict the relevance of a message for a given topic.
In particular, our semantic features go beyond the state of the art (Section 4).

– We evaluate the effectiveness of Twinder for searching Twitter messages
and conduct an in-depth analysis to investigate the impact of the different
features on retrieval effectiveness (Section 5).

2 Related Work

Since its launch in 2006 Twitter has attracted a lot of attention, both among the
general public and among the research community. Researchers started study-
ing microblogging phenomena to find out what kind of topics are discussed on
Twitter [1], how trends evolve [9], or how one detects influential users on Twit-
ter [10]. Applications have been researched that utilize microblogging data to
enrich traditional news media with information from Twitter [11], to detect and
manage emergency situations such as earthquakes [12] or to enhance search and
ranking of Web sites which possibly have not been indexed yet by Web search
engines.

4 For example, the supporting website contains a MapReduce-based solution to gen-
erate topic-insensitive features [15].

Twinder: A Search Engine for Twitter Streams 155

So far though, search on Twitter has not been studied extensively. Tevaan et
al. [2] compared the search behaviour on Twitter with traditional Web search
behaviour as discussed in the introduction.

Bernstein et al. [3] proposed an interface that allows for exploring tweets by
means of tag clouds. However, their interface is targeted towards browsing the
tweets that have been published by the people whom a user is following and not
for searching the entire Twitter corpus. Jadhav et al. [11] developed an engine
that enriches the semantics of Twitter messages and allows for issuing SPARQL
queries on Twitter streams. In previous work, we also followed such a semantic
enrichment strategy to provide faceted search capabilities on Twitter [4]. Duan
et al. [8] investigate features such as Okapi BM25 relevance scores or Twitter
specific features (length of a tweet, presence of a hashtag, etc.) in combination
with RankSVM to learn a ranking model for tweets. In an empirical study, they
found that the length of a tweet and information about the presence of a URL
in a tweet are important features to rank relevant tweets.

Our research builds on these previous works. In this paper, we introduce the
Twinder search engine for Twitter stream. We re-visit a number of features that
were proposed by Duan et al. [8]. Additionally, we also developed a number of
novel semantic measures to further boost the retrieval effectiveness of Twinder.

3 Twinder Search Engine

Twinder (Twitter Finder) is a search engine for Twitter streams that aims to
improve search for Twitter messages by going beyond keyword-based matching.
Different types of features ranging from syntactical to contextual features are
considered by Twinder in order to predict the relevance of tweets for a given
search query. Figure 1 shows the core components of the Twinder architecture.
Different components are concerned with extracting features from the incoming
messages of a Twitter stream. Given the huge amount of Twitter messages that
are published every day, the system is designed to be scalable. For this reason,
Twinder makes use of cloud computing infrastructures for processing-intensive
tasks such as feature extraction and indexing. Below, we introduce the core
components of the Twinder Search Engine (see blue boxes in Figure 1) and
compare the runtime performances of our engine when running on an cloud
computing infrastructure vs. a multi-core server environment.

3.1 Core Components

Feature Extraction. The features used for relevance estimation are extracted
by the Feature Extraction component. It receives Twitter messages from Social
Web Streams and implements a suite of functions that allow for representing
the tweets via (i) topic-sensitive features which are computed whenever a new
query is received and (ii) topic-insensitive features which are calculated when
new tweets are received. The set of features that are currently exploited by
Twinder are introduced in Section 4. The computation of some features requires

156 K. Tao et al.

Fig. 1. Architecture of the Twinder Search Engine

further services which offer additional functionalities (e.g. semantic enrichment).
Tasks such as obtaining contextual information about the creator of tweets or the
actual construction of the multifaceted index of Twinder are repeated periodi-
cally. To update its multifaceted index and to compute topic-insensitive features,
Twinder provides MapReduce-based implementations and can thus utilize cloud
computing infrastructure.

Feature Extraction Task Broker. MapReduce-based implementations are
efficient at processing batch tasks with large volume of data and are typically
executed on large cloud computing infrastructures. Twinder is designed to take
advantage of MapReduce and cloud computing infrastructures to allow for high
scalability and to allow for frequent updates of its multifaceted index. For ex-
ample, the extraction of topic-insensitive features that are not directly available
via the Twitter API and the indexing process may be time-consuming tasks for
massive amounts of data. Therefore, the Feature Extraction Task Broker allows
for dispatching feature extraction tasks and indexing tasks to cloud computing
infrastructures.

Relevance Estimation. The Relevance Estimation component is the most
crucial part of Twinder as it determines for a given topic the relevance of tweets
which are represented through their calculated features. Technically, the com-
ponent accepts search queries from a front-end module and passes them to the
Feature Extraction component in order to compute the features required for the
relevance estimation. Tweets that are classified as relevant can be delivered to
the front-end for rendering. The relevance estimation is cast into a classifica-
tion problem where the tweets have to be classified as relevant or non-relevant
with respect to a topic. Given a training dataset, Twinder can learn the clas-
sification model. At runtime, the learned model is applied to the feature rep-
resentation of the tweets to identify relevant tweets. In future work, we also

Twinder: A Search Engine for Twitter Streams 157

Table 1. Comparison of indexing times: Amazon EMR vs. a single machine

Corpus Size Mainstream Server EMR (10 instances)

100k (13MBytes) 0.4 min 5 min

1m (122MBytes) 5 min 8 min

10m (1.3GBytes) 48 min 19 min

32m (3.9GBytes) 283 min 47 min

plan the integration of further user feedback to continuously improve the learned
model. For example, we envision the exploitation of re-tweeting activities or
favourite markings as additional training data.

3.2 Efficiency of Indexing

As described in Section 3.1, Twinder is capable of leveraging a cloud computing
infrastructure to execute data-intensive jobs. In order to demonstrate that it
is beneficial to assign tasks with a large amount of data to a cloud computing
infrastructure, we compare the performance of creating an inverted index on
Amazon ElasticMapReduce (EMR)5 and a multi-core server6. We evaluated the
runtime of four different Twitter corpora, ranging in size from 100 thousand
to 32 million tweets. On EMR, the indices were built by using ten instances7,
where each instance contains one virtual core, in contrast to the 8 cores in the
multi-core server.

As shown in Table 1, if the corpora are small, the index can be efficiently
created with a dedicated toolkit on a single machine. However, as the corpus
size increases, utilizing cloud infrastructure offers significant speed gains. There-
fore we conclude that Twinder can achieve a better runtime performance by
employing cloud computing infrastructure.

4 Features of Microposts

In this section, provide an overview of the different features that are analyzed
by Twinder.We distinguish two types of features: topic-sensitive features, which
are computed at query time and express the relevance of a Twitter message with
respect to the query, and topic-insensitive features, which are evaluated before
a query is issued and characterize syntactical, semantic or contextual properties
of a Twitter message.

4.1 Topic-Sensitive Features

Keyword-Based Relevance Features. A straightforward approach is to in-
terpret Twitter messages as traditional Web documents and apply standard text
retrieval measures to estimate the relevance of tweet for a given topic.

5 http://aws.amazon.com/elasticmapreduce/
6 We wrote our own indexer in Hadoop and relied on the Lemur Toolkit for Information
Retrieval to create the index on the single server: http://www.lemurproject.org/.

7 Specifically, we used ten instances of type m1.small.

http://aws.amazon.com/elasticmapreduce/
http://www.lemurproject.org/

158 K. Tao et al.

Feature F1: keyword-based relevance score. To calculate the retrieval score for
pair of (topic, tweet), we employ the language modeling approach to information
retrieval [13]. A language model θt is derived for each document (tweet). Given
a query Q with terms Q = {q1, ..., qn} the document language models are ranked
with respect to the probability P (θt|Q), which according to the Bayes theorem
can be expressed as follows.

P (θt|Q) =
P (Q|θt)P (θt)

P (Q)
∝ P (θt)

∏

qi∈Q

P (qi|θt). (1)

This is the standard query likelihood based language modeling setup which as-
sumes term independence. Usually, the prior probability of a tweet P (θt) is
considered to be uniform, that is, each tweet in the corpus is equally likely. The
language models are multinomial probability distributions over the terms oc-
curring in the tweets. Since a maximum likelihood estimate of P (qi|θt) would
result in a zero probability of any tweet that misses one or more of the query
terms in Q, the estimate is usually smoothed with a background language model,
generated over all tweets in the corpus. We employed Dirichlet smoothing [13].

Hypothesis H1: the greater the keyword-based relevance score (that is, the less
negative), the more relevant and interesting the tweet is to the topic.

Semantic-Based Relevance Features. Based on the semantics that are ex-
tracted from the Twitter messages, we calculate two further relevance features.
Feature F2: semantic-based relevance score. This feature is a retrieval score
calculated as in Section 4.1 though with a different set of terms. Since the average
length of search queries submitted to microblog search engines is lower than
in traditional Web search, it is necessary to understand the information need
behind the query. The search topics provided as part of the TREC data set
contain abbreviations, part of names, and nicknames. For example, the name
“Jintao” (query: “Jintao visit US”) refers to the president of China. However,
in tweets he is also referred to as “President Hu”, “Chinese President”, etc.
If these semantic variants of a person’s name are considered when deriving an
expanded query then potentially more relevant tweets can be found. We utilize
the Named-Entity-Recognition (NER) service DBPedia Spotlight8 to identify
names and their synonyms in the query. We merge the found concepts into an
expanded query which is then used as input to the retrieval approach described
earlier.

Hypothesis H2: the greater the semantic-based relevance score, the more relevant
and interesting the tweet is.

Feature F3: isSemanticallyRelated. It is a boolean value that shows whether
there is a semantic overlap between the topic and the tweet. This feature requires
us to employ DBpedia Spotlight on the topic as well as the tweets. If there is an
overlap in the identified concepts then it is set to true.

Hypothesis H3: if a tweet is considered to be semantically related to the query
then it is also relevant and interesting for the user.

8 http://spotlight.dbpedia.org/

http://spotlight.dbpedia.org/

Twinder: A Search Engine for Twitter Streams 159

4.2 Topic-Insensitive Features

Syntactical Features. Syntactical features describe elements that are men-
tioned in a Twitter message. We analyze the following properties:

Feature F4: hasHashtag. This is a boolean property that indicates whether a
given tweet contains a hashtag. Twitter users typically apply hashtags in order
to facilitate the retrieval of the tweet. For example, by using a hashtag people
can join a discussion on a topic that is represented via that hashtag. Users,
who monitor the hashtag, will retrieve all tweets that contain it. Therefore, we
investigate whether the occurrence of hashtags (possibly without any obvious
relevance to the topic) is an indicator for the interestingness of a tweet.

Hypothesis H4: tweets that contain hashtags are more likely to be relevant than
tweets that do not contain hashtags.

Feature F5: hasURL. Dong et al. [6] showed that people often exchange URLs via
Twitter so that information about trending URLs can be exploited to improve
Web search and particularly the ranking of recently discussed URLs. Hence, the
presence of a URL (boolean property) can be an indicator for a relevant tweet.

Hypothesis H5: tweets that contain a URL are more likely to be relevant than
tweets that do not contain a URL.

Feature F6: isReply. On Twitter, users can reply to the tweets of other people.
This type of communication may be used to comment on a certain message,
to answer a question or to chat. For deciding whether a tweet is relevant to a
news-related topic, we therefore assume that the boolean isReply feature, which
indicates whether a tweet is a reply to another tweet, can be a valuable signal.

Hypothesis H6: tweets that are formulated as a reply to another tweet are less
likely to be relevant than other tweets.

Feature F7: length. The length of a tweet (the number of characters) may also
be an indicator for the relevance. We hypothesize that the length of a Twitter
message correlates with the amount of information that is conveyed it.

Hypothesis H7: the longer a tweet, the more likely it is to be relevant.
For the above features, the values of the boolean properties are set to 0 (false)

and 1 (true) while the length of a Twitter message is measured by the number
of characters divided by 140 which is the maximum length of a Twitter message.

There are further syntactical features that can be explored such as the men-
tioning of certain character sequences including emoticons, question marks, etc.
In line with the isReply feature, one could also utilize knowledge about the re-
tweet history of a tweet, e.g. a boolean property that indicates whether the tweet
is a copy from another tweet or a numeric property that counts the number of
users who re-tweeted the message. However, in this paper we are merely inter-
ested in original messages that have not been re-tweeted yet and therefore also
only in features which do not require knowledge about the history of a tweet.
This allows us to estimate the relevance of a message as soon as it is published.

160 K. Tao et al.

Semantic Features. In addition to the semantic relevance scores described in
Section 4.1, we can also analyze the semantics of a Twitter message indepen-
dently from the topic of interest. We therefore utilize again the NER services
provided by DBpedia Spotlight to extract the following features:

Feature F8: #entities. The number of DBpedia entities that are mentioned in
a Twitter message may also provide evidence for the potential relevance of a
tweet. We assume that the more entities can be extracted from a tweet, the
more information it contains and the more valuable it is. For example, in the
context of the discussion about birth certificates we find the following two tweets
in our dataset:

t1: “Despite what her birth certificate says, my lady is actually only 27”
t2: “Hawaii (Democratic) lawmakers want release of Obama’s birth certificate”

When reading the two tweets, without having a particular topic or information
need in mind, it seems that t2 has a higher likelihood to be relevant for some
topic for the majority of the Twitter users than t1 as it conveys more entities that
are known to the public and available on DBpedia. In fact, the entity extractor
is able to detect one entity, db:Birth certificate, for tweet t1 while it detects three
additional entities for t2: db:Hawaii, db:Legislator and db:Barack Obama.

Hypothesis H8: the more entities a tweet mentions, the more likely it is to be
relevant and interesting.

Feature F9: diversity. The diversity of semantic concepts mentioned in a Twitter
message can be exploited as an indicator for the potential relevance of a tweet.
Here, we count the number of distinct types of entities that are mentioned in
a Twitter message. For example, for the two tweets t1 and t2, the diversity
score would be 1 and 4 respectively as for t1 only one type of entity is detected
(yago:PersonalDocuments) while for t2 also instances of db:Person (person),
db:Place (location) and owl:Thing (the role db:Legislator is not further classified)
are detected.

Hypothesis H9: the greater the diversity of concepts mentioned in a tweet, the
more likely it is to be interesting and relevant.

Feature F10: sentiment. Naveed et al. [14] showed that tweets which contain
negative emoticons are more likely to be re-tweeted than tweets which feature
positive emoticons. The sentiment of a tweet may thus impact the perceived
relevance of a tweet. Therefore, we classify the semantic polarity of a tweet into
positive, negative or neutral using Twitter Sentiment9.

Hypothesis H10: the likelihood of a tweet’s relevance is influenced by its sentiment
polarity.

Contextual Features. In addition to the aforementioned features, which de-
scribe characteristics of the Twitter messages, we also investigate features that

9 http://twittersentiment.appspot.com/

http://twittersentiment.appspot.com/

Twinder: A Search Engine for Twitter Streams 161

describe the context in which a tweet was published. In our analysis, we focus
on the social context, which describes the creator of a Twitter message, and
investigate the following four contextual features:

Feature F11: #followers. The number of followers can be used to indicate the
influence or authority of a user on Twitter. We assume that users who have more
followers are more likely to publish relevant and interesting tweets.

Hypothesis H11: the higher the number of followers a creator of a message has,
the more likely it is that her tweets are relevant.

Feature F12: #lists. On Twitter, people can use so-called lists to group users,
e.g. according to the topics about which these users post messages. If a user
appears in many Twitter lists then this may indicate that her messages are
valuable to a large number of users. Twinder thus analyzes the number of lists
in which a user appears in order to infer the value of a user’s tweets.

Hypothesis H12: the higher the number of lists in which the creator of a message
appears, the more likely it is that her tweets are relevant.

Feature F13: Twitter age. Twitter was launched more than five years ago. Over
time, users learn how to take advantage of Twitter and possibly also gain expe-
rience in writing interesting tweets. Therefore, we assume that the experienced
users are more likely to share interesting tweets with others. Twinder measures
the experience of a user by means of the time which passed since the creator of
a tweet registered with Twitter.

Hypothesis H13: the older the Twitter account of a user, the more likely it is that
her tweets are relevant.

Contextual features may also refer to temporal characteristics such as the
creation time of a Twitter message or characteristics of Web pages that are
linked from a Twitter message. One could for example categorize the linked
Web pages to discover the types of Web sites that usually attract attention on
Twitter. We leave the investigation of such additional contextual features for
future work.

5 Analysis and Evaluation of Twinder

Having introduced the various features we now turn to analyzing the overall
search effectiveness of Twinder. In a second step, we investigate how the different
features impact the performance.

5.1 Dataset, Feature Characteristics and Experimental Setup

Dataset. For our evaluations, we use the Twitter corpus which was introduced
in the microblog track of TREC 201110. The original corpus consists of approx.
16 million tweets, posted over a period of 2 weeks (Jan. 24 until Feb. 8, inclusive).

10 The dataset is available via http://trec.nist.gov/data/tweets/

http://trec.nist.gov/data/tweets/

162 K. Tao et al.

Table 2. The dataset characteristics and the relevance prediction across topics. The
feature coefficients were determined across all topics. The total number of topics is 49.
The five features with the highest absolute coefficients are underlined.

Category Feature Relevant Non-relevant Coefficient

keyword
keyword-based -10.699 -14.408 0.1716

relevance

semantic semantic-based -10.298 -14.206 0.1039
relevance isSemanticallyRelated 25.3% 4.7% 0.9559

syntactical

hasHashtag 19.1% 19.3% 0.0627
hasURL 81.9% 53.9% 1.1989
isReply 3.4% 14.1% -0.5303
length (in characters) 90.282 87.819 0.0007

semantics

#entities 2.367 1.882 0.0225
diversity 1.796 1.597 0.0243
positive sentiment 2.4% 10.7% -0.6670
neutral sentiment 92.7% 82.8% 0.2270
negative sentiment 4.9% 6.5% 0.4906

contextual
#followers 6501.45 4162.364 0.0000
#lists 209.119 101.054 0.0001
Twitter age 2.351 2.207 0.1878

We utilized an existing language detection library11 to identify English tweets
and found that 4,766,901 tweets were classified as English. Employing named
entity extraction on the English tweets resulted in a total over 6 million entities
among which we found approximately 0.14 million distinct entities. Besides the
tweets, 49 search topics were given. TREC assessors judged the relevance of
40,855 topic-tweet pairs which we use as ground truth in our experiments. 2,825
topic-tweet pairs were judged relevant while the majority (37,349) were marked
non-relevant.

Feature Characteristics. In Table 2 we list the average values of the numerical
features and the percentages of true instances for boolean features that have
been extracted by Twinder’s feature extraction component. Relevant and non-
relevant tweets show, on average, different values for the majority of the features.
As expected, the average keyword-based and semantic-based relevance scores of
tweets which are judged as relevant to a given topic, are much higher than
the ones for non-relevant tweets: −10.7 and −10.3 in comparison to −14.4 and
−14.2 respectively (the higher the value the better, see Section 4.1). Similarly,
the semantic relatedness is given more often for relevant tweets (25.3%) than for
non-relevant tweets (4.7%). For the topic-sensitive features, we thus have first
evidence that the hypotheses hold (H1-H3).

With respect to the syntactical features, we observe that 81.9% of the relevant
tweets mention a URL in contrast to 53.9% of the non-relevant tweets. Hence,
the presence of a URL seems to be a good relevance indicator. Contrary to this,
we observe that hasHashtag and length exhibit, on average, similar values for the
relevant and non-relevant tweets. Given an average number of 2.4 entities per
tweet, it seems that relevant tweets feature richer semantics than non-relevant

11 Language detection, http://code.google.com/p/language-detection/

http://code.google.com/p/language-detection/

Twinder: A Search Engine for Twitter Streams 163

Table 3. Performance results of relevance estimations for different sets of features.

Features Precision Recall F-Measure

keyword relevance 0.3036 0.2851 0.2940
semantic relevance 0.3050 0.3294 0.3167

topic-sensitive 0.3135 0.3252 0.3192
topic-insensitive 0.1956 0.0064 0.0123

without semantics 0.3410 0.4618 0.3923
without sentiment 0.3701 0.4466 0.4048
without context 0.3827 0.4714 0.4225
all features 0.3725 0.4572 0.4105

tweets (1.9 entities per tweet). Furthermore, the semantic diversity, i.e. the dis-
tinct number of different types of concepts that are mentioned in a tweet, is
more than 10% higher for relevant tweets.

As part of the sentiment analysis the majority of the tweets were classified
as neutral. Interestingly, Table 2 depicts that for relevant tweets the fraction
of negative tweets exceeds the fraction of positive tweets (4.9% versus 2.4%)
while for non-relevant tweets it is the opposite (6.5% versus 10.7%). Given the
average sentiment scores, we conclude that relevant and interesting tweets seem
to be more likely to be neutral or negative than tweets that are considered as
non-relevant.

The average scores of the contextual features that merely describe character-
istics of the creator of a tweet reveal that the average publisher of a relevant
tweet has more followers (#followers), is more often contained in Twitter lists
(#lists) and is slightly older (Twitter age, measured in years) than the average
publisher of a non-relevant tweet. Given these numbers, we gain further evi-
dence for our hypotheses (H11-H13). Thus, contextual features may indeed be
beneficial within the retrieval process.

Experimental Setup. To evaluate the performance of Twinder and to analyze
the impact of the different features on the relevance estimation, we relied on
logistic regression to classify tweets as relevant or non-relevant to a given topic.
Due to the small size of the topic set (49 topics), we use 5-fold cross validation
to evaluate the learned classification models. For the final setup of the Twinder
engine, all 13 features were used as predictor variables. As the number of rele-
vant tweets is considerably smaller than the number of non-relevant tweets, we
employed a cost-sensitive classification setup to prevent the relevance estimation
from following a best match strategy where simply all tweets are marked as non-
relevant. In our evaluation, we focus on the precision and recall of the relevance
classification (the positive class) as we aim to investigate the characteristics that
make tweets relevant to a given topic.

5.2 Influence of Features on Relevance Estimation

Table 3 shows the performances of the Twinder’s relevance estimation based
on different sets of features. Learning the classification model solely based on

164 K. Tao et al.

the keyword-based or semantic-based relevance scoring features leads to an F-
measure of 0.29 and 0.32 respectively. Semantics thus yield a better performance
than the keyword-based relevance estimation. By combining both types of fea-
tures (see topic-sensitive in Table 3) the F-measure increases only slightly from
0.3167 to 0.3192. As expected, when solely learning the classification model based
on the topic-independent features, i.e. without measuring the relevance to the
given topic, the quality of the relevance prediction is extremely poor (F-measure:
0.01). When all features are combined (see all features in Table 3), a precision
of 0.37 is achieved. That means that more than a third of all tweets, which
Twinder classifies as relevant and thus returns as results to the user, are indeed
relevant, while the recall level (0.46) implies that our approach discovers nearly
half of all relevant tweets. Since microblog messages are very short, a significant
number of tweets can be read quickly by a user when presented in response to
her search request. In such a setting, we believe such a classification accuracy to
be sufficient.

Overall, the semantic features seem to play an important role as they lead to a
performance improvement with respect to the F-measure from 0.39 to 0.41. allow
for an increase of the F-measure. However, Table 3 also shows that contextual
features seem to have a negative impact on the retrieval performance. In fact,
the removal of the contextual features leads to a performance improvement in
recall, precision and F-measure.

We will now analyze the impact of the different features in more detail.
One of the advantages of the logistic regression model is, that it is easy to

determine the most important features of the model by considering the absolute
weights assigned to them. For this reason, we have listed the relevant-tweet esti-
mation model coefficients for all involved features in the last column of Table 2.
The features influencing the model the most are:

– hasURL: Since the feature coefficient is positive, the presence of a URL in a
tweet is more indicative of relevance than non-relevance. That means, that
hypothesis H5 holds.

– isSemanticallyRelated : The overlap between the identified DBpedia concepts
in the topics and the identified DBpedia concepts in the tweets is the second
most important feature in this model, thus, hypothesis H3 holds.

– isReply: This feature, which is true (= 1) if a tweet is written in reply to
a previously published tweet has a negative coefficient which means that
tweets which are replies are less likely to be in the relevant class than tweets
which are not replies, confirming hypothesis H6.

– sentiment : The coefficient of the positive and negative sentiment features
are also strong indicators for estimating the relevance of a tweet which is
in line with our hypothesis H8. In particular, the coefficients suggest that
negative tweets are more likely to be relevant while positive tweets are more
likely to be non-relevant.

We note that the keyword-based similarity, while being positively aligned with
relevance, does not belong to the most important features in this model. It is

Twinder: A Search Engine for Twitter Streams 165

superseded by semantic-based as well as syntactic features. Contextual features
do not play an important role in the relevance estimation process.

When we consider the topic-insensitive features only, we observe that inter-
estingness is related to the potential amount of additional information (i.e. the
presence of a URL), the overall clarity of the tweet (a reply tweet may only be
understandable in the context of the contextual tweets) and the different aspects
covered in the tweet (as evident in the diversity feature).

5.3 Influence of Topic Characteristics on Relevance Estimation

In all reported experiments so far, we have considered the entire set of topics
available to us. We now investigate to what extent certain topic characteristics
impact the performance of Twinder’s relevance estimation and to what extent
those differences lead to a change in the logistic regression models. Our ambition
is to explore to what extent it is useful to adapt Twinder’s configuration to the
particular type of search topic. We categorized the topics with respect to three
dimensions:

– Popular/unpopular: The topics were split into popular (interesting to many
users) and unpopular (interesting to few users) topics. An example of a
popular topic is 2022 FIFA soccer (MB00212) - in total we found 24. In
contrast, topic NIST computer security (MB005) was classified as unpopular
(as one of 25 topics).

– Global/local: In this split, we considered the interest for the topic across the
globe. The already mentioned topic MB002 is of global interest, since soccer
is a highly popular sport in many countries, whereas topic Cuomo budget
cuts (MB019) is mostly of local interest to users living in New York where
Andrew Cuomo is the current governor. We found 18 topics to be of global
and 31 topics to be of local interest.

– Persistent/occasional: This split is concerned with the interestingness of the
topic over time. Some topics persist for a long time, such as MB002 (the
FIFA world cup will be played in 2022), whereas other topics are only of
short-term interest, e.g. Keith Olbermann new job (MB030). We assigned 28
topics to the persistent and 21 topics to the occasional topic partition.

Our discussion of the results focuses on two aspects: (i) the performance dif-
ferences and (ii) the difference between the models derived for each of the two
partitions (denoted MsplitName). The results for the three binary topic splits are
shown in Table 4.

Popularity: We observe that the recall is considerably higher for unpopular
(0.53) than for popular topics (0.41). To some extent this can be explained
when considering the amount of relevant tweets discovered for both topic splits:
while on average 67.3 tweets were found to be relevant for popular topics, only
49.9 tweets were found to be relevant for unpopular topics (the average number
of relevant tweets across the entire topic set is 58.44). A comparison of the most

12 The identifiers of the topics correspond to the ones used in the official TREC dataset.

166 K. Tao et al.

Table 4. Influence comparison of different features among different topic partitions.
There are three splits: popular vs. unpopular topics, global vs. local topics and persis-
tent vs. occasional topics. While the performance measures are based on 5-fold cross-
validation, the derived feature weights for the logistic regression model were determined
across all topics of a split. For each topic split, the three features with the highest ab-
solute coefficient are underlined.

Performace Measure popular unpopular global local persistent occasional

precision 0.3702 0.3696 0.3660 0.3727 0.3450 0.4308
recall 0.4097 0.5345 0.4375 0.4748 0.4264 0.5293
F-measure 0.3890 0.4370 0.3986 0.4176 0.3814 0.4750

Category Feature popular unpopular global local persistent occasional

keyword-based keyword-based 0.1035 0.2465 0.1901 0.1671 0.1542 0.1978

semantic-based
semantic-based 0.1029 0.1359 0.1018 0.0990 0.0808 0.1583
semantic distance 1.1850 0.5809 0.9853 0.9184 0.8294 1.1303

syntactical

hasHashtag 0.0834 0.0476 0.1135 0.0429 0.0431 0.0803
hasURL 1.2934 1.1214 1.2059 1.2192 1.2435 1.0813
isReply -0.5163 -0.5465 -0.6179 -0.4750 -0.3853 -0.7712
length 0.0016 -0.0001 0.0003 0.0009 0.0024 -0.0023

semantics

#entities 0.0468 -0.0072 0.0499 0.0107 0.0384 -0.0249
diversity -0.0540 0.1179 -0.1224 0.0830 0.0254 0.0714
negative sentiment 0.8264 0.0418 0.6780 0.3798 0.0707 0.8344
neutral sentiment 0.2971 0.2102 0.1695 0.2653 0.3723 0.0771
positive sentiment -1.0180 -0.3410 -0.7119 -0.6476 -0.6169 -0.6578

contextual
#followers 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
#lists 0.0002 0.0001 0.0002 0.0001 0.0004 0.0001
Twitter age 0.1278 0.2743 0.0477 0.2646 0.1588 0.2377

important features of Mpopular and Munpopular shows few differences with the
exception of the sentiment features. While sentiment, and in particular positive
and negative sentiment, are among the most important features in Mpopular,
these features (in particular the negative sentiment) are ranked much lower in
Munpopular. We hypothesize that unpopular topics do not evoke strong emotions
in the users so that sentiment features play a less important role.

Global vs. local: This split did neither result in major differences in the re-
trieval performances nor in models that are significantly different from each
other, indicating that—at least for our currently investigated features—a dis-
tinction between global and local topics is not useful.

Temporal persistence: It is interesting to see that the performance (all met-
rics) is considerably higher for the occasional (short-term) topics than for the
persistent (long-term) topics. For topics that have a short lifespan, recall and
precision are notably higher than for the other types of topics. In the learnt
models, we observe again a change with respect to sentiment features: while the
negative sentiment is an important indicator for occasional topics, it is among
the least important features for topics that are more persistently discussed on
Twitter.

The observation that certain topic splits lead to models that emphasize certain
features also offers a natural way forward: if we are able to determine for each
topic in advance to which theme or topic characteristic it belongs to, we can select

Twinder: A Search Engine for Twitter Streams 167

the model that fits the topic best and therefore further optimize the performance
of the Twinder search engine.

6 Conclusions

In this paper, we have introduced the Twinder search engine which analyzes vari-
ous features to determine the relevance and interestingness of Twitter
messages for a given topic. We also demonstrated the scalability of the Twinder
search engine. In an extensive analysis, we investigated tweet-based and
tweet-creator based features along two dimensions: topic-sensitive features and
topic-insensitive features. We gained insights into the importance of the differ-
ent features on the retrieval effectiveness. Our main discoveries about the factors
that lead to relevant tweets are as follows:

– The learned models which take advantage of semantics and topic-sensitive
features outperform those which do not take the semantics and topic-sensitive
features into account.

– Contextual features that characterize the users who are posting the messages
have little impact on the relevance estimation.

– The importance of a feature differs depending on the topic characteristics;
for example, the sentiment-based features are more important for popular
than for unpopular topics.

In the future, we plan to further investigate whether one can adapt the rele-
vance estimation in Twinder to the given search topics. Moreover, we would
like to study to what extent personal interests of the users (possibly aggregated
from different Social Web platforms) can be utilized as features for personalized
retrieval of Twitter messages.

Acknowledgements. The research has received funding from the European
Union Seventh Framework Programme, grant agreement no ICT 257831 (Im-
REAL project).

References

1. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: WWW, pp. 591–600. ACM (2010)

2. Teevan, J., Ramage, D., Morris, M.R.: #TwitterSearch: a comparison of microblog
search and web search. In: WSDM, pp. 35–44. ACM (2011)

3. Bernstein, M.S., Suh, B., Hong, L., Chen, J., Kairam, S., Chi, E.H.: Eddi:
interactive topic-based browsing of social status streams. In: UIST, pp. 303–312.
ACM (2010)

4. Abel, F., Celik, I., Houben, G.-J., Siehndel, P.: Leveraging the Semantics of Tweets
for Adaptive Faceted Search on Twitter. In: Aroyo, L., Welty, C., Alani, H., Taylor,
J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS,
vol. 7031, pp. 1–17. Springer, Heidelberg (2011)

168 K. Tao et al.

5. Golovchinsky, G., Efron, M.: Making sense of twitter search. In: CHI Workshop on
Microblogging: What and How Can We Learn From It? (2010)

6. Dong, A., Zhang, R., Kolari, P., Bai, J., Diaz, F., Chang, Y., Zheng, Z., Zha, H.:
Time is of the essence: improving recency ranking using twitter data. In: WWW,
pp. 331–340. ACM (2010)

7. Chen, J., Nairn, R., Chi, E.H.: Speak Little and Well: Recommending Conversa-
tions in Online Social Streams. In: CHI. ACM (2011)

8. Duan, Y., Jiang, L., Qin, T., Zhou, M., Shum, H.Y.: An empirical study on learning
to rank of tweets. In: COLING, Association for Computational Linguistics, pp.
295–303 (2010)

9. Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter
stream. In: SIGMOD, pp. 1155–1158. ACM (2010)

10. Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influen-
tial twitterers. In: WSDM, pp. 261–270. ACM (2010)

11. Jadhav, A., Purohit, H., Kapanipathi, P., Ananthram, P., Ranabahu, A., Nguyen,
V., Mendes, P.N., Smith, A.G., Cooney, M., Sheth, A.: Twitris 2.0: Semantically
Empowered System for Understanding Perceptions From Social Data. In: Semantic
Web Challenge (2010)

12. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time
event detection by social sensors. In: WWW, pp. 851–860. ACM (2010)

13. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to Ad Hoc information retrieval. In: SIGIR, pp. 334–342. ACM (2001)

14. Naveed, N., Gottron, T., Kunegis, J., Alhadi, A.C.: Bad news travel fast: A content-
based analysis of interestingness on twitter. In: WebSci. ACM (2011)

15. Tao, K., Abel, F., Hauff, C., Houben, G.J.: Supporting website with additional
material (2012), http://www.wis.ewi.tudelft.nl/twinder/

http://www.wis.ewi.tudelft.nl/twinder/

Social Event Detection on Twitter

Elena Ilina1, Claudia Hauff1, Ilknur Celik2, Fabian Abel1,
and Geert-Jan Houben1

1 Web Information Systems, Delft University of Technology
{e.a.ilina,c.hauff,f.abel,g.j.p.m.houben}@tudelft.nl

2 Middle East Technical University Northern Cyprus Campus
cilknur@metu.edu.tr

Abstract. Various applications are developed today on top of microblog-
ging services like Twitter. In order to engineer Web applications which
operate on microblogging data, there is a need for appropriate filtering
techniques to identify messages. In this paper, we focus on detecting Twit-
ter messages (tweets) that report on social events. We introduce a filtering
pipeline that exploits textual features and n-grams to classify messages
into event related and non-event related tweets. We analyze the impact
of preprocessing techniques, achieving accuracies higher than 80%. Fur-
ther, we present a strategy to automate labeling of training data, since
our proposed filtering pipeline requires training data. When testing on our
dataset, this semi-automated method achieves an accuracy of 79% and re-
sults comparable to the manual labeling approach.

Keywords: microblogging, Twitter, event detection, classification,
semi-automatic training.

1 Introduction

Twitter is a popularmicro-bloggingweb application servingmillions of users.Twit-
ter users chat and share information on news, work-related issues and community
matters [1]. Despite the noise in Twitter blogs [2], Web applications can exploit
the blogs’ content as a source of information to identify natural disasters [3], news
[2], or social events [4]. Since the existing Twitter search is cumbersome in finding
event-related information [5], a targeted search aiming at finding tweets specifi-
cally related to real-life events might be useful. The capability of searching real-life
events would be of great benefit for personalization purpose in search.

Accordingly, our motivation is to separate event-related content from the rest
of micro-posts. For this, the large volume of non-event-related messages is one
of the paramount challenges to be solved. Our approach could be used as a
first filtering step before applying other techniques for finding event-related con-
tent. The goal is to identify tweets related to real-life events, social events such
as music concerts and festivals. Based on Twitter content published by event
broadcasters, we train our classification model to distinguish social events from
other tweets. The proposed approach is based on a text classification technique,
which enables to classify content into two mutually exclusive groups.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 169–176, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

170 E. Ilina et al.

We employ the Naive Bayes classification algorithm utilizing features ex-
tracted from the Twitter messages. For training our classifier, we assume, that
the selected event broadcasters publish only event-related tweets. Tweets pub-
lished by other users are initially assigned to the Other class. We apply heuristic
rules defining the presence of event-related aspects such as time, persons in-
volved and locations. In the presence of these three aspects, the Events class
is assigned, otherwise the class Other. This semi-automatic training approach
enables automatic identification of event-related Twitter content and helps to
achieve comparable results with supervised learning approach, while reducing
efforts of manually labeling training datasets.

Our main contributions include: a semi-automatic training approach for train-
ing a classification model which assists in determining event-related tweets,
the application of a Naive Bayes classification to identify tweets related to so-
cial events based on the proposed semi-automated approach, text preprocessing
strategies to improve tweet classification outcomes, an evaluation of the semi-
automated learning approach and classifier.

2 Related Work

Twitter received much attention in recent years. Twitter data is openly available,
motivating research in social interactions on the Web, micro-blogging and data
mining. At the same time, Twitter differs from other blogging software due to its
shorter messages, facilitating up-to-date publishing [1]. Researchers have been
motivated to analyze Twitter as a source of sensory information provided by
Twitter users, reacting on real-life events such as social events [6,7] or natural
occurrences as earthquakes [3].

The most prominent works investigating event detection on Twitter are based
on statistical [3] and machine learning techniques [8,7]. Sakaki et al. [3] applied
classification and particle filtering methods to event detection from Twitter mes-
sages, reporting a significant accuracy in detecting earthquakes. Chakrabarti and
Punera [9] proposed an approach to group event-related tweets in real-time ap-
plying Hidden Markov Models. Their approach can be used for well-structured
events, but requires prior knowledge on events, participating athletes and defined
event-related hashtags. [8] applied an online clustering approach, grouping tweets
with similar content together. After manually labeling clusters as event-related
and not event-related, they trained a Naive Bayes text classifier for identifying
event-related tweets. This approach, however, requires calculating pairwise sim-
ilarities before actually identifying tweets as related to events. Popescu et al. [7]
used named entity recognition and decision trees, calculating the quantity of
found named entities in time.

Other works identify event content using other information sources besides
Twitter. Benson et al. [4] align tweets with particular events mentioned in a
city guide, employing a distant-supervision approach for training their event
classification model. Social blogging content as a source of information for user
opinions on events was investigated by [6], which created software that retrieves
tweets related to events published on the Upcoming web site.

Social Event Detection on Twitter 171

Due to the inherent lack of structure in micro-posts, Twitter is a challeng-
ing media platform to work particularly when it comes to identifying relevant
tweets [5]. Sankaranarayanan et al. [2] stated that the noise of Twitter messages
leads to large volumes of unrelated tweets, introducing an increased complexity
of events identification. None of the aforementioned works, however, investigate
in-depth the problem of identifying tweets related to social events based solely
on the tweets’ content. We close this gap by focusing on social event detection,
applying a semi-automated learning classification technique similar to [8]. In
contrast, our semi-automated classification approach is based on tweets content
and does not require additional data sources, clustering or named entity recog-
nition steps. Our approach can be used for filtering event-related content on
microblogs.

3 Social Events on Twitter

Twitter microblog posts may include any free-text, special tags or links to other
Web resources and are limited to 140 characters. This is why tweets’ content
often include abbreviations, shortened words or phrases, as well as shortened
Uniform Resource Locators (URLs). Forwarding services such as bit.ly or oil.ly
are used to decode the shortened links. Given these limitations, Twitter users
try to convey their ideas in a very concise form and make use of special labels,
so-called hashtags, for tagging the topics of their tweets. For referring to other
Twitter users or replying to them, the “@”-symbol is used.

Twitter user profiles are usually linked with profiles of other users, called
followers and friends. Twitter can be used for communicating with networking
partners, organizations, music bands and even famous people. Twitter assists in
marketing and promotion and is therefore widely used by advertising agencies
and social media broadcasters to inform on social happenings such as touring
artists or upcoming concerts.

In previous works such as [3], events are typically defined using the time and
location dimensions. Since social occasions such as music concerts involve mu-
sicians and music bands, social events can also be defined by the personalities
and/or organizations involved. Therefore, we choose to describe a social event
such as a music festival by three main dimensions: “agents involved”, “time”
and “location”. When a particular tweet does not mention all three dimensions,
missing dimensions have to be inferred from its content. For instance, we have
observed that time references were included in less than 30% of 333 tweets ran-
domly selected from our initial dataset. Only 10% of the 333 tweets mentioned
all the three event dimensions, of which 9% were event-related tweets and 1%
of tweets were not related to events. This implies that the majority of event-
related tweets contain references to these three dimensions, while most of the
tweets referring only to one dimension are likely not to be related to social events.
Overall, the largest discrepancy was detected for the combinations of event di-
mensions “Location+Artist+Time” and “Location+Time”, which were identified
9 and 6 more times respectively for event related tweets compared to non-event

172 E. Ilina et al.

related tweets. This means that time and location dimensions are paramount
for finding event-related tweets, whilst adding the artist dimension increases the
identification of event-related tweets.

4 Classification Approach

For the implementation, we adapt the standard Naive Bayes classification [10]
approach and employ n-gram features. Kanaris et al. [11] argue that character
sequence n-gram classification models are relatively resilient towards spelling
errors, do not require stemming procedures and can help in decreasing a feature
set when compared with word level n-grams. The reason for this is, that there
are more n-gram word combinations compared to the number of character n-
gram combinations defined by the number of characters used in a particular
vocabulary. The lexical benefits of the character n-grams was a motivation for
us to create the character n-gram classifier for working with Twitter data. Based
on our goal of determining if a particular tweet is related to an event or not, we
formulate the following binary classification problem:

Tweet Classification Problem: Given a tweet t ∈ T , the classification al-
gorithm is used to label the tweet as event related or non-event related by ap-
proximating the function F : T −→ C mapping tweets to their respective classes
C = {Events, Other}

Based on the Bayes theorem [10], we can calculate the probability P (C|t) of
a tweet t belonging to the class C using:

P (C|t) = P (t|C) ∗ P (C)/P (t) , (1)

with P (t|C) the conditional probability of observing tweet t in class C, P (C)
the unconditional probability of observing class C, and P (t) the probability
of observing tweet t. Next, each tweet we break into a set of n-grams, called
g1, . . . , gm. For calculating the likelihood that an n-gram appears in the class
C, we calculate the product of probabilities of all n-grams based on the Naive
Bayes assumption that n-grams appear independently from each other:

P (t|C) � P (g1|C) ∗ P (g2|C) ∗ . . . ∗ P (gm|C) . (2)

For calculating the probability of a particular n-gram g belonging to the class
C, we divide the number of times n-gram g appears in the class C by the total
number of n-grams in the class C. The likelihood of class C is computed by
dividing the total number of n-grams of the class C by the total number of
n-grams in both categories, Events and Other. Finally, we identify the largest
P (C|t), which will be the classification class (Events or Other) assigned to the
tweet t, while ignoring P (t), which is the same for both classes.

For training our classification models we consider manual and semi-automatic
labeling. In both cases, we apply several heuristic rules rather than selecting
training instances randomly. The reasoning behind this choice is that in our

Social Event Detection on Twitter 173

dataset, the ratio between “event" and “not event" tweets from the tweets sample
of 333 tweets mentioned above was 0.25. Our aim was to increase the number of
training instances while ensuring a satisfactory classification performance. For
manual labeling, we follow shortened URLs as generated by shortening services
such as bit.ly or oil.ly and considered only tweets including the sub-strings:
“/event/”, “/artists/” or “/venue/”. Interestingly, only roughly two out of three
tweets having such URLs are event-related.

For semi-automated labeling, we include the tweets of the selected event
broadcasters into our training dataset of positive instances (Events class), when
they include the mention of time concepts, references to other users, and words
starting with capital letters. For identifying time dimensions, we consider date
and time mentions, or words and phrases such as “today”, “this evening” or “this
summer”. In order to relate tweet content elements to the “involved agents” di-
mension, we consider not only accurately spelled artist names, but also their
twitter names. This way we avoid a named entity recognition step for detect-
ing artist and location names. Tweets that do not satisfy heuristic rules of the
positive class are assigned to the negative training set (Other class).

Hovold [12] demonstrated that the removal of stopwords improves classifica-
tion accuracy in the context of spam detection and that punctuation marks can
have a negative effect on classification. We experiment with removing stopwords,
punctuation marks, shortened URLs, hashtags and user mentions for selecting
our text-preprocessing strategy applied to Twitter content.

5 Evaluation

In this section we evaluate our Twitter content classification approach. We iden-
tify which of the proposed text preprocessing strategies and n-gram sizes are best
suited for manual evaluation. The selected n-gram size and text preprocessing
strategy are further applied to compare supervised and semi-automated learning
approaches.

For running our classification experiments, we created six datasets1. The
datasets have quite different proportions of “event-related” and “not event-related”
tweets (which we denote as Re ratio), due to their different origin. Datasets
TESTMIT (total number of instances N=334, Re=1) and TRAINMIT (N=2400,
Re=1) were created by selecting tweets which content overlaps with strings from
the New York city guide and provided by [4]. The rest of datasets were published
by event broadcasters having more than 1000 of followers and being included in
at least ten public lists. For each of the selected 30 broadcasters we followed
their 1000 random followers, which posted at least 200 tweets each. Datasets
TRAINauto1 (N=13615, Re=0.36) and TRAINauto2 (N=267938, Re=0.12) were
automatically labeled as described in the previous section. Datasets TRAINTUD

(N=2400, Re=1) and TESTTUD (N=333, Re=0.33) were labeled manually.
First, based on the manually labeled datasets, TESTTUD and TRAINTUD, we

have found that removal of URLs, hashtags, user mentions and punctuation marks
1 See: http://www.wis.ewi.tudelft.nl/people/elena/elenaprojects/events/

http://www.wis.ewi.tudelft.nl/people/elena/elenaprojects/events/

174 E. Ilina et al.

has a positive influence on classification performance, increasing F1-measure in
17% and accuracy from 81% to 84%. Removal of stopwords had a negative impact
on all performance metrics. Second, after removing hashtags, URLs, user mentions
and punctuation marks from tweets, we identify the best performing n-gram size
of 4, resulting in a precision of 96% of events detection for the manually labeled
dataset. Therefore, in the next experiments we employed 4-grams, we left stop-
words and removed other syntactic elements mentioned above.

Table 1 summarizes the tests we performed with cross-validation of testing and
training datasets. The first two tests were performed on manually labeled train-
ing sets and achieved an above baseline accuracy of 50%. However, in the second
test using the TESTMIT and the TRAINTUD datasets, we achieved a lower per-
formance for all metrics. Test 4 using TESTTUD testing set and TRAINMIT

training set did not achieve an accuracy of baseline accuracy value. We explain
this by the different features used for creating the classification models. Both
training sets have different historic data, while our tweets selection strategy dif-
fers considerably.

Table 1. Performance on Different Testing Datasets (percentages), where Abaseline

and Aachieved are respective accuracies

Test Testing Training Abaseline Aachieved Precision Recall F1

1 TESTMIT TRAINMIT 50 71 66 83 74
2 TESTMIT TRAINTUD 50 58 88 18 30
3 TESTTUD TRAINTUD 75 83 96 32 48
4 TESTTUD TRAINMIT 75 43 25 67 36
5 TESTTUD TRAINauto1 75 79 63 41 50
6 TESTMIT TRAINauto2 50 60 52 20 29

Figure 1 (a) shows that accuracy of classification using the semi-automatic
training improves with a growing number of training instances. After reaching
about 5000 training instances, the classification accuracy is above the baseline
classification2 accuracy of 75% when tested on the TESTTUD dataset. The F1-
measure stays above the F1-measure of the manually-trained classifier. In test 5,
we employ TESTTUD and achieve comparable results with the test 3 performed
on manually labeled dataset. We observe a drop in precision from 96% to 63%,
while, for recall and F1-measure, we have a slight improvement for the semi-
automatic training approach.

In test 6 performed on the TESTMIT dataset, we increase the number of
training instances up to 267938. As shown in the Figure 1 (b), we achieve an
accuracy of 60%, which is comparable with the accuracy achieved when using
the manual labeling approach in test 2. We achieve very similar performance
values for tests 2 and 6; however, in test 6 we observe decreased precision.
2 In our case the baseline classifier is a default classifier predicting a majority class of

non-events.

Social Event Detection on Twitter 175

(a) Test 5 (b) Test 6

Fig. 1. Semi-automatic Classification Performance

6 Conclusion and Future Work

In the foregoing, we propose a semi-automatic approach for detecting event-
related tweets. This will allow to exploit large volumes of micro-blogging content
for providing information on social events. The aim is eventually to use for in-
stance Twitter content in web applications listing concerts, taking into account
factors like a specific time or date, location or performers. For this, we use a clas-
sification approach based on Naive Bayes and n-gram features extracted from
Twitter content of event broadcasters and their followers. The training and test-
ing datasets are built up on a classifier of manually labeled tweets, with which we
achieve high precision and accuracy. Training the classifier in a semi-automatic
way using content of pre-selected broadcasters would allow to reduce manual
labeling efforts. With a growing number of training instances, the prediction
accuracy of the classifier using the proposed semi-automatic training approach
is comparable to the classifier created on a manually labeled training set. Fu-
ture work will include using the classifier with different and larger scale datasets
derived from Twitter content, developing a classifier that could outperform one
requiring manual labeling.

Acknowledgments. This work is partially sponsored by the ImREAL project
(http://imreal-project.eu).

References

1. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblog-
ging usage and communities. In: Proceedings of the 9th Workshop on Web Mining
and Social Network Analysis (WebKDD), pp. 56–65. ACM (2007)

176 E. Ilina et al.

2. Sankaranarayanan, J., Samet, H., Teitler, B., Lieberman, M., Sperling, J.:
Twitterstand: news in tweets. In: Proceedings of the 17th International Confer-
ence on Advances in Geographic Information Systems (SIGSPATIAL), pp. 42–51.
ACM (2009)

3. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time
event detection by social sensors. In: Proceedings of the 19th International Con-
ference on World Wide Web (WWW), pp. 851–860. ACM (2010)

4. Benson, E., Haghighi, A., Barzilay, R.: Event discovery in social media feeds. In:
Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics (ACL-HLT 2011), pp. 389–398. Association for Computational Linguistics
(2011)

5. Abel, F., Celik, I., Houben, G.-J., Siehndel, P.: Leveraging the Semantics of Tweets
for Adaptive Faceted Search on Twitter. In: Aroyo, L., Welty, C., Alani, H., Taylor,
J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS,
vol. 7031, pp. 1–17. Springer, Heidelberg (2011)

6. Becker, H., Chen, F., Iter, D., Naaman, M., Gravano, L.: Automatic identification
and presentation of twitter content for planned events. In: Proceedings of the 5th
International AAAI Conference on Weblogs and Social Media (ICWSM 2011), pp.
655–656. AAAI Press (2011)

7. Popescu, A., Pennacchiotti, M., Paranjpe, D.: Extracting events and event descrip-
tions from Twitter. In: Proceedings of the 20th International Conference on World
Wide Web (WWW), pp. 105–106. ACM (2011)

8. Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: Real-world event
identification on twitter. In: Proceedings of the 5th International AAAI Conference
on Weblogs and Social Media (ICWSM), North America, pp. 438–441. AAAI Press
(July 2011)

9. Chakrabarti, D., Punera, K.: Event summarization using tweets. In: Proceedings
of the 5th International Conference on Weblogs and Social Media (ICWSM), pp.
66–73. AAAI Press (2011)

10. Lewis, D.: Naive (Bayes) at Forty: The Independence Assumption in Information
Retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp.
4–15. Springer, Heidelberg (1998)

11. Kanaris, I., Kanaris, K., Houvardas, I., Stamatatos, E.: Words vs. character
n-grams for anti-spam filtering. International Journal on Artificial Intelligence
Tools 16(6), 1047–1067 (2007)

12. Hovold, J.: Naive bayes spam filtering using word-position-based attributes. In:
Proceedings of the Second Conference on Email and Anti-Spam (CEAS 2005),
Stanford University, California, USA, pp. 1–8 (2005)

Temporal Semantic Centrality for the Analysis

of Communication Networks

Damien Leprovost1, Lylia Abrouk1,
Nadine Cullot1, and David Gross-Amblard2

1 Le2i CNRS Lab, University of Bourgogne, Dijon, France
firstname.lastname@u-bourgogne.fr

2 IRISA, University of Rennes 1, France
firstname.lastname@irisa.fr

Abstract. Understanding communication structures in huge and versa-
tile online communities becomes a major issue. In this paper we propose
a new metric, the Semantic Propagation Probability, that characterizes
the user’s ability to propagate a concept to other users, in a rapid and
focused way. The message semantics is analyzed according to a given
ontology. We use this metric to obtain the Temporal Semantic Central-
ity of a user in the community. We propose and evaluate an efficient
implementation of this metric, using real-life ontologies and data sets.

Keywords: semantic analysis, centrality, community, communication
network, ontology.

1 Introduction

With the advent of the collaborative Web, each website can become a place
for expression, where users’ opinions are exchanged. User messages are valuable
for the site owner: in addition to a proof of interest for the website, they allow
the owner to understand users’judgments and expectations. However, if this
reasoning is humanly manageable on a small number of messages, it is reckless
for larger systems, handling thousands of users posting thousands of messages
per month.

Nowadays, users and community profiling is a growing challenge [1]. Many
approaches have been developed, initialy relied on a basic relationship between
users like friendship in social networks or answers / citations in social commu-
nication networks (like forums or emails).

In this paper we consider as a communication network any system where users
are able to exchange messages, such as forums, tweets, mailboxes, etc. In this
context, we first use a method for the identification of hot topics and thematic
communities. These topics are identified within user messages using a target
ontology, which can be generic or specialized for a given domain.

We then present a method for the discovery of central users who play an
important role in the communication flow of each community. For this purpose
we introduce new semantic measures called the Semantic Propagation Probability

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 177–184, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

178 D. Leprovost et al.

(SPP) and Temporal Semantic Centrality (TSC) that take into account both
semantics and communication timestamps at once.

A potential limitation of using an ontology is to limit a priori the set of
topics of interest, what may prevent the discovery on new topics. But the main
advantages is to focus the analysis on a known domain that can be extended
at will, but in a controlled way. A basic example is to understand the behavior
of a forum according to brand product ontologies. Another advantage is to rely
on the permanently increasing set of generic or specialized ontologies that are
linked to other resources or services.

The paper is organized as follows. We present hot topics and community
identification in Section 2 and our metric in Section 3. We show our experiments
in Section 4. Section 5 discusses the obtained results and Section 6 covers related
approaches. Finally, Section 7 concludes1.

2 Communication Networks and Thematic Communities

Overview. We reason according to an ontology O = (C, is − a), where C is
a set of concepts and is − a is the subsumption relation. We equip C with a
semantic similarity measure dC(c, c

′) with c and c′ in C. Let δ be a similarity
threshold. We say that two concepts are similar if their distance dC is smaller
than δ.

We consider a communication network G = (U, S), where U is a set of users
and S ⊆ U × U × N is the timed directed send relation of a message m =
(u, v, t) from user u to user v at time t. We take N as a clock for the sake
of simplicity. Perfectly simultaneous messages are possible in this model, and
their occurrence is taken into account . This simple model assumes that the
originator and receptor of a given message are known. The content function
maps a message m = (u, v, t) to its plain textual content content(m). In order to
focus on concepts in C, the contentC function maps m to the set of concepts of C
which appear in content(m). This function encompasses details like stemming.

Identifying Hot Concepts. The first step of our method is to determine
the hot topics of the communication network, as a subset of concepts of O. We
associate with each user a semantic profile. At the communication network level,
we aggregate all the user profiles to build a system profile. Hot concepts are the
top-n concepts which are most present in users’ profiles. Due to a lack of space,
we do not provide here a full description of the profile construction of the system,
which is available in our previous work [8].

Building Thematic Communities. Once hot concepts are well identified,
our goal is to divide the communication network G into k thematic communities
G1 . . . , Gk, each Gi being labeled with one set of concepts Li ⊆ C. We will filter
users according to their semantic profiles. In order to control the number of

1 A detailed version of the method is available as a technical report:
http://hal.archives-ouvertes.fr/hal-00692289

http://hal.archives-ouvertes.fr/hal-00692289

Temporal Semantic Centrality for the Analysis of Communication Networks 179

thematic communities, we allow users to be gathered according to their common
and similar concepts. The similarity of two concepts of the target ontology O is
measured using a semantic distance. We rely here on the Wu-Palmer distance [13]
restricted to concepts hierarchies (trees), which has already been applied to
similar cases [3]. The similarity is defined with respect to the distance between
two concepts in the hierarchy, and also by their position relative to the root.
The semantic similarity between concepts c1 and c2 is

simWu&Palmer(c1, c2) =
2 ∗ depth(c)

depth(c1) + depth(c2)
,

where c is the nearest top edge of c1 and c2 and depth(x) the number of edges
between x and the root. As stated in the beginning of this section, two concepts
c1 and c2 will be considered as similar if dC(c1, c2) ≤ δ, where δ is the similarity
threshold:

dC(c1, c2) = 1− simWu&Palmer(c1, c2).

We then turn to thematic communities. Let N+
i (Gi) be the in-degree of com-

munity Gi, that the number of posts from members of Gi to members of Gi

which contain concepts (similar to) a concept in Li. Conversely, let N
−
i (Gi) be

its out-degree, that is the number of posts from members of Gi to members out-
side Gi which contain concepts (similar to) a concept in Li. We can now define
a thematic community:

Definition 1. A set Gi ⊆ G is a thematic community on concepts Li ⊆ C, if,
when restricting Gi to posts that contain a concept (similar to) a concept in Li,
the in-degree of Gi is greater than its out-degree (thus, N+

i (Gi) > N−
i (Gi)).

Traditional approaches by Flake et al. [5] and various optimizations [7,4] allow us
to effectively group users linked by a binary relation in communities. We take a
leaf out of them to define a cutting method, given the resulting simplification of
the Definition 1. For each community Gi, we maintain for each user u , two sets
of messages N+

i (u) and N−
i (u), representing respectively communications inside

Gi and communications outside Gi, with concepts similar to Li. A messagemk is
considered by default inN−

i (u). Each messagemk to user u is considered initially
as unhandled. So, we add the message to N−

i (u). After that, if one or more
message ml is emitted from u, with d(ml,mk) ≤ δ. At any time, communities
are Gi = (Ui, Si) , where Ui = {u ∈ U : N+

i (u) ≤ N−
i (u)} and Si ⊆ Ui ×U ×N.

Algorithm 1 and 2 presents this community clustering.

3 Temporal Semantic Centrality

Dispersion and Lag. Inside a thematic community labeled by concepts Li, all
users are known to discuss frequently about topics of Li or similar topics. We
would like to rank these users according to their centrality, i.e. to identify the
most important information participants inside the community. In this proposal,
we base our ranking on both semantics and time. We define a temporal semantic

180 D. Leprovost et al.

Algorithm 1. Message

Require: message m,
concepts L1, . . . , Li, . . . , Lk, δ

1: for all c ∈ Li, c ∈ context(m) do
2: if m is incoming then
3: N−

i (u) = N−
i (u) ∪m

4: else
5: for all mλ to u with d(m,mλ) ≤ δ

do
6: N+

i (u) = N+
i (u) ∪m ∪mλ

7: N−
i (u) = N−

i (u)−m
8: end for
9: end if
10: end for

Algorithm 2. Communities

Require: G = (U, S), L1, . . . , Li, . . . , Lk

1: for all Gi do
2: for all u ∈ U do
3: if N+

i (u) ≤ N−
i (u) then

4: Ui = Ui ∪ u
5: end if
6: end for
7: end for

centrality, using a concept-driven measure, the semantic propagation probability,
denoted as SPP in the sequel. Globally speaking, this measure aims at capturing:

– how focused are the answers of a user according to an input post,
– how fast are these answers, relatively to the general pace of the community.

Users with a high SPP are more likely to answer or relay messages, semantically
relevant to the community.

Let us consider an oriented communication: u →t u′ →t′ u′′, which means
that there exists in the communication graph G a message m = (u, u′, t) from
u to u′ at time t, and a messages m′ = (u′, u′′, t′) from u′ to u′′ at time t′. For
t′ > t, m′ can be seen as a relay of m in a very broad sense. Globally speaking,
user u′ is impacted (in various ways) by the reception of m before sending m′.
Also, the content of m′ can be related to m or completely independent from it.
We will measure this relation so that it depends on the semantic dispersion of
the sent message, and its lag.

The dispersion of a message m according to concept c, noted dispersionc(m),
is the ratio between the minimum semantic distance between c and concepts in
m, and the maximum semantic distance between c and the concepts of the target
ontology:

dispersionc(m) =
minc′∈content(m) dC(c, c

′)

maxc′∈C dC(c, c′)
.

If the message uses concept c ∈ content(m), then dispersionc(m) = 0. Observe
also that the dispersion is at most 1. For the special case where the message has
no relevant concept (content(m) is empty), we consider that dispersionc(m) = 1.

Similarly, we define the lag between a message received by ui at time ti−1

and a message sent by ui at time ti as the duration between them, relatively to
the natural pace of the community. Indeed, some news-focused or work-oriented
communities suppose a rapid pace from its users (say hours, minutes, at most
2 days), while some technical communities may consider a month a natural
duration for a specific topic.

Temporal Semantic Centrality for the Analysis of Communication Networks 181

The meanpaceLi of a community labeled by Li is the average of the duration
of message transmission between users of the community labeled by Li:

meanpaceLi = avgm=(u,u′,t),m′=(u′,u′′,t′) with u,u′,u′′∈Gi,t′>t(t
′ − t).

The lag between two message m = (v, u, t) and m′ = (u, v′, t′), relative to the
mean pace meanpaceLj of community Gj labeled by concepts Lj is defined by:

lag(m,m′) =

{
∞ if t′ ≤ t,

t′−t
meanpaceLj

otherwise.

Note that the infinite lag is used to enforce communication chains with an in-
creasing timestamp and to discard simultaneous messages (t = t′).

Semantic Propagation Probability and Temporal Semantic Central-
ity. We can now turn to the definition of the Semantic Propagation Probability
(SPP). The SPP of user u according to messages m and m’ is defined by:

SPPc(u,m,m′) =
(1− dispersionc(m)× dispersionc(m

′))

1 + lag(t, t′)
.

For example, a user receiving a message talking about c and sending a message
about c immediately after (that is t′ ≈ t in our discretized model), has a SPPc

arbitrary close to 1.
Finally, the temporal semantic centrality TSCLi(u) of user u within the com-

munity labeled by Li is computed on all incoming and sent messages of u:

TSCLi(u) = avgc∈Li

(∑
m=(u,u′,t)∈G

∑
m′=(u′,u′′,t′)∈G,t′>t

SPPc(u,m,m′)
)
.

Approximation for Efficiency. In our implementation of SPPc, the semantic
distance is computed in two phases. An initial phase, done once per ontology,
builds an index matching each concept to its ancestor and depth in the ontol-
ogy. In the second phase, for a new message with at most k distinct concepts,
the computation of its dispersion according to concept c requires k queries to
the index. The overall computation time is then O(kM), where M is the total
number of hot concepts.

Computing the TSC naively is a time consuming operation, as (1) the ontol-
ogy may be extremely large and (2) all incoming messages have to be matched
with all potential outcoming messages. For the first difficulty, we focus on the
identified hot concepts, and compute the set of concepts in the relevant neigh-
borhood of at least one of them (that is, with a semantic distance smaller than
the prescribed relevance threshold).

For the second difficulty, it should be observed that a message can impact
the TSC only during a short time window, due to the lag function. Outside this
window, the TSC contribution is close to zero. This suggests a sliding-window
algorithm, where only a finite set INBOX(u) of mesages recently received by
u is kept in main memory. Outcoming messages are then compared to messages
in this window.

182 D. Leprovost et al.

4 Experiments

Data Sets. We have taken as a data source the Enron Email data set2 for its
complete communication network with a send relation and precise timestamps.
This data set consists in emails collected from about 150 users, mostly senior
management of Enron, made public by US federal authorities during its investi-
gation on Enron scandal. The set contains a total of about 500’000 messages.

Ontology. We use WordNet as an ontology, with the hypernym relation playing
the role of the is − a relation, and the entity synset as root. We perform a
relational mapping of the resulting ontology.

Communities. As explained in the model, we parse every mail, and extract
their main topics. We generalize and summarize them, to obtain the top concepts.
We extract and cluster the main community topics, as shown in Table 1.

Table 1. Concept clusters of communities

rank concepts rank concepts

#1 {market,services,providence,questioning,management} #6 {time,change}
#2 {forward,informant,attache,reporter} #7 {company,business}
#3 {pleasing,contraction} #8 {newness}
#4 {subjectivity} #9 {thanks}
#5 {energy,gas} #10 {power}

Temporal Semantic Centrality. Based on this clusters, we compute SPP
and centralities for each community. Table 2 shows results for one of them. It is
interesting to note that the centrality does not appear to be directly related to
activity (set of posts) within the community. The best example is the announce-
ment address. Despite a strong activity in each of the identified communities,
it does not have any centrality. This reflects the fact that if it writes to all,
no one communicate with it. It is therefore absent of any communication path
identified.

Table 2. Centralities of #1{market,services,...} community

login N+ −N− centrality position

kate.symes 4310 5438 Employee

kay.mann 14332 3208 Assistant General Counsel

vince.kaminski 8432 1170 Managing Director for Research

. . .
steven.kean 4571 348 Vice President & Chief of Staff

. . .
enron.announcements 7284 0 Mailing list

2 Available at http://www.cs.cmu.edu/~enron/

http://www.cs.cmu.edu/~enron/

Temporal Semantic Centrality for the Analysis of Communication Networks 183

5 Discussion

Community Analysis. The implementation on the Enron data set allows us
to compare our results with the reality of this company and its communication
network. An interesting point about this is that although the data set contains
a high proportion of spam, no content of this type has emerged from the anal-
ysis. This is a great advantage of taking into account the semantic centrality
compared to simple raw frequencies. It is also interesting to note the role of se-
nior managers. Although their communication is important, and their centrality
honorable, they are rarely well positioned in our ranking. This can be explained
by their position in the company. As leaders, they are often the start or the end
of the communication chain. That is why the best centrality is often held by an
employee. We speculate that central employees seem to be those responsible for
secretarial outsourced tasks: requiring strong two-ways communications, such
tasks become the centers. But the lack of data on staff assignments in the data
set does not allow us to validate this conclusion further.

Properties of TSC. It should be observed that a user forwarding received
emails systematically will be granted a high TSC. Indeed, this centrality does
not measure information addition to a message, but the probability to transmit
information efficiently. We identified in this respect the forwarding robot of En-
ron emails as a central “user”. This robot is central as it represents a efficient
way of propagating messages. Second, we do not favor explicitely co-occurrences
of concepts in emails. For example, it seems natural to weight higher a user
who conveys concepts {a, b} ∈ Li in a unique message m1 rather than a user
conveying a then b in two distinct messages m2 and m3. But the definition of
SPP takes this co-occurrence into account, as m1 will contribute twice with the
same lag, and m2 (resp. m3) will contribute once, with a longer lag (unless m2

and m3 are simultaneous).

6 Related Work

Models have been proposed to modelize users’ influence applying data mining
techniques [11], or centrality metrics [6]. We differ from their approaches by the
incorporation of a structured semantics, the role of each user in the commu-
nication, and the incremental possibilities of our computations. Several studies
have focused on the importance of comment activity on blogs or news sites [9]
and highlight the social role of comments. It allows to determine popular topics,
conflicts of opinion [10], or relational implications between users [2]. Different
approaches focus on mapping the user interests to an ontology [12], based on the
user’s Web browsing experience. Our method relies on richer users contributions
(posts), with a common ontology for all users.

7 Conclusion

We presented in this paper an approach to detect central users in a communica-
tion network by building semantic-driven communities and evaluating message

184 D. Leprovost et al.

quality. For this purpose, we have introduced a new measure, the Semantic Prop-
agation Probability to take into account semantic accuracy and time delay. As a
future direction, we will consider the transformations that a message undergoes
in a communication path, in order to find the user’s position (adviser, accoun-
tant, etc.), or determine the user’s capabilities like computation, correction, etc.

References

1. Bilenko, M., Richardson, M.: Predictive client-side profiles for personalized ad-
vertising. In: ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD), pp. 413–421. ACM, New York (2011)

2. De Choudhury, M., Mason, W.A., Hofman, J.M., Watts, D.J.: Inferring relevant
social networks from interpersonal communication. In: International Conference on
World Wide Web (WWW), pp. 301–310. ACM, New York (2010)

3. Desmontils, E., Jacquin, C.: Indexing a web site with a terminology oriented ontol-
ogy. In: International Semantic Web Working Symposium, pp. 181–198. IOS Press
(2002)

4. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense
communities in the web. In: International Conference on World Wide Web
(WWW), pp. 461–470. ACM, New York (2007)

5. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communi-
ties. In: ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 150–160. ACM, New York (2000)

6. Fuehres, H., Fischbach, K., Gloor, P.A., Krauss, J., Nann, S.: Adding Tax-
onomies Obtained by Content Clustering to Semantic Social Network Analysis. In:
Bastiaens, T.J., Baumöl, U., Krämer, B.J. (eds.) On Collective Intelligence. AISC,
vol. 76, pp. 135–146. Springer, Heidelberg (2010)

7. Ino, H., Kudo, M., Nakamura, A.: Partitioning of web graphs by community topol-
ogy. In: International Conference on World Wide Web (WWW), pp. 661–669.
ACM, New York (2005)

8. Leprovost, D., Abrouk, L., Gross-Amblard, D.: Discovering implicit communities
in web forums through ontologies. Web Intelligence and Agent Systems: An Inter-
national Journal 10, 93–103 (2011)

9. Menchen-Trevino, E.: Blogger motivations: Power, pull, and positive feedback. In-
ternet Research 6.0 (2005)

10. Mishne, G., Glance, N.: Leave a reply: An analysis of weblog comments. In: WWW
2006 Workshop on the Weblogging Ecosystem (2006)

11. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral market-
ing. In: ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 61–70. ACM, New York (2002)

12. Sieg, A., Mobasher, B., Burke, R.: Web search personalization with ontological user
profiles. In: ACM Conference on Information and Knowledge Management, CIKM
2007, pp. 525–534. ACM, New York (2007)

13. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Association for Com-
putational Linguistics (ACL), pp. 133–138. Association for Computational Linguis-
tics, Stroudsburg (1994)

Systematic Evolution of WebML Models
by Coupled Transformations

Manuel Wimmer, Nathalie Moreno, and Antonio Vallecillo

Universidad de Málaga, Spain
{mw,moreno,av}@lcc.uma.es

Abstract. Model-driven Web Engineering is an effective approach for improv-
ing the development of Web applications by providing appropriate abstraction
mechanisms and different viewpoints. However, maintaining existing Web mod-
els still presents some significant research challenges. In particular, maintenance
and evolution tasks are based on fine-grained atomic changes, and there is no
automated reconciliation support for change propagation among viewpoints. In
this paper we present an approach based on coupled transformations to ease the
evolution of content models and the corresponding reconciliation of dependent
hypertext models. The approach is illustrated by using the well-known Extract-
Class refactoring for WebML models.

1 Introduction

Model-driven Web Engineering (MDWE) [13] is an effective approach to Web appli-
cation development that uses models, metamodels, and model transformation as key
elements of the development process. It incorporates a higher level of abstraction in
the specification of systems guided by the separation of concerns principle using view-
points that allows the (semi)-automated derivation of the final implementation code
from platform-independent multi-viewpoint specifications. In this sense, existing Web
engineering approaches such as WebML [1] and UWE [11] to name just a few (for a
survey, cf., [15]) match the MDWE principles.

Most MDWE approaches identify three key viewpoints for the design of Web appli-
cations: content, hypertext, and presentation. Although these viewpoints are separately
specified and developed, they are not completely independent. For instance, the hyper-
text models reference elements defined in content models, because they describe how
to navigate through the content model. Maintaining manually these references and the
consistency between the different viewpoints is a cumbersome task, for which there
is little automated support. Furthermore, the integration and synchronization of multi-
viewpoint systems is an open issue, not only in MDWE but also in other application
fields of model-driven engineering in general [7].

The maintenance and evolution of Web models in the majority of MDWE approaches
is currently hampered by two main shortcomings: (i) missing evolution support, since
changes are applied and identified at very low level of abstraction (basically as atomic
changes to the model elements such us additions, deletions, and updates); (ii) missing
reconciliation support, since the propagation of changes among viewpoints is currently

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 185–199, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

186 M. Wimmer, N. Moreno, and A. Vallecillo

difficult and cumbersome because the reconciliation is also achieved by manually ap-
plying atomic changes.

To tackle these shortcomings, we propose to manage the evolution of content mod-
els by using coarse-grained changes, which are specified as model transformations.
To reason about the impact of the coarse-grained content model changes, we specify
the changes by stating not only the structural transformation of content models, but
also the implications for their instances, i.e., the data of the Web application, by apply-
ing coupled model transformations [12] for the instance models. This approach allows
describing in a precise way the semantics of the coarse-grained changes—which is a
prerequisite for reasoning about the reconciliation of dependent hypertext models.

Based on the coarse-grained content model changes, we present a catalogue of rec-
onciliation patterns for hypertext models specified as coupled model transformations.
As an example, we present how hypertext models have to co-evolve when a content
model evolve by an ExtractClass refactoring. This catalogue of reconciliation patterns
is based on the core modeling elements of Web modeling languages, which have been
jointly developed in the MDWEnet initiative [14,18]. For demonstrating the proposed
approach, we use WebML as selected MDWE protagonist. Although the presented (cou-
pled) transformations are specific to WebML, the used modeling concepts are shared by
the majority of MDWE approaches. Thus, they results are not limited to WebML but
may be also transferred to other MDWE approaches. As a spin-off, during our investi-
gations we explored some limitations of WebML for which we propose two extensions.

This paper is structured as follows. Section 2 briefly outlines WebML and introduces
the running example used throughout the paper. Then, Section 3 presents our approach
and Section 4 describes the catalogue of reconciliation patterns for hypertext models
when ExtractClass refactorings have been applied on content model. Finally, Section 5
relates our work to similar approaches and Section 6 concludes.

2 Background: WebML By-Example

WebML describes Web applications with three viewpoints: content (data), hypertext
(navigation between pages), and presentation (look&feel). The content model is spec-
ified using an Entity-Relationship model (or, equivalently, a simplified UML class di-
agram), comprising classes, attributes, single inheritance, and binary relationships as
shown in the WebML metamodel (cf. Fig. 1). The front-end is specified using the hy-
pertext model, which is structured into pages.

Pages are the basic interface containers: they can be structured in sub-pages and
comprise content units. A content unit is defined as a component that publishes some
content in a page; the published content can be extracted dynamically from the objects
specified in the content model or specified statically in the hypertext model (e.g., an
entry form consisting of multiple input fields). In addition to content units, WebML
provides operation units, defined as components for executing commands (mostly on
the database). Operation units, unlike content units, do not publish content and thus
are positioned outside pages. Components (content and operation units) may have input
and output parameters (e.g., the OID of the object to display or modify, etc.). Parameter
passing is expressed as a side effect of navigation (values are transported from source

Systematic Evolution of WebML Models by Coupled Transformations 187

Content

Hypertext

source

Linkparameter

passing : Bool

Link

transport: Bool

SrcElement TrgElement LinkableElement

target
1 1

links0..*

linkpars

0..*

to
1

Navigation

TrgElement

SelectorConditionSelector
cond

1..*

RelCondition AttCondition KeyCondition

Relationship Attribute Imported
Attribute

rel
1

att
0..1

impAtt
0..1

path : String

DataSelection

LinkableElement

Page

Hypertext
Model

pages0..*

EntryUnit

Field Attribute

SrcElement

Selector

ContentUnit
0..*

units DisplayUnit

DataUnit IndexUnit
0..*

fields

0..1
selector

0..*
attribute

LinkableElement

OperationUnit

Link

KOLink OKLink

Transaction
Unit

Entity
ManagementUnit

Relationship
ManagementUnit

Selector

Selector
Condition

TrgElement

Assignment

Attribute

RelationshipConnectUnit
CreateUnitClass

class
1

rel
1

att
1

selector

srctrg

units
0..*

Hypertext
Model

units
0..* assignments

0..*

ContentManagement

1

1

1

Content
Model

Class

Attribute

Relationship

Role1

Role2

relationships

0..*
classes

0..*

src

1

trg

1

attributes
0..*

src
1

trg
1

Instances

Instance
Model

Link Object Value

AttributeRelationship Class

links
0..*

values

0..*

att
1class

1
rel
1

src

1

1

trg

objects
0..*

Fig. 1. Excerpt of the WebML Metamodel

elements of link parameters to their targets): components are connected by links, which
have a threefold purpose: enabling the user’s navigation, supporting the passage of pa-
rameters, and triggering the execution of components. In particular, OK links and KO
links are output links of operations, respectively followed after execution success or
failure. How all these concepts are related to each other is illustrated in an excerpt of
the metamodel shown in Fig. 1.

Running example: The Agenda system. At the beginning, this Web application was
designed with the only goal of allowing users to maintain a simple list of contacts.
Following the WebML methodology, the content and hypertext models were designed
as shown in Fig. 2. Given the simplicity of our requirements, one class was enough to
store the contacts’ information and, based on it, the hypertext model was established,
comprising a DataUnit and an IndexUnit for retrieving information from the content

188 M. Wimmer, N. Moreno, and A. Vallecillo

Family
oid
familyName

Person
oid
firstName

1:10..*
Person2Family

Person
oid
firstName
familyName

AddClass Family
AddRel Person2Family
Delete Person.familyName
Add Family.familyName

Co
nt
en
t V2Changes

Hy
pe

rt
ex
t

V1

Person
Entry

PersonEntryPage

Person
<firstName := FName>
<familyName := LName>

Fname
LName

KO

OK

Create
Person poid

1

ShowPerson

ResultPage

ShowRelatives

[familyName:=
FamilyName]

Family
Name

[OID:=poid]

3

4
Person

show(firstName)
Person

show(firstName,
familyName) 2

Fig. 2. Running Example: Content Model Evolution and Impact on Hypertext Model

model as well a CreateUnit and an EntryUnit for inserting and storing information.
However, the content model was later revised to add, among other changes, the Family
class for grouping contacts based on their family ties. This meant to extract a class from
the Person class, and to move the attribute familyName from Person to the new class.

When describing the changes as refactorings, this high-level of abstraction is the
natural way in which modelers usually thinks and discuss about a system evolution.
However, when these changes are detected by any of the existing model difference
tools, what we obtain is a very large number of atomic changes that need to be applied
to the individual model elements (AddClass Family, AddRel Person2Family, Delete
Person.familyName, Add Family.familyName, etc.). Understanding and manipulating
atomic changes to propagate them from one view to the rest can become a complex and
brittle task. Just thinking about, e.g., the ExtractClass refactoring that we have previ-
ously mentioned. In order to guarantee that the hypertext model still works as before,
the modeler has to adjust several elements in the hypertext model (around 22 atomic
changes as we shall see later) for this small example because of four issues:

1. The CreateUnit has an assignment to the attribute familyName (cf. 1 in Fig. 2)
which is now no longer contained the class Person. In WebML, only attributes
contained by the class which is referenced by the CreateUnit can be used in as-
signments. Furthermore, the CreateUnit is only able to produce a Person instance,
but actually, also a Family instance is needed that is linked to the Person instance to
populate the same information in the database for the given inputs of the EntryUnit.

2. The DataUnit shows two attributes, namely firstname and familyname (cf. 2 in
Fig. 2). However, as mentioned before, the attribute familyName is no longer avail-
able in the class Person. As for CreateUnits, also DataUnits can only use attributes
which are directly contained by their referenced class.

3. The automatic transport link between the DataUnit and the IndexUnit comprises a
LinkParameter transferring the familyName value (cf. 3 in Fig. 2) from the source
unit to the target unit. However, this value is not accessible in the source unit.

4. A similar issue arises for the SelectorCondition of the IndexUnit which also ac-
cesses the moved attribute familyName.

Systematic Evolution of WebML Models by Coupled Transformations 189

THypertext
Model V0

Hypertext
Model V1

TContent
Model V0

Content
Model V1

T
Instance
Model V0

Instance
Model V1

«depends_on» «depends_on»

«depends_on» «depends_on»«is_coupled»

«is_coupled»

Fig. 3. Coupled Transformations for Web Model Evolution at a Glance

3 Transformations for Web Model Evolution: An Overview

In WebML, the content model is the cornerstone around which all other views are artic-
ulated. This fact is not a particular feature of WebML, but shared by most modeling ap-
proaches for data-intensive Web applications. So, given its importance, we have focused
our research on the evolution of Web application models when evolution is triggered by
the content model.

Fig. 3 illustrates our proposed approach for the systematic evolution of Web mod-
els when coarse-grained content model changes are applied. While the upper area of
this figure is concerned with the reconciliation of the changed content model and the
initial hypertext model, the lower area is dealing with the co-evolution of the content
model and its instances. So to speak, we have initiator changes on the content mod-
els expressed as model transformations, and reconciliation changes for the instance
models and hypertext models expressed as coupled model transformations [12], which
are transformations that involve multiple software artefacts, such that changes in one
artefact trigger co-changes in other artefacts.

3.1 Coarse-Grained Content Model Changes as Transformations

A transformation describing a coarse-grained change is much more than a set of atomic
changes. In fact, its definition includes pre- and post-conditions which have to be ful-
filled for an appropriate application. A natural way of implementing coarse-grained
changes is by means of in-place transformations. As a matter of fact, the term in-place
transformations stands for transformations rewriting a model, as opposed to producing
a model from scratch which is done by out-place transformations.

In-place transformations can be described in many ways. Rule-based descriptions
are elegant and easy to understand. Such descriptions have declarative model rewriting
rules as their primitive building blocks. A rule consists of a Left Hand Side (LHS)
pattern that is matched against a model. If a match is found, this pattern is updated,
in the model, based on what is specified in the Right Hand Side (RHS) of the rule.
Additionally, Negative Application Condition (NAC) patterns may be used, specifying
which patterns should not be found in the model (match for non-existence) for applying
the rule.

Coarse-grained changes such as refactorings are implemented by specifying its pre-
and post-conditions as well as the actions that have to be executed for applying the

190 M. Wimmer, N. Moreno, and A. Vallecillo

(a) Graph Transformation for ExtractClass (base:Class, toBeMoved:Attribute)
LHS RHS

base:Class

toBeMoved:Attribute

atts

base:Class extracted:Class

toBeMoved:Attribute

atts

r1:Relationship
name = base.name +“2“
+ extracted.name

ro1:Role1 ro2:Role2

name = userInput()

LHS RHS

(b) Instance co evolution for ExtractClass

base:Class

base:Object

v1:Value

toBeMoved:Attribute

extracted:Class

r1:Relationship

base:Class

base:Object

v1:Value

toBeMoved:Attribute

extracted:Class

r1:Relationship

extracted:Object

l1:Link

src

trg

src trg

minCard = … minCard = …

class

values

att

atts

trgsrc

atts

att

classclass

src trg

src trg

values

rel

Fig. 4. Formalization of ExtractClass Refactoring

change. Most of them need also some input parameters that should be properly instanti-
ated by the user. Let us go back to our example. The corresponding graph transformation
rule for the refactoring ExtractClass is depicted in Fig. 4(a). Thereby, the LHS of the
rule represents the pre-condition of the operation and the post-condition is specified in
the RHS whereas actions that are going to carry out are implicitly defined in both sides.
More precisely, the execution of a transformation rule produces the following effects:
(i) all elements that only reside in the LHS are deleted; (ii) all elements that only exist
in the RHS are added, and (iii) all elements that reside in both sides are preserved. To
mark that an element in the RHS is equivalent to an element in the LHS, both elements
must have the same identifier. Note that the ExtractClass refactoring requires that a
class and an attribute are given as input by the user.

The graph transformation rules that describe the content model changes may be cou-
pled with other rules which take care of the reconciliation of the existing instances for
the content model (cf. Fig. 3). This coupling is a crucial aspect, because the semantics
of the content model changes are described by the corresponding changes on the in-
stances. For example, moving an attribute from one class to the other can have several
meanings, depending on the intended behaviour on the instances: either the attribute is
supposed to be deleted and then created (and therefore the values for the old attribute
are lost, and the newly created attribute gets fresh values), or the attribute is supposed
to be moved (and hence the values of the attribute should not be deleted but reused for
the newly introduced attribute).

Systematic Evolution of WebML Models by Coupled Transformations 191

3.2 Instance Reconciliation as Coupled Transformations

If instances of content models are again considered as models, transformations can be
applied for their reconciliations. To represent instance models on a conceptual level,
we reuse UML object diagrams for modeling objects (instances of classes), values (in-
stances of attributes), and links (instances of relationships). Thus, we have included in
the WebML metamodel a package for modeling instance models (Fig. 1).

Considering again the ExtractClass refactoring, expressing the effect at the instance
level, a coupled transformation is needed. Fig. 4(b) shows the effect on the instance
model as a transformation rule. For each object of the base class (which stands for an
arbitrary class on which an ExtractClass refactoring has been applied), an additional
object of the extracted class is created and linked to the base object. Finally, the value
of the moved attribute is shifted from the base object to the extracted object.

The benefits of having a conceptual representation of the instance level evolution is
twofold. First, the intend of the refactoring is concisely represented by stating the effects
on the instances, thus we have the basis for reasoning on the impact of the change
on the hypertext level. Second, the conceptual representation may be used to derive
platform specific reconciliation rules, e.g., SQL-based migration rules for relational
data, automatically.

3.3 Hypertext Reconciliation as Coupled Transformations

It is likely that reconciliations in the hypertext models are necessary when the un-
derlaying content model has been changed. In this sense, the hypertext model has to
be reconciled to guarantee interaction requirements supported by the system before
evolution.

Some effects that content model evolution implies on the hypertext model may be
easily inferred by looking at broken correspondence links between hypertext and con-
tent model. Let us consider the ExtractClass refactoring. In the hypertext, all Units that
reference the moved attribute (for applying any CRUD operation on it) need to be split
into two in order to consider the new container of the attribute, i.e., the Family class.
To preserve the system’s initial navigation structure and behavior, added elements on
the hypertext model must be properly linked by using suitable navigation links. In next
section, we will explain in detail how coupled transformations are used to reconcile
hypertext models with evolved content models.

4 Co-evolution Patterns for WebML Hypertext Models

When propagating changes from content models to hypertext models, equivalence prop-
erties have to be preserved for the initial hypertext model (H) and the revised version
(H ′) such that the observable behavior of the Web application is equivalent between H
and H ′ from a user point of view. In particular, we have derived three equivalence prop-
erties which are directly related to the three core behavioral element types of hypertext
model, namely ContentUnit, OperationUnit, and Link shown in Figure 1:

192 M. Wimmer, N. Moreno, and A. Vallecillo

– Amount of information per page. The content units located in a page should
display in total the same amount of information in H and H ′, i.e., the same attribute
values have to be shown on the page before and after evolution for given input
values.

– Effects on the database. Having a set of input values for a operation unit in H
should have the same effect as having these input values for the corresponding
sequence of operation units in H ′. This means, when a operation unit in H is
executed on the initial content model and the data is subsequently migrated to the
new content model, it should lead to the same result as executing the corresponding
sequence of operation units in H on the new content model.

– Navigation paths. If a node b is reachable from node a in H then node b has to be
reachable from node a in H ′ with the same parameter values transported.

In the following, we present co-evolution patterns for reconciling hypertext models af-
ter a ExtractClass refactoring has been executed in the associated content model. The
co-evolution patterns are described by recapturing the issue that has to be resolved in
the hypertext model, the reconciliation strategy, and the corresponding graph transfor-
mation rule.

4.1 Rule 1: CreateUnit Reconciliation

Issue: A CreateUnit refers to a Class in the content model on which the ExtractClass
refactoring has been executed. As a result, the moved attribute may be used in an
assignment of the CreateUnit; a situation which does not represent a valid model
structure in WebML. Furthermore, to preserve the operational semantics of the hy-
pertext model, not only an instance of the base class has to be created, but also an
instance of the extracted class linked to the instance of the base class is needed.

Reconciliation Strategy: In addition to the already existing CreateUnit for instanti-
ating the base class, an additional CreateUnit for instantiating the extracted class
and a ConnectUnit for linking instances of the base class and of the extracted class
have to be introduced. Furthermore, to guarantee the same behavior as before the
evolution, a TransactionUnit has to be introduced which contains all three opera-
tion units. This ensures that only when all three units are successfully executed, the
complete information is populated in the database —which corresponds to behavior
of the initial hypertext model where one CreateUnit is responsible for populating
the complete information at once. Furthermore, the assignment of the attribute that
has been moved to the extracted class has to be moved to the new CreateUnit.

Transformation Rule: The transformation rule1 for co-evolving the hypertext models
based on the mentioned adaptation strategy is illustrated in Fig. 5. The newly in-
troduced elements in the hypertext model are shown in green background color.
The content model elements are shown in gray background color. As is illustrated,
additional OperationUnits connected by OKLinks are introduced to simulate the
behavior of the single CreateUnit in the initial version. The KOLink is moved from
the CreateUnit to the TransactionUnit which ensures if one single unit fails, the tar-
get of the KOLink is shown to the user. Finally, also the source of the initial OKLink
is relinked to the last unit of the transaction.

1 LinkParameters and SelectorConditions are not shown due to space limitations.

Systematic Evolution of WebML Models by Coupled Transformations 193

cr1:CreateUnit

l1:OKLink

le1:Linkable

Element

base:Class

r1:Relationship

extracted:Class moved:Attribute

a1:Assignment

l2:KOLink

cr1:CreateUnit

l1:OKLink

le1:Linkable

Element

base:Class

r1:Relationship

extracted:Class moved:Attribute

a1:Assignment

l2:KOLink t1:TransactionUnit

cr1:CreateUnit

l3:OKLink

co1:ConnectUnit

l4:OKLink

src trg
atts

class

assignment

att

links to
links

src trg

atts
class

assignment

att

to

links

linkslinks
to

links
tounits

units units

class

rel

LHS

RHS

Fig. 5. Co-evolution pattern for CreateUnits affected by ExtractClass refactorings

du1:DisplayUnit

d1:DisplayUnit d2:DataUnitl1:Link s:Selector

c:RelConditionp1:LinkPar

atts

links

linkpars

source
target

to selector

cond

base:Class

r1:Relationship

extracted:Class a1:Attribute

src trg
atts

class

atts

base:Class

r1:Relationship

extracted:Class a1:Attribute

src trg
attsclass

class

rel

Fig. 6. Co-evolution pattern for DisplayUnits effected by ExtractClass refactorings

4.2 Rule 2: DisplayUnit Reconciliation

Issue: A DisplayUnit refers to a Class in the content model which has been effected
by the ExtractClass refactoring and displays the attribute which has been moved to
the extracted class. As for CreateUnits, a DisplayUnit can only refer to attributes
which are directly contained by the referenced class.

Reconciliation Strategy: In order to display the value of the moved attribute, a Data-
Unit has to be introduced which is able to display the attribute, i.e., which refers to
the extracted class. This means, also an additional TransportLink has to be created
to navigate the relationship from the base class to the extracted class to find the
appropriate instance which contains the value to display. The DataUnit shows the
moved attribute and is included in the page containing the initial DisplayUnit.

Transformation Rule: The transformation rule for this strategy is shown in Fig. 6.

194 M. Wimmer, N. Moreno, and A. Vallecillo

d1:DisplayUnit l1:Link
p1:LinkPar

le1:LinkabelElement
links

to

linkpars

d1:DisplayUnit l1:Link

p1:LinkPar

le1:LinkabelElement

source

links to

linkpars

l3:Link
s1:SelectorUnitl2:Link

rc1:RelConditionp2:LinkPar

links
links

to

linkpars

source

target

to

cond

base:Class

r1:Relationship

extracted:Class a1:Attribute

src trg
atts

class source

base:Class

r1:Relationship

extracted:Class a1:Attribute

src trg
atts

class

rel

class

Fig. 7. Co-evolution pattern for Source Elements of LinkParameters effected by ExtractClass
refactorings

4.3 Rule 3: LinkParameter.source Reconciliation

Issue: A Link may use an Attribute as a source element for a LinkParameter which is
no longer accessible for the source of the Link, because it has been moved to the
extracted class. Again, the same constraint applies that units cannot access elements
outside their referenced classes.

Reconciliation Strategy: In order to transfer the necessary input for the target of the
Link, a work-around using a so-called SelectorUnit is required. A SelectorUnit is
used to access the attribute and transports the value of the attribute to the target of
the Link, however, the processing of a SelectorUnit does not effect the user interface
of the Web application. This additional unit is needed, because the initial source unit
of the link is not able to access the moved attribute. But it is possible to access the
extracted class by using the relationship between the base class and the extracted
class, but it is not possible to access its features directly. Thus, the access of the
moved attribute is delegated to the SelectorUnit which receives the extracted class
instance from which it retrieves the requested attribute value.

Transformation Rule: The transformation rule for reconciling source elements of link
parameter which are no longer accessible is shown in Fig. 7.

4.4 Rule 4: LinkParameter.target Reconciliation

Issue: A moved Attribute is used as a target element of a LinkParameter which is no
longer accessible for the target of the Link, because it has been moved to the ex-
tracted class (inverse case to Rule 3). This case is typically concerned with AttCon-
ditions of Selectors, which act as target elements for LinkParameters.

Reconciliation Strategy: In order to the use again the target element for the LinkPa-
rameter, the AttCondition has to point to a so-called ImportedAttribute instead of
normal Attribute. By using ImportedAttributes it is possible to access information

Systematic Evolution of WebML Models by Coupled Transformations 195

d1:DisplayUnit

base:Class

r1:Relationship

extracted:Class a1:Attribute

s1:Selector ac1:AttCondition

path = r1.name +

“.“ + a1.name

src trg
atts

class

att

condselector

d1:DisplayUnit s1:Selector ac1:AttCondition
condselector

LHS

RHS

base:Class

r1:Relationship

extracted:Class a1:Attribute

src trg
atts

class

ia1:Imported

AttributeimpAtt

Fig. 8. Co-evolution pattern for Target Elements of LinkParameters effected by ExtractClass
refactorings

outside the referred class. Thus, we employ this concept to access the moved At-
tribute by following the relationship from the base class to the extracted class.

Transformation Rule: As can be seen in Fig. 8, the link from the AttCondition to the
moved Attribute is substituted by a link to an ImportedAttribute. In particular, the
path to the moved attribute is calculated by concatenating the relationship name
(r1.name) followed by the point operator (used to access the features of the target
class) and the name of the moved attribute (a1.name).

4.5 Application to the Running Example

When applying the presented coupled transformation rules exhaustively (i.e., the model
is rewritten until no further match can be found) on the running example, we end up
with a hypertext model illustrated in Fig. 9. In particular, when the rules are applied in
the order they are presented, the initial hypertext model is rewritten from left to right.
First, the CreateUnit is rewritten by Rule 1 into a TransactionUnit covering the three
OperationUnits. Second, the ShowPerson DataUnit is split by Rule 2 into two DataU-
nits, one visualizing the firstName attribute value and the other the familyName attribute
value of the created person. Third, Rule 3 substitutes the Link between the ShowPer-
son DataUnit and the IndexUnit by one Link activating a SelectorUnit for retrieving
the family instance for the transferred person instance, followed by another Link which
is transferring the familyName attribute value from the SelectorUnit to the IndexUnit.
Finally, the AttCondition of the IndexUnit is rewritten from a “standard” attribute to an
ImportedAttribute (cf. Person2Family.familyName) by Rule 4.

4.6 Critical Discussion

The reconciled hypertext model allows to work with the new content model version in
an equivalent way as the initial hypertext model worked with the initial content model
w.r.t. the three stated properties in the beginning of this section. However, there are
also some minor differences concerning the structure of the Web pages. Because it
is not possible to use the notion of ImportedAttributes for showing attributes residing
outside the classes referenced by DisplayUnits, some additional DisplayUnits have to
be introduced in the hypertext model. This has an effect on the presentation models

196 M. Wimmer, N. Moreno, and A. Vallecillo

Person
Entry

PersonEntryPage
Fname
Lname+

KO

OK

Person
<firstName := Fname>

Create
Person

Family
<familyName := LName>

Create
Family

OK

<Person2Family>
<Person.oid = poid>
<Family.oid = foid>

OK

ResultPage

ShowFamily
Lname

poid

foid

poid

foid=
Person2Family.oid

[OID:=foid]

[Person2Family.
familyName:=
FamilyName]

Family
Name

GetFamily

[OID:=foid]
?

ShowPerson

Person
show(firstName)

ShowRelatives

Family

[OID:=poid]

Person
show(firstName)

Family
show(familyName)

Fig. 9. Reconciled Hypertext Model of the Running Example

of the Web applications, and thus, on the user interfaces. For example, automated test
may fail to access some information which is now visualized in a different place on the
corresponding Web site.

As a consequence, the ResultPage in the reconciled hypertext model (cf. Fig. 9) is
more verbose than the initial version because ImportedAttributes are not possible either
for source elements of LinkParameters or for the shown attributes of DisplayUnits.
Other Web modeling languages such as UWE [11] allow for ImportedAttributes for
DisplayUnits by using some kind of expression language, similar to the one in WebML
for defining ImportedAttributes for SelectorConditions.

When we assume that we have an enhanced modeling support in WebML, i.e., Im-
portedAttributes are also possible for DisplayUnits as well as for source elements of
LinkParameters, the ResultPage would be expressible in a more concise manner fol-
lowing the initial page structure as shown in Fig. 10. Instead of using four units in the
reconciled hypertext model, only two units—as in the initial hypertext model—are suf-
ficient to work with the new content model version. Thus, the same structure of the
Web page is guaranteed which also allows to reuse the presentation model of the initial
hypertext version also for the reconciled version.

In addition, having this enhanced modeling support also leads to less complex co-
evolution patterns. In particular, Rule 2 and Rule 3 only have to substitute the links
from the hypertext model elements to the moved attribute with an ImportedAttribute.
Therefore, we propose the WebML metamodel to have also the possibility to use Im-
portedAttributes for DisplayUnits and for source elements of LinkParameters. By this
not only the reconciliation rules and the resulting reconciled hypertext models are sim-
pler, but also modeling Web applications in WebML from scratch may be enhanced by
having such modeling support.

4.7 Implementation

We have implemented the presented approach by defining WebML models in the Eclipse
Modeling Framework (EMF). For representing WebML models in EMF, we have de-
veloped an Ecore-based WebML metamodel. This opens the door for using transfor-
mation approaches available for EMF-based models. We selected the Eclipse Modeling

Systematic Evolution of WebML Models by Coupled Transformations 197

ResultPage

ShowFamily

foid=
Person2Family.oid

[OID:=foid]

[Person2Family.
familyName:=
FamilyName]

Family
Name

GetFamily

[OID:=foid]
?

ShowPerson

Person
show(firstName)

ShowRelatives

[OID:=poid]

Person
show(firstName)

Family
show(familyName)

Family

ResultPage

[Person2Family.
familyName:=
FamilyName]

ShowPerson

Person
show(firstName)

ShowRelatives

[OID:=poid]

Person
show(firstName,
Person2Family.
familyName)

FamilyName=
Person2Family.familyName

Fig. 10. Possible improvements of the ResultPage using ImportedAttributes for DisplayUnits and
Source Elements of LinkParameters

Operation (EMO) project (http://www.modelversioning.org/emf-modeling-operations)
which is a dedicated transformation framework for implementing and executing model
refactorings. Based on EMO, we have implemented the transformations for the content
models as well as the coupled transformations for the instance models and the hyper-
text models. EMO allows also the interactive execution of the transformations by pre-
selecting model elements in the modeling editor. The execution engine of EMO
completes the bindings of the model elements in case only a partial pre-binding for the
transformation rule has been provided by the user. Finally, EMO also allows for user
input during transformation execution, e.g., to give the name for the extracted class.

5 Related Work

With respect to the contribution of this paper, namely evolution and reconciliation sup-
port for Web models, we identify two main lines of related work: (i) model refactoring
and (ii) multi-viewpoint model synchronization.

Model Refactorings. Compared to refactorings established in the field of object-
orientation modeling [16,20], only some initial proposals for Web models exist. Most
notable is the work of Cabot and Gómez [2] in which a catalogue of refactorings for
improving the navigation between pages has been documented. The presented refactor-
ings are defined on a high-level of abstraction considering links, pages, and navigation
paths so they can be translated to any Web modeling methodology as we do. However,
their approach only covers one single viewpoint and does not consider the change im-
pact on dependent viewpoints. Mitigating this shortcoming, the work in [8] focuses on
the navigation and presentation viewpoints and how they must co-evolve for propagat-
ing changes in a consistent way. In particular, they make an OOHDM dependent, fine-
grained characterization of different kinds of refactorings. They combine also atomic
changes to achieve more complex transformations. In contrast, our approach considers
the co-evolution problem between content models and hypertext models.

