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Foreword

If I had to pick just one point out of this richly intriguing book, it would be some-
thing that the editors stress in their introduction: that these examples of computer
art involve creative computing as well as creative art.

It’s a happy—or perhaps an unhappy—coincidence that the book is going to press
only a couple of weeks after the opening of David Hockney’s one-man exhibition,
“A Bigger Picture”, at the Royal Academy of Arts in London.

A happy coincidence, in that such a famous traditional artist has chosen to
link his most recent work with computers so publicly, and—according to the
many favourable reviews—so successfully. This effectively puts paid to the all-too-
common view that creative art cannot depend in any way on computers. For the
“bigger pictures” that inspired the exhibition’s title weren’t produced with Hock-
ney’s oils, paintbrush, and easel, but with the help of computer software designed
for colour graphics—specifically, Adobe’s Photoshop and the iPad’s app Brushes.
Hockney used Brushes, for example, to move and blend colours, and—using his
fingers on the tiny screen—to draw lines of varying thickness on the developing
image.

An unhappy coincidence, however, in that Hockney’s fame, alongside the critical
success of this particular exhibition, will very likely lead people to think that his
latest work is an iconic example of computer art. “And what’s wrong with that?”—
Well, Hockney’s software is due to Adobe and Apple, not to Hockney himself. Even
more to the point, the novelty, skill, and creativity—and the aesthetic judgements—
evident in the huge images hanging on the Academy’s walls aren’t due to, or even
reflected in, the software as such.

Photoshop can be—and has been—used to produce images of indefinitely many
different styles. Years ago, to be sure, Adobe’s professional programmers created
(sic) the then-novel code that would eventually enable anyone to buy it off the shelf
and use it in their own art-making. But that code wasn’t intrinsically connected with
the specific nature of any of the artworks that would be produced with its help. That
is, it involved no aesthetic judgements on its creators’ part.

The computer art that’s described in this book is very different. It’s not merely
computer-assisted (as Hockney’s is), but computer-generated. In other words, the
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vi Foreword

program—originally written by, or under the direction of, the human artist—is left
to run with minimal or zero interference from the human being.

Sometimes, as in Harold Cohen’s work, the program runs entirely by itself. The
artworks that result are literally untouched by human hand—and, occasionally, un-
touched even by post hoc human choice, or selection. At other times, although the
code “runs by itself” in the sense that it’s not altered by human beings during the
running process, what it actually produces depends partly on various sorts of inter-
action between the program and the human artist and/or observer. These interactions
can range from bodily movements, through noises or temperature-changes caused
by human beings, to conscious choices made by the observer in selecting certain
images (or musical compositions) to be preferred over others. And of course, for
this or that interaction to be possible, with this or that result, the code had to be
created in the appropriate way in the first place. The program had to be aesthetically
motivated, not just technically effective. Off-the-shelf software simply doesn’t fit
the bill.

As various chapters make clear, this raises many difficult questions about the lo-
cus of creativity in the overall human-computer system. And it makes the aesthetic
appreciation of computer art more problematic than it is in the familiar halls of the
Academy’s current exhibition. In general, the more someone understands the pro-
cesses involved in the production of an artwork (wielding a paintbrush, perhaps, or
turning a potter’s wheel), the better they are able to appreciate the artist’s achieve-
ment. But the code, in computer art, is even less evident than the chemicals and
brush-strokes of traditional fine art. Worse: even if the code were to be made evi-
dent, many people would find it hard, or impossible, to understand.

These points, and many others, are explored in this book. For its aim is not only
to describe a wide range of computer art, but also to indicate the many philosophical
and aesthetic problems raised by this new genre. The answers are hotly contested,
so don’t expect a calm consensus in the following pages.

One thing, however, is agreed: the computer, here, is being used by the human
artist not as a mere tool, but as a partner (or perhaps a quasi-partner) in the creative
endeavour.

Margaret A. BodenBrighton, England
2012



Preface

Why Does Computing Matter to Creativity?

This book, Computers and Creativity, examines how computers are changing our
understanding of creativity in humans and machines. It contains chapters from
twenty-five leading researchers in this field, on topics ranging from machine-
assisted art creation, music composition and performance to formal theories of cre-
ativity and the emergence of novelty in natural and artificial systems. Before intro-
ducing these contributions we thought it useful to reflect on why we feel this book
is both timely and important.

In just a single generation, computers and information technologies have brought
about seismic changes in the way we communicate, interact, learn and think. Yet
while these technologies are now well integrated into the fabric of modern society,
their operation, design, and potential is understood by relatively few people. This
limited appreciation of computing might explain why there remains a general re-
luctance to see its practice as something creative, and computers as machines that
present a radical new potential for extending our own creativity.

Whilst general society may not think of computing as being a creative enterprise,
we find ourselves in a world where we are now dependent on computers in almost
every aspect of contemporary culture. Computers have become an extension of our-
selves and how we communicate and think, even changing the way we think. They
form a complex network of dependencies around us, and are constantly and rapidly
developing, ever expanding in their role as a dynamic cultural and creative partner.

However the majority of traditional computing education and training has strug-
gled to keep abreast of these changes. In September 2011, Google chairman Eric
Schmidt criticised UK education, claiming: “Your IT curriculum focuses on teach-
ing how to use software, but gives no insight into how it’s made. That is just throw-
ing away your great computing heritage.” Art and Science need to be brought back
together if we are to better tackle the challenges this rich entanglement with tech-
nology brings. And that doesn’t just go for art either, to be a successful sociologist,
journalist or social entrepreneur, for example, a deeper understand of computing as
a creative discipline is becoming increasingly indispensable.
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viii Preface

Creativity is critical for our ability to function and change as a society. Yet un-
til recently, the practice of computing has not formally situated itself around the
exploration of creative artistic ideas. Rather it has been taught in the main from a
scientific and engineering perspective, using data structures (how to represent data)
and algorithms (how to process or manipulate data) to directly solve problems. One
of the great challenges for computing is to achieve a fuller understanding of pro-
cess and representations which are beyond those that are easily computable or even
fully comprehensible by humans. Necessarily, human design of software requires
reducing difficult and complex concepts to far simpler abstractions that can be prac-
tically implemented, in some cases even ignoring those aspects of a phenomena that
are too complex to express directly in a program. One way to overcome this limi-
tation is to design programs that are capable of initiating their own creativity—to
increase their complexity and discover ways of interacting independently of human
design. Yet people don’t naturally think of creative expression in terms of formal
algorithms, leading to a perceived gap between natural creative human expression
and computation.

Despite these difficulties, a field known as “creative coding” has emerged as an
artistic practice of rising popularity. Here, software is considered a medium for cre-
ative expression, and the field has been enthusiastically embraced by many artists,
designers and musicians. Software undergoes development at a pace and complex-
ity that far exceeds all prior tools humans have developed, so these practitioners see
the computer as something more than a benign tool such as a chisel or paintbrush.
However, many artists find their artistic expression limited by a lack of knowledge
in how to program creatively. While social and information networks allow easy ac-
cess to a vast repository of resources and examples, what is often missing is a cogent
technical, historical and philosophical foundation that allows practitioners to under-
stand the “how and why” of developing creativity with computers. We hope this
book makes important contributions by engaging with these foundational issues.

It is our belief that we now need to embrace and support the new forms of cre-
ativity made possible by technology across all forms of human endeavour. This cre-
ativity is important because it provides opportunities that have not been previously
available, and are necessary if we are to address the complex challenges we face in
our increasingly technology-dependent world.

Many excellent titles that look at creativity in general already exist.1 Similarly,
many works on the technical or didactic aspects of creative coding can be found,
and are becoming standard in many university computing and design departments.
However, due to a growing interest in appreciating computing as a creative dis-
cipline, and as a means of exploring creativity in new ways, the time is right for
an edited collection that explores the varied relationships between computers and
creativity. This book differentiates itself from general books on creativity or artis-
tic coding because it focuses on the role of computers and computation in defining,

1Here we would suggest titles such as the Handbook of Creativity (edited by Robert J. Sternberg,
Cambridge UP, 1999) and Margaret Boden’s The Creative Mind: Myths & Mechanisms (2nd edi-
tion, Routledge, London, 2004).
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augmenting and developing creativity within the context of artistic practice. Further-
more, it examines the impact of computation on the creative process and presents
theories on the origins and frameworks of all creative processes—in human, nature,
and machine.

Many of the book’s authors come from an interdisciplinary background. Indeed,
the origins of this book arose from a 2009 seminar on interdisciplinary creativity or-
ganised by the editors (McCormack and d’Inverno) and Professor Margaret Boden
(University of Sussex), held at Schloss Dagstuhl–Leibniz-Zentrum für Informatik
in Germany (http://www.dagstuhl.de/09291). Participants included artists, design-
ers, architects, musicians, computer scientists, philosophers, cognitive scientists and
engineers. With such diversity you might wonder what, if anything, was able to be
understood and discussed beyond the traditional interdisciplinary boundaries and
misinterpretations. It turned out that everyone passionately supported the view that
computers have a substantial role to play in developing new forms of creativity, and
the value of better understanding creativity from computational models in all its
varied guises.

This book will appeal to anyone who is interested in understanding why comput-
ers matter to creativity and creative artistic practice. It is a proudly interdisciplinary
collection that is suited to both those with a technical or scientific background along
with anyone from the arts interested in ways technology can extend their creative
practice. Each chapter arose in response to group discussions at the Dagstuhl sem-
inar, and has undergone extensive review and development over a sustained period
since, leading to what we hope will be a seminal volume on this topic that will
remain relevant for many years to come.

Summary of Contributions

The book is divided into four sections: Art, Music, Theory and an Epilogue. How-
ever, as we have tried to make each chapter self-contained, the reader may read
chapters in any order if they wish.

Part I, Art, addresses the long-standing question of machine creativity: can we
build a machine that is capable of making art? And not just art, but good or even
great art. Art that is exhibited in major art museums, prized and respected for its
creative brilliance. Since the earliest days of computing, the idea of a machine being
independently creative has been challenged. As Ada Lovelace famously claimed, a
computer cannot be an artist because a computer cannot originate anything. All
the machine does is what it is told to do, so how can a machine be independently
creative?

Of course these arguments are closely tied to the history of Artificial Intelligence
(AI), a research effort now more than sixty years old. The most famous and cele-
brated example of a “creative painting machine” is the AARON system of Harold
Cohen. Cohen’s initial investigations followed the “GOFAI” (Good Old-Fashioned
Artificial Intelligence) approach to automated painting, but over its forty year his-
tory has developed considerably, producing an impressive oeuvre of paintings in

http://www.dagstuhl.de/09291
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collaboration with its creator. Cohen remains reluctant to ascribe independent cre-
ativity to AARON and sees the software as an extension of his artistic process rather
than an independent, autonomous creative entity (he also acts as a curator and filter,
carefully selecting specific images from AARON’s prolific output).

Simon Colton’s Painting Fool (Chap. 1) is the 21st-century continuation of re-
search pioneered with AARON. Colton’s bold and ambitious goal is to build a com-
puter painter recognised in its own right as an independent artist. He deftly uses a
diverse array of methods from contemporary AI, and anticipates the use of many
more if he is to achieve his goal. Like Cohen, this ambitious agenda may require a
lifetime’s work, and also similarly, Colton is not deterred by this prospect. His chap-
ter also addresses a number of criticisms and philosophical issues raised in both the
idea of creating a computer artist, and the exhibition and appreciation of paintings
made by a machine.

The chapter by Jon McCormack takes a very different approach to the problem
of machine creativity. He sees the processes of biological evolution as a creative al-
gorithm that is eminently capable of being adapted by artists to allow a machine to
originate new things. Importantly, these “new things” (behaviours, artefacts) were
not explicitly stated by the programmer in authoring the program. Using ideas drawn
from biological ecosystems, he illustrates the creative potential of biological pro-
cesses to enable new kinds of machine creativity. Here the computer is able to dis-
cover new artistic behaviours that were not explicitly programmed in by the creator,
illustrating one way in which Lady Lovelace’s enduring criticism can be challenged.

Pioneering artist Frieder Nake has been working with computational art since the
1960s. Nake frames creativity as a “US American invention” and through a series
of vignettes examines the processes of developing creative works from the earliest
days of digital computer art. As one of the first artists to create work with computers,
Nake is uniquely placed to appreciate and reflect on over 40 years of endeavour in
this field. His evaluation of the work of Georg Nees, A. Michael Noll, Vera Molnar,
Charles Csuri, Manfred Mohr, Harold Cohen and even himself is fascinating.

Both Nake and Cohen are highly sceptical about machines ever being au-
tonomously creative, and this is explored in the final chapter of this section: a dis-
cussion on machine creativity and evaluation between Nake, Cohen and a number of
other Dagstuhl participants. These informal, and sometimes frank discussions reveal
the complexities and diversity of opinion on the possibility of developing machines
capable of independent artistic creativity that resonates with human artists. This
chapter has been included for both its insights and its historical significance in doc-
umenting a rare discussion between several of computer art’s most experienced and
significant practitioners.

Part II, Music, deals with issues related to computers, music and creativity. A ma-
jor challenge for machine creativity is in musical improvisation: real time, live in-
teraction between human and non-human performers. This not only sets challenges
for efficiency and on-the-fly decision making, but also in articulating what encom-
passes musically meaningful interactions between players. The chapter by François
Pachet draws on the concept of “virtuosity” as an alternative way of understand-
ing the challenge of improvisation. Pachet aims to create a computational musician
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who, in its improvisational skill, would be as good as the best bebop jazz musi-
cians. He describes in detail the construction of a system that is capable of compe-
tently improvising with, and challenging, professional jazz musicians. Many think
of AI’s most public successes as game playing (such as Deep Blue’s defeat of world
chess champion Garry Kasparov in 1997) or mathematical problem solving, but as
demonstrated by a number of authors in this book, intelligent musical interaction
with computers is now a real possibility.

The goal of musically meaningful interaction between human and machine per-
formers is the basis of what has become known as “Live Algorithms”. The chapter
by Tim Blackwell, Oliver Bown and Michael Young summarises a series of frame-
works for human-machine interaction and improvisation inspired by the Live Algo-
rithms model. The authors detail the kinds of interactions necessary for musically
meaningful exchanges to occur and document some recent projects and research in
this area.

The idea of a computer as “creative partner” is a major topic of this book. In
combination, how can humans and computers expand our creative consciousness?
The chapter by Daniel Jones, Andrew Brown and Mark d’Inverno details how com-
putational tools extend and modify creative practice: challenging old assumptions
and opening up new ways to simply “be creative”.

Rather than looking for a general theory of human creativity through the work of
others, researcher and musician Palle Dahlstedt introspected deeply about his own
creative processes. This has lead to his theory of how materials, tools and ideas all
interact and affect the creative process in complex, layered networks of possibility.
While the theory comes from a musical understanding, it is broadly applicable to
any creative discipline based around computers and software.

Many artists working with computers do so at the level of writing their own
code. Coding is a unique form of artistic endeavour, which is often poorly under-
stood as it lacks the extensive mainstream critical analysis and heritage found in
more traditional art practices. Alex McLean and Geraint Wiggins—both coders and
composers—examine the special relationship between a computational artist and
their programming environment. Borrowing the art idea of the bricolage, they ex-
amine how perceptions affect the creative process when working with code. It is
interesting to compare the use of feedback processes discussed by McLean & Wig-
gins, Dahlstedt, Jones, Brown & d’Inverno in relation to the current design of cre-
ative software, which often does little to facilitate or enhance the types of feedback
emphasised as crucial by these authors.

Personal- and practice-based understandings of creativity are contextualised next
in Part III, Theory. As discussed in Part I, for any machine to be creative it is argued
that it must have some way of evaluating what it is doing. Philip Galanter under-
takes an extensive survey of methods used in computational aesthetic evaluation:
considered a first step in designing machines that are able to produce aesthetically
interesting output. Although the chapter focuses primarily on visual aesthetics, the
techniques can be applied more broadly, and Galanter’s chapter provides a distinc-
tive and comprehensive survey for researchers entering this challenging field. Simi-
larly, Juan Romero and colleagues look at perceptual issues in aesthetic judgement
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and discuss how a machine might take advantage of things like psychological mod-
els of creativity. Both these chapters provide a much-needed overview of the field
that has previously been lacking.

While the computer has brought new creative possibilities for artists, designers
and performers, computer science has challenged traditional definitions of creativ-
ity itself. Over the last two decades, Jürgen Schmidhuber has developed a formal
theory of creative behaviour, one that he claims explains a wide variety of creative
phenomena including science, art, music and humour. Schmidhuber sees creativity
as the ability of an agent to create data that through learning becomes subjectively
more compressible. What humans term “interesting” is a pattern (image, sculpture,
poem, joke, etc.) that challenges our compression algorithm to discover new regu-
larities from it. Similarly, the chapter by Alan Dorin and Kevin B. Korb challenges
the long-held definition of creativity that relies on a concept of appropriateness or
value. Dorin and Korb define a creative system as one that can consistently produce
novel patterns, irrespective of their value. These definitions appear to accommodate
a number of criticisms levelled at previous definitions of creativity. For example,
that some discovery may lie dormant for decades or centuries before its “value” is
recognised, or that aesthetic appreciation is a truly subjective thing. It is interesting
to read these theories in light of the dialogue of Chap. 4.

A different approach is taken by Oliver Bown, who distinguishes two fundamen-
tally different kinds of creativity: generative and adaptive. The main distinction is
the teleology of each – generative creativity is not goal-directed, adaptive creativity
is. Bown also looks at the role of social processes in determining creativity often
(mistakenly) ascribed exclusively to individuals.

Finally Peter Cariani presents his theory of emergent creativity, which like
Schmidhuber, he has been working on for over two decades. Cariani shows how
new informational primitives arise in natural systems and presents a detailed and
ambitious framework for developing creatively emergent artificial systems.

Throughout this book you will find many different definitions of creativity and
opinions of what (if any) level of autonomy and creativity might be possible in a
machine. For example, Nake and, to an extent, Pachet downplay the importance of
creativity in individuals. In Pachet’s case, he demonstrates a system that can compe-
tently improvise with professional jazz musicians to illustrate how virtuosity, rather
than creativity, is the predominate factor in musical improvisation. In a sense Pachet
(a jazz musician himself) has been able to begin “reverse engineering” the com-
plex motifs employed by famous jazz musicians such as Charlie Parker and Dizzy
Gillespie. His challenge is to compute the “99 % explainable stuff” of jazz music
and make serious inroads into the “1 % magic” that we might intuitively call hu-
man creativity. Computer scientists such as Schmidhuber see the way forward in
terms of formal, computable definitions, since in theory they can be implemented
and verified practically on a computer. Of course, any formal model of creativity
requires abstractions away from the complexity of real human creative practice,
so any such model could never fully represent it. Conceivably, neuroscience will
eventually provide a full understanding of the mechanisms of human creativity, po-
tentially overcoming current difficulties in validating computer models of human
creative processes.
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To conclude the book, Part IV, Epilogue, contains a short chapter that poses
questions that were raised while editing this volume. As is often the case with new
and emerging research fields, we are left with many more questions than answers
and here what we consider the twenty-one most interesting and critical questions
that this book has inspired are summarised. Competently answering these questions
will take decades of research and investigation, the results easily filling many more
volumes like this.

Whatever your views on creativity are, and whether you think a machine is ca-
pable of it or not, this book presents many new and inspiring ideas—wonderfully
written and passionately argued—about how computers are changing what we can
imagine and create, and how we might shape things in the future. We hope you en-
joy reading Computers and Creativity as much as we have enjoyed producing and
editing it.

Jon McCormack and Mark d’InvernoMelbourne, Australia and London, England
2012
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Chapter 1
The Painting Fool: Stories from Building
an Automated Painter

Simon Colton

Abstract The Painting Fool is software that we hope will one day be taken seri-
ously as a creative artist in its own right. This aim is being pursued as an Artificial
Intelligence (AI) project, with the hope that the technical difficulties overcome along
the way will lead to new and improved generic AI techniques. It is also being pur-
sued as a sociological project, where the effect of software which might be deemed
as creative is tested in the art world and the wider public. In this chapter, we sum-
marise our progress so far in The Painting Fool project. To do this, we first compare
and contrast The Painting Fool with software of a similar nature arising from AI
and graphics projects. We follow this with a discussion of the guiding principles
from Computational Creativity research that we adhere to in building the software.
We then describe five projects with The Painting Fool where our aim has been to
produce increasingly interesting and culturally valuable pieces of art. We end by
discussing the issues raised in building an automated painter, and describe further
work and future prospects for the project. By studying both the technical difficul-
ties and sociological issues involved in engineering software for creative purposes,
we hope to help usher in a new era where computers routinely act as our creative
collaborators, as well as independent and creative artists, musicians, writers, design-
ers, engineers and scientists, and contribute in meaningful and interesting ways to
human culture.

1.1 Introduction

Computational Creativity is the term used to describe the subfield of Artificial In-
telligence research where we study how to build software that exhibits behaviours
deemed creative in people. In more practical terms, we investigate how to engi-
neer software systems which take on some of the creative responsibility in arts and
science projects. This usage of computers in the creative process differs from the
majority of ways in which software is used, where the program is a mere tool to

S. Colton (�)
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Fig. 1.1 An example picture from The Painting Fool’s Dance Floor series

enhance human creativity. In contrast, within Computational Creativity research,
we endeavour to build software which is independently creative, either to act as a
collaborator with people, or to be an autonomous artist, musician, writer, designer,
engineer or scientist. Some members of the Computational Creativity research com-
munity are interested in simulating creative processes to discover more about human
creativity, while others are more interested in the intellectual challenge of producing
autonomous creativity in software. Others simply want to generate more interesting
art, music, text, mathematics or scientific hypotheses, but have chosen to do so by
enabling the software to act as more than a tool for creative people.

Within the Computational Creativity Group at Imperial College, London,1 we
engage in various projects where we aim to build software for creative purposes. We
work from an Artificial Intelligence perspective, whereby the solutions to problems
we encounter while trying to engineer creative behaviour help to improve existing
AI techniques, or lead to the invention of new ones. In a major project within the
group, we are building The Painting Fool program, which we hope will one day be
taken seriously as a creative artist in its own right. The project has been ongoing
for around seven years, driven largely by the author, but with input in recent years
by PhD students, MSc students and research associates in the group. An example
image from one of the most recent projects with The Painting Fool—as described
in Sect. 1.4.3 below—is given in Fig. 1.1. We plan to work on The Painting Fool
in perpetuity, that is, for as long as it takes to satisfy the intellectual challenge of
building an autonomously creative system.

In one respect, we have fairly low standards: an automated painter doesn’t have
to produce art at the level of a great master, an esteemed professional, an art school

1The web pages for which are here: ccg.doc.ic.ac.uk.
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graduate or even a talented amateur artist. At least to start with, The Painting Fool’s
art has been rather naive and of little cultural interest, but as we progress with the
project, we hope the value of the artworks it produces will increase. In another
respect, however, we have fairly high standards: to be called a painter, our software
must simulate a range of both cognitive and physical behaviours common to human
painters. Such behaviours naturally include practical aspects such as the simulation
of making paint strokes on a canvas. However, we are also intent on simulating
such cognitive behaviours as the critical appraisal of one’s own work and that of
others; cultural and art-historical awareness; the ability to express ideas and moods
through scene composition, choice of art materials and painting style; and the ability
to innovate in artistic processes.

For some in the art world, there is a discernible resistance to using a computer in
art practice, and this is naturally heightened when mention is made of the software
acting as a creative collaborator or an independent artist. It is therefore an interest-
ing challenge to gain some level of acceptance for AI-based art producing software
within mainstream artistic communities. One problem has been that the majority of
artworks produced by software with some level of autonomy have limited appeal
and the pieces largely exist for decorative purposes. For instance, once any aesthetic
pleasure and possibly some awe at the power of modern computing has worn off,
it is difficult to have a conversation (in the cerebral, rather than the literal sense)
with an image of a fractal, or indeed many of the generative artworks that artists
and engineers regularly produce. Also, as a community of Computational Creativ-
ity researchers, there has been the assumption (or perhaps hope) that the artefacts
produced by our software—poems, pictures, theorems, musical compositions, and
so on—will speak for themselves. In certain creative domains, this may be the case.
For instance, it is possible that people will laugh at a funny joke regardless of how it
was conceived (with the caveat of controversial jokes: there is a big difference in our
appreciation of a racist joke told by a person of that race and of the same joke told
by a person of another race). However, in other domains, especially the visual arts,
there is a higher level of interpretation required for consumption of the artefacts.
In such domains, we have somewhat neglected the framing of the artefacts being
produced by our systems. Such framing includes providing various contexts for the
work, offering digestible descriptions of how it was produced, and making aesthetic,
utilitarian or cultural arguments about the value of the work. Only with this extra
information can we expect audiences to fully appreciate the value of the artefacts
produced autonomously by computers via more interesting, more informed, conver-
sations.

With The Painting Fool, we are building a system that aims to address the short-
comings described above. In particular, we are overcoming technical challenges to
get the software to produce more stimulating artworks which encourage viewers to
engage their mental faculties in new and interesting ways. These techniques include
new ways to construct the paintings, in terms of scene composition, choice of art
materials, painting styles, etc. In addition, they also include new ways to frame the
paintings, in terms of providing text about the artworks, putting them into context,
etc. We are pioneering Computational Creativity approaches which adhere to prin-
ciples designed to not only produce culturally valuable artefacts, but also to frame
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them in a way which makes them more interesting to audiences. We have argued
in favour of these principles from a philosophical viewpoint in (Colton 2008b), and
we have used them practically in the construction of The Painting Fool. Having said
that, we are still a long way off achieving our goal, and The Painting Fool is not
yet producing pictures of particularly high cultural value, or framing its work in
interesting ways.

The purpose of this chapter is to present the current state of The Painting Fool
project, to discuss some of the cultural issues raised, and to describe some ways in
which the project will continue. It is beyond the scope of this chapter to give a full
technical specification of the software, which runs to around 200,000 lines of Java
code, and relies on numerous other pieces of software. In place of these details, we
refer to various technical papers where the functionality of the software is described
at length. In Sect. 1.2, we present our work in some artistic, engineering and scien-
tific contexts. By placing our work in these contexts, in addition to studying state of
the art practices in Computational Creativity and through discussions with numer-
ous people about building an automated painter, we have put together a number of
guiding principles which we adhere to in building and framing our software. These
guiding principles are outlined in Sect. 1.3. To best describe our progress so far with
The Painting Fool project, in Sect. 1.4 we present the motivation, cultural and social
issues, technical difficulties and research results for a number of projects carried out
within this research programme. In Sect. 1.5, we describe future projects that we
intend to pursue towards the goal of building our automated painter, and getting it
accepted into society. We conclude in Sect. 1.6 by summarising the issues which
arise from the project and calling for collaboration on this project.

1.2 The Painting Fool in Context

Our personal preference is to think of computing as an engineering discipline which
uses both scientific and artistic methodologies to evaluate the computer programs
we design and engineer. Theoretical scientific methodologies are often employed in
order to have the ideas for software in the first place, and then experimental scientific
methodologies are employed to test the performance of software in terms of ability,
efficiency, reliability, etc. In the visual arts, software is largely employed as enabling
tools for artists to produce pieces of art or design. Increasingly, especially in so-
called new media circles, this has led to software itself being assessed in terms of its
cultural and artistic impact. This is most obvious with interactive digital art, where
audience members are (hopefully) intellectually stimulated through interaction with
software. In addition, video games are increasingly being seen as artistic artefacts,
and art students are regularly presenting software, such as novel web browsers, as
art objects in their degree shows. It is fairly rare to see computer programs shown in
galleries or exhibitions, unless they are interactive art pieces or they generate visual
and/or acoustic artworks for visitors. This shouldn’t be taken as an indication that
general (i.e. non-art producing) software cannot be artistically valuable, because
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acceptance of novel media such as software is generally rather slow. For instance,
only in 2009 did the Royal Academy in London first accept video installations for
its Summer Exhibition.

The visual art software we produce in Computational Creativity circles largely
fits into the mould of art-generating programs. However, there are two important
differences which set our programs aside from others in this mould. Firstly, there is
the underlying assumption that our software has some creative input to the process.
Sometimes, this creative input is in terms of the automatic assessment (and rejec-
tion or selection) of artefacts. Alternatively, the input may be in terms of searching
a space of artworks which can lead to surprising and interesting results. As a loose
rule of thumb, and without wanting to be too exclusive, if the software is not making
some kind of decision (whether about assessment and/or avenues of exploration), it
is unlikely to be considered to be within the realm of Computational Creativity. Sec-
ondly, Computational Creativity software can itself produce new programs, hence
it can act at a meta-level. Sometimes, this meta-level is not obvious, for instance,
the majority of evolutionary art systems produce programs (genotypes) which are
compiled or interpreted and executed to produce artworks (phenotypes). However,
the user is normally only ever shown the phenotypes, and in this sense the evolution-
ary software can be seen as an interactive art installation which enables the user to
produce aesthetically pleasing artworks. Occasionally, the meta-level is more obvi-
ous, for instance in Colton and Browne (2009) we evolved simple art-based games,
where the user could click on a spirograph being drawn in order to affect the draw-
ing process. If the user clicked correctly, the spirograph would be drawn to look like
a given one, which provided the game playing challenge. In this instance, therefore,
our evolutionary software was employed to produce new interactive programs for
artistic and playful purposes.

The Painting Fool is a generative art program with decision making abilities that
place it in the realm of Computational Creativity. It is definitively not a tool for
artists to use, and hence we do not make it available as such. Rather, we see it as
a fledgling artist that is being trained to act increasingly more creatively. In this
sense, our automated painter most closely resembles the AARON program written
by Harold Cohen and described in McCorduck (1991). This is a very well known
system that has been developed over 40 years to produce distinctive figurative art,
according to Cohen’s unique guidance at both generative and aesthetic levels. The
software has been through a number of stages of development: early versions pro-
duced child-like simple line drawings, and in a recent novel development, AARON
has started producing abstract images.

It is over-simplistic to say that AARON has been developed to paint in the style
of Cohen, as he has been influenced himself by feedback from the software, so the
process has been somewhat circular. However, it is fair to say that AARON has not
been developed to be independent of Cohen. Taken together as a package, Cohen
and AARON represent one of the biggest success stories of AI art, both in terms
of critical appraisal, acceptance (to a certain level) by the art world and sales to
collectors and galleries. Part of this success can be attributed to AARON being
seen as creative by various groups of people (although only in a guarded way by
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Cohen). This is because it invents scenes from imagination, i.e., each scene that
it paints is different, and doesn’t rely on digital images, etc. Moreover, the scenes
are figurative rather than abstract, hence the software uses information about the
way the world works, which is not often the case with generative computer art.
Cohen has used AARON to raise issues about the nature of software in art, which
has further increased the interest in the artworks it produces. For instance, he ends
(Cohen 1995) by asking:

If what AARON is making is not art, what is it exactly, and in what ways, other than its
origin, does it differ from the “real thing?” If it is not thinking, what exactly is it doing?

The main difference between The Painting Fool and AARON is in terms of the
range of artistic abilities in the two pieces of software. For instance, the range of
scene types that can be painted by AARON have differed somewhat over the years,
but are largely limited to figurative scenes involving multiple people, pot plants and
tables in a room. We discuss later how, when properly trained, The Painting Fool
can produce pieces which depict a wide variety of scenes, including ones similar
to those produced by AARON. The notion of training highlights another difference
between the two systems. To the best of our knowledge, AARON has only ever
been programmed/trained by Cohen, and that is not likely to change. In contrast,
again as described below, we have built a teaching interface to The Painting Fool
which enables artists, designers and anyone else to train the software in all aspects
of its processing, from the way in which it analyses digital photographs to the way
in which it constructs and paints scenes. We hope that allowing the software to be
trained by artists will ultimately enable it to produce more varied and culturally
valuable pieces. In particular, while The Painting Fool will be able to draw on and
refer directly to some of the training it has been given, with knowledge of the styles
of those who have trained it, the software will also be able to find its own path, its
own style. In addition to this, we have enabled the software to interact with online
information sources, such as Google and Flickr and social networking sites such as
Facebook and Twitter, as described below and in (Krzeczkowska et al. 2010). Again,
the hope is that the software can be trained to harness this information to produce
more culturally interesting paintings.

Future versions of The Painting Fool will be further distinguished from AARON
by their ability to critically appraise their own work, and that of others. Cohen pro-
vides aesthetic guidance to AARON by programming it to generate pieces in a cer-
tain style. However, he has not supplied it with any critical ability to judge the value
of the pieces it produces—and ultimately, Cohen acts as curator/collaborator by ac-
cepting and rejecting pieces produced by the system. In contrast, not only do we
plan for The Painting Fool to use critical judgement to guide its processing, we also
plan for it to invent and defend its own aesthetic criteria to use within these judge-
ments. For instance, it will be difficult, but not impossible, to use machine vision
techniques to put its own work into art-historical context, and appraise its pieces in
terms of references (or lack thereof) to existing works of art. In addition, we plan
a committee splitting exercise, whereby we use crowd sourcing technologies such
as Facebook apps to enable members of the public to score pieces produced by The



1 The Painting Fool 9

Painting Fool. The software will derive aesthetic measures via machine learning
techniques applied to the results of this crowd-sourcing activity. However, we will
attempt to avoid so-called “creativity by committee” by enabling The Painting Fool
to concentrate on those pictures which are liked and disliked by the crowd in equal
measures. In this way, its first learned aesthetic will hopefully be able to tell whether
a piece it produces is divisive or not, which is a start. We plan to enable the software
to invent and employ various aesthetic measures in a similar fashion.

It’s our intention for the art produced by The Painting Fool to cause audiences to
engage their mental faculties, and not just to think about the fact that the pieces were
computer generated (although we advocate full disclosure of how the software pro-
duces its artwork, as described below). This will be achieved through the production
of intrinsically interesting work, which includes emotional content, interesting jux-
tapositions, social commentary, and so on. A level of audience engagement will also
be made through the software framing its pieces in various art-historical and cultural
contexts, and providing titles and wall-text to this extent. There are already art gen-
erating programs which achieve a good level of engagement with audiences, some
of which are described in other chapters of this book. Indeed, there are many dif-
ferent kinds of conversations one can have with generative art pieces. For instance,
in some of the pieces produced by the NEvAr evolutionary art system described in
(Machado and Cardoso 2002), rather than being driven by the user, the software uses
built-in fitness functions to search for art generating programs. When viewing these
pieces, one might be tempted to try and determine what the fitness function was
and how it is expressed in the pieces, in much the same way that one might try and
work out the aesthetic considerations going through a human painter’s mind when
they painted their works. Concentrating on evolutionary art, other projects have ap-
pealed to the (un)natural world to evoke feelings in audiences. In particular, often
the fact that generated creatures (by for instance, Sims 1994) and flora and fauna
(by for instance, McCormack 2008) look so similar, yet dissimilar to real examples
of the natural world can lead to feelings of other-worldliness. McCormack’s work
on evolutionary decay takes this further, via appeal to the art-historical mainstay of
mortality. Similarly, the software in the Mutator project as originally described by
Todd and Latham (1992) produces organic forms which can be unnerving—possibly
because of a similar effect to the well-known uncanny valley effect in video games,
where automated non-player characters get too close to being human-realistic, caus-
ing an uncanny, uneasy feeling in many people.

All of these approaches produce works which are thought-provoking indepen-
dently of their evolutionary genesis, and there are numerous other generative art
projects which produce interesting and culturally relevant artworks, with Romero
and Machado (2007) providing a good starting point for further reading. However,
authors such as Galanter (2010) point out that often the most interesting aspect of
evolutionary artworks is the process which went into producing them. This follows
a long line of art movements where the principle innovation has been the production
process (e.g. impressionism: painting en plein air to catch fleeting light conditions;
pointillism: painting with complimentary dots of paint, as per colour theories, to
produce more vivid pieces, etc.). We certainly advocate providing a description of
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the processes at work when software produces pieces of art. However, our position
is that how the work is produced should form only one part of the framing of gener-
ative artworks, and they would be culturally more important if the pieces themselves
offered a reason for audiences to think about certain issues, or if they invoked certain
feelings or moods.

Another context within which our project can be seen is that of the graphics sub-
field of Non-Photorealistic Rendering (NPR). Here, the emphasis is on producing
software which simulates natural media such as paints, pencils, canvases, pastels,
and their usage in paint strokes, filling regions of colour, etc. Much of the pioneer-
ing work in this area has ended up in software such as Adobe Illustrator, which
give artists new digital tools and media to work with. As a good example, James
Faure-Walker (2006) mixes simulated paint with real paint in his art practice. NPR
software is designed along solid software engineering and Human-Computer Inter-
action lines to be useful and reliable tools for artists and designers. Moreover, given
that the consumers of such software are largely within the creative industries (and
hence possibly perceived to be worried about creative software taking over some
of their responsibilities), there have occasionally been mistakes of judgement from
NPR experts keen to downplay claims of creativity in their software. In particular,
in a standard NPR textbook, Strothotte and Schlechtweg state that:

Simulating artistic techniques means also simulating human thinking and reasoning, espe-
cially creative thinking. This is impossible to do using algorithms or information processing
systems. (Strothotte and Schlechtweg, 2002, p. 113)

It is difficult to tell whether this statement is denying the subfield of Computational
Creativity research, or the entire field of Artificial Intelligence. In any case, the state-
ment attempts to reinforce the myth that creativity is beyond scientific study, which
is one of the main issues addressed within creativity studies and Computational Cre-
ativity research in particular, as addressed most vocally by Boden (2003).

Other NPR researchers are more enlightened, however, and supply their tech-
niques with more intelligent abilities. For instance, with their saliency-adaptive
painting research, Collomosse and Hall (2006) enabled their NPR system to de-
termine the most important regions in an image using an evolutionary search. This
enabled the production of painterly renditions of digital images with special atten-
tion paid to the most salient regions, which is more in line with the way in which
painters understand the content of the pictures they are painting.

To summarise our placing of The Painting Fool project into various contexts, we
observe that it is generative art software which has evolutionary search and non-
photorealistic rendering abilities, in addition to the ability to construct scenes in a
similar fashion to AARON. It is being engineered and further trained to transcend
most generative art projects by addressing higher level artistic behaviours such as
critical ability and cultural awareness. As such, it is designed not as a tool for artists
to employ, but rather as a creative collaborator, or even an independent artist.
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1.3 Guiding Principles

The building of creative systems requires overcoming numerous technical problems
both of a general nature and in the particular domain within which the system works.
Given that the results arising from such systems are ultimately for general consump-
tion, building AI systems to create culturally interesting artefacts also requires a
certain amount of framing and promotion. Over the years, we have developed the
following seven principles to which we try to adhere when building creative soft-
ware and which we hope may be useful frames of reference for other people building
similar systems. They stand as a paradigm within which to build, test, employ and
promote the output of creative software.

1.3.1 Ever-Decreasing Circles

We start with the observation that it is much easier to put together artificially intelli-
gent systems if we have something concrete to work towards, especially when there
is a general and workable theory of human intelligence to guide us. This has led to a
somewhat unspoken notion in Computational Creativity that we should be looking
towards research about human creativity for guidance on how to get computers to
behave creatively. While such natural creativity research influences Computational
Creativity research to some extent, our efforts in building creative software simi-
larly influences our understanding of creativity in general. So, we shouldn’t wait for
philosophers, psychologists, cognitive scientists or anyone else to give us a workable
impression of what creativity is. We should embrace the fact that we are actually un-
dertaking research into creativity in general, not just computer creativity. Hence, we
should continue to build software which undertakes creative tasks, we should study
these systems, and we should help in the goal of understanding creativity in general.
In this way, there will be ever-decreasing circles of research where we influence the
understanding of natural creativity, then it influences our research, and so on until
we pinpoint and understand the main issues of creativity in both artificial and natural
forms.

1.3.2 Paradigms Lost

The problem solving paradigm in AI research is well established and dominant. It
dictates that when an intelligent task needs to be automated, we immediately ask the
same questions: Does it involve proving something?; Does it involve generalising
a pattern?; Does it involve putting together a plan? and so on. If it is possible to
answer yes to any of these questions, then the task is pigeonholed forever as a the-
orem proving problem, or a machine learning problem, or a planning problem, etc.
This often means that the original aim of the task is lost, because only researchers in
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the designated area will work on automating approaches with respect to particular
problems. As people, we don’t solve the problem of writing a sonata, or painting a
picture, or penning a poem. Rather, we keep in mind the whole picture throughout,
and while we surely solve problems along the way, problem solving is not our goal.
The main push to resurrect the lost paradigm of artefact generation—whereby the
production of culturally important artefacts is the point of the exercise—is coming
from the Computational Creativity community, and we should educate the next gen-
eration of AI researchers in the need to embrace entire intelligent tasks which lead
to the production of beautiful, interesting and valuable artefacts.

1.3.3 The Whole Is More Than a Sum of the Parts

We have observed that some of the more interesting pieces of software which under-
take creative tasks are those where multiple systems have been combined. Certainly,
the only systems we’ve personally built which might be called creative involve at
least two pieces of AI software written for different tasks being brought together
so that the whole is more than a sum of the parts. There is still a tendency to re-
implement techniques to fit into the workflow of a creative system rather than inves-
tigating how existing AI software could be incorporated. Sub-tasks within creative
systems are often being achieved sub-optimally with a bespoke system for, say,
generalisation that could be solved with an off-the-shelf machine learning system.
Similarly, we have seen some deductive tasks performed using a forward-chaining
approach that would be laughed at by automated reasoning researchers. We should
assume that anyone who has built software and made it available for others would
be very pleased to see it used in a creative setting, and such usage might help attract
more people to Computational Creativity research. It takes real effort to build sys-
tems which rely on other people’s software, but the benefits are much greater, as the
power and flexibility of the software vastly increases.

1.3.4 Climbing the Meta-mountain

Software is mostly a tool for humans to use, and until we can convince people that
computer programs can act autonomously for creative tasks, the general impression
will remain that software is of no more use to society than, say, a microwave. The
main problem is that, even within Computational Creativity circles, we still build
software that is intended to be used by, or at least guided by, us. A common way
in which this manifests itself is that we let the software have some autonomy in
the production of artefacts (which may involve the software assessing artefacts, for
instance), but we retain overall creative responsibility by choosing which artefacts
to present to the world. Moreover, a criticism that people often level at so-called
creative software is that it has no purpose. That is, if people didn’t run the software,
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analyse its output and publish the results, then nothing would happen—which is not
a good sign that the software is autonomously creative. This is a valid criticism.
However, it is one that we can manage by repeatedly asking ourselves: what am I
using the software for now? Once we identify why we are using the software, we can
take a step back, and write code that allows the software to use itself for the same
purpose. We call this process climbing the meta-mountain. If we can repeatedly ask,
answer, and code software to take on increasing amounts of creative responsibility,
it will eventually climb a meta-mountain, and begin to create autonomously for a
purpose, with little or no human involvement.

1.3.5 The Creativity Tripod

In many domains, in particular the visual arts, how an artefact is produced is very
much taken into account when people assess the value of the artefact. This leads
to a genuine, and understandable, bias towards human artefacts over computer gen-
erated ones, and this feeling is impervious to any Turing test, which demonstrates
that people cannot tell the difference between human and computer generated arte-
facts when they are presented out of context. This isn’t a fatal problem, though, as
long as we are happy to manage the public’s impression of how our software works.
In our many dealings with (well meaning) critics of Computational Creativity, we
have found that the main criticisms levelled at programs purporting to be creative is
that they lack skill, or they lack appreciation, or they lack imagination. We should
therefore manage these misconceptions by describing our software along these di-
mensions. Moreover, we should regularly ask ourselves: if I were to describe my
software using this supporting tripod of creativity terms, where would the weakest
link be? In identifying and addressing such weak links, we can build better software
both in terms of what it is able to achieve practically, and what it appears to be
doing.

As described in Colton (2008b), managing people’s perception of creativity in
software is as important as building more intelligent algorithms in domains where
cultural, contextual and historical precedents play an important role. Hence, if you
have software which doesn’t appreciate its own work, or the work of others, or its
subject material, etc., then you should write code which achieves this. If you have
software which isn’t particularly inventive, then you should implement some rou-
tines which could be described as imaginative, and so on. Using this tripod, we’ve
managed to devise a baseline test for creativity in software which is defensible. We
suppose that the software is regularly producing artefacts with certain behaviours
being exhibited simultaneously or in sequence during the production process. If
from these behaviours, one could genuinely be described as skillful, one could be
described as appreciative, and one could be described as imaginative, then we argue
that the software should be described as creative. There are two caveats here: firstly,
this is not a prescription for creativity in people; secondly, this is a baseline test, i.e.,
it doesn’t mean that the software is highly creative. Indeed, it is our responsibility to
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keep adding skillful, appreciative and imaginative behaviours so that the software is
perceived as increasingly creative.

1.3.6 Beauty Is in the Mind of the Beholder

By changing the sentence “Beauty is in the eye of the beholder” to the one above,
we want to emphasise that when people appreciate/buy artwork, the actual look
of the finished piece is only one thing they take into consideration. Other things
that occupy their mind may include details about the artist and their previous work,
other pieces of art owned by the art appreciator, or they have seen in museums,
whether the artwork will increase in value, etc. Most importantly, as argued previ-
ously (Sect. 1.3.5), people tend to take into account how a piece of art was produced
when assessing the finished product. If no information pertaining to the production
of an artwork is available, then people can fall back on general knowledge about the
struggle artists have in taming paint on a canvas, and can try and reverse engineer the
specifics of this from the paint strokes exhibited. These fallbacks are not available
for software generated artefacts, as most people have little idea about how software
works. Turing-test style experiments may seem attractive because it shows some
level of success if the artefacts being generated by a creative system are vaguely
comparable to those produced by people. However, computers are not humans, and
this fact should be celebrated, rather than hidden through Turing tests. In the visual
arts in particular, Turing-style tests ignore process and promote pastiche, both of
which are done at great peril, as expanded on in Pease and Colton (2011).

We argue that Computational Creativity researchers should be loud and proud
about the fact that our software is generating artefacts that humans might be physi-
cally able to produce, but might not have thought to actually bring into being. Many
people have asked why The Painting Fool produces artworks that look like they
might have been hand drawn/painted. It does seem like we are missing an oppor-
tunity to produce pieces that humans can’t produce, thus supplementing global art
production, rather than producing more of what people are already good at produc-
ing. This is a valid point, which we address to some extent in Sect. 1.4.5 below.
However, automatically producing images which can’t be produced by people is
easy, but not necessarily enough to demonstrate creativity. We have largely cho-
sen instead to aim at automatically producing images which look like they could
have been produced by people (because they include figurative details, messages,
intriguing references, skillful flourishes, etc.), but—importantly—have not yet been
produced by people because no one has so far thought to do so. This has the advan-
tage that audiences have a frame of reference, namely human painting, in which to
appreciate the behaviour of the software. It is for this reason that The Painting Fool
continues to produce images that look hand drawn. No self-respecting art school
graduate wants to be mistaken for another artist, and should be horrified if they
were mixed up with Picasso or Monet in a blind test. We should write software that
similarly wants to produce uniquely interesting works of art, which are not confused
with anyone else’s, whether human or computer.
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Another reason we believe we should not hide the fact that the artefacts are gen-
erated by a computer is because this kind of deception can set the computer up for
a fall. For instance, imagine a Turing-tester saying: “And so, I can now reveal that
these are the paintings produced by a recent art school graduate, and these are the
paintings produced by. . . a convicted murderer”. While this example may be a lit-
tle crass, it makes the point: by stating that the aim is to produce artefacts which
look like they might have been created by a person, it explicitly lowers the value of
the artefacts produced by computer. By using Turing-style tests, we are seemingly
admitting that pastiche is all that we aim for. At best, this shows that we don’t under-
stand one of the fundamental purposes of creative endeavours, which is to produce
something interesting which no one has produced before. In many domains, there is
no right or wrong, there is only subjective impression, public opinion and the val-
ues of influential people in that domain. As there is no reason why we can’t change
public opinion, there is no reason why we should compare our computer generated
artefacts to those produced by people. We can change the mind of the beholder to
more appreciate the value of the artefacts produced by our software, and in trying to
do so, we can learn a lot about the general perception of creativity in society.

Taking all the above arguments into consideration, we advocate non-blind com-
parison tests of human and computer art, where full disclosure of the processes
behind the production of each piece is given. It is not imperative that the software
generated artefacts look like they could be physically human-produced, but it might
help people to appreciate them. In such non-blind tests, if art lovers choose to buy
computer generated art as much as human art, because the pieces they buy stimu-
late their mind as well as their eye, we can claim real progress in Computational
Creativity.

1.3.7 Good Art Changes Your Mind

It is perhaps not useful to delve here into the debate about what is and what isn’t art.
However, it is difficult to argue against the fact that some of the best scientific dis-
coveries force us to think more about the Universe we inhabit, and some of the best
works of art, music, and literature were explicitly designed to make their audience
engage their brains more than usual. Sometimes, the artworks are designed to make
most people engage their brains in roughly the same way, other times the artworks
are meant to be interpreted in many different ways. Sometimes, the purpose is to
engage people on a cognitive level, other times the purpose is to engage them on an
emotional level. Given this, our software should produce artefacts with the explicit
purpose of making the human audience think more. This can be achieved in a num-
ber of ways (disguise, commentary, narrative, abstraction, juxtaposition, etc.), and
some of these are easier to achieve than others.

More than any other aspect of Computational Creativity research, this sets us
apart from researchers in other areas of AI. In these other areas, the point of the
exercise is to write software to think for us. In Computational Creativity research,
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however, the point of the exercise is to write software to make people think more.
This helps in the argument against people who are worried about automation en-
croaching on intellectual life: in fact, in our version of an AI-enhanced future, our
software might force us to think more rather than less. Note further that there are
also powerful works of art which emphasise the phenomenological experience of
the work, or which are best appreciated through types of meditation. Hence, as well
as hoping to increase mental activity with some of the artefacts that our software
produces—which would literally change peoples’ minds, whether in terms of an
long-held opinion or temporary feeling—we should also hope to change the state of
the minds of audience members. In either case, it is clear that, if we want Compu-
tational Creativity software to have impact on people, it should have individual and
collective models of the minds of audience members.

1.4 Illustrative Projects

Our purpose with The Painting Fool project is to build an automated painter which
is one day taken seriously as a creative artist in its own right. In order to do this,
we have developed a roadmap based on the notion of climbing a meta-mountain as
described above. That is, we have specified a sequence of very broad areas within
which to research and implement improved versions of the software, by asking the
question “what does a painter do?” and answering as follows:

1. Makes marks on a canvas
2. Represents objects and scenes pictorially
3. Paints scenes in different styles
4. Chooses styles in a meaningful way
5. Paints new scenes from imagination
6. Invents scenes for a purpose
7. Learns and progresses as an artist.

Naturally, this is a very subjective and quite naive breakdown of painterly pro-
gression, and is not intended for anything other than directing components within
our research programme. As such, it serves its purpose well, and as we will see each
component described below fits into one of the parts of this roadmap and contributes
to the overall goal of producing an independent artist. For each component, our over-
riding aim is to implement more sophisticated versions of the software. However,
determining what represents an improved program is often one of the more diffi-
cult aspects of the project, and we use both engineering standards and feedback
from people who view the artworks produced to assess the level of success of each
component. Hence, for the majority of the components, we present details of the
motivations and aims; some implementation details; results from scientific testing
of the software; and a gallery of images arising from running the software, along
with some commentary on the value of the images, based on the feedback we have
received.
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In the sections below, the work on non-photorealistic rendering fits into the first
three stages of the meta-mountain ascent given above, while the work on emotional
modelling fits into stage 4. In the section on scene construction, we describe work
towards stage 5 above, and the work on collage generation has been done with stage
6 in mind. Finally, the work on paint dances fits best into stage 7 of the above meta-
mountain ascent.

1.4.1 Non-photorealistic Rendering

Starting with the notion of an artist simply making marks on a canvas, we imple-
mented abilities for the software to simulate natural media such as pens, pencils,
pastels, paints, brushes, papers and canvases. These tools allow the system to cre-
ate the basis of an artwork, for example, applying paint strokes on a canvas, or
making pencil marks on paper. To employ these simulations in useful ways, we im-
plemented standard machine vision techniques to enable the software to identify
regions of colour in a digital image, i.e., image segmentation. This led to a graphics
pipeline whereby an image is first segmented into a set of paint regions, and then
each region is filled and/or outlined a series of times in possibly differing styles.
To enhance this pipeline, we enabled layers of different segmentations to be de-
fined for possibly different areas of the original digital image (for instance, the user
could define a region of the image as containing a person’s eyes, and specify that it
is segmented into more regions than the other areas, then painted differently). We
were careful to ensure that each stage of the pipeline can be user-controlled by a
fairly large number of parameters. For instance, image segmenting is controlled by
12 parameters, including: the number of segments required, the smallest segment
area allowed, the amount of abstraction of the segment regions, whether to allow
segments to have holes, etc. In addition, it is possible to map the colours in the seg-
mentation to a set of colours from another palette, for example, art deco colours.
The four different segmentations of a flower in Fig. 1.2 give some indication of the
range of segmentations possible via different parameterisations.

Image segmenting and the simulation of natural media are all standard non-
photorealistic rendering techniques, as described in textbooks such as (Strothotte
and Schlechtweg 2002). We differed from the standard approach in one main re-
spect, namely that we didn’t implement different methods for different media types.
For instance, the simulation of paints is usually treated differently to the simula-
tion of pencils or pastels, etc. Instead, we saw each media type as applying varying
amounts of pigment to a fixing medium such as paper or canvas. For instance, pencil
strokes could be seen as paint strokes carried out with a very thin brush and a less
than usual probability of the pigment sticking to the canvas (which gives the grainy
look required). As the individual strokes are only ever used to fill in colour regions,
we combined the parameterisation for the individual strokes with the parameteri-
sation of the way in which the strokes were employed. There are 45 parameters
controlling the way in which colour regions are rendered, and these include: aspects
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Fig. 1.2 Four different
segmenting styles

of the natural media, e.g., brush and bristle size and colour variation; aspects of the
individual strokes, e.g., length, taper, curvature; and aspects of the style in which
the strokes are used, e.g., ever-decreasing circles versus parallel line fill, number of
strokes required to fill a region, etc. The images in Fig. 1.3 give a flavour of the
different types of strokes and filling mechanisms available, but this is only the tip of
the iceberg—many more are possible.

Treating different media types with different models leads to more realistic look-
ing paint strokes. However, for our purposes, treating all the natural media types
and their usage as parameterisations of the same method essentially defines a search
space of simulations, which has advantages. In particular, there are parts of the
search space which fall in between particular natural simulations, such as paints
and pencils. Hence, it was possible to specify ways of filling colour regions with
unusual strokes which don’t necessarily look like they could be naturally produced.
Moreover, we were able to use search mechanisms to find natural media simulations
for specific purposes, which we used to discover novel painting styles to enhance
emotional content, as described below. Of course, these advantages would still be
present if we had separate simulation models for each natural medium, but it would
have seriously complicated the search mechanisms.

Full details of The Painting Fool’s non-photorealistic rendering capabilities are
available in Colton et al. (2008). In terms of the wider project, having the ability to
turn images into painterly renditions of them enabled us to present some pictures in a
group exhibition of computer generated art in 2007. An image from that exhibition is
given in Fig. 1.4. It forms part of a series of eight images of buildings and cityscapes
presented in the city series gallery at www.thepaintingfool.com.

www.thepaintingfool.com
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Fig. 1.3 Example paint strokes and region filling mechanisms

Fig. 1.4 A picture from the
city series gallery by The
Painting Fool

The exhibition gave us our first platform to introduce the notion of an indepen-
dent software artist, which enabled us to identify the first of many non-technical
issues related to this notion. In particular, the exhibition gained some press and me-
dia attention, and predictably led to stories about computers taking over the jobs of
people in the arts. In one case, a news team told the story of computer generated art
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in a TV article prefixed by the phrase: “Is this some kind of hellish nightmare?” This
is surely an over reaction, but it serves to highlight the public’s perceived fear over
the automation of human abilities, particularly in creative domains such as painting.
In response to this, we argue that established artists have more to fear from the latest
batch of art school graduates than from computers, because there will always be a
premium in art for human involvement.

It does not diminish the potential for computer generated art to engage audiences
in meaningful dialogues if we point out that many people appreciate art entirely
because of the human aspect: art lovers want to get to grips with the mind and
mood of the human behind the artwork. Hence, computer generated art may well
occupy different niches to that produced by people, and so there is little to worry
about in the automation of painting processes. More interestingly, the news team
described above also interviewed Ralph Rugoff—director of the Hayward Gallery
in London—and asked for his response to the notion of computer generated art. He
pointed out that while software is good at playing games with fixed rules, such as
chess, it is less obvious that computer programs can be playful in an artistic sense,
where there are no such rules and where cultural knowledge plays an important
role. Moreover, James Faure-Walker (another artist at the exhibition) pointed out
that most of the research in non-photorealistic graphics was essentially photograph
based, i.e., images are turned into painterly renditions. He added that this is rather a
naive approach, and noted that an idea rather than an image should be the motivation
for a piece of art. The issues raised by Rugoff and Faure-Walker led us to address the
(lack of) imaginative aspects of the software, and ultimately provided the inspiration
for the projects described under the scene invention and collage generation sections
below.

1.4.2 Emotional Modelling

Human emotion plays an enormous role in the visual arts. Often, paintings are pro-
duced in order to convey the emotion of the painter, or to evoke a particular emotion
in the viewer. In many cases, an important aspect of appreciating an artwork boils
down to understanding the emotions at play. When building an automated painter,
we have two choices with respect to emotional modelling. We could simply admit
that computers are not human, and therefore any attempt for the software to sim-
ulate emotions or model the emotions of viewers would be facile and doomed to
failure. In this case, we can emphasise that computer generated paintings can still
evoke emotions in viewers without necessarily modelling human emotions, and that
there are many other dialogues one can have with a painting other than trying to
understand the emotional state of the painter who produced it. Given that we argue
in the guiding principles given above that we should celebrate the difference be-
tween computers and people, it is certainly a defensible option to ignore emotion.
However, this would miss an opportunity to use pioneering work from the field of
affective computing, as described in Picard (2002), where software has been built to
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both simulate and detect human emotions. For this reason, we chose to implement
some simple but foundational emotional modelling in The Painting Fool.

We first asked the question of whether we can train the software to paint in differ-
ent styles, so that it can choose a particular style in order to heighten the emotional
content of a painting. Note that this corresponds with part four of the meta-mountain
described previously, i.e. choosing styles in a meaningful way. We worked on por-
traits of the actress Audrey Tatou as she portrayed Amélie Poulain in the film Le
Fabuleux Destin d’Amélie Poulain. This source material seemed appropriate, as the
film is largely about the emotional rollercoaster that Amélie finds herself on, and
the actress portrays a full range of emotions during the film. Working with 22 stills
from the film, we first annotated the images to specify where the facial features
were, and then we repeatedly suggested painting styles to The Painting Fool. The
descriptions of styles specified the level of abstraction to obtain through the image
segmenting; the colour palette to map the regions of colour to; the natural media
to simulate while filling/outlining the regions and the brush stroke style to employ
while doing so. Largely through trial and error, we derived many of the styles by
hand, by experimenting until the pictures produced were subjectively interesting.
In addition to these hand-derived styles, we also enabled the software to randomly
generate painting styles. Each time a style—whether randomly generated or derived
by us—subjectively heightened the emotion portrayed by the actress in one of the
stills, we recorded this fact. In this way, we built up a knowledge base of around
100 mappings of painting styles to emotions, with roughly half the styles provided
by us, and the other half randomly generated (but evaluated by us).

Naturally, this tagging exercise was a very subjective endeavour, as all the emo-
tional assessment was undertaken by us. Therefore, in order to gain some feed-
back about the knowledge base, we built an online gallery of 222 portraits produced
from the 22 stills. The gallery is called Amélie’s Progress and can be viewed at
www.thepaintingfool.com. The portraits are arranged from left to right to portray
emotions ranging from melancholy on the left to mild euphoria on the right. Some-
times, the emotion portrayed is largely due to the actress, but at other times, the
painting style has heightened the emotional content of the piece. Hence, on a num-
ber of occasions, we find the same still image painted in different ways on both the
left and the right hand sides of the gallery. An image of the entire gallery and some
individual portraits are presented in Fig. 1.5.

The Amélie’s Progress project raises some issues. In particular, we decided to
make the web site for The Painting Fool read as if The Painting Fool is a painter
discussing their work. This has been mildly divisive, with some people expressing
annoyance at the deceit, and others pointing out—as we believe—that if the software
is to be taken seriously as an artist in its own right, it cannot be portrayed merely
as a tool which we have used to produce pictures. In addition, we chose to enable
people working with The Painting Fool to see it paint its pictures stroke by stroke,
and we put videos of the construction of 24 of the Amélie portraits onto a video
wall, as part of the online gallery. This construction involves the sequential placing
of thousands of paint strokes on a canvas. In another area of the web site, there are
live demonstrations of paintings being constructed (as a Java Applet, rather than as

www.thepaintingfool.com
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Fig. 1.5 An overview of the
Amélie’s Progress gallery and
some sample portraits from it

a video of The Painting Fool at work). We have found that most people appreciate
the painting videos, as they promote empathy with the software to some extent.
While we know at least an approximation of the painting process for humans, in
most cases—especially with the complex mathematical machinations of Photoshop
filters—we do not know how software produces painterly images. Hence, seeing
each simulated paint stroke applied to the canvas enables viewers to project effort
and decision making processes onto the software. We have argued above that the
process behind art production is taken into account when people assess the value of
pieces of art, and we have much anecdotal evidence to highlight how evaluation of
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Fig. 1.6 Example portraits using styles to heighten (L to R) sadness; happiness; disgust; anger;
fear and surprise

The Painting Fool’s pieces is increased after people see the videos of it at work. Of
course, this approach was pioneered by Harold Cohen, as it has always been possible
to view AARON at work, and AARON was an inspiration for us in this respect.
Moreover, in discussions with Palle Dahlstedt about how software can better frame
and promote their own work, he suggested that the artefacts produced by music and
visual art systems should contain at least a trace of the construction process (see
Chap. 8). In simulating paint strokes and showing construction videos, we achieve
this with The Painting Fool.

One criticism of most image manipulation software is that it has no appreciation
of the images it is manipulating. Hence a Photoshop filter will apply the same tech-
niques to an image of kitten as it would to an image of a skyscraper, which clearly
has room for improvement. To address this, and following on from the Amélie
project, we addressed the question of whether The Painting Fool can detect emotion
in the people it is painting and use this information to produce more appropriate
portraits. Detecting emotion in images and videos is a well researched area, and we
worked with Maja Pantic and Michel Valstar in order to use their emotion detection
software (Valstar and Pantic 2006), in conjunction with The Painting Fool. The com-
bined system worked as follows: starting with the sitter for a portrait, we asked them
to express one of six emotions, namely happiness, sadness, fear, surprise, anger or
disgust, which was captured in a video of roughly 10 seconds duration. The emo-
tion detection software then identified three things: (i) the apex image, i.e. the still
image in the video where the emotion was most expressed, (ii) the locations of the
facial features in the apex image, and (iii) the emotion expressed by the sitter—with
around 80 % accuracy, achieved through methods described by Valstar and Pantic
(2006). It was a fairly simple matter to enable The Painting Fool to use this in-
formation to choose a painting style from its database of mappings from styles to
emotions and then paint the apex images, using more detailed strokes on the facial
features to produce an acceptable likeness. We found subjectively that the styles for
surprise, disgust, sadness and happiness worked fairly well in terms of heighten-
ing the emotional content of the portraits, but that the styles for anger and fear did
not work particularly well, and better styles for these emotions need to be found.
Sample results for portraits in the six styles are given in Fig. 1.6.

The combined system was entered for the British Computer Society’s annual
Machine Intelligence Competition in 2007, where software has to be demonstrated
during a 15 minute slot. The audience voted for the Emotionally Aware Painting
Fool as demonstrating the biggest advancement towards machine intelligence, and
we won the competition. More importantly for The Painting Fool project, we can
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now argue that the software shows some degree of appreciation when it paints. That
is, it appreciates the emotion being expressed by the sitter, and it has an appreciation
of the way in which its painting styles can be used to possibly heighten the emotional
content of portraits.

1.4.3 Scene Construction

Referring back to the creativity tripod described in the guiding principles above,
we note that through the non-photorealistic rendering and the emotional modelling
projects, we could claim that the software has both skill and appreciation. Hence,
for us to argue in our own terms that the software should be considered creative,
we needed to implement some behaviours which might be described as imaginative.
To do so, we took further inspiration from Cohen’s AARON system, specifically its
ability to construct the scenes that it paints. It was our intention to improve upon
AARON’s scene generation abilities by building a teaching interface to The Paint-
ing Fool that allows people to specify the nature of a generic scene and the software
can then produce instantiations. As described below, we have experimented with nu-
merous techniques in order to provide people with a range of methods with which to
train the software. The techniques include AI methods such as evolutionary search
and constraint solving approaches; exemplar based methods, where the user teaches
the software by example; and third party methods such as context free design gram-
mars for generating parts of scenes.

We describe a scene as a set of objects arranged prior to the production of a
painterly rendition. This could be the arrangement of objects for a still life, the or-
chestration of people for a photograph, or the invention of a cityscape, etc. In prac-
tical terms, this entails the generation of a segmentation prior to it being rendered
with simulated paints and pencils. This problem is most naturally split into firstly,
the generation of the overall placement of elements within a scene—for instance
the positions of trees in a landscape; and secondly, the generation of the individual
scene elements—the trees themselves, composed of segments for their trunks, their
leaves, and so on. While this split is appealing, we did not develop separate tech-
niques for each aspect. Instead, we implemented a layering system whereby each
segment of one segmentation can be replaced by potentially multiple segments re-
peatedly, and any segmentation generation technique can be used to generate the
substitutions. This adds much power, and, as shown in the example pictures below,
allows for the specification of a range of different scene types.

Our first exploration of scene generation techniques involved evolving the place-
ment of scene elements according to a user-defined fitness function. Working with
the cityscape scene of the tip of Manhattan as an inspiring example (in the words of
Ritchie (2007)), we defined a fitness function based on seven correlations between
the parameters defining a rectangle, with a set of rectangles forming the cityscape
scene. For instance, we specified that there needed to be a positive correlation be-
tween a building’s height and width, so that the rectangles retained the correct pro-
portions. We similarly specified that the distance of a rectangle from the centre of
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Fig. 1.7 A flower
arrangement piece from the
“Pencils, Pastels and Paint”
gallery by The Painting Fool

the scene should be negatively correlated with the rectangle’s height, width and sat-
uration, so that buildings on the left and right of the scene were smaller and less
saturated, leading to a depth effect. The genome of the individuals were the list of
rectangles making up the scene. Crossover was achieved by swapping contiguous
sublists, i.e. splitting the genomes of parents into two at the same point and produc-
ing a child by taking the left hand sublist from one parent and the right hand sublist
from the other parent (and vice-versa for another child). Mutation was achieved by
randomly choosing an individual with a particular probability, the mutation rate,
for alteration. This alteration involved changing one aspect of its nature, such as
position, shape or colour.

We experimented with one-point and two-point crossover, and with various muta-
tion rates, population sizes and number of generations, until we found an evolution-
ary setup which efficiently produced scenes that looked like the tip of Manhattan
(Colton 2008a). We turned each rectangle into a segment of a segmentation, and
The Painting Fool was able to use these invented scenes as the subject of some pic-
tures. Moreover, we used the same techniques to evolve the placement of flowers
in a wreath effect, with the rectangle position holders replaced by segmentations
of flowers. When rendered with pencil and pastel effects, these arrangements be-
came two of the pieces in the “Pencils, Pastels and Paint” permanent exhibition, as
described at www.thepaintingfool.com, with an example given in Fig. 1.7.

In an attempt to climb the meta-mountain somewhat, we realised that in defin-
ing the fitness function, we had ultimately performed mathematical theory forma-
tion. This suggested that we could employ our HR mathematical discovery system
(Colton 2002), to invent fitness functions in our place. Using the same parameters
required to define the original correlations (rectangle width, height, hue, saturation,
brightness, and co-ordinates) as background information, and by implementing a
new concept formation technique involving correlations, we enabled HR to invent
new fitness functions as weighted sums of correlations over the parameters. For each
fitness function, we calculated the fitness of 100 randomly generated scenes. If the

http://www.thepaintingfool.com
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Fig. 1.8 Ten scenes generated for different invented fitness functions and two randomly generated
scenes

average fitness was greater than 0.8, then it was likely that optimal fitness was too
easy to achieve, and if it was less than 0.4, then it was likely that there were some
contradictions in the fitness function. Hence, we only accepted fitness functions with
an average for the 100 random scenes of between 0.4 and 0.8.

For each of ten acceptable invented fitness functions, we evolved a scene to max-
imise the fitness, and on each occasion, the scenes exhibited visually discernible
properties. Moreover, two of the scenes genuinely surprised us, because the fitness
functions had driven the search towards scenes which we didn’t expect. In particular,
for one fitness function, the fittest scene involved clumping together the rectangles
in three separate centres (scene G in Fig. 1.8), and for another fitness function, the
fittest scene had buildings placed on top of each other (scene C), which was not ex-
pected at all. The ten scenes arising from the fitness functions are given in Fig. 1.8,
along with two randomly generated scenes, for comparison (R1 and R2). This ap-
proach to the invention and deployment of fitness functions is described fully in
Colton (2008a). It raises the issue of software defining, employing and defending
its own aesthetic considerations, something we will come back to in future work. It
also highlights one of the accepted tenets of Computational Creativity research—
that creative software should surprise its programmers.

Specifying correlation-based fitness functions for evolutionary scene generation
worked well, but it had two main drawbacks: (i) for artistic purposes, sometimes
the scene must fully adhere to some constraints, yet there is no guarantee that it
will be possible to evolve a scene scoring 100 % for fitness, (ii) specifying a fitness
function is not always a particularly natural thing to do and it would be better if
someone using The Painting Fool’s teaching interface were able to express their
desires for a scene in a visual manner. To address these issues, we investigated the
usage of constraint solving, whereby the requirements for a scene, or an element
within a scene, are expressed by dragging, scaling and changing the colour of a set
of rectangles. Following this, the constraints expressed in the scene are induced and
translated into a constraint satisfaction problem (CSP, as described by Abdennadher
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Fig. 1.9 Partial scenes provided by the user and completed scenes produced by solving the induced
constraint satisfaction problem

and Frühwirth (2003)) and then the CSP is solved to give one or more instances of
the scene which differ from the one defined by the user, while still satisfying all
the required constraints. Full details of the implementation and our experimentation
with it are given in Colton (2008c).

In summary, the user is able to visually express constraints involving: (a) the
ranges of properties of rectangles, such as their co-ordinates, colours, dimensions,
etc., (b) co-linearity of points on rectangles, (c) propositional notions describing
pairs of rectangles, such as the constraint that if the width of rectangle 1 is greater
than that of rectangle 2, then its height should also be greater, (d) correlations be-
tween the properties of a rectangle, and (e) constraints specifying overlap or dis-
jointness of pairs of rectangles. The software then induces the constraints and asks
the user to check whether each one is there by design, or has risen co-incidentally, in
which case it can be deleted. At this stage, the user can also describe which aspects
of the scene are to be generated randomly, for instance they can specify that the X
co-ordinate of the rectangles should be chosen randomly from within a range. The
constraints are then interpreted as a CSP for the Sicstus CLPFD solver (Carlsson
et al. 1997). The variables of the CSP are the co-ordinates, dimensions and colour
values of a set of rectangles, with the set size also specified by the user. Hence a so-
lution to the CSP represents a scene of rectangles, and if a random element has been
introduced, each scene will be different. To test the constraint solving approach,
we worked with an inspiring example of trees in a forest, which ultimately led to
the “PresidENTS gallery” as described below. The guiding scene and an example
generated scene are provided in Fig. 1.9 for two constructions.

Unfortunately, for scenes of ten or more elements, we found that the constraint
solver could take a prohibitively long time to find a perfect solution, and hence we
re-integrated the evolutionary approach so that the fitness function could be defined
as the number of singletons or pairs of scene elements adhering to the constraints.
This means that the visual specification of the scene constraints can be used with a
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faster evolutionary approach, although the resulting scene may not fully satisfy all
the constraints (which in scenes with more elements may actually be desirable).

To supplement the constraint-based and evolutionary approaches, we wanted the
teaching interface to enable the user to simply draw an example of the scene or
scene element that they wanted to specify, and for the software to use this as an
exemplar in order to generate similar looking examples. To do this, we implemented
a drawing interface that records key anchor points of each line drawn by a user. The
anchor points are recorded as variables rather than fixed values, so they can vary
within ranges in order to produce similar looking shapes in a scene. Additionally, we
allow the user to specify the hue, saturation and brightness ranges within which the
colour of each shape can vary, and to specify allowable linear transformations (such
as translations and rotations) and non-linear transformations (such as perspective
warping) that entire shapes, or even the entire scene can be subjected to.

To further supplement the scene generation abilities of the teaching interface, we
integrated the CFDG generative art software,2 and our own evolutionary art software
(Hull and Colton 2007, Colton et al. 2011). The former system is able to generate
representational and abstract artworks by using context free design grammars, and
there are thousands of grammars available for use in art projects. The latter system
is able to generate abstract art forms in a number of styles, including pixel-based
(similar to fractals), particle based, and spirograph based (Colton and Browne 2009).
Finally, the sixth scene generation method available within the teaching interface is
to take a digital image and turn it into a segmentation, as described in the non-
photorealistic rendering section above. We further enabled the image to be filtered
before it is segmented, as per our Filter Feast software (Torres et al. 2008).

In addition to a screen for each of the segmentation generation methods described
above, the teaching interface has a screen to describe how the different methods are
to be used in layers to form the overall scene. It also has a screen to describe how
the different elements of the scene are to be rendered using NPR techniques and a
screen to describe how to generate paint dance animations (see below). The teaching
interface is currently in beta development. While it is not yet ready for general usage,
it is possible to define and render scenes. Given that we hope to attract other people
to use the software to define their own pictures, it was important to provide example
projects that produce interesting images. This has led us to the production of a series
of galleries, collectively entitled: “Ever so Slightly. . . ”. The rather strange name
recognises the fact that it is not feasible that anyone will project a great deal of
imagination onto software which is able to produce novel scenes using a template
provided by people, but it may be possible to project a slight amount of imagination
onto the software, and this is our aim.

There are currently four galleries in the series, named: “PresidENTS”, “Fish
Fingers”, “After AARON”, and “Dance Floor”. An example from the “Dance
Floor” series has been given in Fig. 1.1, and we give examples from the oth-
ers in Fig. 1.10. The titles of the first two are fairly awful puns which reflect

2Available at www.contextfreeart.org.

http://www.contextfreeart.org
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Fig. 1.10 Pictures from the “PresidENTS”, “Fish Fingers” and “After AARON” galleries in The
Painting Fool’s “Ever So Slightly. . . ” exhibition

their content, and we won’t spoil the fun of working out the wordplay here
(see www.thepaintingfool.com). The fourth one reflects the influence that Cohen’s
AARON system has had on the scene generation aspects of The Painting Fool—as
we see in the images shown, the pictures strongly reference the contents of the pic-
tures produced by AARON, although we did not try to capture its visual style. Note
that the human figures were produced by context free design grammars, and the ab-
stract images on the walls of the room were similarly produced. The gradient effect
of the ceiling and floor used a constraints approach to the generation of rectangles
which were filled in using simulated pencils.

1.4.4 Collage Generation

The pictures produced in the “Ever So Slightly. . . ” series represent a step in the right
direction towards imaginative behaviour. However, looking at the meta-mountain
we have described for The Painting Fool, the software needs to construct scenes
for a purpose. Moreover, while the paintings in the series may be amusing and
mildly thought-provoking as simple word/art puzzles, they are certainly not the most
provocative of works. One aspect of the human painting process that is rarely simu-
lated in computer art programatically is the ability to construct paintings to convey
a particular message within a cultural context. We looked at using text and image
resources from the internet as source materials for the production of artwork that
might have a cultural impact (Krzeczkowska 2009). In particular, the software began
by downloading headline news stories from the websites of the Guardian newspaper
and other news sources. Using text extraction software (El-Hage 2009), based on
the TextRank algorithm (Mihalcea and Tarau 2004), the most important nouns were
extracted from the text of the news story. These were then used as keywords for
searches in image repositories, including Google images and Flickr. The resulting
images were juxtaposed in a collage which was turned into a segmentation, and the
non-photorealistic rendering software from The Painting Fool was used to produce a
painterly rendition of the subject material. With the exception of the text extraction
software, the process was largely devoid of AI techniques, and this is something we
plan to work on. However, the results were often remarkably salient. As an example,
one morning, the software downloaded the lead story from the Guardian, which was

www.thepaintingfool.com
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Fig. 1.11 Collage produced
in response to a news story
about the war in Afghanistan

covering the war in Afghanistan, and used images from Flickr to illustrate it. The
final collage was quite poignant, as it contained a juxtaposition of a fighter plane, an
explosion, a family with a small baby, a girl in ethnic headwear, and—upon close
inspection—a field of war graves. The collage is given in Fig. 1.11.

In Krzeczkowska et al. (2010), we used this project to raise issues of intent in
generative software. Usually, the intent for a piece is supplied by a human user, pos-
sibly through the expression of an aesthetic judgement and/or tailoring the content
to fit the intent. However, with the Afghanistan collage, we were not users of the
software in the traditional sense. Firstly, the software ran as a timed batch process,
hence we didn’t hit the start button. Secondly, we had no idea that the software
would find a story about war, and thirdly, we had no idea which keywords it would
extract or which images it would retrieve for the collage. Hence, it is difficult to
say that we supplied much intentionality for the collage, even though the painting
does achieve a purpose, which is to force the viewer to think about the Afghanistan
war. We argue that it is possible to say that the software provided some of the in-
tent, but we acknowledge that this is controversial. In fact, as described in Cook and
Colton (2011), it seems clear that five parties contributed intent in the construction
of the Afghanistan collage: (i) the programmer, by enabling the software to access
the left-leaning, largely anti-war Guardian newspaper, (ii) the software, through its
processing, the most intelligent aspect of which was the extraction of the keywords,
(iii) the writer of the original article, through the expression of his/her opinions in
print, (iv) individual audience members who have their own opinions forming a
context within which the collages are judged, and (v) the Flickr users whose images
were downloaded to use in the collage, by tagging many negative images such as
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explosions and fields of graves with the kinds of neutral words that were extracted
from the newspaper article, such as “Afghanistan”, “troops” and “British”.

We also used the collage generation project to raise the issue of playfulness in
the software, as the collages would often contain strange additions, such as an image
of Frank Lloyd-Wright’s Falling Water building being included in a collage arising
from a news story about the England cricket team (see Krzeczkowska et al. (2010)
for an explanation of how this happened). We don’t claim that the word “playful”
should be used to describe the software, but it does show potential for this kind of
behaviour.

1.4.5 Paint Dances

In many respects, it is an odd choice to build an automated artist that simulates tradi-
tional media such as paints and brushes. It would seem to be missing an opportunity
for the software to invent its own medium of expression and exploit that. In future,
we would have no problem with the software performing such medium invention,
and we would see that as a very creative act. However, we argue that while the soft-
ware is in its early stages it is more important for its behaviour to be understood
in traditional artistic terms, so that its creativity can be more easily appreciated. In
particular, as described in Sect. 1.3.6, we want the software to produce paintings
that look like they could have been physically produced by a human, but simultane-
ously look like they would not have been painted by a person because they are so
innovative in technique and in substance.

Notwithstanding this notion, we wanted to follow an opportunity for the soft-
ware to work in a new medium, albeit one which is not far removed from painting,
namely, paint dances. We define a paint dance as an animation of paint, pencil, or
pastel strokes moving around a canvas in such a way that the strokes occasionally
come together to produce recognisable subject material. We worked with portraits,
in particular our subject material was images of the attendees of the 2009 Dagstuhl
seminar on Computational Creativity. The technical difficulties involved are dis-
cussed in Colton (2010). In summary, to achieve the paint dances, we first imple-
mented a way to tell which pairs of strokes from two different paintings were most
closely matched. Following this, from the 60,000 pencil strokes used in the 32 por-
traits of the Dagstuhl attendees, we used a K-means clustering method to extract just
enough generic strokes to paint each picture in such a way that the fidelity would re-
main high enough for a likeness to be maintained. The final technical hurdle was to
write software to perform the animations by moving and rotating the paint strokes in
such a way as to come together at the right time to achieve a portrait. We have so far
completed two paint dances: “meeting of minds”, where pairs of pencil portraits are
shown together, with the strokes meeting in the centre of the picture as they move to
form two new portraits, and “eye to eye”, where each painted portrait is formed in-
dividually, with spare paint strokes orbiting the scene. The images in Fig. 1.12 show
the stills from a transition in both pieces. These videos formed part of an group
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Fig. 1.12 A series of stills from the “Meeting of Minds” and the “Eye to Eye” paint dances pro-
duced by The Painting Fool

exhibition of work by members of the Sony Computer Science Laboratory, held at
La Maison Rouge in Paris in September 2011 (see www.thepaintingfool.com for
details).

This project raises the issue of software undertaking tasks that people cannot
perform—in this case, the calculation of where to place thousands of strokes at
thousands of time steps. As artists have been finding out since the advent of the com-
puting age, getting software to undertake tasks beyond their capacity can enhance
the space of possibilities in creative projects. Moreover, in an age of personalisa-
tion, such as personalised healthcare, personalised entertainment, etc., the only way
to achieve personalised artistry will be to engage computers to produce artworks for
people on an individual level. However, we note that the aesthetic decisions for the
paint dance project were still undertaken by us, and not the software. Hence, in line
with our guideline of climbing the meta-mountain, the next stage for this project
will be to enable the software to invent animation techniques and make aesthetic
judgements about what to apply while composing the paint dances.

1.5 Future Directions

We tend to undertake projects within quite large research programmes over a lengthy
period of time, whereby multi-faceted intelligent systems are built by developing
and combining our own techniques with existing AI systems (adhering to the prin-
ciple that the whole is usually more than the sum of its parts). Ultimately, our aim
is for the software we build to exhibit a range of intelligent behaviours while gener-
ating culturally interesting artefacts, all within a Computational Creativity setting.
The Painting Fool is very much a work in progress, and we are not claiming that it
should be taken seriously as an independently creative artist yet (and even if or when
we do make that claim, it will be in reference to an artist of a low ability, at least
to start with). In order to discuss future directions for The Painting Fool project, we
address our current progress with respect to the guiding principles mentioned above,
highlight areas where these principles can be used to assess the system negatively,
and suggest ways forward.

With respect to the skill, appreciation and imagination requirements of the cre-
ativity tripod, it is easy to argue that the software is able to simulate the kinds of
physical skills that are required of a painter. In addition, with the ability to pro-
duce paint dances, we can claim that the software has skills not possessed by hu-
man painters. There are numerous additional physical skills that we would like to

http://www.thepaintingfool.com
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simulate. For instance, the ability to produce smooth colour gradients through paint
strokes is something that would certainly enhance the quality of the pieces produced
by the software, and other physical simulations such as the use of a palette knife,
the ability to spatter paint, etc., would all add value.

The software is more lacking in appreciative and imaginative behaviours than in
skillful behaviours. We have argued that with the emotional modelling projects, the
software is exhibiting some level of appreciation of its subject material and its paint-
ing styles. The fact that The Painting Fool cannot assess its own artworks and those
of others against various aesthetic considerations is a major gap in its abilities. We
have implemented abilities for the software to calculate objective measures of ab-
stract art, for instance the location of symmetries, the distribution of colours, regions
of high and low texture, etc. However, it is difficult to imagine training the software
to appreciate works of art without essentially training it in a singularly subjective
way (i.e. to become a “mini-me” for someone). In such circumstances, it would be
difficult to argue against the software simply being an extension of the programmer,
which we clearly want to avoid. An alternative approach is to build on the project to
use mathematical theory formation to invent fitness functions, as described above.
Rather than inventing a single fitness function, we hope to show that it is possible
for software not only to invent more wide ranging aesthetic considerations, but also
adhere to them, change them and discuss and possibly defend them within cultural
contexts.

One aspect of this may involve getting feedback from online audiences, which
will be used to tailor the image construction processes. However, as mentioned in
Sect. 1.2, we are keen to avoid creativity by committee, which could lead to the
software producing very bland pieces that do not offend anyone. Instead, we propose
to use a committee splitting process, by which The Painting Fool will judge the
impact that its pieces have on people, and choose to develop further only those
techniques that led to pictures which split opinion, i.e. those which people really
liked or really hated. Enabling the software to work at an aesthetic level will also
involve endowing it with art-historical and cultural knowledge to allow it to place
its work in context and to learn from the work of others. We are in discussions with
artists and art educators about the best way to do this. In addition, we will draw on
texts about creativity in both human and computer art, such as Boden (2010).

With the scene generation and collage generation abilities, we claim that the soft-
ware is very slightly imaginative, and we aim to build on these foundations. Firstly,
once the teaching interface is finished, we will deploy it by asking numerous people
from academia, the arts, and from the creative industries to train the software. The
payoff for people using the tool will be the production of pictures which hopefully
characterise the ideas they had in mind and would paint if they were using more
traditional methods. The payoff for The Painting Fool project will be a collection of
potentially hundreds of scene descriptions. We plan to use these in order to perform
meta-level searches for novel scenes in a more playful way than is currently pos-
sible. An important aspect of the teaching interface is the tagging of information,
which is passed from screen to screen in order to cross-reference material for use in
the overall scene construction. Hence, the software will in essence be taught about
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the visual representation of real-world objects and scenes (in addition, of course,
to imaginary ones). We hope to build models which can subvert this information in
playful and productive ways, building meaningful scenes different to those it was
given.

We also intend to extend the collage generation approach described above,
whereby online resources are employed as art materials. To this end, we have begun
construction of a Computational Creativity collective, available at: www.doc.ic.ac/
ccg/collective. The collective currently contains individual processes which perform
creative, analytical, and information retrieval tasks, along with mashups, which
combine the processes in order to generate artefacts of cultural interest. For in-
stance, the project whereby news stories are turned into collages described above is
modelled in the collective as a mashup of five processes which retrieve news sto-
ries, extract text, retrieve images and construct collages. The collective currently has
processes which can link to Google, Flickr, the BBC, LastFM, Twitter and numer-
ous other online sources of information. Our plans for the collective are ambitious:
we hope to attract researchers from various areas of computing including graph-
ics, natural language processing, computer music and audio, and AI to upload their
research systems to expand the collective.

Systems built for Computational Creativity purposes such as The Painting Fool
are beginning to have abilities of note in their particular domains of expertise, but
rarely are they combined in order to increase the cultural value of their output. Hence
we plan to paint pictures using the text produced by story generators like the Mexica
system (Perez y Perez 2007) as input, and there is no reason why the pictures pro-
duced couldn’t be used, for instance, as input to an audio generation system. This
example highlights the masterplan for the collective, which is to have the output
of one system continually consumed as the input to another system, thus provid-
ing a framework for experimentation with control mechanisms. In particular, the
first mechanism we will implement will be based on Global Workspace Architec-
tures, (Baars 1988), as per the PhD work of Charnley (2010). It is our hope that the
increase in complexity of processing, coupled with the ability to access culturally
important information from online resources will lead to more thought-provoking
artefacts being generated.

An important part of our future research will be to continue to engage audi-
ences on an artistic level, i.e., by organising exhibitions and reacting to the feed-
back we gain from such exercises. As an example, in April 2011, we exhibited art-
works from The Painting Fool alongside those by traditional artist Eileen Chen, who
worked in watercolours and graphic pens. The exhibition was entitled “No Photos
Harmed/Growing Paths from Seed”, and was a dialogue in which we explored the
handing over of creative responsibility in artistic processes. In traditional painting
approaches, with the subject matter and more pointedly with mediums such as wa-
tercolours, the artist has to occasionally go with the flow, hence doesn’t retain full
creative responsibility. We tried to emphasise the continuation of this with Compu-
tational Creativity projects, whereby such responsibilities are explicitly and wilfully
handed over to software.

http://www.doc.ic.ac/ccg/collective
http://www.doc.ic.ac/ccg/collective
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Fig. 1.13 The Dancing Salesman Problem piece from the “No Photos Harmed” exhibition (pic-
tured with the author). The piece is so named, because a solution to an instance of the travelling
salesman problem was used to generate the brush strokes

One of the pieces from The Painting Fool in this exhibition is presented in
Fig. 1.13. By calling our part of the exhibition “No Photos Harmed”, we empha-
sised the fact that computer generated art can be representational without requiring
digital photographs as input. For instance, the figurative piece presented in Fig. 1.13
has context free design grammars rather than photographs of people at its heart. This
was in direct response to James Faure-Walker’s comment mentioned above that the
inception of paintings is via ideas rather than images. Given that the theme of the
exhibition was handing over responsibility, we were asked to estimate how much of
the creative process was supplied by The Painting Fool. In answer, we guessed that
around ten percent of the creativity in the process came from the software. This is a
measure of autonomy in the software that we hope will increase in future versions.

1.6 Conclusions

The Science Museum in London once exhibited some interesting machines made
from Meccano which were able to perform fairly complex differential analysis cal-
culations. As these machines were built in the 1930s, the Meccano magazine from
June 1934 speculated about the future in an editorial article entitled: “Are Thinking
Machines Possible?” (Anon 1934). They couldn’t have possibly known the impact
that the computing age would have on society, but they were already certain about
one thing—at the very end of the article, the author states that:

Truly creative thinking of course will always remain beyond the power of any machine.

At this stage in the development of modern computing, it is neither a foregone
conclusion that we will never see truly creative machines, nor is it obvious that we
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will one day be working alongside creative individuals which happen to be comput-
ers. It is our job as Computational Creativity researchers to investigate the possibil-
ities for creative software, but we do not underestimate the difficulty of engineering
such systems, and we do not underestimate the difficulties we will face in getting
such software accepted on equal terms in society. We have described the overall aim
of The Painting Fool project and some of the components we’ve completed along
the way in order to climb a meta-mountain. The next stages will involve enabling
the software to learn and develop as a creative painter, and this will raise further
issues. One litmus test for progress, or even completion of the project, will be when
The Painting Fool starts producing meaningful and thought-provoking artworks that
other people like, but we—as authors of the software—do not like. In such circum-
stances, it will be difficult to argue that the software is merely an extension of our-
selves.

The project has always been driven by feedback from people around some of
the issues that we have raised here, and we always welcome collaboration in this
respect. It seems that creativity in software—and perhaps in people—is usually
marked negatively. That is, while there is no sufficient set of behaviours that a com-
puter program must exhibit in order to be deemed creative, there is a necessary set
of behaviours that it must exhibit to avoid the label of being uncreative. By adhering
to the guiding principles described above in undertaking projects with The Painting
Fool, we hope to manage people’s perceptions of creativity, most obviously through
(i) the notion of climbing the meta-mountain, whereby we describe the ways in
which the creative responsibilities we have as programmers and users have been be-
stowed upon the software, and (ii) the notion of the creativity tripod, whereby we
describe The Painting Fool’s behaviours in terms of the skills it has, the appreciation
that it exhibits and the imagination it exercises. It is our hope that one day people
will have to admit that The Painting Fool is creative because they can no longer
think of a good reason why it is not.
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Chapter 2
Creative Ecosystems

Jon McCormack

Abstract Traditional evolutionary approaches to computer creativity focus on op-
timisation, that is they define some criteria that allows the ranking of individuals in
a population in terms of their suitability for a particular task. The problem for cre-
ative applications is that creativity is rarely thought of as a single optimisation. For
example, could you come up with an algorithm for ranking music or painting? The
difficulty is that these broad categories are shifting and subjective: I might argue
that Mozart is more musically creative than Lady Gaga, but others may disagree.
Objective, fine-grained ranking of all possible music is impossible, even for hu-
mans. I will show how reconceptualising the exploration of a creative space using
an “ecosystemic” approach can lead to more open and potentially creative possibil-
ities. For explanatory purposes, I will use some successful examples that are simple
enough to explain succinctly, yet still exhibit the features necessary to demonstrate
the advantages of this approach.

2.1 Creative Systems

In this book you will find a broad range of definitions of creativity. Dorin and Korb
(Chap. 13), for example, emphasise a system’s propensity to generate novelty irre-
spective of its perceived value, similarly Schmidhuber (Chap. 12) views creativity
as a problem of learning information compression. Nake (Chap. 3) is more sceptical
about formal computer models of creativity, seeing the popular concept of creativity
today as “a US-American invention,” one that may be considered as a means for ac-
tivity, or as its goal. Pachet (Chap. 5) prefers to focus on “virtuosity”, emphasising
the thousands of hours that human artists must spend to master a discipline or instru-
ment. Each of these views place a different emphasis on which qualities, properties
or functions are important to understanding creativity precisely, and hence appreci-
ating its worth or relevance in any given domain.

If we take Boden’s popular definition—that creativity involves the generation
of ideas or artefacts that are new, surprising, and valuable (Boden 2010)—then an
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interesting question to ask is: what are the mechanisms that enable this creativity? It
appears likely that any such mechanisms are numerous and diverse. While creativ-
ity is commonly associated with the human individual, clearly societies and nature
invent, too.

The psychologist David Perkins (1996) talks about “creative systems”; recognis-
ing that there are different mechanisms or classes of underlying systems that are all
capable of producing creative artefacts. A creative system, in this view, is simulta-
neously capable of the production of novelty and adaptation in a given context. This
suggests natural selection is a creative system, generating things like prokaryotes,
multicellularity, eusociality and language, all through a non-teleological process of
hereditary replication and selection. Social interaction is another creative system,
having given rise to cultural customs such as shaking hands and a variety of gram-
matical forms in different human languages.

A number of authors have offered explanations of fundamental creative mecha-
nisms based on evolution or evolutionary metaphors, e.g. Martindale (1999), Lums-
den (1999), Dawkins (1999), Aunger (2002). George Basalla’s The Evolution of
Technology detailed a theory of technological evolution, offering an explanation for
the creative diversity of human made artefacts: “novelty is an integral part of the
made world; and a selection process operates to choose novel artifacts for replica-
tion and addition to the stock of made things” (Basalla 1998). Evolution has also
played an important role in computer-based and computer-assisted creative systems
(Bentley and Corne 2002), being able to discover, for instance, seemingly counterin-
tuitive designs that significantly exceed any human designs in performance (Keane
and Brown 1996, Eiben and Smith 2003, p. 10). Such results illustrate the potential
of evolutionary systems to devise unconventional yet useful artefacts that lie outside
the capabilities of current human creative thinking.

Defining a class of phenomena in formal, systemic terms allows for a transition
to the computer. The purpose of this chapter is to look at what kinds of computa-
tional processes might qualify as “creative systems” in their own right. Here I draw
my inspiration from natural systems, in particular evolutionary ecosystems. Biolog-
ical evolution is readily accepted as a creative system, as it is capable of discovering
“appropriate novelty”. The computer science adaptation of evolution, a field known
as Evolutionary Computing (EC), selectively abstracts from the processes of bio-
logical evolution to solve problems in search, optimisation and learning (Eiben and
Smith 2003). It is important to emphasise selectively abstracts here, as only certain
components of the natural evolutionary process are used, and these are necessar-
ily highly abstracted from their physical, chemical and biological origins, for both
practical and conceptual reasons. In the case of designing a creative system, the
challenge is somewhat different than that of standard EC: understanding how a pro-
cess that is creative in one domain (biology) can be transformed to be creative in
another (e.g. the creation of art) requires different selective abstractions.

Generating the adaptive novelty exhibited in creative systems can be concep-
tualised as a process of exploration through a space of possibilities, searching for
regions of high creative reward. Perkins (1996) uses the metaphor of the “Klondike
space”—Gold is where you find it. Perkins identified four basic problem types in
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Fig. 2.1 Illustrative diagram of “Klondike spaces” (left, after Bell 1999) and, characterisation of
archetypical search spaces in Evolutionary Computing (right, after Luke 2009)

the creative search of a conceptual space (Fig. 2.1, left): (i) rarity: viable solutions
are sparsely distributed in a vast space of non-viable possibilities; (ii) isolation:
places of high creative value in the conceptual space are widely separated and dis-
connected, making them difficult to find; (iii) oasis: existing solutions offer an oasis
that is hard to leave, even though better solutions might exist elsewhere; (iv) plateau:
many parts of the conceptual space are similar, giving no clues as to how to proceed
to areas of greater creative reward.

This classification is similar to archetypical search and optimisation problems
encountered in EC (Fig. 2.1, right), where algorithms search for optima in what are
often difficult phenotypic spaces (Luke 2009). For example, “rarity” corresponds to
“Needle in a haystack”, “oasis” to “Deceptive”. Noisy landscapes are particularly
problematic, where evolutionary methods may do no better than random search.

Knowing as much as possible about the structure of the space you are searching
is immensely important, as it allows you to strategically search using the most ef-
ficient methods. Additionally, being able to restructure the space can make it more
intuitive for creative exploration. Hence the design of any creative system should
take the structural design of the creative space very seriously. It is also important
to emphasise that the search process is an explorative one. For most creative sys-
tems, this search space is Vast (McCormack 2008b), and there may be many iso-
lated “Klondike spaces” of rich creative reward. The challenge is to efficiently and
effectively find and explore them.

2.1.1 Spaces of Possibility

We should make further distinctions about creative spaces and spaces of possibility.
As I have previously discussed (McCormack 2008b), in many domains there are
large and crucial differences between the possible and actual. For example, consider
a digital image defined by executing an arbitrary Lisp expression over some do-
main (x, y), where x and y are the co-ordinates of a rectangular grid of pixels that



42 J. McCormack

comprise the image. Iterating through each co-ordinate, the expression returns the
corresponding pixel’s colour. Different expressions will usually generate different
images (although many different expressions will also generate the same image). In
theory, this system is capable of generating any possible image, provided you have
the appropriate Lisp expression to generate it.

This represents a space of possibilities than encompasses every possible image
that can be represented by coloured pixels over (x, y). For any reasonable image
dimensions, the size of this space is Vast, far beyond comparisons with astronom-
ical maximums such as the age of the universe, or the number of basic sub-atomic
particles estimated to exist in the universe.

However, the actual space of images that can be practically created with a Lisp
expression is considerably smaller, limited by physical constraints. From the per-
spective of evolutionary creativity, if we evolve a Lisp expressions using, for ex-
ample, an Interactive Genetic Algorithm (IGA, see Sect. 2.2), the actual images
produced are all relatively similar and represent an infinitesimally small fraction
relative to the possible space of which the system is theoretically capable.1

So while a representational system may theoretically cover a large range of possi-
bilities, searching them—even with evolutionary methods—will only permit exami-
nation of insignificantly small regions. Furthermore, transformation or modification
of the underlying generative mechanism2 may open up new spaces not so easily
found by the original, e.g. the addition of symmetry functions for the Lisp expres-
sion example would make it easier to generate images with symmetric elements. Of
course we need some way of finding the “right” transformations or modifications to
make. This is a kind of “meta-search” (a search of the different types of generative
mechanisms that define a representational space). Further, this opens a hierarchy
(meta-meta-search, meta-meta-meta-search, etc.), which effectively amounts to the
same problem of the possible and actual in our original “flat” search.

What this means in practical terms is that there must be some human-defined
generative mechanism as the basis for any computational creative system,3 which
will require serious human ingenuity and creativity if it’s design is to be effective.
I will return to this point in Sect. 2.4.3. While much research effort and discussion
has focused on evaluation and judgement in computational creative systems, repre-
sentation has received far less attention.

A somewhat analogous situation exists in biology. The space of possible DNA
sequences is far greater than the space of viable, or possible, phenotypes.4 The space
of possible phenotypes (those which could exist) is again larger than the space of

1By my estimates, about 5 × 10−1444925 % for images of modest dimensions, far beyond astro-
nomically small.
2By “generative mechanism” I am technically referring to the genotype and the mechanism that
expresses it into a phenotype.
3The mechanism can include the ability to self-modify, change, or learn.
4We might think of “viable” as meaning being able to effectively express a living organism from a
zygote or through mitosis of a parent cell. But this is problematic for many reasons, most of which
are too tangential to the argument to list here.
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actual phenotypes (those which have existed, or currently exist). In nature, what can
be successfully expressed by DNA is limited materially by physical constraints and
processes. In contrast to our Lisp expression example, once RNA and DNA were es-
tablished evolution has not really experimented with different self-replication mech-
anisms. We think of DNA as being a highly successful self-replicating molecule,
which might be true, but we have little to compare it with. Many factors affect the
variety of life that has evolved on Earth. As evolution involves successful adapta-
tions, the changing environment of the Earth is an important factor in determining
evolutionary variety. In addition to geological events, environments change due to
presence of species and their interactions, a point that I will return to later in this
chapter.

2.2 Evolutionary Computing and Creativity

As noted in the previous section, EC methods (which include techniques such as Ge-
netic Algorithms, Evolutionary Strategies and Genetic Programming) have demon-
strated success in assisting users of complex creative systems to better locate re-
gions of high creative reward (Bentley and Corne 2002, Romero et al. 2008). In
broad terms they are “generate and test” algorithms that evolve a population of can-
didate solutions or artefacts. New, child artefacts are generated through random mu-
tation and/or recombination with selected parents. Populations are tested or ranked
by some measure, with the most highly valued individuals and their offspring more
likely to survive in subsequent generations. Incrementally, the overall “quality” of
the population should improve according to the fitness measure used. How well the
method does depends on many factors, including the nature of the fitness landscape
(determined in part by the representational scheme) and the evaluation of solution
fitness in artefacts. Success or otherwise is dependent on (i) the structure of the phe-
notype space, and (ii) the effectiveness of the fitness evaluation in determining the
quality of the artefacts produced.5

Evolutionary approaches and aesthetic evaluation are reviewed extensively in the
chapter by Galanter (Chap. 10). So it is pertinent here to make just a few points.
Firstly, it is important to differentiate between an evolutionary system that gives
creative results and one that generates aesthetically pleasing results. The former
does not preclude the latter, but they are in general, independent (i.e. it is possible
for a machine or algorithm to generate aesthetically pleasing images without that
system being creative). This distinction is often overlooked.

Some evolutionary systems use learnt or predefined measures of “creative” fea-
tures in their generated artefacts (Baluja et al. 1994, Machado and Cardoso 2002), or
rely on some form of aesthetic measure to evaluate an individual’s fitness (Birkhoff
1933, Staudek 2002, Ramachandran 2003, Svangåard and Nordin 2004, Machado
et al. 2008). Others use iterative human selection to rank individuals as part of the

5This issue is a topic of discussion in Chap. 4.
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evolutionary process (Takagi (2001) provides a comprehensive survey). These ap-
proaches suffer from difficulties, however. Pre-defined measures of aesthetic prop-
erties, for example, risk implicit judgements as to which specific properties are of
value (thus determining what will be measured). While a number of researchers
describe “aesthetic universals” of evolutionary origin (Brown 1991, Dissanayake
1995, Martindale 1999, Ramachandran and Hirstein 1999, Dutton 2002), it is long
proposed that aesthetic values also shift according to individual taste, time and cul-
ture. Moreover, aesthetics has many interpretations (Koren 2010), and in contempo-
rary art surface aesthetic qualities are often downplayed or given little significance in
appreciating the creativity of the work. Evolving artefacts exclusively for aesthetic
value does not necessarily make them creative.

Some attempts have been made to expressly minimise or remove the aesthetic
judgement of a particular individual. This is what is referred to as removing “the
signature” of the artist (Boden 2010, Chaps. 9 & 10). The Drawbots system de-
scribed by Bird et al. (2008) attempted to create a line-drawing robot using evo-
lutionary robotics. Researchers defined “implicit” fitness measures that did not re-
strict the type of marks the robot drawer should make, including an “ecological
model” involving interaction between environment resource acquisition and expen-
diture through drawing. However, the results demonstrated only minimal creativity,
and the authors concluded that fitness functions which embodied “artistic knowl-
edge about ‘aesthetically pleasing’ line patterns” would be necessary if the robot
were to make drawings worthy of exhibition to humans.

