
Chapter 12
A Formal Theory of Creativity to Model
the Creation of Art

Jürgen Schmidhuber

Abstract According to the Formal Theory of Creativity (1990–2010), a creative
agent—one that never stops generating non-trivial, novel, and surprising behaviours
and data—must have two learning components: a general reward optimiser or re-
inforcement learner, and an adaptive encoder of the agent’s growing data history
(the record of the agent’s interaction with its environment). The learning progress
of the encoder is the intrinsic reward for the reward optimiser. That is, the latter is
motivated to invent interesting spatio-temporal patterns that the encoder does not
yet know but can easily learn to encode better with little computational effort. To
maximise expected reward (in the absence of external reward), the reward optimiser
will create more and more-complex behaviours that yield temporarily surprising
(but eventually boring) patterns that make the encoder quickly improve. I have ar-
gued that this simple principle explains science, art, music and humour. It is possi-
ble to rigorously formalise it and implement it on learning machines, thus building
artificial robotic scientists and artists equipped with curiosity and creativity. I sum-
marise my work on this topic since 1990, and present a previously unpublished
low-complexity artwork computable by a very short program discovered through
active search for novel patterns according to the principles of the theory.

12.1 The Basic Idea

Creativity and curiosity are about actively making or finding novel patterns. Colum-
bus was curious about what’s in the West, and created a sequence of actions yield-
ing a wealth of previously unknown, surprising, pattern-rich data. Early physicists
were curious about how gravity works, and created novel lawful and regular spatio-
temporal patterns by inventing experiments such as dropping apples and measuring
their accelerations. Babies are curious about what happens if they move their fingers
in just this way, creating little experiments leading to initially novel and surprising
but eventually predictable sensory inputs. Many artists and composers also combine
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previously known spatio-temporal objects in non-trivial ways to create novel pat-
terns.

According to the Formal Theory of Creativity, in the examples above, people at-
tempt to maximise essentially the same type of objective function or reward function
at various stages of their lives. Part of the reward is standard external reward as used
in many applications of Reinforcement Learning (RL) (Kaelbling et al. 1996), such
as positive reward for eating when hungry, or negative reward (pain) for bumping
into an obstacle. In addition to that, however, there is the intrinsic reward, or aes-
thetic reward, or pure fun, which a creative, subjective observer may extract from
some self-generated sequence of actions and observations by learning to encode it
more efficiently: the fun is proportional to the difference between how many com-
putational resources (storage space and time) he needs to encode the data sequence
before and after learning. A separate RL algorithm maximises expected fun by find-
ing or creating non-random, non-arbitrary data that soon becomes more predictable
or compressible in some initially unknown but learnable way, such as novel jokes,
songs, dances, paintings, or scientific observations obeying novel, unpublished laws.

In Sect. 12.3 we will formalise the basic principle. In Sect. 12.4 we discuss
our previous approximative implementations thereof: concrete examples of artificial
creative scientists or artists that learn to create action sequences yielding intrinsic
aesthetic rewards independent of human supervision. In Sect. 12.5 we summarise
why aesthetic reward can be viewed as the first derivative of subjective beauty in
the sense of elegance or simplicity. In Sect. 12.6 we describe the creation of a work
of Low-Complexity Art (Schmidhuber 1997c) computable by a very short program
discovered through a search process modelled by the Formal Theory of Creativ-
ity. Next, however, we will first discuss relationships to previous ideas on curiosity,
creativity, and aesthetic reward.

12.2 Relation to Previous, Less Formal Work

Much of the work on computational creativity described in this book uses reward
optimisers that maximise external reward given by humans in response to artistic
creations of some improving computational pattern generator. This chapter, how-
ever, focuses on unsupervised creative and curious systems motivated to make novel,
aesthetically pleasing patterns generating intrinsic reward in proportion to learning
progress.

Let us briefly discuss relations to previous ideas in this vein. Two millennia ago,
Cicero already called curiosity a “passion for learning”. Section 12.3 will formalise
this passion such that one can implement it on computers, by mathematically defin-
ing reward for the active creation of patterns that allow for compression progress or
prediction improvements.