Model Synchronization. A large number of approaches in other disciplines address
the problem of multi-viewpoint synchronization [3,5,6,7,9,10,19]. All these approaches

198 M. Wimmer, N. Moreno, and A. Vallecillo

have in common that they consider only atomic changes when reconciling models to
satisfy again given modeling language constraints. However, when structuring changes
to composite ones, more appropriate reconciled models may be found. For Web appli-
cations, instance migration support for evolving databases is presented in [17], but the
impact on the hypertext level is not discussed. Cicchetti et al. [4] propose evolution
support for Web models going beyond instance migration. The approach uses state-
based model comparison to compute the differences between two content model ver-
sions based on fine-grained atomic changes, such as adding and removing elements or
modifying some of their values. Two coarse-grained change operators are considered in
their work: merge/split of classes. The approach is described in detail for the beContent
Web modeling language which does not employ an explicit hypertext layer, and briefly
discussed for WebML, for which only the reconciliation of hypertext models in case of
deletions of content model elements is discussed. Our work is orthogonal in the sense
that coarse-grained changes are considered for reconciling WebML hypertext models.

6 Conclusions and Future Work
In this paper we have presented coarse-grained content model changes formalized as
model transformations, which are propagated to dependent viewpoints using coupled
transformations. The approach has been demonstrated by the ExtractClass refactoring
example in the particular context of WebML.

Since the reconciliation strategies are defined for the core of WebML, which is also
shared by other Web modeling languages, the results should be transferable to other
Web modeling languages. In particular, we have abstracted the patterns as much as pos-
sible, e.g., by using generalized classes of the metamodel such as LinkableElement or
DisplayUnit which usually have equivalent concepts in other Web modeling languages.
By this, the transformations are not specific to the presented example, but are reusable
for others. However, there are language concepts which may require their own recon-
ciliation patterns which are not presented in the paper. For instance, if a DeletionUnit
refers to a class which has been subject to the ExtractClass refactoring, an analogous
reconciliation pattern is necessary as for the CreateUnit to ensure that the instances of
the base class and the extracted class are deleted.

As future work we plan to extend the presented catalogue of reconciliation patterns,
and identify/resolve possible conflicts between them based on graph transformation
theory, in particular, using critical pairs analysis. Furthermore, our patterns aim to pre-
serve the consistency and observable behavior of the system by fulfilling a set of equiva-
lence properties before and after co-evolution models happen. However, coarse-grained
changes can be translated to the hypertext viewpoint in different ways, i.e., producing
different models where some of them are more efficient than others. In this sense, we
want to improve our proposal to determine the most optimal pattern in each case by ex-
ploring quality properties such as usability and accessibility of hypertext models. Finally,
we want to investigate a hybrid reconciliation approach by using in the first phase the pre-
sented approach for coarse-grained changes and in the second phase a constraint-based
approach for atomic changes which could not be composed into coarse-grained changes.

Acknowledgements. This work has been partially funded by the Austrian Science Fund
(FWF) under grant J 3159-N23, and by Spanish Research Project TIN2011-23795.

Systematic Evolution of WebML Models by Coupled Transformations 199

References

1. Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web Applications
Design and Development with WebML and WebRatio 5.0. In: Paige, R.F., Meyer, B. (eds.)
TOOLS EUROPE 2008. LNBIP, vol. 11, pp. 392–411. Springer, Heidelberg (2008)

2. Cabot, J., Ceballos, J., Gómez, C.: On the Quality of Navigation Models with Content-
Modification Operations. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007.
LNCS, vol. 4607, pp. 59–73. Springer, Heidelberg (2007)

3. Cicchetti, A., Ruscio, D.D.: Decoupling Web Application Concerns through Weaving Oper-
ations. Science of Computer Programming 70(1), 62–86 (2008)

4. Cicchetti, A., Ruscio, D.D., Iovino, L., Pierantonio, A.: Managing the Evolution of Data-
Intensive Web Applications by Model-Driven Techniques. In: SoSym, pp. 1–31 (2012)

5. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying Overlaps of Heterogeneous Models for
Global Consistency Checking. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS,
vol. 6627, pp. 165–179. Springer, Heidelberg (2011)

6. Eramo, R., Pierantonio, A., Romero, J.R., Vallecillo, A.: Change Management in Multi-
Viewpoint Systems using ASP. In: WODPEC 2008. IEEE (2008)

7. Finkelstein, A., Gabbay, D.M., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency Handling
in Multi-perspective Specifications. In: Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS,
vol. 717, pp. 84–99. Springer, Heidelberg (1993)

8. Garrido, A., Rossi, G., Distante, D.: Model Refactoring in Web Applications. In: 9th Inter-
national Workshop on Web Site Evolution, pp. 89–96. IEEE (2007)

9. Grundy, J., Hosking, J., Mugridge, W.B.: Inconsistency Management for Multiple-view Soft-
ware Development Environments. IEEE Trans. Softw. Eng. 24(11), 960–981 (1998)

10. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL 2011, pp. 371–384.
ACM (2011)

11. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering: An Ap-
proach Based on Standards. In: Web Engineering: Modelling and Implementing Web Appli-
cations. Human-Computer Interaction Series, vol. 12, ch. 7, pp. 157–191. Springer (2008)

12. Lämmel, R.: Coupled Software Transformations (Extended Abstract). In: First International
Workshop on Software Evolution Transformations (2004)

13. Moreno, N., Romero, J.R., Vallecillo, A.: An Overview Of Model-Driven Web Engineering
and the MDA. In: Web Engineering: Modelling and Implementing Web Applications, ch.12,
pp. 353–382. Springer (2008)

14. Moreno, N., Vallecillo, A.: Towards Interoperable Web Engineering Methods. JASIST 59(7),
1073–1092 (2008)

15. Schwinger, W., et al.: A Survey on Web Modeling Approaches for Ubiquitous Web Applica-
tions. IJWIS 4(3), 234–305 (2008)

16. Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M.: Refactoring UML Models. In: Gogolla,
M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 134–148. Springer, Heidelberg (2001)

17. Vermolen, S.D., Wachsmuth, G., Visser, E.: Generating Database Migrations for Evolving
Web Applications. In: GPCE 2011, pp. 83–92. ACM (2011)

18. Wimmer, M., Schauerhuber, A., Schwinger, W., Kargl, H.: On the Integration of Web Mod-
eling Languages. In: MDWE 2007. CEUR Workshop Proceedings, vol. 261 (2007)

19. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards Automatic Model Syn-
chronization from Model Transformations. In: Proc. of ASE 2007, pp. 164–173. ACM (2007)

20. Zhang, J., Lin, Y., Gray, J.: Generic and Domain-Specific Model Refactoring using a Model
Transformation Engine. In: Model-driven Software Development—Research and Practice in
Software Engineering, pp. 199–217. Springer (2005)

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 200–214, 2012.
© Springer-Verlag Berlin Heidelberg 2012

From Requirements to Web Applications
in an Agile Model-Driven Approach

Julián Grigera1, José Matías Rivero1,2, Esteban Robles Luna1,
Franco Giacosa1, and Gustavo Rossi1,2

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{julian.grigera,mrivero,franco.giacosa,

esteban.robles,gustavo}@lifia.info.unlp.edu.ar
2 Also at Conicet

Abstract. Web applications are hard to build not only because of technical
reasons but also because they involve many different kinds of stakeholders. In-
volving customers in the development process is a must, not only while elicit-
ing requirements but also considering that requirements change fast and they
must be validated continuously. However, while model-driven approaches
represent a step forward to reduce development time and work at a higher level
of abstraction, most of them practically ignore stakeholders’ involvement. Agile
approaches tend to solve this problem, though they generally focus on pro-
gramming rather than modeling. In this paper we present an extension to an ap-
proach that combines the best of both worlds, allowing a formal and high-level
design style with constant involvement of customers, mainly in the definition of
navigation, interaction and interface features. We extended it by adding trans-
formation features that allow mapping requirement models into content and na-
vigation ones. We provide a proof of concept in the context of the WebML de-
sign method and an empiric validation of the approach’s advantages.

1 Introduction

Developing Web applications is a complex task, involving different specialists
through different stages. At the end of the process, it is usual to find out that the final
result does not reflect the customers’ wishes with accuracy, since while going through
the different stages the team may slowly steer away from the original requirements.
The difference between requirements and the final result grows broader as new
changes are introduced. These problems are in part caused by communication issues,
but they also arise as a consequence of the development approach.

In a previous work [17] we argued that most model-driven Web engineering ap-
proaches (MDWE) [1, 8, 12, 19] tend to focus on the design artifacts and their auto-
matic transformation onto running applications, therefore leaving the customer aside
(at least in part) throughout the process. Interaction and interface issues are usually
left as final concerns, while being, in many applications, the most important aspects
for customers. At the same time agile approaches1 focus on customers’ involvement,

1 Principles behind the Agile Manifesto –
http://agilemanifesto.org/principles.html

 From Requirements to Web Applications in an Agile Model-Driven Approach 201

while being less formal from the technical point of view. We then proposed to bridge
both approaches by using Test-Driven Development (TDD) in a model-driven setting.
With short development cycles, the mismatch between requirements and implementa-
tion is usually kept under control. We already proposed a requirement engineering
language, named WebSpec [18] to capture navigation and interaction requirement.
Associated with customer-generated mockups, WebSpec diagrams provide simula-
tions to share an early view of the application with stakeholders and automatically
derive acceptance tests (using test frameworks like Selenium2).

In this paper we go one step further from these two previous contributions by show-
ing how to semi-automatically derive navigation and domain models from requirements
captured with mockups and WebSpec diagrams. Interface mockups are not thrown away
as usual (even in agile approaches) but evolve into the final applications’ interface. The
approach, which incorporates requirements into the model-driven cycle, is still agile in
that it is based in short cycles with heavy customers intervention, since the used re-
quirements artifacts (Webspec diagrams and mockups) can be manipulated by them;
however it can also be used in a conventional “unified” model-driven style.

Though the approach is agnostic to the underlying design method, we illustrate it
with the WebML [1] notation and its associated tool WebRatio3 with which we have
made extensive experiments. We also show that the approach does not necessarily
depend on interaction tests as driving artifacts for the development (like most TDD
approaches do); therefore it can be used either with organized agile styles like Scrum,
or even with more “extreme” approaches [6].

The main contributions of the paper are: first, from a process point of view, a way
of bridging agile and MDWE from requirements to implementation, easing customer
participation from early stages of development using interface mockups and fast pro-
totype generation as a common language to discus requirements; second, we provide a
shorter path from requirements to models through a set of heuristics to transform re-
quirement models (expressed as WebSpec diagrams plus interface mockups) onto
navigation, presentation and content models. We illustrate these contributions with a
set of running examples and describe an experiment that validates our claims.

The rest of the paper is structured as follows: in Section 2 we present a brief back-
ground of our work emphasizing on WebSpec diagrams and interface mockup annota-
tions. Next, in Section 3 we explain our approach in detail. In section 4 we show a
simple but meaningful example. Section 5 shows an experiment that validates the
approach and Section 6 presents some related work on this subject. Section 7 con-
cludes the paper and discusses some further work we are pursuing.

2 Background

The first stage of our process involves two main artifacts that help to state clearly
what customers need, and how they want it to look and behave. Graphical user inter-
face (GUI) mockups combined with WebSpec diagrams will not only help through
this stage, but also in the following, as we will explain later on section 4. Besides
these artifacts, we will organize the requirements gathering with User Stories [6] as
functional units, though Use Cases [5] can also be used for the same purpose.

2 Selenium web application testing system - http://seleniumhq.org/
3 WebRatio – http://www.webratio.com

202 J. Grigera et al.

2.1 GUI Mockups

GUI mockups serve well as first requirement artifacts, since they are really close to
customers in terms of interfaces and interaction, resulting much clearer than textual
specifications. Mockups act as tools to communicate software requirements in a
common language shared between customers and the development team [10]. It has
been shown that screen mockups effectively increase general software comprehension
without involving a high cost in the development process [15]. Besides, we have
shown that they also work as specifications for building user interface models [16].
When built using digital tools, mockups represent an incomplete, yet non-ambiguous,
description of the UI. However, in most cases mockups are used only during the re-
quirements specification and thrown away shortly after. We have also shown that,
because of the common fidelity (i.e., the shared abstraction level and metamodel ele-
ments) between MDWE presentation models and modern mockup building tools, we
can easily translate mockups to UI models using a transformation process [16].

In this work we employ user interface mockups as the initial artifacts to interact
with customers. Once agreed upon them, mockups are derived into the presentation
model of the application (that we can generate automatically) and a foundation to
specify further features, like navigation and content aspects.

Fig. 1. Sample GUI mockups

Figure 1 shows two simple low-fi mockups of a login and home screen to a Twit-
ter-like application. Later in the paper we show how they can be combined with a
WebSpec diagram to describe the navigation features these artifacts lack.

2.2 WebSpec

WebSpec [18] is a DSL designed to capture navigation and interaction aspects at the
requirements stage of a Web applications development process. A WebSpec diagram
contains Interactions and Navigations. An Interaction represents a point where the
user consumes information (expressed as a set of interface widgets) and interacts with
the application by using its widgets. Some actions like clicking a button, or typing
some text in a text field might produce navigation from one Interaction to another,
and as a consequence, the user moves through the application’s navigation space.
These actions are written in an intuitive domain specific language. Figure 2 shows a
diagram that will let the user tweet, see how many tweets she has, and allow her to
logout from the application. From the Login interaction, the user types username and

 From Requirements to Web Applications in an Agile Model-Driven Approach 203

password and clicks on the login button (navigation from Login to Home interaction).
Then, she can add messages by typing in the message text field (messageTF attribute)
and clicking on the post button (navigation from Home to Home interaction).

Fig. 2. WebSpec of Tweet’s interaction

From a WebSpec diagram we automatically generate a set of interaction tests that
cover all the interaction paths specified in it [18], avoiding the translation problem of
TDD between tests and requirements. Unlike traditional Unit Tests, interaction tests
simulate user input into HTML pages, and allow asserting conditions on the results of
such interactions. Since each WebSpec Interaction is related to a mockup, each test
runs against it and the predicates are transformed into tests assertions. These failing
series of tests set a good starting point for a TDD-like approach and (even when using
another agile approach) they can be used later as the application’s acceptance tests.

3 The Approach in a Nutshell

To bridge the gap between requirements specifications and implementation, we have
devised model transformation rules for turning requirements artifacts into content and
navigation models. We depict the approach in Figure 3 assuming a TDD cycle.

The process begins with a small group of initial requirements, related to a single
User Story. We gather presentation and interaction requirements by building interface
mockups, which help to agree upon the look and feel of the new application, and will
also provide the basis for WebSpec diagrams.

Fig. 3. Summary of the approach

204 J. Grigera et al.

After building the mockups, we specify navigation features through WebSpec dia-
grams. Since WebSpec can express interaction requirements (including navigation),
general hypertext specifications can be derived directly from it, but backend features
are missed, being the most important the underlying content model. To fulfill this gap,
we annotate WebSpec widgets to represent content model features, in terms of classes
(or entities) and attributes. These annotations are extremely simple and easy to apply
and will help to build the content model incrementally and in an on-demand fashion.

Once we have both mockups and the annotated WebSpec diagrams, we derive a
first set of content and navigation models. We generate the navigation model from the
WebSpec diagrams directly, and we make use of the annotations made on them to
derive the content model. Both models are linked together automatically since they
stem from the same diagrams. Additionally, WebSpec diagrams are used to generate
the interaction tests [18] that will guide the rest of the development in an agile style.

Having created the models with their corresponding interaction tests, the develop-
ers apply the presentation according the mockups devised in the first stage and derive
a running application, which must be validated with such interaction tests. When us-
ing a TDD style, if tests fail, the models must be tweaked until they pass, and then
move forward to another User Story for the following iteration towards the final ap-
plication. The reason why interaction tests might fail is because the transformation
rules can sometimes be inaccurate, and while these misinterpretations are mostly due
to insufficient information in the WebSpec diagrams or their annotations, some can
also be due to ambiguous customer’s specifications. In such cases, the type of correc-
tions required to adjust the models to their correct semantics have proven to be recur-
rent, so we devised a list of frequent model adjustments in a pattern-like style.

In the following subsections we detail how we specify WebSpec diagrams, then
turn them into navigation and content models through a set of transformation rules,
and the main required refactorings we detected for correcting the derived models.

3.1 Gathering Navigation Requirements with WebSpec Diagrams

We use the existing tooling support for WebSpec to import and group existing mock-
ups as defined in the initial User Stories. For every mockup in each User Story, a
WebSpec Interaction is created to specify the behavior mockups cannot express. With
assistance of the tool, mockup widgets can be projected to WebSpec diagrams in
order to be included in interaction specifications.

It is important to note that a single mockup can be referenced by two or more
WebSpec Interactions in different diagrams, since many User Stories can be partially

Fig. 4. Overlapping mockups and WebSpec diagrams

 From Requirements to Web Applications in an Agile Model-Driven Approach 205

related to the same user interface in the Web application. Conversely, two or more
mockups can be referenced in a single WebSpec diagram, given it specifies naviga-
tion from one to another. This is shown schematically in Figure 4.

3.2 Obtaining Data Model through Annotations

After creating the WebSpec diagrams, we apply lightweight content annotations on
their widgets (for a complete reference on widgets see our previous work on WebSpec
[18]); this will allow us to generate content models on the fly together with interaction
specs. Generating content models from structured UIs have been already proposed
and implemented [14], here we define an extremely simple annotation schema that
can be applicable directly with the annotation facilities provided with mockup tools:

• Composite widgets (Panels and ListPanels) are annotated with a single string that
denotes the class (or entity) it handles (e.g., @Employee in Figure 5.a).

• Simple input widgets (like TextFields or Checkboxes) are annotated with the syn-
tax <class>.<attributeName> (@Employee.Role in Figure 5.b), also applied
to simple widgets referring other classes’ instances (like ComboBoxes or Lists).

 a b

Fig. 5. Annotated WebSpec diagrams

3.3 Deriving Models

In this section we show how we obtain navigation and data models from WebSpec
diagrams. We begin with some basic transformations that intuitively map simple
WebSpec constructions into WebML elements, shown in table 1.

Table 1. Basic WebSpec to WebML transformations

206 J. Grigera et al.

The first transformation rule maps a Webspec Interaction to a WebML Page. Every
WebSpec diagram is initialized with a Starting Interaction component that will be
represented using a WebML Home Page. A link between Interactions will be turned
into a Normal Link in WebML.

The annotation schema (explained in section 3.2) combined with the WebSpec
model allows us to derive a WebML Data Model as well. In table 2 we depict some
transformation rules including content model annotations.

Table 2. From annotated WebSpec to Data Models

The @Class annotation (e.g. @Employee) allows specifying that the underlying
composite widget will manage instances of the Class entity. As a consequence, a
corresponding WebML Entity will be created in the WebML Data Model and every
simple widget in it will be transformed as an attribute (the OID attribute will be added
by default to each new entity). If an entity is spread in several diagrams, a union oper-
ation will be applied to create the entity. Each simple widget found either by been
inside a Composite Widget annotated with @Class or by being annotated with the
@Class.attribute label, will be gathered an put inside a single Entity as long as
they share the same Class. If a Simple Widget inside a Composite Widget has a dif-
ferent class annotation than its parent, a relationship between the class of the Compo-
site Widget and the one of the Simple Widget will be created. After deriving a Data
Model, now we can start mapping the above WebML Web Model, as we show in the
transformations portrayed in Table 3.

 From Requirements to

Ta

The transformations intr
show data (e.g a panel of l
Unit pointing at the specifie
with a @Class annotation
class, (3) A Panel used to i
@Class annotation is transf
will be mapped to a WebM
posed by input widgets) wi
Unit and each input widget
if inside an Input Panel the
@Brand.name), a selection
with a Selector Unit pointin

Before the derived mode
might need to be made. We

o Web Applications in an Agile Model-Driven Approach

able 3. Obtaining full WebML models

roduced in Table 3 are the following: (1) A Panel used
labels) with a @Class annotation is transformed to a D
ed class, (2) A List used to show data (e.g. a list of lab
is transformed to an Index Unit pointing at the specif

input data (e.g. a panel composed by input widgets) wit
formed to an Entry Unit and each input widget in the pa

ML input field, (4) A List used to input data (e.g. a list co
ith a @Class annotation is transformed to an Multi En
in the List will be mapped to a WebML input field and

ere is a Combo Box annotated with a different class (e
n field will be created in the Entry Unit, and it will be fil
ng at the specified entity annotated in the Combo Box.
els are ready to generate a running application, some fi
e will discuss these in the next section.

207

d to
Data
els)
fied
th a
anel
om-
ntry

d (5)
e.g.:
lled

ixes

208 J. Grigera et al.

3.4 Adjusting the Models

Applying the described transformations to the initial requirement artifacts, both navi-
gation and data models are generated in conjunction with a set of interaction tests, as
depicted in Figure 3. Using the code generation capabilities of the chosen MDWE
approach, a running application is generated in order to run the interaction tests over it
to check the functionality. In some cases, tests may fail on their first run, due to miss-
ing or unexpected presentation details or layout specifications in the final user inter-
face. However, in some cases they can also fail because of ambiguous or insufficient
behavior inferred from the models derived with the described rules. Regarding data
and business logic, we found a list of fail patterns and devised some heuristics to
detect them and suggest potential corrections. Depending of its importance and ob-
viousness, fail patterns are presented to the designer as a refactoring [4] suggestion in
the tool or they are applied automatically as a final part of the generation process. We
detail two notorious examples below:

• Non-normalized Attribute
o Explanation: a simple widget is bound to an individual attribute of a mapped

class, but in fact it must be bound to an attribute of a different class related to
the former through an association.

o Example: a product panel tagged as @Product has a label called brandName.
This label must not be data-bound as an attribute of Product, but to an
attribute of Brand, a class associated to Product. Then, a proper
@Brand.name annotation must be placed in it (see Figure 6).

o Fail reason: data is not normalized and fails occur when updating information
within the execution of a WebSpec test (e.g., the brand name of a product is
changed, and when the test checks the name in a second product of the same
brand, it has the old one and an equality assertion fails).

o Detection Heuristic: analyze widget name and search for the name of a pre-
viously mapped class within it. Suggest an association to this class.

• Missing Filter in Index
o Explanation: an input panel and a list exist in an interaction. The panel con-

tains widgets that specify filtering conditions to the elements that are shown on
the list. Both widgets are annotated with the same class and a transition from
the interaction to itself exist. According to the translation rules, a WebML In-
dex Unit will be generated in the model for the list and an Entry Unit must be
created for the input panel. However, no filtering is generated by default.

o Example: an interaction contains a panel with a textbox that allows searching
products by its name. Below, a list of products found with the matching name
is shown (see Figure 7).

o Fail reason: items in the index are the same after changing the filter widgets
values in the panel and updating the page. Thus, an equality assertion fails.

o Detection Heuristic: analyze the interaction to find a panel and a list annotated
with the same class and a recursive transition.

 From Requirements to Web Applications in an Agile Model-Driven Approach 209

Fig. 6. Non-Normalized fail pattern and refactored diagram

Fig. 7. Missing Filter in Index fail pattern and refactored diagram

4 Proof of Concept

For a better understanding of the approach, we will show a full cycle of our process in
the ongoing development of a sample application: a Customer Satisfaction system,
where different users manage customers’ complaints through different departments.

We will take the development from an advanced status, and show how a new User
Story is implemented. We will start from a point where the system allows creating
new complaints, viewing their details and delegating them between departments. The
next functionality to implement is the ability to make comment on the complaints.

As a first step, the previous mockup for the detailed view of a complaint is ex-
tended to show comments and a new form is added for the user to leave comments.

Fig. 8. Mockups for new functionality

210 J. Grigera et al.

Figure 8 shows the previous mockup for the details page of a complaint, and the
new mockup that contemplates the comments.

Once we have agreed on the new functionality’s look and feel, we move on to the
WebSpec diagrams. Since the interaction for viewing a complaint was already present, we
just extend it with the list of comments and the form for adding comments, with the cor-
responding navigation functionality. Figure 9 shows both previous and modified diagrams.

Fig. 9. Extended WebSpec model for comments feature

We next tag the new components of the diagram with annotations for deriving the
missing content model. Then, the only step left is derivation. The extended WebSpec
diagram generates new features for the existing navigation model, while the annota-
tions generate a simple model for the comments, and their relationships with the com-
plaints on the current data model. New interaction tests are also generated to check for
the creation of new comments.

As a last step we regenerate the application from the derived models, and run the
automatically generated interaction tests to validate the new functionality. If the tests
pass, we move on to another User Story; if they don’t, we must check for possible
inaccurate derivations. For example, in this case we could have specified the author’s
name for the comments as a plain attribute for the Comment entity, instead of being a
foreign attribute from the User entity, which should be related to the first (Non-
normalized Attribute fail pattern). Fixing the data model will require also fixing the
navigation model, and re-running the tests to check for the functionality.

5 Assessing the Approach

To make a first assessment of our approach we ran an experiment with 10 developers,
each going through a complete development cycle for a simple application: the Com-
plaint Management System presented as example in section 3.

We split the subjects in 2 groups of 5 developers, each group using different ap-
proaches in the requirements elicitation and WebRatio as development tool. A first
group (group A) used only User Stories and UI Mockups, while the second one
(group B) added also WebSpec and tagging, completing the full approach proposed in
this paper, relying on the models derivation features.

We had a first meeting with each subject playing the role of customers. Depending
on the group they belonged, they gathered requirements using different artifacts. They

 From Requirements to

were also provided with rea
opers from group B autom
WebSpec diagrams they h
complete application measu
dually. Additionally, devel
derived models to make up
acceptance tests to check al

In this experiment we m
measures the functionality’
1 to 5. We found an improv
time in minutes it took for e

Fig

As the graphic shows, th
group B’s, mostly owed to
had to create them from scr
Also, group A took more ti
requirements documents. H
since they had more artifact

As for the satisfaction
previous ones, although the

Fig. 1

o Web Applications in an Agile Model-Driven Approach

ady-made User Stories. Before the second stage, the dev
matically derived content and navigation models from
had created and tagged. Then, all subjects developed
uring the time taken to implement each User Story ind
lopers from group B measured the time taken to alter
 for eventual derivation mistakes. The third stage invol

ll functionality in both groups’ resulting applications.
measured two key aspects: time and satisfaction. The la

s accuracy to what users expected, in a scale ranging fr
vement in both aspects. In figure 10 we depict the aver
each group for completing each User Story.

g. 10. Time measured for development

he time taken by the group A was considerably higher t
the fact that group B only adjusted models, while group

ratch, including the data model (marked as ER in the cha
ime to develop extra features that were not asked for in
However, Group B took longer to capture requireme
ts to put together.
aspect, the results were not as much conclusive as
ey did show an improvement in most User Stories. A

1. Satisfaction measured for development

211

vel-
the
the

divi-
the
ved

atter
rom
rage

than
p A
art).
the

ents,

the
After

212 J. Grigera et al.

revising the applications we concluded that using WebSpec did improve the fidelity
of the final application with respect to the requirements elicitation. Figure 11 shows
the average satisfaction ratings for all functionalities developed by both groups.

It should be mentioned that the validity of these first results was somewhat threat-
ened by a number of biases, mainly due to time and resources limitations. Some of
them were: the application’s scale (which is by no means a real scale development),
the small number of subjects and the difference in their skills. The novelty in the use
of WebSpec was also a factor, manifested in the higher analysis times on Group B.
We plan to make further experiments with more experienced subjects on the use of
WebSpec and it’s tools, to confirm the presumption that analysis times will drop, at
least to the levels of a traditional approach.

6 Related Work

Derivation of requirement models has been already considered with the aim of auto-
matically generating UWE models [7]. In this work, the authors present a modeling
language for requirements called WebRE, using the NDT approach [2] for the re-
quirements capture and definition, and specify a set of transformation rules, specified
at the meta-model level in the QVT language. The transformation process covers the
derivation of content, navigation and presentation models.

Following the same lead, the Ariadne CASE tool [9] generates design models
from requirement models, in the context of the ADM model-driven approach, used in
turn to generate light prototypes of the final application. The tool leans on domain-
specific patterns for generating conceptual models.

Also in this field, Valderas et al [21] propose an improvement on their automatic
code generation from OOWS, in which they include graphic designers into the devel-
opment. To do this, they automatically extract information and functionality from the
requirements models. This allows the designers to make changes on a living applica-
tion for a better experience in the requirements gathering stage, but the presentations
are not part of the requirements models from which the information and functionality
is extracted.

Our process differs from the aforementioned approaches in that it is focused on
short agile development cycles. Being based on GUI Mockups and WebSpec, which
is in turn based on User Stories, we not only favor an agile style, but also are able to
generate interaction tests to check the resulting applications, in a way that lets us take
advantage of the features of TDD approaches as well.

With respect to the artifacts used in our approach, GUI Mockups as requirements
gathering tools have been evaluated in several studies. In the context of agile devel-
opment processes, interface mockups have been observed as an irreplaceable artifact
to effectively introduce early usability testing [3]. Also, they have proven to help
refining concepts expressed in User Stories [20].

On the other hand, user interface mockups have been included in well known
Model-Driven methodologies to improve requirements gathering. In the work of Pa-
nach et al. [11], the drawing of user interface sketches is proposed as a way of
capturing underlying task patterns using the ConcurTaskTree [13] formalism. Other
authors propose directly to include mockups as a metamodel itself to describe interac-
tion from them [10].

 From Requirements to Web Applications in an Agile Model-Driven Approach 213

7 Concluding Remarks and Further Work

Through this paper we have shown how we improved an agile model-driven Web
development process by including digital requirement artifacts to keep the whole
process model-driven; in this way we bridge the gap between requirements and im-
plementation by introducing model transformations that automatically map require-
ment models into content and navigation models; this models are ready to be used to
generate a running application, which can be in turn validated using the automatically
generated interaction tests.

By driving an experiment with developers, we have shown the strengths of the
approach, concerning not only requirements gathering stage but also the rest of the
development process. The experiment has also exposed some weaknesses in the deri-
vation process as well as in the process itself, on which we are already working to
improve, before running a new, more comprehensive, experiment. In the same way
we discovered the current transformation rules, we noticed that the combination of
data annotations and navigation features of WebSpec models has still potential for
new transformation rules that require further experimentation in order to be correctly
stated. We are also finishing derivation rules for object-oriented approaches like
UWE [8], which are resulting straightforward since we are working at the meta-model
levels of WebSpec and UWE. At the same time we are also extending the WebSpec
meta-model to introduce new requirement features.

Regarding the model adjustments, we are working on a suggestion mechanism that
will be integrated into our tool, in order to detect possible miscarried derivations and
correct them automatically, prompting a set of applicable corrections to the user for
him to pick the most suitable one.

Another concern we are working on is the relationship between requirements and
implementation models after the transformations. In order to keep track of such rela-
tionship and being able to generate changes incrementally, at this point we do not
allow for mayor modifications on the application’s models. The only modifications
allowed should be those that do not introduce changes in the requirements – i.e. what
WebSpec diagrams express. Nevertheless, we intend to handle these cases in such a
way that allows us to suggest changes on the WebSpec diagrams, so the link between
them and the generated models is never broken.

References

1. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling Lan-
guage for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–157
(2000)

2. Escalona, M.J., Aragón, G.: NDT. A Model-Driven Approach for Web Requirements.
IEEE Trans. Softw. Eng. 34(3), 377–390 (2008)

3. Ferreira, J., Noble, J., Biddle, R.: Agile Development Iterations and UI Design. In: AGILE
2007 Conference (2007)

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the De-
sign of Existing Code. Addison-Wesley Professional (1999)

5. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. ACM
Press/Addison-Wesley (1992)

214 J. Grigera et al.

6. Jeffries, R.E., Anderson, A., Hendrickson, C.: Extreme Programming Installed. Addison-
Wesley Longman Publishing Co., Inc. (2000)

7. Koch, N., Zhang, G., Escalona, M.J.: Model transformations from requirements to web
system design. In: Proceedings of the 6th International Conference on Web Engineering
(ICWE 2006), pp. 281–288. ACM, New York (2006)

8. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering, An Ap-
proach Based On Standards. In: Web Engineering, Modelling and Implementing Web Ap-
plications, pp. 157–191. Springer, Heidelberg (2008)

9. Montero, S., Díaz, P., Aedo, I.: From requirements to implementations: a model-driven
approach for web development. European Journal of Information Systems 16(4), 407–419
(2007)

10. Mukasa, K.S., Kaindl, H.: An Integration of Requirements and User Interface Specifica-
tions. In: 6th IEEE International Requirements Engineering Conference (2008)

11. Panach, J.I., España, S., Pederiva, I., Pastor, O.: Capturing Interaction Requirements in a
Model Transformation Technology Based on MDA. Journal of Universal Computer
Science 14(9), 1480–1495

12. Pastor, Ó., Abrahão, S., Fons, J.J.: An Object-Oriented Approach to Automate Web Appli-
cations Development. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-Web 2001.
LNCS, vol. 2115, pp. 16–28. Springer, Heidelberg (2001)

13. Paternò, F.: ConcurTaskTrees: An Engineered Notation for Task Models. In: Diaper, D.,
Stanton, N. (eds.) The Handbook of Task Analysis for Human-Computer Interaction, pp.
483–503. Lawrence Erlbaum Associates (2003)

14. Ramdoyal, R., Cleve, A., Hainaut, J.-L.: Reverse Engineering User Interfaces for Interac-
tive Database Conceptual Analysis. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051,
pp. 332–347. Springer, Heidelberg (2010)

15. Ricca, F., Scanniello, G., Torchiano, M., Reggio, G., Astesiano, E.: On the effectiveness of
screen mockups in requirements engineering. In: 2010 ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (2010)

16. Rivero, J.M., Grigera, J., Rossi, G., Robles Luna, E., Koch, N.: Towards agile model-
driven web engineering. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol. 107, pp.
142–155. Springer, Heidelberg (2012)

17. Robles Luna, E., Grigera, J., Rossi, G.: Bridging Test and Model-Driven Approaches in
Web Engineering. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009. LNCS,
vol. 5648, pp. 136–150. Springer, Heidelberg (2009)

18. Robles Luna, E., Rossi, G., Garrigós, I.: WebSpec: a visual language for specifying inte-
raction and navigation requirements in web applications. Requir. Eng. 16(4), 297–321
(2011)

19. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using OOHDM.
In: Web Engineering, Modelling and Implementing Web Applications, pp. 109–155.
Springer, Heidelberg (2008)

20. Ton, H.: A Strategy for Balancing Business Value and Story Size. In: AGILE 2007 Confe-
rence (2007)

21. Valderas, P., Pelechano, V., Pastor, Ó.: Introducing Graphic Designers in a Web Devel-
opment Process. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007. LNCS,
vol. 4495, pp. 395–408. Springer, Heidelberg (2007)

Assessment of Effort Reduction due to Model-to-Model
Transformations in the Web Domain�

Nora Koch1,2, Alexander Knapp3, and Sergej Kozuruba1

1 Ludwig-Maximilians-Universität München, Germany
2 NTT DATA, Germany

3 Universität Augsburg, Germany

Abstract. Model-driven engineering (MDE) approaches provide the well-known
advantage of software development at a higher level of abstraction. However, in
the web engineering domain such approaches still encounter difficulties mainly
due to applications that are continuously evolving and the heterogeneity of web
technologies. Instead of fully automated generation, we look at MDE as assist-
ing the web engineer in different phases of the software development life cycle.
In particular, we use model-to-model transformations to support the generation
of model sketches of the different concerns from a requirements specification. In
this work, we present a metric to measure the effort reduction that results from ap-
plying this kind of model-driven approach. We use the metric to evaluate models
of six web applications in the context of UML-based Web Engineering (UWE).

1 Introduction

Requirements models should be the result of an intensive communication with the cus-
tomer and provide the representation of the business decisions related to the application
to be developed. The more accurate the models produced in this early development
phase, the less error-prone are the models and the code generated later. This relation-
ship between the quality of the requirements specification and the implemented system
has been analyzed and confirmed several times [4]. However, in practice, many projects
start too soon with the technical design and the implementation. Even if requirements
are specified, they are often partially ignored. The time invested in the requirements
specification is very often seen as partially wasted. Therefore it is important to improve
the use of the requirements specification in further development steps and to obtain as
much information as possible for the so-called design models. In this work, we assess
the utility of modeling the requirements and use these models in a model-driven devel-
opment process (MDD) instead of manual modeling in all stages. We define a metric for
measuring the effort reduction due to automatic generation of models against manual
creation. Such an effort reduction would represent a measurable benefit for web pro-
ductivity [4, Ch. 3]. We propose an assessment strategy that consists of the creation and
generation of models, their comparison and calculation of the effort reduction indicator.

We have built the models of six web applications using UWE (UML-based Web En-
gineering [3]); these applications are a simple address book, a movie database, a music

� This work has been partially sponsored by the EU project ASCENS, FP7 257414, the EU-NoE
project NESSoS, GA 256980, and the DFG project MAEWA II, WI 841/7-2.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 215–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

216 N. Koch, A. Knapp, and S. Kozuruba

portal, a social network, a publication management system and the UWE website. Our
assessment approach analyzes the model elements and aggregates them for the differ-
ent concern models. Although the requirements models were rather sketchy (estimated
degree of details of 53%), the benefit, i.e. the effort reduction reached by having drawn
and used them in the MDD process is calculated to be between 26% and 77%. We have
tested as well the robustness of our metric and reasoned about the scalability. An em-
pirical evaluation performed by a set of web engineers is planned for the corroboration
of our metric. However, in this work, our focus is on the definition of the assessment
strategy and to show the plausibility of the approach.

Related Work. Several model-driven web engineering methods were presented during
the last decade [5]. Valderas and Pelechano [7] present a detailed analysis of the MDD
characteristics of the most relevant methods. Only some of them include explicitly a
requirements phase. OOHDM, UWE and WebML defined proprietary notations for the
requirements offering only partial MDD tool support. The most complete though rather
complex approach is presented by Object-Oriented Web Solutions (OOWS [7]). The re-
quirements analysis phase is also the focus of the Navigational Development Technique
(NDT [2]); the approach of textual templates, however, is less appropriate for the speci-
fication of navigational aspects of web applications. More recently, the Mockup-driven
development process (MockupDD [6]) was defined which enables smooth transforma-
tions into e.g. UWE navigation and presentation models.

Software effort models help project managers to take decisions on methods, tech-
niques, and tools. Mendes et al. [4, Ch. 2] present techniques for effort estimates in web
software development, but do not particularly analyze the effort reduction implied by an
MDD process. Another approach consists in calculating productivity based on size and
effort aggregating different size measures that characterize web applications [4, Ch. 3].

2 Assessment Strategy

Our assessment is defined in terms of reduction of modeling efforts, i.e., measuring to
which extent models of web software can be generated by transformations. We focus
on comparing the results of the automatic generation of design models of rich web
applications — just per mouse click — to the work the designer invests in modeling the
application from scratch. Both, the manual modeling and the model-driven development
processes use requirements models as source for building the design models.

Research Scope and Questions. The requirements models in our assessment are very
simple, i.e. without many details. They contain enough information to discuss the web
application with the customer, but abstract from details mainly required for the im-
plementation. Hence, these requirements models are insufficient for the generation of
complete design models and code. In fact, our goal is to analyze to which extent these
simple requirements models can provide substantial help in building design models.

Our empirical method was designed to answer the following questions: (Q1) How
much of the modeling effort can be reduced through automatic generation of design
models of web applications? (Q2) Is it worth for the designer to focus on the modeling
of the requirements in terms of effort reduction for design models? (Q3) How could web
specific modeling tools provide more assistance through partial model-driven support?

Assessment of Effort Reduction due to Model-to-Model Transformations 217

Table 1. Similarity scale with associated benefit

Kind (k) Description Benefit (b(k))

identical both model elements have exactly the same features 1

similar some features are identical; others are missing or erroneous 0.5

erroneous contains features not included in the original one −0.25

missing is not included in the model while the original is included 0

Table 2. Weights for UML model element types

UML model element type (t) Weight (w(t)) UML model element type (t) Weight (w(t))

Class 1 Action 1

Attribute 0.5 Object Node 0.75

Association/Dependency 0.5 Pin 0.5

Tag 0.25 Control/Object Flow 0.25

Property 0.75 Use Case 1

Table 3. Effort reduction indicators and scope factor

E (t) = (
∑m

k=1 G(k , t) · b(k))/M (t) effort reduction per model element type(1)

E (c) = (
∑n

t=1 E (t) · w(t))/
∑n

t=1 w(t) effort reduction per concern(2)

E = (
∑v

c=1 E (c))/v effort reduction for the application(3)

(4) s = (
∑n

t=1R(t) · w(t))/(
∑n

t=1M (t) · w(t)) scope factor

Assessment Process. The methodology for the assessment has as input the requirements
models of the application and consists of the following steps: (1a) manual creation of
the design models following the principle of separation of concerns, (1b) generation
of the basic design models using transformations; (2) comparison and classification of
the model elements of the manually created and automatically generated models; and
(3) calculation of the effort reduction indicator and interpretation of results.

The notation used for our case studies is the UML profile UWE, the tool is Magic-
Draw and the MagicUWE plugin with its model-to-model transformations. The require-
ments of the web applications are modeled with use case diagrams for the functional
system properties and activity diagrams for the navigational paths and processes. The
design models express the different aspects of content, navigation, presentation, and
processes of web applications. These design models are produced twice for our evalu-
ation: in step (1a) manually by the designer, in (1b) automatically by model-to-model
transformations from the requirement models (see Sect. 3).

In step (2) the generated model elements, such as classes, attributes, and actions are
compared to the manually designed model elements. We distinguish m = 4 kinds of
similarity k for generated model elements: identical , similar , erroneous , and missing
(see Tab. 1). The benefit factor b(k) of kind k tells how much the generation contributes
to the work of the web engineer. This ranges from b(identical) = 1, when nothing has
to be changed, to b(erroneous) = −0.25, when elements need to be removed.

Finally, in step (3) the effort reduction indicator is calculated for model types and
aggregated for each concern and for the application; see Tab. 3. The indicatorE (t) for a

218 N. Koch, A. Knapp, and S. Kozuruba

model element type t , like class, attribute, etc., is the sum of the number of the generated
elements G(k , t) of a similarity kind k and of the type t weighted with the benefit
factor b(k) and divided by the corresponding number of manually generated model
elements M (t) (Tab. 3(1)). The effort reduction indicator E (c) for a concern c, such as
content, navigation, process, and presentation, is calculated as a linear additive weighted
formula of the effort reduction indicator E (t) of the n individual model element types
(Tab. 3(2)). The weight w(t) in Tab. 2 expresses the relevance a model element type t
has for the designer. For example, classes are first-class citizens and attributes are not, as
they belong to classes. The effort reduction indicator E for the entire web application
is given by the average over all v concerns that are modeled for the web application
(Tab. 3(3)). We assume that for the designer all concerns have the same relevance.

With E we provide an estimation of the amount of spared effort when we focus on
modeling requirements of a web application and partially generate the design models.
We need, however, to complete these draft models with some additional effort in order
to achieve the same objective as when modeling the different concerns manually. In
terms of project productivity each activity in the development process has a measurable,
positive cost, with exception of the automated model transformations (we neglect the
implementation costs of the transformations as they are reusable for many projects).

Until now, we only assumed that the same requirements model were used for both the
manual and the automatically generated design models, but disregarded the quality of
the requirements model. We introduce a scope factor that gives a very rough estimation
of the degree of detail to which the requirements are modeled. This scope factor is
calculated as the ratio between the linear additive weighted expression of the number
of requirements elements R(t) of a model element type t and the number of design
elements M (t) (Tab. 3(4)). We use it to normalize the values obtained for the effort
reduction of a web application making different web applications comparable.

3 Model-Based Development of Web Applications in UWE

The assessment strategy for effort reduction in MDD is independent of the approach
for developing web applications; only support for modeling the requirements and the
different design concerns is required. In this work, we use the UML-based Web Engi-
neering (UWE [3]) notation, method, and tool support for evaluating the strategy. The
UWE notation is defined as a UML profile. The cornerstones of the UWE method are
the principle of separation of concerns and the model-driven approach. As UWE tool
we use the MagicUWE plugin implemented for MagicDraw [1].

We illustrate the modeling process and the results of the model transformations in
UWE by a web-based social network application for sharing favorite web links with
friends: Linkbook is accessible to guests and registered users, providing logging in/out
and (un)registering functionality. The homepage shows a list of favorite links grouped
by categories and offers search facilities for links and user comments. Registered users
can comment links and switch to their personal view for managing their links. Network
functionality is offered by a list of friends, giving access to the friends’ favorites.

Requirements Modeling. In UWE, a web application’s functional requirements are cap-
tured by use cases and activities. Figure 1(a) depicts a subset of the Linkbook use cases.

Assessment of Effort Reduction due to Model-to-Model Transformations 219

(a) Functional requirements modeled with use cases (excerpt)

(b) MagicUWE tool with requirements workflow for CreateCategory

(c) Presentation elements: manually modeled (M , left) and automatically generated (G , right)

Fig. 1. Linkbook example in MagicUWE

The UWE profile supports web-specific annotations by stereotypes for use cases, like
�browsing� (, pure navigation) and �processing� (, workflow functionality). Use
cases in packages inherit the stereotype of the package.

Each �processing� use case is refined by a workflow using UML activity diagrams,
for CreateCategory see Fig. 1(b) (lower right). The workflow specifies the process ac-
tions, input/output information with pins or objects, decisions, and rich user interface
features. Web-specific annotations can be added to actions, like �displayAction� () for
the explicit presentation of elements, �userAction� () for asking the user for input, or
�systemAction� () indicating the processing of data.

220 N. Koch, A. Knapp, and S. Kozuruba

Creating Design Models. The UWE method for the design phase follows the principle
of “separation of concerns”: A content model represents the domain concepts and the
relationships between them. A navigation model is used to represent navigable nodes
and the links between nodes. A presentation model provides an abstract view on the
user interface (UI). A process model contains the workflows of the processes which are
invoked from certain navigation nodes.

A navigation model consists of navigation classes for the navigable nodes and pro-
cess classes for accessing business processes. Alternative navigation paths are handled
by menus, multiple instances of navigation paths by indexes, menus, and queries. The
basic presentation modeling elements are the �presentationGroup� which are directly
based on nodes from the navigation model, i.e. navigation classes, menus, access primi-
tives, and process classes. A presentation group () or a �form� () are used to include
a set of other UI elements, like �textInput� () or �selection� (). Figure 1(c) (left)
shows the presentation model for the process AddComment which is related to the �pro-
cessing� use case with the same name.

Generating Design Models. On the right side of Fig. 1(c) the presentation model of
the same AddComment form is shown, but this one was automatically generated by
model-to-model transformations. A set of model transformations is defined in Mag-
icUWE with the goal to benefit from the efforts invested in the requirements models
and produce initial versions of all design models, i.e., content, navigation, process, and
presentation (see Fig. 1(b)). To describe in detail each of these transformations is out
of the scope of this work. For the requirements-to-presentation transformation mainly
information from the requirements workflow with its action stereotypes is used, like
�userAction� asking the user for input.

4 Evaluation Results

Once the modeling part of the process described in Sect. 2 is completed, the evaluation
of the MDD approach can be started (steps 2 and 3). We first provide details on how the
effort reduction calculations are applied to the Linkbook, then we present the assessment
results for a set of six web applications and discuss the robustness of our findings.1

Assessing Effort Reduction for Linkbook. A counting of model elements of both design
models resulting from the requirements, the manually crafted and the generated model,
is performed for each concern. The generated elements are classified into the kinds of
of Tab. 1. For example, the excerpt of the manually crafted presentation models of Link-
book shown in Fig. 1(c) contains 10 model elements (1 class, 4 properties and 5 tags);
the generated counterpart contains 7 model elements (1 class, 6 properties and 1 tag);
there is no identical element, 4 similar and 3 erroneous . Table 4 presents the results
of the counting and categorization of all model elements of the presentation concern.
These modeling elements are the presentation group (including those that inherit from
it, like input form), the interactive elements (like button, input text, selection), and the
output properties (such as text, images).

1 Further details on the example applications (Address Book, Music Portal, Movie Database,
Publication Management System and the UWE website) as well as download links of their
models can be found at the UWE website: http://uwe.pst.ifi.lmu.de.

Assessment of Effort Reduction due to Model-to-Model Transformations 221

Table 4. Linkbook application: Effort reduction indicators for the presentation concern

Linkbook Manually Generated Effort reduction
modeled Identical Similar Erroneous indicator (E)

Presentation Groups (Class) 38 13 15 12 0.46

Interactive Elements (Property) 54 32 18 26 0.64

Output Elements (Property) 25 17 8 11 0.73

Presentation Model 0.59

Table 5. Overview on Assessment Results

Web application Content Navigation Presentation Process E Scope E normalized

Address Book 0.56 0.45 0.51 0.66 0.54 0.75 0.39

Linkbook 0.45 0.57 0.59 0.63 0.56 0.84 0.35

Movie DB 0.25 0.30 0.10 0.33 0.25 0.51 0.26

Music Portal 0.59 0.52 0.46 0.78 0.59 0.41 0.77

Publications MS 0.13 0.33 0.25 0.17 0.22 0.36 0.33

UWE Website 0.40 0.01 0.53 0.78 0.43 0.32 0.72

Average 0.53 0.47

Table 6. Statistics on Linkbook models

Model Class Use Action Attribute Assoc./ Pin Property Contr./Obj. Object Tag Weighted
Case Depend. Flow Node Average

Req. 0 22 93 0 15 131 0 179 16 93 63.06

Design 80 0 46 33 70 57 135 120 19 114 75.11

The last column of Tab. 4 shows the values of the effort reduction indicators calcu-
lated using the equations in Tab. 3: E (t) for each model element type t and the effort
reduction indicator E (c) for the entire presentation concern, which is 59%. The effort
reduction indicators for the content, navigation and process concerns are computed sim-
ilarly (see second row of Tab. 5). The effort reduction indicator E for the entire web
application Linkbook is 56%. As additional modeling effort required after the execution
of the model transformation 48 model elements have to be built.

Comparing Effort Reductions of Multiple Applications. Table 5 gives an overview of
the effort reduction indicators for all six web applications of the assessment study. The
evaluation results show that the execution of the transformations and the resulting first
drafts of the different models for the content, navigation, presentation, and process con-
cerns imply an effort reduction between 22% and 59%, but irrespective of the amount
of effort that has been invested in the requirements modeling. To correct this bias, we
use the scope factor s of Tab. 3(4) based on a relationship between amount and type
of model elements used at requirements and design level; see next-to-last column of
Tab. 5. The scope factor is then applied to normalize the effort reduction indicator of
each application. The normalized values of E (last column) are comparable and are
situated in the range between 26% and 77% with an average effort reduction of 47%.

These results allow the following answers to the questions in Sect. 2: (Q1) The mod-
eling effort can be reduced in average by 47% if the degree of detail of the requirements

222 N. Koch, A. Knapp, and S. Kozuruba

models is estimated in 53%; assuming linearity this would imply that complete require-
ments models (100%) would lead to an automatic generation of 88% of the design mod-
els. (Q2) The effort reduction values confirm that it is worth to invest in the requirements
modeling. (Q3) Tools should allow for separate execution of model transformations for
each concern enabling the modeler to select appropriate transformations.

Robustness of the Assessment. We recalculated the effort reduction indicator changing
the weights of model elements in Tab. 2. A modification of 0.25 for a navigation element
type changes the effort reduction indicator of the concern by max. 3%, in average only
2%. Similarly, in the presentation model changes of 0.25 in average only affect the
value of the indicator by 1%, max. 4%. Although these results sound encouraging, there
are still some difficulties to be solved. The most important methodological issue is the
regeneration of models after changes in the target models have been performed, i.e. how
to merge models and identify conflicts. A more technical and tool related problem is the
graphical representation of the diagrams corresponding to generated models.

5 Conclusions

We have presented an assessment process and a metric for measuring the effort reduc-
tion resulting from using model-transformations instead of manual creation of design
models based on the requirements models of web applications. The proposed assess-
ment strategy has been applied to six web applications, whose requirements have been
specified using the UWE approach. Our evaluation shows that the MDD approach re-
duced the effort in more than 45%, which could even be improved if the degree of detail
of the source models is increased. We plan to corroborate the results of our evaluation
with empirical data obtained by groups of students that will create the models and use
the same tool for generating these web applications.

References

1. Busch, M., Koch, N.: MagicUWE – A CASE Tool Plugin for Modeling Web Applications. In:
Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp. 505–508.
Springer, Heidelberg (2009)

2. Escalona, M.J., Aragón, G.: NDT. A Model-Driven Approach for Web Requirements. IEEE
Trans. Softw. Eng. 34(3), 377–390 (2008)

3. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering: An Approach
Based on Standards. In: Olsina et al. [5], ch. 7, pp. 157–191

4. Mendes, E., Mosley, N. (eds.): Web Engineering. Springer, Berlin (2006)
5. Olsina, L., Pastor, O., Rossi, G., Schwabe, D. (eds.): Web Engineering: Modelling and Imple-

menting Web Applications. Springer (2008)
6. Rivero, J.M., Grigera, J., Rossi, G., Robles Luna, E., Koch, N.: Towards Agile Model-Driven

Web Engineering. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol. 107, pp. 142–155.
Springer, Heidelberg (2012)

7. Valderas, P., Pelechano, V.: A Survey of Requirements Specification in Model-Driven Devel-
opment of Web Applications. ACM Trans. Web 5(2), 10 (2011)

Evaluating the Impact of a Model-Driven Web
Engineering Approach on the Productivity and
the Satisfaction of Software Development Teams

Yulkeidi Martínez1, Cristina Cachero2, and Santiago Meliá2

1 Universidad Máximo Gómez Báez de Ciego de Ávila, Cuba
2 DLSI. Universidad de Alicante, Spain

Abstract. BACKGROUND: Model-Driven Engineering claims a posi-
tive impact on software productivity and satisfaction. However, few ef-
forts have been made to collect evidences that assess its true benefits
and limitations.

OBJECTIVE: To compare the productivity and satisfaction of junior
Web developers during the development of the business layer of a Web
2.0 Application when using either a code-centric, a model-based (UML)
or a Model-Driven Engineering approach (OOH4RIA).

RESEARCH METHOD: We designed a full factorial, intra-subject
experiment in which 26 subjects, divided into five groups, were asked to
develop the same three modules of a Web application, each one using a
different method. We measured their productivity and satisfaction with
each approach.

RESULTS: The use of Model-Driven Engineering practices seems to
significantly increase both productivity and satisfaction of junior Web
developers, regardless of the particular application. However, modeling
activities that are not accompanied by a strong generation environment
make productivity and satisfaction decrease below code-centric practices.
Further experimentation is needed to be able to generalize the results to
a different population, different languages and tools, different domains
and different application sizes.

1 Introduction

It is a well known fact that the Web Engineering community advocates the use of
models in order to improve software development processes for Web applications.
However, there are many issues around modeling that are, as of today, cause of
controversy and heated debates: to which extent should practitioners model?
Which should be the level of detail of these models? Should practitioners strive
to maintain the models current, or should these models be disposable? These
and others are open questions whose answer currently partly depends on the
development culture of the person asked, and partly on the context in which such
practices are being adopted. In this respect we claim that, instead, the decision
about which is the adequate application of software modeling practices should be
answerable based on objective data regarding its impact on well-known process

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 223–237, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

224 Y. Martínez, C. Cachero, and S. Meliá

and product quality dimensions. From these dimensions, productivity, defined
as a ratio of what is produced to what is required to produce it, outstands, due
to its impact during the selection of a development process in industry [1]. Also,
satisfaction is an important aspect of quality, since, being software development
a human process, the developer’s satisfaction is a key factor for the successful
adoption of such practices [2].

One quitewell-knownway of classifyingmodelingpractices in industry is accord-
ing to the extent to which modeling is used to support the development process.
Fowler [3] describes three different modes in which modeling languages (and the
UML in particular) can be used: sketch, blueprint and programming language.

– Sketches are informal diagrams used to communicate ideas. They usually
focus on a particular aspect of the system and are not intended to show
every detail of it. It is the most common use of the UML, and the recom-
mended practice in agile, code-centric frameworks like Scrum. When models
are used as sketches, tools are rarely used, the modeling activity being mostly
performed in front of blackboards where designers join to discuss complex
or unclear aspects of the system. They are most useful in code-centric ap-
proaches, where the objective is to develop self-explaining code.

– Blueprints are diagrams that show most of the details of a system in order
to foster its understanding or to provide views of the code in a graphical
form. Blueprints are widely used in Model-Based Development (MBD) prac-
tices, such as the ones promoted by frameworks such as the Rational Unified
Process (RUP).

– Last but not least, models can be used to fully characterize the application.
If such is the case, the diagrams replace the code, and they are compiled
directly into executable binaries. This is the modeling use that lies at the
core of Web Engineering Model-Driven Development (MDD) approaches.

This classification has led some authors to characterize the modeling maturity
level of organizations based on the role of modeling in their software development
process, from manual, code-centric, to full, Model-Driven [4]. While code-centric
development methods require - at most - an informal use of modeling techniques
and languages, both MBD and MDD require a formal use of models, which
mainly relies on the use of Computer Aided Software Engineering (CASE) tools.
These tools may offer not only modeling environments - including model checkers
that may assure syntactical correctness, semantic accurateness, consistency or
completion of models, to name a few desirable model characteristics - but also
partial or even complete software generation environments that, in the case of
MDD CASE tools, are based on model transformations.

Both MBD and MDD tools work under the assumption that designing models
that can generate partial or complete code is much simpler and quicker than ac-
tually writing such code. This same view is sustained in MBD and MDD related
scientific literature. Such literature claims that the two most outstanding advan-
tages of MDD over code-centric or even MBD approaches are (a) short and long
term process productivity gains [5] and (b) a significant external software prod-
uct quality improvement [6,7]. These advantages are justified in literature by the

Evaluating the Impact of a Model-Driven Web Engineering Approach 225

higher level of compatibility between systems, the simplified design process, and
the better communication between individuals and teams working on the system
that the MDD paradigm fosters [8].However, neither the MBD nor the MDD re-
search community have yet been able to provide practitioners with a sufficient
body of practical evidence that soundly backs the purported gains of their recom-
mended modeling practices with respect to code-centric approaches [9,10]. Many
authors have written about the importance of providing empirical evidence in
software engineering [11] but, unfortunately, the percentage of empirical studies
- be them surveys, experiments, case studies or postmortem analyses [12]- that
provide data to illustrate the impact of MBD and MDD approaches over differ-
ent quality characteristics (such as productivity or satisfaction) is still very low,
which hampers the generalizability of the results. In order to guarantee such
generalizability, we also need to take into explicit consideration many factors
that may affect these characteristics, such as tool usage, adaptation of the de-
velopment methodology to the idiosyncrasy of the particular development team,
type, complexity and size of the project, and so on. This situation contrasts
with other disciplines and even other areas of Software Engineering [13], and it
is often mentioned as one of the causes that explain the low adoption level of
modeling practices by the practitioner’s mainstream [14].

Given this situation, the aim of this paper is to augment the repository of em-
pirical data that contributes to giving a scientific answer to the following research
question: What is the impact of the development method (be it rooted in a code-
centric, an MBD, or an MDD paradigm) on the productivity and satisfaction of
junior developers while developing Web 2.0 applications?

In order to answer this question, Section 2 describes some previous studies that
center on the impact of MBD and MDD practices on process productivity and
satisfaction with respect to traditional code-centric practices. Section 3 outlines
our experiment design, and analyzes its results and threats to validity. Finally,
Section 4 presents the conclusions and further lines of research.

2 Background

Although still scarce in number and not always systematically performed [15], in
the last years we have witnessed an increase in the number of empirical studies
that provide empirical data regarding the impact of MBD and MDD practices
on the productivity and satisfaction of software development teams.

Regarding MBD, in [5] initial evidence is provided about the use of models
and tools as an effective way to reduce the time of development and to improve
software development variables such as productivity and product quality.

Regarding MDD, there is a number of experiments where productivity of
developers using different methods - some model-driven, others code-centered
- was measured [9,16,17,18,19,20]. The conclusion in all these studies is that,
as projects grow larger, the use of MDD development practices significantly
increases productivity (results ranging from two up to nine or even twenty times,
depending on the study). The only evidence contradicting these findings is an

226 Y. Martínez, C. Cachero, and S. Meliá

industrial experience presented in [14]. In this paper, the authors reported a set
of studies that showed contradictory results, with both software productivity
gains and losses, depending on the particular study. They explained the found
productivity losses by pointing at the use of immature tools and high start-up
costs. Also, these studies showed that modeling was considered to be an activity
at least as complex as programming with a traditional third generation language.

Last but not least, although most of the aforementioned studies include some
kind of global satisfaction score, there are few studies that center on the develop-
ers’ subjective perceptions while applying different methods. In [21], the author
empirically assessed the satisfaction of an MDD method (called MIMAT) that
includes Functional Usability Features (FUFs) in an MDD software development
process. The study concluded that the users’ satisfaction improves after includ-
ing FUFs in the software development process. Our experiment does not center
on the impact of a method enrichment, but compares different methods with
respect to the developer’s satisfaction and productivity.

Next, we present the quasi-experiment that we have performed to test the
impact of three methods, each one an example of a code-centric, an MBD and
an MDD approach respectively, on the productivity and satisfaction of junior
software developers.

3 Description of the Experiment

During the months of January and February 2011, a quasi-experiment was con-
ducted at the University of Alicante. A quasi-experiment differs from a true ex-
periment in that subjects are not randomly chosen. Quasi-experiments, although
suffering from a lower internal validity, are widely used and deemed useful in the
Empirical SE field, since they allow investigations of cause-effect relations in
settings such as ours, in which randomization is too costly [22].

3.1 Goals and Context Definition

Following the GQM template [23], our empirical study is aimed at analyzing
three methods, one representative of the code-centric paradigm, one representa-
tive of the MBD paradigm and one representative of the MDD paradigm, for the
purpose of comparison with respect to their productivity and satisfaction from
the point of view of junior software developers. The context of the study was a
set of M.Sc. students developing the business layer of a Web 2.0 application.

The design of the experiment was based on the framework for experimenta-
tion in SE suggested by [12]. The whole data set is included in the replica-
tion package available at http://www.dlsi.ua.es/ ccachero/labPackages/
Productivity.v1.rar.

The research questions addressed in this study were formulated as follows:

– RQ1: Is the team’s productivity significantly different among methods, re-
gardless of the particular module being developed?

http://www.dlsi.ua.es/~ccachero/labPackages/Productivity.v1.rar
http://www.dlsi.ua.es/~ccachero/labPackages/Productivity.v1.rar

Evaluating the Impact of a Model-Driven Web Engineering Approach 227

– RQ2: Is the developer’s satisfaction significantly different among methods,
regardless of the particular module being developed?

These research questions were devised to be answerable by quantitative means.

Subjects and Application. The initial group of subjects were 30 students
of the Web Applications Developer Master at the University of Alicante. These
students were divided into six teams of 4 to 6 people. From them, the data
corresponding to Team 6 had to be dropped due to some of their components
abandoning the Master for work reasons soon after the experiment had started.
Therefore, the final set of observations corresponds to the observations of the
remaining five groups (26 subjects). Since the abandonment of the group had
nothing to do with the application being developed, the treatments that the
group were applying to his project nor the particular order in which they were
applying them, we can assume that the results of the experiments have not been
compromised. The final sample comprised 25 men and 1 women, of whom 75%
had more than 2 years of professional experience as developers of web appli-
cations. The mean age of the participants was 25,6 years old and all of them
were Computer Engineering graduates of the University of Alicante. Regarding
the subjects’ level of knowledge with respect to the different technologies and
methods used during the experiment, a questionnaire showed that 81% knew
UML, and that another 12% considered that they had a high-level of knowledge
of UML. It should also be noted that 76% of the subjects had previously pro-
grammed with VS and .NET during their degree courses, although only 12% had
applied them in industry. Finally, the subjects acknowledged no previous prac-
tical knowledge of MDD, although 56% of them were aware of the existence of
the paradigm. By the time the experiment took place, the subjects had received
additional training in all three methods. Such training consisted in 30 hours of
training in programming in C# using Visual Studio 2010, 20 hours of training
in UML modelling with RSM and 10 hours of training in modelling with the
OOH4RIA tool.

Each of the five groups developed a social media application for a different
domain:

– Trips: the social network for this domain is focused on establishing relation-
ships between people who want to reduce travel costs by sharing their own
cars.

– Events: the social network for this domain is centred on organized social
events.

– Hospitals: the social network for this domain aims at improving the commu-
nication between physicians and patients.

– Academics: the social network for this domain focuses on connecting and
sharing teaching contents among teachers and students.

– Facework: the social network for this domain helps workers to share infor-
mation about different tasks, resources and goals of the company.

All the applications shared the same complexity, which was controlled by defining
a set of functional features that all the applications had to support, regardless

228 Y. Martínez, C. Cachero, and S. Meliá

of the domain. From them, the three functional features that were included in
our experiment were:

– Support for the establishment of a community of users (from now on Group)
to create contents and relationships among people of different environments
(professional, personal, etc., depending on the particular application being
developed).

– Support for the organization of events (from now on Events) where people
can invite their friends or colleagues to attend to a place where the event
is realized (the particular event being a celebration, a work meeting, etc.
depending on the particular application being developed)

– Support for an organizational community (from now on Organization) where
subjects (be them companies, celebrities, etc., depending on the particular
application) can publish content, photos, etc. in a unidirectional way to the
social network.

Each one of these functional features was designed as a module. In order to
further control the complexity of each module, we strictly defined their archi-
tecture, which was based on four main layers: the Business Objects layer (BO),
the Data Access Objects layer (DAO), the Data Transfer Objects layer (DTO)
and the Database layer (DB). In this way, it was possible to standardize to a
certain point the code that had to be developed and facilitate its measurement.
Although we are conscious that such strict architecture may hamper the exter-
nal validity of the experiment, this factor was kept constant across the three
treatments, in order to preserve the comparability of the results. The subjects
were asked to implement each module following a different method. The time
assigned for the implementation of each module was two weeks.

In order to develop the different projects, the students had to follow the Agile
Unified Process (Agile UP) methodology [24], a streamlined approach to software
development that is based on the IBM’s Rational Unified Process (RUP) [25].
The Agile UP lifecycle is serial in the large, iterative in the small, and delivers
incremental releases over time. Specifically, our experiment was situated in the
construction phase of Agile UP, which is focused on developing the system to
the point where it is ready for pre-production testing. The construction phase
is made up of a set of disciplines or workflows that groups different tasks of
this process. These disciplines, together with the impact of modelling practices
on each of them depending on the paradigm, are presented in Table 1. All the
students had previously developed at least one application with Agile UP, and
they had an additional 10-hour training period to refresh the main concepts.

Table 1. Degree of automation of Agile UP disciplines by development paradigm

Discipline Code-Centric(.NET) Model-Based(RSM) Model-Driven(OOH4RIA)
Model Sketch or absent Blueprint Fully-fledged (DSL)

Implementation Manual Semi-automatic Automatic
Test Manual Manual Semiautomatic

Evaluating the Impact of a Model-Driven Web Engineering Approach 229

Implementation Language and Case Tools. The development environment
for the experiment was set up as follows:

– Code Development Environment: NET framework and NHibernate (Object-
Relational Mapping).

– IDE (Integrated Development Environment) Development Tool: Visual Stu-
dio 2010.

– Languages: C# and the Extensible Application Markup Language (XAML).
– MBD Modeling Environment: Rational Software Modeler (RSM)
– MDD Modeling Environment: OOH4RIA IDE
– Other tools: Subversion 1.6 (SVN), Jira (Issue Tracking) and Survey Monkey

(for questionnaires).

The code-centric treatment relied solely on the development enviroment provided
by the Visual Studio 2010 and the use of external tools that permit to manage
the collaborative work (Subversion). On the other hand, the MBD treatment
required the students to work with the UML class diagram of the RSM tool. Last
but not least, for the MDD treatment the students worked with the OOH4RIA
approach [26].

Students were scheduled to work on these three modules during six weeks
along the months of January and February 2011. By this time of the year, the
students had already gone through most of the topics of the master, and had
gathered a substantial amount of experience with the different tools and the
development environments. The experiment defined a tight timetable of deliv-
erables, one every two weeks. Each deliverable consisted of a set of source files
and a domain model. The source code had to contain four specific file types:
the Business Object files (BO), the Data Access Object files (DAO), the Data
Transfer Object files (DTO) and the Database files (DB). The teams were con-
tinuously monitored by a Master instructor whose role in the experiment was
to look after the quality of the data gathered, both in class and off-line through
the Jira and the SVN report systems.

3.2 Experiment Planning

Given the low number of development teams available, and in order to facilitate
the detection of method impact by controlling the variability among subjects,
the experiment was conceived as an intra-subject design. The combination team-
module-approach was defined using a Factorial Design [27,28] (see Table 2). This
kind of design avoids order effects and can provide some unique and relevant
information about how variables interact or combine in the effect they have on
the dependent variables. Also, this design eliminates any possible order effect.
Teams were randomly assigned to each treatment order.

In order to answer the research questions presented in Section 3.1, we have
defined the following independent (experimentally manipulated) variables (IV)
or factors:

230 Y. Martínez, C. Cachero, and S. Meliá

Table 2. Experiment design: a factorial, intra-subject design. Group marked with(*)
did not finish the experiment.

Team/Module Application Group Events Organization
1 Travel code-centric MBD MDD
2 Events code-centric MDD MBD
3 Hospital MBD MDD code-centric
4 Academics MDD MBD code-centric
5 Facework MBD code-centric MDD
6* Automobile MDD code-centric MBD

– Meth: Method, a categorical variable with three levels: code-centric, MBD,
MDD. It is important to note that, in this experiment, when we refer to
method we are in fact talking about a compound variable (method*tool),
due to the coupling of these two variables in our experimental settings.

– Mod: Module, a categorical variable with three possible values: Groups,
Events, Organization.

The Dependent (measurable) variables (DV) are:

– P(Meth, Mod), a ratio variable that measures the productivity of the team
with each method and module

– S(Meth,Mod), an interval variable, based on a 7-point Likert scale, that
measures the satisfaction of the developers with each method and module

The DV have been measured through the following collection procedures:

1. To measure Productivity we measured both the development time and the
size of the modules developed by each team.
– Development time: The student had to document the time of each de-

velopment activity through the JIRA tool.
– Module size: We measure the size of the code produced by students in

source lines of code (SLOC). SLOCs come in handly to express the size
of software among programmers with low levels of experience [29]. We
automated the obtention of this measure through the Line Counter [30]
tool.

2. To measure Satisfaction we defined a satisfaction scale (SS) made up of
eleven items, where each one was based on a 7-point Likert rating scale.

These measures have been used to test the following testable hypotheses, which
are based on the research questions and the existing empirical evidence presented
in Section 2:

– Productivity Hypothesis (PH): Prod(MDD)>Prod(MBD)>Prod(code-
centric). Developer teams are significantly more productive with the MDD
method, followed by the MBD method, followed by the code-centric method.

– Productivity-Module Interaction Hypothesis (PMIH): P(Module*Meth)<
0.05. The effect on P of the particular module to which the method is applied
is insignificant compared to the effect of the method.

Evaluating the Impact of a Model-Driven Web Engineering Approach 231

– Satisfaction Hypothesis (SH): Satisf(MDD)>S(MBD)>S(code-centric). De-
velopers are significantly more satisfied with the MDD method, followed by
the MBD method, followed by the code-centric method.

– Satisfaction-Module Interaction Hypothesis (SMIH): S(Module*Meth)<0.05.
The effect on S of the particular module to which the method is applied is
insignificant compared to the effect of the method.

3.3 Instrumentation

Besides the instructional materials, all the students received three booklets:

– Modules Description Booklet: a requirements document describing the func-
tional and non functional requirements of the three modules included in the
experiment. This booklet was divided in three parts, and it was the same
regardless of the order in which the treatments were to be applied.

– Jira Time Reporting Booklet: a document explaining the time reporting
conventions that were to be used during the experiment

– Subject Instruction sheet: a set of instructions to the students to correctly
perform the experiment.

These instruments are included in the replication package available at
http://www.dlsi.ua.es/~ccachero/labPackages/Productivity.v1.rar.

The experiment had the following structure:

1. Subject instruction sheet.
2. Pre-experiment questionnaire: it included demographic questions as well as

questions about subjects’ previous experience with Web application devel-
opment, Web programming and application modeling, etc.

3. Project work: For each treatment, the students spent two weeks working on
the corresponding module with the assigned methodology.

4. Post-experiment questionnaire: it included a semantic-differential scale that
required developers to judge each method on 11 pairs of adjectives describing
the developer’s overall satisfaction with such method.

At the end of each module, the students delivered both the Domain Models and
the Source Code (BO, DAO, DTO and DB files).

3.4 Data Analysis and Interpretation of Results

The statistical analysis was carried out with PASW (Predictive Analytics Soft-
Ware) Statistics [31].

Prior to the assessment of the hypotheses, we checked the reliability of the
Satisfaction scale in the context of our experimental settings. For the satisfac-
tion scale, all the items showed a correlation higher than 0.3, while the global
Cronbach alpha was 0.892, giving proof of a high internal consistency among the
scale items. This high correlation has led us to calculate the scale mean for each
method, and consider this mean as a global rating of satisfaction with each one
of the three treatments (code-centric, MBD, MDD).

http://www.dlsi.ua.es/~ccachero/labPackages/Productivity.v1.rar

232 Y. Martínez, C. Cachero, and S. Meliá

RQ1: Impact of Method on Team Productivity. The data gathered to
accept/reject the PH and PMIH hypotheses (see section 3.2) are graphically
presented in Fig. 1.

Fig. 1. Productivity: SLOC/Hours

To test the PH and PMIH hypotheses, we applied a 3*5 Mixed Design
ANOVA , in which the module (Groups, Events, Organization) was the between-
subjects variable, and the calculated P ratings for each method were the within-
subjects variables. In order to assure that applying this statistical method made
sense, we verified that the principle of spherity was not violated by applying the
W Mauchly’s test (W=0,005, p>0,05) [32]. The results showed that MDD pro-
duced the highest P (M = 4,60, SD=1,17), followed by MBD (M=2,30, SD=1,10)
and then Code-centric (M=0,80, SD=0,29), and that these differences were sig-
nificant (F=25,395, p=0,001).

The results also showed that the interaction Mod*Meth was not significant
(F= 3,009, p>0.05). We can then safely examine the main effects of the two in-
dependent variables (Mod and Meth) on these means without needing to qualify
the results by the existence of a significant interaction. The main effect of module
did not attain significance (F=0,538, p>0.05), while the main effect of method
did reach significance, (F=25,39, p<0,01), that is, the differences in P are signifi-
cantly affected by the method used, regardless of the particular module being de-
veloped. The last step of the analysis consisted on studying the pairwise differences
among methods through a one-way RM Anova with pairwise comparisons. In or-
der not to augment the risk of a type-1 error, a Bonferroni adjustment was applied.
This means reducing the significance threshold to 0.0167 (p = 0.05 / 3 = 0,0167).

Evaluating the Impact of a Model-Driven Web Engineering Approach 233

With this adjustment, the differences in productivity between the Code-centric
and the MBD method did not attain significance (t=-2,69, p=0,054) but the differ-
ences between Code-centric and MDD (t=-6,029, p=0,004) and MBD and MDD
(t=-6,031, p=0,004) did.

RQ2: Impact of Method on Developer’s Satisfaction. The data gathered
to accept/reject the SH and SMIH hypotheses (see section 3.2) are graphically
presented in Fig. 2.

Fig. 2. Satisfaction: Likert Scale

To test the SH and SMIH hypotheses we applied a 3*5 Mixed Design ANOVA ,
in which the module (Groups, Events, Organization) was the between-subjects
variable, and the S ratings for each method were the within-subjects variables. In
order to assure that applying this statistical method made sense, we first checked
that the principle of spherity was not violated by applying the W Mauchly’s test
(W=0,838, p=0,142) [32]. The results showed that MDD produced the high-
est S (M = 4,76, SD=0,73), followed by code-centric (M=4,17, SD=0,72) and
then MBD (M=3,48, SD=0,96). The results also showed that the interaction
Mod*Meth is not significant (F = 1,768, p>0.05). If we examine the effects
of the two independent variables (module and method) we can observe how
the Mod inter-subject influence did not attain significance (F=0,167, p>0,05),
while the main effect of method did reach significance, (F=18,04, p<0,01), that
is, the differences in S are significantly affected by the method used, regardless
of the particular module being developed. The last step of the analysis consisted
on studying the pairwise differences among methodologies through a one-way

234 Y. Martínez, C. Cachero, and S. Meliá

Anova with pairwise comparisons. In order not to augment the risk of a type-1
error, a Bonferroni adjustment was applied. This means reducing the significance
threshold to 0.0167 (p = 0.05 / 3 = 0,0167). Even with this conservative adjust-
ment, all the pairwise S differences were significant (p<0,05), which means that,
in our experiment, subjects rated significantly differently the three approaches,
being MDD the best method rated and MBD the worst.

3.5 Threats to Validity

The analysis of the threats to validity evaluates under which conditions our
experiment is applicable and offers benefits, and under which circumstances it
might fail. For the classification of these threats, we have followed the classifi-
cation proposed by Cook and Cambell [33]: internal, external, construction and
conclusion.

Threats to conclusion validity refer to the relationship between the treatment
and the outcome. In order to minimize the threats, we have strived to automati-
cally capture as many measures as possible, with the help of well-known tracking
systems such as JIRA or SVN. Additionally, statistical tests have been chosen
conservatively, without making any kind of assumption on variable distributions.
However, the fact that the students self-reported the measures, together with the
duration of the experiment (six weeks) and the low number of subjects hamper
the conclusion validity.

Threats to internal validity are concerned with the possibility of hidden fac-
tors that may compromise the conclusion that it is indeed the treatment what
causes the differences in outcome. All groups applied all the treatments to dif-
ferent modules at different times, what minimizes many internal threats such
as selection, history, maturation or social threads such as compensatory rivalry
or resentful demoralization. However, being an intra-subject design, carry-over
effects may have occurred.

Threats to construct validity refer to the relationship between theory and
observation. In this sense, both the treatments and the measures used to as-
sess productivity and satisfaction have been previously widely used in literature.
This notwithstanding, there remains the possibility of an interaction of testing
and treatments: the need to self-report certain measures may have changed the
behavior of the students. We believe that the fact that the experiment took over
six weeks minimizes this risk, since it is very difficult to maintain a ’potentially
abnormal’ behavior over such a long period of time without it being detected.
Also, the hypothesis of the experiment (that is, a higher productivity of MDD
environments) was quite easy to guess, so students may have felt bound to re-
port less time when using MBD or MDD. Anyway, the experiment observers
took special care not to disclose this hypothesis to the students. Additionally,
the experiment suffers from a restricted generalizability across constructs: we
have checked a positive outcome between productivity and MDD, but we can-
not assure that this does not come at the expense of other characteristic of
the developed software, such as modularity, reusability, or any other quality
attribute.

Evaluating the Impact of a Model-Driven Web Engineering Approach 235

Last but not least, external validity is concerned with generalization of the
results. In this group of threats we have identified a lack of sample represen-
tativeness (M.Sc. students), academic environment, a strict architecture and a
restricted domain and complexity. Also, we are conscious of the existing cou-
pling between method and tool: all the methods were accompanied by tools.
Although we tried to choose well-known development environment and -when
possible- use standards (e.g. UML for the modeling activity in MBD and MDD),
we are conscious that the different tools add a different ’flavor’ to the methods.
Therefore, this experiment needs to be replicated in order to make sure that it
is the method used and not the tool what causes the observed differences.

4 Conclusions

During the last years the Web Engineering community has claimed how the use
of modeling practices in MDD and MDB approaches significantly improves the
productivity and satisfaction of Web applications with respect to code-centric
development approaches. However, up to now, the quality and quantity of the
empirical analyses that demonstrate the true impact of these modeling tech-
niques over the final developer’s productivity or satisfaction are still very low. In
this paper, we have presented a rigorous analysis of a quasi-experiment carried
out in a controlled environment. The data gathered shows that the productivity
and the satisfaction of junior Web developers are significantly affected by the
development method but they are independent from the particular module being
developed. The main conclusions of our study (that still need to be corroborated
with further replications) are:

– The MDD approach seems to significantly increase the productivity of de-
velopers with respect to both the MDB and the code-centric approach.

– The MDD approach satisfies the most the expectations of juniors developers,
followed by code-centric and, in third position, the MDB approach.

These results are well aligned with with the assumption that model-driven tech-
niques improve the productivity and also the satisfaction among developers when
they are accompanied by a generation environment. However, the productivity
and the satisfaction can decrease even below code-centric practices when the
modeling activities are used exclusively as blueprints to improve the understand-
ing, and the developers must implement manually almost all the final code.

Our study of the impact of MDD on the productivity and satisfaction is just
the beginning of a family of experiments in which we want to replicate the
same analysis with practitioners in industry and also with more complex Web
application client-side models. Moreover, further experimentation is needed to
separate the effect of methods from the effect of their accompanying development
environments (Visual Studio 2010, RSM or the OOH4RIA tool) and to be able to
generalize the results to a different population, different methods and languages,
different application types or different application sizes.

236 Y. Martínez, C. Cachero, and S. Meliá

Acknowledgements. This paper has been co-supported by the DLSI, the
Spanish Ministry of Education, and the University of Alicante under contracts
TIN2010-15789 (SONRIA) and GRE10-23 (DISEMRIA). The authors also wish
to thank their students to take the time to participate in this empirical study.
Besides we would like to thank to Jose Javier Martinez and Juan Antonio Osuna,
who contributed to the development of the OOH4RIA Tool.

References

1. CMU/SEI: CMMI Product Development Team, CMMI for Development verion 1.2
(2006)

2. Moore, G.C., Benbasat, I.: Development of an instrument to measure the per-
ceptions of adopting an information technology innovation. Information Systems
Research 2(3), 192–222 (1991)

3. Fowler, M.: UML distilled: a brief guide to the standard object modeling language,
3rd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2004)

4. Kleppe, A.G., Warmer, J., Bast, W.: MDA explained: the model driven architec-
ture: practice and promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

5. Bruckhaus, T., Madhavii, N.H., Janssen, I., Henshaw, J.: The impact of tools on
software productivity. IEEE Software 13(5), 29–38 (2002)

6. Genero, M., Manso, M.E., Visaggio, A., Canfora, G., Piattini, M.: Building
measure-based prediction models for UML class diagram maintainability. Empirical
Software Engineering 12(5), 517–549 (2007)

7. Abrahão, S., Iborra, E., Vanderdonckt, J.: Usability evaluation of user interfaces
generated with a model-driven architecture tool. Maturing Usability, 3–32 (2008)

8. Mellor, S.J., Clark, T., Futagami, T.: Model-driven development: guest editors’
introduction. IEEE Software 20(5), 14–18 (2003)

9. Heijstek, W., Chaudron, M.R.V.: Empirical investigations of model size, complexity
and effort in a large scale, distributed model driven development process. In: 35th
Euromicro Conference on Software Engineering and Advanced Applications, SEAA
2009, pp. 113–120. IEEE (2009)

10. Mohagheghi, P.: An Approach for Empirical Evaluation of Model-Driven Engineer-
ing in Multiple Dimensions. In: C2M:EEMDD 2010 Workshop- from Code Centric
to Model Centric: Evaluating the Effectiveness of MDD, pp. 6–17. CEA LIST Pub-
lication (2010)

11. Kitchenham, B., Budgen, D., Brereton, P., Turner, M., Charters, S., Linkman, S.:
Large-scale software engineering questions-expert opinion or empirical evidence?
IET Software 1(5), 161–171 (2007)

12. Wohlin, C., Runeson, P., Höst, M.: Experimentation in software engineering: an
introduction. Springer, Netherlands (2000)

13. Zelkowitz, M.V.: An update to experimental models for validating computer tech-
nology. Journal of Systems and Software 82(3), 373–376 (2009)

14. Mohagheghi, P., Dehlen, V.: Where Is the Proof? - A Review of Experiences from
Applying MDE in Industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA
2008. LNCS, vol. 5095, pp. 432–443. Springer, Heidelberg (2008)

15. Abrahão, S., Poels, G.: A family of experiments to evaluate a functional size mea-
surement procedure for Web applications. Journal of Systems and Software 82(2),
253–269 (2009)

Evaluating the Impact of a Model-Driven Web Engineering Approach 237

16. Afonso, M., Vogel, R., Teixeira, J.: From code centric to model centric software
engineering: practical case study of MDD infusion in a systems integration company
(2006)

17. Krogmann, K., Becker, S.: A Case Study on Model-Driven and Conventional Soft-
ware Development: The Palladio Editor. Software Engineering, 169–176 (2007)

18. Staron, M.: Transitioning from code-centric to model-driven industrial projects–
empirical studies in industry and academia. Model Driven Software Development:
Integrating Quality Assurance (2008)

19. Kapteijns, T., Jansen, S., Brinkkemper, S., Houët, H., Barendse, R.: A Compar-
ative Case Study of Model Driven Development vs Traditional Development: The
Tortoise or the Hare. From code centric to model centric software engineering:
Practices, Implications and ROI, 22 (2009)

20. Mellegård, N., Staron, M.: Distribution of Effort among Software Development
Artefacts: An Initial Case Study. In: Bider, I., Halpin, T., Krogstie, J., Nurcan,
S., Proper, E., Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and EMMSAD 2010.
LNBIP, vol. 50, pp. 234–246. Springer, Heidelberg (2010)

21. Panach, J.: Incorporación de mecanismos de usabilidad en un entorno de produc-
ción de software dirigido por modelos. Tesis doctotal, Universidad Politécnica de
Valencia (2010)

22. Kampenes, V., Dyba, T., Hannay, J., Ksjoberg, D.: A systematic review of quasi-
experiments in software engineering. Information and Software Technology 51(1),
71–82 (2009)

23. Perry, D.E., Porter, A.A., Votta, L.G.: Empirical studies of software engineering: a
roadmap. In: Proceedings of the Conference on the Future of Software Engineering,
pp. 345–355. ACM (2000)

24. Ambler, S.: Agile Modeling: Effective Practices for eXtreme Programming and the
Unified Process. Wiley (2002)

25. Kruchten, P.: The rational unified process: an introduction. Addison-Wesley Pro-
fessional (2004)

26. Meliá, S., Gómez, J., Pérez, S., Díaz, O.: Architectural and technological variability
in rich internet applications. IEEE Internet Computing 14(3), 24–32 (2010)

27. Montgomery, D.C.: Design and analysis of experiments. John Wiley & Sons Inc.
(2008)

28. Plonsky, M.: Psychological Statistics (2009)
29. Gollapudi, K.: Function points or lines of code?–an insight. Global Microsoft Busi-

ness Unit, Wipro Technologies (2004)
30. Seato: Counting Lines of Code in C# (2004)
31. SPSS Inc. an IBM CompanyHeadquarters: PASW Statistics 18 - Content Guide

(2009)
32. Mauchly, J.W.: Significance test for sphericity of a normal n-variate distribution.

The Annals of Mathematical Statistics 11(2), 204–209 (1940)
33. Cook, T.D., Campbell, D.T., Day, A.: Quasi-experimentation: Design & analysis

issues for field settings. Houghton Mifflin, Boston (1979)

JSART: JavaScript Assertion-Based Regression Testing

Shabnam Mirshokraie and Ali Mesbah

University of British Columbia
Vancouver, BC, Canada

{shabnamm,amesbah}@ece.ubc.ca

Abstract. Web 2.0 applications rely heavily on JAVASCRIPT and client-side run-
time manipulation of the DOM tree. One way to provide assurance about the cor-
rectness of such highly evolving and dynamic applications is through regression
testing. However, JAVASCRIPT is loosely typed, dynamic, and notoriously chal-
lenging to analyze and test. We propose an automated technique for JAVASCRIPT

regression testing, which is based on on-the-fly JAVASCRIPT source code instru-
mentation and dynamic analysis to infer invariant assertions. These obtained as-
sertions are injected back into the JAVASCRIPT code to uncover regression faults
in subsequent revisions of the web application under test. Our approach is imple-
mented in a tool called JSART. We present our case study conducted on nine
open source web applications to evaluate the proposed approach. The results
show that our approach is able to effectively generate stable assertions and de-
tect JAVASCRIPT regression faults with a high degree of accuracy and minimal
performance overhead.

Keywords: JavaScript, web, regression testing, assertions, dynamic analysis.

1 Introduction

JAVASCRIPT is increasingly being used to create modern interactive web applications
that offload a considerable amount of their execution to the client-side. JAVASCRIPT is
a notoriously challenging language for web developers to use, maintain, analyze and
test. It is dynamic, loosely typed, and asynchronous. In addition, it is extensively used
to interact with the DOM tree at runtime for user interface state updates.

Web applications usually evolve fast by going through rapid development cycles
and are, therefore, susceptible to regressions, i.e., new faults in existing functionality
after changes have been made to the system. One way of ensuring that such modifica-
tions (e.g., bug fixes, patches) have not introduced new faults in the modified system
is through systematic regression testing. While regression testing of classical web ap-
plications has been difficult [25], dynamism and non-determinism pose an even greater
challenge [22] for Web 2.0 applications.

In this paper, we propose an automated technique for JAVASCRIPT regression test-
ing, which is based on dynamic analysis to infer invariant assertions. These obtained
assertions are injected back into the JAVASCRIPT code to uncover regression faults in
subsequent revisions of the web application under test. Our technique automatically (1)
intercepts and instruments JAVASCRIPT on-the-fly to add tracing code (2) navigates the
web application to produce execution traces, (3) generates dynamic invariants from the

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 238–252, 2012.
© Springer-Verlag Berlin Heidelberg 2012

JSART: JavaScript Assertion-Based Regression Testing 239

1 function setDim(height, width) {
2 var h = 4*height , w = 2*width;
3 ...
4 return{h:h, w:w};
5 }

7 function play(){
8 $(#end).css("height", setDim($('body').width(), $('body').height()).←↩

h + 'px');
9 ...

10 }

Fig. 1. Motivating JAVASCRIPT example

trace data, (4) transforms the invariants into stable assertions and injects them back into
the web application for regression testing.

Our approach is orthogonal to server-side technology, and it requires no manual mod-
ification of the source code. It is implemented in an open source tool called JSART

(JAVASCRIPT Assertion-based Regression Testing). We have empirically evaluated the
technique on nine open-source web applications. The results of our evaluation show
that the approach generates stable invariant assertions, which are capable of spotting
injected faults with a high rate of accuracy.

2 Motivation and Challenges

Figure 1 shows a simple JAVASCRIPT code snippet. Our motivating example consists
of two functions, called setDim and play. The setDim function has two parameters,
namely height and width, with a simple mathematical operation (Line 2). The func-
tion returns local variables, h and w (Line 4). setDim is called in the play function
(Line 8) to set the height value of the CSS property of the DOM element with ID end.
Any modification to the values of height or width would influence the returned values
of setDim as well as the property of the DOM element. Typical programmatic errors
include swapping the order of height and width when they are respectively assigned
to local variables h and w or calling setDim with wrong arguments, i.e., changing the
order of function arguments.

Detecting such regression errors is a daunting task for web developers, especially
in programming languages such as JAVASCRIPT, which are known to be challenging
to test. One way to check for these regressions is to define invariant expressions of
expected behaviour [17] over program variables and assert their correctness at run-
time. This way any modification to height, width, h, or w that violates the invariant
expression will be detected. However, manually expressing such assertions for web ap-
plications with thousands of lines of JAVASCRIPT code and several DOM states, is a
challenging and time-consuming task. Our aim in this work is to provide a technique
that automatically captures regression faults through generated JAVASCRIPT assertions.

3 Our Approach

Our regression testing approach is based on dynamic analysis of JAVASCRIPT code to
infer invariants from a given web application. We use the thus obtained invariants as

240 S. Mirshokraie and A. Mesbah

Intercept/Instrument
JS code

Navigate Collect Traces
Invariants

Server Browser

Generate
Invariants

Web application (version n)

Fig. 2. Overview of the JAVASCRIPT tracing and invariant generation steps (web application ver-
sion n)

runtime assertions in the JAVASCRIPT code to automatically uncover regression errors
that can be introduced after changes have been made to the web application in a sub-
sequent reversion. Our approach is largely based on two assumptions (1) the current
version of the web application, from which invariants are being generated, is bug-free
(2) the inferred invariants capture program specifications that are unlikely to change
frequently in the following revisions (we revisit these two assumptions in Section 6).
Our regression testing technique is composed of the following four main steps: (1)
JavaScript tracing, (2) Invariant generation, (3) Filtering unstable assertions, and (4)
Regression testing through assertions. In the following subsections, we will describe
each step in details.

3.1 JAVASCRIPT Tracing

In order to infer useful program invariants, we need to collect execution traces of the
JAVASCRIPT code. The idea is to log as much program variable value changes at run-
time as possible. Figure 2 depicts a block diagram of the tracing step. Our approach
automatically generates trace data in three subsequent steps: (i) JAVASCRIPT intercep-
tion and instrumentation, (ii) navigation, and (iii) trace collection. In the following, we
explain each step in details.

JAVASCRIPT Interception and Instrumentation. The approach we have chosen for
logging variables is on-the-fly JAVASCRIPT source code transformation to add instru-
mentation code. We intercept all the JAVASCRIPT code of a given web application, both
in JAVASCRIPT files and HTML pages, by setting up a proxy [3] between the server
and the browser. We first parse the intercepted source code into an Abstract Syntax
Tree (AST). We then traverse the AST in search of program variables as well as DOM
modifications as described below.

Tracing Program Variables. Our first interest is the range of values of JAVASCRIPT

program variables. We probe function entry and function exit points, by identifying
function definitions in the AST and injecting statements at the start, end, and before
every return statement. We instrument the code to monitor value changes of global
variables, function arguments, and local variables. Per program point, we yield infor-
mation on script name, function name, and line number, used for debugging purposes.
Going back to our running example (Figure 1), our technique adds instrumentation code

JSART: JavaScript Assertion-Based Regression Testing 241

to trace width, height, h, and w. For each variable, we collect information on name,
runtime type, and actual values. The runtime type is stored because JAVASCRIPT is a
loosely typed language, i.e., the types of variables cannot be determined syntactically,
thus we log the variable types at runtime.

Tracing DOM Modifications. In modern web applications, JAVASCRIPT code
frequently interacts with the DOM to update the client-side user interface state. Our
recent study [18] of four bug-tracking systems indicated that DOM-related errors form
80% of all reported JAVASCRIPT errors. Therefore, we include in our execution trace
how DOM elements and their attributes are modified by JAVASCRIPT at runtime. For
instance, by tracing how the CSS property of the ‘end’ DOM element in Figure 1 is
changed during various execution runs, we can infer the range of values for the height
attribute.

Based on our observations, JAVASCRIPT DOM modifications usually follow a cer-
tain pattern. Once the pattern is reverse engineered, we can add proper instrumentation
code around the pattern to trace the changes. In the patterns that we observed, first a
JAVASCRIPT API is used to find the desired DOM element. Next, a function is called
on the returned object responsible for the actual modification of the DOM-tree. After
recognizing a pattern in the parsed AST, we add instrumentation code that records the
value of the DOM attribute before and after the actual modification. Hence, we are able
to trace DOM modifications that happen programmatically through JAVASCRIPT.

Navigation. Once the AST is instrumented, we serialize it back to the corresponding
JAVASCRIPT source code file and pass it to the browser. Next, we navigate the appli-
cation in the browser to produce an execution trace. The application can be navigated
in different ways including (1) manual clicking (2) test case execution (3) or using a
web crawler. To automate the approach, our technique is based on automated dynamic
crawling [15]. The execution needs to run as much of the JAVASCRIPT code as possible
and execute it in various ways. This can be achieved through visiting as many DOM
state changes as possible as well as providing different values for function arguments.

Trace Collection. As the web application is navigated, the instrumented JAVASCRIPT

code produces trace data, which needs to be collected for further analysis. Keeping the
trace data in the browser’s memory during the program execution can make the browser
slow when a large amount of trace data is being produced. On the other hand, sending
data items to the proxy as soon as the item is generated, can put a heavy load on the proxy,
due to the frequency of HTTP requests. In order to tackle the aforementioned challenges,
we buffer a certain amount of trace data in the memory in an array, post the data as an
HTTP request to a proxy server when the buffer’s size reaches a predefined threshold, and
immediately clear the buffer in the browser’s memory afterwards. Since the data arrives
at the server in a synchronized manner, we concatenate the tracing data into a single trace
file on the server side, which is then seeded into the next step (See Figure 2).

3.2 Invariant Generation

The assertion generation phase is involved with analyzing the collected execution traces
to extract invariants. Substantial amount of research has been carried out on detecting
dynamic program invariants [5,7,9,13]. Our approach is based on Daikon [9] to infer

242 S. Mirshokraie and A. Mesbah

Inject Assertions
into JS code

Navigate
Collect Assertion

ViolationsInvariants

Server Browser

Remove Violated
Assertions

Convert to
Assertions

Web application (version n)

Stable
invariant

assertions

Fig. 3. Overview of the filtering step to remove unstable invariant assertions, for web application
version n

likely invariants. As indicated with the dotted line in Figure 2, we cycle through the
navigation and invariant generation phases until the size of generated invariant file re-
mains unchanged, which is an indication that all possible invariants have been detected.

3.3 Filtering Unstable Invariant Assertions

The next step is to make sure that the generated invariants are truly invariants. An in-
variant assertion is called unstable when it is falsely reported as a violated assertion.
Such assertions result in producing a number of false positive errors during the testing
phase. To check the stability of the inferred invariants, we use them in the same ver-
sion of the web application as assertions. Theoretically, no assertion violations should
be reported because the web application has not changed. Hence, any assertion viola-
tion reported as such is a false positive and should be eliminated. Our filtering process,
shown in Figure 3, consists of the following four processes:

– Converting the inferred invariants into checkable assertions;
– Injecting the invariant assertions into the same version of the web application;
– Navigating the web application;
– Collecting assertion violations and removing them;

From each of the inferred invariants, we generate an assertion in JAVASCRIPT format.
We use on-the-fly transformation to inject the assertions directly into the source code
of the same version of the web application. Since we have all the information about
the program points and the location of the assertions, we can inject the assertions at
the correct location in the JAVASCRIPT source code through the proxy, while the code
is being sent to the client by the server. This way the assertions can run as part of the
client-side code and gain access to the values of all program variables needed at runtime.
Once the assertions are injected, we execute the web application in the browser and log
the output. Next we collect and remove any violated assertions. The output of this step
is a set of stable invariant assertions, used for automated regression testing in the next
step.

JSART: JavaScript Assertion-Based Regression Testing 243

Inject Assertions
into JS code

Navigate
Collect Assertion

Failures

Server Browser

Report
Failures

Web application (version n+1)

Stable
invariant

assertions Test report

Fig. 4. Overview of the JAVASCRIPT regression testing step through invariant assertions, for web
application version n+1

3.4 Regression Testing through Assertions

Once a set of stable invariant assertions are derived from version n of a web application,
they can be used for automatic regression testing a subsequent version (n+1) of the web
application. The regression testing phase is depicted in Figure 4.

We inject the inferred stable assertions to the JAVASCRIPT source code of the mod-
ified web application, in a similar fashion to the filtering step in Section 3.3. Once the
assertions are injected, the new version of the web application is ready for regression
testing. Any failed assertion during the testing phase generates an entry in the test report,
which is presented to the tester at the end of the testing step. The generated test report
provides precise information on the failed assertion, the file name, the line number, and
the function name of the assertion.

1 function setDim (height, width) {
2 assert((width < height), ‘example.js:setDim:ENTER:POINT1’);
3 var h = 4*height, w = 2*width;
4 ...
5 assert((width < height), ‘example.js:setDim:EXIT:POINT1’);
6 assert((w < h), ‘example.js:setDim:EXIT:POINT1’);
7 return{h:h, w:w};
8 }

10 function play(){
11 $(#end).css("height ", setDim($('body').width(), $('body').height()).h + ←↩

'px');
12 assert(isIn($(‘#end’).css(‘height’), {100, 200,

300}),‘example.js:play:POINT3’);
13 ...
14 }

Fig. 5. Invariant assertion code for JAVASCRIPT function parameters, local variables and DOM
modifications. Injected assertions are shown in bold.

Figure 5 shows the automatically injected invariant assertions for our running ex-
ample of Figure 1. Note that we do not show all the assertions as they clutter the
figure. Each assert call has the invariant as the first parameter and the correspond-
ing debugging information in the second parameter, which includes information about
script name, function name, and line number. In this example, the inferred invariants
yield information about the inequality relation between function arguments, width and
height, as well as local variables, w and h. The assertions in lines 2 and 5-6 check the

244 S. Mirshokraie and A. Mesbah

corresponding inequalities, at entry and exit points of the setDim function at runtime.
The example also shows the assertion that checks the height attribute of the DOM
element, after the JAVASCRIPT DOM modification in the play function. The assertion
that comes after the DOM manipulation (Line 12) checks the height value by calling
the auxiliary isIn function. isIn checks the value of height to be in the given range,
i.e., either 100, 200, or 300. Any values out of the specified range would violate the
assertion.