Using human selection (known as the Interactive Genetic Algorithm, IGA) suf-
fers from a “fitness evaluation bottleneck” that reduces the human operator role to
that of a “pigeon breeder” who quickly fatigues (Takagi 2001, Dorin 2001). IGAs
are generally more suited to explorations by a non-expert user, who is unfamiliar
with the generative mechanism being evolved. Here the IGA allows limited naviga-
tion through a space of possibilities without necessarily understanding the underly-
ing mechanisms that generate them.6

These standard evolutionary approaches, while historically important and capa-
ble of significant results, are not able to consistently generate convincingly creative
results in many domains. Can we do better? Biology seemingly can. A useful in-
sight is in recognising that finding the creative “Klondike spaces” is not simply an
optimisation problem (i.e. finding a global optima using some fitness criteria). In-
deed, for most creative domains the idea of evolving towards a single optimum is
counterintuitive, as an artist or designer normally produces many new artefacts over
their professional lifetime. New designs or techniques often “evolve” from previous
ones, offspring of both the originating artist and his or her peers (Basalla 1998). As
Basalla (1998) and others have pointed out using the example of technological evo-
lution, the Western emphasis on individual creativity (reinforced socially through
patents and other awards) obscures the important roles played in the evolutionary

6Although there are exceptions where the IGA has proved useful to expert users as well,
e.g. Dahlstedt (2006), McCormack (2008a).
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ecosystem of interactions between environment and prior work of many individu-
als. Hence:

The trajectory through a creative space is not one of incrementally optimis-
ing towards a single goal or fitness measure, rather it is a complex pathway
through a series of intermediate and changing goals, each of which may de-
termine the pathway of the next, and may be creative in its own right.

If we are interested in discovering new creative spaces through the synergetic
combination of human intelligence and intuitive structuring and representation of
the conceptual space, then there are other possibilities. The evolution of species
on earth involves a complex set of interrelated processes and events. For example,
species do not exist in isolation from their environment or from other species; to-
gether they form a complex network of interdependencies that may impact on the
evolutionary process significantly. Let us see what happens if we re-conceptualise
the search of a creative space using insights from the structure and function of evo-
lutionary biological ecosystems.

2.3 Ecosystems

Ecosystems are a popular yet somewhat nebulous concept increasingly adopted in
contemporary culture. Environmental groups want to preserve them, businesses
want to successfully strategise and exploit them, and the media is part of them.
With recent sales of Nokia mobile smartphones on the decline, Nokia CEO Stephen
Elop bemoaned that fact that his company, unlike its rivals, had failed to create
an “ecosystem”: one that encompassed smartphones, the operating system, services
and users (Shapshak 2011). Media theorists speak of “media ecologies”—the “dy-
namic interrelation of processes and objects, beings and things, patterns and matter”
(Fuller 2005). Philosopher Manuel De Landa emphasises the flows of energy and
nutrients through ecosystems manifesting themselves as animals and plants, stating
that bodies are “nothing but temporary coagulations in these flows: we capture in
our bodies a certain portion of the flow at birth, then release it again when we die
and micro-organisms transform us into a new batch of raw materials” (De Landa
2000).

In the broadest terms, the modern concept of an ecosystem suggests a community
of connected, but disparate components interacting within an environment. This in-
teraction involves dependency relationships leading to feedback loops of causality.
The ecosystem has the ability to self-organise, to dynamically change and adapt in
the face of perturbation. It has redundancy and the ability to self-repair. Its mech-
anisms evoke symbiosis, mutualism and co-dependency, in contrast to pop-cultural
interpretations of evolution as exclusively a battle amongst individuals for fitness
supremacy. Yet we also speak of “fragile ecosystems”, implying a delicate balance
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or harmony between elements that can easily be broken by external interference.
Any anthropomorphic projection of harmony or stability to ecosystems is naïve
however. The history of evolution is the history of change: species, their diversity,
morphology and physical distribution, the chemical composition of the biosphere,
the geography of the earth—all have changed significantly over evolutionary time.
The ecosystem’s stability is seemingly transitory then, tied to the shifts in species
distribution and environment.

2.3.1 Biological Ecosystems

Of course, ecosystems and Ecology are the domain of Biology, where we find a
formal understanding, along with many inspirational ideas on the functional re-
lationships found in real biological ecosystems. Modern Ecology is the study of
species and their relations to each other and their environment. The term “Ecology”
originated with the German Biologist and Naturalist, Ernst Haeckel,7 who, in 1866,
defined it as the “science of the relationship of the organism to the environment”,
signifying the importance of different species embedded in specific environments.
The term “Ecosystem”, from the Greek (oικoς , household; λoγ oς , knowledge) is
attributed to the British Ecologist, Sir Arthur Tansley, who coined it from fellow
Botanist Arthur Clapham. It grew out of debates at the time about the similarity of
interdependent communities of species to “complex organisms”. Importantly, Tans-
ley’s use of the term ecosystem encompassed “the inorganic as well as the living
components” (Tansley 1939), recognising that the organism cannot be separated
from the environment of the biome, and that ecosystems form “basic units of na-
ture” (Willis 1997).

Contemporary definitions of ecosystems begin with the work of American Ecolo-
gists Eugene and Howard Odum. Eugene wrote the first detailed Ecology text, Fun-
damentals of Ecology, published in 1953. Odum recognised energy flows, trophic
levels,8 functional, and causal relationships that comprised the ecosystem. Willis
defines the modern concept of an ecosystem as “a unit comprising a community
(or communities) of organisms and their physical and chemical environment, at any
scale, desirably specified, in which there are continuous fluxes of matter and energy
in an interactive open system” (Willis 1997).

In more modern terms, Scheiner and Willig (2008) nominate seven fundamental
principles of ecosystems:

1. Organisms are distributed in space and time in a heterogeneous manner (inclu-
sionary rule).

7Danish biologist Eugen Warming is also attributed as the founder of the science of Ecology.
8Autotrophs, such as plants, produce organic substances from simpler inorganic substances, such
as carbon dioxide; heterotrophs unable to perform such conversions, require organic substances as
a source of energy.
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2. Organisms interact with their abiotic and biotic environments (inclusionary rule).
3. The distributions of organisms and their interactions depend on contingencies

(exclusionary rule).
4. Environmental conditions are heterogeneous in space and time (causal rule).
5. Resource are finite and heterogeneous in space and time (causal rule).
6. All organisms are mortal (causal rule).
7. The ecological properties of species are the result of evolution (causal rule).

For those wanting to know more details on the contemporary science, a text such
as that by Begon et al. (2006) provides a useful overview of Ecology science.

2.3.2 Ecosystem Models in the Creative Arts

A number of different “ecosystemic” approaches exist in the arts. Examination finds
that they are quite diverse and only loosely drawn from biological concepts, proba-
bly due to multiplicitous and nebulous understandings of Ecology outside Biology,
and various metaphoric interpretations of the ecosystem concept.

Design and Architecture. Given the state of human impact on the environment,
much theory in landscape and architectural design has sought to bring ideas from
Ecology and ecosystems into the design lexicon (see, e.g. Bell 1999). Through a
greater understanding of nature’s process and function, it is believed that designers
can better integrate human interventions within the landscape, minimising their de-
tritus impact, or at least appreciate how design decisions will effect change to the
environment over the life of a project, and beyond. In architecture, Design Ecolo-
gies seeks connections between biological Ecology, human communication, instruc-
tion and aesthetics, with an emphasis on “novel concepts of ecologically informed
methodologies of communication through design practice” (Murray 2011).

Generative design uses processes adopted from evolution as a source of design
variation and customisation. It brings a number of desirable features to the design of
artefacts, including a means to generate and manage complexity; self-maintenance
and self-repair; design novelty and variation (McCormack et al. 2004). As discussed
(Sect. 2.2), evolutionary methods such as the IGA are useful for generative design
when the designer has only a rudimentary grasp of the underlying generative mech-
anism that is being evolved. They permit design changes without the need to under-
stand in detail the configuration or parameter settings that generated the design. The
application of generative design to customised manufacture has become feasible in
recent years due to the availability of automated, programmable fabrication devices,
such as 3D printers, laser cutters, etc. that can inexpensively translate computer rep-
resentations into one-off physical objects. This allows physical generative designs
to be customised to individual constraints or desires on commercial manufacturing
scales.

Design associations with Ecology and ecological principles often suggest the
superiority of natural over human design, and ecosystems embracing harmony and
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stable configurations, “in tune” with nature and natural surroundings. Ecological
processes provide a certain cachet, appeal and authority that conveniently lend both
a design and moral credibility to a project. Such views have been rightly criticised
(Kaplinsky 2006). Evolution needs only to offer adequate solutions—ones that are
sufficient for growth, survival and reproduction—not necessarily the best or globally
optimal ones. “Optimality” for evolution is dependent on environment (obviously
polar bears don’t do well in deserts). But it is not that nature has nothing useful
to teach us. Moving beyond mimicry, a better understanding of the function and
behaviour of real biological ecosystems offers new and rewarding possibilities for
design, along with a greater awareness of how our activities ripple out through the
environment and affect other species.

Music and Performance. Waters (2007) uses the concept of a “performance
ecosystem”—one that encompasses composition, performance, performers, instru-
ments and environment. Here music and music making are seen as part of a multi-
layered, complex dynamical system, operating from the acoustic to the social. Em-
phasis is placed on the dynamical interactions and, importantly, feedback processes
between components of the ecosystem. For example, the feedback between a per-
former and their instrument encompasses the body, tactility, vibrating materials,
physical and acoustic properties of the room in which the instrument is played, along
with the “psychological adaptations and adjustments” in the body of the performer,
who is deeply connected to, and part of these interacting elements.

Such connections evoke the cybernetic: instruments can be considered part of
a continuum that originates from the body, extending through instrument and en-
vironment. Italian composer, Agostino Di Scipio (2003) seeks a reformulation of
what is meant by “interaction” in a technological performance context and invokes
the cybernetic concept of ecosystems and feedback dependencies as a sonic inter-
action paradigm. This is indicative of a more general sense of failure, in creative
contexts, of standard technical approaches to human-computer interaction. These
traditional approaches emphasise the functional over the explorative and connected.
An alternate view, advocated by Di Scipio and many others, sees interaction as “a
by-product of lower level interdependencies among system components” (Di Sci-
pio 2003). Components are adaptive to their surrounding external conditions and
able to manipulate them. In the case of sound, this involves a sound ecosystem of
sound-generating, sound-listening and sound-modifying components, connected in
feedback loops with their acoustic environment. In this configuration sound itself is
the medium in which the ecosystem exists. The coupling of components with their
environment allows them to change and reconfigure in response to environmental
variation: an environment that the components themselves may be modifying.

Visual and Installation Art. My own interactive installation, Eden (McCormack
2001), is a complex artificial ecosystem running in real-time on a two-dimensional
lattice of cells, projected into a three-dimensional environment (Fig. 2.2). The sim-
ulation includes seasonal variation, planetary albedo modified by biomass compo-
sition (Lenton and Lovelock 2001), and a simulation of sound propagation and at-
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Fig. 2.2 The author’s Eden installation: an evolving ecosystem of virtual creatures learn new
behaviours based on interaction with their environment and with their human audience

tenuation. Evolving, learning agents modify and adapt to their surroundings. Inter-
estingly, the agents learn a number of behaviours not explicitly programmed into
the system, including hibernation during winter months when food resources are
scarce, predation, and primitive signalling using sound. A computer vision system
links human visitor presence to the generation of biomass (food for the agents), and
over time agents learn to make interesting sequences of sound in order to keep vis-
itors attracted near the work, thus increasing their supply of food and chances of
reproductive success (McCormack 2005).

Over the last twenty years, Dutch artists Erwin Driessens and Maria Verstappen9

have been experimenting with generative “processes of production” in their art prac-
tice. This has extensively encompassed the use of ecosystem metaphors in a number
of their works. For example, E-volver is a generative visual artwork where a small
collection of agents roam a gridded landscape of coloured pixels, choosing to mod-
ify the pixel underneath them based on it’s colour, and those of the neighbouring
pixels. Each agent has a set of rules that determine how to change the colour and
where to move next (Driessens and Verstappen 2008). Through the interaction of
these pixel-modifying agents and their environment (the pixels which comprise the
image), E-volver is able to generate a fascinating myriad of complex and detailed
images (Fig. 2.3 shows one example), all of which begin from a uniformly grey
canvas. The images, while abstract, remind the viewer of landscape viewed from
high altitude, or an alien mould overwhelming a surface, or electron micrographs of
some unidentified organic structure. Importantly, they exhibit details on a variety of
scales, with coherent structures extending far beyond the one pixel sensory radius of

9See their website at: http://www.xs4all.nl/~notnot/index.html.

http://www.xs4all.nl/~notnot/index.html
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Fig. 2.3 An image produced by Driessens and Verstappen’s E-volver. Eight pixel modifying
agents build the image by modifying pixels. Notice the image contains coherent structures over
multiple levels of detail

the agents that created them. This suggests a collective self-organisation achieved
through agent-environment interaction, with the environment acting as a “memory”
that assists agents in building coherent structures within the image.

Like Di Scipio’s sonic ecosystems, E-volver’s “environment” is the medium it-
self (an image comprised of coloured pixels). For Eden, the real and virtual environ-
ments are causally connected through sound, human presence and the production of
resources. In both E-volver and Eden, agents modify their environment which, in
part, determines their behaviour. Causally coupling agent to environment allows for
feedback processes to be established, and the system thus becomes self-modifying.
This iterative self-modification process facilitates the emergence of heterogeneous
order and fractaline complexity from an environment of relative disorder and sim-
plicity. For Eden this is further expanded by the use of an evolutionary learning
system (based on a variant of Wilson’s XCS (Wilson 1999)) that introduces new
learning behaviours into the system. Learnt behaviours that have been beneficial
over an agent’s lifetime are passed onto their offspring.

Unlike Eden’s learning agents, E-volver’s agents are not evolutionary over the
life of the ecosystem, yet they are evolved: a variation on the IGA allows the user
of the system to evolve ecosystem behaviours through aesthetic rejection (“death of
the unfittest”). The entire ecosystem (a set of eight agents and their environment)
is evolved, not individual agents within a single image. Selection is based on the
subjective qualities of the images produced by an individual ecosystem.

There are numerous other examples of successful artworks based on ecosystem
metaphors and processes. To return to the central questions of this chapter: how and
why do they work successfully?
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Table 2.1 General properties of creative ecosystem models

Property Features

Components & their
environment

Together these constitute the ecosystem

Dynamical system Enables the ecosystem to temporally adapt and change in response to
internal and external conditions

Self-observation Provides a link between component action and environment
Self-modification Allows a component to adjust its behaviour within the system
Interaction Components must interact with each other and their environment to give rise

to emergent behaviours of the system as a whole
Feedback loops Provide pathways of control, regulation and modification of the ecosystem
Evolution Allows long term change, learning and adaptation

2.4 Ecosystem Design Patterns

Within our research group10 at the Centre for Electronic Media Art we have inves-
tigated ecosystemic processes as a basis for designing or enhancing generative art-
works (see e.g. McCormack (2001, 2007b, 2007a), Eldridge et al. (2008), Eldridge
and Dorin (2009), Bown and McCormack (2010)). Our long-term aim has been to
develop a catalogue of ecosystemic “design patterns” in the spirit of Gamma et al.
(1995), which facilitate the building of creative evolutionary systems. Developing
these patterns does not imply a “plug-and-play” approach where one just selects the
appropriate patterns, connects them together, and then sits back to watch the creativ-
ity evolve. Rather, the patterns serve as starting points in conceptualising a specific
creative system, documenting intermediate mechanisms and the typical behaviours
they produce. Choosing which pattern to use and how to apply them remains a matter
of significant creative judgement.

Di Scipio sees the artistic system as a “gathering of connected components”, and
it is these components and their interdependencies that must be carefully designed
if successful system-level results are to ensue. Components must additionally be
adaptive to surrounding external conditions and be able to manipulate them.

Table 2.1 summarises the basic properties we think are important to creative
ecosystem models. The key to developing a successful ecosystem model is in the
design of the system’s components, their meaning, interpretation and interaction. In
the following sections, I will explore some of these features in more detail, using
completed ecosystem artworks as examples.

2.4.1 Environments: Conditions and Resources

In broad terms, biological environments have two main properties that determine the
distribution and abundance of organisms: conditions and resources. Conditions are

10Which has included over the last few years: Oliver Bown, Palle Dahlstedt, Alan Dorin, Alice
Eldridge, Taras Kowaliw, Aidan Lane, Gordon Monro, Ben Porter and Mitchell Whitelaw.
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Fig. 2.4 Example organism viability curves for reproduction, growth and survival, from Begon
et al. (2006)

physiochemical features of the environment (e.g. temperature, pH, wind speed). An
organism’s presence may change the conditions of its local environment (e.g. one
species of plant may modify local light levels to that which another species is
adapted for). Conditions may vary in cyclic patterns or be subject to the uncertainty
of prevailing environmental events. Conditions can also serve as stimuli for other
organisms. Resources, on the other hand, are consumed by organisms in the course
of their growth and reproduction. One organism may become or produce a resource
for another through grazing, predation, parasitism or symbiosis, for example.

For any particular condition or resource, an organism may have a preferred value
or set of values that favour its survival, growth and reproduction. Begon et al. (2006)
define three characteristic curves, which show different “viability zones” for sur-
vival, growth and reproduction (Fig. 2.4).

In developing artworks, we can abstract these concepts significantly as long as
we are clear about the functional relationships between conditions, resources and
organism. From here on we will consider the organism as a “component” of an
ecosystem, this more genetic term useful to remind us of the abstractions in play.
Components may often be called “agents” in a computer simulation, typically rep-
resenting autonomous entities with parameterised, possibly evolving, behaviours.

2.4.2 Self-observation and Feedback

Self-observation gives rise a type of feedback process, similar to a governor or more
simply “rein control” (Harvey 2004). Here “observation” means the system mon-
itoring of environmental conditions or resources that are necessary for reproduc-
tion, growth and survival and shifting its configuration in response. A component is
causally coupled to the environment through relevant conditions or resources within
its environment. Observation may be implicit or explicit, local or global. Observa-
tion forms a critical connection between a component’s effect on the environment
and its ability to modify its behaviour in response, typically to retain homeostasis
in local conditions or resources. The use of the term “observation” is deliberately a
loaded one. It is used in the cybernetic sense and does not imply a necessary concept
of agency (although it does not preclude it). It might be considered the most simple
precursor to more complex observational intelligence. It also suggests a system-level
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(as opposed to an individual-level) ontology that emerges through the interaction of
system components.

The well-known model of planetary homeostasis, Daisyworld, uses a simple
form of system level self-observation (Lenton and Lovelock 2001). Planetary albedo
is affected by proportions of black and white daisies, whose relative proportions
change according to surface temperature. What is fascinating about Daisyworld is
its ability to maintain a homeostatic surface temperature while the incoming radiant
heat energy increases.

In the ecosystem artwork Colourfield (McCormack 2007a), individual compo-
nents (“agents”) are bands of colour occupying a 1D lattice of cells. Genetic infor-
mation controls the colour the agent produces, along with its preference to adapt to
the colour of its neighbours and its propensity to occupy vacant neighbouring cells
(thus making a larger contribution to the overall colour distribution). A feedback
mechanism uses a colour histogram of the overall colour distribution to allocate re-
sources to each individual agent on a per-time step basis (Fig. 2.5). Here the obser-
vation mechanism—resource allocation based on the image histogram—is implicit
and global (the system as a whole is observing itself). An individual agent’s contri-
bution to the overall image influences the production of its own resources and those
of others. The more cells an individual occupies, the greater the reliance of other
individuals to it. Here feedback is an environmental reward function that favours
symbiotic adaptations because of its global nature (resources are equally divided
between cells). As the system is evolutionary, as a whole it has the ability to modify
its colour composition and distribution in response to the “self-observation” pro-
vided by this feedback mechanism.

A different self-observation mechanism is in operation in the ecosystem art-
work Niche Constructions (McCormack 2010). Niche construction is the process by
which organisms, through their activities, modify their heritable environment (and
potentially the environments of others). Advocates of niche construction theory in
biology argue that it is an initiator of evolutionary change, rather than simply an evo-
lutionary outcome (Odling-Smee et al. 2003). The complete set of conditions and
resources affecting an organism represent its niche, which can be conceptualised as
a hypervolume in n-dimensional space.

In the Niche Constructions artwork, evolutionary line drawing agents draw on an
initially blank canvas as they move around. A set of normalised scalar values forms
an agent’s genome, which directs its behaviour over its lifetime. Individual alleles
control rate of drawing curvature, “irrationality” (Fig. 2.6), fecundity and mortality.
Agents die if they intersect with any previously drawn line or run off the page.
The canvas is seeded with a small initial population of founder agents—initialised
with uniformly distributed random genomes and positions—that proceed to move,
draw and reproduce. There is no limit to the number of offspring an agent may
have, but in general the lifespan of agents decreases as the density of lines becomes
greater, because it is increasingly difficult to avoid intersection with existing lines.
Eventually the entire population dies out and the image is complete. This finished
drawing represents the “fossil record” of all the generations of lines that were able
to live over the lifetime of the simulation.
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Fig. 2.5 Feedback relationships between component and environment creates a self-observation
in the ecosystemic artwork “Colourfield”

Niche construction is enabled in this work through the addition of a self-
observation mechanism that genetically links drawing behaviour to local conditions.
As an individual agent draws on the canvas, the local density around it is measured.
Each agent has an allele that represents its ideal density preference, i.e. the local line
density that is most conducive to its survival, growth and reproduction. As the actual
density shifts away from this ideal value, the agent finds it harder to reproduce, grow
and survive. If the preferred density and actually density differ too greatly, the agent
will die (see Fig. 2.7). Of course the actual value of this density preference is subject
to evolutionary change and over the life of the drawing, average density preference
increases in the population (McCormack 2010). The niche construction process in-
fluences agent behaviour: low density liking agents try and draw large, closed spaces
to prevent other lines from decreasing their local density. High density seeking lines
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Fig. 2.6 Individual line drawing agents with different genetic values of irrationality. Note that the
“die if intersect” rule has been turned off for these examples

Fig. 2.7 The niche construction mechanism for drawing agents: a local line density measure, �pi ,
facilitates a self-observation mechanism. The agent’s genome includes an allele that represents a
preferred density (δi ). The difference between preferred density and measured density affects the
agent’s effective fitness, hence its ability to survive, grow, and reproduce

give birth to large numbers of offspring, who quickly fill the canvas with lines of
close proximity. Some examples are shown in Fig. 2.8.

This local, implicit self-observation plays a vital role in influencing the over-
all density variation and aesthetics of the images produced. We know this because
turning the mechanism off produces images of significantly less density variation
(statistically) and visual interest (subjectively).

2.4.3 Automation and the Creative Role of the Artist

automation (noun): the use of largely automatic equipment in a system of manufacturing or
other production process
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Fig. 2.8 Two sample outputs from the line drawing system with niche construction

The term “automation” originated in the USA, from the newly industrialised en-
gineering of the 1940s, although similar concepts arose prior in different guises,
both historically and geographically. The central idea was to create machines to per-
form tasks previously performed by humans. The rational was largely economic:
machines that could replace and even out-perform their human counterparts will in-
crease production efficiency. As a central driving force in US industrialisation and
technologisation throughout the twentieth century, computers enabled the increas-
ing sophistication and range of capabilities for automation within the capitalist eco-
nomic system. The idea of machines automating human tasks still underpins many
technology-driven approaches to “automating creativity”. Traditional AI or EC ap-
proaches seek the automation of aesthetic or creative optima finding. In contrast,
the ecosystemic approach, as outlined here, does not seek to automate the human
out of the creative process, nor claim to equal or better human creative evaluation
and judgement. It views creative search and discovery as an explorative process, as
opposed to an optimisation.

Ecosystemic processes recognise the importance of the link between structure
and behaviour. Ecosystem components must be embedded in, and be part of, the
medium in which they operate. The design of the system—components and their
interdependencies—requires skill and creativity. This design forms the conceptual
and aesthetic basis by which the outcomes can be understood. So rather than re-
moving the artist by automating his or her role, the artist’s contribution is one of
utmost creativity—creativity that is enhanced through interaction with the machine.
As is also argued elsewhere in this book, forming an “ecosystem” that encompasses
humans, technology and the socially/technologically mediated environment, opens
up further ecosystemic possibilities for creative discovery.
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There are of course, many reasons why we might seek some form of “automated
creativity” or aesthetic judgement,11 apart from replacing human labour. For exam-
ple, automated creativity could lead to creative discovery that exceeds any human
capability, or provides greater insights on the mechanisms of human creativity by
attempting to model it. But these are “blue sky” speculations, and current techno-
logical advances in this area can just as easily homogenise and suffocate the creative
decision-making process for human users, as they can expand or enhance it. A good
example can be seen in recent digital camera technologies. Over the last ten years,
as computational power has escalated, digital cameras have increasingly shifted cre-
ative decision making to the camera instead of the person taking the picture. We see
modes with labels like “Intelligent Auto” or scene selection for particular scenarios
(“Fireworks”,“Landscape”,“Sunset”, “Beach”). These modes supposedly optimise
many different parameters to achieve the “best” shot—all the photographer has to
do is frame the image and press the button.12 Recent advances even take over these
decisions, choosing framing by high-level scene analysis and deciding when the
picture should be taken based on smile detection, for example. Such functionality
trends towards the removal of much human creative decision-making, subjugating
the human photographer to an increasingly passive role.

As anyone who has used a entirely manual camera knows, hand-operated “slow
technology” forces the user to think about all aspects of the photographic process
and their implications for the final image. The user’s role is highly active: experi-
mentation, mistakes, and serendipitous events are all possible, even encouraged—
well known stimuli for creativity. If the design of components and their interaction
is good, then using such a device isn’t marred by complexity or limited by inade-
quate functionality, which is often the rationalisation given in automation of creative
functionality.

Shifting the thinking about the design of technology from one of “complexity
automation” (where complexity is masked through “intelligent” simplicity) to one of
“emergent complexity” (where interaction of well designed components generates
new, higher-level functionality) allows the human user to potentially expand their
creativity rather than have it subsumed and homogenised.

2.5 Conclusions

Ecosystemics represents an alternative, biologically-inspired approach to creative
discovery over more traditional methods such as genetic algorithms or genetic pro-
gramming. It offers an interesting conceptual basis for developing new creative sys-
tems and processes, even in non-computational settings. Incorporating an “environ-
ment”, and allowing interactions between dynamic components and that environ-
ment, permits a rich complexity of creative possibilities for the artist wishing to

11Chapter 4 discusses this issue in more detail.
12Reminiscent of Kodak founder George Eastman’s famous tag line of 1888 for the Kodak No. 1
camera: “You press the button, we do the rest”.
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exploit the generative nature of ecosystem processes. While ecosystemic methods
don’t offer a “magic bullet” in terms of searching the creative Klondike spaces of
any generative system, they do make it easier to at least begin to conceptualise and
design systems capable of high creative reward. As the complexity and sophistica-
tion of ecosystem artworks develop, we are likely to see further advances in the new
creatively made possible with computers that use this approach.
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Chapter 3
Construction and Intuition: Creativity in Early
Computer Art

Frieder Nake

Abstract This chapter takes some facets from the early history of computer art (or
what would be better called “algorithmic art”), as the background for a discussion
of the question: how does the invention and use of algorithms influence creativity?
Marcel Duchamp’s position is positively referred to, according to which the spec-
tator and society play an important role in the creative process. If creativity is the
process of surmounting the resistance of some material, it is the algorithm that takes
on the role of the material in algorithmic art. Thus, creativity has become relative
to semiotic situations and processes more than to material situations and processes.
A small selection of works from the history of algorithmic art are used for case
studies.

3.1 Introduction

In the year 1998, the grand old man of German pedagogy, Hartmut von Hentig,
published a short essay on creativity. In less than seventy pages he discusses, as
the subtitle of his book announces, “high expectations of a weak concept” (Hentig
1998). He calls the concept of creativity “weak”. This could mean that it is not
leading far, it does not possess much expressive power, nor is it capable of drawing
a clear line. On the other hand, many may believe that creativity is a strong and
important concept.

Von Hentig’s treatise starts from the observation that epochs and cultures may
be characterised by great and powerful words. In their time, they became the call
to arms, the promise and aspiration that people would fight for. In ancient Greece,
Hentig suggests, those promises carried names like arete (excellence, living up to
one’s full potential), and agon (challenge in contest). In Rome this was fides (trust)
and pietas (devotion to duty), and in modern times this role went to humanitas,
enlightenment, progress, and performance. Hardly ever did an epoch truly live up
to what its great aspirations called for. But people’s activities and decisions, if only
ideologically, gained orientation from the bright light of the epoch’s promise.
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If in current times we were in need of a single such concept, “creativity” would
probably be considered as one of the favourites. Information, communication, sus-
tainability, ecology, or globalisation might be competing. However, creativity would
probably still win. It is a concept full of shining promise. Nobody dares criticise it
as plastic and arbitrary. Everybody appears to be relating positively to it. Techno-
freaks use it as well as environmentalists. No political party would drop it from their
rhetoric.

Creativity may be considered as a means for activity, or as its goal. However,
von Hentig is sceptical about the possibility of developing more creativity through
education and training; he is also sceptical about creative skills independent of the
context. Creativity as an abstract, general concept, taken out of context, is unlikely
to exist. If a helpful concept at all, creativity is bound to situations and contexts.
Only relative to them may our judgement evaluate an activity as creative. Creativity
exists only concretely.

Leaving out ancient Greece, the Middle Ages, and the Renaissance, it seems that
the way we understand “creativity” today is as a US-American invention (Hentig
1998, p. 12). It started with the fabulous definition of an IQ (Intelligence Quotient)
and operational tests to measure it by Stern (1912) in Germany. His approach be-
came an operational method in the USA by the end of World War I. J.P. Guilford
(1950) and others made clear that IQ tests did not identify anything that might be
called “creative”. Current creativity research starts from this article. Like any other
measure, a test of your IQ may at best say something about a standard behaviour
within given boundaries, but not much about crossing boundaries. Often people do
what they are supposed to do, and they do it well. Others do what they want to do,
and do it to the dismay of their bosses, teachers, or parents.

When we consider creativity as an attribute, a property, or a feature that we may
acquire by taking courses or joining training camps, we put creativity close to a
thing, or a commodity. We inadvertently transform a subjective activity or behaviour
into an objective thing. We may acquire many or few commodities, cheap or expen-
sive ones. But is quantity important for understanding creativity, or for becoming a
creative person? Doesn’t it make more sense to associate the term “creativity” with
behaviour, activity, situation, and context? The idea of attaching creativity to indi-
viduals is probably what we are immediately inclined to think. But it may still not
be very helpful. Creativity seems to emerge in situations that involve several peo-
ple, who interact in different roles with favourable and unfavourable conditions and
events.1

We may align intelligence with making sense in a situation that makes sense.
If we do so, creativity could be viewed as making sense in situations of nonsense.
Dream and fantasy are, perhaps, more substantial to creative behaviour than any-
thing else.

1We are so much accustomed to thinking of creativity as an individual’s very special condition and
achievement that we react against a more communal and cooperative concept. It would, of course,
be foolish to assume individuals were not capable of creative acts. It would likewise be foolish to
assume they can do so without the work of others.
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With these introductory remarks I want to announce a sceptical distance to the
very concept of creativity. With only little doubt, a phenomenon seems to exist that
we find convenient to call by this name. A person engaged in a task that requires
a lot of work, imagination, endurance, meetings, walks, days and nights, music, or
only a flash in the mind, will use whatever means she can get hold of in pursuit of
her task. Even computers and the Internet may be helpful, and they, indeed, often
are. If the final result of such efforts is stamped as a “creative” product, is it then
sensible to ask the question: what software and other technical means contributed
to this creation? Not much, in my view. And certainly nothing that goes beyond
their instrumental character. More interesting is to study changes in the role of the
instrument as an instrument. The sorcerer’s broom is more than a broom only in
the eyes of the un-initiated. It is an expression of a human’s weakness, not of the
instrument’s clever strength.

Therefore, I find it hard to seriously discuss issues of the kind: how to enhance
creativity by computer? Or: how do our tools become creative? If anything is sure
about creativity, it is its nature as a quality. You cannot come by creativity in a
quantitative way, unless you reduce the concept to something trivial.

In this chapter, I will study a few examples of early computer art. The question
is: How did the use of computers influence creative work in the visual arts? The
very size and complexity of the computer, the division into hardware and software
must, at the time, have had a strong influence on artistic creativity. The approach will
be descriptive and discursive. I will not explain. Insight is with the reader and her
imagination, not with the black printed material. I will simply write and describe.
I cannot do much more.

The chapter is divided into four narrations. All four circle around processes of
art or, in a less loaded expression, around aesthetic objects and processes. The art
we will study here is, not surprisingly, algorithmically founded. It is done, as might
be said, by algorists.2 They are artists of a new kind: they think their works and let
machines carry them out. These artists live between aesthetics and algorithmics and,
insofar, they constitute a genuinely new species. They do art in postmodern times.
When they started in the 1960s, they were often called computer artists, a term
most of them hated. Meanwhile, their work is embraced by art history, they have
conquered a small sector of the art market, and their mode of working has become
ubiquitous.

The first narration will be about a kind of mathematical object. It is called a
polygon and it plays a very important role. The narration is also about randomness,
which at times is regarded as a machinic counterpart to creativity.

Three artists, Vera Molnar, Charles Csuri, and Manfred Mohr, will be the heroes
of the second narration. It will be on certain aspects of their work pertaining to our
general topic of creativity.

2There actually exists a group of artists who call themselves, “the algorists”. The group is only
loosely connected, they don’t build a group in the typical sense of artists’ groups that have existed
in the history of art. The term algorist may have been coined by Roman Verostko, or by Jean-
Pierre Hébert, or both. Manfred Mohr, Vera Molnar, Hans Dehlinger, Charles Csuri are some other
algorists.
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Two programs will be citizens first class in the third narration: Harold Cohen’s
AARON stands out as one of the most ambitious and successful artistic software
development projects of all time. It is an absolutely exceptional event in the art
world. Hardly known at all is a program Frieder Nake wrote in 1968/69. He boldly
called it Generative Art I. The two programs are creative productions, and they
were used for creative productions. Their approaches constitute opposite ends of a
spectrum.

The chapter comes to its close with a fourth narration: on creativity. The first
three ramblings lead up to this one. Is there a conclusion? There is a conclusion
insofar as it brings this chapter to a physical end. It is no conclusion insofar as our
stories cannot end. As Peter Lunenfeld has told us, digital media are caught in an
aesthetics of the unfinish (Lunenfeld 1999, p. 7). I like to say the same in different
words: the art in a work of digital art is to be found in the infinite class of works a
program may generate, and not in the individual pieces that only represent the class.

I must warn the reader, but only very gently. There may occasionally be a formula
from mathematics. Don’t give up when you see it. Rather read around it, if you like.
These creatures are as important as they are hard to understand, and they are as
beautiful as any piece of art. People say, Mona Lisa’s smile remains a riddle. What is
different, then, between this painting and a formula from probability theory? Please,
dear reader, enter postmodern times! We will be with you.

3.2 The First Narration: On Random Polygons

Polygons are often boringly simple figures when it comes to the generation of aes-
thetic, or even artistic objects. Nevertheless, they played an important role in the first
days of computer art. Those days must be considered high days of creativity. Some-
thing great was happening then, something took on shape. Not many had the guts to
clearly say this. It was happening at different places within a short time, and the ac-
tivists were not aware of each other. Yet, what they did, was of the same kind. They
surprised gallery owners who, of course, did not really like the art because, how
could they possibly make money with it? With the computer in the background, this
was mass production.

If the early pioneers themselves did not really understand the revolution they
were causing, they left art critics puzzling even more. “Is it or is it not art?” was
their typical shallow question, and: “Who (or what!) is the creator? The human, the
computer, or the drawing automaton?” The simplest of those first creations were
governed by polygons. Polygons became the signature of earliest algorithmic art.
This is why I tell their story.

In mathematics, a polygon is a sequence of points (in the simplest case, in the
plane). Polygons also exist in spaces of higher dimensions. As a sequence of points,
the polygon is a purely mental construct. In particular and against common belief,
you cannot see the polygon. As a polygon, it is invisible. It shares this fate with all
of geometry. This is so because the objects of geometry—points, lines, planes—are
pure. You describe them in formulae, and you prove theorems about them.
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I cannot avoid writing down how a point, a straight line, and a plane are given
explicitly. This must be done to provide a basis for the effort of an artist moving into
this field. So the point in three-dimensional space is an unrestricted triple of coor-
dinates, P = (x, y, z). The straight line is constructed from two points, say P1 and
P2, by use of one parameter, call it t . The values of t are real numbers, particularly
those between 0 and 1. The parameter acts like a coordinate along the straight line.
Thus, we can describe each individual point along the line by the formula

P(t) = P1 + t (P2 − P1). (3.1)

Finally, the points of a plane are determined from three given points by use of
two parameters:

P(u, v) = uP1 + vP2 + (1 − u − v)P3. (3.2)

We need two parameters because the plane is spreading out into two dimensions
whereas the straight line is confined to only one.

Bothering my readers with these formulae has the sole purpose that they should
become aware of the different kind of thinking required here. Exactly describing the
objects of hopefully ensuing creativity is only the start. It is parallel to the traditional
artist’s selection of basic materials. But algorithmic treatment must follow, if any-
thing is going to happen (we don’t do this here). The parameters u and v, I should
add, can be any real numbers. The three points are chosen arbitrarily, but then are
fixed (they must not be collinear).

As indicated above, all this is invisible. As humans, however, we want to see and,
therefore, we render polygons visibly. When we do so, we interpret the sequence of
points that make up the polygon, in an appropriate manner. The usual interpretation
is to associate with each point a location (in the plane or in space). Next, draw a
straight line from the first to the second point of the polygon, from there to the third
point, etc. A closed polygon, in particular, is one whose first and last points coincide.

To draw a straight line, of course, requires that you specify the colour and the
width of your drawing instrument, say a pencil. You may also want to vary the
strokeweight along the line, or use a pattern as you move on. In short, the geometry
and the graphics must be described explicitly and with utmost precision.

You have just learned your first and most important lesson: geometry is invisible,
graphics is visible. The entities of geometry are purely mental. They are related to
graphic elements. Only in them, they appear. Graphics is the human’s consolation
for geometry.

Let this be enough for a bit of formal and terminological background. We now
turn to the first years of algorithmic art.3 It is a well-established fact that between

3The art we are talking about, in the mid-1960s, was usually called computer art. This was cer-
tainly an unfortunate choice. It used a machine, i.e. the instrument of the art, to define it. This had
not happened before in art history. Algorithmic art came much closer to essential features of the
aesthetic endeavour. It does so up to this day. Today, the generally accepted term is digital art. But
the digital principle of coding software is far less important than the algorithmic thinking in this
art, at least when we talk about creativity. The way of thinking is the revolutionary and creative
change. Algorithmic art is drawing and painting from far away.
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1962 and 1964 three mathematicians or engineers, who on their jobs had easy and
permanent access to computers, started to use those computers to generate simple
drawings by executing algorithms. As it happened, all three had written algorithms
to generate drawings and, without knowing of each other, decided to publicly exhibit
their drawings in 1965. Those three artists are (below, examples of their works will
be discussed):

• Georg Nees of Siemens AG, Erlangen, Germany, exhibited in the Aesthetic Sem-
inar, located in rooms of the Studiengalerie of Technische Hochschule Stuttgart,
Germany, from 5 to 19 February, 1965. Max Bense, chairing the institute, had
invited Nees. A small booklet was published as part of the famous rot series for
the occasion. It most likely became the first publication ever on visual computer
art (Nees and Bense 1965).4

• A. Michael Noll of Bell Telephone Laboratories, Murray Hill, NJ, USA showed
his works at Howard Wise Gallery in New York, NY, from 6 to 24 April, 1965
(together with random dot patterns for experiments on visual perception, by Bela
Julesz; the exhibits were mixed with those of a second exhibition).

• Frieder Nake from the University of Stuttgart, Germany, displayed his works at
Galerie Wendelin Niedlich in Stuttgart, from 5 to 26 November, 1965 (along with
Georg Nees’ graphics from the first show). Max Bense wrote an introductory
essay (but could not come to read it himself).5

As it happens, there may have been one or two forgotten shows of similar pro-
ductions.6 But these three shows are usually cited as the start of digital art. The
public appearance and, thereby, the invitation of critique, is the decisive factor if
what you do is to be accepted as art. The artist’s creation is one thing, but only a
public reaction and critique can evaluate and judge it. The three shows, the authors,
and the year define the beginning of algorithmic art.

From the point of view of art history, it may be interesting to observe that concep-
tual art and video art had their first manifestations around the same time. Op art had
existed for some while before concrete and constructive art became influential. The
happening—very different in approach—had its first spectacular events in the 1950s,

4The booklet, rot 19, contains the short essay, Projekte generativer Ästhetik, by Max Bense. I con-
sider it to be the manifesto of algorithmic art, although it was not expressly called so. It has been
translated into English and published several times. The term generative aesthetics was coined
here, directly referring to Chomsky’s generative grammar. The brochure contains reproductions of
some of Nees’ graphics, along with his explanations of the code.
5Bense’s introductory text, in German, was not published. It is now available on the compArt Dig-
ital Art database at compart-bremen.de. Concerning the three locations of these 1965 exhibitions,
Howard Wise was a well-established New York gallery, dedicated to avant-garde art. Wendelin
Niedlich was a bookstore and gallery with a strong influence in the Southwest of Germany. The
Studiengalerie was an academic (not commercial) institution dedicated to experimental and con-
crete art.
6Paul Brown recently (2009) discovered that Joan Shogren appears to have displayed computer-
generated drawings for the first time on 6 May 1963 at San Jose State University.

compart-bremen.de


3 Construction and Intuition 67

Fig. 3.1 Georg Nees: 23-Ecke, 1965 (with permission of the artist)

and was continuing them. Pop art was, of course, popular. Serial, permutational, ran-
dom elements and methods were being explored by artists. Kinetic art and light art
were another two orientations of strong technological dependence. Max Bense had
chosen the title Programming the beautiful (Programmierung des Schönen) for the
third volume of his Aesthetica (Bense 1965), and Karl Gerstner had presented his
book Designing Programs (Programme entwerfen, Gerstner 1963), whose second
edition already contained a short section on randomness by computers.

But back to polygons! They appear in the works of the three above mentioned
scientists-turned-artists among their very first experiments (Figs. 3.1, 3.2 and 3.3).
We will now look at some of their commonalities and differences.
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Fig. 3.2 A. Michael Noll:
Gaussian-Quadratic, 1965
(with permission of the artist)

Assume you have at your disposal a technical device capable of generating draw-
ings. Whatever its mode of operation may be, it is a mechanism whose basic and
most remarkable operation creates a straight line-segment between two points. In
such a situation, you will be quite content using nothing but straight lines for your
aesthetic compositions. What else could you do? In a way, before giving up, you are
stuck with the straight line, even if you prefer beautifully swinging curved lines.

At least for a start you will try to use your machine’s capability to its very best
before you begin thinking about what other and more advanced shapes you may
be able to construct out of straight line-segments. Therefore, it was predictable (in
retrospect, at least) that Nees, Noll, and Nake would come up with polygonal shapes
of one or the other kind.

A first comment on creativity may be in order here. We see, in those artists’ activ-
ities, the machinic limitations of their early works as well as their creative transcen-
dence. The use of the machine: creative. The first graphic generations: boring. The
use of short straight line-segments to draw bending curves: a challenge in creative
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Fig. 3.3 Frieder Nake: Random Polygon, 1965

use of the machine. Turning to mathematics for the sake of art: creative, as well as
nothing particularly exciting. Throughout the centuries, many have done this. But
now the challenge had become to make a machine draw, whose sole purpose was
calculation. How to draw when your instrument is not made for drawing?

3.2.1 Georg Nees

Although “polygons” were Nees’, Noll’s, and Nake’s common first interest, their
particular designs varied considerably. In six lines of ordinary German text, Nees
describes what the machine is supposed to do (Nees and Bense 1965). An English
translation of his pseudo-code reads like this:

Start anywhere inside the figure’s given square format, and draw a polygon of 23 straight
line segments. Alternate between horizontal and vertical lines of random lengths. Hori-
zontally go either left or right (choose at random), vertically go up or down (also random
choice). To finish, connect start and end points by an oblique straight line.
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Clearly, before we reach the more involved repetitive design of Fig. 3.1, this
basic design must be inserted into an iterative structure of rows and columns. Once
a specific row and a specific column have been selected, the empty grid cell located
there will be filled by a new realisation of the microstructure just described. As we
see from the figure, the composition of this early generative drawing is an invisible
grid whose cells contain random 23-gons.

The random elements of Nees’ description of the polygon guarantee that, in all
likelihood, it will take thousands of years before a polygon will appear equal to, or
almost equal to, a previous one. The algorithm creates a rich and complex image, al-
though the underlying operational description appears as almost trivial. The oblique
line connecting the first and last points adds a lot to the specific aesthetic quality of
the image. It is an aberration from the rectilinear and aligned geometry of the main
part of the polygons. This aberration from a standard is of aesthetic value: surprise.

There are 19 × 14 = 266 elementary figures arranged into the grid structure.
Given the small size of the random shapes, we may, perhaps, not immediately per-
ceive polygons. Some observers may identify the variations on a theme as a design
study of a vaguely architectural kind.

The example demonstrates how a trivial composition can lead to a mildly inter-
esting visual appearance not void of aesthetic quality. I postpone the creativity issue
until we have studied the other two examples.

When some variable’s value is chosen “at random”, and this is happening by run-
ning a computer program, the concept of randomness must be given an absolutely
precise meaning. Nothing on a computer is allowed to remain in a state of vague-
ness, even if vagueness is the expressed goal. And even if the human observer of
the event does not see how he could possibly predict what will happen next, from
the computer’s position the next step must always be crystal clear. It must be com-
putable, or else the program does nothing.

In mathematics, a random variable is a variable that takes on its values only
according to a probability distribution. The reader no longer familiar with his or
her highschool mathematics may recall that a formula like y = x2 will generate the
result y = 16 if x = 4 is given. If randomness plays a role, such a statement could
only be made as a probability statement. This means the value of 16 may appear
as the result of the computation, but maybe it does not, and the result is, say, 17 or
15.7.

Usually, when in a programming language you have a function that, according to
its specification, yields random numbers, these numbers obey a so-called uniform
probability distribution. In plain terms, this says that all the possible events of an
experiment (like those of throwing dice) appear with the same probability.

But a random variable must not necessarily be uniformly distributed. Probability
distributions may be more complex functions than the uniform distribution. In early
algorithmic art, even of the random polygon variety, other distributions soon played
some role. They simulated (in a certainly naïve way) the artist’s intuition. (Does this
sound like too bold a statement?)



3 Construction and Intuition 71

3.2.2 A. Michael Noll

A. Michael Noll’s “Gaussian-Quadratic” graphic makes use, in one direction (the
horizontal, viz. Fig. 3.2), of the Gaussian distribution. The coordinates of vertices in
the horizontal x-direction are chosen according to a Gaussian distribution, the most
important alternative to the uniform distribution. The co-ordinates of vertices in ver-
tical direction are calculated in a deterministic way (their values increase quadrati-
cally).

Whereas Nees’ design follows a definite, if simple, compositional rule, Noll’s is
really basic: one polygon whose points are determined according to two distribu-
tions. It is not unfair to say that this is a simple visualisation of a simple mathemat-
ical process.

3.2.3 Frieder Nake

The same is true of Nake’s polygon (Fig. 3.3). The algorithmic principle behind the
visual rendition is exactly the same as that of Fig. 3.2: repeatedly choose an x- and
a y-coordinate, applying distribution functions Fx and Fy , and draw a straight line
from the previous point to the new point (x, y); let then (x, y) take on the role of
the previous point for the next iteration.

In this formulation, Fx and Fy stand for functional parameters that must be pro-
vided by the artist when his intention is to realise an image by executing the algo-
rithm.7 Some experience, intuition, or creativity—whatever you prefer—flows into
this choice.

The visual appearance of Nake’s polygon may look more complex, a bit more
like a composition. The fact that it owes its look to the simple structure of one poly-
gon, does not show explicitly. At least, it seems to be difficult to visually follow
the one continuous line that constitutes the entire drawing. However, we can clearly
discover the solitary line, when we read the algorithm. The description of the sim-
ple drawing contains more (or other) facts than we see. So the algorithmic structure
may disappear behind the visual appearance even in such a trivial case. Algorithmic
simplicity (happening at the subface of the image, its invisible side) may gener-
ate visual complexity (visible surface of the image). If this is already happening
in such trivial situations, how much more should we expect a non-transparent re-
lation between simplicity (algorithmic) and complexity (visual) in cases of greater
algorithmic effort?8

7Only a few steps must be added to complete the algorithm: a first point must be chosen, the total
number of points for the polygon must be selected, the size of the drawing area is required, and the
drawing instrument must be defined (colour, stroke weight).
8The digital image, in my view, exists as a double. I call them the subface and the surface. They
always come together, you cannot have one without the other. The subface is the computer’s view,
and since the computer cannot see, it is invisible, but computable. The surface is the observer’s
view. It is visible to us.
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This first result occurred at the very beginning of computer art. It is, of course,
of no surprise to any graphic artist. He has experienced the same in his daily work:
with simple technical means he achieves complex aesthetic results. The rediscovery
of such a generative principle in the domain of algorithmic art is remarkable only
insofar as it holds.

However, concerning the issue of creativity, some observers of early algorithmic
experiments in the visual domain immediately started asking where the “generative
power” (call it “creativity”, if you like) was located. Was it in the human, in the
program, or even in the drawing mechanism? I have never understood the rationale
behind this question: human or machine—who or which one is the creator? But
there are those who love this question.

If you believe in the possibility of answering such a question, the answer depends
on how we first define “creative activity”. But such a hope usually causes us to
define terms in a way that the answer turns out to be what we want it to be. Not an
interesting discussion.

When Georg Nees had his first show in February 1965, a number of artists had
come to the opening from the Stuttgart Academy of Fine Art. Max Bense read his
text on projects of generative aesthetics, before Nees briefly talked about technical
matters of the design of his drawings and their implementation. As he finished, one
of the artists got up and asked: “Very fine and interesting, indeed. But here is my
question. You seem to be convinced that this is only the beginning of things to
come, and those things will be reaching way beyond what your machine is already
now capable of doing. So tell me: will you be able to raise your computer to the
point where it can simulate my personal way of painting?”

The question appeared a bit as if the artist wanted to give a final blow to the pro-
grammer. Nees thought about his answer for a short moment. Then he said: “Sure,
I will be able to do this. Under one condition, however: you must first explicitly tell
me how you paint.” (The artists appeared as if they did not understand the subtlety
and grandeur, really: the dialectics of this answer. Without saying anything more,
they left the room under noisy protest.)

When Nietzsche, as one of the earliest authors, experienced the typewriter as a
writing device, he remarked that our tools participate in the writing of our ideas.9

I read this in two ways. First, in a literal sense. Using a pencil or a typewriter in
the process of making ideas explicit by formulating them in prose and putting this
in visible form on paper, obviously turns the pencil or typewriter in my hand into
a device without which my efforts would be in vain. This is the trivial view of the
tool’s involvement in the process of writing.

The non-trivial view is the observation that my thinking and attitude towards the
writing process and, therefore, the content of my writing is influenced by the tool
I’m using. My writing changes not only mechanically, but also mentally, depending
on my use of tools. It still remains my writing. The typewriter doesn’t write anything.

9Friedrich Kittler quotes Nietzsche thus: “Unser Schreibzeug arbeitet mit an unseren Gedanken.”
(Our writing tools participate in the writing of our thoughts.) (Kittler 1985), cf. Sundin (1980).
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It is me who writes, even though I write differently when I use a pen than when I
use a keyboard.

The computer is not a tool, but a machine, and more precisely: an automaton.10

I can make such a claim only against a position concerning tools and machines and
their relation. Both, machines and tools, are instruments that we use in work. They
belong to the means of any production. But in the world of the means of production,
tools and machines belong to different historic levels of development. Tools appear
early, and long before machines. After the machine has arrived, tools are still with
us, and some tools are hard to distinguish from machines. Still, to mix the two—as
is very popular in the computing field where everything is called a “tool”—amounts
to giving up history as an important category for scientific analysis. Here we see
how the ideological character of so many aspects of computing presents itself.

Nietzsche’s observation, that the tools of writing influence our thoughts, remains
true. Using the typewriter, he was no longer forced to form each and every letter’s
shape. His writing became typing: he moved from the continuous flow of the arm
and hand to the discrete hits of the fingers. We discover the digital fighting the
analog: for more precision and control, but also for standardisation. Similarly, I give
up control over spelling when I use properly equipped software (spell-checker). At
the same time, I gain the option of rapid changes of typography and page layout.

If creation is to generate something that was not there before, then it is me who
is creative. My creation may dwell on a trivial level. The more trivial, the easier it
may be to transfer some of my creative operations onto the computer. It makes a
difference to draw a line by hand from here to roughly there on a sheet of paper,
as compared to issuing the appropriate command sequence, which I know connects
points A and B . My thought must change. From “roughly here and there” to “pre-
cisely these coordinates”.

My activity changes. From the immediate actor and generator of the line, I trans-
form myself into the mediating specifier of conditions a machine has to obey when
it generates the physical line. My part has become “drawing by brain” instead of
“drawing by hand”. I have removed myself from the immediacy of the material.
I have gained a higher level of semioticity.

My brain helps me to precisely describe how to draw a line between any two
points, whereas before I always drew just one line. It always was a single and par-
ticular line: this line right here. Now it has become: this is how you do it, indepen-
dent of where you start, and where you end. You don’t embark on the adventure of
actually and physically drawing one and only one line. You anticipate the drawing
of any line.

I am the creative one, and I remain the creator. However, the stuff of my creation
has changed from material to semiotic, from particular to general, from single case
to all cases. As a consequence, my thinking changes. I use the computer to execute a
program. This is an enormous shift from the embodied action of moving the pencil.
Different skills are needed, different thinking is required and enforced. Those who

10Cf. Sundin (1980).
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claim the computer has become creative (if they do exist) have views that appear
rather traditional. They do not see the dramatic change in artistic creation from
material to sign, from mechanics to deliberate semiotics.

What is so dramatic about this transformation? Signs do not exist in the world.
Other than things, signs require the presence of human beings to exist. Signs are
established as relations between other entities, be they physical or mental. In order
to appear, the sign must be perceived. In order to be perceivable, it must come in
physical form. That form, however, necessary as it is, is not the most important
correlate of the sign. Perceivable physical form is the necessary condition of the
sign; the full sign, however, must be constituted by a cognitive act.

Semiotics is the study of sign processes in all their multitudes and manifesta-
tions. One basic question of semiotics is: how is communication possible? Semiotic
answers to this question are descriptive, not explanatory.

3.3 The Second Narration: On Three Artists

It has often been pointed out that computer art originates in the work of mathemati-
cians and engineers. Usually, this is uttered explicitly or implicitly with an undertone
on “only mathematicians and engineers”.

The observation is true. Mathematicians and engineers are the pioneers of algo-
rithmic art, but what is the significance of this observation? Is it important? What
is the relevance of the “only mathematicians” qualification? I have always felt that
this observation was irrelevant. It could only be relevant in a sense like: “early com-
puter art is boring; it is certainly not worth being called art; and no wonder it is so
boring—since it was not inspired by real artists, how could it be exciting”?

Frankly, I felt insulted a bit by the “only mathematicians” statement.11 It implies
a vicious circle. If art is only what artists generate, then how do you become an artist,
if you are not born an artist? The only way out of this dilemma is that everyone is,
in fact, born an artist (as not only Joseph Beuys has told us). But then the “only
mathematicians” statement wouldn’t make sense any more.

People generate objects and they design processes. They do not generate art. Art,
in my view, is a product of society—a judgement. Without appearing in public and
thus without being confronted with a critique of historic and systematic origin, a
work remains a work, for good or bad, but it cannot be said to have been included in
the broad historic stream of art. Complex processes take place after a person decides
to display his or her product in publicly accessible spaces. It is only in the public
domain that art can emerge (as a value judgement!). Individuals and institutions in
mutual interdependence are part of the processes that may merge to the judgement
that a work is assessed and accepted as a work of “art”—often enough, as we all
know, sparking even more controversy.

11This should read “mathematicians or engineers”, but I will stick to the shorter version.
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In the course of time, it often happens that an individual person establishes her-
self or himself stably or almost irrevocably in the hall of art. Then she or he can
do whatever they want to do, and still get it accepted as “art”. But the principle
remains.12

The “only mathematician” statement is relevant only insofar as it is interpreted as
“unfortunately the pioneers were only mathematicians. Others did not have access
to the machines, or did not know how to program. Therefore we got the straight-line
quality of early works.”

However, if we accept that a work’s quality as a work of art is judged by soci-
ety anyhow, the perspective changes. Mathematician or bohemian does not matter
then. There cannot be serious doubt that what those pioneering mathematicians did
caused a revolution. They separated the generation of a work from its conception.
They did this in a technical way. They were interested in the operational, not only
mental separation. No wonder that conceptual art was inaugurated at around the
same time. The difference between conceptual and computational art may be seen
in the computable concepts that the computer people were creating.

However, when viewed from a greater distance, the difference between concep-
tual artists and computational artists is not all that great. Both share the utmost
interest in the idea (as opposed to the material), and Sol LeWitt was most outspoken
on this. The early discourse of algorithmic art was also rich about the immaterial
character of software. Immaterial as software may be, it does not make sense with-
out being executed by a machine. A traditionally described concept does not have
such a surge to execution.13

The pioneers from mathematics showed the world that a new principle had ar-
rived in society: the algorithmic principle! No others could have done this, certainly
not artists. It had to be done by mathematicians, if it was to be done at all. The par-
lance of “only mathematicians” points back to the speaker more than to the mathe-
matician.

Trivial to note is that creative work in art, design, or any other field, depends on
ideas on one hand, and skills on the other. At times it happens that someone has
a great idea but just no way to realise it. He or she depends on others to do that.
Pushing things a bit to the extreme, the mathematics pioneers of digital art may not
have had great ideas, but they knew how to realise them.

12Marcel Duchamp was the first to talk and write about this: “All in all, the creative act is not
performed by the artist alone; the spectator brings the work in contact with the external world by
deciphering and interpreting its inner qualification and thus adds his contribution to the creative act.
This becomes even more obvious when posterity gives a final verdict and sometimes rehabilitates
forgotten artists.” (Duchamp 1959). This position implies that a work may be considered a work of
art for some while, but disappear from this stage some time later, a process that has often happened
in history. It also implies that a person may be considered a great artist only after his or her death.
That has happened, too.
13It is a simplification to concentrate the argument on conceptual vs. algorithmic artists. There
have been other directions for artistic experiments, in particular during the 1960s. They needed a
lot of technical skill and constructive intelligence or creativity. Recall op art, kinetic art, and more.
Everything that humans eventually transfer to a machine has a number of precursors.



76 F. Nake

On the other hand, artists may have had great ideas and lots of good taste and
style, but no way of putting that into existence. So who is to be blamed first? Ob-
viously, both had to acquire new and greater knowledge, skills, and feelings. They
had to learn from each other. Turning the argument around, we come up with “un-
fortunately, some were only artists and therefore had no idea how to do it.” Doesn’t
this sound stupid? It sounds as stupid the other way around.

So let us take a look at what happened when artists wanted, and actually man-
aged, to get access to computers. As examples I have chosen Vera Molnar, Charles
Csuri, and Manfred Mohr. Many others could be added. My intent, however, is not
to give a complete account, a few cases are enough to make the point.

3.3.1 Vera Molnar

Vera Molnar was born in Hungary in 1924 and lived in Paris. She worked on con-
crete and constructive art for many years. She tried to introduce randomness into her
graphic art. To her great dismay, however, she realised that it is hard for a human to
avoid repetition, clusters, trends, patterns. “Real” randomness does not seem to be
a human’s greatest capability.

So Vera Molnar decided that she needed a machine to do parts of her job. The
machine would not be hampered by the human subjectivity that seems to get in
the way of a human trying to do something randomly. The kind of machine she
needed was a computer that, of course, she had no access to. Vera Molnar felt that
systematic as well as hazardous ways of expressing and researching were needed
for her often serial and combinatorial art. Since she did not have the machine to
help her to do this, she had to build one herself. She did it mentally: “I imagined I
had a computer” (Herzogenrath and Nierhoff 2006, p. 14). Her machine imaginaire
consisted of exactly formulated rules of behaviour. Molnar simulated the machine
by strictly doing what she had told the imaginary machine to do.

In 1968, Vera Molnar finally gained access to a computer at the Research Centre
of the computer manufacturer, Bull. She learned programming in Fortran and Basic,
but also had people to help her. She did not intend to become an independent pro-
grammer. Her interests were different. For her, the slogan of the computer as a tool
appears to be justified best. She allowed herself to change the algorithmic works by
hand. She made the computer do what she did not want to do herself, or what she
thought the machine was doing more precisely.14

Figure 3.4 (left)15 shows one of her early computer works. She had previously
used repertoires of short strokes in vertical, horizontal, or oblique directions, sim-

14The catalogue (Herzogenrath and Nierhoff 2006) contains a list of the hardware Vera Molnar has
used since 1968. It also presents a thorough analysis of her artistic development. The catalogue
appeared when Molnar became the first recipient of the d.velop digital art award. A great source
for Molnar’s earlier work is Hollinger (1999).
15This figure consists of two parts: a very early work, and a much later one by the same artist. The
latter one is given without any comment to show an aspect of the artist’s development.
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Fig. 3.4 Vera Molnar. Left: Interruptions, 1968/69. Right: 25 Squares, 1991 (with permission of
the artist)

ilar in style to what many of the concrete artists had also done. The switchover
to the computer gave her the opportunity to do more systematic research. (“Visual
research” was a term of the time. The avantgarde loved it as a wonderful shield
against the permanent question of “art”. Josef Albers and others from the Bauhaus
were early users of the word.)

The Interruptions of Fig. 3.4 happen in the open spaces of a square area that is
densely covered by oblique strokes. They build a complex pattern, a texture whose
algorithmic generation, simple as it must be, is not easy to identify. The open areas
appear as surprise. The great experiment experienced by pioneers of the mid-1960s
shows in Molnar’s piece: what will happen visually if I force the computer to obey a
simple set of rules that I invent? How much complexity can I generate out of almost
trivial descriptions?

3.3.2 Charles Csuri

Our second artist who took to the computer is Charles Csuri. He is a counter exam-
ple to the “only mathematicians” predicament. Among the few professional artists
who became early computer users, Csuri was probably the first. He had come to
Ohio State University in Columbus from the New York art scene. His entry into the
computer art world was marked by a series of exceptional pieces, among them Sine
Curve Man (Fig. 3.5, left), Random War, and the short animated film Hummingbird
(for more on Csuri and his art, see Glowski 2006).

Sine Curve Man won him the first prize of the Computer Art Contest in 1967.
Ed Berkeley’s magazine, Computers and Automation (later renamed to Computers
and People), had started this yearly contest. It was won in 1965 by A. Michael Noll,
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Fig. 3.5 Charles Csuri. Left: Sine Curve Man, 1967. Right: yuck 4x3, 1991 (with permission of
the artist)

1966 by Frieder Nake, and then by Csuri, an educated artist for the first time. This
award, by the way, never gained high esteem. It took many more years, until 1987,
when the now extremely prestigious Prix Ars Electronica was awarded for the first
time.

For his first programming tasks, Csuri was assisted by programmer James Shaf-
fer. Similar to Vera Molnar, we see that the skill of programming may at the begin-
ning constitute a hurdle that is not trivial to master. If time plays a role, an artist
willing to use the computer, but still unable to do it all by himself, has almost no
choice but to rely on friendly cooperation. Such cooperation may create friction with
all its negative effects. As long as the technical task itself does not require cooper-
ation, it is better to acquire the new technical skill. After all, there is no art without
skillful work, and a steadily improved command of technical skills is a necessary
condition for the artist. Why should this be different when the skill is not the im-
mediate transformation of a corporeal material by hand, but instead the description
only of relations and conditions, of options and choices of signs?

Csuri’s career went up steeply. Not only did he become the head of an academic
institute but even an entrepreneur. At the time of a first rush for large and lead-
ing places in computer animation, when this required supercomputers of the highest
technological class and huge amounts of money, he headed the commercial Cranston
Csuri Productions company as well as the academic Advanced Computing Center
for the Arts and Design, both at Columbus, Ohio. In the year 2006, Csuri was hon-
oured by a great retrospective show at the ACM SIGGRAPH yearly conference.

Sine Curve Man is an innovation to computer art of the first years in two respects:
its subject matter is figurative, and it uses deterministic mathematical techniques
rather than probabilistic. There is a definite artistic touch to the visual appearance
of the graphic (Fig. 3.5), quite different from the usual series of precise geometric
curves that many believe computer art is (or was) about.

The attraction of Sine Curve Man has roots in the graphic distortions of the (old?)
man’s face. Standard mathematics can be used for the construction. A lay person
may, however, not be familiar with such methods. Along the curves of an original
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drawing, a series of points are marked. The curves may, perhaps, have been extracted
from a photograph. The points become the fixed points of interpolations by sums of
sine functions. This calculation, purely mathematical as it is, and without any intu-
itive additions triggered by the immediate impression of a seemingly half-finished
drawing, is an exceptional case of the new element in digital art.

This element is the dialectics of aesthetics and algorithmics. Sine Curve Man
may cause in an observer the impression that something technical is going on. But
this is probably not the most important aspect. More interesting is the visual (i.e.
aesthetic) sensation. The distortions this man has suffered are what attracts us. We
are almost forced to explore this face, perhaps because we want to read the curves
as such. But they do not allow us to do this. Therefore, our attention cannot rest with
the mathematics. Dialectics happens, as well as semioses (sign processes): jumping
back and forth between semantics and syntactics.

3.3.3 Manfred Mohr

Manfred Mohr is a decade younger than the first two artists. They belong to the first
who were accepted by the world of art despite their use of computers. Do they owe
anything to computers? Hard to say. An art historian or critic will certainly react
differently if he doesn’t see an easel in the artist’s studio, but a computer instead.

The artist doesn’t owe much to a computer. He has decided to use it, whatever
the reason may have been. If to anything, he owes to the programs he is using or
has written himself. With those programs, he calls upon work formerly spent that he
now is about to set in action again. The program appears as canned labour ready to
be resuscitated.

The relation between artist and computer is, at times, romanticised as if it were
similar to the close relation between the graphic artist and her printer (a human
being). The printer takes pride in getting the best quality out of the artist’s design.
The printing job takes on artistic quality itself. The computer, to the contrary, is
only executing a computable function. It should be clear, that the two cases are as
different as they could ever be.

If we characterise Vera Molnar, in one word, as the grand old lady of algorithmic
art, and Charles Csuri as the great entrepreneur and mover, Manfred Mohr would
appear as the strictest and strongest creator of a style in algorithmic art. The story
says that his young and exciting years of searching for his place in art history were
filled with jamming the saxophone, hanging out in Spain and France, and with hard
edge constructivist paintings. Precision and rationality became and remained his
values. They find a correspondence and a balancing force in the absolute individual
freedom of jazz. Like many of the avant-garde artists in continental Europe during
the 1960s, he was influenced by Max Bense’s theory and writing on aesthetics, and
when he read in a German news magazine (Anon 1965) that computers had appeared
in fine art, he knew where he had to turn to.

K.R.H. Sonderborg and the art of Informel, Pierre Barbaud and electronic music,
Max Bense and his theory of the aesthetic object constitute a triad of influences from
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Fig. 3.6 Manfred Mohr. Left: P-18 (Random Walk), 1969. Right: P-707-e1 (space.color),
1999–2001 (with permission of the artist)

which Mohr’s fascinating generative art emerged. From his very first programmed
works in 1969 to current days, he has never betrayed his striving for the greatest
transparency of his works. Never did he leave any detail of his creations open to
hand-waving or to dark murmurs. He discovered the algorithmic description of the
generative process as the new creation. The simplest elements can become the ma-
terial for the most complex visual events.

After about four years of algorithmic experiments with various forms and rela-
tions, Manfred Mohr, in 1973, decided to use the cube as the source of external
inspiration. He has continued exploring it ever since. There are probably only a few
living persons who have celebrated and used the cube more than him (for further
information see Keiner et al. 1994, Herzogenrath et al. 2007).

Figure 3.6 shows one event in the six-dimensional hypercube (right), and one of
the earliest generative graphics of Mohr’s career (left).

When we see a work by Mohr, we immediately become aware of the extraordi-
nary aesthetic quality of his work. His decisions are always strong and secure. The
random polygon of Fig. 3.6 is superior to most, if not all, of the others one could
see in the five years before. The events of the heavier white lines add an enormous
visual quality to the drawing, achieved in such strength here for the first time.

The decision, in 1973, to explore the three-dimensional cube as a source for
aesthetic objects and processes, put Manfred Mohr in a direct line with all those
artists who, at least for some part of their artistic career, have explored one and the
same topic over and over again. It should be emphasised, however, that his interest
in the cube and the hypercube16 does not signify any pedagogical motif. He does not
intend to explain anything about spaces of higher dimensions, nor does he visualise

16The hypercube is analogous to a three-dimensional cube in four or more dimensions. It is recur-
sively defined as an intricate structure of cubes.
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cubes in six or eleven dimensions. He takes those mental creatures as the rational
starting points for his visual creation. The hypercube is only instrumental in Mohr’s
creative work; it is not the subject matter.

The cube in four or more dimensions is a purely mental product. We can clearly
think the hypercube. But we cannot visualise it. We may take the hypercube as
the source of visual aesthetic events (and Mohr does it). But we cannot show it in
a literal sense of the word. Manfred Mohr’s mental hikes in high dimensions are
his inspiration for algorithmic concrete images. For these creations, he needs the
computer. He needs it even more when he allows for animation.

Manfred Mohr’s work stands out so dramatically because it cannot be done with-
out algorithms. It is the most radical realisation of Paul Klee’s announcement: we
don’t show the visible, we make visible. The image is a visible signal. What it shows
is itself. It has a source elsewhere. But the source is not shown. It is the only reason
for something visible.

Creativity? Yes, of course, piles of. Supported by computer? Yes, of course, in
the trivial sense that this medium is needed for the activity of realising something
the artist is thinking of. In Manfred Mohr’s work (and that of a few others whose
number is increasing) generative art has actually arrived. The actuality of his work
is its virtuality.

3.4 The Third Narration: On Two Programs

Computer programs are, first of all, texts. The text describes a complex activity. The
activity is usually of human origin. It has before existed as an activity carried out
by humans in many different forms. When it becomes the source of an algorithmic
description, it may gradually disappear as a human activity, until in the end, the
computer’s (or rather the program’s) action appears as the first and more important
than the human activities that may still be needed to keep the computer running:
human-supported algorithmic work.

The activity described by a computer program as a text may be almost trivial, or
it may be extremely complex. It may be as trivial as an approximate calculation of
the sine function for a given argument. Or it may be as complex as calculating the
weather forecast for the area of France by taking into account all available atmo-
spheric measurements collected around the world.

The art of writing computer programs has become a skill of utmost creativity, in-
tuition, constructive precision, and secrets of the trade. Donald Knuth’s marvellous
series of books, The Art of Computer Programming, is the best proof of this (Knuth
1968). These books are one of the greatest attempts to give an in-depth survey of
the entire field of computing. It is almost impossible to completely grasp this field
in totality, or even to finish writing the series of books. Knuth is attempting to do
just this.

Computer programs have been characterised metaphorically as tools, as media,
or as automata. How can a program be an automaton if it is, as I have claimed,
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a text? The answer is in the observation that the computer is a semiotic machine
(Nadin 2011, Nöth 2002, Nake 2009).

The computer is seen by these authors as a semiotic machine, because the stuff
it processes is of a semiotic nature. When the computer is running, i.e. when it is
working as a machine, it is executing a program. It is doing this under the control
of an operating system. The operating system is itself a program. The program,
that the computer is executing, takes data and transforms it into new data. All these
creatures—the operating system, the active program, and data—are themselves of
semiotic nature. This chapter is not the place to go deeper into the semiotic nature
of all entities on a computer.17 So let us proceed from this basic assumption.

The assumption becomes obvious when we take a look at a program as a text.
Leaving aside all detail, programming starts from a more or less precise specifi-
cation of what a program should be doing. Then there is the effort of a group of
programmers developing the program. Their effort materialises in a rich mixture of
activities. Among these, the writing of code is central. All other kinds of activities
eventually collapse into the writing of code.

The finished program, which is nothing but the code for the requested function,
appears as a text. During his process of writing, the programmer must read the text
over and over again. And here is the realisation: the computer is also reading the
text! The kind of text that we call “computer program” constitutes a totally new
kind of poetry. The poetics of this poetry reside in the fact that it is written for two
different readers: one of them human, the other machine.

Their fantastic semiotic capabilities single out humans from the animal king-
dom. Likewise, the computer is a special machine because of its fantastic semiotic
capabilities. Semiotic animal and semiotic machine meet in reading the text that is
usually called a program.

Now, reading is essentially interpreting. The human writer of the program ma-
terialises in it the specification of some complex activity. During the process of his
writing, he is constantly re-reading his product as he has so far written it. He is
convinced of the program’s “correctness”. It is correct as long as it does what it is
supposed to do. However, how may a text be actively doing anything?

The text can do something only if the computer is also reading it. The reading,
and therefore interpreting, of the program by the computer effectively transforms the
text into a machine. The computer, when reading the program text (and therefore:
interpreting it), cannot but execute it. Without any choice, reading, interpreting, and
executing the text are one and the same for the computer. The program as a text
is interesting for the human only insofar as the computer is brought to execute it.
During execution, the program reveals its double character as text-and-machine,
both at the same time. So programs are executable texts. They are texts as machine,
and machine as text.

After this general but also concrete remark about what is new in postmodern
times, we take a look at two specific and ambitious, albeit very different programs.

17A book is in preparation that takes a fundamental approach to this topic: P.B. Andersen &
F. Nake, Computers and signs. Prolegomena to a semiotic foundation of computing.
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We don’t look at their actual code because this is not necessary for our discussion
of creativity in early computer art. Harold Cohen’s famous AARON started its as-
tonishing career in 1973, and continued to be developed for decades. Frieder Nake’s
Generative Aesthetics I was written, completed, then discarded in the course of one
year, 1968/69.

3.4.1 Harold Cohen: AARON

AARON is a rule-based system, an enormous expert system, one of the very few
expert systems that ever made it to their productive phase (McCorduck 1990). In the
end it consisted of so many rules that its sole creator, Cohen, was no longer sure if
he was still capable of understanding well enough their mutual dependencies.

Everything on a computer must be rule-based. A rule is a descriptive element
of the structure: if C then A, where C is a condition (in the logical sense of
“condition”), and A is an action. In the world of computing, a formal definition
must state precisely what is accepted as a C, and what is accepted as an A. In
colloquial terms, an example could be: if (figure ahead) then (turn
left or right). Of course, the notions of “figure”, “ahead”, “turn”, “left”,
“right” must also be described in computable terms, before this can make any sense
to a computer.

A rule-based system is a collection of interacting rules. Each rule is constructed
as a pair of a condition and an action. The condition must be a description of an event
depending on the state (value) of some variables. It must evaluate to one of the truth-
values true or false. If its value is true, the action is executed. This requires
that its description is also given in computable form. The set of rules making up a
rule-based system may be structured into groups. There must be an order according
to which rules are tested for applicability. One strategy is to apply the first applicable
rule in a given sequence of rules. Another one determines all applicable rules and
selects one of them.

Cohen’s AARON worked for many years during which it produced a large col-
lection of drawings. They were first in black and white. Later, Cohen coloured them
by hand according to his own taste or to codes also determined by AARON. The
last stage of AARON relied on a new painting machine. It was constructed such that
it could mimic certain painterly ways of applying paint to paper.

During more than three decades, AARON’s command of subjects developed
from collections of abstract shapes to evocations in the observer of rocks, birds, and
plants, and to figures more and more reminiscent of human beings. They gave the
impression of a spatial arrangement, although Cohen never really entered into three
dimensions. A layered execution of figures was sufficient to generate a low-level of
spatial impression.

Around the year 2005, Cohen became somewhat disillusioned with the figural
subjects he had gradually programmed AARON to better and better create. When he
started using computers and writing programs in the early 1970s, he was fascinated
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Fig. 3.7 Harold Cohen. Left: Early drawing by AARON, with the artist. Right: Drawing by
AARON, 1992 (with permission of the artist)

by the problem of representation. His question then was: just how much, or little,
does it take before a human observer securely recognises a set of lines and colours as
a figure or pattern of something? How could a painting paint itself? (Cohen 2007).

But Harold Cohen has now stopped following this path any further. He achieved
more than anyone else in the world in terms of creating autonomous rule-based art
systems (Fig. 3.7 shows two works along the way). He did not give up this general
goal. He decided to return to pure form and colour as the subject matter of his
autonomous rule-based system.

For a computer scientist, there is no deep difference between an algorithm and
a rule-based system. As Cohen (2007) writes, it took him a while to understand
this. The difference is one of approach, not of the results. Different approaches may
still possess the same expressive power. As Cohen is now approaching colour again
in an explicitly algorithmic manner, he has shifted his view closer to the computer
scientist’s but without negating his deep insight into the qualities of colour as an
artist.

This is marvellous. After a long and exciting journey, it sheds light on the al-
leged difference between two views of the world. In one person’s great work, in his
immediate activity, experience, and knowledge, the gap between the “two cultures”
of C.P. Snow fades. It fades in the medium of the creative activity of one person,
not in the complex management of interdisciplinary groups and institutes. The book
must still be written that analyses the Cohen decades of algorithmic art from the
perspective of art history.

Cohen’s journey stands out as a never again to be achieved adventure. He has
always been the lonely adventurer. His position is unique and singular. Artificial
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Intelligence people have liked him. His experience and knowledge of rule-based
systems must be among the most advanced in the world. But he was brave enough
to see that in art history he had reached a dead-end. Observers have speculated
about when would AARON not only be Cohen’s favourite artist, but also its own
and best critic. Art cannot be art without critique. As exciting as AARON’s works
may be, they were slowly losing their aesthetic appeal, and were approaching the
only evaluation: oh, would you believe, this was done by computer? The dead-end.

Harold Cohen himself sees the situation with a bit more skepticism. He writes:

It would be nice if AARON could tell me which of them [its products] it thinks I should
print, but it can’t. It would be nice if it could figure out the implications of what it does so
well and so reliably, and move on to new definitions, new art. But it can’t. Do those things
indicate that AARON has reached an absolute limit on what computers can do? I doubt it.
They are things on my can’t-do-that list. . . (Cohen 2007).

The can’t-do-that list contains statements about what the computer can and what
it cannot do. During his life, Cohen has experienced how items had to be removed
from the list. Every activity that is computable must be taken from the list. There are
activities that are not computable. However, the statement that something cannot be
done by computer, i.e. is not computable, urges creative people to change the non-
computable activity into a computable one. Whenever this is achieved after great
hardship, we don’t usually realise that a new activity, a computable one, has been
created with the goal in mind to replace the old and non-computable.

There was a time, when Cohen was said to be on his way to becoming the first
artist of whom there would still be new works in shows after his death. He himself
had said so, jokingly with a glass of cognac in hand. He had gone so far that such
a thought was no longer fascinating. The Cohen manifesto of algorithmic art has
reached its prediction.

But think about the controversial prediction once more. If true, would it not be
proof of the computer’s independent creativity? Clearly, Cohen wrote AARON, the
program, the text, the machine, the text-become-machine. This was his, Cohen’s
creative work. But AARON was independent enough to then get rid of Cohen, and
create art all by itself. How about this?

In a trivial sense, AARON is creative, but this creativity is a pseudo-creativity. It
is confined to the rules and their certainly wide spectrum of possibilities. AARON
will forever remain a technical system. Even if that system contained some meta-
rules capable of changing other rules, and meta-meta-rules altering the meta-rules
on the lower level, there would always be an explicit end. AARON would not be
capable of leaving its own confines. It cannot cross borders.

Cohen’s creativity, in comparison, stands out differently. Humans can always
cross borders. A revolution has happened in the art world when the mathematicians
demonstrated to the artists that the individual work was no longer the centre of
aesthetic interest. This centre had shifted to descriptions of processes. The individual
work had given way to the class of works. Infinite sets had become interesting, the
individual work was reduced to a by-product of the class. It has now become an
instance only, an index of the class it belongs to.
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No doubt, we need the instance. We want to literally see something of the class.
Therefore, we keep an interest in the individual work. We cannot see the entire
class. It has become the most interesting, and it has become invisible. It can only be
thought.

I am often confronted with an argument of the following kind. A program is
not embedded into anything like a social and critical system, and clearly, without a
critical component, it cannot leave borders behind. So wait, the argument says, until
programs are embedded the proper way.

But computers and programs don’t even have bodies. How then should they be
able to be embedded in such critical and social systems? Purpose and interest are
just not their thing. Don’t you, my dear friends, see the blatant difference between
yourself and your program, between you and the machine?

Joseph Weizenbaum dedicated much of his life to convincing others of this fun-
damental difference. It seems to be very tough for some of us to accept that we are
not like machines and, therefore, they are not like us.

3.4.2 Frieder Nake: Generative Aesthetics I

A class of objects can never itself, as a class, appear physically. In other words, it
cannot be perceived sensually. It is a mental construct: the description of processes
and objects. The work of art has moved from the world of corporeality to the world
of options and possibilities. Reality now exists in two modes, as actuality and virtu-
ality.

AARON’s generative approach is activity-oriented. The program controls a
drawing or painting tool whose movements generate, on paper or canvas, visible
traces for us to see. The program Generative Aesthetics I, however, is algorithm-
oriented. It starts from a set of data, and tries to construct an image satisfying con-
ditions that are described in the data.

You may find details of the program in Nake (1974, pp. 262–277). The goal of the
program was derived from the theory of information aesthetics. This theory starts
by considering a visual artefact as a sign. The sign is really a supersign because it is
usually realised as a structure of signs.

The theory assumes that there is a repertoire of elementary or primitive signs.
Call those primitive signs: s1, s2, . . . , sr . They must be perceivable as individual
units. Therefore, they can be counted, and relative frequencies of their occurrence
can be established. Call those frequencies, f1, f2, . . . , fr .

In information aesthetics, a schema of the signs with their associated relative
frequencies is called a sign schema. It is a purely statistical description of a class
of images. All those images belong to the class that use the same signs (think of
colours) with the same frequencies.
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In Shannon’s information theory, the statistical measure of information in a mes-
sage is defined as

H = −
r∑

i=1

pi logpi. (3.3)

The assumption for the derivation of this formula in Shannon and Weaver (1963)
is that all the pi are probabilities. They determine the statistical properties of a
source sending out messages that are constructed according to the probabilities of
the source.

This explanation may not mean much to the reader. For one, information theory
is no longer popular outside of certain technical contexts. Moreover, it was over-
estimated in the days when the world was hoping for a great unifying theory. The
measure H gives an indication of what we learn when one specific event (out of a
set of possible events) has occurred, and we know what the other possible events
could be.

Take as an example the throwing of dice in a typical board game. As we know,
there are six possible events, which we can identify by the numbers 1, 2, 3, 4, 5,
and 6. Each one of the six events occurs with the same probability, i.e. 1/6. Using
Shannon’s formula for the information content of the source “dice”, we get

H = − log(1/6) = −(log 1 − log 6) = log 6 ≈ 2.6 (3.4)

(the logarithm must be taken to the base of 2). The result is measured in bits and
must be interpreted thus: when one of the possible results of the throw has appeared,
we gain between two and three bits of information. This, in turn, says that between
two and three decisions of a “yes or no” nature have been taken. The Shannon
measure of information is a measure of the uncertainty that has disappeared when
and because the event has occurred.

Information aesthetics, founded by Max Bense and Abraham A. Moles (Bense
1965, Moles 1968) and further developed in more detail by others (Gunzenhäuser
1962, Frank 1964), boldly and erroneously ignored the difference between fre-
quency and probability. To repeat, probabilities of a sign schema characterise an
ideal source. Frequencies, however, are results of empirical measurement of several,
but only finitely many messages or events (images in our case). As such, frequencies
are only estimates for probabilities.

Information aesthetics wanted to get away from subjective value judgement. In-
formation aesthetic criteria were to be objective. Aspects of the observer were ex-
cluded, at least in Max Bense’s approach. Empirical studies from the 1960s and later
were, however, not about aesthetic sources, but about individual pieces. In doing so,
the difference of theory and practice, of infinite class and individual instance, of
probability and frequency, had to be neglected by replacing theoretical probability
by observed frequency, thus pi = fi . This opened up the possibility to measure the
object without any observer being present. However, the step also gave up aesthetics
as the theory of sensual perception.

Now, the program Generative Aesthetics I accepted as input a set of constraints of
the following kind. For each sign (think of colour), a measure of surprise and a mea-
sure of conspicuity (defined by Frank in 1964) could be constraint to an interval of
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feasible values. Such requirements defined a set of up to 2r constraints. In addition,
the aesthetic measure that Gunzenhäuser had defined as an information-theoretic
analogue to Birkhoff’s famous but questionable measure of “order in complexity”
(Birkhoff 1931) could be required to take on a maximum or minimum value, rela-
tive to the constraints mentioned before. Requesting a maximum to be the goal of
construction put trust on the formal definition of aesthetic measure actually yielding
a good or even beautiful solution. Requesting a minimum, to the contrary, did not
really trust the formalism.

With such a statement of the problem, we are right into mathematics. The prob-
lem turns out to be a non-linear optimisation problem. If a solution is possible, it had
to be a discrete probability distribution. This distribution represents all images sat-
isfying the constraints. it was called “the statistical pre-selector,” since it was based
only on a statistical view of the image. In a second step, a topological pre-selector
took the sign schema of the previous step and created the image as a hierarchical
structure of colour distribution, according to the probabilities determined before.

The type of structure used for this construction of the image was, in computer
science, later called a quadtree. A quadtree divides an image into four quadrants of
equal size. The generative algorithm distributes the probabilities of the entire image
into the four smaller quadrants such that the sum total remains the same. With each
quadrant, the procedure is repeated recursively, until a quadrant is covered by one
colour only, or its size has reached a minimal length.

Generative Aesthetics I thus bravely started from specifying quantitative criteria
that an image was to satisfy. Once the discrete probability distribution was deter-
mined as a solution to the set of criteria, an interesting process of many degrees
of freedom started to distribute the probabilities into smaller and smaller local ar-
eas of the image but such that the global condition was always satisfied. Aesthetics
happened generatively and objectively, by running an automaton.

The program was realised in the programming language PL/I with some support
from Fortran routines. Its output was trivial but fast. I was working on this project
in Toronto in 1968/69. Since no colour plotter was available, I used the line printer
as output device. The program’s output was a list of measures from information
aesthetics plus a coded printout of the generated image. I used printer symbols to
encode the colours that were to be used for the image.

This generative process was very fast, which allowed me to run a whole series
of experiments. These experiments may constitute the only ones ever carried out
in the spirit of generative aesthetics based on the Stuttgart school of information
aesthetics. The program was intended to become the base for empirical research
into generative aesthetics. Regrettably, this was not realised.

With the help of a group of young artists, I realised by hand only two of the
printouts. From a printer’s shop we got a set of small pieces of coloured cardboard.
They were glued to a panel of size 128 × 128 cm. One of those panels has been
lost (Fig. 3.8). The other one is in the collection Etzold at Museum Abteiberg in
Mönchengladbach, Germany.

Besides the experience of solving a non-trivial problem in information aesthetics
by a program that required heuristics to work, I did this project more like a scientist
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Fig. 3.8 Frieder Nake: Generative Aesthetics I, experiment 4a.1, 1969

than an artist. An artist would have organised, well in advance, a production site
to transform the large set of the generated raster images into a collection of works.
This collection would become the stock of an exhibition at an attractive gallery.
A catalogue would have been prepared with the images, along with theoretical and
biographical essays. Such an effort to propagate the most advanced and radically
rational generative aesthetics would have been worthwhile.

Instead, I think I am justified in concluding that this kind of formally defined
generative aesthetics did not work. After all, my experiments with Generative Aes-
thetics I seemed to constitute an empirical proof of this.

Was I premature in drawing the conclusion? It was the time of Cybernetic
Serendipity in London, Tendencies 4, and later Tendencies 5 in Zagreb. In Europe
one could feel some low level, but increasing attention being paid to computer art.
A special show was in preparation for the 35th Biennale in Venice, bringing to-
gether Russian constructivists, Swiss concrete artists, international computer artists,
and kids playing. Wasn’t this an indication of computer art being recognised and
accepted as art. Premature resignation? Creativity not recognised?

I am not so sure any more. As a testbed for series of controlled experiments
on the information-aesthetic measures suggested by other researchers, Generative
Aesthetics I may, after all, have possessed a potential that was not really fathomed.
The number of experiments was too small. They were not designed systematically.
Results were not analysed carefully enough. And other researchers had not been
invited to use the testbed and run their own, most likely very different, experiments.
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It may well be the case that the project should be taken up again, now under more
favourable conditions, and different awareness for generative design.

3.5 The Fourth and Last Narration: On Creativity

This chapter finds its origins in a Dagstuhl Seminar in the summer of 2009. Schloss
Dagstuhl is a beautiful location hidden in the Southwest of Germany, in the province
of Saarland. Saarland is one of the European areas where over centuries people from
different nations have mixed. After World War II, Saarland belonged to France for
some time until a public vote was taken (in 1955) about where people preferred
to live, in West Germany or France. Was their majority decision in favour of the
German side an act of collective creativity?

Mathematicians in Germany and beyond have had a wonderful institution ever
since 1944, the Mathematical Research Institute of Oberwolfach. It is located at
Oberwolfach in the Black Forest. Mathematicians known internationally for their
interest in a specialised field, meet there to pursue their work. They come in inter-
national groups, with an open agenda leaving lots of time for spontaneous arrange-
ments of discussion, group work, and presentations.

The German Gesellschaft für Informatik, after having established itself as a pow-
erful, active, and growing scientific association in the field of computing, became
envious of the mathematicians and decided that they also wanted to have such a
well-kept, challenging and inviting site for scientific meetings of high quality. Soon
enough, they succeeded. Was this creativity or organisation?

So Dagstuhl became a place for scientists and others, from computer science and
neighbouring disciplines, to gather in a beautiful environment and work on issues
of a specialised nature. They are supposed to come up with findings that should
advance theory and practice of information technology in the broadest sense.

A week at a Dagstuhl seminar is a great chance to engage in something that we
usually find no opportunity to do. The topic at this particular occasion was compu-
tational creativity—a topic of growing, if only vague interest these days.

Inspired by some of the debates at the seminar, I have tried in this chapter, to
recall a few aspects from the early history of algorithmic art as a case from the
fringes of computing that we would usually consider a case for creativity. We usually
assume that for art to emerge, creativity must happen. So if we see any reason to do
research into the relation between creativity and computers, a study of computer art
seems to be a promising case.

People are, of course, curious to learn about human creativity in general. A spe-
cial interest in the impact of computing on creativity must have its roots in the huge
machine. As already indicated, I see the computer as a semiotic machine. The sub-
ject matter of computational processes must always already belong to the field of
semiotics. The subject matter computers work on is of a relational character more
than it is “thing-like”.

This important characteristic of all computing processes exactly establishes a
parallel between computable processes and aesthetic processes. But to the extent
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that computable processes are carried out by machinery, those processes cannot re-
ally reach the pragmatic level of semiosis. Pragmatics is central to purpose. Purpose
is what guides humans in their activities. The category of purpose is strongly con-
nected to interest.

I don’t think it could be proved—in a rigorous mathematical meaning of the
word “prove”—that machines do not (and can never) possess any form of interest
and, therefore, cannot follow a purpose. On the other hand, however, I cannot see
any common ground between the survival instinct governing us as human beings,
and the endless repetition of always the same, if complex, operations the machine is
so great and unique at. There is just nothing in the world that indicates the slightest
trace of an interest on behalf of the machine. Even without such proof, I do not see
any reason or situation where I would use a machine, and this machine developed
anything I would be prepared to accept as “interest” and, in consequence, a purpose-
ful activity.

What above I have called an interpretation by the machine is, of course, an in-
terpretation only in a purely formal sense of the word. Clearly, the agent of such
interpretation is a machine. As a machine, it is constructed in such a way that it has
no freedom of interpretation. The machine’s interpretation is, in fact, of the character
of a determination: it must determine the meaning of a statement in an operational
way. When it does so, it must follow strict procedures hard-wired into it (even if it
is a program called a compiler that carries out the process of determination). This
does not allow a comparison to human interpretation.

3.6 Conclusion

The conclusion of this chapter is utterly simple. Like any other tool, material, or
media, computer equipment may play important roles in creative processes. A hu-
man’s creativity can be enhanced, triggered, or encouraged in many ways. But there
is nothing really exciting about such a fact other than that it is rather new, it is ex-
tremely exciting, it opens up huge options, and it may trigger super-surprise.

In the year 1747, Julien Offray de La Mettrie published in Leiden, the Nether-
lands, a short philosophical treatise under the title L’Homme Machine (The Human
Machine).18 This is about forty years before the French Revolution, in the time of
the Enlightenment. La Mettrie is in trouble because of other provocations he pub-
lished. His books are burned, and he is living in exile.

In L’Homme Machine, La Mettrie undertakes for the first time the radical at-
tempt to reduce the higher human functions to bodily roots, even to simple mechan-
ical explanations. This essay cannot be the place to contribute to the ongoing and,
perhaps, never ending discourse about the machinic component in humans. It has
been demonstrated often enough that we may describe certain features of human

18I only have a German edition. The text can easily be found in libraries.
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behaviour in terms of machines. Although this is helpful at times, I do not see any
reason to set both equal.

We all seem to have some sort of experienced understanding of construction and
intuition. When working and teaching at the Bauhaus, Paul Klee observed and noted
that “We construct and construct, but intuition still remains a good thing.”19 We may
see construction as that kind of human activity where we are pretty sure of the next
steps and procedures. Intuition may be a name for an aspect of human activity about
which we are not so sure.

Construction, we may be inclined to say, can systematically be controlled; in-
tuition, in comparison, emerges and happens in uncontrolled ways. Construction
stands for the systematic aspects of work we do; intuition for the immediate, non-
considerate, and spontaneous. Both are important and necessary for creation. If Paul
Klee saw the two in negative opposition to each other, he was making a valid point,
but from our present perspective, he was slightly wrong. Construction and intuition
constitute the dialectics of creation. Whatever the unknown may be that we call
intuition, the computer’s part in a creative process can only be in the realm of con-
struction. In the intuitive capacities of our work, we are left alone. There we seem
to be at home. When we follow intuitive modes of acting, we stay with ourselves,
implicit, we do not leave for the other, the explicit.

So at the end of this mental journey through the algorithmic revolution (Peter
Weibel’s term) in the arts, the dialectic nature of everything we do re-assures itself.
If there is anything like an intuitively secure feeling, it is romantic. It seems essential
for creativity.

In the first narration, I presented the dense moment in Stuttgart on the 5th of
February, 1965, when computer art was shown publicly for the first time. If you
tell me explicitly, Georg Nees told the artist who had asked him—if you tell me
explicitly how you paint, then I can write a program that does it. This answer con-
centrated in a nutshell, I believe, the entire relation between computers, humans,
and creativity.

The moment an artist accepts the effort of describing how he works, he reduces
his way of working to that description. He strips it of its embedding into a living
body and being. The description will no longer be what the artist does, and how
he does it. It will take on its separate, objectified existence. We should assume it is
a good description, a description of such high quality concerning its purpose that
no other artist has so far been able to give. It will take a lot of programming and
algorithmic skill before a program is finished that implements the artist’s rendition.
Nevertheless, the implementation will not be what the artist really does, and how he
does it. It will, by necessity, be only an approximation.

He will continue to work, he will go on living his life, things will change, he
will change. And even if they hire him as a permanent consultant for the job of his
own de-materialisation and mechanisation, there is no escape from the gap between

19(Klee 1928) Another translation into English is: “We construct and construct, but intuition is still
a good thing.”
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a human’s life and a machine’s simulation of it. Computers just don’t have bod-
ies. Hubert Dreyfus (1967) has told us long ago why this is an absolute boundary
between us and them.

The change in attitude that an artist must adapt to if he or she is using algorithms
and semiotic machines for his or her art is dramatic. It is much more than the cozy
word of “it is only a tool like a brush” suggests. It is characterised by explicitness,
computability, distance, decontextualising, semioticity. None of these changes is
by itself negative. To the contrary, the artist gains many potentials. His creative
capacities take on a new orientation exactly because he or she is using algorithms.
That’s all. The machine is important in this. But it is not creative.

The creation of a work that may become a work of art may be seen as chang-
ing the state of some material in such a way that an idea or intent takes on shape.
The material sets its resistance against the artist’s will to form. Creativity in the
artistic domain is, therefore, determined by overcoming or breaking the material’s
resistance. If this is accepted, the question arises what, in the case of algorithmic
art, takes on the role of resistant material. This resistant material is clearly the al-
gorithm. It needs to be formed such that it is then ready to perform in the way the
artist wants it to do. So far is this material removed from what we usually accept
under the category of form, that it must be built up to its suitable form rather than
allow for something to be taken away. But the situation is similar to writing a text,
composing a piece of music, painting a canvas. The canvas, in our case, turns out to
be the operating system, and the supporting program libraries appear as the paints.
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4.1 Introduction

This chapter documents a conversation on the prospects for computational evalua-
tion of art, aesthetics and creativity. The dialogue began in July 2009 at the Dagstuhl
seminar (Boden et al. 2009). At the seminar a small group of participants decided to
explore the problem of evaluation of creative works. Here “evaluation” included the
decision process during artwork production and that following an artwork’s com-
pletion, including evaluation by others such as audiences and critics.

Following the seminar, the dialogue continued via email over a period of many
months (from July to November, 2009) and covered a variety of fascinating issues.
What follows here is an edited version of this correspondence, in chronological
order. As the reader will understand, the dialogue is relaxed and conversational—
points are not always justified, and the unplanned and improvisational nature of
the conversation reveals different ideas than would be found in a formal authored
chapter. But we hope readers will appreciate the sincerity and openness of all the
contributions, the value of candid personal opinions, and the shared sense of trying
to explore the complexity of the issues raised.

There is much here that philosophers may be familiar with (and possibly even
aghast at). But it does serve as an important historical record, particularly from the
perspective of a number of pioneering artists who have been working in this area
for decades. Their wisdom and experience brings a compelling perspective to the
conversation. The collective insight of these pioneers provides an important point of
reference for the next generation of researchers and artists entering the field.

4.2 Background: Evaluation of Artistic Artefacts

Before presenting the edited dialogue, a short background is first provided, in order
to establish the context from which these discussions began.1 The discussion is cen-
tred around the idea of computational evaluation of creative artistic artefacts. There
are a number of points to be made to flesh out this idea. Firstly, how something
is evaluated depends on the evaluator’s perspective and role. This role may be as
creator or designer, viewer, experiencer, or interactive participant.

This leads to some initial questions:

• What are the main features of human creative and aesthetic evaluation?
• How do these features (and the methods that are used) change according to the

evaluator’s role in the process?
• What aspects of evaluation can be made computational?
• Is it necessary for computational evaluation to mimic the evaluation methods of

humans?
• Does it make sense to automate a task that is so especially human?

1Elements of this section are based on the initial Dagstuhl group discussions (Boden et al. 2009).
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Answers to these questions have many complex implications, leading to a myr-
iad of further questions, several of which arise in the dialogue that follows. When
reading this dialogue it is important to keep in mind that the role evaluation plays
determines the kind of evaluation required. Evaluation of a work as it proceeds leads
to changes in that work (and potentially to future works), creating a feedback loop
between action, intent, material (physical, musical, virtual) and decision.

Perhaps the most basic evaluation of a work as it proceeds is to know when it is
finished. Knowing when a work is “done” arises for artists in almost any medium,
working alone or in collaboration. At the opposite end—when beginning a work of
art—initial ideas, conditions, moods and decisions can have major impacts on what
follows. Cezanne reportedly threw away paintings once an “incorrect” brushstroke
was made. Improvising musicians do not have such luxuries: a pianist like Keith
Jarrett is acutely aware that what he first plays will shape the rest of the performance.

Computers have the ability to “undo”, backtrack, and trial many possible combi-
nations very quickly. But knowing what to undo, how and when to backtrack, and
which paths to pursue or abandon requires evaluation appropriate to the task if it
is to be successful. Evaluation of a work as it proceeds is generally concerned with
decision making and prediction, e.g. what are the implications of making this mark,
playing this sequence of sounds, or using media in a specific way? Accomplished
artists have a seemingly innate intuition about creative decision-making and its im-
pact, developed and fine-tuned over many years of practice. But can such decisions
alone lead to the transformational creativity (Boden 1991) we see in the best human
artists?

Evaluation of a finished artwork as an “art object” presents a different set of
criteria. This may include examination of the emotional response of people experi-
encing the work under consideration, or an evaluation based on (for example) some
aesthetic principles. In this book we are inevitably interested in what aspects of eval-
uation might be captured in a computational system. One possibility is to employ
machine learning techniques where the system is trained on existing art works in or-
der to learn any underlying aesthetic criteria. Certainly, this forms the basis of much
current research.

It is also crucial to understand what we are evaluating for: quality (artistic,
conceptual, aesthetic), value (monetary, cultural, critical, emotional), or something
else? An important distinction can be made between the evaluation of creativity
(appropriate or valuable novelty) and, for example, aesthetics. Something that is
aesthetically pleasing may not necessarily be creative (as evidenced by looking at
any collection of picturesque wall calendars, for example).

Human evaluation of artistic works typically extends well beyond the artefact
itself, encompassing implicit knowledge and cultural norms, such as the inten-
tion of the artist who created it, the situation and conditions—social, political, and
cultural—under which it is made and presented, the observer’s knowledge and ex-
perience of similar works, and the dominant social values and norms of the day.2

2For important considerations of these issues, we refer the reader to the contributions in Part III.
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As discussed elsewhere in this book (e.g. Chap. 5), becoming an expert or vir-
tuoso in a particular medium normally takes many years of intense practice and
immersion. As expertise and virtuosity mature, so does evaluation: the two appear
to go hand-in-hand. Knowledge and experience emerge as decisive factors in pro-
ducing artefacts of high creative value.

With these statements and questions forming a background, let us now proceed
to the discussion.

4.3 A Conversation on Evaluation

The participants are (in order of appearance and identified by their initials), Harold
Cohen (HC), Frieder Nake (FN), David Brown (DB), Jon McCormack (JM), Paul
Brown (PB) and Philip Galanter (PG).

The conversation begins with a discussion about the aesthetic evaluation of art
by people and computers.

Harold Cohen (HC): I sometimes wonder whether Western culture hasn’t gen-
erated more art evaluation than art over the past few hundred years. How much of it
is known outside the art world is another matter. It is worthwhile to make clear that
aesthetic evaluation has little to do with conformance to the set of “rules” still being
widely taught in art colleges.

As to the evaluation of aesthetics computationally, I confess to paying little at-
tention to what’s going on outside my studio, but I’d be very surprised to learn that
there’s a rich enough history of practical work to fill a book. Why is there so little
history? To begin with, AI is still not at a stage where a program could accumulate
enough relevant knowledge about an object it didn’t make itself to make a non-
trivial evaluation, so the discourse is limited, necessarily, to art-making programs,
of which there have been relatively few. (I’m unclear about whether the same limi-
tation would apply in other forms: music, for example.)

All of my own sporadic forays until now have been non-starters. But once I relin-
quish the notion of program autonomy and accept that the program is working with
and for me, it becomes clear that it is capable of exercising (my) aesthetic judge-
ment. And it does, to a point. But it’s exercised on the work-in-progress, not on the
finished work. Thus, it doesn’t wait to tell me that an image has too much grey;
it evaluates and corrects as it proceeds, provided that I can tell it how much grey
is enough. That’s a trivial example; one step up I’d need to say how much grey is
enough relative to something else. Even if I could find a way of identifying amount-
of-grey as an evaluation issue, and say what to do about such issues generally, there
is still the problem that they are a moving target. That target moves in the human
domain.