In the 1950s, psychologists revisited the idea of curiosity as the motivation for
exploratory behaviour (Berlyne 1950; 1960), emphasising the importance of nov-
elty (Berlyne 1950) and non-homeostatic drives (Harlow et al. 1950). Piaget (1955)
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explained explorative learning behaviour in children through his informal concepts
of assimilation (new inputs are embedded in old schemes—this may be viewed as a
type of compression) and accommodation (adapting an old schema to a new input—
this may be viewed as a type of compression improvement). Unlike Sect. 12.3, how-
ever, these ideas did not provide sufficient formal details to permit the construction
of artificial curious agents.

Aesthetic theory is another source of relevant ideas. Why are curious or creative
humans somehow intrinsically motivated to observe or make certain novel patterns,
such as aesthetically pleasing works of art, even when this seems irrelevant for solv-
ing typical frequently recurring problems such as hunger, and even when the action
of observation requires a serious effort, such as spending hours to get to the mu-
seum? Since the days of Plato and Aristotle, many philosophers have written about
aesthetics and taste, trying to explain why some behaviours or objects are more in-
teresting or aesthetically rewarding than others, e.g. Kant (1781), Goodman (1968),
Collingwood (1938), Danto (1981), Dutton (2002). However, they did not have or
use the mathematical tools necessary to provide formal answers to the questions
above. What about more formal theories of aesthetic perception which emerged in
the 1930s (Birkhoff 1933) and especially in the 1960s (Moles 1968, Bense 1969,
Frank 1964, Nake 1974, Franke 1979)? Some of the previous attempts at explain-
ing aesthetic experience in the context of information theory or complexity theory
(Moles 1968, Bense 1969, Frank 1964, Nake 1974, Franke 1979) tried to quantify
the intrinsic aesthetic reward through an “ideal” ratio between expected and unex-
pected information conveyed by some aesthetic object (its “order” vs its “complex-
ity”). The basic idea was that aesthetic objects should neither be too simple nor too
complex, as illustrated by the Wundt curve (Wundt 1874), which assigns maximal
interestingness to data whose complexity is somewhere in between the extremes.
Using certain measures based on information theory (Shannon 1948), Bense (1969)
argued for an ideal ratio of 1/e ∼ 37 %. Generally speaking, however, these ap-
proaches were not detailed and formal enough to construct artificial, intrinsically
motivated agents with a built-in desire to create aesthetically pleasing works of art.

The Formal Theory of Creativity does not postulate any objective ideal ratio of
this kind. Unlike some of the previous works that emphasise the significance of the
subjective observer (Frank 1964, Franke 1979, Frank and Franke 2002), its dynamic
formal definition of fun reflects the change in the number of bits required to encode
artistic and other objects, explicitly taking into account the subjective observer’s
growing knowledge as well as the limitations of its given learning algorithm (or
compression improvement algorithm). For example, random noise is always novel
in the sense that it is unpredictable. But it is not rewarding since it has no pattern. It is
not compressible at all; there is no way of learning to encode it better than by storing
the raw data. On the other hand, a given pattern may not be novel to a given observer
at a given point in his life, because he already perfectly understands it—again there
may be no way of learning to encode it even more efficiently. According to the
Formal Theory of Creativity, surprise and aesthetic reward are possible only where
there is measurable learning progress. The value of an aesthetic experience (the
intrinsic reward of a creative or curious maker or observer of art) is not defined by
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the created or observed object per se, but by the algorithmic compression progress
(or prediction progress) of the subjective, learning observer.

While Kant already placed the finite, subjective human observer in the centre of
our universe (Kant 1781), the Formal Theory of Creativity formalises some of his
ideas, viewing the subjective observer as a parameter: one cannot tell whether some-
thing is art without taking into account the individual observer’s current state. This
is compatible with the musings of Danto who also wrote that one cannot objectively
tell whether something is art by simply looking at it (Danto 1981).

To summarise, most previous ideas on the interestingness of aesthetic objects fo-
cused on their complexity, but ignored the change of subjective complexity through
learning. This change, however, is precisely the central ingredient of the Formal
Theory of Creativity.