4 Tool Implementation

We have implemented our JAVASCRIPT regression testing approach in a tool called
JSART. JSART is written in Java and is available for download.1

JSART extends and builds on top of our InvarScope [10] tool. For JAVASCRIPT

code interception, we use an enhanced version of Web-Scarab’s proxy [3]. This en-
ables us to automatically analyze and modify the content of HTTP responses before
they reach the browser. To instrument the intercepted code, Mozilla Rhino2 is used to
parse JAVASCRIPT code to an AST, and back to the source code after instrumentation.
The AST generated by Rhino’s parser has traversal API’s, which we use to search for
program points where instrumentation code needs to be added. For the invariant genera-
tion step, we have extended Daikon [9] with support for accepting input and generating
output in JAVASCRIPT syntax. The input files are created from the trace data and fed
through the enhanced version of Daikon to derive dynamic invariants. The navigation
step is automated by making JSART operate as a plugin on top of our dynamic AJAX

crawler, CRAWLJAX [15].3

5 Empirical Evaluation

To quantitatively assess the accuracy and efficiency of our approach, we have conducted
a case study following guidelines from Runeson and Höst [23]. In our evaluation, we
address the following research questions:

RQ1 How successful is JSART in generating stable invariant assertions?
RQ2 How effective is our overall regression testing approach in terms of correctly

detecting faults?
RQ3 What is the performance overhead of JSART?

The experimental data produced by JSART is available for download.1

5.1 Experimental Objects

Our study includes nine web-based systems in total. Six are game applications, namely,
SameGame, Tunnel, TicTacToe, Symbol, ResizeMe, and GhostBusters. Two of the web

1 http://salt.ece.ubc.ca/content/jsart/
2 http://www.mozilla.org/rhino/
3 http://www.crawljax.com

http://salt.ece.ubc.ca/content/jsart/
http://www.mozilla.org/rhino/
http://www.crawljax.com

JSART: JavaScript Assertion-Based Regression Testing 245

Table 1. Characteristics of the experimental objects
A

pp
ID

N
am

e

JS
L

O
C

#
F

un
ct

io
ns

#
L

oc
al

V
ar

s

#
G

lo
ba

lV
ar

s
C

C

Resource

1 SameGame 206 9 32 5 37 http://crawljax.com/same-game
2 Tunnel 334 32 18 13 39 http://arcade.christianmontoya.com/tunnel
3 TicTacToe 239 11 22 23 83 http://www.dynamicdrive.com/dynamicindex12/tictactoe.htm
4 Symbol 204 20 28 16 32 http://10k.aneventapart.com/2/Uploads/652
5 ResizeMe 45 5 4 7 2 http://10k.aneventapart.com/2/Uploads/594
6 GhostBusters 277 27 75 4 52 http://10k.aneventapart.com/2/Uploads/657
7 Jason 107 8 4 8 6 http://jasonjulien.com
8 Sofa 102 22 2 1 5 http://www.madebysofa.com/archive
9 TuduList 2767 229 199 31 28 http://tudu.ess.ch/tudu

applications are Jason and Sofa, which are a personal and a company homepage, respec-
tively. We further include TuduList, which is a web-based task management application.
All these applications are open source and use JAVASCRIPT on the client-side.

Table 1 presents each application’s ID, name, and resource, as well as the characteris-
tics of the custom JAVASCRIPT code, such as JAVASCRIPT lines of code (LOC), number
of functions, number of local and global variables, as well as the cyclomatic complexity
(CC). We use Eclipse IDE to count the JAVASCRIPT lines of code, number of functions,
number of local as well as global variables. JSmeter 4 is used to compute the cyclomatic
complexity. We compute the cyclomatic complexity across all JAVASCRIPT functions
in the application.

5.2 Experimental Setup

To run the experiment, we provide the URL of each experimental object to JSART. In
order to produce representative execution traces, we navigate each application several
times with different crawling settings. Crawling settings differ in the number of visited
states, depth of crawling, crawling time, and clickable element types. To obtain repre-
sentative data traces, each of our experimental objects is navigated three times on aver-
age. Although JSART can easily instrument the source code of imported JAVASCRIPT

libraries (e.g., jQuery, Prototype, etc), in our experiments we are merely interested in
custom code written by developers, since we believe that is where most programming
errors occur.

To evaluate our approach in terms of inferring stable invariant assertions (RQ1), we
count the number of stable invariant assertions generated by JSART before and after
performing the filtering step. As a last check, we execute the initial version of the ap-
plication using the stable assertions to see whether our filtered invariant assertions are
reporting any false positives.

Once the stable invariant assertions are obtained for each web application, we per-
form regression testing on modified versions of each application (RQ2). To that end,
in order to mimic regression faults, we produce twenty different versions for each web

4 http://jsmeter.info

http://crawljax.com/same-game
http://arcade.christianmontoya.com/tunnel
http://www.dynamicdrive.com/dynamicindex12/tictactoe.htm
http://10k.aneventapart.com/2/Uploads/652
http://10k.aneventapart.com/2/Uploads/594
http://10k.aneventapart.com/2/Uploads/657
http://jasonjulien.com
http://www.madebysofa.com/archive
http://tudu.ess.ch/tudu
http://jsmeter.info

246 S. Mirshokraie and A. Mesbah

Table 2. Properties of the invariant assertions generated by JSART

A
pp

ID

T
ra

ce
D

at
a

(M
B

)

#
T

ot
al

A
ss

er
ti

on
s

#
E

nt
ry

A
ss

er
ti

on
s

#
E

xi
t

A
ss

er
ti

on
s

#
D

O
M

A
ss

er
ti

on
s

#
T

ot
al

U
ns

ta
bl

e
A

ss
er

ti
on

s
#

U
ns

ta
bl

e
E

nt
ry

A
ss

er
ti

on
s

#
U

ns
ta

bl
e

E
xi

t
A

ss
er

ti
on

s
#

U
ns

ta
bl

e
D

O
M

A
ss

er
ti

on
s

#
T

ot
al

St
ab

le
A

ss
er

ti
on

s

#
St

ab
le

E
nt

ry
A

ss
er

ti
on

s

#
St

ab
le

E
xi

tA
ss

er
ti

on
s

#
St

ab
le

D
O

M
A

ss
er

ti
on

s

1 8.6 303 120 171 12 0 0 0 0 303 120 171 12
2 124 2147 1048 1085 14 14 9 5 0 2133 1039 1080 14
3 1.2 766 387 379 0 16 8 8 0 750 379 371 0
4 31.7 311 138 171 2 14 7 7 0 297 131 164 2
5 0.4 55 20 27 8 0 0 0 0 55 20 27 8
6 2.3 464 160 266 38 3 1 2 0 461 159 264 38
7 1.2 29 4 6 19 0 0 0 0 29 4 6 19
8 0.1 20 2 2 16 0 0 0 0 20 2 2 16
9 2.6 163 58 104 1 0 0 0 0 163 58 104 1

application by injecting twenty faults into the original version, one at a time. We cate-
gorize our faults according to the following fault model:

1. Modifying Conditional Statements: This category is concerned with swapping
consecutive conditional statements, changing the upper/lower bounds of loop state-
ments, as well as modifying the condition itself;

2. Modifying Global/Local Variables: In this category, global/local variables are
changed by modifying their values at any point of the program, as well as removing
or changing their names;

3. Changing Function Parameters/Arguments: This category is concerned with
changing function parameters or function call arguments by swapping, removing,
and renaming parameters/arguments. Changing the sequence of consecutive func-
tion calls is also included in this category;

4. DOM modifications: Another type of fault, which is introduced in our fault model
is modifying DOM properties at both JAVASCRIPT code level and HTML code
level.

For each fault injection step, we randomly pick a JAVASCRIPT function in the applica-
tion code and seed a fault according to our fault model. We seed five faults from each
category.

To evaluate the effectiveness of JSART (RQ2), we measure the precision and recall
as follows:

Precision is the rate of injected faults found by the tool that are correct: TP
TP+FP

Recall is the rate of correct injected faults that the tool finds: TP
TP+FN

where TP (true positives), FP (false positives), and FN (false negatives) respectively
represent the number of faults that are correctly detected, falsely reported, and missed.

To evaluate the performance of JSART (RQ3), we measure the extra time needed to
execute the application while assertion checks are in place.

JSART: JavaScript Assertion-Based Regression Testing 247

Table 3. Precision and Recall for JSART fault detection

App ID # FN # FP # TP Precision (%) Recall (%)

1 2 0 18 100 90
2 4 0 16 100 80
3 1 0 19 100 95
4 2 0 18 100 90
5 0 0 20 100 100
6 1 0 19 100 95
7 0 0 20 100 100
8 0 0 20 100 100
9 1 0 19 100 95

5.3 Results

In this section, we discuss the results of the case study with regard to our three research
questions.

Generated Invariant Assertions. Table 2 presents the data generated by our tool. For
each web application, the table shows the total size of collected execution traces (MB),
the total number of generated JAVASCRIPT assertions, the number of assertions at entry
point of the functions, the number of assertions at exit point of the functions, and the
number of DOM assertions. The unstable assertions before the filtering as well as the
stable assertions after the filtering step are also presented. As shown in the table, for
applications 1, 5, 7, 8, and 9, all the generated invariant assertions are stable and the fil-
tering step does not remove any assertions. For the remaining four applications (2, 3, 4,
6), less than 5% of the total invariant assertions are seen as unstable and removed in the
filtering process. Thus, for all the experimental objects, the resulting stable assertions
found by the tool is more than 95% of the total assertions. Moreover, we do not observe
any unstable DOM assertions. In order to assure the stability of the resulting assertions,
we examine the obtained assertions from the filtering step across multiple executions of
the original application. The results show that all the resulting invariant assertions are
truly stable since we do not observe any false positives.

As far as RQ1 is concerned, our findings indicate that (1) our tool is capable of au-
tomatically generating a high rate of JAVASCRIPT invariant assertions, (2) the unstable
assertions are less than 5% of the total generated assertions, (3) the filtering technique is
able to remove the few unstable assertions, and (4) all the remaining invariant assertions
that JSART outputs are stable, i.e., they do not produce any false positives on the same
version of the web application.

Effectiveness. Since applications 3, 4, and 9 do not contain many DOM assertions,
we were not able to inject 5 faults from the DOM modification category. Therefore, we
randomly chose faults from the other fault model categories.

In Table 3, we present the accuracy of JSART in terms of its fault finding capability.
The table shows the number of false negatives, false positives, true positives, as well as
the percentages for precision and recall. As far as RQ2 is concerned, our results show
that JSART is very accurate in detecting faults. The precision is 100%, meaning that all
the injected faults, which are reported by the tool, are correct. This also implies that our
filtering mechanism successfully eliminates unstable assertions as we do not observe
any false positives. The recall oscillates between 80-100%, which is caused by a low

248 S. Mirshokraie and A. Mesbah

2 4 6 8

0
2

0
4

0
6

0
8

0
1

0
0

Experimental Objects

R
u

n
 T

im
e

 (
s
e

c
)

●

●

●

●

●

●

● ●

●

2 4 6 81 3 5 7 9

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

N
u

m
b

e
r

o
f

A
s
s
e

rt
io

n
s

●

Run time with assertion checking

Run time without assertion checking

Number of assertions per application

Fig. 6. Performance plot of JSART

rate of missed faults (discussed in Section 6 under Limitations). Therefore, as far as
RQ2 is concerned, JSART is able to successfully spot the injected faults with a high
accuracy rate.

Performance. Figure 6 depicts the total running time needed for executing each web
application with and without the assertion code. Checking a fairly large number of as-
sertions at runtime can be time consuming. Thus, to capture the effect of the added
assertions on the execution time, we exploit a 2-scale diagram. As shown in Figure 6,
each experimental object is associated with two types of data. The left-hand Y-axis rep-
resents the running time (seconds), whereas the right-hand Y-axis shows the number of
assertions. This way we can observe how the number of assertions relates to the run-
ning time. As expected, the figure shows that by increasing the number of assertions,
the running time increases to some degree. While the time overhead of around 20 sec-
onds is more evident for the experimental object 2 (i.e., Tunnel with 2147 number of
assertions), it is negligible for the rest of the experimental objects. Considering that
Tunnel has 260 statements in total, the number of assertions instrumented in the code is
eight times more than the number of statements in the original version. Therefore, it is
reasonable to observe a small amount of overhead. Though assertions introduce some
amount of overhead, it is worth mentioning that we have not experienced a noticeable
change (i.e., freezing or slowed down execution) while running the application in the
browser.

Thus, as far as RQ3 is concerned, the amount of overhead introduced by our ap-
proach is 6 seconds on average for our experimental objects, which is negligible during
testing. Furthermore, based on our observations, the assertions do not negatively affect
the observable behaviour of the web applications in the browser.

JSART: JavaScript Assertion-Based Regression Testing 249

Table 4. Manual effort imposed by our approach for deriving stable invariant assertions.

App ID Total Time (min) Manual Effort (min)

1 13 4
2 11.5 3
3 15.5 5
4 11 3
5 6.5 2.5
6 9 4.5
7 7.5 3.5
8 6.5 2
9 18 13

6 Discussion

Unstable Assertions. As mentioned in Section 3.3, we observe a few number of un-
stable invariant assertions initially, which are removed by our filtering mechanism. By
analyzing our trace data, we observe that such unstable assertions arise mainly because
of the multiple runtime types of JAVASCRIPT variables. This is based on the fact that in
JAVASCRIPT it is possible to change the type of a variable at runtime. However, Daikon
treats variables as single type, selects the first observed type, and ignores the subsequent
types in the trace data. This results in producing a few number of unstable invariant as-
sertions for JAVASCRIPT. We remove such unstable assertions in our filtering step. A
drawback of removing these assertions, is that our tool might miss a fault during the
regression testing phase. However, according to our observations, such unstable asser-
tions form only around 5% of the total generated assertions. Thus, we are still able to
achieve high accuracy as presented in the previous section.

Limitations. Our approach is not able to detect syntax errors that are present in the
JAVASCRIPT code. Furthermore, tracing DOM manipulations using APIs other than the
standard DOM API or jQuery is currently not supported by JSART. Further, a regres-
sion fault either directly violates an invariant assertion, or it can violate closely related
assertions, which have been affected by the fault. However, if the tool is not able to infer
any invariants in the affected scope of the error, it fails to detect the fault. This results
in observing a low rate of false negatives as illustrated in Section 5.

Revisiting the Assumptions. As we mentioned in Section 3, we assume that the
current version of the web application is bug-free. This is based on the fact that in
regression testing a gold standard is always needed as a trusted version for comparing
the test results against [4] to detect regression faults. However, if the original version
of the application does contain an error, the generated assertions might reflect the error
as well, and as such they are not able to detect the fault. Our second assumption states
that the program specifications are unlikely to change frequently in revisions. Here we
assume that software programs evolve gradually and regression faults are mostly due to
small changes. However, if major upgrades occur in subsequent revisions such that the
core specification of the application is affected, the inferred invariants from the original
version may not be valid any longer and new invariant assertions need to be generated.

Automation Level. While the testing phase of JSART is fully automated, the
navigation part requires some manual effort. Although the crawling is performed

250 S. Mirshokraie and A. Mesbah

automatically, we do need to manually setup the tool with different crawling config-
urations per application execution. Moreover, for each application run, we manually
look at the size of the invariant output to decide whether more execution traces (and
thus more crawling sessions) are needed. We present the manual effort involved with
detecting stable invariant assertions in Table 4. The table shows the total time, which
is the duration time of deriving stable assertions including both automatic and manual
parts. The reported manual effort contains the amount of time required for setting up
the tool as well as the manual tasks involved with the navigation part. The results show
the average manual effort is less than 5 minutes.

7 Related Work

Automated testing of modern web applications is becoming an active area of research
[2,14,16,19]. Most of the existing work on JAVASCRIPT analysis is, however, focused
on spotting errors and security vulnerabilities through static analysis [11,12,27]. We
classify related work into two broad categories: web application regression testing and
program invariants.

Web Application Regression Testing. Regression testing of web applications has
received relatively limited attention from the research community [26,25]. Alshahwan
and Harman [1] discuss an algorithm for regression testing of web applications that is
based on session data [24,8] repair. Roest et al. [22] propose a technique to cope with
the dynamism in Ajax web interfaces while conducting automated regression testing.
None of these works, however, target regression testing of JAVASCRIPT in particular.

Program Invariants. The concept of using invariants to assert program behaviour at
runtime is as old as programming itself [6]. A more recent development is the automatic
detection of program invariants through dynamic analysis. Ernst et al. have developed
Daikon [9], a tool capable of inferring likely invariants from program execution traces.
Other related tools for detecting invariants include Agitator [5], DIDUCE [13], and
DySy [7]. Recently, Ratcliff et al. [20] have proposed a technique to reuse the trace
generation of Daikon and integrate it with genetic programming to produce useful in-
variants. Conceptually related to our work, Rodrı́guez-Carbonell and Kapur [21] use
inferred invariant assertions for program verification.

Mesbah et al. [16] proposed a framework called ATUSA for manually specifying
generic and application-specific invariants on the DOM-tree and JAVASCRIPT code.
These invariants were subsequently used as test oracles to detect erroneous behaviours
in modern web applications. Pattabiraman and Zorn proposed DoDOM [19], a tool for
inferring invariants from the DOM tree of web applications for reliability testing.

To the best of our knowledge, our work in this paper is the first to propose an au-
tomated regression testing approach for JAVASCRIPT, which is based on JAVASCRIPT

invariant assertion generation and runtime checking.

8 Conclusions and Future Work

JAVASCRIPT is playing a prominent role in modern Web 2.0 applications. Due to its
loosely typed and dynamic nature, the language is known to be error-prone and difficult

JSART: JavaScript Assertion-Based Regression Testing 251

to test. In this paper, we present an automated technique for JAVASCRIPT regression
testing based on generated invariant assertions. The contributions of this work can be
summarized as follows:

– A method for detecting JAVASCRIPT invariants across multiple application exe-
cutions through on-the-fly JAVASCRIPT instrumentation and tracing of program
variables and DOM manipulations;

– A technique for automatically converting the inferred invariants into stable asser-
tions, and injecting them back into the web application for regression testing;

– The implementation of our proposed technique in an open source tool called JSART;
– An empirical study on nine open source JAVASCRIPT applications. The results of

our study show that our tool is able to effectively infer stable assertions and detect
regression faults with minimal performance overhead;

Our future work encompasses conducting more case studies to generalize the findings
as well as extending the current JAVASCRIPT DOM modifications detector so that it
is capable of coping with more patterns in other JAVASCRIPT libraries. In addition,
we will explore ways of fully automating the navigation part by generating crawling
specifications.

References

1. Alshahwan, N., Harman, M.: Automated session data repair for web application regression
testing. In: Proceedings of the Int. Conf. on Software Testing, Verification, and Validation
(ICST 2008), pp. 298–307. IEEE Computer Society (2008)

2. Artzi, S., Dolby, J., Jensen, S., Møller, A., Tip, F.: A framework for automated testing of
JavaScript web applications. In: Proceedings of the Intl. Conference on Software Engineering
(ICSE), pp. 571–580. ACM (2011)

3. Bezemer, C.-P., Mesbah, A., van Deursen, A.: Automated security testing of web widget in-
teractions. In: Proceedings of the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC-FSE 2009), pp. 81–91. ACM (2009)

4. Binder, R.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-Wesley
(2000)

5. Boshernitsan, M., Doong, R., Savoia, A.: From Daikon to Agitator: lessons and challenges
in building a commercial tool for developer testing. In: Proc. Int. Sym. on Software Testing
and Analysis (ISSTA 2006), pp. 169–180. ACM (2006)

6. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion checking in
software development. ACM SIGSOFT Software Engineering Notes 31(3), 25–37 (2006)

7. Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy: Dynamic symbolic execution for invari-
ant inference. In: Proceedings of the 30th International Conference on Software Engineering
(ICSE 2008), pp. 281–290. ACM (2008)

8. Elbaum, S., Rothermel, G., Karre, S., Fisher, M.: Leveraging user-session data to support
web application testing. IEEE Trans. Softw. Eng. 31, 187–202 (2005)

9. Ernst, M., Perkins, J., Guo, P., McCamant, S., Pacheco, C., Tschantz, M., Xiao, C.: The
Daikon system for dynamic detection of likely invariants. Science of Computer Program-
ming 69(1-3), 35–45 (2007)

10. Groeneveld, F., Mesbah, A., van Deursen, A.: Automatic invariant detection in dynamic web
applications. Technical Report TUD-SERG-2010-037, TUDelft (2010)

252 S. Mirshokraie and A. Mesbah

11. Guarnieri, S., Livshits, B.: Gatekeeper: mostly static enforcement of security and reliability
policies for JavaScript code. In: Conference on USENIX Security Symposium, SSYM 2009,
pp. 151–168 (2009)

12. Guha, A., Krishnamurthi, S., Jim, T.: Using static analysis for Ajax intrusion detection. In:
Intl. Conference on World Wide Web (WWW), pp. 561–570 (2009)

13. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly detection. In:
Proceedings of the 24th International Conference on Software Engineering (ICSE 2002), pp.
291–301. ACM Press (2002)

14. Marchetto, A., Tonella, P., Ricca, F.: State-based testing of Ajax web applications. In: Proc.
1st Int. Conference on Sw. Testing Verification and Validation (ICST 2008), pp. 121–130.
IEEE Computer Society (2008)

15. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling Ajax-based web applications through
dynamic analysis of user interface state changes. ACM Transactions on the Web (TWEB)
6(1), 3:1–3:30 (2012)

16. Mesbah, A., van Deursen, A., Roest, D.: Invariant-based automatic testing of modern web
applications. IEEE Transactions on Software Engineering (TSE) 38(1), 35–53 (2012)

17. Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)
18. Ocariza, F.J., Pattabiraman, K., Mesbah, A.: AutoFLox: An automatic fault localizer for

client-side JavaScript. In: Proceedings of the 5th IEEE International Conference on Software
Testing, Verification and Validation (ICST 2012), pp. 31–40. IEEE Computer Society (2012)

19. Pattabiraman, K., Zorn, B.: DoDOM: Leveraging DOM invariants for Web 2.0 application
robustness testing. In: Proc. Int. Conf. Sw. Reliability Engineering (ISSRE 2010), pp. 191–
200. IEEE Computer Society (2010)

20. Ratcliff, S., White, D., Clark, J.: Searching for invariants using genetic programming and mu-
tation testing. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation (GECCO). ACM (2011)

21. Rodrı́guez-Carbonell, E., Kapur, D.: Program Verification Using Automatic Generation of
Invariants,. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 325–340.
Springer, Heidelberg (2005)

22. Roest, D., Mesbah, A., van Deursen, A.: Regression testing Ajax applications: Coping with
dynamism. In: Proc. 3rd Int. Conf. on Sw. Testing, Verification and Validation (ICST 2010),
pp. 128–136. IEEE Computer Society (2010)

23. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in soft-
ware engineering. Empirical Software Engineering 14(2), 131–164 (2009)

24. Sprenkle, S., Gibson, E., Sampath, S., Pollock, L.: Automated replay and failure detection
for web applications. In: ASE 2005: Proc. 20th IEEE/ACM Int. Conf. on Automated Sw.
Eng., pp. 253–262. ACM (2005)

25. Tarhini, A., Ismail, Z., Mansour, N.: Regression testing web applications. In: Int. Conf. on
Advanced Comp. Theory and Eng., pp. 902–906. IEEE Computer Society (2008)

26. Xu, L., Xu, B., Chen, Z., Jiang, J., Chen, H.: Regression testing for web applications based
on slicing. In: Proc. of Int. Conf. on Computer Software and Applications (COMPSAC), pp.
652–656. IEEE Computer Society (2003)

27. Zheng, Y., Bao, T., Zhang, X.: Statically locating web application bugs caused by asyn-
chronous calls. In: Proceedings of the Intl. Conference on the World-Wide Web (WWW),
pp. 805–814. ACM (2011)

A Framework for the Development

of Haptic-Enhanced Web Applications

Sara Comai, Davide Mazza, and Andrea Guarinoni

Politecnico di Milano
Department of Electronics and Information (DEI)

Piazza L. Da Vinci 32,
I-20133 Milan, Italy

{sara.comai,davide.mazza}@polimi.it

Abstract. In the last years we have witnessed an increasing adoption
of haptic devices (allowing the user to feel forces or vibrations) in several
fields of applications, from gaming, to mobile, automotive, etc. Some
efforts have been done to enhance also Web applications interfaces with
haptics, either to improve accessibility or, more in general, to improve
usability. Despite the spreading of haptic applications, their development
is still a time consuming task that requires significant programming skills.
In particular, in the Web context no plug-ins or style extensions are
currently available and applications must be developed from scratch. In
this paper we describe a framework to easily include haptic interaction
in Web applications, focusing both on haptic interaction modeling and
on its implementation.

1 Introduction

Haptics, the technology that exploits the human sense of touch by applying
forces, vibrations, or motions to user’s hands or body, has received an enormous
attention in the last decades, but only in recent years has reached an important
level of visibility in several fields of applications. The most spread form of hap-
tics is represented by the tactile effects on mobile devices, where the user can
feel vibrations through the skin; similar effects can be found also in the auto-
motive field, where touch surfaces are replacing mechanical buttons, as well as
on cameras and media players’ touchscreens. Haptics has been largely exploited
also in the gaming field, where controllers like the DualShockTM by Sony or the
FalconTM by Novint provide stronger vibrations with different levels of intensi-
ties according to the action of the game.

But vibrations are not the only feedback that can be provided by haptic de-
vices. More sophisticated input/output devices like, e.g., the PHANTOMTM

stylus by Sensable, can provide richer effects, by supporting a bidirectional com-
munication of the forces: the user can feed the system with data about his/her
movements (in terms of position, velocity of a movement, or even direct force
supplied through the device) and can receive information from the system in
the form of sensations simulating weight, resistance, etc. Such devices have been

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 253–267, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

254 S. Comai, D. Mazza, and A. Guarinoni

traditionally employed to improve virtual reality systems and simulators, but
different works show how to use them also in the context of Web applications
[7, 12–14].

Haptic-enhanced Web applications offer new modalities of interactions and
new possible scenarios. Beside navigating the Web by associating events with
vibrations in a way similar to what mobile devices provide (e.g., to confirm
user’s inputs or as non-intrusive alerts when calls/messages arrive), force feed-
back devices such as mice, joysticks, pens, etc. can supply richer kinesthetic
forces producing moderate attractive/repulsive effects, so that the following use
scenarios can be devised [7, 13, 15]:

– when the user presses a button, the visual aspect of the button may change
and the user may “feel” the simulation of “mechanical” pressure, thus pro-
viding an immediate and more realistic confirmation of user’s action;

– while the user reads the main content of the page, he can “feel” the scroll-
bar without the need of looking at it, thus reducing his/her workload and
avoiding distractions from his/her main task;

– when the cursor is over a button or a form field, the user feels a “snap-to”
effect that avoids slip-offs, thus reducing possibilities of errors and guaran-
teeing a more precise execution of the task;

– when the user accesses a complex page, with rich content, haptic cues can
highlight or indicate the importance of user actions or of the displayed in-
formation (e.g., recency of news), without overloading the visual channel; or
when ads or auxiliary content can lead to visual distractions, a gentle guided
movement of the cursor towards core contents can be provided.

Experimental works show that the integration of haptics in Web applications
is helpful, in particular, in terms of reduced workload and reduced number of
errors [15]; moreover, in case of applications targeted to visually impaired users,
also accessibility can be improved [12, 14].

However, in the current practice, the development of haptic applications is
still a time consuming task and requires significant programming skills. The
solutions proposed in literature for adding haptic interactions into Web pages
are mainly hand-crafted and specifically tailored to the needs of each work:
the field would surely benefit of a more structured approach to be integrated
into existing methodologies and tools, according to the usual Web engineering
principles.

At this aim, we propose a framework to include haptic interaction in HTML-
based Web applications, supporting a flexible design of haptic effects and sep-
arating device-independent features to be easily extendable to different haptic
devices. After an initial overview in Section 2 of the related works proposed in
literature, both on the introduction of haptic interactions in the Web and on
the current practice for the development of haptic applications, Section 3 intro-
duces the basic concepts underlying haptic interactions. Section 4 presents the
design of our framework, while Section 5 describes an associated tool to ease
the development of haptic-enhanced applications. Section 6 analyzes the impact

A Framework for the Development of Haptic-Enhanced Web Applications 255

of adding haptic interaction in the usual Web browsing activity and, finally, in
Section 7 conclusions are drawn.

2 Related Work

The research in the last decade has shown an increasing trend of interest in the
adoption of haptics in common applications. However, in order to be applied in
the Web context, several issues need still to be investigated.

The problem of how to interact with the Web through a haptic device has
been first treated in [6, 11, 19]. [11] tries to introduce haptic modalities for the
exploration of Web pages, by assigning forces or vibrating effects to the different
widgets of a page (e.g., textfields, buttons, images). The proposed approach is
targeted to people with visual disabilities and the original Web page is mapped
into a 3D virtual environment, where each widget of the original Web page is
represented by a typed 3D object providing both haptic and audio feedbacks
(e.g., texts are mapped into “T” objects having a particular shape and friction,
hyperlinks into “arrow” objects having a different shape and surface character-
istics, and so on). Also [19] aims at improving accessibility on the Web by means
of a “content-aware” Web browser plug-in, where audio and haptic modalities
are supported: the user can be informed when (s)he is in the vicinity of an im-
age or an hyperlink, to increase the level of spatial awareness, and can “feel”
the different types of objects by means of effects associated with users’ actions
like hovering a link, an image and so on. In a similar way, [6] utilizes haptic
feedback and speech recognition to aid browsing, but with a limited set of hap-
tic effects. Also maps, images, and other graphical contents can be haptically
rendered with groove, texture, or vibration effects so that the user can “feel”
the pictures: for example, city maps can be explored by following groove lines
representing the streets [12]; charts can be associated with haptic effects pro-
portional to the quantitative information they represent [16]. Effects have been
applied effectively also to better locate objects in the space of interaction [15]
or to be directed to a specific target (e.g., after filling a search box the user is
guided to the submit button) [13], according to the user’s task.

While the design of haptic interactions and their inclusion in Web applications
have been studied by different researchers, the development methodology used
for haptic applications is still a critical aspect in this field. In general, the current
practice in the development of software with haptic interfaces consists mainly
in writing the corresponding code manually by including API libraries or SDK
provided by the device manufacturer.

Commercial libraries depend on the device itself: for example, for the Sens-
able PHANTOM [5] the HDAPI / HLAPI [10] are available. The different APIs
are incompatible, but some efforts have been done to realize device-independent
libraries that try to integrate the features supported by different haptic devices.
The most known examples are represented by the Haptik library [17] and by
the library provided by Novint [4], which offer Hardware Abstraction Layers for
accessing the device features.

256 S. Comai, D. Mazza, and A. Guarinoni

Among the academic proposals, CHAI3D [1] is a set of open-source libraries
to be used for the development of applications with the C++ language. The
APIs focus primarily on the management of scene graphs (through OpenGL)
and on integrating haptic effects into a 3D scene. JTouchToolkit [3] is another
open source library that can be used to introduce haptic interactions in a Java
environment.

At a higher level of abstraction, [9] proposes HAML, an XML-based spec-
ification language that couples applications with haptic devices, defining the
hardware properties of the haptic tool and modeling the haptic response of
objects’ surfaces in terms of stiffness, resistance, and so on. The HAML formal-
ism is completely textual and is supported by the authoring tool HAMLAT [8],
which allows users to render the haptical properties of a virtual environment
with no programming skills. However, all the proposed libraries and specifica-
tion languages are very general and address mainly hardware aspects, and/or
are typically conceived for 3D graphics.

3 A Model for Haptic Interaction in Web Applications

The elements of the graphical interface of a Web application are usually inter-
preted as passive components: the user decides to interact with them according
to his/her own will or the task (s)he would like to perform. However, each el-
ement can become active, by adding proper haptic effects that may guide the
user during the navigation.

Systems involving haptic interactions are typically based on the architecture
shown in Figure 1 [18], which includes:

– The haptic device, providing in input to the system the position of its proxy,
and rendering in output a force;

– The video rendering the visual aspects of the application;
– A module devoted to the haptic rendering;
– A module devoted to the visual rendering;
– A module containing the objects of the environment to be rendered visually

and associated with haptic effects.

The haptic rendering pipeline is composed of three main blocks:

– Collision detection: given the current position of the haptic proxy, it deter-
mines which virtual objects collide with the proxy;

– Force response: the interaction force between the proxy and the virtual ob-
jects is computed. Force computation is based on the mathematical repre-
sentation (model) of the force, that is a function of the input provided to the
device (typically, the position of the haptic proxy, but also its velocity and
acceleration) and, possibly, of the features of the object associated with the
haptic behavior. The mathematical model is used to compute the intensity
and the direction of the force to render: the output may be perceived by the
user as a change of the position of the proxy, possibly with a given velocity
and acceleration.

A Framework for the Development of Haptic-Enhanced Web Applications 257

Fig. 1. Basic architecture for haptic rendering

– Control algorithm: the computed force is approximated according to the
device’s capabilities (e.g., maximum output force) and rendered to the user.

Considering Web applications, any element of the page may be associated with
an effect that the user will perceive during navigation. From a conceptual
point of view we need to identify such elements and to understand when and
how forces need to be computed and rendered. At this aim, haptic interac-
tion can be modeled through the specification of a set of tuples of the type
〈obj, event, effect, action〉 where:
– obj is the target object/widget of the application associated with a haptic

effect; in a HTML page it may be any object registered inside the Doc-
ument Object Model (DOM) of the page (from a HTMLDivElement to a
HTMLInputElement or HTMLDocumentElement etc.);

– event is the event associated to obj: it may be a native event of the browser
(like click, load, mouseover, etc.) or an application-dependent event defined
by the developer1;

– effect is the effect generated by the haptic device and felt by the user.
Examples of effects include: vibration effects or attraction/repulsion forces.
They are specified by means of mathematical models, as exemplified next.
Effects may be:
• Single: they are defined by means of a single (possibly complex) ex-
pression. Single effects are associated with a timeout specifying a time
duration (e.g., 1000 ms);

• A Concatenation of effects (Eff 1, Eff 2, . . ., Eff n), where each effect may
be in turn either a single effect or a concatenation of effects: in this case,
one effect a time is rendered, and the whole sequence may be associated
with a number of iterations, to be possibly repeated several times.

1 Application-dependent events may be defined by means of the Object.createEvent()
function, according to the ECMAScript 5 specifications.

258 S. Comai, D. Mazza, and A. Guarinoni

Fig. 2. Examples of force models

– action specifies if, upon the event, the associated haptic effect must be
started, stopped, or definitely removed from the page. Stopped effects can
be restarted when the event associated to the object occurs again; instead,
removed effects can occur only once for the loaded page. Given an effect,
stop/remove actions may be not specified, since timeouts and iterations are
enough to stop the rendering of the effect; when both are specified, the ef-
fect will cease upon the occurrence of the first blocking event (timeout or
stop/remove).

This model extends our previous proposal done in [7] by taking into account the
specific field of application. In our work we have implemented some predefined
effects. Examples of such effects are reported in Figure 2: each effect is specified
by means of a mathematical expression that depends on inputs received from
the device (e.g., the position of the proxy) and possibly on other parameters.

Figure 3 shows an example of Web page enhanced with haptic effects applied
to the HTML elements of the Google homepage. Due to the lack of guidelines for
introducing haptic effects to enhance user interaction, we enriched the visual in-
formation with haptic feedbacks conveying messages not already communicated

A Framework for the Development of Haptic-Enhanced Web Applications 259

Fig. 3. An example of page enriched with haptic effects

to the user. For example, we assigned a time-dependent vibration perceivable
by the user as soon as (s)he moves the mouse over the individual links listed in
the upper part of the page, or over the buttons near the search bar, to confirm
user’s action (typically not emphasized in a visual way). Moreover, in order to
assist the user during the navigation, the menu items at the bottom of the page
are associated with a slight magnetic attraction to improve the cursor control
and avoid mouse slippery on click. In the same way, a gentle guided movement
over the input field has been obtained as a composition of the spring and the
damper force models; this effect is rendered as soon as the loading process of
the page is completed, while a viscous (damper) effect is perceived whenever the
cursor moves over the input field. The playback of each single haptic effect is
regulated by means of the associated events/actions, which specify the execution
criteria of the handlers that activate and deactivate the effect. For example, on
the two buttons in the middle of the page, the haptic effect will start whenever
the mousedown event occurs and will stop either after 1000 ms or before, if a
mouseup event is fired.

260 S. Comai, D. Mazza, and A. Guarinoni

4 A Framework for the Addition of Haptic Effects
in Web Applications

The framework proposed in this paper is based on the architecture depicted
in Figure 4, which contextualizes the classical schema of Figure 1 for the Web
realm. The Web page is extended with Javascript code exploiting a Javascript
library (called JHaptic) that is responsible for the computation of the force and
its scaling (i.e., of the Force Response and Control Algorithm steps of the haptic
rendering pipeline). A browser plug-in has been developed to enable the interac-
tion with the physical device through the APIs exposed by it (see Section 4.2).

Fig. 4. The working architecture of the proposed library

Compared to the classical haptic rendering pipeline, the collision detection
step can be obtained by exploiting the event model of the browser rendering
engine itself. Indeed, it is possible to monitor events like mouseover or mouseout,
over any element (visible or not) stored in the Document Object Model (DOM).

The communication among the different modules depicted in the figure is
carried out as follows:

1. The current position of the haptic interface is taken in input; this is processed
by the low-level libraries provided with the selected device and interfaced
through a plug-in with the Web page loaded in the browser;

2. A Javascript library is integrated within the HTML document; it receives
the position of the device proxy, maps it to the corresponding point both in
the desktop and in the Web page and computes the forces to be reproduced
in output; effects are included in the Web application code by invoking the
corresponding library functions;

A Framework for the Development of Haptic-Enhanced Web Applications 261

3. The value of the computed force is scaled so that the hardware limits of the
adopted device are not beyond its force magnitude rendering capabilities;

4. By exploiting the low-level APIs through the plug-in, the computed force
impulse is sent to the device, so that it is perceived by the user.

The library therefore manages the whole rendering process and exploits an ex-
ternal plug-in (a Dynamic-link library) to access the APIs needed to interact
with the physical device.

In order to allow Web contents browsing, the mouse cursor has been firmly
associated to the end-effector of the haptic device so that a movement of it
produces a proportional shift in the position of the mouse arrow on the screen.
This way, the user can do actions and fire events as with the usual mice, and
haptic effects ca be rendered (started, stopped, etc.) upon a particular occurring
condition (e.g., click on a button, hovering a link, missing data in an input field,
etc.) of a given element (or node) of the page.

The framework can supports any kind of device, from (2D) mice to haptic
devices moving in a 3D working space: in the latter case, the position of the
haptic proxy must be mapped into the bi-dimensional position of the pointer
on the screen; in our model, the user screen space has been vertically centered
onto the workspace of the physical device, represented as a parallelepiped. The
currently displayed area of the Web page (viewport) is conceived as a vertical flat
surface, so that the three-dimensional position of the end-effector is projected
on the vertical plane in which the Web page resides, thus providing the bi-
dimensional coordinates of the mouse on the screen (see the Virtual I/O panel
in Figure 6).

4.1 JHaptic Library

The conceptual elements introduced in Section 3 to model haptic interaction
inside a Web page have been integrated into the JHaptic library according to
the UML diagram in Figure 5. It represents only the most significative objects
composing the project and their fundamental properties.

The library presents some first-class objects to model the haptic interaction.
The Device class models the features offered by a generic haptic device like
its inputs (position, speed, and acceleration) and ouptut (output force). The
size of the physical workspace and the intensity of the maximum playable force
are obtained directly from the parameters exposed by the plug-in, allowing the
library to abstract from the device type.

A Virtual Device is also defined emulating the functionalities of a basic haptic
device, so that the testing of the application is possible also without the need of
a connected physical device (see Section 5).

The ForceModel class, and in particular its func property, represents the math-
ematical model of the effect to render. To consider the most general working
space of haptic devices, all input and output data are represented by 3D vectors
(class Vector). Some widely-used models have been predefined and represented
by utility classes such as the Spring, Damper, or Vibration force models, etc.,

262 S. Comai, D. Mazza, and A. Guarinoni

Fig. 5. The UML model of the developed library

just to mention the ones depicted in Figure 5. Anyway, the developer can cus-
tomize the effects to render to face user’s needs: the class Effect allows to specify
a duration in time of the force feedback generated by the defined model; more-
over, effects can also be composed, in order to obtain a time-sequenced effects
or specifically designed patterns: this effects composition is possible with the
Behavior class which supports the concatenation of effects, to reproduce them
for a specified number of times.

4.2 The Plug-in for the Browser

The developed plug-in has been designed to be used with NPAPI-compliant
browsers, e.g., Mozilla Firefox, Google Chrome, Gecko, Safari, etc. Among all
the browsers, we have considered Google Chrome and for the development of the

A Framework for the Development of Haptic-Enhanced Web Applications 263

plug-in we have used Firebreath [2], a framework that allows the creation and
development of simple plug-ins for most of the popular browsers integrating the
NPAPI functionalities.

The plug-in has been implemented taking into account two main requirements:

– Low complexity: the minimal functions needed to manage the communication
with the device are included. In this way, the creation of new plug-ins to
extend the library support to more devices becomes simpler and faster, since
no algorithms for the computation and management of the haptic rendering
need to be redefined.

– High compatibility: the APIs exhibited by the plug-in should represent the
basic set of functions needed to interface with a haptic device. The plug-in is
the main interface for the JHaptic library: if the plug-in exhibits a fixed set
of APIs, compatible with all the devices, this will simplify a possible change
of the employed haptic device.

To maximize the compatibility with more devices, 3 DOFs (degrees of freedom)
have been considered. At this aim a basic set of methods and variables that the
plug-in should exhibit to the JHaptic library has been identified, including:

– a set of methods to control the device, i.e., to start and stop the communi-
cation with the device;

– a method to send the force value to be instantaneously rendered;
– a method to obtain the force applied to the device;
– a method to obtain the current coordinates of the proxy;
– a method to set the working space (2D or 3D) and a variable to set its

maximum dimensions;
– a variable to set the maximum force value that can be rendered by the device.

For further details the reader can refer to the official Web site of the JHaptic
library project2, where the complete framework (library and plug-in) can be
downloaded, more specific documentation can be found, and examples of Web
pages enriched with haptic effects are available.

In our tests we have used the Sensable PHANTOMTM , which is a 6-DOF
device: the additional 3 DOFs exhibited by the end-effector of this specific device
have not been considered.

In order to decouple the implementation from a specific device, we have not
used any proprietary library associated with a particular haptic interface, but
we have written the plug-in code with the help of the multi-device CHAI3D
open-source library [1], which allows the automatic detection and adaptation of
the plug-in functionalities to other haptic device.

The plug-in takes care also of the movements of the mouse pointer on the
screen according to the movements of the haptic end-effector, by mapping the
corresponding coordinates as explained in Section 4. To handle the positioning
of the mouse cursor at the computed screen coordinates, appropriate operating
system APIs are called from the plug-in, since this is not possible using Javascript
code.
2 http://home.dei.polimi.it/mazza/jhaptic

http://home.dei.polimi.it/mazza/jhaptic

264 S. Comai, D. Mazza, and A. Guarinoni

Device-Independency. A note on the device-independency of the overall de-
sign is here worth saying. The whole framework has been designed to be device-
independent: the Javascript library is based on a conceptual model specifying
the haptic interaction, and also the plug-in has been implemented using a device-
independent library such as CHAI3D and has been designed considering 3-DOF
devices, so that it can be easily adapted to be used with different physical inter-
face: in case of 2-DOF devices the z-coordinate of the Vector is simply ignored;
for devices with more than 3 DOFs, only the main 3 DOFs are considered.

5 Console for Debugging and Testing

In order to support the developer in the usage of the proposed library we realized
a browser-integrated tool to simplify the debugging and testing process of a
Web page extended with haptic feedback. The solution provided is made up of a
console and a simulator. Both components are implemented in Javascript so that
they can be exploited directly within the browser, thus overcoming the problems
related to the architecture or the operative system of the developer’s machine.
The structure of the debugging tool is shown in Figure 6.

Fig. 6. The structure of the debugging tool

By means of the console, injectable on request within the HTML document,
the developer is able to visually monitor the behavior of the haptic device by
exploiting three panels:

1. The Graphs panel, displaying a chronological visualization of the changes
occurring during haptic interaction in terms of wave forms representing the
force pulses reproduced by the device; it is also possible to visualize the vari-
ations of the other measures computed during the haptic rendering process
(like position, velocity, refresh rate, etc.) by means of multiples real-time
quoted plots;

A Framework for the Development of Haptic-Enhanced Web Applications 265

2. The Virtual I/O panel, graphically rendering in the 3D workspace the rep-
resentation of the current position of the proxy and the magnitude and
direction of the output force, along with other auxiliary information such as
the arrangement of the desktop area or the virtual placement of the page
viewport plane;

3. The Messages panel, used to monitor the log, warning and error messages
related to the functioning of the Web page and of the library components.

Through the console it is also possible to directly edit at runtime the haptic
effects set in the Web page, taking advantage of the code injecting feature that
has been developed.

All the information and functionalities provided by the console are accessible
either using a real device, controlled by means of a browser plug-in, or using a
simulated one, to allow the test of an application without the need of a physical
device connected to the system. At this aim, the simulator emulates the three-
dimensional input received from a real device by conveying the correct position
calculated by parsing the events related to the mouse positions and buttons,
according to the workspace size defined by the developer; the output is shown
in the console.

6 Evaluation and Experience

In order to understand the impact of the introduction of haptic interaction on
Web navigation, we have done some performance tests on different hardware
configurations by extending different pages with multiple haptic feedbacks. We
evaluated more usage conditions for the library, exploiting both the simulator
and the real device used through the developed plug-in. The tests were performed
on mid-range systems: 1) CPU Intel Core 2 Duo T6500 2.1GHz, RAM 4GB
DDR2 800MHz, GPU Ati Mobility Radeon 4650; 2) CPU Intel Core 2 Duo E8400
3GHz, RAM 4GB DDR2 800MHz, GPU nVidia Geforce 9600GT; the Google
Chrome (v.17) browser on the Microsoft Windows 7 32-bit operative system has
been employed. The following parameters have been monitored: 1) the haptic
refresh rate, i.e., the real frequency with which the force pulses are computed
and sent to the device 2) the CPU workload, i.e., the processing power required
to perform the calculation of the forces set, keeping the ideal refresh rate to 1
kHz. Results show that the rendering of a low number of haptic effects within
the HTML document does not lead to a significant increase of the resources
usage. In particular, the playback of a single force model among those already
provided in the library does not cause a tangible variation of the CPU workload,
while the real refresh rate remains close to 1 kHz. By increasing the amount
of the haptic effects simultaneously rendered, we observed a slight linear rise
of the CPU power demand, whereas the average haptic refresh on the low-end
system showed more frequent peaks of delay. Anyway, several force models to
be reproduced simultaneously within a Web page is a situation that will hardly
occur in practice: user studies presented in literature demonstrated that the
design of the Web page should enable one - possibly complex - effect at a time,

266 S. Comai, D. Mazza, and A. Guarinoni

to avoid a chaotic sensations to the user receiving too many information from
different channels [13]. Moreover, the CPU usage is never overloaded, allowing
the execution of other applications in parallel to the Web browsing activity.
Finally, no performance difference has been identified in the use of the real and
the simulated device.

On the development experience side, the framework presents mainly two bene-
fits: 1) compared to manual coding, the JHaptic library, together with the plug-in
interfacing the physical device, simplifies the addition of the haptic effects to a
Web application; 2) moreover, the framework can be extended with any new
effect, by means of additional Javascript function(s) that model the effects to
render by exploiting the already existing JHaptic library APIs; extensibility is
an important aspect, especially when common standards are lacking, like in the
case of haptics.

7 Conclusions and Future Works

In this work we have designed and realized a framework for the introduction
of haptic interactions into Web applications. To our knowledge, this is the first
framework supporting a flexible design of effects, providing a set of browser-
integrated tools to help the Web developer in the definition and testing of haptic
effects, and designed to be device-independent.

As future work we plan to extend the capabilities of the developed library with
the integration of a graphical engine, for the specification of haptic effects within
a three-dimensional environments rendered in the browser. Another aspect worth
studying concerns the usability of haptic-enhancedWeb applications, considering
the type of device, the context of use, and the type of target users, in order to
identify guidelines and design patterns.

More room there will be in the future for haptic technologies: the research
trend emerged in recent years pays particular attention to the design and de-
velopment of devices exploiting the sense of touch, also the W3C, has set up
two relevant initiatives3 to face the emerging new ways of interactions and the
supporting devices. Haptics is going to strongly influence consumers’ habits and
research domains for the next years.

References

1. Chai 3d, http://www.chai3d.org
2. Firebreath, http://www.firebreath.org
3. Jtouchtoolkit, https://jtouchtoolkit.dev.java.net/
4. Novint, http://home.novint.com/
5. Sensable phantom omni, http://www.sensable.com/haptic-phantom-omni.htm
6. Caffrey, A., Mccrindle, R.: Mccrindle r. developing a multi-modal web application.

In: Proceedings of ICDVRAT 2004, pp. 165–172 (2004)

3 The Device APIs Working Group: http://www.w3.org/2009/dap/
The Vibration API: http://www.w3.org/TR/2012/WD-vibration-20120202/

http://www.chai3d.org
http://www.firebreath.org
https://jtouchtoolkit.dev.java.net/
http://home.novint.com/
http://www.sensable.com/haptic-phantom-omni.htm
http://www.w3.org/2009/dap/
http://www.w3.org/TR/2012/WD-vibration-20120202/

A Framework for the Development of Haptic-Enhanced Web Applications 267

7. Comai, S., Mazza, D.: Introducing haptic interactions in web application modeling.
In: WSE, pp. 43–52 (2010)

8. Eid, M., Andrews, S., Alamri, A., El Saddik, A.: HAMLAT: A HAML-Based Au-
thoring Tool for Haptic Application Development. In: Ferre, M. (ed.) EuroHaptics
2008. LNCS, vol. 5024, pp. 857–866. Springer, Heidelberg (2008)

9. Eid, M., Mansour, M., Iglesias, R., Saddik, A.E.: A device independent haptic
player. In: Proceedings of the 2007 IEEE International Conference on Virtual En-
vironments, Human-Computer Interfaces, and Measurement Systems. IEEE (2007)

10. Itkowitz, B., Handley, J., Zhu, W.: The openhaptics toolkit: A library for adding
3d touch navigation and haptics to graphics applications. In: Proceedings of First
Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems (WHC 2005). IEEE (March 2005)

11. Kaklanis, N., Calleros, J.G., Vanderdonckt, J., Tzovaras, D.: A haptic rendering
engine of web pages for blind users. In: Proceedings of the Working Conference on
Advanced Visual Interfaces, AVI 2008, pp. 437–440 (2008)

12. Kaklanis, N., Votis, K., Moschonas, P., Tzovaras, D.: Hapticriamaps: towards in-
teractive exploration of web world maps for the visually impaired. In: W4A, p. 20
(2011)

13. Kuber, R., Yu, W., McAllister, G.: Towards developing assistive haptic feedback
for visually impaired internet users. In: CHI, pp. 1525–1534 (2007)

14. Kuber, R., Yu, W., O’Modhrain, M.S.: Evaluation of haptic html mappings derived
from a novel methodology. TACCESS 3(4), 12 (2011)

15. Oakley, I., McGee, M.R., Brewster, S.A., Gray, P.D.: Putting the feel in look and
feel. In: CHI, pp. 415–422 (2000)

16. Panëels, S.A., Roberts, J.C.: Review of designs for haptic data visualization. IEEE
T. Haptics 3(2), 119–137 (2010)

17. Pascale, M.D., Prattichizzo, D.: The haptik library. IEEE Robotics & Automation
Magazine 14(4), 64–75 (2007)

18. Salisbury, K., Conti, F., Barbagli, F.: Haptic rendering: Introductory concepts.
IEEE Comput. Graph. Appl. 24(2), 24–32 (2004)

19. Yu, W., Kuber, R., Murphy, E., Strain, P., McAllister, G.: A novel multimodal
interface for improving visually impaired people’s web accessibility. Virtual Real-
ity 9(2-3), 133–148 (2006)

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 268–282, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Supporting Users Tasks with Personal Information
Management and Web Forms Augmentation

Sergio Firmenich1,2, Vincent Gaits2, Silvia Gordillo1,3,
Gustavo Rossi1,2, and Marco Winckler4

1 LIFIA, Facultad de Informática
2 Universidad Nacional de La Plata and Conicet Argentina

3 CiCPBA
4 IRIT, Université Paul Sabatier, France

{sergio.firmenich,vgaits,gordillo,gustavo}@lifia.info.unlp.edu.ar,
winckler@irit.fr

Abstract. Currently, many tasks performed on the Web prompt users to provide
personal information through forms. Despite the fact that most users are familiarized
with this kind of interaction technique, the use of Web forms is not always
straightforward. Indeed, some users might need assistance to understand labels and
complex data format required to fill in form fields that, quite often, vary from a Web
site to another even when requesting similar data. Filling in forms can be tedious and
repetitive as many Web sites request similar information. In this work we analyze
user’s interactions with Web forms and propose an approach for enhancing Web
forms using client-side adaptation techniques in order to assist users to fill in Web
forms. As the use of Web forms is closely related to the management of personal
information our approach includes the support for data exchange between user’s
personal information management systems (PIMs) and third-party Web forms. The
approach is illustrated by a set of client-side adaptation tools and a pervasive
Personal Information Management Systems called PIMI.

1 Introduction

For many Web applications, forms are essential components that allow users to
provide data and interact with the system. Despite the fact that forms can be very
effective for gathering information, the tasks users engage when filling in forms can
be complex: at first, users must to understand how to fill in the forms; users should
also be able to recall information that should be entered into form fields; only then
users can start typing to fill in the forms; it is worth noting that quite often users need
to record data used in forms in their personal information management systems
(PIMs) for later use. If these users’ tasks are not supported properly they might raise
several usability problems. For example, users can make mistakes if they don’t
understand labels or if they do not know how to enter data in the expected data format
[3]. Users can also left form fields blank if mandatory fields are not clearly indicated.
Recalling information is cognitively demanding [14] and particularly painful if users
should recall the information provided to every Web form. Whilst typing in form
fields, users can introduce typos. Filling in Web forms can also be tedious and
repetitive [5]; this is particularly true because, quite often, different Web forms will
request similar personal information from users [25].

 Supporting Users Tasks with PIM and Web Forms Augmentation 269

In the last years, several strategies have been developed to assist users to fill in
forms. On one hand there are techniques focused on the system design for example,
guidelines aimed to provide advices for building usable Web forms [14]. Another
example is third-party applications that include a user personal space on the server-
side for providing pre-filled forms on the client-side.

On the other hand, some enhanced Web browsers and plug-ins implement
techniques for assisting users to fill in forms such as auto-filling techniques [10] and
auto-completion [22]. The auto-filling techniques [10] can “remember” which values
were entered by the users in a given form in a previous visit to the Web site. Some
Web browsers like Safari1 implement by default an auto fill form mechanism that
reuses previously filled form for automatically filling out different forms with data.
However this will ultimately require users to login and record Web forms requesting
personal data, which implies that users should remember their login information.

Despite the fact that all these solutions provide undeniable help, they suffer of at
least one of the following limitations:

• We depend on the diligence of Web-browsers designers and developers of
third-party Web applications;

• These solutions focus on a single problem, quite often limited to automating
filling in forms and neglecting overall user tasks with Web forms;

• There is no integration between data available on users’ personal information
management systems and Web forms. Even if many Web applications can
keep updated records of personal information in remote servers, there are legal
and technical issues that prevent them from sharing personal data among
different applications. Moreover, users must keep multiple accounts which
increase the complexity of personal data management [15].

In order to assist users in all the tasks they engage whilst interacting with Web forms
this paper proposes an approach based on Web forms augmentation to support a
straightforward interaction between third-party Web forms and users’ personal
information management systems.

The underlying premise for the current work is that users will be more efficient
whilst filling in forms if they were allowed to reuse data from their personal
information management systems (PIMs). This work also assumes that some of the
usability problems occur because users have to interact with different Web forms and
it is virtually impossible to create a uniform presentation for all third-part Web forms
available on the Web. In the following sections we describe the general approach and
the tools that have been developed to solve these problems.

2 Task Analysis of User Interaction with Web Forms

2.1 Motivating Scenario

Some of the inner difficulties for interacting with Web forms only become evident
when users have to accomplish the same tasks across different Web forms. To illustrate
this, we present below a trip planning scenario which ultimately requires users to
provide the same data on different third-party Web forms, as follows:

1 Safari - Auto Fill: Personal Information, http://www.apple.com/safari

270 S. Firmenich et al.

“John wants to bring his wife Judy to Berlin for her birthday, for that he is booking a flight, a hotel and a
car at the following Web sites: expedia.com, booking.com and hertz.com. By doing so, John fills in three
Web forms with information about the travel (i.e. dates, city of origin and destination) and the people
travelling (i.e. name, personal address, billing address, credit card information, frequent flyer number,
driver license, and passport number). Interesting enough, the three Web sites propose different names for
form fields requesting similar information. John knows by heart his personal information but it does not go
the same for Judy’s passport information and frequent flyer number. Whilst filling in the forms, John is
puzzled to see that the Web site could recall his credit card number and passport (he does not remember to
have asked the web site to record such information in the past…). Moreover, the Web site recalls John’s
old passport number which John didn’t realize immediately but he was very precautious to crosscheck it
and change the information in time. After completing the booking, John has a last task to collect
information for his travel (e.g. addresses of hotels, car rental…). John also takes note one of his many
credit cards he used with the different Web sites.”

Whilst performing the scenario above, it is possible to observe some issues that make
the following users tasks difficult. As illustrated at Fig. 1, these tasks have several
implications on the user side (concerning user requirements for accomplish the task),
on the system side (impact on the design of Web forms), or both (the system
implementation has an impact on users tasks).

Fig. 1. Main issues for supporting common users’ tasks with Web forms

2.2 Rational for Improving User Interaction with Web Forms

An overview in the current literature will point out several recommendations for solving
each individual issue described at Fig. 1. Hereafter we present possible solutions for
each task:

• Understand how to fill in forms
o Provide the same form structure through different Web sites;
o Always describe the information demanded with standardized labels;
o Provide a help page to explain the form;
o Provide contextual help for filling every form field;

Understand how
to fill in forms

Record data
used in forms

Users’ concerns

• Labels, mandatory fields,
data format, and field/label
positioning can be
confusing

• No uniform presentation of form fields across applications and
domains

• Users often record many
instances of personal data

• Data scheme of third-party
applications and PIMS’ may differ

• Forms are not easy to design,
subject to change

• Forms fields must reflect data in
an application domain

• User might want to keep the
control on data they share

• Require special policies for
updates of users’ PIMs

Design issues

Fill in form fields
• Tedious and repetitive • Several techniques available to

automated filling in forms but
none is 100% accurate • Filling in forms is error-prone

Recall
information

• Recalling information is
cognitively hard for most
users

• System’s recall require to know users… implications for user trust
and privacy

• System’s recall increases
complexity, implications for
evolvability of the application

Users’ tasks

• Fragmentation of user data across many Web applications

 Supporting Users Tasks with PIM and Web Forms Augmentation 271

• Recall information
o Store information in the browser/server-side to recall users of previously

entered data on Web forms;
o Provide users with a pervasive access to their personal space

• Filling in forms
o Support user profiles to complete some data automatically;
o Give to users full control over data used for filling in forms;
o Manage a PIM and establishing semantic correspondence with forms.

• Record data used in forms
o Allow users to record into their personal space the data provide to Web forms;
o Allow users to collect information in Web sites and make it available across

the Web at client-side.

It is interesting to notice that existing solutions will focus on a single issue at a time.
Moreover, some solutions such as labels standardization among the Web seem
technically possible but unrealistic in practice as application domains might vary and
Web developers are usually “creative” in their designs. Indeed, existing solutions will
present two main drawbacks: dependency on the diligence of designers of Web
applications and/or lack of support for integrating personal information space and Web
forms. In order to solve these problems we propose below some alternative solutions:

• Allow users community to describe the form entries and show these descriptions in
the form page.

• Provide a pervasive personal information space with seamless integration with
Web forms. This solution could help users to recall their personal information that
could also be used for filling in forms.

• Allow users to collect information in Web sites and make it available across the
Web at client-side.

3 Outline of the Approach

Our approach relies in a distributed architecture encompassing a set of independent
Web applications that can be combined as shown by Fig. 2. The architecture is
conceived to support user interaction with Web forms provided by third-party
applications. The personal information space is a piece of software whose main task is
to store users’ personal data (e.g. address, bank account…). The personal information
space is deployed into a Web server, rather than on the Web browser, to provide users
with a pervasive access to their personal data. The third element in this architecture is
the personal assistant for filling forms, which is a piece of software implementing
client-side adaptation techniques for supporting Web form augmentation and ensuring
data interoperability between the personal information space and third-party Web
applications. The main principles that underlying the approach are: i) third-party Web
form augmentation through the use of client-side adaptation techniques; ii) the
availability of a pervasive personal information management system; iii) the
development of an annotation service for supporting data interoperability between
third-party Web forms and user personal information systems. The rest of this section
describes the rationale behind every element of this architecture.

272 S. Firmenich et al.

Fig. 2. Overview of architecture of our approach for Web form augmentation

3.1 Web Form Augmentation

Previous works [4][7] have demonstrated that client-side adaptation techniques are an
effective way to empower users in order to adapt Web sites according with their
concern. For example, client-side adaptation techniques may be used to create small
software packages called augmenters [7] that can modify, in the Web browser, the
content of third-party Web applications. Augmenters are built as generic adaptations
featuring behaviors such as adding user defined links to Web pages, highlighting text,
etc. Technically speaking, an augmenter is just a script (written in JavaScript) that is
able to modify the DOM. Augmenters are developed using the CSN framework [7]
and then installed in the browser as a plug-in. Whilst navigating the Web, end-users
can use the framework to trigger augmenters whenever they are needed to improve
the user interaction. In our previous work [7] we have explained how to use the CSN
framework to build not only individual augmenters for supporting opportunistic user
tasks but also how to combine different augmenters to supporting complex scenarios.

The present work borrows the basic infrastructure provided by the CSN framework
to build client-side adaptations and it extends it by describing a set of useful
augmenters supporting Web form augmentation (i.e. augmenters aimed to help users
to interact with Web forms). These augmenters can be triggered either by the users
(i.e. manually) or programmed to execute automatically under certain circumstances.
In this way, users may perform adaptations under demand, but the same adaptations
may be executed automatically by the tool (a Web browser plug-in).

3.2 A Pervasive Personal Information Management System

The second main element in our approach is a pervasive information space for storing
user’s personal data. Managing large sets of information is strongly related to the
domain of Personal Information Management systems (PIMs), which corresponds
[15] to the research field addressing the way people manage their physical documents
(books, notebooks, sheets, etc.), as well as their electronic documents (files, emails,

 Supporting Users Tasks with PIM and Web Forms Augmentation 273

Web pages, etc.), with the aim of designing tools that support the management of
electronic documents (PIM tools). While the PIMs area usually covers many contexts
and activities, in this paper we look at PIMs in a more specific way: the individual
information items people keep on various notes, cards, forms, agendas, etc., the ones
that user are mostly have to use when interacting with Web forms.

Our approach relies on a Personal Information Management system (PIMs) as a tool
allowing users to persist information which may be used when they it is needed. In this
way, users may have always relevant information for performing tasks, specifically
those which require forms. The pervasive aspect for the PIMs is aimed to reduce
information fragmentation and for making information fully accessible to the users.

3.3 Data Interoperability through Web Forms Annotation

The Web forms provided by third-party applications might have different structure
and inner organization. For example, form fields can have diverse names such as city,
town, locality, etc; an address can include (or not) the state and mailbox; and so on.
Therefore, a mapping process is required to ensure that data can be exchanged
between applications. In our approach data operability is ensured by complying form
fields with an emerging standard such as Microformats [17] and Microdata [12]. Our
approach can support diverse data formats, but for the purposes of the illustration, the
current implementation is built upon Microformats.

The choice for Microformats is motivated by the fact that they can embedded into
other data formats such as (X)HTML, Atom, RSS, and arbitrary XML. Moreover,
there are several plug-ins that can detect automatically the presence of data into Web
pages encoded accordingly to Microformats. Fig. 3 shows the structure of the
Microformat hcard. The tag vcard indicates the class of the Microformat; the hcard
was originally proposed upon the standard vCard RFC 2426 (Card MIME Directory
Profile) to identify individuals. The tag fn is used for full name and it is the only
mandatory element. The tags org, adr, street-address, locality, region, postal-code,
and country-name are some of other 29 optional tags can be used to identify a person.

<div class=”vcard”>
Marilyn Monroe
<div class=”adr”>
<div class=”street-address”> Pennsylvania Avenue</div>
 Brentwood,
CA,
 90049
United States
</div>

Fig. 3. Excerpt of the Microformats hcard

In our approach, Microformats are used as a kind of lingua franca that supports
data exchange between the different elements described in Fig. 2. The use of
Microformats is spreading fast on the Web, but not all Web pages are built using
Microformats. Thus, we have to face two possible scenarios: a) forms fields were
built using Microformats structures; b) Forms fields do not embed Microformats. In
the first case (a) Web forms already integrate Microformats so that forms can be used
as such with the personal assistant for filling forms. In the second case (b) the original
Web forms must be annotated with Microformats.

274 S. Firmenich et al.

Fig. 4 illustrates how the approach supports the detection of Microformats in Web
pages and the corresponding annotation of third-party Web forms with Microformats.
It is important to notice that annotations are necessary to make Web forms compatible
with the users’ data stored into their personal information. Annotations are stored as
external files in a dedicated database. If known annotations for a Web form exist, they
are added to the original Web form to produce a modified form featuring
Microformats. Notice that Web forms are not modified on the third-party Web server
making the solution independent of the Web form provider.

Fig. 4. Annotation process for supporting interoperability between third-party Web forms and
user’s personal information space using Microformats

Annotations can be done in many ways either manually coding the annotations into
a text file or by using several annotation tools such as Greasemonkey scripts2 and
open annotation services [21]. We consider that annotation should be done by web
developers, but since the use of annotation tools require little training they can be also
mastered by experienced Web users. The efforts of annotating are reduced by the
collective effort. Therefore most users will not need to annotate forms before using
them. The process for modifying Web pages using external annotations is supported
by some tools such as [11][13]. Despite the fact that we assume that annotation of
forms could be easily performed by advanced Web users, we do not exclude the
possibility that the annotation process could be automated. Indeed, tools such as
Carbon [1] and Opal [9] are able to analyze Web forms with respect to their fields and
labels. For example, Opal [9] interprets form labels and classifies the fields according
to a given domain Ontology. This classification mechanism could be exploited to
support automated annotation of Web forms.

2 Greasemonkey, http://www.greasespot.net/

b) Third-party
Web form
without
Microformats

Annotate form
fields

Annotations

Web form ready for use in the Browser

a) Third-party
Web form
featuring
Microformats

Download third-
party Web form

YES

Parsing process

Detect microformats
in form fields

Embed annotations
into Web form

Does it contain
Microformats?

Are there known
annotations?

Annotation process

NO
Record form
annotations

YES

User

NO

Legend: Microformats Personal Information space.
User data is also encoded
using Microformats.

 Supporting Users Tasks with PIM and Web Forms Augmentation 275

3.4 User Control on Data Transfer

Most of available techniques will fill in forms with data without prompting users. As
users do not know beforehand which data will be automatically entered, they must
cross-check all form fields. Wrong predictions of data put into form fields might
cause frustration and ultimately reduce user performance. Moreover, users’
confidence on the system might decrease if they do not fell in control of the data
transfer. This aspect of the user interaction has become an essential aspect for the
design of new applications [16]. In other to prevent these drawbacks, our approach
defines user’s control on automatic form fill in as follows:

• Users should be able to create as many records of personal information as needed,
(e.g. home address, secondary house, etc);

• Users should be able to control data flowing from/to the personal information
space from/to Web forms;

• The personal information space can be update at any time;
• Users must be allowed to modify partially/totally the content of form fields even

after the personal assistant has previously filled them in with data chose by users;
• Personal data must be accessible from everywhere so that users can keep control

of their personal data regardless the browser and/or the computer they are using.

4 Case Study and Tool Support

In order to demonstrate the feasibility of the approach we have developed a set of
tools including a personal information space, a personal assistant for filling forms
that provides support for Web form augmentation and an annotation service. Actually
these tools have been combined in a single user interface called PIMI, which was built
upon the CSN framework [7]. As shown in Fig. 5, PIMI is delivered as a Firefox
extension that, when activated, appears at the left-hand side (see Fig. 5.a) of the Web
browser whilst users are navigating on the Web at the right-hand side (see Fig. 5.b).
Fig. 5.a, Fig. 5.c and Fig. 5.d shows the corresponding screenshots when the user can
log into PIMI (a), create a new account (b) and access to the main menu that give
access to the tools for supporting users in filling forms while they perform their tasks.

The rest of this section is organized as follow: section 4.1 presents how user can
use PIMI to manage their personal information; section 4.2 illustrates how PIMI
supports automated filling in forms; section 4.3 describes the annotation service for
making new forms interoperable with the user personal information space.

4.1 Personal Information Space

One of the main features of our approach is that users should be able to connect their
personal information system with third-party Web forms. In order to ensure a
pervasive access to users’ personal data, PIMI includes a data server from where users
can manage their personal records. Such personal information space can be seen as a
standalone application. However, PIMI integrates data from user’s personal spaces for
allowing them to reuse such data whilst they are also navigating third-party
applications as shown by Fig. 6.

276 S. Firmenich et al.

 | a) PIMI login |… b) third-par

Fig. 5. Views PIM

Fig. 6. Overview of the person
c) tools menu; d) personal reco

Once connected to his ac
left-hand side of the Web b
hand side (Fig. 6.b). The per
piled up and managed as e
Each personal record can b
Fig. 6.e shows all the fields
of these cards is based on
However, it would be possi
menu for creating new pers
top (Fig. 6.c) there is a men
PIMI including the navigat
assistant to filling forms (see

rty web forms …………| |c) new account| |d) main menu

MI inside the Web browser whilst navigating the Web

nal information space at PIMI: a) PIMI; b) third-party applicat
ords items; e) expanded items; f) items menu

ccount, the user can see his personal information space at
browser (Fig. 6.a) and the third-party web form at the rig
rsonal records are organized in the form of cards that can
electronic posts-it containing a simple label (see Fig. 6
be expanded to show all detailed information; for instan
s associated to the label work address. The current struct
n existing Microformats and only accessible from PI
ible to extend it to use other data format. Fig. 6.f shows
sonal records using existing Microformats elements. On
nu for allowing navigation to the other tools delivered w
tion to the main menu (as shown at Fig. 5d), the perso
e section 4.4) and the annotation service (see section 4.5)

u |

tion;

t the
ght-
n be
6.d).
nce,
ture
IMI.

the
the

with
onal
.

 Supporting Users Tasks with PIM and Web Forms Augmentation 277

4.2 Personal Assistant for Filling Forms

The personal assistant for filling forms is a tool that implements a set of client-side
adaptation techniques that can modify third-party Web applications and thus making
them compatible with the user’s personal information space. One of the most interesting
features of this tool is the automated fill in of Web forms that is supported by a simple
“drag and drop” (D&D) of information items as shown by Fig. 7.a. The tool is able to
detect if the Web page embeds Microformats that can be used to support the exact
mapping between personal user data and the form fields. Such D&D is possible because
both input and property have the same Microformat. Notice that users do not need to
move every field (e.g. street number), but instead they manipulate the whole block of
information (i.e. personal address). The entire set of data is copied into form fields
whenever there is a correspondence between the data type. If form fields already contain
data, the D&D action will replace it with the data from the personal information space.
The opposite operation is also possible so that users can also populate their personal
information space by performing a D&D from a Web form towards the personal
information space. For that, the user just needs to enable the option “Enabling form
elements save” on the top menu before performing the D&D.

 a) from user personal space towards Web form b) Web form towards personal information space

Fig. 7. Personal assistant for filling forms using D&D

The personal assistant for filling form implements that parsing process already
described in Fig. 4. At first it tries to detect if the third-party Web forms have been
built with Microformats, or if there are known annotations for the Web form that
would make the Web form compatible with Microformats. Otherwise the users should
annotate the Web form before being able to perform D&D operations.

4.3 Tool Support for Annotation of Web Forms

In our approach, annotations are a key step for implementing Web forms augmentation.
On one hand, annotations are needed for providing users with contextual help to labels
and thus help them to fill in forms. On the other hand, annotations can be used to make
third-party Web forms interoperable with the user’s personal information. Our tools
support two kinds of annotations: a) semantic annotation of form fields to make them
compliant with Microformats; b) textual annotations that can be used as contextual help.

Fig. 8 illustrates the annotation process of the Web form available at the Web site
Expedia.com. By navigating on the top menu it is possible to reach the annotation tab
that basically shows a list of existing Microformats. So far the current Microformats are
supported: Hcalendar, Hcard, Hreview, Xoxo, Haddress, Hbank, Hcontct, Hidentity,

Drag & Drop

Drag & Drop

278 S. Firmenich et al.

Hlog. To annotate a form field, the only thing the user should do is to select an input
type of a Microformats (for example the property value of the field email embedded into
Microformats Hcard; Fig. 8.a) and then perform a D&D to the target input in the Web
form. When doing so, the target form field becomes green to show that it has been
annotated (see at Fig. 8.a, target input). Whilst the form field is selected, users can also
add a description to it using the field input description. This operation should be
repeated in all fields that require annotations. The tool will automatically record these
annotations in a dedicated database. Once annotated, the event mouse over will trigger
the contextual help embedding the user-defined annotations as a virtual post-it as shown
in Fig. 8.b. Web forms annotated in this way will became semantically compatible with
Microformats and thus enabling integration with data from the user personal space (as
described in section 4.2).

 a) Annotation of form fields using Microformats b) Contextual help provided by annotations

Fig. 8. Overview of form annotations in Expedia.com

In the current implementation, annotations performed by a user will automatically
become available to users visiting the same Web forms, provided that other users also
have a PIMI account. This feature is aimed to support a crowdsourcing approach for
annotations of Web forms so that users create new annotations that are shared with
the community and then any other user can profit from the new annotations.

4.4 Evaluation of Tool Support

The tools presented above are full operational and have been used with a large set of
third-party Web forms.

In order to highlight the contributions of these tools, we present in this
section a quantitative assessment of user tasks with Web forms accordingly to the
GOMS-Keystroke (KLM) model [6]. GOMS ("Goals, Operators, Methods, Selection
rules") is a cognitive formal model used to rigorously evaluate how efficiently a
trained person can interact with a given software system or program. GOMS is a
human information processing model that is built upon a detailed sequence of users
operations with a system. The GOMS-Keystroke (KLM) is a variant of that model
which includes values to known users’ actions; so that it is possible to predict the time
skilled users will spend in seemingly unpredictable situations. For example, the
average time to perform the action reach for mouse is of 0.40 seconds, click on a field
is of 0.20 seconds, etc. Thus by providing a detailed scenario of user actions with

 Supporting Users Tasks with PIM and Web Forms Augmentation 279

tools including low-level user actions, it is possible to use GOMS-KLM to predict
performance of computers (e.g., speed).

Due to the limited space, Table 1 presents a summary of the results obtained by
applying the GOMS-KLM over some tasks identified in the scenario “planning a
travel to Berlin” described in section 2. The last line in the table provides the
estimated time for the full scenario. We compare tasks performed using PIMI and
without PIMI. As we shall see, the estimated time for some tasks in the scenario such
as “Search Flights” and “Selecting Flights” are the same. However users will save
time when reusing data that is already on the personal information space as the D&D
is faster than typing every word in the form field. At Table 1 we can also see that
some new tasks will appear when using PIMI as users will be requested to create an
account and eventually populate the information space with data such as personal
contact and credit card. It also includes the estimated time for annotating third-party
form fields using PIMI; ex. annotating fields related to credit cards is estimated to 15
sec. Whilst users spend some time populating the personal information space, they
will save time reusing that information in future operations.

Table 1. Estimated performance of some tasks accordingly to GOMS-KLM model

Tasks Without PIMI With PIMI
Search Flights in Expedia.com 6.3 sec 6.3 sec
Selecting Flights in Expedia.com 32 sec 32 sec
Filling in form with passenger information in Expedia.com 26 sec 9.9 sec
Filling in form with credit card information in Expedia.com 67 sec 11.9 sec
Create an account in PIMI - 27.6 sec
Add personal contact into personal information space - 27.5 sec
Add credit card information into personal information space - 41 sec
Annotated form fields related to credit card (bank, account number…) - 15 sec
Total task: travel planning buying flights tickets (expedia.com), booking
accommodation (Booking.com)

240.6 sec 116.8 sec

Note that, besides these quantitative time estimations, the approach and the tool

support help to add overcome limitations of existing forms with respect to the lack of
contextual help and seamless management of personal information.

5 Discussion and Related Work

The approach presented in this paper opens questions of practical and theoretical
significance including: What makes the task of filling forms so difficult for users?
Which functions could be implemented to provide better support for helping users to
fill in Web forms? How to support a better integration between Web forms and
personal information management? Which is the best standard for describing personal
user data? How to support data interoperability between different third-party web
forms? How to make third-part Web forms interoperable?

The study of interaction techniques for improving the user interaction with Web
forms is not a new research theme. Specifically, the lack of standardization in data
entry forms is not a new problem [8], however, it is still a standing one. The diversity
of structure and organization of Web forms is a major constraint that still prevents the
development of a seamless solution for automating filling in Web forms. Most of
currently available techniques focus on the automation of the tasks of filling in forms
(i.e. for Auto-complete [22] and Auto-filling [2]). Some recent work [1][9][23] try to

280 S. Firmenich et al.

tackle the problem by using similarity functions to predict which personal information
is expected for each form fields. However, prediction techniques fail to provide users
with full control of their own data exchange; this issue might have an impact on trust
and potential of user adoption of the final solution.

Other authors [5][24] investigate the use of Semantic Web technology for
developing data bindings schemas. Data binding patterns are established techniques
that help to connect user interface elements and data objects of applications [11]. The
main drawback with such techniques is that one must have an Ontology describing
third-party applications before performing the data integration. OpenID [20]
technology allows users to provide certified identification and share information with
trusted Web sites. Personal records can then be used to automatically fill in Web
forms of trusted Web sites. One of the inconvenient of such approaches is that it
requires the agreement of third-party Web sites to operate. Despite the fact that
OpenID has been around for some years, its use is still limited to a few specialized
Web sites. Moreover, the reinforced user identification promoted by OpenID is not
always a mandatory requirement for user interaction with most Web forms. Instead of
focusing on a custom Ontology for particular Web applications, some binding
schemas relies on the emergence of open standard data types such as Microformats
[17] and Microdata [12]. Microdata is an under development standard of the World
Wide Web Consortium whose aim is to integrate complex data as native types in
XML-like technologies. The structure and underlying approach of Microformats and
Microdata are pretty similar. However, Microformats have the advantage of an open
community and already existing tools to support it.

This work is also closely related to the emergence of Personal Information
Management Systems (PIMs) [15]. PIMs studies have mostly focused on very large
data sets, such has the whole content of a user hard drive, and therefore has mainly
concentrated on search/ retrieval issues, with some findings about the great variability
in which people search their own information. However, in more recent years some
authors started investigating the management of personal information over the Web
[18][19]. For example, [19] proposes a complete architecture based on Web 2.0
technology enabling users to manage their personal records on the Web and
synchronize them with other Web applications, in particular social networks.
Notwithstanding, these efforts are mainly related to textual flat data and do not take
into account interactive users tasks such as filling in forms. Our approach is another
motivating example for promoting the development of pervasive PIMs [26].

The approach introduced in this paper also made use of client-side adaptation
techniques for modifying third-party applications. Indeed, the tool support delivered
with the approach is able to add new interactors on third-party Web forms (i.e.
highlight, new buttons and D&D interaction techniques) for supporting users’ tasks.
The adaptation on the client of Web pages is an emerging topic of research. Our tool
demonstrates that client-side adaptation is feasible from a technical point of view. As
far as the adaptation occurs in the client-side, neither the information system hosted in
the server-side or the Web forms it provides needs to be changed, and so our approach
has virtually no impact on the server-side. However, client-side adaptation is not yet
widely known by users so that more research is required to investigate the effect of
such technology on the user experience.

Another challenge is to manage possible inconsistencies in the annotations made
by the community. A possible solution for that is to rank the annotations in order to
determine which are the more reliable annotations.

 Supporting Users Tasks with PIM and Web Forms Augmentation 281

6 Conclusions and Future Work

One of the contributions of this paper is to highlight the user tasks while interacting
with Web forms. Despite of some progress in terms of new interaction techniques for
filling in forms, most existing approaches do not provide a big picture of user tasks
with Web forms. In this respect, the task analysis presented in this paper can provide
new insights. This paper also envisages a possible solution to these problems. For that
we have presented an approach based on Web form augmentation for supporting
users’ tasks when interacting with Web forms. The approach is driven by the fact that
users need a better integration of third-party Web forms and their personal
information space. For that purpose we combine several techniques including client-
side adaptation for form augmentation, annotation of Web pages, and personal
information management systems. One of the originalities of the contributions is to
combine all these techniques into a single approach. The approach is fully supported
by a set of tools named PIMI that were built upon client-side adaptation techniques.
Despite the fact that only a few augmenters have been implemented, they provided
undeniable support for several user tasks with Web forms. We are currently
extending the set of these augmenters for supporting user interaction with Web forms.
Anyway, the web site http://www.vincent.gaits.fr/piaff.php contains a set of videos
illustrating the use of PIMI and it provides the link for downloading and installing the
tool. One of the next steps in this research will be to deploy these tools for
investigating the crowdsourcing potential of the approach. Other aspects include the
integration of other personal information space that could become available via the
tool PIMI.

References

1. Araujo, S., Gao, Q., Leonardi, E., Houben, G.-J.: Carbon: Domain-Independent Automatic
Web Form Filling. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010.
LNCS, vol. 6189, pp. 292–306. Springer, Heidelberg (2010)

2. Autofill Forms - Mozilla Firefox add-on, http://autofillforms.mozdev.org/
3. Bargas-Avila, J.A., Orsini, S., Piosczyk, H., Urwyler, D., Opwis, K.: Enhancing online

forms: Use format specifications for fields with format restrictions to help respondents.
Interacting with Computers 23(1), 33–39 (2011),
http://dx.doi.org/10.1016/j.intcom.2010.08.001

4. Bouvin, N.O.: Unifying Strategies for Web Augmentation. In: Proc. of the 10th ACM
Conference on Hypertext and Hypermedia (1999)

5. Bownik, L., Gorka, W., Piasecki, A.: Assisted Form Filling. In: Soomro, S. (ed.)
Engineering the Computer Science and IT. InTech (October 2009) ISBN 978-953-307-
012-4

6. Card, S., Moran, T., Newell, A.: The psychology of human-computer interaction, 448 p.
Lawrence Erlbaum Associates, Hillsdale (1983)

7. Firmenich, S., Winckler, M., Rossi, G., Gordillo, S.: A Framework for Concern-Sensitive,
Client-Side Adaptation. In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.) ICWE 2011.
LNCS, vol. 6757, pp. 198–213. Springer, Heidelberg (2011)

8. Girgensohn, A., Leeb, A.: Seamless integration of interactive forms into the Web.
Computer Networks and ISDN Systems 29(8-13), 1531–1542 (1997)

282 S. Firmenich et al.

9. Guo, X., Kranzdorf, J., Furche, T., Grasso, G., Orsi, G., Schallhart, C.: OPAL: A Passe-
partout for Web Forms. In: Proc. 21st Int. Conf. World Wide Web (WWW 2012
Companion), pp. 353–356. ACM, New York (2012)

10. Hartmann, M., Muhlhauser, M.: Context-Aware Form Filling for Web Applications. In:
Proceedings of the 2009 IEEE International Conference on Semantic Computing (ICSC
’09), pp. 221–228. IEEE Computer Society, Washington, DC (2009)

11. Heinrich, M., Gaedke, M.: WebSoDa: A Tailored Data Binding Framework for Web
Programmers Leveraging the WebSocket Protocol and HTML5 Microdata. In: Auer, S.,
Díaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 387–390. Springer,
Heidelberg (2011), doi:10.1007/978-3-642-22233-7_32

12. Hickson, I.: HTML Microdata (2011), http://www.w3.org/TR/microdata/
13. Hori, M., Kondoh, G., Ono, K.: Annotation-based Web content transcoding. In: Proc. of

the 9th Int. World Wide Web Conference, pp. 197–211. North-Holland Publishing Co.,
Amsterdam (2000)

14. Jarrett, C., Gaffney, G.: Forms that Work: Designing Web Forms for Usability, 288 Pages.
Morgan Kaufmann (November 2008) ISBN 1-55860-710-2

15. Jones, W., Teevan, J.: Personal Information Management, p. 334. University of
Washington Press, Seattle (2007)

16. Olsen, K.A., Malizia, A.: Interfaces for the ordinary user: can we hide too much?
Commun. ACM 55(1), 38–40 (2012)

17. Khare, R.: Microformats: The Next (Small) Thing on the Semantic Web? IEEE Internet
Computing 10(1), 68–75 (2006)

18. Leone, S., Grossniklaus, M., de Spindler, A., Norrie, M.C.: Synchronising Personal Data
with Web 2.0 Data Sources. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010.
LNCS, vol. 6488, pp. 411–418. Springer, Heidelberg (2010)

19. Norrie, M.C.: PIM Meets Web 2.0. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 15–25. Springer, Heidelberg (2008)

20. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity management. In:
Proceedings of the Second ACM Workshop on Digital Identity Management (DIM 2006),
pp. 11–16. ACM, New York (2006)

21. Signer, B., Norrie, M.C.: A Model and Architecture for Open Cross-Media Annotation and
Link Services. Information Systems 36(3) (May 2011)

22. Stocky, T., Faaborg, A., Lieberman, H.: A commonsense approach to predictive text entry.
In: CHI 2004 Extended Abstracts of CHI 2004, Vienna, Austria, April 24 -29, pp. 1163–
1166. ACM, New York (2004)

23. Toda, G.A., Cortez, E., da Silva, A.S., de Moura, E.: A probabilistic approach for
automatically filling form-based Web interfaces. Proc. VLDB Endow. 4(3), 151–160
(2010)

24. Wang, Y., Peng, T., Zuo, W., Li, R.: Automatic Filling Forms of Deep Web Entries Based
on Ontology. In: Proceedings of the, International Conference on Web Information
Systems and Mining (WISM 2009), pp. 376–380. IEEE Computer Society, Washington,
DC (2009)

25. Winckler, M., Gaits, V., Vo, D.-B., Firmenich, S., Rossi, G.: An Approach and Tool
Support for Assisting Users to Fill-in Web Forms with Personal Information. In: Proc. of
the ACM SIGDOC 2011, Pisa, Italy, October 3-5 (2011)

26. Zhou, D., Chander, A., Inamura, H.: Optimizing user interaction for Web-based mobile
tasks. In: Proceedings of the 19th International Conference on World wide Web (WWW
2010), pp. 1333–1336. ACM, New York (2010)

Model-Based Service Discovery

and Orchestration for OSLC Services
in Tool Chains

Matthias Biehl1, Wenqing Gu1,2, and Frédéric Loiret1

1 Royal Institute of Technology, Stockholm, Sweden
{biehl,floiret}@md.kth.se
2 Ericsson AB, Kista, Sweden
wenqing.gu@ericsson.com

Abstract. Globally distributed development of complex systems relies
on the use of sophisticated development tools but today the tools pro-
vide only limited possibilities for integration into seamless tool chains.
If development tools could be integrated, development data could be
exchanged and tracing across remotely located tools would be possible
and would increase the efficiency of globally distributed development.
We use a domain specific modeling language to describe tool chains as
models on a high level of abstraction. We use model-driven technology
to synthesize the implementation of a service-oriented wrapper for each
development tool based on OSLC (Open Services for Lifecyle Collabora-
tion) and the orchestration of the services exposed by development tools.
The wrapper exposes both tool data and functionality as web services,
enabling platform independent tool integration. The orchestration allows
us to discover remote tools via their service wrapper, integrate them and
check the correctness of the orchestration.

Keywords: Service Discovery, Service Orchestration, Model-driven De-
velopment, Tool Integration.

1 Introduction

Globally distributed software development teams need tool chains that are flex-
ible, distributed and tailored to their development processes [12]. To deal with
these new requirements, modern tool chains apply the principles of service-
oriented computing [8,11], which deals with the generic integration of distributed
services [9]. When applying the service-oriented principles to tool integration,
tools expose both their data and functionality as services; these services are
orchestrated to form a tool chain. The industry initiative Open Services for
Lifecycle Integration (OSLC) [15], advocates a service-oriented, RESTful [7] ar-
chitecture for managing tool data.

The challenge in adopting the OSLC approach for tool integration lies in
finding appropriate mechanisms for discovering the RESTful services of remotely
deployed development tools and to orchestrate the RESTful services of remote

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 283–290, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

284 M. Biehl, W. Gu, and F. Loiret

development tools. However, there is currently no standard and no practical
support for discovering and orchestrating RESTful web services [17]. Due to the
lack of a high-level design language for orchestration of RESTful web services,
solutions are typically directly implemented in code; an overview of the details of
this challenge is provided in [16]. As a result, the orchestration of tools requires a
lot of manual work. In addition, inconsistencies can only be found on code-level,
which is difficult, time-consuming and expensive.

In this paper, we propose a model-based approach to address both discovery
and orchestration for RESTful services in the domain of tool integration. We
introduce a domain-specific modeling language for tool integration that allows us
to describe both the tool chain as an orchestration of tools and the specification
of the services of each tool. This specification is the basis for both the discovery
of tool services and the generation of an implementation. The domain specific
model allows us to perform early correctness checks between the service usage
and the service definition in the service specification.

2 Approach

To close the gap between discovery and orchestration of RESTful services for
OSLC tool integration, our approach interleaves service discovery and service
orchestration for tool integration, as illustrated in figure 1. We propose a model-
based approach, which seamlessly integrates the results of service discovery
with orchestration facilities. The pivot point of this approach is the discovered
ToolAdapter metamodel; it is the central connection point between the service
discovery and the service orchestration.

The automated process of service discovery is displayed on the vertical axis
in figure 1 and explained in section 4. Discovery automatically deduces details

Fig. 1. Approach for model-based discovery and orchestration

Model-Based Service Discovery and Orchestration 285

of an already deployed tool adapter service, from which only a URL is known as
an entry point. Discovery starts with the service URL, extracts the ToolAdapter
metamodel using the OSLC ServiceCatalogs and ServiceProviders and finally
generates code for the service proxies.

The process of service orchestration is displayed on the horizontal axis in figure
1 and explained in section 3. It starts with several ToolAdapter metamodels,
which might be discovered or newly created and integrates the ToolAdapters
into an orchestration model. The formalized ToolAdapter metamodel can even
be used for verifying the discovered service definition against its usage in the
orchestration model by a number of correctness checks, as described in section
5. Finally we generate code for the orchestration, as detailed in section 6.

3 Service Orchestration for Tool Integration with TIL

Tool chains are often put together in an ad-hoc manner. We promote a systematic
development process, where a high-level design of the tool chain is created first.
We would like to describe the design of a tool chain in such a way that all
important design decisions of a tool chain can be reflected in it. This is why
we apply the Tool Integration Language (TIL) [3], a domain specific modeling
language for describing tool chains. TIL allows us not only to model a tool chain,
but also to analyze it and generate code from it. Here we can only give a short
overview of this language and for a detailed explanation of the semantics of TIL,
we refer to [3].

In TIL, a tool chain is described in terms of ToolAdapters and the relation
between them. For each tool, a ToolAdapter defines the set of data and func-
tionality that is exposed by that tool in form of a ToolAdapter metamodel. The
ToolAdapter metamodel is realized using EMF (Eclipse Modeling Framework)1.
The relation between the ToolAdapters is realized by any of the following Chan-
nels: a ControlChannel describes a service call, a DataChannel describes data
exchange or a TraceChannel describes the possibility to create traces. A trace
is a link between two elements of tool data, which may reside in different tools.
TIL offers three kinds of ToolAdapters. A GeneratedToolAdapter is newly cre-
ated, locally deployed and the ToolAdapter metamodel is used as specification.
A BinaryToolAdapter is included into the tool chain by locally deploying ex-
isting binaries and then binding to them. A DiscoveredToolAdapter is included
into the tool chain by binding to an already deployed ToolAdapter on a remote
server, it is merely specified by a URL. Realizing the binding in TIL requires a
discovery process, which is described in section 4.

4 Service Discovery for Tool Integration

OSLC provides a catalog of linked metadata descriptions. The general idea is
to use the catalog for remote discovery of tool adapters by following the links

1 http://www.eclipse.org/modeling/emf

http://www.eclipse.org/modeling/emf

286 M. Biehl, W. Gu, and F. Loiret

and parsing the metadata. We can discover the details of remotely deployed
ToolAdapters that follow the OSLC specification. The key task of the discovery
process is to interact with the OSLC directory services to extract a ToolAdapter
metamodel. This ToolAdapter metamodel describes the data and functionality
provided by the tool adapter and acts as an intermediate model in the discovery
algorithm.

When parsing theOSLCmetadata, we need tomake some assumptions, because
theOSLC catalog is not originally intended for the purpose of service discovery, but
it contains useful information.The starting point for discovering services is theURI
of the ServiceProviderCatalog. From the content of the ServiceProviderCatalog the
algorithm follows to ServiceProviders andResourceShapes. All these resources are
described in RDF [13] and we parse them with the Jena framework2.

– Step 1 - Parse ServiceProviderCatalog: By parsing the response of
an HTTP-GET on the URI of the ServiceProviderCatalog, we can identify
a set of ServiceProvider resources. OSLC related information concerning
the ServiceProviderCatalog is extracted and saved. For each ServiceProvider
resource we continue with step 2.

– Step 2 - Data or Control Service: We perform a GET on the URIs
of all ServiceProviders. We make the following assumptions for OSLC direc-
tory services: data and control services are encapsulated in separate Service-
Provider resources. For a control ServiceProvider only inlined CreationFac-
tory resources exist, for a data ServiceProvider both CreationFactory and
QueryCapability resources exist. With these assumptions we can identify the
correct type of ServiceProvider by checking if the current ServiceProvider
contains any QueryCapability resources. For a data ServiceProvider we pro-
ceed with step 3, for a control ServiceProvider we proceed with step 6.

– Step 3 - Find Data Resources: Each inlined CreationFactory or Query-
Capability property represents one data resource, however, for the name
of this data resource we have to assume it is contained in the URI of the
inner property resourceShape, resourceType, creation or queryBase. With the
listed sequence, we anticipate the resource name by extracting the last word
of the URI. We use the simplest way to anticipate the correct name, which
is to select the first URI in the listed sequence. For each data resource, we
check if the URI of ResourceShape resource is given in the response. If it
is provided, details of this data resource can be constructed by parsing the
ResourceShape given, otherwise we query one or more specific objects of this
data type to anticipate the structure of the resource. We follow step 4 if the
URI of ResourceShape is given and step 5 otherwise.

– Step 4 - Construct Data Resource Structures by Parsing the Re-
sourceShape: Properties of the current data resource are analyzed and
added to the corresponding class in the ToolAdapter metamodel as attributes
or references. More specifically, for properties of primitive data types like
string, int, etc. an attribute is added to the class. For other types we deter-
mine the referenced data type by analyzing the URI of the given valueShape

2 http://incubator.apache.org/jena/

http://incubator.apache.org/jena/

Model-Based Service Discovery and Orchestration 287

or valueType property as described in step 3 and add a corresponding ref-
erence to the current class. In OSLC, the multiplicity is described by the
occurs property. Possible values are Zero-or-one, Exactly-one, One-or-many
and Zero-or-many. After the structure of the data has been discovered, the
ToolAdapter metamodel is updated.

– Step 5 - Construct Data Resource Structures by Querying Object
Details: If there is no annotatedResourceShape given for a specific resource,
we have to discover the structure of this resource by querying a specific
instance of this data type. We obtain the list of objects by following the
URI of QueryCapability. By analyzing the content of the response, we can
obtain the attributes or references of the current data type. Since attributes
are optional in RDF, we may need to query several objects, to increase the
probability of acquiring a complete set of all the properties. We assume that
the name of the attributes or references can be deduced from the local name
in the properties of the response, and the referenced data type is directly
from the local name of the resource type following the resource URI.

– Step 6 - Find Control Resources: By analyzing the URIs of the creation-
Factory, we can obtain a list of provided control resources. The resource name
is obtained from the URI of creation.

– Step 7 - Persist Discovered Tool Adapter Metamodel: The discovery
is finished and we save the discovered ToolAdapter metamodel.

5 Correctness Check

A correct and consistent TIL model is a prerequisite for the generation of correct
source code that realizes the tool chain. We check the TIL model for correctness
by analyzing if all service usages comply with their definitions. The definitions
of the ToolAdapter services are located in the ToolAdapter metamodels. The
usage of ToolAdapter services is specified in the TIL model, more specifically in
the different types of Channels. The correctness check ensures that the usages
of language concepts are conform to their definitions. The checks are performed
early in the development process of a tool chain, on a model-level, before code
is involved. Thus errors are relatively easy to detect and correct.

6 Code Generation

We describe the code generation in this section by describing (1) the chosen
implementation framework, (2) the mapping of high-level concepts of TIL to the
implementation and (3) the creation of proxies for DiscoveredToolAdapters.

Our approach is implemented using the Service Component Architecture
(SCA) [2], a set of specifications for developing distributed Service-Oriented
Architectures (SOA). SCA combines SOA principles [6] with principles of
Component-Based Software Engineering (CBSE).While SOA provides the notion
of loosely-coupled services, CBSE provides composability of software components.

288 M. Biehl, W. Gu, and F. Loiret

SCA is a component model for implementing and composing heterogeneous ser-
vices. We use the SCA implementation FraSCAti [19], which manages the web
server infrastructure, produces the necessary glue code and also provides remote
deployment, introspection and reconfiguration at runtime. SCA allows us to de-
fine RESTful services and bindings, which makes it possible to implement a tool
chain according to OSLC. We found that SCA is an appropriate technology for
realizing service-oriented tool chains based on OSLC.

The tool chain is an orchestration of services provided by both locally deployed
GeneratedToolAdapters and remotely deployed DiscoveredToolAdapters. The lat-
ter are represented by local proxies bound to the remotely deployed tool adapter
implementation. For implementing the interface we use the Service Component
Architecture (SCA). By specifying the binding address of the remotely deployed
ToolAdapter, SCA tool support can generate the proxy implementation that
forwards calls to it. For each DiscoveredToolAdapter an SCA component is gen-
erated, acting as a local proxy of the discovered adapter. As a proxy, it provides
the services of the ToolAdapter metamodel that were retrieved by the discov-
ery process. The services of the local proxy are bound to the remote services
provided by the remotely deployed ToolAdapters. SCA allows the specification
of remote bindings that are managed transparently by the SCA runtime plat-
form. The orchestration components are SCA components generated from the
ControlChannels and the DataChannels, and bound to the proxy components
according to the control and data flows they specify in the orchestration model.

Fig. 2. Architecture of the Discovered ToolAdapter

We use the discovered ToolAdapter metamodel for generating code prox-
ies for the ToolAdapter, which can be used to bind to the remotely deployed
ToolAdapter instance. The complete ToolAdapter architecture is represented in
figure 2. We distinguish between the remotely deployed ToolAdapter and the
DiscoveredToolAdapter. The remotely deployed ToolAdapter already exists and
is usually deployed on the same machine as the tool. In the implementation of the
remotely deployed ToolAdapter, we separate the code that deals with the inte-
gration technology from the code that interacts with the tool. The external part
of the remotely deployed ToolAdapter deals with the integration technology,
the internal part interacts with the tool, e.g. via local APIs. The Discovered-
ToolAdapter is a proxy to the remotely deployed ToolAdapter. It has the same
interface as the external part of the remotely deployed ToolAdapter and its im-
plementation merely forwards the service calls. Note that our approach is built

Model-Based Service Discovery and Orchestration 289

for the case in which we do not have access to the source code of the remotely
deployed ToolAdapter. The benefits of automated generation are time, effort and
cost saving. They can be achieved since the developers of the ToolAdapter do
not need to learn the integration technology, nor do they need to implement any
code that deals with the integration technology. A model-to-text transformation
automatically generates the source code of the DiscoveredToolAdapter.

7 Related Work

Related work can be found in the areas of tool integration, service discovery and
orchestration. We list the approaches by fields and point out approaches that
are in the intersection of both fields.

Tool Integration: Model-based integration frameworks [1] use metamodeling
for describing the tool data. However, these approaches provide neither con-
cepts to model a complete tool chain nor concepts to describe the orchestration
architecture of the tool chain. Model-based tool chains are usually realized lo-
cally. Tool chains based on the integration framework ModelBus [11] may be
distributed. ModelBus uses the SOAP protocol, so discovery, orchestration and
correctness checks can be performed.

Service Discovery and Orchestration: Web services based on SOAP [20] are
usually described using WSDL (Web Service Description Language) [5]. WSDL
is a W3C standard and is widely supported. In order to orchestrate WSDL-
based web services, typically BPEL (Business Process Execution Language) [14]
is used. The discovery and orchestration of RESTful web services is not equally
well supported. The current BPEL 2.0 only supports WSDL 1.1, which is incom-
patible with RESTful services. RESTful web services can be described in WADL
[10] and WSDL 2.0 [4], which is currently not supported by BPEL. Even if the
next version of BPEL will support WSDL 2.0, a lot of manual work is required to
consume the RESTful services provided, since the burden of creating the WSDL
file has shifted from the service supplier to the BPEL designer. The reason is
that no WSDL descriptions are provided by the RESTful service supplier. The
main alternative is manual coding of the orchestration. A number of approaches
for the orchestration of RESTful services have recently been proposed. The ex-
tension BPEL for REST [17] and the language Bite [18] have been developed for
integration of RESTful services. In SCA, the binding of RESTful web services is
possible, however a common Java interface must be used to invoke the web ser-
vices. The added value of our approach is the domain specific support for OSLC,
the correctness check of the orchestration and the code generation facilities.