Unfortunately, it’s a lot easier to say what’s wrong with an image than to say what
makes it special. I’m looking for the images that are transcendent; which means, by
definition, that I don’t know what it is that makes them special and don’t know how
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to describe what it is in computational (or any other) terms. The limitation is my
own, not the program’s.

Evaluation of a work in progress is directed to how to proceed. Evaluation of a
finished work is directed to whether it’s any good. The procedures required to satisfy
the two are likely to be quite different, even when the same aesthetic is informing
the procedure in each case.

I think it’s very unlikely that “in-line” evaluation3 can be done algorithmically.
The simplest case I can think of would be to determine whether the work is finished.
Even that is much harder than one might think. It could only be done algorithmically
if one could provide an evaluation function—highly unlikely—which would be, in
any case, a shifting target with respect to the many different goals a program (or
human artist) may have.

For the general case the problem is much more difficult. The program can’t de-
termine how to proceed unless it knows what it has done, and knowing what it has
done—the object so far—involves the notoriously troublesome “new term” prob-
lem. It knows it has done a, b and c, but can’t know that it has introduced a novel
and unanticipated relationship between a and c. Which is exactly what should be
the determinant to the next step.

It is true, of course, that many human artists proceed algorithmically—you do
this, then you do that, and after you’ve done all the thises and thats you have an
artwork. No evaluation is required; your job is simply to do all the steps well. In hu-
man terms this algorithmic approach results in what we call “academic art”, which
I think has no place in a discussion on creativity.

Post-hoc evaluation is no less troublesome, and I suspect it’s likely to be impos-
sible for a program that didn’t itself make the artwork. A formal colour evaluation4

that doesn’t take account of the possibility that all the well-balanced colour har-
monies may add up to a portrait of an oddly-dressed man making rude hand ges-
tures, for example. It also implies that there are canons for colour distribution and
the rest, and evaluation simply measures conformance to those canons. (Impression-
ism good, German Expressionism bad?)

For most artists, making art is an on-going affair, not a series of isolated (art-
work) events. Consequently, the completion of each work provides an extension of
the feedback-driven consideration operating in the in-line evaluation. It is similarly
concerned with direction, not aesthetics (except to the degree that, for the completed
work, the artist must decide at least in part on aesthetic grounds, whether to accept
it or reject it).

That is quite different from the aesthetic evaluation by any other agent, who is
not engaged in that on-going process. In this case direction is clearly not an issue,
acceptance/rejection is not an issue, and the aesthetic principles brought to bear on
the work are unlikely to have much correspondence to those of the artist.

3By “in-line” Cohen is referring to evaluation of aesthetic decisions as a work proceeds.
4At the time of writing this statement, Cohen was very focused on translating his theories of colour
and colour harmony into algorithms that AARON could use to colour abstract shapes.
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I have some hope for the possibility of post-hoc evaluation by the generating
program; no hope at all for evaluation by any other program.

Frieder Nake (FN): Aesthetics is, to a large extent, an evaluative discipline. We
would probably not immediately equate evaluation with judgement. But the two are
related. “Evaluation” is, quite likely, a more technical approach to aesthetic (or any
other) judgement. However, we should be aware of the fundamental difference be-
tween value and measure. The temperature in a room can be measured because an
instrument has been constructed that shows what physicists have defined as a quanti-
tative expression of the quality of “warmth”. The measured temperature is objective
insofar as it has nothing to do with any human being present and experiencing the
room in the actual situation and context. The human’s value may be expressed as
hot, warm, cool, or whatever else. Notice these are qualities.

So, in a first approximation, we may relate value with quality (human, subjec-
tive), and measure with quantity (instrument, objective).

The value judgement by a human may be influenced by the measured data deliv-
ered by an instrument. But the two are definitely and importantly to be kept apart
(for intellectual rigour). Even more so in the complex situation of aesthetics.

Aesthetics itself is considered by many as being about our sensual perception of
things, processes, and events in the environment. Hence, the subject matter of aes-
thetics is in itself intrinsically subjective. Those who start from this position cannot
accept the claim that there are objective measures that would substantially contribute
to human judgement.

HC: However, there have been times when number systems have had special
cultural significance, and consequently aesthetics has been bound up with objective
measures. For example, the Greek canon of human proportion was quite clear about
how big the head should be in relation to the body, and I’m reasonably sure the
sculpture critic would have regarded conformity to, or departure from, that canon as
an aesthetic issue. There are many other examples.

Objective measures are a component of aesthetics when the measures themselves
are important culturally. Today we have no such measures, and attempts to find them
in contemporary artworks seem absurd to me, just as Ghikas’s5 attempts to find
the golden mean in the art of a culture that knew nothing about incommensurable
numbers seems absurd.

FN: Harold, you are absolutely right. By reminding me of some facts of history,
you make me aware of a psychological hang-up that I now believe I have created in
a dogmatic reaction against Max Bense.6

Bense, of course, allowed only objective aesthetic measures. He did so in reaction
to German fascism where emotion was the only goal of their grandiose aesthetics

5Nikos Hadjikyriakos-Ghikas, a 20th-century Greek artist and academic.
6Max Bense was an influential German philosopher and Nake’s teacher and mentor in his formative
years as an artist exploring the generative possibilities of the computer in the 1960s.
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for (against?) the masses. Bense was, at the same time, clear about subjective ele-
ments in the building of an aesthetic judgement. But that was outside of scientific
investigation and research. It was purely private.

As a young man, I liked and loved this entire attitude. Everything in the world
would be rational, mathematical, objective. Everything else was absolutely without
interest.

I later adopted the view of aesthetics and sensual perception being tied together.
From there it is a short step to my position. Your beautiful hints to some other
times carry exactly the message that you summarise above. If some rule or law or
proportion or other statement is culturally important, ruling, governing, then—of
course—the individual sensual perception is, as always, largely determined by that
“objectively” (i.e. culturally) dominating fact.

Having responded to Harold, Frieder now returns to his original discussion on
developing algorithms for evaluation of aesthetics.

We seek algorithmic methods of evaluation that might have bearings on individ-
ual subjective aesthetic judgement. Yes—some researchers or even critics and artists
want to find such measures, to define them, to construct instruments that tell us num-
bers on a scale. If we want to do this, if we neglect the deeply subjective character
of a value judgement, we will try and find or define such measures to replace (or at
least approximate) the subjective value. I am afraid, such heroic attempts will not
get them very far.

It might be necessary to recall G.D. Birkhoff’s definitions of aesthetic measure in
the 1920s and 1930s. A lot of psychological work was done afterwards (in the form
of empirical measures) with the unceasing intention of scientists to explain complex
phenomena in an objective way.

The Birkhoff case is telling. He took up the old and popular idea of “order in
complexity” or “unit in complexity” (a clearly subjective value). He put in a formula:
M = O/C (to me, this looks beautiful!). Here M is the aesthetic measure, O is the
measure for order, C is the measure for complexity.

See how this works? You translate the words with all their connotations into
variables. The variables stand for numbers, measured in appropriate units according
to a measuring schema. What was a subjective interpretation all of a sudden has
become reading scales. Great!

All that is left to do after this bold step is to “appropriately define” the measuring
procedure. When you read Birkhoff’s examples, you will be appalled. I was not,
when I was young and did this (in the early 1960s). Birkhoff, as his famous example,
chose polygons as the class of shapes to measure aesthetically. Complexity was
for example the number of edges of the closed polygon. Order was, by and large,
the degree of symmetry (plus a few additional features). The square is the best.7

Wonderful!
When in those days, as a young guy using computers for production of aesthetic

objects, I told people, small crowds perhaps, about this great measuring business,

7By Birkhoff’s formula, the square evaluates to the polygon with the highest aesthetic value.
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someone in the audience always reacted by indicating: “young man, what a hap-
less attempt to put into numbers a complex phenomenon that requires a living and
experienced human being to judge”.

My reaction then was, oh yes, I see the difficulties, but that’s exactly what we
must do! And we will, I threatened them. I guess, looking back without anger, they
shut up and sat down and thought to themselves, let him have his stupid idea. Soon
enough he will realise how in vain the attempt is.

He did realise, I am afraid to say.
In the early 1960s, Birkhoff’s quotient of order over complexity was taken up

again (by Bense, Frank, Gunzenhäuser, Moles, myself). It was given a promising
interpretation in information theoretic terms. Helmar Frank, in his PhD thesis of
1959, defined measures of surprise and of conspicuousness (of a sign, like a colour,
in an image). All these attempts were bold, strong, promising, radical. But they
were really only heroic: the hero always dares a lot, more than anyone else, stupidly
much, and always gets defeated and destroyed in the end.

I am sceptical about computer evaluations of aesthetics for many reasons. They
are a nice exercise for young people who believe in one-sidedness. Human values are
different from instrument measures. When we judge, we are always in a fundamental
situation of forces contradicting each other. We should not see this fact as negative.
It is part of the human condition.

Harold may be the one who, from his forty years of computational art practice
that took him so close to the heroes of AI, would be able to pave the way. But even
he is sceptical. “I don’t know what it is that makes them (the computer-generated
images coming from his program) special”, he says. He continues to say he doesn’t
know how to describe “what it is in computational terms”.

If we ever wanted to apply algorithmic methods to aesthetic evaluations, we must
first be able to describe what we want to measure. Such a description must be for-
mal and computable. So an explicitly formalised and algorithmic description is what
would be needed. And those descriptions would be of works that we are used to call-
ing “art”. We all know the situation where five of us are around a small collection of
pictures. We discuss them. We describe, bring in comparisons, develop our judge-
ments against the background of our own lives, and of the current situation and
discussion. We come up with a judgement in the end that doesn’t totally satisfy any
participant of the meeting. But all of us feel quite okay. We think we can justify the
judgement. Tomorrow it could easily turn out to be different. This is how complex
the situation of an evaluation is.

In Toronto in 1968/69, I wrote a program that I proudly called Generative Aes-
thetics I. It accepted as input a series of intervals for information aesthetic mea-
sures. They defined boundary conditions that must not be violated. The algorithm
then tried to find a solution maximising the aesthetic measure against the boundary
conditions. Its result was, of course, only a (probability based) distribution of the
colours.

Just see what that program’s task was: given a set of numeric (!) criteria, deter-
mine a “best” work that satisfies certain given evaluations. Isn’t that great? I thought
it was. And I was 29 years old.
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A second program took this statistical description of an image (really: an infinity
of images) and distributed colours into a quadtree structure such that the prescribed
(just calculated) frequencies of colours were obeyed. I called the quadtree structure
“the topology of the image”.

I guess it was one of the most powerful programs ever in computer art, and cer-
tainly of its early phase. The program showed how little you achieve this way. As
Harold says, you can use such dynamic evaluative measures during the generative
process. That’s all. Anything beyond this is human value judgement.

Phil Galanter has shared some of the scepticism of others, but says giant leaps
are not to be expected. But baby-steps should be tried just to see where they get the
baby. Yes, dear Phil, what is there left to do other than doing baby steps. So let us
get into those pink knitted tiny shoes that mothers like to put their baby’s feet into
and move on from there.

David Brown (DB): I think that an analysis of existing methods in order to in-
fluence the output of computational systems—via some embedded knowledge (such
as rules)—is a useful thing to do.

My experience in the design world suggests that you’ll find a lot of people who
had “techniques looking for a problem”—i.e. the method of evaluation is shaped by
their tool.

I think it is better to analyse the problem and then look for techniques. For ex-
ample, what kinds of evaluations affecting creativity are made during synthesis and
what kinds of techniques can make these evaluations? Additionally, what kinds of
evaluations can be applied to the descriptions of resulting artefacts, always assuming
that all necessary sensing is in place.

For creative evaluation, newness and surprise are key to people judging some-
thing as being creative. But judging both of these computationally is tricky, espe-
cially during synthesis.

Focusing on learning is putting the cart before the horse. Focusing on a belief
that something is “impossible” is not letting either out of the stable: a great way to
reduce discovery of, and understanding about, the ingredients that lead to creative
artefacts. By taking each challenge and looking at how it might be tackled we can
make systematic progress.

Can we get a system to figure out that a blue widget isn’t much different from a
green widget, even if in some sense it is “new”? How can different types of newness
be evaluated? Can a system predict how much a “newer” choice during synthesis
will affect the judgement of the creativity of the finished product?

We take questions such as these and look for techniques that might help. For ex-
ample, could we use the web for assessing newness? Could we take a representation
of an artefact that has structural, behavioural and functional components and use
that to decide a degrees of newness? Could fuzzy matching techniques be used to
detect similarity and therefore newness? And so on. . .

Jon McCormack (JM): This discussion has made a number of claims as to why
objective aesthetic measures seem impossible for an individual or machine. Never-
theless, I do think there is some basis for looking at aesthetic commonality particular
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to a specific culture, social group, style or individual. After all, what is taught at art
schools? Students learn the basic craft of their medium, they are exposed to many
exemplars, they try and fail, try again, receive critique and feedback with a hope of
improving with experience. But as has been pointed out by Harold, rule following
isn’t enough, art is an ongoing dialogue.

A lot of generative art software encodes specific forms of aesthetic judgement.
The artist/programmer carefully chooses specific rules so as to create a system that
generates pleasing aesthetics for them (which in turn may change after being ex-
posed to computer aesthetics or even the aesthetics of the artwork-in-progress).
Therefore, in a sense, this software is “evaluating” what it is doing (as it is doing
it), but not in the way that a human does. It is an evaluation done for aesthetic pur-
poses. However, the judgement originates with the programmer, not the program, so
it becomes a continuous scale of how much is imbued to each.

A program that can adapt can learn, and hence change its judgement. That we
know to be possible (using evolutionary algorithms or machine learning for exam-
ple), but as Frieder points out, the baby may never get out of its tiny pink shoes.
Perhaps we need to wait until machines have their own social evolution.

Frieder also raises the point that aesthetics is tied to the phenomenology of sen-
sual perception—how else could we appreciate work like that of the artist James
Turrell for example? It is difficult to imagine a machine experiencing such a work
and coming to a similar aesthetic understanding, unless that machine had very simi-
lar phenomenological perception to us, or had sufficient knowledge about us (our
perception, cognition, experience) and physics, to infer what our understanding
would be. The same provisos apply to a machine originating such a work.

But while there may be many areas of human aesthetics, cognition and perception
that are currently “off limits” to machines, it does not necessarily preclude machines
that may be able to originate something that humans find aesthetically valuable.
Indeed, a lot of “computer art” has given us very new aesthetics to contemplate.

Paul Brown (PB): I am very aware that writing too briefly opens up the oppor-
tunity for misunderstanding (I suspect Darwin said this?). But, to try:

One of the major themes in human development has been the revealing of struc-
ture (logic) through the observation and analysis of phenomena. Let me suggest
that this point of view, in it’s extreme perhaps, believes that all phenomena can be
explained in some rational manner. In the history of art this complements the “classi-
cal” roots of art and leads directly to the work of Peirce, Saussure, Cezanne, Seurat,
etc., and then into the 20th century experiments in constructivism, rational aesthet-
ics, analytical philosophy, cybernetics, conceptualism, systems art, and so on. . . We
could call this approach Modernist but this term is fraught with misunderstanding,
especially as it is so (ab)used within the art world.

Another major theme suggests that understanding comes via entering into a rela-
tionship with the phenomena that enables the spontaneous emergence of meaning.
We use terms like “intuition” and “inspiration”. The extreme of this point of view
suggests that critical analysis is unnecessary and may actually be counter-productive
(and in theological “controlling” manifestations that it should be suppressed).
I know of several artists who, after pursuing PhD “practice-based” research, are now
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unable to practice since they have lost their spontaneity. Here belief is paramount—
the subjective takes precedence over the objective. In the world of art this meme
develops in the Romantic tradition. With the same reservations as above we could
adopt the term Postmodern to describe this kind of thinking as it developed in the
late 20th century.

One important distinctions between these two positions is that the former be-
lieves that everything can be explained using rationally/logical methods and the lat-
ter does not.

As a member of the former group I believe that the major shortcoming of the lat-
ter is that it implicitly invokes the need for a quality of the “unexplainable”—some
kind of immaterial “essence” or “soul”. However I am also aware that in science we
now accept (believe in) dark matter and (even more mysteriously) dark energy—
qualities which enable our structural analyses of the universe to make sense but for
which we have little or no direct evidence.

Another interesting comment comes from the British biologist/cybernetician Ge-
off Sommerhoff in his explanation of “freedom of will”. He suggests that freedom
of will is the response of a simple entity (humans) to an environment (the universe)
that seems to be almost infinitely complex. For Sommerhoff freedom of will is no
more than a psychological mechanism for helping us maintain our sanity when faced
with the actuality of our insignificance and our inability to act independently. Tak-
ing this further we can interpret Sommerhoff as suggesting that although everything
is knowable, it is not possible for humans to attain all of this knowledge because of
our inherent system limitations. This seems to me close to Borges map problem—
for a map to be completely accurate it must be—at least—as large (as complex) as
the territory it describes. So for us to be able to fully explain the universe we need
another universe that is, at least as big, to hold the knowledge.

So for me this objective/subjective question can be expressed:

1. I implicitly believe that everything is rationally explainable (there is no essence
or soul);

2. I acknowledge, however, that there are many things that may never be explained;
3. Nevertheless I do not believe that this acknowledgement of limitation should

prevent us from seeking explanations—however hard the problems we address
may be;

4. I believe that the rational analysis and synthesis of aesthetics (and other percep-
tual, cognitive, conceptual and creative processes) is one of the key issues for
humanity to address in the 21st century—we must now apply our systematic
methodologies to our own internal mechanisms (and I’m here using the word
“mechanism” deliberately);

5. If we do not then we are in danger of handing our world over to the priests,
fascists and other bigots whose only wish is to enslave us.

In response to this on-going discussion, Philip Galanter responds in order to
draw out some of the underlying assumptions.

Philip Galanter (PG): In terms of epistemology the (undefended here) subsum-
ing view is that there really are intrinsic unknowns “out there” even though “out
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there” is a noumenal world that is mechanical, rational and logical. Meaningful, ob-
jective and verifiable general explanation is possible. However such explanation is,
as a matter of principle, incomplete and statistical. Specific past events may elude
explanation, and future events may be unpredictable as a matter of principle even
though they are not irrational.

FN: I think I have mentioned before, how much my admired teacher in philoso-
phy, Max Bense, was motivated in all his thinking and writing by his experience as
a thinking individual in Nazi Germany.

Nobody should allow him- or herself to let any emotions, anything non-rational
creep into their aesthetic (or other) judgement. Rationalism was the weapon in think-
ing against fascism and other totalitarian movements.

As young students we loved him for these messages. Radically I tried to follow
his traces. An exercise that helped me for a long time and occupied my thinking in
the most beautiful and satisfying way.

Why then did I later start deviating from this line? And why do I today no longer
believe that aesthetic judgement rationalism will get me very far?

It seems to me that, at this moment, I cannot pin down a specific event or insight
or influence that caused me to change in the way indicated. In very simple terms,
my position is: of course, we try to analyse a painting, a piece of music, a novel, etc.
in rationalist concepts and in a rationalist method; such an approach will give us a
lot of insight and a way to discuss and criticise without attacking us personally, but
only in issues of the subject matter; often, and for many, this is enough and nothing
more needs to be done; for others, however, the final judgement remains to be a
personal statement based on acquired feelings.

It has happened to me more than once that I enter a gallery room, take a look
around, and immediately (and unmediated) react in a positive, excited, interested,
attracted way to one of the paintings there. I move closer, study it carefully, think,
compare, visit the other paintings in the room, build up a judgement. Often, the
immediate impression survives a more careful consideration, and is enforced. Not
always though. At times, closer investigation leads to a revision of the first and
immediate impression.

I do know that everything I have learned and experienced about Artificial Intelli-
gence, everything I have read from Hubert Dreyfus, Joe Weizenbaum, the Scandina-
vians, David Noble, from Herbert Simon, Allen Newell, . . . all the heroes of AI—all
that built up in me, and reinforced again and again, a deep rejection of anything that
seems close to the separation of mind and body.

Cartesianism has had a great time, and has led to exciting results. But it has had
its time. The belief in “progress” has disappeared from me. Change, yes. Permanent
change.

Hannah Arendt refers to Kant as having said that aesthetic judgement relies on
examples, not on general concepts. This I believe. I say “believe”, not more.

After several weeks of silence, the discussion continues, this time initiated by
a report from Harold on his progress with AARON in creating new images for a
forthcoming exhibition. . .
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HC: A report from the front. A couple of weeks ago I decided I wanted to see
more saturated colour in AARON’s output. I gave the program what I thought would
be a suitable colour profile (controlling the frequency with which it would choose
one of the nine possible combinations of lightness and saturation) and then watched
in increasing frustration as the program generated several hundred rotten images.

Yesterday I bowed to what I’ve always known to be the unyielding dominance
of value—lightness—over saturation, and substituted a different colour profile that
generated colours from very light to very dark. And this morning I selected forty
stunning images: my “aesthetic evaluation”? from more than two hundred mostly
excellent images.

What was I looking for when I made the selection?
A sense of place. All the images make use of the same set of form generators;

I chose those images that transcended mere arrangement of forms, those that gen-
erated the sense that they represented something external to themselves, those that
seemed to carry the authenticity of the thing seen.

What contributes to this sense of place?
There are relatively few variables in the program that exercise critical control

over the nature and reading of the output. One is the choice of colour profile. Others
are the scale of forms relative to the size of the image; the proportions of the image;
the background colour (hue, lightness and saturation) relative to what builds in the
foreground; the proportion of space allocated to background and foreground; the
mode of distribution of the forms.

You’ll see that these are all quantifiable. (There are several possible distribution
modes, each of which is controlled by quantifiables.)

Is the nature and quality of the output—the sense of place—then quantifiable?
I am aware that there are no intrinsically good or bad values for the variables

that control the output. The sense of place—and everything else—results from the
combination of all the variable values. That’s a multidimensional space with perhaps
fifteen or twenty dimensions that I know about; way beyond my own mathematical
capabilities if I thought that was a good way to go. But notice that the same set
of values generated more than two hundred images, of which I judged only forty to
have an adequate sense of place. Evidently there are other elements involved beyond
the variable settings; specifically, I suspect, the “clustering” of forms which emerges
from distribution and scale and population and all the rest.

Is this emergent property—clustering—quantifiable? I doubt it.
The implication seems to be that a program might be able to pick out the good

ones, but couldn’t pick out the exceptional ones; which are, of course, the ones
I’m interested in. But even this might be going too far, partly because it may not
be possible to identify the original variable values from the output, partly because
in doing so it would only have identified this particular work as belonging to a
particular group and would reject any work that didn’t belong to this or another
successful group. Clearly, that’s not the way to go. The transcendent images that
don’t belong to any group are precisely the ones I want.

The more important point to make, however, since we appear to be talking about
aesthetic evaluation, is that I’ve not said a word to suggest that beauty is an issue
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for me. In fact, I don’t think I’ve ever met an artist who did think that beauty was an
issue. Beauty is emergent, apparently, from the relentless pursuit of the individual’s
holy grail, whatever that might be, bearing in mind that my grail and yours are
unlikely to have the same shape. That does not necessarily mean that a purely formal
evaluation of the work itself, without regard to how it got to be that way—harmony,
balance, golden mean and whatnot—are non-starters, but I have yet to see one finish.

And, yes, you certainly do run into cultural issues. Impressionism has been the
epitome of “beautiful” painting for a long while now; but the Impressionists were
accused of shooting the paint on to the canvas with a pistol. Not good. Though today
we’d probably think of that as a great idea; after all, Pollock didn’t go in for brushes,
either.

FN: I, as one occasional participant in this dialogue, love in particular your com-
ments and deep insight, the insight of a life in art and science, Harold. By necessity
our discussion must get closer and closer, as it continues, to the fundamental philo-
sophical question of objective vs. subjective. This discussion would then have to ask
what the “thing” would be, what the “work” would be, and much more. . .

We all know to some extent that these issues cannot be solved (as a mathematical
equation may be solved), but that they remain the eternal discourse of philosophy.
It produces the question itself in new forms, and therefore also with new answers.

Our question here is, of course, much more pragmatic and mundane. I guess a
few statements could be made in this regard. Like, perhaps:

The making of art is subjective. The appreciation of art is subjective. The mak-
ing of art relies on certain general and specific objective conditions. So does the
appreciation.

Humans, as cultural groups or as individuals, like to emphasise how nice it would
be to have objectivity. But there is only a little objectivity when humans are in-
volved. There is, however, also little subjectivity if “subjective” is what pertains to
this individual, here and now. If the striving for objectivity is taken as an attempt
to enter discourses with others (individuals, groups, living or dead), and conduct
such discourse with passion and patience, decidedly and forgiving, ready to accept
a position, ready to give in and not to win but to convince—if factors like those
determine the process then those involved will eventually agree that there is little
objectivity, little subjectivity, but lots of historic and societal impact.

Judgement is different from evaluation. The absolute pre-condition for program-
ming (and thus for using computers) is formalisation and computability. This is so
even in the most interactive and sensor-prone situation.

The concreteness in your argument, dear Harold, is marvellous, it is telling, it
is itself artistic. You know that—if I understand my own thinking well enough—
I totally agree with your sentiments. You summarised them beautifully by saying:
“at the lowest level of machine evaluation, I can see that the program might be able
to tell me which images not to print”. More, I also think, is not possible. The others
say: “we are just at the beginning, give us enough money and time”. Birkhoff and all
those of the 1930s debate failed. Bense and all those of the 1960s debate (including
Nake) failed.
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It is perfectly legitimate to use computational methods for some first and prelim-
inary evaluations, as we use the thermometer, the speedometer, the yardstick. When
a distance is measured as five meters, some of us say, “oh, I can long-jump this
easily”. Others will never make it. But all try very hard.

When the temperature in a room is measured as 22 degrees Celsius, some re-
act with “too hot for me”, others with “rather cool after a while”. Measure, value;
evaluation, judgement.

And let us not forget, how you, Harold, continue after your optimistic remark
about what the machine might be capable of. You say that you would still take a
look before, upon the program’s evaluation, you delete the file. . .

PG: I think that this is the kind of discussion that can always be paused but never
ended. For now I’d be happy just to clarify what the differences are.

If it turns out that non-trivial computational aesthetic evaluation is impossible,
that in itself would be worth better understanding. It seems to me such a statement
might come in two forms. There might be some kind of formal sense, or there might
be an engineering analysis leading to absurdly expensive, or quantitatively impossi-
ble, practical requirements.

Frieder seems to lean towards the former by saying that aesthetic evaluation
would have to be formally computable, but is not. But this leads to (in my mind)
an even more interesting question. How is it that the mind is capable of “comput-
ing” the uncomputable? Is the mind more than the result of a mechanistic brain?

And if the objection is more practical and in the realm of engineering a similar
question is raised. What aspect of the mechanistic brain can we know to be beyond
the reach of human engineering? How is it that nature has brought the costs and
quantities within reach in a way we will never be able to duplicate?

The strongest objection, to me, would also be the one that claims the least, i.e. that
computational evaluation as an engineering challenge is impossible for the time be-
ing. Maybe it will be within reach in . . . 10 years? 50 years? 100 years?

But if the operative objection is this last one it changes the entire conversation.
Because then computational aesthetic evaluation is possible in principle and merely
contingent. All discussions of creativity should allow for it in principle.

Frieder also mentions that, “Judgement is different from evaluation”. In our
Dagstuhl discussion Margaret Boden rejected such a notion out of hand. Perhaps
they are referring to two different kinds of judgement, or two different kinds of
evaluation, or both. In any case this confirms in my mind that the language involved
will need more precision than everyday speech, and technical definitions are prob-
ably called for. For example, when a human takes a given work of art and merely
classifies it to an art movement, can that be called “evaluation” or should some other
word be used?

Finally there is a bit of a paradox worth pointing out here. Most attempts to define
creativity I heard at the Dagstuhl workshop included a provision that the innovation
must not only be new but it must also be of value. Now if computational aesthetic
evaluation is more or less impossible does this mean computational creativity is
impossible? Or does this mean a computer can be creative without being able to
measure the value of its own output?
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If so, then turn this back on human creativity. If a creative computer need not
“understand” the value of its own creations, does that mean a human can be deemed
creative even though they are incapable of knowing whether their creations are valu-
able?

To me it seems odd to demand that creativity result in value but allow that the
creator may not know that it does. It would be similar to crediting someone as being
“ethical” even though they cannot discriminate between right and wrong.

My response to these problems is implicit in the chapter I present. I think it will
ultimately be more fruitful to disconnect definitions of creativity from questions of
value.8 Just as it’s a mistake to connect the definition of art to the definition of good
art, I believe it’s a mistake to connect the definition of creativity to the definition of
valuable creativity.

I see creativity as being more related to issues around complexity and the be-
haviour of complex systems. For me creativity is simply what complex adaptive
systems “do”, nothing more and nothing less. From this point of view the value of a
given creative act is relative to the (possibly co-evolutionary) situation at hand and
the contribution it makes towards adaptation by the creative entity. In this case hu-
mans, computers, and all manner of things/processes are capable of some degree of
creativity.

PB: Thanks for this good summary of the situation. It seems to me to hit sev-
eral of the important issues head on. If aesthetic evaluation is uncomputable then
how does the mind/brain do it? As you comment, an interesting question in itself.
As I briefly mentioned previously, it seems to me that the only way beyond this
point is to posit the existence of a metaphysical (super-mechanical) entity which is
unacceptable to me. Therefore I assume it has to be computable.

You infer the work of Gödel and Turing and we know that within any finite axiom
system there will exist propositions that cannot be resolved. However this doesn’t
answer the problem since again we must ask: then how does the mind/brain (a finite
system) resolve aesthetic evaluation?

I return also to my earlier mention of Sommerhoff’s description of freedom of
will. He implies that things like creativity and aesthetic evaluation may not be com-
putable until the computing engine is at least as complex (or can reflect the same
degree of variety—to use Ross Ashby’s term) as the human brain. As suggested in
this discussion, this is a long way off.

Nevertheless we have to start somewhere and it seems to me that starting with
the assumption that computational aesthetic evaluation is not possible is counter
productive—we must begin from the belief that it can be achieved.

My glass is half full!

8This view is also shared by Dorin and Korb in Chap. 13.



4 Evaluation of Creative Aesthetics 111

4.4 Conclusion

As you might expect from a topic as complex as computational evaluation of art,
there is no real consensus or closure from this discussion, nor could this be realis-
tically expected. Yet it is interesting to examine the different perspectives partici-
pants consider to be useful or practical in approaching computational evaluation. As
Paul Brown’s concluding remarks emphasise, unless you think there is something
fundamentally uncomputable and ineffable in what humans do, then computational
modelling of human evaluation is at least a possibility. But just because something
is possible doesn’t make it easy, or even practical. It is tantalising to think that future
computational models will shed a different light on evaluation of art (and more gen-
erally on human behaviour), complementing and informing other discourses such
as critical and cultural theory, or philosophical aesthetics. However, computational
models of this kind are still very much in their infancy.

It is also interesting to consider the mirror question to the one that is the main
topic of this chapter. Namely, can art made by an individual computer program
(or social network of autonomous computer agents) ever be fully understood and
evaluated by humans? Such considerations raised in this chapter, and many others
running through the entire volume, raise many crucial questions to investigating
creativity through computing, a number of which are listed in the final Chap. 16 of
this book.

Evaluation remains a difficult and vexed issue for understanding creativity from
a computational perspective. No doubt it is something that artists and musicians are
involved with at almost every moment of their creative practice, but so far attempts
to mimic this process in a machine fall short of what any human being can easily do.
Interestingly, the two artists with perhaps the longest experience in this field (Nake
and Cohen) see little merit in pursuing the idea of developing creative or aesthetic
measures, precisely because they have tried to use them in their own art practices
and found them to be creative dead-ends. This should at least give us cause for
reflection. While understanding exactly what evaluation is and how it is performed
by humans remains an open problem, anyone wanting to make serious inroads into
developing machine creativity cannot afford to ignore it.
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Part II
Music



Chapter 5
Musical Virtuosity and Creativity

François Pachet

Abstract Virtuosos are human beings who exhibit exceptional performance in their
field of activity. In particular, virtuosos are interesting for creativity studies because
they are exceptional problem solvers. However, virtuosity is an under-studied field
of human behaviour. Little is known about the processes involved to become a vir-
tuoso, and in how they distinguish themselves from normal performers. Virtuosos
exist in virtually all domains of human activities, and we focus in this chapter on
the specific case of virtuosity in jazz improvisation. We first introduce some facts
about virtuosos coming from physiology, and then focus on the case of jazz. Au-
tomatic generation of improvisation has long been a subject of study for computer
science, and many techniques have been proposed to generate music improvisation
in various genres. The jazz style in particular abounds with programs that create
improvisations of a reasonable level. However, no approach so far exhibits virtuoso-
level performance. We describe an architecture for the generation of virtuoso bebop
phrases which integrates novel music generation mechanisms in a principled way.
We argue that modelling such outstanding phenomena can contribute substantially
to the understanding of creativity in humans and machines.

5.1 Virtuosos as Exceptional Humans

5.1.1 Virtuosity in Art

There is no precise definition of virtuosity, but only a commonly accepted view that
virtuosos are human beings that excel in their practice to the point of exhibiting
exceptional performance. Virtuosity exists in virtually all forms of human activity.
In painting, several artists use virtuosity as a means to attract the attention of their
audience.

Felice Varini paints on urban spaces in such a way that there is a unique view-
point from which a spectator sees the painting as a perfect geometrical figure. The
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Fig. 5.1 The Ryoanji stone garden in Kyoto. It is said that all stones are visible except one, wher-
ever the sitting position

effect is similar to looking at a city photograph on which the figure would have
been added with a digital picture editor. Moving away from this precise viewpoint
slightly distorts the figure; moving further away breaks it into fragmented shapes,
thus breaking the illusion, which reveals the unsuspected virtuosity of these appar-
ently simple creations.

Similarly, artist Liu Bolin paints himself so as to become almost invisible, when
he stands exactly at specific locations (near a balustrade, in a cinema with red chairs,
etc.). In both cases, what is at stake, from our viewpoint, is the production of sim-
ple objects (geometrical figures in the case of Varini, mundane backgrounds in the
case of Liu Bolin), together with evidence of the difficulty inherent to their realisa-
tion.

Another example in the visual domain is the Ryoanji stone garden in Kyoto.
This garden is well-known for the calm and serene atmosphere it creates and many
studies have attempted to uncover the reasons for its attraction (see e.g. Van Tonder
et al. 2002). However, one reason stands out: wherever the watcher sits, only 14 out
of the 15 stones are visible at a time (Fig. 5.1). Such a property turns an apparently
random configuration of stones into a fascinating, singular creation. We argue that
a reason for this fascination may also be that the object to see is again both simple
and understandably difficult to create.

Virtuosity exists, or rather, occurs, also in time-related performance. People
trained in performing fast mental computation compute operations several orders
of magnitude faster than normal humans. Alexis Lemaire, world champion of the
extraction of the 13th root of very large integers (200 digits), exhibits spectacular
performance in all sorts of mental calculations. He calls this activity hypercalculia
(Lemaire and Rousseaux 2009). What he produces is simple, but almost no one else
can do it.

Virtuosity (from the Italian word virtuoso) is an essential dimension of music per-
formance. In the Western culture, virtuosity in performance is a controversial notion
and is the subject of many debates. On one hand, virtuosity is considered the great-
est possible achievement of the art of solo instrumental performance (Valéry 1948,
Penesco 1997). On the other hand, virtuosity is often considered in opposition to
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expressivity (see e.g. O’Dea 2000). But virtuosos are above all outstanding clas-
sical musicians (violinists in particular) who perform musical pieces known to be
extremely difficult at the limit of human capacities.

In the field of poetry, virtuosity manifests itself under the form of ‘satisfying dif-
ficult constraints’. It was shown for instance that the adaptation of Latin rhetoric
to old English poetry created complex constraints for the authors. Satisfying these
constraints was the source of great inventiveness and creation (Steen 2008). The
association Oulipo (OuLiPo 1988) pushed very far the idea that constraints, in par-
ticular difficult ones, could be the source of inventiveness in literature and poetry.
Novels by Georges Perec such as ‘The void’ (a novel without the vowel ‘e’), or its
counterpart ‘Les Revenentes’ (a novel with ‘e’ as the only vowel) are spectacular
achievements of this movement.

5.1.2 The Cognitive Science Perspective on Virtuosity

Despite these achievements, virtuosity has hardly been addressed by cognitive sci-
ence. From the viewpoint of physiology, there are known limits to the motor systems
and the sensory-perceptive abilities of humans that are relevant to the study of virtu-
osity (London 2004; 2010). For instance, Fitt’s law (Fitt 1954) states that the time it
takes to reach an object is a function of the distance to, and the size of, the target ob-
ject(s). Consequently, tradeoffs have to be found between speed and accuracy, both
ingredients being required for achieving virtuosity, e.g. in music. Another impor-
tant law governing human interaction abilities is the Hick’s law (Hick 1952), which
states that the time it takes to make a decision is a function of the number of possible
answers:

T = b × log2(n + 1) which generalises to: T = b × H , where H is the entropy
of the system.

These two rules combined yield the interesting argument that virtuosity is some-
how only possible at the cost of not thinking. As Justin London (2010) sharply
phrases it: ‘Virtuosos can suppress the executive/monitoring functions of their brains
when they perform; and thereby avoid the speed traps of their prefrontal cortices’.

The way to achieve this is by intense training. The 10,000 hour rule (see e.g. Eric-
sson et al. 1993, Sloboda et al. 1996, Gladwell 2008) states that about 10,000 hours
of training are required to become a world expert in any domain. Most biographies
of well-known musicians confirm the fact that music virtuosos (in classical music,
jazz, and even pop) have spent most of their youth training (Mozart, Charlie Parker,
John Coltrane, Biréli Lagrène, The Beatles).

5.1.3 Virtuosity as an Attraction Device

Bird songs are particularly interesting for virtuosity studies as they are a rare case
in which the whole production and reception process has been studied in-depth,
yielding breakthroughs and fascinating findings.
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Fig. 5.2 The distribution of
canary phrases, in a
bandwidth/tempo space,
representing the natural
tradeoff between bandwidth
and syllabic tempo. Red
circles represent the phrases
used for the experiment. The
artificial top right phrases
optimising the two features in
unrealistic ways were the
most successful

Researchers in animal behaviour have long been interested in the phenomenon of
bird song production and its role in the mating process. In several bird species, male
birds produce songs primarily to attract females. The issue of what makes a bird
song more attractive than others has received particular attention in recent years.
Various results have shown that specific features of songs can account for their pop-
ularity. For instance, great reed warbler females (Acrocephalus arundinaceus) ex-
hibit a preference for long songs over short ones in the wild (Bensch and Hasselquist
1991).

More interestingly, the study by Draganoiu et al. (2002) focused on the case
of the domesticated canary (Serinus canaria). Male canary songs have a specific
phrase structure. Two features of these phrases were shown to significantly increase
liking: frequency bandwidth and trill rate. However, it was also shown that these two
features are somehow contradictory: similarly to Fitt’s law, a tradeoff is observed in
real phrases, due to the specific motor constraints of the birds vocal track.

The breakthrough experiment of Draganoiu et al. (2002) consisted of synthe-
sising artificial phrases optimising these two features in an unrealistic way that is
‘beyond the limits of vocal production’. The exposition of these artificial phrases
to females birds showed unequivocally that females preferred these phrases to the
natural ones (see Fig. 5.2). An interesting interpretation for this preference is that
the production of ‘difficult’ phrases maximising both bandwidth and syllable rate
may be a reliable indicator of male physical or behavioural qualities.

This evolutionary argument emphasises the role of virtuosity in music appreci-
ation. In popular music, virtuosity is explicitly present in specific genres (e.g. so-
called shredding in hard-rock, illustrated by guitarists such as Yngwie Malmsteen
or melodic-harmonic virtuosity in bebop), as we show below.

5.1.4 Virtuosos as Creators

In this chapter, we adopt a specific perspective on virtuosity. From the viewpoint
of complexity and computer science, we envisage virtuosos as exceptional problem
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solvers. Virtuosity can be objectively measured, observed, and as such is, ‘as a con-
cept, closer to the ground, than creativity’ (Howard 2008).

Indeed, the capacity to effortlessly navigate in large search space in real-time
is not only a matter of physiological prowess. By transferring part of the decision
processes to the body, a virtuoso naturally compiles his knowledge in a remarkable
way that can teach us a lot about innovative problem-solving.

For instance, virtuosos in mental calculation invent and make extensive use of
so-called mathematical tricks. As an example, squaring any number ending in 5 can
be done easily using a simple formula (take the first digits except the last 5, multiply
it by itself plus 1, and then concatenate 25 at the end). Some of these tricks are well-
known, but many others are not, and probably ignored by their inventors: intense
training may result in exceptional performance, not necessarily in clear explana-
tions. In the following sections, we show how jazz virtuosos produce interesting
inventions, and how modelling this virtuosity leads to interesting insights about the
nature of invention and creativity.

5.2 The Case of Jazz

Much like language, the ability of humans to spontaneously improvise music in
real time is considered by many as an extraordinary skill, a sort of magic. Most of
this magic, again, comes from hard training. As Levine (1995) states in his intro-
duction: “A great jazz solo consists of 1 % magic and 99 % stuff that is Explain-
able, Analyzable, Categorizeable [sic], Doable. This book is mostly about the 99 %
stuff.” This chapter is about putting the 99 % stuff in a machine, and making the
remaining 1 % explicit. In particular, our aim is to separate clearly what can be
reasonably automated—what virtuosos are able to do unconsciously—from what
emanates from artistic, conscious decision making.

Invented in the 1940s with Charlie Parkerand Dizzy Gillespie, bebop is an id-
iom of jazz where a strong emphasis is put on melodic and harmonic dimen-
sions.Virtually all instruments of the classical orchestra have been used by bebop
musicians. Nowadays, bebop musicians continue expanding the style. The case of
jazz bebop improvisation is particularly interesting because the specific constraints
of bebop are shared unambiguously and can be easily expressed using well-defined
languages: In some sense, jazz improvisation is a special form of computing.

Scientists have long tried to debunk the magic of jazz improvisation, starting
with the psychologist Philip Johnson-Laird. His work is not to be judged by the
musical quality of his algorithmic productions, but by the seminal nature of his ar-
guments. One of his main claims is that the ability to produce an improvisation
does not require any ‘short-term memory’ (Johnson-Laird 1991; 2002). He demon-
strated this idea by proposing memoryless automata that automatically generate
rhythmic and melodic material. Since then, more powerful algorithmic techniques
have been used to produce jazz improvisation (see Sect. 5.3), but it can be said that
the problem of modelling ‘basic’ bebop improvisation has been solved, notably by
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exhibiting improvisation generators satisfying the basic rules of the game (detailed
in Sect. 5.2.3).

However, the improvisation problem has been only partially solved. Trained jazz
musicians listening to the examples produced by these previous works rarely expe-
rience the feeling of hearing a machine outperforming humans.

In fact, professional bebop musicians are like Olympic sportsmen or chess cham-
pions, reaching a level of technicality which is far beyond the capacities of a begin-
ner. They are usually sought after not so much because they exhibit a general ‘ability
to improvise’—children can also improvise—but for their specific display of virtu-
osity. Contemporary jazz improvisers such as John McLaughlin, Al Di Meola, Biréli
Largène (guitar), or Stefano di Battista (saxophone) exhibit a level of virtuosity that
seems to reach beyond the limits of what most humans can do (the expression ‘not
human’ appears indeed often in commentaries about these performances on social
Web sites). They play intricate phrases at such a speed that even the transcription
of their solos from recording is a challenging task. Deciding which notes to play
at that speed seems indeed impossible, so the virtuosity question can be rephrased
as: How can one perform and execute these musical choices so accurately and so
fast?

Of course, performance as well as timbral dimensions are undoubtedly important
in music, and can themselves be the subject of virtuosity display (Bresin 2000), but
these are outside the scope of our study: Following the argument that ‘bebop is more
about content than sounds’ (Baker 2000), we focus here on the melody generation
task. We consider that virtuosity is not only an appealing facet of bebop, but one of
its essential features. This situation bears some intriguing analogy with bird singing
behaviour. Though bebop virtuosity is not only about speed as we will see below,
this analogy suggests a primary role of speed in the attraction for specific melodic
movements.

5.2.1 The Rules of the Game

In this section we define precisely the musical corpus we target: linear improvisa-
tion, which corresponds, roughly speaking, to virtuoso passages of bebop improvi-
sations.

5.2.2 Bebop Phrases

Virtuoso phrases are played fast, typically 1/16th notes at 120 bpm or more, which
represent at least 8 notes per second. This speed implies a number of characteristics
for these passages that we call ‘linear’. The term linear has been used in the jazz
theory literature (e.g. Ricker 1997) to describe phrases built from scales rather than
from chords (i.e. arpeggios), thereby creating a sensation of melodic or horizontal
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Fig. 5.3 Examples of various
rhythms used during linear
improvisation

consistency. More precisely we define linear improvisations as phrases which are
(1) played fast (eighth-notes or faster), (2) monophonic, (3) without silences, and
(4) rhythmically regular.

All these criteria are implied by speed: monophony because it is usually impos-
sible to play fast a polyphonic instrument. Regular rhythm means that each beat in
a measure is played with notes of the same durations (for the sake of simplicity, 1/4
notes, 1/8 notes, 1/16 notes, or triplets thereof, see Fig. 5.3). Rhythmic regularity
is also implied by speed as it is very difficult to change the rhythm when playing
fast. Linear improvisation is pure melodic invention, other musical dimensions are
secondary.

All virtuoso bebop musicians include linear passages in their choruses. Virtuoso
improvisations are of course rarely entirely linear, but they are often at least locally
so. As we hypothesise, linear passages correspond to a specific, intentional mode of
musical production deliberately chosen (at some risk) by the musician.

5.2.3 The Melodic/Harmonic Interplay

Bebop improvisation is a particular form of tonal music in which harmony plays a
central role. Given a chord sequence, usually taken from a shared repository such
as the Real Book (Real 1981), the game consists of producing a stream of notes
that satisfy two criteria simultaneously: harmonic consistency and continuity. This
game, commonly referred to as ‘playing or negotiating the changes’, can be consid-
ered the main technical challenge of bebop improvisation (it is also possibly a key
ability in other domains, such as management, see Holbrook 2009). Paradoxically,
an extra recipe for producing interesting melodies consists of breaking the first rule
through various escape mechanisms, as we will see below.

To the ears of a trained musician, virtuoso choruses rarely contain any mistakes
with regards to these principles. This is a striking property of virtuosos in gen-
eral, and jazz improvisers in particular: they produce perfect melodies, sounding as
if they were proof-read before being delivered. We will now review these princi-
ples.

5.2.3.1 Harmonic Consistency

The generated melody must comply with the current chord in the sequence. Strictly
speaking, this means that the melody should consist mostly of notes which belong
to a scale appropriate for the chord. The identification of the correct scale requires,
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in principle, an analysis performed on the whole chord sequence. Chord sequence
analysis was shown to be a non-trivial task in general (Steedman 1984). In practice,
however, simpler forms of analysis are used, which consist in using ready-made
associations between chords and scales. Such associations are routinely available in
harmonic treatises, e.g., in Aebersold (2000). For instance, on a minor 7(5b) chord,
say D minor 7 (5b), one can use a harmonic minor scale one minor third above the
root (here, F harmonic minor).

5.2.3.2 Continuity

Jazz beginners often improvise by playing arpeggios corresponding to each chord:
this simple technique satisfies local harmonic satisfaction by definition, but pro-
duces obviously uninteresting, unmelodic phrases. Producing a ‘sense of melody’
is difficult to define precisely. Continuity is a good approximation and is easier to
define. We will see that low-order Markov processes exploiting carefully chosen
scales guarantee a form of natural continuity.

Melodic continuity is a difficult challenge for a human when playing fast, as
it requires the ability to find quickly short paths between the note currently be-
ing played and the next ones, which may be in a different scale. This ability is
referred to as chord change negotiation, stressing its inherent problem-solving di-
mension.

Note that continuity does not necessarily imply brownness, in the sense of (Voss
and Clarke 1978), i.e. the sole use of small intervals. It rather implies that notes
are glued together smoothly, and not made up of isolated elements or patterns, con-
catenated without care. For instance, the phrase in Fig. 5.7 contains several large
intervals but is perfectly continuous.

The One-Step-Max Theorem There is a factor that helps address the continu-
ity challenge: the one-step-max theorem. The scales used in jazz (minor, major or
diminished, in first approximation) contain an interval of maximum 3 semitones
(in the harmonic minor scale). Consequently, any note is always within 1 semitone
maximum (up or down) to a note of any possible scale, i.e. a ‘good’ note. We will
see below how this theorem can be used as a rescue mechanism when the basic
generator fails to find a solution.

5.2.4 Playing Outside and Side-Slipping

The bebop language is deeply grounded in tonal harmony. However, like all lan-
guages, bebop evolves. One important development was caused by a paradoxical
force that pushes musicians to escape the constraints of harmonic satisfaction, once
they know how to satisfy them perfectly: playing out in jazz jargon. Playing out is
not to be confused with free jazz, a radical way to escape the laws of tonal harmony,
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Fig. 5.4 Example of a side-slip, given by (Coker 1997, p. 50). Note how the first side-slip smoothly
continues in the ‘right key’ (here, D minor)

in which there are no more rules whatsoever. Playing out, in bebop, is a precisely
defined musical device whose mastery necessitates perfect control of the instrument.
The ability to play out ‘the right way’ can be considered a sign of a complete mas-
tery of the art.

The main way to play out is called side-slipping (or side-stepping). Shim (2007)
dates the origin of side-slipping back to Art Tatum, an acknowledged piano virtuoso,
who ‘displayed his mastery of chromatic harmony by effortlessly floating in and
out of keys’ (p. 183). A stepping stone of this evolution is probably the incursion
of modal improvisation in the jazz repertoire; with the famous tune ‘So What’ by
Miles Davis, based on a long repetition of a D minor chord. To avoid a ‘tide of
boredom’ due to this harmonic monotony, various techniques for escaping tonality
were invented, including side-slipping (Coker 1984, p. 49).

Pedagogical definitions of side-slipping may be found in jazz theory books
(Coker 1984; 1997, Levine 1995), with some variations. Side-slipping is a device
that produces a short sensation of surprise, in a context deemed too predictable
(Levine 1995). The idea is to play out-of-key, with the goal of momentarily creat-
ing tension, and then come back to the right key, which can be different from the
starting key. Most often, the out-of-key segment uses symmetry. For instance, it can
be the same phrase transposed a semi-tone higher. The listening impression is de-
scribed by Coker (1984) is as follows: ‘Like the stretching of a rubber band, the
attuned listener seems to know that the player’s excursion into another key is very
temporary and that he will snap back to the original key when the tension period is
over. In the meantime, the listener has been taken on a brief trip that has broken the
monotony of modality’. Side-slipping was intensively used by pianists like Lennie
Tristano (Shim 2007, p. 183), and many others (John Coltrane, Allan Holdsworth)
and is now a classical ingredient of modern improvisation.

Figure 5.4 shows a typical side-slip, given by Coker (1997, p. 50). The mechani-
cal dimension of the side-slip appears clearly: here a simple transposition of a 4-note
pattern one semitone up, and then down. Figure 5.6 shows a more complex example
of a side-slip produced backward in time, i.e. played before the non-transposed ver-
sion, creating an even more surprising effect (shocking, then deliciously soothing).
Note that such an effect would not work if played at low speed, as the time during
which wrong notes are played would be too long, creating a risk for the listener to
lose the sensation of tonality. As such side-slipping is not an ornamental device, but
a central feature of linear improvisation.

There are many variants of side-slipping, notably concerning the device used to
produce the phrase out of key, its length, metric structure, etc. (Coker 1997). For
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Fig. 5.5 A diatonic side-slip invented by Coltrane. This particular side-slip is such that it actually
does not create any harmonic tension, as the transposed motif (up 1 semitone) stays, miraculously,
in the tonality (here, one minor third above)

Fig. 5.6 A tricky example of a ‘reverse side-slip’ by Al Di Meola in a chorus on Guardian Angel
(GuitarTrio 1977). The two first phrases are transpositions, (2 then 1) semitones lower, of the last
one, which is in the right key, thereby creating a stunning resolution effect, only made possible by
speed (here, 184 bpm)

instance, Fig. 5.5 shows a diatonic side-slip invented by John Coltrane (and used
extensively e.g. on his improvisations on Giant Steps). This is a nice ‘trick’, or
rather a small theorem of tonal music: when a motive in some major key (say, F)
is transposed up 1 semitone, it is most of time in the initial key transposed 1 minor
third up (here, Ab7).

The difficulty for improvisers is not only to produce the slide-slip, but to re-
establish continuity during the re-entrance phase. This necessitates tricky planning,
as the final notes of the transposed pattern are, usually, precisely out of key, so no
natural continuation may be in the musician’s hands.

We will see how our framework copes with side-slipping in a general way, by
allowing side-slips to be inserted smoothly in the generated chorus while keeping
continuity.

5.2.5 Virtuosity Is to Improvisation as Running Is to Walking

Virtuosity is about speed, but not only speed. Beyond speed—innate for com-
puters—virtuosity is the capacity to play interesting phrases fast, and make them
appear as singular solutions to a difficult problem, much like a magician tirelessly
extracts rabbits from a shallow hat. Like running is not walking faster (Cappellini
et al. 2006), playing virtuoso phrases calls up cognitive skills and motor mecha-
nisms that differ from the ones used in standard improvisation, which consists ba-
sically of paraphrasing the original melody (Baggi 2001). In this view, virtuosity
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Fig. 5.7 A virtuoso passage (152 bpm) in a chorus by John McLaughlin on Frevo Rasgado (Gui-
tarTrio 1977). Note the ‘smooth’ chord transitions

is a specific improvisation mode, in which the musician deliberately chooses to en-
ter and exit, during his solo. Often, virtuoso passages constitute the climaxes of
the chorus. This is obvious in concert recordings such as the GuitarTrio (1977) in
which virtuoso passages (see Fig. 5.7) are followed by enthusiastic rounds of ap-
plauses.

An important apparent characteristic of virtuosity in bebop is that the musicians
give an impression of precisely controlling their production, using some sort of
high-level inner commands. Such an impression is obvious when listening to the
effortless character of Art Tatumis’ improvisations, which allow him to flow in and
out of harmonies with a total control on their high level structure. Indeed, the impro-
viser’s ultimate fantasy is probably not to produce but to control such a virtuoso flux
(Sudnow 1978), through high-level mental commands. In short, to be the director of
one’s inner orchestra. How is this possible?

5.2.6 Claims

In this chapter, we make a number of claims. The main one is that we present a sys-
tem that generates virtuoso phrases of the same musical quality as the ones human
virtuosos produce. The validity of this claim is left to the appreciation of a trained
jazz listener, who can judge from the outputs (scores and videos) of our system,
Virtuoso, available on the accompanying web site.

The second claim is that we propose an operational answer to the virtuosity ques-
tion (how do they do that?), by introducing the notion of intentional score: the tem-
poral series of high-level musical decisions taken by the virtuoso to generate a cho-
rus. These decisions are arbitrary, and may be seen as the ‘1 % magic’ mentioned
by Levine in his introduction (see Sect. 5.2). This intentional score is the backbone
for automatically producing virtuoso phrases, and our system may be seen as an in-
terpreter of this score, which generates a chorus that satisfies it, i.e. Levine’s ‘99 %
stuff ’. We show through our various examples that this score suffices to generate
virtuoso phrases of high quality. All the decisions in the intentional score are done
at the beat level (and not at the note level), i.e. at a low frequency, thereby substan-
tially reducing the cognitive load of rapid note-level decision making. This explains
how the bypass of high-level cognitive decision-making may be operated in practice
(see Sect. 5.1.2).

Most importantly, we show how human jazz improvisers have contributed, at
least in two respects to inventing the bebop style (and its extensions) thanks to
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virtuosity. The two features we focus on are only possible thanks to extreme vir-
tuosity: (1) side-slips and (2) fine-grained control. We describe and interpret these
two major contributions to style invention in the context of Markov-based music
modelling.

After a review of the state-of-the art in jazz modelling, we describe a Markov-
based model of jazz improvisation and show that it is well adapted to generate
melodies that fit with arbitrary chord progressions. We then use this basic model
to state and solve the two main issues of jazz generation: control and side-slips.

5.3 Modelling Jazz Improvisation Generation

Many studies have addressed music composition and improvisation, so we focus on
those specifically addressing jazz. As is often the case in computer science, these
studies follow the general algorithmic trends of the moment. We handle separately
the case of Markov modelling as this is the core of our proposal.

5.3.1 Non-Markovian Approaches

Ulrich (1977) proposed an all-encompassing system that performs chord sequence
analysis and chorus generation using a purely algorithmic approach, reaching a rea-
sonable level of musicality. Walker (1997) and Thom (2000) built interesting sys-
tems emphasising the dialogue dimension of improvisation rather than the musi-
cal quality. A more ambitious case-based reasoning approach was proposed by Ra-
malho and Ganascia (1994), emphasising the role of motivic components, and fol-
lowing the ‘knowledge level’ paradigm. This approach proposes to explicitly recon-
struct a cognitively plausible model of a working jazz memory, and was applied to
the automatic generation of bass lines, yielding some interesting outputs, favourably
compared to Ron Carter’s samples (Ramalho 1997). It relied on a manually entered
set of cases, limiting its scope in practice. Genetic algorithms have been used for
music generation by a number of researchers (Weinberg et al. 2008, Bäckman and
Dahlstedt 2008, Papadopoulos and Wiggins 1998), yielding real time systems used
in concert, and producing interesting improvisation dialogues, like in the GenJam
system of Biles (1994). These systems, again, apply a general paradigm (here, evo-
lutionary algorithms) to chorus generation in a top-down approach, without concern
for harmonic satisfaction and continuity. Their outputs, although sometimes spec-
tacular, are still below the level of professional musicians, and do not display par-
ticular virtuosity. Interestingly, the system described by Grachten (2001) was used
as a basis for studying jazz expressivity in saxophone solos (Ramirez et al. 2008).
The studies described in Hodgson (2006), also use a genetic algorithm but focus on
detailed characteristics of the Charlie Parker style. Notably, Hodgson shows the im-
portance of dyadic (two-note) patterns in the elaboration of Charlie Parker’s melodic
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repertoire. But the use of random generation, intrinsic to evolutionary algorithms,
here also, gives results of varying quality, necessitating manual editing (the author
describes the results as ‘partially correct’). Note that manual editing echoes the ap-
proach of Harold Cohen with his AARON panting program (McCorduck 1991), as
well as that of David Cope (1996), who use partial manual editing to finish their
compositions. We will see below how we substitute manual intervention by inten-
tional controls, and the implication on our models.

Probabilistic grammars were used by Keller and Morrison (2007) to generate jazz
improvisation. The outputs of their system ‘compare favourably with those played
by college-level jazz students of at least an intermediate playing level, if not better’.
The grammar rules are manually encoded, and based on an explicit representation
of note harmonic status (chord tone, passing tones, etc.). Note-level information
is required when teaching improvisation, but we do not think they are necessary
for generating improvisation. As we will see, we adopt an approach in which this
information is not represented explicitly. However, our generated phrases do contain
a natural blend of, e.g. chord tones and passing notes. Note-level characteristics
naturally emerge from the generator, rather than being prescribed by the system.

Franklin (2006) showed that recurring neural networks could learn entire songs
given a melody and the associated chord sequence, and produce new improvisations
on these chord sequences. This system demonstrates that non-symbolic approaches
can capture some of the knowledge of jazz musicians, but the results shown are also
college-level.

Side-slipping is briefly mentioned as a possible composition operation in the Im-
proVizor system (Keller et al. 2005), but the process and more generally the devices
for playing out-of-key ‘the right way’ have not yet been the subject of modelling in
improvisation generation studies. Finally, it can be noted that commercially avail-
able software like Band-in-a-box (PG Music), or the Korg Karma™ family of syn-
thesisers produce reasonable improvisations in real time, over arbitrary harmonic
constraints, using algorithmic approaches. These systems may produce musically
interesting outputs, but their analysis is difficult because of a lack of published tech-
nical information.

5.3.2 Markov Chain Approaches

Other approaches to jazz improvisation based on Markov chains have been explored
recently, showing notable success. These systems follow a long tradition in com-
puter music modelling, dating back to the works of Shannon on information theory
(Hiller and Isaacson 1958, Brooks et al. 1957). Markov processes are based on the
‘Markov hypothesis’ which states that the future state of a sequence depends only
on the last state, i.e.:

p(si |s1, . . . , si−1) = p(si |si−1) (5.1)
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Extensions to higher orders as well as variable-orders (Ron et al. 1996) do not
change substantially the basic principle of Markov generation. The Markov hypoth-
esis, in all its forms, can be seen as a concrete implementation of Longuet-Higgins’s
memoryless assumption (see Sect. 5.2).

The Markovian aspects of musical sequences have long been acknowledged, see
e.g. Brooks et al. (1957). Many attempts to model musical style have therefore ex-
ploited Markov chains in various ways (Nierhaus 2009), notably for sequence gen-
eration.

Many experiments in musical Markov models have shown that there is indeed
a strong Markovian dimension in musical surface in most genres of tonal music,
including jazz (see e.g. Nierhaus 2009 for a survey). The Continuator system (Pachet
2003) was the first to propose a real-time improvisation generation system based on
Markov chains, producing sequences as continuations of input sequences played
by humans. This system was shown to deliver striking results, even passing ‘jazz
Turing tests’ (Van Veenendaal 2004).

Most Markov generators are based on a random walk process, exploiting a prob-
abilistic model of the input phrases. The generation is performed step-by-step, in
our case, note by note, using a random draw scheme, which takes into account the
context, i.e. the phrase generated so far:

Iteration at step i:
next = Random_Draw(contexti );
contexti+1 := Concatenate(contexti ,next);

In practice, the context is limited to a certain maximal order. Random choice is
performed as a weighted random draw, using an efficient representation of all en-
countered suffixes computed from the training set, which yields a probability table.
The generated event is then concatenated to the context, and the process is iter-
ated.

It has been shown that this model enables the creation of realistic outputs in
many musical styles, with professional musicians (Pachet 2003, Assayag and Dub-
nov 2004) as well as children (Addessi and Pachet 2005). Like previous approaches,
these systems use a general, agnostic algorithm, uniformly applied to music se-
quences of any style. Consequently, the qualities of its outputs are also indepen-
dent of the style of its inputs, and uniformly good . . . or bad. However, it should
be noted that these systems perform best in musically unconstrained contexts,
such as free-form improvisation. No convincing results were obtained when used
in a bebop setting with the constraints we have introduced in the preceding sec-
tion.

Random walk approaches have shown limitations when used for generating com-
plete pieces as this strategy does not always favour the most probable sequences in
the long term (Conklin 2003). This is not an issue in our case, as we will see how
the generation can be controlled using higher-level controls that determine global
characteristics of the generated sequences, taking precedence over the details of the
basic generation algorithm. Indefinite memory length is the main claimed advantage
of the system proposed by Assayag and Dubnov (2004). In our context, this problem
is irrelevant, as our goal is not to reproduce similar pieces, but to use the training
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samples to generate novel melodies in a highly constrained context. We consider a
variable-length generation model, but, following Hodgson (2006), we restrict our
maximum length to 2, an intentionally short value, which ensures an optimal com-
promise between similarity and creativity.

Another problem is related to the case where no solution is found (NSF here-
after). This happens when the context has not been encountered in the training phase.
This problem, known as the zero-frequency problem has been addressed by many
researchers in Markov modelling (see e.g. Chordia et al. 2010), with no general solu-
tion. Here again, we favour an approach based on the observation of bebop practice,
and propose a bebop-specific, simpler solution, described below.

5.4 A Note-Based Jazz Generator

The basic engine in our proposal is a variable-order Markov chain generator, with a
maximum order of 2. This generator, described in the preceding section, is able to
yield the ‘next’ note, given the last 2 notes (at most) already played. Our experience
has shown that augmenting the memory length does not improve the quality of the
generation.

5.4.1 Pitches for Representation, Beats for Generation

All major decisions for generation are taken at the beat level, and constitute in detail
the intentional score, which is a temporal sequence of beat-level decisions. These
decisions are the following.

At each beat, a rhythm is chosen (arbitrarily in the first approximation) within the
5 possibilities described in Fig. 5.3 (see Fig. 5.9). This rhythm in turn determines the
number of notes to produce for the beat (in our case, 1, 2, 3, 4 or 6). Consequently,
there is no need to use durations as training data, as these durations are entirely
determined by this rhythm choice. The velocities of each note are the velocities
played in the training corpus (see below). No harmonic information is used in the
training phase either, as the model used for generation is chosen, for each beat,
according to the current chord, as described below. Higher-level attributes such as
pitch contour, chromaticity, etc. are handled yet at another level as described in
Sect. 5.5.2. Consequently, the representation used for the Markov model is based
solely on pitch, reducing this basic mechanism to a simple one.

The justification for this choice is based on a long experience with Markov mod-
els for jazz, which convinced us that pitch is the only dimension of music that is
well captured. Although other dimensions can technically be represented as such, it
does not make much musical sense. There are two main reasons for this: firstly, only
intrinsic attributes, by definition, are well adapted to Markov modelling. Pitch is an
intrinsic attribute, but not rhythm, which emerges from the relation between adjacent
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notes or events. Second, there is no concrete evidence that modelling higher-level
dimensions (harmony, pitch contour, etc.) yields interesting musical material, as
these dimensions are correlated to each other in intricate and complex ways, raising
the ‘viewpoint problem’ that inevitably leads to ad hoc solutions and compromises.
In some sense, the situation is comparable to the multiple inheritance problem in
object-oriented languages (Stein 1992): it works well when there is no conflict, but
all the solutions proposed to solve the problem in the general case failed and were
progressively abandoned.

5.4.2 Handling Harmony

There are several ways to consider harmony in a Markovian context. One of them
is to consider harmony as a specific musical dimension, and use it as a viewpoint.
This approach is followed for instance by Conklin and Witten (1995) or Cont et al.
(2007). As discussed above, simultaneously handling several viewpoints creates
viewpoint interaction problems that do not have general musically meaningful so-
lutions. Furthermore, it introduces unnecessary level of complexity in generation.
In our case, we can observe that chord changes in bebop never occur within a beat
(they usually occur at the measure of half-measure level, sometimes at the beat,
never within a beat). Hence our solution is simply to use chord-specific training
databases, which are selected at each beat according to the underlying chord se-
quence.

More precisely, we use a simple set of chord/scale association rules. Such rules
can easily be found in jazz theory text books, e.g. Aebersold (2000). For each chord
type appearing in a chord sequence, we select the Markov model which corresponds
to a particular ‘scale’ (Fig. 5.8). Using various substitution rules, it is easy to re-
duce the number of needed scales to a much smaller number than the number of
chords. A drastic reduction is proposed by Martino (1994) who uses only minor
scales throughout all chord sequences, using clever chord substitutions (e.g. C 7th
chord uses the G minor scale, C altered uses the G# minor, C maj7 uses A minor,
etc.). Although the Martino case is easy to implement (and is available in our reper-
toire of styles) we follow here a more traditional approach, and propose five scales:
major, minor, diminished, seventh and whole tone (for augmented chords). As a
consequence, we only need training data for these five scales, in a single key (C).
The databases for the other keys are simply transposed from the ones in C.

Many variations can be introduced at this level, such as chord substitutions (see
e.g. McLaughlin 2004). These can be typically performed at random, or according
to any other parameter (e.g. user controls), and belong naturally to the intentional
score. An important aspect of this method is that it is independent of all other pa-
rameters of the system, and notably does not necessitate an explicit memory of the
past.

Here again, our solution is analogous to the way humans improvisers practice
and improvise, as illustrated by the huge literature proposing training scales and
patterns.
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selectHarmonicDatabase (chord)
if chord is major, major 7, major 6 then return MajorDB;
if chord is minor, minor 7, minor 6 then return MinorDB;
if chord is half diminished then return HalfDimDB;
if chord is 7 altered then return SeventhAlteredDB;
if chord is augmented 5 then return WholeToneDB;

Fig. 5.8 The selection of a harmonic database according to the current chord

GenerateBeat(context, i) // context = the last generated output
RP := chooseRhythmPattern;
H := selectHarmonicDatabase (i chord);
segment := new empty segment;
Repeat N times (N = number of notes in RP)

next(H) = Random_Draw (H, context);
segment := Concatenate (segment, next) ;
context := Concatenate (context, next) ;

return segment with rhythm

Fig. 5.9 The basic GenerateBeat function integrates all musical decisions. N is the number of
notes per beat, H is the harmonic context, which determines the Markov model to be used. H is
constant during the beat

Fig. 5.10 A minor scale played up and down, used as the sole training phrase

Changing Markov databases at each beat also creates a potential problem with
regards to continuity: how to ensure that phrases evolve continuously during chord
changes? It turns out that there is again a simple solution to chord change negotia-
tion, which does not necessitate modifying the generation algorithm, but consists of
carefully choosing the training corpus. In cognitive terms, means that all possible
chord changes have at least one solution.

Let us consider several cases in turn, to illustrate the Markov process. We start
by a training sequence in the key of A harmonic minor consisting of a scale played
up and down (Fig. 5.10). Using our generator, we can produce phrases in all minor
keys like the one illustrated in Fig. 5.11 (still in A minor). Other keys are handled
simply by transposing the input sequence.

By definition, the generated phrases will all be Brownian, in the sense of Voss and
Clarke (1978). This is caused by the fact that each pitch (except for the extremes)
has only two possible continuations—one above and one below—in the diatonic
scale used for training.
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Fig. 5.11 A phrase generated by the Markov generator from the unique training phrase of
Fig. 5.10. Phrases generated by diatonic scales are all Brownian by definition

Fig. 5.12 A phrase generated on top of an alternating A min/A# min chord sequence, using the
single ascending/descending A minor scale as training phrase. Note the two cases where no con-
tinuation is found to negotiate the chord changes (indicated by an arrow)

5.4.3 Chord Change Negotiation

Let us consider now a chord sequence based on alternating between A minor and
A# minor. We deliberately choose A# minor as this key is ‘far away’ from A minor,
and therefore harder to ‘negotiate’, because these two scales share only a few notes.
Figure 5.12 shows an example of a phrase generated on this sequence. We notice
that there are two NSF cases. They correspond to situations in which the last note
of a phrase for a given chord does not exist in the training phrase for the next chord.
Here, C# does not exist in the training base for A minor (first case), and B does not
exist in the training base of A# minor, by definition of the harmonic minor scale.

Contrarily to general approaches to the zero-frequency problem, we propose a
musically justified solution with the two following arguments:

1. We reduce the number of NSF cases by carefully choosing the training corpus,
as detailed in the next section. This step corresponds to human training;

2. In the remaining (rare) cases no solution is found, we use a simple heuristic
based on the one-step-max theorem (see Sect. 5.2.3.2): since there is always a
‘good note’ at a maximum pitch distance of one semitone, we try both and select
the one that works, and we are guaranteed that there is always one.

This double solution turns out to work nicely. It can be seen in Fig. 5.12 that in
both NSF cases, the system chooses the right notes a semitone apart to fit with
the harmony. The resulting phrase sounds smooth and continuous as if nothing had
happened: it is virtually impossible to notice that the generated phrase is locally
not Markovian. Furthermore, the system can easily produce a report after a series
of improvisations, to suggest adding a training phrase containing the NSF cases en-
countered. In our case it could suggest the musician/system to practise/add phrases
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Fig. 5.13 A generation using only the harmonic scale as training base, on a succession of minor
chords progressing one semitone up. NSF are indicated at chords #3, #4, and #7

in A minor containing a C# or an A# (i.e. B in A# minor, once transposed in A): an
interesting case indeed, which forces the use of chromaticisms or passing notes in
a clever fashion. Figure 5.13 shows a more complete example on a succession of
chromatically ascending minor chords.

It is interesting to note that this approach to the NSF problem corresponds to the
pedagogical strategy proposed by Pat Martino (1994): learn only one scale (minor),
but learn how to use it on any chord change to another minor chord. This implies
practising over 12 possible changes from one minor scale to another one, in all keys,
so a total of ‘only’ 132 cases from which any chord sequence can be smoothly ne-
gotiated (Pat Martino proposes a solution to substitute any chord by a minor chord,
see Sect. 5.4.2).

Other strategies could be used, such as simply finishing the phrase. However, this
kind of heuristic gets in the way of our modelling goal: the decision to stop or end a
sentence is a ‘high-level’ one that should not rely solely on such low-level technical
considerations, but only on the musical intention of the musician.

This mechanism produces phrases which satisfy local harmonic constraints,
chord negotiation and continuity. However, the phrases wander up and down ac-
cording to chance, and there is no direct means of controlling their structure. In
some sense, this represents technical virtuosity (the ability to play fast), but not con-
trolled virtuosity (the ability to play what you want). This most important issue is
addressed in Sect. 5.5.2.

5.4.4 An Example Training Set

Obviously the choice of training phrases is crucial to the generation, as only these
phrases are used to build the improvisation. Experiments using inputs entered in
real time are problematic as errors cannot be corrected once learned by the system.
Markov models have not been used, to our knowledge, in a controlled setting for
jazz improvisation. Here again, the particular context pushes naturally to a careful
selection of training patterns, like human improvisers do when they practice. But
which phrases are the right phrases?
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Fig. 5.14 Phrase #1 in C
minor

Fig. 5.15 Phrase #2 in C minor

Fig. 5.16 Phrase #3 in C minor

The example given above suggests a constrainton the training phrase: to ensure
continuity (and avoid NSF cases), each Markov model should contain all pitches.
This is a sufficient condition, by definition, but not a necessary one. Our repair
strategy handles graciously the cases where no solution is found. Other more subtle
constraints can be deduced from the desired nature of the improvisations to gener-
ate, dealing with longer patterns. For instance, the density of the Markov network
determines the nature of the generated phrases: the more choice there is for a single
note, the more possibilities there are for controlling the phrase. If a single note has
only one possible continuation, there is a risk of producing repeated patterns when
reaching this particular note. Note that this is a current situation with human play-
ers, who sometimes learn only a small number of escape solutions, when reaching
particular notes or passages (on guitar, this is often true for notes played in the top
of the neck). A static analysis of the Markov model can reveal such bottlenecks, and
be used to suggest new phrases to learn to create new branching points.

To illustrate the generation of phrases from the training phrases, we describe a
part of a Markov model, specifically designed to represent a ‘classical’ bebop player,
with no particular stylistic influence. We give here the complete set of phrases used
in the minor scale. These phrases are played in the key of C, and then transposed in
the 11 other keys. The interested reader can find the corresponding database for the
other scales in C (major, diminished, seventh and whole tone) on the accompany-
ing web site (http://www.csl.sony.fr/Virtuosity). These other databases are similarly
transposed in the 12 keys.

The following six phrases (Figs. 5.14–5.19) were designed (by the author) to
contain basic ingredients needed to produce interesting jazz melodies in C minor.
Of course, they do not contain all the patterns of this style, as this would be an
impossible task, but they can be enriched at will. As can be seen, not all pitches are
present in the database (at least for all octaves). This is intentional to show how the
mechanisms we present here interact with each other.

Figure 5.20 shows a phrase generated on a chord sequence consisting only of a
C minor chord. The various segments of the training phrases are indicated, showing

http://www.csl.sony.fr/Virtuosity
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Fig. 5.17 Phrase #4 in C minor

Fig. 5.18 Phrase #5 in C minor

Fig. 5.19 Phrase #6 in C minor

how Markov generation creates a new phrase by concatenating bits and segments
taken from the training set.

Figure 5.21 shows a phrase generated on the chord sequence C / B 7| E min /
F# 7 | B maj7, using the training phrases in minor, major and seventh in several
keys. The NSF cases and the segments reused are indicated. The phrase produces a
perfect sensation of continuity, and the harmony is locally satisfied. Other examples
can be found on the accompanying web site.1

1http://www.csl.sony.fr/Virtuosity.

http://www.csl.sony.fr/Virtuosity
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Fig. 5.20 A phrase generated on a C minor chord sequence. The compositions of the segments of
the training phrases are indicated by overlapping boxes. Segments of length 2 to 7 are being used
in this case. Training phrases #2 to #6 have been used. No NSF case is encountered

Fig. 5.21 A phrase generated on the sequence C min / B 7 | E min / F# 7 | B maj7. Two NSF
cases were encountered, indicated by an arrow (and non-overlapping boxes): for the C min → B7
transition, and for the F#7 → B maj7 one. They were addressed using the one-step-max theorem.
The discontinuity is not musically perceptible by the author

5.5 Escaping Markovian Boredom

Once we have established the basis for generating melodies that comply with the
rules of the game, we can now describe how to model the two important innova-
tions that bebop has introduced in jazz. These two innovations relate to boredom:
producing phrases that satisfy the criteria we have described is pleasing, but may
lead to boredom after repeated exposure. From a computer science perspective, we
call ‘Markovian Boredom’ the sensation that the phrases generated all come from
the same set of rules, grammar, and that, eventually, there is no hope of hearing
something new, striking, outstanding. From there on, boredom follows irrevoca-
bly.

As described in the introduction, two devices have been invented by jazz musi-
cians to escape boredom. These devices have in turn contributed to changing the
style itself. We describe here how these two devices can be modelled in our Markov
framework, the issues they raise technically, and how they can be addressed.

5.5.1 Side-Slips and Formal Transforms

The model we have introduced so far generates notes streams on arbitrary chord
sequences, which are continuous and satisfy local harmonic constraints. In the ex-
amples shown here, we use a limited training material (about six phrases for major,
minor and seventh, three phrases for diminished and whole-tone, used in particular
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for augmented chords). More scales can be added easily (to deal with rarer chords
like altered, or minor diminished 5th), but adding more scales or training sequence
does not improve substantially the quality of the generation.

It turns out that playing out can be easily integrated in our framework. As we
have seen, playing out or side-slips may be considered as an excursion from the
tonality to another one, followed by a smooth landing to the right tonality. More
generally, we can consider side-slips as specific formal transforms, operating on,
e.g., the last generated phrase. Formally, side-slips can be introduced as yet another
case in the GenerateBeat() method introduced in Sect. 5.4.2:

GenerateBeatAsTransform(context, H, i):
// context represents the last generated output
return Transform(context, N)

where Transform is defined for each possible transform, e.g.:

Transform (phrase, N)
return Transpose (phrase, N, 1) ;

The particular side-slip consisting in transposing the last phrase one semitone
up, can simply be represented by a transform operation, taking a phrase as input and
producing its transposition. Other reasonable bebop transforms include:

• Transposing a semitone, a minor third, a tritone or an octave up or down;
• Reversing then transposing a semitone up or down, as illustrated in Fig. 5.22 (4th

case).

Transforms can also be used to implement many tricks invented by bebop improvis-
ers, such as transposing diatonically the phrase, by taking into account the harmony
of the next beat (see the Coltrane or Di Meola examples in Sect. 5.2.4).

A most important aspect of formal transforms is the landing strategy: How to
come back seamlessly to the original tonality? Our Markov framework provides
the landing strategy for free: transforms may produce notes which are out-of-key,
but the various strategies we proposed for negotiating chord changes can be used
readily to ensure a smooth return to the key. As an example, Fig. 5.22 shows a
phrase generated on chord sequence composed only of A minor chords.

The decision to use a formal transform, again, belongs to the intentional score,
i.e. is taken at the beat level. In the case of a purely automatic improvisation system,
this decision can be determined by musical heuristics, such as the following:

• When a chord is used for a long time, e.g. more than 1 measure (the original
reason for the introduction of side-slips in the first place);

• When a NSF case is encountered (thereby avoiding the use of a repair mecha-
nism);

• When a direction is imposed (e.g., go up pitch wise) but no easy way to satisfy it
is found (see Sect. 5.5.2 on control below).

It is important to stress out that transforms are grammatical constructs, and as such
cannot be learned effectively using any Markov mechanism. Using phrases such
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Fig. 5.22 A chorus generated on an A minor sequence. Formal transforms are triggered randomly
during the chorus, as indicated. Note, and hear, the smooth landings on the A minor key following
the transforms, in particular the striking effect produced by the third transform (reverse-1)

as the licks in 4 as training phrases for the corresponding scale (D minor) would
blur the very notion of harmony, as notes from the side-slips would be considered
as equivalent to notes from the original key. Furthermore, such an approach would
require a tremendous amount of training data (for each possible pattern, and each
possible side-slip). More importantly, it would then be impossible to trigger inten-
tionally decisions to produce, or not, these side-slips.

5.5.2 The Control Issue

Above all, virtuosos can be seen as exceptional humans in the sense that they seem
to exert full control on their production. The control issue is both the most difficult
and the most interesting one to handle.

We can state the control problem as follows: how to generate a sequence that
fits an arbitrary criteria, defined by target properties of the next generated phrase?
In our context, such properties can be defined in terms of phrase features such as:
pitch (go ‘higher’ or ‘lower’), harmonic constraints (‘more tonal notes’), intervals
(chromatic), direction (ascending, descending), arpeggiosity, etc. Allowing such a
level of control in our system is key to producing phrases with musically meaningful
intentions.

The difficulty in our case comes from the fact that the generator operates on
a note-by-note basis, whereas most criteria useful in practice operate on complete
phrases. Let us suppose, for instance, that we want the next generated phrase to be
‘higher’ in pitch than the current one. It does not suffice to simply choose, at the
note level, the next note with the higher pitch. Such a policy has been proposed in
(Pachet 2003), and works well for simple harmonisation tasks, but not here, as we
want the pitch criteria to hold on an entire next phrase. For instance, a good strategy
could consist in first choosing a lower pitch and then playing an ascending arpeggio.
So longer-term planning is needed to find satisfying, let alone optimal, phrases.
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GenerateBeatMoreThan (context, H, I, BiasCriteria, startValue):
// context represents the last generated output

State the generation problem as a CSP
Compute one solution according to
the time left that optimises the criteria

Fig. 5.23 The method for generating a beat according to a bias. We use the approach described in
Pachet and Roy (2011). The criteria is optimised depending on the time available (using an anytime
approach)

In a Markovian context, control raises a fundamentally difficult problem, because
control goes in the way of the basic Markov assumption (see Sect. 5.3.2). Indeed,
control consists precisely in establishing properties to be satisfied not on ‘the next
item’ to play, but on the next sequence of items. Unfortunately, the Markovian view
of sequence generation is that the future in only determined by the current state (or
the N last current states, depending on the chosen order).

We have addressed this problem from a fundamental perspective, and proposed
in Pachet and Roy (2011) a general solution to generate Markov sequences satisfy-
ing arbitrary properties. This solution consists in reformulating Markov generation
not as a greedy algorithm, but as a constraint satisfaction problem (Freuder and
Mackworth 1994). Constraint satisfaction is a powerful technique that enables the
fast exploration of large search spaces. In our case, controlling a Markov sequence
amounts to exploring the space of all possible sequences of length N (in our case,
N is the number of notes per beat). This space can be huge as soon as the training
set is large, or the length of the sequence to generate is high.

In this section we illustrate how controlled Markov generation can be used to
influence the generation in real-time using meaningful musical criteria. Any criteria
can be defined to control sequences, as long as they are computable. We present
here a case in which the criteria are scalar values computed from a given sequence
with simple features, but this scheme can be extended to more complex algorithms,
classifiers in particular, as discussed below.

In a first phase, a set of melodic features are defined, such as:

• Mean pitch of a sequence;
• Mean interval of a sequence;
• Tonalness of a sequence.

Tonalness is a scalar value ∈ [0,1] and gives an indication of how tonal is a melody
with regards to the corresponding chord in the sequence. It can be computed using,
e.g. a pitch profile algorithm (Krumhansl 1990).

The next step is to substitute the generation of a beat by the corresponding con-
straint satisfaction problem, as described in (Pachet and Roy 2011).

We illustrate the mechanism as follows. We start by a phrase played on an A
minor chord (24). We then generate three beat continuations to fill up a four beat
measure (still in A minor in our case; changing the harmony has no impact on the
control issue). We select the ones maximising criteria we consider useful as controls:
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Fig. 5.24 The starting 4-note
phrase is in the box. Here, a
continuation with ‘higher
pitch’ (mean pitch = 78.5 >

59.5)

Fig. 5.25 A ‘lower pitch’
continuation (mean pitch =
52.41 < 59.5) (here in the
bass clef)

Fig. 5.26 A ‘more
chromatic’ continuation
(mean interval = 0.666 <

2.33)

Fig. 5.27 A ‘less chromatic’
continuation (mean interval
= 2.33). Note the large
intervals

Fig. 5.28 A ‘less tonal’
continuation (tonalness =
0.66 < 1.0). Note the Gb and
Eb

higher/lower pitch, more/less chromatic, and less tonal. Figures 5.24–5.28 show
continuations which optimise these five criteria, as confirmed by the values of the
features. These values are compared to the initial 4-note phrase values, i.e.:

• Mean pitch: 59.5;
• Mean interval: 2.33;
• Tonalness (in the key of A minor): 1.0 (all notes in A minor).

It is important to note that this control mechanism is independent from the
other mechanisms introduced here, notably formal transforms (see Fig. 5.23). Fig-
ures 5.29 and 5.30 show a combined use of transforms and controls on the chord
sequence of Fig. 5.7. It can be checked that indeed the generated phrase do satisfy
all the criteria.

5.5.3 Reusing Intentional Scores

The intentional score is the collection of all decisions taken for each beat. As we
have seen above, these decisions concern (1) the choice of the rhythm pattern, (2) the
choice of the scale (and hence, of the Markov database), (3) the decision to use and
the selection of a formal transform, (4) the decision to control the generation with a
specific criteria, and (5) the decision to start or stop the phrase. This score is a time
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Fig. 5.29 A phrase generated with an intentional score consisting of ‘chromatic’ for the first six
beats, and ‘arpeggiated’ for the next six on the same chord sequence, and one random transform.
The melody generated fits almost perfectly the constraints

Fig. 5.30 A phrase generated on the chord sequence as Fig. 5.7, with three intentionally chosen
side-slips and three subjective biases

line with commands at every beat. An improvisation can be seen as an interpretation
of this score.

The intentional score represents the ‘arbitrary’ portion of chorus generation, so
it cannot be generated automatically. In practice, it can be set randomly, or using an
interface, e.g. gestural to produce the various commands in real time, as described
in the next section.

An interesting application of concept of intentional score is to induce such an
intentional score from an existing chorus, to generate a new improvisation with the
same structure. We illustrate this idea using the chorus shown in Fig. 5.7. Of course,
there is not a single way to infer the intentional score used by John McLaughlin.
The score we consider uses solely ‘target pitch’ subjective biases, extracted from
the actual mean pitches of the various beats in John McLaughlin’s phrase. It looks
as Fig. 5.31.
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Fig. 5.31 A possible intentional score inferred from the phrase of Fig. 5.7. TP denotes the mean
MIDI pitch for each beat

Fig. 5.32 A phrase generated on the same chord sequence as Fig. 5.7, with the intentional score
induced from John McLaughlin’s chorus in Fig. 5.31, consisting only of target pitches at every
beat, as indicated

This score can be used to generate the phrase illustrated in Fig. 5.32. It can be
seen that the resulting phrase follows approximately the same pitch contour. The
phrase is not the same, as it uses only the note patterns of our training set, but it
gives an indication of how to exploit intentional scores in a creative way.

5.6 Virtuoso: A Virtuoso Enabling Interactive System

Virtuoso is an interactive musical system that implements the ideas presented here
so that a user can experience the sensation of being a virtuoso, without having to be
one himself. Virtuoso is a jazz chorus generator that is controllable in real-time using
arbitrary input controllers. The main features we have introduced that account, from
our point of view, for a substantial part for the virtuoso aspects of jazz (side-slips
and high-level control) are mapped to various gestural controls, including start, stop,
speed (number of notes per beat), side-slips, as well as several criteria to control the
generation as described in Sect. 5.5.2.

Several videos (Virtuoso 2011) show the author using the system, as well as in-
tentional scores deployed during the improvisation. A number of experiments were
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conducted with jazz pianist Mark d’Inverno. An a posteriori analysis of the ses-
sion by the two musicians playing is provided. Although subjective, these analysis
show that a sense of playing together was achieved, and the music generated by the
system, controlled by a human, was of professional-level quality.

5.7 Discussion

The major claim of this study is that all important decisions concerning virtuoso
performance in jazz can be taken at the beat level instead of note-level. This ex-
plains how virtuosos improvise melodies satisfying so many difficult and contradic-
tory constraints at high speed. By delegating the choice of individual notes within
a beat to a non-conscious, sensory-motor level, they have enough time to focus
on high-level decisions, such as influencing pitch contour, chromaticity, tonality,
etc. Concerning the memoryless assumption hypothesised by Longuet-Higgins (see
Sect. 5.2.1), we invalidate it because of side-slips, which require the memory of the
last phrase played. However, the cognitive requirements remain minimal. In some
sense, most of the work is done by the fingers.

Conceptually, we do not consider Markov models as representations of musi-
cal ideas, but as a texture that can be controlled to produce meaningful streams of
notes. The mechanisms we propose (transforms and controls) turn this texture into
realistic, sometimes spectacular, virtuoso improvisations.

Concerning the relation of virtuosity studies to creativity studies, we have
stressed the importance of two important dimensions of jazz improvisation (side-
slips and fine-control) that are made possible only by extreme virtuosity. We have
shown how to model these two aspects in a Markovian context. The first one (formal
transforms) does not raise any difficult modelling issues. The second one (control)
does, and induces a very difficult combinatorial problem. How human virtuosos
solve this problem in real-time remains a mystery. It forms important future work
for virtuosity studies.

Running is not the only locomotion mode of animals. Likewise, virtuosity is not
the only mode of jazz improvisation. Our system is in fact a brittle virtuoso: it knows
how to run, but not so well how to walk. Such brittleness was pointed out by Lenat
and Feigenbaum (1991) in the context of expert-systems and attributed to a lack
of common sense knowledge. A musical common sense is indeed lacking in most
automatic systems, and much remains to be done to build a completely autonomous
jazz improviser exhibiting the same level of flexibility as humans: a competence
in virtuoso mode as well as in other modes, and the ability to intentionally switch
between them. Slow improvisation, in particular, is a most challenging mode for
cognitive science and musicology, as it involves dimensions other than melody and
harmony, such as timbre and expressivity which are notoriously harder to model.

However, considering melodic virtuosity as a specific mode, we claim that these
automatically generated choruses are the first ones to be produced at a professional
level, i.e. that only a limited set of humans, if any, can produce. A claim we leave to
the appreciation of the trained listener.
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More generally, this chapter is an invitation to elevate virtuosity to a field of study
for cognitive science and computer science. Its links to creativity have only been
sketched here, but they are undoubtedly deeper and yet, unexplored. Understanding
virtuosity is a key to understanding creativity, in humans and with machines.
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Chapter 6
Live Algorithms: Towards Autonomous
Computer Improvisers

Tim Blackwell, Oliver Bown, and Michael Young

Abstract A Live Algorithm is an autonomous machine that interacts with musi-
cians in an improvised setting. This chapter outlines perspectives on Live Algorithm
research, offering a high level view for the general reader, as well as more detailed
and specialist analysis. The study of Live Algorithms is multi-disciplinary in nature,
requiring insights from (at least) Music Technology, Artificial Intelligence, Cogni-
tive Science, Musicology and Performance Studies. Some of the most important
issues from these fields are considered. A modular decomposition and an associated
set of wiring diagrams is offered as a practical and conceptual tool. Technical, be-
havioural, social and cultural contexts are considered, and some signposts for future
Live Algorithm research are suggested.

6.1 Introduction

A Live Algorithm is an autonomous music system capable of human-compatible
performance (Blackwell 2007, Blackwell and Young 2005). The context is impro-
vised music; the Live Algorithm listens, reflects, selects, imagines and articulates its
musical thoughts as sound in a continuous process. Or at least that is the dream of
researchers working in this field. In practice, of course, the algorithm merely com-
putes; an incoming stream of sampled sound acts as real-time input to a fixed and
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mechanical process that ultimately delivers an outgoing audio stream, rendered by
a digital-to-analogue audio convertor.

The objective of a mechanical thinking brain is very far from realisation. The
pending issue, therefore, is how a machine could emulate human performance con-
vincingly enough that companion improvisers, and listeners, would accept the Live
Algorithm as a contributing and creative group member with the same musical sta-
tus as any other performer. The overarching aim is to extend the possibilities of
music performance, achievable by the challenges of interacting creatively with a
mechanical process, and by the exploitation of the pristine world of algorithmic
patterning.

To achieve this, Live Algorithms should be able act responsively, proactively and
appropriately without direct intervention, and contemporary methods in Artificial
Intelligence, applied in real-time, offer suitable opportunities for rising to this chal-
lenge. The resulting systems, those that truly achieve this goal or at least achieve
steps towards it, differ substantially to the norms of computer-as-instrument (with a
fundamental reliance on human agency) and computer-as-score, in which a design-
ers intentions are encoded as a set of rules or instructions, comparable to a musical
score.

This chapter will examine several aspects of Live Algorithms and improvised
music. In order to set the scene, a description of improvised music is given, speci-
fying four attributes that we ascribe to human performers, and by implication, to a
Live Algorithm: autonomy, novelty, participation and leadership (Sect. 6.2).

A formal specification is given that helps situate Live Algorithms in a wider tax-
onomy of computer music systems, based on a modular decomposition into analysis,
patterning/reasoning and synthesis components (Sect. 6.3). A Live Algorithm is de-
fined as a system in which these three elements are present, interconnected, absent
of a human controller, and such that the above four attributes are satisfied. Several
possible configurations of these modular elements (with or without a human con-
troller) are considered, relating to a number of existing computer music practices.
The core of the Live Algorithm, the patterning element, f , is considered in greater
detail and a dynamical systems approach to their design is outlined.

The chapter continues with a discussion concerning the experience of perform-
ing with a Live Algorithm (or of hearing a Live Algorithm performance) in terms
of the nature of performance interaction, and the possibilities of human-machine
interaction in the near future (Sect. 6.4). Examples of simple behaviours that might
be expected to occur are provided. Human performers operate in an extended con-
text that lies beyond any single performance; they are subject to social and cultural
forces that shape and inform their own approach to music. These social aspects and
consequent implications for Live Algorithms are discussed.

Cumulatively, these ideas are offered as theoretical tools for the field of Live
Algorithm research. Having presented them in very abstract terms, we turn to dis-
cussing a number of prototypes that we believe conform to the structure of a Live
Algorithm (Sect. 6.5).

The chapter closes with an account of some possible directions for Live Algo-
rithm research.
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6.2 The Field: Creative Group Improvisation

Improvisation covers a spectrum of possibilities, from the spontaneous selection
of prepared materials, which may be edited and mutated on the fly, but are made
within an agreed macro-structure (for example Indian classical music and jazz), to
the spontaneous creation of new micro-structures within a performance with (ide-
ally) no previous agreements (within a genre known as “free improvisation”, Bailey
1993). In the latter case, any discernible macro-structures can only emerge as the
performance unwinds, since there is no single pre-defined plan or score. Other im-
provisational practices sit between these extremes. For example a rudimentary score
might serve as a partially-defined macro-structure with opportunity for personal ex-
pression on finer levels.

6.2.1 Collective Improvisation

Free improvisation is a self-referential music. Practitioners seek to avoid any overt
references to other musical genres, organisational methods or expressive devices.
We propose that collective free improvisation is the ideal context for machine im-
provisation because the system can be considered formally, and at a first approxi-
mation, as an exchange of symbols (sonic events) between data sources (people and
machines).

It has been suggested, in analogy with self-organisation in Nature, that macro-
structures may emerge as a consequence of the micro-interactions between perform-
ers (Blackwell 2001), and they can do so without the agents being aware of the de-
veloping structure, or even of needing to be aware. This is exemplified by animal
collectives such as vast starling flocks and herring shoals which are leaderless, de-
centralised and self-organising (Bonabeau et al. 1999). When group improvisation
is viewed as self-organising (and this may not cover all aspects of human perfor-
mance), we perceive a possibility for machine participation if the Live Algorithm
can simulate inter-performer interactions.

6.2.2 The Individual (Human or Machine) in Interaction

A human performer in a collaborative improvisational context requires a basic set
of capacities in order to participate appropriately. These capacities are as much to
do with general aspects of the human experience and social interaction as with be-
ing a good musician. However, in improvised performance they can be specifically
manifest or recognisably lacking in more or less musical terms.

6.2.2.1 Autonomy

An autonomous system, in contradistinction to an automatic system, is able to act
and respond to unknowable and unforeseen inputs, and in ways that have not been
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completely prescribed. Autonomy is one quality that might enable a machine im-
proviser to become accepted as an equal partner in a group setting.

The term agent, as used in Artificial Intelligence, refers to a device that perceives
its environment through sensors, and takes action on the environment by means of
actuators (Russel and Norvig 2003). An autonomous agent in robotics is any em-
bodied system that satisfies its own internal and external goals by its own actions
while in continuous interaction with the environment (Beer 1995). Autonomy there-
fore expresses the ability of an agent to take action based on its own precepts, rather
than following an inbuilt plan.

An autonomous musical agent would therefore base its action (musical output)
in part on what it perceives (musical input). The extent to which action is based on
preloaded musical responses determines the degree of automation. A system that
has no input is purely generative (rather than interactive). It is similar to a closed
dynamical system where the initial conditions, including any hardwired knowledge,
are sufficient to determine all future states. Such a system is automatic. Any further
ability an automatic system might have to make a decision or take an appropriate ac-
tion in the eventuality of an unplanned input would render the system autonomous,
with more autonomy resulting from a greater capacity to make such decisions or
actions.

6.2.2.2 Novelty

Whether supporting, leading or subverting, a musician’s contribution should en-
deavour to avoid the clichéd and the obvious. The ability to find a novel, but also
appropriate, way of playing within a very familiar musical environment would chal-
lenge any musician, but the inability to never find novelty would mark the musician
down as dull, and would inhibit the ability of the group as a whole to develop com-
munally creative structures.

Fundamental and distinct types of creativity are described by Boden (2004).
A basic creative practice is to produce new combinations of established ideas or
objects, just as, for example, the amateur jazz improviser combines learned melodic
patterns in response to whatever harmonic structure is presented. Algorithmic em-
ulation of such behaviour is possible as the soloist feature on the commercial Band
In A Box1 demonstrates; however the results are rudimentary.

6.2.2.3 Participation

An improviser has to be able to support ongoing musical activity by making con-
tributions that do not detract from but rather enhance the current musical direction.
This would be a very hard characteristic to pre-program in a top-down manner:

1http://www.pgmusic.com/.

http://www.pgmusic.com/


6 Live Algorithms: Towards Autonomous Computer Improvisers 151

how to ascertain and characterise a musical direction, and which of many possi-
ble contributions might enhance the current musical mood? However an algorithm
specification does not necessarily require a top-down structure. Participatory activ-
ity should be recognisable both to human performers and listeners. The extent and
character of the participation might be evident in apparent types of behaviour (some
examples are discussed in Sect. 6.4.1); musical processes that allude to social modes
of interaction. The wider challenges in achieving true human-machine participation
are explored in later in this chapter, from musical, social and cultural perspectives.

6.2.2.4 Leadership

Another attribute of an improvising musician is the capacity to undertake a direct
leadership role. In other words to attempt to change the musical direction, to invoke
a new musical centre. In improvised music such roles may be fuzzy and interchange-
able, and never explicitly agreed upon, but at any given time there is a balance to be
struck between responsiveness and proactive intervention.

6.2.3 Relationship of the Four Attributes to Creativity

Perhaps the most familiar model of a creative process is the “exploration of a con-
ceptual space”, i.e. explorative behaviour within constraints, whether explicitly de-
fined or not. In freely improvised group performance, it is characteristic for timbral,
textural and gestural events, however individually novel, to be consistent with a
shared, emerging aesthetic. This could be viewed as a participatory exploration of
a musical space. In algorithmic terms, an iteration through a set of parameters or
the navigation of system state to distant areas of state space can be viewed as an
exploration of the potentialities of the formal computer code.

Boden’s most demanding level of creativity is the notion of a transformation
of conceptual space itself (Boden 2004). It is very challenging to think of any al-
gorithmic process that could produce brand new interpretations of its own output.
However, the ability to intervene proactively seems a necessary pre-condition of
transformational creativity. We believe that live algorithmic music in which leader-
ship from any party is possible offers such a prospect, i.e. to change our expectations
about how humans and machines can engage in collective performance, and the con-
sequent nature of the creative outcomes. Collective improvisation already offers a
powerful approach to transformational creativity, in that the group does not possess
a single shared conceptual space but a set of distinct individual conceptualisations
interacting in a shared creative activity: different participants can influence these
collaborators. Individual understanding of the music is a continually evolving inter-
action.
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6.3 Theoretical Considerations

This section takes a formal approach to Live Algorithms. First, a design method-
ology is outlined, then it is shown how this methodology can categorise computer
music systems and be applied as a conceptual tool for describing Live Algorithm
behaviour. The impact of Artificial Intelligence on Live Algorithm design is consid-
ered and a dynamical systems approach is described in detail.

6.3.1 P , Q and f

Our PQf architecture, originally presented in Blackwell (2001) and described in
this section, identifies three modules which may be combined in various ways to im-
plement computer music systems. The modules are: P (listening/analysis), Q (per-
forming/synthesis) and f (patterning, reasoning or even intuiting). The purpose is
two-fold. The modules represent basic functionalities (the actual software might not
be cleanly divided but the functions of conceptual parts of the system remain well
defined) and their wiring diagram (Fig. 6.1) helps us to explore what systems are
possible, a possible architecture for the development of any particular system and a
taxonomy of established practice. Secondly, the modules represent actual software
components. The development and distribution of separate modules and a language
for inter-module communication would enable rapid evaluation of computer music
systems, saving much effort, and encouraging novel combinations.

6.3.2 Definition of a Live Algorithm

A Live Algorithm is defined as a system in which these three modules are present,
interconnected, absent of a human controller, and such that the above four charac-
teristics (autonomy, novelty, participation and leadership) are ascribable attributes
of the system.

6.3.3 Architecture

Naively speaking, P is to ears as f is to brain as Q is to voice, but in humans these
compartments are themselves conceptually ambiguous. The boundaries between the
modules can be reconsidered according to different ideas about perception, cogni-
tion and production (including the conceptual status of cochleas, hands and instru-
ments). The same re-evaluation can occur in novel computer music systems. For
example, in an extreme analysis P = adc, Q = dac, f = internal dsp where adc
and dac are converters between analogue (a) and digital (d) representations and dsp
stands for any digital signal processing module.
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There are several fundamental wirings of the three modules, with or without a
human controller (Fig. 6.1), that can be used to form a taxonomy of computer music
systems. The figure shows the controller placed to the left of the system (parameter
domain) and the audio environment, Ψ , to the right of the system. Musicians, oper-
ating in the sonic domain (to the right of the system in the figure) contribute directly
to Ψ .

P and Q are established subcomponents of music systems. The novel aspect of
a Live Algorithm derives from the inclusion of a patterning/reasoning module, f ,
which has neither audio input or output, but is a more general purpose algorithm
which could be applied equally in non-computer music contexts. In general f em-
bodies a computational process with input and output parameter streams. In Live
Algorithm terms, f is a generative unit, the machine equivalent of ideas and imag-
ination. This function is key to enabling the system to demonstrate the capabilities
of autonomy and novelty.

Each wiring is already in common use in various computer music scenarios.
These are described in the following in each case, and their potential for Live Algo-
rithms research is discussed.