12.3 Formal Details

Skip this section if you are not interested in formal details.
A learning agent’s single life consists of discrete cycles or time steps t =

1,2, . . . , T . The agent’s total lifetime T may or may not be known in advance.
At any given t the agent receives a real-valued environmental input vector x(t) and
executes a real-valued action y(t) which may affect future inputs. At times t < T

its goal is to maximise future utility

u(t) = Eμ

[
T∑

τ=t+1

r(τ )

∣∣∣∣ h(≤ t)

]
, (12.1)

where the reward r(t) is a special real-valued input (vector) at time t , h(t) is
the triple [x(t), y(t), r(t)], h(≤ t) is the known history h(1), h(2), . . . , h(t), and
Eμ(· | ·) denotes the conditional expectation operator with respect to some typically
unknown distribution μ from a set M of possible distributions. Here M reflects
whatever is known about the possible probabilistic reactions of the environment.
For example, M may contain all computable distributions (Solomonoff 1978, Li
and Vitányi 1997, Hutter 2005), thus essentially including all environments one
could write scientific papers about. There is just one life, so no need for predefined
repeatable trials, and the utility function implicitly takes into account the expected
remaining lifespan Eμ(T | h(≤ t)) and thus the possibility to extend the lifespan
through actions (Schmidhuber 2009d).

To maximise u(t), the agent may profit from an improving, predictive model p

of the consequences of its possible interactions with the environment. At any time t

(1 ≤ t < T ), the model p(t) will depend on the observed history h(≤ t). It may be
viewed as the current explanation or description of h(≤ t), and may help to predict
and increase future rewards (Schmidhuber 1991b). Let C(p,h) denote some given
model p’s quality or performance evaluated on a history h. Natural performance
measures will be discussed below.
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To encourage the agent to actively create data leading to easily learnable im-
provements of p (Schmidhuber 1991a), the reward signal r(t) is split into two scalar
real-valued components: r(t) = g(rext(t), rint(t)), where g maps pairs of real values
to real values, e.g., g(a, b) = a + b. Here rext(t) denotes traditional external reward
provided by the environment, such as negative reward for bumping into a wall, or
positive reward for reaching some teacher-given goal state. The Formal Theory of
Creativity, however, is mostly interested in rint(t), the intrinsic reward, which is pro-
vided whenever the model’s quality improves—for purely creative agents rext(t) = 0
for all valid t . Formally, the intrinsic reward for the model’s progress (due to some
application-dependent model improvement algorithm) between times t and t + 1 is

rint(t + 1) = f
[
C

(
p(t), h(≤ t + 1)

)
,C

(
p(t + 1), h(≤ t + 1)

)]
, (12.2)

where f maps pairs of real values to real values. Various progress measures are pos-
sible; most obvious is f (a, b) = a − b. This corresponds to a discrete time version
of maximising the first derivative of the model’s quality. Both the old and the new
model have to be tested on the same data, namely, the history so far. That is, progress
between times t and t + 1 is defined based on two models of h(≤ t + 1), where the
old one is trained only on h(≤ t) and the new one also gets to see h(t ≤ t + 1). This
is like p(t) predicting data of time t + 1, then observing it, then learning something,
then becoming a measurably improved model p(t + 1).

The above description of the agent’s motivation separates the goal (finding or
making data that can be modelled better or faster than before) from the means of
achieving the goal. The controller’s RL mechanism must figure out how to translate
such rewards into action sequences that allow the given world model improvement
algorithm to find and exploit previously unknown types of regularities. It must trade
off long-term vs short-term intrinsic rewards of this kind, taking into account all
costs of action sequences (Schmidhuber 1999; 2006a).

The field of Reinforcement Learning (RL) offers many more or less powerful
methods for maximising expected reward as requested above (Kaelbling et al. 1996).
Some were used in our earlier implementations of curious, creative systems; see
Sect. 12.4 for a more detailed overview of previous simple artificial scientists and
artists (1990–2002). Universal RL methods (Hutter 2005, Schmidhuber 2009d) as
well as RNN-based RL (Schmidhuber 1991b) and SSA-based RL (Schmidhuber
2002a) can in principle learn useful internal states memorising relevant previous
events; less powerful RL methods (Schmidhuber 1991a, Storck et al. 1995) cannot.