8 Future Work and Conclusion

In the future we would like to improve the precision of the discovery algorithm
and perform additional case studies of tool chains for different development pro-
cesses. The cornerstone of this approach is the language TIL that describes both
the orchestration of ToolAdapters and the ToolAdapter as models. The discovery

290 M. Biehl, W. Gu, and F. Loiret

algorithm finds the details of an initially unknown ToolAdapter and represents
them as a model. Both the orchestration and the results of the discovery are
models, which allows us to verify their compatibility and correctness. As a con-
sequence of this automated support for discovery, orchestration and correctness
checks, distributed tool chains can be built faster and with less errors.

References

1. Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.: Metamodel-based
tool integration with MOFLON. In: ICSE 2008, pp. 807–810 (2008)

2. Beisiegel, M.: Service Component Architecture, Tech. Rep (November 2007)
3. Biehl, M., El-Khoury, J., Loiret, F., Törngren, M.: A domain specific language for

generating tool integration solutions. In: MDTPI 2011 (June 2011)
4. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description

language (WSDL) version 2.0 W3C, 26 (2007)
5. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web service definition

language (WSDL). Technical report, W3C (March 2001)
6. Erl, T.: SOA Principles of Service Design. Prentice Hall (July 2007)
7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis, University of California, Irvine (2000)
8. Frost, R.: Jazz and the Eclipse way of collaboration. IEEE Software (2007)
9. Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribastone, M., Varró, D.: Non-

functional properties in the MDD of SOS. In: SoSyM (2011)
10. Hadley, M.J.: Web application description language (WADL). W3C (2006)
11. Hein, C., Ritter, T., Wagner, M.: Model-Driven tool integration with ModelBus.

In: Workshop Future Trends of Model-Driven Development (2009)
12. Herbsleb, J.D.: Global software engineering: The future of socio-technical coordi-

nation. In: FOSE 2007 (2007)
13. Klyne, G., Carroll, J.: RDF: Concepts and abstract syntax (2004)
14. OASIS. Web Services Business Process Execution Language, WSBPEL (2007)
15. OSLC Workgroup. OSLC Core Specification, version 2.0 (2010)
16. Pautasso, C.: On Composing RESTful Services. In: Software Service Engineering

(2009)
17. Pautasso, C.: RESTful web service composition with BPEL for REST. Data Knowl-

edge Engineering (2009)
18. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services

and Collaborative Workflows: A Lightweight Approach. IEEE Internet Computing
(2008)

19. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.: A
Component-Based Middleware Platform for Reconfigurable Service-Oriented Ar-
chitectures. In: Software: Practice and Experience (2011)

20. W3C. Simple Object Access Protocol (SOAP) 1.2. W3C (2007)

On the Systematic Development

of Domain-Specific Mashup Tools for End Users

Muhammad Imran, Stefano Soi, Felix Kling, Florian Daniel, Fabio Casati,
and Maurizio Marchese

Department of Information Engineering and Computer Science
University of Trento, Via Sommarive 5, 38123, Trento, Italy

lastname@disi.unitn.it

Abstract. The recent emergence of mashup tools has refueled research
on end user development, i.e., on enabling end-users without program-
ming skills to compose their own applications. Yet, similar to what hap-
pened with analogous promises in web service composition and business
process management, research has mostly focused on technology and, as a
consequence, has failed its objective. In this paper, we propose a domain-
specific approach to mashups that is aware of the terminology, concepts,
rules, and conventions (the domain) the user is comfortable with. We
show what developing a domain-specific mashup tool means, which role
the mashup meta-model and the domain model play and how these can
be merged into a domain-specific mashup meta-model. We exemplify the
approach by implementing a mashup tool for a specific domain (research
evaluation) and describe the respective user study. The results of the
user study confirm that domain-specific mashup tools indeed lower the
entry barrier to mashup development.

1 Introduction

Mashups are typically simple web applications that, rather than being coded
from scratch, are developed by integrating and reusing available data, function-
alities, or pieces of user interfaces accessible over the Web. Mashup tools, i.e.,
online development and runtime environments for mashups, ambitiously aim
at enabling non-programmers to develop their own applications. The mashup
platforms developed so far either expose too much functionality and too many
technicalities, so that they are powerful and flexible but suitable only for pro-
grammers, or only allow compositions that are so simple to be of little use
for most practical applications. Yet, being amenable to non-programmers is in-
creasingly important, as the opportunity given by the wide range of applications
available online and the increased flexibility that is required in both businesses
and personal life management raise the need for situational applications.

We believe that the heart of the problem is that it is impractical to design
tools that are generic enough to cover a wide range of application domains, pow-
erful enough to enable the specification of non-trivial logic, and simple enough
to be actually accessible to non-programmers. At some point, we need to give

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 291–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

292 M. Imran et al.

up something. In our view, this something is generality. Giving up generality in
practice means narrowing the focus of a design tool to a well-defined domain and
tailoring the tool’s development paradigm, models, language, and components
to the specific needs of that domain only.

As an example, in this paper we report on a mashup platform we specifically
developed for the domain of research evaluation, that is, for the assessment of the
performance of researchers, groups of researchers, departments, universities, and
similar. There are no commonly accepted criteria for performing such analysis in
general, and evaluation is highly subjective. Computing evaluation metrics that
go beyond the commonly adopted h-index is still a complex, manual task that
is not adequately supported by software instruments. In fact, computing an own
metric may require extracting, combining, and processing data from multiple
sources, implementing new algorithms, visually representing the results, and
similar. In addition, the people involved in research evaluation are not necessarily
IT experts and, hence, they may not be able to perform such IT-intensive tasks
without help. In fact, we may need to extract, combine, and process data from
multiple sources and render the information via visual components, a task that
has all the characteristics of a data mashup.

In this paper, we champion the notion of domain-specific mashup tools
and describe what they are composed of, how they can be developed, how they
can be extended for the specificity of any particular application context, and
how they can be used by non-programmers to develop complex mashup logics
within the boundaries of one domain. Specifically, (1) we provide a methodology
for the development of domain-specific mashup tools, defining the necessary
concepts and design artifacts; (2) we detail and exemplify all design artifacts
that are necessary to implement a domain-specific mashup tool; (3) we apply
the methodology in the context of an example mashup platform that aims to
support research evaluation, (4) we perform a user study in order to assess the
viability of the developed platform.

Next we outline the methodology we follow to implement the domain-specific
mashup tool. In Section 3 we briefly describe the actual implementation of our
prototype tool, and in Section 4 we report on our preliminary user study. In
Section 5, we review related works. We conclude the paper in Section 6.

2 Methodology

Our development of a specific mashup platform for research evaluation has al-
lowed us to conceptualize the necessary tasks and to structure them into the
following methodology steps:

1. Definition of a domain concept model (CM) to express domain data and
relationships. The domain concepts tell the mashup platform what kind of
data objects it must support. This is different from generic mashup platforms,
which provide support for generic data formats, not specific data objects.

2. Identification of a generic mashup meta-model (MM) that suits the compo-
sition needs of the domain. A variety of different mashup approaches, i.e.,

On the Systematic Development of Domain-Specific Mashup Tools 293

meta-models, have emerged over the last years and before focusing about
domain-specific features, it is important to identify a meta-model that ac-
commodates the domain processes to be mashed up.

3. Definition of a domain-specific mashup meta-model. Given a generic MM, the
next step is understanding how to inject the domain into it. We approach
this by specifying and developing:
(a) A domain process model (PM) that expresses classes of domain activities

and, possibly, ready processes. Domain activities and processes represent
the dynamic aspect of the domain.

(b) A domain syntax that provides each concept in the domain-specific
mashup meta-model (the union of MM and PM) with its own symbol.
Domain concepts and activities must be represented by visual metaphores
conveying their meaning to domain experts.

(c) A set of instances of domain-specific components. This is the step in
which the reusable domain-knowledge is encoded, in order to enable do-
main experts to mash it up into new applications.

4. Implementation of the domain-specific mashup tool (DMT) as a tool whose
expressive power is that of the domain-specific mashup meta-model and that
is able to host and integrate the domain-specific activities and processes.

In the next subsections, we expand each of these steps.

2.1 The Domain Concept Model

The domain concept model (CM) is obtained via interactions between an
IT expert and a domain expert. We represent it as ER diagram or XSD schema.
It describes the conceptual entities and the relationships among them, which,
together, constitute the domain knowledge. For example in the chosen domain
we have researchers, publications, conferences, metrics, etc. The core element
in the evaluation of scientific production and quality is the publication, which
is typically published in the context of a specific venue, e.g., a conference or
journal, and printed by a publisher. It is written by one or more researchers
belonging to an institution.

2.2 The Generic Mashup Meta-model

We first define a generic mashup meta-model, which may fit a variety of dif-
ferent domains, then we show how to define the domain-specific mashup meta-
model, which will allow us to draw domain-specific mashup models. Specifically,
the generic mashup meta-model (MM) specifies a class of mashups and,
thereby, the expressive power, i.e., the concepts and composition paradigms, a
mashup platform must know in order to support the development of that class of
mashups. Thus the MM implicitly specifies the expressive power of the mashup
platform class. Identifying the right features of the mashups that fit a given do-
main is therefore crucial. For our domain, we start from a very simple MM, both
in terms of notation and execution semantics, which enables end-users to model
their own mashups. Indeed, it can be fully specified in one page:

294 M. Imran et al.

– A mashup m = 〈C,P, V P, L〉, consists of a set of components C, a set of
data pipes P , a set of view ports V P that can host and render components
with own UI, and a layout L that specifies the graphical arrangement of
components.

– A component c = 〈IPT,OPT,CPT, type, desc〉, where c ∈ C, is like a task
that performs some data, application, or UI action. Components have ports
through which pipes are connected. Ports can be divided in input (IPT)
and output ports (OPT), where input ports carry data into the component,
while output ports carry data generated by the component. Each component
must have at least either an input or an output port. Components with no
input ports are called information sources. Components with no output ports
are called information sinks. Components with both input and output ports
are called information processors.Configuration ports (CPT) are used to
configure the components. They are typically used to configure filters or to
define the nature of a query on a data source. The configuration data can
be a constant (e.g., a parameter defined by the end user) or can arrive in a
pipe from another component. Conceptually, constant configurations are as
if they come from a component feeding a constant value. The type (type)
of the components denotes whether they are UI components, which display
data and can be rendered in the mashup, or application components, which
either fetch or process information. Components can also have a description
desc at an arbitrary level of formalization, whose purpose is to inform the
user about the data the components handle and produce.

– A pipe p ∈ P carries data (e.g., XML documents) between the ports of two
components, implementing a data flow logic. So, p ∈ IPT × (OPT ∪CPT).

– A view port vp ∈ V P identifies a place holder, e.g., a DIV element or an
IFRAME, inside the HTML template that gives the mashup its graphical
identity. Typically, a template has multiple place holders.

– Finally, the layout L defines which component with own UI is to be rendered
in which view port of the template. Therefore l ∈ C × V P .

In the model above there are no variables and no data mappings. This is at the
heart of enabling end-user development as this is where much of the complexity
resides. It is unrealistic to ask end-users to perform data mapping operations.
Because there is a CM, each component is required to be able to process any
document that conforms to the model.

The operational semantics of the MM is as follows: execution of the mashup
is initiated by the user. All the components that are ready for execution are iden-
tified. A component is ready when all the input and configuration ports are filled
with data, that is, they have all necessary data to start processing. All ready
components are executed. They process the data in input ports, consuming the
respective data items form the input feed, and generate output on their output
ports. The execution proceeds by identifying ready components and executing
them, until there are no components to be executed left.

Developing mashups based on this meta-model, i.e., graphically composing a
mashup in a mashup tool, requires defining a syntax for the concepts in the

On the Systematic Development of Domain-Specific Mashup Tools 295

Name
[(Static conf.
parameters)*]

Input port (multiple
input ports are
allowed)

Pipe

Output port (multiple
output ports are allowed)

Shape (may vary)

Source name
[Query?]

Static source

Metric name
[Parameters*]

Metric

Filter name
[Filter condition]

Filter

Chart name

Chart

Source name
[Query?]

Parametric source

Aggregator name
[Aggregation function]

Aggregator

(a) Basic syntax for the concepts in the
mashup meta-model that are to be exposed
to the user. Data mappings are configured
in a dedicated pop-up window.

(b) Domain-specific syntax for the concepts in the
domain-specific meta-model extension

Port
name

Configuration port for
dynamic configuration
parameters (multiple
ports are allowed)

Fig. 1. Generic and domain-specific syntax for research evaluation

MM. In Figure 1(a) we map the above MM to a basic set of generic graphical
symbols and composition rules. In the next section, we show how to configure
domain-specific symbols.

2.3 The Domain-Specific Mashup Meta-model

The mashup meta-model (MM) described in the previous section allows the
definition of a class of mashups that can fit into different domains. Thus, it is
not yet tailored to a specific domain. Now we want to push the domain into the
mashup meta-model. The next step is therefore understanding the dynamics of
the concepts in the model, that is, the typical classes of processes and activities
that are performed by domain experts. What we obtain from this is a domain-
specific mashup meta-model. Each domain-specific meta-model is a specialization
of the mashup meta-model along three dimensions: (i) domain-specific activities
and processes, (ii) domain-specific syntax, and (iii) domain instances.

The domain process model (PM) describes the classes of processes or
activities that the domain expert may want to mash up to implement composite,
domain-specific processes. Operatively, the PM is again derived by specializing
the generic meta-model based on interactions with domain experts. This time
the topic of the interaction is aimed at defining classes of components, their
interactions and notations. In the case of research evaluation, this led to the
identification of the following classes of activities, i.e., classes of components:
source extraction, metric computation, filtering, and aggregation activities.

A possible domain-specific syntax for the classes in the PM is shown in
Figure 1(b). Its semantic is the one described by the MM in Section 2.2.

A set of instances of domain activities must be implemented, providing
concrete mashup components. For example, the Microsoft Academic Publications
component is an instance of source extraction activity with a configuration port
(SetResearchers) that allows the setup of the researchers for which publications
are to be loaded from Microsoft Academic.

296 M. Imran et al.

3 The ResEval Mash Tool

The ResEval Mash platform is composed of two parts, i.e., client side and server
side. The heart of the platform is the mashup execution engine on the client
side, which support client-side processing, that is, it controls data processing on
the server from the client. The engine is responsible for running a mashup com-
position, triggering the component’s actions and managing the communication
between client and server. The client side composition editor (shown in Figure 2)
provides the mashup canvas and a list of components from which users can drag
and drop components onto the canvas and connect them. The composition editor
implements the domain-specific mashup meta-model and exposes it through the
domain syntax. The platform also comes with a component registration interface
for developers to set up and configure new components for the platform. On the
server side, we have a set of RESTful web services, i.e., the components ser-
vices, authentication services, components and composition repository services,
and shared memory services. Components services allow the invocation of those
components whose business logic is implemented as a server-side web service.
These web services, together with the client-side components, implement the do-
main process model. Authentication services are used for user authentication and
authorization. Components and composition repository services enable CRUD
operations for components and compositions. Shared memory services provide
an interface for external web services (i.e., services which are not deployed on
our platform) to use the shared memory. The shared memory manager provides
and manages a space for each mashup execution instance on the server side. The
common data model (CDM) module implements the domain concept model (CM)
and supports the checking of data types in the system. CDM configures itself
using an XSD (i.e., an XML schema representing domain concept model). All
services are managed by a server side engine, which fulfills all requests coming
from the client side. A demo of ResEval Mash is described in [3] and a prototype
is available online at http://open.reseval.org/.

4 User Study and Evaluation

In order to evaluate our domain-specific mashup approach, we conducted a user
study with 10 users. Participants covering a broad range of domain and technical
expertise were invited to use ResEval Mash. At the beginning participants were
asked to fill in a questionnaire reporting their computing skills and to watch a
video tutorial followed by a set of tasks to complete.

Overall, the tool was deemed to be usable and the participants were comfort-
able using it. Independently of their level of computing knowledge, all partic-
ipants were able to accomplish the tasks with minimal or no help at all. The
only visible difference was a different level of confidence in task execution. IT
experts appeared to be more confident during the test. The results of our study
indicate real potential for the domain-specific mashup approach to allow people
with no computing skills to create their own applications. The definition of the

http://open.reseval.org/

On the Systematic Development of Domain-Specific Mashup Tools 297

Fig. 2. Composition editor and example mashup output

mappings among the components, which is a well-acknowledged problem known
form several user studies of EUD tools [6], did not occur at all in the our study.
This preliminary study suggests that ResEval Mash is a successful tool appealing
to both expert programmers and end-users with no computing skills.

5 Related Work

The idea of focusing on a particular domain and exploiting its specificities to
create more effective and simpler development environments is supported by a
large number of research works [5,1]. Mainly these areas are related to Domain
Specific Modeling (DSM) and Domain Specific Language (DSL). In DSM, do-
main concepts, rules, and semantics are represented by one or more models,
which are then translated into executable code. Managing these models can be
a complex task that is typically suited only to programmers but that, however,
increases his/her productivity. In the DSL context, although we can find solu-
tions targeting end users (e.g., Excel macros) and medium skilled users (e.g.,
MatLab), most of the current DSLs target expert developers (e.g., Swashup [4]).
Also here the introduction of the “domain” raises the abstraction level, but the
typical textual nature of these languages makes them less intuitive and harder to
manage and less suitable for end users compared to visual approaches. Benefits
and limits of the DSM and DSL approaches are summarized in [1] and [5].

Web mashups [8] have emerged as an approach to provide easier ways to con-
nect together services and data sources available on the Web [2], together with
the claim to target non-programmers. Yahoo! Pipes (http://pipes.yahoo.com),
for instance, provides an intuitive visual editor that allows the design of data
processing logics. Support for UI integration is missing, and support for service

http://pipes.yahoo.com

298 M. Imran et al.

integration is still poor while it provides only generic programming features (e.g.,
feed manipulation, looping) and typically require basic programming knowledge.
The CRUISe project [7] specifically focuses on composability and context-aware
presentation of UIs, but does not support the seamless integration of UI com-
ponents with web services. The ServFace project (http://www.servface.eu),
instead, aims to support normal web users in composing semantically annotated
web services. The result is a simple, user-driven web service orchestration tool,
but UI integration and process logic definitions are rather limited and again
basic programming knowledge is still required.

6 Status and Lessons Learned

The work described in this paper resulted from actual needs within our university
and within the context of an EU project, which were not yet met by current
technology. It also resulted from the observation that in general composition
technologies failed to a large extent to strike the right balance between ease of
use and expressive power. They define seemingly useful abstractions and tools,
but in the end developers still prefer to use (textual) programming languages,
and, at the same time, domain experts are not able to understand and use them.
What we have pursued in our work is, in essence, to constrain the language to
the domain (but not in general in terms of expressive power) and to provide
a domain-specific notation so that it becomes easier to use and in particular
does not require users to deal with one of the most complex aspect of process
modeling (at least for end-users), that of data mappings.

References

1. France, R., Rumpe, B.: Domain specific modeling. Software and Systems Modeling 4,
1–3 (2005)

2. Hartmann, B., Doorley, S., Klemmer, S.: Hacking, Mashing, Gluing: A Study of
Opportunistic Design and Development. Pervasive Computing 7(3), 46–54 (2006)

3. Imran, M., Kling, F., Soi, S., Daniel, F., Casati, F., Marchese, M.: ResEval Mash:
A Mashup Tool for Advanced Research Evaluation. In: Proceedings of WWW 2012,
pp. 361–364 (2012)

4. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A Domain-Specific Language
for Web APIs and Services Mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

5. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

6. Namoun, A., Nestler, T., De Angeli, A.: Service Composition for Non Programmers:
Prospects, Problems, and Design Recommendations. In: Proceedings of ECOWS,
pp. 123–130. IEEE (2010)

7. Pietschmann, S., Voigt, M., Rümpel, A., Meißner, K.: CRUISe: Composition of Rich
User Interface Services. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE
2009. LNCS, vol. 5648, pp. 473–476. Springer, Heidelberg (2009)

8. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.
IEEE Internet Computing 12, 44–52 (2008)

http://www.servface.eu

Adding Non-functional Preferences
to Service Discovery

Fernando Lemos1, Daniela Grigori2, and Mokrane Bouzeghoub1

1 Versailles University, 45 Av. des États Unis 78000 Versailles, France
{fernando.lemos,mokrane.bouzeghoub}@prism.uvsq.fr

2 Paris-Dauphine Univ., Pl. Maréchal de Lattre de Tassigny 75775 Paris, France
daniela.grigori@dauphine.fr

Abstract. The growth of the number of published services rendered
searching for a specific service within repositories a critical issue. In this
paper, we present an approach to extend structure-based service discov-
ery by making it sensitive to user preferences over service quality defined
at different granularity levels of the service structure.

Keywords: Web services, QoS, preferences, process model matching.

1 Introduction

In the last years, the number of published services has been increasingly growing
since more and more organizations invested on service management practices.
However, this growth rendered searching for a specific service within reposi-
tories a critical issue for the success of service computing in general. For the
functional aspect of the search, some approaches allow users to detail the pro-
cess model (PM) describing the structure of the requested service, and thus PM
matching techniques have been proposed to find the services best matching the
query. However, current PM matching approaches [1,2] still return a large num-
ber of services offering similar functionalities [2]. On the non-functional aspect
of the search, non-functional requirements such as quality preferences (e.g., re-
sponse time) are one way to discriminate between structurally similar services.
Nevertheless, current works consider Web services as black boxes, limiting the
approaches to the profile level [3,4,5], which is not sufficient and do not fulfill
user needs as non-functional aspects can be hidden within the specification of the
service structure.

In our vision, service discovery should be based on both structural specifica-
tion and non-functional aspects of services. Targeting this goal poses challenges
at two levels. (i) At the description level, provide a formal model that allows
one to specify, at different granularity levels, non-functional attributes as an-
notations of the functional specification; and allow the user to enrich his query
with (required and preferred) non-functional requirements. (ii) At the discovery
level, define a similarity measure aggregating both functional and non-functional
similarities and provide algorithms combining the structural matching and the
non-functional matching.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 299–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

300 F. Lemos, D. Grigori, and M. Bouzeghoub

In this work, we extend service matching algorithms based on the PM speci-
fication by making them sensitive to user preferences concerning service quality.
Our contributions to the above challenges are: (i) we extend the PM representing
service structure with adornments for non-functional factors. Each annotation is
defined either at the activity level or at level of the service itself. The user query
is also a PM complemented with a set of selection clauses, which are defined
either as required or preferred criteria in order to avoid empty or overloading
answers. (ii) The service discovery is seen as a matching process between the user
query PM and a target PM, in which, at the different stages, quality preferences
are taken into account. To the best of our knowledge, there is no other approach
addressing user preferences on quality factors in the service matching process.

Section 2 presents our model. Section 3 details our approach and experimental
results. Section 4 discusses related works. Section 5 concludes the paper.

2 Abstract Representation of Service Process Model

Process models consists of a set of atomic activities, combined using control
flow structures to construct complex processes. To abstract from a specific PM
description language (e.g., WS-BPEL and OWL-S) and provide a broader general
approach, we introduce a graph-based model, as follows. A process model is a
directed labeled graph G = (V, E), where V is a set of activities and connector
nodes and E is a set of edges. An activity node is described by its name,
inputs and outputs. Connector nodes are: (i) start or end, representing the
beginning or the termination of the process execution, respectively; (ii) AND-
split, triggering all of its outgoing concurrent branches that are synchronized by a
corresponding (iii) AND-join; (iv) XOR-split, representing a choice between one
of several alternative branches that are merged by a corresponding (v) XOR-join.

For example, the service PM graph depicted in Figure 1(a) converts common
types of documents to PDF. It receives as input a file and its extension and
executes a pre-flight activity to check whether the file can be converted. If so,
createPDF activity converts the file to PDF and activity createLink returns a
link so user can download the converted file. Otherwise, an error message is sent.

QoS information is added by service providers as graph annotations of the
form (m, r), where r is a value for a QoS attribute m. They can characterize
the service as a whole (profile annotations) or specific activities (activity
annotations). Figure 1(a) shows the previous service PM graph adorned with
the profile annotations a1 and a2 indicating the cost and response time and
several activity annotations a3 to a9 indicating the response time, reliability and
security. We precise that service PMs are considered to be already annotated
with QoS attributes by their providers using techniques like in [6].

Providers can also define aggregation functions to automatically calculate
global QoS information from activity annotations. An aggregation function
is a function of the form f[m] : G → R, where m is a QoS attribute, G is a PM
graph and R is a set of atomic values. We denote by F the set of aggregation
functions. Specifications of such functions can be found in [6].

Adding Non-functional Preferences to Service Discovery 301

start

end

XOR
join

XOR
split

returnError

out: errorMsg

createPDF

in: file, fileExt
out: pdfFile

preflight

in: file, fileExt
out: status

[status=ok]

[status=ko]

createLink

out: link

start

end

AND
join

AND
split

createLink'

out: link

createPDF'

in: file, fileExt
out: pdfFile

preflight'

in: file, fileExt
out: status

HARD PREFERENCES

SOFT PREFERENCES

SOFT PREFERENCE

HARD PREFERENCE ,

(a) (b)

Fig. 1. Mapping between (a) target graph T1 and (b) query graph Q1

A user query is specified by (i) a PM graph describing structural requirements
and (ii) a set of preferences describing QoS requirements, which are defined for
the service as a whole (profile preferences) or for specific activities (activity
preferences). Preferences can also be: (i) hard, when they must be satisfied
and they are specified as relational expressions of the form (m, o, r), where o is
a relational operator and r is a value for QoS attribute m1; or (ii) soft, when
their satisfaction is optional, but desirable.

A soft preference is specified using a subset of the preference constructors
proposed by Preference SQL [7], one of the first ones to provide a declara-
tive and semantically intuitive model of preferences. The constructors are: (i)
around (m, rdesired): it favors the value rdesired for attribute m; otherwise, it fa-
vors those close to rdesired; (ii) between (m, rlow, rup): it favors the values inside
the interval [rlow , rup]; otherwise, it favors those close to the limits; (iii) max (m):
it favors the highest value; otherwise, the closest value to the maximum is fa-
vored; (iv) min (m): it favors the lowest value; otherwise, the closest value to the
minimum is favored; (v) likes (m, rdesired): it favors the value rdesired; otherwise,
any other value is accepted; (vi) dislikes (m, rundesired): it favors the values dif-
ferent from rundesired; otherwise, rundesired is accepted; (vii) ⊗ (pi, pj): it states
that the soft preferences pi and pj are equally important; (viii) & (pi, pj): it
states that the soft preference pi is more important than the soft preference pj .

1 We abstract from the different units in which a value can be described.

302 F. Lemos, D. Grigori, and M. Bouzeghoub

Preference SQL distinguishes two types of preferences: atomic (around, be-
tween, max, min, likes and dislikes) and complex (⊗ and &). It also distinguishes
two types of atomic preferences: numerical (around, between, max and min) and
non-numerical (likes and dislikes). In this work, the values in non-numerical
preferences are taken from a global ontology O given by the user. As specified,
complex preferences can be defined over existent complex preferences.

Figure 1(b) shows a sample user query annotated with hard and soft prefer-
ences: (i) the profile preference hp1 indicates the response time must be less than
60 ms; (ii) the soft preference sp2 indicates that user prefers services having ac-
tivity B with maximal reliability; (iii) the complex preference sp4 indicates that
to satisfy preference sp2 is more important than the satisfaction of sp3.

3 Dealing with Preferences in Service Discovery

The evaluation of query preferences is strongly dependent of a structural map-
ping between the PMs of query and target services, as described in Subsections
3.1 and 3.2. An important class of solutions to the problem of finding a mapping
between PMs is that of approximate matching algorithms [1,2], that allow to
find target PMs similar to user query. Early approaches of this class reduce the
problem to the discovery of a (sub) graph isomorphism between two PMs [2].

Our recent work [2] proposes an algorithm based on state-space searching to
discover the best mapping between two PM graphs. To reduce the space search,
a pruning function is proposed. The returned mapping has a structural similarity
SS that defines a total order between targets [2], but cannot distinguish between
graphs having similar structure and different quality. Moreover, targets very
similar to the query and better satisfying the preferences should top the ranking.
For these reasons, we extend the PM matching by: (i) evaluating hard preferences
during the matching task to reduce the space-search; and (ii) evaluating the soft
preferences to rank potential graphs considering structural and quality aspects.

3.1 Evaluating Hard Preferences in Service Matching

The evaluation of query profile preferences against target profile annotations may
reduce the number of target service PMs to be matched. However, the structural
mapping between query and target may “change” some profile attributes. For
example, by considering the matching between Q1 and T1 in Figure 1, found
by a matching algorithm like in [2], the trace containing activity returnError
will never be consumed (executed). Thus, recalculating the response time of T1

ignoring activity returnError gives 50 ms. According to the profile preference
hp1, if the recalculation had not been done, T1 would be discarded.

The recalculation of profile annotations is done over the target’s consumable
graph, which is a graph containing only the consumable paths of the target ac-
cording to its structural mapping with the query. More formally, a consumable
graph of a graph G w.r.t. to a mapping M is the graph obtained by eliminat-
ing from each block b of G the branches containing no activity mapped by M .

Adding Non-functional Preferences to Service Discovery 303

A block is any subgraph limited to a split node, its respective join node and
the branches between them. Therefore, our algorithm is composed of two steps:

Step 1: Evaluation of Hard Activity Preferences. The first step in eval-
uating the hard preferences of a query activity is to discover the target activity
that semantically corresponds to it. For this, we propose to extend the prun-
ing technique of the PM matching algorithm described in [2] to also discard
non-promising mappings according to hard preferences. Thus, a target activity
semantically equivalent to a query activity must also satisfy all the hard prefer-
ences of the query activity. Given an activity hard preference hp = (m, o, r) and
a target annotation a = (m, v), a satisfies hp iff the expression (v, o, r) is true.

Step 2: Evaluation of Hard Profile Preferences. Once a target satisfying
all activity preferences is discovered, its hard profile preferences are evaluated.
The evaluation algorithm (i) recalculates the profile annotations using the con-
sumable graph and the aggregation functions, and then (ii) checks if all hard
profile preferences are satisfied by the target profile annotations. In Figure 1,
the consumable graph of T1 satisfies all the hard preferences of Q1.

3.2 Dealing with Soft Preferences in Service Selection

The satisfaction degree (δ) is our metric to define how well the annotations
of a target satisfy the soft preferences of a user query. First, we calculate the
satisfaction degree between each soft atomic preference and its corresponding
annotation. Then, we aggregate the satisfaction degrees of atomic preferences
according to the order of importance defined by the complex preferences.

The Evaluation of Soft Atomic Preferences depends on their type. For
a numerical preference p, given its corresponding annotation a = (m, r), the
satisfaction degree δ (p, a) between them is given by the equation δ (p, a) =
1/(1+d(p,a)). This equation normalizes the Satisfaction Distance d (p, a), which
measures how far is the value r in annotation a from those favored by preference
p. The satisfaction distance depends on the type of p as described in Table 1.

For non-numerical preferences, the satisfaction degree is based on the seman-
tic similarity between concepts given by wp (OG, c1, c2), where c1 and c2 are the
concepts to be compared according to an ontology OG. Among the similarity
metrics defined in the literature [8], we applied the classic edge counting tech-
nique proposed in [9]. Given a non-numerical preference p and an annotation a,
the satisfaction degree δ (p, a) between them is presented in Table 2.

Based on the mapping of Figure 1 and on the ontology in Figure 2, the satis-
faction degrees of soft preferences of query Q1 are δ (sp1, a4) = 1, δ (sp2, a6) = 0.03,
δ (sp3, a5) = 0.09 and δ (sp5, a7) = 1, where d (sp2, a6) = 40 and d (sp3, a5) = 10.

The Evaluation of Soft Complex Preferences aims, at first, to assign
weights to the satisfaction degrees of atomic preferences to capture the order of
importance defined by complex preferences. Then, these weighted degrees are
aggregated to provide the satisfaction degree between the query and the target.
The evaluation the complex preferences is composed of the following steps:

304 F. Lemos, D. Grigori, and M. Bouzeghoub

Table 1. Satisfaction distance of numerical preference p w.r.t. annotation a = (m, r)

Numerical Preference p Satisfaction Distance d(p, a)

around (m, rdesired) d (p, a) = |r − rdesired|

between (m, rlow, rup) d (p, a) =

⎧⎪⎨
⎪⎩

0, r ∈ [low, up]

low − r, r < low

r − up, r > up

max (m) d (p, a) = rmax − r, where rmax is the highest value
min (m) d (p, a) = r − rmin, where rmin is the lowest value

Table 2. Satisfaction degree of non-numerical preference p w.r.t. annotation a = (m, r)

Non-numerical Preference p Satisfaction Degree δ(p, a)

likes (m,rdesired) δ (p, a) =

⎧⎪⎨
⎪⎩

1, rdesired = r

1, rdesired subsumes r

wp(OG, rdesired, r), otherwise

dislikes (m, rundesired) δ (p, a) = 1 − likes (m, rundesired)

security

encryption

protocol

DES
AES
RSA
Kerberos
SSHroot

Fig. 2. Sample Security ontology

Fig. 3. Preference tree of query Q1

Step 1. We construct a preference tree tsp whose nodes represent atomic pref-
erences, edges represent a prioritized (&) preference, from parent to child, and
each level li of the tree has weight μi = 1/i. We denote by p.l the level assigned to
preference p. We consider that user has not defined any contradictory preference.

The construction of the tree first addresses each preference & (pi, pj) by (i) if
pi.l = null, then pi.l ← l1 and pj .l ← l2, and (ii) if pi.l �= null, then pj ← pi.l+1.
Next, it evaluates each preference ⊗ (pi, pj) by applying the following rules:
Rule 1: pi.l �= null ∧ pj.l = null then pj .l ← pi.l; Rule 2: pi.l = null ∧ pj.l �=
null then pi.l ← pj .l; Rule 3: pi.l = null ∧ pj .l = null then pi.l ← l1 and
pj .l ← l1; Rule 4: pi.l �= null ∧ pj .l �= null then: (a) pi.l < pj .l then pj .l ← pi.l
and the levels of pj descendants are updated accordingly; (b) pj.l < pi.l then
pi.l ← pj .l and the levels of pj descendants are updated accordingly; Rule 5:
level l1 is assigned to remaining preferences. Figure 3 shows the tree of Q1.
Step 2. The satisfaction degree between a query Q and a target T w.r.t. a
mapping M is given by δ (Q, T, M) =

∑
p∈Ssp

δ(p,a)×μp.l/
∑

p∈Ssp
μp.l, where a is the

annotation corresponding to the QoS attribute of preference p. This equation is
a sum of the satisfaction degrees of atomic preferences affected by the weights
of their levels in the tree. In our example, δ (Q1, T1, M1) = 0.53.

Adding Non-functional Preferences to Service Discovery 305

3.3 Service Ranking Based on Structural and Quality Aspects

Two classic methods are used to order the potential targets of a given query
according to structural and quality aspects. The first is the lexicographic order :
targets are ordered according to the structural similarity degree SS and the
preference satisfaction degree is used to break ties. The second is the weighted
average wa (TQ, M) = μSS×SS (M)+(1 − μSS)×δ (Q, T, M), where 0 < μSS <
1 is the weight assigned to the semantic similarity degree. The user can specify
the contribution of each degree to the calculation of the overall similarity.

3.4 Preliminary Experimental Results

To evaluate our approach, we implemented a prototype on top of the service
matching platform proposed by [2]. Our experiments considered 64 services of
average size of 15 activities and providing 12 quality properties. The first ex-
periments measured the evaluation time of (i) hard preferences in the matching
algorithm and (ii) soft preferences after the matching step. In both cases, the
extra time represents less than 1% of the matching time.

The last experiments measured the ranking effectiveness. Clearly, a discovery
process that takes into account the quality aspect beyond the structural one pro-
vides better responses than a structure-based method. Thus, we were interested
in measuring how close is the ranking of our solution compared to the ranking of
an expert. For this, an expert manually compared each query to each target and
noted it in a Likert scale. Then, the results were sorted according to their sim-
ilarities and compared with our ranking using the NDCG formula. The results
obtained for weighted average and lexicographic order rankings were 0.996967
and 0.998752, respectively, which shows that our solution provides a ranking
that is strongly close to that defined by the experts in all of our experiments.

4 Related Work

Many approaches for service retrieval based on non-functional characteristics
have been proposed in the literature [3,10,11,4]. In these works, quality pref-
erences are specified by (i) relational expressions [3], evaluated to a distance
between the preference and the QoS information provided by the service; (ii)
fuzzy sets [10], described by membership functions mapping each value of qual-
ity attributes to the degree at which the user is satisfied with it; (iii) linguistic
variables [4], whose values are terms (e.g., fast, slow) and whose evaluation re-
turns a match degree in a qualitative scale; or (iv) utility functions [11], similar
to fuzzy sets, but can be specified over a discontinuous domain.

The order of importance between preferences is not addressed by these ap-
proaches. Instead weights are attributed to QoS properties to be multiplied with
the satisfaction degrees of the preferences. These weights are specified by the
user at query definition time [11], by an expert at design time [10], or they
are fixed in the evaluation process [3]. The aggregation of satisfaction degrees is

306 F. Lemos, D. Grigori, and M. Bouzeghoub

done via aggregation functions like the sum [3,11], via solutions to the constraint
satisfaction problem [10], or using match degrees in a qualitative scale [4].

These approaches do not propose preference constructors to help user better
define his preferences and they are not abstract enough to be adapted to different
non-functional contexts. More important, these approaches consider services as
black boxes, so quality requirements for internal activities are not addressed.

5 Conclusions

We presented an approach for service discovery considering structure and quality
requirements. First, we proposed a formal model to annotate service PMs with
quality properties and user queries with quality preferences. Then, we showed
how preferences are addressed in the service discovery process. Our approach can
be easily applied to other non-functional requirements. As future work, we intend
to study preferences considering user’s viewpoint and semantic compositions of
structural similarity and preference satisfaction.

Acknowledgment. This work has received support from the French National
Agency for Research (ANR) on the reference ANR-08-CORD-009.

References

1. Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph Matching Algorithms for Busi-
ness Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

2. Grigori, D., Corrales, J.C., Bouzeghoub, M., Gater, A.: Ranking bpel processes for
service discovery. IEEE TSC 3, 178–192 (2010)

3. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: Easy:
Efficient semantic service discovery in pervasive computing environments with QoS
and context support. Journal of Systems and Software 81(5), 785–808 (2008)

4. Şora, I., Lazăr, G., Lung, S.: Mapping a fuzzy logic approach for QoS-aware service
selection on current web service standards. In: ICCC-CONTI, pp. 553–558 (2010)

5. Zhang, Y., Huang, H., Yang, D., Zhang, H., Chao, H.C., Huang, Y.M.: Bring
QoS to P2P-based semantic service discovery for the universal network. Personal
Ubiquitous Computing 13(7), 471–477 (2009)

6. Dumas, M., García-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate
Quality of Service Computation for Composite Services. In: Maglio, P.P., Weske,
M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 213–227.
Springer, Heidelberg (2010)

7. Kießling, W.: Foundations of preferences in database systems. In: VLDB, pp. 311–
322 (2002)

8. Cross, V.: Fuzzy semantic distance measures between ontological concepts. In:
NAFIPS, vol. 2, pp. 635–640 (2004)

9. Wu, Z., Palmer, M.S.: Verb semantics and lexical selection. In: ACL, pp. 133–138
(1994)

10. Xiong, P., Fan, Y.: QoS-aware web service selection by a synthetic weight. In:
FSKD, pp. 632–637 (2007)

11. Agarwal, S., Lamparter, S., Studer, R.: Making web services tradable: A policy-based
approach for specifyingpreferences onweb service properties. JWS7(1), 11–20 (2009)

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 307–314, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Semantic Scoring Approach for Service Offers

Ikbel Guidara, Kaouthar Fakhfakh, and Tarak Chaari

ReDCAD Laboratory, University of Sfax
B.P. 1173, 3038 Sfax, Tunisia

{ikbel.guidara,kouthar.fakhfakh}@gmail.com,
tarak.chaari@redcad.org

Abstract. Automating service selection using semantic approaches have been
extensively studied in recent years. In fact, given the big number of provider
offers, sourcing of the most relevant service to the client intentions is a complex
task especially when providers and customers don’t share the same knowledge
degree. In particular, differentiating between very similar offers satisfying the
same number of client constraints is still a challenging task. In this paper, we
present a novel semantic scoring approach that helps clients to select the most
appropriate service offer according to their intentions. Our approach detects
direct and indirect semantic correspondences between these intentions and the
available offers using ontological models. It fairly evaluates these offers and
ranks them according to their semantic closeness to the client intentions taking
into account both functional and QoS properties. Our ranking is based on a deep
examination of provider offers and can distinguish between services that look
the same for non expert clients.

Keywords: Ontologies, Quality of Service (QoS), Semantic Web, Service
Sourcing.

1 Introduction

With the continued growth of Service Oriented Architectures, the sourcing of the
most relevant service becomes a challenge. In fact, generally, providers define their
services using fixed and predefined choices and technical terms [5]. Because of their
limited knowledge, clients may not understand these complex terms. As a result, they
may not choose the best offer and may select a service that does not adequately satisfy
their needs. In addition, there is often the case when several services fulfill client’s
requirements and satisfy the same number of client’s constraints. Among these
services, which one will be selected is a very difficult task. This issue is still
insufficiently tackled in the literature since many service sourcing approaches cannot
differentiate between similar offers [3, 4]. To address these problems, a tool that helps
customers to freely express their requirements and to easily select the best service, has
become highly recommended. The challenge of our work is to propose a fair service
sourcing approach that helps clients to select the most appropriate service offer
according to their intentions while giving them the ability to freely express their

308 I. Guidara, K. Fakhfakh, and T. Chaari

functional and QoS-based requirements using their own knowledge and language. Our
approach is based on computing a score for each service offer according to its
semantic closeness to the client requirements.

In this paper, we propose a new service sourcing approach which is based on
semantic enabled models for client intentions and provider offers using ontologies.
Based on these models, the first step of our approach consists in finding
correspondences between the description of the services offered by providers and the
required ones by the client. The matching step allows detecting direct and indirect
correspondences between client and providers terms. The direct correspondences
consist in finding semantic equivalence between these terms using a similarity
measure. The indirect correspondences are automatically generated using a QoS
ontology that bridges the gap between the client and the provider terms. For example,
the customer can define his requirements using the expression “download time” while
the provider defines his offer according to the “film size” and the “throughput”
offered to the client. Correspondences generated in the matching phase are then stored
in a matching ontology to be used in the selection process. The second step of our
approach is to define a fair classification method of service offers according to their
semantic closeness to the client intentions. This method computes the score of each
offer based on the number of the satisfied requirements and the distance between the
values proposed by the provider and those wanted by the customer for each
requirement. The models used in our approach and the semantic matching process are
detailed in our ontology driven approach for automatic establishment of service level
agreements (ODACE SLA) [1]. In the remaining parts of this paper we detail our
service sourcing process and we present how it produces more accurate results than
the existing approaches.

This paper is structured as follows: section 2 provides related works about service
selection. Section 3 details our semantic approach for service sourcing. Before
concluding, we present a case study to illustrate that our approach produces more fair
and accurate results than the existing service selection methods.

2 Related Work

There are several approaches in the literature that tackled the problem of service
selection. Several criteria can be considered when selecting the best service. The
selection of services can be entirely based on price [2] or on some predefined criteria
for the comparison of the values of services such as security and response time [3],
[4] and [5]. These criteria may not be sufficient to correctly classify the service
providers and don’t allow clients to freely express their own requirements based on
different and high level terms. In addition, these approaches don’t control the values
given by providers who can give incorrect values to increase their chances to be
selected. In their work [6], Comuzzi et al have defined a set of admissible values for
each QoS parameter. The values given by customers and providers must belong to the
admissible values. However, the authors propose to translate the values of QoS
parameters into levels. This may not give a fair classification especially in the case of
a large spectrum of values. In addition, this work does not allow the comparison of

 A Semantic Scoring Approach for Service Offers 309

linguistic terms and only the numeric values are considered. In [7], authors present a
semantic web service discovery approach using the SPARQL language to evaluate
preconditions and postconditions of services and check if they satisfy the required
goals. Nevertheless, this approach doesn’t take into account non functional properties
in the selection process. In addition, authors do not provide matching capabilities
especially when the client is not an IT expert.

According to this study, we conclude that the major part of the existing work
doesn’t provide an effective mechanism to differentiate between similar offers
especially those satisfying the same number of client’s constraints. In addition, these
works generally omitted scoring literal terms and they are focused only on the scoring
of numeric values. In our approach, we aim to use a better expression and analysis of
semantics to help the clients finding the best adequate service they need. In the next
section, we detail the different steps of our service sourcing approach.

3 Semantic Service Selection Approach

In this section, we detail our approach to select the most appropriate service according
to the client preferences. We start by presenting our scoring method to compute the
score of each provider value. Then, we detail our selection algorithm based on the
defined scores. Finally, we explain the functions that compute these scores.

3.1 Service Offers Scoring Methodology

To compute the final score (FS) of each provider value, we define two types of scores:

The Satisfaction Score (SS): This score tests if the offered value of the provider
satisfies the client’s constraint. It allows computing the number of constraints
satisfied by each provider, but it does not distinguish similar candidates and offers
that satisfy the same number of the client constraints.

The Satisfaction Degree (SD): This score gives more precision to the satisfaction score
according to the closeness of the values offered by the provider to the client constraints.
The closer the provider value to the required one by the client is, the higher the SD will be.
In our approach, we propose to grant more importance to the client constraint satisfaction
than its closeness to the value of the client. For this reason, we consider that the SD
shouldn’t be higher than the SS. Consequently, we propose that the sum of all the SDs of
each combination of provider values must not exceed 1 (which presents the maximum SS
that can be assigned to a constraint value). Then, we choose a threshold that is equal to
α(nc) for each SD with nc is the number of constraints required by the client. As a result,
each value of SD must be between 0 and α(nc) with:

1<<0 Where
1

)(εεα
c

c n
n

−=
(1)

The final score of each provider value is the sum of these two scores. Thus, a provider
value that satisfies the client constraint will have a FS between 1 and 1 + α(nc) and the
one that doesn’t satisfy the client constraint will have a FS between 0 and α(nc).
Consequently, if a provider doesn’t satisfy any constraint, his final score will not

310 I. Guidara, K. Fakhfakh, and T. Chaari

exceed nc*α(nc) which is equal to (1-ε). In this case, it will never have a higher score
than a provider who satisfies at least one constraint and who will have a minimum
score equals to 1.

3.2 Best Service Offer Selection Algorithm

The selection phase is mainly based on checking the satisfaction of the client
constraints by each provider offer. It allows evaluating and selecting service providers
according to their closeness to satisfy client preferences. In this section, we present
our selection algorithm which allows ranking service providers on the basis of their
ability to satisfy the client requirements. The first step of our algorithm is to gather all
the client constraints from the intention instance. For each constraint, we consider its
property, its operator and its threshold from the client ontology. Then, if the threshold
value is numeric, we consider its admissible values from the QoS ontology using the
correspondences generated in the matching phase. In this step, we select QoS values
that have valid correspondences with the client property (we refer to VQk,min and
VQk,max respectively, the minimum and maximum admissible values identified by the
expert for the parameter associated to the kth constraint of the client). A
correspondence is considered valid if its certainty is above a minimum acceptance
threshold. This threshold is identified using information science measures as
precision, recall and F-measure [8]. After that, we retrieve all the corresponding
values for each client constraint from the provider ontology.

- For the direct correspondences, we select the provider values that have valid
correspondences with the client property and we try to get the value VPij,k of each
selected instance. VPij,k denotes the value of the offer j of the provider number i which
corresponds to the client constraint number k.

- For the indirect correspondence, we retrieve the QoS instances that have valid
correspondences with the client property. For each selected instance found, we collect
its function and its operands. The next step is to find the set of values from the
provider ontology which have valid correspondences with these operands. Then, we
compute the function result that presents the provider value VPij,k.

After retrieving all the possible values of each provider corresponding to the client
constraints, we compute the final score FSij,k of each value VPij,k according to its closeness
to the value given by the client. This final score uses the admissible values retrieved from
the QoS ontology. If a constraint given by the client has no semantic (direct or indirect)
correspondence with a valid term of the provider ontology, this it will be considered as an
unsatisfied constraint and its final score will be equal to 0. After computing the score of
each provider's value, the last step is identifying the best combination of values that gives
the best score OSij of each offer Oij for the provider Pi using the formula (2).

))(1(*
1

,

cc

n

k
kij

ij nn

FS
OS

c

α+
=

= (2)

These steps will be repeated for each provider to rank all the available offers
according to their scores. Finally, the offer that has the best score will be selected.

 A Semantic Scoring Approach for Service Offers 311

3.3 Scoring Functions

In this section, we define the functions that we propose to compute the scores of
provider values. We distinguish two categories: linguistic terms and numeric values.
To give a fair classification method, it is necessary that both scores of linguistic terms
and those of numeric values belong to the values ranges specified in section 3.1.

Computing Scores of Linguistic Terms
In our approach, we aim to identify and use the several semantic relations that can
exist between terms. For this reason, we present in the following our method to
compute scores of linguistic terms using similarity measures.

-To compute the SS we distinguish two possible cases:

Case 1: If the client gives a single possible term VCk for the constraint number k (i.e.
the operator is “equal”), we assume that the client constraint is satisfied if the degree
of similarity between the client term and its corresponding provider term is greater
than or equal the acceptance threshold.

Case 2: If the client gives more than one term (i.e. the operator is “in”), we assume
that the constraint of the client is satisfied if there is at least one of the terms proposed
by the client that has a similarity degree greater than or equal to the acceptance
threshold with the corresponding provider term.

- The SD of linguistic terms is equal to the semantic similarity degree between the
client term and the provider term multiplied by α(nc) in the case where the operator is
“equal”. It will be equal to the maximum similarity degree computed between the
provider term and the set of all client terms multiplied by α(nc) in the case where the
operator is “in”. Note that the similarity degree must be a value between 0 and 1, so that
the SD will be not above the threshold defined at section 3.1 which is equal to α(nc).

Computing Scores of Numeric Values
To compute the final score of the numeric values, we suppose that:

- The SS is equal to 1 if the value of the provider satisfies the client constraint and 0
otherwise according to the required operator.

-The SD is computed according to two possible cases:

Case 1: Numeric values that have a better value direction (BVD) which can be
“down” or “up”. These values can be used to determine if the client prefers the
minimum or the maximum value among the values offered by providers. The value
"down" indicates that the SD is inversely proportional to the value of the provider.
The value "up" indicates that the SD is proportional to the value of the provider. For
example, "response time" has a “down” better value direction. Taking inspiration
from functions defined in [4], we propose to use the formula (3).

=
−

−

=
−

−

=
"" *)(

"" *)(

min,max,

min,,

min,max,

,max,

,

upBVDif
VQVQ

VQVP
n

downBVDif
VQVQ

VPVQ
n

SD

kk

kkij
c

kk

kijk
c

kij

α

α
(3)

312 I. Guidara, K. Fakhfakh, and T. Chaari

Case 2: Numeric values that don’t have a better value direction. In this case, we adopt
that the more the value of the provider is closer to the value of the client, the more its SD
is bigger. We distinguish three cases according to the operator used by the client.

- If the client gives one value (i.e. the operator is “equal”, “greaterThan” or
“lessThan”). We propose to compute the SD by the formula (4):

)1(*)(
1

,

, n

VCVP
nSD

kkij

ckij

−
−= α

(4)

With n1=max {(VQk,max-VCk);(VCk - VQk,min)}
- If the client gives a range of values, we propose the formula (5):

,min ,
, ,min ,min

2

, , ,min ,max

, ,max
, ,max ,max

2

() * (1) [; [

() [;]

() * (1)] ;]

k ij k
c ij k k k

ij k c ij k k k

ij k k
c ij k k k

VC VP
n if VP VQ VC

n

SD n if VP VC VC

VP VC
n if VP VC VQ

n

α

α

α

 −
− ∈

= ∈

−
− ∈

(5)

With n2=max {(VQk,max-VCk,max);(VCk,min- VQk,min)}
- If the client gives two or more values (i.e. the operator is “in”), we propose to

compute the SD using the formula (6):

≤
−

−= k
3

,,

, NVm<0),1(*)(max
n

VCVP
nSD

mkkij

ckij α

(6)

With n3=max {(VQk,max-VCk,m);(VCk,m- VQk,min), 0<m≤NVk, NVk is the number of the
possible client values for the kth constraint}

4 Case Study

To better illustrate our approach, we consider an example in which the client specifies
four constraints in his intention. He wants to download “Comedy” or “Adventure”
films (C1) from a service with a greater availability than 97% (C2), a download time
less than 10 minutes (C3) and a price less than or equal 3 Euros per film (C4).

Table 1. An example of provider offers scores

 Oij SS SD FS OSij
Provider 1 VP11,1=Comedy 1 0,2475 1,2475
 VP11,2=99% 1 0,245 1,245 0,771
 VP11,3=9 mn 1 0,214 1,214
 VP11,4=3.1 0 0,143 0,143
Provider 2 VP12,1=Action 0 0,077 0,077
 VP12,2=97% 1 0,24 1,24 0,73
 VP12,3=8.5 mn 1 0,216 1,216
 VP12,4=3 1 0,148 1,148
Provider 3 VP13,1=Documentary 0 0,037 0,037
 VP13,2=93% 0 0,23 0,23 0,52
 VP13,3=8 mn 1 0,218 1,218
 VP13,4=2.9 1 0,153 1,153

 A Semantic Scoring Approach for Service Offers 313

On the other side, we consider the offers of three providers presented in Table 1.
Download time values of provider offers are computed using indirect correspondences.
Table 1 shows the scores of the provider offers according to the formulas presented in
section 3 of this paper. In this case study, we respectively considered these admissible
values for the client constraints on “availability”, “download time” and “price”: VQ2,min=0,
VQ2,max=100, VQ3,min=1, VQ3,max=60, VQ4,min=1 and VQ4,max=6 and ε is equal to 0,01. To
compute the linguistic terms scores, we used WordNet::Similarity measures [9].

To better illustrate the advantages of our service sourcing approach, we have
compared its results with some existing works [3] and [4]. These two works give the
same results. In the existing approaches, the scores of the linguistic terms cannot be
computed and indirect correspondences are not taken into account. Consequently, we
considered the score of linguistic terms equal to 1 if the terms are syntactically
equivalent and 0 otherwise for these approaches. Figure 1 shows that the first provider
will have the highest score using our approach whereas the second provider will be
selected in the other approaches. In addition, these approaches give the same score to
the first and the third provider despite that the first provider gives better offers than
the other providers. Consequently, we conclude that our approach gives better results
than the existing service sourcing methods. In fact, it allows selecting offers
according to both high level functional and non functional constraints given by the
client. These constraints can be based on literal values (such as C1 in this case study)
or numeric values (such as C2 and C3) using several mathematical operators.
Moreover, our approach can detect indirect correspondences between intentions and
offers (like C3) which are not detectable by other service sourcing works. The use of
two types of scores offers a fair and accurate classification method of service
providers. This classification ranks provider offers according to the number of the
satisfied constraints presented by the score SS and then enhances these scores by the
score SD. The final score gives better ranking precision especially when some offers
satisfy the same number of constraints (the case of the providers 1 and 2 in Table 1).

Fig. 1. Case study experimental results

5 Conclusion

Given the continuous growth of multi-service providers, the establishment of an
approach that helps clients selecting the appropriate offers to their requirements is
highly recommended. In fact, many offers can be distinguished even if they look

314 I. Guidara, K. Fakhfakh, and T. Chaari

similar for non-expert clients especially when the providers use complex terms that
cannot be easily understood by the clients. To achieve this goal, we defined a novel
semantic approach for service sourcing. This approach helps the clients to freely
express their intentions using their own language and knowledge that can be different
from the provider offers. In our approach, we started by generating direct and indirect
correspondences between the client and the provider terms in order to evaluate the
available offers. In a second step we defined a fair and accurate scoring algorithm that
can distinguish offers satisfying the same number of the client constraints and having
close values. In fact, the computed scores depend on admissible ranges defined in a
QoS ontology to allow a fair classification of these offers. In addition, these scores
depend on the number of the satisfied functional and QoS constraints on one hand and
the semantic distance between the linguistic and numeric values proposed by the
provider and those required by the client on the other hand. Moreover, our approach
can evaluate the provider offers using indirect QoS correspondences which are not
detectable using the existing service sourcing algorithms.

As a future work, we aim to evaluate the performance of our algorithms and
optimize our approach by reducing its execution time. In fact, dealing with a large
number of offers can cause scalability issues. This can be avoided by deploying our
algorithms on parallel environments like grids. We also intend to extend our sourcing
approach to support the selection of service compositions.

References

1. Kaouthar, F., Tarak, C., Saïd, T., Mohamed, J., Khalil, D.: ODACE SLA: Ontology Driven
Approach for Automatic Establishment of Service Level Agreements. IJSSOE 1(3), 1–20
(2010)

2. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference based selection of highly
configurable web services. In: Proceedings of the 16th International Conference on the
World Wide Web WWW 2007, pp. 1013–1022 (2007)

3. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A QoS-Aware Selection Model for Semantic
Web Services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp.
390–401. Springer, Heidelberg (2006)

4. Zeng, L.Z., Benatallah, B., Ngu, A.H.H.: QoS-aware middleware for Web services
composition. IEEE Transaction on Software Engineering 30(5), 311–327 (2004)

5. Andrikopoulos, V., Fugini, M., Papazoglou, M., Parkin, M., Pernici, B., Siadat, S.H.: QoS
Contract Formation and Evolution. In: Proceedings of the 11th International Conference on
Electronic Commerce and Web Technologies (EC-WEB 2010), pp. 119–130 (2010)

6. Comuzzi, M., Pernici, B.: A framework for QoS-based Web service contracting. ACM
Transactions on the Web (TWEB) 3(3) (June 2009)

7. Marco, L.S., David, M., Claude, M.: Discovering Semantic Web services using SPARQL
and intelligent agents. Journal of Web Semantics 8, 310–328 (2010)

8. van Rijsbergen, C.J.: Getting into Information Retrieval. In: Agosti, M., Crestani, F.,
Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 1–20. Springer, Heidelberg (2001)

9. Siddharth, P.: Incorporating dictionary and corpus information into a context vector
measure of semantic relatedness. Master’s thesis, University of Minnesota, Duluth (2003)

Rich Communication Patterns for Mashups

Stefan Pietschmann, Martin Voigt, and Klaus Meißner

Technische Universität Dresden
01062 Dresden, Germany

{Stefan.Pietschmann,Martin.Voigt,Klaus.Meissner}@tu-dresden.de

Abstract. Mashups imply the lightweight combination of distributed
web resources – a paradigm which can be also applied to the presentation
layer to build interactive web applications. However, current solutions are
limited to very basic composition patterns and do not reflect the coor-
dination needs of the user interface. To tackle this problem, we propose
a novel approach for modeling rich communication patterns as part of a
mashup composition model, which supports the synchronization between
widgets, asynchronous data requests to backend services, and interaction
techniques like drag-and-drop. The concepts were realized and validated
with a number of sample applications.

1 Introduction

Mashups have become a prominent approach for building web applications from
distributed web resources, which has resulted in a multitude of mashup plat-
forms. Recently, research has addressed both formal, platform-independent mod-
els and the integration of user interface (UI) parts as first-class citizens into
mashups, e. g. in mashArt [1] or CRUISe [5]. However, the current solutions are
very limited when it comes to the “glue”, i. e., the means to connect the resources.
The latter are typically loosely coupled by “wiring” their outputs and inputs with
unidirectional links mapped on a publish/subscribe system, which is supposed to
offer the highest flexibility [2]. This results in a “fire-and-forget” communication,
which is simple at the first sight, but leads to more complex models when data
requests and synchronization between components are needed.

In the light of “universal composition” approaches, which equally integrate
backend and frontend components, new communication and coordination re-
quirements arise: The seamless integration of backend services as well as the
synchronization within the presentation layer are just two examples, which are
hard to realize with prevalent solutions.

To emphasize the requirements, we introduce a use case which serves as a
reference scenario throughout this paper. The application StockMash shown
in Fig. 1 gives an overview of stock indexes 1 2 , allows for comparing stock
performance 4 and managing a personal depot 3 5 . The most basic coordi-
nation need is resembled by the green arrows: unidirectional connections, e. g.,
to notify 2 when the stock index in 1 changes. Further, the stock selection in
1 may serve as input for different components, e. g., for comparison using 4 .

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 315–322, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

316 S. Pietschmann, M. Voigt, and K. Meißner

As the “target” depends on the context, the user needs to decide where to direct
the data (blue arrows). This can be achieved by platform-specific techniques,
like drag-and-drop. As the data is supplied by backend services, UI components
must be able to actively request it and receive asynchronous updates (to prevent
extensive polling). Finally, the stock comparison using 4 underlines the need
for the synchronization of components, e. g., to adjust the time frame in both
views (brown arrow).

Fig. 1. Coordination relations in the use case StockMash

The contributions of this paper are twofold. First, we present an advanced
communication model comprising different coordination types, which are mod-
eled as extensions of an event-based composition model. Second, we discuss its
interpretation and application within an existing composition infrastructure, and
show how drag-and-drop interaction can be mapped to this model.

Our paper is structured as follows: In Sect. 2, we introduce the design-time
concepts to model rich communication. Then, Sect. 3 presents the runtime con-
cepts and realization, including the communication system and extensions to-
wards drag-and-drop, with the help of our reference scenario. In Sect. 4 we
conclude this paper and give an outlook on future work.

2 Modeling Rich Coordination in Mashup Applications

Our solution builds on the universal composition approach of CRUISe, which fa-
cilitates the model-driven development and deployment of adaptive, composite
web applications. Therefore, we rely on its event-based component and compo-
sition models described in [5]. Therein, components of a mashup are described
declaratively with the Semantic Mashup Component Description Language (SM-
CDL) using three abstractions, namely Property, Event, and Operation. Based
on these abstractions, developers can compose interactive mashup applications
using the Mashup Composition Model (MCM).

Facilitating Rich Communication in Mashups 317

In the following, we present an extension of these concepts to foster the above-
mentioned coordination needs.

2.1 Modeling Static Communication Patterns with Links

Communication and coordination in mashup systems are usually expressed by
“wiring” inputs and outputs of components. In our solution, those wires are
called links which connect n events with m operations in case their parameters
are semantically compatible. Thus, when one component issues an event indi-
cating a state change, all operations registered at the same link are invoked with
the event data. Since the link acts as a mediator between events and operations,
all components remain loosely-coupled.

To support unidirectional, bidirectional and synchronization connections, we
introduce different link types, which are discussed in the next few paragraphs.

Links represent the basic type of unidirectional communication as supported
by the majority of composition approaches. They allow for connecting n events
with m operations, so the data of an event is published to all registered oper-
ations. A response is not expected, thus, a one-way communication is estab-
lished. Every link is implicitly typed by the data, i. e., the parameters it carries.
Hence, only events and operations whose parameter signatures are semantically
equal can be linked. The MCM does offer means for manipulating and mapping
parameter signatures, yet, those concepts are out of the scope of this paper.

BackLinks represent bidirectional, i. e., request-response connections between
components, as usually required for data requests to backend components. As
illustrated by Fig. 2-1, BackLinks indicate an implicit callback (link) created at
runtime, which returns requested information to the publisher of the initial link.
To avoid ambiguities between the returning messages, BackLinks are established
between n requesters (events) and only one replier (operation).

As soon as an event is published on a BackLink, the target operation is in-
voked, just as with a Link. However, upon completion, it issues a CallbackEvent
with a return message, which is routed to invoke the CallbackOperation of the

Component A

Event EA(P<x>)

Operation OA(P<Y>)

Component B

Operation OB(P<X>)

Event EB(P<Y>)

 BackLink

implicit callback

callBackEventcallBackOperation

Component A

Event
propertyChanged(P<x>)

Component B

Operation
setProperty(P<X>)

 PropertyLink Property A<x> Property B<x>

Event
propertyChanged(P<x>)

Operation
setProperty(P<X>)

implicit link

implicit callback

1)

2)

Fig. 2. Communication using Back- or PropertyLinks

318 S. Pietschmann, M. Voigt, and K. Meißner

initial event. Consequently, to model such a connection, the information about
callback events and operations must be available at design time. Therefore, we
extended the SMCDL with these two cross references, indicating the implicit
connections between incoming and outgoing messages of a component.

By default, the implicit response channel is closed after the callback message
has been sent (single pull). However, it can be kept open by the replier to facil-
itate asynchronous updates (active push). This needs to be explicitly supported
by the replying component as expressed by the operation attribute (syncable)
within its SMCDL. Using the attribute syncThreshold of the BackLink, model
authors may set the minimum time interval (in s) between new updates, e. g., to
limit the communication and performance overhead.

PropertyLinks allow for the synchronization of the stateful components by
connecting their properties. This is especially useful for multiple views on shared
data, which necessitates their filters to be synchronized. In our reference scenario,
this is exemplified by the stock details component showing different stocks, yet
in a synchronized time interval.

As illustrated in Fig. 2-2, PropertyLinks can be seen as an abstraction layer
on top of the event model. They connect properties – something end-users can
more easily understand – but are actually mapped to the corresponding change
events and setter operations automatically. The synchronization works mutually,
so all participants of this pattern are uniformly modeled as SyncTargets.

The introduction of PropertyLinks does not only reduce the complexity and
redundancy in the MCM by replacing n! Links with only one PropertyLink with
n SyncTargets. Even more importantly, it allows runtime platforms to handle
cycles, which would result from using normal Links (A ⇒ B ⇒ A).

2.2 On-Demand Coordination

If the static definition of a mashup’s internal data flow is either not desirable
or not possible, on-demand coordination becomes necessary. With regard to our
reference scenario, this is the case for the stock details components 4 . As the
stock list 1 has only one output – the selected stock – it cannot be connected
with both detail views without both of them showing the same data. Thus, the
choice, which stock to show in which view, is to be made on-demand at runtime
by the user, e. g., by drag-and-drop or other techniques available.

To support this, components need to specify a dataSource as part of their in-
terface description. As with any property, it comprises a number of semantically
typed parameters representing the data to be shared. Potential targets of an
interaction are already specified in the form of operations, as they define which
data can be consumed by components, regardless of how it is invoked.

The basic idea of on-demand coordination is: If a dataSource of a component
is active, e. g., upon a drag or voice command, any compatible operation within
the mashup may act as data sink. The detection of the trigger as well as the
coordination between the data source and sink is up to the platform, which hides
components from the peculiarity of specific interaction techniques.

Facilitating Rich Communication in Mashups 319

2.3 Modeling the Reference Scenario

To prove the feasibility and practicability of our model and composition system,
we built several composite applications, one of which represents the use case
introduced in Sect. 1. Fig. 3 illustrates the coordination of its stock details com-
ponents 4 as modeled in the MCM. As soon as a stock has been selected, they
request its data via a BackLink and from this point receive updated values every
5 s. Further, a PropertyLink connects the interval property of both instances,
so that the time span shown in both views is always the same.

stockSelected

 PropertyLink interval interval

StockServicestockOfInterest

stockDetails

update update

PropertyLinkkkPropertyLink

 callbackEvent

BackLink

stockSelected

Fig. 3. Coordination links within the sample application

This practical example also illustrates the simplification of the MCM: In com-
parison with a traditional version, where requests and synchronizations were
mapped to normal Links, the novel model allowed for a reduction of connections
from 19 to 8, not even considering the additional possibilities of permanent,
asynchronous updates and the handling of cycles.

3 Supporting Rich Communication Patterns at Runtime

As mashup components are developed independently and can be composed dyna-
mically, realizing the above-mentioned communication patterns is a challenging
task. In the following, we sketch the basic principles of a corresponding commu-
nication system, which was implemented as extension of the CRUISe platform.

3.1 Message Format

To realize the data exchange between components developed by different vendors
with different technologies a uniform vocabulary is needed. Therefore, all com-
ponents must adhere to a platform-independent message format. The universal
composition implies the communication between components of different appli-
cation layers and complexity, so the format we have developed is generic, simple,

320 S. Pietschmann, M. Voigt, and K. Meißner

yet extensible. It is divided in control information and the actual payload. The
latter forms the body of a message and contains the actual data represented by
event and operation parameters. The control information in the header includes
– among others – the following elements:

Status indicates the success or failure of message distribution and data transfer.
To this end, we adopt the HTTP status codes.

Name equals the event name which, combined with the component name, re-
sults in a unique ID is used to resolve link subscriptions for the message.

CallbackID is an identifier for a certain bidirectional connection. It is auto-
matically added by the MRE, forwarded by replying components and thus
used to identify associated messages and subscribers on the BackLink.

SyncThreshold is an optional parameter which defines a threshold for per-
manent updates (cf. Sect. 2.1). For unidirectional messages, this field is left
blank, while any other numeric value defines the minimum time interval
between two updates to be enforced by the channel.

3.2 Link Interpretation and Realization

To support the different link types at runtime, we employ the broker pattern
[3], which nicely fits with the event-based nature of the model. The Event
Broker – a module of the mashup platform – is responsible for managing all
the channels specified in the MCM. Further, it offers an API to create, configure
and send messages. Thereby, components can easily create and send messages,
including life-cycle events, change-events for properties, as well as “ordinary”
events specified in the SMCDL. Apart from message and type validations, the
Event Broker’s main responsibility lies in distributing messages according to the
links in the MCM, as discussed in the following.

Links can be mapped directly to the existing infrastructure: Components simply
create a new message and publish it, using the broker’s API. Using the combi-
nation of event and component name as unique ID, the message can be assigned
to all the Links it is part in. Following optional mediation steps (cf. [4]), it is
then used to invoke all the operations registered with the Link. Upon comple-
tion, the broker returns a message to the publishing component, which includes
a status code to indicate the success of the data transfer. It is up to component
developers if and how this information is interpreted.

BackLinks pose additional challenges to the communication architecture. While
the initialization and distribution of messages follow the workflow described for
Links, the handling of the response requires additional steps. This is, where the
CallbackID from Sect. 3.1 comes into play. It is added by the broker to every
message published on a BackLink and forwarded by the replier in the Callback-
Event. Thereby, returning messages can be distinguished from “ordinary” ones
published by a component and can be forwarded to the CallbackOperation of
the initial requester (cf. Fig. 2-1). Asynchronous updates published via Call-
backEvents are handled likewise; however, the broker additionally enforces the
syncThreshold defined in the MCM.

Facilitating Rich Communication in Mashups 321

Overall, the BackLink is a simple yet effective mechanism to realize data re-
quests between UI and backend components. In our use case scenario, both the
automatic update of stock and index information as well as of the depot data can
be realized this way. Instead of polling the information, the data is permanently
updated from the backend by keeping the channel open.

PropertyLinks offer an abstraction to the event model and are thus harder
to interpret. Basically, they are mapped to Links between change events and
setter operations of the corresponding properties. However, the following chal-
lenges must be handled: (1) The synchronization affects all participants of the
PropertyLink, including the trigger component. Thus, in order to prevent the
distribution of a state change to the originator, the latter must be filtered out by
the broker dynamically. (2) Once the new property value is set for all registered
components, they send change events in return. To prevent communication over-
head, the broker caches the state of a PropertyLink, i. e., the current property
value. If the payload of an update message equals the cached state, the distribu-
tion of this message is skipped. 3) Finally, property changes may overlap, which
may lead to data loss if change events are issued while the previous synchroniza-
tion has not been finished. Thus, the Event Broker employs a FIFO queue, which
saves incoming updates and delays them, until the current update is finished.

With regard to our reference scenario, PropertyLinks can be used to realize the
synchronization of the time interval (property) in the stock detail components
4 to improve the comparability of the stocks charts.

3.3 Supporting On-Demand Coordination

Realizing on-demand coordination using device- or platform-specific interaction
techniques poses additional challenges. On the one hand, the trigger interaction
is generally recognized by the source component itself. However, as it has no
knowledge of the surrounding platform and components, the platform needs to
handle the coordination by mapping the interaction to the link model, so that
the target component remains independent from any technological peculiarities.
This mediation is carried out as follows:

Starting point of an on-demand coordination is a dataSource (Sect. 2.2) which
is defined in the SMCDL and, thus, represented in the MCM. If a component
detects the trigger interaction, e. g., dragging of data, it publishes a correspond-
ing event. The message contains a reference to the dataSource and its typed
parameters. As a result, the MRE creates invisible data sinks, e. g. drop zones.
Sinks are only enabled for such components that comprise at least one opera-
tion compatible with the dataSource. Finally, when the end of the interaction
is detected, e. g., a tangible has been placed, the platform usually receives a
corresponding system event. If the target component offers more than one ap-
propriate operation, the user may select the action to take. Then, the data sinks
are removed and the platform realizes the data flow: Therefore, it requests the
data in question from the source component and invokes the selected operation
of the target component.

322 S. Pietschmann, M. Voigt, and K. Meißner

4 Conclusion and Future Work

Recently, mashup development has moved towards the presentation layer, result-
ing in universal mashups which enable the lightweight combination of distributed
backend and frontend resources. However, current solutions are limited to basic
communication patterns and do not support the coordination needs implied by
the UI, e. g., data requests to backend services, synchronization of widgets, and
on-demand coordination using interaction techniques, such as drag-and-drop.

In this paper, we have introduced a novel concept for modeling advanced
communication patterns as part of a universal composition model. In contrast
to prevalent solutions, it supports active pull and push connections as well as
component synchronization. Further, we have shown, how to support on-demand
coordination, e. g., using drag-and-drop, and how all these types of coordination
can be mapped to common event-based coordination mechanisms.

By realizing the use case scenario, among others, the solutions could be vali-
dated and proved to be feasible and practicable. They both simplify the modeling
effort and allow unleashing the full potential of universal composition, as they
enhance its coordination capabilities with respect to the needs implied by the
interactivity of the applications.

Currently, we are working on mechanisms to support end-users in dynamically
establishing coordination, i. e., property links, themselves. After that, we plan
to conduct extensive user studies, which include the on-demand coordination
concepts described here.

Acknowledgments. The work of Martin Voigt is funded by the German Fed-
eral Ministry of Education and Research under promotional reference number
01IA09001C. Further, we would like to thank our student Robert Wende for his
valuable contributions to this work.

References

1. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
428–443. Springer, Heidelberg (2009)

2. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35, 114–131 (2003)

3. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (March 1995)

4. Pietschmann, S., Radeck, C., Meißner, K.: Semantics-based discovery, selection and
mediation for presentation-oriented mashups. In: Proc. of the 5th Intl. WS on Web
APIs and Service Mashups. ACM (September 2011)

5. Pietschmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M., Meißner, K.: A
metamodel for context-aware component-based mashup applications. In: Proc. of the
12th Intl. Conf. on Information Integration and Web-based Applications & Services.
ACM (November 2010)

Supporting View Transition Design of

Smartphone Applications Using Web Templates

Kazuki Nishiura1, Yuta Maezawa1, Fuyuki Ishikawa2, and Shinichi Honiden1,2

1 The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

{k-nishiura,maezawa,f-ishikawa,honiden}@nii.ac.jp

Abstract. Many developers have implemented native smartphone ap-
plications (NSAs) that have the same functionalities as those of existing
web applications (WAs). They need to redesign web pages as views of
NSAs owing to their constraints, such as compact displays. However, it
can produce a NSA with low global navigability. We propose a framework
that can support developers in designing view transitions of NSAs on the
basis of WAs. We focus on web templates to leverage well-designed web
page transitions. Our framework 1) extracts a page transition model from
a WA to create candidate view transitions of a NSA, 2) provides an inter-
face where developers design these views to solve the constraints, and 3)
suggests design modifications to increase global navigability calculated
by proposed criteria of navigation costs for users. After examining case
studies, we concluded that our framework could support developers to
design easy-to-navigate NSAs.

1 Introduction

The rapid spread of smartphones1 has enabled users to access the web almost
anywhere. However, owing to features of smartphones, such as small screens
and touch panels, users cannot comfortably browse web applications (WAs) de-
signed for desktop computers. To meet demands of smartphone users, many WA
providers have published native smartphone applications (NSAs).

Many efforts have addressed the problem of web browsing on small devices [1].
Some researches took user input to custom pages [2], and others automatically
reorganized structures of pages by using heuristic rules and machine learning
techniques [3]. Although they focused on individual pages or single tasks, de-
velopers should consider global navigability of applications in order to increase
usability. Owing to the importance of transition designs in WA development [4],
researchers have attempted to improve navigability of web sites [5].

In this paper, we propose a framework that can support developing NSAs on
the basis of existingWAs. Developers will be able to not only inherit well-designed
page transitions of WAs but also provide users consistent navigation with WAs,

1 http://www.gartner.com/it/page.jsp?id=1543014

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 323–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.gartner.com/it/page.jsp?id=1543014

324 K. Nishiura et al.

which will increase usability of NSAs [6]. Our framework extracts a transition
model of WAs to provide candidate view transitions of NSAs. To handle dynamic
web pages, our model focuses on web templates that are de-facto standards in
WA development [7]. Using our framework, developers can design views of a NSA
from web templates in order to overcome the display size constraints. They can (i)
extract elements from web templates and (ii) divide views to create a child view
linked from the original view to reduce the number of elements in each view. Al-
though these operations affect global navigability of the NSA, developers cannot
perceive whole transitions in the NSA when designing a single view. Therefore,
our framework estimates global navigability by defining a formula for navigation
costs of users. Our framework suggests modifications of view transition design to
increase the estimated navigability. Our suggestions consist of (i) recovering a link
removed by developers, (ii) deleting a link, and (iii) shifting a link from or to child
views. Developers can design view transitions interactively by accepting or reject-
ing these suggestions in accordance with their heuristics.

Our contributions are as follows:

– Proposal of leveraging page transitions of WAs when developers design view
transitions of NSAs. We focus on web templates to build a transition model.

– Implementation of our framework. Using our framework, developers can de-
sign views of NSAs from web templates and receive suggestions for design
modifications to increase global navigability of NSAs.

– Evaluation of our framework by means of case studies that showed our tool
could support developers in designing easy-to-navigate NSAs.

2 Web Application-Based Native Smartphone
Applications

To leverage page transitions of a WA, developers redesign web pages as views of
a NSA. This involves two difficulties. First, contents of web pages are changed at
runtime. We focus on web template to handle this dynamic nature as described in
Sect. 2.1. Second, developers can reduce global navigability of NSAs (Sect. 2.2).

2.1 Web Templates

When developers design views of NSAs using web pages that have dynamic na-
ture, looking at the page in a particular situation is not enough. To handle slight
changes of a page, previous work [2] calculated the similarity among elements
by using the Document Object Model (DOM). With this approach, however,
developers may fail to notice elements hidden when redesigning the page.

Our approach leverages web template files as bases for views of NSAs. Web
templates are predesigned web pages that specify fixed aspects of a presentation.
They also contain logical specifications (e.g., if, foreach) that dynamically control
the page structure. A library called a template engine combines web templates
with dynamic contents to produce a response. Web templates are widely used
in WA development [7], because web page designers can separate a presentation

Supporting View Transition Design of Smartphone Applications 325

from the logic behind the page. Our framework uses web templates that contain
all possible structures by their very nature, thus developers can handle all dis-
playable elements regardless of any scenarios. In our prototype tool, we consider
PHP-based WAs and the Smarty template engine library (www.smarty.net).

2.2 Navigability in Native Smartphone Applications

Developers design views of NSAs on the basis of each single web page. They (i)
select elements from a page and (ii) divide elements into multiple views if the
page contains too many elements. In other words, they (i) remove unselected links
and (ii) place links where they want. These operations decide view transitions,
and thus affect global navigability of NSAs.

In Fig. 1, we show examples of page transitions in an online bookstore WA.
Boxes represent web pages, and arrows represent links. Look at a link from Index
to Audio Books (b). It helps users reach from Music to Audio Books in two clicks
(a, b), from Index to English in three clicks (b, c, d), and so on. If developers re-
move the link, users can follow a detour that goes through a Books page (e, f).
These examples demonstrate two facts: a link contributes to multiple paths and
the impact of deleting a link depends on existences of other links. Therefore, de-
velopers cannot estimate an importance of a link by simply looking at its source
and destination pages. However, they can barely figure out whole transitions while
designing a certain single view or consider all the numerous transitions together.

Index

Books

Audio Books

Music

Fiction

History English

Language Japanese(a)

(e)

(d)
(b)

(c)

(f)

Fig. 1. Simplified page transition graph of an online bookstore web application

3 Proposal Framework

We propose a framework to support developers in designing view transitions of
NSAs by using page transitions of existing WAs. Our framework 1) extracts a
transition model of a WA to provide candidate view transitions of a NSA, 2)
offers an interface where developers redesign web pages of the WA as views of the
NSA, 3) calculates global navigability of the NSA, and 4) suggests modifications
of transition design to developers in order to increase global navigability.

3.1 Definition of Transition Models

First, our framework generates a Web Application Transition (WAT) model
from a WA. To extract the model, we implemented a static path tracer, which
pessimistically traces all possible execution paths of a given PHP code and re-
members all displayable templates. From given template files, our framework
can analyzes transition targets by extracting a and form tags. The model is then
transformed into a Native Smartphone Application Transition (NSAT) model,
which reflects the design of developers for the NSA.

http://www.smarty.net

326 K. Nishiura et al.

Figure 2 shows a meta WAT model given in the Unified Modeling Language
(UML). The two main entities in WAs are a URL and a WebPage. A user sends a
request to a URL, and then a WA sends a response that contains an appropriate
WebPage or redirects the user to another URL. A WebPage contains links and
forms by which users send a request to a WA. WebPages are StaticPages or
DynamicPages whose contents are fixed or generated at runtime, respectively.
Our framework focuses on the WAs using web templates, thus a dynamic page
is generated by assigning variables to a web template file.

Fig. 2. Meta model of page transitions in general web applications

We model view transitions in NSAs by extending the WAT model (Fig. 3).
A WebPage is transformed into a View of the NSA. In addition, we add Child-
Views and internal links. Note that ChildView is a view derived from the source
of internal link, thus users need not send any additional requests to access it.
Additionally, users need not communicate with a server to access StaticViews,
because NSAs possess layout files on devices. We renamed an association towards
StaticView as display.

Fig. 3. Meta native smartphone applications transition model. Extension of Fig. 2.

3.2 Estimation of Navigation Costs in Smartphone Applications

In this section, we formulate navigability in NSAs that our framework aims to
optimize. Hollink et al. [5] organized previous studies that modeled navigation
costs in WAs. They noted that navigation costs for users were determined by the
number of pages they visited and the number of choices (i.e., links) on each page.
In addition, when they simply assumed these members have a liner relationship
to navigation costs, this appeared to fit actual usage logs reasonably.

We extend their formula to model the navigation cost in NSAs generated by
our framework. First, we consider redirections that consume communication time

Supporting View Transition Design of Smartphone Applications 327

between clients and servers. Second, among edges in a NSAT graph2, display and
internal link edges do not require communications with servers, as described in
Sect. 3.1. Therefore, we need to consider only the number of response in a path.
Let α, β, and γ parameters. We can formulate time consumption as follows:

T ime(Path) = α | Responses | +β | Redirections | +γ
∑

choice(V iew) (1)

Here, Choice represents the number of links on a view. Using (1), we define Global
Navigability (GN) as a weighted sum of the minimum navigation time between
two arbitrary views in NSAs. Given ViewPair (v1, v2), we define ShortestPath as
a path from v1 to v2 that minimizes Time. In addition, developers specify a Value
function that returns the importance of a path. They can define the function based
on access logs or their own intentions (e.g., leading users to profitable items).

GN =
∑

(V alue(V iewPair)× T ime(ShortestPath(V iewPair))) (2)

3.3 Suggestions for Modifications of View Transitions

Our framework suggests three kinds of operations: recovering, deleting, and shift-
ing (Fig. 4). Among candidate operations, the one that improves GN the most is
suggested. The computation of GN requires all-pairs shortest paths, which takes
O(|V iews|3) time by simply using Floyd-Warshall algorithm. Here |V iews| de-
notes the number of views in a NSA. Once we calculate GN, we can calculate how
each operation would change GN in O(|V iews|2) time. We can define a utility of
a link as the difference in GN between whether the link exists. Intuitively, our
framework aims to leave links with high utility and remove those with low utility.

The recovering (Fig. 4.a) operation recovers a link removed by developers.
While developers design each view, they can hardly estimate a link utility that

View A

URL1

URL2

URL3

View A

URL1

URL2

URL3

View A

URL1

URL2

URL3

View A

URL1

URL2

URL3

a. recovering

b. deleting

View A

c. shifting
URL1

ChildView

URL2

URL3

View A

URL1

ChildView

URL2

URL3

View A

URL1

ChildView

URL2

URL3

View A

URL1

ChildView

URL2

URL3

View A

URL1

ChildView1

URL2

URL3

ChildView2

View A

URL1

ChildView1

URL2

URL3

ChildView2

C-1

C-2

C-3

Fig. 4. Transition design of developers (left) and suggestion by our framework (right)

2 The model described in Sect. 3.1 can be re-interpreted as a graph. In the following,
we use model and graph terms (e.g., page v.s. node) interchangeably.

328 K. Nishiura et al.

is determined by subsequent paths from the link target. Therefore, they might
delete useful links. The deleting (Fig. 4.b) operation, in contrast, deletes unnec-
essary links. The more links on a view, the harder for users to choose the desired
link. Therefore, deleting an unimportant link reduces the cost for users to choose
links. The shifting (Fig. 4.c) operation shifts a link from a view to its child view
(c-1), from child view to its parent view (c-2), or from a child view to another
child view (c-3). Creating a child view can distribute costs of choosing links. Our
framework assists in shifting less important links to child views and vice versa.

3.4 Tool Implementation

We implemented a prototype tool of our framework (Fig. 5). To design a view
of a NSA, developers can select elements from a web template visualized on the
left of our tool. Selected elements are displayed on the emulation screen at the
center. If a view contains too many elements, developers can create a child view,
which is shown on the right. They are required to specify an appropriate text
for the link to the child view. After developers finish designing views, our tool
suggests modifications to the design in order to improve global navigability of the
NSA (Fig. 6). Our tool generates layout files of NSAs for the Android platform
(developer.android.com). Elements selected by developers are converted into
layout files by removing trivial HTML tags (e.g., decoration tags such as b, i)
and replacing tags to corresponding GUI elements of NSAs. These transcoding
rules are based on our heuristic.

Fig. 5. Designing view (center) ant its child
view (right) based on web templates (left)

Fig. 6. Suggestion to improve navi-
gability

4 Evaluation and Discussion

We conducted case studies with OpenPNE2.14.7 (www.openpne.jp)3, which is
an open-sourced social networking service (SNS). The page shown in Fig. 7
contains too many links. Each category has a few item links and a read more
link that leads to an item list page. Developers delete some links that seem less
important, as users can reach these pages via read more links anyway. However,

3 We translated pages shown in this section into English.

developer.android.com
www.openpne.jp

Supporting View Transition Design of Smartphone Applications 329

the destination page of a post on community board link contains useful links,
such as send message and cancel attending events. Our framework calculates GN
and suggests a recovering operation of the link. This case shows that if there
are links whose targets have relationships as parent-child or siblings, developers
may delete one of them because an alternative path obviously exists. In contrast,
developers can hardly estimate tradeoffs between an additional cost incurred by
a link deletion and a benefit of decreasing the number of links.

�������	��
��

������������

���������

Fig. 7. Many contents and links on a page

��������	
����

����
���

����
�
���
�����

������
��������

Fig. 8. A redundant link on a page

Because this page contains too many elements, developers create child views.
They shift some links to leave only useful links in a parent view. Most of the
remaining links have a high utility, but a few do not. In addition, the recovering
operation recovers a relatively unimportant link, which increases the cost of
selecting other important links. Our framework suggests the shifting operation
of a post item review link that has low utility. A shifting operation can assist the
placing of many links among multiple views based on their utility.

Figure 8 shows a community board page. There are links to topic, topic list,
and post a new topic pages. Developers decide to use all of them in the NSA.
However, users prefer to post a new topic from a topic list page after checking
existing topics. Our framework suggests a deleting operation of the link to post a
new topic so that costs of selecting other important links are reduced. Generally,
if multiple pages contain links for the same target, developers may use both links.
While this choice may increase or decrease navigability, our framework suggests
a deleting operation if and only if it works well.

Our framework has some limitations. It cannot deal with links to external
WAs nor distinguish different contexts with the same URL and web templates.
In addition, our current implementation to extract a WAT model simply traces
all execution paths, thus it takes several seconds to trace even a simple code.

5 Related Work

Researchers have attempted to make web pages designed for desktop computers
comfortable to browse on narrow screens [1]. Chen et al. [3] utilized both DOM

330 K. Nishiura et al.

structures and presentations of pages to split them into small pages. Because their
successes were based on heuristics and machine learning techniques, their algo-
rithms do not always work optimally. The Highlight [2] tool enables users to make
task-based mobile WAs from existing WAs. Users can extract elements from each
page related to the task to reduce the page size. The tool reapplies the customiza-
tions when users visit a page with a similar structure. However, as described in
Sect. 2.1, the reapplication may fail owing to dynamics of web pages.

Our method helps WA developers implement NSAs. Titanium SDK
(www.appcelerator.com/platform/titanium-sdk) enables NSA development
using HTML and JavaScript, which are popular among WA developers. In addi-
tion, Prach et al. proposed a mashup framework that could utilize existing web
services [8]. However, these approaches did not consider global navigability of
NSAs.

Several methods have been proposed to improve web site navigability [5].
Smyth and Cotter [9] reorganized the menu structure to reduce navigation ef-
forts of users modeled by the number of clicks and scrolls. Anderson et al. [10]
proposed an algorithm that could suggest shortcut links for mobile web users
to reduce the number of communications required. These researchers, however,
unrealistically assumed that any two pages could be linked. In fact, modern WAs
generate web pages at run time depending on sessions, parameters, and so on.

6 Conclusion and Future Work

We proposed a framework to support developers in designing view transitions
of NSAs. We focuses on web templates to extract page transitions in WAs as
candidate view transitions in NSAs. Our framework provides an interface to
design views of NSAs and suggests design modifications by estimating navigation
costs. Using our framework, developers can avoid decreasing global navigability
of a NSA while designing each view. By investigating case studies, we conclude
that our framework can support designing easy-to-navigate view transitions for
NSAs.

Our future work is to implement and publish real world NSAs using our frame-
work. In addition, we aim to extend this work, which leverages page transitions,
to handle modern AJAX-based WAs by extracting state transitions on each web
page [11]. Moreover, we intend to establish a method for modifying NSAs with
keeping consistency in response to frequent updates of WAs.

References

1. Zhang, D., Lai, J.: Can convenience and effectiveness converge in mobile web? a
critique of the state-of-the-art adaptation techniques for web navigation on mobile
handheld devices. IJHCI 27(12), 1133–1160 (2011)

2. Nichols, J., Hua, Z., Barton, J.: Highlight: a system for creating and deploying
mobile web applications. In: UIST, pp. 249–258. ACM (2008)

3. Chen, Y., Xie, X., Ma, W.Y., Zhang, H.J.: Adapting web pages for small-screen
devices. IEEE Internet Computing 9(1), 50–56 (2005)

4. Nielsen, J.: User interface directions for the web. CACM 42(1), 65–72 (1999)

www.appcelerator.com/platform/titanium-sdk

Supporting View Transition Design of Smartphone Applications 331

5. Hollink, V., Someren, M., Wielinga, B.J.: Navigation behavior models for link
structure optimization. UMUAI 17, 339–377 (2007)

6. Gong, J., Tarasewich, P.: Guidelines for handheld mobile device interface design.
In: DSI Annual Meeting (2004)

7. Gibson, D., Punera, K., Tomkins, A.: The volume and evolution of web page tem-
plates. Special Interest Tracks and Posters of WWW, pp. 830–839. ACM (2005)

8. Chaisatien, P., Prutsachainimmit, K., Tokuda, T.: Mobile Mashup Generator Sys-
tem for Cooperative Applications of Different Mobile Devices. In: Auer, S., Dı́az,
O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 182–197. Springer,
Heidelberg (2011)

9. Smyth, B., Cotter, P.: The Plight of the Navigator: Solving the Navigation Problem
for Wireless Portals. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002.
LNCS, vol. 2347, pp. 328–337. Springer, Heidelberg (2002)

10. Anderson, C.R., Domingos, P., Weld, D.S.: Adaptive web navigation for wireless
devices. In: IJCAI, vol. 2, pp. 879–884. Morgan Kaufmann Publishers Inc. (2001)

11. Maezawa, Y., Washizaki, H., Honiden, S.: Extracting interaction-based stateful
behavior in rich internet applications. In: CSMR, pp. 423–428. IEEE C.S (2012)

Turn the Page:
Automated Traversal of Paginated Websites�

Tim Furche, Giovanni Grasso, Andrey Kravchenko, and Christian Schallhart

Department of Computer Science, Oxford University,
Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@cs.ox.ac.uk

Abstract. Content-intensive web sites, such as Google or Amazon, paginate
their results to accommodate limited screen sizes. Thus, human users and au-
tomatic tools alike have to traverse the pagination links when they crawl the site,
extract data, or automate common tasks, where these applications require access
to the entire result set. Previous approaches, as well as existing crawlers and au-
tomation tools, rely on simple heuristics (e.g., considering only the link text),
falling back to an exhaustive exploration of the site where those heuristics fail. In
particular, focused crawlers and data extraction systems target only fractions of
the individual pages of a given site, rendering a highly accurate identification of
pagination links essential to avoid the exhaustive exploration of irrelevant pages.

We identify pagination links in a wide range of domains and sites with near
perfect accuracy (99%). We obtain these results with a novel framework for web
block classification, BERyL, that combines rule-based reasoning for feature ex-
traction and machine learning for feature selection and classification. Through
this combination, BERyL is applicable in a wide settings range, adjusted to max-
imise either precision, recall, or speed. We illustrate how BERyL minimises the
effort for feature extraction and evaluate the impact of a broad range of features
(content, structural, and visual).

1 Introduction

Pagination is as old as written information. On the web, no physical limitations force
us to paginate articles or result lists. Nevertheless, pagination is just as ubiquitous –
for traditional reasons (bookmarking), as well as technical (reducing bandwidth and
latency), noble (avoiding information overload), and not quite so noble (maximising
page views) ones.

If we are interested in the entire result, e.g., to search through a complete article or to
count the number of matching products, pagination quickly becomes a nuisance. This is
even more true for automated tools which are interested in extracting all results. Unfor-
tunately, pagination is not a core concept of HTML or the web, but is simulated through
links. The ability to distinguish such pagination links with high accuracy would be a sig-
nificant advantage for focused crawlers and automated data extraction. Given a reliable

� The research leading to these results has received funding from the European Research Council
under the European Community’s Seventh Framework Programme (FP7/2007–2013) / ERC
grant agreement DIADEM, no. 246858.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 332–346, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Turn the Page: Automated Traversal of Paginated Websites 333

method for recognising pagination links, once we reach a page containing relevant, but
paginated data, we can crawl, extract, or traverse the entire result set with minimal effort.

Nevertheless, existing crawlers and block classification tools do not incorporate high-
accuracy identification of pagination links: (1) Traditional crawlers are unfocused and
explore all pages of a site, therefore not requiring link or page classification. Focused
crawlers [1–3, 6, 8, 11–13, 15] and data extraction tools [4, 7, 18] considered this a
side issue, mostly addressed by manual supervision or simple heuristics combined with
an exhaustive fallback strategy. For focused crawlers, this is also influenced by the fact
that they already need a mechanism to distinguish relevant pages from irrelevant ones
and can apply it also for pagination links. (2) Block classification approaches are more
concerned with identifying large page segments, such as navigation menus or advertise-
ments, and are typically tailored for speed over accuracy.

We introduce a novel method for high accuracy identification of pagination links,
using a novel, flexible framework for block classification called BERyL, an abbreviation
for Block classification with Extraction Rules and machine Learning. BERyL combines
logical rules for feature extraction on one hand with machine learning for feature se-
lection and classification on the other hand. This approach enables different trade-offs
between speed, precision, and recall.

Aside of applications in web automation, pagination links are an interesting example
for block classification: They appear in a large variety and have themselves a rather
simple structure. Together, this makes it hard to identify them accurately with a single
class of features. Here, we consider content features, e.g., whether a link text is a num-
ber, visual features, e.g., whether a block is in the upper third of a page, or structural
ones, such as whether a link is the descendant of a div. Figure 1 shows the pagination
links on the second page of a paginated result set. There are two non-numeric pagina-
tion links (‹ and ›) that lead to the next and previous page and 13 numeric links leading
to the i-th page. For the identification of pagination links we are particularly interested
in determining those links that lead to next page in the series, here › and 3 (immediate
pagination links). Unfortunately, simple heuristics are not sufficient to achieve high ac-
curacy for the identification of pagination links (as verified in Section 6):

1. Content features: Checking the presence of certain keywords or tokens, such as
“next” and “›”, yields low precision and recall, unable to identify viable links
among numeric or image-only pagination links. Since this is a simple baseline
heuristic used in some focused crawlers, we investigate it in Section 6, extended
with numeric pagination links and some other refinements. We show that it can
achieve fairly high precision, but recall remains unacceptable.

2. Structural features: It is tempting to assume that such lists of pagination links will
be contained in easily identifiable, repeatable HTML structures. But as almost ev-
ery conceivable abuse of HTML structures indeed occurs in the web, any purely
structural approach is limited in its accuracy. Again, we validate in Section 6 that,
at least simple, heuristics based on structural features also fail (whether combined
with content features or not).

3. Visual proximity features: To counter HTML abuse, many data extraction and block
classification tools incorporate visual features. We could analyse the visual prox-
imity of links just as well, but although relatively sophisticated, such features fail

334 T. Furche et al.

Fig. 1. Numeric (1, 3−14) and non-numeric (‹ and ›)

to contribute significantly towards high accuracy results, either alone or combined
with content or structural features, as discussed in Section 6.

4. Page position features: Pagination links usually appear on top or below the pagi-
nated information. Thus, a link’s relative position on a page or whether it occurs in
the first screen (at a typical resolution) might seem to constitute a promising fea-
ture. Unfortunately, advertisements or navigation headers and footers affect these
features significantly (and reliably recognising those blocks is anything but easy).
For simple page position features, Section 6 again shows that neither alone nor
combined with either content or structural features high accuracy is achieved.

Fortunately, BERyL makes it very easy to extract a large set of features through declar-
ative (Datalog) extraction rules. On the extracted feature model, we employ standard
machine learning techniques for automated feature selection and classification. Note
that the classifier only needs to be trained once for all pages, as demonstrated in Sec-
tion 6. Our approach is resilient against significant changes in the way HTML is used
on the web, as a single re-training of the classifier will suffice for the system to keep
functioning properly. With this combination, we achieve near perfect accuracy for iden-
tifying pagination links, yet remain comparable in performance to other block classi-
fication methods that incorporate visual features, identifying pagination links on most
pages within a few seconds. All these approaches are dominated in performance by the
underlying page rendering, which is necessary to extract visual features and becomes
unavoidable even for content and structural features, as scripted pages reshape the web
today. Furthermore, this is easily offset by the fact that a high-accuracy identification
of pagination links avoids following many irrelevant links without missing any relevant
data, e.g., in focused crawlers or data extraction.

To summarise, we present a novel method for identifying pagination links at a far
higher accuracy than previous methods:

1. In BERyL, a flexible block classification framework, we combine easy, declarative
feature extraction with automatic feature selection and classification (Section 4).

2. Specifically, we define a comprehensive set of features, spanning content, struc-
tural, and visual features through declarative Datalog rules (Section 5) and BERyL’s
flexible feature template rules.

3. With such a feature set, a small training set suffices, yet yields a classifier that
uses nearly all these features for effective classification (Section 5.1). The training
process is supported by BERyL-Trainer, a visual tool for labeling blocks on web
pages.

4. In an extensive evaluation (Section 6), we show that this approach achieves near
perfect accuracy (99%), yet remains highly scalable.

5. We investigate the impact (Section 6) of removing some features from the full
model and show that neither content, visual, nor structural features alone suffice.

Turn the Page: Automated Traversal of Paginated Websites 335

Table 1. Sample pages

Website n n1 n2 P R Screenshot

R
ea

le
st

at
e FindAProperty 370 1 1 1 1

Zoopla 332 1 1 1 1

Savills 234 2 2 1 1

C
ar

s Autotrader 262 2 2 1 1
Motors 472 2 2 1 1
Autoweb 103 2 2 1 1

R
et

ai
l Amazon 448 1 1 1 1

Ikea 290 2 0 1 1

Lands’ End 527 2 2 1 1

Fo
ru

m
s TechCrunch 279 0 1 1 1

TMZ 200 2 2 1 1

Ars Technica 341 2 2 1 1

2 Pagination Links: A Survey

To motivate the need for pagination link detection and give an impression of some of
the issues involved, Table 1 presents a selection of popular websites from the evaluation
corpus (on all of which we happen to identify pagination links with 100% precision and
recall). n is the number of links on the result page, n1 (n2) the number of immediate
numeric (non-numeric) pagination links on the page, and P, R are precision and recall
for our approach.1 For each website we also present a screenshot of either its pagina-
tion links or a potential false positive. Even in this small sample of webpages, we can
observe the diversity of pagination links: Only six of the twelve websites have a typ-
ical pagination link layout (non-numeric link containing a NEXT keyword and a list of
numeric links with the current page represented as a non-link). Some of the challenges
evident from this table are:

1. For FindAProperty and IKEA the index of the current page is a link and thus we
need to consider, e.g., its style to distinguish it from the other links.