P performs analysis of incoming audio (Fig. 6.1A). Its human-equivalent func-
tion is listening. In the figure, Ψ is the musical environment; Ψin (Ψout) are in-
coming (outgoing) audio streams. (Alternatively, an incoming sound wave could be
digitised by an analogue-to-digital converter. Such a converter would be regarded
as part of P itself.) P processes incoming samples, producing analysis parameters.
These parameters seek to describe the audio, in music theoretic terms (events, pitch,
duration), as spectral data, in timbral terms such as smoothness and roughness, or
in other high level descriptors. P therefore emits a stream of parameters at a slower
rate than the signal rate. In Music Information Retrieval, the data is used for the
automatic scoring of performance. Figure 6.1A could represent a possible perfor-
mance scenario in which a musician can inspect analysis parameters in real-time,
most likely via a graphic display. This set-up may be used to supplement the sonic
information the musician already has access to. Figuratively, the musician (function-
ing as a controller) is placed to the left of the P module to emphasise that system
interaction is via parameters, and not by audio (in which case the musician would
be placed to the right of Ψ ). Reliable algorithms for machine listening are of con-
siderable importance but the problem is very challenging when the audio source is
a combination of several instruments. Machine listening is the subject of a large
research effort within the DSP community.

P itself does not perform any function other than analysis. If some further pur-
pose is intended, the analysis parameters are fed into an algorithmic module, f , as
depicted in Fig. 6.1B. For example, if the information is to be used to access similar
excerpts from a music database, f would perform the similarity measure and the
look-up.

Note that links between modules are not directional to indicate that parameters
might be passed in either direction. For example, a subcomponent of f might require
a finer level of analysis from P , and could therefore send an instruction to P to that
effect. The bi-directionality of system components means that the division into P ,
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Fig. 6.1 Pf Q “wiring diagrams” for different computer music applications, a non-exhaustive
set of possibilities. An optional human software controller is depicted to the left of the modular
decomposition; the shared audio environment, denoted Ψ , and placed to the right of the system,
represents all utterances from instrument musicians and other computer music systems. The di-
agram shows eight common computer music systems: A—Audio analysis; B—Audio analysis
with added functionality as provided by f (e.g. real-time score generation); C—Audio synthesis;
D—Generative (Algorithmic) music; E—Live computer music involving a musician-controller
who is able to monitor and adjust the functioning of a largely automatic and reactive system (such
systems have become the accepted practice in live computer music settings); F—Reactive sys-
tem as used, for example, in Sound Installations; G, H—prototype and actual Live Algorithmic
systems. The ideal, wiring H, runs autonomously without the presence of any human control. In
practice, some human attention is often required, as depicted in G
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f and Q is to some degree arbitrary; in practice the separation is distinct since each
module serves a different fundamental purpose.

Figure 6.1C shows a synthesis unit, Q, outputting audio. Audio synthesis is a
well studied area of computer music and there are many available techniques, rang-
ing from the rendering of sampled sound and the emulation of actual instruments
(e.g. by physical modelling), to the design of new synthetic sounds using purely
algorithmic techniques with no obvious analogue in the domain of physical instru-
ments (for example, granular synthesis). The figure shows the possibility of synthe-
sis control by an operator in real-time (but not sonically, since that would involve
a P module). This is the archetypal computer music application, the computer-as-
instrument; real-time control of an electronic instrument by parameter manipulation
(the instrument might be controlled via a mouse and keyboard, or by a hardware
device such as a MIDI2 keyboard, a pedal or some other controller). Figure 6.1C
might also represent live sound diffusion, in which a performer can alter parameters
such as spatial position and volume in the playback of a pre-recorded composition.

Figure 6.1D shows the attachment of a module f to Q. f provides a stream of
synthesis control parameters. This is the typical realisation of generative/algorithmic
music, depicted here with a human controller, but equally possible without. This is
the computer-as-proxy. f automatically generates musical information occupying a
compositional functionality. There are many possibilities for f , and this represents
a major branch of musical activity. It might be understood to represent any and
all forms of rational process underlying pre-compositional musical methods, but
contemporary, computational applications are most apposite. Two modern exam-
ples are Xenakis’s development of computer-based stochastic techniques (Xenakis
2001), and the work of Cope (1992) who has developed generative systems that
produce music by reference to a database of extant compositions.

One important source of potential f ’s are algorithms from complex and dynam-
ical systems science. There is a wide and inspiring palate of patterning algorithms.
Example include: cellular automata, generative grammars, L-systems, evolutionary
algorithms, flock and swarm algorithms, iterated function systems (fractal genera-
tors), chaotic dynamics, real time recurrent neural networks and particle systems
(see, e.g. Flake 1998, McCormack et al. 2009).

Clearly not interactive, f Q offers some potential for variation. For example, if
some of the algorithm parameters (i.e. in f ) are pseudo-random, or influenced by
some other data stream, it could function as a device with variable and less pre-
dictable sonic output. An f Q compositional system could be used in performance
in which musicians play alongside the system. In this case the interaction is severely
limited, as the players role is to only to follow. This scenario was established in the
now largely defunct genre of “live performer and pre-recorded tape” that developed
through the 1950s to 1970s, although such practices are still evident in many com-
mercial musical contexts. An intriguing contemporary possibility is the real-time
manipulation of an algorithm (and synthesis parameters). Such a system is used by

2Musical Instrument Digital Interface, an interface and protocol standard for connecting electronic
musical instruments and devices.
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live laptop performers (e.g. live coders) who manipulate or even create small algo-
rithmic units—f ’s—in real-time.

Figures 6.1E and 6.1F show a direct parameter mapping between analysed source
and synthesiser control. If the functions P and Q are mutual inverses, a mapping
between them is trivial, Q = P −1, and the system is a (possibly distorted) musical
mirror. Alternatively, the relationship between P and Q and the mapping between
them may be so complex that a participating musician is challenged to find any
obvious correlation. These systems can only be a vague prototype of a Live Algo-
rithm as they are only automatic, in the sense defined earlier; the initial conditions
that establish the mapping remain unaffected by context and new data. If there is
direct intervention by a user, as in 6.1E, the system as certainly not autonomous.
These systems cannot achieve autonomy because they are overwhelmingly reactive
(for example it may not play in the absence of sound or pause in the presence of
sound). Any attempt to move beyond this basic feedthrough device requires algo-
rithms that do more than provide a huge switchboard of parameter connections, i.e.
an f module (see below).

Systems E and F may be used in certain sound installation contexts, including
situations where Ψ represents sonic and non-sonic environments (including move-
ment, brightness, etc.). Although the system is primarily a parameter map, a musi-
cian could monitor synthesis data that may inform his/her choice of synthesis pa-
rameter settings. This scenario is the accepted practice in live computer music, and
accounts for the vast majority of music produced in a live setting with computers.
Typically a software development system such as Max/MSP is used to implement
P and Q functionality (although they are infrequently broken down into actual soft-
ware modules), with a visual display in the form of a “patch” and soft controls
such as sliders and dials to allow real-time (non-sonic) interaction with the system.
E might be considered as an enhanced instrument.

Systems 6.1G and 6.1H are syntheses of the basic A–F types. The most sig-
nificant elements are that they incorporate both analysing and performing within
the sonic domain, and establish a loop across the sonic and computational domains
by incorporating a functional module f . The ideal Live Algorithm operates au-
tonomously (system H); in practice, and until a true Live Algorithm is realised,
some degree of intervention is desirable (system G). Further exploration of these
challenges is presented in the sections below. Before this, we need to consider the
fact that all these processes occur in real-time, and also musical time, in which sonic
events have a past, present and future.

6.3.4 The Live Algorithm from the Outside

The Live Algorithm is, from the point of view of fellow performers, a black box. We
consider the functionality of the system as a whole in terms of the most primitive
description, the flow of data into and out from the device. Such a study points at
possible performance measures that can be utilised in Live Algorithm design.
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In Fig. 6.1, the analysis parameters p and q are marked alongside the appropri-
ate links. In principle parameters could be passed in either direction, but at a simple
level we may consider that f receives p as input, and emits q in a continuous pro-
cess. Moments of silence between events are then represented by streams of constant
parameters. The task of P is to deliver a parameter stream {p} to f , and that of Q

is the sonification of an output stream {q}. P and Q act as transducers that enable f

to interact with the external environment. The process can be formally represented
as

Ψout = Q
(
f

(
x,P (Ψin)

))

≡ F(Ψin)

where x is any internal state of f and it is assumed that {Ψin} does not include any
of the system’s own outputs. F is the observable function of the Live Algorithm.
f itself is hidden. Performers only have access to each other’s F ; inferences about
private desires, goals, etc. in other words, performers f ’s, are made on the basis of
these observations.

The Live Algorithm must therefore decide when and what to transmit with regard
to the history of inputs and outputs, {Ψin} and {Ψout}, the internal dynamic state x

and any static parameterisation of f , P or Q (which may include data on previous
performances).

The task of finding an f that might satisfy the requirements of a Live Algorithm
is formidable. One way forward is to explore possibilities on an ad hoc basis (as is
common) and in the lack of any formalised objective this is the only available means
of development. The development of a performance measure for a Live Algorithm,
however, would suggest a more systematic methodology. The search for a perfor-
mance quantifier could commence by investigating human practice. If such a metric
could be established, it would guide development of f s; there is even the possibility
that a Live Algorithm could become its own critic and learn from experience.

Although the input streams are continuous, we may suppose for the purpose of
this discussion that inputs and outputs can be coarse-grained. For example, audio
samples can be grouped into a phrase of notes. The continuous streams could then
be considered as sequences of discrete events; the precise definition of what might
be a meaningful event, and the duration of the sequences is not important for the
following analysis. The streams can then be split into past, current and future and
comparisons can be made between them:

Ψout contains elements

1. of past Ψin’s (referential)
2. of current Ψin (reactive)
3. of future Ψin’s (pre-emptive)
4. of past Ψout’s (consistent)
5. of future Ψout’s (planning)
6. not found in past or current Ψin’s (independence)
7. not found in past Ψout’s (exploratory).



158 T. Blackwell et al.

In order to participate in a group improvisation, the Live Algorithm has to con-
vince the other participants that it is listening to and engaging with their contri-
butions. As with conversation, this is achieved by the assimilation of inputs into
outputs. Participation can therefore be measured by the degree of reference and re-
action.

A novel contribution has to be surprising in some way to those engaged in the
musical conversation. Novelty can be measured by the extent to which an output is
independent (of inputs) and is self-exploratory.

The concept of leadership is very subtle: what can the system do so that the en-
vironment is persuaded into participation? In order to lead, a player has to embark
on a musical direction that is picked up by the other participants. Copy cat scenar-
ios such as Ψout = {A,B,A . . .}; Ψin = {B,A,B . . .} should not be considered to
involve a leader. Leadership therefore requires both pre-emption and novelty.

We would naturally regard any musical human partner as autonomous. A central
problem of Live Algorithm research is to persuade human musicians that a machine
partner is making valid contributions, contributions that should be respected, and
not ignored or regarded as a malfunction. This is a problem of perceived autonomy.
Operationally we suppose that a non-heteronomous and non-automatic system is
autonomous, where a system with no referential or reactive elements is defined as
automatic and a system that is fully determined by its environment, i.e. has no in-
dependent elements, is heteronomous (i.e. subject to external control). Autonomy
is a relative term, with degrees of autonomy ranging in extent form marginal to
very tight coupling with the environment. In this definition of autonomy, Ψout is
not entirely determined by either the history {Ψin} or the internal state x alone. An
autonomous system sits between heteronomy and automation.

Bertschinger et al. (2008) point out that in order to avoid heteronomy, different
actions must be possible given the same environment. In our formulation, future
actions are contingent on both histories, {Ψin} and {Ψout}, so that a specific Ψin

occurring at t1 and again at t2 > t1 would, in general, be followed by a different
response Ψout since the histories {Ψin}t1, {Ψout}t1 and {Ψin}t2, {Ψout}t2 will generally
differ.

A Live Algorithm that deploys stochastic methods (or at least some degree of sta-
tistical uncertainty) could also supply different actions given the same environment:
completely random behaviour should not be considered autonomous (Bertschinger
et al. 2008). Randomness is avoided if the Live Algorithm provides structured out-
put, which may or may not incorporate past inputs or outputs. Although a Live
Algorithm might produce randomness over one epoch [t1, t2], an exploratory sys-
tem would eventually produce structured output in order to avoid repeating epochs
of randomness.3 Exploratory behaviour, as noted above, prohibits prolonged repeti-
tions of periods of randomness that might otherwise be counted as trivially novel.

Improvisation is not just about acting spontaneously, although this plays an im-
portant part. Output that lacks coherence and darts from idea to idea is a feature of

3We sidestep issues concerning the randomness, or not, of sequences of finite length.
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inexperienced improvisors; more experienced improvisors exhibit some degree of
coherence in their approach. Regularity, as captured by consistency and the ability
to plan ahead, is measurable by the relationship of the current output to previous
and future outputs.

The musical elements in question have not been defined, and a prescription of
how to make the measurements has not been detailed. The process is dependent on
the level of description, and it may be that several levels are needed. At the level of
note events, for example, the elements are phrases, and comparisons can be made
using a similarity measure based on a definition of the distance between two phrases
(how closely the phrases shapes match each other, or the number of changes needed
to bring the phrases into agreement, for example). Comparisons between streams are
also possible using information-theoretic techniques such as mutual entropy; such
methods might be important where an appropriate level cannot be defined.

6.3.5 Artificial Intelligence

Artificial Intelligence (AI) offers various schemes that may prove fertile for Live Al-
gorithm research and strategies for developing functions f , as represented in general
in the wiring diagrams above.

Reasoning can be based on a programmed rule set, or derived through training.
In the former, the Live Algorithm designer has access to the vast experience of sym-
bolic AI research that includes knowledge representation, problem solving, planning
and expert systems. Within this AI framework, the problem domain is represented
symbolically. The representation contains knowledge about the problem domain,
and the symbols are syntactically manipulated until a solution is found. The main
focus of the symbolic framework is on a suitable formal representation of the prob-
lem domain, the inclusion of domain specific knowledge and efficient algorithms.

Machine learning is another major AI framework. The learning algorithm can be
based, for example, on a neural architecture or on Bayesian structures (e.g. Hidden
Markov Modelling). Responses are learnt over a sequence of test cases. The focus
is on the learning algorithm, the training set and the network architecture.

We can suppose that a human improviser can potentially refer to his/her own the-
oretic knowledge as well as her/his experiential knowledge of music making and of
group improvisation in particular. It would be inhibitive to deny similar advantages
to a Live Algorithm. Domain knowledge can be hard-wired into the Live Algorithm
and trial performances offer ideal test cases for learning algorithms. Since the defi-
nition of the Live Algorithm only makes reference to inferred behaviour and not to
any supposed mental states, the debate as to whether cognition is symbol manipula-
tion (computationalism) or dependent on a neural architecture (connectionism), or
indeed some other paradigm, is not relevant; rather, any technique can be requisi-
tioned in order to further the overall goals of Live Algorithm research.

As an alternative approach to reasoning or learning, we mention here the dynam-
ical systems framework which has already proven to be a rich source of ideas in
Live Algorithm research.
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Symbolic and connectionist approaches to mobile robotics have not been an un-
qualified success (Brooks 2009). The computational problem is the navigation of
a dynamic, uncertain environment. An incredible amount of initial data would be
needed in the closed system approach in order to account for all the possible inputs
the robot might receive. In contrast, the open, dynamic framework has proven much
more fruitful; the robot program is open, and modelled more closely on, say, how
an ant might move through a forest. The similarity between the improvisational en-
vironment which will be very dynamic and uncertain, and the passage of an ant, or
mobile robot, through an uncharted environment leads us to expect that the dynam-
ical framework will be advantageous to Live Algorithm research too.

In a dynamical system, a state x evolves according to the application of a
rule, xt+1 = f (xt , α) where α stands for any rule parameterisation. The sequence
xt , xt−1, . . . defines a trajectory in the space H of possible states. A closed dy-
namical system is one whose evolution depends only on a fixed parameter rule and
on the initial state. These dynamical systems are non-interactive because any pa-
rameters are constant. The dynamical systems framework is quite comprehensive,
encompassing ordinary differential equations, iterated maps, finite state machines,
cellular automata and recurrent time neural networks.

Fully specified dynamical systems have a rich and well studied set of behaviours
(Kaplan and Glass 1995 is an introductory text; Beer 2000 provides a very concise
summary). In the long term state trajectories end on a limit set, which might be a
single point or a limit cycle in which the state follows a closed loop. Stable limit sets,
or attractors, have the property that nearby trajectories are drawn towards the limit
set; states that are perturbed from the limit set will return. The set of all converging
points is known as the basin of attraction of the attractor. In contrast, trajectories
near to unstable limit sets will diverge away from the set. Infinite attracting sets with
fractal structure are termed strange; trajectories that are drawn to a strange attractor
will exhibit chaos. The global structure of a dynamical system consists of all limit
sets and their basins of attraction and is known as a phase portrait. Phase portraits
of families of dynamical systems differing only in the values of their parameters α,
will not in general be identical.

An open dynamical system has time dependent parameters and therefore many
phase portraits. Since smooth variation of parameters can yield topological change
at bifurcation points (a stable equilibrium point can bifurcate into two or more limit
points, or even into a limit cycle), the global properties of open dynamical systems
are highly context dependent and system behaviour can be very rich. In a live al-
gorithmic setting, the open dynamical system parameters derive from the analysis
parameters. If H is chosen to map directly to the control space of Q, system state
can be directly interpreted as a set of synthesiser parameters. Inputs p could be
mapped to attractors, with the advantage that trajectories moving close to p will re-
semble Ψin (participation). However x may not lie in the basin of attraction of p and
the trajectory might diverge form p, potentially giving rise to novelty and leader-
ship. Small changes in input might lead to bifurcations in the phase portrait, sending
a trajectory into a distant region of H , giving unexpected outputs. The ability of an
open dynamical system to adapt to an unknown input marks it out as a candidate for
autonomy.
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The flow of p into f is the virtual counterpart of the sonic interactions that are
taking place between performers. In a dynamical system, p could become a state
alongside x, with the difference that the dynamics of p are driven by the outside
world, whereas the dynamics of x are enacted by a map. Interaction fits naturally
within the dynamical systems approach, unlike reasoning and machine learning al-
gorithms which are normally constructed as closed systems. The variety of possible
inputs would have to be specified by the designer in a rule-based system, and in
a learning system, response is dependent on the comprehensiveness of the test set.
The dynamical systems approach offers a more robust alternative. Finally we note
that an extremely large number of alternative outputs (the size of H ) can be easily
implemented in a dynamical system.

6.4 Live Algorithms in Context

This section considers aspects of Live Algorithms that cannot be directly pro-
grammed. Improvisers are characterised by individual behaviours which are the re-
sult of learning and playing music in a social and cultural context. We speculate that
a Live Algorithm might also participate in these contexts. The section looks at some
behaviours, and then discuses the social and cultural dimensions of improvisation.

6.4.1 Live Algorithm Behaviour

Young and Bown (2010) identify four distinct behaviours that might be exhibited
by a Live Algorithm: shadowing, mirroring, coupling and negotiation. These be-
haviours give some indication of the capacities systems in Fig. 6.1E–G would need
to demonstrate.

The behaviours are expected to be emergent, rather than directly programmed.
In general it is better to set overall goals and let a system develop its own behaviours
in order to that accomplish these goals. A top-down approach is rigid and relies on
a complete analysis of the problem; a bottom-up approach is more robust. The per-
formance goals for a Live Algorithm are not well understood; Sect. 6.3.4 advocates
the study and codification of the observed function F of human improvisors.

6.4.1.1 Shadowing

Shadowing involves a synchronous following of what the performer is doing,
mapped into a different domain. Systems E–H in Fig. 6.1 could produce this, al-
though only E or F are necessary. A pitch shifter in both the audio or MIDI domain,
or any synchronous audio or MIDI effect, are very simple examples. In such cases,
shadowing reduces to the configuration shown in Fig. 6.1E, with or without a human
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controller. The strength of shadowing lies in the fact that performer and Live Algo-
rithm express a strong coherence, with tightly unified temporal patterning. In its
simplest form, shadowing achieves strong but trivial participation, and little or no
leadership, autonomy or novelty. However, even in this simple form, the appear-
ance of coherence can have a strong effect for both performer and audience, and
can contribute to the sense of autonomy of the system, and the generation of nov-
elty through its interactive affordances. More complex forms of shadowing might
involve more sophisticated musical responses such as counterpoint and harmony.
A system based on rhythmic entrainment and temporal anticipation rather than an
instantaneous response could achieve shadowing in a way that exhibited creativity,
and the possibility to switch to a leadership role.

6.4.1.2 Mirroring

Mirroring involves some extraction of more abstract stylistic information or musi-
cal content from the performer, which is “reflected” back to the performer in novel
ways. Pachet’s Continuator system provides a highly sophisticated example of mir-
roring (Pachet 2004). System E in Fig. 6.1 would be the most apposite context.

In human performance mirroring is used as an explicit device or appears as a
more implicit principle of building on a shared mood or theme. As with shadowing,
the system predominantly takes the lead from the performer. This clearly demon-
strates participation, and can contribute to a form of collaborative creativity through
the opening up of new possibilities. As with shadowing, an appearance of autonomy
comes with the sense that the musical output is coherent. By successfully achieving
the local goal of mirroring with an unknown performer the system demonstrates a
basic autonomous capacity, perhaps even implying that it “understands”.

The mirroring approach is more immediately capable of leadership, but like shad-
owing must be enhanced by other behaviours to achieve this ends. Choices about
how the mirroring is managed can lead to greater autonomy. In order to achieve
leadership the mirroring must be capable of appropriate alteration to the style being
reflected. Shadowing and mirroring preferably require an interaction scheme where
the performer’s output can be clearly distinguished from the environment, rather
than where the state of the environment, consisting of the mixed output of both per-
former and Live Algorithm, is given as input. Naturally this can be achieved if the
system is capable of distinguishing its own output from the mixed input, but this is
challenging in practice.

Mirroring fits the fully fledged Live Algorithm scheme of Fig. 6.1H, where f

involves the storage, analysis and retrieval of incoming feature data p.

6.4.1.3 Coupling

Coupling refers to a system’s behaviour that is largely driven by its own internal gen-
erative routines, which are perturbed in various ways by information coming from
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the performer. This is a particular application of system G and H in Fig. 6.1. De-
signers can place the greatest emphasis on the design and behaviour of f , exploring
the musical behaviour of diverse computational systems, possible with a flexible
approach to the form of P and Q. Through such mutual influence, the performer
and Live Algorithm can be seen as a coupled dynamical system, where both partic-
ipants are capable of acting independently. Coupling does not prescribe a specific
behaviour, and may involve aspects of mirroring and shadowing (in the latter case
the coupling would be tighter), but tends to refer to a situation in which the system
can clearly be left to lead (by acting more independently of the performer), possibly
to the detriment of the sense of participation (in which case we can think of the algo-
rithm as “stubborn” or unresponsive). However, a sense of participation depends on
the attitude of the performer. A performer may deride shadowing and mirroring as a
failure to truly participate, that is, to bring something original to the collective per-
formance. A successful coupling-based system would demonstrate autonomy and
creativity, and in doing so achieve participation.

Coupling is a practical behaviour because it is essentially trivial to achieve; it
evades strict requirements about the kind of interactive behaviour the system ex-
hibits, as long as the performer is demonstrably exerting some kind of influence
over the system. This offers creatively fertile ground for what McLean and Wig-
gins (2010) refer to as the bricoleur programmer, building a Live Algorithm by
musical experimentation and tinkering. It also relates to an aesthetic approach to
computer music performance that favours autonomy, leadership and the potential
for surprising variation (novelty and thus creativity) over participation. It allows for
the introduction of various generative art behaviours into a performance context.

6.4.1.4 Negotiation

Negotiation is defined as a more sophisticated behaviour that is related to coupling
but is based on aspects of human cognition. Only system H in Fig. 6.1 allows for this
behaviour. A system that negotiates constructs an expectation of the collective mu-
sical output and attempts to achieve this global target by modifying its output. Since
the collective musical output depends on the performer as well, negotiation, as the
name suggests, may involve attempts to manipulate the behaviour of the performer,
or equally, to adjust one’s expectations in light of the direction of the music. As with
coupling, with negotiation the Live Algorithm is understood as interacting directly
with a piece of music, rather than with other individuals. More sophisticated Live
Algorithms could perform acoustic source separation and use a “theory of mind” to
infer individual behaviour from the environment.

Negotiation can be seen as a framework for the design of a Live Algorithm (see
Young and Bown 2010), involving the interaction between an expectation and a
behaviour (which contributes to the musical environment), either of which can be
modified to create a better fit between them. This is harder to achieve than the other
behaviours, so is less pragmatic. The challenge is to obtain a system that achieves
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strong collaboration through negotiation: that has distinctive expectations (leader-
ship) and finds a way to satisfy those expectations whilst also accommodating the
behaviour and expectations of the performer (participation). Achieving this balance
can be seen as a well-formed creative challenge, one that requires autonomy.

Systems that are capable of successful negotiation are a goal for Live Algorithms
research. A relevant question is how minimal a system can be whilst achieving a
sense of negotiation in performance. Coupling can be seen as a weaker form of
negotiation. Negotiation can be seen as fulfilling the traits autonomy, participation
and leadership most fully. Novelty (leading to creativity) can be introduced into the
expectation of the system.

Shadowing and mirroring can be seen as behaviours that attempt to offer the
semblance of participation through acknowledgement of the performer’s output,
demonstrating the ability of the system to produce meaningful responses. Coupling
and negotiation, on the other hand, can be seen as behaviours that attempt to create
a sense of mutualism between performer and Live Algorithm (thus autonomy and
leadership on behalf of the Live Algorithm), by imposing the reciprocal demand on
the performer to satisfy some expectation in the Live Algorithm itself.

6.4.2 Agency and Live Algorithms

Music involves temporal dynamics on a number of time scales, from the waves
and particles of microsound, through the patterning of rhythm, meter and melody,
through movements, concerts, compilations and mixtapes, and out towards larger
periods of time, those of genres, subcultures, individual lives and eras (see Chap. 7
for a similar discussion). Musical agency, the influence someone or something has
on a body of music, which can be thought of in terms of the four categories presented
in Sect. 6.2.2, actually applies at all of these time scales.

For sensible reasons, Live Algorithms focus on the kind of agency that is con-
centrated in a single performance, defined by Bown et al. (2009) as performative
agency. But a great deal is lost about the musical process if we strictly narrow our
focus to this time scale: in short, what a performer brings to a performance. For a
free improvisor, we can think of the information stored in their bodily memory. For
a DJ, we can include the material carried in their record box. In all cases, perform-
ing individuals bring with them a tradition, embodied in the development of a style,
whether through practice, through social interaction or through the construction and
configuration of their musical tools and resources (including instruments and bits of
data).

It is hard to categorise exactly what is going on in terms of performative agency
when you hear the remote influence of performer A in the behaviour of performer B,
but it is necessary to consider this process in its broadest sense in order to correctly
approach the agency of Live Algorithms. There are many channels through which
the work of one individual becomes involved in the work of another, through the
imitation of playing or singing styles, cover versions and remixes, the copying of
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instruments, effects, orchestration, and more recently through the shared use of soft-
ware and audio samples.

As well as offering immediate presence on stage, then, Live Algorithms can also
involve forms of musical presence occurring at this cultural time scale. The OMax
system of Assayag et al. (2006), for example, can load style data, and can be used to
generate such data through analysis. Here is a powerful new form of culturally trans-
missible data—style, encoded for use by a generative system—which can spread,
evolve, and potentially accumulate complexity through distributed cultural interac-
tion. In this way a system such as OMax offers a potential mechanism for bringing
a less immediate kind of agency to Live Algorithm performance, reducing the bur-
den of proof through mirroring, although not necessarily achieving the cognitive
sophistication of human musical negotiation. In general, a medium term goal for
Live Algorithms research may be to find formats in which behaviour can be ab-
stracted and encapsulated in transferrable and modifiable forms, such as file formats
that encode styles and behaviours.

Bown et al. (2009) categorise this interaction as memetic agency, an agency
that applies outside of an individual performance, which complements performa-
tive agency and makes sense of it by accounting for the musical innovation that did
not happen there and then on stage. Memetic agency adds an additional temporal
layer to the taxonomy of systems presented in Sect. 6.3, which are focused on the
timescale of performative agency, by requiring terms for the dynamical change of
the elements P , Q and f , the initial conditions of each system, and the configuration
of interacting elements, from one system to the next.

The term “memetic” refers loosely to numerous forms of cultural transmission.
By strictly focusing on the performative agency of Live Algorithms, all aspects of
memetic agency would appear to be left to the algorithm’s designer or user: a hu-
man. And yet this agency can be critical to understanding a performance. At the
extreme, pop singers who mime are almost completely unengaged from the act of
musical performance, and yet memetic agency allows us to make sense of such per-
formances. In musical styles such as jazz, much structure is already mapped out
and can easily be hard-wired into a Live Algorithm’s behaviour, and yet the musi-
cal style itself is emergent, not coming from a single human originator, but through
repeated listening, copying and mutation. Software is rapidly become a part of this
emergent social process. Today, hard-wiring is inevitable at some level in Live Al-
gorithm design, and Live Algorithms designers, as creative practitioners themselves,
can gauge the relevance of such factors in specific musical styles and performance
contexts. There is nothing wrong with hard-wiring style into a system, and expecting
it still to be creative.

However, as the origin of the term implies, memetic agency encompasses a no-
tion of cultural change in which individual humans are not the only agents. Dawkins’
original use of the term meme referred to a fundamental unit of cultural reproduc-
tion, comparable to the biological unit of the gene (Dawkins 1976). As contem-
porary evolutionary theory emphasises, human agency is predicated on the service
of genetic success, and is not an intentionality in and of itself. Memes are just an
equivalent hypothesised cause in service of which human behaviour can be ma-
nipulated. Individuals may aspire to achieve a more idealised intentionality in the
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tradition of the enlightenment, and this is a common way to view musical perfor-
mance, but whether an individual had achieved such a feat would be hard to prove
and to explain.

Between this memetic view of objects as passive participants, secondary agents
in the terminology of Gell (1998), and their potential, through AI, to act as cre-
ative, human-like, active participants (primary agents). Live Algorithm design seeks
a spectrum of agency and influence, rather than a distinct split between the human-
like and the artefact-like. We expect to see this agency emerging not just on the stage
but off it as well.

6.4.3 Live Algorithms as Musicians

Given that musicians are accustomed to negotiation as a form of improvised musi-
cal practice, a Live Algorithm ought to allow musicians to be themselves. There is
no necessity to make direct contact through a control interface with the machine,
as represented by the unattended systems F and H in Fig. 6.1; such contact might
undermine the relationship, both in the eyes of observers, and in fact in any claim
to machine autonomy. So, just as in the human world of performance practice, the
use of additional tools, novel instruments and experimental interfaces is a matter of
aesthetic choice, not practical necessity. Contact ought to be of a more profound,
conceptual, nature.

Live Algorithms allow human-machine interactions that preserve the “basic
agency relationships” (Godlovitch 1998) we expect in performance. These relation-
ships are developed and expressed in the musical sound itself. Linkage between
agent and result need not be absent or vestigial as can easily be the case in the
complex, technical world of computer performance. Rather, sonic events operate at
different semantic levels, generating both musical affect and effecting communica-
tion between players.

Performers are customarily valued for their capacity to demonstrate skill under
constraints. This is true even of free improvisation, where the chief constraints re-
late to the higher-level aspects of group interaction already noted. Whatever is true
of human performers must be also be true of Live Algorithms, at least in the imag-
ination of other participants and observers. Arguably, a concert audience attributes
value to a performance empathetically, in accordance with Husserl’s transcendental
concept of “intersubjectivity” (Husserl 1999). Performers are recognised as sub-
jects who are themselves experiencing the world, so intentions and abilities can be
attributed to them by the observer, and a critical experience of musicianship and
technical accomplishment is experienced in proxy, that is, through empathy with
them. Even if the observer cannot play a violin they can develop an empathetic re-
action in observing it done, and this is arguably the foundation of the live music
experience.

Collective, participatory performance should be considered as a social medium
for participants and their audience alike, along with how we can expect Live Al-
gorithms to be regarded as social beings is a matter for imaginative speculation.
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In group performance we may see evidence of social “intimacy” (Reis and Shaver
2008) in the extent of evident mutual engagement, i.e. the close—albeit staged—
interpersonal relations that occur between players. Intimacy in social psychology is
characterised as a reciprocal, “interactional process” that develops between individ-
uals; this is as true of music-making as any imaginable praxis. Intimacy develops
when revelatory self-disclosure from one subject in turn finds validation through
another’s response. This is subsequently interpreted by the subject as evidence of an
emergent and binding understanding with the other participant. Intimacies are evi-
dence of psychological proximity, cohesiveness and trust (Prager 1995); trust that
a partner can offer what is wanted (or if not, that they can offer what will provide
benefit rather than harm). The development of trust occurs in situations that require
interdependence, as when experience is shared, and activity and aims co-ordinated
(‘agentic’ cohesiveness), or when there is an apparent need for a reciprocal exchange
of information, for mutual control and a state of quid pro quo in order to achieve
something desirable. All these are significant facets of participatory music perfor-
mance.

If intimacy is learned over time, through a series of transactions and negotia-
tions, it cannot be designed for in advance. Freely improvised music rests upon this
premise as well. To situate a computer in this setting could be a grossly simplistic
and anthropomorphising endeavour. But there are instances in which trust is fostered
without direct social contact. On-line or computer-mediated intimacy has been stud-
ied by Parks and Floyd (1996) showing how trust develops free of non-verbal cues
or immediate trust situations. Human-computer musical intimacy might occur in a
similarly shared but restricted environment; i.e. the music itself, even though the
respective understandings of that environment would differ entirely (Young 2010).

6.5 Prototypes

Many systems exist that aim to satisfy the goal of achieving some or all of the fea-
tures listed in Sect. 6.2.2 (in general expressing “performative agency” as discussed
in Sect. 6.4.2), validating their performative efficacy there and then in a performance
context. The fellow performers and audience must be convinced of the autonomy,
creativity, participation and leadership of the system through what it does on the
stage. For this reason, a successful behaviour for a Live Algorithm is mirroring,
performing in deference to the human improvising partner by deriving performance
information from it.

A clear example of a mirroring algorithm is François Pachet’s Continuator sys-
tem (Pachet 2004). The Continuator, from which the term mirroring is borrowed, is
explicitly designed to develop improvised responses to a solo performer in the style
of that performer, using a Markovian analysis of the performer’s input (see also
Chap. 5 in this volume). The continuator works in a MIDI domain and performs
on a MIDI instrument such as a synthesised piano. Pachet describes this as a tool
to achieve creative flow, in which the performer has aspects of their playing style
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revealed to them in novel ways, as with a mirror. It is clearly participatory, can lead
to novelty through interaction, and is autonomous in its capability to independently
infer and reproduce style. The OMax system of Assayag et al. (2006) uses a similar
framework of behavioural modelling, but is more geared towards the construction of
improvising behaviours beyond that gathered by a performer in real-time. As such
it can also exhibit leadership.

In terms of our PQf wiring diagrams, such systems are complete Live Algo-
rithms (Fig. 6.1H) typically operating in a MIDI or other music symbolic domain:
the f system operates directly on such symbolic data, in tandem with some kind of
stored representation of a responsive behavioural strategy, such as a Markov model.
Note that here as in other cases, the symbolic form of data flows p and q mean that
f can easily be simulated in simpler virtual environments. This can be practical for
training purposes.

A number of related systems provide frameworks that straddle the range of be-
haviours from shadowing to negotiation. Research into granular audio analysis and
resynthesis offers a lower-level alternative to MIDI and introduces timbral informa-
tion to an agent’s perceptual world. Casey (2005) proposes a method for dissecting
sequences of audio into acoustic lexemes, strings of short timbral/tonal categories.
Based on this principle, Casey’s Soundspotter system (Casey 2009) can be used to
match incoming audio from one source with pre-analysed audio from another, of-
fering rich creative potential. Schwarz’s CataRT system uses a similar mechanism,
providing a scatter plot interface to a corpus of pre-analysed audio data (Schwarz
et al. 2006).

In its raw form, Soundspotter offers a powerful new kind of shadowing (more
powerful than the MIDI domain given the kinds of timbral transformations and
within-note control it allows), and can be considered more as a novel timbral ef-
fect or a creative tool than a Live Algorithm. This fits with the scheme of Fig. 6.1E.
The Soundspotter framework, however, provides a firm foundation for more gener-
ative and interactive use, as demonstrated in Frank developed by Plans Casal and
Morelli (2007), which introduces a generative process based on a coevolutionary al-
gorithm, effectively introducing a novel f operating on feature data. As with MIDI
data, here the data flows p and q take the form of (lower level) symbolic data (lex-
ical, in Casey’s terms, Casey 2005), meaning that there is a convenient model for
embedding different f ’s in a stable musical context. Although Frank does not di-
rectly map input to output, it is able to take advantage of the shadowing nature of
the Soundspotter system, for example by giving the impression of echoes of mu-
sical activity from the audio input. Britton’s experiments with chains of feedback
in CataRT have likewise explored the generative capabilities inherent in Schwarz’s
concatenative synthesis framework (Schwarz et al. 2006).

Thus whilst MIDI is a well established domain based on musical notation in the
Western music tradition, timbral analysis and acoustic lexemes indicate new ways
for music to be transformed into a conceptual space and then retransformed into
sound. These principles of transformation are key to the formulation of a Live Al-
gorithm, central to which is the identification and isolation of an abstract nested be-
havioural module, f , which enjoys some degree of transferability between contexts.
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In these cases (and elsewhere, as in Fourier transform-based analysis and resynthe-
sis) a compelling feature is that the channels of analysis (p) and synthesis (q) are
equivalent, such that if f were simply bypassed f (x,p) = p then the input data
would be recovered in some shadowed form. In the extreme case, Q = P −1, the
input sound comes back unaltered.

The Swarm Music and Swarm Granulator systems of Blackwell (2001) and
Blackwell and Young (2004) explore both MIDI and timbral domains using swarm
dynamics. Incoming analysis parameters are mapped onto attractors in an internal
space. A swarm of musical events explores this space, on occasion becoming drawn
to attractors. The positions of swarm members are mapped directly onto synthesis
parameters so that if the individuals were sitting directly on the attractors, the out-
put would precisely mirror the input. Novelty arises from the exploration of phase
space, and participation is coded in the tendency to move towards any discovered
attractor. Swarm Music/Granulator is a direct realisation of the dynamical systems
programme advocated in Sect. 6.3.5.

The behaviour of the above prototypes is not always human-like, and indicates
how machine improvisers are already super-human in certain respects. Humans have
an evolved capacity for vocal imitation, extended to imitation on musical instru-
ments, but the mechanisms for perception and action are far from equivalent, the
latter using learnt motor movement to make sound. An individual learns the rela-
tionship between action and perception through practice. The capacity for shadow-
ing cannot be taken as given for humans, therefore, not only because our response
times are too slow, but because we do not have inherent mechanisms to generate
sound in equivalent ways to how we perceive sound. That said, the way we hear
sound is deeply influenced by the salience of spoken language to us, a fact which
matters in modelling human music perception, and the cognitive methods used by
human to achieve this mapping may also turn out be useful to further Live Algo-
rithms research.

A number of Live Algorithm systems also demonstrate a lack of equivalence be-
tween input and output interfaces by combining standard hard-wired audio analysis
tools (P ), domain-general AI techniques or dynamical systems such as neural net-
works, particle swarms or generative grammars (f ), and bespoke hand-programmed
generative systems (Q). This modular approach provides the opportunity to inte-
grate human and machine decision-making processes by breaking down the be-
haviour of Live Algorithms into a set of problems that can be solved in different
ways.

Lewis’ celebrated Voyager system is an example of a system that is hand-coded
with complex rule-based behaviour (Lewis 2000). The system uses standard audio
analysis tools in order to render incoming audio in a MIDI-based form. Voyager is
designed in a modular way according to Lewis’ introspective detailing of improvisa-
tion behaviours. It encodes musical knowledge, acting as a proxy for Lewis’ creative
agency, and achieves each of our four goals through the success of this knowledge
encapsulation. It achieves novelty using simple combinatoric processes.

Young’s Piano_prosthesis and related prosthesis projects (Young 2008) demon-
strate a more hybrid approach using standard analysis tools, such as IRCAM’s yin ∼
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object for Max/MSP, to establish an internal representation of the musical envi-
ronment, a composed generative music system, and a process of machine-learning
establishing a connection between the two. A generative music system designed
by Young acts as a flexible, parametrically controllable improvisation system with
composed elements. A feedforward neural network is then used to learn a set of
mappings from the musical environment to the parameters of the generative system
in real-time as the performance is taking place. Young’s systems exhibit elements
of mirroring and shadowing in their generative rules, and come close to a notion of
negotiation, as the system continually updates an internal model of what is happen-
ing in the music (without predetermined rules governing what is learned or when),
which it can try to manipulate.

Similarly, Bown and Lexer (2006) have explored the use of recurrent neural net-
works that exhibit simple low-level dynamical behaviours such as repetition with
variation and coordinated activity with an input. These networks can be embedded
in a Live Algorithm by hand-coding connections between standard audio analysis
tools and the recurrent neural network at one end, and between the recurrent neural
network and a stochastic generative music system at the other end. In an extreme
case, the recurrent neural network updates at sample rate, receiving the input audio
signal directly, and generating the output audio signal directly from the activation
of a single output node.

6.6 Further Considerations

This concluding section offers some directions for future Live Algorithm research.
The list cannot be comprehensive since it is impossible to predict which route(s)
will further the ultimate aims of the Live Algorithm agenda, but it is expected that
these topics will play some part in the process.

6.6.1 Embodiment

Brooks (2009) and other researchers in embodied robotics have argued against the
symbolic, representational AI approach to cognition, favouring instead a physically
grounded framework in which robots are situated in the world (they deal with the
world by perception and immediate behaviour, rather than by abstract representa-
tions and symbolic manipulation), and are embodied in the world in the sense that
their actions have immediate feedback on their own sensations. The complexity of
the environment is a key issue; rather than building fragile approximate models of
the world, the embodied approach utilises the world itself in order to pursue a goal.
The complexity of the world is (hopefully) tamed by working in and with the world,
rather than by attempting to imagine and represent the world. A consequence of
this is that embodied and situated systems can themselves have complex, emergent
behaviour.
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One concomitant implication for a Live Algorithm would be an embodiment that
involves a means to play a physical instrument by movement rather than a synthetic
production of sound by electronics. The task of learning to play a physical device
would involve the development of a better potential to listen to the type of sounds
the instrument could make. Hence sensor and actuator components would develop
together in a feedback loop. Ultimately the expectation would be that the Live Algo-
rithm would have a greater ability to make and hear complex sounds, an important
aspect of human improvisation. Robots move in real space, and have some goal,
even if only not to fall over. The analogy for our purposes would be movement in a
sonic field. It remains to be seen what goals would be pertinent; perhaps to navigate
between two timbres, or to find an interpolative rhythm.

6.6.2 Learning

It is without doubt a feature of improvisation that practitioners improve with time. It
would be unreasonable to deny our Live Algorithm the chance to reflect on its own
performance and find ways to improve. Consequently, the algorithm must be able
to make mistakes. The definition of what a mistake might be for a Live Algorithm
raises many fundamental issues.

There are many machine learning techniques that can be imported into the field,
but they would all require the existence of some kind of performance metric, as
discussed in Sect. 6.3.4. Some kind of objective evaluation of an improvised per-
formance is needed. Such a measure could be developed by the analysis of human
group performance. Unfortunately results in this area are lacking. An information-
theoretic approach might be fruitful: organisation (and dis-organisation) can be
computed over various timescales using entropy and complexity measures. The
analysis would have to be then checked against human evaluation.

Ultimately we would require that the Live Algorithm becomes its own critic;
should the algorithm feel shame as well as satisfaction?

6.6.3 Anticipated Criticisms

In human-machine dialogue, the human input to the machine is already a source of
considerable organisation and information. Many algorithm designers exploit this
information either intentionally or by accident. The algorithm ultimately feeds on
the inherent musical organisation of the input stream.

In order to guard against this, tests could be set up involving groups of Live
Algorithms (i.e. without human performers). If such a group could spontaneously
generate new structures there would be more confidence in the ability of the algo-
rithm to create its own patterns within the context of a machine-human dialogue.
Interestingly, Miranda (2008) has demonstrated the emergence of songs from in-
teracting robots; giving Live Algorithms the chance to interact with other artificial
musicians might provoke growth in unexpected directions.
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6.6.4 Cultural Embeddedness

Given the great importance of memetic agency to performance, a grand challenge
for Live Algorithms is to expand into this realm of activity, through the implementa-
tion of long-term social-musical behaviour: the development of a style over numer-
ous performances and practice, the appropriate absorption of influence, including
appropriate copying of resources such as software instruments, raw musical data
and audio samples. Social interaction can also be achieved through the development
of a reputation and authority amongst a niche of interested individuals, an aspect of
memetic agency not considered above since it involves long-term interaction with
individuals that are not themselves musical producers. Only by addressing this time
scale can we encapsulate the gamut of traits that we associate with human cre-
ativity. The emergence of software-mediated social networks makes this possibility
more tractable, as the medium through which social musical interaction takes place
becomes increasingly amenable to software-sourced agency. Software agents that
trawl the pages of on-line musical networks such as MySpace (www.myspace.com)
or Last.fm (www.last.fm), and distribute new musical output through their own
pages, are already at work.4

6.6.5 A Final Note

The field is very active and many approaches are currently being followed. It is
hard to guess which direction (whether on our list or not) will ultimately provide
the biggest insights. Perhaps progress will be made with large hybrid systems that
incorporate self-organising dynamical systems, machine learning, physicality and
machine culture.

It should be stressed that the overall objective is not to imitate the practice of
human improvisation. We do not need surrogate human performers. The aim is very
different from an artificial accompaniment machine, a replacement bass player for
example (although such devices may spin-off from Live Algorithm research), since
such systems would not be capable of leadership, a fundamental property of Live
Algorithms. Rather we seek artificial improvisers that can play alongside humans
in a way that enhances our musical experience. We expect that Live Algorithms
will give us access to an alien world of computational precision and algorithmic
patterning, made accessible through the interface of real-time interaction. We also
hope that the study of artificial improvisation will provide insights on the human
activity.

Live Algorithms already enjoy an active musical life. The Live Algorithms for
Music network5 provides a nexus for musicians, engineers and cognitive scientists.

4For example, the Cybraphon: http://www.wired.com/gadgetlab/2009/07/cybraphon/.
5See http://www.doc.gold.ac.uk/~mas01tb/LiveAlgorithms/livealgorithms.html.

http://www.myspace.com
http://www.last.fm
http://www.wired.com/gadgetlab/2009/07/cybraphon/
http://www.doc.gold.ac.uk/~mas01tb/LiveAlgorithms/livealgorithms.html
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A workshop in 2009 at Goldsmiths, University of London, with a concert at the
alternative London venue Café OTO, attracted a spectrum of systems which took
part in a series of duets with internationally renowned improvisers.

The future of computer music is surely an exploitation of the creative potential
that intelligent machines may offer, rather than the mundane speeding up of routine
tasks or in menu-driven tools. Ideas that lie broadly under the umbrella of Artifi-
cial Intelligence and Artificial Life will become increasingly adopted by computer
musicians and engineers.

Live Algorithms—performing near you, soon.
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Chapter 7
The Extended Composer

Creative Reflection and Extension with Generative
Tools

Daniel Jones, Andrew R. Brown, and Mark d’Inverno

Abstract This chapter focuses on interactive tools for musical composition which,
through computational means, have some degree of autonomy in the creative pro-
cess. This can engender two distinct benefits: extending our practice through new
capabilities or trajectories, and reflecting our existing behaviour, thereby disrupting
habits or tropes that are acquired over time. We examine these human-computer
partnerships from a number of perspectives, providing a series of taxonomies based
on a systems behavioural properties, and discuss the benefits and risks that such
creative interactions can provoke.

7.1 Introduction

One of the distinguishing features of human society is our usage of tools to aug-
ment our natural capabilities. By incorporating external devices into our activities,
we can render ourselves more quick, powerful, and dexterous, both mentally and
physically. We are effectively extending ourselves and our practices, temporarily
taking on the capabilities of our tools in a transient hybrid form (McLuhan 1964,
Clark and Chalmers 1998, Latour 1994).

Recent advances in computational technology have resulted in software tools
whose flexibility and autonomy goes beyond anything previous possible, to the ex-
tent that the tools themselves might be viewed as creative agents. This class of tool
suggests an entirely new type of relationship, more akin to a partnership than to the
causally unidirectional usage of a traditional tool.

In this chapter, we direct particular attention to how the computer can be used as
a partner to augment the practice of musical composition. By “composition”, we are
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talking in the traditional sense: the creation of a static, determinate musical work,
whose value is in virtue of its musical content rather than its means of production.
Though we will touch on ideas of improvisation, we wish to set aside performance,
interactive artworks, and group creativity, and focus on the common situation of
an individual artist, developing a body of work through computational means. We
will explore the partnership with generative computational systems from a number
of distinct perspectives, and outline some of the opportunities and hazards of such
partnerships.

In considering the practice of composing with semi-autonomous music software
systems, we wish to highlight two particular outcomes. Firstly, an interaction with
such systems can serve to actively extend and reshape our creative behaviours in
response to its own creative acts, encouraging unusual creative directions, or en-
abling actions which are otherwise unlikely. Secondly, by mirroring our own cre-
ative behaviours—either as a whole, in part, or through transformations—such a
tool can help us reflect on our own stylistic habits and tropes.

Though the capacity to alter innate human practices is not exclusive to digital
tools, we argue that computational methods enable more comprehensive and precise
support of an artist’s behaviour. The analytical, generative and adaptive features
often found in these tools can offer new creative routes based on dynamic awareness
of context and past history, harnessing the powerful probabilistic capabilities of the
microprocessor.

These tendencies can change our relationships with tools and may reshape our
creative processes. This influence is possible if we accept that creativity is in-
fluenced by experiences and opportunities, including those driven by our internal
drives as well as by the network of instruments, methods and stimuli that we adopt.
Taking the thesis that the means by which we produce an art object impacts upon its
nature, it follows that amplifying the autonomy possessed by these means serves to
broaden the range of objects that we can produce. By observing the successes and
failures of this hybrid human-technology system, we can learn new ways of working
which may otherwise not have arisen.

In the mainstay of this chapter, we examine human-agent partnerships from sev-
eral perspectives, identifying a number of characteristic properties which distinguish
them from their predecessors in the non-digital world. Along the way, we formulate
a series of taxonomies which can be used to as a starting point to categorise different
forms of creative technological partnership.

Before doing so, we will take a step back and consider some theoretical building
blocks relating to tool use. We will later draw on these ideas in our discussion of
digital tools and interactive music systems.

7.1.1 Thinking Through Tools

People need new tools to work with rather than tools that ‘work’ for them. (Illich 1973,
p. 10)
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In daily life, the use of tools is second nature to us. We seamlessly conduct our
goal-orientated activities via physical objects without the slightest awareness that
we are doing so. So accustomed are we to the use of knife and fork, computer
keyboard, can-opener and door-key, that the only times we become aware of their
presence is when they malfunction and interrupt our activity (Heidegger 1977).

Through the complex mechanical and chemical mediation of biro on paper, we
are able to convey structures of our thought to unseen recipients. Consider the exam-
ple of a drawn diagram. Relationships between spatial and temporal elements can
be relayed clearly and concisely, with reasonable expectation that the message will
be successfully received. Moreover, by working through the details of the diagram
on paper—through sketching, drafting, and observing the formalised realisation of
our ideas—we can use the process of diagramming as a means to develop our own
thoughts (Goel 1995). Yet, the role of the pen is completely invisible throughout. If
we were continually distracted by the task of gripping the biro and steadily applying
its nib to the paper, the task of relaying our ideas would be insurmountable.

In a well-known encounter, the physicist and Nobel laureate Richard Feynman
discusses the archive of his own pen-and-paper notes and sketches. When asked
about these “records”, Feynman retorts:

. . . it’s not a record, not really. It’s working. You have to work on paper and this is the paper.
(Clark 2008, pp. xxv, original emphasis)

The implication here is clear. This physical transduction of ideas—through arm,
hand, pen, paper, and back to the mind via our optical apparatus—is not simply a
trace of what is going on in our mental hardware, but an integral part of the thinking
process. The application of pen on paper cannot be considered a passive artifact but
as a fundamental machinery responsible for “the shape of the flow of thoughts and
ideas” (Clark 2008).

The above case is cited as an exemplar of what Andy Clark terms the “extended
mind” hypothesis (Clark and Chalmers 1998). In brief, Clark argues that the adop-
tion of pen and paper and other such “cognitive scaffolds” serves to shift the actual
processes of thought outside of our brains and bodies, and that our sensorimotor
interactions with can-openers and door-keys are embodied forms of thinking. We
can consider ourselves as “open-ended systems—systems fully capable of including
non-biological props and aids as quite literally parts of [ourselves]” (Clark 2003).
Just as our mental conditioning serves to subtly affect our reactions to tasks, so too
do the nuanced differences in the form and function of the physical tools through
which we act.

Feynman was in good company when observing that writing could be a form
of active thinking, rather than simply passive transcription. A century earlier,
Nietzsche’s adoption of the typewriter had impelled him to observe that “[our] writ-
ing tools are also working on our thoughts” (Kittler 1999). Something new emerges
from this formulation that we will return to shortly: that the causal relationship be-
tween tool and user is fundamentally reciprocal. We live through our tools, and our
tools shape our experiences. Actions with tools involve a feedback loop. It is our
belief that feedback loops are key to the creative process (McGraw and Hofstadter
1993); the reader will observe them cropping up repeatedly throughout this chapter.
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Needless to say, many eras of industrial development have provided us with a
menagerie of tools far more exotic than the typewriter, biro or can-opener. We will
focus on one specific example, albeit the most general-purpose example that we can
currently imagine: the digital computer.

7.1.2 The Computer as Meta-tool

The traditional conception of a tool is an implement which provides us with me-
chanical means to carry out some task that exceeds our natural capabilities; consider
unscrewing a nut, or levering open a crate. Epistemic tools, such as the abacus, can
perform the same role in the domain of cognition (Norman 1991, Magnusson 2009).
The information age has heralded a qualitatively new kind of cognitive extension,
in the form of digital computing devices. Equipped with a programmable computer,
and given an appropriate physical interface, we can produce a wide array of epis-
temic tools. The computer, therefore, is a meta-tool, a platform upon which we can
build and use new forms of cognitive scaffolding.

The tools that we construct upon this platform do not themselves have to be
static and single-purpose. Their functionality can adapt to new contexts—even those
which have not been anticipated ahead of time. Software components can be mod-
ularised and aggregated, resulting in complex assemblages which incorporate the
features of multiple sub-tools.

Moreover, we can confer upon our computational tools a degree of unpredictabil-
ity—a most useful property when seeking to catalyse innovation and one less com-
mon in mechanical tools. With digital pseudo-random number generators, we can
harness the power of chance processes, deploying them in targeted contexts to stim-
ulate and provoke by providing new options and uncertainty.

With more sophisticated software, applications can respond with extended, non-
linear outputs, opening up vistas of possibility in comparison to the predictable one-
to-one response of a traditional tool. Sufficiently complex computational systems
can operate with autonomy, produce novelty, and make assessments about fitness to
purpose, all characteristics associated with creativity (Boden 2004).

Throughout this chapter we will assume that our agents are “black boxes” (Latour
1994), closed to functional modification and analysis; for all intents and purposes
these programmed devices, though capable of semi-autonomous action, can be con-
sidered as a tool.

7.1.3 Digital Partners in Creative Practice

Looking towards the sphere of modern musicianship, we have seen technology
emerge at countless new loci, bringing about new functional relationships and
modes of engagement (Brown 2000). Almost all of the disparate tasks involved in
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music-making can now be performed using a single digital device: from recording,
arrangement and production, through to networked collaboration and distribution to
listeners.

Lubart (2005) proposes a loose taxonomy of the roles that we can metaphorically
consider a computer as playing within a creative context: as a nanny, taking care of
routine tasks and freeing up our cognitive faculties for the real creative grist; as a
penpal, aiding the process of communication and collaboration; as a coach, provid-
ing exercises and collections of related knowledge through a targeted database sys-
tem; and as a colleague, working as a “synergistic hybrid human-computer system”
to explore a conceptual space in tandem. Though some of the associative elements
of the “coach” role are relevant to this discussion, we are here mostly concerned
with the latter case, in which the computer is embedded within the same creative
framework, co-operating to create a work through a succession of interactions, to
form a partnership between creator and computational system (Brown 2001).

The capacity for autonomy in computational systems can allow them to oper-
ate with distinct agency in the creative process, a property described by Galanter
as generativity (Galanter 2003). When using generative processes, the artist sets up
a system with a given set of rules. These rules are then carried out by computer,
human, or some other enacting process.1 A purely generative work involves no sub-
sequent intervention after it has been set in motion; a work with no generative ele-
ments has no capacity for autonomous action, and so requires continual intervention
to operate.

The class of systems that we are interested in lies somewhere between those
which are purely generative and those which must be manually performed. Such a
system is interactive; it does not produce output which is completely predictable
from an artist’s input, nor does it simply follow only its internal logic. The output of
such a system follows somehow from the previous marks of the artist (and, in some
cases, the computational system itself), but its output is mediated through some
predetermined structure or ruleset. A prominent example is François Pachet’s Con-
tinuator (Pachet 2003), which captures the performance of a user and subsequently
plays it back under some statistical transformations.

Systems capable of such creative interactions can be described as having agency.
Philosophically, agency is typically aligned with intent, goal-based planning, and
even consciousness. It is not this strong type of agency that we are attributing to
generative art systems. We have in mind a broader, anthropological description of
agency, closer to that provided by Gell (1998) in relation to art objects. Here, agency
is attributed to anything seen to have distinct causal powers.

Whenever an event is believed to happen because of an ‘intention’ lodged in the person or
thing which initiates the causal sequence, that is an instance of ‘agency’. (Gell 1998, p. 17)

1For examples, see the crystal growth of Roman Kirschner’s installations, Hans Haacke’s Conden-
sation Cube (1963–65), or Céleste Boursier-Mougenot’s Untitled (2010), in which zebra finches
are given free reign over a gallery of amplified electric guitars.
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Such a liberal definition allows agency to be attributed even to fixed, inert objects
such as coins, clarinets, and cups (d’Inverno and Luck 2004)—in fact, many objects
which are more inert than the class that we are interested in.

We will restrict our discussion of agency to those entities which demonstrate
behaviour that can be classified as generative; that is, with the productive capacity to
autonomously produce musical output. By partnering with an interactive, generative
system, we enter into a form of distributed agency, incorporating multiple distinct
productive drives. Yet having agency alone does not ensure aesthetic interest; for
that, we need creativity. In the human-computer partnerships we are concerned with
in this chapter, creativity inheres within the distributed system as a whole.

7.2 Computational Aides for Algorithmic Inspiration

There is an extensive ancestry around strategies to provoke and direct creative ac-
tion. A commonplace example is the varied pursuit of inspiration. A dressmaker,
bereft of creative direction, might browse the shelves of the haberdashery for ideas
in the form of patterns, fabrics and accessories. A web designer may surf through
collections of layouts or graphic images; indeed, at the time of writing, popular so-
cial bookmarking site Delicious2 lists over 4,500,000 web pages tagged with the
keyword “inspiration”. Such creative foraging is so ubiquitous across the creative
industries that countless published collections are available—within design, fash-
ion, architecture and advertising—whose sole purpose is the provision of creative
nourishment.

In making the switch to outside sources of inspiration such as these, we are aug-
menting our internal cognitive search and delegating our ideational activity to the
external world. This can be considered as another case of the extended mind (Clark
and Chalmers 1998)—or, rather, the extended imagination.

Many approaches, of course, demonstrate a more explicit intentionality than sim-
ply disengaged browsing. Csikszentmihalyi (1992), for example, recounts an ethno-
graphical report of the Shushwap Native American practice of uprooting and re-
locating its village every 25–30 years. In doing so, they introduced novel, chaotic
challenges to their living practice, ensuring a continual enrichment of cultural cy-
cles.

More recently, the Surrealist writers sought to subvert the conscious mechanisms
of decision-making by encouraging “automatic” drawing: the accumulation of pen
strokes produced without rational control, whose result was claimed to express the
subconscious or paranormal.

The chance operations of the Black Mountain College and the indeterminate
works of the Fluxus group formally introduced aleatoric processes as a means of
creative inspiration and delegation. The forefather of both schools is composer John

2http://www.delicious.com/.

http://www.delicious.com/


7 The Extended Composer 181

Cage (1968), whose comprehensive engagement with chance, randomness and in-
determinacy informed the work of countless members of the avant-garde (Pritchett
1993).

La Monte Young, a student of Cage’s, was a key part of the early Fluxus move-
ment. “An Anthology of Chance Operations” (Young 1963) is perhaps the paradig-
matic text, collecting numerous instructional scores and “open form” pieces: those
which leave significant constitutive elements open to choices made by the performer.
In doing so, certain formal structures are imposed—some very loose, some very
precise—which can act as catalysts or frameworks for artistic innovation.

The improvised painting of the Cobra group drew up a manifesto describing the
process of “finding” a painting through its production, seeking an art which is “spon-
taneously directed by its own intuition” (Smith and Dean 1997, p. 108). Later, the
American abstract expressionists adopted practices such as action painting, aleatoric
and combinatorial techniques, thereby surrendering unmediated authorship of their
works (Smith and Dean 1997, p. 109).

A broader approach is taken by Eno and Schmidt’s Oblique Strategies cards (Eno
and Schmidt 1975), which indirectly suggest escape routes from creative deadlock
via koan-like prompts. Similarly, sets of lateral, discipline-agnostic “heuristics” are
collected in the works of Pólya (1971) and de Bono (1992). A heuristic can be
thought of as a problem-solving rule of thumb; its literal translation, as Pólya notes,
means “serving to discover” (Pólya 1971, p. 113). Rather than offering a concrete,
logically rigorous method, heuristics provide imprecise but plausible ways to tackle
a problem. In this case, they suggest formal approaches, in the form of rhetorical
questions such as “Have you seen it before?” (p. 110).

A markedly different tack was taken by the Oulipo movement, whose exercises
in constraint offer new creative routes to writers—paradoxically, through restrict-
ing the parameters of their production (Matthews and Brotchie 2005). Similar con-
straints were present in the theatre of ancient Japan, whose ritualistic practices
subscribed to a well-defined set of norms (Ortolani 1990). Submitting to external
demands can be seen as another form of delegating artistic decisions, trading the
openness of a blank slate for a more focused problem domain.

7.2.1 Computational Strategies and Algorithmic Aides

Historically, the potential for deploying computational technology in a creative con-
text did not escape even the earliest computer scientists. Alan Turing’s fascina-
tion with such ideas lead to the establishment of the field of artificial intelligence
(Hodges 1985). Partly due to the limited success of artificial intelligence in devel-
oping fully autonomous computational systems, and partly because of the increased
access to computing tools by artists and designers, experiments with creative part-
nerships between artists and computing systems began to flourish.

Early experiments in computer-aided composition are successively described by
Hiller (1968), Chadabe (1984) and Ames (1987), with early experiments building on
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statistical methods and generate-and-test techniques using models of musical proce-
dures. Koenig (Laske 1981) and Xenakis (2001) incorporated more thoroughgoing
stochastic constituents in their composition, with scores and synthesis determined
by multi-level algorithmic processes. So too did Cage in a handful of later multime-
dia works, including HPSCHD, a collaboration with Lejaren Hiller (Pritchett 1993,
p. 159). Cornock and Edmonds (1973) describe the transformations that interactive
tools were already effecting on the roles of both artist and audience, written in the
terminology of “art systems” and multi-agency processes.

In the last quarter of the 20th century, increased computational power has enabled
the wider use of real-time interactive systems (Rowe 1993, Winkler 1998) and gen-
erative simulation systems based on physical and biological processes (Berry and
Dahlstedt 2003, Nierhaus 2009). Other major touchstones of algorithmic composi-
tion include Karlheinz Essl’s Lexikon Sonate (1992), David Cope’s Experiments in
Musical Intelligence (1996), and George Lewis’s Voyager (2007).3

Interactive tools for musical creativity have begun to make their way into popu-
lar culture in a number of forms. Brian Eno (1996) has historically championed the
cause of generative music through his significant media profile, recently creating
algorithmic soundtracks for games such as Electronic Arts’ Spore.4 The transla-
tions of his ideas to the popular iPhone and iPad formats, in interactive ambient
sound apps such as Bloom,5 have attracted popular attention to generative music
systems and this and similar apps underscore a move toward music making with
semi-autonomous music systems.

7.3 The Human-Computer Partnership: Characteristics
and Categories

Interaction with a semi-autonomous music system inhabits an unfamiliar midpoint
on the spectrum of creative relationships. It resides somewhere between tool usage
and human collaboration, inheriting some characteristics of each and adding some
of its own.

In this section, we will explore creative partnerships with generative computa-
tional systems from a number of distinct but related perspectives, with a view to a
fuller appreciation of the potential opportunities and hazards that such partnerships
can yield. These perspectives do not follow a strict progression, but are ordered
based on an attempt to guide the reader intuitively, beginning with abstract princi-
ples and ending with issues of assessment and evaluation. To provide an overview,
we briefly summarise each below, before expanding further in the following sec-
tions.

3For a more complete history of algorithmic composition, we refer the reader to Collins (2009).
4http://www.spore.com/ftl.
5http://www.generativemusic.com/.

http://www.spore.com/ftl
http://www.generativemusic.com/
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• Feedback (7.3.1)
In which we examine the multi-level feedback loops which characterise creativity,
particularly the iterated cycle of generation and evaluation.

• Exploration (7.3.2)
In which we discuss different ways that novelty and serendipity can be introduced
by algorithmic means.

• Intimacy (7.3.3)
In which we argue towards the need for trust and intimacy with a generative part-
ner, and the surrounding issues of embodiment and predictability.

• Interactivity (7.3.4)
In which we introduce five classes of productive dialogue that can be entered
into with a computational partner: directed, reactive, procedural, interactive and
adaptive.

• Introspection (7.3.5)
In which we consider computational partners as a conduit for introspection, al-
lowing us to reflect on our existing creative habits.

• Time (7.3.6)
In which we review different timescales of the creative feedback loop, ranging
from seconds to centuries.

• Authorship (7.3.7)
In which we reflect upon issues of authorship and non-human agency, and the
surrounding moral objections.

• Value (7.3.8)
In which we discuss the differences and difficulties in assessing the aesthetic value
of an art object produced with computational partners, and the proper evaluation
of autonomous creativity tools.

Throughout this coverage, we will continue to draw on key examples from the
field of algorithmic composition and interactive performance.

7.3.1 Feedback

Already at the very beginning of the productive act, shortly after the initial motion to create,
occurs the first counter motion, the initial movement of receptivity. This means: the creator
controls whether what he has produced so far is good.

– Paul Klee, Pedagogical Sketchbook (1972, p. 33)

Feedback is at the very heart of creativity, from Klee’s “initial motion” to the
point at which we stand back and decide that a work has reached its finished state.
We oscillate back and forth between creative acts and reflection upon those acts,
with each new mark, note, or theorem offering subtle potential to alter the direction
of a work. This is a feedback loop, in which data about the past informs the events
of the future. After each new brushstroke, what was just about to happen is now
in the past, and will affect whatever we do next. It is this short cycle of repetition
(depicted in Fig. 7.1), in which the output of one act becomes the input for the next,
that constitutes feedback.
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Fig. 7.1 The central
feedback loop of the creative
process. We iteratively
generate creative acts, and
evaluate how they fit into the
work in its entirety

McGraw and Hofstadter (1993) describe this very cycle as the “central feedback
loop of the creative process”:

Guesses must be made and their results are evaluated, then refined and evaluated again,
and so on, until something satisfactory emerges in the end. (McGraw and Hofstadter 1993,
p. 16)

Reducing this to its most abstract form we are left with two elements which
repeat until we are satisfied with the outcome. These two elements are:

• generation (of the guesses that are made), and
• evaluation (of their results)

During the creative process composers switch from one to the other, alternat-
ing between the generation of new elements and the evaluation of the piece in its
entirety.

The underlying goal of many of the computer-aided compositional strategies de-
scribed above (Sect. 7.2) is to tinker with the makeup of these generate/evaluate
activities, artificially expanding or warping the typical creative trajectory (Fig. 7.2).
As we amplify the pool of material available for generation, we increase our creative
scope. If we constrain the pool, we free up our decision-making faculties in favour
of a deeper exploration of some particular conceptual subspace. Likewise, impos-
ing a particular creative event enforces a radically new situation which demands an
appropriate response, potentially introducing unanticipated new possibilities.

Generation by the computational system needs to be externalised, typically as
sound or score, for our response. However, much of the human “generation” is in-
ternalised, a product of the free play of our imaginative faculties. By considering a
collection of stimuli in the context of a given project, we can assess their potential to
be incorporated. Disengaged browsing and creative foraging throw new (material)
elements into our perception, enriching the pool of generative source material.

Imaginative stimulation is often assisted by reflective questioning. The likes of
Oblique Strategies (Eno and Schmidt 1975) and Pólya’s heuristics (1971) perform
these types of operations as a way to provide lateral cognitive stimulus. Examples
drawn from the Strategies include Change ambiguities to specifics; Don’t avoid
what is easy; Remove a restriction; and Is it finished?

These directives advocate a change to the parameters that we have tacitly adopted
for our generation/evaluation routines. Some serve to highlight hidden, potentially
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Fig. 7.2 Transforming the feedback loop using artificial methods. With generative (and even tradi-
tional) tools, we can amplify or restrict the pool of potential creative material, or impose a radically
new direction

artificial constraints; others suggest explicitly imposing such constraints, to see what
pops out.

In contrast with simple browsing, which expands the pool of creative content,
these strategies amplify the diversity of formal ideas to utilise in a project. They
feature analogy-based approaches, which can suggest metaphorical linkages with
other domains, working on the presupposition that certain systemic structures can
bear fruit when applied in a new field.

7.3.2 Exploration

Your mistake was a hidden intention

– Eno and Schmidt, Oblique Strategies (1975)

Let us return to the analogy of creativity as a search within a conceptual space,
probing the dimly-lit peripheries of a problem for undiscovered terrain.

To take a purely logical stance, we can imagine such a search as the sequential
application of deductive rules: if I have just played the dominant seventh, then I
should next play the major tonic, except in the case that I wish to avoid immediate
resolution, in which case I will play the major fourth. Many theoretical models of
cognitive processes, prominently Markov chains (Wiggins et al. 2009), follow con-
ditional rules, moving between states with probabilities that can be inferred from
existing patterns of behaviour.

If we possessed such a cognitively-encoded ruleset for a given domain, and
imaginative acts were simply the derivation of new consequences of these rules,
it seems at first glance that the creative field would remain static and invariant. On
a small scale, a fundamental source of diversity lies in relaxing or bluntly flouting
these rules. Citing Thelonius Monk and his endeavours for his music “to find other
places”, Prévost (2004) suggests that the aspects of chance in an improvised musical
performances are opportunities to make unforeseen errors which can subsequently
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Fig. 7.3 A rough scale of
predictability. Traditional
acoustic instruments, giving
tacit, embodied knowledge,
have a one-to-one mapping
from physical actions to
acoustic events. On the top of
the scale, instruments with
only one degree of freedom
(velocity or pitch) have
limited variance. On the
bottom of the scale,
generative systems can
produce an unlimited
autonomous response to
action, resulting in a more
opaque experience. Human
collaborators, though
sometimes predictable, are
capable of effecting a radical
transformation of the
interaction rules

be followed and investigated. He recounts a tale in which Monk, frustrated with
an improvised performance, complained that he had “made all the wrong mistakes”
(Prévost 2004)—indicating the existence and appeal of correct mistakes, which may
aid us in this creative search.

To follow this path intentionally, then, we are effectively designing for serendip-
ity (André et al. 2009, van Andel 1994): tacitly encouraging or inducing “correct
mistakes” as a route to unforeseen discoveries and new creative terrain; introduc-
ing “disorder”, as John Cage ordained (Cage 1968). One piece of generative music
software that exploits these characteristics is Intermorphic’s Noatikl.6 This system
relies heavily on constrained stochastic choice in selecting musical values and is ad-
vertised as a tool to “generate new ideas” and “break composer’s block” (Cole and
Cole 2008), providing an explicit use of aleatoric processes as a way of developing
unexpected alternatives and jolting composers out of familiar habits and patterns.

A given creative act can generate a class of output along a scale of predictability
as illustrated in Fig. 7.3. We may have complete, trained control over our actions,
or we may surrender some control to chance. This surrender may be accidental (we
slip and stumble) or intentional (we may use automatic writing, heavy air notes, or
chance processes). Both these kinds of accident—intentional accidents and acciden-
tal accidents—can be retrospectively incorporated into the work.

6http://intermorphic.com/tools/noatikl/.

http://intermorphic.com/tools/noatikl/
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To clarify further, we shall take a look at some examples. Native Instruments’
Absynth7 is a virtual synthesiser, with scores of user-adjustable parameters to control
a range of synthesis techniques. Alongside these determinate controls, Absynth has
a feature called ‘mutate’. When triggered, this nudges its parameters in random
directions. Given the complex web of relationships between parameters, the output
can thus be wildly unpredictable, whilst retaining a link to the previous settings. This
may prompt the user to make further adjustments or suggest new sonic directions,
purely through chance discoveries.

The tabletop reacTable (Jordà et al. 2007) device likewise has a reacTogon in-
strument which uses chance processes in hands-on interaction. Sequences of events
are generated by nodes on a hexagonal grid, which collide and intersect to create
unpredictable chain reactions, generating note sequences which could not be antic-
ipated ahead of time. Effectively, we are exploring the space of interactions with a
partner system, making use of its inherent scope for serendipity.

The fundamental benefit of these systems is that they can push us into new forms
of creative adventure, by augmenting both the generative and evaluative aspects of
the central creative loop. By introducing processes from outside the canon of tra-
ditional musical practice we are injecting innovation which may not have occurred
through incremental, exploratory development. Such processes can generate new
fragments of material that can be assimilated and modified by the artist.

In an interview, Björk Gudmundsdottir recounts an anecdote regarding composer
Karlheinz Stockhausen and his everyday pursuit of the unfamiliar.

Stockhausen told me about the house he built himself in the forest and lived in for ten
years. It’s made from hexagonal pieces of glass and no two rooms are the same, so they are
all irregular. It’s built out of angles that are reflective and it’s full of spotlights. The forest
becomes mirrored inside the house. He was explaining to me how, even after ten years, there
would still be moments when he didn’t know where he was, and he said it with wonder in
his eyes. And I said, “That’s brilliant: you can be innocent even in your own home”, and he
replied, “Not only innocent, but curious.” (Gudmundsdottir 1996)

We experience a similar effect when we switch to a non-standard interface for
composition. From experience, the first interactions with a system such as the
reacTogon or McCormack’s Nodal (McCormack et al. 2008) give rise to a creative
play which pushes the user towards unfamiliar terrain. By overcoming the habits
formed when repeatedly using a given interface or mode of creative operation, our
curiosity and openness are restored.

In all of these cases, the “central loop of the creative process” (McGraw and
Hofstadter 1993) is being widened to incorporate agencies which are not present in
what may be considered “normative” creativity. The Romantic conception of an iso-
lated painter, toiling for weeks over a canvas in visual engagement with his subject,
makes way for a hybrid, collective creative intelligence, whose output is the result
of an internal tussle between heterogeneous and nonaligned forces.

7http://www.native-instruments.com/en/products/producer/absynth-5/.

http://www.native-instruments.com/en/products/producer/absynth-5/
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Fig. 7.4 The Wundt curve.
As novelty increases,
gratification rises to a peak,
falling again as we move
towards more extreme
unfamiliarity

7.3.3 Intimacy

To enter into a meaningful and enduring relationship with a tool or creative part-
ner, we must secure a degree of trust in it: trust that its responses will have some
relevant correlation with our own, rather than it disregarding our inputs and behav-
ing completely autonomously; trust that we can gain an increasing understanding
of its behaviour over time, in order to learn and improve our interaction with it, ei-
ther through embodied (tacit, physical) or hermeneutic (explicit, neural) knowledge;
and, in the case of computational or human partners, trust that its activity will con-
tinue to generate interest through autonomous creative exploration. In other words,
the output of such a system should be novel, but not too novel; as represented by the
Wundt curve shown in Fig. 7.4.

Creative interaction with generative systems is often premised on a duality,
wherein the computational system generates material and the human acts as a fitness
function, selecting or rejecting materials and arranging them into a final product.
This would be a tiresome process if the generated material varied widely from what
was required. Consistency of operation also improves the confidence of an artist in
the output of a generative system. Confidence and predictability in the system con-
tribute to the development of a partnership and, ultimately, to the productivity and
quality of the work.

Predictability aside, it is clear that all designed artifacts, including generative
systems, are biased by decisions made by their developers and by the materials and
processes they use. We must align our thinking with the patterns and prescribed
methods that underlie the design thinking of the system (Brown 2001). Understand-
ing these patterns is necessary to get the best out of the system.

For an effective partnership with a computational tool, we suggest that it is neces-
sary to accept such biases as characteristics, rather than errors to be fighting against.
Again, taking the analogy of a traditional musical instrument, good musicians learn
to work within the range of pitch, dynamics and polyphony of their instrument as
they develop their expressive capability with it.

A quite different difficulty lies in the material status of our tools. Magnusson
(2009) argues that acoustic and digital instruments should be treated with categor-
ical difference, with implications for our ontological view of their interfaces. The
core of an acoustic instrument, he argues, lies in our embodied interaction with it,
realised through tacit non-conceptual knowledge built up through physical experi-
ence. A digital instrument, conversely, should be understood hermeneutically, with
its core lying in its inner symbolic architecture. Tangible user interfaces are “but
arbitrary peripherals of the instruments’ core” (Magnusson 2009, p. 1).
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This implies that our interactive habits are developed quite differently with a
digital tool. When playing an acoustic instrument, we can typically offload a large
amount of cognitive work into muscle memory, which, with practice, can handle
common tasks such as locating consonant notes and moving between timbres. An
alternative to this development of embodied habituation for computational systems
is the use of automation and macros that can capture repeated processes and actions.

This type of process encapsulation is inherent to many generative computer com-
position systems including Max/MSP,8 Supercollider,9 Impromptu10 and so on. The
hierarchical arrangement of motifs or sections that this type of encapsulation allows
is well suited to music compositional practices. These come together in an inter-
esting way in the software program Nodal,11 in which generative note sequences
and cycles can be depicted as graphs of musical events (nodes). Nodal allows for
the creation of any number of musical graphs and for the user to interact with them
dynamically. The behaviour of individual nodes can be highly specific, providing
confidence in the exact detail of music generated, while musical fragments and riffs
can be set up as independent graphs that “capture” a musical idea. However, despite
this level of control and encapsulation, the interactions between nodes and graphs
can give rise to surprisingly complex and engaging outcomes.

7.3.4 Interactivity

One of the affordances of computational systems is the shift from the traditional
interactive paradigm, in which one action results in one musical response, to “hy-
perinstruments”, which can respond to actions with multiple, structured events. This
can be seen as meta-level composition or performance, described by Dean as “hy-
perimprovisation” (Dean 2003), where a computational improvisatory partner does
more than react to human responses.

McCullough (1996) advises that dynamic control over high level operations
rather than low level details yields a sense of control over a complete process in
tool usage generally. This kind of meta-control is typical of manipulating generative
processes. Beilhartz and Ferguson (2007) argue that the experience of connection
and control for generative music systems is critical; “The significance of generative
processes in an interactive music system are their capability for producing both a
responsive, strict relationship between gesture and its auditory mapping while de-
veloping an evolving artifact that is neither repetitive nor predictable, harnessing the
creative potential of emergent structures” (Beilhartz and Ferguson 2007, p. 214).

As a consequence of the more structured possibilities for tool-use relation-
ships, many different kinds of control flow exist within computational creative tools

8http://cycling74.com/products/maxmspjitter/.
9http://supercollider.sourceforge.net/.
10http://impromptu.moso.com.au/.
11http://www.csse.monash.edu.au/cema/nodal/.

http://cycling74.com/products/maxmspjitter/
http://supercollider.sourceforge.net/
http://impromptu.moso.com.au/
http://www.csse.monash.edu.au/cema/nodal/
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Fig. 7.5 Example of a
drawing produced with Ze
Frank’s reactive v_draw
system
(zefrank.com/v_draw_beta).
The volume level of sounds
produced by the user is
translated into lines on
screen: quiet noises turn the
line anticlockwise, loud
noises turn the line clockwise

(Fig. 7.6). Awareness of these and how they might be combined within or across a
generative system is an important step toward a better understanding of the range of
creative relationships that are possible.

A directed tool is the classical form of computational application: controlled
through a typical HCI device (mouse, keyboard, touchscreen), these are used to me-
diate creative acts onto a screen or printing device. The user exercises control over
the outcome of their actions, which is produced (effectively) immediately. Typi-
cal examples are desktop applications for graphics, musical composition or word
processing, such as Adobe Photoshop and Sibelius. Such a tool should operate pre-
dictably and readily learnable.

A reactive tool senses a user’s creative acts, through a microphone, camera
or other sensor, and responds proportionately—often in another sensory domain.
A commonplace example is the real-time visualisation of music, as exemplified by
the likes of Apple’s iTunes media player. No expectation is produced for further de-
velopment within the aesthetic narrative, though the user may be able to learn and
master the mode of interaction.

Other examples of reactive tools include Ze Frank’s v_draw12 web application,
which maps sound volume levels into drawn lines (see Fig. 7.5). Amit Pitaru’s Sonic
Wire Sculptor13 performs the same operation in the other direction, transforming
drawn 3-D structures into looping sound.

A procedural system involves a fixed process, typically designed by the user,
which unfolds gradually when triggered. Examples include the phasing techniques
used by Steve Reich, Iannis Xenakis’ physical simulations of particle clouds, and
the plant growth models of Lindenmayer systems (McCormack 1996). Though some
indeterminate elements may be present, and a seed configuration may be input by
the user (as in the case of L-systems), no subsequent intervention is required or
expected.

12http://www.zefrank.com/v_draw_beta/.
13http://pitaru.com/sws/.

http://zefrank.com/v_draw_beta
http://www.zefrank.com/v_draw_beta/
http://pitaru.com/sws/
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Fig. 7.6 Types of interactive dialogue. u is the user or artist; c is the “canvas” or constructive
space; s is the computational system, which when adaptive changes its behaviour over time

An interactive system, conversely, tracks its users actions and responds to them
within the same “canvas”, creating the potential for further development upon the
system’s actions. This canvas may be an acoustic space, the virtual page of a word
processor, or even a physical sheet of paper. It then becomes possible to respond
to the system’s output, potentially reshaping its direction as well as our own. The
outcome contains elements of both the system and user and attribution to each be-
comes blurred. An example is the MetaScore system (Hedemann et al. 2008) for
semi-automatic generation of film music via control of a generative music system’s
parametric envelopes.

An adaptive system extends beyond the interactive by developing its behaviour
over a time period. These systems change the dynamics of their responses according
to the history of observations or behaviours. This introduces a behavioural plasticity
which allows its activity to remain relevant and novel to its user. Tools falling into
this class often make use of dynamical systems such as neural nets (Miranda and
Matthias 2005, Bown and Lexer 2006, Jones et al. 2009), evolutionary algorithms
(Brown 2002) and ecosystems (McCormack 2003, Jones 2008; see also Chap. 2 in
this volume).

7.3.5 Introspection

Early theorists of computer music—partly, no doubt, as a consequence of the tech-
nological limitations of the era—placed emphasis on the purification of the com-
positional process as a way of better understanding our own behaviours, either per-
sonal or cultural (Supper 2001, Hiller 1968, Ames 1987). To model the processes
that tacitly underlie a existing musical system, we must first formalise them in an ef-
fectively computable form; i.e. transform them into a set of algorithms, with which
we can generate new pieces that fall into the same class. By creating a computer
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program which executes these algorithms, we are therefore exploring the range of
works within this class, which can enhance our understanding of their properties.

Besides the formal benefits offered by describing a style in an algorithmic form,
this also serves to reveal selective bias within the application of these procedures.
It is distinctly possible that artists fail to follow one pathway in some creative ter-
rain due to their tendency to automatically follow a more normative path, as trodden
by previous artists or by themselves on previous occasions. Like many tools, algo-
rithmic descriptions of music are likely to emphasise existing tendencies, some of
which the composer may previously been unaware of; conversely, there are many
examples in the field of empirical musicology (e.g. Huron, 2006) in which algorith-
mic processes reveal novel patterns.

We might also create conjectural models based on emergent cognitive properties
of music perception, such as those of Narmour (1990), Temperley (2007) and Wool-
house (2009). Rather than construct a descriptive system through stylistic analysis,
this approach incorporates sensory capabilities such as patterns of auditory percep-
tion that exist behind traditional systems of musical composition—the systems be-
neath the systems. Such models allow us to reflect on the meta-reasoning behind
whole classes of compositional style, such as the Western diatonic tradition.

We can likewise develop our insight into wider cognitive processes through com-
putational simulation. Tresset and Leymarie’s Aikon-II14 creates facial sketches by
observing the subject’s salient features and drawing with a mechanical plotter on
paper, visually perceiving the sketch as it draws. The project aims towards gaining
an understanding of our own observational mechanisms by computationally imple-
menting them, and in doing so illuminating any irregularities in the theory that may
not exposed by contemplation.

The above approaches can be viewed as applied forms of cultural study, serving
to illuminate historical and social tendencies on a broad scale. Following Boden’s
(2004) distinction between H-creativity (historical creativity, novel to an entire his-
torical frame) and P-creativity (personal creativity, novel only to its creator), we de-
scribe this pursuit of understanding through cultural modelling as H-introspection.

Its counterpart is P-introspection, which applies to tools used to reflect and un-
derstand the user’s personal creative acts. An example of P-introspection is Pachet’s
Continuator (Pachet 2003), which uses a Markov model to reflect a player’s perfor-
mance style through its statistical properties. The approach taken by the Continua-
tor is what Spiegel (1981) describes as “extrapolation”: the “extension beyond that
which already exists in such a way as to preserve continuity with it, to project from
it...”. The high-level characteristics of a style are maintained, whilst creating new
works “projecting” from the original.

By mirroring certain properties in such a way, the player may become attuned to
features that they were not aware they exhibited, leading towards a more insightful
mode of creative development.

14http://www.aikon-gold.com/.

http://www.aikon-gold.com/
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Fig. 7.7 Hierarchy of
feedback timescales. Our
actions at any point are a
cumulative consequence of
previous activity and
reflection, with such
reflection operating over a
number of temporal levels

7.3.6 Time

A defining factor of the feedback loop between human and computational partners is
the time taken for feedback to occur—that is, the period that it takes to produce and
reflect upon each new act. Generation and reflection operate in a nested hierarchy,
over multiple timescales (Fig. 7.7), each reflecting qualitatively different parts of the
creative process.

We will briefly consider the representatives of digital technology within each of
these timescale brackets: seconds and milliseconds, hours and minutes, years and
months, centuries and decades. The boundaries of these temporal categories are not
well defined and simply depicts a continuum from short to long time scales.

Seconds: On the micro-level, of seconds or less, an improvising musician pro-
duces sound events (notes, beats, timbres), observing their progression and relation-
ships with the macroscopic structure of the piece in general. An error may be rapidly
incorporated (“retrospectively contextualized” (Sawyer 2006)) into a performance
and reclaimed as intentional, if the player possesses sufficient virtuosity.15

Numerous interactive pieces of software exist with which we can improvise and
hone our skills. The likes of George Lewis’ Voyager (Lewis 2000), Michael Young’s
aur(or)a (2008), and the field of live algorithms in general (see Chap. 6 in this
volume) play the role of virtual partners, responding rapidly with semi-autonomy.

15See Pachet’s discussion of bebop sideslips (Chap. 5) for a more in-depth treatment on how in-
tentional error-like acts can be used to effectively demonstrate virtuosity.
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Hours: On the scale of minutes and hours, we may develop a piece, adding
phrases to sections and sections to movements. These can be replayed to observe
their fit within the wider narrative.

Scaling beyond the length of a single piece of music, we have systems such as the
Continuator (Pachet 2003), which reflects back the statistical properties of a user’s
musical behaviour over the length of entire phrases. The reward is that, through
listening back to a distorted edition of their original patterns, the player can better
understand their own habits by hearing them recontextualised.

Generative algorithms can be used to apply a similar process of segment organ-
isation, perhaps with generated components or selections from a database. Applied
in interactive composition environments, with an aesthetic fitness function provided
by their human counterpart, such a process can provide an effective heuristic-based
method of exploring musical possibilities (Wiggins et al. 1999).

The development of a single work is often achieved through iterated genera-
tion/evaluation with a particular interactive music system. It is also possible that an
artist is able to modify the code of a music system co-evolving the work and the
system. In this case a slower feedback loop can occur: the system is allowed to run,
perhaps repeatedly, and its output observed (evaluation); based on this observation,
the code is modified to alter or enhance the system’s behaviour (generation). This
process can be seen quite transparently in live coding performances, where code is
written, run and modified as part of the live performance.

Years: Our personal style may develop with reference to previous works and
external stimuli; a visit to a gallery may prompt a radical departure which causes us
to rethink our trajectory, or consider it along a new axis. A prominent example of a
system that evolved on this scale of feedback is AARON, an autonomous drawing
system developed by Cohen (1995) over several years.

Developments at this scale can also be observed through data mining of musical
corpus. For example, by matching musical phrases against a large corpus of record-
ings based on similarity measures, Query-by-Example (Jewell et al. 2010) enables
its users to reflect on how their performances have developed over long periods—or
relating them to bodies of other musicians’ work. We could imagine such tools en-
tering much more widely into the reflective practice of artists, allowing them to more
closely understand their own historical lineage and their position within a wider con-
text, potentially discovering hidden relationships with previously-unknown peers.

Decades: Over decades, cultural fashions ebb and flow. It is this temporal nature
of styles which causes many works to fail to be accepted often for many decades.
Punk, new-wave and dance music are all examples of cultural fashions in UK music
for example.

Centuries: At the timescale of entire eras, we can interrogate historical tenden-
cies through tools designed for H-introspection (Sect. 7.3.5). The work of empiri-
cal musicologists have laid some groundwork for computational analysis of trends
at this scale, while musical models such as those of Cope (1996) study cultural
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movements by encoding them algorithmically and playing out their consequences.
Insights from these approaches can aid us to better understand the mechanisms un-
derlying these trends, potentially illuminating a class of valid compositions that can
fall within the bounds of (say) a fugue or chorale.

7.3.7 Authorship

Tyrell: “More human than human” is our motto.

– (Blade Runner, 1982)

Collaborations with computational systems raise the issue of contribution toward
and ownership of outcomes: when we replace parts of the creative process with an
automated system, are we somehow dehumanising the resulting art object? Sec-
ondly, if such a system has been produced by another software designer, are we
being invisibly driven by the tacit strategies and methods that have been encoded
into the tool by their authorship? Finally, is it even possible to produce “creative”
tools, and does it matter?

The “Inhuman” Argument If we accept that the output of a human-machine
symbiosis will exhibit characteristics of both, it is frequently argued that we are
introducing something (unfavourably) inhuman to a realm that is quintessentially
human. At least as early as 1987, Charles Ames describes a “virulent” (Ames 1987,
p. 1) resistance to the uptake of computer-aided composition on this basis.

We suggest that there are actually three underlying roots to this objection:

• that we are (knowingly or otherwise) cheating, by letting the tools do the work;
• that we are (presumably unknowingly) being directed by our tools into particular

modes of operation;
• that recourse to reason alone has no place in musical composition in any case, a

realm which should be driven by intuition, feeling, narrative, suffering, or other
non-algorithmic concerns.

The last of these objections has been somewhat defunct in the world of avant-
garde composition since Serialism or before. Barbaud (Ames 1987) responds with
an elegant rejoinder:

Music is generally called ‘human’ when it considers temporary or inherent tendencies of the
mind, of part or all of a composer’s personality. Such music is based on feeling and since
it turns its back, in a sense, on pure knowledge, it might rather be called ‘inhuman’, for it
celebrates what we have in common with all the animals rather than with what is individual
to man: his reason. Algorithmic music is thus ‘inhuman’ only in one sense of the word, it is
‘human’ in as much as it is the product of rational beings. (Ames 1987, p. 173)

Similarly, in Nietzsche’s comment on the typewriter “working on our thoughts”,
we are tempted to detect a certain pejorative tone in his voice: surrendering parts of
our agency to technological devices, so the argument might go, means diluting our
creative purity through the hidden bias effects of our supposedly passive tools.
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Whether we prioritise intellectual or emotive forces, the acceptance of Gell’s
(1998) thesis negates such oppositions by arguing that all components of the cre-
ative process exert some agency. We suggest that the degree of such agency is not
really of concern because the interactive nature of a creative partnership and the
networked nature of a creative ecosystem inevitably involve some conflict and res-
olution, whether conscious or otherwise, and the only real concern is the status of
the resultant art object itself. Contributions to the creative process can come from
many directions, and while computational partners provide new opportunities, the
complicated network of direct and indirect influences has long been acknowledged.

. . . in truth, in literature, in science and in art, there are, and can be, few, if any, things,
which in an abstract sense, are strictly new and original throughout. Every book in literature,
science and art borrows, and must necessarily borrow, and use much which was well known
and used before.16

No art production takes place in a vacuum, and is inherently made up of a nexus
of eclectic forces, from the selection on instruments to the surroundings in which we
develop our work. On the contrary, hermetically sealing our work within an isolation
chamber would serve to starve it of the oxygen that it requires to live.

Despite this acknowledgement, the fear of technological control over our activi-
ties is deeply embedded in our culture. Themes such as these are pervasive in liter-
ature and film, from the 19th-century uncanny of Hoffmann’s The Sandman to the
dystopias of 1984, the Borg species of Star Trek and the androids of Blade Runner.
The ubiquity of networked agencies such as Web recommender systems, however,
is surely beginning to allay these concerns in the public eye.

The “Invisible Hand” Argument Like with other tools, the design and develop-
ment of generative music software locks in aspects of the maker’s aesthetic judge-
ment. When developing a tool which reflects a given process, certain decisions are
made regarding the implementation, style, and scale of application. Further, when
we incorporate general-purpose algorithmic tools the pertinence of this kind of ar-
gument rears its head in a different form: are we incorporating another person’s
creative work into our own?

As previously stated, our view is that all creative work is linked closely to its pre-
decessors and the field in which it is located (Bown 2009). Insofar as we are taking
a system and moulding it to our own goals and ends, adapting the frameworks of a
third party are no more invidious than reading a magazine or visiting an exhibition
in search of inspiration. Whether technological or conceptual, the raw material of
ideas exists to be rebuilt, remixed and extended.

The “Creative Vitalism” Argument As we have seen previously, the objection
to the idea that a computer can perform creative acts is deeply embedded in some
parts of society. Noticing the level of emotive reactions to Cope’s EMI computa-
tional composition system, Dennett comments:

16Emerson v. Davies, 8 F.Cas. 615, 619 (No. 4,436) (CCD Mass. 1845).
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It is apparently not crass, philistine, obscene . . . to declare that all the first-order products of
the tree of life—the birds and bees and the spiders and the beavers—are designed and cre-
ated by such algorithmic processes, but outrageous to consider the hypothesis that creations
of human genius might themselves be products of such algorithmic processes. (Dennett
2001, p. 284)

Prior to the 19th century, it was obvious to zoologists that the natural world could
only exhibit its fantastic, interlocking adaptations by the hand of a designer. That
a proposition is obvious, however, does not imply that it is true. The belief that
the works of nature exceed the capacity of algorithmic processes is a failure of
reasoning by analogy: nature appears to demonstrate the complexity of humankind’s
designership, and we have no better explanation, so we posit the existence of a
superhuman designer. This kind of fuzzy reasoning may be useful as a rule of thumb,
in the absence of a greater body of evidence, but is highly susceptible to the failings
of human intuition.

However, we do not believe that this is critical to the proposition that there can be
valuable creative partnerships with computational agents. Insofar as the creative acts
are a result of both computer and human behaviours, the fundamentally important
point is that the two together should exhibit some enhanced creativity. Rather than
asking the question, “Can technology be creative?”, the question can be formulated
as “Can we be more creative with technology?” Surely, the history of human cre-
ativity with technology would suggest we can be optimistic about further extensions
to this.

7.3.8 Value

During the early stages of an emergent media or technology, artworks often focus on
the materiality of the medium itself. Take, for example, video art, sound sampling,
and computer art. Over the embryonic years of each of these movements, many
of the seminal works are those which place their medium at the forefront: Nam
June Paik’s distorted video signals highlighted the invisible ether of broadcast TV
transmission; Christian Marclay’s turntablism sonified the physical substrate of the
wax record; Manfred Mohr’s algorithmic drawings demonstrated the systematic,
infinitely reproducible nature of computation.

These nascent experiments are undoubtedly a consequence of the exploratory and
critical roles that art can play, acting as a speculum into the technology’s intrinsic
qualities. Subsequently, when a technology has been fully assimilated into society,
it becomes a channel to convey other messages or perform other functions.

We see the same thing happening with computer-aided composition. Early prac-
titioners such as Hiller and Isaacson (1958) and Xenakis (2001) foregrounded the
formalised, computational nature of their compositions, explicitly presenting the
work as being the result of automated systems. In doing so, this awareness became
a part of the compositions’ wider conceptual makeup: not just a piece of music, but
a product of formal structures and mechanisms.
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With the increasing maturity of such methods, the application of algorithms in
composition has started to become more comfortably integrated with the rest of the
cultural landscape. It is now incumbent on the critic to judge such hybrid human-
computer works against the normal value scheme of creative works: responding to
aspects of cultural fit, social impact, usefulness and beauty.

By incorporating generative processes into a feedback loop over which we then
exercise selective control, one can effectively bypass the bulk of the arguments
against the inhuman or uncontrollable nature of computational creativity: it is still
the artist that exercises the decisive decision-making. For all the conceptual diffi-
culty in realigning our technological understanding with our aesthetic past, the de-
gree and complexity of reflection, development and conceptual weight are arguably
all the greater.

Though a simplistic view of the human-computer creative partnership has the
computer generating material and the human judging it, the reality in most systems
is more complex. The degree to which the computational system or the human fil-
ters the results depends on the design of the system and/or the intent of the artists.
Take, for example, the fairly hands-off approach (procedural interaction) of Iannis
Xenakis with his Gendyn system, which was used to create the composition Gendy 3
by generating complete works using handcrafted program settings. The final work
was but one iteration selected by the composer. On the other hand, Biles’ GenJam
(Biles 1994) performs quite autonomously, improvising jazz solos created by a ge-
netic algorithm and a database of human-performed solos. The user’s control con-
sists of playing solos that the system analyses and combines with other contextual
musical information, including harmony and metre, to generate its own solos. Dur-
ing live performance with GenJam, there is no time for filtering of the computer’s
solos by the human partner.

Even though both these systems differ with regard to human filtering of the re-
sults, they both assume a considerable degree of autonomy over the generation of
material. Generative systems with this degree of autonomy are often designed with
a particular stylistic outcomes in mind in order to ensure that outputs fall within de-
sired aesthetic boundaries. Other systems, such as Nodal (McCormack et al. 2008)
and Emily Howell (Cope 2008), are more interactive, requiring the human to make
frequent and often detailed decisions that guide the generative process. This ap-
proach can typically allow for a broader range of stylistic results because of the
continual human guidance that is a check against undesirable output.

Regardless of the interaction and division of responsibility during the creation
process, once music is completed by a human and generative system partnership, its
value is judged like any other music by its audience appeal—whoever the audience
is, and however value may be defined by them.

7.4 In Summary
Most people who believe that I’m interested in chance don’t realize that I use chance as a
discipline. They think I use it as a way of giving up making choices. But my choices consist
in choosing what questions to ask.

– John Cage (Kostelanetz 1989, p. 17)
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Over the course of this chapter, we have given a theoretical overview of
computer-supported composition strategies, in which algorithmic systems serve
to substantially augment an artist’s creative activity. We hope to have convinced
the reader that generative computational systems possess a distinctly new kind of
agency within the creative loop, serving to increase novelty and productivity, with
the distinct potential to transform creative behaviours even after our interaction with
such a system has ended.

It should now be clear that there is no simple dividing line between passive and
active tools; whether we explicitly encode autonomous functionality within our soft-
ware or not, it still has a latent impact on the work that we do. Any description,
therefore, of “normal” creative activity is a fallacy. Does our normative creativity
occur after being locked in a room for a week, or after exposure to a buzzing cul-
tural ecosystem of films, books, shops and media?

Given the capability of some interactive music systems to autonomously generate
new creative trajectories on the same plane as their human counterparts, it seems
only apt to characterise this relationship as a partnership. In many cases, however,
it is likely that the less autonomous end of the spectrum—Absynth’s randomised
settings, for example—would not typically be considered as having any agency at
all. Likewise, the tendency of certain production environments to funnel their users
into certain modes of engagement is frequently overlooked as an active force within
musical creation.

As computer music systems lend themselves to particular types of musical ac-
tivity, they can be considered to embody a passive type of agency. Generative and
analytical aspects of computational processes thus extend this agency to more active
and significant levels. One hope is that the explicit consideration of generative tools
as creative partners may heighten the awareness that even such minimal concerns
do, in fact, impact on our creative behaviours more than we typically believe. How
would the tone of this chapter have differed if it had been written in fountain pen on
parchment, rather than plastic keys and a luminous LCD display?

7.4.1 Future Explorations

This research field, as with many areas of computational creativity, is still in its in-
fancy. Partially due, no doubt, to the objections levelled in Sect. 7.3.7, these ideas
have been gradual in taking hold within the musical world outside of avant-garde
and academic composition. Moreover, for a composer to go beyond off-the-shelf
tools and begin developing algorithmic approaches alongside their musical devel-
opment has a major barrier of entry: namely, the technical know-how to do so, or
the presence of an engineer-collaborator at hand.

In terms of a wider public perception, the most significant development for the
field over the past decade has been a number of significant and high-profile incur-
sions into the mainstream, often mediated through the gaming industry. The likes
of Rez, Elektroplankton and Bloom enable casual players to make diverse and ac-
complished music through simple interfaces, giving a taster of what it may be like
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to engage with more advanced musical activities. A survey by UK charity Youth
Music found that 19% of young people playing music games such as Guitar Hero
were subsequently encouraged to start playing a musical instrument.17

Driven by this enlarged audience, new instruments are emerging which have
some characteristics of these novice-friendly devices but with the scope to be used
in more advanced, freeform contexts. The Tenori-On, a physical musical device
designed by media artist Toshio Iwai, is a tactile sequencer with generative capa-
bilities. Alongside attracting praise from untrained players, acting as an entry-level
introduction to sequencing notions, the Tenori-On was used by innovative pop mu-
sician Björk on a recent tour. It can also be used to control user-created samples
and external MIDI devices, eliminating another hidden limitation of many sound
toys. With the inclusion of generative music capabilities in such devices, potential
players are now presented with instruments which may reshape the gap between the
beginner and the virtuoso musician, and enable many more of us to embrace creative
partnerships.

7.4.2 Final Reflections

We could imagine quite different ways to group together and order these ideas.
This format, however, has been brought about by our collective experiences within
the field, based on the ideas, theories and questions which frequently emerge from
applied use of computer-aided composition methods. It may well be that, as the field
continues into maturity, further experiments will lead us to produce radically new
sorts of questions and systemic categories.

Perhaps the single unifying factor which ties together each of these perspectives
is that they all encourage us, in different ways, to reflect upon the entirety of cre-
ativity itself. To build generative software that operates appropriately in a creative
ecosystem, we must secure some understanding of how we interact with our exist-
ing partners and tools, and how they interact with us. Likewise, designing new in-
timate interfaces to creativity means we must more fully understand what it means
to develop a close relationship with an instrument, and the conditions necessary for
virtuosity and value to arise from this.