In theory C(p,h(≤ t)) should take the entire history of actions and perceptions
into account (Schmidhuber 2006a), like the performance measure Cxry :

Cxry

(
p,h(≤ t)

) =
t∑

τ=1

∥∥pred
(
p,x(τ)

) − x(τ)
∥∥2 + ∥∥pred

(
p, r(τ )

) − r(τ )
∥∥2

+ ∥∥pred
(
p,y(τ)

) − y(τ)
∥∥2 (12.3)

where pred(p, q) is p’s prediction of event q from earlier parts of the history.
Cxry ignores the danger of overfitting (too many parameters for few data) through

a p that stores the entire history without compactly representing its regularities,
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if any. The principles of Minimum Description Length (MDL) and closely related
Minimum Message Length (MML) (Kolmogorov 1965, Wallace and Boulton 1968,
Wallace and Freeman 1987, Solomonoff 1978, Rissanen 1978, Li and Vitányi 1997),
however, take into account the description size of p, viewing p as a compressor
program of the data h(≤ t). This program p should be able to deal with any pre-
fix of the growing history, computing an output starting with h(≤ t) for any time
t (1 ≤ t < T ). (A program that halts after t steps can temporarily be fixed or aug-
mented by the trivial non-compressive method that simply stores any raw additional
data coming in after the halt—later learning may yield better compression and thus
intrinsic rewards.)

Cl(p,h(≤ t)) denotes p’s compression performance on h(≤ t): the number of
bits needed to specify the predictor and the deviations of the sensory history from
its predictions, in the sense of loss-free compression. The smaller Cl , the more law-
fulness and regularity in the observations so far. While random noise is irregular
and arbitrary and incompressible, most videos are regular as most single frames
are very similar to the previous one. By encoding only the deviations, movie com-
pression algorithms can save lots of storage space. Complex-looking fractal images
(Mandelbrot 1982) are regular, as they usually are similar to their details, being
computable by very short programs that re-use the same code over and over again
for different image parts. The universe itself seems highly regular, as if computed
by a program (Zuse 1969, Schmidhuber 1997a; 2002c; 2006b; 2007a): every photon
behaves the same way; gravity is the same on Jupiter and Mars, mountains usually
don’t move overnight but remain where they are, etc.

Suppose p uses a small predictor that correctly predicts many x(τ) for 1 ≤ τ ≤ t .
This can be used to encode x(≤ t) compactly: Given the predictor, only the wrongly
predicted x(τ) plus information about the corresponding time steps τ are necessary
to reconstruct x(≤ t), e.g., (Schmidhuber 1992). Similarly, a predictor that learns
a probability distribution on the possible next events, given previous events, can
be used to compactly encode observations with high (respectively low) predicted
probability by few (respectively many) bits (Huffman 1952, Schmidhuber and Heil
1996), thus achieving a compressed history representation.

Alternatively, p could make use of a 3D world model or simulation. The corre-
sponding MDL-based quality measure C3D(p,h(≤ t)) is the number of bits needed
to specify all polygons and surface textures in the 3D simulation, plus the number
of bits needed to encode deviations of h(≤ t) from the simulation’s predictions. Im-
proving the model by adding or removing polygons may reduce the total number of
bits required (Schmidhuber 2010).

The ultimate limit for Cl(p,h(≤ t)) is K∗(h(≤ t)), a variant of the Kolmogorov
complexity of h(≤ t), namely, the length of the shortest program (for the given hard-
ware) that computes an output starting with h(≤ t) (Solomonoff 1978, Kolmogorov
1965, Li and Vitányi 1997, Schmidhuber 2002b). We do not have to worry about
the fact that K∗(h(≤ t)) in general cannot be computed exactly, only approximated
from above (for most practical predictors the approximation will be crude). This just
means that some patterns will be hard to detect by the limited predictor of choice,
that is, the reward maximiser will get discouraged from spending too much effort
on creating those patterns.
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Cl(p,h(≤ t)) does not take into account the time τ(p,h(≤ t)) spent by p on
computing h(≤ t). A runtime-dependent quality measure inspired by optimal uni-
versal search (Levin 1973) is

Clτ

(
p,h(≤ t)

) = Cl

(
p,h(≤ t)

) + log τ
(
p,h(≤ t)

)
. (12.4)

Here additional compression by one bit is worth as much as runtime reduction by a
factor of 1

2 . From an asymptotic optimality-oriented point of view this is a best way
of trading off storage and computation time (Levin 1973, Schmidhuber 2004).