2. For Zoopla the “50” for the results per page can be easily mistaken for an immediate
numeric pagination link.

3. For Savills, numeric links come as intervals. However, our NUMBER annotations also
cover numeric ranges (as well as “2k” or “two”).

4. For Amazon the result page contains a confusing scrollbar for navigating through
related products (right screenshot).

5. For Lands’ End the non-numeric pagination link is an image. However, our ap-
proach classifies it correctly, based on the context and attribute values.

1 Precision is the percentage of true positives among the nodes identified as pagination links,
recall the percentage of identified pagination links among all pagination links (and thus lower
recall means more false negatives).

336 T. Furche et al.

6. TechCrunch contains a single isolated non-numeric pagination link, that we are able
to identify due to the keyword present in its text and the proximity to “Page 1”.

7. TMZ has a pagination link that carries both a NEXT and a NUMBER annotation. From
the context, we nevertheless identify it correctly as non-numeric.

3 Related Work

Our work is mostly related to web-block classification. Although not directly addressing
our problem, fields such as focused (or topical) crawling and web data extraction try
to recognise relevant links to follow, such as pagination links. Focused crawlers [1–3,
8, 13], tailored towards navigating through more restricted collections of pages, mainly
aim at efficient exploration of pages relevant to a specific topic. To determine whether
a page is relevant, several heuristics are used mostly based on the link context (i.e., the
text appearing around the considered link), which is classified using machine learning
techniques [1, 3, 6, 11–13, 15]. None of these specifically address pagination links, but
rely on the general relevance metrics instead. Unfortunately, these approaches, though
requiring significantly more training for the classifiers than our approach, usually reach
accuracy below 70%, which is considerable for the general problem, but can be done for
pagination links – as shown in this paper – at much higher accuracy.

While focused crawlers are driven by a given topic, web data extraction systems of-
ten automatise the extraction of data from specific web sites. In this respect, pagination
links are fundamental. However, existing unsupervised approaches such as [4, 7, 18]
mainly focus on the extraction of records on a page, exploiting repetitive structure, and
do not address the task of automatically retrieving pagination links.

Web-block classification approaches typically start with a web-page’s corresponding
DOM-tree and identify sub-trees or sub-forests of this tree that correspond to particular
block types (e.g. advertisements or navigation menus). Most of them employ machine
learning techniques. However, to the best of our knowledge, none of these approaches
addresses pagination links or even similar block types, but rather focus on larger (multi-
node) block types. BERyL is also able to classify such blocks, but in this paper we focus
on recognising single-node block types such as pagination links.

Nevertheless, it is worth reviewing briefly how different feature types, content, vi-
sual, and structural, are used in these block classification systems. Most of the systems
combine content and visual features. For example, [16] focuses on determining two
block types (title and body) for one specific domain (news articles) and involves both
content and visual features. In a similar way, [14] distinguishes between content and
spatial features. In [10] the authors distinguish between stylistic features based on the
DOM-tree and visual appearance of nodes and lexical features based on annotation texts
of the DOM-nodes, quite similar to the content and visual features in our approach. The
authors list site navigation elements among their classification labels, but the F1 value
they achieve for this block (82%) is significantly lower than our result for pagination
links (99%) and the definition includes navigation menus and similar blocks. The same
is true for [17] and [9]. They also consider navigation blocks, but with a wider definition
and significantly lower accuracy (87% and 53%). They are also not able to distinguish
pagination links leading to immediate next pages from others.

Turn the Page: Automated Traversal of Paginated Websites 337

Block type customization

Annotated
DOM

Fact generation
& annotationURL

Annotation types

Feature
Extraction

Pagination
Link Model

Pagination
LinksClassification

Extraction rules

Firefox / GATE DLV Weka

Common
annotation types

import

Common features Feature templates

import instantiate

Training corpus

BERyL Trainer

visual corpus labeling

Fig. 2. BERyL: Overview

It may be surprising that we do not incorporate tags or tag paths of pagination links.
In [19] the broomstick data-structure is proposed, which employs both the sub-tree
rooted at a node (the broom head) and the tag path to it (the broom stick). However, in
the case of pagination links, we have observed a high variation among the relevant tags
and tag paths.

4 Block Classification with BERyL

Before turning to the specific problem of identifying pagination links, we introduce
BERyL, a novel framework for block classification on web pages. BERyL’s novelty is the
combination of extraction rules formulated in Datalog (with stratified negation and ag-
gregation) and machine learning. Through this combination BERyL allows a user (1) to
introduce new block types with minimal effort, (2) to intermix highly selective, block
type specific features alongside more common ones. When we configure BERyL for a
specific block type, we decide which of the predefined, common features should be
considered and define new, block type specific features, mostly through instantiating
feature templates. Features are specified over the facts on a page’s DOM, content, or
visual appearance. However, BERyL automatically adjusts the extraction pipeline for a
given block type to avoid generating, e.g., visual information if that is not needed by
the specific extraction rules. This allows us to tailor BERyL for block types that require
fast extraction (possibly through sacrificing in precision or recall).

More specifically, Figure 2 shows an overview of block classification with BERyL.
The bottom illustrates the typical stages of classifying the blocks on an individual web
page: (1) We generate facts about the page’s DOM, content, or visual structure de-
pending on the needs of the actual extraction rules. We extract content facts with a set
of GATE [5] annotators for entity extraction. These can be customised to the specific
block type. Other facts are extracted from a customised Firefox. (2) Based on the anno-
tated DOM obtained in the preceding step, we extract a feature model through a set of
feature extraction rules (Datalog rules with stratified negation and aggregation). The fea-
tures for a specific block type are typically a mix of common features, instantiations of
feature templates, and ad-hoc features. (3) Finally, given this feature model, we classify
the blocks on the page. The classifier is learned from a training corpus, whose labelling
is supported by the BERyL-Trainer, a visual interface for labelling web page blocks.

338 T. Furche et al.

Table 2. BERyL Annotated DOM

Structural:
dom::node(N, T, P, Start, End) DOM node N has tag T , parent P, and start and end label

Start and End (position of the start and end tag among
the combined list of all start and end tags).

dom::clickable(N) N is a clickable target (link or has onClick handler).
dom::content(N, v, O, L) N has (textual) content v, starting at document offset O

and having length L.

Visual:
css::box(N, Left, Top, Right, Bottom) bounding box of a DOM node N.
css::page(Left, Top, Right, Bottom) dimensions of the page.
css::resolution(Horizontal,Vertical) screen resolution.
css::font_family(N, Family) N is rendered with a font from the given family.

Content:
gate::annotation(N, A, v) holds if μ(A,N,v) holds.

Definition 1. A BERyL feature model is a set of features with values of boolean, integer,
string, or tuple types. Each feature is defined through one or more feature extraction
rules. An instance of a feature model is the result of evaluating those rules on a fact rep-
resentation of a page. A classifier for a BERyL feature model is a ML classifier learned
from a set of a training instances for such a model.

In the following, we briefly describe BERyL, as needed for the identification of pagina-
tion links, and in Section 5, we show how to instantiate BERyL for that purpose.

4.1 BERyL Extraction Rules

Fundamentally, BERyL’s extraction rules are Datalog¬,Agg (i.e., with stratified negation
and aggregation) rules on top of an annotated DOM. To ease the definition of new
features, we extend this with a template language that allows us to implement many
features as simple template instantiations (without affecting the data complexity).

Definition 2. An annotated DOM is a DOM tree P decorated with annotation types
from an annotation schema Λ = (A ,μ) where A is a set of annotation types and μ :
A ×N ×U a relation on A , the set of DOM nodes N and the union of all attribute
domains U . μ(A,n,v) holds if n is a text node containing a representation of a value v
of attribute type A.

For Oxford,£2k, we obtain, e.g., μ(NUMBER, t,2000), indicating that there is a
number with value 2000 in t, assuming that t is the text node within the

An annotated DOM is represented in BERyL through three sets of facts, structural,
visual, and content (or annotation). Depending on the extraction rules, BERyL automat-
ically detects which of these sets are required and only generates the corresponding
facts. In Table 2, we give a sample of the facts from each fact set, as needed for the
following discussion. In BERyL, we add namespaces (prefix followed by ::) to separate
facts from different fact sets.

Turn the Page: Automated Traversal of Paginated Websites 339

std::preceding(X, Y) ⇐ dom::node(X, _, _, _, End),

2 dom::node(Y, _, _, Start, _), End < Start.

std::proximity(X, Y) ⇐ proximity_dimension(DHor, DVert),

4 css::box(X, LeftX, TopX, _, _), css::box(Y, LeftY, TopY, _, _),

TopY − DVert ≤ TopX ≤ TopY + DVert, LeftY − DHor ≤ LeftX ≤ LeftY + DHor.

6 std::left_proximity(X, Y) ⇐ std::proximity(X, Y),

css::box(X, _, _, RightX, _), css::box(Y, LeftY, _, _, _),

8 RightX ≤ LeftY.

std::first_screen(Left, Top, Right, Bottom) ⇐
10 css::page(Left, Top, _, _), css::resolution(H, V),

Right = Left + H, Bottom = Top + V.

Fig. 3. BERyL standard predicates

Based on these facts, BERyL provides a set of standard predicates and features that
a specific block type may import and a set of feature templates for easy instantiation
of new features. As for fact sets, BERyL also uses namespaces for different rule sets.
Standard predicates are in the std namespace. When instantiating a block type, we use
a namespace to separate feature predicates from ordinary ones. Feature predicates are
predicates that represent a feature to be used for classification. They come in two vari-
eties, unary for boolean features, and binary for features with a value. Values may be
integers, strings, or (flat) tuples of those.

Figure 3 shows some of the standard predicates in BERyL: These range from struc-
tural relations between nodes (similar to XPath relations) over visual relations (such
as proximity or if a node is to the north-west of another one) to information about the
rendering context such as the dimensions of the first and last screen.

BERyL provides a set of standard features such as a nodes’s number of characters:

<Model>::char_num(X, Num) ⇐ node_of_interest(X), dom::content(X, _, _, Num).

node_of_interest is a predicate that specifies which nodes are to be considered for clas-
sification (e.g., all nodes, only links, only images). It is provided with the block specific
extraction rules, see Section 5.

When we instantiate BERyL for a specific block type, we import only those features
that are actually relevant through an import statement such as

IMPORT <Model>::char_num INTO <plm>

This binds the template variable <Model> to plm and replaces all occurrences of that
variable in the rule.

4.2 BERyL Feature Templates

Different block types often have overlapping features, but it is even more common for
them to differ only slightly, e.g., with respect to what DOM nodes to consider.

For that reason, we introduce a small template language atop of Datalog. This lan-
guage allows us to specify a common pattern for features, factoring out constants or
predicates in which these features may differ.

340 T. Furche et al.

Figure 4 shows a sample of feature templates in BERyL. The first template defines
boolean features for any annotation type AType indicating whether a certain node of
interest is annotated with AType. We instantiate it for a NUMBER in the plm pagination
link model in the following way:

INSTANTIATE annotated_by<Model, AType> USING <plm, NUMBER>

In a similar way, the second template defines a boolean feature that holds for nodes
of interest, if there is another node in their proximity for which Property(Close) is true.
To instantiate it to nodes that are annotated with PAGINATION, we write

INSTANTIATE in_proximity<Model,Property(Close)>

2 USING <plm, plm::annotated_by<PAGINATION(Closest)>

Observe, that BERyL templates thus allow for two forms of template parameters: vari-
ables and predicates. More formally,
Definition 3. A BERyL template is an expression TEMPLATE N<D1, . . . ,Dk>{p⇐ expr} such
that N is the template name, D1, . . . ,Dk are template parameters, p is a template atom,
expr is a conjunction of template atoms and annotation queries. A template parameter
is either a variable or an expression of the shape p(V1, . . . ,Vl) where p is a predicate
variable and V1, . . . , Vn are names of required first order variables in bindings of p.

A template atom p<C1, . . . ,Ck>(X1, . . . ,Xn) consists of a first-order predicate name or
predicate variable p, template variables C1, . . . ,Ck, and first-order variables X1, . . . ,Xn.
If p(V1, . . . ,Vl) is a parameter for N, then {V1, . . .Vl} ⊂ {X1, . . . ,Xn}.
An instantiation always has to provide bindings for all template parameters. We extend
the usual safety and stratification definitions in the obvious way to a BERyL template
program. Then it is easy to see that the rules derived by instantiating a safe and stratified
template program are always a safe, stratified Datalog¬,Agg program.

5 Pagination Links with BERyL

For identifying pagination links with high accuracy, we create a small feature model in
BERyL that consists of content, page position, visual proximity, and structural features.
In Section 6, we show that not only BERyL achieves almost perfect accuracy with this
feature model for a wide range of domains and pages, but that these four feature types
contribute notably to the overall performance.
Definition 4. A pagination sequence is a sequence of web pages from the same domain,
that is the result of paginating some information such as an article or a result set of
a search. Given a DOM P of a page, the (immediate) pagination link identification
problem is the problem of identifying those nodes in P that must be clicked to get to
the following page in any pagination sequence the page is part of. The pagination links
should be distinguished into numerical and non-numerical (such as “Next”).
With BERyL we reduce this problem to a block classification task over the set of click-
able nodes (DOM::clickable). To do so, we need
1. to define appropriate annotation types if necessary,
2. to specify an appropriate feature model, as discussed in Section 4.1, and
3. to train a classifier on a small training set.

Turn the Page: Automated Traversal of Paginated Websites 341

TEMPLATE annotated_by<Model,AType> {

2 <Model>::annotated_by<AType>(X) ⇐ node_of_interest(X),

gate::annotation(X, <AType>, _). }

4 TEMPLATE in_proximity<Model,Property(Close)> {

<Model>::in_proximity<Property>(X) ⇐ node_of_interest(X),

6 std::proximity(Y,X), <Property(Close)>. }

TEMPLATE num_in_proximity<Model,Property(Close)> {

8 <Model>::in_proximity<Property>(X,Num) ⇐ node_of_interest(X),

std::proximity(Close,X), Num = #count(N: <Property(Close)>). }

10 TEMPLATE relative_position<Model,Within(Height,Width)> {

<Model>::relative_position<Within>(X, (PosH, PosV)) ⇐ node_of_interest(X),

12 css::box(X, LeftX, TopX, _, _), <Within(Height,Width)>,

PosH = 100·LeftX
Width , PosV = 100·TopX

Height . }

14 TEMPLATE contained_in<Model,Container(Left,Top,Bottom,Right)> {

<Model>::contained_in<Container>(X) ⇐ node_of_interest(X),

16 css::box(X,LeftX,TopX,RightX,BottomX), <Container(Left,Top,Right,Bottom)>,

Left < LeftX < RightX < Right, Top < TopX < BottomX < Bottom. }

18 TEMPLATE closest<Model,Relation(Closest,X),Property(Closest),Test(Closest)> {

<Model>::closest<Relation>_with<Property>_is<Test>(X) ⇐
node_of_interest(X),

20 <Relation(Closest,X)>, <Property(Closest)>, <Test(Closest)>,

¬(<Relation(Y,X)>, <Property(Y)>, <Relation(Y,Closest)>). }

Fig. 4. BERyL feature templates

Annotation Types. In addition to the standard annotation type NUMBER, we introduce
two annotation types specific to pagination link identification: NEXT and PAGINATION.
NEXT collects typical keywords used to indicate immediate non-numerical pagination
links, e.g., “next”, “»”, or “›”, PAGINATION includes all those, but also keywords related
to previous pagination links, e.g., “previous”, and to the number of results, e.g., “page”,
“results”.

Feature Model. Table 3 shows the features used in our approach to pagination link
identification. They are split into four types: content, page position, visual proximity,
and structural. The corresponding extraction rules are given in Figure 5.

For defining these features, we use a small number of auxiliary predicates as shown
below. The first is required in any BERyL feature model and specifies the domain of
discourse, here all dom::clickable nodes (links and other click targets). The second is
required in feature models that use proximity predicates and specify what we consider
to be “in the proximity” of a node.

node_of_interest(X) ⇐ dom::clickable(X).

2 proximity_dimension(Width,10) ⇐ css::page(_, _, Width, _).

numeric(X, Value) ⇐ gate::annotation(X, NUMBER, Value).

4 numeric(X) ⇐ numeric(X,_).

different_style(X,Y)⇐css::font_family(X,FX), css::font_family(Y,FY), FX �= FY.

342 T. Furche et al.

Table 3. PLM: Pagination Link Model

Description Type Predicate

C
on

te
nt

1 Annotated as NEXT bool plm::annotated_by<NEXT>

2 Annotated as PAGINATION bool plm::annotated_by<PAGINATION>

3 Annotated as NUMBER bool plm::annotated_by<NUMBER>

4 Number of characters int plm::char_num

Pa
ge

po
si

tio
n 5 Relative position on page int2 plm::relative_position<css::page>

6 Relative position in first screen int2 plm::relative_position<std::first_screen>

7 In first screen bool plm::contained_in<std::first_screen>

8 In last screen bool plm::contained_in<std::last_screen>

Vi
su

al
pr

ox
im

ity

9 Pagination annotation close to node bool plm::in_proximity<plm::annotated_by<PAGINATION>>

10 Number of close numeric nodes int plm::num_in_proximity<numeric>

11 Closest numeric node is a link bool plm::closest<std::left_proximity>_with

<numeric>_is<non_link>

12 Closest numeric node has different style bool <numeric>_is<different_style>

13 Closest link annotated with NEXT bool <dom::clickable>_is<plm::annotated_by<NEXT>

14 Ascending w. closest numeric left, right bool plm::ascending-numerics

St
ru

ct
ur

al

15 Preceding numeric node is a link bool plm::closest<std::preceding>_with

<numeric>_is<non_link>

16 Preceding numeric node has different style bool <numeric>_is<different_style>

17 Preceding link annotated with NEXT bool <dom::clickable>_is<plm::annotated_by<NEXT>

The content features 1−4 from Table 3 specify whether a node is annotated with one
of the three annotation types (NEXT, PAGINATION, and NUMBER) and how many characters it
contains. They are defined in Figure 5 by an instantiation and an import of the standard
feature char_num. The instantiation creates three instances of the annotated_by template,
one for each of the three annotation types.

The page position features are the relative position on the first page and on the
first screen, as well as whether a node is on the first or last screen. They are de-
fined by two instantiations in Figure 4, one for relative positions (using css::page and
std::first_screen, resp.) and one for the presence in the first or last screen.

The visual proximity features are the most involved ones. They include a feature on
whether there is a node in visual proximity that is annotated with PAGINATION (9), a fea-
ture on the number of numeric nodes in the proximity (10), and a feature that specifies
whether the node and the closest numeric nodes in the proximity to the left and right
form an ascending sequence (14). 11− 13 ask if the closest node with a certain prop-
erty passes a given test, e.g., whether the closest numeric node is a link. Accordingly,
11− 13 are instantiations of closest, 9 and 10 are instantiations of in_proximity and
num_in_proximity, and 14 is the only feature in this model that is defined entirely from
scratch.

The structural features are similar to 11− 13, but use XPath’s preceding instead of
visual proximity, E.g., 15 tests if the numeric node, immediately preceding the given
node, is a link. Those are omitted from Figure 5 as they are similar to 11−13.

Turn the Page: Automated Traversal of Paginated Websites 343

1−3 : INSTANTIATE annotated_by<Model, AType>

USING <plm, { NEXT, PAGINATION, NUMBER>

4 : IMPORT <Model>::char_num INTO <plm>

5−6 : INSTANTIATE relative_position<Model,Within(Height,Weight)>

USING <plm, {css::page(_,_,Height,Width), std::first_screen(_,_,Height,Width) }>

7−8 : INSTANTIATE contained_in<Model,Container(Left,Top,Bottom,Right)>

USING <plm, {std::first_screen(Top,Left,Bottom,Right),...}>

9 : INSTANTIATE in_proximity<Model,Property(Close)>

USING <plm, plm::annotated_by<PAGINATION(Closest)>

10 : INSTANTIATE num_in_proximity<Model,Property(Close)>

USING <plm, numeric(Close)>

11−12 :INSTANTIATE closest<Model,Relation(Closest,X),Property(Closest),Test(Closest)>

USING <plm, std::left_proximity(Closest,X), numeric(Closest),

{ non-link(Closest), different_style(Closest,X) }>

13 : INSTANTIATE closest<Model,Relation(Closest,X),Property(Closest),Test(Closest)>

USING <plm, std::left_proximity(Closest,X), dom::clickable(Closest),

plm::annotated_by<NEXT(Closest)>

14 : plm::ascending-numerics(X) ⇐ node_of_interest(X), numeric(X, ValueX),

std::left-proximity(Left,X), std::right-proximity(Right,X),

numeric(Left, ValueLeft), numeric(Right, ValueRight),

ValueLeft < ValueX < ValueRight,

¬(std::left-proximity(Left,LeftN), std::left-proximity(LeftN,X), numeric(LeftN)),

¬(std::left-proximity(Left,RightN), std::right-proximity(RightN,X), numeric(RightN)).

Fig. 5. Extraction rules for pagination link identification

5.1 Training the Classifier

With this feature model, BERyL derives a classifier based on a small training set. For
pagination link classification, a training corpus of only two dozen pages suffices to
achieve the high accuracy demonstrated in Section 6. We expect a trade-off between
accuracy, corpus size, and complexity of the feature model, but their relation in this
triangle remains an open issue.

Figure 6 shows the classification tree derived on a training corpus for real-estate and
car websites in the UK and detailed in Section 6. The tree employs almost all features,
though the only structural feature considered is 15. For 5, we use both horizontal and
vertical position, but at different points in the tree (5.h and 5.v). Visual proximity (9−
−14) and 15 are clearly very distinctive features of pagination links. Feature 1 has a key
role in distinguishing numeric and non-numeric pagination links, but 11, 12, and 14 are
also required to give an almost perfect distinction, as evident in Section 6.

Our classifier employs almost all of the features we have pre-selected. It places a
strong emphasis on the visual features, such as relative vertical and horizontal positions
and whether the link to be classified is in the first or last screens. Manually finding rules
that correspond to this classifier would be a very error-prone and time consuming task,
in particular where thresholds and complex features are involved. This justifies the use
of machine learning to obtain the precise classifiers. We further simplify this process
by offering a visual tool, BERyL-Trainer . With BERyL-Trainer one can visually label
elements on a page very quickly with the correct classification (only numeric and non-
numeric are necessary, of course). It is configured with the annotation types and thus
can support the user by offering the relevant types and performing a basic validation.

344 T. Furche et al.

11

12

14

yes

NO

NUM
yes

no

NUM
yes

1
no

4

yes

13

<= 11

NO

15
no

NO

NUMyes

no

4

3

<=
23

NO

NEXTyes

no

> 11 > 23

NO

5.v
no

NEXT

> 0.89

7<= 0.89
5.vyes

8

no

NO
> .68

9

NEXT

yes

<= .68

5.h
NO

NEXT

<= .39

> .39no

4
yes

10

no

NO

NEXT

<= 1

> 1

4

5.h NO

<= 9

> .39

NEXT<= .39

<=
 2

NEXT> 2

yesno

Featuren numeric pagination link
NUM non-numeric pagination link

NEXT no pagination link
NO

Fig. 6. Classification tree

Given this specific classifier, BERyL is able to quickly identify pagination links. To
that end, we first compute the basic content, visual, and DOM facts, then apply the
extraction rules and finally classify the feature model instance. Through this approach
BERyL achieves almost perfect accuracy, as shown in Section 6.

6 Evaluation

We evaluate our BERyL pagination link classifier on a corpus of 145 websites from
four domains (real-estate, used cars, on-line retail, and forums). For each domain, we
selected the pages randomly from a listings page (such as yell.com) or a Google search.
The latter favours popular sites, but that should not affect the results presented here. For
example pages from the evaluation corpus, consider again Table 1 from Section 2.

In Figure 7, we show the results of evaluating quality, feature impact, speed, and per-
page speed. Figure 7a illustrates that for all four domains our approach achieves 100%
precision with recall never below 96%. This high accuracy means that our approach can
be used for crawling or otherwise navigating paginated pages with a very low risk of
missing information or retrieving unrelated pages. Numeric pagination links are gener-
ally harder to classify than non-numeric ones due to their greater variety and the larger
set of candidates. Though precision is 100% for both cases, recall is on average slightly
lower for numeric pagination links (98% vs. 99%) and in some domains quite notable
(e.g., real estate with 96% vs. 99%). Figure 7b shows the overall precision, recall, and
F1 score compared with those for each of the basic feature sets. For space reasons, we
do not show the individual impact of all features, but note that all features included in
the classification tree contribute at least several percentages to the overall precision and
recall. Figure 7b also shows that content and visual proximity features are significantly
more important for recall than page position and structural features.

Speed. The speed of feature extraction is crucial for the scalability of our approach.
As discussed above, the use of visual features by itself imposes a certain penalty, as a

yell.com

Turn the Page: Automated Traversal of Paginated Websites 345

0.94

0.96

0.98

1.00

Real
Estate

Cars Retail Forums Total

Precision Recall F1

(a) Precision and recall

0.00

0.25

0.50

0.75

1.00

All Content Visual
Proximity

Page
Position

Structural

Precision Recall F1

(b) Feature impact

0

10

20

30

40

0 1000 2000 3000 4000

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Nodes

Real Estate Cars Retail Forums

(c) Speed

0

10

20

30

40

1 34 67 100 133

R
u

n
n

in
g

 T
im

e
(s

ec
)

Webpage

(d) Speed histogram

Fig. 7. Evaluation results

page needs to be rendered for those features to be computed. Figure 7c shows that the
performance is highly correlated to page size with most reasonably sized pages being
processed in well below 10 seconds (including page fetch and rendering). Our experi-
ment was performed on a 3.4 Gz Intel Core i7 machine with 16 GB of RAM, running a
64-bit version of Linux Ubuntu. It is interesting to observe, that those domains where we
used Google for generating the corpus and where the corpus is thus biased towards pop-
ular websites, seem to require more time than the real estate domain where the corpus
is randomly picked from yell.com. Figure 7d shows the distribution of processing time
over web pages, sorted by processing time. It is worth noting, that these results were
achieved with an early prototype where the extraction rules had been implemented with
DLV, a far more powerful reasoning language than what would suffice for our purposes.

7 Conclusion

Identifying pagination links with high accuracy is beneficial for many types of auto-
mated processing on the web. The approach taken in this paper shows that nearly perfect
accuracy is achievable through the use of our flexible block classification framework
BERyL. In contrast to previous approaches, BERyL can be easily extended with block
specific features. Not only is that essential for high accuracy but also allows us to keep
the feature model small. There are two main open issues: Building an optimised version
of the current system with sub-second classification time, which we believe is possible
if the extraction rules are implemented, e.g., by a first-order rewriting. Another interest-

yell.com

346 T. Furche et al.

ing problem would be the further automation of adding new blocks for classification,
e.g., by automatic feature selection and gazetteer acquisition.

References

1. Almpanidis, G., Kotropoulos, C., Pitas, I.: Combining text and link analysis for focused
crawling - an application for vertical search engines. Inf. Syst. 32(6), 886–908 (2007)

2. Bra, P.D., Post, R.D.J.: Information retrieval in the world-wide web: Making client-based
searching feasible. Computer Networks and ISDN Systems 27(2), 183–192 (1994)

3. Chakrabarti, S., Berg, M.V.D., Dom, B.: Focused crawling: a new approach to topic-specific
web resource discovery. In: Computer Networks, pp. 1623–1640 (1999)

4. Crescenzi, V., Mecca, G.: Automatic information extraction from large websites. J.
ACM 51(5), 731–779 (2004)

5. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell,
G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M.A., Saggion, H., Petrak,
J., Li, Y., Peters, W.: Text Processing with GATE, Version 6 (2011)

6. Diligenti, M., Coetzee, F.M., Lawrence, S., Giles, C.L., Gori, M.: Focused crawling using
context graphs. In: VLDB, pp. 527–534 (2000)

7. Fazzinga, B., Flesca, S., Tagarelli, A.: Schema-based web wrapping. Knowledge and Inf.
Sys. 26, 127–173 (2011)

8. Hersovici, M., Jacovi, M., Maarek, Y.S., Pelleg, D., Shtalhaim, M., Ur, S.: The shark-search
algorithm. an application: tailored web site mapping. Computer Networks and ISDN Sys-
tems 30(1-7), 317–326 (1998)

9. Kang, J., Choi, J.: Block classification of a web page by using a combination of multiple
classifiers. In: NCM (2008)

10. Lee, C.H., Ken, M.Y., Lai, S.: Stylistic and lexical co-training for web block classification.
In: WIDM (2004)

11. Liu, H., Janssen, J., Milios, E.: Using HMM to learn user browsing patterns for focused web
crawling. DKE 59(2) (2006)

12. Pant, G., Srinivasan, P.: Learning to crawl: Comparing classification schemes. TOIS 23(4),
430–462 (2005)

13. Pant, G., Srinivasan, P.: Link contexts in classifier-guided topical crawlers. TKDE 18(1),
107–122 (2006)

14. Song, R., Liu, H., Wen, J.-R., Ma, W.-Y.: Learning block importance model for web pages.
In: WWW (2004)

15. Srinivasan, P., Menczer, F., Pant, G.: A general evaluation framework for topical crawlers.
Inf. Retrieval 8, 417–447 (2005)

16. Wang, J., Chen, C., Wang, C., Pei, J., Bu, J., Guan, Z., Zhang, W.V.: Can we learn a template-
independent wrapper for news article extraction from a single training site? In: KDD (2009)

17. Yang, X., Shi, Y.: Learning web page block functions using roles of images. In: ICPCA
(2008)

18. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: WWW (2005)
19. Zheng, S., Song, R., Wen, J.-R., Giles, C.L.: Efficient record-level wrapper induction. In:

CIKM (2009)

WebSelF: A Web Scraping Framework

Jakob G. Thomsen1, Erik Ernst1, Claus Brabrand2,
and Michael Schwartzbach1

1 Aarhus University
{gedefar,eernst,mis}@cs.au.dk
2 IT University of Copenhagen

brabrand@itu.dk

Abstract. We present WebSelF, a framework for web scraping which
models the process of web scraping and decomposes it into four concep-
tually independent, reusable, and composable constituents. We have vali-
dated our framework through a full parameterized implementation that is
flexible enough to capture previous work on web scraping. We conducted
an experiment that evaluated several qualitatively different web scraping
constituents (including previous work and combinations hereof) on about
11,000 HTML pages on daily versions of 17 web sites over a period of more
than one year. Our framework solves three concrete problems with cur-
rent web scraping and our experimental results indicate that composition
of previous and our new techniques achieve a higher degree of accuracy,
precision and specificity than existing techniques alone.

1 Introduction

The World Wide Web is an enormous source of information, (still) mostly rep-
resented as HTML which is designed for presenting information to humans, not
computers. Therefore, automated information extraction from the web (aka.,
web scraping) is difficult. A program for web scraping, called a web wrapper,
may be programmed manually [23,25], semi-automatically [14,22,2,11], or auto-
matically [15]. We refer to the survey by Chang et al. [6] for more information.

However, when a web page changes (and similar web pages may have sub-
stantially different structure), the extraction often fails or yields incorrect data
causing programs that depend on the scraping to malfunction. Web wrappers
use wrapper validation (aka. wrapper verification) to detect this, typically based
on the extracted text [20,10]. Updating the wrapper to recover is known as rein-
duction [10,12,13,17,8,16], and it is often based on older pages and/or user inter-
action. Validation and reinduction together constitutes wrapper maintenance.

Current approaches suffer from three problems. First, wrapper validation
based solely on the textual contents and structure of the scraped page may be
difficult or inadequate in certain cases. For some pages, it is worth also consid-
ering the context and presentation (i.e., where information is physically located
on a page after full rendering and applying stylesheets). Second, with client-side
scripting (e.g., JavaScript and AJAX) and form elements, it becomes useful to
interact with a web page beyond just extracting information. Access to selected

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 347–361, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

348 J.G. Thomsen et al.

elements on a page allows for subsequent manipulation of the original document
(e.g., pressing buttons, filling in text fields, submitting forms). Third, existing
wrapper techniques cannot easily be combined, which makes it hard to reuse the
vast amount of work done on selection, reinduction, and validation. There is no
general and precise signature definition of the components of the web wrapper,
how they interact or what level of automation they exhibit.

This paper presents a framework, WebSelF, that addresses these problems for
selecting elements on a web page. WebSelF is characterized and parameterized
by four scraping constituent functions, that we call framework functions: one
for selecting elements, designated as a selection function; one for validating the
selected element, designated as a validation function; and two for maintaining
each of them, designated as reinduction functions. WebSelF is novel for three
reasons. First, it supports composition and reuse of previously defined validation
functions, whereby validation can benefit from not only the textual contents of
the selected elements, but also combinations of other dimensions (in particular,
context and presentation). Secondly, the selection functions in WebSelF are able
to not just extract information, but also subsequently manipulate selected el-
ements in the presence of client-side scripting. Finally, WebSelF has a precise
model that explicitly divides the labor into a manual and an automatic part, in
which the responsibilities of the four functions are explicitly given. Furthermore
the signatures of the four functions are defined, which allows WebSelF to easily
wrap and use existing selection, validation and reinduction functions.

We have implemented WebSelF in Java, parameterized by the four framework
functions, and used the implementation to author, evaluate, and compare val-
idation functions based on different dimensions (including the influential work
of Lerman et al. [10]). The evaluation shows that presentational features of the
selected elements are beneficial for validation. Further, it shows that combining
existing validation functions (such as the previous approach by Lerman et al.)
with other orthogonal dimensions may achieve higher accuracy, precision, and
specificity (defined later) than the original approach. The validated elements in
our experimental evaluation are selected by real world web wrappers, as most of
the selection functions have been harvested from the web where they are used for
real web scraping purposes. The evaluation results have high credibility, because
every selection has been manually verified. The main contributions of this paper
is a framework, WebSelF, for web scraping including:

– a model of the process of web scraping (Section 2) explicitly dividing the
labor, by decomposing the process into a selection function, a validation
function, and reinductions of both, along with a method of composing vali-
dation functions (Section 3);

– a full implementation, parameterized by reusable composable framework
functions (available at the WebSelF site: cs.au.dk/~gedefar/webself);
and

– an experimental evaluation and comparison of qualitatively different valida-
tion functions (including previous work) based on about 11,000 HTML pages
taken from 17 web sites over a period of more than one year (Section 4).

cs.au.dk/~gedefar/webself

WebSelF: A Web Scraping Framework 349

<body>

<p>ICWE 2012 is to be held

in Berlin, Germany.</p> ...

</body>
(a) A simple web page

<body>

<p>ICWE 2012 will be

held on July 23-27.</p> ...

</body>
(b) A second version of the web page

<body>

<p>The ICWE 2012 <a..>program

is available.</p> ...

</body>
(c) The third version of the page with an
added anchor tag

<body>

<p>

</p>

<p>The ICWE 2012 conference

was a success.</p> ...

</body>
(d) A fourth version of the web page, where
an image has been added

Fig. 1. Evolution of an example web page from a conference news site over time

2 A Model of the Process of Web Scraping

In this section we introduce the basic structure of our framework by means of
a model of the process of web scraping, built from several individual framework
functions with a specific interaction. To illustrate the principles, we will use a
deliberately simple example and scrape successive evolutions of the “top story”
of a conference news site. In WebSelF, a web wrapper consists of a selection
function, a validation function and means for reinducing (learning) new versions
of both of these functions. As the selection function, the example uses an XPath
expression (which is common) with the additional convention that only the first
element is selected in case the XPath expression matches several elements. For
the validation function, the example will use structural identity with respect to
a DTD[5] in that a selected element is accepted if it conforms to a DTD inferred
over the elements selected so far (cf. Bex et al. [4]). The initial DTD is inferred
from the first example (which in this example is a p tag containing only text).

Figure 1(a) shows an excerpt from the first version of the web page, and the
interesting piece of information is the p tag and its contained text. The initial
XPath expression is //p which selects that item in this case.

The next version of the web page is shown in Fig. 1(b). The XPath expression
works here by extracting the p tag and the validation function accepts it, as the
structure has not changed.

The next version of the web page is shown in Fig. 1(c). The XPath expres-
sion still works here, but the validation function rejects the element because
an anchor tag with a link to the program has been added to the p tag. The
framework now asks the user a simple yes/no question for whether or not the
p tag is the correct element. In this case it is, so a new validation function is
reinduced (learned) to allow the new anchor tag. The new validation function
accepts p tags with an optional anchor tag as its child intermixed with the text
(remember that the DTD is inferred over the first three versions).

350 J.G. Thomsen et al.

Fig. 2. A model of the process of web scraping

In the next version, shown in figure 1(d), a new p tag with an img tag has been
added before the interesting p tag. In this case the selection function selects
the first p tag, which does not conform to the previous version of the element.
This discrepancy is detected by the validation function, and as it is in fact
not the correct element (judged by the user) the XPath expression needs to be
reinduced, i.e., a new and improved selection function must be constructed. The
framework uses the reinduction function for selection functions for this purpose,
and this function could consult the user and/or the validation function in order
to perform the task. As a result, the XPath expression is updated to select the
correct element, e.g., by becoming //p[not(./img)].

The running example illustrates different flows captured by our framework.
The general and formal flow between the states of WebSelF is shown in the
state diagram in Fig. 2 which shows a model of the web scraping process. Each
state has an abbreviated name consisting of three upper-case letters; a nearby
explanatory text motivates the choice of letters. Transitions are labeled with a
text indicating the decision criterion associated with that transition. One run
of the algorithm starts at ESF and ends in a final state—indicated by a double
ring—and yields an accepted element from the given page or aborts to indicate
that the page does not contain any acceptable elements. At the same time the
algorithm maintains the selection function and the validation function, using the
provided facilities for reinduction.

The states with a colored background may involve user-interaction and the
particular color signifies the level of complexity in the interaction. The state with
gray background (UVS) is related to the reinduction of the validation function
and is only asking a simple yes/no question. In contrast, the state with black
background (RSF) is related to the reinduction of the selection function, which
may involve the user in a much more complex manner.

For a fully formalized description of WebSelF, where the precise signatures
of the involved functions and flow of data and control between the states is

WebSelF: A Web Scraping Framework 351

(a) Corresponding to Fig. 1(a): Using the
fast path, where everything is okay

(b) Corr. to Fig. 1(b): Still using the fast
path

(c) Corr. to Fig. 1(c): Using a not so fast
path, where the selection function is cor-
rect, but the validation function is not

(d) Corr. to Fig. 1(d): Using the slowest
path where the validation function is cor-
rect, but the selection function is not

Fig. 3. State model paths corresponding to the example web page evolution

specified, we refer to the accompanying technical report [18]. It contains proofs
for a preservation and a progress property; it also shows in detail how the work
by Lerman et al. [10] may be emulated in WebSelF.

In the following we just describe the information flow in terms of our four
versions in the running example. Consider the first version of our running exam-
ple, shown as Fig. 1(a). As the selection function selects an element, we go from
the initial state ESF to VSF. The selected element is accepted by the validation
function, so we continue directly to the ACC state, without reinducing a new
validation function. This path through the state diagram is illustrated by the
graph in Fig. 3(a). This is the fast path where everything works smoothly, and
hopefully it is also a very typical path. The flow of the second version (Fig. 1(b))
is completely identical to the first version’s flow, where it takes the fast path and
is likewise shown in Fig. 3(b).

For the third version, an element is likewise selected and so we go to the VSF
state. This time, however, the validation function rejects the selected element,
so we proceed to the UVS state where the user is asked. The user decides that
the element should be accepted, so we go to the RVF state. Since the validation
function made an incorrect decision we obtain an improved validation function
through reinduction. This path through the state diagram is illustrated by the
graph in Fig. 3(c). As a side note, in WebSelF we assume it’s always possible
to reinduce a validation function, as there is no requirement that the reinduced
validation function is improved compared to the previous validation function. In
fact the reinduction function is free to return the old validation function in case
it is not capable of producing an improved validation function.

352 J.G. Thomsen et al.

Finally, if we run the fourth version we still go to VSF first as an element
is selected, but from VSF we go to UVS and then in turn to RSF, because the
wrong element was selected, according to both the validation function and the
user. The selection function is reinduced as we transition to the ENS state and
on to the VVF state. The new element found by the new selection function is
accepted by the validation function, so we do not need to reinduce (learn) a new
validation function. This is shown in Fig. 3(d).

We have not covered a case where the selection fails entirely, but this could
occur if we receive, e.g., an HTTP error 505 (internal error on server). In this
case the path taken would be the uppermost path in the state diagram, from
ESF to RSF to ABT. Finally, there is a case where both reinductions occur,
which is a slight variant of Fig. 3(d).

To sum up, our framework only involves the user when the discrepancy be-
tween already learned examples and the new version is too big. What this means
will be explained in Sec. 3.2. Moreover, the user is first involved in a simple man-
ner by being asked whether a given selection should be accepted or not. If the
blame falls on the validation function it is updated automatically, and only when
the selection function is to blame does the framework proceed to involve the
user in the more complex task of reinducing (creating) a new selection function.
Other approaches [10,20,17] require a set of prelabeled examples to learn from,
and they do not support a similar division of labor between a validation function
that allows for automatic maintenance and a selection function which may be
tailored to embody an arbitrary amount of domain knowledge. Our approach
supports this division and our selection and validation functions are composable
to utilize arbitrary domain knowledge. We furthermore believe that the precise
description of WebSelF can aid in the engineering of web information extraction
software.

3 Framework Instances

There are many kinds of selection function and validation function, as well as
reinduction functions for either. This section discusses a few of these at an ab-
stract level. An important choice to make is concerned with the environment
provided for evaluation of the selection and validation functions. If a full browser
is available for rendering the page and running client side code (e.g., JavaScript
and AJAX), as opposed to working straight from the HTML source, the vali-
dation function can rely on presentational information beyond the contents and
structure of the page, e.g., screen coordinates and colors. For generality, we con-
sider below the situation where the pages are rendered in a full browser (our
framework implementation directly supports this).

3.1 Selection Functions

A selection function is responsible for choosing a piece of information (i.e. an
HTML element, a list of HTML elements, tuples of text, etc.) from a given web

WebSelF: A Web Scraping Framework 353

page and delivering the selection result in a suitable format. It can be anything
from trivial to near-impossible to specify the “correct” selection for a web page.

However, a few generic possibilities do exist. In particular, XPath expressions
were specifically invented in order to be able to designate elements in an XML
tree structure. Also, regular expressions and context free parsers are commonly
used to locate specific elements by their content and structure. The work by
Lerman et al. [10] utilizes a hierarchy of token classes to select textual elements
based on sequences of token types. Finally Kushmerick et al. [9] induce selection
functions based on delimiters.

An important property of a selection function is its robustness, or its ability
to “just keep working” when it is used on evolved versions of a web page with
similar but updated content and structure. As with the structure itself, page
specific approaches and general computation may be needed to deal with such
updates. Myllymaki & Jackson [24] discuss the characteristics of robustness for
selection functions based on XPath, but they do not discuss any mechanical
way to achieve it. Lately, different mechanical techniques to ‘robustify’ XPath
expressions have been proposed [7,8,16]. Basically all the techniques rewrite the
XPath expression into a more robust expression relative to the changes seen in
a set of training web pages, and they achieve much better robustness than a
corresponding fully specified XPath expression.

Reinduction of selection functions is in general just as hard as inventing them
in the first place. For generic selection functions it may be possible to derive
the selection function from a history of positive examples; e.g., as it is done by
Lerman et al. [10]. This process may be seen as an abstraction process whereby
the desired element is described by successively more abstract and inclusive
specifications, until it matches all the positive examples. Incrementally building
a specification works well for semi-static information where only a part of an
element is changing, such as an address or a form field, where the static part
of the element can be used as an anchor. If the goal is to extract frequently
changing information, such as the top news story from a news site, then the
selection can benefit from using contextual and/or presentational information,
such as the structure of the context (e.g., a highly specific class/id attribute or
the (x, y) screen coordinates of the elements). Some reinduction approaches [12]
support manually specifying a fixed context to search for, others automatically
infer it from the history [10]. In general, reinduction of selection functions is
likely to require supervision.

3.2 Validation Functions

A validation function validates a selection result by either accepting or rejecting
the result from a web page. (In the following discussion of validation functions
we will assume for simplicity that the selection result is a single HTML element.)
Typically, validation functions utilize textual dimensions of both the selection
result along with the original web page when validating, but when the element
to be selected changes significantly from time to time, other dimensions might
be more effective. It may be more informative to investigate for instance the

354 J.G. Thomsen et al.

context (e.g., the tree structure from the grand parent of the selected element).
Furthermore, human spectators often rely strongly on the appearance of a web
site, and this realization is likewise very useful. For instance, a selection result
is likely to be rejected if it appears physically far away from its typical location
on the web page.

Validation function reinduction is the process whereby an existing validation
function is replaced by an updated one that is known to make more appropriate
judgments. In WebSelF, as in other approaches [10,20], the validation function
is reinduced with respect to a history of selection results. In the theoretic treat-
ment of WebSelF all previous selection results are available, but in a concrete
implementation this set can be a too large, so it often suffices to only use the
selection results that the validation function wrongfully rejected.

In general, validation functions can be more generic than selection functions
because they must primarily flag the occurrence of anomalies. It is our expe-
rience that a validation function can often use a generic algorithm customized
by a number of parameters, and reinduction then amounts to adjusting those
parameters so that the validation function responds more favorably to a given
selection history.

One issue to consider in connection with validation function reinduction is
whether the new validation function should learn to recognize all examples in
the given history. We may wish to suppress the consequences of processing ex-
ceptional web pages, also known as outliers. The problem is that a validation
function may become overly permissive, because a few outliers has taught it to
tolerate almost anything. It may be better to reject (or ask for explicit user
confirmation in) a few unusual cases, and then retain high selectivity. One ex-
ample of a validation reinduction function which does not learn to recognize all
examples in order to suppress outliers is the one from Lerman et al. [10], as it
only includes the examples in the history that are statistically significant.

It is possible to create composite validation functions based on existing valida-
tion functions. This is particularly interesting as we are able to logically combine
qualitatively different (and complementary) validation function strategies; ones
that work according to content, structure, presentation, and even context. If we,
for instance, want to extract the top news story from a news site, we might have
to combine looking for a styled heading (structure and presentation) placed close
to the top of the page (presentation).

Since a validation function returns a boolean result, we can easily compose
validation functions to achieve any propositional logic formula, φ, over basic
validation functions, Q ∈ QBasic:

φ : true | false | Q ∈ QBasic | ¬φ | φ ∧ φ | φ ∨ φ

Reinduction of a composite validation function can be done in many ways, but
often it is done by delegating the reinduction to its failing constituents (according
to its constituent validation functions). Negation needs special treatment though.
Say for instance that ¬φ has wrongly rejected an element a, which means that
φ accepted a. As ¬φ is reinduced, φ should be reinduced to learn to reject a

WebSelF: A Web Scraping Framework 355

which it used to accept. Hence as φ gradually becomes more permissive when
reinduced, ¬φ will gradually become more restrictive. We will see in Sect. 4.3
that negation can be very useful, despite its somewhat counter-intuitive nature.
All of this is supported by our framework.

4 Experimental Validation

Our hypothesis is that the flexibility and composability of the validation part
of WebSelF leads to an improvement in accuracy, precision and specificity (de-
fined in Sect. 4.2). We have therefore created a concrete implementation of the
framework in Java to test this hypothesis. The implementation includes selec-
tion functions using regular expressions [1], XPath expressions, and it includes
a full browser in order to let client-side computation take place and provide
presentational information about the given web page. Furthermore automatic
reinduction of validation functions and composition of validation functions as
described in Sect. 3.2 are supported by the implementation. We have used this
implementation to perform a substantial experiment which is described in more
detail below. For details on the implementation, data set and results we refer to
the project homepage at cs.au.dk/~gedefar/webself.

4.1 Experimental Setup

In order to evaluate WebSelF in a realistic setting, we collected 30 XPath expres-
sions used as selection functions, where most of them were sufficiently successful
to be published on the Web. Some of these XPath expressions were complete,
concrete paths from the root to the target, while other expressions were more
robust paths, such as the expression //a[starts-with(., ’Next’)], which se-
lects the next button on the Yahoo Web Shop (by searching for any link starting
with “Next”). These more robust expressions used the more advanced operators
of XPath, like wildcards, descendant axes, etc. In order to do a proper compar-
ison we created robust versions of the fully concrete paths, and used FireBug1

to create fully concrete versions of the robust ones. The robust versions were
crafted using only knowledge of the first web page version and was guided by
the findings of Myllymaki & Jackson [24], meaning that the crafted expressions
typically used descendant axis and attribute filters.

For the purposes of our experiment, we normalize all XPath expressions to
have the same weight, by letting them return the first selected element if more
than one is selected. To evaluate the validation functions directly we fix the selec-
tion functions, such that they are not reinduced during the experiment. In total
we ended up with 60 XPath expressions, 30 fully specified and 30 robustified.

We have constructed 24 qualitatively different validation functions that val-
idates textual, structural, context and presentational properties of the selected
element. Eight of these validation functions use a combination of other validation

1 Available from http://getfirebug.com.

cs.au.dk/~gedefar/webself
http://getfirebug.com

356 J.G. Thomsen et al.

validation function dimension response reinduction

QRandom N/A random yes/no N/A

QLMN content text matches pattern learn token patterns
QDTD structure valid by DTD infer DTD
QBOX presentation within a rectangle learn enclosing rectangle
QDTD3 context valid by DTD infer DTD of ancestor

QBOX ∧QLMN composite conjunction
Reinduce failing

validation
function

QBOX ∧QLMN ∧QDTD3 composite conjunction
¬QLMN composite negation
QBOX ∧ ¬QLMN composite conjunction, negation

Fig. 4. The nine described validation functions

functions, such as a conjunction of presentation and content validation functions.
In this paper we have included the results from nine of them (see Sec. 4.3). The
remaining results can be found on the project web page. This section is devoted
to describe these nine validation functions.
The nine validation functions are summed up in the table of Fig. 4, where the
first column states the name of the validation function or its formula if it is
a compositional validation function; the second gives the dimension (content,
structure, presentation, or composite) of the element, which the validation func-
tion relies on; the third gives abstractly what an element is accepted according
to; and finally the fourth describes how the reinduction is done, which is of course
related to how an element is accepted.

The first five validation functions are basic validation functions that rely on
qualitatively different dimensions. Q

Random
flips a coin to decide whether an

element is accepted or not. Q
LMN

is the validation function introduced by Lerman
et al. [10] and it is based upon the textual content of the selected element.
Specifically an element is accepted if the text tokens of the selected element is
accepted by a pattern learned in the reinduction step. The used pattern is the
statistically most significant pattern over the history of examples. For details we
refer to Lerman et al. [10]. Q

DTD
accepts an element if the HTML structure of

the element is accepted by an DTD, which is inferred in the reinduction step. For
the DTD inference we use the tool by Bex et al. [4]. QBOX accepts the selected
element if the physical position of the selected element is within a rectangle.
The rectangle is constructed in the reinduction step, where it infers the smallest
enclosing rectangle, that contains all positions in the history. Q

DTD3
is similar

to Q
DTD

, except the DTD is inferred from the context of the selected element,
namely the great grand parent.

The last four validation functions are composite, as described in Sect. 3.2.
Q

BOX
∧Q

LMN
∧Q

DTD3
really showcase the flexibility of our framework as it uses

three basic validation functions that are based on three different dimensions of
the selected element.

The XPath expressions harvested data from a total of 17 web sites which ex-
hibit considerable diversity, including a TV guide, a blog, an image repository,

WebSelF: A Web Scraping Framework 357

price listings, webshops, download sites, search results, and news sites2. With
the 60 XPath expressions we thus have an average of more than three XPath
expressions per site. For each of these sites, we have systematically collected
daily versions for a period of one year (from the 24/04 2010 to 1/5 2011), and
manually provided a “perfect history” which indicates for each XPath expression
whether it selected the correct element. In total 19,664 elements are selected
by the selection functions, where 15,843 (81%) are correct selections and 3,821
(19%) are incorrect selections. This data is the starting point of our experiment.

4.2 Evaluation Metrics

When the selection function yields a particular element, there are four outcomes
when evaluating validation functions: where the validation function q as well
as the human oracle O accept that choice (true positive, TP); where q accepts
and O rejects the choice (false positive, FP); where q rejects and O accepts the
choice (false negative, FN); and where both reject it (true negative, TN).

There is an inherent asymmetry between FP and FN . Since the user never
sees an element accepted by the validation function, FP may be dangerous (the
scraping program continues with bad data without discovering it) whereas FN
is merely annoying to the user as it will ask him on an element that is really ok.
Thus, it is generally safer for a validation function to answer “too much nega-
tive” rather than “too much positive”. We will use standard pattern recognition
evaluation metrics [20] for evaluating our validation functions, focusing on the
ones that involve false positives (FP, shown in bold below):

accuracy =
TP+TN

TP+TN+FN+FP

precision =
TP

TP+FP

specificity =
TN

TN+FP
(aka. negative recall)

The accuracy measure quantifies “how often q is right”; precision is a metric
for “how often q is right, when it makes a positive prediction”; and specificity
quantifies “how often q is right, when the answer is actually negative”. (The
term specificity comes from medical diagnosis; in information extraction, it is
often referred to as negative recall.)

4.3 Results

Figure 5 shows a graphic depiction of the accumulated results of the nine valida-
tion functions applied and reinduced during the year’s worth of data. For each
validation function, each of the four outcomes (TP , FP , TN , FN) is depicted
as a sphere whose three-dimensional volume is proportional to the number of el-
ements in that category. The evaluation metrics are indicated as P for precision,
S for specificity, and A for accuracy.

2 We refer to the project homepage for more information.

358 J.G. Thomsen et al.

(a) QRandom A=50% (b) QLMN A=64% (c) QDTD A=85%

(d) QBOX A=95% (e) QDTD3 A=90% (f) QBOX ∧QLMN A=51%

(g) QBOX ∧ QLMN ∧ QDTD3

A=42%

(h) ¬QLMN A=83% (i) QBOX ∧ ¬QLMN A=95%

Fig. 5. Results of using validation functions with different characteristics

The first figure (Fig. 5(a)) shows the random validation function Q
Random

and
not surprisingly it scores 50% in accuracy. Note that in 81% of the cases where
it accepts the element it was correct, just because correctly selected elements
are common. This figure serves as a baseline for the performance of the rest of
the validation functions.

The next figure (Fig. 5(b)) depicts QLMN . The accuracy is relatively low be-
cause it is too restrictive, i.e., rejects too often. This is seen by the relatively low
amount of false positives (761) and high number of false negatives (6,285). The
latter is caused by having frequently changing content, such as news articles.

Figure 5(c) shows the result for Q
DTD

. This validation function is too per-
missive as the number of false positives is high. There are several reasons for
this: Many of the elements that are selected are leaves in the HTML tree, such
as an anchor tag. If the XPath expression only selects anchor tags it can be
hard to distinguish a valid element from an invalid one, as there is no internal

WebSelF: A Web Scraping Framework 359

structure to inspect. A good example is the previous mentioned XPath ex-
pression (//a[starts-with(.,’Next’)]). Most of the time this XPath ex-
pression selects the right element, but once in a while an advertisement for
http://nextwarehouse.com/would show up on the site, and that link would be
selected instead. This could not be detected by the validation function, as both
anchor tags were anchor tags containing only text.

The following figure (Fig. 5(d)) shows the results of Q
BOX

. Compared to the
previous two validation functions it appears to be in the middle, with regard
to false positives and false negatives (presumably since screen coordinates are
predictably stable). The number of false positives is mainly caused by one of the
XPath expressions, whose purpose is to select a row in a table. The expression
uses the row number for the selection, but because the table changes frequently,
the correct row jumps up and down in the table, while the selected row is in
the same spot in the table throughout the experiment. Hence the presentational
features of the selected row is not sufficient to distinguish a correct selection
from a wrong selection and therefore the validation function accepts too many
selections.

Figure 5(e) depicts the results of Q
DTD3

. Compared to Q
DTD

it performs better
in all three metrics and this indicates that the contextual dimension is a bet-
ter guideline for structural validation functions. Still though Q

DTD3
has a high

number of false positives compared to other validation functions.
The next four figures, Fig. 5(f–i) show the different composite validation func-

tions. In Fig. 5(f) we can see that a conjunction of validation functions is, not
surprisingly, generally more restrictive than each of its operands(Fig. 5(c,e)),
yielding fewer false positives, but at the expense of producing a lot more false
negatives. Also, both precision and specificity are higher whereas accuracy suf-
fers from the many false negatives which are also likely to annoy the user. The
even more restrictive validation function (Fig. 5(g)) achieves no false positives
at all; however, it is at the expense of a very large number of false negatives.
In the last two compositional validation functions, Fig. 5(h,i), we have shown
the results of using a negation and a negation inside a conjunction. Not surpris-
ingly, using the negation alone on a too restrictive validation function such as
Lerman et al., yields a too permissive validation function(Fig. 5(h)). Interest-
ingly, if we take the conjunction of this negated validation function and Q

BOX
,

Fig. 5(i), we get a validation function that performs better than its constituents
and in general achieves a high accuracy, a low number of false positives, and a
relatively low number of false negatives. Again, like Q

BOX
, the main source of

false positives is the XPath expression using the row number for the selection.
If we were to remove that web site from the results, the precision and specificity
would become 99.8% resp. 99%. In other words, WebSelF enables significantly
improved results in terms of the most important metrics.

We have experimented with disjunction, and performed outlier disqualifica-
tion (avoiding reinduction on abnormal elements), but none of these validation
functions seem to be as promising as either Q

BOX
nor Q

BOX
∧ ¬Q

LMN
.

http://nextwarehouse.com/

360 J.G. Thomsen et al.

5 Related Work

We have already discussed several pieces of related work, so in this section we
focus on a missing perspective, which is the large number of related approaches
that would fit very well as the basis for the parameters of WebSelF, namely
selection functions, validation functions, or reinduction functions: Kushmerick et
al. [9] induce selection functions by finding landmarks in the HTML text. Kistler
& Marais [19] uses a markup algebra combining both textual and structural
features for selection functions. Cohen & Fan [3] induces selection functions by
learning page-independent heuristics and combine them with user interaction.
Kushmerick [20] uses textual features of the extracted information for validation.
Lerman et al. [10] induce selection functions and validation functions by learning
textual patterns and as mentioned in Sect. 2, WebSelF subsumes their approach.
The ANDES system [23] uses XPath and XSLT to make selections. SCRAP [8],
SG-WRAP [11] and SG-WRAM [12] utilize schemas of the output to guide the
induction of selection functions. Liu & Ling [22] extract a conceptual model
of the web page upon which the selection is done. Mohapatra et al. [13] induce
delimiter based selection functions for a series of web pages with fine grained time
resolution. Lingam & Sebastian [21] uses a visual interface to label examples,
from which they induces selection and validation functions based on different
heuristics. Finally, Dalvi et al. [7] and Parameswaran [16] use a tree edit distance
to induce selection functions and validation functions.

6 Conclusion

We have presented WebSelF, a web selection framework that enables the use of
existing techniques for selection and validation of selection results, as well as rein-
ducing both of those functions with a carefully minimized amount of assistance
from a human being. We have furthermore shown how to compose validation
functions based on propositional logic, whereby the validation in WebSelF can
benefit from using several dimensions of the selection result. Moreover, we have
implemented the framework and performed a substantial experiment involving
11.000 web pages from several diverse web sites over a period of more than one
year, based on selection functions successful enough to be published on the web.
The experiment shows how validation functions can focus on very different di-
mensions of the selection result, including contents, structure, and presentation.
It also illustrates how the extraction behavior can be tailored according to the
needs of the situation. For instance, we may accept an increase in the number
of false negatives in order to make sure that we spot almost all false positives,
etc. The experiment also shows that by composing several validation functions
it is possible to perform better than each of the constituents, and that it is
possible to perform better than the previous approach by Lerman et al. [10]. In
summary, WebSelF provides a well-understood platform for the exploitation of
a large space of possibilities in the choice and combination of selection functions,
validation functions, and reinduction.

WebSelF: A Web Scraping Framework 361

Acknowledgments. We thank Kristina Lerman for quickly responding to our
numerous questions regarding their implementation, Mathias Schwarz for con-
structive comments on an earlier version of the paper and the anonymous re-
viewers for valuable feedback.

References

1. Brabrand, Thomsen: Typed and unambiguous pattern matching on strings using
regular expressions. In: Proc. of PPDP (2010)

2. Cohen: Recognizing structure in web pages using similarity queries. In:
AAAI/IAAI. AAAI (1999)

3. Cohen, Fan: Learning page-independent heuristics for extracting data from web
pages. CN 31(11-16) (1999)

4. Bex, et al.: Inference of concise DTDs from XML data. In: Proc. of VLDB (2006)
5. Bray, et al.: DTD: Document type definition. World Wide Web Consortium

(November 1996), http://www.w3.org/TR/xml/#sec-prolog-dtd
6. Chang, et al.: A survey of web information extraction systems. TKDE (2006)
7. Dalvi, et al.: Robust web extraction: an approach based on a probabilistic tree-edit

model. In: Proc. of SIGMOD (2009)
8. Fazzinga, et al.: Schema-based web wrapping. In: KAIS (2009)
9. Kushmerick, et al.: Wrapper induction for information extraction. In: IJCAI (1997)

10. Lerman, et al.: Wrapper maintenance: A machine learning approach. JAIR (2003)
11. Meng, et al.: Schema-guided data extraction from the web. JCST 17(4) (2002)
12. Meng, et al.: Schema-guided wrapper maintenance for web-data extraction. In:

Proc. of WIDM (2003)
13. Mohapatra, et al.: Efficient wrapper reinduction from dynamic web sources. In:

Proc. of WI. IEEE Computer Society (2004)
14. Muslea, et al: Hierarchical wrapper induction for semistructured information

sources. AAMAS 4(1) (2001)
15. Nakatoh, et al.: Automatic generation of deep web wrappers based on discovery of

repetition. In: Proc. of AIRS (2004)
16. Parameswaran et al.: Optimal schemes for robust web extraction. In: Proc. of

VLDB (2011)
17. Raposo et al.: Automatic wrapper maintenance for semi-structured web sources

using results from previous queries. In: Proc. of SAC (2005)
18. Thomsen et al.: WebSelf: A web selection framework. Tech. report, Computer Sci-

ence. Aarhus University (2012)
19. Kistler, Marais: Webl - a programming language for the web. CN 30(1-7) (1998)
20. Kushmerick: Wrapper verification. In: WWW (2000)
21. Lingam, Elbaum: Supporting end-users in the creation of dependable web clips.

In: WWW (2007)
22. Liu, Ling: A conceptual model and rule-based query language for HTML. In:

WWW (2001)
23. Myllymaki: Effective web data extraction with standard XML technologies. CN

39(5) (2002)
24. Myllymaki, Jackson: Robust web data extraction with xml path expressions. IBM

Research Report, RJ10245 (2002)
25. Sahuguet, Azavant: Building intelligent web applications using lightweight wrap-

pers. DKE 36(3) (2001)

http://www.w3.org/TR/xml/#sec-prolog-dtd

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 362–369, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Statistical Approach for Efficient Crawling of Rich
Internet Applications*

Mustafa Emre Dincturk1,3, Suryakant Choudhary1,3, Gregor von Bochmann1,3,
Guy-Vincent Jourdan1,3, and Iosif Viorel Onut2,3

1 EECS, University of Ottawa. 800 King Edward Avenue,
K1N 6N5, Ottawa, ON, Canada

2 Research and Development, IBM® Security AppScan® Enterprise, IBM,
770 Palladium, Ottawa, ON, Canada

3 IBM Canada CAS Research
{mdinc075,schou062}@uottawa.ca,
{bochmann,gvj}@eecs.uottawa.ca,

vioonut@ca.ibm.com

Abstract. Modern web technologies, like AJAX result in more responsive and
usable web applications, sometimes called Rich Internet Applications (RIAs).
Traditional crawling techniques are not sufficient for crawling RIAs. We
present a new strategy for crawling RIAs. This new strategy is designed based
on the concept of “Model-Based Crawling” introduced in [3] and uses statistics
accumulated during the crawl to select what to explore next with a high
probability of uncovering some new information. The performance of our
strategy is compared with our previous strategy, as well as the classical
Breadth-First and Depth-First on two real RIAs and two test RIAs. The results
show this new strategy is significantly better than the Breadth-First and the
Depth-First strategies (which are widely used to crawl RIAs), and outperforms
our previous strategy while being much simpler to implement.

Keywords: Rich Internet Applications, Web Crawling, Web Application Modeling.

1 Introduction

Web applications have been undergoing a significant change in the past decade.
Initialy, the web applications were built using simple HTML pages on the client side.
Each page had a unique URL to access it. The client (web browser) would send a
request for these URLs to the server which in turn would send the corresponding page
in response. The client would then entirely replace the previous content with the new
information sent by the server.

In the recent years, with the introduction of newer and richer technologies for web
application development, web applications have become more useable and interactive.
These applications, called Rich Internet Applications (RIAs), changed the traditional web
applications in two important aspects: first, client side-scripting languages such as

* A detailed version can be found at
http://ssrg.eecs.uottawa.ca/docs/ICWE2012_long.pdf

 A Statistical Approach for Efficient Crawling of Rich Internet Applications 363

JavaScript have allowed the modification of the web page by updating the Document
Object Model (DOM) [5], which represents the client-side “state” of the application.
Second, using technologies like AJAX [6] the client can communicate asynchronously
with the server, without having the user to wait for the response from the server. In both
cases, the URL typically does not change during these client side activities. Consequently,
we can now have a quite complex web application addressed by a single URL.

These improvements increased the usability of web applications but on the other
hand introduced new challenges. One of the important problems is the difficulty to
automatically crawl these websites. Crawling is the process of browsing a web
application in a methodical, automated manner or in an orderly fashion. Traditional
crawling techniques are not sufficient for RIAs. In traditional web applications, a
page is defined by its URL and all the pages reachable from the current page have
their URL embedded in the current page. Crawling a traditional web application
requires to extract these embedded URLs and traverse them in an effective sequence.
But in RIAs, the client-state can also change by executing events which are user
actions (or time-outs) that trigger client-side code execution and hence cannot be
mapped to a single URL. All these changes mean that traditional crawlers are unable
to crawl RIAs, save for a few pages that have distinct URLs.

An important functionality of the web in general is the information it provides.
This information can only be made available if the different information sources can
be found and indexed. If search engines are not able to crawl websites with new
information, they will not be able to index them. Hence a good part of the web in
general will be lost. In addition, crawling is also required for any thorough analysis
of the web application such as for security and accessibility testing. To our
knowledge, none of the current search engines, web application testers and analyzers
have the ability to crawl RIAs [1].

In this paper, we introduce a RIA crawling strategy using a statistical model. This
strategy is based on the model-based crawling approach introduced in [3] to crawl
RIAs efficiently. We evaluate the performances of our statistical model on two real
RIAs and two test applications. We further compare our experimental results against
other RIA crawling strategies, the Depth-First, the Breadth-First and the Hypercube
[3], and we show that the new strategy obtains overall better results.

The paper is organized as follows: In Section 2, we give the basic concepts in RIA
crawling. In Section 3, we present the details of the new strategy based on statistical
model. In Section 4, we provide experimental results obtained with our prototype. We
conclude in Section 5. We omit the related works for space restrictions.

2 Crawling RIAs

A web application can be conceptualized as a Finite State Machine with “states”
representing the distinct DOMs that can be reached in the web application and
transitions representing event executions. The result of crawling is called a “model”
of the application. A model basically contains the states and the possible ways to
move from one state to another.

364 M.E. Dincturk et al.

A crawling strategy is an algorithm that decides how the exploration proceeds. In
the case of event-based exploration of RIAs, the strategy basically decides which
event to explore next. We say that a crawling strategy that is able to find the states of
the application early in the crawl is an efficient strategy, since this is the goal of
crawling. This is important, since for large RIAs it might not be feasible to wait for
the crawler to complete the crawl. In this case, a strategy which discovers a larger
portion of the application early on will deliver more data during the alloted time, and
thus be more efficient. However, the main problem is that we do not know how the
web application has been built and without this prior knowledge of the web
application, finding an efficient strategy is difficult.

Primarily motivated by the above goals, we introduced the concept of “Model-
Based Crawling” in [3]. Along with that we also introduced a two phase approach.
The first phase, “state exploration phase”, aims at discovering all the states of the
RIA. Once our strategy believes that it has probably found all the reachable states, we
proceed to the second phase, the “transition exploration phase” which tries to execute
the remaining transitions after state exploration, to confirm that nothing has been
overlooked.

In [2], we compiled a list of challenges and assumptions such as state equivalence,
user-inputs, server states; which are important to be able to design an efficient
crawling strategy and can be handled as separate research efforts.

3 The Probability Strategy

A crawling strategy can be efficient if it is able to predict the results of the event
executions with some degree of accuracy. This helps give priority to the events that
are more likely to discover new states and hence improve efficiency. Statistics about
the past behavior of the event (from different states) can be used to model the future
behavior of the event. With this motivation, we introduce a crawling strategy which
uses statistical data collected during crawling. The strategy is based on the belief that
an event which was often observed to lead to new states in the past will be more likely
to lead to new states in the future. We call this new strategy “the Probability strategy”.

3.1 Events’ Probability of Discovering New States

Let P(e) be the event e’s probability of discovering a new state. Remember that the
same event “e” can be found in different states (we say that e is “enabled” in these
states). The following Bayesian formula, known as the “Rule of Succession” in
probability theory, is used to calculate P(e) P e S e pN e p

where

• N(e) is the “execution count” of e, that is, the number of times e has been
executed from different states so far.

 A Statistical Approach for Efficient Crawling of Rich Internet Applications 365

• S(e) is the “success count” of e, that is, the number of times e discovered a
new state out of its N(e) executions.

• ps and pn are the terms to represent initial success count and initial execution
count respectively. These terms are preset and represent the initial
probability of an unexplored event to find a new state.

This Bayesian formula is useful for estimating the probabilities in situations when
there are very few observations. To use this formula we assign values to ps and pn to
set the initial probability. For example, ps = 1 and pn = 2 can be used to set an event’s
initial probability to 0.5 (note that N(e) = S(e) = 0 initially).

Having Bayesian probability instead of using the “classical” probability, P(e)=S(e)/
N(e), with some initial values for P(e), avoids in particular have events that get a
probability of 0 because no new state were found at their first execution. With our
formula, events never have a probability of 0 (or 1) and can always be picked up after
a while.

3.2 Choosing the Next Event to Explore

In this section, we describe the logic that helps the strategy decide which event to
explore next. We first introduce the notation and definitions used.

• S denotes the set of already discovered states. Initially S contains the initial state.
• scurrent, represents the current state, the state we are at currently in the application

while executing the crawl. scurrent always refers to one of the states in S.
• For a state s, we define the probability of the state, P(s), as the maximum

probability of an unexecuted event in s. If s has no unexecuted events then P(s) = 0
• d(s, s') is the distance from s ∈ S to s' ∈ S. It is the length of the shortest path from

s to s' in the model of the application discovered so far.

When deciding which event to explore next, the Probability strategy aims to take the
action that will maximize the chances of discovering a new state while minimizing the
cost (number of event executions). For this reason, starting from the current state
scurrent, we search for a state schosen such that exploring the event with probability
P(schosen) in schosen achieves this goal.

All the states that still have unexplored events are candidates to be schosen. However
we have to take into account the distance from the scurrent to the schosen in addition to the
raw probabilities when deciding schosen. Note that from scurrent reaching to any other
state in S means following a known path (consisting of already explored events).
Between two states that are at different distances from scurrent, we may consider
reaching the one that is farther away because of its higher probability. However, the
time to execute the extra events in this path could actually be used for exploration if
the closer state is chosen. To make decisions in such situations we need to balance the
cost of executing known events with the higher probability of the farther state.

For our analysis it is necessary to have an estimation of discovering a state by
exploring an event from an “average” state in S. For this purpose, we will use the
average probability Pavg that is defined as follows.

Pavg = (Σs∈S P(s)) / |S|

366 M.E. Dincturk et al.

To select a state that maximizes the probability while minimizing the cost, we need a
mechanism that compares two states and decides which is more preferable. Let’s say
we want to compare s and s'. If both are at the same distance from scurrent then the one
with the higher probability is obviously a better choice. But if the cost of reaching one
of the states, is higher than the other, say d(scurrent, s) < d(scurrent, s')) then there can be
two cases. If P(s) ≥ P(s') then s is clearly a better choice. But if P(s) < P(s') then the
fact that reaching s' is costlier than reaching s should be reflected in the comparison
mechanism. To make up for the difference in the cost, we should allow the
exploration of a sequence of k = d(scurrent, s') - d(scurrent, s) extra events after executing
the event with probability P(s) from s. Thus we use the probability of discovering a
new state after executing the event from S and executing k more unexecuted events
(each with a probability of Pavg to discover new state). This is given by the following
formula 1 1 P s 1 P , , (1)

Now we can compare this value with P(s') and choose the option with higher
probability.

Summarizing, the schosen that we are looking for is the state, s ∈ S that satisfies the
following condition ∀ s' ∈ S

- if d s , s d s , s , P s P s
- if d s , s s , s , 1 1 P s 1 P , , P s

- if d s , s s , s , 1 1 P s 1 P , ,

3.3 The Algorithm

In this section we give an algorithm that picks an schosen from S. The algorithm
initializes the variable schosen to the scurrent and proceeds in iterations. At iteration i the
states at a distance i from the scurrent are compared against the current schosen. We check
if any of them is more preferable to schosen.

We optimize the search by exploiting the fact that we do not necessarily need to
explore all the states in S to find schosen .The search can be stopped the moment we
detect that it is not possible to find any state further away with a higher probability.
This is possible since we take into account the cost of distance while comparing the
probability of states. We only need to know Pbest, the probability of the state with
maximum probability in S.

Then the maximum distance that needs to be considered from schosen (noted as
maxDistanceToCheckFrom(schosen)) is the value of smallest d that satisfies

1 – (1- P(schosen))(1 - Pavg)

d ≥ Pbest (2)

When the left hand side of (2) becomes as large as Pbest then it is not required to look
further since even the states that might have the maximum probability, Pbest, will not
be preferable anymore to schosen due to the distance factor.

 A Statistical Approach for Efficient Crawling of Rich Internet Applications 367

Algorithm ChooseStateToExplore
schosen := scurrent; i := 1; distanceToCheck := maxDistanceToCheckFrom(schosen);
while (i < distanceToCheck) {

for each s where d(scurrent, s) = i {
if (s is preferable to schosen) {

 schosen := s;
 distanceToCheck += maxDistanceToCheckFrom(schosen);

}
 }
i++;
}
return schosen;

4 Experimental Results

In this section, we evaluate the performance of the Probability strategy on two real
RIAs and two test RIAs. We have used the following metrics for performance
evaluation.

(1) Number of events and resets required to discover all states
(2) Number of events and resets required to explore all transitions

A reset is loading the URL of the application to go back to the initial state. Resets are
typically costlier (in terms of time of execution) than event execution. For simplicity
we have combined the events and resets required for state exploration and transition
exploration into a single cost factor. For this purpose, we have expressed the cost of
resets in terms of number of event execution (the actual value used is application
dependent). We believe that number of events execution is a good metrics for
performance evaluation, since the time to crawl is proportional to the number of
events executed during the crawl.

We compare the performance of our strategy with the Breadth-First and the Depth-
First strategies and our existing Hypercube strategy. We also present, for each
application the optimal number of events executions to explore all the states of the
application. It is important to understand that this optimal value is calculated after the
fact, once the model of the application is obtained. This number is found by an
Asymmetric Traveling Salesman Problem (ATSP) solver [4] on the graph instance
obtained for the application.

In an effort to minimize any influence that may be caused by considering events in
a specific order, the events at each state are randomly ordered for each crawl. Also,
each application is crawled 5 times with each method and the average cost of these 5
runs is used for comparison.

The first real RIA we consider is an AJAX-based periodic table1. In total 240 states
and 29034 transitions are identified by our crawler and the reset cost is 8. The second

1 http://code.jalenack.com/periodic

(Local version: http://ssrg.eecs.uottawa.ca/periodic/)

368 M.E. Dincturk et al.

real application considered
partial local copy of the w
the reset cost is 18. The
developed using AJAX3. It
fourth application is a dem
Team4. We have used the A
states and 1210 transitions a

4.1 State Exploration

For compactness we have u
number required to discove
box and the higher edge of
half and 3 quarters of all the

For all applications, Prob
Breadth-First and the Dept
the Hypercube strategy com
and other research tools. Pr
Hypercube strategy. The bo

Fig. 1. St

4.2 Transition Explora

Table 1 presents the overall
the Probability strategy is b
exceeds the Depth-First and

2 http://www.clipmark

(Local version: http://ss
3 http://ssrg.eecs.uo
4 http://www.altoromu

is Clipmarks2. For this experimental study we have use
website. It consists of 129 states and 10580 transitions

third application, TestRIA is a test application that
has 39 states and 305 transitions and a reset cost of 2.T

mo web application maintained by the IBM® AppSc
AJAX-fied version of the website. The application has
and a reset cost of 2.

used boxplots: the top of vertical lines show the maxim
er all the states.The lower edge of the box, the line in
the box indicate the number required to discover a quar
e states in the application, respectively.
bability strategy has performed significantly better than
th-First strategies. The paper [3] proved the efficiency
mpared to the current state of the art commercial produ
robability strategy also showed better performance than
ox plots are drawn in logarithmic scale.

tate exploration statistics (Logarithmic scale)

ation

l cost of crawling. For all applications, the cost required
better than or comparable to the Hypercube strategy bu
d the Breadth-First strategies by a significant margin.

ks.com/
srg.eecs.uottawa.ca/clipmarks/)
ttawa.ca/TestRIA/
utual.com/

ed a
and
we

The
an®

s 45

mum
the

rter,

the
y of
ucts
the

d by
ut it

 A Statistical Approach for Efficient Crawling of Rich Internet Applications 369

Table 1. Transition Exploration Statistics

5 Conclusion

We have presented a new crawling strategy based on the idea of model-based
crawling introduced in [3]. Experimental results show that this strategy outperforms
the standard crawling strategies by a significant margin. Further, it also outperforms
the Hypercube strategy in most cases and it performs comparably in the least
favorable example, while being very much simpler to understand and to implement.
This makes Probability a good choice for general purpose crawling. When compared
to the optimal solution, there is still some room for improvement. However, the
optimal solution is calculated after the website model is known, and thus can only be
used as a benchmark, not to actually crawl an unknown web application.

Acknowledgments. This work is supported in part by IBM and the Natural Science
and Engineering Research Council of Canada.

Disclaimer. The views expressed in this article are the sole responsibility of the
authors and do not necessarily reflect those of IBM.

Trademarks. IBM, Rational and AppScan are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies. A
current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

References

1. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.C.: State of the Art: Automated Black-Box
Web Application Vulnerability Testing. In: Proc. IEEE Symposium on Security and
Privacy (2010)

2. Benjamin, K., von Bochmann, G., Jourdan, G.V., Onut, I.V.: Some Modeling Challenges
when Testing Rich Internet Applications for Security. In: First International Workshop on
Modeling and Detection of Vulnerabilities, Paris, France (2010)

3. Benjamin, K., von Bochmann, G., Dincturk, M.E., Jourdan, G.-V., Onut, I.V.: A Strategy
for Efficient Crawling of Rich Internet Applications. In: Auer, S., Díaz, O., Papadopoulos,
G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 74–89. Springer, Heidelberg (2011)

4. Carpento, G., Dell’amico, M., Toth, P.: Exact solution of large-scale, asymmetric traveling
salesman problems. ACM Trans. Math. Softw. 21(4) (1995)

5. W3C. Document Object Model, DOM (2005), http://www.w3.org/DOM/
6. Garrett, J.J.: Adaptive Path (2005),

http://www.adaptivepath.com/publications/essays/archives/
000385.php

Recording and Replaying Navigations

on AJAX Web Sites

Alberto Bartoli, Eric Medvet, and Marco Mauri

DI3 - University of Trieste
Via Valerio 10, Trieste, Italy
bartoli.alberto@units.it

Abstract. Recording and replaying user navigations greatly simplifies
the testing process of web applications and, consequently, greatly con-
tributes to improving usability, robustness and assurance of these appli-
cations. Implementing such replaying functionalities with modern web
technologies such as AJAX is very hard: the GUI may change dynam-
ically as a result of a myriad of different events beyond the control of
the replaying machinery and even locating a given GUI element across
different executions may be impossible.

In this work we propose a tool that overcomes these problems and is
able to handle real-world web sites based on AJAX technology. Recording
occurs automatically, i.e., the user navigates with a normal browser and
need not take any specific action. Replaying a previously recorded trace
occurs programmatically, based on several heuristics that make the tool
robust with respect to DOM variance while at the same time maintaining
the ability to detect whether replaying has become impossible—perhaps
because the target web site has changed too much since the recording.
The entire procedure is fully transparent to the target web site. We
also describe the use of our tool on several web applications including
Facebook, Amazon and others.

1 Introduction

The ability to record and replay GUI navigation sequences has become an es-
sential component of testing procedures for modern software [11]. The need for
incorporating similar procedures in web applications is becoming more and more
urgent, given the richness of their user interfaces and their ever more stringent
requirements in terms of usability, robustness and assurance [9]. Unfortunately,
modern web technologies such as AJAX make programmatic interaction with
client-side GUIs very hard, due to the stateful and highly dynamic nature of the
DOM that determines the actual GUI appearance. Client-side code constructs
the DOM and manipulates it as a result of a myriad of different events, that may
be triggered by user actions but also by asynchronous interactions between the
browser and the server. Indeed, even the seemingly trivial task of identifying the
elements in a DOM that may affect navigation is actually very challenging and
is still partly unsolved [2,6]. Repeating the same sequence of user actions against

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 370–377, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Recording and Replaying Navigations on AJAX Web Sites 371

the same initial DOM, moreover, typically results in a different DOM: attributes
of individual elements may change across different executions, for example if
they include a form of session identifier, and the very same DOM structure may
change because the server usually serves different contents at different times. The
complexity of replaying a browser session is magnified further by the fact that, in
practice, HTML elements usually do not have any form of identity that persists
across browsing sessions. It follows that finding programmatically the “same”
HTML element accessed in a previous session may be very challenging. Indeed,
replaying a browsing session may even be impossible, for example because the
web application at the target web site has changed between the registration and
the attempted replay.

In this work we propose a method and a tool for recording and replaying
traces of user interactions with web applications, which may be of great help
in a number of testing activities as pointed out above. Key properties of our
contribution are: (i) the creation of a trace is fully automatic: the user merely
navigates into the target web site without taking any specific action or issuing
any dedicated command; (ii) the process is fully transparent to the target web
application, that need not be modified in any way; (iii) the replaying algorithm is
highly robust to DOM variance, while at the same time maintaining the ability
to notify the user in cases the replay has become impossible to perform—for
example because the target web application has changed too much between
the record and the replay. We are not aware of any similar tool with all these
properties. The tool that implements our method is able to cope with real-
world web applications based on AJAX technology and is able to record and
replay such actions as login and file upload. These actions are key components
of the workflow of many web applications but are notoriously difficult to handle
programmatically and are often missing from web analysis tools such as crawlers
and vulnerability scanners [3].

2 Related Work

A tool for recording and replaying traces of web application navigations is pro-
posed in [8]. The proposed approach requires that the user explicitly marks
every action to be recorded, by right clicking on the desired web element and
then choosing the event to register from a menu presented by an instrumented
web browser. This approach is manual and, it seems fair to say, quite cumber-
some to use. Our proposal, in contrast, is entirely automatic because the user
need not take any specific action during the recording process.

Recording and replaying functionalities are an essential component of the ap-
proach to web application testing proposed in [9]. Recording is done by replacing
dynamically the handler of each event in the page with a handler that merely
records its activation and then invokes the original handler. This approach al-
lows recording only events for which the page author has defined handlers using
the so called version 0 of the DOM. This technique of defining method handlers
is long deprecated and many modern web application no longer use it.

372 A. Bartoli, E. Medvet, and M. Mauri

Our approach is radically different in the sense that, essentially, it does not
place any requirement on the DOM and, in particular, it does not attempt to
discover the event-handler relationships defined in the page being recorded. As a
technical but important detail, we also remark that the cited work cannot handle
multi-page web applications, which in many cases prevent the handling of the
login step. Similar comments apply to [4], except that in this case multi-page
web site are supported.

Concerning the replaying process, the method for searching a target element
proposed in [9] implicitly assumes that the replay will occur without any con-
tent variation. While our heuristics allow identifying the correct element, the
approach in [9] would often select other elements during the replay.

The problem of determining whether two serialized DOM trees represent the
same page is essential in [5,6,7,10]. The goal of the cited works is to define a
distance between two DOM trees and then compare that distance against a
threshold in order to detect if the two DOM trees represent the same page. In
contrast, in this work we aim at locating a given element across different DOM
trees.

3 System Architecture

Our system consists of two separate applications: the trace recorder, that records
the actions executed by the user during a browsing session, and the trace replayer,
that replays a browsing session previously recorded by the trace recorder. The
system is fully transparent to both the user and the target web site. That is, the
user navigates with a normal browser and need not take any specific action for
recording, and the target web site need not be modified in any way. A funda-
mental characteristic of both or our tools is the use of a real browser (Firefox),
which is very important to ensure compatibility with real-world web applications
and to provide the user with a familiar interface. The trace replayer reads the
data previously saved in a trace and pilots the browser programmatically, so as
to replay the user actions on the target web site automatically.

3.1 Trace Recorder Architecture

The trace recorder consists of: (a) a web application that we developed and that
we call Observer ; (b) a proxy; and (c) a browser.

The Observer is composed of a server side code (Observer-S) and a client-side
code executed by the browser (Observer-C). Observer-C records all the DOM
events generated by the user and periodically sends a description of these events
to the Observer-S, that saves the corresponding descriptions into a file—the
trace.

The proxy, placed in between the browser and the target web site, performs
two actions: (i) injects the Observer-C code into all the pages sent to the browser;
and (ii) redirects part of the web traffic so as to enable communication be-
tween Observer-C and Observer-S without violating the same origin policy im-
plemented by modern browsers.

Recording and Replaying Navigations on AJAX Web Sites 373

The browser fetches our JavaScript code injected by the proxy—i.e., Observer-
C—and executes this code locally. The results produced by Observer-C are sent
to Observer-S through the URL /GWT-Observer. The proxy is configured so as
to reroute any traffic to /GWT-Observer toward the server in our control that
actually executes the Observer-S code. In other words, the browser is tricked into
believing that Observer-C is fetched from the target web site and communicates
with that site. This fairly complex structuring allows circumventing the same
origin policy (SOP) implemented by modern browsers, which would prevent any
communication from Observer-C to a server in our control [1].

Our tool is able to handle also encrypted https traffic by configuring the
proxy to act as a man in the middle between the browser and the target web
application.

A trace contains a sequence of event descriptions, each of them consists of:
(i) type of the DOM event (e.g. click, wheel, etc.); (ii) time at which the event
occurred; (iii) description of the target element of the event. The description of
the target element contains its tag name, e.g. span or div, its text content,
its x and y positions and the possible values of the id, name, src, and type

attributes.
We also defined, in addition to those defined by the DOM standard, two

synthetic event types, write and select, to represents respectively the typing
of a text inside an input field and the selection of a choice from a drop-down
list as a more compact representation of sequences of events that have actually
occurred.

3.2 Trace Replayer Architecture

The goal of the trace replayer is to read the trace created by the trace recorder
and reproduce the registered events using the browser. The reproduction of the
trace is performed by the trace replayer driving the browser, throughWebdriver1,
a browser automation framework that enables to manipulate a real browser
programmatically.

We introduce a distinction between relevant and irrelevant events. A relevant
event is any event whose replay is essential to properly replay the entire trace,
while replaying an irrelevant one is not essential to properly replay the trace.
The trace recorder registers events that could be irrelevant because whether a
given event is relevant depends on the events that follow that event. For example,
events generated for selecting a text field inside a form are irrelevant, because
the subsequent event of typing inside that field implies the selection of the text
field itself.

The trace replayer preprocesses the trace as follows: (i) filter out all the irrele-
vant events from the trace; (ii) shorten the trace by introducing synthetic events
wherever possible.

After preprocessing, the trace is replayed according to the following algorithm:
for each event E in the sequence S, search the associated target element T ′

E in the

1 http://seleniumhq.org/projects/webdriver

http://seleniumhq.org/projects/webdriver

374 A. Bartoli, E. Medvet, and M. Mauri

opened web page; if T ′
E is found, replay the event using WebDriver; otherwise,

repeat the search for a predefined amount of times, waiting for a fixed amount of
time (half a second) after each attempt. This waiting heuristics copes with the case
in which the searched element is created dynamically by JavaScript code. If this
repeated search fails, trace replayer simply aborts the replay signaling the error.

Often, between the registration and the replay the content of the web page
changes in more or less substantial way. Furthermore the only way to uniquely
identify an element inside a document is optional (the id attribute) and in the
vast majority of cases this attribute is not present, so a simple search for an
element with identical content to the one in the trace will fail.

We attack this crucial problem with a series of heuristics and decide which one
to use based on the element TE to be found, as explained below. Each heuristic
execution can lead to a false negative (the element exists in the page but the
heuristic has not found it) as well as to a false positive (the found element is not
the correct one, which may or may not exist in the page). In our experiments,
described in the next section, we have not encountered any false positive or false
negative. As future work, we plan to execute a broader quantitative analysis by
systematically labeling a large dataset. Our heuristics are as follows:

findElementBySrc. This heuristic, used for searching media element, retrieves
the first element T ′

E that has the same tag name of TE and the same value
for the attribute src.

This heuristic could cause a false positive result if there are more media
elements, in the analyzed web page, distinguishable between them only for
the position relative to the page itself.

findElementByInput. This heuristic, used for searching form inputs, retrieves
the first element T ′

E that represents the same type of form input of TE

and has the same value for the attributes id and/or name. If none of these
attributes are presents in TE or if no element with those attribute values is
found, then this heuristic compares the text content of the form inputs.

This heuristic should not be capable to generate false positives because
the values of id are unique within a single page while those of name are
unique within a single form. The heuristic can generate false negatives if the
value of the attributes varies between different replays.

findElementByGrid. This heuristic is based on the position of the searched
element TE; it retrieves the first element T ′

E that has the same tag name and
whose coordinate (xT ′

E
, yT ′

E
) are similar to those of TE .

This heuristic can generate false negatives if the position of the searched
element varies too much between different replays. It can generate false pos-
itives if there is another element with the same tag name and similar coor-
dinates that precedes, in document order, the searched element.

findElementByGridAndText. This heuristic is very similar to findElement-
ByGrid, except that the retrieved element T ′

E has also the same text content
of TE.

This heuristic can generate erroneous results in the same conditions of
the previous one.

Recording and Replaying Navigations on AJAX Web Sites 375

4 Experiments

We tested our tool to verify its ability to work on real web applications. Each
experiment consisted of the registration of a trace on a web application and
multiple replays of such trace to verify the repeatability of the reproduction.
Table 1 is a summary of our experiments: it shows a line for each web application
and the number of events in the corresponding registered trace. The table also
shows the number of events, computed after the preprocessing of the trace.

Table 1. Summary of our experiments

of events
Site name # of pages click write select

Amazon 10 7 2 0
Facebook 14 9 4 0
Google Groups 25 23 1 0
Stack Overflow 14 12 1 0
Wacko Picko 34 23 10 0
WIVET 44 29 13 1

Amazon. We registered a trace simulating the search of some products and
then the addition of the desired product to the “shopping cart”. In detail,
we performed a search using the keyword “tablet”, selected a specific model
and added it to the cart. After that we performed another search using the
keyword “stereo”, selected a specific model and added it to the cart.

The most notable example of page variations was the search result pages:
the products displayed changed between the replays. The trace replayer can
withstand this type of variation thanks to the findElementByGridAnd-
Text heuristic. We replayed this trace several times without encountering
any error.

Facebook. We registered a trace simulating a typical user interaction with the
social network: (i) login; (ii) checking for new messages; (iii) adding a new
event to the calendar; (iv) logout. We could perform the replays without any
error. The only peculiar, but correct, behavior was the creation of several
duplicated events on the Facebook calendar; this a further example of the
resilience of our heuristics to page variations.

Another peculiarity of this web applications is the use of a session ID as
the value of the id attribute of the login button. The trace replayer can cope
with this kind of variation thanks to the fact that the findElementByInput
searches by text if it cannot find the right element searching by its id.

Google Groups. We registered a trace containing the navigations on various
discussion threads chosen at random, all pertaining to the “Google Web
Toolkit” group of this web application, including the use of all the links that
change the display mode of the discussions.

This was the web application that displayed the more pronounced page
variations: for each replay the list of posts and topic displayed changed with

376 A. Bartoli, E. Medvet, and M. Mauri

the additions of new contents. All the searches in this web application was
performed by the findElementByGridAndText heuristic.

We could perform the replays without any error.
Stack Overflow. We registered a trace containing the search of various topic,

the navigation of user information and the FAQ section of the web appli-
cation. Like the previous web application all the searches in this one was
performed by the findElementByGridAndText heuristic. We could per-
form the replays without any error.

WackoPicko. WackoPicko is a web application used to test web application
vulnerability scanners [3]. It consists in a fake image shop applications that
allow users to upload, comment and purchase images.

We created a trace containing the following actions: (i) login; (ii) addition
of a comment to an existing image; (iii) search of an image; (iv) purchase of
an image; (v) upload of an image; (vi) logout.

Another particular aspect of this trace is the presence of both a login
and an upload file steps. Many of the work cited in Section 2 are not able to
perform these two actions. We could perform the replays without any error
and the majority of searches was performed by the findElementBySrc and
findElementByInput heuristics.

WIVET. WIVET is a benchmarking project for analyzing web link extractors.
It consists in a series of pages containing links in ways that are increasingly
difficult to find for automated tools. We recorded a trace containing the
activation of all of the links with the exception of those involving flash applets
and those using the mouse hover event as a trigger to activate the links.

This web application is almost entirely static so the various replays have
not encountered any page variation. We could perform the replays without
any error.

5 Conclusions

The ability to record and replay sequences of user interactions with web appli-
cations is very useful in functional testing, security testing and usability testing.
We have presented a novel approach to this problem and described a tool that
implements our approach. The approach is suitable for modern web applications,
made up of highly dynamic contents and abundant use of AJAX technology. The
tool does not require any change or configuration on the web application to be
monitored, is completely non intrusive, very easy to use and supports https con-
nections. As discussed in the related work section, the tool overcomes several
limitations of earlier proposals.

Our method and tool are useful to improve web application testing by reducing
the time needed to thoroughly test the web application. We plan to execute a
broader quantitative analysis of our approach on a larger dataset.

Acknowledgments. This work is partly supported by eMaze2.

2 http://www.emaze.net

http://www.emaze.net

Recording and Replaying Navigations on AJAX Web Sites 377

References

1. Same origin policy, http://www.w3.org/Security/wiki/Same_Origin_Policy
2. Bai, X., Cambazoglu, B.B., Junqueira, F.P.: Discovering urls through user feed-

back. In: Proceedings of the 20th ACM International Conference on Information
and Knowledge Management, CIKM 2011, pp. 77–86. ACM, New York (2011),
http://doi.acm.org/10.1145/2063576.2063592

3. Doupé, A., Cova, M., Vigna, G.: Why Johnny Can’t Pentest: An Analysis
of Black-Box Web Vulnerability Scanners. In: Kreibich, C., Jahnke, M. (eds.)
DIMVA 2010. LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010), http://
dx.doi.org/10.1007/978-3-642-14215-4 7, 10.1007/978-3-642-14215-4 7

4. Álvarez, M., Pan, A., Raposo, J., Hidalgo, J.: Crawling Web Pages with Support for
Client-Side Dynamism. In: Yu, J.X., Kitsuregawa, M., Leong, H.V. (eds.) WAIM
2006. LNCS, vol. 4016, pp. 252–262. Springer, Heidelberg (2006),
http://dx.doi.org/10.1007/11775300_22, 10.1007/11775300 22

5. Medvet, E., Kirda, E., Kruegel, C.: Visual-similarity-based phishing detection. In:
Proceedings of the 4th International Conference on Security and Privacy in Com-
munication Networks, SecureComm 2008, pp. 22:1–22:6. ACM, New York (2008),
http://doi.acm.org/10.1145/1460877.1460905

6. Mesbah, A., Bozdag, E., van Deursen, A.: Crawling ajax by inferring user interface
state changes. In: Eighth International Conference on Web Engineering, ICWE
2008, pp. 122 –134 (July 2008)

7. Mesbah, A., van Deursen, A.: Invariant-based automatic testing of ajax user inter-
faces. In: Proceedings of the 31st International Conference on Software Engineer-
ing, ICSE 2009, pp. 210–220. IEEE Computer Society, Washington, DC (2009),
http://dx.doi.org/10.1109/ICSE.2009.5070522

8. Montoto, P., Pan, A., Raposo, J., Bellas, F., López, J.: Automating Navigation
Sequences in AJAX Websites. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.)
ICWE 2009. LNCS, vol. 5648, pp. 166–180. Springer, Heidelberg (2009), http://
dx.doi.org/10.1007/978-3-642-02818-2 12, 10.1007/978-3-642-02818-2 12

9. Pattabiraman, K., Zorn, B.: Dodom: Leveraging dom invariants for web 2.0 appli-
cation robustness testing. In: 2010 IEEE 21st International Symposium on Software
Reliability Engineering (ISSRE), pp. 191–200 (November 2010)

10. Roest, D., Mesbah, A., van Deursen, A.: Regression Testing Ajax Applications:
Coping with Dynamism. In: 2010 Third International Conference on Software
Testing, Verification and Validation (ICST), pp. 127–136. IEEE (April 2010),
http://dx.doi.org/10.1109/ICST.2010.59

11. Xie, Q., Memon, A.M.: Designing and comparing automated test oracles for GUI-
based software applications. ACM Trans. Softw. Eng. Methodol. 16(1), 4+ (2007),
http://dx.doi.org/10.1145/1189748.1189752

http://www.w3.org/Security/wiki/Same_Origin_Policy
http://doi.acm.org/10.1145/2063576.2063592
http://dx.doi.org/10.1007/978-3-642-14215-4_7
http://dx.doi.org/10.1007/978-3-642-14215-4_7
http://dx.doi.org/10.1007/11775300_22
http://doi.acm.org/10.1145/1460877.1460905
http://dx.doi.org/10.1109/ICSE.2009.5070522
http://dx.doi.org/10.1007/978-3-642-02818-2_12
http://dx.doi.org/10.1007/978-3-642-02818-2_12
http://dx.doi.org/10.1109/ICST.2010.59
http://dx.doi.org/10.1145/1189748.1189752

Leveraging User Modeling on the Social Web

with Linked Data

Fabian Abel, Claudia Hauff, Geert-Jan Houben, and Ke Tao

Web Information Systems, Delft University of Technology
{f.abel,c.hauff,g.j.p.houben,k.tao}@tudelft.nl

Abstract. Social Web applications such as Twitter and Flickr are widely
used services that generate large volumes of usage data. The challenge of
modeling the use and the users of such Social Web services based on their
data has received a lot of attention in recent years. In this paper, we go a
step further and investigate how the Linked Open Data (LOD) cloud can
be leveraged as additional knowledge source in user modeling processes
that exploit user data from the Social Web. Specifically, we introduce a
user modeling framework that utilizes semantic background knowledge
from LOD and evaluate it in the area of point of interest (POI) recom-
mendations. For this purpose, we infer user preferences in POIs based
on the users’ behavior observed on Twitter and Flickr, combined with
referable evidence from the Web of Data. We compare strategies that
aggregate knowledge from two LOD sources: GeoNames and DBpedia.
The evaluation validates the advantages of our approach; we show that
the user modeling quality improves when LOD-based background infor-
mation is included in the process.

1 Introduction

The Social Web is a gold mine for researchers and developers of user model-
ing techniques who investigate how user traces such as clicks, ratings, shared
resources or textual contributions can be transformed into representations that
are beneficial for a given application. For example, the status messages (so-called
tweets) that people post on Twitter1 can be exploited to feature personalized
website recommendations or news recommendations [1,2]. To apply user model-
ing in a given application context such as a news recommendation service, it is
essential to understand the semantics of Twitter messages. Rowe et al. [3] pro-
pose to exploit contextual information in order to clarify the semantics of tweets.
In some instances, background information is required in order to utilize user
data more effectively. Linked Data principles allow for publishing background
information in such a way that the data can be readily consumed by appli-
cations2. Today, the Linked Open Data (LOD) cloud already provides a great
variety of information that can support various applications [4], including expert

1 http://twitter.com
2 http://www.w3.org/DesignIssues/LinkedData.html

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 378–385, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://twitter.com
http://www.w3.org/DesignIssues/LinkedData.html

Leveraging User Modeling on the Social Web with Linked Data 379

finding [5], semantic enrichment of tweets [3], and a rule-based framework for
user modeling [6]. Yet, there are, to the best of our knowledge, no research stud-
ies that investigate to what extent LOD is beneficial for user modeling processes
that analyze user behavior observed on the Social Web.