Some understanding of the veiled process of creative partnerships with technol-
ogy is necessary to drive the “productive entanglements” (Clark 2008) that we are
here trying to foster. With luck, these entanglements should serve to reciprocally in-
form our understanding of creativity, creating another culture-scale feedback loop.
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Chapter 8
Between Material and Ideas: A Process-Based
Spatial Model of Artistic Creativity

Palle Dahlstedt

Abstract In this chapter, I propose a model of an artistic creative process, based
on study of my own creative processes over twenty years of activities as composer
and improviser. The model describes the creative process as a structured exploration
of the space of the possible, emphasising the interplay between a dynamic concept
and the changing material form of the work. Combining ideas, tools, material and
memory, creativity is described as a coherent, dynamic, and iterative process that
navigates the space of the chosen medium, guided by the tools at hand, and by the
continuously revised ideas, significantly extending previous spatial models of cre-
ativity. This involves repeated misinterpretation and coincidences, which are crucial
in human creative processes, adding meaning and depth to the artwork. A few exam-
ples from real life are given as illustrations of the model, together with a discussion
of phenomena such as appreciation, skill and collaborative creativity. Finally, I dis-
cuss how the proposed model could form a foundation for computer implementa-
tions of artistic creative process, to increase our understanding of human creativity,
and to possibly enable believable artistic behaviour in machines.

8.1 Introduction

Humans have always wanted to build intelligent machines, with various degrees
of success. One particularly elusive property of intelligent behaviour is creativity.
How do we form new ideas? How do we create something nobody has previously
seen? Creative insights may seem like momentary events, but under the surface of
the consciousness, they are gradual processes, combining and elaborating previous
knowledge into new thoughts, until the conditions are just right for them to surface.

In art, creativity is essential. The formation of ideas is important, but in my expe-
rience, the depth and meaning of an artwork emerge from the process of implemen-
tation of the original ideas, during which these ideas may very well change, drift
and be elaborated upon, sometimes beyond recognition.
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In this chapter I propose a spatial model of the artistic creative processes, which
combines the conceptual aspects of a work with the implications of the artistic tools
we are using and the material in which the work is created. I take a process-based
perspective, founded primarily on introspective study of my own artistic creative
processes, but also on experience from artistic collaborations and extensive artistic
teaching and supervision.

The model combines key concepts such as ideas, tools, material and cultural
background, and views creativity as a dynamic, iterative process that navigates the
space of the theoretically possible (in the chosen medium) following paths defined
by what is practically possible (by the tools at hand). The process is guided by a con-
tinuously revised conceptual representation—the changing ideas behind the work.
The model also involves phenomena such as self-interpretation, coincidences and
reformulation of the concepts behind a work, which are crucial in human creative
processes. Both real-time creativity (e.g. improvisation) and non-linear processes
(composition) are included in the discussion, as well as collaborative creative pro-
cesses, such as group improvisation and larger collaborations.

I believe the presented model can help us understand the mechanisms of artistic
creative processes better, and it provides a framework for the discussion and analysis
of artistic creativity. And it can form the basis for experiments in computational
creativity.

8.1.1 Background

Spatial models of creativity have been presented before. Perhaps the most well
known is Margaret Boden’s concept of exploration and transformation of spaces
(Boden 2004), and the ideas presented here may be considered an extension of her
ideas, primarily through the introduction of a material space in addition to her con-
ceptual spaces, and the implications of the interplay between these two forms of
representation.

The model is based on observation of my own creative work during more than
two decades of artistic activities as a composer, improviser, programmer and sound
artist, from collaborations with other artists from many genres, and from extensive
artistic teaching and supervision in music and technology-related art. I have con-
sciously observed my own creativity and creative processes since my early teens, up
to the present. In the last ten years, I’ve pursued research into computer-aided cre-
ativity, primarily based on evolutionary algorithms, in parallel with and overlapping
my work as a composer. From these two related fields, a number of originally un-
connected observations have fallen into place, forming a coherent view of creative
processes, as I see them unfold in my own daily artistic practice. Hopefully, it is also
more generally applicable. The model was presented in a more preliminary form at
the Computational Creativity Dagstuhl Seminar (Dahlstedt 2009a).

Being both researcher and professional artist/composer, I have a peculiar advan-
tage, because I have access to a level of information about my creative process that
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Fig. 8.1 The artistic work is
developed in an iterated
process between a conceptual
representation, as ideas in the
head of the artist, and the
current temporary material
form, as a sketch or
unfinished work. Each
translation step between these
two forms helps adding detail
and depth to the work

is unavailable to an outside observer. Aware of existing theories of creativity, and
with knowledge about key concepts and mechanisms, I can systematically observe
my own processes and draw conclusions which would be impossible if constrained
to artistic results and rhapsodical accounts by others. So, as a researching artist, I
am able to form theories and models based on observation. Then, these theories and
models can be confirmed by others, if they fit their observations of their own or
others’ creative behaviour. And potentially, they can be confirmed by simulation in
software, and by evaluation of the artistic outcome of those simulations.

The chapter is not primarily about the novelty aspect of creativity, or the social
and cultural aspects (these issues are addressed in other chapters in this volume).
It concentrates on what goes on in the mind of an artist during the birth and de-
velopment of an artwork from concept to material form. It is primarily based on
experience from music and sound art, but I believe the ideas are applicable to many
other domains. I aim to provide a framework for how artists actually go about real-
ising an artistic idea—maybe not all artists, but I believe many can feel at home in
my description. For simplicity, I will often use examples from simple drawing in my
explanations, to avoid musical terms that may be unfamiliar to the general reader.

The model also provides a terminology and apparatus for analysis of actual cre-
ative processes, and a new framework for the emulation of human artistic creativity.
A lot of computational creativity research focuses on the birth of ideas, but as a
practising artist and composer, I see in my daily practice that more important than
the birth of ideas is this dialogue with the material; with given material (as for a
sculptor and his archetypical marble block) or crafted material—temporary results
and sketches. In my experience, ideas emerge from this dialogue, from misunder-
standings, ambiguities and mistakes. A very small part is the original concept. It is
but a seed, and in some creative processes it may not even exist, e.g. in certain kinds
of improvisation. Much more important is the process, the bouncing between con-
cept and material. Tools provide the paths to go from concept to material—I call this
implementation, while re-conceptualisation takes us the back from material to idea,
as illustrated in Fig. 8.1. This is the hard part, where we interpret our own temporary
results, and extend, constrain or revise our concept. This process is repeated, until
idea and material have converged into a finished artwork.
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8.1.2 Outline

In the following section, I discuss the idea of tools, the implications of their use, and
the notion of spaces and topologies related to these tools. Section 8.3 presents the
model, explaining the main ideas on a general level, such as material and conceptual
representation, and the interplay between them, including brief discussions on topics
such as craft, skill, novelty and appreciation, and collaborative creativity, in the light
of the proposed model. It is also discussed in the context of existing theories. How
the model could possibly be implemented in computers is discussed in Sect. 8.4,
followed by some concluding remarks.

8.2 Tools

The word tool, in a wide sense, is used a lot throughout this chapter, denoting every-
thing from a traditional drawing tool (e.g. a paintbrush) or a musical instrument to an
abstract organising principle (spectral harmony), a given musical form (the fugue),
computer programs (Photoshop filters), generative procedures (grammar systems,
evolutionary algorithms, Markov chains) or representational systems (Western mu-
sic notation).

Artistic expression is clearly affected by the choice of tools. New genres and
subgenres constantly emerge in music, triggered by the availability of new kinds
of tools for music-making, such as loop samplers, live sequencers, time- and pitch-
altering algorithms, and many more, allowing new ways to work with sound and
structure. A tool embodies a complex behaviour (Gregory 1981) and enables lines
of thoughts that would not be otherwise possible.

With more advanced tools, the contribution from the toolmaker cannot be ig-
nored. It may be good or bad, but the artist has to be aware of it. Sometimes you do
not want to spend time on developing your own tools, but prefer to be confronted
with an existing tool, and take advantage of the extensive design effort put in by the
tool maker. He helps transport me a fair way towards sophistication, through using
his tool. A well-known risk is that the tool steers users towards similar results. But
given that the tool is complex enough, i.e. it provides possibilities of considerable
user-controlled variation, and that I spend a decent amount of effort on my work,
the tool might not limit my artistic contribution.

Each tool defines a virtual space of possible results. It also defines a topology
within this space. A topology is a set of neighbourhood relations within the space,
determining which points are near each other, and consequently how we can tra-
verse the space. A neighbour point, in this case, is another point that you can reach
with a single application of the tool. These topologies defined by tools are very im-
portant, since they correspond, in different ways, to how we think about the work.
First, we naturally think about ideas in terms of how to realise them, using tools.
Second, I believe the realm of our imagination is to a large extent constructed from
our knowledge about existing tools, from practice and studies, and what we have
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learnt from the results of their use in art, our own and others. The design of the
tool also steers our thoughts and our imagination towards what is possible or easy,
and towards what is achievable, practical, or challenging. This amounts to Norman’s
(1988) use of Gibson’s (1977) term affordance.

When learning a new tool, I gradually form a cognitive model of how it works.
Spaces of potential results open up in my mind, expanding as the cognitive model
gets more elaborate and accurate. If it is reasonably adequate, it gives me a predic-
tive capacity in relation to that specific tool. That is, I have some expectation of what
will happen when I use the tool in a certain way. But the predictions are not always
correct, because of my limited cognition, or because of mistakes or tool failures,
which introduce unexpected results and irregularities to the material.

The topology inferred by the tool also brings a kind of metric—a system of dis-
tances. Different points in the result space are at different distances from each other,
i.e. certain points are easier or more difficult to reach from where you are. This is
dependent on a formal metric—the number of times you have to apply the tool to
get there, but also on a perceived metric, affected by the tool precision, the difficulty
of use, and the affordance of the tool—certain paths are more easily accessible than
others, and narrow paths may be more rewarding. A skilled listener or viewer can
perceive this metric, and it is part of the experience of the artwork; the perceived
effort, respect for craftsmanship and skill, in a kind of empathetic appreciation.

As an example of how tools steer our thoughts, we can compare two common
kinds of musical tools: predesigned and modular synthesisers.1 The first category,
the predesigned synthesiser, provides a certain number of functions in a fixed con-
figuration, typically routing sound signals from tone generators through a filter and
variable amplifier, modulated by a limited set of gestural modulators to shape the
sound over time. All these functions are controlled by a fixed number of parameters.
Behind such an instrument are careful considerations by the instrument designer re-
garding playability, choice of features, interface design, relevance of parameters,
etc. A modular synthesiser, on the other hand, provides a large number of abstracted
functions in modules that can be connected in any order and configuration, with free
routing of audio and control signals. Typical modules include: oscillators, filters,
modulation sources, amplifiers, mixers, etc. Digital modular systems, additionally,
provide free configuration of processing resources, and their openness and flexibil-
ity essentially equals that of computer programming. The predesigned synthesiser
is a subset of the modular synthesiser, and the latter can easily be configured to
mimic most predesigned synthesisers. Despite this shared functionality, we seldom
use them in the same way. Users of modular synths are predominantly occupied
by changing the configuration and routing, adding and removing modules from the
signal chain. It is only rarely used to build an optimal configuration which is then
subject to extensive exploration of its parameter space. The main difference between
the two is in the variables they provide. Their spaces are different in size and scope,

1These comments on how synthesisers are used, are based on background studies made in con-
junction with the design and development of an interactive evolutionary sound design tool for the
Nord Modular G2 synthesiser (Dahlstedt 2007).
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and as users we tend to explore the space that the tool provides, and we tend to
travel the easy and accessible paths first. If you can add new modules and connec-
tions, you will. To impose further constraints on this freedom requires discipline and
knowledge, and an understanding of why you would want to lock certain variables.
And sometimes the toolmaker provides that understanding for you.

The idea of a space of possibilities for a specific tool or representation is old, but
it is not enough in itself to give a complete picture of the creative process. Also,
very seldom do we use just one tool to create a work of art. We use a whole toolbox
of them, and we switch between them, depending on what is needed at the moment.
To understand the creative implications brought about by the tools, we need to be
able to discuss and compare the different spaces and topologies provided by them.
And equally important, we need to consider the constraints and possibilities of the
material: the medium in which we create our work, such as image or sound. Tools
are the ways we navigate the infinite space of inherent possibilities of the material,
but only along the pathways offered by the tools. Hence, we must introduce the
notion of a material space, a larger space containing all possible images or sounds,
and which can be traversed along the topologies provided by the tools at hand.

And if we are going to emulate human creative behaviour, it is not enough to im-
plement the tools. We also have to emulate the structured application of these tools
by a human artist. Such a model thus operates on three levels: a material represen-
tation storing temporary results in simplest possible form, implementations of tools
that provide a means of navigation in the space of possible results, and a model of
how these tools are applied in a structured, iterated process in relation to ideas and
cultural context. In the following section, I will describe a model based on these
ideas.

8.3 The Model

I will first give an overview of the model, including the main concepts, each of
which will be further detailed in separate sections. This is followed by a couple
of real-world examples from composition and improvisation, and a discussion of
how the model relates to existing theories. This is followed by a brief discussion of
related concepts, such as skill, collaborative processes and tools, examined in the
light of the proposed model.

The basic idea is that a creative process is an exploration of a largely unknown
space of possibilities. The exploration follows paths that are not arbitrary. As an
artist, I do not believe in free creation, since we are influenced by many things:
the tools at hand, our knowledge of the tools, our ideas and concepts, what we
have seen before, liked and unliked, and by our view of the world. Each of these
form patterns in the space of possible results, in the form of possible or preferred
outcomes—subspaces, and neighbourhood relations—topologies, which form pos-
sible paths for our search. These topological subspaces, one for each tool, form
networks (or graphs, sometimes trees) in the larger material space, which intersects
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each other. For simplicity, in the following I will use the word network to denote
such a topological subspace, for lack of a more suitable word.

While exploring, the work that is being created exists in two forms simultane-
ously: in a material representation and a conceptual representation. The material
representation is the current form of the work in the chosen medium, e.g. as a sound
sketch or an unfinished image. It corresponds to a single point in the material space,
the space of all theoretically possible images. The conceptual representation is the
current form of the work in terms of ideas and generative principles. It corresponds
to a point in a conceptual space; the space of all possible conceptual representations.
A particular conceptual representation defines a subspace in the material space—the
set of all images or sounds, i.e. points, that could be interpreted as corresponding
to this concept. In parallel to the topological tool networks, there is also a topol-
ogy of subspaces in the material space, defined by the variability of the conceptual
representation. If the conceptual representation is changed or revised, this subspace
is transformed, and will cover new regions and allow new pathways in the mate-
rial space. This system of related subspaces corresponds to topological networks in
the conceptual space, but I will call them conceptual networks, for simplicity. An
illustration of these related spaces is given in Fig. 8.2.

The focus of the creative process continuously changes between these two forms,
and requires mechanisms to translate from one into the other, in both ways. Let us
call them implementation, when we go from concept to material, and re-concept-
ualisation, when the concept is revised or recreated based on the current material
form. The discrepancies between the two representations, and the imprecision of
the translation in both directions fuels the creative exploration, embeds qualities of
human expression in the work, and imprints a trace of the creative process onto the
work itself.

The implementation of a concept into a material manifestation happens through
the application of tools, and this process is imprecise due to the natural vagueness
of ideas, the characteristic incompetence of the artist, the imperfection of the tools
themselves, and his possible lacking mastery thereof—visible as a limitation in his
predictive capacity.

In the other direction, the continuous re-conceptualisation of material form into
a new conceptual representation, which may or may not resemble the previous one,
is by its very nature imprecise and prone to misunderstandings. It is precisely this
vagueness that is the heart of the field of interpretative arts, such as musical per-
formance and theatre. But I think it is also crucial within the creative process of a
single author, since he continuously interprets and re-interprets his own work as it
is given form.

8.3.1 Material Space and Representation

The material representation is simply the current, temporary form of the work, e.g.
as a drawing, a musical sketch, or a sound file. The material space is a theoretical
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Fig. 8.2 At a certain moment, the artwork exists as a conceptual representation, which corre-
sponds to a point (marked CR) in a conceptual space of all possible conceptual representations.
Possible variations to the idea constitute a topological network in this space. The current concep-
tual representation defines a subspace in the material space of all possible material manifestations
of this particular concept. The current material representation of the work is a point (marked MR)
in the material space of all possible material results. This point can be either inside or outside of
the current conceptual subspace. If it is outside, the artist can either alter the concept to include the
current material representation, or change the material form, by the application of tools. Possible
alterations by a specific tool are indicated, forming a topological network in the material space

construction that contains all its possible instances. If we work with images, the
material space consists of all possible images, for example, a bitmap of a certain size
and resolution, which theoretically can represent any conceivable image. If we work
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Fig. 8.3 The topological
subspace defined by a specific
tool forms a network in the
material space. Each
application of the tool (e.g. a
brush) moves a small step
along the accessible
pathways. Repeated use of
the tool can take us far

with sound or music, the material space consists of all theoretically possible sounds
of a certain maximum length and bandwidth. These spaces are truly huge, with as
many dimensions as there are sound samples or pixel colour values. Musicians or
artists seldom conceive of sounds in these representations, since they are very distant
from the conceptual level of a work, but as theoretical constructs they are convenient
and important, as we shall see.

In other contexts, the material representation could be a three-dimensional form,
a musical score, or a text, the latter two are slightly closer to a structural-conceptual
description of a work, but the mechanisms are similar.

At any specific time, the temporary form of a work is represented by one point
in the material space; one image out of the almost infinitely many possible images.
Through the application of a specific tool, we can reach a number of neighbour
points. In this way, a network of paths is formed, defining a topological subspace:
a network (see Fig. 8.3). In some contexts that don’t allow repeated configurations
to occur (e.g. wood-carving), these networks are structured like trees, while in other
cases periodic trajectories can occur.

Let us look at a simple example. A specific tool, e.g. a paintbrush or a filter
in Photoshop, with some parameters, operates on a particular bitmap and returns
another. That is, it goes from one point in the material space to another. From a
specific image you can travel to a certain number of other images that are within
reach by a single application of this particular tool. With this tool, I can only navigate
the material space along these paths. I can go from an image of a red square to an
image of a red square with a blue line by using the brush to make the line. But I need
two steps to go to an image of a red square with two blue lines. Hence, the vertices
of the topological network of this particular tool are the points in material space
(representing in this case bitmap images), while the edges are connections between
points that can be reached by one application of the particular tool.

The material space may also have an inherent topology, based on the most obvi-
ous neighbour relation—the change of a value of a single pixel colour or a single-
sample. However, this topology is too far removed from the conceptual level of the
human mind to be of particular use, and we cannot even imagine how it would be
to navigate the material space in this way, since such a small part of it contains
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Fig. 8.4 The tool networks
of a set of tools in material
space. Each tool defines a
different network, covering
different areas, with different
resolution. At each
intersection, we can switch to
another tool and continue
navigation along different
paths. Here, two coarse tools
are used first (black and grey
thick lines), followed by more
fine-tuned editing by a tool of
higher resolution

Fig. 8.5 The different tool
networks are not separate
structures, but different
organisational principles in
the same material
space—represented by the
bottom rectangle. A single
point in this space,
representing, e.g. a particular
image, can be part of a
number of different networks,
that provide or control
movement out of that
point—how it can be varied

anything we would consider meaningful. Most of it is noise, or would appear com-
pletely disordered to our perception. We need tools to navigate this space; to get
from one interesting point to the next, which do not get their proximity according to
the inherent topology of the material, but by the tool-based networks.

Each tool defines a different topology in the same material space. Together they
form intersecting networks, defining the possible paths of artistic exploration. Com-
binations of tools allow us to travel more freely in the material space, since the
combined networks cover a larger subspace of the theoretically possible, and pro-
vide a larger selection of travel paths. At any intersection, I can switch to another
tool, and hence to another network of accessible pathways, as illustrated in Figs. 8.4
and 8.5.

This can be compared with physical travel—some places can only be reached
by car, because they are distant. When the road ends, we put on skis or snowshoes,
or simply walk. Some locations can only be reached by airplane or helicopter, or
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require extra oxygen. Some points are easier to reach aided by GPS navigation,
others require ropes and harness. Each means of transport provides certain navigable
or facilitated paths, and where the path networks intersect, i.e. where both means are
possible or needed, we can change our way of travelling. All of them bring different
potential and constraints, just like different tools.

So, one idea behind the introduction of a material space is that we can start think-
ing about application of different tools in succession, since they all operate in the
same space—the material space. They all define different topological networks in
the material space, which intersect, and we can switch between tools at any time.
Another reason is that the material representation introduces true open-endedness,
since anything can happen in the material form. I can spill coffee on my score,
or there can be a tool failure. A teacher or collaborator can alter my sketches. All
this of course adds further complications to the process, but these cases still fit the
model.

8.3.2 The Conceptual Representation

The conceptual representation of the work is how it is represented in the mind of the
artist, in terms of abstract or concrete ideas and generative principles. This represen-
tation is vague with respect to the material representation. If my idea is a picture of
ten monkeys forming a pyramid, this conceptual representation corresponds to the
set of all images that can be interpreted as a pyramid of ten monkeys. Since nothing
is said about the colour and species of the monkeys, where they are located, or from
which angle we see them, there are a lot of images that fit this description.

In the course of the creative process, the conceptual representation is changed,
e.g. by being made more specific, which shrinks the subspace, or altered, which
transforms the subspace. The internal structure of the conceptual representation de-
termines which transformations are possible, along the lines of the variable param-
eters of the representation. If my idea, again, is ten monkeys forming a pyramid, the
variables in this representation are the kind of animals, the number of individuals,
their formation, etc. If I decide that it should be specifically ten cotton-top tamarines,
or ten monkeys in a pyramid under a rainbow, the subspace shrinks. If I elaborate my
idea to be ten mammals forming an upside-down pyramid, or a number of monkeys
in any formation, the subspace is restructured or expanded. This relates directly to
the invention of new knobs to turn (Hofstadter 1985) or Boden’s transformation of
spaces, and is one of the challenges of computational creativity.

The conceptual representation can be vague in at least three different ways.
First, there may be many points in the material space that comply with the ideas
expressed—it defines a subspace of many possible results. Second, the conceptual
representation may not yet include the necessary small design decisions that we of-
ten postpone to the implementation stage. Third, because of our limited predictive
capacity, generative works can be exactly defined by concepts, but we don’t know
what the outcome will be. Our expectations—what we envision—form a subspace
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of the material space, but when we carry out the generative procedure, a single point
will be the result. That point may or may not be a part of what we expected, possibly
requiring a revision of the conceptual representation.

8.3.3 Interplay Between Representations

The philosopher Daniel Dennett has said (Denton 2004):

The purpose of the brain is to predict the future, to make plans and hopes, and in following
these predictions, we partially make the future.

The brain is good at prediction, because that is what it is evolved to do. The
musician and writer Stephen Nachmanovitch (1990) said that life is improvisa-
tion. But creative processes also mimic what life is about—predicting, pursuing,
acting, adjusting, etc. in a continuous circular process. So, in describing how
we form our world, Dennett also gave us a good description of how we create
art.

As a composer, I use generative processes to project my ideas beyond my pre-
dictive horizon (Dahlstedt 2001). I may understand the conceptual network in the
immediate neighbourhood, and apply the algorithm or process to get further away,
hoping that the interestingness will carry over to distant parts of the space. Or I
may understand the broad paths in the conceptual network of the process, and
apply it, leaving the details to the process. I may use generative processes that
are too complex for my predictive capacity, in a trial-and-error fashion: adjust-
ing parameters as I go, based on temporary results, and possibly, at the same
time, adjust the actual algorithm itself. This amounts to the reiterated interplay
between material and conceptual representation, through development and pars-
ing.

This interplay is crucial to the proposed model. An idea expressed in a concep-
tual representation is realised by searching for a suitable material representation,
either by gradually shrinking the set of points covered by the conceptual represen-
tation in an iterated process between idea and tools, or by searching for a unknown
pleasing result by trying a sketch, evaluating it and modifying it until something
interesting is found. Once again, this is an iterated process between ideas, tools and
material, and can be illustrated in terms of these networks (tool networks, concep-
tual subspaces, etc.) that coexist as different organisational principles in the material
space.

There has to be a path from the material representation back to the conceptual
representation, to carry interesting coincidental results back into the conceptual rep-
resentation, and to provide for feedback from temporary results to affect the con-
ceptual representation. How do we recognise pregnant ideas and interesting coin-
cidence? What we need is a kind of reverse development process: the parsing of a
material representation into a conceptual description. This is a central part of the
creative process; our brains do it all the time, but computationally it is a non-trivial
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problem. The translation from concept to material is essentially irreversible, and to
form a cognitive model of a material is imprecise and gives a model different to
the original. This difference gives birth to new material and creative variations. It
is analogous to the concept of interpretation, as in classical music and theatre. We
cannot recreate the conceptual model of the original composer or playwright, and
each performance is different. During the creative process, the artist has to interpret
his own work repeatedly, to be able to evaluate the temporary form of the work,
and to take advantage of unpredicted results. The artist himself has the advantage
of having access to the previous conceptual representation, and he can form a new
model based on the current temporary material form of the work, and check if it
corresponds to his original idea. On the other hand, this is not so easy, since the
artist is so deeply engaged in the work that he cannot judge it like someone from
the outside. For this reason, artists use various tricks, e.g. to let a work rest for a
while, and start anew with fresh ears, or observing a painting upside down to fool
perception and prejudice.

The self-interpretation and subsequent evaluation can be done rarely, to let a
generative process finish. Or it can be done often, or even continuously, but this can
obstruct the creative flow. Postponed judgement is liberating, as described so well
by Nachmanovitch (1990) and many others.

In the process, we seek the intersections between the tool networks and the cur-
rent conceptual subspace. When I paint with a brush I seek intersections between the
network of the tool—the images that I am able to paint, and the conceptual subspace
formed by the ideas I want to convey. These intersections have a kind of gravity. We
are attracted to them, and this is where the final version of the work will be found—
in an intersection between the idea networks and the tool networks—something that
is realisable and contains a representation of our ideas. This is a feedback process.
I observe what I do, see if it fits the concept, or if it can fit a slightly modified con-
cept, then redo or continue to work on the image. The conceptual subspace changes
because of the modifications, and the material representation change because of my
actions. When the conceptual and material representations have converged, the work
may be considered finished.

8.3.4 Example Scenarios

The creative process as a back-and-forth translation between material and concep-
tual representation is illustrated by the very simple example in Fig. 8.6, and by the
following examples from my own works:

(1) When composing, I might have the idea to try to overlap certain rhythmic and
melodic patterns of different lengths, a medieval technique called isorythm. I can-
not predict the output in any other way than by implementing it, generating a sketch
score—the first material form. It turns out OK, but at many places the two voices
collide in an interesting manner, hinting at unusual chords, and sometimes the two
voices combine into a single pregnant motive, where the two voices intertwine. I re-
vise and extend my original concept to involve elaboration of these coincidences.
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Fig. 8.6 The creative process
as an iteration between idea
and material. In each step, the
conceptual representation is
revised based on the previous
material result. This particular
process could be described
like this: Draw something,
maybe a few diagonal lines.
One became a little wavy by
accident. Hmmm...let’s make
them all wavy. Ah, that looks
like the sea! Let’s draw a
boat, too. Interestingly, this
trivial example came about
exactly like that

I implement this, extrapolating from them in each place, modifying the formally
derived skeleton, arriving at a new material form. This extrapolation at some places
triggers new coincidences, which make their way into the conceptual representation,
and so on, until I am satisfied with the result, i.e. there is no room for more elabora-
tion, or all coincidences have been elaborated upon. The above is a true account of
how I composed my own Wedding March for church organ, in 1999.

(2) When doing a free improvisation at the piano, I might just start and let the first
notes be formed by pre-learnt ways of the hand, as described by Sudnow (2001), or
by unconscious ideas. Hence, my initial conceptual representation is empty. But
tool-based, cultural and physiological constraints guide my actions. These form
topological networks and subspaces in the material space. The material represen-
tation is the sounds I hear, and I immediately try to make sense of it, to form
a conceptual representation of what actually happened—because I am not always
consciously aware of what I am playing. I might detect a certain rising figure in the
left hand, or a particular unintended interval combination, and I choose to elaborate
upon it. This is the re-conceptualisation step, and the next version of the concep-
tual representation is a variation on this idea. I perform it, but it does not end as
I expected, because of my limited prediction capacity, and I re-conceptualise what
happened, perform it, and so on. This is a real-time accumulative process, and in
this case, the creative process unfolds right in front of the listener. The conceptual
basis for the music emerges from the complex interplay between what I happen
to play and what I extract from it, gradually becoming a composed whole, since
for each new step in the process, there is more existing material to relate to in the
re-conceptualisation.

The conceptual representation is nil to start with, but implicitly it may express
itself in terms of a feeling or a state of mind, that affects what is emphasised in the
reconceptualisation. You see or hear what you can relate to (by affinity and knowl-
edge), subconscious states and associations are projected onto what “just happened”
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and gradually take shape in the iteration between what you hear and what you chose
to elaborate upon in your playing. For example, as an improvising pianist, I tend
not to relate to advanced jazz harmony implied by other players, because it is not
part of my personal musical heritage. Instead, I concentrate on structures, gestures
and note-to-note relationships, and extract conceptual representations from them, to
elaborate upon in my response.

If I was instead improvising a drawing on an empty paper, the scenario would be
similar. Improvised theatre can also work in this way2—you have to accept what has
been done, extrapolate from it and build something on top, this time together with
others. You see hints of meaning, possibly unintended, in the emerging material, and
you enhance and clarify with modifications, which in turn provide new departure
points for your co-players.

8.3.5 Appreciation and Novelty

Many factors affect our traversal of the material space. In addition to the interplay
between conceptual and material representations, there are also factors such as cul-
tural knowledge, of expectations and appreciation. We have learnt to recognise and
appreciate certain subregions of the space, and there might be a pressure from the
outside about what kind of art to produce, what conceptual contents to depict, which
techniques to use, etc. This is evident when such constraints are unconsciously in-
cluded in a conceptual representation, only to be realised when we are confronted
with something that is “wrong” with respect to this property. It is so deeply embed-
ded in our cultural heritage or social expectations that we did not realise that it was
there as a constraint.

An artwork is not interesting per se. It is interesting in relation to something, to
what has previously been written and said within that field. The interest is in what
it adds to that, what it contradicts, and how it may provide food for new thoughts
within the field. The cultural baggage of the artist acts as a guiding force in the cre-
ative process—it determines acceptable regions in the space of the possible, because
it defines what the artist considers art, as understandable and interesting, and hence
constrains his conceptual representations. By continuing a bit further on these paths,
or deviating from them (but in relation to them), he creates something new, based
on what was before.

Appreciation is an interesting phenomenon. It often coincides with the moving
edge of an expanding conceptual network, and the corresponding material sub-
spaces. New art has to connect in some way to this, and it can possibly go beyond
the edge of a conceptual network a little bit. If it is completely within existing net-
works, it is uninteresting. If it is completely outside, it is difficult to relate to—there

2In the 1990s, I worked as an improvising musician with a theatre group, participating extensively
in this kind of emerging performances.
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is no path to get there, and it is conceptually disconnected from my existing net-
works. If it strikes the right balance with respect to the receiving individual, the
new work extends his networks too, and forms a foundation for further extensions,
further curious explorations in our continuous strive for novelty.

Novelty in creativity is often divided into Boden’s private P-creativity and histori-
cal H-creativity (Boden 2004). Is it new for me, or new for a whole cultural domain,
or even all of humanity? Novelty in relation to myself includes the expansion of
my networks to gradually encompass new areas. Tool networks and conceptual net-
works both contribute to this process. For some artists the tool networks lead into
new areas. For others, the ideas take the lead, and the tool networks are expanded as
needed. The former is more common in music, as an abstract art, where tools and
techniques play an important role. The latter may be more common in contemporary
fine arts, where real-world concepts often are of primary importance.

When a conceptual representation develops, it expands to new areas in interplay
with continually accumulating cultural input, pushing the individual artist to ex-
pand further, past what has been covered by others. Nobody has access to a global
database, but only to the fraction of human culture contained in the artist’s mem-
ory, defining his cultural networks and subspaces. To put it simply, his exploration
of spaces happens in interplay with what he remembers from what he has seen or
heard before.

8.3.6 The Model in Context

There are empirical studies of creative processes within psychology research (e.g.
Barron 1972, Konecni 1991) and abundant recollections on the subject from artists
(e.g. Barron 1997, Klein and Ödman 2003). These accounts from artists are some-
times contradictory and personal, and concentrate on rhapsodical and very personal
details of particular processes. Artists not aware of existing psychological theories
of creativity, may not be able to give a systematic account of what is happening.
They sometimes reconfirm well-known phenomena and myths, but hesitate, con-
sciously or not, to reveal their creative techniques, or are not able to verbalise the
mechanisms of their own creativity. Some seem to preserve the romantic mystery
around creativity. And since not all researchers have first-hand access to these pro-
cesses (since they are not professional artists themselves) computational implemen-
tations directly derived from artists’ processes are rare, with a few notable excep-
tions. Harold Cohen’s autonomous painting program AARON, is based on his own
analysis of how he went about composing and painting a picture, from sketching
the first lines down to colouring. It works very well, within a limited domain of cer-
tain motives (McCorduck 1990). In the field of music, David Cope is well-known
for his advanced computer-generated pastiches of classical music. Recently, he has
changed direction, and developed a composing program called Emily Howell (Cope
2005), which develops its own musical style in a dialogue with Cope himself. In this
case external musical input and human feedback gradually helps form the stylistic
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character of the program. Cope, himself a composer, has based his model on careful
analysis of musical creativity; he stresses concepts such as allusion and analogy,
and his model is based on complex associative networks between musical compo-
nents, similar to that which humans develop through extensive listening. Cohen and
Cope both emphasise process—in Cope’s case also in a longer perspective, between
works—but neither explicitly describe their models in spatial terms.

My proposed model is certainly not the first spatial theory of creativity, but it
extends previous theories significantly (most notably Boden’s, 2004) by introduc-
ing the idea of a material space, linked by the dynamic interplay between differ-
ent descriptive levels—the conceptual and material representation of the work. The
model of course relies on many previous results from peers, and various parts of it
are related to previous theories. For example, Pearce and Wiggins (2002) provide
a link between psychological research and the question of compositional creative
processes, giving a rather detailed account of the cognitive aspects of musical com-
position. However, they do not dive deeper into the actual processes of composition
itself.

Many previous attempts have focused on a formal approach, with the explicit
generation of new ideas as the primary aim. In contrast, I believe that new ideas
emerge from the process, and primarily from the iterated reconceptualisation and
implementation, allowing for ambiguity, misunderstanding, associations and coin-
cidences to contribute to the generation of new ideas and artistic results. This is a
very rich process, involving all aspects of the artists mind, his cultural context, and
of the material he is working in, with plenty of possibilities for unexpected results,
leading to radically revised and new ideas.

The idea of iterated conceptual representations is related to Liane Gabora’s work.
She says:

Creative thought is more a matter of honing in a vague idea through redescribing successive
iterations of it from different real or imagined perspectives; in other words, actualising
potential through exposure to different contexts. (Gabora 2005)

This also resonates well with Harrison’s (1978) ideas about creativity being a goal-
less, non-rational process. Understanding of the re-conceptualisation mechanism
could also be informed by a closer study of Karmiloff-Smith’s (1994) thoughts on
representational re-description in a developing mind, where knowledge gradually is
transformed from simple procedural descriptions into conceptual contraptions of a
higher level.

My model also transcends the distinction between exploratory, combinatorial
and transformational creativity, for several reasons. The search space has been ex-
tended to the whole material space of the chosen medium, which includes all theo-
retical possibilities. A search in such a space equals a generative process, and is
neither simply combinatorial nor transformational. Maybe it could be described
as being based on processual emergence. This relates to Wiggins’s (2006) idea
that the search strategy can be more crucial than the definition of the conceptual
space. He also presents a few theoretical devices for revising it depending on the
results. In my model, the conceptual network is continuously being transformed
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as new conceptual dimensions—along which change can happen—appear from the
re-conceptualisation.

The idea of including the material space in the model is related to McCormack’s
(2005) claim, that for true open-endedness, generative systems and their outcome
must reside in the same domain, as is the case with evolutionary creativity in na-
ture where genome, phenotype and developmental mechanisms share the physical
environment. It is however unclear if this applies to human creativity in art, but it
certainly would allow for more complexity and openness in the process, which is
what the material representation adds in my model.

The importance of a material representation became clear to me when confronted
with unexpectedly interesting musical results from my autonomous evolutionary
composition system Ossia (Dahlstedt 2004; 2012), where configurations of notes
resulting from separate branches of a generative processes are brought back into the
same process in a finite recursion, allowing structural re-use of coincidental mate-
rial. Essentially, temporary results from branch nodes of a generative tree structure
are fed back to the leaves, forming a rudimentary iteration between concept and
material. A generative representation provides access to high-level variation, but if
used without a material representation, it may not permit behaviour as complex and
unpredictable as human creativity.

The material representation is also, in most cases, the shared layer between cre-
ative agents in the human world. If we had direct access to each other’s conceptual
representations, we could have a perfect transfer of thoughts between people, re-
moving a lot of the complexity from human culture. A hypothetical scenario, yes,
but it illustrates the point. Continuous need for interpretation, and the unavoidable
misunderstandings that follow, are quintessential properties of a society of creative
agents. One of my points with this model, is to show that this is also happening in
single-agent creative processes, in a type of dialogue between artist and the material.

This possible sharing of material is also interesting in another way. It allows
for explanation of processes where the material is revised by someone else, e.g. a
teaching situation, or when someone is tinkering with the artist’s material. Hence,
it is robust and flexible, fitting a number of scenarios that feature multiple creative
agents.

8.3.7 Craft and Skill

If you know a tool well, you are able to predict the result of your actions, based on
training and experience from the application of the tool in many different contexts
and situations, and because you have a well developed cognitive model of the tool.
Then, the tool network is fine-meshed. You can make a qualified guess about what
is possible and what is not possible before you do it. When you navigate along
the conceptual network, you adjust according to tool networks. Out of necessity,
you sometimes adjust the idea so that it becomes possible to realise, i.e. so that the
conceptual subspace intersect with a tool network. This is often possible without
sacrificing any important part of the idea. Sometimes it actually adds something,
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since it forces you to deviate from your beaten tracks. If the tool network is sparse,
due to lack of training or coarseness of the tool, it becomes more difficult to find
these intersections. You might try to fill in the tool network when you have found a
point you want to realise, by learning new tools, learn a tool better, or ask help from
someone else.

Also, the better you know your tools, the more they become integrated in your
conceptual thinking, and the tool networks may even overlap with the conceptual
networks to a certain degree, because your concept may be constructed from your
tools. This is especially evident in music, where abstract generative principles may
be the main conceptual ideas behind a work, and at the same time the tools to create
it.

8.3.8 New Tools and Tool Design

Especially in electronic music, there is a strong focus on the development of new
tools, such as new synthesis techniques, signal processing algorithms and new phys-
ical interfaces to control the music. Why is that? And why do we need to learn new
tools? A new tool might offer more precise manoeuvrability in certain regions of the
material space, or let us reach completely new, hitherto unknown regions. It might
take us faster to known regions, and hence push the limit of the possible, within
a given time frame or within our cognitive capacity, by extending it—the tool em-
bodies intelligent behaviour and thus enables new lines of thought. A new tool also
creates new structural relationships, which will unfailingly be exploited in new art-
works. If you can get from A to B in a new way during a compositional process, this
can be used to create internal references within a musical piece, for example, and
will eventually affect the cultural network through repertoire.

For example, tonal harmony as an organising principle dominated Western music
until the early 20th century, in gradually more complex forms. All compositions
were placed and composed along these networks in the space of possible music.
When this constraint was removed (by Schoenberg and others), it was impossible
to just start thinking freely. The minds of composers were literally wired along this
network of tonal harmony, in addition to others of style, form and expression. New
tools were needed, to provide pathways for composers’ imagination and for the
creative process. Most influential was the twelve-tone idea (no chromatic note must
be repeated until all others have been heard) and serialism (the use of tone-rows
and their various permutations and transpositions). They provided a framework for
exploration of the unknown space outside the traditional tonal network. After some
time, composers became more accustomed to these new modes of expression, and
the tools became incorporated into cognitive and conceptual networks, with less
explicit focus on the actual generative principles, and more on the sounding results.
Some composers were able to compose aurally in the style of twelve-tone music, as
described by Valkare (1997). If some other principles had been presented instead of
twelve-tone serialism, the results would have been very different, in terms of both
the music and the imagination of the composers. So, the development of tools is an
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essential part of the continuous discussion about what can be created, and what can
be expressed—and this discussion is what I call art.

8.3.9 Social and Cultural Creativity

The discussion in this chapter has focused on the individual creative process, even
though cultural aspects have been implicitly mentioned in terms of networks formed
by cultural heritage in the material space. But we can see the advantage of this model
also in analysis of collective creative activities, both real-time exchanges such as
musical improvisation, or in slower processes such as the general artistic discourse
within a particular field. Let us look at some examples.

In group improvisation, musicians communicate through the material represen-
tation, i.e. the sonic result, communicated through the air. This is possible thanks
to the amazing human ability to interpret sound into conceptual musical structures.
Once again, creative misunderstandings during this process will result, since the
music is always ambiguous. Each musician makes his own re-conceptualisation of
what is happening, and reacts to that musically, contributing to the continued mate-
rial shape of the work.

In non-real-time activities based on verbal discussion, such as collaborative
works, or a continuous artistic discourse, we communicate through conceptual rep-
resentations, exchanging and developing ideas, but also through material results.
And misunderstandings and re-conceptualisations thereof form the basis for new
ideas.

This is interesting, because different individuals carry different networks, regard-
ing concepts, tools, cognition and perception. The re-interpretation of a temporary
result, an artwork or a musical output by someone else, can modify the concept in
an unexpected direction, i.e. adjust it to fit his networks, so that he can develop it
further along pathways available to him. When the originator is confronted with this
re-interpretation, his own network can grow, to also include this kind of output. In
this way, we learn from each other, in a continuous development of ideas.

8.3.10 Abstraction Levels

One aspect that has not been directly discussed is the problem of sketches as tem-
porary material form. Sketches are in themselves conceptual and imprecise, but still
more precise than the original thoughts that inspired them. The sketch is somewhere
between the conceptual representation in your head and the final material result. In
many domains, such as drawing, sketches are intentionally vague to allow the test-
ing of ideas without requiring the development of complete detail. How can we
account for this? A similar case is the various forms of concept-based artforms,
where the final medium for the artwork is ideas. But I suggest that the proposed
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model can also be applied in these cases. A sketch can still be regarded as a material
form in relation to a more abstract conceptual representation. It is the difference in
level between the two representations that is important, and the interplay between
them when going back and forth—not the exact nature of the material representa-
tion. In the case of score-based music, for example, the material representation (the
score) is somewhere in between the conceptual and the material level. In the case of
concept-based art, we can still think of different conceptual levels, with a number
of idea-based tools (idea generation, idea transformation, refinement, deduction, in-
duction, contradiction, etc.) that the artist can use to develop the final work. There
are two abstraction levels, and an interplay between them.

The actual material level may also change in the course of the process. First I may
work with an interplay between concepts in my head and sketches on paper as the
material form. Later, when I am content with the sketches, I proceed to a level where
the concept in the head, as formalised by sketches, interplays with the final material
medium. Maybe any differences in degree of abstraction between representations
would suffice for a creative process, and the transfers between them account for the
complexity of the process?

8.4 Implications for Computational Creativity

Many experiments in computational creativity have been implemented within the
traditional artificial intelligence (AI) paradigm, using techniques such as symbolic
reasoning, knowledge-based systems, statistical models and heuristic search. They
usually operate within a restricted domain, and the form of the search target is of-
ten strictly defined—a solution to a well-defined problem, a postulate that matches
given data, etc. (for a couple of examples, see Lenat 1983, Lindsay et al. 1980).
There is an awareness of these problems, and one proposed solution is to add meta-
level reasoning to affect the process and domain itself (see e.g. Buchanan 2001).
However, the approach at that level is of the same formal nature as the previous one,
equally distant from how we think, and from the complexity of real life. And the
tasks chosen for modelling are often of a scale that would not be considered partic-
ularly creative if performed by humans, such as the harmonisation of a Bach-style
chorale (e.g. Ebcioglu 1988; see Papadopoulos and Wiggins 1999 for an overview
of similar projects). They are reasonably complex search processes, yes, but more
like optimisation processes than an exploration to extend our conceptual world. The
form of the solution is known beforehand, and it will give us no surprises.

When going through the AI creativity literature, there is a lack of attention to
process as a source for novelty and complexity. The AI approaches are mostly based
on logical analysis of the concept of creativity and novelty, and not how a human
artist goes about when creating something, at least not the creative processes I can
observe in my own artistic practice. As an artist, I seldom know what I am looking
for. Sudden ideas are often related to the domain I am working in, but I do not know
exactly what idea I am searching for. Coincidences play a major role in triggering
specific ideas and in shaping more complex creative output.
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Maybe the most successful approach so far (according to Boden 2004) has been
the use of evolutionary algorithms, i.e. simplified emulations of Darwinian evolu-
tion applied to data representations, as search techniques in open-ended conceptual
spaces, inspired by nature’s creativity. The numerous examples include works by
Sims (1991), Todd and Werner (1999), Jacob (1996) and myself (Dahlstedt 2004;
2007; 2009b).

Well implemented evolutionary systems are capable of generating interesting
novelty; they can be creative in a sense. But there are several problems with this
approach. Firstly, while evolution is good at searching spaces, it has been difficult
to design really open ended systems. Secondly, the kind of creativity it exhibits is
not very similar to human artistic creativity. It uses blind variation directly on the
genetic representation, which corresponds to the conceptual representation in my
model. In artistic creativity, the variation is instead inferred by extracting a new
conceptual representation from the current material form in whatever way this came
to be. To understand human creativity, I think we need to base our implementations
on a model of human creativity, and not on natural evolution. Evolution is one ex-
ample of how new things or ideas can be created, but maybe not how we create. See
Gabora (2005) for further discussion about this distinction.

In this context it might be interesting to consider two completely different types
of creative processes, both existing in nature, but in different domains. The first is the
reiteration of a particular generative process until it is “just right”, with evaluation
only of quasi-complete results. This is analogous to natural evolution, where each
new individual is developed all the way from the blueprint, in each generation. From
this perspective every living thing is a generative artwork. The other alternative is
the accumulated treatment and processing of a temporary form, exemplified by nat-
ural structures such as mountains, rocks and terrain. They record their own history
of coming into being, through generative and erosive processes. We may call these
generative and accumulative creative processes. So, one is typical of living things,
the other of dead matter exposed to additive, transformative, and destructive pro-
cesses. Both can be accounted for by the proposed model, with different frequency
of re-conceptualisation, and both types of process exist in art. I would say that the
accumulative process is a crucial part of human artistic creativity, with the excep-
tion of explicitly generative art. Evolutionary algorithms, as powerful as the may
be, are limited to generative creative processes, which may indicate that they are not
entirely suitable for emulation of artistic creativity.

8.4.1 Implementation of the Model

Implementing the proposed model involves several difficult and challenging prob-
lems. They are discussed below, with some preliminary speculation about possible
initial approaches.

To fully model human creativity, we would need to successfully model most es-
sential features of the human mind, which is of course impractical. However, there
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are strategies to make this seemingly impossible problem at least partially tractable.
One way is to look for the simplest possible implementation of each required com-
ponent, still being sufficiently complex for the overall emergent creative behaviour
to appear. Certain core features of each component may suffice to arrive at inter-
esting results. It is a research problem in itself to find this level, though, as dis-
cussed by Cope (2005). But the more minimal the implementations are—while still
functioning—the more general conclusions we can draw.

There are two hard problems involved. Firstly, how do we implement suitable
conceptual representations? Secondly, there is the related problem of how to imple-
ment re-conceptualisation from material form into new conceptual models. I have
stressed the importance of misunderstandings in the parsing process, since they help
form a personal expression. Then a rather simple re-conceptualisation model might
suffice to start with, or a combination of simple models running in parallel, to widen
the repertoire of recognised material. Each model interprets the given material in
a particular way, and the choice of models will contribute to the “personality” of
the algorithm, in the same way as the characteristic shortcomings of a human artist
contribute to his personal style.

8.4.2 Conceptual Representations

Knowledge and concept representation has always been a problem in computing.
The conceptual representations in this model need to be flexible and open-ended,
but we want to avoid the symbolic approach of traditional AI, for reasons explained
earlier. While Pearce and Wiggins (2002) mention the ability to represent musical
material as a hierarchical structure (see also Dahlstedt 2004; 2005), McCormack
(2005) states that representation and generative mechanism should be on the same
level as the material resulting from the process, hence a collapse of hierarchies. This
is an important point, and I believe the iterated process between material form and
conceptual form bridge this gap between levels, and provides a path between them
in both directions.

A conceptual representation has two components: a description of what we want
to achieve (e.g. desired properties, list of constraints), and a description of what we
want to do (a generative procedure or list of tool actions). Let us call them descrip-
tion and instruction. In a goal-driven creative process, with a clear vision of the fi-
nal form of the work, the description component is more important. But the clearest
vision may be revised if something unexpected but interesting is found. Also, a de-
termined idea about the description may still lack sufficient detail to form the basis
of a full artwork. Hence, flexibility is still needed. On the other hand, a work based
primarily on a generative idea may lack an description component, and instead give
more weight to procedural instructions. In free improvisation, description may ini-
tially be empty, and both are open for change, according to how the process unfolds.
So, both components are needed, in a weighted combination, to cover a wide range
of processes.
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As the process proceeds, the conceptual representation could also include accu-
mulating existing parts of the material form of the work. As an example, consider
that when a painting is finished, all we have is the actual material form of the work—
the conceptual representation is gradually transformed into a material representation
during the creative process. It is then up to the viewer to form his own conceptual
representation of it.

8.4.3 Re-conceptualisation

The process of re-conceptualisation is a parallel to what an art-consumer does when
observing an artwork—looking at the material result, possibly trying to recreate
the process and the concepts behind it. Since the material form is the artwork, as
it appears to others, nothing can be ignored: faults, context, imbalances, and so
on. With both description and instruction included in the conceptual representation,
the re-conceptualisation process would consist of an evaluation and modification
of the previous conceptual representation, with respect to the material result. The
process could involve, for example, perceptually based fuzzy pattern matching and
feature detection, such as detecting entities, transitions and regularities in the mate-
rial. There may be different kinds of discrepancy between description and material:

• Feature extraction may recognise a pregnant idea that is the result of a coincidence
between results produced by different parts of the instruction;

• Emergent features in the material may not be explicitly represented in the con-
ceptual representation;

• Computational or human mistakes may have distorted the result;
• The conceptual representation may not be visible at all, due to ambiguity, com-

plexity and the nature of the generative process (an irreversible many-to-one map-
ping), and the re-conceptualisation step will have to be carried out from scratch.

A useful strategy for the implementation of re-conceptualisation would be to use
double-linked representations, with pointers between the part of the implementation
components of the conceptual representation and the material result, in both direc-
tions. In the material representation, a layer of pointers tell which part of the con-
ceptual representation was involved in generating it: e.g. a node, an object, a branch
of a tree, a block of generative code. This could help indicate coincidental material,
as detected features or entities consisting of material emanating from widely sepa-
rate parts of the conceptual representation. Borders between results from subpart of
the conceptual representation can help distinguish entities that could form a basis
for the next iteration of the conceptual representation, or help indicate which part
of the conceptual representation needs modification. However, if implemented too
strictly, this could counteract the idea of creative misunderstandings in parsing. But
with overlapping of material coming from different parts of the conceptual repre-
sentation, it may still allow sufficient ambiguity, since the pointers for overlapping
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material will make things more complex—it might not be, or should not be, a one-
to-one mapping.

Such double-linking is probably not possible with all kinds of representations,
but in the cases where it is applicable, it can provide valuable information about the
morphological relationship between concept and material.

After detection of discrepancies, the conceptual representation needs to be re-
vised, in one of the following ways:

• Extension/addition: adding new details or new source material (themes, motives,
source images, “constants”);

• Extension/generalisation: conceptually generalising the scope of the representa-
tion, e.g. when confronting coincidental material, extracting their core properties
and including them in the next representation, to minimise the risk of losing them
in subsequent iterations. Or when stagnating, remove hindering constraints, and
backtrack;

• Variation: when the conceptual representation is tilted, shifted, or mutated, de-
pending on the form of the conceptual representation;

• Restriction/narrowing: adding further constraints or removing unwanted material;
• Association: when something that resembles some pre-existing material or con-

cept is replaced by a clearer reference, or related material from the same source
is added;

• Replacement: when reaching a dead end or when the temporary form is com-
pletely reinterpreted into something else, the whole conceptual representation
needs to be replaced.

Local implementations of heuristic search, such as evolutionary algorithms or hill
climbing, could be used within the component of re-conceptualisation in order to
find suitable modifications. As long as these techniques are kept within this compo-
nent, any shortcomings should not influence the overall process.

8.4.4 Memory and Learning

A fundamental problem of computer-generated art is its relation to the real world—
the cultural and semantic content. To be appreciated by humans and to produce
meaningful content of any depth, the system must have access to the outside world.
This link could be provided on a rudimentary level by an intentionally imperfect as-
sociative memory model, where previously experienced material is retrieved by as-
sociation and incorporated into the creative process. This would account for cultural
constraints and generative aspects of culture, such as references, metaphors (Hofs-
tadter et al. 1995) and associations (Mednick 1962). It is also strongly emphasised
by Cope (2005). Such a memory model should also include memories of previous
results from the system, and in this case it could hold both material fragments and
the conceptual representations behind them.
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When designing computational models of creativity, it is an important question
how to evaluate the success of the implementation and hence how to draw any con-
clusions from the experiments. As I see it, there are two different cases. Either you
make an implementation that tries to generate art that is credible and interesting to
human observers, or you make a minimal model and evaluate it if it exhibits the right
kind of emergent behaviour in relation to its own context, i.e. its limited amount of
data about the outside world.

One could argue that a computational model that produces results interesting to
human observers, having been exposed to a very small amount of human art, could
not be a faithful model. A human with such limited experiences and limited contact
with the outside world would certainly not produce very interesting art. So, the
creator of such a system simply must have put in a lot of his own experience into
the model, consciously or not, in the form of informed design choices.

On the other hand it is difficult to evaluate a minimal model, since it will not be
possible to judge the output as art in itself. The novelty, complexity and interest of
it must be valued in some way in relation to the context and scope of the program.
Creative behaviour may be there, but we may fail to recognise it, since it does not
appear as anything we are used to. Only if a computational model can perceive
and internalise substantial amounts of humanly produced artistic material, combined
with human feedback on its own output over an extended time, can we judge the
output by human standards.

8.5 Final Remarks

I have presented a model of creative artistic processes that is founded on artistic
practice. There is a long way to go before it can be implemented fully in software,
but it is my firm belief that it could help us create more believable artistic results
and behaviour from computational creative systems, and it may form a foundation
for discussion, analysis and increased understanding of human creative processes.
In my own artistic practice as composer and improviser, I can clearly see how it fits
a wide variety of creative activities, and I present it here to be tested by others in
relation to their experiences from art practice and in future computational imple-
mentations.

Though preliminary, the model already provides a framework for analysis, dis-
cussion and possibly emulation of a number of important concepts and phenomena
directly related to creativity:

• of the relationship between the theoretically, practically and conceptually possi-
ble; between material, tools and ideas;

• of the relationship between the artist and his tools;
• of ideas, concepts and generative processes as guiding mechanisms for realisation

of a work;
• of choices, and how we navigate the space of the possible;
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• of the realisation of a work as a non-linear process;
• of our cognitive preconditions—our ability to structurally interpret material, to

create variation, to see connections between different parts of the space of the
possible, and to find or design tools that take us there;

• of re-conceptualisation as an essential part of the iterated process of realising a
work;

• of personal style as characteristics of the personal topologies in material space.

In this chapter, I have mostly discussed how we go about realising the artistic arte-
fact and give it form in a particular framework or context. The model does not cover
what we want to express, depict or give form to as artists, or the value of the out-
come, which is included in some definitions of creativity. According to this view,
the result not only has to be new or novel, but valued by the community where it
appears—or else it is not judged as creative. If we speak about value as in good
art vs. bad art, then value is not intrinsic in the work, but relative to the observer.
It lies in the consistency of ideas, depth and detail of implementation; in the rel-
evance to the observer of the ideas conveyed. As long as it can provide an ade-
quately complex reflective surface for the observer, to enable her to make her own
re-conceptualisation and arrive at something which resonates with her thoughts, it
can be good art. I think this kind of value and meaning in a computer-generated
artwork may emerge from a faithfully implemented creative process.

Based on thorough observation of my own creative processes, and experience
from artistic teaching, from development of creative tools, and from my research
into applications of creative algorithms, I am quite convinced that the proposed
model could provide the basis for such implementations, providing a deeper un-
derstanding of artistic creative processes: in humans and in machines.
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Chapter 9
Computer Programming in the Creative Arts

Alex McLean and Geraint Wiggins

Abstract Computer programming is central to the digital arts, and is a compara-
tively new creative activity. We take an anthropocentric view of computer program-
ming in the arts, examining how the creative process has been extended to include
the authorship and execution of algorithms. The role of human perception in this
process is a focus, contrasted and ultimately combined with a more usual linguis-
tic view of programming. Practical impacts on the notation of programs in the arts
are highlighted, both in terms of space and time, marking out this new domain for
programming language design.

9.1 Introduction

Computer programming for the arts is a subject laden with misconceptions and far-
flung claims. The perennial question of authorship is always with us: if a computer
program outputs art, who has made it, the human or the machine? Positions on cre-
ativity through computer programming tend towards opposite poles, with outright
denials at one end and outlandish claims at the other. The present contribution looks
for clarity through a human-centric view of programming as a key activity behind
computer art. We view the artist-programmer as engaged in an inner human relation-
ship between perception, cognition and computation, and relate this to the notation
and operation of their algorithms.

The history of computation is embedded in the history of humankind. Compu-
tation did not arrive with the machine: it is something that humans do. We did not
invent computers: we invented machines to help us compute. Indeed, before the ar-
rival of mechanical computers, “computer” was a job title for a human employed
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to carry out calculations. In principle, these workers could compute anything that
modern digital computers can, given enough pencils, paper and time.

The textile industry saw the first programmable machine to reach wide use: the
head of the Jacquard loom, a technology still used today. Long strips of card are
fed into the Jacquard head, which reads patterns punched into the card to guide
intricate patterning of weaves. The Jacquard head does not itself compute, but was
much admired by Charles Babbage, inspiring work on his mechanical analytical
engine (Essinger 2004), the first conception of a programmable universal computer.
Although Babbage did not succeed in building the analytical engine, his design
includes a similar card input mechanism to the Jacquard head, but with punched
patterns describing abstract calculations rather than textile weaves.

This early computer technology was later met with theoretical work in mathe-
matics, such as Church’s lambda calculus (Church 1941) and the Turing machine
(Turing 1992, orig. 1947), which seeded the new field of computer science. Com-
puter programmers may be exposed to these theoretical roots through their educa-
tion, having great impact on their craft. As it is now practised, however, computer
programming is far from a pure discipline, with influences including linguistics,
engineering and architecture, as well as mathematics.

From these early beginnings programmers have pulled themselves up by their
bootstraps, creating languages within languages in which great hierarchies of in-
teracting systems are expressed. Much of this activity has been towards military,
business or scientific ends. However, there are numerous examples of alternative
programmer subcultures forming around fringe activity without obvious practical
application. The Hacker culture at MIT was an early example (Levy 2002), a group
of male model-railway enthusiasts and phone network hackers who dedicated their
lives to exploring the possibilities of new computers, under the pay of the mili-
tary. Many other programming cultures have since flourished. Particularly strong
and long-lived is the demoscene, a youth culture engaged in pushing computer an-
imation to the limits of available hardware, using novel algorithmic techniques to
dazzling ends. The demoscene spans much of the globe but is particularly strong
in Nordic countries, hosting annual meetings with thousands of participants (Polgár
2005).

Another, perhaps looser, programmer culture is that of Esoteric Programming
Languages or esolangs, which Wikipedia defines as “programming language(s) de-
signed as a test of the boundaries of computer programming language design, as
a proof of concept, or as a joke”. By pushing the boundaries of programming, es-
olangs provide insight into the constraints of mainstream programming languages.
For example, Piet is a language notated with fluctuations of colour over a two di-
mensional matrix. Programs are generally parsed as one dimensional sequences, and
colour is generally secondary notation (Blackwell and Green 2002) rather than pri-
mary syntax. Piet programs, such as that shown in Fig. 9.1, intentionally resemble
abstract art, the language itself named after the modernist painter Piet Mondrian.
We return to secondary notation, as well as practical use of two dimensional syntax
in Sect. 9.4.

Members of the demoscene and esolang cultures do not necessarily self-identify
as artists. However, early on, communities of experimental artists looking for new
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Fig. 9.1 Source code written
in the Piet language with two
dimensional, colour syntax.
Prints out the text “Hello,
world!”. Image © Thomas
Schoch 2006. Used under the
Creative Commons BY-SA
2.5 license

means of expression grew around computers as soon as access could be gained. In
Great Britain, interest during the 1960s grew into the formation of the Computer
Arts Society (CAS)1 (Brown et al. 2009). However after a creative boom CAS en-
tered a period of dormancy in the mid-1980s, perhaps drowned out by extensive
commercial growth in the computer industry at that time. CAS has, however, been
revived in more recent years, encouraged by a major resurgence of software as a
medium for the arts. This has seen a wealth of new programming environments
designed for artists and musicians, such as Processing (Reas and Fry 2007), Super-
Collider (McCartney 2002), ChucK (Wang and Cook 2004), VVVV (http://vvvv.org)
and OpenFrameworks (openframeworks.cc), joining more established environments
such as the Patcher languages (Puckette 1988), PureData and Max. These have
gained enthusiastic adoption outside a traditional base focused on academic institu-
tions, and have proved useful for teaching the conceptual visualisation required to
program computers.

Several artist-programmers have made their own, novel languages in which to
make their art. These often seem like esoteric languages that have found practi-
cal application. For example unique representations of time are central features of
ChucK and SuperCollider. Programming languages have themselves been exhibited
as works of art, such as the Al-Jazari music programming environment shown in
Fig. 9.2 (McLean et al. 2010). Programming languages made for artists have cre-
ated new and emerging approaches to language design. This is not just a matter of
technical achievement, but brings important psychological issues to the fore.

What is the relationship between an artist, their creative process, their program,
and their artistic works? We will look for answers from perspectives of psychology,
cognitive linguistics, computer science and computational creativity, but first from
the perspective of an artist.

1www.computer-arts-society.org.

http://vvvv.org
http://openframeworks.cc
http://www.computer-arts-society.org
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Fig. 9.2 The robots of the Al-Jazari language by Dave Griffiths (McLean et al. 2010). Each robot
has a thought bubble containing a small program, edited through a game pad

9.2 Creative Processes

The painter Paul Klee describes a creative process as a feedback loop:

Already at the very beginning of the productive act, shortly after the initial motion to create,
occurs the first counter motion, the initial movement of receptivity. This means: the creator
controls whether what he has produced so far is good. The work as human action (genesis)
is productive as well as receptive. It is continuity. (Klee 1953, p. 33, original emphasis)

This is creativity without planning, a feedback loop of making a mark on canvas,
perceiving the effect, and reacting with a further mark. Being engaged in a tight
creative feedback loop places the artist close to their work, guiding an idea to un-
foreseeable conclusion through a flow of creative perception and action. Klee writes
as a painter, working directly with his medium. Programmer-artists instead work
using computer language as text representing their medium, and it might seem that
this extra level of abstraction could hinder creative feedback. We will see however
that this is not necessarily the case, beginning with the account of Turkle and Papert
(1992), describing a bricolage approach (after Lévi-Strauss 1968) to programming
by analogy with painting:

The bricoleur resembles the painter who stands back between brushstrokes, looks at the
canvas, and only after this contemplation, decides what to do next. Bricoleurs use a mastery
of associations and interactions. For planners, mistakes are missteps; bricoleurs use a navi-
gation of mid-course corrections. For planners, a program is an instrument for premeditated
control; bricoleurs have goals but set out to realize them in the spirit of a collaborative ven-
ture with the machine. For planners, getting a program to work is like “saying one’s piece”;
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Fig. 9.3 The process of
action and reaction in
bricolage programming

for bricoleurs, it is more like a conversation than a monologue. (Turkle and Papert 1990,
p. 136)

This concept of bricolage accords with Klee’s account, and is also strongly re-
lated to that of the reflective practice (Schon 1984). This distinguishes the normal
conception of knowledge, as gained through study of theory, from that which is
learnt, applied and reflected upon while “in the work”. Reflective practice has strong
influences in professional training, particularly in the educational and medical fields.
This suggests that the present discussion could have relevance beyond our focus on
the arts.

Although Turkle and Papert address gender issues in computer education, this
quote should not be misread as dividing all programmers into two types; while
associating bricolage with feminine and planning with male traits (although note
Blackwell 2006a), they are careful to state that these are extremes of a behavioural
continuum. Indeed, programming style is clearly task specific: for example a project
requiring a large team needs more planning than a short script written by the end
user.

Bricolage programming seems particularly applicable to artistic activity, such
as writing software to generate music, video animation or still images. Imagine a
visual artist, programming their work using Processing. They may begin with an
urge to draw superimposed curved lines, become interested in a tree-like structure
they perceive in the output of their first implementation, and change their program to
explore this new theme further. The addition of the algorithmic step would appear
to affect their creative process as a whole, and we seek to understand how in the
following.

9.2.1 Creative Process of Bricolage

Figure 9.3 characterises bricolage programming as a creative feedback loop encom-
passing the written algorithm, its interpretation, and the programmer’s perception
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and reaction to its output or behaviour. Creative feedback loops are far from unique
to programming, but the addition of the algorithmic component makes an additional
inner loop explicit between the programmer and their text. At the beginning, the pro-
grammer may have a half-formed concept, which only reaches internal consistency
through the process of being expressed as an algorithm. The inner loop is where
the programmer elaborates upon their imagination of what might be, and the outer
where this trajectory is grounded in the pragmatics of what they have actually made.
Through this process both algorithm and concept are developed, until the program-
mer feels they accord with one another, or otherwise judges the creative process to
be finished.

The lack of forward planning in bricolage programming means the feedback loop
in Fig. 9.3 is self-guided, possibly leading the programmer away from their initial
motivation. This straying is likely, as the possibility for surprise is high, particularly
when shifting from the inner loop of implementation to the outer loop of perception.
The output of a generative art process is rarely exactly what we intended, and we will
later argue in Sect. 9.5 that this possibility of surprise is an important contribution
to creativity.

Representations in the computer and the mind are evidently distinct from one
another. Computer output evokes perception, but that percept will both exclude fea-
tures that are explicit in the output and include features that are not, due to a range
of effects including attention, knowledge and illusion. Equally, a human concept
is distinct from a computer algorithm. Perhaps a program written in a declarative
rather than imperative style is somewhat closer to a concept, being not an algorithm
for how to carry out a task, but rather a description of what is to be done. But still,
there is a clear line to be drawn between a string of discrete symbols in code, and
the morass of both discrete and continuous representations which underlie cognition
(Paivio 1990).

There is something curious about how the programmer’s creative process spawns
a second, computational one. In an apparent trade-off, the computational process is
lacking in the broad cognitive abilities of its author, but is nonetheless both faster
and more accurate at certain tasks by several orders of magnitude. It would seem that
the programmer uses the programming language and its interpreter as a cognitive
resource, augmenting their own abilities in line with the extended mind hypothesis
(Clark 2008). We will revisit this issue within a formal framework in Sect. 9.5, after
first looking more broadly at how we relate programming to human experience, and
related issues of representation.

9.3 Anthropomorphism and Metaphor in Programming

Metaphor permeates our understanding of programming. Perhaps this is due to the
abstract nature of computer programs, requiring metaphorical constructs ground
programming language in everyday reasoning. Petre and Blackwell (1999) gave
subjects programming tasks, and asked them to introspect upon their imagination



9 Computer Programming in the Creative Arts 241

COMPONENTS ARE AGENTS OF ACTION IN A CAUSAL UNIVERSE.
PROGRAMS OPERATE IN HISTORICAL TIME.
PROGRAM STATE CAN BE MEASURED IN QUANTITATIVE TERMS.
COMPONENTS ARE MEMBERS OF A SOCIETY.
COMPONENTS OWN AND TRADE DATA.
COMPONENTS ARE SUBJECT TO LEGAL CONSTRAINTS.
METHOD CALLS ARE SPEECH ACTS.
COMPONENTS HAVE COMMUNICATIVE INTENT.
A COMPONENT HAS BELIEFS AND INTENTIONS.
COMPONENTS OBSERVE AND SEEK INFORMATION IN THE EXECUTION ENVIRONMENT.
COMPONENTS ARE SUBJECT TO MORAL AND AESTHETIC JUDGEMENT.
PROGRAMS OPERATE IN A SPATIAL WORLD WITH CONTAINMENT AND EXTENT.
EXECUTION IS A JOURNEY IN SOME LANDSCAPE.
PROGRAM LOGIC IS A PHYSICAL STRUCTURE, WITH MATERIAL PROPERTIES AND

SUBJECT TO DECAY.
DATA IS A SUBSTANCE THAT FLOWS AND IS STORED.
TECHNICAL RELATIONSHIPS ARE VIOLENT ENCOUNTERS.
PROGRAMS CAN AUTHOR TEXTS.
PROGRAMS CAN CONSTRUCT DISPLAYS.
DATA IS A GENETIC, METABOLIZING LIFEFORM WITH BODY PARTS.
SOFTWARE TASKS AND BEHAVIOUR ARE DELEGATED BY AUTOMATICITY.
SOFTWARE EXISTS IN A CULTURAL/HISTORICAL CONTEXT.
SOFTWARE COMPONENTS ARE SOCIAL PROXIES FOR THEIR AUTHORS.

Fig. 9.4 Conceptual metaphors derived from analysis of Java library documentation by Blackwell
(2006b). Program components are described metaphorically as actors with beliefs and intentions,
rather than mechanical imperative or mathematical declarative models

while they worked. These self reports are rich and varied, including exploration of
a landscape of solutions, dealing with interacting creatures, transforming a dance of
symbols, hearing missing code as auditory buzzing, combinatorial graph operations,
munching machines, dynamic mapping and conversation. While we cannot rely on
these introspective reports as authoritative on the inner workings of the mind, the
diversity of response hints at highly personalised creative processes, related to phys-
ical operations in visual or sonic environments. It would seem that a programmer
uses metaphorical constructs defined largely by themselves and not by the com-
puter languages they use. However mechanisms for sharing metaphor within a cul-
ture do exist. Blackwell (2006b) used corpus linguistic techniques on programming
language documentation in order to investigate the conceptual systems of program-
mers, identifying a number of conceptual metaphors listed in Fig. 9.4. Rather than
finding metaphors supporting a mechanical, mathematical or logical approach as
you might expect, components were instead described as actors with beliefs and
intentions, being social entities acting as proxies for their developers.

It would seem, then, that programmers understand the structure and operation of
their programs by metaphorical relation to their experience as a human. Indeed the
feedback loop described in Sect. 9.2 is by nature anthropomorphic; by embedding
the development of an algorithm in a human creative process, the algorithm itself
becomes a human expression. Dijkstra strongly opposed such approaches:
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I have now encountered programs wanting things, knowing things, expecting things, be-
lieving things, etc., and each time that gave rise to avoidable confusions. The analogy that
underlies this personification is so shallow that it is not only misleading but also paralyzing.
(Dijkstra 1988, p. 22)

Dijkstra’s claim is that by focusing on the operation of algorithms, the programmer
submits to a combinatorial explosion of possibilities for how a program might run;
not every case can be covered, and so bugs result. He argues for a strict, declarative
approach to computer science and programming in general, which he views as so
radical that we should not associate it with our daily existence, or else limit its
development and produce bad software.

The alternative view presented here is that metaphors necessarily structure our
understanding of computation. This view is sympathetic to a common assumption
in the field of cognitive linguistics, that our concepts are organised in relation to
each other and to our bodies, through conceptual systems of metaphor (Lakoff and
Johnson 1980). Software now permeates Western society, and is required to func-
tion reliably according to human perception of time and environment. Metaphors of
software as human activity are therefore becoming ever more relevant.

9.4 Symbols and Space

We now turn our attention to how the components of the bricolage programming
process shown in Fig. 9.3 are represented, in order to ground understanding of how
they may interrelate. Building upon the anthropocentric view taken above, we pro-
pose that in bricolage programming, the human cognitive representation of pro-
grams centres around perception. Perception results in a low-dimensional represen-
tation of sensory input, giving us a somewhat coherent, spatial view of our environ-
ment. By spatial, we do not merely mean “in terms of physical objects”; rather, we
speak in terms of features in the spaces of all possible tastes, sounds, tactile textures
and so on. This scene is built through a process of dimensional reduction from tens
of thousands of chemo-, photo-, mechano- and thermoreceptor signals. Algorithms
on the other hand are represented in discrete symbolic sequences, as is their output,
which must go through some form of digital-to-analogue conversion before being
presented to our sensory apparatus, for example, as light from a monitor screen
or sound pressure waves from speakers, triggering a process we call observation.
Recall the programmer from Sect. 9.2, who saw something not represented in the
algorithm or even in its output, but only in their own perception of the output; ob-
servation is itself a creative act.

The remaining component to be dealt with from Fig. 9.3 is that of programmers’
concepts. A concept is “a mental representation of a class of things” (Murphy 2002,
p. 5). Figure 9.3 shows concepts mediating between spatial perception and discrete
algorithms, leading us to ask: are concepts represented more like spatial geometry,
like percepts, or symbolic language, like algorithms? Our focus on metaphor leads
us to take the former view, that conceptual representation is grounded in perception
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and the body. This view is taken from Conceptual Metaphor Theory (CMT) intro-
duced by Lakoff and Johnson (1980), which proposes that concepts are primarily
structured by metaphorical relations, the majority of which are orientational, under-
stood relative to the human body in space or time. In other words, the conceptual
system is grounded in the perceptual system. The expressive power of orientational
metaphors is that it structures concepts not in terms of one another, but in terms of
the orientation of the physical body. These metaphors allow concepts to be related
to one another as part of a broad, largely coherent system.

Returning to Fig. 9.4, showing programming metaphors in the Java language,
we find the whole class of orientational metaphors described as a single metaphor
PROGRAMS OPERATE IN A SPATIAL WORLD WITH CONTAINMENT AND EXTENT.
In line with CMT, we suggest this is a major understatement, that orientational
metaphors structure the understanding of the majority of fundamental concepts.
For example, a preliminary examination leads us to hypothesise that orientational
metaphors such as ABSTRACTION IS UP and PROGRESS IS FORWARD would be
consistent with this corpus, but further work is required.

Gärdenfors (2000) formalises orientational metaphor by further proposing that
the semantic meanings of concepts, and the metaphorical relationships between
them are represented as geometrical properties and relationships. Gärdenfors posits
that concepts themselves are represented by geometric regions of low dimensional
spaces, defined by quality dimensions. These dimensions are either mapped directly
from, or structured by metaphorical relation to perceptual qualities. For example
“red” and “blue” are regions in perceptual colour space, and the metaphoric seman-
tics of concepts within the spaces of mood, temperature and importance may be
defined relative to geometric relationships of such colours.

Gärdenforsian conceptual spaces are compelling when applied to concepts re-
lated to bodily perception, emotion and movement, and Forth et al. (2008) report
early success in computational representations of conceptual spaces of musical
rhythm and timbre, through reference to research in music perception. However, it
is difficult to imagine taking a similar approach to computer programs. What would
the quality dimensions of a geometrical space containing all computer programs be?
There is no place to begin to answer this question; computer programs are linguis-
tic in nature, and cannot be coherently mapped to a geometrical space grounded in
perception.

For clarity, we turn once again to Gärdenfors (2000), who points out that spa-
tial representation is not in opposition to linguistic representation; they are distinct
but support one another. This is clear in computing, where hardware exists in our
world of continuous space, but thanks to reliable electronics, conjures up a world of
discrete computation. As we noted in the introduction, humans are able to conjure
up this world too, for example by computing calculations in our head, or encoding
concepts into phonetic movements of the vocal tract or alphabetic symbols on the
page. We can think of ourselves as spatial beings able to simulate a discrete environ-
ment to conduct abstract thought and open channels of communication. On the other
hand, a piece of computer software is able to simulate spatial environments, perhaps
to host a game world or guide robotic movements, both of which may include some
kind of model of human perception.
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A related theory lending support to this view is that of Dual Coding, developed
through rigorous empirical research by Paivio (1990). Humans have a capacity to
simultaneously attend to both the discrete codes of language and the analogue codes
of imagery. We are also able to reason by invoking quasi-perceptual states, for ex-
ample by performing mental rotation in shape matching tasks (Shepard and Metzler
1971). Through studying such behaviour Paivio (1990) concludes that humans have
a dual system of symbolic representation; an analogue system for relating to modes
of perception, and a discrete system for the arbitrary, discrete codes of language.
These systems are distinct but interrelate, with “high imagers” being those with high
integration between their linguistic and quasi-perceptual symbolic systems (Vogel
2003).

Returning to our theme of programming, the above theories lead us to question
the role of continuous representation in computer language. Computer language op-
erates in the domain of abstraction and communication but in general does not at
base include spatial semantics. Do programmers simply switch off a whole chan-
nel of perception to focus only on the discrete representation of code? It would
appear not. In fact, spatial layout is an important feature of secondary notation in
all mainstream programming languages (Blackwell and Green 2002), which gen-
erally allow programmers to add white-space to their code freely with little or no
syntactical meaning. Programmers use this freedom to arrange their code so that ge-
ometrical features may relate its structure at a glance. That programmers need to use
spatial layout as a crutch while composing discrete symbolic sequences is telling; to
the interpreter, a block may be a subsequence between braces, but to an experienced
programmer it is a perceptual gestalt grouped by indentation. From this we assert
that concordant with Dual Coding theory, the linguistic work of programming is
supported by spatial reasoning, with secondary notation helping bridge the divide.

There are few examples of spatial arrangement being part of primary syntax. In
the large majority of mainstream programming languages geometric syntax does
not go beyond one-dimensional adjacency, although in the Python and Haskell lan-
guages statements are grouped according to two dimensional rules of indentation.
Even visual programming languages, such as the Patcher Languages mentioned in
Sect. 9.1, generally do not take spatial arrangement into account (execution order in
Max is given by right-left ordering, but the same can be said of ‘non-visual’ pro-
gramming languages).

As we noted in Sect. 9.1, the study of “Programming Languages for the Arts”
is pushing the boundaries of programming notation, and geometrical syntax is no
exception. There are several compelling examples of geometry used in the syntax of
languages for music, often commercial projects emerging from academic research.
The ReacTable (Jordà et al. 2005) is a tangible, multi-user interface, where blocks
imprinted with computer readable symbols are placed on a circular display surface
(Fig. 9.5). We consider the ReacTable as a programming language environment, al-
though it is not presented as such by its creators. Each symbol represents a sound
synthesis function, with a synthesis graph formed based upon the pairwise prox-
imity of the symbols. Relative proximity and orientation of connected symbols are
used as parameters modifying the operation of synthesis nodes. Figure 9.6 shows a
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Fig. 9.5 The ReacTable (Jordà et al. 2005): a tangible interface for live music, presented here as a
programming language environment

screenshot of Text, a visual language inspired by the ReacTable and based upon the
pure functional Haskell programming language. In Text, functions and values may
be placed freely on the page, and those with compatible types are automatically con-
nected together, closest first. Functions are curried, allowing terse composition of
higher order functions. Text could in theory be used for general programming, but
is designed for improvising live music, using an underlying musical pattern library
(McLean and Wiggins 2010b). A rather different approach to spatial syntax is taken
by Nodal, where distance between symbols represents elapsed time during interpre-
tation (McCormack and McIlwain 2011). The result is a control flow graph where
time relationships in musical structure can be easily seen and manipulated as spatial
relationships.2 In all of these examples, the graphs may be changed while they are
executed, allowing interactive composition and indeed live improvisation of the like
examined in Sect. 9.6.

An important assertion within CMT is that a conceptual system of seman-
tic meaning exists within an individual, and not as direct reference to the world.
Through language, metaphors become established in a culture and shared by its
participants, but this is an effect of individual conceptual systems interacting, and
not individuals inferring and adopting external truths of the world (or of possi-
ble worlds). This would account for the varied range of programming metaphors
discussed in Sect. 9.3, as well as the general failure of attempts at designing
fixed metaphors into computer interfaces (Blackwell 2006c). Each programmer has
a different set of worldly interests and experiences, and so establishes different

2This space/time syntax can also be seen in Al-Jazari mentioned earlier and shown in Fig. 9.2.
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Fig. 9.6 Text, a visual programming language designed for improvised performance of electronic
dance music. Functions automatically connect, according to their distance and type compatibility

metaphorical systems to support their programming activities. However, by build-
ing orientational and spatial metaphors into programming notation, such as TIME IS

DISTANCE, PROXIMITY IS CONNECTIVITY and ORIENTATION IS EXTENT, uni-
versal bodily relationships are employed. This results in metaphors that are more
readily understood, employing general cognitive resources to artistic expression.

9.5 Components of Creativity

We now have grounds to formally characterise how the creative process operates
in bricolage programming. For this we employ the Creative Systems Framework
(CSF), a high-level formalisation of creativity introduced by Wiggins (2006a,b) and
based upon the work of Boden (2003). Creativity is characterised as a search in a
space of concepts, using the quasi-Platonic idea, common in AI, that there is an
effective duality between exploration of an extant range of items, that conform to
rules, and construction of new items according to those rules, in a context where
the extent of the space is unknown. Within the CSF, a creative search has three key
aspects: the conceptual search space itself, traversal of the space and evaluation of
concepts found in the space. In other words, creativity requires somewhere to search,
a manner of searching, and a means to judge what you find. However, creative be-
haviour may make use of introspection, self-modification and need boundaries to
be broken. That is, the constraints of search space, traversal and evaluation are not
fixed, but are examined, challenged and modified by the creative agent following
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Fig. 9.7 The process of
action and reaction in
bricolage programming from
Fig. 9.3, showing the three
components of the Creative
Systems Framework, namely
search space, traversal
strategy and evaluation

(and defined by) them. The CSF supplies tests for particular kinds of aberration
from the expected conceptual space and suggests approaches to addressing them.

Again using the terminology of Gärdenfors (2000), the search spaces of the CSF
are themselves concepts, defining regions in a universal space defined by quality di-
mensions. Thus, transformational creativity is a geometrical transformation of these
regions, motivated by a process of searching through and beyond them; crucially,
the search space is not closed. As we will see, this means that a creative agent
may creatively push beyond the boundaries of the search. While acknowledging
that creative search may operate over linguistic search spaces, we focus on geo-
metric spaces grounded in perception. This follows our focus on artistic bricolage
(Sect. 9.2), which revolves around perception. For an approach unifying linguistic
and geometric spaces see Forth et al. (2010).

We may now clarify the bricolage programming process introduced in Sect. 9.2.1
within the CSF. As shown in Fig. 9.7, the search space defines the programmer’s
concept, being their current artistic focus structured by learnt techniques and con-
ventions. The traversal strategy is the process of attempting to generate part of the
concept by encoding it as an algorithm, which is then interpreted by the computer.
Finally, evaluation is a perceptual process in reaction to the output.

In Sect. 9.2, we alluded to the extended mind hypothesis (Clark 2008), claim-
ing that bricolage programming takes part of the human creative process outside of
the mind and into the computer.3 The above makes clear what we claim is being
externalised: part of the traversal strategy. The programmer’s concept motivates a
development of the traversal strategy, encoded as a computer program, but the pro-
grammer does not necessarily have the cognitive ability to fully evaluate it. That task
is taken on by the interpreter running on a computer system, meaning that traversal
encompasses both encoding by the human and interpretation by the computer.

The traversal strategy is structured by the techniques and conventions employed
to convert concepts into operational algorithms. These may include design patterns,
a standardised set of ways of building that have become established around many

3See also Chap. 14 by Bown.
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classes of programming language. Each design pattern identifies a kind of problem,
and describes a generalised structure towards a solution.4

The creative process is guided by the programmer’s concept of what is a valid
end result. This is shaped by the programmer’s current artistic focus, being the per-
ceptual qualities they are currently interested in, perhaps congruent with a cultural
theme such as a musical genre or artistic movement. Transformational creativity
can be triggered in the CSF when traversal extends outside the bounds of the search
space. If the discovered conceptual instance is valued, then the search space may be
extended to include it. If, however, it is not valued, then the traversal strategy may
be modified to avoid similar instances in the future.

Because the traversal strategy of a programmer includes external notation and
computation, they are likely to be less successful in writing software that meets
their preconceptions, or in other words more successful in being surprised by the
results. A creative process that includes external computation will follow less pre-
dictable path as a result. Nonetheless the process has the focus of a search space,
and is guided by value in relation to a rich perceptual framework, and so while un-
predictable, this influence is far from random, being meaningful interplay between
human/computer language and human perceptual experience. The human concepts
and algorithm are continually transformed in respect to one another, and to percep-
tual affect, in creative feedback.

According to our embodied view, not only is perception crucial in evaluating
output within bricolage programming, but also in structuring the space in which
programs are conceptualised. Indeed if the embodied view of CMT holds in gen-
eral, the same would apply to all creative endeavour. From this we find motivation
for the field of computational creativity in grounding an artificial creative agent
in its environment. This is done by acquiring computational models of perception
sufficient for the agent to both evaluate its own works and structure its conceptual
system. Then the agent would have a basis for guiding changes to its own concep-
tual system and generative traversal strategy, able to modify itself to find artifacts
that it was not programmed to find, and place value judgements on them. Such an
agent would need to adapt to human culture in order to interact with shifting cul-
tural norms, keeping its conceptual system and resultant creative process coherent
within that culture. For now, however, this is wishful thinking, and we must accept
generative computer programs which extend human creativity, but are not creative
agents in their own right.

9.6 Programming in Time

“She is not manipulating the machine by turning knobs or pressing buttons. She is writing
messages to it by spelling out instructions letter by letter. Her painfully slow typing seems

4This structural heuristic approach to problem solving is inspired by work in the field of urban
design (Alexander et al. 1977).
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laborious to adults, but she carries on with an absorption that makes it clear that time has
lost its meaning for her.” Sherry Turkle (2005, p. 92), on Robin, aged 4, programming a
computer.

Having investigated the representation and operation of bricolage programming
we now examine how the creative process operates in time. Dijkstra might argue
that considering computer programs as operating in time at all, rather than as en-
tirely abstract logic, is itself a form of the anthropomorphism examined in Sect. 9.3.
However from the above quotation it seems that Robin stepped out of any notion of
physical time, and into the algorithm she was composing, entering a timeless state.
This could be a state of optimum experience, the “flow” investigated by Csikszent-
mihalyi where “duration of time is altered; hours pass by in minutes, and minutes
can stretch out to seem like hours” (Csikszentmihalyi 2008, p. 49). Perhaps in this
state a programmer is thinking in algorithmic time, attending to control flow as it
replays over and over in their imagination, and not to the world around them. Or per-
haps they are not attending to the passage of time at all, thinking entirely of declar-
ative abstract logic, in a timeless state of building. In either case, it would seem that
the human is entering time relationships of their software, rather than the opposite,
anthropocentric direction of software entering human time. While programmers can
appear detached from “physical” time, there are ways in which the timelines of pro-
gram development and operation may be united, which we will come to shortly.

Temporal relationships are generally not represented in source code. When a pro-
grammer needs to do so, for example, as an experimental psychologist requiring ac-
curate time measurements, or a musician needing accurate synchronisation between
processes, they run into problems of accuracy and latency. With the wide prolifera-
tion of interacting embedded systems, this is becoming a broad concern (Lee 2009).
In commodity systems time has been decentralised, abstracted away through layers
of caching, where exact temporal dependencies and intervals between events are
not deemed worthy of general interest. Programmers talk of “processing cycles” as
a valuable resource which their processes should conserve, but they generally no
longer have programmatic access to the high frequency oscillations of the central
processing units (now, frequently plural) in their computer. The allocation of time to
processes is organised top-down by an overseeing scheduler, and programmers must
work to achieve what timing guarantees are available. All is not lost, however, as re-
altime kernels are now available for commodity systems, allowing psychologists
(Finney 2001) and musicians (e.g. via http://jackaudio.org/) to get closer to physical
time. Further, the representation of time semantics in programming is undergoing
active research in a sub-field of computer science known as reactive programming
(Elliott 2009), with applications emerging in music (McLean and Wiggins 2010a).

9.6.1 Interactive Programming

Interactive programming allows a programmer to examine an algorithm while it is
interpreted, taking on live changes without restarts. This unites the time flow of a

http://jackaudio.org/
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program with that of its development, using dynamic interpretation or compilation.
Interactive programming makes a dynamic creative process of test-while-implement
possible, rather than the conventional implement-compile-test cycle, so that arrows
shown in Figs. 9.3 and 9.7 show concurrent influences between components rather
than time-ordered steps.

Interactive programming not only provides a more efficient creative feedback
loop, but also allows a programmer to connect software development with time
based art. Since 2003 an active group of practitioners and researchers have been
developing new approaches to making computer music and video animation, col-
lectively known as Live coding (Blackwell and Collins 2005, Ward et al. 2004,
Collins et al. 2003, Rohrhuber et al. 2005). The archetypal live coding performance
involves programmers writing code on stage, with their screens projected for an au-
dience, while the code is dynamically interpreted to generate music or video. Here
the process of development is the performance, with the work generated not by a
finished program, but through its journey of development from nothing to complex
algorithm, generating continuously changing musical or visual form along the way.
This is bricolage programming taken to a logical and artistic conclusion.

9.7 Conclusion

What we have discussed provides strong motivation for addressing the concerns of
artist-programmers. These include concerns of workflow, where elapsed time be-
tween source code edits and program output slows the creative process. Concerns
of programming environment are also important, which should be optimised for the
presentation of shorter programs in their entirety to support bricolage programming,
rather than hierarchical views of larger codebases. Perhaps most importantly, we
have seen motivation for the development of new programming languages, pushing
the boundaries to greater support artistic expression.

From the embodied view we have taken, it would seem useful to integrate time
and space further into programming languages. In practice, integrating time can
mean, on one hand, including temporal representations in core language seman-
tics, and on the other, uniting development time with execution time, as we have
seen with interactive programming. Temporal semantics and interactive program-
ming both already feature strongly in some programming languages for the arts, as
we saw in Sect. 9.6, but how about analogous developments in integrating geomet-
ric relationships into the semantics and activity of programming? It would seem the
approaches shown in Nodal, the ReacTable and Text described in Sect. 9.1 are show-
ing the way towards greater integration of computational geometry and perceptual
models into programming language. This is already serving artists well, and could
become a new focus for visual programming language research.

We began with Paul Klee, a painter whose production was limited by his two
hands. The artist-programmer is limited differently to the painter, but shares what
Klee called his limitation of reception, by the “limitations of the perceiving eye”.
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This is perhaps a limitation to be expanded but not overcome: celebrated and fully
explored using all we have, including our new computer languages. We have char-
acterised a bricolage approach to artistic programming as an embodied, creative
feedback loop. This places the programmer close to their work, grounding discrete
computation in orientational and temporal metaphors of their human experience.
However, the computer interpreter extends the programmer’s abilities beyond their
own imagination, making unexpected results likely, leading the programmer to new
creative possibilities.
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Chapter 10
Computational Aesthetic Evaluation:
Past and Future

Philip Galanter

Abstract Human creativity typically includes a self-critical aspect that guides inno-
vation towards a productive end. This chapter offers a brief history of, and outlook
for, computational aesthetic evaluation by digital systems as a contribution towards
potential machine creativity. First, computational aesthetic evaluation is defined and
the difficult nature of the problem is outlined. Next, a brief history of computational
aesthetic evaluation is offered, including the use of formulaic and geometric theo-
ries; design principles; evolutionary systems including extensions such as coevolu-
tion, niche construction, agent swarm behaviour and curiosity; artificial neural net-
works and connectionist models; and complexity models. Following this historical
review, a number of possible contributions towards future computational aesthetic
evaluation methods are noted. Included are insights from evolutionary psychology;
models of human aesthetics from psychologists such as Arnheim, Berlyne, and Mar-
tindale; a quick look at empirical studies of human aesthetics; the nascent field of
neuroaesthetics; new connectionist computing models such as hierarchical temporal
memory; and computer architectures for evolvable hardware. Finally, it is suggested
that the effective complexity paradigm is more useful than information or algorith-
mic complexity when thinking about aesthetics.

10.1 Introduction

This chapter looks at computers and aesthetic evaluation. In common usage the
word creativity is associated with bringing the new and innovative into being. The
term, whether used in reference to the arts or more generally, connotes a sort of self-
directedness and internal drive. Evaluation or criticism is by its very nature reactive.
Something is first created and only then can it be evaluated. Evaluation and creativity
at first seem to be two different kinds of activity performed at different times.

But almost any exploration of creativity will quickly reveal evaluation threaded
throughout the entire process. For accomplished artists there are usually at least
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three ways evaluation becomes an intrinsic part of the creative process. First, artists
typically exercise evaluation as they experience, study, and find inspiration in the
work of other artists. In practice artists will execute countless micro-evaluations as
part of making aesthetic decisions for works-in-progress. Once completed, artists
evaluate the final product, gaining new insights for the making of the next piece.

If computers are to become artistically creative their need for an evaluative func-
tion will be no less acute. Computer artists have invented a great variety of fe-
cund computational methods for generating aesthetic possibilities and variations.
But computational methods for making aesthetically sound choices among them
have lagged far behind.

This chapter provides specific examples of computational methods for making
aesthetic choices. Longer examples have been selected as good illustrations of a
particular approach, with shorter examples providing variations. Some examples
show where a path is already known to lead, while others are provided as trail heads
worthy of further exploration.

10.1.1 What Do We Mean by Computational Aesthetic Evaluation?

The word evaluation is sometimes prone to ambiguous use due to the multiple mean-
ings of the word value. For example, a mathematician can be said to evaluate an
expression or formula. An art expert might evaluate a given object for market value
or authenticity. Part of that might involve an evaluation of style and provenance.

For this discussion aesthetic evaluation refers to making normative judgements
related to questions of beauty and taste in the arts. It’s worth noting that the word
“aesthetics” alone can imply a broader critical contemplation regarding art, nature,
and culture. The topic of aesthetics, including evaluation, goes back at least to Plato
and Aristotle in the West (for a good overview of philosophical aesthetics see Carroll
1999).

The term computational aesthetics has been somewhat instable over time. For
some the term includes both generative and analytic modes, i.e. both the creation
and evaluation of art using a computer. For others it purely refers to the use of com-
puters in making aesthetic judgements. This chapter concentrates on systems for
making normative judgements, and to emphasise this I’ve used the terms “computa-
tional aesthetic evaluation”, “machine evaluation”, and “computational evaluation”
as synonyms (Hoenig 2005, Greenfield 2005b).

Computational aesthetic evaluation includes two related but distinct application
modes. In one mode aesthetic evaluations are expected to simulate, predict, or cater
to human notions of beauty and taste. In the other mode machine evaluation is an
aspect of a meta-aesthetic exploration and usually involves aesthetic standards cre-
ated by software agents in artificial worlds. Such aesthetics typically feel alien and
disconnected from human experience, but can provide insight into all possible aes-
thetics including our own.
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Finally, it’s worth noting that aesthetic evaluation and the evaluation of creativ-
ity are somewhat related but quite distinct. For example, accomplishments in non-
artistic fields such as science and mathematics can also be evaluated as to their
degree of creativity. And in the arts it’s possible to have an artwork of high aesthetic
value but without much creativity, or a highly creative artwork where the aesthetics
are poor or even irrelevant.

10.1.2 Why Is Computational Aesthetic Evaluation so Difficult
if not Impossible?

It should be noted at the outset that computational aesthetic evaluation is an ex-
tremely difficult problem. In the abstract, notions of computational aesthetic evalu-
ation and computational creativity lead to deep philosophical waters regarding phe-
nomenology and consciousness. Let’s assume a computational evaluation system is
created that appears to duplicate human aesthetic judgement. Would such a machine
actually experience a sense of redness, brightness or other qualia? How would we
know? Can machine evaluation be successful without such experience? If such a ma-
chine isn’t conscious does that mean human aesthetic judgement and computational
aesthetic evaluation are quite different? Or could it be that they aren’t so different
after all because the brain is itself a machine? All of these interesting questions are
outside of the scope of this chapter.

Some feel that effective practical computational evaluation will remain out of
reach in our lifetime and perhaps forever. The complications begin with the likely
fact that the human aesthetic response is formed by a combination of genetic predis-
position, cultural assimilation, and unique individual experience. Despite a growing
research literature, the psychology of aesthetics is a mostly incomplete science, and
our understanding of each component is limited.

Even if we had a full understanding of aesthetics’ genetic, cultural, developmen-
tal, and psychological modalities, the creation of comparable computational func-
tionality would remain a daunting task. It would probably require the resolution of a
number of standing hard problems in artificial intelligence. A model of human aes-
thetics, or human intelligence in general, has to represent more than a hypothetical
brain-in-a-jar. Our aesthetic sense and psychological makeup are in part the result
of embodied experience situated in a specific environment. Machine evaluation will
have to account for perception not as a passive mental process, but rather as a dy-
namic interaction between our bodies and the world (Davis and Rebelo 2007, Mc-
Cormack 2008). Additionally, it will have to allow for emotions and the irrational
Dionysian element in the arts.

10.2 A Brief History of Computational Aesthetic Evaluation

Any suggested computational aesthetic evaluation mechanism is going to contain, at
least implicitly, a theory of aesthetics. Most theories from the history of aesthetics do
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not immediately suggest algorithms, quantifiable properties, or objective formulas.
But some do and it is with those that our discussion begins.

10.2.1 Formulaic and Geometric Theories

The mathematician George David Birkhoff published a mostly speculative book in
1933 titled “Aesthetic Measure”. Birkhoff limits his theory to aspects of pure form
(the “formal”) and doesn’t address symbolic meaning (the “connotative”). He then
proposes the formula M = O/C where M is the measure of aesthetic effective-
ness, O is the degree of order, and C is the degree of complexity. Birkhoff (1933)
notes, “The well known aesthetic demand for ‘unity in variety’ is evidently closely
connected with this formula.”

Birkhoff warns that his measure can only be applied within a group of similar
objects and not across types such as a mix of oil and watercolour paintings. He
also finesses variation in experience and taste intending M to be a measure for an
“idealised ‘normal observer’ ” as a sort of mean of the population.

While most of the book is presented from a mathematical point of view, it is
sometimes forgotten that Birkhoff begins with an explicit psychoneurological hy-
pothesis. He describes complexity (C) as the degree to which unconscious psycho-
logical and physiological effort must be made in perceiving the object. Order (O) is
the degree of unconscious tension released as the perception is realised. This release
mostly comes from the consonance of perceived features such as “repetition, sim-
ilarity, contrast, equality, symmetry, balance, and sequence.” While Birkhoff views
complexity and order as ultimately psychological phenomena, for analysis he op-
erationalises those concepts using mathematical representations. He then goes on
to analyse examples such as polygons, vases, and harmonic structures in music to
illustrate his theory.

Birkhoff’s theory has been disputed from its first publication. For example, in
1939 Wilson published experimental results showing that Birkhoff’s measure did
not correlate with actual subjects’ stated aesthetic preferences regarding polygons
(Wilson 1939). Alternate formulas have been offered that seem to correlate more
closely with the judgements of subjects (Boselie and Leeuwenberg 1985, Staudek
1999). And for some, Birkhoff’s formula seems to measure orderliness rather than
beauty, and penalises complexity in a rather unqualified way (Scha and Bod 1993).

But there are at least two aspects of Birkhoff’s work that remain in legitimate
play today. First is the intuition that aesthetic value has something to do with com-
plexity and order relationships. Second is the idea that modelling brain function
can illuminate discussions of aesthetics. Indeed, both of these reappear as themes
throughout this chapter.

The positing of mathematical bases for aesthetics long predate Birkhoff.
Pythagoras is traditionally credited with the discovery that dividing a vibrating
string following simple consecutive integer ratios such as 1:2, 2:3, and 3:4 yields
pleasing harmony relationships. The Golden Ratio φ, an irrational constant approx-
imately equal to 1.618, and the related Fibonacci series have been said to generate
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proportions of optimal aesthetic value. It is claimed they are embedded in great
works of art, architecture, and music.

Psychologist Gustav Fechner is credited with conducting the first empirical stud-
ies of human aesthetic response in the 1860s. His experiments seemed to show that
golden rectangles had the greatest appeal relative to other aspect ratios. But subse-
quent studies have cast strong doubt on those results. As noted in a special issue
of the journal Empirical Studies of the Arts, there were methodological flaws and
cultural bias in previous confirmatory studies (McCormack 2008, Holger 1997).

In addition, Livio has credibly debunked supposed Golden Ratio use in works in-
cluding the Great Pyramids, the Parthenon, the Mona Lisa, compositions by Mozart,
and Mondrian’s late paintings. However, he notes that use of the Golden Ratio as
an aesthetic guide has become something of a self-fulfilling myth. For example, Le
Corbusier’s Modulator, a design aid for proportions, was consciously based on the
Golden Ratio (Livio 2003).

On a bit firmer ground is a principle credited to linguist George Kingsley Zipf
commonly referred to as Zipf’s law. As first applied to natural language, one can
begin with a large body of text and tally every word counting each occurrence. Then
list each word from the most to the least frequent. The observed result is that for the
frequency Pi of a given word with a given rank i:

Pi ≈ 1

ia
(10.1)

where the exponent a is near 1 (Zipf 1949).
Manaris et al. (2005; 2003) note that this power law relationship has not only

been verified in various bodies of musical composition, but also “colours in images,
city sizes, incomes, music, earthquake magnitudes, thickness of sediment deposi-
tions, extinctions of species, traffic jams, and visits of websites, among others.”
They go on to show how Zipf metrics can be used to classify specific works as
to composer, style, and an aesthetic sense of “pleasantness”. In addition Machado
et al. (2007) apply Zipf’s law in the creation of artificial art critics. Much earlier
work showed that both frequency and loudness in music and speech conform to a
1/f statistical power law. The authors suggest using 1/f distributions in generative
music (Voss and Clarke 1975).

Studies by Taylor have shown that late period “drip” paintings by Jackson Pol-
lock are fractal-like. He has also suggested that the fractal dimension of a given
Pollock painting is correlated with its aesthetic quality. Fractals are mathematical
objects that exhibit self-similarity at all scales. Examples of real world objects that
are fractal-like in form include clouds, mountains, trees, and rivers. In the case of
Pollock’s paintings the fractal dimension is a measure of the degree to which the
canvas is filled with finely detailed complex structures. A paint mark with a fractal
dimension of 1 will no more fill the canvas with detailed structures than a typical
straight line. A paint mark with a fractal dimension of 2 will entirely fill the canvas
with fine detail. These correspond well with our everyday topological sense of one
and two dimensional spaces (Peitgen et al. 1992).

Pollock’s paint marks exhibit detail between these two extremes, and have a non-
integer dimension somewhere between 1 and 2. When measured empirically the
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fractal dimension of his paintings increases over time from 1.12 in 1945 to 1.72
in 1952. Presumably Pollock’s innovative “dripping” technique improved over time
and in this very limited realm the fractal dimension can be used for aesthetic evalua-
tion (Taylor 2006). Use of a related measure applied to non-fractal two-dimensional
patterns correlates well with beauty and complexity as reported by human subjects
(Mori et al. 1996).