In practical applications (Sect. 12.4) the compressor/predictor of the continually
growing data typically will have to calculate its output online, that is, it will be
able to use only a constant number of computational instructions per second to pre-
dict/compress new data. The goal of the typically slower learning algorithm must
then be to improve the compressor such that it keeps operating online within those
time limits, while compressing/predicting better than before. The costs of comput-
ing Cxry(p,h(≤ t)) and Cl(p,h(≤ t)) and similar performance measures are linear
in t , assuming p consumes equal amounts of computation time for each prediction.
Hence online evaluations of learning progress on the full history so far generally
cannot take place as frequently as the continually ongoing online predictions.

Some of the learning and its progress evaluations may take place during occa-
sional “sleep” phases (Schmidhuber 2006a). But previous practical implementations
have looked only at parts of the history for efficiency reasons: The systems men-
tioned in Sect. 12.4 used online settings (one prediction per time step, and constant
computational effort per prediction), non-universal adaptive compressors or predic-
tors, and approximative evaluations of learning progress, each consuming only con-
stant time despite the continual growth of the history.

12.3.1 Continuous Time Formulation

In continuous time, O(t) denotes the state of subjective observer O at time t . The
subjective compressibility (simplicity or regularity) B(D,O(t)) of a sequence of
observations and/or actions is the negative number of bits required to encode D,
given O(t)’s current limited prior knowledge and limited compression/prediction
method. The time-dependent and observer-dependent subjective interestingness or
surprise or aesthetic value, I (D,O(t)) is

I
(
D,O(t)

) ∼ ∂B(D,O(t))

∂t
, (12.5)

the first derivative of subjective simplicity: as O improves its compression algo-
rithm, formerly apparently random data parts become subjectively more regular and
beautiful, requiring fewer bits for their encoding.

There are at least two ways of having “fun”: execute a learning algorithm that
improves the compression of the already known data (in online settings, without
increasing computational needs of the compressor/predictor), or execute actions that
generate more data, then learn to better compress or explain this new data.
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12.4 Previous Approximative Implementations of the Theory

Since 1990 I have built simple artificial scientists or artists with an intrinsic desire
to build a better model of the world and what can be done in it. They embody ap-
proximations of the theory of Sect. 12.3. The agents are motivated to continually
improve their models, by creating or discovering more surprising, novel patterns,
that is, data predictable or compressible in hitherto unknown ways. They actively
invent experiments (algorithmic protocols or programs or action sequences) to ex-
plore their environment, always trying to learn new behaviours (policies) exhibiting
previously unknown regularities or patterns. Crucial ingredients are:

1. An adaptive world model, essentially a predictor or compressor of the continu-
ally growing history of actions and sensory inputs, reflecting current knowledge
about the world,

2. A learning algorithm that continually improves the model (detecting novel, ini-
tially surprising spatio-temporal patterns, including works of art, that subse-
quently become known patterns),

3. Intrinsic rewards measuring the model’s improvements due to its learning algo-
rithm (thus measuring the degree of subjective novelty & surprise),

4. A separate reward optimiser or reinforcement learner, which translates those re-
wards into action sequences or behaviours expected to optimise future reward.

These ingredients make the agents curious and creative: they get intrinsically moti-
vated to acquire skills leading to a better model of the possible interactions with the
world, discovering additional “eye-opening” novel patterns (including works of art)
predictable or compressible in previously unknown ways.

Ignoring issues of computation time, it is possible to devise mathematically op-
timal, universal RL methods (Hutter 2005, Schmidhuber 2009d) for such systems
(Schmidhuber 2006a; 2010) (2006-). However, previous practical implementations
(Schmidhuber 1991a, Storck et al. 1995, Schmidhuber 2002a) were non-universal
and made approximative assumptions. Among the many ways of combining meth-
ods for (1-4) we implemented the following variants:

A. Non-traditional RL based on adaptive recurrent neural networks as predictive
world models is used to maximise intrinsic reward created in proportion to pre-
diction error (Schmidhuber 1991b).

B. Traditional RL (Kaelbling et al. 1996) is used to maximise intrinsic reward cre-
ated in proportion to improvements of prediction error (Schmidhuber 1991a).

C. Traditional RL maximises intrinsic reward created in proportion to relative en-
tropies between the agent’s priors and posteriors (Storck et al. 1995).