It should be stressed, that connecting user data with information from the
LOD cloud is a challenging task. While the semantics of linked data are well
described and facts can easily be retrieved by means of RDF statements, user
data on the Social Web often lacks well-defined semantics. Consider Twitter
messages as an example: it is easy to extract meta-data such as the creator or
creation time of a tweet, but it is challenging to automatically infer the semantic
meaning of a tweet. Recently, researchers have begun to make use of named
entity recognition services such as OpenCalais3 and DBpedia Spotlight4 to infer
the topics of Twitter messages, e.g. [2,7].

Understanding the semantics of user data leads to interesting applications
such as the profiling of places [7]. Apart from inferring the main location of
Twitter users [8], semantic enrichment is also helpful for user modeling and par-
ticularly for deducing user interests from Social Web streams [2]. In this paper,
we go beyond the aforementioned works and investigate whether background
knowledge from the LOD cloud further improves user modeling effectiveness.
We analyze our user modeling framework in the context of geographic recom-
mender systems which recommend points of interest (POIs) to users. We explore
how Twitter and Flickr can be utilized as user data sources and investigate how
background information from GeoNames5 and DBpedia6 can be exploited to
improve user modeling and consequently the performance of the recommender
systems.

The main contributions of our work are as follows: (i) a user modeling frame-
work that exploits the Linked Open Data cloud, (ii) a showcase in which we
apply the framework to recommending POIs, and (iii) the evaluation of our
methods based on a large Flickr and Twitter dataset which shows the benefits
of considering LOD.

2 User Modeling on the Social Web with Linked Data

We now introduce the core building blocks of our user modeling framework. They
allow us to exploit Social Web data and knowledge gathered from the LOD cloud
to translate user interests into semantic concepts. An overview of our framework
is shown in Figure 1. It derives user interest profiles which consist of a set of
weighted concepts (each concept is identified by a URI). The concepts are typi-
cally dependent on the domain of the application that is requesting user profiles.
The weight associated with each concept indicates the intensity of the user’s in-
terest in the concept: the higher the weight, the higher the inferred interest. Our

3 http://www.opencalais.com
4 http://dbpedia.org/spotlight
5 http://geonames.org
6 http://dbpedia.org

http://www.opencalais.com
http://dbpedia.org/spotlight
http://geonames.org
http://dbpedia.org

380 F. Abel et al.

User Profile
concept weight

weighting strategies

0.4

0.1

0.2

Application
that demands user

interest profile regarding
 -concepts -

c1

c2

c3

…

c1

c4
c2

c3

cx

cy c5

c6

c9

…

c

th
inter

background knowledge
(graph structures)

user data

concepts that can be
extracted from the user data

Social Web

Linked Data

Fig. 1. Overview of the user modeling framework and its three main dimensions: (1)
user data sources (what user data to exploit), (2) background knowledge (how to exploit
the background knowledge) and (3) weighting strategies (how to weigh the concepts of
interests)

framework allows for the creation of various user modeling strategies. Here, we
first analyze three design dimensions in detail, namely (i) user data, (ii) back-
ground knowledge, and (iii) weighting strategies (see Figure 1). Then, we employ
our framework in the domain of geospatial-centric user modeling.

User Data. Our framework provides methods for collecting a user’s data from
different Social Web streams including her Twitter stream and her resource shar-
ing activities on platforms such as Flickr. As part of the framework’s semantic
enrichment process, meta-data and semantics are extracted from the observed
user activities, the latter being achieved via the named entity recognition ser-
vice DBpedia Spotlight. Extracted concepts are mapped to the corresponding
RDF resources (URIs) in the LOD cloud. The framework can thus represent
user activities via the meta-data and via the RDF resources that are related to
a user activity. For example, a Twitter message such as “Enjoying the view from
the Eiffel Tower” can be represented via information about the application from
which the user posted the message and via the semantic concept that can be
extracted from the message, namely http://dbpedia.org/resource/Eiffel Tower.

Background Knowledge. Given the concepts extracted from the user data,
our framework then acquires background information about the concepts. By
following the corresponding URIs, RDF statements are collected to gain a better
understanding of a user’s interests in concepts that matter to the application
that requests the user profile. Lets consider the concept graph example depicted
in Figure 1. An application may only be interested in a user’s preferences wrt.
concepts c1, c2 and c3. Based on the semantic enrichment of the user data,
our framework can detect that the user was directly concerned with c1. By
exploiting background information and in particular by following the URIs in
the LOD cloud, our framework can infer that the user was also concerned with

Leveraging User Modeling on the Social Web with Linked Data 381

Table 1. Examples of (RDF) graph patterns that can be applied to relate a concept
cm, which can directly be extracted from the user data, to a concept of interest c

pattern description

1. c
direct mention: a concept of interest c is directly mentioned in the
user data

2. cm c

indirect mention I: a concept cm is mentioned that occurs in an
RDF statement with the concept of interest c;
possible RDF graph patterns: (a) {cm p c} and (b) {c p cm}

cx c 3. cm

indirect mention II: a concept cm is mentioned that is related to
the concept of interest c via another concept cx;
possible RDF graph patterns: (a) {cm p1 cx. c p2 cx}, (b)
{cm p1 cx. cx p2 c}, (c) {cx p1 cm. c p2 cx}, (d) {cx p1 cm. cx p2 c}

concepts that are related to the concepts that matter for the given application.
For instance, the user may have mentioned c4 which is directly related to c2 or
she may have mentioned c5 which is indirectly related to c3.

Different graph patterns (which can be formulated by means of SPARQL
queries) can therefore yield different policies for the kind of background knowl-
edge that should be considered in the user profile construction process. Table 1
lists the different graph patterns we analyze in this work. They range from (1)
direct mentions of concepts of interests to (3) patterns that relate a mentioned
concept cm with a concept of interest c via another concept cx. For example,
(3.a) describes a situation where cm and c share the same property value cx.

Weighting Strategies. Our proposed user modeling framework features dif-
ferent strategies for weighting the concepts of interests for which relations can
be discovered according to the aforementioned graph patterns. The basic strat-
egy counts the number of occurrences of a concept cm, which is related to c via
some graph pattern, in the user’s data stream to determine the weight associated
with c. The weights in a user profile are then normalized so that the sum of the
weights is equal to 1.

Geospatial-Centric User Modeling. In this work, the actual application
that we evaluate our framework on can be described as follows: Given a set of
POIs and a user u, a user modeling strategy has to assign to each POI p a
weight that reflects to what extent u is interested in p.

We rely Twitter and Flickr as user data sources and consider only location-
related concepts. From the Twitter stream, we extract the semantic concepts (DB-
pedia URIs) that are related to places (http://dbpedia.org/ontology/Place). In
the case of Flickr, we employ an approach that estimates the geographic location
of images [11]. The extracted geographic concepts are then utilized to create the
geo-related interest profile. Considering these two main Social Web platforms, we

382 F. Abel et al.

have three options of user data sources when creating a user modeling strategy:
(1) Twitter, (2) Flickr, (3) Twitter and Flickr.

We obtain background information (RDF statements) about the geospatial
concepts that are extracted from the user data and about the points of interests
for which the application demands user preferences from DBpedia. For relat-
ing the concepts from the user data with the POIs, we utilize particularly the
following three graph patterns (see Table 1): (1) direct mentions, (2.a) indirect
mentions I, and (3.a) indirect mentions II where a mentioned concept cm and a
POI share the same property value.

To assign a preference score to a POI, we apply the occurrence-based weight-
ing strategy. Thus, we count the number of user activities (represented via the
extracted semantic concepts) which match a graph pattern that is employed by
the user modeling strategy.

Overall, we thus have 3 × 3 = 9 different geospatial-centric user modeling
strategies um: (i) um(Flickr, direct mentions), (ii) um(Flickr, indirect mentions
I), etc. Moreover, we experiment with combining different strategies such as
mix(um(Flickr, direct mentions) and um(Flickr, indirect mentions I)) where the
preference score is defined as harmonic mean of the scores computed by the
individual user modeling strategies.

3 Evaluation of Geospatial-Centric User Modeling

In this section, we evaluate the effectiveness of user modeling strategies that are
featured in our user modeling framework. We measure the quality of the different
user modeling strategies in inferring user preferences for POIs and investigate
the following research questions:

1. How does the source of user data influence the quality of predicting user
preferences?

2. How does the inclusion of background knowledge from the LOD cloud impact
the user modeling quality?

3. Which (combinations of) user modeling strategies yield the highest effective-
ness?

3.1 Experimental Setup: Recommending Points of Interests

To answer the research questions above, we test our user modeling strategies in
the context of a recommender system that recommends POIs to a user. Given a
user u and a candidate set of POIs such as museums or other tourist attractions,
the recommender provides a ranking of POIs so that those POIs which are
most relevant to u appear at the top of the ranking. The actual recommender
algorithm thus orders the POIs according to the preference scores in u’s profile
which is derived by a user modeling strategy. The recommendation quality thus
solely depends on the quality of the user modeling process.

To investigate to what extent user information from more than one Social
Web portal can support the recommendation of POIs, we identified 394 users

Leveraging User Modeling on the Social Web with Linked Data 383

who have an account on Flickr and Twitter. We accumulated eleven months
worth of user activities on both streams. On Flickr, these users uploaded a total
of 833, 441 images, 16.8% of which are geo-tagged. Based on the tags and title
terms we were able to derive a location estimate for 473, 129 of the remaining
693, 456 images that had not been geo-tagged. Details of the approach can be
found in [11]. To translate a given (or estimated) latitude/longitude into a DBpe-
dia POI, we relied on the findNearbyWikipedia web service7. With this approach
we were able to identify one or more DBpedia entries within a radius of 10km
for a total of 588, 092 images (70.6%). On Twitter, the 394 users posted a total
of 2,489,088 tweets. For approximately 11% of the tweets we were able to extract
geospatial DBpedia concepts.

We rely on precision, recall, and F-measure (within the top k) to quantify the
recommender quality. For user modeling and evaluation purposes we split our
dataset as follows: we derived user models based on the first 9 months of user
activity and evaluated the models on the final two months of the logged user
activities. A POI is considered to be relevant for a user u if the POI is spatially
closest to a location where the user took a Flickr photo or if the POI was directly
mentioned in a tweet that the user posted within these two months. The split
resulted in 9916 candidate POIs of which, on average, 59.35 were considered to
be relevant for a given user.

3.2 Results

User Data Sources. When comparing the impact different user-data sources
(i.e. utilizing Twitter or Flickr or a combination of both) have on the user mod-
eling quality and subsequently the recommendation quality, our results8 show
that Twitter alone is a more valuable source for creating user profiles that fea-
ture preferences in POIs than Flickr alone. However, using both Twitter and
Flickr as sources for creating user profiles yields the highest effectiveness, indi-
cating that the two user data sources complement each other to some extent,
i.e. Twitter-based profiles provide user preferences which cannot be inferred from
Flickr activities and vice versa.

Background Knowledge. Table 2 illustrates the effect of each strategy for
exploiting background knowledge in order to relate the concepts, which are ex-
tracted from the Twitter and Flickr activities, to the POIs. While there is no
significant difference in performance between the strategy that considers merely
direct mentions and the strategy that considers merely indirect mentions I, we
observe that indirect mentions II, which relates mentioned concepts and POIs
via shared property values, clearly yields the best performance in terms of the
precision, recall, and F-measure within the top 10 and top 20 results.

The results presented in Table 2 also reveal that the combination of different
graph patterns for inferring the user preferences in POIs further enhances the

7 http://www.geonames.org/export/wikipedia-webservice.html
8 Due to space constraints, detailed results are omitted.

http://www.geonames.org/export/wikipedia-webservice.html

384 F. Abel et al.

Table 2. Overview of the different strategies for integrating background knowledge.
Twitter and Flickr are used in combination as user data source.

strategy P@10 R@10 F@10 P@20 R@20 F@20

core strategies:

direct mentions 0.715 0.260 0.412 0.580 0.179 0.298

indirect mentions I 0.699 0.268 0.426 0.566 0.185 0.308

indirect mentions II 0.820 0.312 0.475 0.727 0.436 0.569

combined strategies:

direct & indirect mentions I 0.733 0.216 0.360 0.608 0.287 0.416

direct & indirect mentions II 0.836 0.333 0.4975 0.747 0.466 0.596

indirect mentions I + II 0.830 0.325 0.489 0.739 0.456 0.587

direct & indirect mentions I + II 0.839 0.337 0.502 0.751 0.473 0.603

quality of the user modeling and recommendation process. When considering
the combination of direct mentions and background knowledge derived from
graph patterns of the LOD cloud (indirect mentions I + II), we achieve the
highest effectiveness across all evaluation measures: P@10 = 0.84, R@10 = 0.34,
and F@10 = 0.50 respectively (last row in Table 2). In comparison with the
direct mention strategy, which does not exploit RDF statements from the LOD
cloud, the F@20 performance has more than doubled. Thus, we conclude that
taking background knowledge obtained from the LOD cloud into account can
significantly improve the effectiveness of user modeling on the Social Web.

Furthermore, we can answer the research questions raised at the beginning
of this section as follows. For the task of recommending POIs, it turns out that
(1) the aggregation of Twitter and Flickr user data yields the best user mod-
eling performance and that (2) the user modeling quality increases when more
background information from the LOD cloud is included. Finally, (3) the best
performance is achieved by combining the different graph patterns for acquiring
background information and inferring user preferences.

4 Conclusions

In this paper, we proposed a framework for enriching user modeling on the Social
Web with information from the Linked Open Data cloud. Our framework moni-
tors user activities on Social Web platforms such as Twitter and Flickr, infers the
semantic meaning of user activities and provides strategies for gathering back-
ground information from the Web of Data to generate semantically meaningful
user profiles that support a given application. We showcased and evaluated our
framework in the context of a geospatial recommender system where the core
challenge lies in deducing user preferences for POIs. To account for this, we also
presented a method that allows for the semantic enrichment of Flickr pictures
by (i) estimating the geographical location where a picture was taken and by (ii)
exploiting GeoNames in order to identify related DBpedia concepts.

Leveraging User Modeling on the Social Web with Linked Data 385

Our evaluation showed the effectiveness of our user modeling framework.
Based on a large Twitter and Flickr dataset of more than 2.4 million tweets
and 800 thousand Flickr pictures that we obtained by monitoring 394 users over
a period of nearly a year, we revealed that the aggregation of user data from both
Social Web platforms is beneficial for inferring user preferences. Taking advan-
tage of background information derived from the LOD cloud led to substantial
improvements of the baseline user modeling effectiveness.

Acknowledgements. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement no ICT 257831 (ImREAL project).

References

1. Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and tweet: experiments
on recommending content from information streams. In: Proc. of the 28th Int. Conf.
on Human Factors in Computing Systems(CHI), pp. 1185–1194. ACM (2010)

2. Abel, F., Gao, Q., Houben, G.J., Tao, K.: Analyzing User Modeling on Twitter for
Personalized News Recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L.,
Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg
(2011)

3. Rowe, M., Stankovic, M.: Aligning Tweets with Events: Automation via Semantics.
The Semantic Web Journal, Special Issue on Interoperability, Usability, Applica-
bility (2011)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. Journal
on Semantic Web and Information Systems (IJSWIS) 5(3), 1–22 (2009)

5. Stankovic, M., Wagner, C., Jovanovic, J., Laublet, P.: Looking for Experts? What
can Linked Data do for You? In: Workshop on Linked Data on the Web (LDOW),
Raleigh, USA (2010)

6. Leonardi, E., Abel, F., Heckmann, D., Herder, E., Hidders, J., Houben, G.-J.:
A Flexible Rule-Based Method for Interlinking, Integrating, and Enriching User
Data. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010.
LNCS, vol. 6189, pp. 322–336. Springer, Heidelberg (2010)

7. Cano, A.E., Varga, A., Ciravegna, F.: Volatile Classification of Point of Inter-
ests based on Social Activity Streams. In: Workshop on Social Data on the Web
(SDoW), Bonn, Germany (2011)

8. Hecht, B., Hong, L., Suh, B., Chi, E.H.: Tweets from Justin Bieber’s Heart: The
Dynamics of the ”Location” Field in User Profiles. In: Proc. of Int. Conf. on Human
Factors in Computing Systems (CHI), Vancouver, BC, Canada. ACM (2011)

9. Golbeck, J., Hansen, D.L.: Computing Political Preference among Twitter Fol-
lowers. In: Proc. of Int. Conf. on Human Factors in Computing Systems (CHI),
Vancouver, BC, Canada. ACM (2011)

10. Pennacchiotti, M., Popescu, A.M.: A Machine Learning Approach to Twitter User
Classification. In: Proc. of the 5th Int. AAAI Conf. on Weblogs and Social Media
(ICWSM), Barcelona, Spain. AAAI Press (2011)

11. Hauff, C., Houben, G.-J.: Geo-Location Estimation of Flickr Images: Social Web
Based Enrichment. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu,
B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224,
pp. 85–96. Springer, Heidelberg (2012)

ViP2P: Efficient XML Management

in DHT Networks

Konstantinos Karanasos1, Asterios Katsifodimos1,
Ioana Manolescu1, and Spyros Zoupanos2

1 Inria Saclay–Île de France and LRI, Université Paris Sud-11
2 Max-Planck Institut für Informatik, Saarbrücken, Germany

firstname.lastname@inria.fr

Abstract. We consider the problem of efficiently sharing large volumes
of XML data based on distributed hash table overlay networks. Over
the last three years, we have built ViP2P (standing for Views in Peer-
to-Peer), a platform for the distributed, parallel dissemination of XML
data among peers. At the core of ViP2P stand distributed materialized
XML views, defined as XML queries, filled in with data published any-
where in the network, and exploited to efficiently answer queries issued
by any network peer. ViP2P is one of the very few fully implemented P2P
platforms for XML sharing, deployed on hundreds of peers in a WAN.
This paper describes the system architecture and modules, and the engi-
neering lessons learned. We show experimental results, showing that our
choices, outperf related systems by orders of magnitude in terms of data
volumes, network size and data dissemination throughput.

Keywords: P2P, XML, DHT, distributed views.

1 Introduction

We consider the large-scale management of distributed XML data in a peer-to-
peer (P2P) setting. To provide users with precise and complete answers to their
requests for information, we assume that the requests are formulated by means of
a structured query language, and that the system must return complete results.
That is, if somewhere in the distributed peer network, an answer to a given query
exists, the system will find it and include it in the query result. Thus, we consider
P2P XML data management based on a structured peer-to-peer network, more
specifically, a distributed hash table (or DHT, in short).

In this setting, users may formulate two kinds of information requests. First,
they may want to subscribe to interesting data anywhere in the network, that
were published before or after the subscription is recorded in the system. We
need to ensure that results are eventually returned as soon as possible, following
the publication of a matching data source. Second, users may formulate ad-hoc
(snapshot) queries, by which they just seek to obtain as fast as possible the
results which have already been published in the network.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 386–394, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ViP2P: Efficient XML Management in DHT Networks 387

The challenges raised by a DHT-based XML data management platform are:
(i) building a distributed resource catalog, enabling data producers and con-
sumers to “meet” in an information sharing space; such a catalog is needed both
for subscription and ad-hoc queries; (ii) efficiently distributing the data of the
network to consumers that have subscribed to it, and; (iii) providing efficient
distributed query evaluation algorithms for answering ad-hoc queries fast.

Over the last three years, we have invested more than 6 man-years building
the ViP2P1 platform to address these challenges. Importantly, ViP2P uses sub-
scriptions as views: results of long-running subscription queries are stored by the
subscriber peers and re-used to answer subsequent ad-hoc queries.

A critical engineering issue when deploying XML data management applica-
tions on a DHT is the division of tasks between the DHT and the upper layers. In
ViP2P, we chose to load the DHT layer as little as possible, and keep the heavy-
weight query processing operations in the data management layer and outside
the DHT. This has enabled us to build and efficiently deploy an important-size
system (70.000 lines of Java code), which we show scales on up to 250 computers
in a WAN, and hundreds of GBs of XML data.

Several DHT-based XML data management platforms [3,9,11] are only con-
cerned with locating in the P2P networks the documents relevant for a query.
All the peers which may hold results then locally evaluate the query, leading to
high query traffic and peer overload. In contrast, as in [1,2,6,8], ViP2P answers
queries over a global XML database distributed in a P2P network.

In this paper, we make the following contributions. (i) We present a scalable,
end-to-end architecture of one of the very few DHT-based XML sharing plat-
forms actually implemented. From a system engineering perspective, we believe
this is a useful addition to the corpus of existing DHT-based XML data man-
agement literature which has focused more on indexing and filtering algorithms,
and less on system aspects. (ii) We present an experimental study of XML dis-
semination to DHT-based subscriptions, show which network parameters impact
its performance, and demonstrate that ViP2P outperforms competitor systems
by orders of magnitude in terms of published data volumes and throughput.

In the sequel, Section 2 presents an overview of the platform and Section 3 the
architecture of a ViP2P peer. Section 4 experimentally demonstrate the platform
scalability; many more experiments can be found in [4]. We then conclude.

2 Platform Overview

XML data flows in ViP2P can be summarized as follows. XML documents are
published independently and autonomously by any peer. Peers can also formu-
late subscriptions, or long-running queries, potentially matching documents pub-
lished before, or after the subscriptions. The results of each subscription query
are stored at the peer defining the subscription, and the definition of it is indexed
in the peer network. Finally, peers can ask ad-hoc queries, which are answered
in a snapshot fashion (based on the data available in the network so far) by

1 http://vip2p.saclay.inria.fr

http://vip2p.saclay.inria.fr

388 K. Karanasos et al.

ViP2P Core

Resource Catalog

Query
management

View
management

View
indexing

View
materialization

Document
management

View
lookup

View data
extraction

View
lookup

Query
execution

Query
rewriting

Query
optimization

D
at

a
E

x c
h

a n
g

e

Data Storage

Fig. 1. System overview (left); Architecture of a ViP2P peer (right)

exploiting the existing subscriptions, which can be seen as materialized views.
In this Section, we detail the overall process via an example.

A sample ViP2P instance over six peers is depicted in Figure 1 (left). In the
Figure, XML documents are denoted by triangles, whereas views are denoted by
tables, hinting to the fact that they contain sets of tuples.

For ease of explanation, we make the following naming conventions for the
remainder of this paper: publisher is a peer which publishes an XML document,
consumer is a peer which defines a subscription and stores its results (or, equiva-
lently, the respective materialized view) and query peer is a peer which poses an
ad-hoc query. Clearly, a peer can play any subset of these roles simultaneously.

View Publication.A ViP2P view is a long-running subscription query that any
peer can freely define. In the sequel, we will refer to long-running subscription
queries as materialized views or just views. The definition (i.e., the actual query)
of each newly created view is indexed in the DHT network. For instance, assume
peer p2 in Figure 1 (left) publishes the view v1, defined by the XPath query
//bibliography//book[contains(.,′Databases′)]. The view requires all the books
items from a bibliography containing the word ‘Databases’. ViP2P indexes v1 by
inserting in the DHT the following three (key, value) pairs: (bibliography, v1@p2),
(book, v1@p2) and (′Databases′, v1@p2). Here, v1@p2 encapsulates the structured
query defining v1, and a pointer to the concrete database at peer p2 where v1
data is stored. As will be shown below, all existing and future documents that
can affect v1, push the corresponding data to its database.

Peers look up views in the DHT in two situations: when publishing documents,
and when issuing ad-hoc queries. We detail this below.

Document Publication. When publishing a document, each peer is in charge
of identifying the views within the whole network to which its document may
contribute. For instance, in Figure 1 left (step a), peer p3 publishes the document
d2. Peer p3 extracts from d2 all distinct element names and all keywords. For each
such element name or keyword k, p3 looks up in the DHT for view definitions
associated to k. Assume that document d2 contains data matching the view
v1 as it contains the element names bibliography and book, as well as the word
′Databases′, thus p3, learns about the existence of v1 (step b). In the publication

ViP2P: Efficient XML Management in DHT Networks 389

example above, p3 extracts from d2 the results matching v1; from now on, we
will use the notation v1(d2) to designate such results. Peer p3 sends v1(d2) to p2
(step c), which adds them to the database storing v1 data.

Ad-Hoc Query Answering. ViP2P peers may pose ad-hoc queries, which
must be evaluated immediately. To evaluate such queries, a ViP2P peer looks
up in the network for views which may be used to answer it. For instance,
assume the query q = //bibliography//book[contains(., ′Databases′)]//author
is issued at peer p5 (step 1, in Figure 1, left). To process q, p5 looks up the
keys bibliography, book, ′Databases′ and author in the DHT, and retrieves a
set of view definitions, v1, v2 and v3 (step 2). Observe that q can be rewritten
as v1//author; therefore, p5 can answer q just by retrieving and extracting q’s
results out of v1. Alternatively, assume that q can also be rewritten by joining
views v2 and v3 as ViP2P can combine several views to rewrite a query [4]. In
that case, p5 can retrieve the views v2 and v3 (step 3) and join them to evaluate
q. However, the whole content of both views has to be shipped to p5 to evaluate
the query q. Instead, v2 can be shipped to peer p1, joined locally with v3 at p1
(step 4), who will send the query results to the query peer (step 4’), avoiding
extraneous data transfers.

3 ViP2P Peer Architecture

Figure 1 (right) outlines the architecture of a ViP2P peer. In this Section, we
introduce the auxiliary modules on which every peer relies, and then move to
the main modules, which are included in the ViP2P Core box of Figure 1.

Resource Catalog provides the underlying DHT layer used to keep peers con-
nected, and to index and lookup views. It employs the FreePastry DHT, which
is an open-source implementation of the Pastry overlay network [10]. It provides
efficient request routing, deterministic object location, and load balancing.

Data Exchange module is responsible for all data transfers and relies on Java
RMI. Experience with FreePastry has shown that Pastry-routed inter-peer com-
munications quickly become the bottleneck when sending important volumes of
data [1]. Instead, we use RMI (with our own (de)serialization methods, prop-
erly controlling concurrency at the sender and receiver side etc.) to send larger
messages containing view tuples, when views are materialized and queried.

Data Storage Within each peer, view tuples are efficiently stored into a native
store that we built using the BerkeleyDB2 library. It allows storing, retrieving
and sorting entries, with transactional guarantees for concurrent operations.

The VIP2P GUI enables publishing views, documents and evaluating queries.

We now describe the core modules.

Document Management determines to which views the peer’s documents may
contribute data, and extracts and sends this data to the appropriate consumers.

2 http://www.oracle.com/technetwork/database/berkeleydb/

http://www.oracle.com/technetwork/database/berkeleydb/

390 K. Karanasos et al.

- View definition lookup. When a new document is published by a peer, this
module looks up in the DHT for view definitions to which the document may
contribute data. The result is a superset of view definitions of the views that
the document might contribute data to. These definitions are then passed to the
view data extraction module.

- View data extraction. Given a list of view definitions, this module at a pub-
lisher peer extracts from the document the tuples matching each view, and ships
them, in a parallel fashion, to the corresponding consumers. The view data ex-
tractor is capable of simultaneously matching several views on a given document,
thus extracting the corresponding tuples at a single document traversal.

View Management. This module handles view indexing and materialization.

- View indexing. This module implements the view indexing process. In this
context, a given algorithm for extracting (key, value) pairs out of a view definition
is termed a view indexing strategy [4]. In our experiments, the most efficient is
the Label Indexing (LI) strategy, indexing a view v by each v node label (element
or attribute name, or word).

- View materialization. The view materialization module receives tuples from
remote publishers and stores them in the respective BerkeleyDB database. In a
large scale, real-world scenario, thousands of documents might be contributing
data to a single view. To avoid overload on its incoming data transfers, this
module implements a back-pressure tuple-send/receive protocol which informs
the publisher when the consumer is overloaded, so that the publisher waits until
the consumer is ready to accept new tuples.

Query Management comprises the following modules for query evaluation.

- View lookup. This module, given a query, performs a lookup in the DHT
network retrieving the view definitions that may be used to rewrite the query.
Depending on the indexing strategy (mentioned earlier in this Section), this
module uses a different view lookup method.

- Query rewriting. Given a query and a set of view definitions, this module
produces a logical plan which, evaluated on some views, produces exactly the
results required by the query (algorithm detailed in [7]).

- Query optimization.This module receives a logical plan that is output by the
query rewriting module, and translates it to an optimized physical plan. The op-
timization concerns both the logical (join reordering, push selections/projections
etc.) and physical (dictating the exact flow of data during query execution) level.

- Query execution. This module provides a set of physical operators which
can be executed by any ViP2P peer, implementing the standard iterator-based
execution model. Since ViP2P is a distributed application, operators can be
deployed to peers and executed in a distributed manner. The query optimization
module is the one to decide the parts of a physical plan that every peer executes.

ViP2P: Efficient XML Management in DHT Networks 391

4 Experimental Results

We now present a set of experiments studying ViP2P performance, carried on
the Grid5000 infrastructure3. Due to space limitations, we only report here on
our main findings; many more experiments are described in [4].

In our experiments, we used synthetic “product catalog” documents of con-
trollable size (more details can be found in [4]). First, all views are created and
indexed. Then, on a signal sent to all publishers, these peers start publishing
all their documents as fast as possible. This is a “flash crowd” scenario, aiming
at stress-testing our system. Queries are posed and processed after all the views
are filled with data. Section 4.1 examines view materialization, while Section 4.2
studies the performance of the query execution engine.

4.1 View Materialization in Large Networks

We present three materialization experiments; many more can be found in [4].

Experiment 1: One Publisher, Varying Data Size, 64 Consumers. In
this experiment we study how materialization time is affected when the total
size of published data is increased. We use one publisher holding all the data in
the network. The size of the published data varies from 64MBs to 1024MBs.

Each of the 64 consumers holds one view of the form //catalog//cameraK cont

where K varies according to the peer that holds the view. For example, the
first consumer holds the view //catalog//camera1 cont, the second holds the
view //catalog//camera2 cont etc. This way, from each document the publisher
extracts 64 tuples, each of which is sent to a different consumer. All the content
of the documents is absorbed by the 64 views.

We run two variations of the same experiment: (i) one for sequential tuple
sending where a publisher sends the tuples to their corresponding consumers one
after the other, and (ii) one for parallel tuple sending, where a publisher ships
the tuples to their corresponding consumers simultaneously. The graph at left in
Figure 2 shows, as expected, that the materialization time increases linearly with
the size of data published in the network in both cases. It also shows that the
materialization time in the case of parallel tuple sending is considerably shorter
(about 3000 sec. instead of 11500 sec. for absorbing 1024MBs of data).

Experiment 2: 64Publishers,VaryingData Size,OneConsumer.We now
focus on the impact of the number of (simultaneous) publishers on the capacity of
absorbing the data into a single view. The published data size varies from 64MBs
to 3.2GBs, and is equally distributed to 64 publishers. All the published data ends
up in one view. Similarly to Experiment 1, we test 2 modes of tuple-receiving con-
currency: (i) sequential tuple receiving and; (ii) parallel tuple receiving.

Figure 2 (center) depicts the materialization time as the size of the published
data increases. We observe that the materialization time increases proportionally
to the size of published data in both sequential and parallel tuple receiving

3 https://www.grid5000.fr

https://www.grid5000.fr

392 K. Karanasos et al.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 64 512 1024

V
ie

w
 m

at
. t

im
e

(s
ec

)

Size of data published (MB)

Sequential tuple sending
Parallel tuple sending

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 64 512 1024 2048 3200

V
ie

w
 m

at
. t

im
e

(s
ec

)

Size of data published (MB)

Sequential tuple receiving
Parallel tuple receiving

 100

 200

 300

 400

 500

 600

 700

 800

 900

 20 40 60 80 100 120 140 160

V
ie

w
 m

at
. t

im
e

(s
ec

)

Size of data published (GB)

Materialization time

Fig. 2. Experiment 1: one publisher, varying size of data, 64 consumers (left); Ex-
periment 2: 64 publishers, varying data size, one consumer (center); Experiment 3:
publishing varying size of data in 50 groups of 5 peers each (right).

modes. Also, parallel tuple receiving reduces the view materialization time by
more than 50% (600 sec. instead of about 1400 sec. to absorb 3.2GBs of data).

From the two graphs (left, center) in Figure 2, we conclude that it is faster
for the network to absorb data using one consumer and many publishers rather
than many consumers and one publisher since it is slow for a peer to extract all
the available data by itself and ship them to the consumers.

Experiment 3: Community Publishing. A “community publishing” setting
is the closest to real world scenarios: a large and complex environment, with
many publishers and many consumers. We use a network of 250 peers, each
of which holds the same number of 1MB documents. We logically divide the
network into 50 groups of 5 publishers and one consumer each. The data of
all publishers in a group is of interest only to the consumer of that group.The
total amount of data published (and shipped to the views) varies from 20GBs
to 160GBs.

Figure 2 (right) shows that the materialization time grows linearly with the
published data size. This experiment demonstrates the good scalability prop-
erties of ViP2P as the data volume increases. Moreover, it shows that ViP2P
exploits many parallelization opportunities in such “community publishing” sce-
narios when extracting, sending, receiving and storing view tuples. Here we re-
port on sharing up to 160 GB of data over up to 250 peers with a throughput
of 238 MB/s while KadoP [1] scaled up to 1 GB of data over 50 peers with a
throughput of 0.33 MB/s and psiX [9] used 262 MBs of data and 11 computers.

4.2 Query Engine Evaluation

In this Section, we investigate the query processing performance as the data size
increases. We use 20 publisher peers, two of which are also consumers, while
another publisher is a query peer. The query peer and the two consumers are
located in three different French cities. The number of published documents
varies from 20 to 500; all documents contribute to the views.

The document used in this experiment is the same as in the previous experi-
ments with a slight difference: its root element catalog has only one child, named
camera. The views defined in the network are the following:

ViP2P: Efficient XML Management in DHT Networks 393

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 20 100 200 500

Q
ue

ry
 r

es
p.

 ti
m

e
(s

ec
)

Result size (tuples)

Query response time
Time to first result

 200

 250

 300

 350

 400

 450

 500

 20 100 200 500

Q
ue

ry
 r

es
p.

 ti
m

e
(m

s)

Result size (tuples)

Query response time
Time to first result

Fig. 3. Query execution time vs. number of result tuples for q1 (left) and q2 (right)

– v1 is //catalogID//cameraID//descriptionID,cont

– v2 is //catalogID//cameraID//{descriptionID, priceID,val, specsID,cont}

Each document contributes a tuple to each view. The tuples of v1 are large in
size, since the description element is the largest element in our documents. A
v2 tuple is quite smaller since it does not store the full camera descriptions.
We use two queries: q1 asks for the descriptioncont, specscont and priceval of
each camera. To evaluate q1, ViP2P joins the views v1 and v2. Observe that q1
returns full XML elements, and in particular, product descriptions, which are
voluminous in our data set. Therefore, q1 returns roughly all the published data
(from 10MB in 20 tuples, to 250MB in 500 tuples). q2 requires the descriptionID,
specsID and priceID of each camera. It is very similar to q1 with but it can be
answered based on v2 only. The returned data is much smaller since there are
only IDs and no XML elements: from 2KB in 20 tuples, to 40KB in 500 tuples.

Figure 3 shows the query response time and the time to get the first result for
the two queries. The low selectivity query q1 in Figure 3 (left) takes longer than
q2 (right), due to the larger data transfers and the necessary view join. The time
to first result is always constant for both q1 and q2 and does not depend on the
result size. For q1, a hash join is used to combine v1 and v2, and thus no tuple is
output before the view v2 has been built into the buckets of the hash join. This
is done around one second in the case of q1 and about 300 ms for q2.

The ViP2P query processing engine scales quite linearly answering queries
in a wide-area network. The fact that ViP2P rewrites queries into logical plans
which are then passed to an optimizer, enables it to take advantage of known
optimization techniques used in XML and/or distributed databases.

5 Conclusion and Perspectives

We have presented the ViP2P platform for building and maintaining structured
materialized views, and processing queries using the views in a DHT network.
Our experiments show that ViP2P outperforms similar systems by several orders
of magnitude, in particular for the data publication throughput and the overall
volume of data published. Many more experiments are described in our technical

394 K. Karanasos et al.

report [4]. We currently investigate a distributed version of our automatic view
selection algorithm [5]. We also consider multiple-level subscriptions, where some
views could be filled with data based on lower-level views.

Acknowledgements. We experimented on Grid’5000 (https://www.grid
5000.fr). We thank A. Tilea, J. Camacho-Rodŕıguez, A. Roatis, V. Mishra and
J. Leblay for their help. This workwas partially supported byANR 08-DEFIS-004.

References

1. Abiteboul, S., Manolescu, I., Polyzotis, N., Preda, N., Sun, C.: XML processing in
DHT networks. In: ICDE (2008)

2. Bonifati, A., Cuzzocrea, A.: Storing and retrieving XPath fragments in structured
P2P networks. Data Knowl. Eng. 59(2) (2006)

3. Galanis, L., Wang, Y., Jeffery, S.R., DeWitt, D.J.: Locating Data Sources in Large
Distributed Systems. In: VLDB (2003)

4. Karanasos, K., Katsifodimos, A., Manolescu, I., Zoupanos, S.: The ViP2P Platform:
Views in P2P. Research Report No 7812 (November 2011)

5. Katsifodimos, A., Manolescu, I., Vassalos, V.: Materialized View Selection for
XQuery Workloads. In: SIGMOD (to appear, 2012)

6. Lillis, K., Pitoura, E.: Cooperative XPath caching. In: SIGMOD (2008)
7. Manolescu, I., Karanasos, K., Vassalos, V., Zoupanos, S.: Efficient XQuery rewriting

using multiple views. In: ICDE (2011)
8. Miliaraki, I., Kaoudi, Z., Koubarakis, M.: XML Data Dissemination Using Automata

on Top of Structured Overlay Networks. In: WWW (2008)
9. Rao, P.R., Moon, B.: Locating XML documents in a peer-to-peer network using

distributed hash tables. IEEE TKDE 21 (2009)
10. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-

ing for large-scale peer-to-peer systems. In: ICDSP (November 2001)
11. Skobeltsyn, G., Hauswirth, M., Aberer, K.: Efficient Processing of XPath

Queries with Structured Overlay Networks. In: Meersman, R., Tari, Z. (eds.)
CoopIS/DOA/ODBASE 2005. LNCS, vol. 3761, pp. 1243–1260. Springer,
Heidelberg (2005)

Online Change Estimation Models for Dynamic
Web Resources�

A Case-Study of RSS Feed Refresh Strategies

Roxana Horincar, Bernd Amann, and Thierry Artières

LIP6 - University Pierre et Marie Curie, Paris, France
{roxana.horincar,bernd.amann,thierry.artieres}@lip6.fr

Abstract. Modern web 2.0 applications have transformed the Internet
into an interactive, dynamic and alive information space. Personal we-
blogs, commercial web sites, news portals and social media applications
generate highly dynamic information streams which have to be propa-
gated to millions of users. This article focuses on the problem of esti-
mating the publication frequency of highly dynamic web resources. We
illustrate the importance of developing efficient online estimation tech-
niques for improving the refresh strategies of RSS feed aggregators like
Google Reader [8], Datasift [7] or Roses [11]. We study the temporal
publication characteristics of a large collection of real world RSS feeds
and we define and evaluate several online estimation methods in cohesion
with different refresh strategies. We show the benefit of using periodical
source publication patterns for change estimation and we highlight the
challenges imposed by the application context.

1 Introduction

Understanding how web resources evolve in time is important for conceiving
tools designed to ease the interaction between people and dynamic web content
published by online newspapers, commercial web sites, social networks and col-
laborative web sites like Wikipedia. Most of these information sources can only
be accessed via standard pull-based web protocols (HTTP) and estimating the
degree of information change during a given time period is crucial for developing
efficient refresh strategies.

Modern web sites, such as online newspapers or social media sites, publish
their stream of changes in form of light-weight RSS/Atom feeds for reducing
the communication cost between servers and clients. Technically speaking, an
RSS feed is a standard XML document containing a list of time-stamped text
descriptions including links to the corresponding web pages. The size of this list is
generally limited to a constant value, where the publication of a new item usually
removes the oldest one in the corresponding window. From the user’s point of
view, RSS documents are perceived as a stream of items pushed to their screen.
� The authors acknowledge the support of the French Agence Nationale de la

Recherche (ANR), under grant CARTEC (ANR-07-MDCO-016)

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 395–410, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

396 R. Horincar, B. Amann, and T. Artières

However, when considering the underlying communication protocol, there is no
distinction between RSS feeds and other web resources. Both kinds of resources
have to be refreshed by using the standard pull-based HTTP protocol where
changes can only be detected by explicitely contacting the server.

As any web resource, RSS feeds evolve independently of their clients which
must take their refresh decisions by estimating the change frequencies [1, 17].
In this paper, we focus on the problem of estimating the change frequency of
dynamic web data. Our first goal is to improve the refresh strategies of RSS
aggregators, but other web data processing systems like web crawlers or web
data warehouses may as well benefit from the techniques presented in this article.
The main challenges we address are:
Rapidly changing publication behavior : Event-related feed sources like

topic based news feeds or social media feeds (Twitter) may suddenly change
their publication frequency related to a particular event (e.g. twitter hash-
tag). This data dynamics leads to the necessity of continually updating the
publication frequency estimation, using online estimation techniques.

Incomplete knowledge : Another challenge is the limited access bandwidth
due to standard web politeness policies and limited computing, network and
storage resources. Estimators then have to deal with incomplete knowledge
about the data change history, not knowing how often, how much and when
exactly a source produces new information items.

Irregular estimation intervals : In many web applications, data sources are
not refreshed in regular time intervals. The exact access moment is generally
decided by a refresh strategy, usually conceived to optimize certain quality
measures within a minimum cost. Irregular refresh periods also make the
estimation process more challenging.

Our main contributions are:
– an analysis of general characteristics with a focus on the temporal dimension

of real RSS feed sources using data collected over four weeks from more than
2500 RSS feeds,

– two online estimation methods that correspond to different RSS publication
activity models and

– an experimental evaluation of the online estimation methods in cohesion with
different refresh strategies and an analysis of their effectiveness on sources
with different publication behavior.

The rest of this paper is organized as follows. Section 2 gives a short survey
of related work on refresh strategies and parameter estimation for web data. In
section 3 we describe the problem and benefits of online change estimation in the
context of web data refresh strategies. Section 4 proposes two ways to model the
publication activity of a source and introduces some methods for updating these
publication models online. Section 5 analysis the temporal characteristics of two
collections of real RSS feed sources. Section 6 exposes the experimental results
obtained by evaluating the proposed online estimation methods in conjunction
with different refresh strategies. Conclusions and future work are presented in
section 7.

Online Change Estimation Models for Dynamic Web Resources 397

2 Related Work

The problem of efficiently refreshing dynamic web information is largely studied
in the context of web pages [4–6, 12–14] and RSS feed [11, 16, 17]. The majority of
these strategies are based on the widely accepted assumption that web resources
follow a Poisson process [15] characterized by a change rate parameter λ(t) which
can be estimated by observing the change history of a web page.

Considering λ(t) = λ to be constant corresponds to a homogeneous (opposed
to non-homogeneous) Poisson process which represents a stateless and time-
independent random process where events occur with the same probability (rate)
λ at every time point. It has been shown that this model is appropriate for a time
granularity of at least one month [4–6]. On the other hand, for time granularities
shorter than a month, researchers have shown that the homogeneous Poisson
model is no longer suited [2, 9].

Offline refresh strategies [4, 5, 16, 17] assume that the change frequency of
web pages or posting rates of web streams is known a-priori. They usually use
average values measured beforehand or learnt during an initial learning phase
with access to a complete changing history. This assumption is sufficient for a
low frequency refresh activities where each web resource is refreshed rarely (like
in web search engines) and the update frequency can be averaged over long time
periods [4, 5, 16, 17].

Reference [6] presents several change (frequency) estimators for web pages,
assuming an incomplete change history with irregular refresh frequencies. They
show that a Web crawler could achieve 35% improvement in “freshness” simply
by adopting their estimator. However, their analysis is based on the hypothesis
that the date of the last change or the existence of a change on a web page are
known in advance for estimation.

Based on the previous observations, [16] uses a periodic (inhomogeneous)
Poisson model with a daily periodicity within a RSS feeds scenario. Similarly,
[12] presents an empirical study of two online refresh strategies that use a curve-
fitting over a generative model method and conservative bounds to dynamically
adjust refresh parameters.

In the context of information filtering (also referred to as publish/subscribe),
a user subscribes to the system to receive notifications whenever certain events of
interest take place (e.g., when a document that corresponds to a certain filtering
condition becomes available). In order to estimate the probability that a node
has published new information relevant to a user’s subscription, [18, 19] use time
series prediction techniques for approximate information filtering. Our work uses
a similar approach in a different context.

3 Refresh Strategies and Online Change Estimation

Large-scale web applications like web search engines, web archives, web data
warehouses, publish-subscribe systems and news aggregators have to collect in-
formation from a large number of dynamic web resources. In order to accomplish

398 R. Horincar, B. Amann, and T. Artières

this task efficiently, these systems are generally based on refresh strategies for
deciding when to refresh each source in order to maximize one or several quality
criteria under limited resources.

Refresh decisions are based on appropriate source publication models for making
predictions. There exist various publication models. Content-independent mod-
els [6] estimate the probability that a source has changed at least once or n times
at some time instant t, whereas content-dependent models [12] might include some
heuristics for estimating the importance of change between two versions. We con-
sider in this article the case of a RSS aggregator node which is subscribed to a col-
lection of sources. Let t0 represent the last time instant when source s has been
refreshed by the aggregator. We define a divergence function Div(s, t, t0) estimat-
ing the total number of new items published by the source s in the time period
(t0, t]. Obviously the quality (preciseness) of this estimation is important for the
quality of the corresponding refresh strategy [4, 5].

A traditional way for estimating divergence is to define the behavior of a
source s as a stochastic (Poisson) process which can be characterized by time
dependent publication frequency variable λ(s, t) that measures the number of
items published by source s at time instant t. Divergence can then be defined as
an integral of publication frequency λ(s, t) over time:

Div(s, t, t0) =
∫ t

t0

λ(s, x)dx (1)

In practice, refresh strategies use a discrete time dimension, where time periods
are divided into time units of fixed size and divergence is defined by a sum of
divergence estimations for the intervals (see section 4).
Online and offline change estimation: The general refreshing process illus-
trated in figure 1 is accomplished by (1) the refresh strategy which uses the publi-
cation model for estimating the divergence and the next refreshing time moment of
each source and (2) the change estimator which generates andupdates the publica-
tion model. In an offline scenario the change estimator module does not exist. The
refresh strategy uses a precomputed publication model which is updated offline (in-
dependently of the refresh process). Online estimation interleaves both tasks and
each new observation (obtained by a refresh) is used immediately for updating the
publication model.
Why online change estimation is important: Keeping the estimated pub-
lication frequency of a source constant over a long period of time can represent
an important source of errors if the source publication activity changes in time.

Fig. 1. Online estimation

Online Change Estimation Models for Dynamic Web Resources 399

This is illustrated in figure 2 showing the evolution of the real and the estimated
divergence of a source during a day. Figure 2 compares (for a given source) the
real divergence values (red curve) with the estimated values using a constant
publication frequency (offline estimated divergence as the green curve) and the
estimated values using an adaptive publication frequency (online estimated di-
vergence as the blue curve). In both curves, the source is refreshed in regular time
intervals which resets the divergence values to 0. The green estimated divergence
function presented in figure 2 increases with a constant slope because it is based
on a constant publication frequency (previously learnt in an offline manner and
not updated afterwards). Differently from this case, the blue estimated diver-
gence function in figure 2 is computed based on a publication frequency that
continuously adapts its value in time (online estimation), converging to a zero
publication frequency when the source does not publish anything and increasing
as the source starts publishing. The estimation obviously is better in average in
the second case.

Fig. 2. Real vs. estimated divergence

4 Online Change Estimation for RSS Feeds

Our approach for estimating the change rate of RSS feeds is strongly inspired
from standard results in time series analysis [3]. These techniques are used to
predict future time series values based on past observations and are usually
based on the hypothesis that both observations and predictions are done at
equally spaced time intervals. In our particular case, the observations are made
at the moment of a refresh, which is decided by the refresh strategy used by the
crawler [11]. This makes the prediction process less precise than in the case of
classical time series model usage.

We base our online estimation methods on observations of the number of
occurred changes, i.e. new items published by a feed. In the particular case of
working with RSS feeds, we could have chosen to use the specific RSS field
< pubDate > in order to find out exactly the publication date of each item.
Nevertheless, we prefer to ignore this attribute for two reasons. First, [10] reports
that this information (< pubDate >) is missing in about 20% of items. Second,

400 R. Horincar, B. Amann, and T. Artières

ignoring this particular kind of metadata keeps our estimation methods generic
and adaptable for other kinds of data (e.g. web pages).

4.1 Single Variable Publication Model

Estimating Divergence: Our first publication model represents the publica-
tion frequency of a source s at time t by a single variable, λ(s, t). Let Tr represent
the time instant of the rth refresh of s and λr = λ(s, Tr) be the change rate of
source s estimated at time instant Tr. Then the divergence of s at time instant
T ∈ [Tr, Tr+1) can be simply estimated by the following formula:

Divest(s, T, Tr) = (T − Tr) · λr

Updating Frequency Estimation: Let xr+1 = Div(s, Tr+1, Tr) be the num-
ber of new items published since the last refresh at Tr and observed at Tr+1.
The newly estimated value of the publication frequency is obtained by single-
exponentially smoothing the new observation with the previous estimation:

λr+1 = α · xr+1

(Tr+1 − Tr)
+ (1 − α) · λr

This estimation method relies on all previous observations, with exponentially
decaying weights, parameter α ∈ [0, 1] representing the smoothing constant.

4.2 Periodic Publication Model

Our second estimation model of publication is based on the hypothesis of pe-
riodicity. In this case, the publication frequency of a source is described as a
periodic function with some (constant) period ΔT : λ(s, t) = λ(s, t + ΔT).

We use a discrete representation of the publication frequency as a table P (s)
of n values, each corresponding to a time slot [ti, ti+1), i ∈ {0, ...n − 1}. Each
time slot is of constant size ti+1 − ti = ΔT /n. We will call P (s) the publication
model of s. Then λi(s, t) corresponds to the (i + 1)th value in P (s) where (t
mod ΔT) ∈ [ti, ti+1) (i is the time slot covering t). In the following we denote by
λi the average publication rate of source s during time slot i. In our experiments
(section 6) we use a daily publication model where ΔT = 24 hours, n = 24 time
slots of 1 hour each.
Estimating Divergence: Let Tr represent the time instant of the rth refresh of
s and Pr(s) = {λr

i }, i ∈ {0, ...n− 1} be the publication model of s estimated at
time instant Tr. Then the expected divergence of s at time instant T ∈ [Tr, Tr+1)
can be estimated by the following formula where i corresponds to the time slot
containing Tr and there are k + 1 = (�T − �Tr�) ·n/ΔT time slots "covered" by
the interval [Tr, T) (the definitions are illustrated in figure 3):

Divest(s, T, Tr) =
∫ T

Tr

λr
j(s, t) dt =

= λr
i (ti+1 − Tr) + ΔT /n ·

i+k−1∑
j=i+1

λr
(j mod n) + λr

i+k(T − ti+k)

Online Change Estimation Models for Dynamic Web Resources 401

Fig. 3. Periodic publication model

Updating Frequency Estimation: Suppose that the aggregator refreshed
some source s at some time moments Tr and Tr+1 that correspond to time
slots i and i + k. At Tr+1, the aggregator fetches xr+1 = Div(s, Tr+1, Tr)
new items published since the last refresh at Tr. The intuitive idea of the
model update is to distribute the last observed items xr+1 in the time interval
[Tr, Tr+1). This distribution is done proportionally to the expected divergence
Divest

r+1 = Divest(s, Tr+1, Tr) estimated using the values of λr
j that correspond

to the time interval [Tr, Tr+1). We compute λr+1
j as the newly predicted value

of λj that corresponds to time slot j as follows:

λr+1
j =

{
α · λr

j

Divest
r+1

· xr+1 + (1 − α) · λr
j if j ∈ {i, ...i + k}

λr
j otherwise

where α ∈ [0, 1] represents a smoothing parameter that is used to give more
or less weight to recent observations. This reestimation formula corresponds to
a maximum likelihood estimate of the publication frequencies λj based on the
observation xr+1 at iteration r + 1, smoothed with the estimates at previous
iteration r.

5 Dataset Description

In order to better understand the change estimation problem, we studied a col-
lection of real world RSS feeds focusing on their temporal dimension. We used
two different datasets: dataset 1 was obtained from crawling a list of feeds [10]
harvested from major RSS directories, portals and search engines (such as syn-
dic8.com, Google Reader, feedmil.com, completeRSS.com etc.) and dataset 2 was
acquired from a manually chosen list of RSS news feeds of different online newspa-
per websites, both French (such as Le Monde, Le Figaro, AFP) and international
(such as CNN, New York Times, Euro News). We selected 1658 RSS crawled feeds
from dataset 1 and 963 RSS news feeds from dataset 2 that had at least one posting
within the four-week period between 14 March - 10 April 2011.

Publication Activity: In figure 4 we show the distribution of feeds for various
activity classes defined by different posting rates for the two different datasets.
The distributions show that feeds with very slow publication activity are pre-
dominant, while roughly 20% of the feeds publish more than 10 items daily.

402 R. Horincar, B. Amann, and T. Artières

Fig. 4. Feeds per activity class

It has been shown in [10] that whereas the number of productive feeds is quite
small, they are the ones that produce most of the items: 17% of RSS/Atom feeds
produce 97% of the items.

Feed Periodicity: It is widely accepted that the past change represents a good
predictor of future change. This works well especially for those types of feeds that
have a foreseeable publication activity, for example, feeds that publish daily the
same number of items. In this sense, measurements on real data done in [16] show
that most of the daily posting rates of feed sources are stable, at least for their
dataset, within the 3-month period they used for their experiments. But there are
also feeds whose publication behavior vary in time, both in the number of daily
published items and in the shape of publication activity.

In order to detect changes in publication frequency, for each hour (time slot i)
of a day, we logged the number of items published by a feed and then computed
the mean μi and the standard deviation σi on the entire period. We consider
that a small coefficient of variation CV value is representative for periodic feed
sources.

CV =
1
24

23∑
i=0

σi

μi
where μi �= 0

When the mean values are close to zero, the coefficient of variation becomes sensi-
tive to small changes in the means and inappropriate for testing sources with a low
publication activity. Testing for CV ≤ 1, we discovered that periodic sources rep-
resent 20% of the sources in our datasets that publish more than 10 items per day
and 50% of the sources that publish more than 48 items per day. As an example,
in figures 5a and 5b we represented the average (pink bars) and the standard

(a) Periodic publication (b) Aperiodic publication

Fig. 5. Periodic and aperiodic publication behavior

Online Change Estimation Models for Dynamic Web Resources 403

deviation (vertical lines) of the number of published items at different time slots,
one for each hour of the day, for a periodic and an aperiodic feed.

Publication Shape: We also studied the feed collection looking for different
"shapes" in the daily publication activity. The shape of a daily publication model
highly depends on what happens "behind the curtains" of each feed. Some feeds
may be generated by human activity, while others may be based on some auto-
matic publication process. We classified the feeds in three different categories,
as shown in figure 6: feeds that have peaks, usually generated by an automatic
publication robot, that have a uniform publication activity, such as in the case
of a news aggregator and those that exhibit waves, following the regular daily
schedule of a human activity. This classification has been obtained by using a
shape discovery heuristic that uses two thresholds, inferior and superior to the
average number of items published during an hour, to distinguish between hours
with insignificant, average or very high publication activity.

(a) Peaks (b) Uniform (c) Waves

Fig. 6. Publication shapes: peaks, uniform and waves

In figure 7 we show the distribution of feeds for various activity classes and
publication shapes for dataset 1 (similar results were obtained for dataset 2).
The distributions show that feeds with very slow publication activity tend to
publish more with peaks, the uniform pattern is very much present in feeds with
very high publication activity while the wave shape appears in feeds with low,
medium and high publication frequencies.

Fig. 7. Feeds per publication shape and activity class - dataset 1

404 R. Horincar, B. Amann, and T. Artières

6 Experimental Evaluation

In this section, we evaluate the performance of our online estimation methods in
cohesion with different refresh strategies based on real RSS feeds data collected
during a four-week period (see section 5).

Setup: We focused our interest on feeds with a relatively high publication activ-
ity. For our experiments, we selected (using the shape discovery heuristic) three
subsets of 10 feed sources each, representative for the three publication shapes,
having a publishing activity of at least 10 items per day.

We emulated the source publication activity by constructing a cycle-based
environment, where a cycle corresponds to a time unit of duration 10 minutes.
Furthermore, we worked with a normalized source publication, i.e. instead of
publishing x items during a time slot, we consider that a source publishes x/N
items, where N represents the total number of items published by the source
during that entire day. Working this way, we focused ourselves on estimating the
shape of a source publication activity and we avoided the influence of any strong
fluctuation in terms of total number of items published daily.

Choosing the optimal value of the smoothing parameter α depends on the
type of the source, on the refresh frequency and on the level of convergence of
the source publication model. In each case, we chose an experimentally found
value of α such that it minimizes the divergence errors, usually using values in
the interval [0.01 − 0.2].

6.1 Online Estimation Evaluation

In order to evaluate the online estimation techniques presented in section 4, we
applied an uniformly distributed random refresh strategy, in which the refreshes
are done at irregular intervals of time that are uniformly distributed around
a fixed average value. For example, when we say that a source is refreshed on
average every 1 hour, that means that it can be refreshed within the interval 10
minutes - 2 hours. We put all sources in the same initial conditions, initializing
their publication models at 0 and started the evaluation after an initial warm
up period.

Robustness of the Periodic Publication Estimation: In order to test the
robustness of our periodic publication estimation, how it acts to sudden changes
in the publication behavior of the sources and how it is influenced by the re-
fresh frequency used by the strategy, we created an artificial source. We concate-
nated publication activities from three sources with different types of publication
shapes: 16 weeks of uniform, followed by 16 weeks of peaks and followed by 16
weeks of waves.

Experiments were done using the uniformly distributed random strategy that
refreshed the source every 1 hour and every 24 hours on average. We logged the
estimated daily publication models at the end of each week. We also defined
the "real" daily publication model as an average done on the 7 days of source
publication activity previous to the measurement moment. In figure 8 we present

Online Change Estimation Models for Dynamic Web Resources 405

(a) After 16 weeks: Uni-
form

(b) After 32 weeks: Peaks (c) After 48 weeks: Waves

Fig. 8. Daily publication model: real vs. estimated model

in detail the real and estimated daily publication models of the artificial source
just before each change in the publication behavior, i.e. at the end of 16th,
32nd and 48th week (time moments circled and marked with vertical blue lines
in figure 9). Furthermore, we compute the 24-dimensional Euclidean (2-norm)
distance between the real and the estimated daily publication models after each
week and present it in figure 9.

Experiments shown in figures 8 and 9 prove the bad influence a small refresh
frequency can have on the quality of the estimation process. Convergence speed
of the publication estimations are shown in figure 9: while the estimated daily
publication model obtained with a refresh done every 1 hour on average converges
rapidly towards the real model, the estimated model obtained with a refresh done
every 24 hours oscillates and diverges in time.

Fig. 9. Distance between real and estimated periodic model

Online Estimation Quality: At each cycle t, we computed the root mean
squared error of the estimated divergence (defined in section 3) for all sources
si ∈ S, separately for the periodic and for the single variable publication model,
as follows:

divErr =
√

1
|S| ·

∑
si∈S

(Div(si, t, t0)real − Div(si, t, t0)est)2 (2)

406 R. Horincar, B. Amann, and T. Artières

Results are presented in figure 10, separately for the three types of sources with
different publication shapes: peaks, uniform and waves. Each point represents
the average of the root mean squared divergence errors computed during the
simulation, that were obtained for different refresh frequencies. The values used
for the refresh frequencies are shown in hours and they range from a refresh done
every 30 minutes to every 24 hours on average.

(a) Peaks (b) Uniform (c) Waves

Fig. 10. Divergence error

Experiments show clearly that in the case of waves, the periodic estimation
obtains better results than the single variable one in terms of minimal divergence
error. Since it is more precise, it estimates better the wavy source publication
behavior, no matter how often the sources are refreshed and thus, how often
the publication model is updated. In the case of peaks, the difference between
the two publication estimations is less striking. When the sources are refreshed
often and therefore the learnt periodic publication model is precise, the periodic
estimation obtains smaller divergence errors. As the sources are refreshed less
frequently, the single variable estimation becomes as good as the periodic one;
this happens for two reasons: first, the periodic model becomes less accurate
and thus it diminishes its performance and second, our feed sources exhibit their
peaks at very regular intervals, e.g. every 4 hours, as shown in figure 6a, and this
advantages the single variable publication model for refresh frequencies larger
than the average interval in between peaks. As for the uniform sources, both
single and periodic publication estimations perform similarly, with the observa-
tion that the single variable publication model should be preferred because it
is much more simple to use and update. The feeds concerned by this case, that
publish in a uniform manner, represent 57% of the feeds with high publication
rate (more than 1 item published per hour), as we observed on our real feeds
datasets (section 5).

6.2 Integration of Online Estimation with 2Steps Refresh Strategy

We also integrated and tested the cohesion between our online estimation tech-
niques with the optimal 2steps refresh strategy introduced in [11], whose efficient
results highly depend on the quality of the used publication models.

In order to better understand the following, we briefly introduce some further
notions. A RSS feed is represented by a limited number of items available at some

Online Change Estimation Models for Dynamic Web Resources 407

time instant, called a publication window of size Ws. We call a source saturated
if the total number of new items published since its last refresh time reaches the
capacity of the publication window Ws. After the saturation point, if the source
is still not refreshed, the aggregator node starts to lose items, since the arrival
of new items will replace items that have not been read yet by the aggregator.

It is important to mention that we ignored the saturation problem when
updating the publication models, but for the evaluation of the 2steps refresh
strategy we considered that sources have a publication window of Ws = 20
items. We chose to do that in order to help the online estimation by giving it
unbiased information as input, but one must be aware that saturation can not
be avoided in real world RSS feed aggregation systems.

As before, we evaluate the online estimation quality by measuring the diver-
gence error (equation 2). The results obtained for the sources having different
publication shapes are similar with those obtained when testing with the uni-
formly distributed refresh strategy (see figure 10).

Furthermore, we test the effectiveness of the 2steps refresh strategy in terms of
feed completeness and window freshness (quality measures defined in [11]), in the
cases where the strategy uses offline information on the publication model of the
sources and publication models estimated with the online estimation techniques
presented here (periodic and single variable publication estimation). The results
obtained for the feed completeness and window freshness are presented in figures
11 and 12.

(a) Peaks (b) Uniform (c) Waves

Fig. 11. Feed Completeness

(a) Peaks (b) Uniform (c) Waves

Fig. 12. Window Freshness

408 R. Horincar, B. Amann, and T. Artières

When sources are refreshed very frequently (big bandwidth), both periodic
and single variable publication estimation give very good results in terms of feed
completeness and window freshness, no matter the source publication shapes.
Frequent refreshes alone assure high scores for quality measures and besides
that, good convergence for both periodic and single variable publication mod-
els. In the case of peaks, when the aggregator refreshes rarely, sources become
saturated very often and the 2steps strategy focuses itself on refreshing those
saturated ones. Predicting when a source publishes Ws = 20 items in the case of
sources with regular peaks works well both with the periodic and the single vari-
able publication model, because in this case the precision offered by the periodic
model (that knows exactly at which point in time each item was published) is
useless. All these make that both periodic and single variable publication esti-
mation give similar results in terms of feed completeness and window freshness
for the peaks in case of rare refreshes. When sources are refreshed more often
and there are less saturated sources, periodic publication estimation give better
results. In the case of wavy publication behavior, periodic estimation outper-
forms the single variable one because of the information accuracy it provides,
no matter how often the sources are refreshed. In this case it is the most clear
how the preciseness of the information on which a refresh strategy is based in-
fluences its performances. For the uniform sources, the same conclusion as for
the uniformly distributed random strategy holds. Because results are similar and
especially because the single variable publication model is far more easy to use
and update, this last one should be used.

6.3 Discussion

Experimental results illustrate the high cohesion between the correctness of the
decisions made by a refresh strategy and the publication model used together
with the quality of the estimation process. It has been shown that the refresh
frequency used by the strategy has an important influence on the quality of
the estimation process. Furthermore, saturation has a highly negative impact: if
refreshes are not done often enough and items are lost, the estimation process
uses inaccurate data for updating the model. In this case, a possible solution is
the separation of the estimation from the refresh process of the crawling module,
thus separating the bandwidth resources needed for the two processes.

When the refresh strategy has strong constraints in terms of bandwidth usage,
online estimation does not represent a reliable solution. One alternative solution
is then to allocate separate bandwidth for learning a publication profile (offline
scenario) and then to use the precomputed model to refresh the sources, without
updating it. This gives good results for feeds (or queries on feeds) that do not
change their publication behavior in time, but it is not advisable to be used for
specific queries that are very dynamic. Moreover, several such learning periods
may be repeated to update periodically the source publication profiles. Since
a refresh strategy is based on a publication model and the estimation of the
publication model depends on the bandwidth allocated by the refresh strategy,
finding the optimal balance between the two represents a challenge.

Online Change Estimation Models for Dynamic Web Resources 409

7 Conclusion

In this paper we have investigated problems related to an RSS aggregator that re-
trieves information from multiple RSS feed sources automatically. In particular,
we have proposed and studied two online estimation methods that correspond
to two different models of the source publication activity. We tested the online
estimation methods in cohesion with different refresh strategies. We compared
these methods for different publication activity shapes and we highlighted the
challenges imposed by the application context. In addition, we studied the char-
acteristics of real world RSS feeds datasets focusing on the temporal dimension.

We consider several directions for future work. First, we plan to add other
learning components for estimating the total number of items published during
a day. Also, we want to integrate an algorithm that adjusts dynamically the
value of the smoothing parameter α to the optimal value that assures minimal
estimation errors. Finally, for reducing estimation cost, we intend to introduce
clustering techniques for grouping source feeds with similar publication activities.

References

1. Adam, G., Bouras, C., Poulopoulos, V.: Utilizing RSS Feeds for Crawling the Web.
In: 2009 Fourth International Conference on Internet and Web Applications and
Services, pp. 211–216. IEEE (2009)

2. Brewington, B.E., Cybenko, G.: How dynamic is the web? Computer Net-
works 33(1-6), 257–276 (2000)

3. Chatfield, C.: The Analysis of Time Series: An Introduction. CRC Press (2004)
4. Cho, J., Garcia-Molina, H.: Synchronizing a database to improve freshness. SIG-

MOD Rec. 29(2), 117–128 (2000)
5. Cho, J., Garcia-Molina, H.: Effective page refresh policies for web crawlers. ACM

Trans. Database Syst. 28(4), 390–426 (2003)
6. Cho, J., Garcia-Molina, H.: Estimating frequency of change. ACM Trans. Internet

Technol. 3(3), 256–290 (2003)
7. Datasift, http://datasift.com/
8. Google reader, http://www.google.com/reader
9. Gruhl, D., Guha, R.V., Liben-Nowell, D., Tomkins, A.: Information diffusion

through blogspace. In: Feldman, S.I., Uretsky, M., Najork, M., Wills, C.E. (eds.)
WWW, pp. 491–501. ACM (2004)

10. Hmedeh, Z., Vouzoukidou, N., Travers, N., Christophides, V., du Mouza, C., Scholl,
M.: Characterizing Web Syndication Behavior and Content. In: Bouguettaya, A.,
Hauswirth, M., Liu, L. (eds.) WISE 2011. LNCS, vol. 6997, pp. 29–42. Springer,
Heidelberg (2011)

11. Horincar, R., Amann, B., Artières, T.: Best-Effort Refresh Strategies for Content-
Based RSS Feed Aggregation. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE
2010. LNCS, vol. 6488, pp. 262–270. Springer, Heidelberg (2010)

12. Olston, C., Pandey, S.: Recrawl scheduling based on information longevity. In:
WWW 2008: Proceeding of the 17th International Conference on World Wide
Web, pp. 437–446. ACM, New York (2008)

13. Olston, C., Widom, J.: Best-effort cache synchronization with source cooperation.
In: SIGMOD 2002: Proceedings of the 2002 ACM SIGMOD International Confer-
ence on Management of Data, pp. 73–84. ACM, New York (2002)

http://datasift.com/
http://www.google.com/reader

410 R. Horincar, B. Amann, and T. Artières

14. Pandey, S., Olston, C.: User-centric web crawling. In: WWW 2005: Proceedings of
the 14th International Conference on World Wide Web, pp. 401–411. ACM, New
York (2005)

15. Saporta, G.: Probabilités, analyse des données et statistique. Technip (2006)
16. Sia, K.C., Cho, J., Cho, H.-K.: Efficient monitoring algorithm for fast news alerts.

IEEE Trans. on Knowl. and Data Eng. 19(7), 950–961 (2007)
17. Sia, K.C., Cho, J., Hino, K., Chi, Y., Zhu, S., Tseng, B.L.: Monitoring rss feeds

based on user browsing pattern. In: Proceedings of the International Conference
on Weblogs and Social Media, Boulder Colorado, pp. 161–168 (March 2007)

18. Zimmer, C., Tryfonopoulos, C., Berberich, K., Koubarakis, M., Weikum, G.:
Approximate Information Filtering in Peer-to-Peer Networks. In: Bailey, J., Maier,
D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175,
pp. 6–19. Springer, Heidelberg (2008)

19. Zimmer, C., Tryfonopoulos, C., Berberich, K., Weikum, G., Koubarakis, M.: Node
behavior prediction for large-scale approximate information filtering. In: 1st Inter-
national Workshop on Large Scale Distributed Systems for Information Retrieval,
LSDS-IR 2007 (2007)

Active Learning of Expressive Linkage Rules

for the Web of Data

Robert Isele, Anja Jentzsch, and Christian Bizer

Freie Universität Berlin, Web-based Systems Group
Garystr. 21, 14195 Berlin, Germany

mail@robertisele.com, mail@anjajentzsch.de, chris@bizer.de

Abstract. The amount of data that is available as Linked Data on the
Web has grown rapidly over the last years. However, the linkage between
data sources remains sparse as setting RDF links means effort for the
data publishers. Many existing methods for generating these links rely
on explicit linkage rules which specify the conditions which must hold
true for two entities in order to be interlinked. As writing good linkage
rules by hand is a non-trivial problem, the burden to generate links be-
tween data sources is still high. In order to reduce the effort and required
expertise to write linkage rules, we present an approach which combines
genetic programming and active learning for the interactive generation
of expressive linkage rules. Our approach automates the generation of a
linkage rule and only requires the user to confirm or decline a number
of example links. The algorithm minimizes user involvement by select-
ing example links which yield a high information gain. The proposed
approach has been implemented in the Silk Link Discovery Framework.
Within our experiments, the algorithm was capable of finding linkage
rules with a full F1-measure by asking the user to confirm or decline a
maximum amount of 20 links.

1 Introduction

The central idea of Linked Data is to extend the Web with a global data space
by making data accessible according to the Linked Data best practices [7] and
by setting RDF links between data sources. While the amount of data that is
accessible as Linked Data has grown significantly over the last years, most data
sources are still not sufficiently interlinked1. In order to help data publishers to
set RDF links pointing into other data sources, several link discovery tools have
been developed. These tools compare entities in different Linked Data sources
based on user-provided linkage rules which specify the conditions that must hold
true for two entities in order to be interlinked. Writing good linkage rules by hand
is a non-trivial problem as the rule author needs to have detailed knowledge
about the structure of the data sets to be interlinked.

In this paper, we present an approach to learn linkage rules interactively
using active learning and genetic programming. It learns a linkage rule by asking

1 http://lod-cloud.net/state/ (09/19/2011)

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 411–418, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://lod-cloud.net/state/

412 R. Isele, A. Jentzsch, and C. Bizer

the user to confirm or reject example links which are actively selected by the
algorithm. Our approach lowers the required level of expertise as the task of
generating the linkage rule is automated while the user only has to verify a set
of example links. User involvement is minimized by only selecting the links with
the highest information gain. Within our experiments, the algorithm was capable
of finding linkage rules with a full F1-measure by asking the user to confirm or
decline a maximum amount of 20 links. The algorithm chooses which properties
to compare together with distance measures, aggregation functions, thresholds
and data transformations to normalize data prior to comparison. Although in
this paper we focus on interlinking data sources in the Web of Data, our approach
is not limited to that use case and can be applied to entity matching in other
areas - such as in the context of relational databases - as well.

This paper makes the following contributions to the state of the art:

1. We are the first to apply an approach that combines genetic programming
and active learning to the problem of learning linkage rules for generating
RDF links in the context of the Web of Data.

2. The learned rules are more expressive than the linkage rules learned in pre-
vious work on entity matching as our algorithm combines different similarity
measures nonlinearly and also determines the data translations that should
be employed to normalize data prior to comparison.

3. We have implemented the proposed approach in the Silk Link Discovery
Framework which is available under the terms of the Apache License.

This paper is organized as follows: Section 2 introduces our linkage rule repre-
sentation. Section 3 describes the proposed active learning method. Section 4
presents the experimental evaluation. Finally, Section 5 discusses related work.

2 Linkage Rules

We represent a linkage rule as a tree built from 4 basic operators:

Property Operator: Creates a set of values to be used for comparison by
retrieving all values of a specific property of the entity.

Transformation Operator: Transforms the input values of a single entity ac-
cording to a specific data transformation function. Examples of common trans-
formation functions include case normalization, tokenization and concatenation
of the values of multiple operators. Multiple transformation operators can be
nested in order to apply a sequence of transformations.

Comparison Operator: Evaluates the similarity between the values of two
input operators according to a specific distance measure, such as Levenshtein,
Jaccard, or geographic distance. Allowed input operators are property operators
and transformation operators. A threshold specifies the maximum distance.

Aggregation Operator: Aggregates the similarity values from multiple opera-
tors into a single value according to a specific aggregation function. Aggregation
functions such as the weighted average may take weights into account. Aggrega-
tion operators can be nested in order to create nonlinear hierarchies.

Active Learning of Expressive Linkage Rules for the Web of Data 413

(1.1): Example linkage rule

Aggregations

Average
Maximum
Minimum

Dist. Measures

Levenshtein dist.
Jaccard index
Numeric dist.
Geographic dist.
Date dist.

Transformations

Lower case
Tokenize
Strip URI prefix

(1.2): Functions

Our approach is independent of any specific aggregation functions, distance
measures or data transformations. Table 1.2 shows the set of functions which
has been used by us in all experiments2.

3 Learning Workflow

The main idea of our approach is to evolve a population of linkage rules itera-
tively while building a set of reference links. Figure 1 summarizes the three steps
which are involved in each iteration:

Fig. 1. Learning Workflow

(1) A genetic programming algorithm evolves a population of linkage rules.
It starts with an initial population of candidate solutions which is iteratively
evolved by applying genetic operators. The population is evolved until either a
maximum number of iterations is reached or a linkage rule has been found which
covers all reference links. As in most use cases there are either no or only a small
number of reference links available, the purpose of the subsequent steps is to
add additional links to the set of reference links.

2 The details about the functions are provided in the Silk user manual on the website

414 R. Isele, A. Jentzsch, and C. Bizer

(2) The active learning algorithm selects the example links to be labeled by
the user. Links are selected according to a query by committee (QBC) strategy:
As the linkage rules in the population are all trained on the current reference
links they represent competing hypotheses. By selecting the links for which most
linkage rules disagree, the contribution of the user confirming or declining the
link is maximized. The links are selected from an unlabeled pool of possible links.

(3) A human expert labels the selected links as correct or incorrect. Confirmed
links are added to the positive reference link set and declined links are added
to the negative reference link set. After the human expert labeled the provided
links, the genetic algorithm continues evolving the current population with the
updated reference links.

3.1 Evolving Linkage Rules

The initial population is build by generating random linkage rules. In order to
reduce the search space, we employ a simple algorithm by only selecting property
pairs which hold similar values.

Starting with the current population, the genetic algorithm breeds a new popu-
lation by evolving selected individuals using the genetic operations crossover and
mutation. A detailed description of the algorithm as well as the specific crossover
and mutation operators that are used is found in [8]. The individuals are selected
from the population based on two functions: The fitness function and the selection
method. The purpose of the fitness function is to assign a value to each individual
which indicates how close the given individual is to the desired solution. In order
to make the algorithm more robust against unbalanced reference link sets, we use
Matthews correlation coefficient (MCC) as fitness measure. Based on the fitness
of each individual, the selection method selects the individuals to be evolved. As
selection method we chose tournament selection as it has been shown to produce
strong results in a variety of GP systems [10] and is easy to parallelize.

The algorithm iteratively evolves the population until either a linkage rule has
been found which covers all reference links or a configured maximum number of
iterations is reached.

3.2 Selecting Uncertain Links

This section describes how the initial unlabeled pool is generated from which
the links are selected for manual evaluation according to the query strategy.

Building the Unlabeled Pool. The overall goal of the learning algorithm is to
create a linkage rule which is able to label all possible entity pairs as matches or
non-matches with high confidence. The number of possible entity pairs can be very
high for large data sets and usually far exceeds the number of actual matches. For
this reason we use an indexing approach to build a sample which does not include
definitive non-matches.

Given two data sets A and B, the initial unlabeled pool U ⊂ A × B is built
according to the following sampling process: The sampling starts by querying for
all entities in both data sets. Instead of retrieving all entities at once, a stream of

Active Learning of Expressive Linkage Rules for the Web of Data 415

entities is generated for each data set. For each property in the streamed entities,
all values are indexed according to the following schema:

1. All values are normalized by removing all punctuation and converting all
characters to lower case.

2. The normalized values are tokenized.
3. A set of indices is assigned to each token. The indices are generated so that

tokens within an edit distance of 1 share at least one index. The MultiBlock
blocking algorithm is used to generate the index [9].

4. The indices of all tokens of a value are merged. If in total more than 5
indices have been assigned to a value, 5 indices are randomly selected while
discarding the remaining indices.

Now all pairs of entities which have been assigned the same index are added to
the unlabeled pool until a configured maximum size is reached.

Query Strategy. The purpose of the query strategy is to select links which are
to be labeled by a human expert as correct or incorrect. In order to minimize the
number of links to be verified by the user the algorithm selects the links from
the unlabeled pool for which the linkage rules in the current population disagree
the most. To measure the disagreement with respect to a link l, we use the vote
entropy:

d(l) = H

(
v(l)

|P |

)
with H(p) = −p · log(p)− (1 − p) · log(1− p)

With v(l) denoting the number of linkage rules which confirm the link and |P | the
size of the population. The rationale here is that if the percentage of linkage rules
which confirm the link approaches 50%, half of the linkage rules are implicitly
upvoted or downvoted by the user by confirming or declining the given link. The
links with the highest vote entropy are returned for evaluation by the user.

4 Evaluation

4.1 Experiment Setup

All experiments have been run 10 times with 2 fold cross-validation. For each
experiment, we provide the averaged results with respect to the training data
set as well as the validation data set together with the standard deviation. All
experiments have been run on a 3GHz Intel(R) Core i7 CPU with 4 cores while
the Java heap space has been restricted to 1GB. Table 1 lists the parameters
which have been used in all experiments.

Table 1. Parameters

Parameter Value Parameter Value
Population size 500 Probability of Mutation 25%
Maximum generations 50 Stop Condition MCC = 1.0
Selection method Tournament selection Unlabeled Pool size |U| 10,000
Tournament size 5 Query Size |Uq| 5

416 R. Isele, A. Jentzsch, and C. Bizer

4.2 Experiment 1: Comparison with Related Work

In order to show the competitiveness of the genetic programming algorithm that
is used to evolve the populations within our approach, we compare the algorithm
to the state-of-the-art genetic programming algorithm presented by Carvalho et.
al. in [4]. One data set commonly used for evaluating different record deduplica-
tion approaches is Cora. The Cora data set contains citations to research papers
from the Cora Computer Science research paper search engine. Table 2.1 sum-
marizes the cross validation results. The learned linkage rules compared by title,
author and venue. Figure 2.2 shows an example of a learned linkage rule. On
average, our approach achieved an F-measure of 96.9% against the training set
and 93.6% against the validation set and needed less than 5 minutes to perform
all 50 iterations on the test machine. For the same data set, Carvalho et. al.
report an F-measure of 90.0% against the training set and 91.0% against the
validation set [4].

Iter. Time Train. F1 (σ) Val. F1 (σ)
1 4.0 0.896 (0.022) 0.896 (0.021)
10 31.1 0.956 (0.013) 0.954 (0.015)
20 71.4 0.964 (0.008) 0.960 (0.010)
30 132.5 0.965 (0.007) 0.962 (0.007)
40 217.6 0.968 (0.004) 0.945 (0.036)
50 271.1 0.969 (0.003) 0.936 (0.056)
Ref. - 0.900 (0.010) 0.910 (0.010)

(2.1): Experiment 1. The last row con-
tains the best results of Carvalho et. al.

(2.2): Example linkage rule

4.3 Experiment 2: Active Learning

In this experiments we evaluated that the presented approach is able to learn a
linkage rule with minimal user interaction using an easy to understand example
from the media domain: Interlinking movies from LinkedMDB3 with the cor-
responding entry in DBpedia about the same movie. For evaluation we used a
manually created set of 100 positive and 100 negative reference links.

First we evaluated the capability to learn a linkage rule from reference links.
Table 2.1 shows the averaged results of all runs. In all runs, the learning algorithm
needed no more than 12 iterations in order to achieve the full F-measure.

Next we evaluated if our active learning approach is able to build a reference
link set interactively. For this, we started with an empty reference link set and
in each iteration let a user manually confirm and decline 5 links which have been
selected by the algorithm. We repeated the experiment 3 times and averaged the

3 http://linkedmdb.org/

http://linkedmdb.org/

Active Learning of Expressive Linkage Rules for the Web of Data 417

Iter. Time in s (σ) Train. F1 (σ) Val. F1 (σ)

1 5.9 (0.1) 0.968 (0.005) 0.968 (0.005)
10 19.6 (4.0) 0.995 (0.005) 0.995 (0.005)
12 20.9 (5.3) 1.000 (0.000) 1.000 (0.000)

(2.1): Experiment 2: Passive learning

Iter. Links Train. F1 Val. F1

1 5 1.00 0.65
2 10 1.00 0.97
3 15 1.00 0.99
4 20 1.00 1.00

(2.2): Experiment 2: Active l.

results. Table 2.2 shows results for each iteration. For each iteration it shows the
F-measure based on the manually confirmed links (Training F1) and on the full
reference link set (Validation F1). The second column shows the links which have
been evaluated by the user. The results show that after querying 10 links from
the user, the learning algorithm already learned a linkage rule which achieves a
F-measure of 97 % when compared with the reference links.

4.4 Experiment 3: Large Scale Active Learning

In this experiment we show that the presented approach is able to scale to
large data sets. At the time of writing, DBpedia contains 323,257 settlements
while LinkedGeoData contains 560,123 settlements. The execution of the learned
linkage rules generates over 70,000 links. While for passive learning the learning
only needs to take the provided reference links into account, active learning also
needs to take the pool of unlabeled data into account which in this example
amounts to over 180 billion pairs. In order to evaluate the learned linkage rules
we used a manually collected set of 100 positive and 100 negative reference links.

Iter. Time (σ) Train. F1 (σ) Val. F1 (σ)

1 2.6s (1.0) 0.984 (0.025) 0.932 (0.059)
10 3.8s (2.1) 0.996 (0.007) 0.932 (0.059)
20 3.9s (2.3) 0.998 (0.004) 0.964 (0.032)
25 4.0s (2.4) 1.000 (0.000) 1.000 (0.000)

(2.1): Experiment 3: Passive learning

Iter. Links Time Train. F1 Val. F1

1 5 7.3s 1.00 0.98
2 10 15.6s 1.00 1.00

(2.2): Experiment 3: Active learning

Table 2.1 summarizes the cross validation results for passive learning. Ta-
ble 2.2 shows results for each iteration in an active learning setting. The runtimes
only include the time needed by the algorithm itself and not the time needed by
the human to label the examples.

In all three runs, the algorithm managed to learn a linkage rule with full F-
measure after the second iteration. In the first iteration it missed the case that
two entities with the same name may in fact relate to different cities. In the
second iteration it managed to include this rare case in the proposed example
links.

5 Related Work

Genetic Programming. To the best of our knowledge, genetic programming
for learning linkage rules has only been applied by Carvalho et. al. so far [3,2,4].

418 R. Isele, A. Jentzsch, and C. Bizer

Their approach uses genetic programming to learn how to combine a set of pre-
supplied pairs of the form <attribute, similarity function> (e.g. <name,
Jaro>) into a linkage rule. Their approach is very expressive although it cannot
express data transformations. On the downside, using mathematical functions
to combine the similarity measures does not fit any commonly used linkage rule
model [6] and leads to complex and difficult to understand linkage rules. We are
not aware of any previous application of genetic programming to learn linkage
rules in the context of Linked Data other than our own work [8].

Active Learning. While the majority of the approaches targeted at learning
linkage rules use supervised learning, some approaches based on active learning
have been proposed: Arasu et. al. propose a scalable active learning approach for
entity matching by introducing the assumption of monotonicity of precision [1].
While they show that their approach can scale to large data sets, it is only able to
learn simple linear or boolean classifiers, while our approach is capable of learning
expressive linkage rules which include nonlinear aggregation hierarchies and data
transformations. The only approach which combines genetic programming and
active learning to learn rules for record deduplication known to us has been
proposed by Freitas et. al. [5]. It is based on the genetic programming approach
by Carvalho et. al. mentioned earlier and thus shares its limitations as described
in the previous Section.

References

1. Arasu, A., Götz, M., Kaushik, R.: On active learning of record matching packages.
In: Proceedings of the 2010 International Conference on Management of Data,
SIGMOD 2010, pp. 783–794. ACM, New York (2010)

2. Carvalho, M., Laender, A., Gonçalves, M., da Silva, A.: Replica identification using
genetic programming. In: Proceedings of the 2008 ACM Symposium on Applied
Computing, pp. 1801–1806. ACM (2008)

3. de Carvalho, M.G., Gonçalves, M.A., Laender, A.H.F., da Silva, A.S.: Learning to
deduplicate. In: Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital
Libraries, JCDL 2006, pp. 41–50. ACM, New York (2006)

4. de Carvalho, M.G., Laender, A.H.F., Goncalves, M.A., da Silva, A.S.: A genetic
programming approach to record deduplication. IEEE Transactions on Knowledge
and Data Engineering 99(preprints) (2010)

5. de Freitas, J., Pappa, G., da Silva, A., Gonçalves, M., Moura, E., Veloso, A.,
Laender, A., de Carvalho, M.: Active learning genetic programming for record
deduplication. In: Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

6. Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)
7. Heath, T., Bizer, C.: Linked data: Evolving the web into a global data space. Syn-

thesis Lectures on the Semantic Web: Theory and Technology 1(1), 1–136 (2011)
8. Isele, R., Bizer, C.: Learning linkage rules using genetic programming. In: 6th

International Workshop on Ontology Matching, Bonn, Germany (2011)
9. Isele, R., Jentzsch, A., Bizer, C.: Efficient multidimensional blocking for link dis-

covery without losing recall. In: 14th International Workshop on the Web and
Databases (WebDB 2011), Athens (2011)

10. Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., Lanza, G.: Genetic pro-
gramming IV: Routine human-competitive machine intelligence. Springer (2005)

Extracting Navigational Models

from Struts-Based Web Applications�

Roberto Rodŕıguez-Echeverŕıa, José Maŕıa Conejero, Pedro J. Clemente,
Maŕıa Dolores Villalobos, and Fernando Sánchez-Figueroa

University of Extremadura (Spain),
Quercus Software Engineering Group

{rre,chemacm,pjclemente,mvillalofy,fernando}@unex.es
http://quercusseg.unex.es

Abstract. Nowadays, there is a current trend in software industry to
modernize traditional Web Applications (WAs) to Rich Internet Appli-
cations (RIAs). In this context, Model Driven (MD) Web Engineering
approaches have been extended with new modeling primitives to ob-
tain the benefits provided by RIA features. However, during the last
decade, widespread language-specific Web frameworks have supported
actual Web system development. In this paper we present a MD mod-
ernization process to obtain RIAs from legacy WAs based on such frame-
works. MD techniques reduce complexity and improve reusability of the
process. Being navigational information of upmost importance for the
modernization process of a Web application, the paper is focused on
presenting the metamodel defined to extract navigational information
from the legacy system, the models obtained and the projection of these
models to a particular MD Web Engineering methodology.

Keywords: WebModels Transformations, Software Modernization, RIA.

1 Introduction

Rich Internet Applications have emerged as the most promising platform for
Web 2.0 development combining the lightweight distribution architecture of the
Web with the interface interactivity and computation power of desktop appli-
cations [10]. To take advantages of these new capabilities, there is a current
trend in the industry to perform a modernization of their legacy WA to produce
RIA counterparts. This trend is, even, more evident with the transition to the
forthcoming HTML5 that implements natively most of these features gaining
momentum.

In this context, Model Driven Web Engineering (MDWE) approaches [13]
have been extended with new modeling primitives to obtain the benefits pro-
vided by RIA features [5][9]. This way, introducing RIA features in legacy WA

� Work funded by Spanish Contract MIGRARIA - TIN2011-27340 at Ministerio de
Ciencia e Innovación and Gobierno de Extremadura (GR-10129) and European Re-
gional Development Fund (ERDF).

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 419–426, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://quercusseg.unex.es

420 R. Rodŕıguez-Echeverŕıa et al.

developed using models becomes a feasible task as it has been shown in [14][12].
However, during the last decade, widespread language-specific Web frameworks
(e.g. Struts1) have supported the actual developments of these WAs, neglecting
the benefits provided by model driven approaches. These frameworks are often
tied to the programming-language level, making maintenance and moderniza-
tion processes a difficult task. Traditionally, these modernization processes have
been performed in an ad-hoc manner, resulting in very expensive and error-prone
projects.

This work is part of a larger research project, called MIGRARIA2, where
a systematic and semi-automatic process to modernize legacy non-model-based
data-driven WAs into RIAs has been defined. The modernization process out-
lined before comprises a series of complex challenges so we try to provide the
engineer with a systematic method and a partially automated toolkit. One of
the leading ideas of this project is to use model driven techniques and tools to
deal with the complexity of extraction and interpretation processes [11]. In this
paper we focus on the navigational information of the legacy system, being of
upmost importance for a WA.

The rest of the paper is structured as follows. In Section 2 an illustrative
example is depicted. Section 3 introduces our approach to extract navigational
models from a Struts-based legacy WA. The related work is discussed in Section
4. Finally, main conclusions and future work are outlined in Section 5.

2 Illustrative Example

The Agenda3 system is one of the projects used within the MIGRARIA project.
The main goal of this system is to manage the student agenda in a university
faculty. Agenda is an example of data-driven WA since the Web layer of the
system mainly consists of a CRUD client that interacts with the underlying
information system. Several frameworks and Java stack technologies for WAs
have been used in the development of the system, e.g. Struts for the Web layer.

Figure 1 shows a snapshot of the system. This part corresponds to the pro-
fessor management process within the administrator session and includes all the
CRUD operations related to the professor data entity resulting in different nav-
igational flows that start (depart from) and finish (arrive to) in the same page
(page01). This part of the system is representative enough to be an example
of the most common navigational flows used in the system. Observe in the fig-
ure that the page containing the list of professors (Display action) is marked as
page01, the professor sign in page (Creation action) is marked as page02 and
the removing and updating page (Remove and Update actions) as page03. We
have also identified the navigational flows between these pages in order to be
referenced in subsequent sections. The example contains 5 different navigational
flows identified as: p01-p02 flow (page01 Create Professor link), p02-p01 flow

1 http://struts.apache.org/
2 http://www.unex.es/eweb/migraria
3 http://www.unex.es/eweb/migraria/cs/agenda

http://struts.apache.org/
http://www.unex.es/eweb/migraria
http://www.unex.es/eweb/migraria/cs/agenda

Extracting Navigational Models from Struts-Based Web Applications 421

Fig. 1. Pages and flows of the illustrative example

(Page02 create button), p01-p03 flow (page01 list item links), p03-p01-U flow
(page03 update button), and p03-p01-R flow (page03 remove button).

3 The Approach

The main goal of this work consists of the extraction of navigational models
from WAs developed with MVC-based Web Frameworks. Figure 2 describes the
main steps of our model driven reengineering process. As previously shown, for
practical purposes, Struts has been selected as the reference Web Framework for
this work.

Fig. 2. Model Driven Reengineering

As input, our process takes the source code of a Struts-based WA to perform a
static analysis. First of all, MoDisCo [2] discoverers are used to generate models
directly from the source code (text-to-model transformation). We then use these
models to produce a representation of the WA on a higher level of abstraction
conformed to our MVC (Struts) metamodel. This transformation is specified
by the definition of ATL Rules (not detailed in this work). On this stage, we
build a MVC (Struts) model that collects all the interaction flows (and the
elements involved) defined on the Web layer, generating a comprehensive view
of the navigational concern. So an intermediate model representation of the WA
is produced before generating a concrete conceptual representation according to
a MDWE approach [13]. Following the main elements and activities involved in
the last section of our process are detailed (dashed line at figure 2).

422 R. Rodŕıguez-Echeverŕıa et al.

3.1 Locating Navigation Information

In MVC Web Frameworks, the navigational information is scattered through-
out the views and the controller specification so that the encapsulation of this
information into a software artifact (model) is also a contribution of our work.
So we need to locate and extract all the information related to every request-
response mapping process and the elements involved. Every JSP is analyzed to
locate every request, that may appear as HTML links or as HTML form actions.
The source of extraction for request parameters differs: actual action method
source code or ActionForm, respectively. Front Controller configuration is also
analyzed. The Struts framework allows defining several requests for each action.
These requests can be forwarded to a JSP or to a different action (concatenat-
ing actions). And regarding actions, it is necessary to know their methods in
order to identify possible process flows of a request (different responses). More-
over, we also analyze the operations related with the poppulation of data to the
selected view.

Navigation Paths in the Case Study. Regarding our running example,
Table 1 shows the information to be extracted from the ActionMappings and
their relationships with the navigational flows described in Section 2. As the
example denotes, it is common practice to write Actions that both navigate to
a page and handle forms submitted from that page. Its general form is to hard
code the mapping decision, depending on the value of a request parameter, inside
the execute method of the Action and to use a single ActionMapping in struts-
config.xml to configure it [4]. Two of the three ActionMappings considered follow
that pattern. Both, createProfessor and ProfessorDetail response in a different
way to the same request with different parameters. On the other hand, if the
request does not contain data (page01 as source) they forward to page02 and
page03 respectively, whilst forward and returns to page01 if the form contains
data, processing previously the operation with the data contained in the form.
ActionMapping ProfessorDetail may be considered a special type of this pattern:
one action responses to three different requests. The first ActionMapping is
related with the request of the action that generates page01 (the source of this
request is out of the scope of the example considered).

Table 1. Navigation information in the ActionMapping instances considered

Page Page Name Request Action Forward Nav. Path

No data ProfessorList P01

01 ProfessorList No data CreateProfessor P02 p01-p02

ProfessorList No data ProfessorDetail P03 p01-p03

02 CreateProfessor Form CreateProfessor P01 p02-p01

03 ProfessorDetail Form update ProfessorDetail P01 p03-p01U

ProfessorDetail Form delete ProfessorDetail P01 p03-p01R

Extracting Navigational Models from Struts-Based Web Applications 423

3.2 MVC Metamodel

To represent the information extracted from the legacy system, an Ecore meta-
model has been defined, named the Struts navigation metamodel. It allows spec-
ifying the elements of the Struts framework but also their relationships in order
to define the different navigational flows. Figure 3 shows an excerpt of the Struts
metamodel (simplified view).

Fig. 3. Struts Navigation Metamodel

The entities defined in our Struts metamodel try to represent the three fun-
damental components of the MVC pattern and their relationships. The Model
component is represented by the Parameter class referencing actual data enti-
ties from the data model. Data transmission is represented by DataContainer
hierarchy, which defines convenient subclasses for representing request param-
eters, form fields and session data. The View component is represented by the
Page class. The View-Controller relation is mainly represented by the Request
class. The Controller component is represented by the ActionMapping, Action
and Method classes. The Controller-View relation is represented by the Forward
classes.

Due to space limitation, we have not included the figure presenting the Struts
model of the illustrative example nor its explanation4.

4 The interested reader may refer to the online material of this work, see footnote 3

424 R. Rodŕıguez-Echeverŕıa et al.

3.3 Projection to a MDWE Approach

To exemplify the projection process, Object-Oriented Hypermedia (OOH) [6] has
been selected as final representation. OOH has been recently extended to RIA [7],
so it fulfills one of our main requirements. In this work, just navigational model
is considered. Table 2 summarizes the fundamental mappings defined between
Struts elements and OOH navigational elements. Those mappings have been
implemented by means of ATL rules.

Table 2. Struts-OOH mapping overview

Struts OOH

Struts Navigational Model

Page Request/Form Navigational Class

Request Parameters, ActionForm fields Navigational Attribute

ActionMapping/ActionForward Service Association

ActionMapping/PageForward Traversal Association

It is worth noting that the way OOH defines navigation is structurally and
semantically different from the viewpoint of Struts. Basically, OOH defines con-
crete views of data model entities as navigation nodes (navigational classes). And
it then links those nodes by means of navigational associations, which may be
node-to-node navigation (traversal association) or mediated by a business logic
invocation (service association). Precisely, we focus on that differentiation in the
projection example presented herein as figure 4 illustrates. On the one hand, p01-
p02 flow is finally represented as a traversal association instance, meanwhile a
service association instance captures p02-p01 flow. As stated before, both flows
are processed by the same ActionMapping; however, each of them is forwarded
to a different Struts element: the former to a page, and the latter to an action.
We have used that difference to select one or another navigational association
type. On the other hand, page01 and page02 are directly translated into cor-
responding navigational class instances. Page02, by example, is populated with
the navigational attributes corresponding to the form fields of request02.

Fig. 4. OOH Navigational Model

Extracting Navigational Models from Struts-Based Web Applications 425

4 Related Work

Web Application information extraction has been performed by reverse engi-
neering techniques [8]. Although those approaches obtain similar results to those
presented herein, we consider they follow an alternative strategy that we also
consider to follow in the MIGRARIA project.

Although our intention is to use Architecture Driven Modernization (ADM)
[15] as the reference framework to define our modernization process, we have de-
clined to use Knowledge Discovery Metamodel (KDM) because of its complexity
and lack of definition for user interface representation. In that sense, MoDisco
[2] is a generic, extensible and open source approach for software moderniza-
tion that makes an intensive use of MDD principles and techniques which could
be used as base to implement ADM. Our work presents a specialization of the
framework defined by MoDisco to be applied in concrete modernization scenarios
from legacy WAs into RIAs.

Framework-Specific Modeling Language (FSML) [1] is a DSL to support the
development of framework-based applications. FSML has been applied success-
fully to migrate a WA from Struts to JSF. But it is a migration proposal defined
at a low-level of abstraction and, then, it does not align with our goals.

In [3] the authors introduce a process to extract models from Struts systems
by means of DSLs to generate a JavaServer Faces version of the system. Note
that the goals of this work and ours are slightly different. The former proposes
a modernization of a system based on a Web framework to a system based on a
different framework whilst our work presents a modernization to a RIA.

5 Conclusions and Future Work

The context of this work is established by the MIGRARIA project, an approach
for systematic WA-to-RIA model driven modernization. In this paper, we have
specially focused on extracting navigational models from Struts-based Web Ap-
plications. By means of a running example we have detailed the main activities
(locate, represent, transform) and artifacts (code, metamodel, model, transfor-
mation rules) related to the extraction process. The process is lead by different
model driven artifacts that allows to define a systematic and reusable process.We
have also specified our own Struts metamodel to define intermediate navigation
models that remain independent of any MDWE approach. Those intermediate
models may be eventually projected to the selected approach by means of model
transformations.

As main lines for future work on navigation extraction we consider the follow-
ing: (1) refining and validating the approach with a larger set of case studies; (2)
extending the approach to support uniformly a set of MVC-based Web frame-
works; (3) complementing the approach with WARE strategies; and (4) defining
a comprehensive tool chain to assist the whole extraction process.