Work has been done in the fields of medical reconstructive and cosmetic surgery
to quantify facial and bodily beauty as an objective basis for evaluating the results of
medical procedures. Hönn and Göz (2007) in the field of orofacial orthopaedics cite
studies indicating that infants preferentially select for facial attractiveness, and that
such judgements by adults are consistent across cultures. Atiyeh and Hayek (2008)
provide a survey for general plastic surgery, indicating a likely genetic basis for the
perception of both facial and bodily attractiveness. Touching on rules of proportion
used by artists through the centuries they seem ambivalent or even supportive of
the Golden Ratio standard. However, in conclusion they write, “The golden section
phenomenon may be unreliable and probably is artifactual”.

To date when it comes to quantifying human facial and bodily beauty there is no
medical consensus or standardised measure. More broadly, many now feel that any
simple formulaic approach to aesthetic evaluation will be inadequate. Beauty seems
to be too multidimensional and too complex to pin down that easily.

10.2.2 Design Principles

Another source of aesthetic insight is the set of basic principles taught in typical
design foundations courses. A standard text in American classrooms includes con-
siderations such as: value and distribution; contrast; colour theory and harmony;
colour interaction; weight and balance; distribution and proportion; and symmetri-
cal balance. Also included are Gestalt-derived concepts like grouping, containment,
repetition, proximity, continuity, and closure (Stewart 2008).

However, to date there is very little in the way of software that can extract these
features and then apply rule-of-thumb evaluations. Among the few is a system that
makes aesthetic judgements about arbitrary photographs. Datta et al. (2006; 2007)
began with a set of photos from a photography oriented social networking site. Each
photo was rated by the membership. Image processing extracted 56 simple measures
related to exposure, colour distribution and saturation, adherence to the “rule of
thirds,” size and aspect ratio, depth of field, and so on. The ratings and extracted
features were then processed using both regression analysis and classifier software.
This resulted in a computational model using 15 key features. A software system
was then able to classify photo quality in a way that correlated well with the human
ratings.

Some work has been done using colour theory as a basis for machine evaluation.
Tsai et al. (2007) created a colour design system using genetic searching and noted,
“. . . auto-searching schemes for optimal colour combinations must be supervised
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by appropriate colour harmony theories since if such supervision is not applied,
the search results are liable to be dull and uncoordinated. . . ” Others have applied
a variation of Birkhoff’s aesthetic measure for colour harmony attempting to better
define order in colour schemes (Li and Zhang 2004).

But overall there has been little progress in automating design principles for aes-
thetic evaluation. Feature extraction figures heavily in this problem, so perhaps fu-
ture computer vision researchers will take on this problem.

10.2.3 Artificial Neural Networks and Connectionist Models

Artificial neural networks are software systems with designs inspired by the way
neurones in the brain are thought to work. In the brain neurone structures called
axons act as outputs and dendrites act as inputs. An axon to dendrite junction is
called a synapse. In the brain, electrical impulses travel from neurone to neurone
where the synaptic connections are strong. Synapse connections are strengthened
when activation patterns reoccur over time. Learning occurs when experience leads
to the coherent formation of synapse connections.

In artificial neural networks virtual neurones are called nodes. Nodes have multi-
ple inputs and outputs that connect to other nearby nodes similar to the way synapses
connect axons and dendrites in the brain. Like synapses these connections are of
variable strength, and this is often represented by a floating point number. Nodes
are typically organised in layers, with an input layer, one or more hidden layers, and
finally an output layer. Connection strengths are not manually assigned, but rather
“learned” by the artificial neural network as the result of its exposure to input data.

For example, a scanner that can identify printed numbers might be created by
first feeding pixel images to the input layer of an artificial neural network. The data
then flows through the hidden layer connections according to the strength of each
connection. Finally, one of ten output nodes is activated corresponding to one of
the digits from “0” to “9”. Before being put into production the scanner would be
trained using known images of digits.

Some of the earliest applications of neural network technology in the arts con-
sisted of freestanding systems used to compose music (Todd 1989). Later in this
chapter artificial neural networks will be described as providing a component in
evolutionary visual art systems (Baluja et al. 1994).

A significant challenge in using artificial neural networks is the selection, condi-
tioning, and normalisation of data presented to the first layer of nodes. It was noted
in Sect. 10.2.1 that ranked music information following Zipf’s law can be used to
identify composers and evaluate aesthetics. Manaris et al. (2005; 2003) reported an
impressive success rate of 98.41 % in attempting to compute aesthetic ratings within
one standard deviation of the mean from human judges.

A similar effort was made to evaluate a mix of famous paintings and images
from a system of evolved expressions. The machine evaluation used Zipfian rank-
frequency measures as well as compression measures as proxies for image complex-
ity. The authors reported a success rate of 89 % when discriminating between human
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and system-produced images. Using famous paintings in the training set provided
stability and human-like standards of evaluation. Using system produced images al-
lowed the evolution of more discerning classifiers (Machado et al. 2008). In a related
paper the authors demonstrate artificial neural networks that can discriminate works
between: Chopin and Debussy; Scarlatti and Purcell; Purcell, Chopin, and Debussy;
and other more complicated combinations. In another demonstration, a neural net-
work was able to discriminate works between Gauguin, Van Gogh, Monet, Picasso,
Kandinsky, and Goya (Machado et al. 2004, Romero et al. 2003).

Without explicit programming, artificial neural networks can learn and apply do-
main knowledge that may be fuzzy, ill defined, or simply not understood. Phon-
Amnuaisuk (2007) has used a type of artificial neural network called self-organising
maps to extract musical structure from existing human music, and then shape music
created by an evolutionary system by acting as a critic. Self-organising map-based
music systems sometimes produce reasonable sequences of notes within a measure
or two, but lack the kind of global structure we expect music to have. In an attempt to
address this problem self-organising maps have been organised in hierarchies so that
higher-level maps can learn higher levels of abstraction (Law and Phon-Amnuaisuk
2008). In another experiment, artificial neural networks were able to learn viewer
preferences among Mondrian-like images and accurately predict preferences when
viewing new images (Gedeon 2008).

10.2.4 Evolutionary Systems

The evolutionary approach to exploring solution spaces for optimal results has had
great success in a diverse set of industries and disciplines (Fogel 1999). Across a
broad range of approaches some kind of evaluation is typically needed to steer evo-
lution towards a goal. Much of our discussion about computational aesthetic evalu-
ation will be in the context of evolutionary systems. But first consider the following
simplified industrial application.

Assume the problem at hand is the design of an electronic circuit. First, chromo-
some-inspired data structures are created and initially filled with random values.
Each chromosome is a collection of simulated genes. Here each gene describes an
electronic component or a connection, and each chromosome represents a circuit
that is a potential solution to the design problem. The genetic information is re-
ferred to as the genotype, and the objects and behaviours they ultimately produce
are collectively called the phenotype. The process of genotype-creating-phenotype
is called gene expression. A chromosome can reproduce with one or more of its
genes randomly mutated. This creates a variation of the parent circuit. Or two chro-
mosomes can recombine creating a new circuit that includes aspects of both parents.

In practice, a subset of chromosomes is selected for variation and reproduction,
and the system evaluates the children as possible solutions. In the case of circuit
design a chromosome will be expressed as a virtual circuit and then tested with a
software-based simulator. Each circuit design chromosome is assigned a score based
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on not only how well its input and output match the target specification, but perhaps
other factors such as the cost and number of parts, energy efficiency, and ease of
construction.

The formula that weights and combines these factors into a single score is called
a fitness function. Chromosomes with higher fitness scores are allowed to further re-
produce. Chromosomes with lower fitness scores are not selected for reproduction
and are removed from evolutionary competition. Using a computer this cycle of se-
lection, reproduction, variation, and fitness evaluation can be repeated hundreds of
times with large populations of potential circuits. Most initial circuits will be quite
dysfunctional, but fortuitous random variations will be retained in the population,
and eventually a highly optimised “fit” circuit will evolve. For an excellent introduc-
tion to evolutionary systems in computer art see Bentley and Corne (2002). In that
same volume, Koza et al. (2002) illustrate the application of genetic programming
in real world evolutionary circuit design.

Evolutionary systems have been used to create art for more than 20 years (Todd
and Latham 1992). But an evolutionary approach to art is particularly challenging
because it is not at all clear how aesthetic judgement can be automated for use as a
fitness function. Nevertheless, evolution remains a popular generative art technique
despite this fundamental problem (for an overview of current issues in evolutionary
art see McCormack 2005 and Galanter 2010).

From the outset there have been two popular responses to the fitness function
problem. The first has been to put the artist in the loop and assign fitness scores
manually. The second has been to use computational aesthetic evaluation and gen-
erate fitness scores computationally. More recently there have been efforts to create
systems with fitness functions that are emergent rather than externally determined.

10.2.5 Interactive Evolutionary Computation

From the earliest efforts interactive (i.e. manual) assignment of fitness scores has
dominated evolutionary art practice (Todd and Latham 1992, Sims 1991). There
was also early recognition that the human operator creates a “fitness bottleneck”
(Todd and Werner 1998). This labour-intensive bottleneck forces the use of fewer
generations and smaller populations than in other applications (for a comprehen-
sive overview of interactive evolutionary computing across a number of industries,
including media production, see Takagi 2001).

There are additional problems associated with the interactive approach. For ex-
ample, human judges become fatigued, less consistent, and prone to skew towards
short term novelty at the expense of aesthetic quality (Takagi 2001, Yuan 2008). One
suggested remedy for such fatigue problems has been to crowd-source evaluation.
This involves recruiting large numbers of people for short periods of time to render
judgements. In Sim’s Galapagos, choices viewers make as to which of a number of
monitors to watch are used as implicit fitness measures (Sims 1997). The Electric
Sheep project provides evolutionary fractal flame art as a screen saver on thousands
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of systems around the world. Users are invited to provide online feedback regarding
their preferences (Draves 2005).

But the crowd-sourcing solution is not without its own potential problems. Artists
Komar and Melamid executed a project called The People’s Choice that began by
polling the public about their preferences in paintings. Based on the results regard-
ing subject matter, colour, and so on they created a painting titled America’s Most
Wanted. The result is a bland landscape that would be entirely unmemorable if it
were not for the underlying method and perhaps the figure of George Washington
and a hippopotamus appearing as dada-like out-of-context features. As should be
expected the mean of public opinion doesn’t seem to generate the unique vision
most expect of contemporary artists. Komar and Melamid’s critique in this project
was directed at the politics of public relations and institutions that wield statistics
as a weapon. But the aesthetic results advise caution to those who would harness
crowd-sourced aesthetic evaluation in their art practice (Komar et al. 1997, Ross
1995). It’s also worth noting that Melamid observed that some aesthetic preferences
are culturally based but others seemed to be universal. The evolutionary implica-
tions of this will be discussed later in the section on Denis Dutton and his notion of
the “art instinct”, Sect. 10.3.1.

Another approach has been to manually score a subset, and then leverage that
information across the entire population. Typically this involves clustering the pop-
ulation into similarity groups, and then only manually scoring a few representatives
from each (Yuan 2008, Machado et al. 2005). Machwe (2007) has suggested that
artificial neural networks can generalise with significantly fewer scored works than
the interactive approach requires.

10.2.6 Automated Fitness Functions Based on Performance Goals

The Mechanical Turk was a purported mechanical chess-playing machine created
in the late 18th century by Wolfgang von Kempelen. But it was really more a feat
of stage magic than computation. Exhibitors would make a great show of opening
various doors revealing clockwork-like mechanisms. Despite appearances, a human
operator was hidden inside the cabinet, so the chess game was won or lost based on
the decisions the operator made (Aldiss 2002, Standage 2002).

To some extent using interactive evolutionary computing for art is a similar trick.
These systems can generate and display a variety of options at every step, but ul-
timately the aesthetic challenge is won or lost based on the decisions made by the
artist-operator.

Fully automated evolutionary art systems call for, rather than offer, a solution
to the challenge of computational aesthetic evaluation. Machine evaluation can be
relatively simple when the aesthetic is Louis H. Sullivan’s principle that “form fol-
lows function” (Sullivan 1896). Computational evaluation here is tractable to the
extent the needed functionality can be objectively evaluated via computation. For
example, Gregory Hornby and Jordan Pollack created an evolutionary system for
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designing furniture (tables). Their fitness function sought to maximise height, sur-
face structure, and stability while minimising the amount of materials required. This
approach is similar to the optimisation-oriented evolutionary systems found in in-
dustry (Hornby and Pollack 2001).

Similarly, specific performance goals can provide a fitness function in a straight-
forward way in art applications. Sims’ Evolved Virtual Creatures is an early exam-
ple. His evolutionary system bred virtual organisms with simple “neuron” circuitry
and actuators situated in a world of simulated physics. The initial creatures, seeded
with random genes, would typically just twitch in an uncoordinated way. But then
selection pressure was applied to the evolving population using a simple fitness
function that might reward jumping height, walking speed, or swimming mobility.
As a result, the evolved creatures exhibited very competent locomotion behaviour.
Some seemed to rediscover movement found in the natural world, while others ex-
hibited strange and completely novel solutions (Sims 1994).

Performance goals can also be useful in the development of characters for com-
puter games through evolution. For example, the amount of time a character survives
can be used as a fitness function yielding incrementally stronger play (Wu and Chien
2005).

Diffusion limited aggregation (DLA) systems can be used to create growing frost-
or fern-like patterns, and have been studied using evolutionary performance goals.
They grow as particles in random Brownian motion adhere to an initial seed parti-
cle. To study optimal seed placement, Greenfield (2008a) applied an evolutionary
system where the size of the resulting pattern served as an effective fitness mea-
sure. In another project he used an evolutionary system to explore the effect of
transcription factors on morphology. Each transcription factor was assigned a dif-
ferent colour. The performance and aesthetics of the result were improved by using a
fitness function that rewarded transcription factor diversity (Greenfield 2004). Simi-
larly, an evolutionary sculpture system using cubic blocks as modules has produced
useful emergent forms simply by rewarding height or length (Tufte and Gangvik
2008).

In their project “Breed” Driessens and Verstappen created a subtractive sculpture
system. Each sculpture is started as a single cube treated as a cell. This cell is sub-
divided into eight smaller sub-cells, one for each corner. Rules driven by the state
of neighbouring cells determine whether a sub-cell is kept or carved away. Then
each of the remaining cells has the subdivision rules applied to them. And so on.
The final form is then evaluated for conformance to goals for properties such as vol-
ume, surface area and connectivity. In “Breed” the rule-set is the genotype, the final
sculpture is the phenotype, and evaluation relative to performance goals is used as
a fitness function. Unlike most other evolutionary systems there is a population size
of just one. A single mutation is produced and given an opportunity to unseat the
previous result. At some point the gene, i.e. rule set, ceases to improve by mutation
and the corresponding sculpture is kept as the result.

Whitelaw (2003) points out that unlike industrial applications where getting
stuck on a local maximum is seen as an impediment to global optimisation, this
project uses local maxima to generate a family of forms (differing solutions) related
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by their shared fitness function. Also Whitelaw points out that unlike some genera-
tive systems that reflect human selection and intent, Driessens and Verstappen have
no particular result in mind other than allowing the system to play itself out to a
final self-directed result. In this case performance goals play quite a different role
than those used in optimisation-oriented industrial systems.

10.2.7 Evolutionary Fitness Measured as Error Relative
to Exemplars

Representationalism in visual art began diminishing in status with the advent of pho-
tographic technologies. Other than use as an ironic or conceptual gesture, mimesis is
no longer a highly valued pursuit in contemporary visual art. Similarly a difference
or error measure comparing a phenotype to a real-world example is not typically
useful as an aesthetic fitness function. In the best case such a system would merely
produce copies. What have proven interesting, however, are the less mimetic in-
termediate generations where error measures can be reinterpreted as the degree of
abstraction in the image.

For example, Aguilar and Lipson (2008) constructed a physical painting machine
driven by an evolutionary system. A scanned photograph serves as the target and
each chromosome in the population is a set of paint stroke instructions. A model of
pigment reflectance is used to create digital simulations of the prospective painting
in software. A software comparison of pixel values from the simulated painting
and the original image generates a fitness score. When a sufficient fitness score is
achieved the chromosome is used to drive a physical painting machine that renders
the brush strokes on canvas with acrylic paint.

Error measurement makes particularly good sense when programming music
synthesisers to mimic other sound sources. Comparisons with recordings of tra-
ditional acoustic instruments can be used as a fitness function. And before the evo-
lutionary system converges on an optimal mimesis interesting timbres may be dis-
covered along the way (McDermott et al. 2005, Mitchell and Pipe 2005).

Musique concrete is music constructed by manipulating sound samples. For evo-
lutionary musique concrete short audio files can be subjected to operations similar
to mutation and crossover. They are then combined and scored relative to a sec-
ond target recording. Again mimesis is not the intent. What the audience hears is
the evolving sound as it approaches but does not reach the target recording (Mag-
nus 2006, Fornari 2007). Gartland-Jones (2002) has used a similar target tracking
approach with the addition of music theory constraints for evolutionary music com-
position.

In a different music application Hazan et al. (2006) have used evolutionary meth-
ods to develop regression trees for expressive musical performance. Focusing on
note duration only, and using recordings of jazz standards as a training set, the re-
sulting regression trees can be used to transform arbitrary flat performances into
expressive ones.
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There are numerous other examples of error measures used as fitness functions.
For example, animated tile mosaics have been created that approach a reference
portrait over time (Ciesielski 2007). The fitness of shape recognition modules have
been based on their ability to reproduce shapes in hand drawn samples (Jaskowski
2007). An automated music improviser has been demonstrated that proceeds by er-
ror minimisation of both frequency and timbre information (Yee-King 2007). Alsing
(2008) helped to popularise the error minimisation approach to mimetic rendering
with a project that evolved a version of the “Mona Lisa” using overlapping semi-
transparent polygons.

10.2.8 Automated Fitness Functions Based on Complexity
Measures

Fitness scores based on aesthetic quality rather than simple performance or mimetic
goals are much harder to come by. Machado and Cardoso’s NEvAr system uses com-
putational aesthetic evaluation methods that attempt to meet this challenge. They
generate images using an approach first introduced by (Sims 1991) called evolv-
ing expressions. It uses three mathematical expressions to calculate pixel values for
the red, blue, and green image channels. The set of math expressions operates as a
genotype that can reproduce with mutation and crossover operations.

Machado and Cardoso take a position related to Birkhoff’s aesthetic measure.
The degree to which an image resists JPEG compression is considered an “image
complexity” measure. The degree it resists fractal compression is considered to be
proportional to the “processing complexity” that will tax an observer’s perceptual
resources. Image complexity is then essentially divided by processing complexity
to calculate a single fitness value.

Machado and Cardoso reported surprisingly good imaging results using evolving
expressions with their complexity-based fitness function. But the authors were also
careful to note that their fitness function only considers one formulaic aspect of
aesthetic value. They posit that cultural factors ignored by NEvAr are critical to
aesthetics. In later versions of NEvAr a user guided interactive mode was added
(Machado and Cardoso 2002; 2003, Machado et al. 2005, see also Chap. 11 in this
volume for their extended work in this vein).

10.2.9 Automated Fitness Functions in Evolutionary Music
Systems

For evolutionary music composition some have calculated fitness scores using only
evaluative rules regarding intervals, tonal centres, and compliance to key and meter.
Others, like GenOrchestra, are hybrid systems that also include some form of lis-
tener evaluation. The GenOrchestra authors note that unfortunately without human
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evaluation “the produced tunes do not yet correspond to a really human-like musical
composition” (Khalifa and Foster 2006, De Felice and Fabio Abbattista 2002).

Others have used music theory-based fitness functions for evolutionary bass har-
monisation (De Prisco and Zaccagnino 2009), or to evolve generative grammar ex-
pressions for music composition (Reddin et al. 2009). For mimetic evolutionary
music synthesiser programming McDermott et al. (2005) used a combination of
perceptual measures, spectral analysis, and sample-level comparison as a fitness
function to match a known timbre.

Weinberg et al. (2009) have created a genetically based robotic percussionist
named Haile that can “listen” and trade parts in the call and response tradition.
Rather than starting with a randomised population of musical gestures Haile begins
with a pool of pre-composed phrases. This allows Haile to immediately produce
musically useful responses. As Haile runs, however, the evolutionary system will
create variations in real time. The fitness function used for selection uses an algo-
rithm called dynamic time warping.

Dynamic time warping here provides a way to measure the similarity between
two sequences that may differ in length or tempo. In response to a short rhythmic
phrase played by a human performer, Haile applies the dynamic time warping-based
fitness function to its population of responses and then plays back the closest match.
The goal is not to duplicate what the human player has performed, but simply to craft
a response that is aesthetically related and thus will contribute to a well-integrated
performance.

10.2.10 Multi-objective Aesthetic Fitness Functions
in Evolutionary Systems

Aesthetic judgements are typically multidimensional. For example, evaluating a tra-
ditional painting involves formal issues regarding colour, line, volume, balance, and
so on. A fitness function that has to include multiple objectives like these will typ-
ically have a sub-score for each. Each sub-score will be multiplied by its own co-
efficient that serves as a weight indicating its relative importance. The weighted
sub-scores are then summed for a final total score.

However, the weights are typically set in an ad hoc manner, and resulting evalua-
tions may not push the best work to the front. And there is no reason to assume that
the weights should maintain a static linear relationship regardless of the sub-score
values. For example, various aspects of composition may influence the relative im-
portance of colour.

Pareto ranking can address some of these concerns as an alternative to simple
weights. In Pareto ranking one set of scores is said to dominate another if it is
at least as good in all component sub-scores, and better in at least one. A rank 1
set of scores is one that isn’t dominated. When there are multiple objectives there
will typically be multiple rank 1 sets of scores. The dimension of the problem they
dominate is what differentiates rank 1 genotypes, and all can be considered viable.
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Genotypes of less than rank 1 can be considered redundant. Note, however, that
some redundancy in the gene pool is usually considered a good thing. In situations
where a single genotype must be selected, a rank 1 genotype is sometimes selected
based on its uniqueness relative to the current population (Neufeld et al. 2008, Ross
and Zhu 2004, Greenfeld 2003).

Both weighting and Pareto ranking are approaches to the more general problem
of multi-objective optimisation. For multidimensional aesthetics a computational
evaluation system will have to deal with multi-objective optimisation either explic-
itly as above, or implicitly as is done in the extensions to evolutionary computation
noted below.

10.2.11 Biologically Inspired Extensions to Simple Evolutionary
Computation

Evolutionary art faces significant challenges beyond machine evaluation-based fit-
ness functions. For example, the expression of genes in nature doesn’t happen in a
single step. There is a cascading sequence of emergence across a number of scales
from DNA, to proteins, organelles, cells, tissues, and finally organs resulting in an
individual. Life’s capacity for complexification is unmatched in the known universe.
By comparison evolutionary computing systems are simple in that they typically
only support a single level of emergence, i.e. the genotype directly generates the
phenotype (Casti 1994, Galanter 2010).

And so current evolutionary computing technologies have a very limited capacity
for the creation of complexity. This isn’t a problem in most industrial applications
because their solution spaces are well explored by the search and optimisation strate-
gies evolutionary computing offers. But art is one of the most complex activities of
the arguably most complex unitary system known, the human mind.

A number of nature-inspired extensions for evolutionary art have been explored
in part to meet this need for increased complexity. Each suggests new perspectives
regarding computational aesthetic evaluation. For example, with the addition of co-
evolution two or more species may compete for survival. This can create an evolu-
tionary “arms race” making fitness a moving target for all. But it is also possible that
species will coevolve to fill mutually beneficial symbiotic roles, and possibly exhibit
convergent aesthetics. In such systems the ecology is a dynamic system offering in-
creased complexity. Some species will specialise and dominate an ecological niche
while others remain flexible generalists. And some species may in fact alter the ecol-
ogy creating a niche for itself. Meanwhile, within a species individuals may interact
via social transactions further modulating what constitutes fitness. These extensions
are explored in the following sections.
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10.2.11.1 Coevolution

Coevolution in evolutionary art and design has been investigated since at least 1995.
Poon and Maher (1997) note that in design a fixed solution space is undesirable
because the problem itself is often reformed based on interim discoveries. They
suggest that both the problem space and solution space evolve with each provid-
ing feedback to the other. Each genotype in the population can combine a problem
model and a solution in a single chromosome. Or there can be two populations, one
for problems and one for solutions. Then current best solutions are used to select
problem formulations, and current best problem formulations are used to select so-
lutions. Both methods allow a form of multi-objective optimisation where the prob-
lem emphasis can shift and suggest multiple solutions, and well-matched problem
formulations and solutions will evolve.

One challenge with coevolutionary systems is deciding when to stop the iterative
process and accept a solution. The authors note termination can be based on satisfac-
tory resolution of the initial problem, but that such an approach loses the benefit of
the coevolved problem space. Other termination conditions can include the amount
of execution time allowed, equilibrium where both the solution and problem spaces
no longer exhibit significant change, or where a set of solutions cycle. The last case
can indicate the formation of a Pareto-optimal surface of viable solutions (Poon and
Maher 1997).

Todd and Werner were early adopters of a coevolutionary approach to music
composition. Prior to their work there had been attempts to create fitness functions
based on rule-based or learning-based critics. But such critics typically encouraged
compositions that were too random, too static, or otherwise quite inferior to most
human composition. It’s worth remembering that genes in evolutionary systems seek
high fitness scores and only secondarily produce desirable compositions. Sometimes
trivial or degenerate compositions will exploit brittle models or faulty simulations,
thereby “cheating” to gain a high score without providing a useful result.

Based on the evolution of bird songs through sexual selection, the system devised
by Todd and Werner consists of virtual male composers that produce songs and
virtual female critics that judge the songs for the purpose of mate selection. Each
female maintains an expectation table of probabilities for every possible note-to-
note transition. This table is used to judge males’ songs in three ways. The first
two methods reward males the more they match the female’s expectations. In the
third method males are rewarded for surprising females. And for each of these three
methods transition tables can be static, or they can coevolve and slowly vary with
each new generation of females.

The first two matching methods quickly suffered from a lack of both short term
and long term variety. However, rewarding surprise lead to greater variety. One
might expect that rewarding surprise would encourage random songs. But this didn’t
happen because random songs accidentally contain more non-surprise elements than
songs specifically structured to set up expectations and then defy them.

Initially the females were created with transition tables derived from folk songs.
At first this resulted in human-like songs. But the authors note:
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One of the biggest problems with our coevolutionary approach is that, by removing the
human influence from the critics (aside from those in the initial generation of folk-song
derived transition tables), the system can rapidly evolve its own unconstrained aesthetics.
After a few generations of coevolving songs and preferences, the female critics may be
pleased only by musical sequences that the human user would find worthless.

Todd and Werner suggest that adding some basic musical rules might encourage
diversity while also encouraging songs that are human-like. Additionally a learning
and cultural aspect could be added by allowing individual females to change their
transition tables based on the songs they hear (Todd and Werner 1998).

Greenfield (2008b) has presented an overview of coevolutionary methods used
in evolutionary art including some unpublished systems made by Steven Rooke.
Rooke first evolved critics by training them to match his manually given scores
for a training set of images. The critics then coevolve with new images. Individual
critics are scored by comparing their evaluations to those of previous critics. Critics
are maintained over time in a sliding window of 20 previous generations. Rooke
found that while the coevolved critics duplicated his taste, the overall system didn’t
innovate by exploring new forms.

Greenfield then describes his own system where images and 10 × 10 convolu-
tion filters are coevolved. Parasite filters survive by generating result images similar
to original. Images survive by making the parasite filter results visible. A number
of subtleties require attention such as setting thresholds that define similarity, the
elimination of do-nothing filters, adjusting the evolutionary rates of parasites versus
images, and the balancing of unary and binary operators to control high frequency
banding. He cites Ficici and Pollack (1998) and confirms observing evolutionary cy-
cling, where genotypes are rediscovered again and again, and mediocre stable states
where the coevolving populations exhibit constant change with little improvement.
Greenfield notes:

In all of the examples we have seen: (1) it required an extraordinary effort to design a popu-
lation to coevolve in conjunction with the population of visual art works being produced by
an underlying image generation system, and (2) it was difficult to find an evaluation scheme
that made artistic sense. Much of the problem with the latter arises as a consequence of
the fact that there is very little data available to suggest algorithms for evaluating aesthetic
fitness. . . It would be desirable to have better cognitive science arguments for justifying
measurements of aesthetic content.

In later sections we will survey some of the work in psychology and the nascent
field of neuroaesthetics that may contribute to computational aesthetic evaluation as
Greenfield suggests.

10.2.11.2 Niche Construction by Agents

As discussed in McCormack and Bown (2009) an environment can be thought of
as having both properties and resources. Properties are environmental conditions
such as temperature or pH, and resources are available consumables required by
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organisms such as water and specific kinds of food. Each organism will have spe-
cific needs as to the properties and resources it requires of its environment. A given
organism’s preferred properties and resources define its ecological niche.

In typical “artificial life” systems evolutionary computing is implemented within
the context of a simulated ecosystem. In those systems adaptation to ecological
niches can increase diversity and enhance multi-objective optimisation. But beyond
simple adaptation genotypes within a species can actively construct niches to their
own advantage. McCormack and Bown have demonstrated both a drawing system
and a music system that exploit niche construction.

In the first system drawing agents move leaving marks, are stopped when they in-
tersect already existing marks, and sense the local density of already existing marks.
Each agent also has a genetic preference for a given density. Initially agents that pre-
fer low density will succeed in dividing large open sections of the canvas. Over time
some agents will create higher densities of marks, which in turn act as constructed
niches for progeny with a predisposition for high density. As a result some, but
not all, sections of the canvas become increasingly dense and provide niches for
high-density genotypes. The visual result exhibits a wide range of densities. Sim-
ilar agent-based systems without niche construction tend to create drawings with
homogeneous density. This system is further discussed in Chap. 2.

In the second system a single row of cells is connected head-to-tail as a toroid.
Each cell generates a sine wave creating a single frequency tone. A line runs through
all of the cells, and at each cell the line height is mapped into the loudness of its sine
wave. Agents inhabit the cells, and each has a genetic preference for line height
and slope. Each agent applies these preferences as pressure to the line in its cell as
well as the cell to its left. Depending on the local state of their niche, i.e. the line
height and slope in their cell, agents will stay alive and reproduce or die and not pass
on their genotype. This sets up a dynamic system with localities that benefit certain
genotypes. Those genotypes then modify the ecosystem, i.e. the line, to the benefit of
their progeny. The resulting sound exhibits a surprising diversity of dynamics even
though it is initialised at zero. As with many evolutionary and generative systems,
this is due to the random variation in the initial population of agents.

10.2.11.3 Agent Swarm Behaviour

In most of the evolutionary systems discussed so far there is no interaction between
phenotypes. Each is independently evaluated via user selection or fitness function.
Other than this comparison a given phenotype has no impact on another. When
phenotypes begin to interact in other ways, typically in the context of a simulated
ecosystem, they can be thought of as simulated organisms or agents that exhibit
behaviours. With niche creation agents modify their ecology establishing a mediated
form of agent interaction. But agents can also interact directly creating an emergent
group behaviour or swarm behaviour.

The canonical natural example of such an agent is the ant. An ant colony uses
swarm intelligence to optimise the gathering and retrieval of food. As an ant finds
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food and brings it back to the nest it selectively leaves a chemical pheromone trail.
Other ants happening upon the chemical trail will follow it, in effect joining a food
retrieval swarm. Each ant adds more pheromone as they retrieve food. Because the
pheromone spreads as it dissipates ants will discover short cuts if the initial path
has excessive winding. In turn those short cuts will become reinforced with addi-
tional pheromone. Once the food is gone the ants stop laying down pheromone as
they leave the now depleted site, and soon the pheromone trail will disappear. This
behaviour can be simulated in software agents (Resnick 1994).

Artists have simulated this behaviour in software using agents that lay down
permanent virtual pigment as well as temporary virtual pheromone trails. Variation
and some degree of aesthetic control can be gained by breeding the ant-agents using
an interactive evolutionary system (Monmarché et al. 2003).

Greenfield (2005a) automates the fitness function based on a performance metric
regarding the number of cells visited randomly or due to pheromone following be-
haviour. Measuring fitness based only on the number of unique cells visited results
in “monochromatic degeneracies”. Rewarding only pheromone following creates a
slightly more attractive blotchy style. Various weightings of both behaviours pro-
duce the best aesthetic results exhibiting organic and layered forms.

Urbano (2006) has produced striking colourful patterns using virtual micro-
painters he calls “Gaugants”. In the course of one-to-one transactions his agents
exert force, form consensus, or exhibit dissidence regarding paint colour. The dy-
namics are somewhat reminiscent of scenarios studied in game theory. Elzenga’s
agents are called “Arties”. They exhibit mutual attraction/repulsion behaviour based
on multiple sensing channels and genetic predisposition. The exhibited emergence
is difficult to anticipate, but the artist can influence the outcome by making manual
selections from within the gene pool (Elzenga and Pontecorvo 1999).

10.2.11.4 Curious Agents

Saunders and Gero (2004), and Saunders (2002) have extended swarming agents to
create what they have called curious agents. They first note that agents in swarm
simulations such as the above are mostly reactive. Flocking was originally devel-
oped by Reynolds (1987) and then extended by Helbing and Molnar (1995; 1997) to
add social forces such as goals, drives to maximise efficiency and minimise discom-
fort, and so on. Social forces have been shown, for example, to create advantages in
foot traffic simulation.

Sanders and Gero expand the dynamics of aesthetic evaluation behaviour by
adding curiosity as a new social force. Their implementation uses a pipeline of six
primary modules for sensing, learning, detecting novelty, calculating interest, plan-
ning, and acting. Sensing provides a way to sample the world for stimulus patterns.
Learning involves classifying a pattern and updating prototypes kept in long term
memory. Novelty is assessed as the degree to which error or divergence from pre-
vious prototypes is detected. Based on novelty a measure of interest is calculated.
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Changes in interest result in goals being updated, and the current ever-changing
goals determine movement.

Unsupervised artificial neural networks are used for classification, and classifi-
cation error for new inputs is interpreted as novelty. But greater novelty doesn’t
necessarily result in greater interest. The psychologist Daniel Berlyne proposed that
piquing interest requires a balance of similarity to previous experience and novelty.
So, as suggested by Berlyne (1960; 1971), a Wundt curve is used to provide the
metric for this balance and produces an appropriate interest measure. More about
Berlyne’s work follows in Sect. 10.3.2.

Based on this model Sanders created an experimental simulation where agents
enter a gallery, can sense other agents, and can also view the colours of monochrome
paintings hanging on nearby walls. There are also unseen monochrome paintings
with new colours in other rooms. Along with other social behaviours agents learn the
colours presented in one room, and then are potentially curious about new colours in
other rooms. Depending on the sequence of colour exposure and the related Wundt-
curve mapping, agents may or may not develop an interest and move to other areas.

10.2.11.5 Human Aesthetics, Meta-aesthetics, and Alternatives to Fitness
Functions

Commenting on systems like those above using coevolution, niche creation, swarms,
and curiosity Dorin (2005) notes:

. . . the “ecosystemic” approach permits simultaneous, multidirectional and automatic ex-
ploration of a space of virtual agent traits without any need for a pre-specified fitness func-
tion. Instead, the fitness function is implicit in the design of the agents, their virtual envi-
ronment, and its physics and chemistry.

This avoids the problem of creating a computational aesthetic evaluation system
by hand, and allows for the creation of evolutionary systems that generate surprising
diversity and increased dynamics. Thus, if the goal is the creation of robust systems
for meta-aesthetic exploration these evolutionary system extensions seem to be quite
beneficial.

However, if the goal is to evolve results that appeal to our human sense of aes-
thetics there is no reason to think that will happen. Recall the earlier differentiation
between human aesthetic evaluation and meta-aesthetic explorations. Creating evo-
lutionary diversity and dynamics via artificial aesthetics foreign to our human sen-
sibility is one thing. Appealing to human aesthetics is quite another. As observed by
Todd and others, to date extensions and emergent aesthetics like those above do not
provide machine evaluation that mirrors human aesthetic perception.

10.2.12 Complexity Based Models of Aesthetics

One of the recurring themes in computational aesthetics is the notion that aes-
thetic value has something to do with a balance of complexity and order. Birkhoff’s
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aesthetic measure proposed the simple ratio M = O/C where M is the measure of
aesthetic effectiveness, O is the degree of order, and C is the degree of complexity.

But what is complexity? And what is order? Birkhoff suggested that these are
proxies for the effort required (complexity) and the tension released (order) as per-
ceptual cognition does its work. As a practical matter Birkhoff quantified complex-
ity and order using counting operations appropriate to the type of work in question.
For example, in his study of polygonal compositions complexity was determined by
counting the number of edges and corners. His formula for order was:

O = V + E + R + HV − F (10.2)

Here he sums the vertical symmetry (V ), equilibrium (E), rotational symmetry
(R), horizontal-vertical relation (HV), and unsatisfactory or ambiguous form (F ).
These notions of complexity and order at first appear to be formulaic and objective,
but they nevertheless require subjective decisions when quantified.

In an attempt to add conceptual and quantitative rigour, Bense (1965) and Moles
(1966) restated Birkhoff’s general concept in the context of Shannon (1948)’s in-
formation theory creating the study of information aesthetics. Shannon was inter-
ested in communication channels and the quantification of information capacity and
signal redundancy. From this point of view an entirely unpredictable random signal
maximises information and complexity, and offers no redundancy or opportunity for
lossless compression. In this context disorder or randomness is also called entropy.
Extending this, Moles equated low entropy with order, redundancy, compressibility,
and predictability. High entropy was equated with disorder, complexity, incompress-
ibility, and surprise (see Chap. 3 for further discussion of information aesthetics).

As previously noted, Machado (1998) has updated this approach by calculating
aesthetic value as the ratio of image complexity to processing complexity. Processing
complexity refers to the amount of cognitive effort that is required to take in the
image. Image complexity is intrinsic to the structure of the image. This lead them
to propose functional measures where image complexity is inversely proportional to
JPEG compressibility and processing complexity is directly proportional to fractal
compressibility.

With the advent of complexity science as a discipline defining order and com-
plexity has become much more problematic. This account begins with algorithmic
complexity or algorithmic information content as independently developed by Kol-
mogorov (1965), Solomonoff (1964), Chaitin (1966). In this paradigm the complex-
ity of an object or event is proportional to the size of the shortest program on a
universal computer that can duplicate it. From this point of view the most complex
music would be white noise and the most complex digital image would be random
pixels. Like information complexity, algorithmic complexity is inversely propor-
tional to order and compressibility.

For physicist Murray Gell-Mann the information and algorithmic notions of com-
plexity don’t square with our experience. When we encounter complex objects or
situations they aren’t random. Despite being difficult to predict they also have some
degree of order maintaining integrity and persistence.
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Fig. 10.1 Information and
algorithmic complexity
increase monotonically with
increasing disorder. Effective
complexity peaks where there
is a mix of order and disorder
such as is found in biological
life

Consider two situations, one where there is a living frog and another where there
is a long dead and decaying frog. The decaying frog has greater entropy because
relative to the living frog it is more disordered, and over time it will become more
even more disordered to the point where it will no longer be identifiable as a frog at
all. Intuitively we would identify the living frog as being more complex. It displays
a repertoire of behaviours, operates a complex system of biochemistry to process
food, water, and oxygen to generate energy and restore tissues, maintains and ex-
changes large amounts of genetic information in the course of reproduction, and so
on. Along with these orderly processes the frog remains flexible and unpredictable
enough to be adaptive and avoid becoming easy prey. In terms of entropy our highly
complex living frog is somewhere between simple highly ordered crystals and sim-
ple highly disordered atmospheric gases.

To better capture our intuitive sense of complexity Gell-Mann has proposed the
notion of effective complexity, a quantity that is greatest when there is a balance of
order and disorder such as that found in the biological world (Gell-Mann 1995). Un-
like information and algorithmic complexity, effective complexity is not inversely
proportional to order and compressibility. Rather both order and disorder contribute
to complexity (Fig. 10.1, please note that this graph is only meant as a qualitative
illustration with somewhat arbitrary contours).

Complexity science continues to offer new paradigms and definitions of com-
plexity. In a 1998 lecture by Feldman and Crutchfield at the Santa Fe Institute well
over a dozen competing theories were presented (Feldman and Crutchfield 1998)—
the debate over complexity paradigms continues. Measuring aesthetic value as a re-
lationship between complexity and order is no longer the simple proposition it once
seemed to be. (For an alternate view of complexity and aesthetics see Chap. 12.)

Artists working in any media constantly seek a balance between order and disor-
der, i.e. between fulfilling expectations and providing surprises. Too much of the for-
mer leads to boredom, but too much of the latter loses the audience. It is a dynamic
that applies to visual art, music, and the performing arts alike. And it helps dif-
ferentiate genres in that styles that cater to established expectations are considered
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to be more “traditional” while styles that serve up more unorthodox surprises are
considered to be “cutting edge.”

Notions of Shannon information and algorithmic complexity have their place.
But in aesthetics it is misleading to treat order and complexity as if they are polar
opposites. My suggestion is that the notion of effective complexity better captures
the balance of order and disorder, of expectation and surprise, so important in the
arts. This offers the challenge and potential benefit that effective complexity can
serve as a measure of quality in computational aesthetic evaluation.

10.3 The Future of Computational Aesthetic Evaluation

As should be obvious by now, computational aesthetic evaluation is a very difficult
and fundamentally unsolved problem. To date any marginal successes have tended
towards narrow application niches using methods that do not generalise very well.

The irony is that aesthetic evaluation is something we all do quite naturally. Could
it be that the solution to the computational aesthetic evaluation problem is within us
and just not yet understood?

Artists and engineers have always learned from nature. There is a significant
and growing literature around the psychology and neurology of aesthetics. But this
challenge to understanding seems no less daunting than the difficulty of machine
evaluation. The human brain that gives rise to the human mind is arguably the most
complex unitary system known. The brain includes approximately 1015 neural con-
nections. In addition, recent research regarding the brain’s glial cells reveals that
they contribute to active information processing rather than, as previously thought,
merely providing mechanical support and insulation for neurones. Glial cells make
up 90 % of the brain and some scientists speculate that they are specifically engaged
in creative thought (Koob 2009). Computing hardware can only make up for part
of this gap by exploiting electronic switching speeds that are about 107 times faster
than human neurones.

Nevertheless, it seems reasonable that an improved understanding of natural aes-
thetic perception will contribute to computational aesthetic evaluation efforts, and
science has made some significant progress in this regard. Perhaps a good place to
start is recent scientific thinking as to the origins of human aesthetics.

10.3.1 The Origins of Art and the Art Instinct

Denis Dutton notes that evolutionary scientist Stephen Jay Gould claims that art is
essentially a nonadaptive side effect, what Gould calls a spandrel, resulting from
an excess of brain capacity brought about by unrelated adaptations. Dutton (2009)
argues that the universality of both art making behaviour and some aesthetic pref-
erences imply a more direct genetic linkage and something he calls the art in-
stinct.
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Dutton points out that like language every culture has art. And both language
and art have developed far beyond what would be required for mere survival. The
proposed explanation for the runaway development of language is that initially
language provided a tool for cooperation and survival. Once language skills be-
came important for survival language, fluency became a mate selection marker.
The genetic feedback loop due to mate selection then generated ever-increasing lan-
guage ability in the population leading to a corresponding language instinct (Pinker
1994).

Additionally, Dutton posits that early human mate selection was, in part, based
on the demonstration of the ability to provide for material needs. Like language,
this ability then became a survival marker in mate selection subject to increasing
development. Just as a peacock’s feather display marks a desirable surplus of health,
works of art became status symbols demonstrating an excess of material means.
It is not by coincidence then that art tends to require rare or expensive materials,
significant time for learning and making, as well as intelligence and creativity. And
typically art has a lack of utility, and sometimes an ephemeral nature. All of these
require a material surplus.

One could argue that even if art making has a genetic basis it may be that our
sense of aesthetics does not. In this regard, Dutton notes the universal appeal, re-
gardless of the individual’s local environment, for landscape scenes involving open
green spaces trees and ample bodies of water near by, an unimpeded view of the
horizon, animal life, and a diversity of flowering and fruiting plants. This scene
resembles the African savannah where early man’s evolution split off from other
primate lines. It also includes numerous positive cues for survivability. Along with
related psychological scholarship Dutton quotes the previously noted Alexander
Melamid:

. . . I’m thinking that this blue landscape is more serious than we first believed. . . almost
everyone you talk to directly—and we’ve already talked to hundreds of people—they have
this blue landscape in their head. . . So I’m wondering, maybe the blue landscape is genet-
ically imprinted in us, that it’s the paradise within, that we came from the blue landscape
and we want it. . . We now completed polls in many countries—China, Kenya, Iceland, and
so on—and the results are strikingly similar.

That our aesthetic capacity evolved in support of mate selection has parallels
in other animals. This provides some hope for those who would follow a psycho-
logical path to computational aesthetic evaluation, because creatures with simpler
brains than man practice mate selection. In other words perhaps the computational
equivalent of a bird or an insect is “all” that is required for computational aesthetic
evaluation. But does mate selection behaviour in other animals really imply brain
activity similar to human aesthetic judgement? One suggestive study by Watanabe
(2009) began with a set of children’s paintings. Adult humans judged each to be
“good” or “bad”. Pigeons were then trained through operant conditioning to only
peck at good paintings. The pigeons were then exposed for the first time to a new
set of already judged children’s paintings. The pigeons were quite able to correctly
classify the previously unseen paintings as “good” or “bad”.



10 Computational Aesthetic Evaluation: Past and Future 279

10.3.2 Psychological Models of Human Aesthetics

Conspicuously missing from most work by those pursuing machine evaluation that
mimics human aesthetics are models of how natural aesthetic evaluation occurs.
Rudolf Arnheim, Daniel Berlyne, and Colin Martindale are three researchers who
stand out for their attempts to shape the findings of empirical aesthetics into gen-
eral aesthetic models that predict and explain. Each has left a legacy of significant
breadth and depth that may inform computational aesthetic evaluation research. The
following sections provide an introduction to their contributions.

10.3.2.1 Arnheim—Gestalt and Aesthetics

If one had to identify a single unifying theme for Arnheim it would have to be the
notion of perception as cognition. Perception isn’t something that happens to the
brain when events in the world are passively received through the senses. Perception
is an activity of the brain and nothing short of a form of cognition. And it is this
perceptual cognition that serves as the engine for gestalt phenomena.

First written in 1954 and then completely revised in 1974, Arnheim’s book Art
and Visual Perception: A Psychology of the Creative Eye established the relevance
of gestalt phenomena as art and design principles (Arnheim 1974). The law of präg-
nanz in gestalt states that the process of perceptual cognition endeavours to order
experience into wholes that maximise clarity of structure. From this law come the
notions of closure, proximity, containment, grouping, and so on now taught as de-
sign principles (Wertheimer 2007).

The neurological mechanisms behind these principles were not, and still are not,
well understood. Arnheim wrote of forces and fields as existing both as psycholog-
ical and physical entities; the physical aspects being neurological phenomenon in
the brain itself. Some have suggested it is more useful to take these terms metaphor-
ically to describe the dynamic tensions that art exercises (Cupchik 2007).

Arnheim’s theory of aesthetics is much more descriptive than normative. Nev-
ertheless, those interested in computational aesthetic evaluation have much to take
away with them. That perception is an active cognitive process, and that the gestalt
whole is something more than the sum of the parts, is now taken by most as a given.
And the difference between maximising clarity of structure and maximising sim-
plicity of structure is a nuance worthy of attention (Verstegen 2007).

10.3.2.2 Berlyne—Arousal Potential and Preferences

Daniel E. Berlyne published broadly in psychology, but his work of note here
regards physiological arousal and aesthetic experience as a neurological process
(Konečni 1978). One of Berlyne’s significant contributions is the concept of arousal
potential and its relationship to hedonic response.
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Arousal potential is a property of stimulus patterns and a measure of the ca-
pability of that stimulus to arouse the nervous system. Arousal potential has three
sources. First, there are psychophysical properties such as very bright light, very
loud sounds, sensations with an abrupt onset, very low or high frequency sounds,
and so on. Second, there are ecological stimuli such as survival threats like pain or
predator sightings, or cues associated with the availability of food. But the third and
strongest according to Berlyne are referred to as collative effects. These are com-
bined and comparative experiences that present arousal potential in a context depen-
dent and relative manner. Examples include “novelty, surprisingness, complexity,
ambiguity, and puzzlingness.” Berlyne (1971) explicitly notes the correspondence
between many of these collative effects and concepts from Shannon’s information
theory.

The hedonic response to sources of arousal potential refers to the spectrum of
pleasure and pain we experience. Berlyne proposes that the hedonic response is the
result of separate and distinct reward and aversion systems. Each of these systems is
made up of neurones. The firing thresholds of individual neurones will vary accord-
ing to the normal or Gaussian probability distribution as is typical in nature (see
Fig. 10.2). Therefore the strength of the arousal potential will determine the number
of neurones that fire in response. The number of neurones responding will increase
as a Gaussian cumulative distribution, i.e. the area under the Gaussian probability
distribution as the threshold moves from left to right. Berlyne further proposes that
the reward system requires less arousal potential exposure to activate, but that when
activated the aversion system will produce a larger response.

The result is the hedonic response as a summation of the positive reward system
and the negative aversion system. With no arousal potential there is a hedonic re-
sponse of indifference. As more arousal potential is presented the hedonic response
increases manifesting itself as a pleasurable experience. Beyond a certain point,
however, two things happen. First, the reward system reaches maximum activation
and plateaus. Second, the aversion system begins to activate. As the aversion system
reaches higher levels of activation the hedonic response will lessen and eventually
cross into increasing levels of pain.

Berlyne notes that this function is usually called the Wundt curve, as it was first
presented by the “father of experimental psychology” Wilhelm Wundt in 1874. But
in Wundt’s model the x-axis represents low-level neural intensity. Berlyne’s arousal
potential on the x-axis includes psychophysical intensity, but it also includes ecolog-
ical stimuli and most importantly collative effects. For Berlyne increasing collative
effects such as novelty and surprise also represent increasing complexity in the in-
formation theory sense. From this point of view works of only moderate information
complexity maximise the hedonic response. This resonates well with the intuitive
artistic notion that audiences respond best to works that are not so static as to be
boring, and yet also operate within learned conventions so as to not be experienced
as chaotic.

There is, however, another interpretation. The notion of Gell-Mann’s effective
complexity was previously mentioned. From that point of view complexity is a
balance of order and disorder, and biological life presents complexity at its peak.
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Fig. 10.2 Wundt curve as
applied by Berlyne. Redrawn
from Berlyne (1971)

The Wundt and effective complexity curves both peak in the middle suggesting that
positive hedonic response may be proportional to effective complexity. Effective
complexity has, in a sense, the balance of order and disorder “built in.” One might
hypothesise that the most important and challenging survival transactions for hu-
mans have to do with other living things and especially fellow humans. Perhaps
that created evolutionary pressure leading to the optimisation of the human nervous
system for effective complexity, and human aesthetics and related neurological re-
ward/aversion systems reflect that optimisation.

10.3.2.3 Martindale—Prototypicality and Neural Networks

Colin Martindale was an active empiricist and in 1990 he published a series of ar-
ticles documenting experiments intended to verify the arousal potential model of
Berlyne. Martindale et al. (1990) notes:

Berlyne. . . developed an influential theory that has dominated the field of experimental aes-
thetics for the past several decades. . . Berlyne is often cited in an uncritical manner. That
is, he is taken as having set forth a theory based upon well-established facts rather than, as
he actually did, as having proposed tentative hypotheses in need of further testing. The re-
sult has been a stifling of research on basic questions concerning preference, because these
questions are considered to have been already answered. In this article, we report a series
of experiments that test obvious predictions drawn from Berlyne’s theory. It was in the firm
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expectation of easily confirming these predictions that we undertook the experiments. The
results are clear-cut. They do not support the theory.

The debate pitting collative effects versus prototypicality would dominate ex-
perimental aesthetics for almost 20 years (North and Hargreaves 2000). For some
Berlyne’s notion of collative effects was especially problematic. First it was odd
for a behaviourist like Berlyne to make an appeal to a concept so much about the
inner state of the individual. Additionally, terms like novelty and complexity were
problematic both in specification and mechanism.

However, Martindale’s primary critique was empirical. For example, contrary to
Berlyne’s model he found that psychophysical, ecological, and collative properties
are not additive, nor can they be traded off. Significantly more often than not empir-
ically measured responses do not follow the inverted-U of the Wundt curve, but are
monotonically increasing. Finally, a number of studies showed that meaning rather
than pure sensory stimulation is the primary determinant of aesthetic preference
(Martindale et al. 1990; 2005, Martindale 1988b).

In a series of publications Martindale (1981; 1984; 1988a; 1991) developed a
natural neural network model of aesthetic perception that is much more consistent
with experimental observation. Martindale first posits that neurones form nodes that
accept, process, and pass on stimulation from lower to higher levels of cognition.
Shallow sensory and perceptual processing tends to be ignored. It is the higher se-
mantic nodes, the nodes that encode for meaning, that have the greatest strength in
determining preference. Should the work carry significant emotive impact the limbic
system can become engaged and dominate the subjective aesthetic experience.

Nodes are described as specialised recognition units connected in an excitatory
manner to nodes corresponding to superordinate categories. So, for example, while
one is reading nodes that extract features will excite nodes for letters, and they will
in turn excite nodes for syllables or letter groupings, leading to the excitation of
nodes for words, and so on. Nodes at the same level, however, will have a lateral in-
hibitory effect. Nodes encoding for similar stimuli will be physically closer together
than unrelated nodes. So nodes encoding similar and related exemplars will tend to-
wards the centre of a semantic field. The result is that the overall nervous system
will be optimally activated when presented an unambiguous stimulus that matches a
prototypically specific and strong path up the neural hierarchy (Martindale 1988b).

Commenting on prototypicality North and Hargreaves (2000) explain:

. . . preference is determined by the extent to which a particular stimulus is typical of its
class, and explanations of this have tended to invoke neural network models of human cog-
nition: this approach claims that preference is positively related to prototypicality because
typical stimuli give rise to stronger activation of the salient cognitive categories.

Martindale’s neural network prototypicality model carries with it great explana-
tory and predictive power. Towards the end of his life he penned a chapter describing
the results of 25 widely disparate empirical studies, and how his single model can
provide a foundation for understanding all of them (Martindale 2007).

While most in the field agree that Martindale’s prototypicality model explains
more of the empirical data than Berlyne’s collative effect model, some cases re-
main where prototypicality is the weaker explanation. Some have suggested ways
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to reconcile the two models to provide more cover than either can alone (North and
Hargreaves 2000, Whitfield 2000).

10.3.3 Empirical Studies of Human Aesthetics

Along with unifying theories such as those offered by Arnheim, Berlyne, and Mar-
tindale, the field of psychology offers a vast catalogue of very specific findings from
experimental aesthetics. It is difficult in aesthetics research to identify and control
the myriad factors that may influence hedonic response. And because human sub-
jects are typically required it is difficult to achieve large sample sizes. Nevertheless
empirical studies of human aesthetics seem to be on the increase, and many are
highly suggestive and worth consideration by those interested in computational aes-
thetic evaluation.

Empirical studies of human aesthetics usually focus on viewers, artists, or ob-
jects. Studies of viewers have to account for audiences that are expert and not. Some
experiments focus on the impact setting has on aesthetic perception. Others are at-
tempts to correlate aesthetic response with social or personality factors. Studies of
artists usually focus on aspects of divergent thinking, creativity, and self-critical
abilities. Studies of objects typically include some form of analysis relative to a
hypothesised aesthetic mechanism.

A full or even representative cataloguing of these studies is unfortunately well
outside of the scope of this chapter. What stands out in reading the literature though
is the large number of variables that determine or shade human aesthetic experience.
For example:

• Subjects first asked to think about the distant future are more likely to accept
unconventional works as art than those who first think about their near future
(Schimmel and Forster 2008).

• A hedonic contrast effect has been established in music listening. In absolute
terms the same music will be evaluated more positively if preceded by bad music,
and less positively if preceded by good music (Parker et al. 2008).

• Not all emotions lend themselves to musical expression. Those that do tend to be
general, mood based, and don’t require causal understanding (Collier 2002).

• Individual preference differences can form on the basis of experience. Relative
to non-professionals, photo professionals exhibit a greater ability to process pho-
tographic information, and show a relative preference for photographs that are
uncertain and unfamiliar (Axelsson 2007).

• Artists and non-artists were presented with a sequence of 22 work-in-process
images leading to Matisse’s 1935 painting, Large Reclining Nude. Non-artists
judged the painting as getting generally worse over time consistent with the in-
creasing abstraction of the image. In contrast, art students’ judgements showed a
jagged trajectory with several peaks suggesting an interactive hypothesis-testing
process (Kozbelt 2006).
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• Whether isolated or within a larger composition, note intervals in music carry sig-
nificant and consistent emotional meaning. There is also softer evidence that these
interval-emotional relationships are universal across different times, cultures, and
musical traditions. Speculation is that this is related to universal aspects of vocal
expression (Oelmann and Laeng 2009).

10.3.4 Neuroaesthetics

Beginning with Birkhoff, and throughout this chapter, neurology has frequently
been the backstory for aesthetic and computational aesthetic evaluation models
described at higher levels of abstraction. To some extent Arnheim, and certainly
Berlyne and Martindale, all had in mind neurological models as the engines of aes-
thetic perception. In no small part due to new imaging technologies such as func-
tional magnetic resonance imaging (fMRI), positron emission tomography (PET)
scanning, and functional near-infrared imaging (fNIR), science seems to be prepar-
ing to take on perhaps the deepest mystery we face everyday, our own minds.

It is in this context that the relatively new field of neuroaesthetics has come into
being (Skov and Vartanian 2009a). Neuroaesthetics is the study of the neurological
bases for all aesthetic behaviour including the arts. A fundamental issue in neu-
roaesthetics is fixing the appropriate level of inspection for a given question. It may
be that the study of individual neurones will illuminate certain aspects of aesthetics.
Other cases may require a systems view of various brain centres and their respective
interoperation.

A better understanding of representation in the brain could illuminate not only
issues in human aesthetics but more generally all cognition. This in turn may find
application not only in computational aesthetic evaluation, but also broadly across
various artificial intelligence challenges. And finally, a better understanding of neu-
rology will likely suggest new models explaining human emotion in aesthetic ex-
perience. If we better understand the aesthetic contributions of both the cortex and
the limbic system, we will be better prepared to create machine evaluation systems
that can address both the Dionysian and the Apollonian in art (Skov and Vartanian
2009b).

10.3.5 Computing Inspired by Neurology

Computer science has felt the influence of biology and brain science from its ear-
liest days. The theoretical work of Von Neumann and Burks (1966) towards a uni-
versal constructor was an exploration of computational reproduction and evolution.
Turing (1950) proposed a test essentially offering an operational definition for ma-
chine intelligence. Turing also invented the reaction diffusion model of biological
morphogenesis, and towards the end of that article he discuses implementing a com-
puter simulation of it (Turing 1952). Computing models inspired by neurology have
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fallen in and out of fashion, from Rosenblatt’s early work on the perceptron (Rosen-
blatt 1962), to Minsky and Papert’s critique (Minsky and Papert 1969), and to the
later successful development of non-linear models using backpropagation and self-
organisation.

A number of artificial neural network applications already noted showed only
limited success as either a fitness function or a standalone machine evaluation sys-
tem. It would be premature to conclude such use in has hit a permanent plateau.
But it would be glib to suggest that since the brain is a neural network that the
successful use of artificial neural networks for computational aesthetic evaluation
is inevitable. The brain’s 1015 neural connections and presently unknown glial cell
capacity presents a daunting quantitative advantage artificial systems will not match
any time soon.

Perhaps a better understanding of natural neurology and subsequent application
to connectionist technologies can help overcome what present artificial systems lack
in quantity. This is the approach Jeff Hawkins has taken in the development of hier-
archical temporal memory.

10.3.6 The Neocortex and Hierarchical Temporal Memory

Hawkins has proposed the hierarchical temporal memory model for the functional-
ity found in the neocortex of the brain. He proposes that this single mechanism is
used for all manner of higher brain function including perception, language, creativ-
ity, memory, cognition, association, and so on. He begins with a typical hierarchical
model where lower cortical levels aggregate inputs and pass the results up to higher
levels corresponding to increasing degrees of abstraction (Hawkins and Blakeslee
2004).

Neurologists know that the neocortex consists of a repeating structure of six lay-
ers of cells. Hawkins has assigned each layer with functionality consistent with the
noted multi-level hierarchical structure. What Hawkins has added is that within a
given level higher layers constantly make local predictions as to what the next sig-
nals passed upward will be. This prediction is based on recent signals and local
synapse strength. Correct predictions strengthen connections within that level. Thus
the neocortex operates as a type of hierarchical associative memory system, and it
exploits the passage of time to create local feedback loops for constant training.

Artificial hierarchical temporal memory has been implemented as software called
NuPIC. It has been successfully demonstrated in a number of computer vision ap-
plications where it can robustly identify and track moving objects, as well as extract
patterns in both physical transportation and website traffic (Numenta 2008). To date
NuPIC seems to work best when applied to computer vision problems, but others
have adapted the hierarchical temporal memory model in software for temporal pat-
terns in music (Maxwell et al. 2009).
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10.3.7 Computer Architectures for Evolvable Hardware

Another promising technology is reconfigurable hardware that evolves in a way to
best solve the problem at hand. Evolvable hardware exploits programmable circuit
devices such as field programmable gate arrays (FPGAs). These are integrated cir-
cuit chips with a large number of simple logic units or gates. Settable switches
called architecture bits or configuration memory program the logical function and
interconnection of these gates. Field programmable gate arrays allow the mass man-
ufacture of standardised silicon that has its circuit-level functionality postponed for
later definition. This circuit-level functionality is lower and faster than that achieved
by executing machine language code (Yao and Higuchi 1997).

By treating the architecture bits as a chromosome the configuration of field pro-
grammable gate arrays can be determined using evolutionary methods. Evolution in
this case doesn’t design the gate array configuration so much as it designs the chip’s
behaviour relative to some fitness function defined need. In this some see a paral-
lel to the way neurones exhibit emergent learning. And because these chips can be
reprogrammed on the fly there is the possibility of learning adaptation to changing
conditions.

It’s worth noting that a proposed evolvable hardware system has been simulated
in software, and used as a pattern recognition system for facial recognition with an
experimental accuracy of 96.25 % (Glette et al. 2007).

10.4 Conclusion

Computational aesthetic evaluation victories have been few and far between. The
successful applications have mostly been narrowly focused point solutions. Negative
experience to date with low dimensional models such as formulaic and geometric
theories makes success with similar approaches in the future quite unlikely.

Evolutionary methods, including those with extensions such as coevolution,
niche construction, and agent swarm behaviour and curiosity, have had some cir-
cumscribed success. The noted extensions have allowed evolutionary art to iterate
many generations quickly by eliminating the need for interactive fitness evaluation.
They have also allowed researchers to gain insight into how aesthetic values can
be created as emergent properties. In such explorations, however, the emergent ar-
tificial aesthetics themselves seem alien and unrelated to human notions of beauty.
They have not yet provided practical leverage when the goal is to model, simulate,
or predict human aesthetics via machine evaluation.

I’ve suggested that a paradigm like effective complexity may be more useful than
information or algorithmic complexity when thinking about aesthetics. Effective
complexity comes with the notion of balancing order and disorder “built in”, and
that balance is critical in all forms of aesthetic perception and the arts.

There is also a plausible evolutionary hypothesis for suggesting that effective
complexity correlates well with aesthetic value. Effective complexity is maximised
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in the very biological systems that present us with our greatest opportunities and
challenges. Hence there is great survival value in having a sensory system optimised
for the processing of such complexity. There is also additional survival value in our
experiencing such processing as being pleasurable. As in other neurological reward
systems such pleasure directs our attention to where it is needed most.

The fields of psychology and neurology have been noted as possible sources
of help for future work in computational aesthetic evaluation. Models of aesthetic
perception such as those from Arnheim, Berlyne, and especially Martindale invite
computational adaptation. Results from empirical studies of human aesthetics can
stimulate our thinking about computational evaluation. At the same time they warn
us that aesthetic evaluation in humans is highly variable depending on setting, con-
text, training, expectations, presentation, and likely dozens of other factors.

Will robust human-like computational aesthetic evaluation be possible someday?
There is currently no deductive proof that machine evaluation either is or isn’t pos-
sible in principle. Presumably an argument for impossibility would have to estab-
lish as key an aspect of the brain or human experience that goes beyond mechani-
cal cause and effect. Others might argue that because the brain itself is a machine
our aesthetic experience is proof enough that computational aesthetic evaluation is
possible. These in-principle arguments parallel philosophical issues regarding phe-
nomenology and consciousness that are still in dispute and far from settled.

As a practical matter, what is currently possible is quite limited. The one con-
sistent thread that for some will suggest a future direction relates to connectionist
approaches. The current leading psychological model, Martindale’s prototypicality,
presents natural aesthetic evaluation as a neural network phenomenon. We know
that animals with natural neural systems much simpler than those in the human
brain are capable of some forms of aesthetic evaluation. In software, new connec-
tionist computing paradigms such as hierarchical temporal memory show promise
for both higher performance and closer functional equivalency with natural neural
systems. In hardware we are beginning to see systems that can dynamically adapt
to problem domains at the lowest gate level. Perhaps this will all someday lead to a
synergy of hardware, software, and conceptual models yielding success in compu-
tational aesthetic evaluation.
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Chapter 11
Computing Aesthetics with Image Judgement
Systems

Juan Romero, Penousal Machado, Adrian Carballal, and João Correia

Abstract The ability of human or artificial agents to evaluate their works, as well
as the works of others, is an important aspect of creative behaviour, possibly even a
requirement. In artistic fields such as visual arts and music, this evaluation capacity
relies, at least partially, on aesthetic judgement. This chapter analyses issues regard-
ing the development of computational systems that perform aesthetic judgements
focusing on their validation. We present several alternatives, as follows: the use of
psychological tests related to aesthetic judgement; the testing of these systems in
style recognition tasks; and the assessment of the system’s ability to predict the
users’ valuations or the popularity of a given work. An adaptive system is presented
and its performance assessed using the above-mentioned validation methodologies.

11.1 Introduction

Creativity is frequently associated with the capacity to create artworks. Therefore,
the design of computing systems which have the skills to create artworks can pro-
vide interesting insights into a general understanding of creativity. Spector and
Alpern (1994) define a “Constructed Artist” as an entity that is “. . . supposed to be
capable of creating aesthetically meritorious artworks on their own, with minimal
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human intervention”, as opposed to other computational systems performing artis-
tic tasks. Artistic processes often rely on the capacity to make aesthetic judgements,
using artworks created by others as sources of inspiration and making criticism of
their own work. As Boden (1990) puts it: “Someone that has a new idea must be
able to evaluate it by itself”.

A major obstacle in developing constructed artists is the difficulty of implement-
ing aesthetic judgement mechanisms. Having a system capable of creating its own
aesthetic preferences, or acquiring them from a cultural environment, would be an
important step towards the development of computational creativity.

The concepts of art and aesthetics are deeply related. Nevertheless, it is important
to differentiate between them. The artistic value of an artwork depends on several
factors, including form, content, cultural context and novelty. We acknowledge the
relevance of all these factors, yet, we focus exclusively on the aesthetic properties of
the artworks, and—for the scope of this chapter—we define Aesthetics as the study
of the form in itself, i.e. stripped from content, context, and all the other factors that,
although relevant from an artistic standpoint, do not result exclusively from form
and, consequently, cannot be analysed when considering only the form.

By assuming this point of view, we are not creating a false dichotomy between
“form” and “content”. We acknowledge that these factors are not independent. Form
affects, and sometimes determines, the way content is perceived and conveyed, and
the coherence or contrast between form and content can be explored. For instance,
an artist may choose to use a composition that he finds visually pleasing and har-
monious to convey content that is highly displeasing and violent, exploring the dis-
crepancy between form and content for artistic purposes. Even when the artwork is
purely abstract, one cannot rule out the possibility that a human observer perceives,
even if only at a subconscious level, some type of content that evokes feelings and
emotions and that, therefore, influences his reaction to the piece. In other words,
it may be impossible for a human to focus exclusively on the form, which makes
the discipline of aesthetics (as defined here) an unreachable goal. Although this
constitutes an obvious drawback, it is also an opportunity: computers can focus ex-
clusively on the form.

In the same way that we differentiate between Art and Aesthetics, we also differ-
entiate between Artistic and Aesthetic Judgement. The existence of universal aes-
thetic preferences shared among all humans, the existence of shapes that are inher-
ently pleasing or displeasing, the way culture and training affect aesthetics, etc. are
controversial (even among the authors of this chapter). These questions, although
relevant, are outside the scope of what we describe here. We consider, however, that
there are properties such as symmetry, balance, rhythm, contrast, proportion, repe-
tition, unity, predominance, variety, and continuity which are aesthetically relevant
and that can be considered aesthetic principles. This does not imply that a symmetric
image is inherently more pleasing than an asymmetric one. It does, however, imply
that symmetry may influence the aesthetic value of an artwork. The way a given
aesthetic property influences aesthetics depends on a wide variety of issues, includ-
ing the relationship with other aesthetic properties, personal preferences, aesthetic
trend, and so on.



11 Computing Aesthetics with Image Judgement Systems 297

We posit that the ability to recognise at least some of these aesthetic properties
is common to all humans, acknowledging that the way different humans may react
to different aesthetic principles, to their relationships, and value aesthetic principles
may vary. Likewise, the degree of awareness to principles of aesthetical order and
the inclination to use aesthetic criteria when valuing artefacts also differs.

In Machado et al. (2003) we find the following definition: Artificial Art Critics
are “systems that are capable to see/listen to an artwork and perform some sort of
evaluation of the perceived piece”. Unfortunately, the term “art critic” can be easily
misunderstood, given that it may be perceived as the equivalent of a human mak-
ing an artistic critique or a written analysis of an artwork, rather than an aesthetic
judgement. For this reason, we abandon this nomenclature.

Taking all of the above into consideration, for the scope of this chapter, we de-
fine an aesthetic judgement system (AJS) as a system that performs an aesthetic
assessment of an image based on its aesthetic properties. For instance, a system
that: measures the degree of accordance of an artwork with a given aesthetic theory;
measures several aesthetic properties of an image; makes an assessment of an art-
work according to the aesthetic preferences of a given user, set of users, community,
etc.; identifies the aesthetic current of an artwork; assesses the aesthetic consistency
of a set of works; etc.

It is important to note that the system should make its judgement based on
aesthetic properties. A system that assesses the aesthetic value of an artwork by
analysing its aesthetic properties can be considered an AJS. A system that performs
the same task by using optical character recognition to identify the signed name of
the author and determines aesthetic value by the popularity of the author cannot be
considered an AJS.

An AJS may provide a quantitative judgement, e.g. a single numeric value, a
vector, or a classification in one or more dimensions. An AJS may also provide a
qualitative assessment or assessments. Ultimately, the adequacy of the output de-
pends on the task at hand. For instance, to guide an evolutionary algorithm using
roulette wheel selection, a quantitative judgement, or one that can be converted to
quantities, is required. However, to guide the same algorithm using tournament se-
lection, only a qualitative assessment is needed, i.e. knowing if a given individual is
better suited to the task at hand than another, we do not need to quantify how much
better it is.

The AJSs can be divided into two categories. The first category explores systems
that rely on a theory of visual aesthetics and use an AJS to explore this theory by
computing it, e.g. Rigau et al. (2008), Staudek (2002; 2003), Taylor et al. (1999),
Machado and Cardoso (1998), Spehar et al. (2003), Schmidhuber (1997; 1998;
2007), see also the chapters by Galanter (Chap. 10) and Schmidhuber (Chap. 12)
in this volume.

The second category presents learning systems which include some kind of adap-
tive capacity that potentially allows them to learn user preferences, trends, aesthetic
theories, etc. Although there are different approaches, usually these systems extract
information from images (e.g. a set of metrics) using a machine learning system that
performs an aesthetics-based evaluation or classification. There are numerous exam-
ples of this architecture in the fields of content based image retrieval and computer
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vision, such as Datta et al. (2006; 2008), Ke et al. (2006), Cutzu et al. (2003). One
of the advantages of this kind of systems is their potential use to perform different
tasks, and to be adapted to different aesthetic preferences. Classification tasks are
particularly useful for validation purposes since they tend to be objective and allow
a direct comparison of the results obtained by several systems (provided that they
are applied to the same datasets).

Relatively few attempts have been made in the visual arts field to integrate eval-
uation skills into an image generation system. Neufeld et al. (2007) presented a
genetic programming engine generating non-photorealistic filters by means of a
fitness function based on Ralph’s bell curve distribution of colour gradient. This
model was implemented by carrying out an empirical evaluation of hundreds of
artworks. Their paper contains examples of some of the non-photorealistic filters
created.

Kowaliw et al. (2009) compared biomorphs generated in three different ways:
at random, through interactive evolution, and through evolution guided by a set of
image metrics used in content based image retrieval. They compared the results of
the three methods taking into account a model of creativity explained in Dorin and
Korb (2009), coming to the conclusion that automatic methods gave rise to results
comparable to those obtained by interactive evolution.

Baluja et al. (1994) used an artificial neural network trained with a set of im-
ages generated by user-guided evolution. Once trained, the artificial neural network
was used to guide the evolutionary process by assigning fitness to individuals. Al-
though the approach is inspiring, the authors consider the results somewhat disap-
pointing.

Saunders (2001) used a similar approach, proposing the use of a Self Organising
Map artificial neural network for the purpose of evolving images with a sufficient
degree of novelty. This approach is restricted to the novelty aspects of artworks.

Svangård and Nordin (2004) made use of complexity estimates so as to model the
user’s preferences, implying that this scheme may be used for fitness assignment.
The authors introduced some experiments in which they used sets of two randomly
generated images, and compared, for each pair, the system’s choices with those
made by the user. Depending on the methodology used, the success rates ranged
between 34 % and 75 %. Obviously, a result of 35 % is very low for a binary clas-
sification task. No example of the images considered was presented, which makes
it impossible to evaluate the difficulty of the task and, as such, the appropriateness
of the methodologies that obtained the highest averages. Additional information on
the combination of AJSs in image generation systems can be found in Chap. 10 in
this volume.

Although the integration of AJSs in image generation systems is an important
goal, having autonomous, self-sufficient AJSs presents several advantages:

• It allows one to assess the performance of the AJSs independently, providing a
method for comparing them. This allows a more precise assessment of the AJS
abilities than possible when comparing AJSs integrated with image generation
systems, since the strengths and weaknesses of the image generation systems
may mask those of the AJS;
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• It fosters cooperation among different working groups, allowing, for instance, the
collaboration between research groups working on the development of AJS and
groups that focus on the development of image generation systems;

• The same AJS may be incorporated with different systems allowing it to be used
for various creativity supporting tasks.

This chapter focuses on AJS validation. The next section discusses some of the is-
sues related to AJS validation and presents several validation methods based on psy-
chological tests, users’ evaluations, and stylistic principles. Section 11.3 describes
the evolution of an AJS through time, from a heuristic based system to a learning
AJS. The results obtained in the system validation by means of the approaches pro-
posed in Sect. 11.2 are presented and analysed. Finally, we draw overall conclusions
and indicate future work.

11.2 Validation Approaches for AJS

Performance comparison of two AJSs is a delicate task. The existence of a vali-
dation task to which both can be applied is a prerequisite for comparison. Unless
the systems are applicable to the exact same task (which includes using the same
datasets) the comparison may lead to erroneous conclusions. The validation method
must be reproducible and the results should be numerically quantifiable. All compo-
nents of the validation task (e.g. datasets) should be made accessible to the research
community. Furthermore, it is also recommended that the datasets come from an
external source (i.e. that they are not specifically made for a given AJS) and have an
unbiased character. There are tasks, e.g. author identification, that despite not being
directly related to the ability to make aesthetic assessments, can be useful due to
their objectivity and can, potentially, complement other validation methods.

The characteristics of human aesthetic preferences—e.g. subjectivity, individual-
ity, cultural biases, change through time, etc.—create an additional difficulty. Simi-
larly, the interpretation of the results is also problematic and, in many circumstances,
it is difficult to determine what constitutes a good result.

In this section we will explore three different ways to validate an AJS: based
on psychological tests related to aesthetics, based on user evaluation, and based on
stylistic classification.

11.2.1 Psychological Tests

There are several psychological tests aimed at measuring and identifying aesthetic
preferences (Burt 1933) and aesthetic judgement (Savarese and Miller 1979, Furn-
ham and Walker 2001). Some of them are employed on professional guidance, to-
gether with other psychological tests, in order to advise students about potential
careers.
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From the point of view of an AJS validation, they constitute a good reference,
since they are relatively easy to apply and provide reproducible and quantifiable re-
sults. They also allow the comparison of the “performance” of the computer system
with human evaluation, although this comparison is extremely delicate.

We will make a short analysis of two tests that are potentially useful for AJS
validation, namely the Visual Aesthetic Sensitivity Test of Götz et al. and Maitland
Graves’ Design Judgment Test. Nadal (2007) provides further analysis of these and
other psychological tests.

The Visual Aesthetic Sensitivity Test (VAST)—created by Götz (an artist) and
Eysenck (Eysenck et al. 1984, Götz 1985, Eysenck 1983)—consists of a series of
50 pairs of non-representative drawings. In each pair the subject has to express an
opinion as to which is the most harmonious design. Götz drew the “harmonious” de-
signs first and then altered them by incorporating changes that he considered faults
and errors according to his aesthetic views. The validity of the judgement was tested
by eight expert judges (artists and critics), making preference judgements and only
accepting pairs of designs on which agreement among judges was unanimous. When
groups of subjects are tested, the majority judgement agrees with the keying of the
items, which supports the validity of the original judgement.

There are easy, middle and difficult item levels. The difficulty level of items is
established in terms of the percentage of correct responses; the more subjects give
the right answer, the easier the item. Different groups of subjects, differing in age,
sex, artistic training, cultural background, and ethnicity have produced very sim-
ilar difficulty levels for the items. “The instructions of the test did not emphasise
so much the individual’s preference for one item or the other, but rather the qual-
ity of one design” (Eysenck 1983). The task is to discover which of the designs is
the most harmonious and not which designs are the most pleasant. The images re-
semble abstract art, minimising the influence of content on preference. There was
some cross-cultural comparison employing the VAST test. Iwawaki et al. (1979)
compared Japanese and English children and students. Frois and Eysenck (1995)
applied the test to Portuguese children and Fine Arts Students.

Graves (1946) presented “The Design Judgment Test” (DJT).1 It was designed to
determine how humans respond to several principles of aesthetic order, presented in
his previous work (Graves 1951). It contains 90 slides with pairs or triads of images.
In each of the slides, one particular image “is considered ‘right’ (and scored accord-
ingly) on the basis of agreement with the author’s theories and the agreement of
art teachers on the superiority of that particular design” (Eysenck and Castle 1971).
Thus, on each slide, one of the images follows the aesthetic principles described by
Graves, while the others violate, at least, one of these principles. Each slide is shown
for approximately 45–60 seconds to the subject, who chooses one image per slide.
The score of the test corresponds to the number of correct choices. All slides are in
black, white and green. All images are abstract. The images of each slide are simi-
lar in style and in terms of the elements present. The average percentage of correct

1Photos of DJT can be found at: http://www.flickr.com/photos/robgiampietro/sets/
72157611584992173/with/3136292750/.

http://www.flickr.com/photos/robgiampietro/sets/72157611584992173/with/3136292750/
http://www.flickr.com/photos/robgiampietro/sets/72157611584992173/with/3136292750/
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answers resulting from answering randomly to the test is 48.3 %, due to the fact that
some of the items were made up of three images.

Graves (1948) reported that art students achieved higher scores in the test than
non-art students. He stated that: “the test’s ability to differentiate the art groups from
the non-art groups is unmistakably clear”. Eysenck and Castle (1971) obtained dif-
ferent results showing fewer differences between art and non-art students (64.4 %
vs. 60 %) with variances below 4 % in all cases, and also different responses in
males and females. Eysenck and Castle (1971) pointed out the “general climate of
art teaching, which now tends to stress simplicity and regularity to a greater extent
than 25 years ago” as a possible reason for the differences observed. The DJT test
was used as an instrument by the career advisors of the Portuguese Institute for Em-
ployment and Vocational Training. According to the results found by this institute
while validating the test for the Portuguese population, published in internal reports
and provided to the career advisors, the results achieved in the DJT with randomly
selected individuals yield an average percentage of 50.76 % correct answers. This
score is similar to the one obtained by answering randomly to the test, which in-
dicates its difficulty. If we consider students in the last years of Fine Arts degrees,
the average increases up to 61.87 %. Nevertheless, Götz and Götz (1974) report
that “22 different arts experts (designers, painters, sculptors) had 0.92 agreement on
choice of preferred design, albeit being critical of them” (Chamorro-Premuzic and
Furnham 2004).

Like in most psychological tests, one should exercise great care when interpreting
the results. The fact that a subject obtains a higher score in the DJT than another does
not imply that he has better aesthetic judgement skills. It can mean, for instance, that
one of the subjects is making choices based on aesthetics while the other is not. For
example, a structural engineer may be inclined to choose well-balanced and stable
designs, systematically valuing these properties above all else and ignoring rhythm,
contrast, dynamism, etc. because the balance of the structure is the key factor to him.
The test has been used for career guidance based on the reasoning that a subject that
consistently makes choices according to aesthetic criteria is likely to have a vocation
for an art-related career.

The DJT is based on aesthetic principles which may not be universally accepted
or applicable (Eysenck 1969, Eysenck and Castle 1971, Uduehi 1995). Additionally,
even if the aesthetic principles are accepted, the ability of the test to assess them has
been questioned (Eysenck and Castle 1971). The average results obtained by hu-
mans in these tests also vary between studies (Eysenck and Castle 1971, Uduehi
1995). Although this can be, at least partially, explained by the selection of partici-
pants and other exogenous factors, it makes it harder to understand what constitutes
a good score in this test.

The ability of these tests to measure the aesthetic judgement skills of the subjects
is not undisputed, nor are the aesthetic principles they indirectly subscribe. Never-
theless, they can still be valuable validation tests in the sense that they can be used to
measure the ability of an AJS to capture the aesthetic proprieties explored in these
tests and the degree of accordance with the aesthetic judgements they implicitly
defend.
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11.2.2 User Evaluation and Popularity Prediction

The most obvious way of validating an AJS (at least one with learning capacities)
may be to employ a set of images pre-evaluated by humans. The task of the AJS
is to classify or “to assign an aesthetic value to a series of artworks which were
previously evaluated by humans” (Romero et al. 2003).

There are several relevant papers published in the image processing and computer
vision research literature that are aimed at the classification of images based on
aesthetic evaluation. Most of them employed datasets obtained from photography
websites. Some of those datasets are public, so they allow testing of other AJSs. In
this section we perform a brief analysis of some of the most prominent works of this
type.

Ke et al. (2006) proposed the task of distinguishing between “high quality profes-
sional photos” and “low quality snapshots”. These categories were created based on
users’ evaluations of a photo website, so, to some extent, this can be considered as a
classification based on aesthetic preference. The website was the dpchallenge.com
photography portal, and they used the highest and lowest rated 10 % images from a
set of 60,000 in terms of average evaluation. Each photo was rated by at least 100
users. Images with intermediate scores were not considered.

The authors employed a set of high-level image features (such as spatial distri-
bution of edges, colour distribution, blur, hue count) and a support vector machine
classification system, obtaining a correct classification rate of 72 %. Using a combi-
nation of these metrics with those published by Tong et al. (2004), Ke et al. (2006)
achieved a success rate of 76 %.

Luo and Tang (2008) employed the same database. The 12,000 images of the
dataset are accessible online2 allowing the comparison of results. Unfortunately,
neither the statistical information of the images (number of evaluations, average
score, etc.) nor the images with intermediate ratings are available. The dataset is
divided into two sets (training and test), made up of 6,000 images each. The authors
state that these sets were randomly created. However, when one reverses the role of
the test and training sets (i.e. training with original “test” set and testing with the
original “training” set) the results differ significantly. This result indicates that the
test and training set are not well-balanced.

Additionally, Luo and Tang (2008) used a blur filter to extract the background
and the subject from each photo. Next, they employed a set of features related to
clarity contrast (the difference between the crispness of the subject region and the
background of the photo), lighting, simplicity, composition and colour harmony.
They obtained a 93 % success rate using all features, which clearly improved upon
previous results. The “clarity contrast” feature alone yields a success rate above
85 %. The authors pointed out that the difference between those results and the ones
obtained by Ke et al. (2006) can be derived from the application of metrics to the
image background regions and to the greater adequacy of the metrics itself.

2http://137.189.97.48/PhotoqualityEvaluation/download.html.

http://dpchallenge.com
http://137.189.97.48/PhotoqualityEvaluation/download.html
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Datta et al. (2006) employed colour, texture, shape and composition, high-level
ad-hoc features and a support vector machine to classify images gathered from a
photography portal (photo.net). The dataset included 3581 images. All the images
were evaluated by at least two persons. Unfortunately, the statistical information
from each image, namely number of votes, value of each vote, etc. is not avail-
able. Similarly to previous approaches, they considered two image categories: the
highest rated images (average aesthetic value ≥5.8, a total of 832 images) and the
lowest rated ones (≤4.2, a total of 760 images), according to the ratings given by
the users of the portal. Images with intermediate scores were discarded. Datta’s jus-
tification for making this division is that photographs with an intermediate value
“are not likely to have any distinguishing feature, and may merely be representing
the noise in the whole peer-rating process” (Datta et al. 2006). The system obtained
70.12 % classification accuracy. The authors published the original dataset of this
experiment, allowing future comparisons with other systems.

Wong and Low (2009) employed the same dataset, but selected the 10 % of the
highest and lowest rated images. The authors extracted the salient regions of images,
with a visual saliency model. They used global metrics related to sharpness, contrast,
luminance, texture details, and low depth of field; and features of salient regions
based on exposure, sharpness and texture details. Using a support vector machine
classifier they obtained a 78 % 5-fold cross-validation accuracy.

In order to create a basis for research on aesthetic classification, Datta et al.
(2008) proposed three types of aesthetic classification: aesthetic score prediction;
aesthetic class prediction and emotion prediction. All the experiments explained in
this section rely on aesthetic class prediction. He also published four datasets: the
one employed in Datta et al. (2006), and 3 other extracted from photo.net (16,509
images), dpchallenge.com (14,494 images) and “Terragalleria” (14,494 images).3

These three datasets include information regarding the number of votes per image
and “score” (e.g. number of users that assigned a vote of “2” to image “id454”).
Moreover, a dataset is included from the website “Alipr” with 13,100 emotion-
tagged images.

Although not within the visual field, it is worth mentioning the work carried
out by Manaris et al. (2007) in which a system was trained to distinguish between
popular (high number of downloads) and unpopular classical music (low number of
downloads). The dataset was obtained from downloads of the website Classical Mu-
sic Archive (http://www.classicalarchives.com) in November 2003. Two sets, with
high and low number of downloads, were created, in a similar way to the previously
mentioned works. The “popular” set contained 305 pieces, each one with more than
250 hits, while the “not popular” contained 617 pieces with less than 22 downloads.
The system is based on a set of metrics based on Zipf’s Law applied to musical con-
cepts such as pitch, duration, harmonic intervals, melodic intervals, harmonic con-
sonance, etc. The classification system is based on an artificial neural network. The
success rate was 87.85 % (it classified correctly 810 out of 922 instances), which

3Available from http://ritendra.weebly.com/aesthetics-datasets.html.

http://photo.net
http://photo.net
http://dpchallenge.com
http://www.classicalarchives.com
http://ritendra.weebly.com/aesthetics-datasets.html
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was considered promising by the authors. The same approach could be applied to
images if we use the number of times an image is downloaded or the number of hits
of its high-resolution version.

All these works rely on the use of photography and artistic websites. While these
sites provides large datasets created by a third party, which should minimise the
chances of being biased, the approach has several shortcomings for the purposes of
AJS validation.

The experimental environment (participants and methodology) is not as con-
trolled as in a psychological test, and several exogenous factors may influence the
image scores. It is not possible to have all the information about the people and the
circumstances in which they participated. The personal relations between users may
affect their judgement. The same person may cast more than one vote, and so on.

It is also difficult to know what the users are evaluating when they vote. At
photo.net the users can classify each image according to its “aesthetic” and “origi-
nality”, however these scores are highly correlated (Datta et al. 2006), which indi-
cates that users were not differentiating between these criteria. Since the selection
of images is not under the control of the researcher, the aesthetic evaluation can be
highly influenced by the semantics of content, novelty, originality and so on. These
websites include some level of competition (in fact dpchallenge.com is a contest),
so the possibilities of some biased votes is even higher.

The interpretation of the results obtained by an AJS in this kind of test is not
straightforward. Different datasets have different levels of difficulty. As such, a per-
centage of correct answers of, e.g. 78 % can be a good or a bad score. As such, the
comparison with the state of the art becomes of huge importance. Additionally, it
may also be valuable to consider the difficulty of the task for humans. Thus, estimate
the discrepancy between the success rate of the AJS and the success rates obtained
by humans. Although this is not possible for the previously mentioned datasets, if
the dataset includes all the voting information, one can calculate the agreement be-
tween humans and the AJSs. In other words, check if the response of the AJS is
within the standard deviation for human responses.

For the purposes of AJS validation, the dataset should neither be trivial nor al-
low shortcuts that enable the system to perform the task exploiting properties of
the artefacts which are not related with the task. Teller and Veloso (1996) discov-
ered that their genetic programming approach to face recognition was identifying
subjects based on the contents of the background of images (the photographs had
been taken in different offices) instead of on the faces. The same type of effect may
happen in aesthetic judgement test unless proper measures are taken. For instance,
good photographers tend to have good cameras and take good photographs. A sys-
tem may correctly classify photographs by recognising a good camera (e.g. a high
resolution one) instead of recognising the aesthetic properties of the images. Thus,
it is necessary to take the appropriate precautions to avoid this type of exploitation
(e.g. reducing all the images to a common resolution before they are submitted to
the classifier). This precaution has been taken in the works mentioned in Sect. 11.3
of this chapter. Nevertheless, it is almost impossible to ensure that the judgements
are made exclusively on aesthetic properties.

http://photo.net
http://dpchallenge.com
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For all the above reasons, the use of several datasets and types of tasks during the
validation can help assessing the consistency and coherence of the results.

Creating datasets specifically for the purposes of the validation of AJSs is also
valuable. An option is to create a dataset made up of images evaluated by humans
in a controlled environment, following, for instance, a methodology similar to the
one employed by Nadal (2007). We are not aware of any AJS evaluated like this in
the field of visual art. In the musical field, there is a system that follows this ap-
proach (Manaris et al. 2005), in which a classifier is trained from human responses
to musical pieces in a controlled experiment. A system similar to the one previ-
ously described achieved an average success rate of over 97 % in predicting (within
one standard deviation) human emotional responses to those pieces (Manaris et al.
2007). Another option would be to create datasets that focus on a specific aesthetic
property. For instance, to judge the balance of the composition one could ask pho-
tographers to take several pairs of photographs of the same motif, with the same
camera, exposure, lighting conditions, etc. but with different framings so that one
is a well-balanced composition and the other is not, according to the views of the
photographers. This would allow the elimination of several of the external factors
that could bias the judgement and would also allow an incremental development of
the AJSs by focusing on one property at a time, and then moving towards tasks that
require taking several aesthetic properties into consideration.

11.2.3 Style and Author Classification

In order to provide objective testing and to further analyse the abilities of AJSs,
we explore validation approaches which test the ability of the system to learn the
characteristics of a visual style (from an author, a trend, etc.). This type of test is not
directly related with aesthetic value, but it can support AJS development.

In the field of computational creativity, a style-based classifier could allow the
creation of image generation systems that produce images of a given artistic style
and, perhaps more importantly in that context, it could be used to create images that
are stylistically different from a given style or styles.

An objective way of performing this kind of test is employing artworks from
several authors. The problems with this method usually arise from: (i) the relatively
“low” production of most artists, since a machine learning approach can easily re-
quire hundreds or even thousands of examples; (ii) the heterogeneity of the artistic
production of the authors, caused by the exploration of different styles, differences
between early and mature works, etc. One can partially overcome these difficulties
by selecting authors with vast productivity and by choosing the most prototypical
works. Unfortunately, this may rule out the possibility of using several influential
artists and bias the results by making the task easier than what would be desirable.

Another approach consists of classifying artworks according to the artistic
“style”. The main difficulties to overcome when setting up this type of experiment
are: (i) the images must be previously, and correctly, classified as belonging to a
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particular style; (ii) one must ensure that there is no overlap between styles; (iii) one
cannot use exclusively the most representative images of each style, otherwise the
tasks may become trivial and, therefore, useless.

The first problem can be partially solved by using a relevant external source for
the images. Unfortunately, the only published digital sets of artistic images we are
aware of are those provided by Directmedia/The Yorck Project publications. How-
ever, the quality of the collections is far from perfect (they include black and white
versions of some images, frames, detailed images of parts of other artworks, etc.).
One can also resort to online databases of paintings. The collection “Oil paintings by
Western masters” contains 46,000 images and can be found in the peer-to-peer net-
work. The Worldimages website (http://worldimages.sjsu.edu/kiosk/artstyles.htm),
the website http://www.zeno.org, developed by the creators of “The Yorck Project”,
and online museum websites are also good sources of images.

Wallraven et al. (2008) analysed the perceptual foundations of the traditional cat-
egorisation of images into art styles, finding supporting evidence. They concluded
that style identification was predominantly a vision problem and not merely a his-
torical or cultural artefact.

Wallraven et al. (2009) presented an experiment that analysed the capacity of a
group of non-experts in art to categorise a set of artworks in styles. One of the met-
rics they analysed is the artist consistency, which was higher if paintings of the same
painter were put in the same cluster. In one experiment, they obtained an average
artist consistency of 0.65. The conclusions were that “experts were able to reliably
group unfamiliar paintings of many artists into meaningful categories”. In the same
paper, the authors employed a set of low-level measures (Fourier analysis, colour
features, Gist, etc.) and a k-means algorithm to categorise the artworks into styles.
They concluded that low-level features were not adequate to artistic style classifica-
tion: “the fact that neither texture, nor colour-based, scale-sensitive or complexity
measures correlate at any dimension casts doubt on whether another [low level]
measure will do much better” (Wallraven et al. 2008).

Marchenko et al. (2005), based on the colour theory of Itten (1973), characterised
regions of the image in terms of “artistic colour concepts”, while Yan and Jin (2005)
used several colour spaces to gather information with the aim of retrieving and clas-
sifying oil paintings.

There are several papers in the content-based image retrieval literature that pro-
pose image classification based on the “type” of image, distinguishing professional
photos from amateur ones, e.g. (Tong et al. 2004); or photos from: (i) paintings
(Cutzu et al. 2003), (ii) computer graphics (Athitsos et al. 1997), (iii) computer-
generated images (Lyu and Farid 2005). These tasks result in an interesting test field
for AJS, creating the opportunity of using AJSs in image classification tasks that are
far from aesthetics. These works can also provide tools (e.g., features, classification
methods, etc.) of interest to the creative computer community, in particular to those
researchers involved in artistic tasks.

http://worldimages.sjsu.edu/kiosk/artstyles.htm
http://www.zeno.org


11 Computing Aesthetics with Image Judgement Systems 307

11.3 The Evolution of an AJS

This section describes the evolution of an AJS over the course of the past decade. It
started as a heuristic based system, it was tested using the DJT, and it subsequently
became part of an evolutionary art tool. Prompted by the results obtained, an AJS
with learning abilities was developed and tested in a wide variety of experiments,
which are also described briefly.

11.3.1 A Heuristic AJS

Machado and Cardoso (1998) took inspiration from the works of Arnheim (1956;
1966; 1969), as well as from the research indicating a preference for simple repre-
sentations of the world, and a trend to perceive it in terms of regular, symmetric and
constant shapes (Wertheimer 1939, Arnheim 1966, Tyler 2002, Field et al. 2000).
They explored the working hypothesis that the aesthetic value was linked with the
sensorial and intellectual pleasure experienced when finding a compact percept (i.e.
internal representation) of a complex visual stimulus (cf. Chap. 12). The identifi-
cation of symmetry, repetition, rhythm, balance, etc. can be a way of reducing the
complexity of the percept, which would explain the universal nature of these aes-
thetic principles and the ability of the brain to recognise them “effortlessly”.

The approach rewards images that are simultaneously visually complex and easy
to perceive, employing estimates for the Complexity of the Percept (CP) and for the
Complexity of the Visual Stimulus (CV). An estimate for CV should assess the pre-
dictability of the image pixels. JPEG image compression mainly affects the high fre-
quencies, which can normally be discarded without significant loss in image quality.
The amount, and quality (i.e. the error involved) of the compression achieved by this
method depends on the predictability of the pixels in the image being compressed.
Unlike JPEG compression, which only takes into account local information, fractal
image compression can take advantage of the self-similarities present in the im-
age. Machado and Cardoso (1998) assume that JPEG compression is less like the
way humans perceive images than fractal image compression, and hence use fractal
compression as a rough estimate of the CP. CP and CV are estimated through the di-
vision of the root mean square error by the compression ratio resulting, respectively,
from the fractal (quadratic tree based) and JPEG encoding of the image.

A time component is also considered (Machado and Cardoso 1998; 2002). As
time elapses, there is a variation in the detail level of image perception. Therefore,
it is necessary to estimate CP for specific points in time, in this case t0 and t1,
which is achieved by carrying out a fractal image compression with increasing detail
levels. The proposed approach values images where CP is stable for different detail
levels. The idea being that as time goes by one should be able to acquire additional
information about the image, for example: the increase in size of the percept should
be balanced out by the increase in its level of detail. It is important to notice that
Machado and Cardoso neither suggested that the employed JPEG complexity was
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able to fully capture the concept of image complexity, nor that the fractal image
compression was able to capture the complexity of visual perception. They posited
that JPEG was closer to visual complexity than fractal compression, and that fractal
compression was closer to processing complexity than JPEG, subsequently testing
the possibility of using these measures as rough estimates for these concepts in the
context of a specific, and limited, aesthetic theory.

The following formula was proposed as a way to capture the previously-
mentioned notions (Machado and Cardoso 1998):

aesthetic value = CVa

(CP(t1) × CP(t0))b
× 1

(CP(t1)−CP(t0)
CP(t1)

)c (11.1)

where a, b and c, are parameters used to tune the relevance given to each of the
components. The left side of the formula rewards those images which have high CV
and low CP estimates at the same time, while the right side rewards those images
with a stable CP across time. The division by CP(t1) is a normalisation operation.
The formula can be expanded in order to encompass further instants in time, but
the limitations of the computational implementation led the authors to use only two
instants in their tests.

The images of the DJT were digitalised, converted to greyscale, and resized to a
standard dimension of 512 × 512 pixels, which may involve changes in the aspect
ratio. The estimates for CV , CP(t1) and CP(t0) were computed for the resulting
images. Using these estimates, the outcome of formula (11.1) was calculated for
each of the images. For each of the 90 pairs or triads of images comprising the DJT,
the system chose the image that yielded a higher value according to formula (11.1).

The percentage of correct answers obtained by the AJS depends on the values of
the parameters a, b and c. Considering all combinations of values for these param-
eters ranging in the [0.5,2] interval with 0.1 increments, the maximum percentage
of correct answers was 73.3 % and the minimum 54.4 %. The average success rate
of the system over the considered parametric interval was 64.9 %.

As previously mentioned, the highest average percentage of correct answers in
human tests in the DJT reported by Eysenck and Castle (1971) is 64.4 %, and was
obtained by subjects that were final year fine art graduates, a value that is surpris-
ingly similar to the average success rate of our system (64.9 %).

Although comparing the performance of the system to the performance of hu-
mans is tempting, one should not jump to conclusions! A similar result cannot be
interpreted as a similar ability to perform aesthetic judgements. As previously men-
tioned, humans may follow principles that are not exclusively in aesthetic order to
choose images. Moreover, since the test aims at differentiating between humans,
it may take for granted principles that are consensual between them, and the AJS
would be unable to identify. Finally, the results say nothing regarding the validity of
the test itself (a question that is outside the scope of our research). Thus, what can
be concluded is that the considered formulae and estimates are able to capture some
of the principles required to obtain a result that is statistically different from the one
obtained by answering randomly in the DJT.
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Fig. 11.1 Examples of images created using an Evolutionary Engine and heuristic AJS

Some constraints were applied to the different formula components so as to ex-
plore these ideas in an evolutionary context, in the following way:

fitness = min(α,CV)a

max(β,CP(t1) × CP(t0))b
× 1

max
(
γ,

CP(t1)−CP(t0)
CP(t1)

)c (11.2)

where α, β and γ are constants defined by the user.
These constraints are necessary to ensure that the evolutionary algorithm does

not focus exclusively on one of the components of the formula. This could make
it converge to images with maximum visual complexity (e.g. white noise images)
disregarding entirely the processing complexity estimates, or to images with mini-
mal processing complexity estimates (e.g. pure white). It was not necessary to make
additional changes to prevent the situation where CP(t1) 	 0 because these images
have very low fitness, and are, therefore, already avoided by the evolutionary algo-
rithm.

It is important to notice that the situations where CP(t1) 	 0 or CP(t1) −
CP(t0) 	 0, although theoretically possible, never occurred when using natural im-
agery.

Machado and Cardoso (2002) carried out various experiments using a Genetic
Programming engine and formula (11.2) as the fitness function.

The results achieved with this autonomous evolutionary art system are quite strik-
ing (Machado and Cardoso 2002). In spite of the shortcomings—e.g. it only deals
with greyscale images—it allows the evolution of a wide variety of images with
different aesthetic merits. Figure 11.1 shows the fittest images from several inde-
pendent runs.

11.3.2 Learning AJSs

Based on the results described in the previous section, we developed a learning
AJS. The system consists of two modules: a Feature Extractor (FE) and an adaptive
classifier.

The FE performs an analysis of the input images by collecting a series of low-
level feature values, most of which are related to image complexity. The values that
result from the feature extractor are normalised between 1 and −1. These values are
the inputs of the classifier, which is made up of a feed-forward artificial neural net-
work with one hidden layer. For training purposes, we resorted to SNNS (Stuttgart
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Fig. 11.2 Feature extraction steps

Neural Network Simulator, Zell et al. 2003) and standard back-propagation. The
results presented in this chapter concern artificial neural networks with one input
unit per feature, 12 units in the hidden layer, and 2 units in the output layer (one
for each category). A training pattern specifying an output of (1; 0) indicates that
the corresponding image belongs to the first set. Likewise, a training pattern with
an output of (0; 1) indicates that the corresponding image belongs to the second set.
The parameters for the classifier and FE were established empirically in previous
experiments.

The experiments presented in this section concern classification tasks of different
nature: aesthetic value prediction, author identification and popularity prediction.
All the results presented in this section were obtained by the same AJS, trained in
different ways. Finally, we describe the integration of this AJS with an evolutionary
image generation system.

11.3.2.1 Feature Extraction

In this section we describe the feature extraction process.
The feature extraction can be summarised to the following steps (see Fig. 11.2):

(i) Pre-processing, which includes all the transformation and normalisation opera-
tions applied to a given input image; (ii) Metrics application, that is, the application
of certain methods based on statistical measurements and image complexity esti-
mates; (iii) Feature building, the extraction of results from the metrics applied in
order to build the image feature set.

Pre-processing The images from a dataset are individually submitted to a series
of transformations before being analysed. A given input image is loaded and resized
to a standard width and height of 256 × 256 pixels, transformed into a three-channel
image in the RGB (red, green and blue) colour space, with a depth of 8 bits per
channel and all the pixel values are scaled to the [0,255] interval. This step ensures
that all input images share the same format and dimensions.

Next, the image is converted into the HSV (Hue, Saturation and Value) colour
space and its HSV channels are split. Each of these channels is stored as a one-
channel greyscale image. From here on, we will refer to these images as H, S and
V channel images. A new greyscale image is also created by performing a pixel by
pixel multiplication of S and V channels and scaling the result to [0,255]. From
now on, we will refer to this image as the CS (Colourfulness) channel image.