D. Non-traditional RL (Schmidhuber et al. 1997) (without restrictive Markovian as-
sumptions) learns probabilistic, hierarchical programs and skills through zero-
sum intrinsic reward games of two players, each trying to out-predict or sur-
prise the other, taking into account the computational costs of learning, and
learning when to learn and what to learn (1997–2002) (Schmidhuber 1999;
2002a).
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Variants B, C & D also showed experimentally that intrinsic rewards can substan-
tially accelerate goal-directed learning and external reward intake of agents living
in environments providing external reward for achieving desirable goal states. See
(Schmidhuber 2010) for a more detailed overview of the work 1990–2010. There
also are more recent implementation variants with applications to vision-based rein-
forcement learning/evolutionary search (Luciw et al. 2011, Cuccu et al. 2011), active
learning of currently easily learnable functions (Ngo et al. 2011), black box optimi-
sation (Schaul et al. 2011b), and detection of “interesting” sequences of Wikipedia
articles (Schaul et al. 2011a).

Our previous computer programs already incorporated approximations of the ba-
sic creativity principle. But do they really deserve to be viewed as rudimentary sci-
entists and artists? The works of art produced by, say, the system of (Schmidhuber
2002a), include temporary “dances” and internal state patterns that are novel with
respect to its own limited predictors and prior knowledge, but not necessarily rel-
ative to the knowledge of sophisticated adults (although an interactive approach
using human guidance allows for obtaining art appreciated by some humans—see
Fig. 12.1). The main difference to human scientists or artists, however, may be only
quantitative by nature, not qualitative:

1. The unknown learning algorithms of humans are presumably still better suited to
predict/compress real world data. However, there already exist universal, math-
ematically optimal (not necessarily practically feasible) prediction and compres-
sion algorithms (Hutter 2005, Schmidhuber 2009d), and ongoing research is con-
tinually producing better practical prediction and compression methods, waiting
to be plugged into our creativity framework.

2. Humans may have superior RL algorithms for maximising rewards generated
through compression improvements achieved by their predictors. However, there
already exist universal, mathematically optimal (but not necessarily practically
feasible) RL algorithms (Hutter 2005, Schmidhuber 2009d), and ongoing re-
search is continually producing better practical RL methods, also waiting to be
plugged into our framework.

3. Renowned human scientists and artists have had decades of training experiences
involving a multitude of high-dimensional sensory inputs and motoric outputs,
while our systems so far only had a few hours with very low-dimensional experi-
ences in limited artificial worlds. This quantitative gap, however, will narrow as
our systems scale up.

4. Human brains still have vastly more storage capacity and raw computational
power than the best artificial computers. Note, however, that this statement is un-
likely to remain true for more than a few decades—currently each decade brings
a computing hardware speed-up factor of roughly 100–1000.

Section 12.6 will demonstrate that current computational limitations of artificial
artists do not prevent us from already using the Formal Theory of Creativity in
human-computer interaction to create art appreciable by humans.
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12.5 Aesthetic Reward = Change of Subjective Compressibility?

Most people use concepts such as beauty and aesthetic pleasure in an informal way.
Some say one should not try to nail them down formally; formal definitions should
introduce new, unbiased terminology instead. For historic reasons, however, I will
not heed this advice in the present section. Instead I will consider previous formal
definitions of pristine variants of beauty (Schmidhuber 1997c) and aesthetic value
I (D,O(t)) as in Sect. 12.3.1. Pristine in the sense that they are not a priori re-
lated to pleasure derived from external rewards or punishments. To illustrate the
difference: some claim that a hot bath on a cold day feels beautiful due to rewards
for achieving prewired target values of external temperature sensors (external in the
sense of: outside the brain which is controlling the actions of its external body). Or
a song may be called beautiful for emotional reasons by some who associate it with
memories of external pleasure through their first kiss. This is different from what
we have in mind here—we are focusing only on beauty in the sense of elegance and
simplicity, and on rewards of the intrinsic kind reflecting learning progress, that is,
the discovery of previously unknown types of simplicity, or novel patterns.

According to the Formal Theory of Beauty (Schmidhuber 1997c; 1998; 2006a),
among several sub-patterns classified as comparable by a given observer, the sub-
jectively most beautiful (in the pristine sense) is the one with the simplest (shortest)
description, given the observer’s current particular method for encoding and mem-
orising it. For example, mathematicians find beauty in a simple proof with a short
description in the formal language they are using. Others find beauty in geometri-
cally simple low-complexity drawings of various objects.