426 R. Rodŕıguez-Echeverŕıa et al.

References

1. Antkiewicz, M., Czarnecki, K.: Framework-Specific Modeling Languages; Exam-
ples and Algorithms. Technical Report 2007, Electrical & Computer Engineering,
University of Waterloo, Waterloo (2007)

2. Bruneliere, H., Cabot, J., Jouault, F.: MoDisco: A Generic And Extensible Frame-
work For Model Driven Reverse Engineering. In: IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 1–2 (2010)

3. Cánovas Izquierdo, J.L., Molina, J.G.: A Domain Specific Language for Extracting
Models in Software Modernization. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 82–97. Springer, Heidelberg (2009)

4. Dudney, B., Lehr, J.: Jakarta Pitfalls: Time-Saving Solutions for Struts, Ant, JUnit,
and Cactus (Java Open Source Library). Wiley (2003)

5. Fraternali, P., Comai, S., Bozzon, A., Carughi, G.T.: Engineering rich internet
applications with a model-driven approach. ACM Transactions on the Web 4(2),
1–47 (2010)

6. Gomez, J., Cachero, C., Pastor, O.: Conceptual modeling of device-independent
Web applications. IEEE Multimedia 8(2), 26–39 (2001)

7. Meliá, S., Gómez, J., Pérez, S., Dı́az, O.: Architectural and Technological Variabil-
ity in Rich Internet Applications. IEEE Internet Computing 14(3), 24–32 (2010)

8. Patel, R., Coenen, F., Martin, R., Archer, L.: Reverse Engineering of Web Appli-
cations: A Technical Review. Technical Report July 2007, University of Liverpool
Department of Computer Science, Liverpool (2007)

9. Pérez, S., Dı́az, O., Meliá, S., Gómez, J.: Facing Interaction-Rich RIAs: The Or-
chestration Model. In: 2008 Eighth International Conference on Web Engineering,
pp. 24–37 (July 2008)

10. Preciado, J.C., Linaje, M., Sanchez, F., Comai, S.: Necessity of methodologies to
model Rich Internet Applications. In: Seventh IEEE International Symposium on
Web Site Evolution (2005)

11. Rodŕıguez-Echeverŕıa, R., Conejero, J.M., Clemente, P.J., Preciado, J.C.,
Sánchez-Figueroa, F.: Modernization of Legacy Web Applications into Rich In-
ternet Applications. In: Harth, A., Koch, N. (eds.) ICWE 2011. LNCS, vol. 7059,
pp. 236–250. Springer, Heidelberg (2012)

12. Rodŕıguez-Echeverŕıa, R., Conejero, J.M., Linaje, M., Preciado, J.C.,
Sánchez-Figueroa, F.: Re-engineering legacy Web applications into Rich In-
ternet Applications. In: 10th International Conference on Web Engineering
(2010)

13. Rossi, G., Pastor, O., Schwabe, D., Olsina, L.: Web Engineering: Modelling and
Implementing Web Applications (Human-Computer Interaction Series) (October
2007)

14. Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., Garrido, A.: Refactoring to Rich
Internet Applications. A Model-Driven Approach. In: 2008 Eighth International
Conference on Web Engineering, pp. 1–12 (July 2008)

15. Ulrich, W.: Modernization Standards Roadmap, pp. 46–64 (2010)

Towards a Method for Unsupervised Web

Information Extraction�

Hassan A. Sleiman and Rafael Corchuelo

Universidad de Sevilla, ETSI Informática,
Avda. Reina Mercedes, s/n, Sevilla E-41012

{hassansleiman,corchu}@us.es

Abstract. The literature provides a variety of techniques to build the
information extractors on which some data integration systems rely. In-
formation extraction techniques are usually based on extraction rules
that require maintenance and adaptation if web sources change. We
present our preliminary steps towards an unsupervised information ex-
traction technique that searches web documents for shared patterns and
fragments them until finding the relevant information that should be ex-
tracted. Experimental results on 1230 real-web documents demonstrate
that our system performs fast and achieves promising results.

Keywords: Web Information Extraction, Unsupervised Technique.

1 Introduction

The Web is a huge and still growing information repository. Web information is
usually embedded into HTML tags and buried in other contents that are not rel-
evant for a particular purpose. Business processes that require structured infor-
mation, need to extract and structure the information they require from HTML
documents. Information extractors are usually used for this purpose and can be
broadly classified into two types: Those that work on free text, including blogs
and news documents [1], and those that work on semi-structured documents
such as search results and web documents with detailed information about some
items [2]. Our work fits within the second category.

Information extractors are usually based on rules. These rules can be hand-
crafted, learnt using semi-supervised techniques that require the user to provide
some annotated training documents [3,4], or unsupervised techniques that learn
extraction rules for all the information they consider as relevant inside some
training documents [5,6]. Rule-based information extractors need to be main-
tained or even rewritten if the web source on which they were trained changes [7].

� This work was supported by the European Commission (FEDER), the Spanish and
the Andalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-
TIC-4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E,
and TIN2010-09988-E).

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 427–430, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

428 H.A. Sleiman and R. Corchuelo

This has motivated researchers to work on a new group of unsupervised infor-
mation extractors that are not based on extraction rules [8,9], but on a number
of hypothesis that have proven to perform well on many web sources.

In this paper, we report on our preliminary ideas on an unsupervised infor-
mation extractor based on the hypothesis that web documents, generated by the
same server-side template, share string patterns that are irrelevant.

2 System Overview

Our proposal takes two or more web documents, and searches for shared patterns
amongst them of size s = max down to s = min, where max ≥ min ≥ 1. When
a shared pattern sp is found, the text of each document is partitioned to create
3 groups: prefixes, suffixes, and separators. Prefixes contain the text fragment
from the beginning of each text until the start of the first occurrence of sp in
this text; suffixes contain the text fragment from the end of the last occurrence
of sp in each text to the end of this text, and separators include each separating
text between every two consecutive occurrences of sp inside each text.

Now that we have created three groups of text, the algorithm tries to search
for a shared pattern of the the same size s between the components of each
group. If a group shares a string pattern, it is partitioned again; if not, s is

<html><head><title>Results</title></head><body>Soups
Patch
$9.95

Jaguar
Robson
$9.49
</body></html>

<html><head><title>Results</title></head><body>Mockingjay
Collins
$9.95
</body></html>

<html><head><title>Results</title></head><body>Ascend
Amanda
$8.99

Frankenstein
Shelly
$6.5
</body></html>

Soups
Patch
$9.95

Jaguar
Robson
$9.49
</body></html>

Mockingjay
Collins
$9.95
</body></html>

Ascend
Amanda
$8.99

Frankenstein
Shelly
$6.5
</body></html>

Soups
Patch
$9.95

Jaguar
Robson
$9.49

Mockingjay
Collins
$9.95

Ascend
Amanda
$8.99

Frankenstein
Shelly
$6.5

Soups

Mockingjay

Ascend Patch
$9.95

Jaguar

Amanda
$8.99

Frankenstein

Robson
$9.49

Collins
$9.95

Shelly
$6.5

Patch

Amanda

$9.95

Jaguar

$8.99

Frankenstein

Robson

Collins

Shelly

$9.49

$9.95

$6.5

$9.95

$8.99

Jaguar

Frankenstein

B2:Prefixes B3:Separators B4:Suffixes

{}

{}

{}

B5:Prefixes B6:Separators B7:Suffixes

B1:Input

B8:Prefixes

B9:Separators

B10:Suffixes

B11:Prefixes B12:Separators B13:Suffixes

B14:Prefixes B15:Separators B16:Suffixes
B17:Prefixes B18:Separators B19:Suffixes

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

Fig. 1. An example of how our proposal works

Towards a Method for Unsupervised Web Information Extraction 429

decreased, as long as s ≥ min, and the algorithm starts again its shared pattern
search on this group. When s = min and no shared patterns are found, the
proposal considers that the remaining non-empty text fragments inside each
group can be considered as relevant text that should be extracted. The search for
shared patterns is performed using a modified version of Knuth-Morris-Pratt’s
algorithm [10] in which all the occurrences of a string sequence are detected
without overlapping.

Figure 1 illustrates an example on how our proposal works. Strings are to-
kenised in a scheme of two types HTML tags or #PCDATA. The proposal takes
the first block B1 that contains three sample web documents, max = 10, and
min = 1 as input. It searches for a shared pattern of size = 10 tokens between
the three documents in B1. Since none is found, the algorithm continues de-
creasing size to 9, then 8, until it finds a shared pattern of size = 7 tokens
(< html >< head >< title > Results < /title >< /head >< body >) between
the three strings in B1. Then, it creates prefixes B2, suffixes B4 and separators
B3. B2 and B3 are discarded since they are empty. The algorithm now searches
for patterns of size = 7 inside B4, but since no shared pattern of the given size
is found in B4, size now changes to 6, 5, 4, 3. It finds a pattern of size = 3 in B4
(< br/ >< /body >< /html >), partitions it into the prefixes B5, suffixes B7
and separators B6. It searches for shared patterns of the same size in the B7.
Since the strings in B7 do not contain a shared pattern of size = 3, size is de-
creased and the algorithm finds the shared pattern of size = 2 (< br/ >< b >)
between the strings in B7. It partitions B7 and creates the prefixes B8, suf-
fixes B10 and separators B9. Since strings inside B8 do not share a pattern
of size ∈ [2,min], then B8 is added to the output. It now repeats the previous
steps on B9 and B10 until finding blocks whose strings do not share any pattern,
which are added to the output. The output of this example is a list of blocks
that contain B8, B11, B17, B19, B14, and B16. Empty blocks like B12 and B15
are discarded. According to our experience, max and min can be automatically
determined by considering max as 5% the size of the smallest input document,
and min as 1.

3 Experimental Results

We implemented a prototype and tested it on a collection of 41 datasets from
different web sites. These web sites belong to the following categories: books,
cars, conferences, doctors, jobs, movies, real estates, and sports. These categories
were randomly sampled from The Open Directory sub-categories, and the web
sites inside each category were randomly selected from the best ranked web sites
between December 2010 and March 2011 according to Google’s search engine.
We annotated in each dataset the relevant information and then each string item
extracted by our proposal was considered as a true positive (tp), false negative
(fn), or false positive (fn). We are interested in measuring precision P = tp

tp+fp ,

recall R = tp
tp+fn and the extraction time of our proposal.

430 H.A. Sleiman and R. Corchuelo

Table 1. Comparison between our proposal, RoadRunner, and FiVaTech

Precision Recall Time (seconds)

RoadRunner [5] 0.312 0.323 0.014
FiVaTech [6] 0.800 0.904 0.348
Our proposal 0.958 0.980 0.0310

We used our collection of datasets to compare our proposal to RoadRunner [5]
and to FiVaTech [6], cf. Table 1. Note that our proposal achieves a better recall
and precision than both techniques. Although the extraction time archived by
our proposal is higher than that one archived by RoadRunner, they both are
very close to 0 and the difference between them is insignificant.

4 Conclusions

We have presented an abstract of our preliminary steps towards a totally unsu-
pervised web information extraction technique. It builds on a simple heuristic
that has proven to work well in many real-world web documents since it can
achieve high precision and recall while requiring very little time. In future, we
plan on studying its complexity, comparing it to other well-known techniques
in the literature, to create extraction rules that can be reused, and to label the
information extracted semantically.

References

1. Turmo, J., Ageno, A., Català, N.: Adaptive information extraction. ACM Comput.
Surv. 38(2) (2006)

2. Chang, C.H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information
extraction systems. IEEE Trans. Knowl. Data Eng. 18(10), 1411–1428 (2006)

3. Kushmerick, N., Weld, D.S., Doorenbos, R.B.: Wrapper induction for information
extraction. IJCAI (1), 729–737 (1997)

4. Hsu, C.N., Dung, M.T.: Generating finite-state transducers for semi-structured
data extraction from the Web. Inf. Syst. 23(8), 521–538 (1998)

5. Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: Towards automatic data ex-
traction from large web sites. In: VLDB, pp. 109–118 (2001)

6. Kayed, M., Chang, C.H.: FiVaTech: Page-level web data extraction from template
pages. IEEE Trans. Knowl. Data Eng. 22(2), 249–263 (2010)

7. Chidlovskii, B., Roustant, B., Brette, M.: Documentum ECI self-repairing wrap-
pers: performance analysis. In: SIGMOD Conference, pp. 708–717 (2006)

8. Álvarez, M., Pan, A., Raposo, J., Bellas, F., Cacheda, F.: Extracting lists of data
records from semi-structured web pages. Data Knowl. Eng. 64(2), 491–509 (2008)

9. Elmeleegy, H., Madhavan, J., Halevy, A.Y.: Harvesting relational tables from lists
on the Web. PVLDB 2(1), 1078–1089 (2009)

10. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

Web-Based Tool Integration:
A Web Augmentation Approach

Oscar Díaz1, Josune De Sosa2, Cristóbal Arellano1, and Salvador Trujillo2

1 ONEKIN Group, University of the Basque Country (UPV/EHU), Spain
{oscar.diaz,cristobal.arellano}@ehu.es

2 IKERLAN Research Centre, Mondragon, Spain
{jdesosa,strujillo}@ikerlan.es

Abstract. Desktop tools are steadily being turned into web applications.
Tool integration then becomes a question of website integration. This work
uses Web Augmentation techniques for this purpose. An integration layer
is deployed on top of the existing Web-based tools that augments the
rendering of those tools for the integration experience. Layers are specified
through a statechart-like DSL and transformed into JavaScript.

1 Introduction

Tool integration is a matter of reducing “accidental complexity” due to the
different semantics brought by each tool. Tools might differ on the data format,
user-interface conventions, use of common functions, the process flow, etc [3].
Tool integration can be achieved on three different levels: the data source level,
the business logic level, and the user interface (UI) level [4]. UI integration has
two significant benefits: (i) existing applications’ UIs can be reused, and (ii) users
already familiar with existing UIs do not have to learn how to work with new
ones. So far, UI integration has been investigated at the component level where a
bright new integration application is constructed from existing components [1].
However, tools are not components but full-fledged web applications. Portlets
can fit this scenario but they impose a heavy footprint on both the tool provider
and the tool consumer (i.e. the tool integrator) [2]. This certainly hinders the
openness and self-serviceness of the solution.

This work’s research question is whether the use of Web Augmentation (WA)
techniques can provide an alternative balance between expressiveness and self-
serviceness. Rather than sophisticated and expressive solutions such as those of
portlets or UI components, WA introduces a lightweight solution based on the
front-end. WA is to the Web what Augmented Reality is to the physical world:
layering relevant content/layout/navigation over the existing Web to customize
the user experience. This is achieved through JavaScript using browser weavers
(e.g. Greasemonkey). However, WA is hindered by being programming intensive
and prone to malware. As a result, we resort to Domain-Specific Languages
(DSLs) as a way to abstract away from the implementation details, ease user
participation, and promote openness. We introduce CORSET, a DSL for Web-
based tool integration based on process flows.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 431–434, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

432 O. Díaz et al.

2 The Running Example

The tools to be integrated include: Jazz Rational Team Concert1 (hereafter,
just Jazz) to be used for the management of the software development lifecycle,
and LucidChart2, a tool for model design. Figure 1(a) outlines the process flow
between Jazz and LucidChart. First, the user opens Jazz to check the workload.
Task 24 has been assigned: “design the xml schema”. This task involves the design
of a UML class diagram. This requires to move to a different tool: LucidChart.
Once created, the UML diagram is assigned a permalink. This permalink is to
be shared with the rest of the Jazz community. To this end, the user goes back
to task 24 in Jazz. Finally, the user copy&paste the permalink as an artefact
associated to the Jazz task. In this scenario, the integration functionality is in
the user’s head: no support is given to sustain neither the control flow (e.g.
when to navigate from Jazz to LucidChart, and vice versa) nor the data flow
(e.g. the diagram permalink that flows between the websites). This is the very
purpose of CORSET. Figure1(b) introduces a CORSET layer to sustain the

Fig. 1. Integrating the websites of Jazz and LucidChart. (a) The process expands along
the two websites. (b) A CORSET layer is interspersed to support this integration.

1 https://jazz.net/projects/rational-team-concert/
2 http://www.lucidchart.com/

https://jazz.net/projects/rational-team-concert/
http://www.lucidchart.com/

Web-Based Tool Integration: A Web Augmentation Approach 433

sample scenario. The Jazz website is augmented with three additional buttons:
Jazz2LucidChart, Back2LucidChart and End. The former serves to seamless
navigate to LucidChart the very first time (creating a bright new UML diagram)
whereas Back2LucidChart handles posterior visits. Likewise, the LucidChart
website now exhibits two new buttons. Back2Jazz serves to navigate back to the
departing state at Jazz. Unlike the previous case, this navigation is contextual
in the sense that navigation is parameterized by the permalink of the current
LucidChart artefact. It is worth noticing that at any moment the user can move
away from these two tools, and browses other web applications. At any moment,
users can finalize the process by clicking the End button.

3 CORSET

CORSET uses statecharts to describe the integration scenario. Figure 2
shows the CORSET expression for the running scenario. This diagram is
transformed into a JavaScript program. A process-based UI-centric approach
to tool integration entails a control flow, a data flow and the UI augmentations.

Fig. 2. CORSET expression for the running scenario

Control Flow. It is captured through statecharts: a state is characterized
by a URL pattern that identifies the set of pages that participate in
accomplishing a given task; a transition normally implies moving between
websites. For our running example, we have three simple states, one for
Jazz (https://jazz.ikerlan.es:9443/ccm/web/projects/CORSET... see Figure
2) and two for LucidChart (https://www.lucidchart.com/documents/edit...
and www.lucidchart.com). A transition has an event, a condition and a target
state. Events denote abstractions of happenings which are meaningful for the
integration purpose. They are signalled by CORSET and abstracted from low-
level DOM events. So far, two event types are considered: CLICK, that denotes
pushing a CORSET button, and LOAD, that is an abstraction of the DOM load

434 O. Díaz et al.

event. This event is risen by CORSET when a tool loads an UI that matches
a state of the CORSET at hand. Finally, an action denotes a CORSET Script.
These scripts describe actions to be enacted in the target tool as a result of
this transition. For instance, moving from State3 in LucidChart to State1 in
Jazz requires the previous “internal navigation” of three clicks till the right UI
is reached (see Figure 2 where the “Click” action mimics user clicks)

Dataflow. Some transitions might be turned into contextual links, i.e. links
that carry data from the source to the target. Broadly, we have to mimic
copy&paste as conducted by the user. Hence, CORSET offers a high-level
“copy” and “paste” operation, and uses state variables as the clipboard. This
is part of the CORSET script (not shown in the figure). For instance, the script
Copy(“XPath expression”).Into($stateVariable) keeps in the state variable the
output of evaluating the XPath.

UI Integration Augmentation. A CORSET expression also has a rendering
counterpart: the buttons. Buttons are automatically generated from transitions.
Button placement is based on the assumption that the place that holds some
data of interests (the data being extracted) coincides with the place where the
control flow should be governed. If no such data exists, buttons are inserted in
the upper left of the window. This heuristic permits the CORSET engine to
automatically generate the UI.

4 Conclusions

We investigate Web Augmentation techniques for tool integration. By using a
DSL, we strive to shelter users from JavaScript and describe the integration
declaratively as statecharts. A must follow-on is to conduct usability studies
among the tool users to assess whether CORSET expressiveness fulfils their
requirements.

References

1. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: From People to
Services to UI: Distributed Orchestration of User Interfaces. In: Hull, R., Mendling,
J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 310–326. Springer, Heidelberg
(2010)

2. Díaz, O., Rodriguez, J.: Portlets as Web Components: an Introduction. Journal of
Universal Computer Sciences (JUCS) 10(4), 454–472 (2004)

3. Thomas, I., Nejmeh, B.: Definitions of Tool Integration for Environments. IEEE
Software 9(2), 29–35 (1992), http://dx.doi.org/10.1109/52.120599

4. Westermann, U., Jain, R.: Toward a Common Event Model for Multimedia
Applications. IEEE MultiMedia 14(1), 19–29 (2007)

http://dx.doi.org/10.1109/52.120599

Clustering Visually Similar Web Page Elements

for Structured Web Data Extraction

Tomas Grigalis1, Lukas Radvilavičius1, Antanas Čenys1,
and Juozas Gordevičius2

1 Vilnius Gediminas Technical University, Lithuania
{tomas.grigalis,lukas.radvilavicius,antanas.cenys}@vgtu.lt

2 Vilnius University Institute of Mathematics and Informatics, Lithuania
juozas.gordevicius@mii.vu.lt

Abstract. We propose a novel approach for extraction of structured
web data called ClustVX. It clusters visually similar web page elements
by exploiting their visual formatting and structural features. Clusters
are then used to derive extraction rules. The experimental evaluation
results of ClustVX system on three publicly available benchmark data
sets outperform state-of-the-art structured data extraction systems.

1 Introduction

Automatic extraction of structured data from web pages is one of the key chal-
lenges for the Web search engines to advance into a more expressive semantic
level. However, current algorithmic approaches often fail to achieve satisfactory
performance in real-world application scenarios due to abundant structurally
complicated and dynamic WEB 2.0 pages.

Information extraction systems can be broadly divided into supervised and
unsupervised categories. Supervised learning approaches, such as Lixto [1], re-
quire some manual human effort to derive the extraction rules, while automated
information extraction systems [2,3,4,5] work automatically and need no manual
intervention. In this work we focus on the latter as we believe that only fully
automatic systems can be applied for web-scale data extraction.

Thus we present a novel stuctured web data extraction system, ClustVX,
which is fully automatic, scalable, and domain independent. ClustVX is based
on two fundamental observations. First, vast amount of information on the Web
is presented using fixed templates and filled with data from underlying databases.
For example, Fig. 1(a) shows three Data Records (DRs) representing informa-
tion about three digital cameras in an online store. The three DRs are listed
according to some unknown to us style template and the information comes
from a database. This also means, that each DR has almost the same Xpath
(tag path from root node in HTML tree to particular web page element), where
only a few node numbers differs. Second, although the templates and underlying
data differ from site to site, humans understand it easily by analyzing repeating
visual patterns on a given Web page [6]. We hypothesize, that the data which

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 435–438, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

436 T. Grigalis et al.

has the same semantic meaning is visualized using the same style. For example
in Fig. 1(a) prices are brown red and bold, title is green and bold, text ”Online
Price” is grey.

ClustVX exploits both of these two observations by representing each web
page element with a combination of its Xpath and visual features such as font,
color and etc. For each visible web page element we encode this combination
into the string called Xstring. Clustering Xstrings allows us to identify visually
similar elements, which are located in the same region of a web page and in
turn have same semantic meaning. See Fig. 1(b) where price elements are clus-
tered together according to their Xstring. Subsequent data extraction leads to a
machine readable structured data that is shown in Fig. 1(c).

(a) An example of three digital cameras (Data Records)
in a web page

Xstring: htmlbodydivdiva-Verdana,FF6600;400

/html/body/div[1]/div[3]/a
/html/body/div[2]/div[3]/a
/html/body/div[3]/div[3]/a

(b) A cluster with visually similar price elements

Image 1 Samsung ES80 $84.95 Online Price

Image 2 Fujifilm FinePix T300 $174.95 Online Price

Image 3 Vivitar ViviCam F529 $84.95 Online Price

(c) Desired extraction result

Fig. 1. An example of structured web data extraction using ClustVX

2 The Proposed Approach

The ClustVX processes a given Web page in the following steps:

1. A web page is retrieved and rendered in a contemporary web browser. This is
very importand step, since web browser handles all WEB 2.0 features, such
as client-side scripting, AJAX requets and etc. All visual styling information
from HTML source code and CSS files is also processed by the browser.

2. All HTML text formatting tags, such as , , are removed from a
web page. This is done to enhance clustering accuracy.

Clustering Similar Web Page Elements for Structured Web Data Extraction 437

Table 1. The details of three public benchmark data sets used for ClustVX evaluation

Data Set TBDW [7] ViNTs-2 [8] Alvarez [2]

Sites 51 102 200
Pages per site 5 11 1
AVG records 21 24 18
Total records 1052 2489 3557

3. An Xstring representation is generated for each visible web page text ele-
ment. As we see in Fig. 1(b) Xstring consists of a) tag names from Xpath
b) visual features of that element (font style, color, weight, etc.). Structural
features (string of tag names) identifies position in HTML document. Visual
features, which are obtained from web browsers API, enhance understanding
of semantic similarity between web page elements.

4. All visible web page elements are clustered according to their Xstring. Result-
ing clusters contain only semantically similar web page elements. In Fig. 1(b)
we see a cluster of price elements that all have the exaclty same Xstring and
therefore belong to the same cluster.

5. Extraction of structured data. This process is based on two observations
about DR representation in a web page. First, a group of DRs are usually
rendered in a contiguous region of a web page [5] and are visually similar.
Second, a group of DRs are formed by some child subtrees and at some level
have same parent node [5]. Thus, by calculating longest common prefix of
Xpaths from each cluster , we can find the exact locations of DRs groups
(Data Regions) in a page. For a simple example, consider the Fig. 1(b),
where Xpaths of clustered price elements are located. First, we find the
longest common prefix (/html/body) of these clustered Xpaths. The prefix
leads us to the particular region of a web page, where DRs are located.
Then, the longest common suffix (/div[3]/a) is items’ path in the DR. The
Xpath substring between prefix and suffix (/div[*]) is used to segment Data
Region into DRs. All clusters that have the same longest common Xpath
prefix represent one particular Data Region. There may exist many Data
Regions in one page and ClustVX locates them all.

3 Experimental Evaluation

We evaluate ClustVX using the three publicly available benchmark data sets
containing in total of 7098 DRs from 353 different template web sites. See Tab. 1
for details. These data sets contain web pages retrieved from different web sites.
Each web page contains DRs, which should be extracted. To evaluate ClustVX
we take only one web page per site because all pages in one site use the same
template.

We compare the evaluation results of ClustVX system to these state-of-the-
art automatic structured data extraction systems: M. Alvarez et. al. [2], G-STM

438 T. Grigalis et al.

Table 2. Experimental evaluation results of ClustVX system compared to other state-
of-the-art methods

Data Set TBDW VINTS-2 Alvarez

System ClustVXG-STMDEPTAFiVaTechClustVXG-STMDEPTAClustVXAlvarez

Precision99.81% 99.80% 99.50% 97.00% 98.57% 98.50% 95.10% 98.20% 97.90%
Recall 99.52% 96.60% 85.30% 97.40% 98.51% 96.70% 83.90% 99.69% 98.30%

[3], FiVaTech [4] and DEPTA [5]. Since none of these systems are available to
download, we use the evaluation results reported in corresponding publications.
As shown in Tab. 2, where best results are marked in bold, ClustVX consistently
outperforms other approaches.

4 Conclusions and Research Directions

We have introduced a novel approach, ClustVX, to extraction of structured
data from web pages. It uses structural as well as visual features of web page
elements to discover the structure of underlying data. Evaluation on three pub-
licly available benchmark data sets demonstrated, that the method consistently
achieves very high quality in terms of precision and recall and outperforms other
approaches.

Our future work will focus on evaluation of ClustVX on contemporary real-
world web pages that are full of Java Scripts and are dynamic. The existing
benchmark data sets lack features introduced by Web 2.0, such as, AJAX. Al-
though we stipulate that ClustVX is invariant to these advanced features, a
proper dataset is necessary to prove its applicability in real-world settings.

References

1. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with
lixto. In: Proc. VLDB, pp. 119–128 (2001)

2. Álvarez, M., Pan, A., Raposo, E.A.: Extracting lists of data records from semi-
structured web pages. Data & Know. Engineering 64(2), 491–509 (2008)

3. Jindal, N., Liu, B.: A generalized tree matching algorithm considering nested lists
for web data extraction. In: The SIAM Int. Conf. on Data Mining, pp. 930–941
(2010)

4. Kayed, M., Chang, C.: Fivatech: Page-level web data extraction from template
pages. IEEE Trans. on Know. & Data Engineering 22(2), 249–263 (2010)

5. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: Proc.
WWW, pp. 76–85. ACM (2005)

6. Miao, G., Tatemura, J., Hsiung, W., Sawires, A., Moser, L.: Extracting data records
from the web using tag path clustering. In: Proc. WWW, pp. 981–990. ACM (2009)

7. Yamada, Y., Craswell, N., Nakatoh, T., Hirokawa, S.: Testbed for information ex-
traction from deep web. In: Proc. WWW, pp. 346–347. ACM (2004)

8. Zhao, H., Meng, W., Wu, Z., Raghavan, V., Yu, C.: Fully automatic wrapper gen-
eration for search engines. In: Proc. WWW, pp. 66–75. ACM (2005)

Improving Toponym Extraction

and Disambiguation Using Feedback Loop

Mena B. Habib and Maurice van Keulen

Faculty of EEMCS, University of Twente, Enschede, The Netherlands
{m.b.habib,m.vankeulen}@ewi.utwente.nl

Abstract. This paper addresses two problems with toponym extrac-
tion and disambiguation. First, almost no existing works examine the
extraction and disambiguation interdependency. Second, existing disam-
biguation techniques mostly take as input extracted toponyms without
considering the uncertainty and imperfection of the extraction process.

It is the aim of this paper to investigate both avenues and to show that
explicit handling of the uncertainty of annotation has much potential for
making both extraction and disambiguation more robust.

1 Introduction

Toponyms are names used to refer to locations without having to mention the ac-
tual geographic coordinates. The process of toponym extraction aims to identify
location names in natural text.

Toponym disambiguation is the task of determining which real location is
referred to by a certain instance of a name. Toponyms, as with named entities
in general, are highly ambiguous. For example, according to GeoNames1, the
toponym “Paris” refers to more than sixty different geographic places around
the world besides the capital of France. Another source of ambiguousness is that
some toponyms are common English words.

Toponym
Extraction

Direct effect
��

Toponym
Disambiguation

Reinforcement effect

��

Fig. 1. The reinforcement effect be-
tween the toponym extraction and
disambiguation processes

A general principle in our work is our con-
viction that toponyms extraction and disam-
biguation are highly dependent. In previous
work [1], we studied not only the positive and
negative effect of the extraction process on
the disambiguation process, but also the po-
tential of using the result of disambiguation
to improve extraction. We called this poten-
tial for mutual improvement, the reinforce-
ment effect (see Figure 1).

In general, we concluded that many of the observed problems are caused
by an improper treatment of the inherent ambiguities. Natural language has
the innate property that it is multiply interpretable. Therefore, none of the
processes in information extraction should be ‘all-or-nothing’. In other words,

1 www.geonames.org

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 439–443, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.geonames.org

440 M.B. Habib and M. van Keulen

all steps, including entity recognition, should produce possible alternatives with
associated likelihoods and dependencies.

Training
data

Extraction model
(here: HMM & CRF)

learning

Test
data

extraction

Matching
(here: with GeoNames)

Disambiguation
(here: country inference)

extracted
toponyms

candidate
entities

including
alternatives
with probabilities

Result

highly ambiguous terms
and false positives

Fig. 2. General approach

Our Contributions. In this paper,
we focus on this principle. We turned
to statistical approaches for toponym
extraction. The advantage of statisti-
cal techniques for extraction is that
they provide alternatives for annota-
tions along with confidence probabil-
ities. The probabilities proved to be
useful in enhancing the disambiguation
process. We believe that there is much
potential in making the inherent uncer-
tainty in information extraction explicit
in this way.

Furthermore, extraction models are
inherently imperfect and generate im-
precise confidences. We were able to use
the disambiguation result for increasing
the confidence of true toponyms and re-
ducing the confidence of false positives.
This enhancement of extraction improves as a consequence the disambiguation
(the aforementioned reinforcement effect). This process can be repeated itera-
tively, without any human interference, as long as there is improvement in the
extraction and disambiguation.

2 Our Approach

The task we focus on is to extract toponyms from EuroCottage holiday home
descriptions2 and use them to infer the country where the holiday property
is located. We use this country inference task as a representative example of
disambiguating extracted toponyms.

We propose an entity extraction and disambiguation approach based on uncer-
tain annotations. The general approach illustrated in Figure 2 has the following
steps:

1. Prepare training data by manually annotating named entities.
2. Use the training data to build a statistical extraction model.
3. Apply the extraction model on test data and training data.
4. Match the extracted named entities against one or more gazetteers.
5. Use the toponym entity candidates for the disambiguation process.
6. Evaluate the extraction and disambiguation results for the training data.

Use a list of highly ambiguous named entities and false positives that affect
the disambiguation results to re-train the extraction model.

2 www.eurocottage.com

www.eurocottage.com

Improving Toponym Extraction and Disambiguation Using Feedback Loop 441

7. The steps from 2 to 6 are repeated automatically until there is no improve-
ment any more in either the extraction or the disambiguation.

Toponym Extraction. For toponym extraction, we developed two statistical
named entity extraction modules3, one based on Hidden Markov Models (HMM)
and one based on Conditional Ramdom Fields (CRF).

The goal of HMM [2] is to find the optimal tag sequence (in our case, whether
the word is assigned to toponym tag or not) T = t1, t2, t3, ..., tn for a given word
sequence W = w1, w2, w3..., wn that maximizes P (T | W).

Conditional Random Fields (CRF) can model overlapping, non-independent
features [3]. Here we used a linear chain CRF, the simplest model of CRF.

Extraction Modes of Operation. We used the extraction models to retrieve
sets of annotations in two ways:

– First-Best: In this method, we only consider the first most likely set of
annotations that maximize the probability P (T | W) for the whole text.
This method does not assign a probability for each individual annotation,
but only to the whole retrieved set of annotations.

– N-Best: This method returns a top-25 of possible alternative hypotheses for
terms annotations in order of their estimated likelihoods p(ti|wi). The con-
fidence scores are assumed to be conditional probabilities of the annotation
given an input token.

Toponym Disambiguation. For the toponym disambiguation task, we only
select those toponyms annotated by the extraction models that match a reference
in GeoNames. We furthermore use an adapted version of the clustering approach
of [1] to disambiguate to which entity an extracted toponym actually refers.

Handling Uncertainty of Annotations. Instead of giving equal contibution
to all toponyms, we take the uncertainty in the extraction process into account
to include the confidence of the extracted toponyms. In this way terms which
are more likely to be toponyms have a higher contribution in determining the
country of the document than less likely ones.

Improving Certainty of Extraction. In despite of the abovementioned im-
provement, the extraction probabilities are not accurate and reliable all the
time. Some extraction models retrieve some false positive toponyms with high
confidence probabilities. This is where we take advantage of the reinforcement
effect. To be more precise. We introduce another class in the extraction model
called ‘highly ambiguous’ and annotate those terms in the training set with this
class that the disambiguation process finds more than τ countries for documents
that contain this term. The extraction model is subsequently re-trained and the
whole process is repeated without any human interference as long as there is
improvement in extraction and disambiguation process for the training set. The
intention is that the extraction model learns to avoid prediction of terms to be
toponyms when they appear to confuse the disambiguation process.

3 Wemade use of the lingpipe toolkit for development: http://alias-i.com/lingpipe

http://alias-i.com/lingpipe

442 M.B. Habib and M. van Keulen

3 Experimental Results

Here we present the results of experiments with the presented methods of extrac-
tion and disambiguation applied to a collection of holiday properties descriptions.
The data set consists of 1579 property descriptions for which we constructed a
ground truth by manually annotating all toponyms.

Experiment 1: Effect of Extraction with Confidence Probabilities. Ta-
ble 1 shows the percentage of holiday home descriptions for which the correct
country was successfully inferred. We can see that the N-Best method outper-
forms the First-Best method for both HMM and CRF models. This supports
our claim that dealing with alternatives along with their confidences yields better
results.

Table 1. Effectiveness of the disambigua-
tion process for First-Best and N-Best
methods in the extraction phase

HMM CRF

First-Best 62.59% 62.84%

N-Best 68.95% 68.19%

Table 2. Effectiveness of the disam-
biguation after iteration of refinement

HMM CRF

No Filtering 68.95% 68.19%

1st Iteration 73.28% 68.44%

Table 3. Effectiveness of the extraction process after iteration of refinement

HMM
Pre. Rec. F1

No Filtering 0.3584 0.8517 0.5045
1st Iteration 0.7667 0.5987 0.6724

CRF
Pre. Rec. F1

No Filtering 0.6969 0.7136 0.7051
1st Iteration 0.6989 0.7131 0.7059

Experiment 2: Effect of Extraction Certainty Enhancement. Tables 2
and 3 show the effectiveness of the disambiguation and the extraction processes
respectively before and after one iteration of refinement. We can see an improve-
ment in HMM extraction and disambiguation results. The initial HMM results
showed a high recall rate with a low precision. In spite of this, our approach
managed to improve precision through iteration of refinement. The refinement
process is based on removing highly ambiguous toponyms resulting in a slight
decrease in recall and an increase in precision. In contrast, CRF started with
high precision which could not be improved by the refinement process.

4 Conclusion and Future Work

Named entity extraction and disambiguation are inherently imperfect processes
that moreover depend on each other. The aim of this paper is to examine and
make use of this dependency for the purpose of improving the disambiguation
by iteratively enhancing the effectiveness of extraction, and vice versa.

Improving Toponym Extraction and Disambiguation Using Feedback Loop 443

We examined how handling the uncertainty of extraction influences the effec-
tiveness of disambiguation, and reciprocally, how the result of disambiguation
can be used to improve the effectiveness of extraction. The extraction models are
automatically retrained after discovering highly ambiguous false positives among
the extracted toponyms. This process improves the precision of the extraction.

References

1. Habib, M.B., van Keulen, M.: Named entity extraction and disambiguation: The
reinforcement effect. In: Proc. of MUD 2011, Seatle, USA, pp. 9–16 (2011)

2. Ekbal, A., Bandyopadhyay, S.: A Hidden Markov Model Based Named Entity Recog-
nition System: Bengali and Hindi as Case Studies. In: Ghosh, A., De, R.K., Pal, S.K.
(eds.) PReMI 2007. LNCS, vol. 4815, pp. 545–552. Springer, Heidelberg (2007)

3. Wallach, H.: Conditional random fields: An introduction. Technical Report
MS-CIS-04-21, University of Pennsylvania (2004)

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 444–447, 2012.
© Springer-Verlag Berlin Heidelberg 2012

GeForMTjs: A JavaScript Library Based on a Domain
Specific Language for Multi-touch Gestures

Dietrich Kammer, Dana Henkens, and Rainer Groh

Fakultät Informatik
Professur Mediengestaltung

Technische Universität Dresden
01062 Dresden

dietrich.kammer@tu-dresden.de, dana.henkens@googlemail.com

Abstract. This paper presents GeForMTjs, a library which features an abstract
way of representing multi-touch gestures. A domain specific language for mul-
ti-touch gestures, Gesture Formalization for Multi-touch (GeForMT), is adapted
to the needs of web development. Web standards are addressed and mouse input
is incorporated as well. A short overview of related work shows that a formal
abstraction of multi-touch gestures is missing in the web context. A brief exam-
ple illustrates the seven processing steps of the library.

Keywords: Gestures, Multi-touch, CSS, JavaScript, Web standards.

1 Introduction

Multi-touch interaction is currently almost ubiquitous with web browsers on mobile
devices. Although a set of standard navigational gestures are used throughout these
browsers, a great potential for more complex gestural interaction remains to be re-
searched. The web events working group of the W3C is currently developing a stan-
dard to integrate multi-touch and pen input in web sites. The official recommendation
is due in August 2012 [1]. However, few of the currently available web libraries assist
the programmer in the definition of application specific multi-touch gestures.

This paper contributes an implementation of a domain specific language (DSL) for
multi-touch gestures in JavaScript. It is more powerful than relying on fixed gesture
events or raw touch data. The short, concise, and self-explanatory syntax is graspable
for both developers and designers. Providing gesture definition and recognition in a
library should help web programmers to design and test novel interaction concepts.

2 Related Work

Most web applications on mobile devices use standard gestures and seek to emulate
native multi-touch concepts available on each platform. Examples are jQuery Mobile
[2], the Dojo-plugin dojox.mobile [3], and Sencha Touch [4]. WKTouch [5] focuses
object manipulation, where gestures and actions are implicitly assigned to objects.
Jester [6] provides a library of common standard gestures. Representations of gestures
on a higher abstraction level are investigated by researchers such as Kin et al. [7],

 A JavaScript Library Based on a Domain Specific Language for Multi-touch Gestures 445

Khandkar and Maurer [8], and Kammer et al. [9]. Currently, these approaches are not
available on the web. Libraries such as Moousture [10] are rather limited in express-
ing complex multi-touch gestures. A greater freedom and ease to design gestures can
result in better and more powerful multi-touch interfaces in the future.

Fig. 1. Library components and processing steps of GeForMTjs

3 Gesture Library GeForMTjs

GeForMTjs relies on web standards to make touch data available in the web browser.
Seven components are responsible for registering and processing gestures (see Fig. 1).

Step 1: The Gesture Formalization for Multi-touch (GeForMT) by [9] provides a
DSL for multi-touch gestures defined by a context-free grammar. GeForMT features
atomic gestures, which describe the form or path of a gesture and operators to de-
scribe the temporal progression of gesture strokes. Complex gestures are defined by
combining atomic gestures. A GeForMT expression is validated by the Parser and
split into syntactical units. PEG.js is used to generate a concrete parser implementa-
tion (http://pegjs.majda.cz/, last access: 05/09/2012), which is based on the parsing
expression grammar formalism [11].

Step 2: The Selector Engine checks selectors contained in the gesture description
for focus definition and returns corresponding nodes of the DOM tree. For the con-
crete implementation, Sizzle (http://sizzlejs.com/, last access: 05/09/2012) is used.

Step 3: The Observation module registers mouse and touch events for these ele-
ments. Mouse events are emulated as single touch gestures by dispatching appropriate
touch events (cp. [12, 13]). To detect gesture input on content or structure elements
(e.g. div) as well as on underlying parent elements of the DOM tree (e.g. html), the
bubbling strategy of events is adopted. The programmer can define a contiguity inter-
val to allow the specification of gestures that require the user to lift all fingers from
the multi-touch display, e.g. a double-tap.

Step 4: The Template Builder converts formal parameters of the parsed expressions
into a computable data structure containing ordered coordinates.

Step 5: Results of Parser and Transformation are stored in the Gesture Model.
Step 6: Based on these templates, Gesture Recognition is performed. Wobbrock et

al.’s $1-Recognizer [14] has a good balance between recognition rate, memory

PARSER

Generated by
PEG.js

Based on
$1 Recognizer

Sizzle

SELECTOR
ENGINE

OBSERVATION TEMPLATE-
BUILDER

GESTURE-
MODEL

GESTURE-
RECOGNITION

VISUAL-
FEEDBACK

Example: LINE_E(div#id)

LINE

gesture Gesture

ObjectModel

ComplexGesture

AtomicGesture

Template

E

#id

html

head body

h1 div

„Text“

„Überschrift“

div#id
touchstart
touchmove
...
mousedown
mousemove
...

E

N

S

W
1 N

1 2 3 4 5 6 7

446 D. Kammer, D. Henkens, and R. Groh

Fig. 2. Sample web page using GeForMTjs

requirements, and tolerance and is suitable for a JavaScript implementation. A key ad-
vantage is the minimal effort used for feature extraction at runtime. Wobbrock et al.’s
algorithm is adapted according to the specification of GeForMT including sequentially
and simultaneously performed gesture paths, as well as gestures that are continuously
recognized. In these cases, the steps of classification are processed in repetition.

Step 7: Visual feedback is provided and application specific event handlers are
called for recognized gestures on their corresponding DOM elements. Gestures
strokes and contacts are visualized on two separate overlaying canvas elements,
which are excluded from event processing. Sequential gesture paths are considered in
the feedback visualization as well. The gesture expression illustrated in Fig. 1 defines
a line drawn to the east on a div element. The definition is embedded in JavaScript
code and is registered with the API of GeForMTjs as follows:

GeForMT.addGesture ({

 identifier: "swipe", // unique identifier

 expr: "LINE_E(div#id)", // GeForMT expression

 online: true, // continuous/discrete recognition

 handler: function(e) { … } // gesture specific event handler

});

GeForMTjs can be seen in action in a test environment1 demonstrating example ges-
ture sets and a sample web page2 (see Fig. 2), which substitutes access keys with
stroke shortcuts to access menu entries. Browser functions can be accessed by ges-
tures as well, for example browsing through the history or bookmarks. If a gesture
cannot be recognized, a short information is displayed as a layer on top of the website,
which indicates how to access the help page.

4 Conclusions and Future Work

The library presented in this paper is based on a DSL for multi-touch gestures. It
complies with web standards to reap the benefits of platform-independent, web-based

1 http://vi-c.de/geformtjs/testbench/
2 http://vi-c.de/geformtjs/sample/

(a) (b)

 A JavaScript Library Based on a Domain Specific Language for Multi-touch Gestures 447

development. GeForMTjs supports different interaction techniques by generalizing
mouse, touch, and pen input. Extensions like the browser plugin npTUIOClient and
MagicTouch [12] working with the TUIO protocol [15] are considered as well for
more hardware independence. However, further performance tests and web browser
compliance must be tested and ensured. An important issue is the visualization of
feedback and feed-forward, which reveals available gestures in an application. Anoth-
er interesting possibility is the combination of GeForMT with a UI library. Combin-
ing GeForMT with other DSLs or adding extensions might make it feasible to address
other modalities such as speech, spatial gestures, or video processing.

References

1. Brubeck, M., Moon, S., Schepers, D.: Touch Events version 1,
http://www.w3.org/TR/touch-events/ (last access: September 05, 2012)

2. jQuery: jQuery Mobile, http://jquerymobile.com/
(last access: September 05, 2012)

3. Dojo: Dojo Mobile, http://dojotoolkit.org/features/mobile
(last access: September 05, 2012)

4. Sencha: Mobile JavaScript Framework for HTML5 Web App Development | Sencha
Touch, http://www.sencha.com/products/touch
(last access: September 05, 2012)

5. Gibson, A.: WKTouch, https://github.com/alexgibson/WKTouch
(last access: September 05, 2012)

6. Seaward, S.: Jester, https://github.com/plainview/Jester
(last access: September 05, 2012)

7. Kin, K., Hartmann, B., DeRose, T., Agrawala, M.: Proton: Multitouch Gestures as Regular
Expressions. ACM, Austin (to appear, 2012)

8. Khandkar, S., Maurer, F.: A Domain Specific Language to Define Gestures for
Multi-Touch Applications. In: Rossi, M., Tolvanen, J.-P., Sprinkle, J., Und Kelly, S (hrsg.)
Proceedings of the 10th Workshop on Domain-Specific Modeling (DSM 2010), Aalto
University School of Economics, B-120, Aalto-Print (2010)

9. Kammer, D., Wojdziak, J., Keck, M., Groh, R., Taranko, S.: Towards a formalization of
multi-touch gestures. In: ACM International Conference on Interactive Tabletops and Sur-
faces. S.49–S.58. ACM, New York (2010)

10. Sibt-e-Hassan, Z.: Moousture, http://maxpert.github.com/moousture/ (last
access: September 05, 2012)

11. Ford, B.: Parsing expression grammars. In: Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. S.111–122. ACM
Press (2004)

12. Smus, B.: MagicTouch, https://github.com/borismus/MagicTouch
(last access: September 05, 2012)

13. Carstensen, B.: Phantom Limb | Vodori Blog,
http://www.vodori.com/blog/phantom-limb.html

14. Wobbrock, J.O., Wilson, A.D., Li, Y.: Gestures without libraries, toolkits or training: a $1 re-
cognizer for user interface prototypes. In: Proceedings of the 20th Annual ACM Symposium
on User Interface Software and Technology, pp. S.159–S.168. ACM, New York (2007)

15. Kaltenbrunner, M., Bovermann, T., Bencina, R., Costanza, E.: TUIO: A Protocol for Ta-
ble-Top Tangible User Interfaces. In: Gehalten auf der 6th International Workshop on Ges-
ture in Human-Computer Interaction and Simulation, Vannes, France Mai 18 (2005)

SemaKoDE: Hybrid System

for Knowledge Discovery in Sensor-Based Smart
Environments

Stefan Negru

Faculty of Computer Science A. I. Cuza University of Iasi, Romania
stefan.negru@info.uaic.ro

Abstract. This article describes a conceptual hybrid architecture for
a knowledge discovery system, able to automatically annotate, reason,
classify and operate with sensor data. The adoption of semantic web tech-
nologies to enrich sensor and link data represents an adequate method-
ology that facilitates the processes of reasoning, classification and other
types of automation. We discussed a system deployment scenario in the
context of e-health.

Keywords: Knowledge Discovery System, Sensors, Linked Data.

1 Introduction

The ubiquity of sensors and sensor networks brought opportunities regarding
software applications in areas like smart environments, ambient management,
disaster prediction and management, adaptability to climate change, security,
support systems, infrastructures management etc.

Recent work has raised the idea to combine the sensor data with web tech-
nologies in order to design future services and applications. This vision is re-
lated to the aim of ubiquitous computing, as well as the proposal of “Internet of
Things” [6].

We envision and design a conceptual hybrid knowledge discovery system, able
to automatically annotate, reason, classify and operate with sensor data. Al-
though several similar sensor network systems exist [8,5], our system proposal
also takes into consideration additional factors like evaluation and re-usability of
the discovered knowledge in different contexts, thus making it available to other
services and applications.

2 System Architecture

The SemaKoDE (Semantic Knowledge Discovery Environment) system con-
sists of two main components: the first one is similar to a classical KDD system
[7], and provides an established and well researched base for identifying pat-
terns or models in data. The second component takes advantage of semantic

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 448–451, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

SemaKoDE: Hybrid System for Knowledge Discovery 449

web technologies which facilitate the reusing and sharing of information, within
the system and with other systems. Our system is divided into the following
layers: Knowledge Base Layer, Network Management Layer, Database
Layer, Discovery Layer, Application Layer (Fig. 1).

Raw Data

TripleStore

Sensor Network

DataBase Layer

Discovery Layer

Application Layer
Services

Temporary
Data

Query Endpoint SPARQL Endpoint

Data Mining Reasoning and inference

Data Preprocessing

Data Selection

Data Preprocessing
and Transformation

Network Management Layer

Knowledge Base Layer

NM Layer

KB Layer

Fig. 1. SemaKoDE System Architecture

Knowledge Base Layer. This layer contains the axioms defining the classes
and relations in the ontology along with the logic operations which are used to
perform inferences – the TBox [1,4].

Network Management Layer. The main responsibility of the Network Man-
agement Layer is to facilitate collecting data for the Database Layer and also to
manage the functions related to the interaction between multiple sensors. Other
aspects, such as network hierarchy and clustering of sensor, nodes are also done
at this layer.

Database Layer. Data Selection and Data Preprocessing sub-layers correspond
to two of the steps from the KDD process [2]. The Data Preprocessing and Trans-
formation sub-layer handles similar functions but, in addition, offers support for
semantically annotating sensor data and storing this data into a triple store [11]
(ABox [1,4]).

Discovery Layer. The Discovery Layer encapsulates both data mining [7] and
reasoning algorithms as presented in [1,4], used for knowledge discovery. Al-
though the types of algorithms have roughly the same purpose, we believe that
patterns/models obtained via data mining and the inferred information via rea-
soning provide slightly different results. Thereby, we want to integrate them
into the Application layer in order to improve the discovery process accuracy
and the knowledge quality. Regarding evaluating the knowledge quality, we take

450 S. Negru

into consideration methods for evaluating triple-stores [9,3], or the ontology
quality [10].

Application Layer. The top level layer handles the data interpretation (ex-
tracting knowledge) and data integration too. As the KDD process operates with
user predefined goals, this layer also provides a user interface which handles the
user interaction, as we need to represent the discovered knowledge in an easy to
understand manner.

Considering the query endpoints, two methods are to be explored. One in
which we keep the current structure (Fig.1) with the two query endpoints
(classical query service and SPARQL endpoint), the integration being done via
several services, and one in which the two query endpoints are unified into
a single service, using a future SPARQL extension. Next versions of the Se-
maKoDE system will incorporate predictive capabilities, via extensions imple-
mented at the Application Layer.

3 System Deployment Scenario

In order to illustrate SemaKoDE usefulness and versatility, we imagine a scenario
centered around hospital building environment. The hospital maintains a patient
database (that stores diseases, disease symptoms, disabilities, patient rooms etc).
The hospital building has several spatially distributed sensors, that monitor the
environment. SemaKoDE system will act as a bridge linking the data between
the database and sensor network in order to extend the overall knowledge about
this environment. For example, certain environmental factors (detected via the
sensor network) might cause the patient health status to aggravate, depending
on the disease (Disease Ontology – http://www.disease-ontology.org/).

In case of major event (hazard) such as a fire, the system will make use of its
knowledge discovery capabilities. First it confirms the fire is real, by linking data

Collecting sensor data

Network management layer checks
with data from other sensors

Correlate sensor data with other data
from the database layer

Extract knowledge based on data
integration

Use extracted knowledge

Data from a sensor is associated with an
event which exists in the knowledge base

Fig. 2. SemaKoDE Main Processes

SemaKoDE: Hybrid System for Knowledge Discovery 451

from various sensors from the sensor network and deploying the fire sprinklers.
Operations are done by the Network Management layer as represented in Fig. 2.
After confirming the fire, the system proceeds to provide a list of patients located
near the fire, having a high risk factor (e.g. patients that have certain disabili-
ties or have trouble breathing and can not evacuate themselves). The predictive
capabilities of the system come in handy in providing a fire spreading pattern.

4 Conclusions and Future Work

This paper presented SemaKoDE, a hybrid system used for knowledge discovery
in sensor-based smart environments. Our system proposal combines traditional
knowledge discovery, based on data mining, with ontology based knowledge dis-
covery, in order to create not only a well optimized KDS, but also a system able
to share and reuse data. Our further direction of research is focused on develop-
ing, testing and improving such a system, in order to constantly perfect the way
it can collect, process and operate with sensor data, with the purpose of using
it in real world scenarios, similar with those presented in this paper.

Acknowledgements. This work was supported by the European Social Fund
in Romania, under the responsibility of the Managing Authority for the Secto-
rial Operational Program for Human Resources Development 2007-2013 [grant
POSDRU/107/1.5/S/78342].

References

1. Baader, F., et al.: The Description Logic Handbook. Cambridge University Press
(2007)

2. Fayyad, U., et al.: From data mining to knowledge discovery: an overview. AI
Magazine, 37–54 (1996)

3. Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large
OWL Datasets. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC
2004. LNCS, vol. 3298, pp. 274–288. Springer, Heidelberg (2004)

4. Harmelen, F.V., et al.: Handbook of knowledge representation. Elsevier (2008)
5. Huang, V., Javed, M.K.: Semantic sensor information description and processing.

In: 2nd International Conference on Sensor Technologies and Applications, pp.
456–461. IEEE (2008)

6. International Telecommunication Union: ITU Internet Report 2005: The Internet
of Things (2005)

7. Leondes, C.T.: Knowledge-based systems: techniques and applications. Academic
Press (2000)

8. Moraru, A., et al.: Using semantic annotation for knowledge extraction from geo-
graphically distributed and heterogeneous sensor data. In: 4th SensorKDD. ACM
(2010)

9. Rohloff, K., Dean, M., Emmons, I., Ryder, D., Sumner, J.: An Evaluation of Triple-
Store Technologies for Large Data Stores. In: Meersman, R., Tari, Z. (eds.) OTM-
WS 2007, Part II. LNCS, vol. 4806, pp. 1105–1114. Springer, Heidelberg (2007)

10. Stvilia, B.: A model for ontology quality evaluation. First Monday (2007)
11. Yeh, C., Lin, R.: Design and Implementation of an RDF Triple Store. In:

Proceedings of the 1st Workshop of DATF. Academia Sinica (2002)

WebREd: A Model-Driven Tool for Web

Requirements Specification and Optimization

José Alfonso Aguilar Calderon1, Irene Garrigós2, Sven Casteleyn3,
and Jose-Norberto Mazón2

1 Señales y Sistemas (SESIS)
Universidad Autónoma de Sinaloa, México

ja.aguilar@maz.uasnet.mx
2 Department of Software and Computing Systems (DLSI)

University of Alicante, Spain
{igarrigos,jnmazon}@dlsi.ua.es

3 Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València, Spain

sven.casteleyn@upv.es

Abstract. In this paper we present the WebREd-Tool, a set of Eclipse
plugins that have been developed to assist the designer in the early phases
of a Web application development process. With the WebREd-Tool, the
designer can specify the Web application requirements by using the i*
goal-oriented framework. The WebREd-Tool assists the designer to com-
pare different configurations of functional requirements, while balancing
and optimizing non-functional requirements. The underlying algorithm
to support this is based on the Pareto efficiency, but to help the designer
to better assess and compare each configuration, the WebREd-Tool is
also able to visualize each configurations using a radar-chart.

Keywords: Web Engineering, Requirements Engineering, Softgoal Op-
timization.

1 Introduction

Although there are many methods for the development of Web applications, only
a select few offer methodological support for the requirements engineering phase,
and only one, namely NDT, also provides dedicated tool support, as reviewed
in [1]. Nevertheless, the complexity and dynamic nature of Web applications
demand the development of methods and tools to support the Web designer in
performing the requirements analysis phase. Furthermore, solutions that take
into account both functional (FR) and non-functional (NFR) requirements from
the beginning of the development process are needed, in order to assure that the
final product corresponds qualitatively to the users expectations.

In this work, we describe our efforts to build a set of Eclipse plugins called
WebREd-Tool1 to meet these needs. The WebREd-Tool enables the analysis and

1 http://code.google.com/p/webred/

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 452–455, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://code.google.com/p/webred/

WebREd 453

specification of the Web application requirements by using the i* framework and
helps designers to improve the quality of the Web application perceived by users
by assisting them in prioritizing and making tradeoffs between NFRs, based on
the Pareto efficiency algorithm. To better assess and compare different config-
uration, the WebREd-Tool allows to visualize them by means of radar charts.
Although this work was perceived in the context of the A-OOH method [2], it is
in fact a stand-alone, independent approach that can thus be used in any Web
engineering method.

2 Web Requirements Modeling with i* and Pareto
Efficiency

The i* modeling framework is a goal-oriented requirements engineering (GORE)
technique that incorporates social analysis by modeling the relationships be-
tween different actors. The basis of i* is that the actors depend on each other
to reach their goals successfully, to perform their tasks and to obtain the nec-
essary resources to do so. In order to model NFRs, i* provides softgoals which
allow designer to systematically explore various design alternatives for the soft-
ware system. In our previous work, the basic i* model was adapted for the Web
Engineering domain by combining it with the Web requirements classification
proposed in [3]. A metamodel has defined for including requirements typically
encountered in Web applications, such as service, navigational, content, person-
alization and layout requirements (see [2] for details).

Given an extensive i* requirement model, the designer faces the choice which
FR to implement, given time and cost constraints, so that maximum perceived
user satisfaction is achieved. In other words, the aim is to balance and optimize
NFRs to help the designer achieve a good configuration of implemented FRs:
a trade-off that takes into account the priorities among NFRs and, given this
priority, ensures there is no better solution. To do this, we extended our proposal
with the Pareto efficiency algorithm [4], which is particularly useful when there
are multiple competing and conflicting objectives that need to be balanced. Ap-
plied to the problem of optimizing NFRs, a configuration of FRs that is in the
Pareto front is a solution where it is not possible to improve the satisfaction of
any NFR without reducing another NFR. The set of Pareto front configurations
can subsequently be used to make a well-informed decision about which require-
ments configuration is an optimal balance between NFRs. For a more detailed
explanation of the Pareto algorithm we refer the reader to our previous work [5].

3 WebREd-Tool

The WebREd-Tool is developed by combining a set of technologies such as EMF
(Eclipse Modeling Framework) and GMF (Graphical Modeling Framework) both
part of the Eclipse Modeling Project (EMP)2 and J2EE in the context of the
Model-Driven Development (MDD).

454 J.A. Aguilar Calderon et al.

Fig. 1. WebREd-Tool implemented in Eclipse

Fig. 2. ParetoVisualizationTool

The tool development consists of three main parts. The first one consists on the
implementation of the adapted i* modeling framework for the Web domain. This
adaptation was made by defining a EMF metamodel and creating a specific class
for each type of component of the i* framework. In the second part, the meta-
model was used within the GMF to create a graphical editor (see Figure 1). With
the graphical editor, the designer can specify the Web application requirements in

2 http://www.eclipse.org/modeling

http://www.eclipse.org/modeling

WebREd 455

a graphical environment using the i* components such as goals, tasks, softgoals,
decomposition,means-end and contribution links and theWeb requirements types
including service, navigational, content, personalization and layout. The tool-box
is shown on the right side of Figure 1, including the aforementioned modeling ele-
ments. The third part is the implementation of the Pareto algorithm and, based on
it, the visualization of requirement configurations. The implementation was car-
ried out by using the J2EE and the EMF core classes to create the so-called Pareto
Visualization Tool (see Figure 2) which works as follows: first, the softgoals that
the designer wants to optimize are extracted from the i* requirementsmodel, then
the algorithm is executed and a list of Pareto front configurations (see top of the
Figure 2) are presented to the designer. From the list, the designer can select the
configuration that better satisfies the softgoal(s) to optimize. To do this, the tool
offers a graphical representation of each configuration by using a radar chart (see
the bottom of the Figure 2) in order to help the designer with the selection of the
optimal configuration.

4 Conclusions

A tool called WebREd-Tool has presented in this demo paper. This tool supports
designers in both specifying Web requirements with i* and optimizing the soft-
goals by means of the Pareto algorithm (including a visual representation based
on radar charts). The WebREd-Tool is stand-alone, and can thus be deployed
for the requirements engineering phase of any existing Web engineering method.

Acknowledgments. This work has been partially supported by: Universidad
Autónoma de Sinaloa (Mexico) and MANTRA (GVC) from the University of
Alicante. Sven Casteleyn is supported by an EC Marie Curie Intra-European
Fellowship (IEF) for Career Development, FP7-PEOPLE-2009-IEF, N 254383.

References

1. Aguilar, J.A., Garrigós, I., Mazón, J.N., Trujillo, J.: Web Engineering approaches
for requirement analysis- A Systematic Literature Review. In: Web Information Sys-
tems and Technologies (WEBIST), vol. 2, pp. 187–190. SciTePress Digital Library,
Valencia (2010)

2. Aguilar, J.A., Garrigós, I., Mazón, J.N., Trujillo, J.: An MDA Approach for Goal-
oriented Requirement Analysis in Web Engineering. Journal of Universal Computer
Science (JUCS) 16(17), 2475–2494 (2010)

3. Escalona, M.J., Koch, N.: Requirements Engineering for Web Applications - A Com-
parative Study. Journal of Web Engineering 2(3), 193–212 (2004)

4. Szidarovszky, F., Gershon, M.E., Duckstein, L.: Techniques for Multiobjective De-
cision Making in Systems Management. Elsevier (1986)

5. Aguilar, J.A., Garrigós, I., Mazón, J.N.: A Goal-Oriented Approach for Optimizing
Non-functional Requirements in Web Applications. In: ER Workshops, Web Infor-
mation Systems Modeling (WISM), pp. 14–23 (2011)

Answering Fuzzy Preference Queries

over Data Web Services

Soumaya Amdouni1, Mahmoud Barhamgi1, Djamal Benslimane1,
Allel Hadjali2, Karim Benouaret1, and Rim Faiz3

1 LIRIS Laboratory, Claude Bernard Lyon1 University 69622 Villeurbanne, France
2 Enssat, University of Rennes 1 22305, Lannion, France
3 University of Carthage-IHEC 2016 Carthage, Tunisia

4 {samdouni,barhamgi,dbenslim,benouaret}@liris.cnrs.fr,
hadjali@enssat.fr, Rim.Faiz@ihec.rnu.tn

Abstract. This paper describes a system that supports preference query
answering over a set of data Web services. The proposed system is capa-
ble to rank-order the query results in the presence of fuzzy preferences. To
do so, we provide different software components organized into two main
modules. The first module provides the top-k service compositions. It is
mainly based on (i) query rewriting techniques to generate relevant ser-
vices and compositions, (ii) fuzzy dominance relationship to rank both
individual and composite services. The second module adopts a fuzzy
database approach to provide a graded service composition execution
engine ranking returned data results.

1 Introduction

Mashups are situational applications that join data sources to better meet the
information needs of Web users. Typically, the access to data sources is carried
out through Web services. This type of services is known as Data-as-a-Service
[4]. Due to the Web dynamic nature, building mashups at Web scale triggers the
need to set up an effective service composition framework that would identify the
most relevant services, compose them, and rank the constantly-changing data
items accessed by services with respect to user’s preferences. In this work, we
adopt a flexible approach to model preferences based on fuzzy sets theory [6].

Example. Consider a Web user planning to buy a new apartment. The user
would like to find an apartment with an affordable price and located near to

Table 1. Available Web Services

Service Functionality Constraints
S1($c, ?s, ?t, ?r, ?a)

Returns the schools s along with their tuition fees t, reputation r
and addresses a in a given country c

t=cheap,
r=high

S2($c, ?s, ?t, ?r, ?a) t=expensive,
r=good

S3($a, ?ap, ?p) Returns the apartments for sale ap, their prices p at a given
address a

p=affordable
S4($a, ?ap, ?p) p=expensive

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 456–460, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Answering Fuzzy Preference Queries over Data Web Services 457

high schools with cheap tuition fees and good reputation. A such query Q is
described in SPARQL language as in Figure1. Many online data sources (e.g.,
apartments.com) provide the pricing information of a large set of apartments
available for sale. Other yellow-pages provide various information about schools
(including their locations, fees, and reputations). Assume that these informa-
tion are provided by the services in Table1. Input and output parameters are
proceeded by “$” and “?” respectively.

URL=http://vm.liris.cnrs.fr:36880/MembershipFunctions/
SELECT ?x ?z ?y
WHERE {?A rdf:type :Apartment, ?A :id ?x,
 ?A :price ?z, ?A :city ?y, ?S rdf:type :School,
 ?S :city ?y, ?S :country ``france",
 ?S :tuitionFees ?t, ?S :reputation ?r, ?S :name ?n}
PREFERRING {?z is `URL/Affordable', ?t is `URL/Cheap'
 ?r is `URL/Good''}

1
3000

12000

Membership to
Cheap Cheap

(Tuition Fees)

1
50.000

75.000

 Membership to
Affordable

Affordable
(Price)

1

5.000

25.000
Membership to

Good Good
(Reputation)

t

z

r(a) (b)

Fig. 1. (a)SPARQL query Q, (b) the associated membership functions

Challenges. Answering the fuzzy query Q over data services raises the following
two main challenges:(1) Computing the best service compositions answering the
fuzzy preference queries. This challenge necessitates to understand the semantics
of the published services, to retain the most relevant services that better satisfy
the user’s preferences and to generate the best k compositions that satisfy the
query. (2) Ranking the results of fuzzy preference queries. Data returned from
the services invocations may partially satisfy the fuzzy preferences of the query.
It is then important for a given service composition to rank-order results it may
return to express how good results they are.

2 System Overview

Our system is composed of the following two modules:

2.1 Top-K Web Service Compositions

The Top-k service compositions module is provided to compute the best k com-
positions that answer the user query. The processing of this component is shown
in window (a) Figure 2. We briefly describe below its different components, more
details are provided in [1,2].

Query Rewriting. The component RDF Query Rewriter is provided to identify
the relevant services that match all or parts of the user query. It exploits the
semantic descriptions of services given in the form of SPARQL queries.

Fuzzy Constraints Matching. The Fuzzy Constraint Matcher component is
used to compute the matching degrees between the fuzzy preference constraints
of the query and the fuzzy service constraints for each relevant service. Four

458 S. Amdouni et al.

distinct Fuzzy Constraints Matching Methods are used and implemented to as-
sociate to each relevant service 4 degrees. Such degrees express to what extent
a fuzzy service constraint matches a fuzzy query constraint.

Services Ranking. Our proposed Services Ranker component uses a fuzzy
dominance to express the extent to which a matching degree dominates another
one and associates fuzzy score with individual service.

In this step, we propose a fuzzy dominating score (FDS) for individual services.
An FDS of a service S indicates the average extent to which S dominates a set of
services, those answering the same subquery. Moreover, it associates fuzzy score
with a composition. The score of a composition is computed as an aggregation
of the scores of its services.

Top-k Compositions. This component is provided to efficiently generate the
compositions that better answer a fuzzy preference query. Instead of generating
all possible compositions, we compute their scores and return the top-k com-
positions, we provide an optimization technique that eliminates some relevant
services for which we are sure that if they are composed with other ones, the
obtained compositions are not in the top-k.

2.2 Query Results Ranking

The results returned by a composition may be large which may cause the users
to miss the ones that are most relevant to their prefrences. We propose a fuzzy
database approach to rank data returned by service composition execution [3].
Each relation R obtained from a service invocation is extended to include a new
column noted grade that expresses to what degree a tuple t of R satisfies the
fuzzy predicates and graded relation is noted by Rg. The graded relations are
orchestrated using a graded relational algebra.

Formally speaking, assuming a fuzzy predicates set FP = P1 ∧ P2 ∧ ... ∧ Pd,
where Pi, i = 1...d, is a fuzzy predicate (such that x is “cheap”...) and ∧ stands
for the conjunction connector. Window (b) in Figure 2 shows how the user can
edit and test different fuzzy terms. A service composition execution plan is dis-
played on window (c). Generated service composition execution plan is expressed
in terms of graded relational algebraic operators which are an adaptation of re-
lational algebraic operators to the graded relations. The following set of graded
operators are defined.

– The Graded Invocation Invokeg(S, tgin, O
g): Let S be a service, tgin the graded

input tuple with which S is invoked, Og the graded output, and S.O be the
output of S. The Invokeg computes g1(ti) = �(μP1(ti), μP2(ti), ..., μPn(ti))
where � is a t-norm operator and μPi the membership function associated
with Pi. Our system implements the following t-norms: Zadeh, Probabilistic,
and Lukasiewicz.

– Graded Join: ∞g(Ig1, I
g
2), where Ig1 and Ig2 are two graded data sets. The

grade of an outputted tuple is given by: g(∞g(t, t′)) = �(g(t), g(t′)) where
� is a t-norm, and t and t′ are tuples from Ig1 and Ig2 respectively.

Answering Fuzzy Preference Queries over Data Web Services 459

– Graded Projection
∏g

A. The projection is an operation that selects specified
attributes A={a1, a2, ...} from a results set. The grade of an outputted tuple
t is: g(t) =⊥ (g(t′1), .., g(t

′
i), .., g(t

′
n)) where t =

∏
A(t

′
i)i=1:n and ⊥ is the

co-norm corresponding to the t-norm � used in the graded join.
– Graded Union ∪g. The grade of an outputted tuple t is:

g(t)= ⊥ (g(t′1), .., g(t
′
i), .., g(t

′
n)), where t′i = t and i = 1 : n

The Ranking aware Execution Engine implements the defined operators and the
final ranked results are displayed in window (d).

3 Demo Highlights

The demo will show all of the components in figure 2. To illustrate the robustness
of our approach in different settings, we apply our scenario on a set of 200 dif-
ferent data services, accessing a synthetic dataset containing information about
a consequent data objects of the real-estate application domain.

Output
c= c

S1

InvokeP

France

r,

Input

t,

ap, p, y,
prob.Πy

n,y, prob

S3

InvokeP

y, prob

(a)

(b)

(c)

(d)

Fig. 2. Demo - Compositions and Results Ranking

References

1. Barhamgi, M., Benslimane, D., Medjahed, B.: A query rewriting approach for web
service composition. IEEE T. Services Computing 3(3), 206–222 (2010)

2. Benouaret, K., Benslimane, D., HadjAli, A., Barhamgi, M.: Fudocs: A web ser-
vice composition system based on fuzzy dominance for preference query answering.
PVLDB 4(11), 1430–1433 (2011)

460 S. Amdouni et al.

3. Bosc, P., Buckles, B.B., Petry, F.E., Pivert, O.: Fuzzy Databases, vol. 3, pp. 403–468.
Kluwer Academic Publishers (1999)

4. Carey, M.J.: Soa what? IEEE Computer 41(3), 92–94 (2008)
5. Dubois, D., Prade, H.: Beyond min agregation in multicriteria decision: (ordered)

weighted mean, discri-min, leximin, pp. 181–192. K.A.P (1997)
6. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

UsiWSC: Framework for Supporting

an Interactive Web Service Composition�

Mohamed Boukhebouze, Waldemar P. Ferreira Neto,
Erbin Lim, and Philippe Thiran

PReCISE Research Center, University of Namur, 5000, Belgium
{mboukheb,waldemar.neto,erbin.lim,philippe.thiran}@fundp.ac.be

Abstract. In this paper, we propose the UsiWSC framework for design-
ing, deploying and executing Web service compositions with user interac-
tions. The UsiWSC design relies on an extension of the BPEL standard:
UI-BPEL. The extension supports the derivation of user interfaces as
well as executable compositions for different user contexts. The UsiWSC
execution requires the coordination of the control and data flows between
web services and user interfaces.

Keywords: Interactive Web Service Composition, BPEL, User Inter-
face, User Interaction.

1 Introduction

A Web service composition is the process that orchestrates or choreographs a
set of Web services in order to implement a business process [8]. This mecha-
nism is used to fulfill the user request that a single Web service cannot satisfy
[8]. Several initiatives have been adopted to provide languages that allow the
description of Web service composition execution. Nowadays, WS-BPEL (BPEL
for short) [7] has become the de facto standard in the industry [8]. This standard
is intended to express a composition process in a fully automated way. As such,
users are not able to interact with the Web services until the end of the process
execution: they cannot provide input to a Web service at runtime, they cannot
cancel the process execution, nor they can see some intermediary output from
a Web service. However, many Web service composition scenarios require user
interactions [6].

In this work, we propose the UsiWSC framework (Usable uSer Interface for
Web Service Composition) that supports the design, the deployment and the
execution of an interactive Web service composition. At design time, an inter-
active composition is defined based on an UI-BPEL extension [2] that supports
the specification of user roles and the different types of user interactions. At de-
ployment time, abstract user interfaces and BPEL are derived from UI-BPEL.
Abstract user interfaces (AUI) and BPEL are not intended to be executed: they

� Research supported by la Wallonie.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 461–464, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

462 M. Boukhebouze et al.

are independent of any user context and can therefore be adapted for differ-
ent use cases. At runtime, user contexts are used for providing concrete user
interfaces (CUI) and executable BPEL.

UsiWSC is part of several initiatives to enhance BPEL with user interactions.
An example of such an initiative is ActiveBPEL for People [1]. The ActiveBPEL
for People framework describes an interactive WSC based on an extension of
BPEL called BPEL4People [6]. BPEL4People introduces a new type of BPEL
activity to specify user tasks. ActiveBPEL for People framework also supports
the generation of user interfaces according to user task parameters. Another
initiative is BPEL4UI [3]. This framework relies on an extension of BPEL in
which Partner Links can be used to connect BPEL activities and user interfaces.
User interfaces are developed separately from the composition. UsiWSC differs
from these main initiatives in that (1) UI-BPEL of UsiWSC supports the user
event interaction (a process can be cancelled by the user at any time of the
composition); and (2) UsiWSC enables the generation of user interfaces adapted
to the user contexts.

The rest of the paper is organized as follows. Section 2 describes the UsiWSC
architecture by focusing on its main software components. Section 3 presents the
online demonstration scenario that is based on a simple purchase order process.

2 UsiWSC Architecture

The UsiWSC architecture is presented in Figure 1. The figure shows the major
software components (namely, the UI-BPEL designer, the transformation tools
and the UI manager) and their interactions. Software components are classified
according to two different views: the abstraction level (abstract or concrete) and
the modeling object (user interface or Web service composition).

Fig. 1. Overview of the UsiWSC Architecture

UsiWSC: Framework for Supporting an Interactive Web Service Composition 463

2.1 UI-BPEL Designer

The UI-BPEL Designer is a tool that supports the design of a UI-BPEL process.
This tool is developed as an Eclipse plug-in based on the Eclipse BPEL Designer
[4]. The UI-BPEL specification enables the description of different user interac-
tions by introducing new BPEL elements [2]: (1) a new set of BPEL activities
(DataInputUI, DataOutputUI, DataSelectionUI) to express different user data
interactions; (2) a new type of BPEL events (InteractionEventUI) to express
the interaction event; (3) an extension of the BPEL’s Pick and Scope activities
that supports the new InteractionEventUI ; (4) a new activity attribute UserRole
that specifies the role that is assigned to a data interaction activity.

2.2 Transformation Tools

From an UI-BPEL process, the UsiWSC framework derives both a valid BPEL
and the related user interfaces, first at an abstract level, and then at a concrete
level. The user interfaces are described as AUI and CUI by using the UsiXML
language [5] while the abstract and executable BPEL are compliant with the
BPEL specification [7]. UsiXML has been chosen due to its good expressiveness
to describe the different facets of user interfaces. In addition, UsiXML is in the
process of being standardized by W3C.

The abstract UI transformation tool generates an AUI for each UI-BPEL role
directly from an UI-BPEL process. The generated AUI describes UI indepen-
dently to any user context (user preference, user device or user environment).
As such, the transformation rules apply for each role and each UI-BPEL user
interactions for converting them into a set of abstract UsiXML compounds (e.g.
output abstract compounds, and output abstract compounds). CUI are obtained
from the AUI by applying a UsiXML transformation tool. For each abstract com-
pound, the UsiXML transformation tool creates a concrete compound based on
the user context. For instance, an output abstract compound can be transformed
into a label, which is expressed in the user preference language. The UsiXML
transformation tool also keeps track of the transformations so that mappings
can be defined between the executable BPEL and the different CUI as explained
below.

The abstract BPEL transformation tool derives an abstract BPEL from the
UI-BPEL. The generated abstract BPEL describes the control flow of the compo-
sition independently to any concrete Web service. Moreover, the abstract BPEL
transforms each user interaction to an invocation of a particular Web service,
namely the UI Manager (Section 2.3). An executable BPEL can then be gener-
ated by selecting component Web services that are involved in the composition.
This selection is based on the user context and a set of predefined Web service
selection rules. Note that, the Web service selection is not in the scope of this
demonstration.

464 M. Boukhebouze et al.

2.3 UI Manager

The UI manager routes data between the executable BPEL and its CUI. The
routing is derived from the mappings that are automatically generated from
the UsiXML transformation tool. When an executable BPEL process invokes
the UI manager, the UI manager relies on the mappings between the related
UI-BPEL interactions and the CUI compounds for specifying the related CUI.
This CUI is displayed as a final user interface to a client application. When the
user interaction is completed (e.g., data input are provided by the user), the
UI manager sends the user interaction result (user data or event) to the BPEL
engine.

3 Demonstration

The scenario used in the demonstration is a simple purchase order process which
involves different users with different roles and contexts of use. Though simple,
the demonstration scenario outlines the main features of the UsiWSC frame-
work: (1) user interactions modeling with the UI-BPEL editor (e.g. the shipper
is manually selected by an administrator (data selection)); (2) multi-role and
multi-context user interfaces generation as well as an executable BPEL process
generation; and (3) runtime coordination between the WSC and its UI in multi-
context (different user devices). The demonstration video is available at:
http://webapps.fundp.ac.be/usiwsc/index.html &
http://www.youtube.com/watch?v= py7E9zqqg4

References

1. Active-Endpoint: ActiveBPEL 4 People (2007), http://www.activebpel.org/

samples/samples-4/ActiveBPELforPeople/doc/index.html

2. Boukhebouze, M., Neto, W.P.F., Erbin, L.: Yet Another BPEL Extension for User
Interactions. In: De Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., Simit-
sis, A., Van Mingroot, H. (eds.) ER Workshops 2011. LNCS, vol. 6999, pp. 24–33.
Springer, Heidelberg (2011)

3. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: From People to
Services to UI: Distributed Orchestration of User Interfaces. In: Hull, R., Mendling,
J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 310–326. Springer, Heidelberg
(2010)

4. Eclipse-Fundation: Eclipse bpel designer (2011), http://www.eclipse.org/bpel/
5. ITEA2: UsiXML Project (2009), http://www.usixml.eu
6. Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A., von Riegen, C.,

Schmidt, P., Trickovic, I.: Ws-bpel extension for people–bpel4people. Joint White
Paper, IBM and SAP (2005)

7. OASI: Web Services Business Process Execution Language(BPEL) 2.0. wsbpel-
specification-draft-01 (2007)

8. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
Qos-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30,
311–327 (2004)

http://webapps.fundp.ac.be/usiwsc/index.html
http://www.youtube.com/watch?v=_py7E9zqqg4
http://www.activebpel.org/samples/samples-4/ActiveBPELforPeople/doc/index.html
http://www.activebpel.org/samples/samples-4/ActiveBPELforPeople/doc/index.html
http://www.eclipse.org/bpel/
http://www.usixml.eu

Sticklet: An End-User Client-Side
Augmentation-Based Mashup Tool

Oscar Díaz and Cristóbal Arellano

ONEKIN Research Group, University of the Basque Country (UPV/EHU),
San Sebastián, Spain

{oscar.diaz,cristobal.arellano}@ehu.es
http://www.onekin.org/

Abstract. A critical aspect of mashup tools for end users is to come up
with an intuitive metaphor. Sticklet is an augmentation-based mashup
tool that conceives websites as walls where you can fix HTML fragments
(sticky notes) from other websites. Notes are contextualized to the
hosting website, i.e. location, parameter passing and layout should be
harmonized to those of the website. A set of declarative constructs are
available to declaratively specify complex sticky notes. Sticklet is realized
as an internal DSL in JavaScript that capitalizes on browser weavers (e.g.
Greasemonkey (GM)). Being full-fledged GM scripts, Sticklet benefits
from the sharing repositories (e.g. www.userscripts.org) or management
utilities (e.g. activation, installation, edition) available for GM.

1 Motivation

We address a special kind of mashuping known as Web augmentation [2]. Web
Augmentation is to the Web what Augmented Reality is to the physical world:
layering relevant content/layout/navigation over the existing Web to customize
the user experience. For instance, when rendering a book at Amazon, it could be
useful to know the prices/comments for this book at other online bookshops, or to
directly check if this book is available at your library, all without leaving Amazon.
Traditionally, this is achieved through JavaScript (JS) using browser weavers
(e.g. Greasemonkey). To date, over 43 million of downloads of Greasemonkey
scripts ground the vitality of this movement. However, these efforts are hindered
by being programming intensive and prone to malware. We strive to open Web
Augmentation to users other than JS programmers. To this end, we developed
Sticklet , an internal DSL in JavaScript which targets JS -ignorant users. Users
are expected to be computer-literate (e.g. able to write an Excel formula).

2 Sticklet

The lifecycle of a Sticklet expression (hereafter referred to as a “sticklet”) includes
three main stages: definition, deployment and enactment.

Definition. Sticklet conceives the Web as a wall to be decorated with stickers
(i.e. HTML fragments dynamically obtained from other websites). The pair (wall,

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 465–468, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

466 O. Díaz and C. Arellano

Fig. 1. Sticklet lifecycle: definition, deployment and enactment

sticker) conforms an augmentation unit, i.e. a sticklet . Consider fixing stickers
in Amazon with the prices of the current book at other online bookshops. This
is a popular JS script known as BookBurro which accounts for over 900 lines
of JS code1. The sticklet counterpart is shown in Figure 1. The constructs of
the DSL include: walls, bricks, notes and levers. Walls (line 9) can be regarded
as “views” upon existing websites. A wall comprises those websites whose URLs
match a given regular expression (WhenOnWall clause). The scope of the sticklet
is defined by its wall as well as the existence of some bricks. For our sample
problem, the wall expands along those Amazon pages that hold an ISBN brick.
Bricks (lines 10 & 14). They are named nodes upon HTML documents which
are worth singularizing for either data extraction, scoping or layering purposes.
A brick holds (1) an XPath to pinpoint the node (SelectBrick clause), (2) a

1 BookBurro is available at http://userscripts.org/scripts/source/1859.user.js

http://userscripts.org/scripts/source/1859.user.js

Sticklet: An End-User Client-Side Augmentation-Based Mashup Tool 467

regular expression to extract the node’s content (ExtractContent clause), and
(3), the brick ’s name (As clause). Notes (line 15) are expressions that combine
text and bricks (StickNote clause). Bricks can be obtained from the wall as well
as from URL-addressable services (LoadNote clause, line 13). For the sample
problem, a request is made to BookByte where URL parameters are obtained
from previously extracted bricks (e.g. $isbn). The outcome is used to pinpoint a
new brick: $price. Finally, bricks from different sources are used to conform the
note (StickNote clause). Notes might be readily stuck as soon as the user enters
the wall or displayed on demand by acting on a lever. Levers (line 11) permit
to obtain notes on demand. Levers are named after the sticklet (e.g. “Price At
BookByte for $isbn”) where the brick content is resolved at runtime. Levers are
positioned according to bricks. For our sample problem, a lever (realized as a
link) is inlayed after the brick $isbn. On acting upon the lever (in this example
through a “click”), a URL-addressable service is enacted. For our sample case,
on clicking, the BookByte request is conducted; next, the book price is obtained
and finally, the note is rendered.

Deployment. Being Sticklet an internal DSL, sticklets do behave as traditional
Greasemonkey (GM) scripts, e.g. the file extension is .user.js. Hence, sticklets’
deployment is achieved in the very same way as GM scripts: drag&drop on
Firefox. However, unlike GM scripts, sticklets postpone the definition of some
of its clauses till deployment time. Specifically, “assisted-valued” clauses are
resolved at deployment time through the help of the Sticklet engine. Specifically,
XPath and regular expressions are heuristically obtained by interacting with the
user. Sticklet intersperses a grid-like structure on top of the current DOM tree.
As the user moves the cursor around the screen, the DOM node under the current
cursor location is highlighted. By clicking, the user feeds the XPath inferring
algorithm with the selected node as an example, while Sticklet highlights all
the nodes that fulfilled the extraction pattern generated so far. This process is
iterated till the desired nodes are selected. The process ends by re-generating
the sticklet but now fully resolved and ready for enactment.

Enactment. Sticklets are automatically executed by GM when on the wall.
Pages are augmented with the sticklet supplement as soon as they are
loaded and lever triggered. Besides GM itself, this requires the previous
installation of the Sticklet engine2. Over 20 sticklets are available at
http://userscripts.org/users/Sticklet.

3 Related Work

Platypus is a Visual Programming Tool [4]. It obtains full-fledged JavaScript
code for Greasemonkey using a graphical toolbar. Users directly act upon the
current page through the Platypus toolbar to obtain the GM script. Platypus
is a neat tool for its purpose: changing a web page based on the page itself.
On the downside, visual tools might restrict the expressiveness to facilitate
2 https://addons.mozilla.org/addon/Sticklet/

https://addons.mozilla.org/addon/Sticklet/

468 O. Díaz and C. Arellano

code generation (e.g. in Platypus, no page other than the current page can be
accessed).

Chickenfoot illustrates the API approach [1]. An API introduces some
abstractions that shelters users from how these abstractions are implemented
but without leaving the hosting language. Chickenfoot is more expressive than
Sticklet. Sticklet just focuses on a special kind of customization: augmentation.
But this limited focus permits to come up with a self-contained, domain-oriented
vocabulary, and to stick to this vocabulary. Unlike APIs, DSLs have to do
without resorting to the underlying language. Sticklets can only contain Sticklet
terms. No general JS sentences are permitted. Although this limits expressivity,
it brings understandability and trustworthiness (“malware free by construction”).

MashMaker illustrates a hybrid approach [3]. A distinctive aspect is that
programmers and end-user asynchronously collaborate to come up with the
augmentation. A MashMaker project encompasses three artefacts: the data
extractor (graphically defined), the augmentation widget (which is separately
coded in JavaScript), and the so-called “mashup” (graphically defined). The
“mashup” links the two previous artefacts so that the widget is fed from the
extractor. A library of widgets is made available by programmers to end users.
This introduces two actors during augmentation: widget programmers and end-
user “linkers”. By contrast, Sticklet relies on a single user.

4 Conclusions

We introduce Sticklet, a textual DSL for Web Augmentation. Sticklet is based
on JS but limits JS generality for the sake of learnability and understandability.
First evidences indicate that users with no JS background can easily build their
own sticklets, and, not less important, understand someone else’s sticklets, hence
promoting sharing and collaboration.

References

1. Bolin, M., Webber, M., Rha, P., Wilson, T., Miller, R.C.: Automation and
Customization of Rendered Web Pages. In: Proceedings of the 18th Annual ACM
Symposium on User Interface Software and Technology, Seattle, USA, pp. 163–172
(October 2005)

2. Bouvin, N.O.: Unifying Strategies for Web augmentation. In: Proceedings of the
10th ACM Conference on Hypertext and Hypermedia, Darmstadt, Germany, pp.
91–100 (February 1999)

3. Ennals, R., Brewer, E.A., Garofalakis, M.N., Shadle, M., Gandhi, P.: Intel Mash
Maker: Join the Web. SIGMOD Record 36, 27–33 (2007)

4. Turner, S.R.: Platypus (2005), http://platypus.mozdev.org

http://platypus.mozdev.org

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 469–472, 2012.
© Springer-Verlag Berlin Heidelberg 2012

NDT-Suite: A Model-Based Suite for the Application
of NDT

Julián Alberto García-García1, Manuel Alba Ortega1,
Laura García-Borgoñon1,2, and Maria Jose Escalona1

1 IWT2 Research Group. University of Seville, Sevilla, Spain
2 Aragon Technological Institute. Zaragoza, Spain.

{julian.garcia,manuel.alba}@iwt2.org,
laurag@ita.es, mjescalona@us.es

Abstract. In general, a methodology needs to be empowered by appropriate
tool support. Despite MDE paradigm does not result friendly enough in enter-
prise environments, particularly, the application of transformations among
models may become complex, monotonous and very expensive if there are no
software tools automating the process. In this context, this research paper pre-
sents NDT-Suite. Nowadays, NDT-Suite is composed by a wide set of free Java
tools which gives support to enterprises that are using NDT (Navigational De-
velopment Techniques) methodology in their projects. All of them support
different aspects in NDT usage: quality assurance, exit generation or code
checking, among others. These seeds set the environment for NDT usage for
both research and practical use.

Keywords: Model-Driven Web Engineering, Model-Based Suite, Tools, Prac-
tical Experiences, NDT.

1 Introduction

The Model Driven Engineering paradigm (MDE) in general, and the Model-Driven
Web Engineering (MDWE) in particular, came up in order to tackle the complexity of
platforms and the inability of third generation languages to relief this complexity.
This new paradigm intends to increase automation during the life cycle of software
development and works, as primary form of expression, with definitions of models
and transformation rules among these models by entailing the production of other
models. In addition, if suitable tools are defined, this process could even be automatic.

However, MDWE is not easy to be applied in enterprise environments since it does
not result too friendly for development teams. Concepts such as models, metamodels,
transformations or QVT, among others, are not common notations in the enterprise
environment and they seem too abstract and complex.

For this reason, this research paper presents how NDT [1] (Navigational Develop-
ment Techniques) addresses this challenge with the aim of involving the enterprise
with the power of MDE. NDT is a methodological proposal included within MDE
that provides support to all phases of software life cycle: feasibility study,

470 J.A. García-García et al.

requirements, analysis, design, implementation, testing and maintenance phases. For
each development phase, NDT defines a set of metamodels and proposes a set of
QVT transformations that enables to get one phase results from the previous one.

This paper is structured as follows. After this introduction, Section 2 presents the
suite of tools for NDT. Finally, in Section 3 the final conclusions are expounded.

2 NDT-Suite

NDT-Suite1 is a set of free Java tools that facilitates the application of NDT in real
projects. With this suite, enterprises can benefit from the advantages of using MDE in
their projects.

NDT-Suite works on/with a UML- based tool named Enterprise Architect2 (EA).
To select Enterprise Architect did not result an easy task. In fact, a comparative study
developed by our research group and the Andalusian Regional Government concluded
that this was the tool that offered the best value for money. Furthermore, EA offers
several important advantages, such as the possibility of defining profiles or tools for
document management by drawing UML diagrams, for instance, which have been
very relevant to carry out our work.

Currently, the suite of NDT is composed by the following tools:

• NDT-Profile: it is the main tool for NDT usage. This tool is composed by a set of
UML-profiles which were developed for each metamodel of NDT. These UML-
profiles were defined in Enterprise Architect. With this, NDT-Profile offers the
chance of gathering all the artifacts that define NDT easily and quickly, as they are
integrated within the tool Enterprise Architect. Figure 1 shows a perspective of
NDT-Profile.. Area (a) shows a diagram associated with the information storage
requirements. Area (b) shows the package where these requirements are stored.
With NDT-Profile, all NDT artifacts can be graphically specified. Area (c) shows
the toolbox related to these requirements. It offers the possibility of collecting all
the artifacts that define NDT in an easy and quick manner.

• NDT-Driver: it is one of the main tools of NDT methodology. It is completely
based on NDT-Profile and implements a set of automated procedures so as to carry
out each of the QVT transformations defined in NDT. It generates the analysis
models from requirements, the design models from the analysis and the tests mod-
els from requirements. In addition, NDT-Driver allows obtaining the model re-
quirements from the requirements collected within the feasibility study phase of
the project. Moreover, NDT-Driver can be used in projects using both, a sequential
life cycle and an evolutionary life cycle. Once transformations to perform have
been selected, models to generate can be chosen.

• NDT-Quality [2]: it is a tool that automates most of the methodological review of a
project developed with NDT-Profile. It checks both, the quality of using NDT
methodology in each phase of software life cycle and the quality of traceability of
MDE rules of NDT. It also provides a report in different formats describing the in-
consistencies appeared during the review.

1 NDT-Suite available from http://www.iwt2.org
2 Enterprise Architect available from http://www.sparxsystems.com

 NDT-Suite: A Model-Based Suite for the Application of NDT 471

Fig. 1. A NDT-Profile Perspective

• NDT-Prototypes: it is a tool that generates a set of XHTML prototypes from the
navigation models described in the analysis phase in a project developed with
NDT-Profile. This tool is not related to the test phase, although it gives very good
support for requirements validation.

• NDT-Glossary: it is a tool in its suite offered by NDT which uses the model-driven
paradigm to generate a glossary from the requirements model. This tool allows en-
gineers to gather and define the more relevant and critical concepts to the system.
Furthermore, the use of a common glossary reduces the risk of misunderstandings
and facilitates communication between users and analysts.

• NDT-Counter: This tool provides a measure of effort required to develop a project.
This measurement is based on the use case technique [3].

• NDT-Report: it is a tool to generate PDF documents from NDT-Profile.

The demo of [8] shows how to use NDT-Quality to validate the requirements phase
which has been specified using NDT-Profile, how to use NDT-Driver for generating
the different models of the analysis phase the from requirements phase, and finally
how to use NDT-Prototypes to generate XHTML prototypes.

3 Conclusions

The application of MDE becomes complex, monotonous and very expensive if there
are no software tools automating the process. To meet this need, NDT has defined a
set of supporting tools called NDT-Suite. In the last ten years, NDT and NDT-Suite
were used in a high number of real projects. In fact, NDT-Suite is currently being
used in several projects developed by different companies, either public or privates,
big or small. On the one hand, public companies such as the Andalusian Regional
Cultural Ministry, the Andalusian Regional Health Ministry, among others, are using
NDT and NDT-Suite. Private ICT companies in Andalusia also are using NDT in
some of theirs projects.

472 J.A. García-García et al.

The main advantage of NDT-Suite is that it reduces the cost of ensuring the quali-
ty and traceability of the deliverables carried out during the project development
phases (requirements, analysis, design, etc.). It also reduces the cost of deliverables
from one phase because they are obtained from other deliverables of the previous
phase, through MDE rules. On the other hand, we are working on how to extend NDT
to provide support in the implementation phase of a Web project. Only few Web en-
gineering methods support the systematic development of Web applications with a
mature CASE tool. Thus, some methodologies like OO-H methods [4] with Visual-
WADE3 and WebML [5], WebRatio4, OOWS[6] with Olivanova5 or UWE[7] with
UWE4JSF6 are some specific solution that offer code generation in a MDE context.

Acknowledgement. This research has been supported by Tempros project (TIN2010-
20057-C03-02) and Red CaSA (TIN 2010-12312-E) of the Ministerio de Ciencia e
Innovación, Spain and NDTQ-Framework project of the Junta de Andalucia, Spain
(TIC-5789).

References

1. Escalona, M.J., Aragón, G.: NDT. A Model-driven Approach for Web requirements. IEEE
Transaction on Software Engineering 34(3) (2008)

2. Escalona, M.J., Gutiérrez, J.J., Pérez-Pérez, M., Molina, A., Martínez-Force, E., Domín-
guez-Mayo, F.J.: Measuring the Quality of Model-Driven Projects with NDT-Quality. In:
Information System Development, vol. 1, ch. 26, pp. 307–317. Science Business Media,
LLC 2009, USA (2011) ISBN/ISSN: 978-1-4419-7355-9

3. Karner, G.: Resource Estimation for Objectory Projects. Objective Systems SF AB (1993)
4. Gómez, J., Cachero, C., Pastor, O.: On Conceptual Modeling of Device-Independent Web

Applications: Towards a Web-Engineering Approach. IEEE Multimedia 8(2), 26–39
(2001)

5. Ceri, S., et al.: Designing Data-Intensive Web Applications. Morgan Kaufmann, San Fran-
cisco (2002)

6. Fons, J., Pelechano, V., Albert, M., Pastor, Ó.: Development of Web Applications from
Web Enhanced Conceptual Schemas. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuer-
mann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 232–245. Springer, Heidelberg (2003)

7. Koch, N.: Software Engineering for Adaptive Hypermedia Applications. Ph. Thesis, FAST
Reihe Softwaretechnik, vol. (12). Uni-Druck Publishing Company, Munich, Germany
(2001)

8. IWT2. Video demonstration of NDT-Suite available from canal youtube of IWT2 Re-
search Group,
http://www.youtube.com/watch?v=uLDrqz9t690&feature=plcp

3 http://www.visualwade.com/
4 http://www.webratio.com
5 http://www.care-t.com
6 http://uwe.pst.ifi.lmu.de/toolUWE4JSF.html

Enriching Web Applications with Collaboration

Support Using Dependency Injection

Matthias Heinrich1, Franz Josef Grüneberger1,
Thomas Springer2, and Martin Gaedke3

1 SAP Research, Germany
{matthias.heinrich,franz.josef.grueneberger}@sap.com

2 Dresden University of Technology, Germany
thomas.springer@tu-dresden.de

3 Chemnitz University of Technology, Germany
martin.gaedke@cs.tu-chemnitz.de

Abstract. Web-based collaboration tools such as Google Docs are per-
vasive in our daily lives since they have proven to efficiently support
joint work of distributed teams. Nevertheless, the development of web-
based groupware systems is a time-consuming and costly task because
developers either have to become familiar with specific groupware li-
braries or are asked to re-implement concurrency control services (i.e.
document synchronization, conflict resolution). Therefore, we propose
a dependency injection mechanism using declarative annotations to in-
corporate concurrency control services into web applications. Instead
of adopting comprehensive libraries or implementing application-specific
components, synchronization capabilities are integrated in a lightweight
and rapid fashion. To validate the approach, we enriched the widely-
adopted Knockout framework with dependency injection facilities and
transformed two Knockout-based applications into collaborative ones.

1 Introduction

In the course of the Web 2.0 movement, numerous collaborative web applications
such as Google Docs or EtherPad have emerged and were rapidly adopted. In
contrast to single-user web applications, the development of collaborative web
applications requires additional services such as document synchronization and
conflict resolution. While the document synchronization is in charge of recon-
ciling all documents copies, the conflict resolution mechanism handles conflicts
emerging when multiple users simultaneously change the very same document
artifacts. To incorporate concurrency control services (i.e. document synchro-
nization, conflict resolution), developers either have to learn new Application
Programming Interfaces (APIs) or are asked to implement the required func-
tionality themselves. Both traditional approaches are time-consuming and costly.
Therefore, we propose to annotate existing single-user applications with depen-
dency injection tags which can, in contrast to traditional approaches, consider-
ably ease the task of integrating groupware-specific features. Thus, the groupware
development efficiency can eventually be increased.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 473–476, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

474 M. Heinrich et al.

The rest of this paper is organized as follows: Section 2 discusses related work.
Section 3 describes the system architecture, the workflow to inject collaboration
services as well as the demo applications and Section 4 exhibits conclusions.

2 Related Work

In this section, we expose a number of approaches promising to rapidly integrate
concurrency control services in web applications.

The generic transformation approach [1] aims to enhance existing single-user
web applications with shared editing capabilities exploiting the so-called Generic
Collaboration Infrastructure (GCI). The GCI allows recording, propagating and
replaying arbitrary Document Object Model (DOM) manipulations among all
sites. In contrast to our approach, the GCI cannot synchronize web applications
leveraging a separate JavaScript data model (e.g. Knockout-based applications).

Apache Wave [2] is a full-fledged collaboration framework facilitating con-
currency control and allowing to either create extensions or client applications.
While extensions are defined adopting a specific XML syntax, client applications
are built using a Java or Python API. Therefore, Apache Wave is dedicated to
develop widgets or applications from scratch rather than enriching existing ones.

ShareJS [3] and OpenCoWeb [4] are two JavaScript libraries supplying concur-
rency control services. Including document objects in the synchronization pro-
cedure requires various API calls (e.g. object registration, value propagation or
callback implementation). In comparison to our compact dependency injection
syntax, the libraries expose a verbose binding language entailing cumbersome
and scattered code changes.

3 System Architecture and Demonstration

Dependency Injection (DI) has proven to be an efficient means to eliminate
boilerplate code and thus, it has been adopted in numerous development toolkits
(e.g. the Java Enterprise Edition 6 or the Eclipse e4 framework). We leverage DI
in order to furnish a lightweight integration approach capable of speeding up the
incorporation of concurrency control services in web applications. In this section,
we present the devised collaboration architecture and the enhanced Knockout1

framework [5] which has been enriched with DI facilities.
The system architecture materializing the approach of concurrency control

injection is depicted in Figure 1(a). The shown sync server connects numerous
clients and provides a sync service that is based on the prevalent concurrency
control algorithm called Operational Transformation (OT) [6]. All clients exhibit
a stack encompassing Knockout components (the UI and the View-Model) as well
as synchronization components (the Knockout Adapter and the OT Engine). The
OT Engine is in charge of sending out local changes, receiving remote changes

1 We chose to enrich the Knockout framework because of its massive developer adop-
tion (e.g. Knockout 2 reached 110 000 downloads in 3 months).