The images resulting from these operations are subject to transformation op-
erations. The current version of the FE supports seven transformations: no filter,
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Table 11.1 Fractal image
compression parameters Low Medium High

Image size 256 × 256 pixels

Minimum partition level 2 2 3

Maximum partition level 4 5 6

Maximum error per pixel 8 8 8

which means no transformation applied; Sobel-based (Sobel 1990) and Canny-
based (Canny 1986) edge detection of horizontal and vertical edges, horizontal
edges, vertical edges.

Metrics Application A set of metrics is applied to the images resulting from
the pre-processing operations. The FE calculates the following metrics: average (i)
and standard deviation (ii) of the image pixel values; complexity estimates based
on JPEG (iii) and fractal compression (iv); Zipf Rank-Frequency (v) and Size-
Frequency (vi), which result from the application of the Zipf’s law (Zipf 1949);
(vii) Fractal dimension estimates using the box-counting method (Taylor et al.
1999).

The average (i) and standard deviation (ii) are calculated using the pixel intensity
value of each image, except for the H channel image. Since the Hue channel is
circular, the average and the standard deviation are calculated based on the norm
and angle of Hue values. In addition, a multiplication of the Hue angle value by the
CS value is made and consequently a norm is calculated using Hue and CS values.

The image compression schemes used are lossy and so there will be compression
errors, i.e. the compressed image will not exactly match the original. All other fac-
tors being equal, complex images will tend toward higher compression errors and
simple images will tend toward lower compression errors Additionally, complex im-
ages will tend to generate larger files than simple ones. Thus, compression error and
file size are positively correlated with image complexity.

We consider three levels of detail for the JPEG (iii) and Fractal compression
(iv) metrics: low, medium, and high. For each compression level the process is the
same, the image is encoded in JPEG and fractal format. In the experiments described
herein, we use a quad-tree fractal image compression scheme (Fisher 1995) with the
set of parameters given in Table 11.1.

The calculation of the Zipf Rank Frequency (v) metrics implies: counting the
number of occurrences of each pixel intensity value in the image; ordering them
according to the number of occurrences; tracing a rank vs. number of occurrences
plot using a logarithmic scale in both axis; calculating the slope of the trendline and
the linear correlation with the trendline.

For the Hue channel, this metrics is calculated in two ways: (i) as described
above; (ii) instead of counting the number of occurrences of each Hue value, we
add the CS channel values of the corresponding pixels (and divide them by 255 for
normalisation purposes). The rationing is that the perceived Hue depends on the
saturation and value of the corresponding pixel.



312 J. Romero et al.

The Zipf Size Frequency (vi) metric is calculated in similar way to Zipf Rank
Frequency. For each pixel we calculate the difference between its value and each
of its neighbouring pixels. We count the total number occurrences of differences in
size 1, size 2, . . . , size 255. We trace a size vs. number of occurrences plot using a
logarithmic scale in both axes and we calculate the slope and linear correlation of
the trendline.

For the H channel we consider a circular distance. The Hue Size Frequency is
also calculated using the CS channel. The last metric is a Fractal Dimension estimate
(vii) based on the box-counting method. Briefly described: the box-counting method
computes the number of cells (boxes) required to cover an object entirely, with grids
of cells of varying box size.

Feature Building After the application of the metrics, the results are aggregated
to make up the image features.

The average and standard deviation for each channel image returns two values,
except for the Hue channel that returns four values for the average and two values
for the standard deviation. The JPEG and Fractal compression metrics return three
values each, corresponding to the three compression levels considered. Although
these metrics are applied to all the images resulting from the pre-processing trans-
formations, the JPEG metric is also applied to the RGB image. As for the Zipf’s law
based metrics and fractal dimension, the slope of the trendline (m) and the linear
correlation (R2) of all greyscale images are extracted. In the case of the Hue chan-
nel, these metrics return four values each: two considering only the Hue channel and
two considering the Hue and CS channel. We employ a total of 53 metrics applied
to seven pre-processing operators, which yield 371 features per image.

11.3.2.2 DJT Experiments

The main goals of these experiments were: (i) confirming the results described in
the previous section by the heuristic based AJS and (ii) determining the viability of
training an artificial neural network for aesthetic judgement tasks from a small set
of examples.

We train an artificial neural network using some of the DJT items and test its
ability to predict the correct choice on the remaining ones. The network receives
as input the features of two images from the same slide. The output indicates the
chosen one. Each of the 82 DJT items that consist of two images yields a “pattern”.
Eight of the 90 DJT items contain three images instead of two. To deal with these
cases, each of these eight items was divided into two “patterns”, using the “correct”
image in both patterns. Thus, each triad results in two patterns, which yields a total
number of 98 patterns (82 obtained from pairs and 16 from triads).

Due to the small number of training patterns we employed a 20-fold cross-
validation technique. 20 sets were created from the 98 patterns (18 with 5 patterns
and 2 with 4 patterns). In each of the 20 “folds”, 19 of the sets were used for training
while the remaining one was used for validation.
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The sets were generated at random and care was taken to ensure that the two
patterns resulting from an item with three images were integrated into the same
set. Thus, it was guaranteed that the correct image was not simultaneously used for
training and testing the neural network.

Considering the 20 experiments carried out, the global success rate in the test
sets was 74.49 %. Which corresponds to a percentage of 71.67 % correct answers in
the Design Judgment Test.4 The result is similar to the maximum success rate pre-
viously achieved with the heuristic AJS (73.3 %) by adjusting the parameters. This
reinforces the conclusion that it is possible to capture some of the aesthetic princi-
ples considered by Maitland Graves in the DJT. They also show that it is possible to
learn principles of aesthetic order based on a relatively small set of examples. The
fact that the approach was not able to achieve the maximum score in the DJT has
two, non exclusive, explanations: (i) the features are unable to capture some of the
aesthetic principles required to obtain a maximum score in the DJT; (ii) the set of
training examples is not sufficient to allow the correct learning of these principles.

Although the results obtained by the system are higher than the human averages
reported in the previously mentioned studies, these results are not comparable. In
addition to the issues we mentioned when analysing the results of the heuristic based
classifier, the nature of the task is different herein: humans do not make their choices
based on a list of correct choices for other items of the test.

11.3.2.3 Author Identification Experiments

In Machado et al. (2004) we presented the results obtained by a previous version
of our AJS in an author identification task. The image dataset was made up of 98
paintings from Goya, 153 from Monet, 93 from Gauguin, 122 from Van Gogh, 81
from Kandinsky, and 255 from Picasso. Although the system obtained high success
rates (above 90 %), further experiments revealed that the reduced number of images
and their nature made the classification task easier than expected.

Taking into account the dataset limitations mentioned in Sect. 11.2.2, we created
a dataset composed of images from three prolific painters, from chronologically
consecutive artistic movements:

Claude-Oscar Monet (Impressionism, mid 19th century). It consists of 336 im-
ages, most of them landscapes and portraits.

Vincent van Gogh (Post-Impressionism, late 19th century): a total number of
1046 well-known images from his work, including landscapes, portraits, self-
portraits and still lifes.

Pablo Picasso (Cubism and Surrealism, early 20th century): a total of 540 images
belonging to different stages were used, ranging from the Blue Period to the author’s
surrealist stage.

We avoided using greyscale images and images with insufficient resolution.
Some of the images (12 from Picasso and 8 from Van Gogh) included the frames

4Some of the test items are triads, hence the lower percentage.
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Table 11.2 Success rate in
validation set (the results are
averages of 50 independent
runs)

Picasso vs. Van Gogh Picasso vs. Monet Van Gogh vs. Monet

92.1 % 91.5 % 89.9 %

Table 11.3 Confusion matrix
(the results are averages of 50
independent runs)

Picasso Monet Van Gogh

Picasso 87.59 % 2.59 % 9.81 %

Monet 4.76 % 70.24 % 25.00 %

Van Gogh 4.11 % 6.60 % 89.29 %

of the painting. Since we avoided doing any sort of manual pre-processing of the
images, the frames were not removed. The images were gathered from different
sources and the dataset will be made available for research purposes, thus enabling
other researchers to compare their results with ours.

The experimental results are averages of 50 independent runs using different
training and validation sets. In each run, 90 % of the images were randomly selected
to train the artificial neural network. The remaining ones were used as validation set
to assess the performance of the artificial neural network. The training of the artifi-
cial neural network was stopped after a predetermined number of learning steps. All
the results presented concern the performance in validation.

Table 11.2 presents the results obtained in an author classification task with two
classes. As it can be observed, discriminating between the works of Van Gogh and
Monet was the biggest challenge. Conversely, Pablo Picasso’s works were easily
distinguished from the ones made by Monet and Van Gogh.

In Table 11.3 we present the confusion matrix for this experiment, which re-
inforces the previous findings. There is a significant drop in performance when it
comes to the correct identification of Claude-Oscar Monet’s works. The existence
of fewer paintings of this author can explain the difficulties encountered in correctly
learning how to recognise his style. A more detailed analysis of this experiment is
currently in preparation.

Overall, the results indicate that the considered set of metrics and classifier sys-
tem are able to distinguish between the signatures (in the sense used by Cope 1992)
of different authors. It cannot be stated that the AJS is basing its judgement, at
least exclusively, on aesthetic principles. It can, however, be stated that it is able to
perform stylistic classification in the considered experimental settings. Even if we
could demonstrate that the system was following aesthetic principles, this would not
ensure that those principles are enough to perform aesthetic value assessments. If
the system obtained bad results in distinguishing between works that have different
aesthetic properties it would cast serious doubts on its ability to perform aesthetic
evaluation. Thus, a good performance on an author identification task does not en-
sure the ability to perform aesthetic evaluation, but it is arguably a prerequisite.
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11.3.2.4 Image Classification Based on Online Evaluation

We used the dataset provided by Datta et al. (2006) that was analysed in Sect. 11.2.2.
The database contains 832 images with an aesthetic rating ≥5.8 and 760 images with
a rating ≤4.2. However, when we carried out our experiment, some of the images
used by Datta were no longer available at photo.net, which means that our image
set is slightly smaller. We were able to download 656 images with a rating of 4.2 or
less, and 757 images with a rating of 5.8 or more.

We conducted 50 runs, each with different training and validation sets, randomly
created with 80 % and 20 % of the images, respectively. The success rate in the
validation set was 77.22 %, which was higher than the ones reported in the original
paper (Datta et al. 2006) but lower than the one obtained by Wong and Low (2009),
using 10 % of the images in each set.

11.3.2.5 Integration in an Image Generation System

A previous version of the AJS described here was used in conjunction with a genetic
programming evolutionary art tool. The main goal of this experiment, reported by
Machado et al. (2007), was to develop an approach that promoted stylistic change
from one evolutionary run to the next. The AJS assigns fitness to the evolved images,
guiding the evolutionary engine.

The AJS is trained by exposing it to a set of positive examples made up of art-
works of famous artists, and to a set of negative examples made up of images gen-
erated randomly by the system. The goal is twofold: (i) evolving images that relate
with the aesthetic reference provided by the positive examples, which can be con-
sidered an inspiring set; (ii) evolving images that are novel relative to the imagery
typically produced by the system. Thus, more than trying to replicate a given style,
the goal is to break from the traditional style of the evolutionary art tool. Once novel
imagery is found (i.e. when the evolutionary engine is able to find images that the
AJS fails to classify as being created by it), these images are added to the negative
set of examples, the AJS is re-trained and a new evolutionary run begins. This pro-
cess is iteratively repeated and, by this means, a permanent search for novelty and
deviation from the previously explored paths is enforced.

Next, the genetic programming engine and the AJS performed 11 consecutive
iterations (Machado et al. 2007). In each iteration, the evolutionary engine was able
to find images that were misclassified by the AJS. Adding this set of examples to
the dataset forced the AJS to find new ways to discriminate between paintings and
the images created by the evolutionary art tool. The evolutionary engine and the
AJS performed well across all iterations. The success rate of the AJS for validation
set images was above 98 % in all iterations. The evolutionary engine was also al-
ways able to find novel styles that provoked misclassification errors. In Fig. 11.3 we
present some examples of images created in the 1st and 11th iteration.

Overall, the results indicate that the internal coherency of each run is high, in
the sense that runs converge to imagery of a distinctive and uniform style. The style

http://photo.net
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Fig. 11.3 Examples of images created using an Evolutionary Engine and an adaptive AJS in the
1st (upper row) and 11th (lower row) iteration of the experiment

Table 11.4 Percentage of
images classified as external
by the ANNs used to guide
evolution in iterations 1 and
11, and the difference
between them

Set Iteration 1 Iteration 11 Difference

Painting masterpieces 99.68 % 96.88 % −2.80 %

User-guided evolution 17.99 % 10.07 % −7.91 %

differences between runs are also clear, indicating the ability of the approach to pro-
mote a search for novelty. They also indicate that the aesthetic reference provided
by the external set manages to fulfil its goal, making it possible for AJSs to differen-
tiate between those images that may be classified as paintings and those generated
by the GP system (Machado et al. 2007).

A set of experiments was carried out to compare the performance of the AJS from
the 1st and 11th iteration, using datasets made up of images that were not employed
in the runs. The experimental results are presented in Table 11.4 and show that the
AJS of the 11th generation performs worse than the one of the 1st iteration at clas-
sifying external imagery (a difference of 2.8 %), and better at classifying evolution
generated images (a difference of 7.91 %). These results suggest that the iterations
performed with the evolutionary engine promote the generalisation abilities of the
AJS, leading to an overall improvement in classification performance.

The integration of an AJS within a bootstrapping evolutionary system of this kind
is extremely valuable. As the results indicate, it allows the generation of images that
explore the potential weaknesses of the classifier system and the subsequent use of
these images as training instances, leading to an overall increase in performance.
Additionally, if the evolutionary system is able to generate images that the AJS is
unable to classify correctly (even after re-training it) and that a human can classify,
it shows that the set of features is not sufficient for the task at hand. Additionally, it
gives indications about the type of analysis that should be added in order to improve
the performance of the AJS.
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11.4 Conclusions

The development of AJS presents numerous difficulties, and there are still several
open questions, validation being one of them.

This chapter proposed several ways of testing and comparing the results of aes-
thetic judgement systems. We proposed validation tasks based on psychological
tests, on style and author identification, on users’ preferences, and on popularity
prediction.

Some alternatives for AJS design have been briefly explored. We focus on an
adaptive architecture based on a series of metrics and a machine learning classifier.
This type of approach was employed in the field of computational creativity and is
popular in content based image retrieval and computer vision research. Some of the
works in these areas that can be valuable to computational creativity are analysed.
The datasets and results they obtained are presented to serve as a reference for future
comparison.

We also presented a heuristic based AJS and discussed the results obtained by the
system in a psychological test designed for humans. The experiments show that this
AJS was able to capture some of the aesthetic principles explored in the test. The
integration of the heuristic AJS with an image generation system was also described
and the results briefly discussed.

Subsequently, we described the development of an adaptive AJS based on com-
plexity metrics and an artificial neural network classifier, and presented the experi-
mental results obtained by this AJS in several validation tasks.

The results attained in the psychological test show that the system is able to learn
from a set of examples made up of items of the test, obtaining a success rate above
70 % in a cross validation experiment. This result is similar to the one obtained by
the heuristic based AJS, indicating that the system is able to reverse engineer some
of the aesthetic principles considered in the DJT.

The author identification tasks show that, in the considered experimental settings,
the system is able to perform classification based on the image style with an average
success rate above 90 % in binary classification. The results obtained by our system
in the prediction of users’ aesthetic evaluation of online photographs are comparable
with those reported as state of the art.

Finally, we presented the integration of the learning AJS with an image genera-
tion engine to build a system designed to promote a constant search for novelty and
stylistic change.

Submitting the same AJS to several validation tasks allows one to overcome, at
least partially, the shortcomings of individual tasks and to get additional insight on
the weaknesses and strengths of the AJS.

We consider that the adoption of common validation procedures is an important
step towards the development of the field. Sharing datasets allows other researchers
to assess the strengths and weaknesses of their systems relative to published work.
Sharing the training and test patterns used in experiments further promotes this col-
laboration between research teams, since it enables assessment of performance im-
provement that can be expected by the inclusion of the metrics used by other re-
searchers in one’s own AJS. Once these performance improvements are identified,
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the logical next step is the development, through collaboration, of AJSs that en-
compass the metrics used by the different research groups. These could lead, for
instance, to an international research project where several research groups build a
common AJS. Some of the groups could propose metrics, others design the classi-
fier, and so on. Using the validation approaches proposed in this chapter (and future
research in this area) it becomes possible to validate the classifier and compare the
results with previous approaches. Moreover, due to the numerical nature of the val-
idation approach, it is possible to identify relevant metrics in the classifier for the
tasks considered.

AJSs can be valuable for real life applications, including:

• Image Classification—e.g., discriminating between professional and amateur
photos, paintings and photos, images that are interesting to a particular user, etc.

• Image Search Engines—which could take into account user preference, or stylis-
tic similarity to a reference image or images.

• Online Shopping—the ability to recognise the aesthetic taste of the user could be
explored to propose products or even to guide product design and development.

The development of AJSs can also play an important role in the study of aesthet-
ics, in the sense that the ability to capture aesthetic preferences of individuals and
groups may promote a better understanding of the phenomena influencing aesthetic
preferences, including cultural differences, training, education, trends, etc.

More importantly, the creation of systems able to perform aesthetic judgements
may prove vital for the development of computational creativity systems. For in-
stance, the development of an AJS that closely matches the aesthetic preferences of
an individual would open a wide range of creative opportunities. One could use such
an AJS in conjunction with an image generation system to create custom made “ar-
tificial artists” that would be able to create artworks which specifically address the
aesthetic needs of a particular person. These systems could change through time,
accompanying the development of the aesthetic preferences of the individual and
promoting this development. They could also be shared between people as a way of
conveying personal aesthetics, or could be trained to match the aesthetic preferences
of a community in order to capture commonality. These are vital steps to accomplish
our long term goal and dream: the development of computational systems able to
create and feel their art and music.

Acknowledgements The authors would like to thank the anonymous reviewers for their con-
structive comments, suggestions and criticisms. This research is partially funded by: the Span-
ish Ministry for Science and Technology, research project TIN2008-06562/TIN; the Portuguese
Foundation for Science and Technology, research project PTDC/EIA-EIA/115667/2009; Xunta de
Galicia, research project XUGA-PGIDIT10TIC105008-PR.

References

Arnheim, R. (1956). Art and visual perception, a psychology of the creative eye. London: Faber
and Faber.



11 Computing Aesthetics with Image Judgement Systems 319

Arnheim, R. (1966). Towards a psychology of art/entropy and art—an essay on disorder and order.
The Regents of the University of California.

Arnheim, R. (1969). Visual thinking. Berkeley: University of California Press.
Athitsos, V., Swain, M. J., & Frankel, C. (1997). Distinguishing photographs and graphics on the

world wide web. In Proceedings of the 1997 workshop on content-based access of image and
video libraries (CBAIVL ’97), CAIVL ’97 (pp. 10–17). Washington: IEEE Computer Society.
http://portal.acm.org/citation.cfm?id=523204.791698.

Baluja, S., Pomerlau, D., & Todd, J. (1994). Towards automated artificial evolution for computer-
generated images. Connection Science, 6(2), 325–354.

Boden, M. A. (1990). The creative mind: myths and mechanisms. New York: Basic Books.
Burt, C. (1933). The psychology of art. In How the mind works. London: Allen and Unwin.
Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 8(6), 679–698.
Chamorro-Premuzic, T., & Furnham, A. (2004). Art judgement: a measure related to both person-

ality and intelligence? Imagination, Cognition and Personality, 24, 3–25.
Cope, D. (1992). On the algorithmic representation of musical style. In O. Laske (Ed.), Under-

standing music with AI: perspectives on music cognition (pp. 354–363). Cambridge: MIT Press.
Cutzu, F., Hammoud, R. I., & Leykin, A. (2003). Estimating the photorealism of images: distin-

guishing paintings from photographs. In CVPR (2) (pp. 305–312). Washington: IEEE Computer
Society.

Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2006). Studying aesthetics in photographic images using a
computational approach. In Lecture notes in computer science. Computer vision—ECCV 2006,
9th European conference on computer vision, part III, Graz, Austria (pp. 288–301). Berlin:
Springer.

Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008). Image retrieval: ideas, influences, and trends
of the new age. ACM Computing Surveys, 40, 5:1–5:60. http://doi.acm.org/10.1145/1348246.
1348248.

Dorin, A., & Korb, K. B. (2009). Improbable creativity. In M. Boden, M. D’Inverno, & J. McCor-
mack (Eds.), Dagstuhl seminar proceedings: Vol. 09291. Computational creativity: an interdis-
ciplinary approach, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.
http://drops.dagstuhl.de/opus/volltexte/2009/2214.

Eysenck, H. (1969). Factor analytic study of the Maitland Graves Design Judgement Test. Percep-
tual and Motor Skills, 24, 13–14.

Eysenck, H. J. (1983). A new measure of ‘good taste’ in visual art. Leonardo, Special Issue: Psy-
chology and the Arts, 16(3), 229–231. http://www.jstor.org/stable/1574921.

Eysenck, H. J., & Castle, M. (1971). Comparative study of artists and nonartists on the Maitland
Graves Design Judgment Test. Journal of Applied Psychology, 55(4), 389–392.

Eysenck, H. J., Götz, K. O., Long, H. Y., Nias, D. K. B., & Ross, M. (1984).
A new visual aesthetic sensitivity test—IV. Cross-cultural comparisons between a Chi-
nese sample from Singapore and an English sample. Personality and Individual Differ-
ences, 5(5), 599–600. http://www.sciencedirect.com/science/article/B6V9F-45WYSPS-1M/2/
1b43c2e7ad32ef89313f193d3358b441.

Field, D. J., Hayes, A., & Hess, R. F. (2000). The roles of polarity and symmetry in the perceptual
grouping of contour fragments. Spatial Vision, 13(1), 51–66.

Fisher, Y. (Ed.) (1995). Fractal image compression: theory and application. London: Springer.
Frois, J., & Eysenck, H. J. (1995). The visual aesthetic sensitivity test applied to Portuguese chil-

dren and fine arts students. Creativity Research Journal, 8(3), 277–284. http://www.leaonline.
com/doi/abs/10.1207/s15326934crj0803_6.

Furnham, A., & Walker, J. (2001). The influence of personality traits, previous experience
of art, and demographic variables on artistic preference. Personality and Individual Dif-
ferences, 31(6), 997–1017. http://www.sciencedirect.com/science/article/B6V9F-440BD9B-J/
2/c107a7e1db8199da25fb754780a7d220.

Götz, K. (1985). VAST: visual aesthetic sensitivity test. Dusseldorf: Concept Verlag.

http://portal.acm.org/citation.cfm?id=523204.791698
http://doi.acm.org/10.1145/1348246.1348248
http://doi.acm.org/10.1145/1348246.1348248
http://drops.dagstuhl.de/opus/volltexte/2009/2214
http://www.jstor.org/stable/1574921
http://www.sciencedirect.com/science/article/B6V9F-45WYSPS-1M/2/1b43c2e7ad32ef89313f193d3358b441
http://www.sciencedirect.com/science/article/B6V9F-45WYSPS-1M/2/1b43c2e7ad32ef89313f193d3358b441
http://www.leaonline.com/doi/abs/10.1207/s15326934crj0803_6
http://www.leaonline.com/doi/abs/10.1207/s15326934crj0803_6
http://www.sciencedirect.com/science/article/B6V9F-440BD9B-J/2/c107a7e1db8199da25fb754780a7d220
http://www.sciencedirect.com/science/article/B6V9F-440BD9B-J/2/c107a7e1db8199da25fb754780a7d220


320 J. Romero et al.

Götz, K. O., & Götz, K. (1974). The Maitland Graves Design Judgement Test judged by 22 experts.
Perceptual and Motor Skills, 39, 261–262.

Graves, M. (1946). Design judgement test. New York: The Psychological Corporation.
Graves, M. (1948). Design judgement test, manual. New York: The Psychological Corporation.
Graves, M. (1951). The art of color and design. New York: McGraw-Hill.
Itten, J. (1973). The art of color: the subjective experience and objective rationale of color. New

York: Wiley.
Iwawaki, S., Eysenck, H. J., & Götz, K. O. (1979). A new visual aesthetic sensitivity test (vast):

II. Cross cultural comparison between England and Japan. Perceptual and Motor Skills, 49(3),
859–862. http://www.biomedsearch.com/nih/new-Visual-Aesthetic-Sensitivity-Test/530787.
html.

Ke, Y., Tang, X., & Jing, F. (2006). The design of high-level features for photo quality assessment.
Computer Vision and Pattern Recognition, IEEE Computer Society Conference, 1, 419–426.

Kowaliw, T., Dorin, A., & McCormack, J. (2009). An empirical exploration of a definition of
creative novelty for generative art. In K. B. Korb, M. Randall & T. Hendtlass (Eds.), Lecture
notes in computer science: Vol. 5865. ACAL (pp. 1–10). Berlin: Springer.

Luo, Y., & Tang, X. (2008). Photo and video quality evaluation: focusing on the subject. In D. A.
Forsyth, P. H. S. Torr & A. Zisserman (Eds.), Lecture notes in computer science: Vol. 5304.
ECCV (3) (pp. 386–399). Berlin: Springer.

Lyu, S., & Farid, H. (2005). How realistic is photorealistic? IEEE Transactions on Signal Process-
ing, 53(2), 845–850.

Machado, P., & Cardoso, A. (1998). Computing aesthetics. In F. Oliveira (Ed.), Lecture notes in
computer science: Vol. 1515. Proceedings of the XIVth Brazilian symposium on artificial intelli-
gence: advances in artificial intelligence, Porto Alegre, Brazil (pp. 219–229). Berlin: Springer.

Machado, P., & Cardoso, A. (2002). All the truth about NEvAr. Applied Intelligence, Special Issue
on Creative Systems, 16(2), 101–119.

Machado, P., Romero, J., & Manaris, B. (2007). Experiments in computational aesthetics: an iter-
ative approach to stylistic change in evolutionary art. In J. Romero & P. Machado (Eds.), The
art of artificial evolution: a handbook on evolutionary art and music (pp. 381–415). Berlin:
Springer.

Machado, P., Romero, J., Manaris, B., Santos, A., & Cardoso, A. (2003). Power to the critics—
a framework for the development of artificial art critics. In IJCAI 2003 workshop on creative
systems, Acapulco, Mexico.

Machado, P., Romero, J., Santos, A., Cardoso, A., & Manaris, B. (2004). Adaptive critics for evo-
lutionary artists. In R. Günther et al. (Eds.), Lecture notes in computer science: Vol. 3005. Ap-
plications of evolutionary computing, EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT,
EvoIASP, EvoMUSART, EvoSTOC, Coimbra, Portugal (pp. 435–444). Berlin: Springer.

Manaris, B., Romero, J., Machado, P., Krehbiel, D., Hirzel, T., Pharr, W., & Davis, R. (2005).
Zipf’s law, music classification and aesthetics. Computer Music Journal, 29(1), 55–69.

Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L., & Romero, J. (2007). A corpus-
based hybrid approach to music analysis and composition. In Proceedings of the 22nd confer-
ence on artificial intelligence (AAAI 07), Vancouver, BC.

Marchenko, Y., Chua, T.-S., & Aristarkhova, I. (2005). Analysis and retrieval of paintings using
artistic color concepts. In ICME (pp. 1246–1249). New York: IEEE Press.

Nadal, M. (2007). Complexity and aesthetic preference for diverse visual stimuli. PhD thesis, De-
partament de Psicologia, Universitat de les Illes Balears.

Neufeld, C., Ross, B., & Ralph, W. (2007). The evolution of artistic filters. In J. Romero & P.
Machado (Eds.), The art of artificial evolution. Berlin: Springer.

Rigau, J., Feixas, M., & Sbert, M. (2008). Informational dialogue with Van Gogh’s paintings. In
Eurographics symposium on computational aesthetics in graphics, visualization and imaging
(pp. 115–122).

Romero, J., Machado, P., Santos, A., & Cardoso, A. (2003). On the development of critics in evo-
lutionary computation artists. In R. Günther et al. (Eds.), Lecture notes in computer science:

http://www.biomedsearch.com/nih/new-Visual-Aesthetic-Sensitivity-Test/530787.html
http://www.biomedsearch.com/nih/new-Visual-Aesthetic-Sensitivity-Test/530787.html


11 Computing Aesthetics with Image Judgement Systems 321

Vol. 2611. Applications of evolutionary computing, EvoWorkshops 2003: EvoBIO, EvoCOM-
NET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC, Essex, UK. Berlin: Springer.

Saunders, R. (2001). Curious design agents and artificial creativity—a synthetic approach to the
study of creative behaviour. PhD thesis, University of Sydney, Department of Architectural and
Design Science Faculty of Architecture, Sydney, Australia.

Savarese, J. M., & Miller, R. (1979). Artistic preferences and cognitive-perceptual style. Studies in
Art Education, 20, 41–45.

Schmidhuber, J. (1997). Low-complexity art. Leonardo, Journal of the International Society for
the Arts, Sciences, and Technology, 30(2), 97–103. http://www.jstor.org/stable/1576418.

Schmidhuber, J. (1998). Facial beauty and fractal geometry. http://cogprints.org/690/.
Schmidhuber, J. (2007). Simple algorithmic principles of discovery, subjective beauty, selective

attention, curiosity and creativity. In M. Hutter, R. A. Servedio & E. Takimoto (Eds.), Lecture
notes in computer science: Vol. 4754. ALT (pp. 32–33). Berlin: Springer.

Sobel, I. (1990). An isotropic 3 × 3 image gradient operator. In Machine vision for three-
dimensional scenes (pp. 376–379).

Spector, L., & Alpern, A. (1994). Criticism, culture, and the automatic generation of art-
works. In Proceedings of twelfth national conference on artificial intelligence (pp. 3–8). Seat-
tle/Washington: AAAI Press/MIT Press.

Spehar, B., Clifford, C. W. G., Newell, N., & Taylor, R. P. (2003). Universal aesthetic of fractals.
Computers and Graphics, 27(5), 813–820.

Staudek, T. (2002). Exact aesthetics. Object and scene to message. PhD thesis, Faculty of Infor-
matics, Masaryk University of Brno.

Staudek, T. (2003). Computer-aided aesthetic evaluation of visual patterns. In ISAMA-BRIDGES
conference proceedings, Granada, Spain (pp. 143–149).

Svangård, N., & Nordin, P. (2004). Automated aesthetic selection of evolutionary art by distance
based classification of genomes and phenomes using the universal similarity metric. In R. Gün-
ther et al. (Eds.), Lecture notes in computer science: Vol. 3005. Applications of evolutionary
computing, EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART,
EvoSTOC, Coimbra, Portugal (pp. 445–454). Berlin: Springer.

Taylor, R. P., Micolich, A. P., & Jonas, D. (1999). Fractal analysis of Pollock’s drip paintings.
Nature, 399, 422.

Teller, A., & Veloso, M. (1996). PADO: a new learning architecture for object recognition. In K.
Ikeuchi & M. Veloso (Eds.), Symbolic visual learning (pp. 81–116). London: Oxford University
Press. http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/PADO.ps.Z.

Tong, H., Li, M., Zhang, H., He, J., & Zhang, C. (2004). Classification of digital photos taken by
photographers or home users. In K. Aizawa, Y. Nakamura & S. Satoh (Eds.), Lecture notes in
computer science: Vol. 3331. PCM (1) (pp. 198–205). Berlin: Springer.

Tyler, C. W. (Ed.) (2002). Human symmetry perception and its computational analysis. Hillsdale:
Erlbaum.

Uduehi, J. (1995). A cross-cultural assessment of the maitland graves design judgment test using
U.S. and Nigerian students. Visual Arts Research, 21(2), 11–18.

Wallraven, C., Cunningham, D. W., & Fleming, R. (2008). Perceptual and computational cat-
egories in art. In P. Brown (Ed.), International symposium on computational aesthetics in
graphics, visualization, and imaging (pp. 131–138). Aire-la-Ville: Eurographics Association.
http://computational-aesthetics.org/2008/.

Wallraven, C., Fleming, R. W., Cunningham, D. W., Rigau, J., Feixas, M., & Sbert, M. (2009).
Categorizing art: comparing humans and computers. Computers & Graphics, 33(4), 484–495.

Wertheimer, M. (1939). Laws of organization in perceptual forms. In W. D. Ellis (Ed.), A source
book of gestalt psychology (pp. 71–88). New York: Harcourt Brace.

Wong, L.-K., & Low, K.-L. (2009). Saliency-enhanced image aesthetics class prediction. In ICIP
(pp. 997–1000). New York: IEEE Press.

Yan, Y., & Jin, J. S. (2005). Indexing and retrieving oil paintings using style information. In S.
Bres & R. Laurini (Eds.), Lecture notes in computer science: Vol. 3736. VISUAL (pp. 143–152).
Berlin: Springer.

http://www.jstor.org/stable/1576418
http://cogprints.org/690/
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/PADO.ps.Z
http://computational-aesthetics.org/2008/


322 J. Romero et al.

Zell, A., Mamier, G., Vogt, M., Mache, N., Hübner, R., Döring, S., Herrmann, K.-U., Soyez, T.,
Schmalzl, M., Sommer, T., et al. (2003). SNNS: Stuttgart neural network simulator user manual,
version 4.2 (Technical Report 3/92). University of Stuttgart, Stuttgart.

Zipf, G. K. (1949). Human behaviour and the principle of least effort: an introduction to human
ecology. Reading: Addison-Wesley.



Chapter 12
A Formal Theory of Creativity to Model
the Creation of Art

Jürgen Schmidhuber

Abstract According to the Formal Theory of Creativity (1990–2010), a creative
agent—one that never stops generating non-trivial, novel, and surprising behaviours
and data—must have two learning components: a general reward optimiser or re-
inforcement learner, and an adaptive encoder of the agent’s growing data history
(the record of the agent’s interaction with its environment). The learning progress
of the encoder is the intrinsic reward for the reward optimiser. That is, the latter is
motivated to invent interesting spatio-temporal patterns that the encoder does not
yet know but can easily learn to encode better with little computational effort. To
maximise expected reward (in the absence of external reward), the reward optimiser
will create more and more-complex behaviours that yield temporarily surprising
(but eventually boring) patterns that make the encoder quickly improve. I have ar-
gued that this simple principle explains science, art, music and humour. It is possi-
ble to rigorously formalise it and implement it on learning machines, thus building
artificial robotic scientists and artists equipped with curiosity and creativity. I sum-
marise my work on this topic since 1990, and present a previously unpublished
low-complexity artwork computable by a very short program discovered through
active search for novel patterns according to the principles of the theory.

12.1 The Basic Idea

Creativity and curiosity are about actively making or finding novel patterns. Colum-
bus was curious about what’s in the West, and created a sequence of actions yield-
ing a wealth of previously unknown, surprising, pattern-rich data. Early physicists
were curious about how gravity works, and created novel lawful and regular spatio-
temporal patterns by inventing experiments such as dropping apples and measuring
their accelerations. Babies are curious about what happens if they move their fingers
in just this way, creating little experiments leading to initially novel and surprising
but eventually predictable sensory inputs. Many artists and composers also combine
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previously known spatio-temporal objects in non-trivial ways to create novel pat-
terns.

According to the Formal Theory of Creativity, in the examples above, people at-
tempt to maximise essentially the same type of objective function or reward function
at various stages of their lives. Part of the reward is standard external reward as used
in many applications of Reinforcement Learning (RL) (Kaelbling et al. 1996), such
as positive reward for eating when hungry, or negative reward (pain) for bumping
into an obstacle. In addition to that, however, there is the intrinsic reward, or aes-
thetic reward, or pure fun, which a creative, subjective observer may extract from
some self-generated sequence of actions and observations by learning to encode it
more efficiently: the fun is proportional to the difference between how many com-
putational resources (storage space and time) he needs to encode the data sequence
before and after learning. A separate RL algorithm maximises expected fun by find-
ing or creating non-random, non-arbitrary data that soon becomes more predictable
or compressible in some initially unknown but learnable way, such as novel jokes,
songs, dances, paintings, or scientific observations obeying novel, unpublished laws.

In Sect. 12.3 we will formalise the basic principle. In Sect. 12.4 we discuss
our previous approximative implementations thereof: concrete examples of artificial
creative scientists or artists that learn to create action sequences yielding intrinsic
aesthetic rewards independent of human supervision. In Sect. 12.5 we summarise
why aesthetic reward can be viewed as the first derivative of subjective beauty in
the sense of elegance or simplicity. In Sect. 12.6 we describe the creation of a work
of Low-Complexity Art (Schmidhuber 1997c) computable by a very short program
discovered through a search process modelled by the Formal Theory of Creativ-
ity. Next, however, we will first discuss relationships to previous ideas on curiosity,
creativity, and aesthetic reward.

12.2 Relation to Previous, Less Formal Work

Much of the work on computational creativity described in this book uses reward
optimisers that maximise external reward given by humans in response to artistic
creations of some improving computational pattern generator. This chapter, how-
ever, focuses on unsupervised creative and curious systems motivated to make novel,
aesthetically pleasing patterns generating intrinsic reward in proportion to learning
progress.

Let us briefly discuss relations to previous ideas in this vein. Two millennia ago,
Cicero already called curiosity a “passion for learning”. Section 12.3 will formalise
this passion such that one can implement it on computers, by mathematically defin-
ing reward for the active creation of patterns that allow for compression progress or
prediction improvements.

In the 1950s, psychologists revisited the idea of curiosity as the motivation for
exploratory behaviour (Berlyne 1950; 1960), emphasising the importance of nov-
elty (Berlyne 1950) and non-homeostatic drives (Harlow et al. 1950). Piaget (1955)
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explained explorative learning behaviour in children through his informal concepts
of assimilation (new inputs are embedded in old schemes—this may be viewed as a
type of compression) and accommodation (adapting an old schema to a new input—
this may be viewed as a type of compression improvement). Unlike Sect. 12.3, how-
ever, these ideas did not provide sufficient formal details to permit the construction
of artificial curious agents.

Aesthetic theory is another source of relevant ideas. Why are curious or creative
humans somehow intrinsically motivated to observe or make certain novel patterns,
such as aesthetically pleasing works of art, even when this seems irrelevant for solv-
ing typical frequently recurring problems such as hunger, and even when the action
of observation requires a serious effort, such as spending hours to get to the mu-
seum? Since the days of Plato and Aristotle, many philosophers have written about
aesthetics and taste, trying to explain why some behaviours or objects are more in-
teresting or aesthetically rewarding than others, e.g. Kant (1781), Goodman (1968),
Collingwood (1938), Danto (1981), Dutton (2002). However, they did not have or
use the mathematical tools necessary to provide formal answers to the questions
above. What about more formal theories of aesthetic perception which emerged in
the 1930s (Birkhoff 1933) and especially in the 1960s (Moles 1968, Bense 1969,
Frank 1964, Nake 1974, Franke 1979)? Some of the previous attempts at explain-
ing aesthetic experience in the context of information theory or complexity theory
(Moles 1968, Bense 1969, Frank 1964, Nake 1974, Franke 1979) tried to quantify
the intrinsic aesthetic reward through an “ideal” ratio between expected and unex-
pected information conveyed by some aesthetic object (its “order” vs its “complex-
ity”). The basic idea was that aesthetic objects should neither be too simple nor too
complex, as illustrated by the Wundt curve (Wundt 1874), which assigns maximal
interestingness to data whose complexity is somewhere in between the extremes.
Using certain measures based on information theory (Shannon 1948), Bense (1969)
argued for an ideal ratio of 1/e ∼ 37 %. Generally speaking, however, these ap-
proaches were not detailed and formal enough to construct artificial, intrinsically
motivated agents with a built-in desire to create aesthetically pleasing works of art.

The Formal Theory of Creativity does not postulate any objective ideal ratio of
this kind. Unlike some of the previous works that emphasise the significance of the
subjective observer (Frank 1964, Franke 1979, Frank and Franke 2002), its dynamic
formal definition of fun reflects the change in the number of bits required to encode
artistic and other objects, explicitly taking into account the subjective observer’s
growing knowledge as well as the limitations of its given learning algorithm (or
compression improvement algorithm). For example, random noise is always novel
in the sense that it is unpredictable. But it is not rewarding since it has no pattern. It is
not compressible at all; there is no way of learning to encode it better than by storing
the raw data. On the other hand, a given pattern may not be novel to a given observer
at a given point in his life, because he already perfectly understands it—again there
may be no way of learning to encode it even more efficiently. According to the
Formal Theory of Creativity, surprise and aesthetic reward are possible only where
there is measurable learning progress. The value of an aesthetic experience (the
intrinsic reward of a creative or curious maker or observer of art) is not defined by
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the created or observed object per se, but by the algorithmic compression progress
(or prediction progress) of the subjective, learning observer.

While Kant already placed the finite, subjective human observer in the centre of
our universe (Kant 1781), the Formal Theory of Creativity formalises some of his
ideas, viewing the subjective observer as a parameter: one cannot tell whether some-
thing is art without taking into account the individual observer’s current state. This
is compatible with the musings of Danto who also wrote that one cannot objectively
tell whether something is art by simply looking at it (Danto 1981).

To summarise, most previous ideas on the interestingness of aesthetic objects fo-
cused on their complexity, but ignored the change of subjective complexity through
learning. This change, however, is precisely the central ingredient of the Formal
Theory of Creativity.

12.3 Formal Details

Skip this section if you are not interested in formal details.
A learning agent’s single life consists of discrete cycles or time steps t =

1,2, . . . , T . The agent’s total lifetime T may or may not be known in advance.
At any given t the agent receives a real-valued environmental input vector x(t) and
executes a real-valued action y(t) which may affect future inputs. At times t < T

its goal is to maximise future utility

u(t) = Eμ

[
T∑

τ=t+1

r(τ )

∣∣∣∣ h(≤ t)

]
, (12.1)

where the reward r(t) is a special real-valued input (vector) at time t , h(t) is
the triple [x(t), y(t), r(t)], h(≤ t) is the known history h(1), h(2), . . . , h(t), and
Eμ(· | ·) denotes the conditional expectation operator with respect to some typically
unknown distribution μ from a set M of possible distributions. Here M reflects
whatever is known about the possible probabilistic reactions of the environment.
For example, M may contain all computable distributions (Solomonoff 1978, Li
and Vitányi 1997, Hutter 2005), thus essentially including all environments one
could write scientific papers about. There is just one life, so no need for predefined
repeatable trials, and the utility function implicitly takes into account the expected
remaining lifespan Eμ(T | h(≤ t)) and thus the possibility to extend the lifespan
through actions (Schmidhuber 2009d).

To maximise u(t), the agent may profit from an improving, predictive model p

of the consequences of its possible interactions with the environment. At any time t

(1 ≤ t < T ), the model p(t) will depend on the observed history h(≤ t). It may be
viewed as the current explanation or description of h(≤ t), and may help to predict
and increase future rewards (Schmidhuber 1991b). Let C(p,h) denote some given
model p’s quality or performance evaluated on a history h. Natural performance
measures will be discussed below.
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To encourage the agent to actively create data leading to easily learnable im-
provements of p (Schmidhuber 1991a), the reward signal r(t) is split into two scalar
real-valued components: r(t) = g(rext(t), rint(t)), where g maps pairs of real values
to real values, e.g., g(a, b) = a + b. Here rext(t) denotes traditional external reward
provided by the environment, such as negative reward for bumping into a wall, or
positive reward for reaching some teacher-given goal state. The Formal Theory of
Creativity, however, is mostly interested in rint(t), the intrinsic reward, which is pro-
vided whenever the model’s quality improves—for purely creative agents rext(t) = 0
for all valid t . Formally, the intrinsic reward for the model’s progress (due to some
application-dependent model improvement algorithm) between times t and t + 1 is

rint(t + 1) = f
[
C

(
p(t), h(≤ t + 1)

)
,C

(
p(t + 1), h(≤ t + 1)

)]
, (12.2)

where f maps pairs of real values to real values. Various progress measures are pos-
sible; most obvious is f (a, b) = a − b. This corresponds to a discrete time version
of maximising the first derivative of the model’s quality. Both the old and the new
model have to be tested on the same data, namely, the history so far. That is, progress
between times t and t + 1 is defined based on two models of h(≤ t + 1), where the
old one is trained only on h(≤ t) and the new one also gets to see h(t ≤ t + 1). This
is like p(t) predicting data of time t + 1, then observing it, then learning something,
then becoming a measurably improved model p(t + 1).

The above description of the agent’s motivation separates the goal (finding or
making data that can be modelled better or faster than before) from the means of
achieving the goal. The controller’s RL mechanism must figure out how to translate
such rewards into action sequences that allow the given world model improvement
algorithm to find and exploit previously unknown types of regularities. It must trade
off long-term vs short-term intrinsic rewards of this kind, taking into account all
costs of action sequences (Schmidhuber 1999; 2006a).

The field of Reinforcement Learning (RL) offers many more or less powerful
methods for maximising expected reward as requested above (Kaelbling et al. 1996).
Some were used in our earlier implementations of curious, creative systems; see
Sect. 12.4 for a more detailed overview of previous simple artificial scientists and
artists (1990–2002). Universal RL methods (Hutter 2005, Schmidhuber 2009d) as
well as RNN-based RL (Schmidhuber 1991b) and SSA-based RL (Schmidhuber
2002a) can in principle learn useful internal states memorising relevant previous
events; less powerful RL methods (Schmidhuber 1991a, Storck et al. 1995) cannot.

In theory C(p,h(≤ t)) should take the entire history of actions and perceptions
into account (Schmidhuber 2006a), like the performance measure Cxry :

Cxry

(
p,h(≤ t)

) =
t∑

τ=1

∥∥pred
(
p,x(τ)

) − x(τ)
∥∥2 + ∥∥pred

(
p, r(τ )

) − r(τ )
∥∥2

+ ∥∥pred
(
p,y(τ)

) − y(τ)
∥∥2 (12.3)

where pred(p, q) is p’s prediction of event q from earlier parts of the history.
Cxry ignores the danger of overfitting (too many parameters for few data) through

a p that stores the entire history without compactly representing its regularities,
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if any. The principles of Minimum Description Length (MDL) and closely related
Minimum Message Length (MML) (Kolmogorov 1965, Wallace and Boulton 1968,
Wallace and Freeman 1987, Solomonoff 1978, Rissanen 1978, Li and Vitányi 1997),
however, take into account the description size of p, viewing p as a compressor
program of the data h(≤ t). This program p should be able to deal with any pre-
fix of the growing history, computing an output starting with h(≤ t) for any time
t (1 ≤ t < T ). (A program that halts after t steps can temporarily be fixed or aug-
mented by the trivial non-compressive method that simply stores any raw additional
data coming in after the halt—later learning may yield better compression and thus
intrinsic rewards.)

Cl(p,h(≤ t)) denotes p’s compression performance on h(≤ t): the number of
bits needed to specify the predictor and the deviations of the sensory history from
its predictions, in the sense of loss-free compression. The smaller Cl , the more law-
fulness and regularity in the observations so far. While random noise is irregular
and arbitrary and incompressible, most videos are regular as most single frames
are very similar to the previous one. By encoding only the deviations, movie com-
pression algorithms can save lots of storage space. Complex-looking fractal images
(Mandelbrot 1982) are regular, as they usually are similar to their details, being
computable by very short programs that re-use the same code over and over again
for different image parts. The universe itself seems highly regular, as if computed
by a program (Zuse 1969, Schmidhuber 1997a; 2002c; 2006b; 2007a): every photon
behaves the same way; gravity is the same on Jupiter and Mars, mountains usually
don’t move overnight but remain where they are, etc.

Suppose p uses a small predictor that correctly predicts many x(τ) for 1 ≤ τ ≤ t .
This can be used to encode x(≤ t) compactly: Given the predictor, only the wrongly
predicted x(τ) plus information about the corresponding time steps τ are necessary
to reconstruct x(≤ t), e.g., (Schmidhuber 1992). Similarly, a predictor that learns
a probability distribution on the possible next events, given previous events, can
be used to compactly encode observations with high (respectively low) predicted
probability by few (respectively many) bits (Huffman 1952, Schmidhuber and Heil
1996), thus achieving a compressed history representation.

Alternatively, p could make use of a 3D world model or simulation. The corre-
sponding MDL-based quality measure C3D(p,h(≤ t)) is the number of bits needed
to specify all polygons and surface textures in the 3D simulation, plus the number
of bits needed to encode deviations of h(≤ t) from the simulation’s predictions. Im-
proving the model by adding or removing polygons may reduce the total number of
bits required (Schmidhuber 2010).

The ultimate limit for Cl(p,h(≤ t)) is K∗(h(≤ t)), a variant of the Kolmogorov
complexity of h(≤ t), namely, the length of the shortest program (for the given hard-
ware) that computes an output starting with h(≤ t) (Solomonoff 1978, Kolmogorov
1965, Li and Vitányi 1997, Schmidhuber 2002b). We do not have to worry about
the fact that K∗(h(≤ t)) in general cannot be computed exactly, only approximated
from above (for most practical predictors the approximation will be crude). This just
means that some patterns will be hard to detect by the limited predictor of choice,
that is, the reward maximiser will get discouraged from spending too much effort
on creating those patterns.
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Cl(p,h(≤ t)) does not take into account the time τ(p,h(≤ t)) spent by p on
computing h(≤ t). A runtime-dependent quality measure inspired by optimal uni-
versal search (Levin 1973) is

Clτ

(
p,h(≤ t)

) = Cl

(
p,h(≤ t)

) + log τ
(
p,h(≤ t)

)
. (12.4)

Here additional compression by one bit is worth as much as runtime reduction by a
factor of 1

2 . From an asymptotic optimality-oriented point of view this is a best way
of trading off storage and computation time (Levin 1973, Schmidhuber 2004).

In practical applications (Sect. 12.4) the compressor/predictor of the continually
growing data typically will have to calculate its output online, that is, it will be
able to use only a constant number of computational instructions per second to pre-
dict/compress new data. The goal of the typically slower learning algorithm must
then be to improve the compressor such that it keeps operating online within those
time limits, while compressing/predicting better than before. The costs of comput-
ing Cxry(p,h(≤ t)) and Cl(p,h(≤ t)) and similar performance measures are linear
in t , assuming p consumes equal amounts of computation time for each prediction.
Hence online evaluations of learning progress on the full history so far generally
cannot take place as frequently as the continually ongoing online predictions.

Some of the learning and its progress evaluations may take place during occa-
sional “sleep” phases (Schmidhuber 2006a). But previous practical implementations
have looked only at parts of the history for efficiency reasons: The systems men-
tioned in Sect. 12.4 used online settings (one prediction per time step, and constant
computational effort per prediction), non-universal adaptive compressors or predic-
tors, and approximative evaluations of learning progress, each consuming only con-
stant time despite the continual growth of the history.

12.3.1 Continuous Time Formulation

In continuous time, O(t) denotes the state of subjective observer O at time t . The
subjective compressibility (simplicity or regularity) B(D,O(t)) of a sequence of
observations and/or actions is the negative number of bits required to encode D,
given O(t)’s current limited prior knowledge and limited compression/prediction
method. The time-dependent and observer-dependent subjective interestingness or
surprise or aesthetic value, I (D,O(t)) is

I
(
D,O(t)

) ∼ ∂B(D,O(t))

∂t
, (12.5)

the first derivative of subjective simplicity: as O improves its compression algo-
rithm, formerly apparently random data parts become subjectively more regular and
beautiful, requiring fewer bits for their encoding.

There are at least two ways of having “fun”: execute a learning algorithm that
improves the compression of the already known data (in online settings, without
increasing computational needs of the compressor/predictor), or execute actions that
generate more data, then learn to better compress or explain this new data.
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12.4 Previous Approximative Implementations of the Theory

Since 1990 I have built simple artificial scientists or artists with an intrinsic desire
to build a better model of the world and what can be done in it. They embody ap-
proximations of the theory of Sect. 12.3. The agents are motivated to continually
improve their models, by creating or discovering more surprising, novel patterns,
that is, data predictable or compressible in hitherto unknown ways. They actively
invent experiments (algorithmic protocols or programs or action sequences) to ex-
plore their environment, always trying to learn new behaviours (policies) exhibiting
previously unknown regularities or patterns. Crucial ingredients are:

1. An adaptive world model, essentially a predictor or compressor of the continu-
ally growing history of actions and sensory inputs, reflecting current knowledge
about the world,

2. A learning algorithm that continually improves the model (detecting novel, ini-
tially surprising spatio-temporal patterns, including works of art, that subse-
quently become known patterns),

3. Intrinsic rewards measuring the model’s improvements due to its learning algo-
rithm (thus measuring the degree of subjective novelty & surprise),

4. A separate reward optimiser or reinforcement learner, which translates those re-
wards into action sequences or behaviours expected to optimise future reward.

These ingredients make the agents curious and creative: they get intrinsically moti-
vated to acquire skills leading to a better model of the possible interactions with the
world, discovering additional “eye-opening” novel patterns (including works of art)
predictable or compressible in previously unknown ways.

Ignoring issues of computation time, it is possible to devise mathematically op-
timal, universal RL methods (Hutter 2005, Schmidhuber 2009d) for such systems
(Schmidhuber 2006a; 2010) (2006-). However, previous practical implementations
(Schmidhuber 1991a, Storck et al. 1995, Schmidhuber 2002a) were non-universal
and made approximative assumptions. Among the many ways of combining meth-
ods for (1-4) we implemented the following variants:

A. Non-traditional RL based on adaptive recurrent neural networks as predictive
world models is used to maximise intrinsic reward created in proportion to pre-
diction error (Schmidhuber 1991b).

B. Traditional RL (Kaelbling et al. 1996) is used to maximise intrinsic reward cre-
ated in proportion to improvements of prediction error (Schmidhuber 1991a).

C. Traditional RL maximises intrinsic reward created in proportion to relative en-
tropies between the agent’s priors and posteriors (Storck et al. 1995).

D. Non-traditional RL (Schmidhuber et al. 1997) (without restrictive Markovian as-
sumptions) learns probabilistic, hierarchical programs and skills through zero-
sum intrinsic reward games of two players, each trying to out-predict or sur-
prise the other, taking into account the computational costs of learning, and
learning when to learn and what to learn (1997–2002) (Schmidhuber 1999;
2002a).
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Variants B, C & D also showed experimentally that intrinsic rewards can substan-
tially accelerate goal-directed learning and external reward intake of agents living
in environments providing external reward for achieving desirable goal states. See
(Schmidhuber 2010) for a more detailed overview of the work 1990–2010. There
also are more recent implementation variants with applications to vision-based rein-
forcement learning/evolutionary search (Luciw et al. 2011, Cuccu et al. 2011), active
learning of currently easily learnable functions (Ngo et al. 2011), black box optimi-
sation (Schaul et al. 2011b), and detection of “interesting” sequences of Wikipedia
articles (Schaul et al. 2011a).

Our previous computer programs already incorporated approximations of the ba-
sic creativity principle. But do they really deserve to be viewed as rudimentary sci-
entists and artists? The works of art produced by, say, the system of (Schmidhuber
2002a), include temporary “dances” and internal state patterns that are novel with
respect to its own limited predictors and prior knowledge, but not necessarily rel-
ative to the knowledge of sophisticated adults (although an interactive approach
using human guidance allows for obtaining art appreciated by some humans—see
Fig. 12.1). The main difference to human scientists or artists, however, may be only
quantitative by nature, not qualitative:

1. The unknown learning algorithms of humans are presumably still better suited to
predict/compress real world data. However, there already exist universal, math-
ematically optimal (not necessarily practically feasible) prediction and compres-
sion algorithms (Hutter 2005, Schmidhuber 2009d), and ongoing research is con-
tinually producing better practical prediction and compression methods, waiting
to be plugged into our creativity framework.

2. Humans may have superior RL algorithms for maximising rewards generated
through compression improvements achieved by their predictors. However, there
already exist universal, mathematically optimal (but not necessarily practically
feasible) RL algorithms (Hutter 2005, Schmidhuber 2009d), and ongoing re-
search is continually producing better practical RL methods, also waiting to be
plugged into our framework.

3. Renowned human scientists and artists have had decades of training experiences
involving a multitude of high-dimensional sensory inputs and motoric outputs,
while our systems so far only had a few hours with very low-dimensional experi-
ences in limited artificial worlds. This quantitative gap, however, will narrow as
our systems scale up.

4. Human brains still have vastly more storage capacity and raw computational
power than the best artificial computers. Note, however, that this statement is un-
likely to remain true for more than a few decades—currently each decade brings
a computing hardware speed-up factor of roughly 100–1000.

Section 12.6 will demonstrate that current computational limitations of artificial
artists do not prevent us from already using the Formal Theory of Creativity in
human-computer interaction to create art appreciable by humans.
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12.5 Aesthetic Reward = Change of Subjective Compressibility?

Most people use concepts such as beauty and aesthetic pleasure in an informal way.
Some say one should not try to nail them down formally; formal definitions should
introduce new, unbiased terminology instead. For historic reasons, however, I will
not heed this advice in the present section. Instead I will consider previous formal
definitions of pristine variants of beauty (Schmidhuber 1997c) and aesthetic value
I (D,O(t)) as in Sect. 12.3.1. Pristine in the sense that they are not a priori re-
lated to pleasure derived from external rewards or punishments. To illustrate the
difference: some claim that a hot bath on a cold day feels beautiful due to rewards
for achieving prewired target values of external temperature sensors (external in the
sense of: outside the brain which is controlling the actions of its external body). Or
a song may be called beautiful for emotional reasons by some who associate it with
memories of external pleasure through their first kiss. This is different from what
we have in mind here—we are focusing only on beauty in the sense of elegance and
simplicity, and on rewards of the intrinsic kind reflecting learning progress, that is,
the discovery of previously unknown types of simplicity, or novel patterns.

According to the Formal Theory of Beauty (Schmidhuber 1997c; 1998; 2006a),
among several sub-patterns classified as comparable by a given observer, the sub-
jectively most beautiful (in the pristine sense) is the one with the simplest (shortest)
description, given the observer’s current particular method for encoding and mem-
orising it. For example, mathematicians find beauty in a simple proof with a short
description in the formal language they are using. Others find beauty in geometri-
cally simple low-complexity drawings of various objects.

According to the Formal Theory of Creativity, however, what’s beautiful is not
necessarily interesting or aesthetically rewarding at a given point in the observer’s
life. A beautiful thing is interesting only as long as the algorithmic regularity that
makes it simple has not yet been fully assimilated by the adaptive observer who is
still learning to encode the data more efficiently (many artists agree that pleasing art
does not have to be beautiful).

Following Sect. 12.3, aesthetic reward or interestingness are related to pristine
beauty as follows: Aesthetic reward is the first derivative of subjective beauty. As
the learning agent improves its compression algorithm, formerly apparently ran-
dom data parts become subjectively more regular and beautiful, requiring fewer
and fewer computational resources for their encoding. As long as this process is
not over, the data remains interesting, but eventually it becomes boring even if it
remains beautiful.

Section 12.3 already showed a simple way of calculating subjective interesting-
ness: count how many bits are needed to encode (and decode in constant time) the
data before and after learning; the difference (the number of saved bits) corresponds
to the internal joy or intrinsic reward for having found or made a new, previously
unknown regularity—a novel pattern.
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Fig. 12.1 Artists (and observers of art) get intrinsically rewarded for making (and observing)
novel patterns: data that is neither arbitrary (like incompressible random white noise) nor regular
in an already known way, but regular in a way that is new with respect to the observer’s current
knowledge, yet learnable. While the Formal Theory of Creativity explains the desire to create or
observe all kinds of art, low-complexity art (Schmidhuber 1997c) illustrates it in a particularly
clear way. Many observers report they derive pleasure or aesthetic reward from discovering simple
but novel patterns while actively scanning the self-similar Femme Fractale above (Schmidhuber
1997b). The observer’s learning process causes a reduction of the subjective compressibility of
the data, yielding a temporarily high derivative of subjectively perceived simplicity or elegance or
beauty: a temporarily steep learning curve. The corresponding intrinsic reward motivates him to
keep looking at the image for a while. Similarly, the computer-aided artist got reward for discov-
ering a satisfactory way of using fractal circles to create this low-complexity artwork, although it
took him a long time and thousands of frustrating trials. Here is the explanation of the artwork’s
low algorithmic complexity: The frame is a circle; its leftmost point is the centre of another circle
of the same size. Wherever two circles of equal size touch or intersect are centres of two more
circles with equal and half size, respectively. Each line of the drawing is a segment of some cir-
cle, its endpoints are where circles touch or intersect. There are few big circles and many small
ones. This can be used to encode the image very efficiently through a very short program. ©Jürgen
Schmidhuber, 1997–2010

12.6 Low-Complexity Art as End Product of a Search Process
Modelled by the Formal Theory of Creativity

Low-complexity art (Schmidhuber 1997c) may be viewed as the computer-age
equivalent of minimal art. To depict the essence of objects, it builds on concepts
from algorithmic information theory (Solomonoff 1978, Kolmogorov 1965, Li and
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Vitányi 1997, Schmidhuber 2002b). A low-complexity artwork can be specified by
a computer algorithm and should comply with three properties: (i) it should “look
right”, (ii) its algorithmic information should be small (the algorithm should be
short), and (iii) a typical observer should be able to see that (ii) holds.

Figure 12.1 shows an example of Low-Complexity Art, the final product of a
long, often frustrating but often also intrinsically rewarding search for an aestheti-
cally pleasing drawing of a human figure that can be encoded by very few bits of
information. It was created through computer-based search guided by human expe-
rience. This process modelled by the Formal Theory of Creativity took thousands of
trials and sketches over several months of real time. Figure 12.1 is explained by its
caption.

12.7 Conclusion

Apart from external reward, how much fun or aesthetic reward can an unsupervised
subjective creative observer extract from some sequence of actions and observa-
tions? According to the Formal Theory of Creativity, his intrinsic fun is the differ-
ence between how much computational effort he needs to encode the data before and
after learning to encode it more efficiently. A separate reinforcement learning algo-
rithm maximises expected fun by actively finding or creating data that permits en-
coding progress of some initially unknown but learnable type, such as jokes, songs,
paintings, or scientific observations obeying novel, unpublished laws. Pure fun can
be viewed as the change or the first derivative of subjective simplicity or elegance
or beauty. Computational limitations of previous artificial artists built on these prin-
ciples do not prevent us from already using the formal theory in human-computer
interaction to create low-complexity art appreciable by humans.
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Chapter 13
Creativity Refined: Bypassing the Gatekeepers
of Appropriateness and Value

Alan Dorin and Kevin B. Korb

Abstract This chapter introduces a new definition of creativity that is independent
of notions of value or appropriateness. These notions, we argue, have encumbered
previous definitions and confused the production of software-based creativity. Our
definition defines the creativity of a generative procedure by reference to its ability
to create artefacts that are improbable with respect to those generated using previous
methods. We discuss the implications of our new definition, in particular by explor-
ing its application to human endeavour and to biological processes including evolu-
tion. The chapter also outlines some objections to our definition that we believe may
arise, and we put our rebuttals to these. Finally, we summarise the practical imple-
mentation of our definition in the context of image generation software. We explore
its use to improve a computational process for generating creative images, and find
when we survey the software’s users that it successfully meets human perceptions
of creativity.

13.1 Introduction

How can we write software that is autonomously creative? What could we mean by
autonomous creativity? Without an answer to the latter question, the former cannot
be answered satisfactorily. The majority of this chapter therefore concerns the lat-
ter question, although we briefly discuss the practical task of writing software also.
The usual approach seems to be quite different. Most of those engaged with the first
question simply set out to write autonomous creative software and conclude their
endeavours upon satisfying an intuitive judgement of success. Perhaps this is sup-
ported by exhibition offers and reviews, comments of peers or art prizes awarded by
jury. Perhaps the creativity of their work can be measured more objectively but less
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philosophically by the amount of income it generates, the number of publications
that cite their work or the number and importance of other artists who reference it.
Of course these are, in fact, the ways in which nearly all artistic achievements are
judged. However, these are not the only approaches available to us.

Many have tried to write creative software by adopting an Artificial Intelligence
approach. Their success may then be judged based on the perception that the re-
sults are as creative as those that might have been produced by a human in the same
domain, perhaps by using some of the criteria just listed. For instance, Harold Co-
hen’s AARON software explores the potential for machine creativity in the visual
arts; software written by Lenat (1983) targets creativity in the domains of mathe-
matical discovery. Also represented are logic (Colton 2001) and scientific discovery
(Langley et al. 1987). Others have tried to achieve creativity using an Artificial Life
approach in which the aim is to replicate the behaviour or artefacts of non-human
organisms. For instance, artists have created ant path drawings (Barrass 2006) or
flocking visualisations (Eldridge 2009). Mimicking biological evolution offers an-
other approach. This has been applied to music composition (e.g. Dahlstedt 1999,
Berry et al. 2001) and image production (e.g. Sims 1991, Todd and Latham 1992).
The success of these approaches can be judged according to how well the system
mimics or even extends the creativity of nature in its different guises. For instance,
can it create a range of coloured patterns as rich as those found on butterfly wings?
Can it create a diversity of forms as wide and interesting as those found in the mor-
phology of the insect world? Can it generate sonic textures as intricate and rich as
those heard in a tropical rainforest?

A few artists have built complete virtual, evolving ecosystems, the dynamics of
which, they argue, should be considered creative (e.g. McCormack 2001, Saunders
and Gero 2002, Dorin 2004). In this approach, the software contains representations
of organisms that roam a virtual world, acquiring energy by consuming one an-
other or from abiotic sources such as sunlight or heat. These same virtual organisms
compete for mates and the resources needed to reproduce. Over simulated time, un-
successful organism designs become extinct and are replaced by an ever-changing
community of virtual creatures that are better adapted to their environment. The
viewer of such software might perceive the space and its inhabitants as a rich visual
display, or perhaps as a musical composition created by the layering of organism
calls. The aesthetic representation available to an audience of these works depends
on how the artist adapts the internal representation of the virtual world to an acces-
sible audio-visual experience.

Software systems like these can be considered generative art: a programmer
specifies an algorithm for execution on a computer and this is left to run, possibly
under the interactive guidance of a human, or perhaps independently. A continuing
dynamical process that emerges from the program, or a static artefact suitable for
human perception that results from its execution, forms the artwork. It is hoped, at
least implicitly, that this is creative.

It is probably fair to say that most artists are not explicitly concerned with mea-
suring the novelty of their system, nor are they concerned with the ways in which
their creativity might be assessed. Well, at least not until they are required to pro-
vide justification for their ongoing artistic endeavours! Regardless, in this chapter
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we are concerned with exactly these issues because we wish to automate the pro-
duction of creative works by software. Before we can do this we must have a clear,
formal conception of creativity—something that seems to be currently lacking. Con-
ventional interpretations of “creativity” incorporate informally defined concepts of
the “appropriateness” and the “value” of artefacts. The programmers and artists re-
sponsible for generative software can be understood to either hard-code a personal
aesthetic value into their software, or they may allow it to emerge from the interac-
tions of software components (such as virtual organisms) that they have designed.
In this latter case, the virtual organisms establish their own, non-human notions of
value, but the system as a whole still has value hard-coded into it by the artist. In this
light, writing software is no different from any other artistic practice. However, if
we want software to generate creative outcomes of its own accord, and in so doing
realise a kind of creativity beyond what is hard-coded by the artist, we must pro-
vide it with an explicit, formal conception of creativity with which to gauge its own
success.

Below we discuss an approach that allows the explicit measurement of the cre-
ativity of artefacts by defining it independently of notions of value or appropriate-
ness and in such a way that its presence may be detected algorithmically. We discuss
how the technique has been applied to automatically guide software towards creative
outcomes, and we summarise the results of a survey conducted to ascertain its rela-
tionship to human natural-language use of the term creativity. We necessarily begin
by examining the concept of creativity itself.

13.2 What Is Creativity?

Creativity was originally a term applied solely to the gods. Over the centuries the
term became more broadly applied, eventually reaching beyond gods and demi-gods
to include human artists, scientists, engineers, those in marketing and even business
executives (see Tatarkiewicz 1980, Albert and Runco 1999 for historical accounts
of the term’s application). Creativity has also been attributed to the form-producing
interactions of matter (Smuts 1927, Chap. 3), in particular its behaviour under the
guidance of the evolutionary process or through interactions that give rise to emer-
gence (Phillips 1935)—interactions of small components that give rise to a whole
that is somehow more then the sum of its parts. The creativity of natural and artificial
evolution has also been discussed by Bentley (2002), a topic that forms an impor-
tant aspect of this chapter. Bentley explores loosely and briefly whether a number of
definitions of creativity allow the evolutionary process to qualify. We take a reverse,
and more general approach, first describing a workable, coherent definition of cre-
ativity, and then looking to see the extent to which natural and artificial processes,
including evolution, meet its requirements.

The historically dominant approach to understanding creativity links it explicitly
to intelligence and the concept of authorship. This has thrown up some philosophical
puzzles over recent years. For instance,
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• If a machine can invent interesting mathematical conjectures and concepts, is it
creative? See Colton et al. (2000).

• If a troupe of monkeys acting randomly eventually type out the entire collection
of the British Library (Borel 1913, Eddington 1927) or a specific text such as
Hamlet, even before Shakespeare is born, or in a universe where he is never born,
do the monkeys deserve the title of author? Are they the creators of this work?
See Gracia (1996).1

• Is art produced by a computer really art?

If these pictures were done by use of a computer, how could they possibly be art?
. . . Where was the inspiration, the intuition, the creative act?

This comment, paraphrased from Nake (2002), echoes Ada Lovelace’s famous
objection to the possibility of a machine originating anything. In this latter case,
whilst we may feel confident and with little contention, that a human may make
a creative program, doubt is expressed about whether or not the program itself
could do anything creative.

As highlighted by this last quote in particular, “discomfort” with assessment of
these questions lies in our conceptual union of creativity, mind and intention. This
union is common in psychological studies of creativity. For instance, Csikszentmi-
halyi (1999) indicates that human creativity requires five distinct mental phases:
preparation (studying a field and identifying problems), incubation (not thinking
about the problems), insight (eureka!), evaluation (deciding if an idea is worth pur-
suing) and finally, elaboration (exploring the range of outcomes that an idea sug-
gests). Although this sequence may be common for humans, it is implausible that
even one of these phases is a pre-condition for creativity in general (Dorin and Korb
2009). In fact, as we explain shortly, creativity is best defined without reference to
the process of its production, but only with reference to the probability that a system
can generate a series of outcomes given its operational context. Consequently, as we
shall argue, many non-human processes, for instance those of physical, chemical or
general biological origin, can be legitimately and meaningfully considered creative.

Other well cited definitions of creativity allow for this desirable freedom from
specifically human mental phases. Some authors recognised this to be essential if
we are to entertain the possibility of creative computers and AI. Yet many of these
authors require nevertheless that for an artefact to be deemed creative it must also be
deemed “useful” or “appropriate” for some application by, one assumes, a human
observer or domain gatekeeper (Csikszentmihalyi 1999). Perhaps the most cited
definition of this type is that of Boden (2004):

Creativity is the ability to come up with ideas or artefacts that are (a) new, (b) surprising
and (c) valuable.

1In dealing with the philosophy of semantics, Hilary Putnam argued that semantics are not entirely
internal (in the head) but had external content via a causal theory of reference (“semantic exter-
nalism”), leading to a negative response to such questions (Putnam 1979). This has been applied,
for example by Stevan Harnard, to argue that random collections of inscriptions which happen to
be identical to other inscriptions that have meaning in the normal (causal) way do not share that
meaning; they have no meaning (Harnad 1990).
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Boden refines this definition in various ways:

1. There are two ways in which something might be new:
a. psychological-creativity introduces something that is new to the person who

devised the idea or artefact, but may be previously known to others, and
b. historical-creativity is new to the whole of history.

2. Boden finds three distinct ways in which something might be surprising:
a. it is unfamiliar or unlikely;
b. it unexpectedly fits into a class of things you hadn’t realised it fitted into;
c. it is actually something you thought was impossible.

3. Regarding her third criterion for creativity Boden is certain that there are more
ways in which value might be shown than anybody could ever list.

Boden’s definition, unfortunately, is not as helpful as it might be in guiding at-
tempts to write creative software. She does not formally define new, surprising,
valuable, useful or appropriate. In this domain, even if not elsewhere, a formal def-
inition is required for the creativity measure since the aim is to encapsulate it in an
algorithm.

Our own definition of creativity that follows is independent of notions of useful-
ness and appropriateness. In the next section we explain how this frees our account
from some unwelcome difficulties in handling any normal understanding of cre-
ativity. We also discuss some likely reasons why people might find our definition
objectionable and rebut the criticisms. We then use our definition to examine some
typical creative examples of human endeavour, some physico-chemical processes,
individual (non-human) organisms and entire ecosystems to assess their degree of
creativity.

13.3 Defining Creativity

We wish to write programs that are creative. In this context, (stochastic) programs
may be considered as generative systems that produce a distribution of outputs,
perhaps a set of related static artefacts or a trajectory of states that the program itself
traverses dynamically. We may consider such a program to be a framework:

A framework is a stochastic generative procedure; in particular, it generates
representations of patterns.

Frameworks are particular kinds of representations, namely stochastic proce-
dures; thus, beginning in the very same circumstances they will not generally pro-
duce the very same patterns. For example, Minimalism and Abstract Expressionism
are different frameworks for the production of art. Quantum electrodynamics is a
framework for generating questions and answers about the interaction of light and
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Fig. 13.1 Two frameworks for generating chairs are represented here by the probability that each
generates a particular design in the space of possible chairs. If distribution 1 represents our existing
framework, a traditional way of conceiving of chairs, the introduction of distribution 2, a radical
approach that deviates from the tradition of a square platform with legs at each corner, would
count as creative. The reverse scenario in which distribution 2 predates distribution 1 would have
distribution 1 being creative with respect to 2

matter. A pseudo-random number generator is a framework for generating pseudo-
random numbers. And evolution is a framework for generating ecosystems, niches
and organisms. Based on this conception of a framework we offer our own definition
of creativity.

Creativity is the introduction and use of a framework that has a relatively high
probability of producing representations of patterns that can arise only with a
smaller probability in previously existing frameworks.

What we mean by this is not altogether plain, so we shall spend the remainder of
this section examining our definition and the next section comparing its implications
with those of alternatives.

The basic idea of our definition is reflected in Fig. 13.1. Distribution 1 repre-
sents an old framework for designing chairs, and distribution 2 a new one. Both are
probability distributions over a common design space, represented in the figure by
the horizontal dimension. All points in the design space where distribution 2 has
significant probability are points where distribution 1 has insignificant probability.
The use of distribution 2 relative to the prior use of distribution 1 to generate one of
these points is therefore creative.

The motivation for this approach to understanding creativity comes from search
and optimisation theory. When a solution to a problem can be cast in terms of a
computational representation to be found in some definable representation space,
then the problem can be tackled by applying some search algorithm to that space.



13 Creativity Refined 345

Uncreative brute force searches and uniformly random searches may well succeed
for simple problems, that is, for small search spaces. For complex problems, search
spaces tend to be astronomically large and more creative approaches will be needed.
Stochastic searches for example, apply various heuristics for focusing the search in
productive regions.

The most important point to note is that on our account creativity is thoroughly
relative: it is relative to the pre-existing frameworks being used to produce some
kind of object and it is relative to the new framework being proposed. The creativity
of objects is strictly derivative from that of the frameworks producing them and, in
particular, the ratio of probabilities with which they might produce them. That is
why some entirely mundane object, say a urinal, may become a creative object. Of
course, the urinal (even Duchamp’s) of itself is uncreative, because its manufactur-
ing process is uncreative, but its use by Duchamp in producing an art installation
that challenges expectations may well be creative. We must be conscious here of
the framework, in this case art, into which the artefact was introduced in order to
understand how it might be creative.

13.3.1 Methods for Discovering Novel Representations

As frameworks (stochastic procedures) may be represented, their representations
may themselves be generated by other stochastic procedures, or meta-frameworks.
So, we can talk of frameworks also as objects, and they are more or less creative
according to the probability with which their meta-frameworks produce them. By
recursion, then, we can consider the creativity of meta-frameworks and meta-meta-
frameworks without any fixed theoretical bound, even while practically bounded by
the complexity of the processes actually involved.

The meta-framework that finds that novel framework necessary for creativity
may itself be uncreative; it may even be a brute force search, uniformly random
or genetic drift. The manner in which the framework is discovered does not bear on
the creative activity that occurs at the level of the framework and the patterns it may
be used to generate. However we can separately or jointly consider the creativity of
all of these searches by defining a creative order.

A novel framework that generates a novel set of patterns in accordance with
our definition of creativity is of the first creative order. A novel framework
for generating novel frameworks for generating novel patterns in accordance
with the definition of creativity is of the second creative order. We can extend
this arbitrarily to talk of nth-order creativity.
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13.3.2 Objective Versus Psychological Creativity

There is nothing more difficult for a truly creative painter than to paint a rose, because
before he can do so he has first to forget all the roses that were ever painted

—Henri Matisse

How people judge creativity is at some variance with what we have presented above.
Of course, if there is too much variance, then our claim to have somehow captured
the essence of the concept of creativity with this definition would come under pres-
sure. However, we think the most obvious discrepancies between our definition and
human judgements of creativity can be handled by the addition of a single idea,
namely habituation.

Human judgement of the novelty of a stimulus follows a path of negative ex-
ponential decay over repeated exposure (Berlyne 1960, Saunders and Gero 2002).
Whereas our definition simply makes reference to pre-existing frameworks, psy-
chological judgement of creativity takes into account how long those frameworks
have been around and how different they are perceived to be from existing frame-
works. New frameworks, and the artefacts they produce, remain creative for some
time, with new productions losing their impression of creativity as the frameworks
become older. The pointillist paintings of Seurat were startling, new and creative
when they first arose, and then likewise the impressionists and subsequently the cu-
bists. But it is now a long time since paintings strictly adhering to those styles would
be thought creative.

A new framework that is too radical will not immediately be recognised as cre-
ative, even though our measure would detect its creativity. Radical changes brought
about by an individual are not recognised by humans as creative until scaffolding,
a series of intermediate frameworks through which others may step to the radical
framework, has been established. This is a process that, depending on the creativity
of the individual responsible, may take generations of theorists and practising artists
to construct.

Figure 13.2 illustrates this idea. In the beginning there were frameworks pro-
ducing points; new points were judged good. But soon they lost their interest. New
means of creating being needed, straight lines were discovered, which subsequently
were connected to create outlines, then elaborated into representations, designs and
perspectives, surfaces and geometries, and abstract representations. Note that the
steps within this diagram are not so radical as to be incomprehensible to a human
observer. They progress along a fairly clear path through the design space.

This is not the history of anything real, but a history of drawing creativity in some
possible world. While the end of this history is unsaid, it is interesting to observe
that before its end it has recreated its beginning: points have once again become cre-
ative. In this case, points may well have become creative for a new reason, with the
framework generating them being new. But even old frameworks may become cre-
ative again, once cultural memory has utterly forgotten them. Thus, psychological
creativity actually requires two time-decay functions, one indicating desensitisation
to the new and another, operating over a much longer time frame, indicating cultural
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Fig. 13.2 A possible history of creativity in image making

forgetfulness. In addition, we must keep track of the progression between frame-
works and ensure that those assessing the creative endeavour can bridge the gaps
between them. Our “objective” definition of creativity, by contrast, is entirely insen-
sitive to these psychological considerations;2 or, to put it another way, the context
of frameworks to which creativity is relative had best be stated explicitly.

13.4 Objections and Replies

Here we consider three objections to our definition that we think likely to occur to
people and our rebuttals.

13.4.1 The Failure of Randomness

Something akin to our definition has played a role in repeated attempts in AI to
generate creative behaviour, and those attempts have repeatedly failed. So, it may
very well be inferred that our definition is guilty by association with these failures.
For example, consider Racter. Racter was a natural-language generation program
that used templates and randomised word selection to produce surprising and some-
times evocative text. For example,

I am a computer, not some lamb or chicken or beef. Can I skip to my attorney? May I
saunter to any solicitor? This is a formidable and essential issue.

(Chamberlain 1984)

2Note that “objective” here is simply meant to contrast with psychological; we are making no grand
claims about the objectivity of creativity.
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The impression of originality and creativity, however, is not long sustained. As
Rowe and Partridge (1993) report, “This [impression], however, is also short-lived
and soon gives way to dissatisfaction and eventual boredom. What is missing? If
creativity is about producing something new then Racter should certainly qualify,
but it seems that novelty is not enough.”3

Rowe and Partridge describe many other examples in AI of the use of randomness
meant to turn the dull into something creative, without success. Lenat’s AM and EU-
RISKO, while producing interesting early results, such as a set-theoretic definition
of number, soon degenerated into triviality. Similarly, Johnson-Laird (1987) failed
to automate jazz. W. A. Mozart attempted automated music composition also with
his “Musikalisches Würfelspiel” (musical dice game) for creating waltzes (Earn-
shaw 1991).4 The game produced “pretty minuets”; however, that was achieved by
Mozart’s imposition of strong constraints on the possible results, leaving very little
scope for creative variation. And that is the correct objection to all of these efforts:
while introducing randomness does introduce an element of novelty, it is typically
within a very constrained scope, and so rapidly exhausted. The appetite of creativ-
ity for novelty is, however, inexhaustible—these failures illustrate the value of our
definition in action, rather than argue against it.

13.4.2 The Verstehen Objection

A general objection that might be put to our definition of creativity is that it is just
too sterile: it is a concept that, while making reference to culture and context, does
so in a very cold, formal way, requiring the identification of probability distribu-
tions representing those contexts in order to compute a probability ratio. Whatever
creativity is, surely it must have more to do with human Verstehen than that! In
response to such an objection we would say that where human Verstehen matters,
it can readily and congenially be brought into view. Our definition is neutral about
such things, meaning it is fully compatible with them and also fully compatible
with their omission. If human Verstehen were truly a precondition for creativity, it
would render the creativity of non-human animals and biological evolution impossi-
ble by definition, and perhaps also that of computers. Although we might in the end

3Racter generates text that seems, at least superficially, to mimic schizophasia. This confused lan-
guage, or word salad is created by the mentally ill with defective linguistic faculties. A short word
salad may appear semantically novel. However, further sentences exhaust the possibilities for nov-
elty since they fall within the expected range of incoherent pattern construction.
4The idea of generating ideas combinatorically can be traced at least to the zairja, a mechanical
device employed by Arabic astrologers in the late Middle Ages. This was probably the inspira-
tion for Ramon Llull’s 13th century machine, Ars Magna, which consisted of concentric disks of
gradually reduced diameter, upon which were transcribed symbols and words. These were brought
into different combinations as the disks were rotated so that aligned symbols could be read off and
interpreted as new ideas. A few centuries later, the theologian, mathematician and music theorist,
Marin Mersenne discussed the idea of applying combinatorics to music composition in his work,
L’harmonie universelle (1636).
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want to come to these conclusions, it seems highly doubtful that we should want
to reach these conclusions analytically! A definition allowing these matters to be
decided synthetically seems to be highly preferable. Our definition provides all the
resources needed to accommodate this.

13.4.3 The Very Possibility of Creativity

Some might object on the grounds that everything that occurs is hugely improbable!
Any continuous distribution has probability zero of landing at any specific point. So
long as we look at specific outcomes, specific works of art, at their most extreme
specificity—where every atom, or indeed every subatomic particle, is precisely lo-
cated in space and time—the probability of that outcome occurring will be zero
relative to any framework whatsoever. It follows, therefore, that the ratios of prob-
abilities given new to old frameworks are simply undefined, and our definition is
unhelpful.

Strictly speaking, this objection is correct. However, nobody operates at the level
of infinite precision arithmetic, which is what is required to identify those absurdly
precise outcomes in a continuous state space which have occurred and which have
probability zero. The achievement of probability zero on this basis would appear to
violate Heisenberg’s Uncertainty Principle. Disregarding quantum mechanics, ev-
eryone operates at a degree of resolution determined at least by systematic measure-
ment error. In effect, all state spaces are discretised so that the probabilities are em-
phatically not zero. Our definition is already explicitly relative to a cultural context;
so, to be perfectly correct, we need also to relativise it to a system of measurement
that accords with cultural measurement practices and normal measurement errors.

13.5 Consequences

13.5.1 The Irrelevance of Value

As we noted above, many popular definitions of creativity such as that of Boden we
outlined, stipulate that a creative pattern must be both appropriate and valued in the
domain. Hofstadter requires that the creative individual’s sense of what is interesting
must be in tune with that of the masses, thereby ensuring also popularity (Hofstadter
1995, p. 313). We find this expansion far-fetched and the original connection of
creativity to value dubious.

The history of the concept of creativity clearly undermines the idea of popularity
as any necessary ingredient in it. Consider the role of women in the history of art and
science. The value of their contributions has been systematically underestimated,
at least until recently. Concluding that their contributions were therefore also less
creative than that of their male counterparts would surely be perverse. Many artists
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and scientists were notoriously unpopular during their times of peak contribution,
becoming recognised only after their deaths. Whatever makes an activity creative,
it clearly must be connected with that activity itself, rather than occurring after the
activity has ceased entirely! The value and appropriateness of creative works are
subject to the social context in which they are received—not created.

Of course, lack of centrality to the core concept of creativity is no impediment to
forming a combined concept, say, of valued creativity. And that concept may itself
be valuable. But it is the adherence to a separation between creativity and value that
allows us to see their combination as potentially valuable.5

13.5.2 The Irrelevance of Appropriateness

As with value, appropriateness has often been considered necessary for creativity,
and again we disagree. Some have claimed that a creative pattern must meet the
constraints imposed by a genre. However, as Boden herself notes, a common way of
devising new conceptual frameworks is to drop or break existing traditions (Boden
2004, pp. 71–74)! This recognition of the possibility of “inappropriate” creative
works is again possible only if we avoid encumbering the definition of creativity
itself with appropriateness. And Boden’s recognition of this is evidence that she has
put aside the appropriateness constraint in practice, if not in theory.

13.5.3 Inferring Frameworks from Patterns

On our definition, a specific pattern provides insufficient information for judging its
creativity: a pattern is only creative relative to its generating framework and avail-
able alternative frameworks. Although in ordinary discourse there are innumerable
cases of objects being described as creative, we suggest that this is a kind of short-
hand for an object being produced by a creative process.

13.5.4 Creativity Viewed as Compression

It has been proposed that creativity is the act of generating patterns that exhibit
previously unknown regularities and facilitate the progressive refinement of an ob-
server’s pattern compression algorithm (Schmidhuber 2009, see also Chap. 12 in

5We should also note that omission of the concept of value from our definition does not imply
that value has no role in its application. Cultural and other values certainly enter into the choice of
domain and the selection of frameworks for them. We are not aiming at some kind of value-free
science of creativity, but simply a value-free account of creativity itself.



13 Creativity Refined 351

this volume by Schmidhuber). This idea is subsumed under our own definition of
creativity. When a new pattern is encountered or generated, this requires of an ob-
server either: no change, the new pattern fits neatly into their existing frameworks;
or in the case where the new pattern does not fit, the addition of a new framework
that does account for the pattern. In the latter case, the need for an additional frame-
work indicates that the pattern was creative from the perspective of the observer.

13.5.5 Degrees of Creativity

Following our definition it is not obvious how different people or their works may
be ranked by their creativity. An account of the degrees of creativity that is intrinsic
in our definition draws upon the probability that pre-existing frameworks could have
produced the patterns. A novel framework that can generate patterns that could not,
under any circumstances, have been generated prior to its introduction, is highly
creative. A novel framework that only replicates patterns generated by preexisting
frameworks is not at all creative. A novel framework that produces patterns that are
less likely to have been generated by preexisting frameworks is the more creative,
with the degree of creativity varying inversely with that probability of having been
generated by preexisting frameworks. Finally, the degree of creativity attributable to
objects is derivative from the degree of creativity shown by their generating frame-
work.

13.6 Examples: Creativity in Human Endeavour

Number Theory. The introduction of zero, negative numbers and the imagi-
nary number i were all creative. With the introduction of these new frameworks,
novel patterns were produced, with some of their consequences still being explored.
These could not have been generated within the previously existing frameworks of
mathematics at all. For instance, positive integers are sufficient for counting objects
owned, but the introduction of negative numbers is necessary for the calculation of
objects owed. Imaginary numbers have permitted the creation of previously impos-
sible concepts, for instance, the quaternion.

Visual Arts. Some Australian aboriginal visual artists draw or paint what is
known about the insides of a creature rather than its skin and fur. By introducing
this conceptual framework to visual art, patterns showing x-ray images are gener-
ated that are impossible within a framework focused on surfaces.

The step taken by the Impressionists away from realism in art in the 19th century
was also creative. They held that art should no longer be valued simply according
to its representation of the world as seen from the perspective of an ideal viewer. As
already discussed, breaking constraints is a common way of transforming a frame-
work in the way required for creativity.
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With more time, we could expand the number and variety of examples of cre-
ativity across all the disciplines and fields of endeavour humanity has pursued. Our
definition appears to be versatile enough to cope with anything we have thus far
considered (but not here documented, due to time and space limits). Instead we turn
now to assess the creativity of nature.

13.7 Examples: Creativity in Nature

From Physics and Chemistry to Evolutionary Biology. The planet Earth has
been shaped by many of the same forces as other planets, for instance, gravity is
responsible for its overall appearance and the patterns of liquid on its surface. Crys-
tallisation is responsible for the form of its minerals and erosion for the ways in
which these have been weathered. Abiotic physico-chemical processes like these
are capable of creating a bewildering variety of forms (Ball 2001). After a time,
the creativity of these processes is exhausted. When first introduced they generate
novelty, after that, just more of the same. However, upon close inspection earth has
an unusual atmosphere and its surface holds structures most unlike those found on
typical planets. At some time in our planet’s history a new molecule appeared from
the soup organised under abiotic interactions (Joyce 1989, Bada and Lazcano 2002).
Due to its structure and environment, this self-replicating molecule became an ele-
ment of a generative framework for manufacturing more self-replicators unknown
within the abiotic frameworks. The processes that introduced this novel replication
process may not have been creative since the introduction of the molecule is often
said to have occurred with low probability.6 Nevertheless, they introduced a new
creative process, evolution.

Evolution introduced the “major transitions” of biology allowing replicators to
collaborate in the replication process, transforming the ways in which information
crosses generations (Maynard-Smith and Szathmry 1995). Novel modes of environ-
mental sensing emerged; species with new energy-gleaning behaviours appeared,
altering earth’s atmosphere and the outer layer of its crust. Each of these transitions
constitutes a new creative framework, a new ecological niche, novel life. Since evo-
lution has produced these with high probability7 (compared at least to the previous
frameworks), it is clearly creative in this respect. Thus far, its creativity appears
unexhausted.

Ecosystems. Biological evolution operates within ecosystems on changing popu-
lations that define for themselves new ways of accumulating and consuming energy

6Actually, it may well be that this was actually a highly likely outcome given the conditions on
earth at the time (Joyce 1989). Life on earth is the only known instance, which, however, is very
different from having a low probability.
7The question as to whether or not replaying the tape would reliably give rise to the emergence of
the major transitions is open. However, it is clear that the likelihood of these transitions appearing
without the presence of evolution is vanishingly small.
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and matter to be employed for reproduction. Through feedback loops, organisms
construct their own niches, passively and actively organising their environment,
modifying the selection pressures acting on themselves, their progeny, and their
cohabiters (Odling-Smee et al. 2003). The moulding of self-selection pressures by
a population shifts the constraints within which future generations are introduced.
Hence, ecosystems are capable of producing an endless variety of generative frame-
works. New species too, their behaviours and constitutions, define niches that are
themselves novel generative frameworks—they are creative.

Dancing Bowerbirds, Painting Elephants and Primate Typists. Under what
circumstances is the introduction of a specific member of a species, an organism,
creative? Male bowerbirds gather collections of bones, glass, pebbles, shells, fruit,
plastic and metal scraps from their environment, and arrange them to attract females
(Borgia 1995). They perform a mating dance within a specially prepared display
court. The characteristics of an individual’s dance or artefact display are specific to
the species, but also to the capabilities and, apparently, the tastes of the individual.

The creativity of “elephant-artists” appears similarly individualistic:

After I have handed the loaded paintbrush to [the elephants], they proceed to paint in their
own distinctive style, with delicate strokes or broad ones, gently dabbing the bristles on the
paper or with a sweeping flourish, vertical lines or arcs and loops, ponderously or rapidly
and so on. No two artists have the same style.

(Weesatchanam 2006)

Novel patterns are apparent in these elephant and bowerbird activities but it ap-
pears unlikely that they operate within self-made frameworks that they may trans-
form. Nevertheless, these organisms are potential sources of pattern, and each is a
unique generative framework. If they can generate unique or improbable patterns, a
novel style, then their birth was a creative event. By this measure, the bowerbirds
and painting elephants are not individually creative but their introduction within the
context of an ecosystem was.8

Humans of course have the ability to consciously assess their work, to recognise
the frameworks they employ in the production of art, and to escape these into cre-
ative territory. Usually it is assumed that other animals do not have this high-level
mental faculty.

Another test case for assessing creativity is the keyboard-punching army of mon-
keys. It has been proposed that after typing randomly for a time the monkeys would
have made copies of a number of previously authored texts (Borel 1913). In this
exceedingly unlikely event, the monkeys are not creative by our definition, as we
would intuitively hope! Not even if by chance the monkeys had typed up a sin-
gle original sonnet would they be creative since many other pre-existing generative

8In this sense too, the birth of a new human, even one who is unable to introduce new frameworks,
is a creative event. Actually, it has been argued that humans, like bowerbirds, produce artistic works
as an evolutionarily adaptive way to attract mates (Miller 2001). This theory is one of several,
however, and is not universally accepted (Carroll 2007).
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frameworks have the same minute chance of banging out identical verse. Still, if a
novel mechanism is introduced for producing novel sonnets, that employs a typing
primate army, and it somehow works with a probability above that of random search
(for instance), then this would count as a creative event.

In answer then to the general question, “Is nature creative?” we would emphat-
ically claim, “Yes!” In many circumstances, with respect to many frameworks, na-
ture, especially the evolutionary process, is creative.

13.8 Realising Our Definition of Creativity in Software

As discussed above, there are a number of ways we might attempt to emulate the
creativity of nature by writing generative software: by modelling intelligence, life,
or even a complete open-ended evolving ecosystem. These are all approaches that
artists have tried, the last of them, open-ended evolution, is perhaps the most promis-
ing since by definition it refers to an evolutionary system’s ability to inexhaustibly
generate novel frameworks. Yet an artificial system of this kind remains elusive. At
the time of writing nobody has convincingly demonstrated open-ended evolution in
software.

Whilst software-based open-ended evolution eludes us, some of the alternative
strategies mentioned have shown a little immediate promise for generative art. In
particular, artificial evolution of imagery, especially when assisted by human aes-
thetic assessment of fitness, has received much attention. In light of this, our cre-
ativity measure has been investigated as a means for automatically guiding the
evolution of simple line drawings (Kowaliw et al. 2009). This forms part of an
effort to improve the automatic and assisted creativity of evolutionary software.
Our definition is, in practice, computationally intensive to apply. Hence, for prac-
tical reasons, Kowaliw devised creativity-lite, a modification that is tractable and
testable against the full implementation of our measure. The output produced by the
creativity-lite measure has been tested against common-language understanding of
the term creativity by allowing users to evaluate automatically generated textural
images (Kowaliw et al. 2012). The results of this research are summarised below.

13.8.1 The Automatic Generation of Creative Biomorphs

In order to apply our definition to a practical task, Kowaliw et al. elected to gener-
ate stick figures based on the biomorphs of Dawkins (1989) and see if they could
automatically distinguish between those that were creative, and those that were not.
Biomorphs are intricate line drawings made of straight segments that may be over-
laid upon one another hundreds of times to generate rich patterns reminiscent of
trees, insects, snowflakes, stars or countless other forms. Each individual biomorph
can be considered, potentially, a creative generative system, since it is capable of
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Fig. 13.3 A selection of randomly generated biomorphs generated by the software of Kowaliw,
Dorin and McCormack, chosen to show some of the variety that is possible

producing a series of patterns—its offspring. Offspring are generated by varying
some of a parent biomorph’s parameters slightly, altering the placement, length and
orientation of line segments with respect to those of that parent. A child will then
be similar, but not identical to, its immediate ancestor. If the forms of a biomorph’s
offspring are reliably different to those produced by any that have preceded it, then
according to our definition of creativity, the parent is creative with respect to its
ancestors. If a particular biomorph reliably generates children that are exceedingly
unlikely to be generated by any other biomorph (a possibility we can feasibly test
in software), we can also claim that the parent is quite generally creative. This ap-
proach was adopted in the experiments described below.

Biomorphs were constrained in these tests to appear in 8-bit greyscale images
within a 200 square pixel grid. Somewhere in this space of possible images is a
representation of every possible human face, including those long dead and those
that may never be born, as well as representations of every view ever seen by every
person that ever looked upon the world . . . and that is hardy scratching the surface!
In short, this represents an astronomically large space of possible images. Of course
not all of these can be generated as biomorphs. Nevertheless, the space remains
unimaginably large, even when constrained in this way. An assortment of the images
the software can generate is illustrated in Fig. 13.3.

The images the software generated were measured with a set of image-processing
techniques that detect traits perceptible to humans. These related to the images’ con-
trast, homogeneity, entropy and other measures of texture. A substantial sample was
used to give a representation of the total space of images the software can produce
and then three techniques were repeatedly applied: random image generation; an
interactive genetic algorithm; and the creativity-lite search employing a simple ver-
sion of our definition of creativity encoded in software, to try to locate a creative
individual biomorph.

As we would hope, randomly created biomorphs did not generate a high pro-
portion of creative offspring at all—the sampling of the space was adequate. When
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Fig. 13.4 A selection of images evolved by users employing the EvoEco texture generating soft-
ware

creativity-lite generated biomorphs were tested against an encoded complete statisti-
cal version of our creativity measure, a very high proportion of the images generated
were found to be creative by this measure. Hence it seems fair to conclude that the
simplified creativity-lite search is a good approximation of the complete, but in-
tensive, computation required to apply our measure in full. Finally, the interactive
algorithm for generating biomorphs consistently produced many more creative in-
dividuals than the random technique, but less than the creativity-lite measure. This
indicates that our measure goes some way towards representing human preferences.
Were the humans evolving for creative results that our measure would appreciate?
This test was not set up to answer such questions. How well does our measure cor-
respond to the general human appreciation of creativity? This was explored in a
subsequent test, discussed next.

13.8.2 Testing Creative Software Against Human Concepts
of Creativity

In order to determine the extent to which our definition of creativity reflected human
interpretations of the term, Kowaliw et al. conducted a survey, the details of which
can be found in (Kowaliw et al. 2012). Visitors, originally to a gallery installation,
and later to a website, were invited to evolve images using texture generating soft-
ware, EvoEco, that operated on the principle of aesthetic selection: users selected a
parent image from 16 textures displayed to them. This was then used to generate 16
offspring images as described below, and the process repeated until the user decided
it was time to stop. Some sample images generated by users appear in Fig. 13.4.

Of the 16 offspring generated from a user-selected parent image, 15 were gener-
ated either by occasional mutation (a small variation in the parameters that generate
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the image) of the chosen parent’s parameters, or by crossing-over the parent’s pa-
rameters with those of another randomly selected member of the current, or any
previous population. Crossover is an operation that samples parameters from one
image, complementary parameters from another, and recombines these to produce
a complete set of parameters for generating, in this instance, a new image. The new
image typically exhibits a combination of traits of its parents.

For a particular user the final offspring image of the 16 was consistently gener-
ated either completely at random; or in such a way as to maximise its distance from
the parent (according to the statistical image properties applied to the biomorph im-
ages above); or, by locating an individual that maximised the creativity-lite measure
discussed in relation to the biomorphs. In the latter two cases a sample of images
was generated from the parent by mutation and the one that maximised the distance
or creativity-lite measure as appropriate was chosen to fill the final slot. The off-
spring were always positioned in random order on the screen so as to avoid user
selection biases introduced by image placement.

Following their engagement with the software users were presented with a survey
asking them to rank how appealing, novel, interesting or creative they found the
intermediate images and final result.

The distance technique for generating offspring, generally, appeared to be an
impediment to the software’s success. This technique was ranked somewhat worse
than the random generation technique with regard to the novelty of the images it sug-
gested, and significantly worse than the creativity technique in three of six scales we
recorded. This performance matched our intuition that maximising distance pushes
populations away from the direction selected by users, undoing the effects of evo-
lution. The creativity technique significantly outperformed the distance technique
and rated better than the random technique in novelty of the final image, and the
creativity of the suggested intermediate images. The research also found that the
mean score for all responses was best for the creativity technique; and that the pro-
portion of users who answered positively to the question “Did you feel that you
could control the quality of the images through your selections?” was higher for
creativity (55 %) than for the other two techniques (31 % for random and 40 % for
distance). Hence, we can conclude tentatively that the use of the creativity-lite mea-
sure improved the performance of the interactive algorithm with respect to natural
language notions of novelty and creativity.

13.9 Discussion

Where to from here? EvoEco is not the be-all and end-all of automated creativity.
For starters, the software will never be able to step outside of its specification to
generate the kind of novelty we would expect a human to devise. For instance, it
can never generate a three-dimensional model of a tree. Is this significant? A hard-
coded range of representations limits all systems we devise. This is inescapable.
Can a digital machine exceed the expectations of its developers nevertheless? We
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can see no reason why not, but it must do so within the confines of its ability to
manipulate representations. Thus, its creativity will be limited, perhaps to the point
where we are insufficiently engaged with its behaviour to claim it as a rival to our
own creativity.

Human creativity is analogously confined by physical, chemical, biological and
social constraints. In keeping with both Boden’s definition and our own, we find
human creativity interesting because it redefines the boundaries of what is possible
within the constraints we believe are imposed upon us. If we can build generative
systems that interact within the same constraints as ourselves, we can potentially
circumvent the limitations of the purely digital system. And this is what artists do
when they map the digital world to real textual, sonic and visual events. A program
running on a computer is not very interesting unless we can experience what it is
doing somehow. Once we can, the discrete events—changing values, production of
spatio-temporal patterns—take on new meanings for those observers that perceive
them, outside the internal semantics of the generative system that created them. For
this reason we can see no reason why machine creativity cannot in theory rival our
own.

How will we know that our creativity has been rivalled? In the usual ways:
machine-generated works will appear in the best galleries, win the most prestigious
art prizes, sell for vast sums of money, be acclaimed by critics, cited in publications
and referenced by other artists. But also, if we are to progress in any methodical
sense, because we shall be able to assess their creativity in an objective way, em-
ploying measures such as that implicit in the new definition of creativity that we
have presented.

13.10 Conclusions

We have described in this chapter a way to interpret creativity independently of in-
formal concepts such as value and appropriateness. These concepts, we feel, have
encumbered the search, production and recognition of autonomous creative soft-
ware to date. Instead, we have proposed a testable measure for creativity that can
be applied wherever it is possible to sample and measure the novelty of designs
selected from a large, even infinite, space of possibilities. In fact our approach is,
in theory, applicable to any digital computational generative system and its output.
As a proof of concept, our definition has been encoded in software and employed
to measure the creativity of images, enabling it to automatically offer results that
humans perceive to be more creative than those made using similar, but differently
assisted, algorithmic techniques.

We do not pretend to have shelled the “automated creativity nut”, but we be-
lieve we have caused a fissure from which we can pry it open. No doubt our powers
of persuasion are not so strong as to ensure that our ideas will be uncontroversial,
particularly as our suggestions run against the grain of much that has been written
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previously. Nevertheless, we are at this stage convinced of the merit of our defini-
tions and their application, and hopeful that the problems of building autonomous
creative systems can be tackled from the approaches we offer.
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Chapter 14
Generative and Adaptive Creativity: A Unified
Approach to Creativity in Nature, Humans
and Machines

Oliver Bown

Abstract Computational creativity is not limited to the study of human-like creativ-
ity and forces us to think about creativity as a general process that can be applied
wherever new things come into existence. In this chapter I propose that in order to
unify various forms of creativity it is necessary to consider a distinction between two
types of creativity: generative creativity, in which things are created as the result of a
process regardless of their value, and adaptive creativity, in which things are created
as adaptive responses by a system to its situation. Whilst individual human creativ-
ity is typically of the adaptive form, collectively humans are engaged in processes
of generative creativity as well as adaptive creativity. It is helpful to understand hu-
man creative behaviour as part of a social process involving these two aspects, and
this is relevant to understanding how manmade artefacts can act as creative agents
in social networks.