According to the Formal Theory of Creativity, however, what’s beautiful is not
necessarily interesting or aesthetically rewarding at a given point in the observer’s
life. A beautiful thing is interesting only as long as the algorithmic regularity that
makes it simple has not yet been fully assimilated by the adaptive observer who is
still learning to encode the data more efficiently (many artists agree that pleasing art
does not have to be beautiful).

Following Sect. 12.3, aesthetic reward or interestingness are related to pristine
beauty as follows: Aesthetic reward is the first derivative of subjective beauty. As
the learning agent improves its compression algorithm, formerly apparently ran-
dom data parts become subjectively more regular and beautiful, requiring fewer
and fewer computational resources for their encoding. As long as this process is
not over, the data remains interesting, but eventually it becomes boring even if it
remains beautiful.

Section 12.3 already showed a simple way of calculating subjective interesting-
ness: count how many bits are needed to encode (and decode in constant time) the
data before and after learning; the difference (the number of saved bits) corresponds
to the internal joy or intrinsic reward for having found or made a new, previously
unknown regularity—a novel pattern.
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Fig. 12.1 Artists (and observers of art) get intrinsically rewarded for making (and observing)
novel patterns: data that is neither arbitrary (like incompressible random white noise) nor regular
in an already known way, but regular in a way that is new with respect to the observer’s current
knowledge, yet learnable. While the Formal Theory of Creativity explains the desire to create or
observe all kinds of art, low-complexity art (Schmidhuber 1997c) illustrates it in a particularly
clear way. Many observers report they derive pleasure or aesthetic reward from discovering simple
but novel patterns while actively scanning the self-similar Femme Fractale above (Schmidhuber
1997b). The observer’s learning process causes a reduction of the subjective compressibility of
the data, yielding a temporarily high derivative of subjectively perceived simplicity or elegance or
beauty: a temporarily steep learning curve. The corresponding intrinsic reward motivates him to
keep looking at the image for a while. Similarly, the computer-aided artist got reward for discov-
ering a satisfactory way of using fractal circles to create this low-complexity artwork, although it
took him a long time and thousands of frustrating trials. Here is the explanation of the artwork’s
low algorithmic complexity: The frame is a circle; its leftmost point is the centre of another circle
of the same size. Wherever two circles of equal size touch or intersect are centres of two more
circles with equal and half size, respectively. Each line of the drawing is a segment of some cir-
cle, its endpoints are where circles touch or intersect. There are few big circles and many small
ones. This can be used to encode the image very efficiently through a very short program. ©Jürgen
Schmidhuber, 1997–2010

12.6 Low-Complexity Art as End Product of a Search Process
Modelled by the Formal Theory of Creativity

Low-complexity art (Schmidhuber 1997c) may be viewed as the computer-age
equivalent of minimal art. To depict the essence of objects, it builds on concepts
from algorithmic information theory (Solomonoff 1978, Kolmogorov 1965, Li and
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Vitányi 1997, Schmidhuber 2002b). A low-complexity artwork can be specified by
a computer algorithm and should comply with three properties: (i) it should “look
right”, (ii) its algorithmic information should be small (the algorithm should be
short), and (iii) a typical observer should be able to see that (ii) holds.

Figure 12.1 shows an example of Low-Complexity Art, the final product of a
long, often frustrating but often also intrinsically rewarding search for an aestheti-
cally pleasing drawing of a human figure that can be encoded by very few bits of
information. It was created through computer-based search guided by human expe-
rience. This process modelled by the Formal Theory of Creativity took thousands of
trials and sketches over several months of real time. Figure 12.1 is explained by its
caption.

12.7 Conclusion

Apart from external reward, how much fun or aesthetic reward can an unsupervised
subjective creative observer extract from some sequence of actions and observa-
tions? According to the Formal Theory of Creativity, his intrinsic fun is the differ-
ence between how much computational effort he needs to encode the data before and
after learning to encode it more efficiently. A separate reinforcement learning algo-
rithm maximises expected fun by actively finding or creating data that permits en-
coding progress of some initially unknown but learnable type, such as jokes, songs,
paintings, or scientific observations obeying novel, unpublished laws. Pure fun can
be viewed as the change or the first derivative of subjective simplicity or elegance
or beauty. Computational limitations of previous artificial artists built on these prin-
ciples do not prevent us from already using the formal theory in human-computer
interaction to create low-complexity art appreciable by humans.
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