Enriching Web Applications with Collaboration Support 475

���
������������	
�
�	��
��
���������	
�������������������������
�������	
�
�	��
��
���������	
�������������
���	
���������
���
�������	�
�	����
�������������	���
����		���
�	����
����������

�������

��������		���
������
�	����
�����������	������
���������
���������������
�	����
��	��	���� ����������
�����������������!"!�
�	����
���������
���	���#���	����������
����������
���

����
����� ������!�"� �������#
��

�����$����!�%����#
����������������	����$
�	�%�&�	������ ���������������$
�	���� �%�'
�

���������	�	(���
���	��������	���$%�&����))�
���	������� ���$	���%�'
�

����� ���!�����"�����#
��������))�
�����&�����	�������������$%*��
�������������������	���������������������($%�'
�

����))�
����

�����������	���$%�&
�����������))�
���	���������$��)�����$&!�� �!�����))�
�������	$%'%%+
�����������))�
�������	$��%�'
�

��������(,��
��-�$���))�
��%+
����

������������	
��������	��������	���	��	�����������

���	����	
��	�����	��������������� 	���	�!�����"�

���	#$��	#$���%	� �������� �

��������	&�

��������

��������

��������
������

'�	(�"���

��������	&�

��������

��������

��������
������

'�	(�"���

'�	#�)���

�������	 �������

�����

���* ���*

��������������+��	,�%�������

#$��� ���-�����	,�%�������

Fig. 1. System architecture and minimal dependency injection example

and incorporating all those modifications in a dedicated OT data model. The
associated Knockout Adapter links the OT model with the View-Model (VM),
i.e. VM changes are propagated to the OT model and vice versa.

To introduce the workflow enriching Knockout applications with concurrency
control support, we use a minimal example where multiple users can simulta-
neously edit a list of tasks. Figure 1(b) depicts an excerpt of an HTML page
representing the Knockout UI. The main HTML elements are the input element
to enter the task name, a button to add the new task and a list showing all tasks
accompanied by a delete button. Additionally, Knockout-specific data-bind ex-
pressions establish data-bindings to the VM. Our UI enhancements, highlighted
using bold text, are limited to the replacement of the original Knockout VM (en-
capsulated in the <!-- / --> tags) with our ”knockoutadapter.js” script. This
script contains the generic sync adapter as well as the parser logic which allows
to locate and eventually to replace DI annotations with the actual source code
carrying out the synchronization. Moreover, the script imports an application-
specific configuration to specify the file name of the VM, the VM elements that
should be excluded from the sync, etc. The VM associated to the HTML view is
illustrated in Figure 1(c) whereas changes to the original VM are reflected once
again in bold text. The complete set of DI annotations encompasses @Session,
@Class and @Sync annotations which are always accommodated in comments
to prevent JavaScript errors. The @Session annotation enables session manage-
ment by exploiting the Session-ID argument (e.g. ”MySession”). The @Sync
annotation specifies the model that should by synchronized among all clients.
In our example, the input property and the tasks array are part of the sync
model. Note that Knockout VMs can comprise three types of observable objects

476 M. Heinrich et al.

(properties, computed properties and arrays) which all supply a notification
mechanism capable of informing subscribers about changes. This notification
mechanism is exploited to record local changes which are eventually propagated.
Besides recording changes, remote edits have to be replayed locally. Therefore,
the last annotation @Class marks object constructors allowing the sync mecha-
nism to re-create objects (e.g. a Task) using the appropriate constructor function.

To validate our approach, we implemented the proposed architecture on top of
the OT platform SAP Gravity [7] and the widely-adopted Knockout framework.
In the validation we included two Knockout-based to-do applications. While
TodoMVC [8] is a ready-for-use single-user application, our MyTodoApp was
developed from scratch. Both applications were enhanced with DI annotations
injecting concurrency control services and eventually could support collaborative
work. The results are exposed on our demo page http://vsr.informatik.tu-
chemnitz.de/demo/DI/.

4 Conclusion

In this paper, we presented an approach to add concurrency control support by
means of dependency injection. In contrast to adopting verbose programming
libraries, the proposed approach exposes an easy-to-learn and compact syntax.
Thus developers are empowered to efficiently program new collaborative appli-
cations or to rapidly migrate existing single-user applications to collaborative
applications. Even though the Knockout framework was exclusively enriched
with dependency injection facilities, the approach could be transferred to other
JavaScript libraries exhibiting a separation of the view and the data model.
Moreover, we noted that besides concurrency control, workspace awareness is
another essential collaboration service exposing what other users are doing in
the shared space. Thus, injecting awareness services is a challenging research
question we will try to tackle in future work.

References

1. Heinrich, M., Lehmann, F., Springer, T., Gaedke, M.: Exploiting single-user web
applications for shared editing: a generic transformation approach. In: WWW, pp.
1057–1066 (2012)

2. Apache Software Foundation: Apache Wave (2011),
http://incubator.apache.org/wave/

3. Gentle, J.: ShareJS – Concurrent editing in your app. (2012),
http://sharejs.org/

4. The Dojo Foundation: OpenCoWeb Framework (2012), http://opencoweb.org/
5. Sanderson, S.: Knockout: Home (2012), http://knockoutjs.com/
6. Ellis, C.A., Gibbs, S.J.: Concurrency Control in Groupware Systems. In: SIGMOD

Conference, pp. 399–407 (1989)
7. Rickayzen, A.: Simple way to model processes in the Web (2011),

http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/25360
8. Osmani, A., Boushley, A., Sorhus, S.: TodoMVC (2012),

http://addyosmani.github.com/todomvc/

http://vsr.informatik.tu-chemnitz.de/demo/DI/
http://vsr.informatik.tu-chemnitz.de/demo/DI/
http://incubator.apache.org/wave/
http://sharejs.org/
http://opencoweb.org/
http://knockoutjs.com/
http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/25360
http://addyosmani.github.com/todomvc/

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 477–480, 2012.
© Springer-Verlag Berlin Heidelberg 2012

XFormsDB: A Declarative Web Application Framework

Markku Laine, Denis Shestakov, and Petri Vuorimaa

Department of Media Technology, Aalto University
P.O. Box 15500, FI-00076 Aalto, Finland

{markku.laine,denis.shestakov,petri.vuorimaa}@aalto.fi

Abstract. Most Web applications utilize a three-tier architecture, in which the
presentation, application logic, and data management are implemented as
separate tiers. The disadvantage of this popular approach is that it usually
requires expertise in multiple programming languages and paradigms as well as
data models used in each tier. A single expert rarely masters all the
technologies involved. In this demonstration, we give an overview of the
XFormsDB framework that allows developers to implement entire Web
applications using only markup languages. The framework is based on the
XForms markup language and our server-side extensions. We demonstrate the
functionality of the framework using a simple blog application as an example.

Keywords: Web Framework, Web Application, Web Development,
Declarative Language, XForms, XFormsDB.

1 Introduction

Highly interactive data-driven Web applications enrich the Web user experience.
However, their development is complex because developers need not only to know
multiple systems, frameworks, best practices, and languages, but also to deal with
their conceptual dissimilarities [1]. Indeed, both imperative (e.g., Java and JavaScript)
and declarative (e.g., CSS, HTML, and SQL) languages are often used together when
implementing Web applications.

To provide support for complete Web application development (i.e., client-side and
server-side application logic, client-server communication, and interaction), the
client-side (presentation tier) and server-side (logic and data tiers) programming can
be done under a single model. This architectural approach simplifies the development
process, and particularly reduces the skill set required from a developer. For instance,
Google Web Toolkit (GWT)1 realizes a server-side approach, in which a general-
purpose programming language (i.e., object-oriented imperative Java) is used to
author not only the server-side application logic but also a Web application user
interface. Similarly, a client-side programming language (e.g., XForms [2]) can be
extended with server-side functionalities to cover all three tiers of a Web application.
An extensive comparison of frameworks realizing different tier-expanding
architectural approaches can be found in [3].

1 Google Web Toolkit (GWT), http://developers.google.com/web-toolkit/

478 M. Laine, D. Shestakov, and P. Vuorimaa

In this demonstration, we overview XFormsDB [4], a tier-expanding Web
application framework based on the XForms markup language and our server-side
extensions. We describe and demonstrate its functionality by showcasing a full-
fledged Web application utilizing the framework.

The advantages of the XFormsDB framework are as follows. First, as the XML
data model is used on all three tiers, developers can avoid complex mappings between
different data models. Second, at a minimum, developers only need to learn one
markup language (i.e., XHTML 2.0) and few XForms server-side extensions. Third,
all the core languages are declarative, and thus are more preferable to people with
limited programming skills (particularly, to Web user interface developers, who are
already familiar with declarative XHTML and CSS) [5]. Fourth, the framework is
extensible: on the presentation tier, JavaScript can add animations and interactivity;
on the logic tier, XQuery extension functions can extend server-side application logic;
and on the data tier, XQuery can complement the more limited XPath language.

2 XFormsDB: Language and Framework Implementation

The standard XForms [2] offers only client-side functionality. Our XFormsDB
markup language extends XForms with common server-side and database-related
functionalities, allowing developers to implement all three tiers (i.e., presentation,
logic, and data) of a Web application using only markup languages. The design of
XFormsDB addresses the following general requirements of a Web application:
persistent storage; error handling; session management and security; modularity;
state maintenance; authentication, authorization, and access control; uniform syntax
and processing model; and extensible architecture [4].

Listing 1 illustrates an example of the XFormsDB extension syntax2. This code
snippet can be included into the head part of an XHTML document to provide an
inclusion and authorization functionality.

<xformsdb:include resource="../xinc/meta.xinc"/>
<xformsdb:secview>
 <xforms:model>
 <xforms:load resource="../login.xformsdb"
 ev:event="xforms-ready"/>
 </xforms:model>
</xformsdb:secview>
<xformsdb:secview roles="admin">...
</xformsdb:secview>

Listing 1. XFormsDB code example

2 For space and readability reasons, the source code (available at http://tinyurl.com/
xformsdb-blog-sc) may differ from the code snippets shown in Listings 1-4.

 XFormsDB: A Declarative Web Application Framework 479

As a Proof-of-Concept, we implemented the XFormsDB framework, a generic
platform for developing and hosting Web applications based on the XForms markup
language and our server-side extensions. The architecture of the framework is given
in [4] and the framework itself is available at http://code.google.com/
p/xformsdb/.

3 XFormsDB: Demo Description

Next, we showcase XFormsDB with a simple blog application. The application and
its source code are available at http://testbed.tml.hut.fi/blog and
http://tinyurl.com/xformsdb-blog-sc, respectively. The blog
application has two main user interfaces, one for end users and the other for
administrators. The user interfaces look and feel like any other modern Web
application, i.e., they give a fast response to user inputs and remain responsive while
submitted requests are being processed on the server side.

The internal architecture of the application separates the code on each Web page
into the three logical tiers: data, logic, and presentation. We walk through, step by
step, how a query is defined and submitted to a server, and then executed against the
data stored in a database. The example continues by showing how the query result is
sent back to the client, and finally ends up being displayed in the user interface.

Data Tier. The database stores published blog posts and comments in a single XML
document (blog.xml). The hierarchical document structure has three levels: the
root element followed by a series of blog post child elements, each including
comment elements. All post and comment elements have unique identifiers.
Listing 2 shows an XPath expression, which selects one blog post—defined by an
external variable $id—and extracts its comments from the database.

Logic Tier. We divide the code responsible for the application logic between the
client and the server on each Web page. We define the client-side application logic
using standard XForms, whereas our XForms extensions are responsible for the
application logic on the server side. Listing 3 shows a query command, which uses
the XPath expression of Listing 2. The code snippet in Listing 4 submits the query
command to the server, where it is securely executed against the blog.xml
document stored in the database. For triggering the submission, the standard XForms
send action is used. After a successful submission, the query result extracted from
the database is stored in an XForms instance element, whose original content is
replaced with the extracted data.

Presentation Tier. The blog user interface controls (e.g., input and output) are bound
to the data in XForms instance elements. The user interfaces are updated every
time the data in XForms instance elements changes, such as in the case when
query results are received from the server.

/root/blog/posts/post[@id = $id]/comments

Listing 2. XPath expression to extract the comments of a selected blog post

480 M. Laine, D. Shestakov, and P. Vuorimaa

<xformsdb:instance id="select-and-update-comments">
 <xformsdb:query datasrc="exist-db" doc="blog.xml">
 <xformsdb:expression resource=
 "xpath/select_and_update_comments.xpath" />
 <xformsdb:xmlns prefix="xformsdb"
 uri="http://www.tml.tkk.fi/2007/xformsdb" />
 <xformsdb:var name="id" />
 </xformsdb:query>
</xformsdb:instance>

Listing 3. Definition of a query command

<xformsdb:submission id="sub-select-comments"
 replace="instance" instance="comments"
 requestinstance="select-and-update-comments"
 expressiontype="select">
 <xforms:action ev:event="xforms-submit-done">...
 </xforms:action>
 <xforms:action ev:event="xformsdb-request-error">...
 </xforms:action>
</xformsdb:submission>

Listing 4. Definition of a query command submission

4 Conclusions

In this demonstration, we overviewed XFormsDB, a comprehensive Web application
framework based on the XForms markup language and our server-side extensions.
We demonstrated the functionality of the framework using a simple blog application
as an example. The application looks and feels like any modern Web application. In
addition, it runs on all modern Web browsers.

References

1. Mikkonen, T., Taivalsaari, A.: Web Applications — Spaghetti Code for the 21st Century.
Technical Report SMLI TR-2007-166, Sun Microsystems (2007)

2. Boyer, J.: XForms 1.1. W3C Recommendation, http://www.w3.org/TR/xforms/
3. Laine, M., Shestakov, D., Litvinova, E., Vuorimaa, P.: Toward Unified Web Application

Development. IEEE IT Professional 13(5), 30–36 (2011)
4. Laine, M., Shestakov, D., Vuorimaa, P.: Extending XForms with Server-Side

Functionality. In: 27th ACM Symposium on Applied Computing (SAC 2012), pp. 688–
695. ACM, New York (2012)

5. Schmitz, P.: The SMIL 2.0 Timing and Synchronization Model — Using Time in
Documents. Technical Report MSR-TR-2001-01, Microsoft Research (2001)

A Framework for Service Discovery Based
on Structural Similarity and Quality Satisfaction

Fernando Lemos1, Ahmed Gater1, Daniela Grigori2, and Mokrane Bouzeghoub1

1 Versailles University, 45 Av. des États Unis 78000 Versailles, France
{fernando.lemos,ahmed.gater,mokrane.bouzeghoub}@prism.uvsq.fr

2 Paris-Dauphine Univ., Pl. Maréchal de Lattre de Tassigny 75775 Paris, France
daniela.grigori@dauphine.fr

Abstract. The increasing number of published web services rendered
the searching for a service within repositories a critical issue in many ap-
plication domains. Recent approaches resorted to service structure and to
preferences over quality attributes to reduce selectivity rate. In this pa-
per, we present S-MatchMaker, a tool for service discovery based on both
service structure and quality preferences. The tool implements several al-
gorithms that can be coupled in different ways to provide a personalized
solution for service discovery.

Keywords: Web service discovery, QoS, process model matching.

1 Introduction

The increasing number of published web services rendered searching for a specific
service within repositories a critical issue for the success of service computing in
general. On the functional aspect, recent approaches [1,2] invited users to detail
their requirements by specifying a process model (PM) describing the structure
of the requested service, and thus PM matchmaking techniques were necessary to
find the services best matching the query. On the non-functional aspect, one way
to discriminate between structurally similar services is to consider non-functional
requirements such as quality preferences (e.g., response time) [3,4].

In previous works, we provided to the service discovery problem a number
of contributions based on the PM specification of the service and on quality
preferences [2,5,6,7]. These contributions are composed of (i) two heuristics to
reduce the execution time of PM matchmaking, which is NP-complete, and (ii) a
set of metrics from classic and fuzzy logics to evaluate structural similarity and
quality preference satisfaction. In our approaches, services have their behavior
represented by a PM graph adorned with QoS annotations, which can be also
defined at the activity level. The user query is also a PM graph complemented
with a set of selection clauses, which are defined either as required (hard pref-
erences) or preferred criteria (soft preferences). The service discovery is seen as
a matching process between the user query PM and a target PM. These con-
tributions have been implemented to forge a flexible tool, called S-MatchMaker,
capable of coupling different approaches for personalizing service discovery based
on structural and quality aspects, as it will be described in the following sections.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 481–485, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

482 F. Lemos et al.

2 Architecture

The modules of S-MatchMaker, depicted in Figure 1, are executed as follows:
First, input query and target PMs, described in OWL-S or BPEL (the two

most used languages for describing service composition), are parsed into our ab-
stract graph model [2,5] by the Parser module. Next, Service PM Matchmaking
module finds a mapping between query and target graphs based on the name
and input/output similarities between activities. An optional heuristic based on
graph summarization can be used to reduce the matchmaking time [8].

At the same time, the Hard Preference Evaluation module evaluates the satis-
faction degrees of hard preferences when each pair of activity is matched (activity
preferences) and when a mapping of two graphs is discovered (process prefer-
ences). A mapping is discarded whenever it disrespect a hard preference [5,7].
After that, the Soft Preference Evaluation module evaluates the satisfaction de-
grees of soft preferences.

The Structural Similarity Metric calculates the structural similarity degree
from the mapping between query and target graphs. Four metrics were imple-
mented: one is the sum of the mapping dissimilarities [2], another is based on
linguistic quantifiers [6] and two others are based on bipolar conditions [7].

The Preference Satisfaction Metric aggregates the satisfaction degrees of hard
and soft preferences. Three methods were implemented: one is the weighted
average of satisfaction degrees [5], another is based on linguistic quantifiers [6]
and the last one is based on a bipolar condition [7].

Then, the Degree Aggregation module provides four methods to aggregate
structural similarity and preference satisfaction degrees: weighted average of
structural similarity and preference satisfaction [5], min-combination of struc-
tural and preference degrees [6] and two other based on bipolar conditions [7].

Finally, the mapping and the similarity degree based on structural similarity
and preference satisfaction for each query and its potential targets are returned.

The S-MatchMaker tools is very extensible: developers can use its API to
create new parsers, matchmaking algorithms, similarity metrics, etc., and attach
them to the tool. A Web interface offering less functionalities can be found at
http://infosystems.prism.uvsq.fr:8080/WebMatchMaker.

Service PM
Matchmaking

Hard Preference
Evaluation

Structural Similarity Metric

Degrees
Aggregation

Parser

Soft Preference
Evaluation

mapping &
similarity

degree

query &
target

services

Pref. Satisfaction
Metric

Fig. 1. S-MatchMaker architecture

A Framework for Service Discovery 483

3 Using S-MatchMaker

A typical session with S-MatchMaker is depicted in Figure 2. It starts with the
user loading the service repository over which one or more queries will be posed

1

2

3

Fig. 2. A session with S-MatchMaker

484 F. Lemos et al.

(step 1). Through a BPMN1 representation of the service PM, user can analyze
the query/target structure and its preference/quality annotations.

In step 2, the user configures the discovery process by selecting: (i) the match-
making algorithm to be executed (either the default I/O-based algorithm or the
algorithm with the summarization heuristic) and defining its specific parameters
(edit operation costs, thresholds, etc.); (ii) the metric to calculate the structural
similarity degree; (iii) the metric to calculate the preference satisfaction degree;
and (iv) the method to aggregate structural and preference degrees.

The results by query are presented in a dedicated interface (step 3). By clicking
the Mapping button, user can visualize the mapping between the selected query
and the corresponding potential target in the Mapping Viewer tab.

4 Conclusions

Here, we presented S-MatchMaker, a tool for service discovery process based
on structural similarity and preference satisfaction. The tool features a graphi-
cal interface to load service PMs, configure the discovery process and visualize
the results. Its modular architecture can be adapted to other service discovery
approaches based on structural similarity and/or preference satisfaction.

Acknowledgment. This work has received support from the French National
Agency for Research (ANR) on the reference ANR-08-CORD-009.

References

1. Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph Matching Algorithms for
Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009)

2. Grigori, D., Corrales, J.C., Bouzeghoub, M., Gater, A.: Ranking bpel processes for
service discovery. IEEE TSC 3, 178–192 (2010)

3. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: Easy:
Efficient semantic service discovery in pervasive computing environments with QoS
and context support. Journal of Systems and Software 81(5), 785–808 (2008)

4. Şora, I., Lazăr, G., Lung, S.: Mapping a fuzzy logic approach for QoS-aware service
selection on current web service standards. In: ICCC-CONTI, pp. 553–558 (2010)

5. Lemos, F., Gater, A., Grigori, D., Bouzeghoub, M.: Adding preferences to semantic
process model matchmaking. In: GAOC (2011)

6. Abbaci, K., Lemos, F., Hadjali, A., Grigori, D., Liétard, L., Rocacher, D.,
Bouzeghoub, M.: Selecting and Ranking Business Processes with Preferences: An
Approach Based on Fuzzy Sets. In: Meersman, R., Dillon, T., Herrero, P., Kumar,
A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J.,
Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044,
pp. 38–55. Springer, Heidelberg (2011)

1 http://www.bpmn.org

http://www.bpmn.org

A Framework for Service Discovery 485

7. Abbaci, K., Lemos, F., Hadjali, A., Grigori, D., Liétard, L., Rocacher, D.,
Bouzeghoub, M.: A bipolar approach to the handling of user preferences in business
processes retrieval. In: IPMU (to appear, 2012)

8. Gater, A., Grigori, D., Bouzeghoub, M.: Complex mapping discovery for semantic
process model alignment. In: iiWAS, pp. 317–324 (2010)

WebTribe: Dynamic Community Analysis

from Online Forums

Damien Leprovost1, Lylia Abrouk1, and David Gross-Amblard2

1 Le2i CNRS Lab, University of Bourgogne, Dijon, France
firstname.lastname@u-bourgogne.fr

2 IRISA, University of Rennes I, France

Abstract. In this demonstration we present WebTribe, a tool for com-
munity discovery based on the analysis of large discussion forums or
e-mail repositories1 . In this tool, communications are tracked in real time,
analyzed according to a reference ontology, and a summary of users’ ac-
tivity is built in an incremental way. The demonstration will illustrate
how communities are identified and updated depending on the semantics
and structure of communications between users.

1 Introduction

Discussion forums constitute a well-known advertising tool for companies, as
they attract existing and potential customers on the company’s website, give
product insights, and show the company openness and activity. In this context,
the community manager is an emerging role in such companies. Typically, the
community manager, aside the traditional task of moderating forums and manag-
ing topics, has to monitor the forum activity, report on existing sub-communities,
identify expert users and opinion leaders for specific targeting (advertising, spe-
cial offers, ...). But due to the exploding rate of forum contributions, monitoring
tools are needed to assist the manager.

In this demonstration we will present WebTribe, a system that allows com-
munity managers to perform these tasks on various kind of forums or public
e-mails archives in a scalable and incremental way. Our model encompasses ev-
ery type of user communications (forums, tweets, emails, ...), as soon as a specific
wrapper is provided (we give such a wrapper for a specific healthcare company
forum). Several analysis axes can be considered in forum analysis: users con-
nections and posting rates, citations (replies) between users, and post content.
Existing methods usually rely for the latter on term frequencies, a method that
allows to give a rough overview of the forum activity. In WebTribe, we enable
the community manager to be active, by giving a controlled term vocabulary in
the form of a target ontology. It also allows reasoning within the ontology: a user
posting terms (concepts) such as ventricle, aorta or vena cava will be identified
as a heart expert, while this term never appears explicitly in the user’s posts.

1 An earlier version of this demo has already been presented at the French conference
BDA 2011, which has informal proceedings and does not retain any copyright.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 486–489, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

WebTribe: Dynamic Community Analysis from Online Forums 487

Concept analysis allows a real-time interpretation of the evolution of communi-
ties. This demonstration proposal is organized as follows. After briefly presenting
the related work, we present our model (Section 2) and detail the architecture of
the WebTribe system (Section 3) along with the scenario of our demonstration.

Related Work. The importance of comment activity on blogs was the subject
of several studies [5]. Previous works have focused on highlighting the structure
of discussions within new articles, in order to determine popular topics, con-
flicts of opinion [7,3,1], or relational implications between users [2,6]. In these
works, ontologies are not used to structure the vocabulary or refine the analysis.
Dedicated ontologies like SIOC2 exist for structuring forums. Our approach is
complementary, as it allows a community manager to analyze external forums
with a specific ontology (say a brand product), different from the forum’s SIOC.
Moreover, there are still numerous forums without such SIOC structurations.
The model underlying this demo was detailed in our previous work [4].

2 Model and Architecture

Figure 1 shows an example of communications in a healthcare forum, where
Alice, Joey and Bob discuss. In order to finely define the axis of the forum
semantic analysis, we rely on a domain or generic ontology, as uses in Figure 3,
which describes concepts with their subconcept relation (we restrict our attention
to structural relations like is-a, part-of, sort-of, etc.). Choosing a target ontology
enables a flexible forum exploration: a generic ontology like WordNet for a forum
overview, a specific, e.g. brand product ontology for a specific tracking of topics.

Given a post, we identify its author (according to the forum API or syntactic
rules of the Web page). The set of concepts occurring in the post is computed
by stemming the post and removing stop-words, and by comparison with the
(stemmed terms of the) ontology (for example, terms arm and shoulder in Fig-
ure 1 are identified as relevant concepts). During posts analysis, the running
user profile for each user is computed, as the sum of concepts occurrences in

�

�

�

�
Alice I feel a pain in my left arm.

�

�

�

�
Joey Is there a physician on this WebSite?

�

�

�

�
Bob

”I feel a pain in my left arm.”

Could you be more precise?

�

�

�

�
Alice @Bob: My shoulder hurts.

�

�

�

�
Bob Did you perform a strong move?

�

�

�

�
Alice Yes, I played tennis yesterday.

Fig. 1. Posts in a forum

Web sources
communication

wrapper

user
profiler

semantic
analyzer

community

analyzer

visualization tool

ontology

Community
Manager

provides

use

registers

tweets

forums

mails

...

Fig. 2. WebTribe architecture

2 http://www.sioc-project.org/, 2012.

http://www.sioc-project.org/

488 D. Leprovost, L. Abrouk, and D. Gross-Amblard

the ontology. Figure 3 shows the profile of a user who used once the concept
shoulder, 16 times humerus and 8 times biceps. Interpreting such profiles can
be tedious, due to the huge potential number of concepts. In order to overcome
this difficulty, we build a user abstract by saturating the following rules:

Relevance. If a concept occurrence, relatively to the other concepts, is smaller
than the relevance threshold δrelevance, the concept is discarded in the ab-
stract. This limits the impact of terms used occasionally, and favor long-term
interests.

Coverage. If almost all subconcepts of a concept c are covered (non-zero oc-
currence), the concept c itself receives the average occurrence. The fraction
of covered concepts required is controlled by the δcoverage threshold. This
models the fact that a user, talking significantly about biceps, humerus
and triceps, should indeed be considered as talking about arm, with the
corresponding strength.

forelimb(0)

shoulder(1) arm(0)

biceps(8) humerus(16) triceps(0)

Fig. 3. User profile

forelimb(4.5)

deleted arm(8)

biceps(8) humerus(16) deleted

Fig. 4. User abstract

Observe that we do not rely on a tf-idf computation for concepts detection be-
cause we want to perform generalization. Choosing the value of these thresholds
depends on the ontology and the forum pace, and is managed for now by a man-
ual tuning. As an example recall the profile of Figure 3. For δcoverage = 0.66 and
δrelevance = 1/24, the resulting abstract appears in Figure 4.

Finally, the forum abstract is computed in a similar way: we sum the ab-
stract of all users and only apply the relevance threshold. Communities are then
identified by the top k concepts with the largest occurrence (each community
is identified by a unique concept). Users may belong to several communities,
proportionally to their concepts occurrence in their abstract. For example, if
arm and shoulder turn out to be the two communities of the system (the top 2
concepts), the user of Figure 4 belongs to the first community with score 8, and
does not belong to the second.

We enrich the previous analysis by taking into account the context of com-
munication. there are several technical or textual conventions for answering a
given post. For emails or tweets the user who is answered to is explicitly given.
For purely web systems, classical patterns are to start the answer to user u with
”@u”, or to cite the answered message. In Figure 1, the first post of Bob ex-
plicitely cites Alice’s post, hence the arm concept is propagated in Bob’s post.
The second post of Bob is an implicit answer to the previous post: we then
propagate the previous shoulder concept into Bob’s post. Figure 2 presents the
general WebTribe architecture.

WebTribe: Dynamic Community Analysis from Online Forums 489

3 Demo Scenario

Our 10mn demo considers a community manager taking over the health section of
the USA Today forum3. We will illustrate the following functionalities, available
as a video at http://www.damien-leprovost.fr/webtribe:

1. Source registration, Ontology selection The manager selects the forum
URL and a target ontology (as an OWL file or a subtree of WordNet, given
a root concept).

2. Visualization. During the entire demonstration, the whole activity can be
monitored. For example, as the target forum is analyzed on the fly, a specific
window allows seeing the forum with ontology concepts highlighted. Given
a community, both its main topic and users can be displayed. For a user,
her/his main manipulated topics and possible related communities are listed.

3. Forum health status. A global indicator of the community is given, that
measures its global health: number of users, covered topics, activity rate, . . .

4. Alert system. A simple alert language allows to monitor the activity at
the post / user / community level, to warn the community manager of any
interesting event (for example, the first use of the name of a disease).

5. Multiple forum analysis. Finally, the system can also perform the analysis
of several sources, with the same workflow. It allows comparisons, in order
to detect similar communities, potential new users, and login equivalences.

References

1. Amer-Yahia, S., Lakshmanan, L., Yu, C.: Socialscope: Enabling information discov-
ery on social content sites. In: Conference on Innovative Data Systems Research
(CIDR) (September 2009), http://arxiv.org/abs/0909.2058

2. De Choudhury, M., Mason, W.A., Hofman, J.M., Watts, D.J.: Inferring relevant
social networks from interpersonal communication. In: International Conference on
World Wide Web (WWW), pp. 301–310. ACM, New York (2010)

3. Gloor, P.A., Zhao, Y.: Analyzing actors and their discussion topics by semantic
social network analysis. In: Conference on Information Visualization, pp. 130–135
(2006)

4. Leprovost, D., Abrouk, L., Gross-Amblard, D.: Discovering implicit communities in
web forums through ontologies. Web Intelligence and Agent Systems: An Interna-
tional Journal 10, 93–103 (2011)

5. Menchen-Trevino, E.: Blogger motivations: Power, pull, and positive feedback. In-
ternet Research 6.0 (2005)

6. Mitrović, M., Paltoglou, G., Tadić, B.: Quantitative analysis of bloggers’ collec-
tive behavior powered by emotions. Journal of Statistical Mechanics: Theory and
Experiment 2011(02), P02005 (2011)

7. Schuth, A., Marx, M., de Rijke, M.: Extracting the discussion structure in comments
on news-articles. In: ACM International Workshop on Web Information and Data
Management (WIDM), pp. 97–104. ACM, New York (2007)

3 http://yourlife.usatoday.com/health/, 2011.

http://www.damien-leprovost.fr/webtribe
http://arxiv.org/abs/0909.2058
http://yourlife.usatoday.com/health/

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 490–493, 2012.
© Springer-Verlag Berlin Heidelberg 2012

MIGROS: A Model-Driven Transformation Approach
of the User Experience of Legacy Applications

Luca Mainetti, Roberto Paiano, and Andrea Pandurino

GSA Lab, University of Salento, Via Monteroni, 73100 Lecce, Italy
{luca.mainetti,roberto.paiano,andrea.pandurino}@unisalento.it

Abstract. Model-driven engineering is a promising approach for the moderni-
zation of legacy applications, but there are still many issues to address, espe-
cially to obtain automatic refactoring of the User Experience (UX) of existing
applications applying modern interaction paradigms as Rich Internet Applica-
tion (RIA). The MIGROS tool tries to solve the hurdles for the model-driven
modernization of the UX of legacy application (as implemented in Cobol CICS,
Visual Basic, Power Builder, etc.). It is designed upon a set of well-known me-
thods in the web engineering field. It is implemented as a set of Eclipse plug-ins
that support reverse engineering and model transformation exploiting the OMG
Architecture-Driven Modernization (ADM) technology.

1 Introduction

According to a 2003 report by the Aberdeen Group, investment in Legacy Applica-
tions (LAs), which account for upwards of 70% of enterprise business operations,
consumes as much as 80% of software budgets. In a 2006 report, Gartner suggests
that organizations need a wholesale re-architecting of the application platform, and
conclude that “CIOs and their IT executives must complete enterprise platform migra-
tion by 2009.” Even if the current economic crisis reduced IT budgets and slowed
down the process, in the next future many organizations will start LA’s modernization
projects. Currently, many tools are available to convert legacy languages to new ones
(e.g. from Cobol to Java). They mainly focus on the business logic and the server side
of LAs. We observe a lack of approaches specifically intended to migrate the client
side. To overcome this limitation, here we present a demo of the MIGROS tool chain
that developers can use to automatically modernize the client side of LAs. Thanks to
its MDE approach, MIGROS allows developers to refactor the User Experience (UX)
of LAs during the modernization journey, taking the opportunities offered by novel
interaction paradigms (i.e. RIA). MIGROS is deployed as a set of Eclipse plug-ins
that support reverse engineering and model transformation adopting well-known me-
thods in the web engineering field, and exploiting the OMG ADM technology.

Section 2 reports on key related works. Section 3 gives an overview of the
MIGROS tool chain architecture and shows an example of its user interface. Finally,
section 4 draws conclusions and sketches future steps.

 MIGROS: A Model-Driven Transformation Approach 491

2 Related Work on RIA Modeling and Generation Approaches

Other authors have proposed the use of Model Driven Architectures to evolve web
systems [4], and RIAs to unleash superior user interaction [2]. In general, existing
methods lack in connecting re-design artifacts with UX requirements. If complex LAs
are evolved to web systems, often the presentation layer is migrated to a RIA whereas
the business logic and data are offered through a SOA [1]. At the same time the
OMG’s ADM Task Force (omg.adm.org) is proposing a set of modernization stan-
dards to facilitate the exchange of existing systems meta-data for various moderniza-
tion tools. The OMG’s Knowledge Discovery Meta-model (ISO/IEC 19506) provides
a comprehensive view of application structure and data, but does not represent direct-
ly the UX, even if it is open to exchange meta-data form other models. Many RIA
design methods are actually available (readers can look to [3] for a complete survey).
The Object Oriented Hypermedia Design Method (OOHDM) proposes a model
process for requirements modeling, conceptual modeling, navigation design, interface
design, and implementation. WebML for RIAs extends the WebML method consider-
ing a well-defined separation between the client side and the server side, and a better
definition of the application interface. The Rich Internet Application User eXperience
(RUX) method defines the interface of an application through four levels: concepts
and tasks, abstract interface, concrete interface, and final interface. UML-based Web
Engineering (UWE) exploits an UML profile and integrates RUX method to provide a
specification of a rich web system. OOH4RIA is a model-driven approach to design a
complete RIA for the GWT framework. OOWS is an approach to develop web appli-
cations in an OO modeling oriented software development environment. ADRIA is an
UML-based method for designing RIAs departing from the results of an object-
oriented analysis. Internet Application Modeling Language (IAML) aims to provide
modeling support for all of the fundamental concepts of RIAs using ECA rules, ER
diagrams, and UML diagrams. Very often the same research groups that proposed
design methods, also released tools to model, fast prototype, and generate web sys-
tems and RIAs. Some of these are very strictly related to our work as they use similar
approaches and architectures: WebTE, WebRatio, MVC-Webflow, UWE4JSF, Magi-
cUWE, RUX-Tool, and OIDE. Whereas these approaches provide support for ab-
stracting existing RIA technologies and to generate rich web systems, they lack in
bridging the fluid nature of the user interaction in RIAs to the design. So, only partial-
ly they can be used to transform the UX of LAs to RIAs preventing interface flaws.
To meet this challenge, we proposed the use of Rich-IDM [5] and the MIGROS tools
as a restructuring bridge between a flat reverse engineering of legacy user interfaces
and a structured forward engineering of the presentation layer of RIAs.

3 Tool Chain for Automatic Transformation

The MIGROS tools exploit the OMG’s ADM framework. Whereas other research
groups (as those at Microsoft’s and IBM’s laboratories) are working on tools for the
server side of existing LAs adopting horizontal transformations (paths 1 and 2 of Fig.

492 L. Mainetti, R. Paian

1a) or vertical ones (path 3
refactor the UX of the ex
represent the UX of the so
UML stereotypes [3]; (ii) w
primitives, which give the
communication; and (iii) w
have the advantage of bein
(enabling a generative appr
ing Rich-IDM primitives: R
displays contents and links
nected composition of pag
what is offered to the user a
maintains navigational con
cores.

Fig. 1b draws the genera
tool chain (domain and app
el). Following the diagram
Knowledge Extractor tools
an OWL domain knowledg
model from the LA’s user
Knowledge Recomposer too

Fig. 1. MIGROS transforma

no, and A. Pandurino

3 of Fig. 1a), we focused our attention on a tool chain
xisting solution. Following the path 4 of Fig. 1a: (i)
ource code using an extension (WAE+) of the Conalle
we abstract and re-design the UX employing the Rich-ID

opportunity to add knowledge on UX requirements
we map the Rich-IDM primitives to RUX elements, wh
ng mechanically mappable to the target client technolo
roach). To refactor the UX, we mainly lever on the follo
RIA-Page Element, an atomic fragment of RIA page, wh

as directly mapped from LA’s database; UX Core, a c
e elements, which communicates the semantic nucleus

at a given moment; Context View, a set of UX Cores, wh
ntext, orientation, organic, and fluid transition between

ation process – made up of three phases – of the MIGR
plication levels) and the supporting technology (lower l
from left to right, in the Knowledge Extraction phase t

s (implemented as Modisco Code2Model plug-ins) obt
ge model from the LA’s database and a WAE+ applicat
r interface. In the Knowledge Recomposition phase,
ol (written as ATL Model2Model rules) transforms the

ation process (1a), generation process (1b), and screenshot (1c

n to
we

en’s
DM
and

hich
ogy
ow-
hich
con-
s of
hich

the

ROS
lev-
two
tain
tion
the
UX

)

 MIGROS: A Model-Driven Transformation Approach 493

of the LA representing it as an OWL-encoded Rich-IDM model. To do this, the
Knowledge Recomposer uses all the concepts discovered from the database and from
the logical and physical user interface of the source LA. Moreover, through a Rule
Editor, the Knowledge Recomposer allows an UX expert to manually improve the
obtained Rich-IDM model in order to better bridge the smooth nature of the user inte-
raction in RIAs, applying usability principles. Then, through a RUX Mapper tool, the
Rich-IDM model is converted to a RUX Abstract Interface model. In this step also,
the UX designer can use the Rule Editor to obtain the better mapping between Rich-
IDM primitives and RUX elements. Finally, in the Prototype Generation phase, start-
ing from the RUX Abstract Interface model and using the RUX-Tool IDE, and the
WebRatio M2C generator, a RIA prototype of the LA’s user interface can be automat-
ically obtained. Fig. 1c shows a screenshot of the Knowledge Extractor tool. Demon-
strators of MIGROS tools are available at www.migrosproject.unisalento.it.

4 Conclusions and Future Work

The proposed demonstration illustrates MIGROS, a tool chain based on the Eclipse
platform for the model-driven modernization of the user interface of LAs. The dem-
onstration shows how an intensive use of knowledge extraction and model transfor-
mation can help developers to automatically re-factor the UX of LAs. The originality
of our approach lies in the ability to connect the transformed user interface model to
UX requirements, adopting the Rich-IDM method we presented at the 13th IEEE
Symposium on Web Systems Evolution. Currently we are working on a large-scale
industrial innovation project, which goal is to migrate a complex LA (VB6 + Cobol)
to a RIA (JSF + SOA). In the future, we will extend the tool chain to accept input
from other LA’s client technologies than VB6 (e.g. Cobol CICS or PowerBuilder).

Acknowledgments. This research has been partially supported by the GPS Italian
funded DM29255 MIGROS project and Data Management S.p.A.

References

1. Bhallamudi, P., Tilley, S., Sinha, A.: Migrating a Web-based application to a service-based
system - an experience report. In: Proceedings of the 11th IEEE International Symposium
on Web Systems Evolution, WSE 2009, pp. 71–74. IEEE, NY (2009)

2. Brambilla, M., Preciado, J.C., Linaje, M., Sanchez-Figueroa, F.: Business Process -based
Conceptual Design of Rich Internet Applications. In: Proceedings of the 8th International
Conference on Web Engineering, ICWE 2008, pp. 155–161. IEEE, NY (2008)

3. Casteleyn, S., Daniel, F., Dolog, P., Matera, M.: Engineering Web Applications. In: Carey,
M.J., Ceri, S. (eds.), pp. 978–973. Springer (2009) ISBN 978-3-540-92200-1

4. Feng, C., Hongji, Y., Hong, Z., Bing, Q., Huifang, D.: Web-based system evolution in
model driven architecture. In: Proceedings of the 10th IEEE International Symposium on
Web Systems Evolution, WSE 2008, pp. 69–72. IEEE, NY (2008)

5. Pandurino, A., Bolchini, D., Mainetti, L., Paiano, R.: Rich-IDM: Extending IDM to Model
Rich Internet Applications. In: Proceedings of the ACM 12th Information Integration and
Web-based Applications & Services Conf., iiWAS 2010, pp. 145–152 (November 2010)

Crowdsourced Web Site Evaluation

with CrowdStudy

Michael Nebeling1, Maximilian Speicher,
Michael Grossniklaus2, and Moira C. Norrie1

1 Institute of Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

2 Computer Science Department, Portland State University
Portland, OR 97201, United States of America

{nebeling,norrie}@inf.ethz.ch, speichem@student.ethz.ch,
grossniklaus@cs.pdx.edu

Abstract. Many different automatic usability evaluation tools have
been specifically developed for web sites and web-based services, but
they usually cannot replace user testing. At the same time, traditional
usability evaluation methods can be both expensive and time consuming.
We will demonstrate CrowdStudy, a toolkit for crowdsourced testing of
web interfaces that allows, not only to efficiently recruit larger amounts
of test users, but also to evaluate web sites under many different condi-
tions.

Keywords: Web usability, web site evaluation, crowdsourcing.

1 Introduction

Usability evaluation is an important topic in user interface design practice and re-
search. Many different methods have been specifically developed for web sites [1],
while the most prominent example is still user testing [2]. Existing techniques
for remote usability evaluation use a range of different user activity tracking
methods [3,4], but are frequently restricted to either server or client-side log-
ging, which limits the kinds of information they can collect. Even worse is the
fact that none of them specifically take the context of use into account. In con-
trast to previous approaches, our solution for web site evaluation integrates a
simple notion of context-awareness, which is necessary to cater for the increased
diversity of devices nowadays used for web browsing. Another shortcoming of
existing usability evaluation tools is that essential tasks, such as subject recruit-
ment including qualification tests, and many key aspects of remote usability
testing, such as task distribution within or between subjects, are typically not
even considered. Our solution is designed to integrate with existing crowdsourc-
ing services such as Amazon Mechanical Turk1, where requesters may, not only
recruit a larger group of users in a short amount of time, but also control the

1 http://mturk.com

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 494–497, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://mturk.com

Crowdsourced Web Site Evaluation with CrowdStudy 495

conditions for each worker to be able to participate. This generally makes it a
viable platform for conducting different kinds of online user studies [5], but has
so far not been considered in existing usability evaluation tools.

In this paper, we present CrowdStudy, a web site evaluation toolkit that
can be easily integrated with existing sites for remote usability testing and can
also leverage services such as Mechanical Turk to advertise and facilitate online
studies with the help of new users. CrowdStudy evolved out of our previous
work on crowdsourcing web site adaptations for different devices [6], where it
was first built to enable user evaluations for a specific set of tasks. However,
we have now built several mechanisms into CrowdStudy that allow it to be
configured with different metrics as well as different tasks to support a range of
evaluation scenarios. As one example, we will show how CrowdStudy was used
for evaluations on mobile touch phones, which is a new important scenario that
poses a number of interesting challenges.

We start by presenting CrowdStudy in Section 2. This is followed by a de-
scription of our demo in Section 3 and concluding remarks.

2 CrowdStudy

CrowdStudy is designed to integrate with the typical client/server infrastruc-
ture of web applications. It introduces additional components for user activity
tracking on the client-side and a context engine as well as data logging and
crowdsourcing components on the server-side. Figure 1 shows the CrowdStudy
architecture. Below we describe how each component contributes to supporting
remote usability evaluations.

First note that clients can either be “normal” web site users or workers specifi-
cally recruited using crowdsourcing services. CrowdStudy can be configured with

Web Application

CrowdStudy Configuration

Remote Usability Evaluation Service

Usability
Testing
EngineUser Data

Context
Engine

Crowdsourcing Service

User/Worker 2...

CrowdStudy

User/Worker 1

CrowdStudy
xUser Activity Tracking

Usability Study Toolkit

Mechanical
Turk

...

Session Management

Server-sideClient-Side

Fig. 1. CrowdStudy’s architecture

496 M. Nebeling et al.

multiple sets of tasks which are then distributed to users. Tasks may require that
other tasks are completed first as well as user qualification in terms of the user’s
knowledge or skills based on a questionnaire or the client device characteris-
tics based on programmatic checks. Each task may involve one or several web
site components as well as navigation between pages. Using client-side scripting,
some aspects of a task may be automated to allow users to focus on specific activ-
ities. For example, we provide tools that can automatically scroll to a component
of interest and annotate and highlight certain parts that require interaction and
attention of users. CrowdStudy then automatically tracks the user actions in
terms of user interface events fired by the interaction components and also cap-
tures the context in terms of the screen size, window size and position in the
page. The collected data is first buffered and cached locally before it is sent to
the server-side at suitable intervals.

Looking at the server-side extensions, the first is a configuration for Crowd-
Study and the second the CrowdStudy service which contains the usability test-
ing engine responsible for assigning and distributing tasks to participants. We
have built simple administrative tools for managing and running studies as well
as evaluation tools for browsing and analysing the results generated by Crowd-
Study. The analysis tools of CrowdStudy range from a simple response viewer
that displays questionnaire data submitted by participants to a more advanced
log analyser that allows evaluators to browse and visualise the data based on a
combination of criteria. For example, CrowdStudy can visualise the touch data
aggregated from several smartphone users to see how they interacted with the
web site, e.g. where they have mis-clicked links and how much they had to zoom
to counteract. CrowdStudy automatically takes care of the necessary user ses-
sion management and stores all collected information in a database. Finally, as
part of the crowdsourcing service component, we have implemented an interface
to Mechanical Turk that can be used for recruiting external, paid crowd workers
using Amazon’s service. Other services could be integrated in the same way.

While most existing frameworks are proxy-based, our solution only requires
that CrowdStudy is embedded in the web site using a single line of code sim-
ilar to including JavaScript libraries like jQuery. User tasks may be based on
simple textual descriptions that are displayed in an instruction box. Moreover,
CrowdStudy supports custom tasks based on client-side scripting, but also pro-
vides a set of pre-defined task classes, e.g. for clicking certain links, navigating
to parts of the page or reading text paragraphs and answering questions. In this
case, the test designer only needs to mark corresponding web site elements with
additional CSS classes that CrowdStudy will then automatically interpret and
compile into a test scenario.

3 Demonstration

Our demonstration of CrowdStudy is based on a study we conducted for the
Wikipedia web site. CrowdStudy was embedded in an example article and con-
figured with the tasks shown in Figure 2 to assess the usability for smartphones

Crowdsourced Web Site Evaluation with CrowdStudy 497

(a) Click link (b) Find link (c) Read text (d) Describe image

Fig. 2. Set of tasks used in the evaluation of Wikipedia based on CrowdStudy

and tablets. Wikipedia was chosen for the test scenario since it provides both a
desktop and mobile version with different layouts and features. We performed
simple A/B testing by letting CrowdStudy assign one of the layouts to each
participant and collected the data from 84 participants using a wide range of
mobile devices and also different browsers.

CrowdStudy provided valuable insight into how users interact with such a
text-heavy web page in terms of the optimal font size for reading, preferred device
orientation with respect to different tasks (landscape was generally preferred on
tablets and often used for reading on smartphones, where the other tasks were
preferably done in portrait mode) as well as how they made use of multi-touch
gestures for zooming and navigating within the page.

Acknowledgements. This work was supported by the SNF under research
grant 200021 121847. Michael Grossniklaus, who contributed the integration
with Mechanical Turk, is funded by the SNF under grant PA00P2 131452.

References

1. Matera, M., Rizzo, F., Carughi, G.: Web Usability: Principles and Evaluation Meth-
ods. Web Engineering (2006)

2. Insfran, E., Fernandez, A.: A Systematic Review of Usability Evaluation in Web
Development. In: Hartmann, S., Zhou, X., Kirchberg, M. (eds.) WISE 2008. LNCS,
vol. 5176, pp. 81–91. Springer, Heidelberg (2008)

3. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the User’s Every Move – User Activity
Tracking for Website Usability Evaluation and Implicit Interaction. In: Proc. WWW
(2006)

4. Hong, J.I., Heer, J., Waterson, S., Landay, J.A.: WebQuilt: A Proxy-based Approach
to Remote Web Usability Testing. TOIS 19(3) (2001)

5. Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing User Studies With Mechanical Turk.
In: Proc. CHI (2008)

6. Nebeling, M., Norrie, M.C.: Tools and Architectural Support for Crowdsourced
Adaptation of Web Interfaces. In: Auer, S., Dı́az, O., Papadopoulos, G.A. (eds.)
ICWE 2011. LNCS, vol. 6757, pp. 243–257. Springer, Heidelberg (2011)

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 498–501, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Web Service Composition Reuse
through Shared Process Fragment Libraries

David Schumm, Dimitrios Dentsas, Michael Hahn,
Dimka Karastoyanova, Frank Leymann, and Mirko Sonntag

Institute of Architecture of Application Systems, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany

{schumm,karastoyanova,leymann,sonntag}@iaas.uni-stuttgart.de

Abstract. More and more application functionality is provided for use over
corporate and public networks. Standardized technology stacks, like Web
services, provide abstraction from the internal implementation. Coarse-grained
units of Web service composition logic can be made reusable by capturing it as
‘process fragment’. Such fragments can be shared over the Web to simplify and
accelerate development of process-based service compositions. In this
demonstration, we present a framework consisting of an Eclipse-based process
design environment that is integrated with a Web-based process fragment
library. The framework enables extracting process fragments, publishing and
sharing them on the Web, as well as search, retrieval, and their reuse in a given
process. Process fragments can be shared with others using a Web frontend or
through a plug-in within the process design environment which is building on
Web service technology.

Keywords: Process Reuse, Service Composition, Web Services, BPEL, Process
Fragments.

1 Reuse of Web Service Compositions

The main principles in service-oriented applications are providing componentized
functionality via stable interfaces abstracting from the implementation details and
realizing loose coupling for improved flexibility. Web services are often used as the
technology for abstractly describing the service interfaces of components (using
WSDL1) and for composing them in Web service compositions (using BPEL2). Web
service compositions allow for the definition of complex orchestration logic and
integration of simple and complex application functions that are exposed as Web
services. Reusability is one of the main principles of SOA, which however has not
been completely realized by existing systems for the purposes of reusing coarse-
grained units of service compositions, so-called ‘process fragments’. A process
fragment is a connected process structure, which can either be modeled from scratch

1 http://www.w3.org/TR/wsdl
2 http://www.oasis-open.org/committees/
 tc_home.php?wg_abbrev=wsbpel

 Web Service Composition Reuse through Shared Process Fragment Libraries 499

or extracted from a given process. Note that in the field of Web services the terms
‘process’, ‘service composition’, and ‘service orchestration’ are used synonymously.
Thus, a process fragment can also be understood as coarse-grained unit of service
composition logic. Examples of such fragments have already been presented in [1],
where we also discussed the benefits of having multiple process fragment libraries,
which can be used to store such service composition units and to share them between
partners in order to ease the creation of service compositions. In this demonstration,
we will present a complete and integrated framework, enabling reuse and sharing of
Web service compositions over the Web. As platform for process design we rely on a
prototype for simulation workflows3 developed in our institute, see also [2]. As
platform for fragment sharing we build on the Fragmento library [3] – a repository
that provides version management and further functions to support the work with
fragments. The integration is mainly achieved through Web service technology, an
OSGi-based Eclipse plug-in, and process design environment extensions.

2 Framework Walkthrough

There are four key components in the framework (Figure 1): (i) multiple deployments
of the Fragmento Library4 and underlying database, which account for versioned
process fragment management; (ii) Fragmento’s Web interface, which is not part of
the demonstration, allows users to share and reuse process fragments over the Web
without a tight integration, using just a common Web client; (iii) the Process Design
Environment, which is based on the open source tool Eclipse BPEL Designer5; and
(iv) an Eclipse plug-in that tightly integrates Fragmento with the design environment.
The plug-in connects to the Fragmento library via its Web service interfaces (through
generated code skeletons in Java). The plug-in is made available within Eclipse as
‘View’ so that it can be easily positioned between the other graphical components of
the design environment.

Fragmento LibraryFragmento LibraryFragmento Library

W
S Interfaces W

eb
 In

te
rf

ac
e

SOAP /
HTTP

HTML /
HTTP

 Version Management
 Search
 Custom queries
 Relations
 Annotations
 Bundles
 View Transformations

Web Client

 Publish
 Retrieve
 Search
 Check in/out

Process Design Environment

W
S

In
te

rf
ac

es

Fragmento
Plug-in

 Publish
 Retrieve
 Search
 Check in/out
 Select

Process Editor

Shared Workspace

 Edit Process
 Integrate Fragments
 Extract Fragments
 Refine Fragments

WSDL Process Fragments
 XML Schema
 WSDL files
 …

Fig. 1. Overview of the Integration Architecture

3 http://www.iaas.uni-stuttgart.de/
 forschung/projects/simtech/index.php
4
 http://www.iaas.uni-stuttgart.de/
 forschung/projects/fragmento/start.htm
5 http://eclipse.org/bpel/

500 D. Schumm et al.

12 3

4

5

Fig. 2. Main Graphical Components of the Process Design Environment’s User Interface

Figure 2 shows the user interface of the process design environment, which is
structured into multiple graphical components that can be flexibly arranged:

1. The editor pane displays the model of a process or fragment graphically. The user
can select process logic and extract and store it locally as fragment. Furthermore, it
is possible to insert a fragment into a process by a simple drag-and-drop operation.

2. The project explorer shows all files relevant for process design – models of
processes and process fragments, deployment descriptors, graphical files (e.g.
icons), XML Schema and WSDL interface descriptions. Fragments extracted from
a process can be published to a connected fragment library directly from this view.

3. The editor palette shows the standard elements that can be used in process design,
for instance, activities for service invocation or loop controls.

4. The fragment palette shows a list of fragments which are currently selected for
usage in process design. The list is refreshed on demand. It is assembled based on
contents in a particular directory which is populated by previously exported
fragments.

5. The repository view reflects the contents of a selected process fragment library in
form of a tree control. From this view, processes and process fragments can be
published, retrieved, searched, checked in and out, and selected for inclusion in the
fragment palette.

3 Demonstration

With the help of examples we will demonstrate the main steps of the approach,
namely extraction, publishing, retrieval, selection, and finally integration of process
fragments, explained in the following.

 Web Service Composition Reuse through Shared Process Fragment Libraries 501

Process Fragment Extraction. The editor pane allows the user to select a structured
activity, e.g. a BPEL <flow> activity containing several variable assignment and
service invocation activities. A right-click on this structure shows a context menu
allowing for process fragment extraction. When this function is selected, a connected
process fragment is determined, based on the selected activities. A new process file is
generated, containing only the fragment and all required variables, XML Schema, and
WSDL information of the involved services and information of the process interface
related to the fragment. The extracted fragment is opened in a new tab to prepare it for
sharing, e.g. placeholders can be added.
Process Fragment Publishing. Publishing of extracted fragments can be directly
triggered from within the project explorer by selecting the files generated during
fragment extraction. These files can be passed to the Fragmento plug-in by selecting a
function in the extended context menu. The plug-in then prepares a set of SOAP
messages, each containing a file belonging to the fragment. Based on identifiers
returned by Fragmento, interrelations between the artifacts are then created through
sending further SOAP messages to Fragmento, i.e. a fragment ‘bundle’ is defined.
Process Fragment Selection and Retrieval. To be able to select and retrieve
fragments using the process design environment or the Web client, a fragment library
needs to be chosen, either in the Eclipse plug-in (i.e. using the repository view) by
pointing to a WSDL location of a Fragmento deployment or by entering the URL in
the Web browser (i.e. using the Web client). In Eclipse the whole contents available
in the library are downloaded after connecting to the library. Further work is made on
a local copy that is refreshed on demand. Search can be made in Eclipse and in the
Web client using keywords, contained text, etc. A fragment can be made available for
reuse in the fragment palette through an export function in the repository toolbar. The
newest version is chosen by default, but also older versions can be selected. All files
of selected fragments are copied to a directory which is shared with the process
design environment. Multiple fragments can be added to the palette that way.
Process Fragment Integration. After manual refresh of the fragment palette all
exported fragments are shown by their name (and icon if specified). In this palette a
fragment can be selected for integration. A click on a location of an opened process
defines the place where the fragment should be integrated. During integration, the
activities in the fragment are added to that location in the process, the WSDLs and
XML Schemas are added to the project, and deployment descriptors are merged.

References

1. Schumm, D., Karastoyanova, D., Kopp, O., Leymann, F., Sonntag, M., Strauch, S.:
Process Fragment Libraries for Easier and Faster Development of Process-based
Applications. Journal of Systems Integration 2(1), 39–55 (2011)

2. Sonntag, M., Karastoyanova, D.: Next Generation Interactive Scientific Experimenting
Based On The Workflow Technology. In: Proceedings of the 21st IASTED International
Conference on Modeling and Simulation, MS 2010 (2010)

3. Schumm, D., Karastoyanova, D., Leymann, F., Strauch, S.: Fragmento: Advanced Process
Fragment Library. In: Proceedings of the 19th International Conference on Information
Systems Development (ISD 2010). Springer (2010)

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 502–503, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Engineering the Evaluation Approach to Fit Different
Web Project and Organization Needs

Luis Olsina

 GIDIS_Web, Engineering School at Universidad Nacional de La Pampa, Argentina
olsinal@ing.unlpam.edu.ar

Abstract. Web applications, among other software entities, and their quality
evaluation has been the subject of abundant research; however, open issues still
remain. This tutorial discusses a general measurement and evaluation approach
which is based on both a quality modeling framework and strategies. An
evaluation strategy is in turn grounded on three principles namely: a conceptual
framework, a well-established process, and methods/tools. The illustrated
evaluation approach allows instantiating evaluation strategies –reusing these
three principles- to engineering different organization-level information needs.

1 Introduction

Measurement, evaluation, analysis and recommendation are support processes to
primary web engineering processes, i.e. by giving support to deal with information
needs at different project or organizational levels. In addition, quality is one out of
four main dependent variables for managing web projects. For each engineered
project, and independently of the development/maintenance lifecycle adopted, levels
of quality for its entities and attributes should be agreed, specified, measured and
evaluated for analyzing and improving them. To assure repeatability and consistency
of results for better analysis and decision making, it is necessary to have a well-
defined yet customizable evaluation approach.

This tutorial discusses a general measurement and evaluation (M&E) approach
which is based on two main pillars, namely: i) a quality modeling framework; and ii)
M&E strategies, which in turn are grounded on three principles viz. a M&E
conceptual framework, a well-established M&E process, and evaluation methods and
tools. The M&E conceptual framework capability should be built on a robust
terminological base, e.g. an ontology, which explicitly and formally specifies the
main concepts, properties, relationships, and constraints for the M&E domain, as well
as their grouping into components. This principle ensures terminological uniformity
among the other capabilities and thus the consistency of results. The second principle
is the M&E process [1], which describes what to do, by specifying the activities to be
planned and executed, their inputs and outputs, roles, interdependencies, among other
aspects. A well-established M&E process not only facilitates the understanding and
communication among stakeholders but also ensures repeatability and reproducibility
in the implementation of the activities. Lastly, methods and tools, which enable to

Engineering the Evaluation Approach to Fit Different Web Project and Organization Needs 503

perform and automate the activities’ descriptions. Methods are allocated in a flexible
way to perform the specified activities and usually automated by tools.

This general M&E approach can be adapted to fit different organizational levels
and information needs for different quality focuses regarding entities categories such
as resource, product, system, system in use, etc. in a flexible yet structured manner.

The development of this tutorial makes use of both theoretical and practical
background. From the practical point of view, so far, we have developed two M&E
strategies, namely: GOCAME (Goal-Oriented Context-Aware Measurement and
Evaluation) [3], and SIQinU (Strategy for understanding and Improving Quality in
Use) [2], which the latter was used in a testing industry case. These strategies can be
instantiated regarding the quality modeling framework and specific information
needs.

2 Learning Objectives

To summarize, the main tutorial learning objectives are: 1) Review background
concepts such as information need, quality and entity category; quality models, and
strategies regarding the M&E process, conceptual framework, method/tool; 2) Get
insight on how the quality modeling framework can be instantiated in a purposeful
way not only for understanding but also for improvement, using for this end the
customized strategy. The learning aim is to see that many different strategies can be
instantiated from the same quality modeling framework, regarding different
information needs and organizational levels; and 3) Understand how a concrete
strategy for improving a web application (e.g. its external quality and quality in use)
can be used, while excerpts of a real case study are illustrated.

References

1. Becker, P., Lew, P., Olsina, L.: Specifying Process Views for a Measurement, Evaluation
and Improvement Strategy. Advances in Software Engineering Journal 2012, 28 (2012),
http://www.hindawi.com/journals/ase/contents/

2. Lew, P., Olsina, L., Becker, P., Zhang, L.: An Integrated Strategy to Understand and
Manage Quality in Use for Web Applications. Requirements Engineering Journal 16(3),
1–32 (2011)

3. Olsina, L., Lew, P., Dieser, A., Rivera, B.: Using Web Quality Models and a Strategy for
Purpose-Oriented Evaluations. Journal of Web Engineering 10(4), 316–352 (2011)

Epidemic Intelligence:

For the Crowd, by the Crowd

Avaré Stewart and Ernesto Diaz

L3S Research Center,
Appelstrasse 4, 30167 Hannover, Germany

{stewart,diaz}@L3S.de
http://www.L3S.de

Abstract. Event Based Epidemic Intelligence (e-EI) encompasses activ-
ities related to early warnings and their assessments as part of the out-
break investigation task. Recently, modern disease surveillance systems
have started to also monitor social media streams, with the objective of
improving their timeliness in detecting disease outbreaks, and producing
warnings against potential public health threats.

In this tutorial we show how social media analysis can be exploited for
two important stages of e-EI, namely: (i) Early Outbreak Detection, and
(ii) Outbreak Analysis and Control. We discuss techniques and methods
for detecting health-related events from unstructured text and outline
approaches, as well as the challenges faced in social media-based surveil-
lance. In particular, we will show how using Twitter can help us to find
early cases of an outbreak, as well as, understand the potential causes of
contamination and spread from the perspective of the field practitioners.

1 Introduction

Social Media streams, such as Twitter and other real-time media are now seen
as a valuable source of temporally and spacially relevant information. Applica-
tions that rely upon social media streams include trend detection [6, 10]; and
intelligence gathering for applications such as: natural disaster detection [7, 9]
or flu outbreak tracking [1–3, 8].

In this tutorial, we focus on the application of social media streams for Event-
Based Epidemic Intelligence (e-EI). e-EI encompasses activities related to early
warnings and their assessment as part of the outbreak investigation task. The
tutorial is divided into two parts, in each, we take up an important aspect of
e-EI. In Part I: Early Outbreak Detection, we discuss both supervised and unsu-
pervised techniques for detecting health-related events from unstructured text.
We also outline the approaches for detecting relevant disease-reporting entities;
such as affected organisms, medical condition, location and temporal mentions
and address the problem of disambigating semantic relations which contain these
entities. Next we discuss the approaches and challenges of generating early warn-
ings from relevant semantic relations, for domain experts [4].

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 504–505, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.L3S.de

Epidemic Intelligence: For the Crowd, by the Crowd 505

In Part II: Outbreak Analysis and Control, we focus on two types of support
for helping domain experts with the problem of information overload when as-
sessing the risk associated with system generated warnings; namely, ranking of
early warning alerts [5] and appropriate visualization services. As a case study,
we show how using Twitter can help us to find early cases of an outbreak, as
well as, understand the potential causes of contamination and spread from the
perspective of the field practitioners. Throughout the tutorial, we present prac-
tical lessons that have been learned within the context of the M-Eco project
(http://www.meco-project.eu/) and numerous results from field practitioners
assessments; finally we conclude with an outlook for the domain of e-EI.

Acknowledgments. This work was funded, in part, by the European Com-
mission Seventh Framework Program (FP7/2007-2013) under grant agreement
No.247829 for the M-Eco Medical Ecosystem Project.

References

1. Aramaki, E., Maskawa, S., Morita, M.: Twitter catches the flu: Detecting influenza
epidemics using twitter. In: Proceedings of EMNLP 2011 (2011)

2. Collier, N., Son, N.T., Nguyen, N.M.: Omg u got flu? analysis of shared health
messages for bio-surveillance. CoRR abs/1110.3089 (2011)

3. Culotta, A.: Towards detecting influenza epidemics by analyzing twitter messages.
In: Proceedings of the First Workshop on Social Media Analytics, SOMA 2010
(2010)

4. Diaz, E., Stewart, A.: Tracking twitter for epidemic intelligence. case study:
Ehec/hus outbreak in germany. In: ACM Conference on Web Science 2012 (2012)

5. Diaz, E., Stewart, A., Valasco, E., Denecke, K.: Towards personalized learning to
rank for epidemic intelligence based on social media streams. In: Proceeding of the
World Wide Web 2012 (2012)

6. Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter
stream. In: Proceedings of SIGMOD 2010 (2010)

7. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time
event detection by social sensors. In: Proceedings of WWW 2010 (2010)

8. Szomszor, M., Kostkova, P., Louis, C.S.: Twitter informatics: Tracking and under-
standing public reaction during the 2009 swine flu pandemic. In: Proceedings of
WI-IAT 2011 (2011)

9. Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural
hazards events: what twitter may contribute to situational awareness. In: Proceed-
ings of CHI 2010 (2010)

10. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In:
Proceedings of WSDM 2011 (2011)

An Introduction to SPARQL
and Queries over Linked Data

Olaf Hartig

Humboldt-Universität zu Berlin
hartig@informatik.hu-berlin.de

Abstract. Nowadays, more and more datasets are published on the Web adhering
to the Linked Data principles. Our tutorial provides a beginners’ introduction on
how to query this data using the query language SPARQL.

1 Motivation

Since the Linked Data principles have been proposed in 2006 [1], a grass-roots
movement started to publish and interlink multiple open databases on the Web based on
these principles [2]. Today an increasing number of data publishers such as the BBC,
Thomson Reuters, The New York Times, the Library of Congress, and the UK gov-
ernment adopt this practice. This ongoing effort resulted in bootstrapping the Web of
Linked Data which, today, comprises billions of statements including millions of links
between datasets. The published datasets include data about books, movies, music, ra-
dio and television programs, reviews, scientific publications, genes, proteins, medicine,
clinical trials, geographic locations, people, companies, statistical and census data, etc.

The availability of this data, including the existence of data-level connections be-
tween datasets, presents exciting opportunities for the next generation of Web-based
applications. As a consequence, consuming Linked Data is a highly relevant topic in
the context of Web engineering.

2 Topics

Our introductory tutorial aims to provide participants with an understanding of one
of the basic aspects of Linked Data consumption, that is, querying Linked Data. The
tutorial consists of three main parts.

Part 1: The RDF Data Model and Linked Data. In the first part, we briefly intro-
duce the concept of Linked Data and its underlying data model, RDF [3].

The idea of Linked Data is based on four principles [1]. These principles require to
identify an entity as well as provide access to a structured data representation of it, via
a single HTTP scheme based URI. Hence, resolving such a URI via the HTTP proto-
col yields data about the entity identified by the URI. This data should be represented
using the Resource Description Framework (RDF). RDF is a generic data model that
represents data using triples of the form (subject, predicate, object). Each element of
such an RDF triple can be a URI or a local identifier for unnamed entities; objects can

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 506–507, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Introduction to SPARQL and Queries over Linked Data 507

also be a literal. A set of RDF triples is called an RDF graph. Furthermore, the Linked
Data principles require that the provided RDF data includes data links pointing to data
from other data sources on the Web. A data link is an RDF triple where the subject is
a URI in the namespace of one data source and the object is a URI in the namespace
of another source. By connecting data from different sources via such links a single,
globally distributed dataspace emerges.

Part 2: The SPARQL Query Language. The second and largest part provides a
comprehensive introduction to SPARQL [4], the de facto query language for RDF.

SPARQL is based on RDF graph patterns and subgraph matching: The basic building
block for SPARQL queries is called basic graph pattern (BGP). A BGP is a set of triple
patterns which are RDF triples that may contain query variables at the subject, predi-
cate, and object position. More complex query patterns are unions of pattern, optional
patterns, filter expressions, etc. Query results in SPARQL are defined based on graph
pattern matching: Each element of the result is a set of variable bindings that, basically,
represents a matching subgraph in the queried RDF graph.

Part 3: Querying Multiple Linked Datasets. In the third part of the tutorial, we
discuss several approaches for executing SPARQL queries over multiple, interlinked
datasets. These approaches can be classified in three categories: data warehousing,
query federation, and Linked Data query processing [5].

Data warehousing is an approach where data is collected and copied into a central
database. Queries are executed over this central database.

The query federation approach is based on distributing the processing of queries to
query services provided by Linked Data publishers. A mediator analyzes and decom-
poses the user query into several sub-queries. These sub-queries are distributed to the
query services which, then, execute these sub-queries and return the results.

Linked Data query processing approaches evaluate queries over the Web of Linked
Data by relying only on the Linked Data principles. The prevalent example of a Linked
Data query processing approach is link traversal based query execution. The idea of this
approach is to intertwine the traversal of data links with the construction of the query
result and, thus, to integrate the discovery of data into the query execution process [6].

References

1. Berners-Lee, T.: Linked Data (2006), http://w3.org/DesignIssues/LinkedData
2. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. Journal on Semantic

Web and Information Systems 5(3) (2009)
3. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and Abstract Syn-

tax. W3C Recommendation (February 2004)
4. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommenda-

tion (January 2008)
5. Hartig, O., Langegger, A.: A Database Perspective on Consuming Linked Data on the Web.

Datenbank-Spektrum 10(2) (2010)
6. Hartig, O., Freytag, J.C.: Foundations of Traversal Based Query Execution over Linked Data.

In: Proceedings of the 23rd ACM Conference on Hypertext and Social Media (2012)

http://w3.org/DesignIssues/LinkedData

Natural Language Processing for the Web

Silvia Quarteroni

Dipartimento di Elettronica e Informazione - Politecnico di Milano
Via Ponzio, 34/5 - 20133 Milan, Italy

quarteroni@elet.polimi.it

Abstract. The Web offers a wealth of unstructured textual data that
is not readily processable using computational resources both because of
its format and owing to the ambiguity of natural language. The Natu-
ral Language Processing for the Web tutorial focuses on challenging and
interesting aspects dealing with natural language Web applications. The
audience is introduced to Natural Language Processing as a discipline
in order to acquire a basic knowledge of its different methods, partic-
ularly statistical, and evaluation metrics. State-of-the-art applications
of natural language research will then be discussed in detail, including
information extraction from the social Web and Web crawling with par-
ticular focus on question answering systems and natural language data
service querying.

1 Summary

The Web offers huge amounts of unstructured textual data that are not readily
processable using computational resources. Indeed, the ambiguity of natural lan-
guage is the main obstacle to its understanding by computers. However, dialogue
with artificial intelligences has been a human goal since the Turing test and the
first conversational machines appeared in the 1960s, with ELIZA the Rogerian
psychotherapist [3].

Fifty years later, we have designed machines able to win TV game shows such
as Jeopardy! by giving more correct answers to complicated questions than the
all-time top participants [1]; we are able to search the Web via spoken interfaces
using our smartphone thanks to billion-word phonetic models [2] and we can
make sense of user-contributed data thanks to tagging and what is called the
“social Web”.

The Natural Language Processing for the Web tutorial illustrates the funda-
mental building blocks of Natural Language Processing (NLP), with particular
attention to statistical models. Furthermore, state-of-the-art applications such as
open-domain Web question answering and natural language data service query-
ing are described in higher detail.

Part I: Introduction to Natural Language Processing. This section of the tutorial
provides the audience with the main motivations underlying NLP research, which
joins aspects of Information Retrieval, Linguistics and Statistics.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 508–509, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Natural Language Processing for the Web 509

Motivations and Definitions. We define NLP and its main challenges and
opportunities; a brief history of NLP with examples from concrete applica-
tions is provided.

Levels of Natural Language Understanding. The syntactic, semantic and
pragmatic levels of interpretation of textual documents are explained. We
discuss syntactic tasks, e.g. Part-of-Speech tagging, shallow parsing and deep
syntactic parsing; semantic tasks, including word sense disambiguation, se-
mantic role labeling and recognizing textual entailment; pragmatic and dis-
course tasks, including anaphora, ellipsis and co-reference resolution.

Methods. Rule-based and Machine learning approaches to NLP are introduced,
along with fundamental algorithms for textual classification and sequence la-
beling. Generative and discriminative models are discussed, including Näıve
Bayes, Hidden Markov Models, Support Vector Machines, Conditional Ran-
dom Fields.

Evaluation. Quantitative assessment of NLP methods include measuring Pre-
cision, Recall, F1-measure, Mean Reciprocal Rank, all of which are discussed.

Part II: Applications of Natural Language Processing. This section of the tu-
torial outlines a few key application of NLP of particular interest to the Web
Engineering community. The technology required to convert a natural language
query into an “exact” query suitable for an information retrieval engine or a
Web service collection is briefly discussed with examples from ongoing research.

Overview of Natural Language Applications. The most widespread appli-
cations of NLP include Information Extraction, Machine Translation, Au-
tomatic Summarization, Opinion Mining/Sentiment Analysis, Text catego-
rization, (Spoken) Dialogue Systems.

Question Answering. The aim of a Question Answering (QA) system is to
reply to queries in natural language with concise answers – not just relevant
documents. We illustrate the main components and phases of a QA system:
question processing, document retrieval and answer extraction. Advanced
QA techniques such as answer re-ranking, interactive and personalized QA
are also discussed.

Querying Data Services. Data services allow users to access structured in-
formation via Web APIs; however, their interfaces are generally cumbersome
for the end-user. We discuss how such a limitation can be overcome by out-
lining techniques converting queries in natural language into Web Service
“logical” queries.

References

1. Ferrucci, D.A.: Introduction to this is watson. IBM Journal of Research and Devel-
opment 56(3.4), 36–45 (2012)

2. Franz, A., Milch, B.: Searching the web by voice. In: Proceedings of the 19th Inter-
national Conference on Computational Linguistics, vol. 2, pp. 1–5. Association for
Computational Linguistics (2002)

3. Weizenbaum, J.: Eliza - a computer program for the study of natural language
communication between man and machine. Commun. ACM 9(1), 36–45 (1966)

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 510–511, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Web of Data for E-Commerce in Brief

Martin Hepp

Universität der Bundeswehr München
E-Business and Web Science Research Group

Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
mhepp@computer.org

Abstract. The GoodRelations ontology (http://purl.org/goodrelations/) is one
huge success story of applying Semantic Web technology to business
challenges. In this tutorial, we will (1) give a comprehensive overview and
hands-on training on the conceptual structures of the GoodRelations ontology,
including patterns for ownership and demand, (2) present the full tool chain for
producing and consuming GoodRelations-related data, (3) explain the long-term
vision of linked open commerce, (4) describe the main challenges for future re-
search in the field, and (5) discuss advanced topics, like access control, identity
and authentication (e.g. with WebID); micropayment services (like Payswarm),
and data management issues from the publisher and consumer perspective.

Keywords: GoodRelations, schema.org, Semantic Web, eCommerce,
eBusiness, Search Engines, RDFa, Microdata.

1 Overview

The GoodRelations ontology [1,2] is one of the very few OWL DL ontologies that
have reached Web-scale adoption and are officially supported by major Web search
engine like Google and Yahoo. GoodRelations has been implemented by major tech-
nology vendors (e.g. OpenLink Software), retailers (e.g. Bestbuy), and manufacturers
(e.g. Volkswagen). In essence, GoodRelations is an industry-neutral conceptual model
for representing commerce-related information that fits the needs of various stages of
value chains, ranging from raw materials over manufacturing and retail to after-sales
support and disposal. While GoodRelations is available in a representation based on
the W3C stack for the Semantic Web vision, namely the OWL DL ontology language
and the RDF data model, it can be used in arbitrary syntactical formats, including
RDFa, Microdata, RDF/XML, Turtle, NTriples, dataRSS, JSON-LD, GData, or
OData [3]. The GoodRelations conceptual model can be used for various purposes,
namely exposing ecommerce information on the Web in a way that is easily accessi-
ble for search engines (“Semantic SEO”, see [4]), browser extensions, and novel mo-
bile applications, or for integrating product and offer information from heterogeneous
sources, e.g. in data warehouses or for data quality management.

 The Web of Data for E-Commerce in Brief 511

2 GoodRelations and the Semantic Web Vision

One key distinction that sets GoodRelations apart from most other Web ontologies is
the fact that it is stable and mature and accompanied by a comprehensive documenta-
tion and tool-chain. As a rough estimate of effort we can say that GoodRelations has
so far consumed at least ten person-years of development and documentation work,
and that maintaining the comprehensive documentation and supporting the GoodRela-
tions community of adopters account for at least 75 % of all effort, whereas the core
ontology coding was a relatively moderate task.

GoodRelations is fully compatible with the state of the art of Semantic Web and
Linked Data engineering and will work even in very sophisticated environments, e.g.
where complete OWL DL reasoning is required. On the other hand GoodRelations
does not critically depend on a state-of-the art Semantic Web infrastructure. In fact,
GoodRelations data can be processed in any graph-based environment that follows the
Entity-Attribute-Value paradigm [cf. 5].

3 Tutorial Outline

In this tutorial, participants will learn how to use the GoodRelations ontology to aug-
ment Web shops and other Web applications with metadata on business entities,
products and services, prices, warranty, shop locations, terms and conditions, etc. This
includes a comprehensive overview and hands-on training on the conceptual struc-
tures of the GoodRelations ontology including patterns for ownership and demand, an
introduction to the tool-chain for producing and consuming GoodRelations-related
data, and an outlook into the long-term vision of linked open commerce. We will also
cover advanced topics, like access control, identity and authentication (e.g. with
WebID); micropayment services (like Payswarm), and data management issues from
the publisher and consumer perspective. The tutorial materials will be available from
http://wiki.goodrelations-vocabulary.org/Events/ICWE2012.

Acknowledgments. The work on this paper and the ICWE 2012 tutorial have been been
supported by the German Federal Ministry of Research (BMBF) by a grant under the
KMU Innovativ program as part of the Intelligent Match project (FKZ 01IS10022B).

References

1. http://purl.org/goodrelations/
2. Hepp, M.: GoodRelations: An Ontology for Describing Products and Services Offers on

the Web. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp.
329–346. Springer, Heidelberg (2008)

3. http://www.ebusiness-unibw.org/wiki/Syntaxes4GoodRelations
4. http://wiki.goodrelations-

vocabulary.org/GoodRelations_for_Semantic_SEO
5. Dinu, V., Nadkarni, P.: Guidelines for the effective use of entity–attribute–value modeling

for biomedical databases. International Journal of Medical Informatics 76(11-12), 769–779
(2007)

Author Index

Abel, Fabian 153, 169, 378
Abrouk, Lylia 177, 486
Aguilar Calderon, José Alfonso 452
Alalfi, Manar H. 121
Alba Ortega, Manuel 469
Amann, Bernd 395
Amdouni, Soumaya 456
Arellano, Cristóbal 91, 431, 465
Artières, Thierry 395

Barhamgi, Mahmoud 456
Bartoli, Alberto 370
Belchior, Mairon 106
Benouaret, Karim 456
Benslimane, Djamal 456
Bianchini, Devis 76
Biehl, Matthias 283
Bizer, Christian 411
Boukhebouze, Mohamed 461
Bouzeghoub, Mokrane 299, 481
Bozzon, Alessandro 137
Brabrand, Claus 347
Brambilla, Marco 137

Cachero, Cristina 223
Casati, Fabio 291
Casteleyn, Sven 452
Celik, Ilknur 169
Čenys, Antanas 435
Chaari, Tarak 307
Choudhary, Suryakant 362
Clemente, Pedro J. 419
Comai, Sara 253
Conejero, José Maŕıa 419
Corchuelo, Rafael 427
Cordy, James R. 121
Cullot, Nadine 177

Daniel, Florian 291
Dean, Thomas R. 121
De Antonellis, Valeria 76
Dentsas, Dimitrios 498
De Sosa, Josune 431
Diaz, Ernesto 504
Dı́az, Oscar 91, 431, 465

Dincturk, Mustafa Emre 362
Dolog, Peter 61
Durao, Frederico 61

Ernst, Erik 347
Escalona, Maria Jose 469

Faiz, Rim 456
Fakhfakh, Kaouthar 307
Firmenich, Sergio 268
Frasincar, Flavius 46
Fraternali, Piero 137
Furche, Tim 332

Gaedke, Martin 1, 473
Gaits, Vincent 268
Garćıa-Borgoñon, Laura 469
Garćıa-Garćıa, Julián Alberto 469
Garrigós, Irene 452
Gater, Ahmed 481
Giacosa, Franco 200
Gordevičius, Juozas 435
Gordillo, Silvia 268
Grasso, Giovanni 332
Grigalis, Tomas 435
Grigera, Julián 200
Grigori, Daniela 299, 481
Groh, Rainer 444
Gross-Amblard, David 177, 486
Grossniklaus, Michael 494
Grüneberger, Franz Josef 1, 473
Gu, Wenqing 283
Guarinoni, Andrea 253
Guidara, Ikbel 307

Habib, Mena B. 439
Hadjali, Allel 456
Hahn, Michael 498
Hartig, Olaf 506
Hauff, Claudia 153, 169, 378
Heinrich, Matthias 1, 473
Henkens, Dana 444
Hepp, Martin 510
Hogenboom, Frederik 46
Honiden, Shinichi 323

514 Author Index

Horincar, Roxana 395
Houben, Geert-Jan 153, 169, 378

Ilina, Elena 169
Imran, Muhammad 291
Isele, Robert 411
Ishikawa, Fuyuki 323
Iturrioz, Jon 91

Jentzsch, Anja 411
Jourdan, Guy-Vincent 362

Kammer, Dietrich 444
Karanasos, Konstantinos 386
Karastoyanova, Dimka 498
Katsifodimos, Asterios 386
Kling, Felix 291
Knapp, Alexander 215
Koch, Nora 215
Kozuruba, Sergej 215
Kravchenko, Andrey 332

Lage, Ricardo 61
Laine, Markku 477
Leginus, Martin 61
Lemos, Fernando 299, 481
Leone, Stefania 31
Leprovost, Damien 177, 486
Leymann, Frank 498
Lim, Erbin 461
Loiret, Frédéric 283

Maezawa, Yuta 323
Mainetti, Luca 490
Manolescu, Ioana 386
Marchese, Maurizio 291
Mart́ınez, Yulkeidi 223
Mauri, Marco 370
Mazón, Jose-Norberto 452
Mazza, Davide 253
Medvet, Eric 370
Meißner, Klaus 315
Melchiori, Michele 76
Meliá, Santiago 223
Mesbah, Ali 238
Mirshokraie, Shabnam 238
Moreno, Nathalie 185

Nebeling, Michael 31, 494
Negru, Stefan 448
Neto, Waldemar P. Ferreira 461
Nishiura, Kazuki 323

Noro, Tomoya 16
Norrie, Moira C. 31, 494

Olsina, Luis 502
Onut, Iosif Viorel 362

Paiano, Roberto 490
Pandurino, Andrea 490
Pietschmann, Stefan 315

Quarteroni, Silvia 508

Radvilavičius, Lukas 435
Rivero, José Mat́ıas 200
Robles Luna, Esteban 200
Rodŕıguez-Echeverŕıa, Roberto 419
Rossi, Gustavo 200, 268

Sánchez-Figueroa, Fernando 419
Schallhart, Christian 332
Schumm, David 498
Schwabe, Daniel 106
Schwartzbach, Michael 347
Shestakov, Denis 477
Silva Parreiras, Fernando 106
Sleiman, Hassan A. 427
Soi, Stefano 291
Sonntag, Mirko 498
Speicher, Maximilian 494
Springer, Thomas 1, 473
Stewart, Avaré 504

Tagliasacchi, Marco 137
Tao, Ke 153, 378
Thiran, Philippe 461
Thomsen, Jakob G. 347
Tokuda, Takehiro 16
Trujillo, Salvador 431

Vallecillo, Antonio 185
Vandic, Damir 46
van Keulen, Maurice 439
Villalobos, Maŕıa Dolores 419
Voigt, Martin 315
von Bochmann, Gregor 362
Vuorimaa, Petri 477

Wimmer, Manuel 185
Winckler, Marco 268

Xiao, Feng 16

Zoupanos, Spyros 386

	Title
	Preface
	Organization
	Table of Contents
	Social Networks and Collaboration
	Reusable Awareness Widgets for Collaborative Web Applications – A Non-invasive Approach
	Introduction
	Challenges
	Generic Awareness Infrastructure
	Generic Awareness Adapter
	Awareness Widget Blueprint

	Validation
	Discussion
	Related Work
	Conclusion
	References

	News-Topic Oriented Hashtag Recommendation in Twitter Based on Characteristic Co-occurrence Word Detection
	Introduction
	Related Work
	Characteristic Co-occurrence Word for News Topic
	News-Topic Oriented Hashtag Recommendation
	Term Frequency-Inverted Hashtag Frequency (TF-IHF)
	Probabilistic Inside-Outside Log Method for Hashtags (P-IOLogH)
	Hashtag Vector Creation and Similarity Calculation

	Experiment and Evaluation
	Description of the Dataset
	Experimental Setup
	Assessments
	Experimental Result

	Conclusion
	References

	Crowdsourced Web Engineering and Design
	Introduction
	Background
	Crowdsourced Web Engineering and Design
	Crowdsourcing Platform and CrowdDesign Prototype
	Implementation
	Evaluation
	Discussion
	Conclusion
	References

	Tagging
	Scaling Pair-Wise Similarity-Based Algorithms in Tagging Spaces
	Introduction
	Related Work
	Algorithm
	Evaluation
	Experiments
	Results

	Conclusions
	References

	Methodologies for Improved Tag Cloud Generation with Clustering
	Introduction
	Related Work
	Clustering Techniques
	Syntactical Pre-clustering
	Correlated Feature Hashing
	Complete Linkage Hierarchical Clustering
	K-means

	Methodologies for Improved Tag Cloud Generation with Clustering
	Tag Cloud Metrics
	Syntactical Pre-clustering of Tags
	Improving Coverage and Diversity of Tag Clouds with Clustering
	Tag Cloud Generation

	Experiments
	Syntactical Pre-clustering of Tags
	Improving Coverage and Diversity of Tag Clouds with Clustering

	Conclusion and Future Work
	References

	Semantic Collaborative Tagging for Web APIs Sharing and Reuse
	Introduction
	Motivations and Open Issues
	Semantic and Social Characterization of Web APIs
	Semantic Characterization
	Social Characterization
	Web APIs Search Scenarios
	Web APIs Matching and Ranking

	The System Implementation
	The Web API Semantic Collaborative Tagging
	The Web API Search Interface

	Related Work and Evaluation Issues
	Conclusions
	References

	Personalization and Personal Systems
	Opening Personalization to Partners: An Architecture of Participation for Websites
	Introduction
	``Closed Personalization'' versus ``Open Personalization''
	Open Personalization: Requirements
	Open Personalization: Specification
	Impact on the Host: Making a Website Mod-Aware
	Impact on Partners: Defining Mods

	Open Personalization: Architecture
	Revising the OP Requirements
	Related Work
	Conclusions
	References

	Role-Based Access Control for Model-Driven Web Applications
	Introduction
	Running Example
	Integrating SHDM and Role-Based Access Control
	The RBAC Model
	Defining Rules
	Modeling Rules for Policies

	Implementation Architecture
	Integration in the Synth Development Environment
	Software Architecture of Synth
	Permissions Generation
	Policy Examples
	Evaluation

	Related Work
	Conclusions
	References

	Recovering Role-Based Access Control Security Models from Dynamic Web Applications
	Introduction
	Running Example
	Overview
	SecureUML Model Construction
	Entity Extraction and Filtration
	Entity Attribute and Relation Extraction
	Constrained Event Extraction
	SecureUML Model Element Construction

	Correctness and Completeness of the Recovered Model
	Related Work
	Conclusions and Future Work
	References

	Search
	Diversification for Multi-domain Result Sets
	Introduction
	Multi-domain Diversification
	Relevance
	Diversity
	Computing Relevant and Diverse Combinations
	When Diversification Helps

	Experiments
	Implementation and Datasets
	Discussion
	User Study

	Related Work
	Conclusions
	References

	Twinder: A Search Engine for Twitter Streams
	Introduction
	Related Work
	Twinder Search Engine
	Core Components
	Efficiency of Indexing

	Features of Microposts
	Topic-Sensitive Features
	Topic-Insensitive Features

	Analysis and Evaluation of Twinder
	Dataset, Feature Characteristics and Experimental Setup
	Influence of Features on Relevance Estimation
	Influence of Topic Characteristics on Relevance Estimation

	Conclusions
	References

	Social Event Detection on Twitter
	Introduction
	Related Work
	Social Events on Twitter
	Classification Approach
	Evaluation
	Conclusion and Future Work
	References

	Temporal Semantic Centrality for the Analysis of Communication Networks
	Introduction
	Communication Networks and Thematic Communities
	Temporal Semantic Centrality
	Experiments
	Discussion
	Related Work
	Conclusion
	References

	Web Modeling
	Systematic Evolution of WebML Models by Coupled Transformations
	Introduction
	Background: WebML By-Example
	Transformations for Web Model Evolution: An Overview
	Coarse-Grained Content Model Changes as Transformations
	Instance Reconciliation as Coupled Transformations
	Hypertext Reconciliation as Coupled Transformations

	Co-evolution Patterns for WebML Hypertext Models
	Rule 1: CreateUnit Reconciliation
	Rule 2: DisplayUnit Reconciliation
	Rule 3: LinkParameter.source Reconciliation
	Rule 4: LinkParameter.target Reconciliation
	Application to the Running Example
	Critical Discussion
	Implementation

	Related Work
	Conclusions and Future Work
	References

	From Requirements to Web Applications in an Agile Model-Driven Approach
	Introduction
	Background
	GUI Mockups
	WebSpec

	The Approach in a Nutshell
	Gathering Navigation Requirements with WebSpec Diagrams
	Obtaining Data Model through Annotations
	Deriving Models
	Adjusting the Models

	Proof of Concept
	Assessing the Approach
	Related Work
	Concluding Remarks and Further Work
	References

	Assessment of Effort Reduction due to Model-to-Model Transformations in theWeb Domain
	Introduction
	Assessment Strategy
	Model-Based Development of Web Applications in UWE
	Evaluation Results
	Conclusions
	References

	Evaluating the Impact of a Model-Driven Web Engineering Approach on the Productivity and the Satisfaction of Software Development Teams
	Introduction
	Background
	Description of the Experiment
	Goals and Context Definition
	Experiment Planning
	Instrumentation
	Data Analysis and Interpretation of Results
	Threats to Validity

	Conclusions
	References

	AJAX and User Interfaces
	JSART: JavaScript Assertion-Based Regression Testing
	Introduction
	Motivation and Challenges
	Our Approach
	JavaScript Tracing
	Invariant Generation
	Filtering Unstable Invariant Assertions
	Regression Testing through Assertions

	Tool Implementation
	Empirical Evaluation
	Experimental Objects
	Experimental Setup
	Results

	Discussion
	Related Work
	Conclusions and Future Work
	References

	A Framework for the Development of Haptic-Enhanced Web Applications
	Introduction
	Related Work
	A Model for Haptic Interaction in Web Applications
	A Framework for the Addition of Haptic Effects in Web Applications
	JHaptic Library
	The Plug-in for the Browser

	Console for Debugging and Testing
	Evaluation and Experience
	Conclusions and Future Works
	References

	Supporting Users Tasks with Personal Information Management and Web Forms Augmentation
	Introduction
	Task Analysis of User Interaction with Web Forms
	Motivating Scenario
	Rational for Improving User Interaction with Web Forms

	Outline of the Approach
	Web Form Augmentation
	A Pervasive Personal Information Management System
	Data Interoperability through Web Forms Annotation
	User Control on Data Transfer

	Case Study and Tool Support
	Personal Information Space
	Personal Assistant for Filling Forms
	Tool Support for Annotation of Web Forms
	Evaluation of Tool Support

	Discussion and Related Work
	Conclusions and Future Work
	References

	Web Services
	Model-Based Service Discovery and Orchestration for OSLC Services in Tool Chains
	Introduction
	Approach
	Service Orchestration for Tool Integration with TIL
	Service Discovery for Tool Integration
	Correctness Check
	Code Generation
	Related Work
	Future Work and Conclusion
	References

	On the Systematic Development of Domain-Specific Mashup Tools for End Users
	Introduction
	Methodology
	The Domain Concept Model
	The Generic Mashup Meta-model
	The Domain-Specific Mashup Meta-model

	The ResEval Mash Tool
	User Study and Evaluation
	Related Work
	Status and Lessons Learned
	References

	Adding Non-functional Preferences to Service Discovery
	Introduction
	Abstract Representation of Service Process Model
	Dealing with Preferences in Service Discovery
	Evaluating Hard Preferences in Service Matching
	Dealing with Soft Preferences in Service Selection
	Service Ranking Based on Structural and Quality Aspects
	Preliminary Experimental Results

	Related Work
	Conclusions
	References

	A Semantic Scoring Approach for Service Offers
	Introduction
	Related Work
	Semantic Service Selection Approach
	Service Offers Scoring Methodology
	Best Service Offer Selection Algorithm
	Scoring Functions

	Case Study
	Conclusion
	References

	Rich Communication Patterns for Mashups
	Introduction
	Modeling Rich Coordination in Mashup Applications
	Modeling Static Communication Patterns with Links
	On-Demand Coordination
	Modeling the Reference Scenario

	Supporting Rich Communication Patterns at Runtime
	Message Format
	Link Interpretation and Realization
	Supporting On-Demand Coordination

	Conclusion and Future Work
	References

	Supporting View Transition Design of Smartphone Applications Using Web Templates
	Introduction
	Web Application-Based Native Smartphone Applications
	Web Templates
	Navigability in Native Smartphone Applications

	Proposal Framework
	Definition of Transition Models
	Estimation of Navigation Costs in Smartphone Applications
	Suggestions for Modifications of View Transitions
	Tool Implementation

	Evaluation and Discussion
	Related Work
	Conclusion and Future Work
	References

	Web Crawling
	Turn the Page: Automated Traversal of Paginated Websites
	Introduction
	Pagination Links: A Survey
	Related Work
	Block Classification with BER_yL
	BER_yL Extraction Rules
	BER_yL Feature Templates

	Pagination Links with beryl
	Training the Classifier

	Evaluation
	Conclusion
	References

	WebSelF: A Web Scraping Framework
	Introduction
	A Model of the Process of Web Scraping
	Framework Instances
	Selection Functions
	Validation Functions

	Experimental Validation
	Experimental Setup
	Evaluation Metrics
	Results

	Related Work
	Conclusion
	References

	A Statistical Approach for Efficient Crawling of Rich Internet Applications
	Introduction
	Crawling RIAs
	The Probability Strategy
	Events’ Probability of Discovering New States
	Choosing the Next Event to Explore
	The Algorithm

	Experimental Results
	State Exploration
	Transition Exploration

	Conclusion
	References

	Recording and Replaying Navigations on AJAX Web Sites
	Introduction
	Related Work
	System Architecture
	Trace Recorder Architecture
	Trace Replayer Architecture

	Experiments
	Conclusions
	References

	Web and Linked Data Management
	Leveraging User Modeling on the Social Web with Linked Data
	Introduction
	User Modeling on the Social Web with Linked Data
	Evaluation of Geospatial-Centric User Modeling
	Experimental Setup: Recommending Points of Interests
	Results

	Conclusions
	References

	ViP2P: Efficient XML Management in DHT Networks
	Introduction
	Platform Overview
	ViP2P Peer Architecture
	Experimental Results
	View Materialization in Large Networks
	Query Engine Evaluation

	Conclusion and Perspectives
	References

	Online Change Estimation Models for Dynamic Web Resources
	Introduction
	Related Work
	Refresh Strategies and Online Change Estimation
	Online Change Estimation for RSS Feeds
	Single Variable Publication Model
	Periodic Publication Model

	Dataset Description
	Experimental Evaluation
	Online Estimation Evaluation
	Integration of Online Estimation with 2Steps Refresh Strategy
	Discussion

	Conclusion
	References

	Active Learning of Expressive Linkage Rules for the Web of Data
	Introduction
	Linkage Rules
	Learning Workflow
	Evolving Linkage Rules
	Selecting Uncertain Links

	Evaluation
	Experiment Setup
	Experiment 1: Comparison with Related Work
	Experiment 2: Active Learning
	Experiment 3: Large Scale Active Learning

	Related Work
	References

	Extracting Navigational Models from Struts-Based Web Applications
	Introduction
	Illustrative Example
	The Approach
	Locating Navigation Information
	MVC Metamodel
	Projection to a MDWE Approach

	Related Work
	Conclusions and Future Work
	References

	Posters
	Towards a Method for Unsupervised Web Information Extraction
	Introduction
	System Overview
	Experimental Results
	Conclusions
	References

	Web-Based Tool Integration: A Web Augmentation Approach
	Introduction
	The Running Example
	CORSET
	Conclusions
	References

	Clustering Visually Similar Web Page Elements for Structured Web Data Extraction
	Introduction
	The Proposed Approach
	Experimental Evaluation
	Conclusions and Research Directions
	References

	Improving Toponym Extraction and Disambiguation Using Feedback Loop
	Introduction
	Our Approach
	Experimental Results
	Conclusion and Future Work
	References

	GeForMTjs: A JavaScript Library Based on a Domain Specific Language for Multi-touch Gestures
	Introduction
	Related Work
	Gesture Library GeForMTjs
	Conclusions and Future Work
	References

	SemaKoDE: Hybrid System for Knowledge Discovery in Sensor-Based Smart Environments
	Introduction
	System Architecture
	System Deployment Scenario
	Conclusions and Future Work
	References

	Demos
	WebREd: A Model-Driven Tool for Web Requirements Specification and Optimization
	Introduction
	Web Requirements Modeling with i* and Pareto Efficiency
	WebREd-Tool
	Conclusions
	References

	Answering Fuzzy Preference Queries over Data Web Services
	Introduction
	System Overview
	Top-K Web Service Compositions
	Query Results Ranking

	Demo Highlights
	References

	UsiWSC: Framework for Supporting an Interactive Web Service Composition
	Introduction
	UsiWSC Architecture
	UI-BPEL Designer
	Transformation Tools
	UI Manager

	Demonstration
	References

	Sticklet: An End-User Client-Side Augmentation-Based Mashup Tool
	Motivation
	Sticklet
	Related Work
	Conclusions
	References

	NDT-Suite: A Model-Based Suite for the Application of NDT
	Introduction
	NDT-Suite
	Conclusions
	References

	Enriching Web Applications with Collaboration Support Using Dependency Injection
	Introduction
	Related Work
	System Architecture and Demonstration
	Conclusion
	References

	XFormsDB: A Declarative Web Application Framework
	Introduction
	XFormsDB: Language and Framework Implementation
	XFormsDB: Demo Description
	Conclusions
	References

	A Framework for Service Discovery Based on Structural Similarity and Quality Satisfaction
	Introduction
	Architecture
	Using S-MatchMaker
	Conclusions
	References

	WebTribe: Dynamic Community Analysis from Online Forums
	Introduction
	Model and Architecture
	DemoScenario
	References

	MIGROS: A Model-Driven Transformation Approach of the User Experience of Legacy Applications
	Introduction
	Related Work on RIA Modeling and Generation Approaches
	Tool Chain for Automatic Transformation
	Conclusions and Future Work
	References

	Crowdsourced Web Site Evaluation with .CrowdStudy
	Introduction
	CrowdStudy
	Demonstration
	References

	Web Service Composition Reuse through Shared Process Fragment Libraries
	Reuse of Web Service Compositions
	Framework Walkthrough
	Demonstration
	References

	Tutorials
	Engineering the Evaluation Approach to Fit DifferentWeb Project and Organization Needs
	Introduction
	Learning Objectives
	References

	Epidemic Intelligence: For the Crowd, by the Crowd
	Introduction
	References

	An Introduction to SPARQL and Queries over Linked Data
	Motivation
	Topics
	References

	Natural Language Processing for the Web
	Summary
	References

	The Web of Data for E-Commerce in Brief
	Overview
	GoodRelations and the Semantic Web Vision
	Tutorial Outline
	References

	Author Index