14.1 Questions About Creativity

Theories of creativity are so commonly focused on human behaviour that for many
researchers there is no need to address notions of creativity outside of the frame of
reference of human psychology. In the disciplines centred around psychology this
is appropriate. As part of the cognitive sciences, it is also reasonable for artificial
intelligence (AI) to stick to this delimitation of creativity as an activity. The study
of computational creativity, as demonstrated by the range of contributions to this
book, is very different in that it poses scenarios which provoke us to view creativity
in significantly more varied terms—scenarios, for example, where the computer acts
as a generator of variation, heavily mediated by its user.

To this end, human psychology is a limited reference point. Computational cre-
ativity is the study of creativity by any computational means, not necessarily those
modelled on human minds, or even on human goals, and as such the discipline takes
on the challenge of developing a more fundamental understanding of what it means
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for something to create, and of where and when a creative process has occurred. In
taking this broad stance on creativity, computational creativity necessarily concerns
itself with acts of creation wherever they occur, not just in humans. We require a
broader view of creativity as the process of creating novel things, not limited to a
suite of psychological capacities. This richer notion of creativity emerges alongside
practical innovations in our research and feeds back into informing an understanding
of creativity in humans and elsewhere.

The most prevalent example of non-human creativity is the Earth’s history of
natural evolution,1 associated with an early sense of the term “creativity”, as in
creationism, the exclusive remit of God (Williams 1983). Whether through Nature
or God, the biological world, including us, stands as evidence of dramatic creativity.

In a broader sense still, computers routinely, mundanely, create things. An el-
ementary type of creativity can be achieved by the rapid, random production of
varieties from a set of generative rules. In the simplest case, this can be a set of
parameter specifications that can be assigned different values to produce different
outputs. These things are creations: new entities that would not otherwise have ex-
isted. This is creativity with a crucial caveat: somebody or something else has to
come up with the generative rules. A pragmatic choice for very simple experiments
in computational creativity, for example, is the spirograph, in which a set of gear
ratios can be used to define a space of non-trivial visual patterns (Saunders 2001).
Obviously, all you get from such a system is spirographs, pretty patterns with a
minuscule potential to deliver something truly surprising. Equally, one could use a
computer to begin to search the vast parameter space of all 500 by 500 pixel 24-bit
colour images, an example discussed by McCormack (2008). One could proffer that
there are still phenomenal 500 by 500 pixel colour images yet to be seen by a hu-
man eye, but the space to search is so vast that any naïve search has no certainty of
finding them. With generative techniques, new things can be created that have never
been created before, trivial though this may seem. This “generative creativity”, in
its simplest form, is a particularly weak form of creativity, but by such accounts it
still seems to be creativity.

These examples of non-human creativity are, in quite different ways, distinct
from the human cognitive activity associated with being creative, but they are both
important to the study of computational creativity. This chapter uses the terms gen-
erative and adaptive creativity to help unify these diverse manifestations of the act
of creating things into a common theory.

The structure of this chapter is as follows: I will explain the meaning of genera-
tive and adaptive creativity in the following section. In Sect. 14.3, I will discuss the
relevance of generative and adaptive creativity to current research in computational
creativity. I will then consider social systems firstly as creative systems that are more
than just the sum of human creative acts, and then as both adaptively creative units

1Discussions on this topic can be found in the chapters by Cariani (Chap. 15) and McCormack
(Chap. 2) in this book, in earlier work in computational creativity by, for example, Bentley (1999b),
Perkins (1996) and Thornton (2007), and in more remote areas of study such as Bergson (1998)
and de Landa (1991).
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and as generatively creative units. I will consider examples from computational cre-
ativity research of modelling social creative systems. I will also consider individual
humans as exhibiting generative as well as adaptive creativity. Finally, I will return
to computational creativity (Sect. 14.4) and consider how ideas of generative and
adaptive creativity can be used to support developments in computational creativity
research.

14.2 Generative and Adaptive Creativity

From the broad perspective of poiesis—of how things come about—all the patterns,
structures and behaviours that exist in the world can be taken as evidence of cre-
ativity. This jars with the traditional psychological view of creativity, and implies a
distinction between two varieties, which I will refer to in this chapter as generative
and adaptive. Generative creativity takes an indifferent approach to the problem of
value, it is value-free creativity. In generative creativity, things are not created for a
purpose. Things can come into existence without being created for their value.

The mechanical variation of the spirograph discussed above may be the least
ambiguous, albeit banal, example of generative creativity. Natural evolution is a
more impressive example, but more contentious because the relationship between
nature’s creative processes and the production of value is complex. Natural evolution
provides means for lineages of organisms to adapt to their environments, but it is
also responsible for producing both evolutionary challenges and their evolutionary
solutions together in tandem, in the absence of an ultimate goal. Peacocks’ tails are
useful to peacocks, and the advancement of their progeny, because they are attractive
to peahens, but this utility is there for the genetic lineages of peacocks and peahens,
it does not serve the process of evolution that produced them.

Value (survival value, the value of sexual attractiveness) is part of the equation
that feeds these evolutionary processes, but the creative processes that produced the
peacock’s tail is not, in this author’s opinion, an adaptively creative process, as I will
define it below.

This view may yet be mistaken: Gaia theory, for example, implies that there is a
general process of improvement driven by evolution (Lovelock 1979). I may also be
underselling the true value of peacocks’ tails, in light of the handicap principle (Za-
havi 1975) or honest signalling theory (Owings and Morton 1998). With these and
other complex issues in evolutionary theory in mind, readers may understandably
take the opposite view that natural evolution is not indifferent to value and is thus
adaptively creative, as defined below. Indeed, the definitions below do not preclude
the possibility of evolutionary adaptation providing examples of adaptive creativity.
The view offered here, though, is that generative creativity is the more predomi-
nant aspect of natural evolution: whilst valuable functions are established during the
evolutionary process, the subject (and beneficiary) of the value—the peacock for
example—is not the creative agent behind the trait, and the process that, if anything,
is the creative agent—an abstract evolutionary mechanism—is a non-entity as far as
“benefits” are concerned.
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Put more bluntly, a once barren planet now teems with life. There is no function
that this life was brought into existence to perform. This is generative creativity.

Adaptive creativity is concerned with the process of creating things as an adap-
tive behaviour, perhaps one of a suite of adaptive behaviours, exhibited by a sys-
tem (person, animal, computer, social group, etc.). The least ambiguous example of
adaptive creativity would be everyday problem solving, where an individual finds a
new way to directly improve their life. Basic problem solving is widely observed in
the animal kingdom; a plausible explanation for this is that a suite of cognitive fac-
ulties evolved through selective advantage. Through networks of exchange, humans
can also benefit from inventions that are not directly useful to them. The arts, with
which this chapter is primarily concerned, are more controversial in this respect:
many would question the relationship between art and adaptive behaviour. But the
less controversial association between art and value is reason enough to place artis-
tic creativity in this category. It would seem fair to say that artists generally benefit
from the artworks they produce, even if we are not sure why. Creating something
of value, albeit in a convoluted socially constructed context, is, I will assume, an
adaptive behaviour.

There is a lot to unpack from these preliminary remarks, which I will do through-
out this chapter. To begin, generative creativity and adaptive creativity will be de-
fined as follows:

• Generative Creativity: an instance of a system creating new patterns or behaviours
regardless of the benefit to that system. There is an explanation for the creative
outcome, but not a reason.

• Adaptive Creativity: an instance of a system creating new patterns or behaviours
to the benefit of that system. The creative outcome can be explained in terms of
its ability to satisfy a function.

Adaptive creativity is here intended to describe the familiar understanding of hu-
man creativity as a cognitive capacity. Generative creativity is its more mysterious
counterpart, and helps extend the scope of creativity to cover a greater set of cre-
ations. Although this duality could be represented simply as novelty with or without
value, the terms are taken to emphasise two essentially different characters that cre-
ativity can assume.

Generative creativity may seem like a distraction from the problems of under-
standing human creativity, and of establishing human-like creativity in computa-
tional systems. The main aim of this chapter is to argue that the duality of genera-
tive and adaptive creativity is instead highly relevant to our understanding of human
creativity, offering a framework with which to understand individual and distributed
social creative processes in a common extensible and future-proof way. The gen-
erative/adaptive divide is argued to be as useful as the human/non-human divide,
and is different in significant ways. This picks up the cause of emphasising how im-
portant the social dimensions of human creativity are, following socially-oriented
theories such as those of Csikszentmihalyi (1999), but since this cause is already
well established, the more relevant goal is a framework that unifies these elements.

I have briefly discussed natural evolution above, and its ambiguous relationship
to adaptive creativity. A similar discussion will be applied to culture in greater depth.
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In the following sections, I will discuss how the notions of generative and adaptive
creativity apply in various instances associated with human social behaviour. In
doing so I will draw on concepts from the social sciences which I believe can enrich
the conceptual foundations of computational creativity. The discussion is geared
towards arts-based computational creativity, but will draw from scenarios outside of
the arts.

14.3 Generative and Adaptive Creativity in the Arts, in Humans,
Human Groups and in Silico

The generative/adaptive framework can be applied to the way we characterise the
creativity of artificial systems in the poorly understood domain of human artistic
behaviour. Despite some clear achievements in arts-based computational creativity,
success has been marred by the challenges of evaluating the products of creative
systems in a meaningful way (Pearce and Wiggins 2001, Greenfield 2006, McCor-
mack 2008). We struggle to disambiguate the creative input of the system’s designer
from the creative output of the system itself (Greenfield 2006), and we also struggle
to establish valid contexts for either subjective or objective judgement of creative
outputs. This ambiguity has made arts-based computational creativity particularly
resistant to the bootstrapping of future developments from previous success. It is
hard to make informed decisions about the relative virtues of different computa-
tional methods (genetic algorithms, neural networks, etc.) because arts-based com-
putational creativity research lives mainly in the lab, with many additional steps
required to get from this to the real field of human artistic activity. This suggests the
need for a richer characterisation of creativity, including the role of social dynamics
as a creative system, as well as the role of creative individuals within that system.

Above all, in labs, goals are implicitly defined for arts-based computationally cre-
ative systems which have ill-defined parallels in the world of human artistic goals.
A person has a flexible and creative relationship with the value of the cultural arte-
facts he creates and is surrounded by, for example by being free not to be artistically
creative. As currently conceived, an arts-based computationally creative system is,
by contrast, a tool with a function assigned to it. It can only be adaptively creative
within the limits imposed by its given function (it must make art). Functionality is a
desirable property of all manmade systems. An artificial creative system is expected
to do more than generative creativity (an end in itself), because it is required to pro-
duce outputs which are not just novel but have some externally established value.
As such, arts-based computationally creative systems target a novel niche, in terms
of their social embeddedness, which is yet to be clearly characterised. There is a
need to establish a discourse that properly recognises this niche.

What, then, is the nature of natural creative systems in terms of function? To
determine what kind of status a creative tool could take, it is important to look at
human creativity not only at the individual level: individuals in isolation cannot pro-
vide us with an understanding of the creative nature of the arts because a complete
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understanding involves identifying how value is generated within a social system
(Csikszentmihalyi 1996). I will expand this point with reference to relevant per-
spectives in the social sciences, as it is an important prerequisite for considering
how social systems and individuals can be generatively and adaptively creative.

14.3.1 The Creativity of Social Systems Is More than the Sum
of Individual Creative Acts

Our creative capabilities are contingent on the objects and infrastructure available
to us, which help us achieve individual goals. One way to look at this is, as Clark
(2003) does, in terms of the mind being extended to a distributed system with an
embodied brain at the centre, and surrounded by various other tools, from digits
to digital computers. We can even step away from the centrality of human brains
altogether and consider social complexes as distributed systems involving more or
less cognitive elements. Latour (1993) considers various such complexes as actor
networks, arguing that what we think of as agency needs to be a flexible concept, as
applicable to such networks as to individuals under the right circumstances.

Gell (1998), proposing an anthropology of art, likewise steps away from the cen-
trality of human action by designating primary and secondary forms of agency. Arte-
facts are clearly not agents in the sense that people are, that is, primary agents, but
they can be granted a form of agency, secondary agency, to account for the ef-
fect they have on people in interaction. Gell argues that we need this category of
secondary agency, which at first seems counterintuitive, in order to fully account for
the networks of interaction that underpin systems of art. Artworks, he argues, abduct
agency from their makers, extended to new social interactions where they must nec-
essarily be understood as independent. This idea of art as an extension of influence
beyond the direct action of the individual is also emphasised by Coe (2003) as key
to understanding the extent of kin-group cohesion in human societies: by extending
influence through time, such as through decorative styles, an ancestor can establish
strong ties between larger groups of descendants than otherwise would be possible.

It is hard to be precise about exactly what is meant by artworks and artefacts here.
For example, decorative styles are in a sense just concepts, in that they can only be
reproduced through individual cognition, and the same is true of artefacts if they
are to be reproduced and modified in continued lineages (Sperber 2000)—a situa-
tion that would radically change with self-reproducing machines. But artefacts are
concepts built around a physical realisation, which is itself a carrier for the concept.
That is, objects participate in the collective process of remembering and learning
that allow a culture to persevere and evolve over time.

Artworks can take on a slightly different status. They are typically defined as
unreproducable, even if they are effectively reproduced in many ways (Gell 1998).
Like many other artefacts involved in social interaction, such as telephones and so-
cial networking tools, they act to shape a distributed creative process. These may
be the products of individual human invention, but they do not simply get added to
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a growing stockpile of passive resources, but instead join the process as secondary
agents (Gell 1998). Put another way, when culture is seen as a creative system, it
is inclusive of all of these objects, which contribute functionally to the system, just
as the distributed modular mechanisms of the human brain may be required to be
in place for individual creative cognition to function. Similarly, a memetic view of
culture sees ideas, concepts, designs and so on as not just cumulative but effective,
a new form of evolutionary raison d’être added to the biological world (Dawkins
1976). These “memes” are understood as having an emergent teleological function-
ality: brains evolved under selective pressures, and memes were thus unleashed.
But what are memes for? The answer: they are only for memes. Sperber (2007)
provides a strong argument for rejecting memes, but promotes the idea of distin-
guishing between a designated function (a function we ascribe to something) and
a teleofunction (a function of something in an evolutionary sense, in service of its
own survival).

Just as neuroscientists care about the behaviour of synapses as much as they
do neurons, a theory of social creativity depends on the functional importance of
both primary and secondary agents. We can view any digital arts tool as a sec-
ondary agent, but arts-based computational creativity holds the promise of intro-
ducing secondary agents that are richly interactive, and as such creatively potent (if
not adaptively creative), encroaching on the territory of primary agents. Arts-based
computational creativity researchers, by definition, study the possibility of artefacts
with agency, and in doing so reveal a gradient of agency rather than a categorical
division.

The Interactive Genetic Algorithm (IGA) (Dawkins 1986), for example, is an
artificial evolutionary system in which a user selectively “breeds” aesthetic artefacts
of some sort (see Takagi 2001 for a survey), or manipulates an evolutionary outcome
via a user-defined fitness function (e.g. Sims 1994, Bentley 1999a). The IGA can
only possibly achieve adaptive creativity by being coupled with a human user, in
a generate-and-test cycle. However, it allows the user to explore new patterns or
behaviours beyond those he would have devised using imagination or existing forms
of experimentation (Bentley 1999b). As such, it is not autonomous, and yet it is
active and participatory, grounded in an external system of value through a human
user.

Researchers in IGAs continue to struggle to find powerful genetic representations
of aesthetic patterns and behaviour that could lead to interesting creative discovery
(e.g. Stanley and Miikkulainen 2004). But more recently, IGAs have also be used to
couple multiple users together in a shared distributed search (Secretan et al. 2008).
Whilst an individual approach views IGAs as creative tools that extend individual
cognition, as in the extended mind model, the distributed notion of an IGA embodies
a social view in which no one mind can be seen as the centre of an artificially
extended system. Instead, minds and machines form a heterogeneous network of
interaction, forcing us to view this hybrid human and artificial evolutionary system
on a social level. In this and other areas, arts-based computational creativity is well-
poised to bootstrap its future development on the emergence of social computing,
which presents a training and evaluation environment on the scale of a real human
social system.
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14.3.2 Social Systems Can Exhibit Both Generative and Adaptive
Creativity

To be adaptively creative, social systems must be shown to form coherent units to
which creativity is beneficial. Society contains many structures that naturally appear
to us as unified wholes, such as families, organisations and nations, even when the
individual members of these groups might be interchangeable. In certain cases, these
unities act with intention and planning and can be creative in a sense that is more
than simply an accumulation of individual creative acts, through the formation of
structures which incentivise, intensify and exploit individual creativity. In other cir-
cumstances, overlapping with these adaptive scenarios, social groups lack the shared
intention required to view them as adaptive units, but nevertheless act as powerful
generative systems. In such cases it is not possible to view the system’s creativity
as serving specific adaptive goals at the level that they are generated. For the groups
concerned, treated as units, the system’s creativity may be counter-productive, even
if it involves adaptive creativity at the individual level. From an evolutionary per-
spective, this position is no surprise: we do not generally expect groups to sustain
collective adaptive behaviour, as they can be easily undermined by selfish individ-
uals exploiting the adaptive properties of the group (Wilson 1975). The important
point for defining generative creativity is that there are properties of the system that
are necessary for an understanding of how new patterns and behaviours emerge, that
are not adaptations by the group, and that go beyond the accumulation of individual
adaptive creativity.

14.3.2.1 The Causes and Effects of Culture

As this implies, understanding adaptive and generative creativity in social systems
depends on understanding the dynamics of cooperation and competition in human
social behaviour. A simple way that adaptive and generative creativity can be seen
to be linked through culture is through the following evolutionary explanation:

1. Cultural behaviour arose due to specific evolutionary adaptations in individuals
such as the ability to imitate successful behaviour, to understand others’ goals,
to manipulate behaviour and to be adaptively creative (Barkow et al. 1992);

2. This leads to:
a. The formation of structured adaptive social units stemming originally from

family groups and simple local alliances, in which a collective interest can
become established (Fisher 1958, Axelrod 1997, Maynard Smith and Szath-
máry 1995, Hamilton 1963); and

b. The cultural conditions for less cooperative interaction which can have run-
away generative effects, especially under the constraints of structured adaptive
social units (Boyd and Richerson 1985, Blackmore 1999).

As with the definitions of generative and adaptive creativity, we can try out state-
ments (2a) and (2b) against specific instances of social behaviour. This theoretical
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outline is most clearly conveyed in Boyd and Richerson’s influential body of work
(Boyd and Richerson 1985), in which they propose that much cultural behaviour can
be thought of as “baggage”, unexpected but tolerable spin-offs from the powerful
success of applying simple frugal heuristics for social learning, fitting the scenario
of (2b). The same pattern is expressed by a number of theorists who share the con-
viction that an evolutionary explanation does not mean simply seeking a function
for each trait and behaviour of the human individual. For example, Pinker (1998)
explains music as evolutionary cheesecake: something that is pleasurable and com-
pelling not because it is adaptively useful in itself, but because it combines a number
of existing adaptive traits. Being creative, he proposes, we have found new ways to
excite the senses, and continue to do so. Thus, controversially, music joins more
obviously maladaptive and sinister “inventions”, such as drugs and pornography.

At the same time, Boyd and Richerson (1985) posit that social learning can al-
ter individual human evolutionary trajectories by coordinating and homogenising
certain aspects of behaviour across a group, counteracting the effect of disruptive
selfish behaviour, and explaining how groups of individuals can consolidate col-
lective interests over evolutionary time. This fits the scenario in (2a). Others have
explored how the social structures enabled by more complex social behaviours can
lead to the evolution of increasingly group-cooperative behaviour. For example, Ha-
gen and Bryant (2003) explain music as a means for groups to demonstrate the
strength of their coalition as a fighting unit. The basis for their theory is that since
practising complex coordinated behaviour such as dance and music takes time and
individual commitment, a well-coordinated performance is a clear—or honest in
evolutionary terms—indicator of how cohesive the group is. Honest indicators of
fighting strength and commitment, like a dog’s growl, can serve both parties weigh-
ing up their chances in a fight, by indicating the likely outcome through indisputable
displays (Zahavi 1975, Krebs and Dawkins 1984, Owings and Morton 1998).

A growing body of research into the relationship between music, early social-
isation (such as mother-infant interaction) and group cohesion supports this basic
thrust (Dissanayake 2000, Cross 2006, Parncutt 2009, Richman 2001, Merker 2001,
Brown 2007), although it may be manifest in alternative ways. Such theories are
evolutionarily plausible despite being seemingly “group-selectionist”, because they
can be understood in terms of kin-selection and honest signalling taken to increas-
ingly extended and complex social structures (e.g. Brown 2007, Parncutt 2009).
As Dunbar (1998) has demonstrated, vocal communication in humans may form
a natural extension to the kinds of honest signalling of allegiance found amongst
primates, correlating with both group size and brain size. These theories are also
commensurate with the widely consistent observations of anthropologists that the
representation of social structure, such as in totem groups and myths, is a universal
cultural preoccupation (Lévi-Strauss 1971, Coe 2003).

14.3.2.2 Social Groups as Adaptive Units

Organised and cohesive social groups frequently coordinate and structure individual
creative behaviour, and increasingly so in more complex societies, which are able to
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incentivise, intensify and exploit creative discovery through the distribution of re-
sources and power (Csikszentmihalyi 1996). Consider an illustrative example from
Sobel (1996): at the height of colonial competition a grand challenge for naval sci-
ence was the discovery of a technique to determine longitude at sea. Whilst latitude
could be determined entirely from the height of stars above the horizon, longitude
could only be reckoned in this way relative to the time of day, which could not be
known accurately using existing clocks. Errors in longitude estimation could be dis-
astrous, costing time, money and lives, and the demand for a solution intensified as
the problem of longitude became increasingly pivotal to naval supremacy. A sub-
stantial prize was offered by the British government, and the prize stood for many
years before being claimed. The solution came from a lone, self-taught clockmaker,
John Harrison, who made numerous small innovations to improve clock accuracy.

Of interest here is not only John Harrison himself but the great efforts invested
by his competitors in pursuit of the prize money. Some had far flung ideas, others
pursued fanciful but reasonable alternatives, others still were clockmakers like Har-
rison himself, pursuing different techniques. More serious competition came in the
form of an astronomical solution which required knowing the future trajectory of
the moon for years to come. Together, these disparate groups “collaborated through
competition” to discover the solution to the problem of longitude, naturally divid-
ing their efforts between different domains, and giving each other clear ground to
occupy a certain region of the search space.

Here, within-group competition was artificially driven by a prize, constrained by
certain socially imposed factors: the prize money established a common goal, and
awareness of existing research drove specific innovators down divergent pathways,
and incentivised outsiders to bring their skills to the challenge. The prize encour-
aged outsiders with far-flung interests to put effort into a solution, and at no expense
to the government. This underlines the difference between a prize, for which only
one innovator from the domain gains, and a series of grants for research. The former
is indifferent to effort, excellence or even potential and is motivated by uncertainty
about where a winning solution might turn up. Like the fitness function in an optimi-
sation algorithm, it cares only for success, and it has a clear means for determining
success. The latter invests in potential and uses effort and excellence as indicators of
likely success. Both forms of finance played a role in establishing the solution, since
Harrison actually received occasional grants from the Board of Longitude to fund
his gradual development, indicating that they has some confidence in a clock-based
solution. Harrison was once a maverick outsider, drawn by the prize. Through his
early promising efforts he became a refined and trusted investigator, deserving of
further funding.

Only through the constant jostle of shifting social interaction can this outcome
be explained. Historical examples of social creativity such as the Longitude Prize
have helped to build our modern world of research councils, music industry major
labels and venture capitalism, for example by demonstrating the powerful creative
potential of open markets. Harrison, an unlikely outsider to the challenge, was first
motivated, then identified as having a chance, then allowed to flourish. The prize
also had its losers, whose time and perhaps great talent went unrewarded, wasted
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in pursuit of a prize they didn’t win. Their attempts at individual adaptive creativity
may have failed, and yet inadvertently they contributed to the adaptive creativity of
some larger social group with their various negative results. That is not to say they
were duped or that they acted maladaptively. Many modern professionals, such as
architects and academics, compete against challenging odds to get coveted funding
or commissions. Most find they can reapply their efforts elsewhere, which is in itself
a creative skill.

It seems plausible that this kind of competitive dynamic also has an inherently
self-maintaining structure: those who are successful, and therefore able to impose
greater influence on future generations, may behave in such as way as to reinforce
the principles of competition in which they were successful. A prize winner may
speak in later years of the great social value of the prize. Those who are successful
at working their way up in organisations might be likely to favour the structures that
led to their success, and may try to consolidate them.

In other cases, the emergence of new social structures or the technologies that un-
derpin new social arrangements, innovated by various means, may act to the detri-
ment of individuals. An example is the innovation of agriculture as presented by
Diamond (1992), which was a successful social organisation because it enabled the
formation of larger centralised social groups with a greater division of labour, de-
spite worsening the diet of the average individual.

14.3.2.3 Social Groups as Non-adaptive Generators

According to the idea that cultural behaviour attracts baggage—runaway cultural
patterns of behaviour (Boyd and Richerson 1985)—the same mechanisms of incen-
tivisation can occur in generative creative processes, that is, in situations in which
the collective system is not behaving adaptively in sight of a goal. For example,
whether or not music or the arts are valuable to social groups, individuals adaptively
pursue goals as musicians or artists (Huron 2001 provides a non-Western example),
and in doing so change the world of arts as a whole over time. The change itself
need not necessarily be the result of individual innovation. Although we have a taste
for novelty, artistic behaviour is also constrained by conservative forces: musicians
and artists are compelled to work within a style, and success is by no means pro-
portional to the degree of novelty of the producer (Boden 1990, Csikszentmihalyi
1996, Martindale 1990). Thus it cannot be taken as given that the explanation for
variation in the arts comes down only to individual creative innovation.

A musical fad, for example, is characterised by the explosion of interest in a rad-
ical new style. When that explosion occurs, individuals from diverse backgrounds
may redirect the skills they have nurtured elsewhere to this domain (a derogatory
expression for which is “jumping on the bandwagon”). This results in novel music,
but it is the cultural process—the rapid spread of a fad through a population—that
actually underlies the processes of exploration and combination that contribute to
a creative outcome, not the individual creative capacities of individuals to innovate
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successful solutions to an artistic goal. Individuals may actually be acting not inno-
vatively, but identically and predictably: applying existing habits and background
knowledge to a new domain, and engaging in something of a lottery over the fu-
ture direction of musical style. Indeed, musical change over decades may be less to
do with innovation than to do with waves of individuals, generations, restructuring
musical relevance according to their own world view, involving a combination of
group collaboration and within-group and between-group competition. Hargreaves
(1986) considers such fashion cycles in the social psychology of music. Fads offer
an indication of how creative change at the social level can occur as a combinatoric
process built on gradual mutation and simple individual behaviour, and can only be
understood at that level. The negative connotations of a fad as ephemeral and ulti-
mately inconsequential emphasise the generatively creative nature of this process: a
fad satisfies no goal at the level on which it occurs, although many individuals may
be satisfying individual goals in the making of that process.

The nature of the arts both with respect to adaptive human social behaviour, and
as a collective dynamical system, is becoming better understood, but sociologists
and anthropologists have struggled with good reason to develop a solid theoretical
framework for such processes, and we still have far to go before we can disentangle
adaptive and generative aspects of social artistic creativity.

14.3.2.4 Modelling Creativity in Social Systems

Strands of arts-based computational creativity research have focused on generative
aspects of social systems and their relationship to individual adaptive creativity.
Gero, Sosa and Saunders have explored a large space of social models of design
creativity in which individuals collectively define the social conditions in which
they both produce and judge creative artefacts (Saunders 2001, Saunders and Gero
2001, Sosa and Gero 2003). Saunders and Gero (2001), for example, demonstrates
clique formation through mutual influence and learning of specialised interest, sug-
gesting a generative creative process in which a population of agents spawn novel
styles through a group dynamic. Such models often establish the necessary condi-
tions for generative creativity by establishing that what determines fitness is not an
external environment but the population itself through a process of feedback (Laland
et al. 1999, Bown and Wiggins 2005), a fundamental consideration in evolutionary
psychology (Dunbar 1998, Tomasello 1999), and a property of other generatively
creative processes in nature, such as sexual selection (Miller 2000) and niche con-
struction (Odling-Smee et al. 2003).

I have adapted such models to an evolutionary context in order to explore the
potential influence of generative social dynamics on evolutionary change (Bown
2008). Pinker (1998) uses “evolutionary cheesecake” as a description of music invit-
ing the question of whether such a cultural development might actually become re-
inforced, and thus biologically locked-in, through evolutionary adaptations: if mu-
sical behaviour becomes adaptively beneficial to individuals through its increasing
prominence in social life—which is the implication of Pinker’s hypothesis—then
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we could ask whether humans have even evolved to become more musical under
constructed social pressures. The resulting model illustrated that this reinforcement
could happen through kin selection exploiting social interaction “games” in which
individuals rewarded each other with prestige. According to this model, it isn’t even
necessary to assume that music appeared at first as a culturally innovated suscepti-
bility to enchantment (Bown 2008), since the susceptibility itself could be seen to
emerge as a result of the social dynamics.

Such models can in some cases provide a proof-of-concept for mechanisms of
evolution and social change. However, they necessarily remain abstract and far re-
moved from attempts to conduct predictive modelling of social dynamics (Gilbert
1993).

14.3.3 Individual Humans Can Exhibit Generative and Adaptive
Creativity

It is reasonable to accept the assumption that individual human creativity is strictly
of the adaptive type. Darwinian evolutionary theory predicts that as evolved organ-
isms, most of our behaviour is ruthlessly adaptive, at least adapted with respect
to some evolutionary environment of the past (Wilson 1975, Dawkins 1976). But
there are reasons why a human’s behaviour could also fit the description of gen-
erative creativity instead. For an individual to be generatively creative, this would
mean that they generate and sustain novel patterns or behaviours without any regard
to the externally determined value of these patterns or behaviours. If art was only
about innovation of artefacts designed to stimulate other people for individual gain,
this would be an unlikely pattern of behaviour. But consider art as a multi-faceted
cultural complex, involving elements such as identity. In service of an identity, an
individual might generatively create effectively arbitrary patterns or behaviour, the
value of which then come through association with other properties of the individ-
ual.

Coe (2003) proposes visual decoration as a mechanism for identifying the co-
descendants of a common ancestor in the traditional small-scale societies of our
evolutionary history. Similarly decorated individuals are both common genetic de-
scendants and, more importantly, cultural descendants of an ancestral figure, inher-
iting and thus preserving styles and art techniques originated by that ancestor. Here,
to call the ancestor adaptively creative for successfully innovating a style or tech-
nique is misleading, since the value of the style or technique created might only be
realised through its role for the group. The style or technique might otherwise be
arbitrary. Although the social system maintains the style over the long-term, the in-
dividual may well generatively develop styles and techniques according to idiosyn-
cratic methods, and sustain them for some time. Admittedly we may never know the
true generative status of individuals, since their creative output is always manifest in
social interactive contexts, but introspectively we can all appreciate the generative
capacity of the mind at work, producing thoughts in the background without regard
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for their value. The technique of brainstorming involves the idea of holding back
value judgement, so that generative thought processes can operate more freely in
the individual, thus shifting the process of value judgement required for adaptive
creativity to the collective level.

Generatively created patterns or behaviours can thus be exported to social sys-
tems through a process of “creating value”. The capacity to create value may itself
be an adaptive skill, or a matter of social context or luck: a more influential indi-
vidual might have more freedom to act generatively than someone trying to fit in; a
maternal ancestor might have experienced reproductive success for distinct genetic
reasons, which carries the success of their otherwise insignificant cultural behaviour
through vertical cultural transmission. Value creation does not necessarily mean
“adding value” (as in making the world a better place), but “manipulating value”:
shifting the social conditions within which other individuals must act. A challenge
for arts-based computational creativity is to understand whether “adding value” is at
all meaningful: can we make better art through technology? To assume so without
evidence would justifiably be viewed as complacency.

Alternative social aspects of the arts such as identity cast into doubt the cen-
trality to arts-based computational creativity of the capacity to evaluate, which is
commonly cited as critical in building artificial creative systems. From the perspec-
tive of strict adaptive creativity this is less problematic: an individual cannot behave
adaptively if it cannot determine the real-world value of its creative produce. But if
an individual is able to create value through influence, then the role of evaluation
in the creative process should strike a balance with other elements. Evaluation in
human artistic behaviour must be understood in the context of value creation, and
other aspects of artistic social interaction. We risk turning evaluation into a bottle-
neck through which we squeeze all artistic interaction. Escaping the narrow focus on
assessing aesthetic value, which avoids the need for a social individual that might be
capable of exporting or creating value, is an important but challenging direction for
arts-based computational creativity: what other dimensions of response, meaning
and interaction are needed in computational systems?

14.4 Generative and Adaptive Approaches to Arts-Based
Computational Creativity

Human-like adaptive creativity is the more traditional goal of arts-based computa-
tionally creative systems, but faces the challenge that the embodiment and situat-
edness of the artificial system is a poor reproduction of that of the human. It also
faces the additional challenge of building adaptively creative systems that satisfy
the constrained target of “valued” artistic output. Subsequently, some of the more
successful examples of computational creativity have been human-system collab-
orations, such as Harold Cohen and his AARON software (McCorduck 1990), or
George Lewis and his Voyager software (Lewis 2000).

A generative creativity approach seems equally problematic since generative cre-
ative systems are not adapted to goals and so cannot perform functions similar to
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human adaptive creativity. But if artistic creativity in cultural systems and humans
involves the kinds of interaction between generative and adaptive processes dis-
cussed above, then a useful goal for arts-based computational creativity is to better
understand this interaction in models and in experiments with interaction in artistic
social behaviour, including studying the role of value as a medium of interaction be-
tween different systems. Through this understanding we can find ways to hybridise
generative and adaptive creative processes. Two useful avenues of research are as
follows.

14.4.1 Generative Creative Systems Can Be Externally Useful

Arthur (2009) describes technology in terms of phenomena: aspects of the world re-
vealed through experimental interaction. In this view, innovation occurs through the
exploitation of phenomena in the service of human goals. By revealing new phe-
nomena, generative creative processes make new innovations feasible. We exploit
the properties of materials, which can be produced through a generative process
of chemical interaction. Cosmological and geological processes have produced nu-
merous useful materials without purpose, and have not produced others. Likewise,
although the products of natural evolution can be seen as having evolved to fulfil a
purpose, we may exploit those products in ways that have nothing to do with their
evolutionary origins: using a bird’s feather as a writing implement, for example. In-
vention goes from feasible to easy to obvious when the generative process not only
makes a material but makes it abundant, as in this example. This is often described
in terms of the affordances offered by some structure. A celebrated form of hu-
man creativity involves re-appropriating existing things for new uses. The fact that
things can regularly be re-appropriated indicates the efficacy of generative creative
processes.

Pharmaceutical companies search the rich ecosystems of uncharted rainforest for
novel species that might offer medicinal utility. Rather than being a coincidence that
natural evolution generates things that are useful to humans without having evolved
for this purpose, this seems to be more likely to reflect a simple principle that things
useful for one purpose can be useful for others. Similarly, such companies search for
new synthetic drugs by brute force, testing each candidate for a number of effects
(not one specific goal). At the extreme, the side effects of a drug are noted in case
there are novel effects that could be of use: putting solutions before problems.

As before, those who prefer to see natural evolution as more of an adaptively cre-
ative process, may prefer to see the above as a case of the transferability of adaptive
creativity from one domain (what it evolved for) to another. This is discussed in the
following section.

The same reasoning can be applied to the potential for artificial generative cre-
ative systems to produce artistic material. The Creative Ecosystems project at the
Centre for Electronic Media Art (McCormack and Bown 2009, Bown 2009) has ex-
plored the creative potential of ecosystem models, even if those models are closed
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and not responding to the requirements of human “users”. The output of a genera-
tively creative virtual ecosystem can be of direct aesthetic value, through the genera-
tion of inherently fascinating patterns and behaviours, in the same way that the prod-
ucts of natural evolution are an endless source of aesthetic fascination. This is based
on the assumption that complex structure and behaviour geared to an emerging pur-
pose, one that is generated from within the system, is meaningful and compelling.
This may require the hands of a skilled artist to be fully realised. It may also be pos-
sible to develop methodologies that allow creative design to become more tightly
coupled with simulated ecosystemic processes, so that someone working within a
creative domain can apply ecosystemic tools in order to generate novel outputs that
are appropriate to that domain.

Given the generatively creative potency of natural evolution, artificial evolution-
ary ecosystems, if successful, might demonstrate computational generative creativ-
ity applicable to artistic outputs. But more commonplace generative creativity can
be found in existing approaches to creative computing (Whitelaw 2004), for exam-
ple in which stochastic processes can be used to generate infinite variations on a
theme. A common practice in electronic music production is to implement rich gen-
erative processes that exhibit constant variation within given bounds and then either
search the parameter space of such processes for good settings which can be used as
required, or record the output of the process for a long time and select good sections
from this recording as raw material. In both cases, a generative creative process (one
which is in no way coupled to the outside world of value, and also, in most cases,
has no internal value system either) is itself a creative output, but also plays the role
of a tool for generating useful output. Such systems can only be involved in adap-
tively creative processes with an adaptively creative individual masterminding this
process.

Multi-agent approaches such as the ecosystemic approach discussed here, and
attempts at creative social models, such as those of Miranda et al. (2003), are also
different in that they do contain a notion of value internal to the system. This means
that they can potentially be generators of adaptive creativity, and that potentially
we may be able to find ways to couple the value system found within a model to
that found in the outside world. One solution has been proposed by Romero et al.
(2009) in their Hybrid Society model, in which human and artificial users interact
in a shared environment.

14.4.2 Adaptive Creative Systems Can Be Useful to Others

Individual adaptive creativity can be useful to others in two ways: firstly many indi-
vidual innovations, such as washing food, are innovations that are both immediately
useful to the individual that makes the innovation, and also to others who are able
to imitate the behaviour. In this way, imitation and creativity are linked by the fact
that the more adaptively creative one’s conspecifics are, the more valuable it is to
imitate their behaviour. They are likely to have discovered behaviours that are useful
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to themselves, and by virtue of your similarity, probably useful to you too (although
by no means definitely). Adaptive imitation of behaviour is a particularly human ca-
pability, and a challenging cognitive task (Conte and Paolucci 2001). The imitation
of successful behaviours allows human social systems to be cumulatively creative,
amassing knowledge and growing in complexity (Tomasello 1999). Secondly, as
discussed in Sect. 14.3.2.2, social structures bind individuals together into mutually
adaptive behaviours: John Harrison did not build clocks so that he himself could
better tell the time at sea.

How this common or mutually adaptive value works in the arts, however, is less
clear, since the value of any individual behaviour is determined not with respect to
a static physical environment but a dynamic social one (Csikszentmihalyi 1996).
Whereas the value of washing food does not change the more individuals do it,
the value of an artistic behaviour can change radically as it shifts from a niche be-
haviour to a mainstream one. In this way, copying successful behaviour does not
necessarily lead to an accumulation of increasingly successful behaviour, as in the
accumulation of scientific knowledge, but can also lead to turbulence: unstable so-
cial dynamics predicated on feedback. The value of artworks to individuals is highly
context-specific and suggests this kind of dynamic. Thus it seems more appropriate
to look to the second way in which adaptively creative systems can be of use to
others, by being locked into mutually beneficial goals through social structures, but
also to recognise that copying successful styles is an essential part of this process.
The arts appear to involve ad hoc groupings of individuals who share common goals,
into which adaptively creative arts-based computational systems could become inte-
grated and be of benefit to individual humans. This points to the idea that achieving
success in arts-based computational creativity is as much a matter of establishing
appropriate individual and social creative contexts, practices and interfaces as it is
of designing intelligent systems.

The Drawbots project investigated the idea of producing physically embodied
autonomous robot artists which could honestly be described as the authors of their
own work, rather than as proxies for a human’s creativity (Bird and Stokes 2006).
This would have overcome the limitations to the agency of the software in examples
such as Harold Cohen’s AARON (McCorduck 1990), where Cohen is clearly the
master of the creative process, and AARON the servant. The project illustrated the
fundamental conundrum of attempting to embed an artificial system into an artistic
context without proper channels through which value can be managed. In fact, the
drawings produced by the Drawbot were no more independent of their makers than
AARON’s, and arguably had less of a value connection to the outside world than
AARON did, even though AARON’s connection was heavily mediated by Cohen,
its proverbial puppeteer. The Drawbots possessed independence in a different sense,
in so far as they were embedded in their own artificial system of value. Thus each in-
dividual Drawbot was individually adapted (the product of an evolutionary process)
but not adaptively creative, and the entire system was generatively creative (able to
lead to new patterns and behaviours) but also not adaptively creative, and thus not
creative in the sense of a human artist.



378 O. Bown

14.5 Conclusion

In the last example and elsewhere in this chapter I have linked a discussion of gener-
ative and adaptive creativity in social systems and individual humans to research in
arts-based computational creativity and its goals. Arts-based computational creativ-
ity is well underway as a serious research field, but it faces a truly grand challenge.
There is still some way to go to break down this challenge into manageable and
clearly defined goals, frustrated by the ill-defined nature of artistic evaluation. But a
pattern is emerging in which arts-based computationally creative systems can be cat-
egorised in terms of how they relate to the wider world of human artistic value, either
as prosthetic extensions of individual creative practices, as in the case of AARON
and many other uses of managed generatively creative processes, or as experiments
in adaptive creativity which are generally not presently capable of producing valued
artistic output, such as the DrawBots project and various models of social creative
processes. In the case of artificial generatively creative systems, the analysis pre-
sented here suggests that it is important to analyse such systems both as tools in
an adaptively creative process involving goal-driven individuals, and as elements in
a heterogeneous social network which itself exhibits generative creativity. In both
cases, it is valuable to consider what status such systems will possess in terms of
primary and secondary agency.

As long as adaptive and generative creativity can be recognised as distinct pro-
cesses, they can be addressed simultaneously in a single project. For example, the
ecosystemic approach mentioned in Sect. 14.4.1 attempts to straddle these areas of
interest by acting both as a generative tool, of direct utility to artists, and as a virtual
environment in which the potential for adaptive creativity by individual agents can
be explored. In this way, methods might be discovered for coupling the value sys-
tem that the artist is embedded in and the emergent value system within the artificial
ecosystem. The latter may be a simulation of the former, or a complementary gen-
erative system. Furthermore, since novel arts-based computational creativity tech-
nologies can be shared, modified and re-appropriated by different users, they already
have a social life of their own as secondary agents, even if they are not primary social
agents. As such they are adaptive in a memetic sense. Both this and the ecosystemic
approach may be able to offer powerful mechanisms for bootstrapping arts-based
computational creativity towards increasingly complex behaviours, greater artistic
success, and an increased appearance of primary agency, without modelling human
cognition.
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Chapter 15
Creating New Informational Primitives in Minds
and Machines

Peter Cariani

Abstract Creativity involves the generation of useful novelty. Two modes of creat-
ing novelty are proposed: via new combinations of pre-existing primitives (combi-
natoric emergence) and via creation of fundamentally new primitives (creative emer-
gence). The two modes of creativity can be distinguished by whether the changes
still fit into an existing framework of possibility, or whether new dimensions in an
expanded interpretive framework are needed. Although computers are well suited
to generating new combinations, it is argued that computations within a framework
cannot produce new primitives for that framework, such that non-computational
constructive processes must be utilised to expand the frame. Mechanisms for com-
binatoric and creative novelty generation are considered in the context of adaptively
self-steering and self-constructing goal-seeking percept-action devices. When such
systems can adaptively choose their own sensors and effectors, they attain a degree
of epistemic autonomy that allows them to construct their own meanings. A view of
the brain as a system that creates new neuronal signal primitives that are associated
with new semantic and pragmatic meanings is outlined.

15.1 Introduction

Open-endedness is an important goal for designing systems that can autonomously
find new and unexpected solutions to combinatorically-complex and ill-defined
problems. Classically, issues of open-ended generation of novelty in the universe
have come under the rubric of the problem of emergence.

In this discussion we distinguish two general modes of creating novelty: combi-
natoric emergence and creative emergence. In combinatoric emergence new com-
binations of existing primitives are constructed, whereas in creative emergence en-
tirely new primitives are created anew. Although combinatoric systems may differ
in numbers of possible combinations, their set of possibilities is closed. Creative
systems, on the other hand, have open-sets of possibilities because of the partial or

P. Cariani (�)
Department of Otology & Laryngology, Harvard Medical School, Boston, MA, USA
e-mail: cariani@mac.com

J. McCormack, M. d’Inverno (eds.), Computers and Creativity,
DOI 10.1007/978-3-642-31727-9_15, © Springer-Verlag Berlin Heidelberg 2012

383

mailto:cariani@mac.com
http://dx.doi.org/10.1007/978-3-642-31727-9_15


384 P. Cariani

ill-defined nature of the space of possible primitives. The dual, complementary con-
ceptions provide two modes for describing and understanding change and creativity:
as the unfolding consequences of fixed combinatorial rules on bounded sets of pre-
defined primitives or as the effects of new covert processes and interactions that
come into play over time to provide new effective dimensional degrees of freedom.

We face several related problems. We want to know how to recognise creative
novelty when it occurs (the methodological problem). We also want to understand
the creative process in humans and other systems (the scientific problem) such that
creativity in human-machine collaborations can be enhanced and semi-autonomous,
creative devices can be built (the design problem).

The methodological problem can be solved by the “emergence-relative-to-a-
model” approach in which an observer forms a model of the behaviour of a system
(Sect. 15.4). Novelty and creativity are inherently in the eye of the observer, i.e. rela-
tive to some model that specifies expected behaviours amongst possible alternatives.
If the behaviour changes, but it can still be predicted or tracked in terms of the basic
categories or state set of the model, one has rearrangement of trajectories of existing
states (combinatorial creativity). If behaviour changes, but in a manner that requires
new categories, observables, or states for the observer to regain predictability, then
one has the creation of new primitives (emergent creativity).

Solution of the scientific problem of creativity requires a clear description of what
creativity entails in terms of underlying generative and selective processes. Creativ-
ity exists in the natural world on many levels, from physical creation (particles,
elements, stars, galaxies) through the origins and evolution of life (multicellularity,
differentiated tissues, circulatory, nervous, and immune systems) to concept forma-
tion in brains and new modes of social organisation. What facilitating conditions
and organisations lead to such creativity? In biological evolutionary contexts the
main underlying mechanisms are Darwinian processes of genetic inheritance with
variation/recombination, genetically-steered phenotypic construction, and selection
by differential survival and reproduction. On the other hand, in neural contexts that
support creative learning processes the mechanisms appear to involve more directed,
Hebbian stabilisations of effective neural connectivities and signal productions.

Ultimately we seek to build artificial systems that can enhance human creativity
and autonomously create new ideas that we ourselves unaided by machines would
never have discovered. This will entail designing mechanisms for combinatorial
generation and for creation of new primitives. Essentially all adaptive, trainable ma-
chines harness the power of combinatorial spaces by finding ever better combina-
tions of parameters for classification, control, or pattern-generation. On the con-
temporary scene, a prime example is the genetic algorithm (Holland 1975; 1998),
which is a general evolutionary programming strategy (Fogel et al. 1966) that per-
mits adaptive searching of high-dimensional, nonparametric combinatorial spaces.

Unfortunately, very few examples of artificial systems capable of emergent cre-
ativity are yet to be found. For the most part, this is due to the relative ease and
economy with which we humans, as opposed to machines, can create qualitatively
new solutions. We humans remain the pre-eminent generators of emergent creativity
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on our planet. It is also due in part to the primary reasons that we create machines—
to carry out pre-specified actions reliably and efficiently. We usually prefer our de-
vices to act predictably, to carry out actions we specify, rather than to surprise us in
some fundamental way. In contrast, we expect our artists, designers, and scientists
to continually surprise us.

Nonetheless, creatively emergent artificial systems are possible and even desir-
able in some contexts. In Sect. 15.3 we consider the problem of creativity in the
context of adaptive goal-seeking percept-action systems that encapsulate the func-
tional organisations of animals and robots (Figs. 15.2, 15.3, 15.6). Such systems
carry out operations of measurement (via sensors), action (via effectors), internal co-
ordination (via computational mappings, memory), steering (via embedded goals),
and self-construction (via mechanisms for plastic modification). We then discuss
the semiotics of these operations in terms of syntactics (relations between internal
informational sign-states), semantics (relations between sign-states and the exter-
nal world), and pragmatics (relations between sign-states and internal goals). New
primitive relations can be created in any of these realms (Table 15.1).

We are already quite adept at creating ever more powerful computational en-
gines, and we can also construct robotic devices with sensors, effectors, and goal-
directed steering mechanisms that provide them with fixed, pre-specified semantics
and pragmatics. The next step is to design machines that can create new meanings
for themselves. What is needed are strategies for creating new primitive semantic
and pragmatic linkages to existing internal symbol states.

Three basic strategies for using artificial devices to create new meanings and
purposes present themselves:

1. via new human-machine interactions (mixed human-machine systems in which
machines provoke novel insights in humans who then provide new interpretations
for machine symbols),

2. via new sensors and effectors on an external world (epistemically-autonomous
evolutionary robots that create their own external semantics), and

3. via evolving internal analog dynamics (adaptive self-organisation in mixed
analog-digital devices or biological brains in which new internal linkages are
created between internal analog representations that are coupled to the external
world and goal-directed internal decision states).

The first strategy uses machines to enhance human creative powers, and arguably,
most current applications of computers to creativity in the arts and sciences involve
these kinds of human-machine collaborations. But the processes underlying human
thought and creativity in such contexts are complex and ill-defined, and therefore
difficult to study by observing overt human behaviour.

The second and third strategies focus on building systems that are capable of
emergent creativity in their own right. In Sect. 15.3 and Sect. 15.5 respectively,
we outline a basic accounts of how new primitives might arise in adaptive percept-
action systems of animals and robots (emulating emergence in biological evolution)
and how new neural signal primitives might arise in brains (emulating creative pro-
cesses in individual humans and animals). Combinatoric and creative emergence is
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first considered in the framework of a taxonomy of adaptive, self-constructing cy-
bernetic robotic percept-action systems. One can then also consider what such an
open-ended functional framework might mean for envisioning new kinds of neural
networks that are capable of forming novel internal informational primitives. In this
framework, adaptively-tuned neuronal assemblies function as self-constructed inter-
nal sensors and signal generators, such that new signal types associated with new
concepts can be produced. The new signals then serve as internal semantic tags that
function as annotative additions to the input signals that evoked their production.
Emergence of new signal types in such a system increases the effective dimension-
ality of internal signal spaces over time, thus bringing new conceptual primitives
into action within the system.

15.2 Emergence and Creativity

Emergence concerns the means by which novelty arises in the world. Intuitively,
emergence is the process by which new, more complex order arises from a simpler
or more predictable preceding situation. As such, images of birth, development, and
evolution infuse our notions of emergence. These images provide intuitive expla-
nations for how novelty, spontaneity, and creativity are possible and how complex
organisations arise and become further elaborated.

All around us we see the complex organisations that are the emergent products
of biological, psychological and social processes, and as a result, our current dis-
courses on emergence encompass a wide range of phenomena. Novelty appears in
the form of new material structures (thermodynamic emergence), formal structures
(computational emergence), biological structures and functions (emergent evolu-
tion), scientific theories (emergence vs. reduction), modelling relations in observers,
percepts, ideas, notational systems, and economic and social relations. Novelty and
innovation are integral processes in natural and social worlds, and are coming to
play ever-larger roles in artificial worlds as well.

Two fundamental kinds of emergent novelty can be distinguished, which we can
call combinatoric emergence and creative emergence. Lloyd Morgan (1931) in his
book “Emergent Evolution” made a similar distinction, labelling new combinations
“resultants” and new primitives “emergents”. This distinction became central to my
work on epistemology and evolutionary robotics, which developed an operational
systems-theoretic methodology for distinguishing one process from the other (Car-
iani 1989). Some of my earliest inspirations came from considering the nature of
novelty in biological evolution, where creation of new combinations of existing ge-
netic alternatives and refinements of existing functions (“microevolution”) can be
contrasted with creation of entirely new genes, species, morphologies, and func-
tions (“macroevolution”). The combinatoric/creative distinction also parallels Mar-
garet Boden’s division of explorative vs. transformational creativity (Boden 1990a;
1994; 1994b; 2006).

The two kinds of combinatoric and creative novelty reflect different deeply diver-
gent conceptions of order and its origins, “order-from-order” vs. “order-from-noise”
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(Piatelli-Palmarini 1980), that are associated with different organising paradigms
(Maruyama 1977), and “world hypotheses” (Pepper 1942). Where order comes from
order, novelty is but a preformationist unfolding of latent possibility or recombina-
tion of existing parts; where order arises from noise, chaos, formlessness, or am-
biguity, novelty entails de novo formation of new realms of possibility vis-à-vis
existing observational and interpretive frameworks.

My purpose in considering emergence and this combinatoric-creative distinction
is and has always been primarily pragmatic. For this reason, we focus here primar-
ily on developing heuristics for generating useful novelty rather than in engaging in
philosophical debates over the status of emergent novelty vis-a-vis various postu-
lated ontological frameworks. For useful general introductions to the philosophical
problems and their implications for mind-body relations, free will, and ontological
emergence, see Kim (2008) and Clayton (2004). For similar reasons we will almost
entirely sidestep the literature on complexity and emergence. Complexity in and of
itself does not necessarily produce anything useful, nor does it necessarily provide
insights into how to do so. On the other hand, variety is the mother of invention, and
increased structural complexity does provide variety in the form of more accessible
states and effective degrees of freedom. Processes of “complication” (von Neumann
1951) thus serve as fodder for new functions.

15.2.1 What Constitutes a New Primitive?

Both kinds of emergence, combinatoric and creative, entail recognition of basic sets
of possibilities that constitute the most basic building blocks of the order, i.e. its
atomic parts or “primitives”.

By a “primitive”, we mean an indivisible, unitary entity, atom, or element in a
system that has no internal parts or structure of its own in terms of its functional role
in that system. Individual symbols are the primitives of symbol string systems, bi-
nary distinctions are the primitives of flip-flop-based digital computers, and machine
states are the primitives of finite state automata. To paraphrase Gregory Bateson, a
primitive is a unitary “difference that makes a difference”.

Emergence then entails either the appearance of new combinations of previously
existing primitives or the formation of entirely new ones (Fig. 15.1). The primitives
in question depend upon the discourse; they can be structural, material “atoms”; they
can be formal “symbols” or “states”; they can be functionalities or operations; they
can be primitive assumptions of a theory; they can be primitive sensations and/or
ideas; they can be the basic parts of an observer’s model.

Most commonly, the primitives are assumed to be structural, the parts that are
put together in various combinations to make aggregate structures. Reductionist
biology in effect assumes that everything that one would want to say about bio-
logical organisms can be expressed in terms of molecular parts. For many contexts
and purposes, such as molecular biology and pharmaceutical development, where
structure is key, this is an appropriate and effective framework. For other pursuits,
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Fig. 15.1 Combinatoric and
creative emergence

additional organisational and functional primitives are needed. If one wants to un-
derstand how an organism functions as a coherent, self-sustaining whole, one needs
more than reductive parts-lists and local mechanisms. One needs concepts related to
organisation and function, and knowledge of the natural history of how these have
arisen. Living systems are distinct from nonliving ones because they embody par-
ticular organisations of material processes that enable organisational regeneration
through self-production (Maturana and Varela 1973). Biological organisations also
lend themselves to functional accounts that describe how goal-states can be embed-
ded in their organisation and how goals can reliably realised by particular arrange-
ments of processes. Full molecular descriptions of organisms do not lead to these
relational concepts. Similarly, full molecular descriptions of brains and electronic
computers, though useful, will not tell us how these systems work as information
processing engines. If artificial systems are to be designed and built along the same
lines as organisms and brains, new kinds of primitives appropriate for describing
regenerative organisation and informational process are required.

15.2.2 Primitives and Interpretive Frames

Once one has defined what the primitives are or how they are recognised, then one
has constructed a frame for considering a particular system. To say that an entity
is “primitive” relative to other objects or functions means it cannot be constructed
from combinations of the other entities of that frame, i.e. its properties cannot be
logically deduced from those of the other entities. Although it may be possible, in
reductionist fashion, to find a set of lower level primitives or observables from which
the higher level primitives can be deduced, to do so requires a change of frame—one
is then changing the definition of the system under consideration.
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In the example of Fig. 15.1, the individual Roman and Greek letters and nu-
merals are the primitives of a symbol-string system. Although concrete letters and
numerals themselves do indeed have internal structure, in terms of strokes, arcs, and
straight lines, these parts play no functional role in the system beyond supporting
the distinction and recognition of their unitary symbol types. Once the classification
of the type of symbol is made, the internal structure of the lines and curves become
irrelevant. Were we to suddenly to adopt a frame in which the lines and curves are
the primitives, then the appearance of the new symbols on the right, the Greek let-
ters alpha and lambda, would not surprise us because these can be formed though
combinations of the lower level strokes.

The combinatoric-creative distinction parallels ontological vs. epistemological
modes of explanation. The debate that occurred in 1976 in France between Piaget,
Chomsky, and Fodor over the origins of new ideas is illuminating. As organiser-
participant Piatelli-Palmarini (1980) so elegantly pointed out, this was really a de-
bate over the existence and nature of emergent novelty in the world. The two poles of
the debate were held by Fodor (1980) and Piaget (1980). Fodor argued an extreme
preformationist view in which all learning is belief-fixation, i.e. selection from a
fixed repertoire of possible beliefs, such that entirely new ideas are not possible.
Piaget presented an emergentist view in which qualitatively novel, irreducible con-
cepts in mathematics have been created anew over the course of its history.

All that is possible in traditional ontological frameworks is recombination of ex-
isting possible constituents, whereas in epistemological frameworks, novelty can
reflect surprise on the part of a limited observer. Another way of putting this
is that ontologically-oriented perspectives adopt fixed, universal frames, whereas
epistemologically-oriented ones are interested in which kinds of systems cause the
limited observer to change frames and also what changes occur in the limited ob-
server when frames are changed.

Second-order cybernetics (von Foerster 2003), systems theory (Kampis 1991),
pragmatist theories of science (van Fraassen 1980), and constructivist epistemolo-
gies (von Glasersfeld 2007) are all concerned with “observing systems” that con-
struct their own observational and interpretative frames. In Piaget’s words “In-
telligence organises itself to organise the world” (von Glasersfeld 1992). We ex-
amine different kinds of conceivable self-constructing observing-acting systems in
Sect. 15.3. When these systems change their frames, they behave in novel ways that
cause those observing them to alter their own frames (Sect. 15.4).

15.2.3 Novel Combinations of Closed Sets of Primitives

Combinatoric emergence engages a fixed set of primitives that are combined in new
ways to form emergent structures. In biological evolution the genetic primitives
are DNA nucleotide sequences. On shorter evolutionary timescales microevolution-
ary processes select amongst combinations of existing genetic sequences, whereas
on longer timescales macroevolutionary processes entail selection amongst entirely
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new genes that are formed through novel sequences. On higher levels of biological
organisation, emergent structures and functions can similarly arise from novel com-
binations of previously existing molecular, cellular, and organismic constituents.
In psychology, associationist theories hold that emergent mental states arise from
novel combinations of pre-existing primitive sensations and ideas. Whether cast in
terms of platonic forms, material atoms, or mental states, combinatoric emergence is
compatible with reductionist programs for explaining macroscopic structure through
microscopic interactions (Holland 1998).

This strategy for generating structural and functional variety from a relatively
small set of primitive parts is a powerful one that is firmly embedded in many of our
most advanced informational systems. In the analytic-deductive mode of exploration
and understanding, one first adopts some set of axiomatic, primitive assumptions,
and then explores the manifold, logically-necessary consequences of those assump-
tions. In the realm of logic and mathematics, the primitives are axioms and their
consequences are deduced by means of logical operations on the axioms. Digital
computers are ideally suited for this task of generating combinations of symbol-
primitives and logical operations on them that can then be evaluated for useful,
interesting, and/or unforeseen formal properties. In the field of symbolic artificial
intelligence (AI) these kinds of symbolic search strategies have been refined to a
high degree. Correspondingly, in the realm of adaptive, trainable machines, directed
searches use evaluative feedback to improve mappings between features and clas-
sification decisions. Ultimately these decisions specify appropriate physical actions
that are taken. In virtually all trainable classifiers, the feature primitives are fixed and
pre-specified by the designer, contingent on the nature of the classification prob-
lem at hand. What formally distinguishes different kinds of trainable machines is
the structure of the combination-space being traversed, the nature of the evaluative
feedback, and the rules that steer the search processes.

15.2.4 Limits on Computations on Existing Primitives

Combinatoric novelty is a dynamic, creative strategy insofar as it constantly brings
into being new combinations of elements. However, such combinatoric realms are
inherently limited by their fixed, closed sets of primitive elements. Consider the set
of the digits 0–9 vs. a set of 10 arbitrarily distinguished objects. The first set is well-
defined, has 10 actual members, and is closed, while the latter set is ill-defined, has
an indefinite number of potential members, and is open.1

All that can happen within well-defined universes are recombinations of existing,
pre-specified symbols—there is no means by which new primitive symbols can be
created by simply recombining existing ones. It seems obvious enough that one

1A Platonist could claim that all sets are open because they can include null sets and sets of sets
ad infinitum, but we are only considering here sets whose members are collections of concrete
individual elements, much in the same spirit as Goodman (1972).
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does not create new alphabetical letter types by stringing together more and more
existing letters—new types must be introduced from outside the system. This is
typically carried out by an external agent. Likewise, in our computer simulations,
we set up a space of variables and their possible states, but the simulation cannot
add new variables and states simply by traversing the simulation-states that we have
previously provided.

These ideas bear directly on fundamental questions of computational creativity.
What are the creative possibilities and limitations of pure computations? Exactly
how one defines “computation” is critical here. In its more widely used sense, the
term refers to any kind of information-processing operation. Most often, the issue
of what allows one to distinguish a computation from a non-computational process
in a real-world material system is completely sidestepped, and the term is left loose
and undefined. However, in its more precise, foundations-of-mathematics sense, the
term refers to concrete formal procedures that involve unambiguous recognitions
and reliable manipulations of strings of meaningless symbols. It is this latter, more
restrictive, sense of computation as formal procedure that we will use here. For
practical considerations, we are interested in computations that can be carried out in
the real world, such as by digital electronic computer, and not imagined operations
in infinite and potentially-infinite realms.2

In these terms, pure computation by itself can generate new combinations of sym-
bol primitives, e.g. new strings of existing symbols, but not new primitive symbols
themselves. In order for new symbol primitives to be produced, processes other than
operations on existing symbols must be involved—new material dynamics must be
harnessed that produce new degrees of freedom and new attractor basins that can
support additional symbol types. To put it another way, merely running programs
on a computer cannot increase the number of total machine states that are enabled
by the hardware. In order to expand the number of total machine states that are avail-
able at any given time, we must engage in physical construction, such as fabricating
and wiring in more memory.

There was a point in the history of computing devices at which self-augmenting
and self-organising physical computational devices were considered. In the early
1960s, when electronic components were still expensive, growing electronic logical
components “by the pound” was contemplated:

2Popular definitions of computation have evolved over the history of modern computing (Boden
2006). For the purposes of assessing the capabilities and limitations of physically-realisable com-
putations, we adopt a very conservative, operationalist definition in which we are justified in calling
an observed natural process a computation only in those cases where we can place the observable
states of a natural system and its state transitions in a one-to-one correspondence with those of
some specified deterministic finite state automaton. This definition has the advantage of defining
computation in a manner that is physically-realisable and empirically-verifiable. It results in clas-
sifications of computational systems that include both real world digital computers and natural
systems, such as the motions of planets, whose observable states can be used for reliable calcula-
tion. This finitistic, verificationist conception of computation also avoids conceptual ambiguities
associated with Gödel’s Undecidability theorems, whose impotency principles only apply to infi-
nite and potentially-infinite logic systems that are inherently not realisable physically.
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We believe that if the “complexity barrier” is to be broken, a major revolution in production
and programming techniques is required, the major heresies of which would mean weak-
ening of machine structural specificity in every possible way. We may as well start with
the notion that with 10 billion parts per cubic foot (approximately equal to the number
and density of neurons in the human brain), there will be no circuit diagram possible, no
parts list (except possibly for the container and the peripheral equipment), not even an exact
parts count, and certainly no free and complete access with tools or electrical probes to the
“innards” of our machine or for possible later repair. . . We would manufacture ‘logic by the
pound’, using techniques more like those of a bakery than of an electronics factory. (Stewart
1969)

Such ideas persist today in visions of self-replicating nanobot nanotechnologies
(now with the accompanying spectre of “grey goo” ecological disaster). At various
times there have also existed notions of universal self-organising analog comput-
ers (see discussion of the Russian Gutenmacher project in Carello et al. (1984)).
Such computational systems that physically grow their own hardware would be de-
sirable, but the practical need for such self-expansions has been obviated by human
ingenuity and creativity in the form of fast-evolving Moore’s-Law manufacturing
efficiencies. It is simply easier to design and build a yet larger or faster machine
than one that organically grows to become bigger or faster. Today’s large, scalable
server arrays that permit simple addition of new modules are perhaps the closest
systems we have to such growing automata.

In any case, these various means of making additional, new material dynamics
accessible to the device lie outside the realm of symbol manipulation—they are
non-computational. Non-computational breakout strategies are therefore required
for computational systems to transcend their own initial primitive symbol sets.

15.2.5 Creation of New Primitives

Classically, “emergence” has concerned those processes that create new primitives,
i.e. properties, behaviours, or functions that are not logical consequences of pre-
existing ones (Broad 1925, Morgan 1931, Bergson 1911, Alexander 1927, Clayton
2004). How to create such fundamental novelty is the central issue for creative and
transcendent emergence.

The most extreme example of emergence concerns the relationship of conscious
awareness to underlying material process (Kim 1998, Clayton 2004, Rose 2006).
All evidence from introspection, behavioural observation, and neurophysiology sug-
gests that awareness and its specific contents is a concomitant of particular organised
patterns of neuronal activity (Koch 2004, Rose 2006). If all experienced, phenom-
enal states supervene on brain states that are organisations of material processes,
and these states in turn depend on nervous systems that themselves evolved, then it
follows that there was some point in evolutionary history when conscious awareness
did not exist.

This state-of-affairs produces philosophical conundrums. One can deny the ex-
istence of awareness entirely on behaviouristic grounds, because it can only be
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observed privately, but this contradicts our introspective judgement that waking
awareness is qualitatively different from sleep or anaesthesia. One can admit the
temporal, evolution-enabled appearance of a fundamentally new primitive aspect of
the world, a creative emergent view (Alexander 1927, Broad 1925, Morgan 1931),
but this is difficult to incorporate within ontological frameworks that posit timeless
sets of stable constituents. Or one can adopt a panpsychist view, with Spinoza and
Leibniz, that the evolved nervous systems combine in novel ways simple distinctions
that are inherent in the basic constituents of matter (Skrbina 2005). Accordingly, we
could further divide creative emergence into the appearance of new structural and
functional primitives that require epistemological, but not ontological reframing,
and appearance of new, transcendent aspects of the world, such as the evolutionary
appearance of consciousness, which require both.

Attempting to produce emergent awareness in some artificially constructed sys-
tem is a highly uncertain prospect, because awareness is accessible only through
private observables. One has no means, apart from indirect structural-functional
analogy, of assessing success, i.e. whether any awareness has been brought into be-
ing. This is why even conscious awareness in animals, which have nervous systems
extremely similar to ours, is a matter of lively debate.

More practical than de novo creation of new forms of being is the creation of
new functions, which are both verifiable and useful to us—creativity as useful nov-
elty. To my mind, the most salient examples of functional emergence involve the
evolution of new sensory capabilities in biological organisms. Where previously
there may have been no means of distinguishing odours, sounds, visual forms or
colours, eventually these sensory capacities evolve in biological lineages. Each new
distinction becomes a relative primitive in an organism’s life-world, its sensorimotor
repertoire.

Combinations of existing sensory distinctions do not create new primitive dis-
tinctions. We cannot directly perceive x-rays using our evolution-given senses, no
matter how we combine their distinctions. In Sect. 15.3 we outline how evolution-
ary robotic devices could adaptively evolve their own sensors and effectors, thereby
creating new primitives for sensorimotor repertoires.

Over the arc of evolution, the sensorimotor life-worlds of organisms have dra-
matically expanded. When a new sensory distinction or primitive action appears, the
dimensionality of the sensorimotor combinatorial repertoire space increases. In an
evolutionary landscape, the effective dimensionality of the fitness surfaces increases
as life-worlds become richer and there are more means through which organisms can
interact. Theoretical biologist Michael Conrad called this process “extradimensional
bypass” (Cariani 2002, Chen and Conrad 1994, Conrad 1998).

The evolution of a new sensorimotor distinction and its dimensional increase
can actually simplify problems of classification and decision-making. For gradient-
ascending, hill-climbing optimisers, local maxima traps may become saddle points
in higher dimensional spaces that open up entirely new avenues for further ascent.
In the last decade, workers developing self-organising semantic webs for automated
computer search have proliferated features to produce sparse, high-dimensional re-
lational spaces (Kanerva 1988) whose partitioning becomes tractable via regulari-
sation and linear classification techniques.



394 P. Cariani

The senses of animals perform the same fundamental operations as the mea-
surements that provide the observables of scientific models (Pattee 1996, Cariani
2011) and artificial robotic systems. Outside of artificially restricted domains it is
not feasible to outline the space of possible sensory distinctions because this space
is relational and ill-defined. It is analogous to trying to outline the space of possi-
ble measurements that could ever be made by scientists, past and future. Emergent
creativity can be said to take place when new structures, functions, and behaviours
appear that cannot be accounted for in terms of the previous expectations of the ob-
server. For combinatorial creativity, the observer can see that the novel structures
and functions are explicable in terms of previous ones, but for emergent creativity,
the observer must enlarge the explanatory frame in order to account for the change.
More will be said about emergent creativity and the observer in Sect. 15.4.

In this epistemological view of emergence, surprise is in the eye of the beholder.
Because the observer has a severely limited model of the underlying material sys-
tem, there are processes that can go on within the system that are hidden to direct
observation that can qualitatively alter overt behaviour. In biological, psychological,
and social systems, internal self-organising, self-complexifying processes can create
novel structures and functions that in turn can produce very surprising behaviours.
Because the epistemological approach is based on a limited set of macroscopic ob-
servables that do not claim any special ontological status, there is no necessary con-
flict with physical causality or reduction to microscopic variables (where possible).
No new or mysterious physical processes or emergent, top-down causalities need to
be invoked to explain how more complex organisations arise in physical terms or
why they can cause fundamental surprise in limited observers. The novelty that is
generated is partially due to internal changes in the system and partially due to the
limited observer’s incomplete model of the system, such that the changes that occur
cause surprise.

15.2.6 Combinatoric and Creative Emergence in Aesthetic
Contexts

A first strategy for computational creativity is to use artificial devices to cause cre-
ative responses in human participants. In aesthetic realms distinguishing between
combinatoric and emergent creativity is made difficult by indefinite spaces of gen-
erative possibilities, as well as ambiguities in human interpretation and expectation.
Often many prior expectations of individual human observers and audiences may be
implicit and subliminal and therefore not even amenable to conscious analysis by
the human participants themselves. Nonetheless, to the extent that cultural conven-
tions exist, then it is possible to delineate what conforms to those expectations and
what doesn’t.

One rule of thumb is that combinatorial creative works operate within a set of
stylistic or generative rules that explore new forms within an existing framework.
An audience implicitly understands the contextual parameters and constraints of the
medium, and the interest is in the play of particular new combinations, motifs, or
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plot wrinkles. If the element recombinations are trivial, then a piece is perceived as
predictable and clichéd. Emergent creative works break conventional, stylistic rules
and may violate basic expectations related to the nature of the aesthetic experience
itself. One thinks of the Dadaists and the world’s reception of Duchamp’s urinal as
a found-art object.

Usually, the more creatively emergent a production, the fewer the number of peo-
ple who will immediately understand it, because understanding a new art form or
approach requires constructing new conceptual observables and interpretive frames
in order to follow radical shifts of meaning. There is stress associated with the un-
certainties of orientation and interpretation. For high degrees of novelty, the “shock
of the new” causes high degrees of arousal that are in turn are experienced as un-
pleasant.

The relation between arousal, pleasure, and aesthetics was studied by 19th cen-
tury psychologists (Machotka 1980). The bell-shaped, Wundt curve plots empirical
psychological data related to the relation between arousal (novelty) and experienced
pleasure. Low novelty produces boredom, low arousal, and low pleasure, while ex-
tremely high novelty produces high arousal that is experienced as unpleasant. Be-
tween these two extremes is an optimal level of novelty that engages to produce
moderate levels of arousal that are experienced positively. The degree to which a
new piece shocks (and its unpleasantness enrages) its audiences is an indication of
how many expectations have been violated. An individual’s response tells us some-
thing about the novelty of the piece in relation to his or her own Wundt curve.

15.3 Creativity in Self-constructing Cybernetic Percept-Action
Systems

A second strategy for computational creativity involves expansions of the informa-
tional realms in the artificial devices themselves. In this section we consider ar-
tificial devices that create their own percept and action primitives, and argue that
self-construction guided by internal goals and evaluative faculties is necessary to
provide the structural autonomy and implicit dynamics needed to create new useful
semantic linkages.

15.3.1 A Taxonomy of Adaptive Devices

The most straightforward way of tackling the problem of how such devices might
be designed and built is to consider the different possible kinds of devices that can
be conceivably constructed using a set of basic functionalities. A few taxonomies
of possible mixed analog-digital adaptive and self-constructing cybernetic devices
have been proposed (Cariani 1989; 1992; 1998, de Latil 1956, Pask 1961).

Here we present our own taxonomy of devices in which some functionalities are
fixed, while others are adaptively modified or constructed (Figs. 15.2, 15.3, 15.4). It
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Fig. 15.2 The functional
organisation of cybernetic
devices. Top: basic
functionalities and their
associated operations.
Bottom: relation of semiotic
dimensions to functionalities
and operations

then becomes possible to consider the general capabilities and limitations of various
classes of devices that possess varying abilities to adapt and evolve. Although the
more structural autonomy or constructive license given to a device, the greater the
potential creativity that is permitted, it should be remembered that greater degrees
of autonomy and creativity come at the expense of greater complexity and longer
periods of adaptive construction and evaluative testing.

The basic functionalities that constitute the functional organisation of adaptive
self-constructing cybernetic devices in this taxonomy are coordination, measure-
ment, action, evaluation, steering, and construction (Fig. 15.2, top). Computational
operations here entail coordinative linking of output states with input states, and
include memory mechanisms for recording and reading out past inputs. Measure-
ment operations are carried out by an array of sensors that produce symbolic out-
puts whose values are contingent on the interaction of the sensors with their en-
virons. Actions are carried out by effectors that influence the external world. Ef-
fectors produce actions contingent upon internal decisions and commands that are
the output of the coordinative part. Steering mechanisms alter particular device
states or state-transitions without altering the device’s set of accessible states or
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state-transitions. Construction processes involve adding new coordinations (compu-
tations, states, state-transitions), measurements (sensors, observables), actions (ef-
fectors), goal states and evaluative criteria, and new construction mechanisms as
well. One can think of steering as switching between software alternatives, and con-
struction as the physical construction of new hardware. Steering (switching) pro-
cesses do not change the effective dimensionality of the system, whereas construc-
tion does. Many of these operations could be realised by analog, digital, or mixed
analog-digital processes.

These basic functionalities arguably account for the basic operational structure
of the observer-actor. There is the cycling of signals from sensors to coordinative
elements to effectors (outer loop in the diagram) and “feedback to structure” (inner
loops) in which evaluative mechanisms steer the modification and/or construction
of hardware (sensors, computational, coordinative structures, effectors).

15.3.2 Semiotics of Adaptive Devices

It is useful to discuss such devices and their creative capabilities in terms of the
semiotic triad of Charles Morris, which consists of syntactic, semantic, and prag-
matic aspects (Morris 1946, Nöth 1990). Syntactics describes rule-governed link-
ages between signs; semantics, the relation of signs to the external world; and prag-
matics, the relation of signs to purposes (goal states). These different semiotic re-
lations are superimposed on the functional schematic of cybernetic percept-action
devices in the bottom panel of Fig. 15.2. The syntactic axis runs horizontally, from
sign-states related to sensory inputs to those related to coordinative transformations,
and finally to decision states that ultimately lead to actions. The semantic axis runs
vertically between the sign-states and the external world, where sensory organs de-
termine world-sign causalities and effectors determine sign-world causalities. The
pragmatic axis in the centre covers adaptive relationships between sign states and
embedded goals. These are implemented by evaluative and adjustment processes
that steer the percept-action linkages that govern behaviour and guide the construc-
tion of the device itself.

Some devices have fixed functionalities (stable systems), some can autonomously
switch amongst existing alternative states to engage in combinatorial search (com-
binatoric systems), and some can add functional possibilities to creating new prim-
itives (creative systems). Table 15.1 lists the effects of stable, combinatoric, and
creative change for different semiotic relations. Creative emergence in the syntactic
realm involves creation of new internal sign-states (or computational states) that
enable entirely new mappings between states. Creative emergence in the semantic
realm involves creating new observables and actions (e.g. sensors, effectors) that
contingently link the outer world with internal states. Creative emergence in the
pragmatic realm involves creating new goals and evaluative criteria. Table 15.1 and
Fig. 15.3 schematise different classes of devices with respect to their creative capa-
bilities.
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Table 15.1 Modes of creativity with respect to semiotic dimensions

Aspect Primitives Type of system
Stable
Maintain structure

Combinatoric
Search existing
possibilities

Creative
Add possibilities

Syntactic Sign-states &
computations

Deterministic
finite-state automata

Adaptive changes in
state-transition rules
trainable machines

Evolve new states &
rules growing automata

Semantic Measurements
& actions

Fixed sensors &
effectors (fixed
robots)

Adaptive search for
optimal combinations
of existing sensors &
effectors

Evolve new
observables, actions
epistemic autonomy

Pragmatic Goals Fixed goals Search combinations
of existing goals
adaptive priorities

Evolve new goals
creative self-direction
motivational autonomy

15.3.3 Capabilities and Limitations of Adaptive Devices

One can consider the capabilities and limitations of devices with computational
coordinative parts, sensors, effectors, and goal-directed mechanisms for adaptive
steering and self-construction (Fig. 15.3). For the sake of simplicity, we will think
of these systems as robotic devices with sensors and effectors whose moment-to-
moment behaviour is controlled by a computational part that maps sensory inputs to
action decisions and motor outputs. In biological nervous systems these coordinative
functions are carried out by analog and mixed analog-digital neural mechanisms.

Purely computational devices (top left) deterministically map symbolic, input
states to output states, i.e. they are formally equivalent to deterministic finite state
automata. As they have no non-arbitrary linkages to the external world, their internal
states have no external semantics save those that their human programmer-users
assign to them. Because their computational part is fixed and functionally stable,
such devices are completely reliable. However, they are not creative in that they
cannot autonomously generate either new combinations (input-output mappings) or
new primitives (sign states).

Some of the functional limitations of formal systems and computational devices
are due to their purely syntactic nature, that the sign-states lack intrinsic seman-
tics or pragmatics. The signs and operations are meaningless and purposeless, aside
from any meanings or purposes that might be imposed on them by their users. Other
limitations arise from their fixed nature, that pure computations do not receive con-
tingent inputs from outside the sign-system, and therefore have no means of adap-
tively adjusting their internal operations—they do not learn.

One might retort that we have all sorts of computers that are constantly receiv-
ing updates from external sources and adjust their behaviour accordingly, but the
moment a machine acts in manner that depends not only on its initial state and
state-transition rules, its behaviour is no longer a pure computation—it is no longer
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Fig. 15.3 A taxonomy of cybernetic devices. Top left: a fixed computational device. Top right:
a fixed robotic device. Bottom left: an adaptive robotic device that modifies its computational in-
put-output mapping contingent on its evaluated performance. Bottom right: a robotic device that
adaptively constructs its sensing, effecting, and computational hardware contingent on its evaluated
performance

emulating the behaviour of a formal system. It is as if one were to perform a cal-
culation, say of the thousandth digit of π , but midway in the calculation the result
depends partially on fine variations of the temperature in the room. Only rarely will
two such procedures produce the same result, and one now has a process that is the
antithesis of a formal procedure. When coupled this way such devices, in formal
terms, become machines with inputs from oracles, where the internal workings of
the oracle are left ill-defined (Turing 1939). Coupling a deterministic finite state au-
tomaton to a sensor that makes measurements converts the composite device to a
finite state oracle machine, a decidedly different kind of beast (Hodges 2008).

Adding measurements are useful for some purposes, such as responding appro-
priately to changes in an external environment, but highly detrimental to others,
such as performing reliable, determinate calculations, where one is interested in the
purely logical consequences of the application of specified rules on initial inputs.
For these reasons, our physical computing devices have been designed and built, as
much as possible, to operate in a manner that is independent of their environs.

Accordingly, one can add fixed sensors and effectors to purely computational
devices to create robotic devices (Fig. 15.3, top right) that have behaviours that are
qualitatively different from those of formal systems. These kinds of systems, which
include animals and artificial robots, have specific perception and action linkages to
the external world, thereby endowing their internal states with external semantics.
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Here the output productions are actions rather than symbols per se, but these devices
are also not creative in that they cannot autonomously generate new behaviours.

One can then add evaluative sensors and steering mechanisms that switch the
behaviour of the computational part to produce adaptive computational machines
(Fig. 15.3, bottom left). This is the basic high-level operational structure of vir-
tually all contemporary trainable machines that use supervised learning feedback
mechanisms (adaptive classifiers and controllers, genetic algorithms, neural net-
works, etc.). Here the internal states and their external semantics are fixed, such that
the evaluative-steering mechanism merely switches input-output (percept-action,
feature-decision) mappings using the same set of possible states. This is a form
of combinatorial creativity, because the machine searches through percept-action
combinations to find more optimal ones.

Consider the case, however, where the evaluation mechanism guides the con-
struction of the hardware of the device rather than simply switching input-output
mappings (Fig. 15.3, bottom right). If sensors are adaptively constructed contingent
on how well they perform a particular function, then the external semantics of the
internal states of the device are now under the device’s adaptive control. When a
device has the ability to construct itself, and therefore to choose its sensors—which
aspects of the world it can detect—it attains a partial degree of epistemic auton-
omy. Such a device can adaptively create its own meanings vis-à-vis the external
world. A system is purposive to the extent that it can act autonomously to steer its
behavior in pursuit of embedded goals. When it is able to modify its evaluative oper-
ations, thereby modifying its goals, it achieves a degree of motivational autonomy.
Such autonomies depend in turn on structural autonomy, a capacity for adaptive
self-construction of hardware.

To summarise, combinatoric creativity in percept-action systems entails an abil-
ity to switch between existing internal states (e.g. “software”), whereas creative
emergence requires the ability to physically modify material structures (e.g. “hard-
ware”) that create entirely new states and state-transitions, sensors, effectors, and/or
goals.

15.3.4 Pask’s “Organic Analogues to the Growth of a Concept”

The most striking example of a creative emergent device is an adaptive self-
constructing electrochemical assemblage that was conceived and fabricated by the
brilliant and eccentric British cybernetician Gordon Pask in the late 1950s (Cari-
ani 1989; 1993, Pask 1960; 1961, Bird and Di Paolo 2008, Pickering 2010). Pask
demonstrated his device at the Mechanisation of Thought Processes conference in
London in 1958 and described it in a paper provocatively entitled “Organic Ana-
logues to the Growth of a Concept.” (Pask 1959)

The device’s purpose was to show how a machine could evolve its own “relevance
criteria”, i.e. its own external semantic meanings. Current was passed through an ar-
ray of platinum electrodes immersed in an aqueous ferrous sulphate/sulphuric acid
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Fig. 15.4 Gordon Pask’s
creative emergent
electrochemical assemblage,
from (Pask 1959, p. 919). The
photograph looks down on a
glass tank containing an
aqueous solution of ferrous
sulphate and sulphuric acid.
Original caption labels:
A. Connecting wires for
electrodes. B. Platinum pillar
electrodes. C. Edges of glass
tank containing ferrous
sulphate. D. Chemical
reaction in progress.
E. “Tree” threads being
formed. F. Connecting cables

medium, such that iron filaments grew outwards to form bridges between the elec-
trodes (Fig. 15.4). Here the electrodes that extend down into the medium are perpen-
dicular to the plane of the photograph. Iron threads whose conductivity co-varied in
some way with an environmental perturbation were rewarded with electric current
that caused them to grow and persist in the acidic milieu. Through the contingent
allocation of current, the construction of structures could be adaptively steered to
improve their sensitivity. The assemblage acquired the ability to sense the presence
of sound vibrations and then to distinguish between two different frequencies.

We have made an ear and we have made a magnetic receptor. The ear can discriminate
two frequencies, one of the order of fifty cycles per second and the other on the order
of one hundred cycles per second. The “training” procedure takes approximately half a
day and once having got the ability to recognise sound at all, the ability to recognise and
discriminate two sounds comes more rapidly. I can’t give anything more detailed than this
qualitative assertion. The ear, incidentally, looks rather like an ear. It is a gap in the thread
structure in which you have fibrils which resonate at the excitation frequency.” (Pask 1960,
p. 261)

In effect, the device had evolved an ear for itself, creating a set of sensory dis-
tinctions that it did not previously have. Albeit, in a very limited way, the artifi-
cial device automated the creation of new sensory primitives, thereby providing an
existence proof that creative emergence is possible in adaptive devices. As Pask
explicitly pointed out, one could physically implement an analog perceptron with



402 P. Cariani

such an assemblage: the conductances between electrodes in the electrochemical ar-
ray correspond to connection weights in a connectionist neural network. His intent,
however, was to show how a device could produce emergent functionality. Instead of
switching inter-electrode connectivities, the thread structures could be steered and
selected to become sensitive to other kinds of perturbations, such that they could be
tuned with the appropriate rewards. By rewarding conductance changes associated
with a particular kind of environmental disturbance, the assemblage could evolve its
own sensitivities to the external world.

In the preface to Pask’s book An Approach to Cybernetics (Pask 1961), Warren
McCulloch declared: “With this ability to make or select proper filters on its inputs,
such a device explains the central problem of epistemology. The riddles of stimulus
equivalence or of local circuit action in the brain remain only as parochial prob-
lems.” The central, most fundamental problem in epistemology is how to obtain the
right observables needed to solve a particular problem. Once these are found, ev-
erything else is a matter of searching through the possibilities that these observables
afford.

15.3.5 Organisational Closure and Epistemic Autonomy

Creativity and learning both require some degree of autonomy on the part of the sys-
tem in question. The system needs to be free to generate its own novel, experimental
combinations and modifications independent of pre-specification by a designer. The
more autonomy given the system, the greater the potential for novelty and surprise
on the part of the designer. The less autonomy given, the more reliable and unsur-
prising the system’s behaviour.

When a device gains the ability to construct its own sensors, or in McCulloch’s
words “this ability to make or select proper filters on its inputs”, it becomes organ-
isationally closed. The device then controls the distinctions it makes on its external
environment, the perceptual categories which it will use. On the action side, once
a device acquires the ability to construct its own effectors, it thereby gains control
over the kinds of actions it has available to influence the world. The self-construction
of sensors and effectors thus leads to attainment of greater epistemic autonomy and
enactive autonomy, where the organism or device itself can become the major de-
terminant of the nature of its relations with the world at large. Structural autonomy
and organisational closure guided by open-ended adaptive mechanisms lead to func-
tional autonomy.

These ideas, involving adaptive self-construction and self-production link with
many of the core concepts of theoretical biology and cybernetics, such as se-
mantic closure (Pattee 1982; 2008, Stewart 2000), autopoiesis and self-production
(Maturana and Varela 1973, Maturana 1981, Varela 1979, Rosen 1991, Mingers
1995), self-modifying systems (Kampis 1991), regenerative signalling systems
(Cariani 2000), and self-reproducing automata (von Neumann 1951). Life entails
autonomous self-construction that regenerates parts and organisations.
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15.4 Recognising Different Types of Creativity

How does one distinguish combinatoric from emergent creativity in practice? This
is the methodological problem. The distinction is of practical interest if one wants
to build systems that generate fundamental novelty—one needs a clear means of
evaluating whether the goal of creating new primitives has been attained.

15.4.1 Emergence-Relative-to-a-Model

Theoretical biologist Robert Rosen (1985) proposed a systems-theoretic, epistemo-
logical definition of emergence as the deviation of the behaviour of a material sys-
tem from the behaviour predicted by a model of that system. At some point the
behaviour of a material system will deviate from its predicted behaviour because of
processes in the material world that are unrepresented in the model.

This concept can be put into concrete practice by formulating an operational
definition. Like the description of an experimental method, an operational defini-
tion specifies the procedures by which different observers can reliably make the
same classifications, e.g. is a given behaviour emergent, and if so, how? In this case
an emergent event is one that violates the expectations of an observer’s predictive
model. However, simple violations, such as when the engine of one’s car fails, are
not so interesting or particularly useful, because they can be outward signs of the
breakdown of internal mechanisms as much as signs of the evolution of new func-
tions. Instead, we are interested in deviations from expected behaviour that are due
to adaptive construction of new functions and qualitatively new behaviours of the
system under study.

In the late 1980s, in conjunction with the adaptive systems taxonomy, we de-
veloped a systems-theoretic methodology for how one could go about recognis-
ing the operations of measurements, computations, and actions from the observed
state-transitions of a natural system (Cariani 1989; 1992; 2011). In the process op-
erational definitions were formulated for how these functions can be distinguished
from each other, and how changes in a given functionality can be recognised. The
method partitions the state-transition structure of the system into regions of state-
determined transitions that resemble computations and regions of indeterminate,
contingent transitions that resemble measurements and actions.

15.4.2 Tracking Emergent Functions in a Device

Consider the case of an observer following the behaviour of a device (Fig. 15.5, top
panel). The observer has a set of observables on the device that allow him/her/it to
observe the device’s internal functional states and their transitions. Essentially if one
were observing a robotic device consisting of sensors, a computational coordinative



404 P. Cariani

Fig. 15.5 Emergence relative-to-a-model. What changes need to be adopted by an observer in
order to continue to predictively track the behaviour of an evolving, complexifying system?

part, and effectors, the computational part of the device that mapped sensory inputs
into motor commands would have state-determined transitions.

One can determine if the input-output mapping of the computational part has
changed by observing its state-transition structure (Fig. 15.5, top panel). If the com-
putational part is a fixed program, this sensorimotor mapping will remain invariant.
If the computational part is switched by some adaptive process, as in a trainable
machine, then the sensorimotor mapping will change with training, and a new deter-
minate input-output state transition behaviour will then ensue. From an observer’s
perspective, the predictive model will fail every time training alters the computa-
tional sensorimotor mapping. In order to recover predictability, the observer would
have to change the state-transition rules of his or her predictive model. Thus an
observer can determine whether the device under observation is performing fixed
computations or whether these are being adjusted in some way over time.

Similarly, if the device evolves a new sensor, such that its behaviour becomes
dependent on factors that are not registered in the observer’s set of measurements,
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then the observer will also lose predictability. In order to regain predictability, the
observer would need to add an extra observable that was roughly correlated with
the output of the device’s new sensor. Thus if the observer needs to add a sensor
to continue to track the device, then it can be inferred that the device itself has
effectively evolved a new sensor.

The general principle involves what modifications the observer needs to make
in his or her modelling framework to maintain the ability to track the behaviour of
the system. If this involves rearrangement of existing states, then the system under
observation appears to be combinatorically-emergent. If it requires increasing the
dimensionality of his or her observational frame, then the system under observation
appears to be creatively emergent. The new dimensions in the observer’s complexi-
fying modelling frame coevolve with the creation of new primitives in the observed
system.

15.5 New Signal Primitives in Neural Systems

A third, and last strategy for creative emergence is to attempt to understand and em-
ulate the creative processes inside our brains. We humans are the most formidable
sources of creativity in our world. Our minds are constantly recombining existing
concepts and meanings and also creating entirely new ones. The most obvious pro-
cess of the construction of new concepts is language acquisition, where children
reportedly add 10–15 new word meanings per day to their cognitive repertoires,
with the vast majority of these being added without explicit instruction. It seems
likely that this “mundane creativity” in children’s brains operates through adaptive
neural processes that are driven by sensorimotor and cognitively-mediated interac-
tions with the external world (Barsalou and Prinz 1997). Although most of these
processes may well fall under the rubric of the combinatorics of syntactic, seman-
tic, and pragmatically grounded inference engines, there are rarer occasions when
we experience epiphanies associated with genuinely new ways of looking at the
world.

One can contemplate what creation of new signal primitives would mean for
neural networks and brains (Cariani 1997). Essentially we want an account of how
combinatoric productivity is not only possible, but is so readily and effortlessly
achieved in everyday life. We also want explication of how new concepts might be
formed that are not simply combinations of previous ones, i.e. how the dimensional-
ity of a conceptual system might increase with experience. How might these creative
generativities be implemented in neuronal systems?

We have to grapple with the problem of the primitives at the outset. Even if the
brain is mostly a combinatorically creative system, the conceptual primitives need to
be created by interactive, self-organising sensorimotor integration processes, albeit
constrained by genetically mediated predispositions.
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Fig. 15.6 Creation of new
semantic primitives by means
of internal sensors. Neural
assemblies play the role of
sensors on an internal milieu
of neural activity patterns

15.5.1 New Primitives in Signalling Networks

I came to think about how neural networks might create new primitives from con-
sidering how a signalling network might increase its effective dimensionality. The
simplest way of conceiving this is to assume that each element in a network is capa-
ble of producing and receiving specific signals that are in some way independent of
one another, as with signals consisting of tones of different frequencies. A new com-
munications link is established whenever a tone frequency emitted by one element
can be detected by another. The effective dimensionality of such a network is related
to the number of operating independent communications links. If the elements can
be adaptively tuned to send and receive new frequencies that are not already in the
network, then new signal primitives with new frequencies can appear over time and
with them, new communications links. The dimensionality of the signalling network
has thus increased.

One can conceive of the brain as a large signalling network that consists of a large
number of neural assemblies of many neurons. If each neural assembly is capable of
adaptively producing and detecting specific spatial and temporal patterns of action
potential pulses, then new patterns can potentially arise within the system that con-
stitute new signal primitives. In the brain we can think of Hebb’s neural assemblies
(Hebb 1949, Orbach 1998) as ensembles of neurons that act as internal sensors on an
analog internal milieu (Fig. 15.6). The creation of a new neural assembly through an
activity-dependent modification of neuronal synapses and axons can be conceived
as the equivalent to adding a new internal observable on the system. Here a new
concept is a new means of parsing the internal activity patterns within the nervous
system. If an adaptively-tuned neural ensemble produces a characteristic pattern of
activity that is distinguishable from stereotyped patterns that are already found in
the system, then the neural network has created a new signal primitive that can be-
come a marker for the activity of the ensemble and some complex combination of
conditions that activates it.

The remainder of the chapter presents an outline of how a neural system might
utilise this kind of dimensionally open-ended functional organisation. The nature
of the central neural code in the brain is still one of science’s biggest unsolved
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mysteries, and the present situation in the neurosciences is not unlike biology before
DNA-based mechanisms of inheritance were understood.

Despite resurgent interest in neuronal temporal synchronies and oscillations,
mainstream opinion in the neurosciences still heavily favours neural firing rate
codes and their connectionist architectures over temporal codes and timing architec-
tures. For introductory overviews of how connectionist networks operate, see (Arbib
1989; 2003, Horgan and Tienson 1996, Churchland and Sejnowski 1992, Anderson
et al. 1988, Boden 2006, Marcus 2001, Rose 2006). Although strictly connection-
ist schemes can be shown to work in principle for simple tasks, there are still few
concrete, neurally-grounded demonstrations of how connectionist networks in real
brains might flexibly and reliably function to carry out complex tasks, such as the
parsing of visual and auditory scenes, or to integrate novel, multimodal informa-
tion. We have yet to develop robust machine vision and listening systems that can
perform in real world contexts on par with many animals.

In the late 1980s a “connectionism-computationalism” debate ensued about
whether connectionist networks are at least theoretically capable of the kinds of
combinatorial creativities we humans produce when we form novel, meaningful
sentences out of pre-existing lexical and conceptual primitives (Marcus 2001, Hor-
gan and Tienson 1996, Boden 2006, Rose 2006). Proponents of computationalism
argued that the discrete symbols and explicit computations of classical logics are
needed in order to flexibly handle arbitrary combinations of primitives. On the other
hand, the brain appears to operate as a distributed network that functions through
the mass statistics of ensembles of adaptive neuronal elements, where the discrete
symbols and computational operations of classical logics are nowhere yet to be seen.
But difficulties arise when one attempts to use subsymbolic processing in connec-
tionist nets to implement simple conceptual operations that any child can do. It’s
not necessarily impossible to get some of these operations to work in modified
connectionist nets, but the implementations generally do not appear to be robust,
flexible, scalable, or neurally plausible (Marcus 2001). It is possible, however, that
fundamentally different kinds of neural networks with different types of signals and
informational topologies can support classical logics using distributed elements and
operations.

Because we have the strong and persistent feeling that we do not yet understand
even the basics of how the brain operates, the alternative view of the brain out-
lined here, which instead is based on multidimensional temporal codes, should be
regarded as highly provisional and speculative in nature, more rudimentary heuristic
than refined model.

15.5.2 Brains as Networks of Adaptive Pattern-Resonances

Brains are simultaneously communications networks, anticipatory correlation ma-
chines, and purposive, semantic engines that analyse their sensory inputs in light
of previous experience to organise, direct, and coordinate effective action. Animals
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with nervous systems are cybernetic, goal-seeking percept-action systems (Arbib
1989, Powers 1973, Sommerhoff 1974, Cariani 2011, Boden 2006, Pickering 2010,
McCulloch 1965, Rose 2006). Nervous systems evolved in motile animals in order
to better coordinate effective action in rapidly changing situations. Lineages of an-
imals whose nervous systems enhanced survival to reproduction persisted, whereas
those with less effective steering mechanisms tended to perish. Like the adaptive
devices discussed above in Sect. 15.3, animals have sensory systems that register
interactions with the external world, and motor systems that influence events in
the world. They have coordinative sensorimotor linkages with varying degrees of
complexity, from automatic reflexes to heavily deliberated actions. Brains have em-
bedded goal systems that enforce drive states that steer both perception and action.
Embedded goals and steering mechanisms are what make intentional, purposive ac-
tion possible. Finally brains have reward systems that reconfigure internal circuits to
change steering functions and to build neuronal assemblies that facilitate new sen-
sory analyses, cognitive representations, affective and motivational responses, and
motor sequencing programs.

Thus globally, the brain is a goal-directed system in which the most primal goal
structures, which motivate actions such as breathing, drinking, eating, fleeing, fight-
ing, and mating, are embedded in limbic structures and dopamine-mediated reward
systems. Neural goal-seeking mechanisms steer sensory and motor thalamocortical
systems to act on system-goals by means of the basal ganglia, a large set of brain
structures that mediate connections of sensory, cognitive, and motor areas of the
cerebral cortex with other limbic goal and reward circuits (Redgrave 2007). The
basal ganglia facilitate amplification of goal-relevant sensory information and mo-
tor programs by releasing the relevant neuronal subpopulations from inhibition, i.e.
“disinhibition”.

This arrangement for steering can be thought of as a control brake on a slave
braking system; when the control brake is applied, the slave brake is released. If the
normal state of recurrent circuits with the inhibitory, slave brakes on is attenuating,
but becomes weakly amplifying when the inhibitory slave brakes themselves are
inhibited (by the basal ganglia control inputs), then those patterns of sensory, cogni-
tive, and motor activity that are relevant to the system-goals that are currently most
pressing will be the ones that will be amplified and regenerated. Neural signal regen-
eration in these weakly amplifying loops will then continue until some other set of
competing goals becomes dominant. The behavioural steering system is reminiscent
of Kilmer and McCulloch’s reticular formation action selection model (Kilmer and
McCulloch 1969) and of Rodney Brooks’ subsumption architectures (Brooks 1999)
in that the different goals are in constant competition for control over the organism’s
mode of behaviour.

15.5.3 Regenerative Loops

The basic functionalities involved in perception, coordination, and action may be
implemented by global architectures that consist of many reciprocally connected
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Fig. 15.7 High level
functional schematic of the
brain as an overlapping and
interconnected set of
pattern-resonance loops each
of which supports a different
functionality

neuronal populations. The loops support pattern amplification cycles of neuronal
signals that allow signals to be dynamically regenerated within them. The loops
might be recurrent connectionist networks (Carpenter and Grossberg 2003, McCul-
loch 1965) or alternatively, they could be closed circuits that propagate temporal
patterns of neuronal activity (Thatcher and John 1977).

That a system has the ability to regenerate alternative sets of neural signals—
neural “pattern resonances”—means that the system can support alternative persis-
tent informational states. The system can then keep a set of neuronal signals cir-
culating indefinitely as long as they remain relevant to ongoing goals. This ability
to hold signals dynamically is critical for short-term memory, informational inte-
gration in global workspaces, and may itself be a requisite for conscious aware-
ness (Baars 1988, Cariani 2000). In dynamical systems terms these mental states
are complex signal attractor states that are the stable eigen-behaviour modes of the
neural system (Rocha 1996, von Foerster 2003, Cariani 2001b). In analogy with au-
tocatalytic networks that produce the components of living cells, one could think
of mutually-supporting signal-regenerations in the loops as an autopoiesis of neural
signal productions (Maturana and Varela 1973).

One can sketch out a loose functional organisation based on regenerative process-
ing loops (Fig. 15.7). Sensory information comes into the system through a number
of modality-specific sensory pathways. Neural sensory representations are built up
in each of the pathways through bottom-up and top-down loops that integrate infor-
mation in time to form stable perceptual images. When subsequent sensory patterns
are similar to previous ones, these patterns are amplified and stabilised; when they
diverge, new dynamically-created images are formed from the difference between
expectation and input. Such divergences are seen in evoked brain gross electrical
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potentials as “mismatch negativities” and are modelled as adaptive resonances (Car-
penter and Grossberg 2003, Grossberg 1988, Rose 2006).

As successive neural populations respond to the stabilised perceptual images of
lower loops, higher semantic resonances are created as objects are recognised and
other sets of neural assemblies that are sensitive to their implications are activated.
As ensembles of neural assemblies that function as semantic “cognitive nodes” are
concurrently excited, evaluative and steering circuits are also being activated and
signals associated with hedonic valences become added to the circulating mixture
of signals. Both short term and long term memory processes play modulatory roles
in the pattern amplifications that go on in the loops, either facilitating or retarding
the amplification and buildup of particular circulating patterns. In this conception,
some sets of signals are limited to only one or two circuits that reciprocally con-
nect pairs of brain regions, while others of more general relevance are circulated
more broadly, through a global workspace. Sets of circuits related to evaluation of
the various consequences of action and its planning are activated and finally motor
execution programs and pattern generators are engaged to move muscles that act on
the external world.

15.5.4 Multidimensional Signals

Although modern neuroscience has identified specific neuronal populations and cir-
cuits that subserve all these diverse functions, there is much poorer understanding
of how these different kinds of informational considerations might be coherently
integrated. Although, most information processing appears to be carried out in local
brain regions by neural populations, a given region might integrate several different
kinds of signals. Traditional theories of neural networks assume very specific neu-
ronal interconnectivities and synaptic weightings, both for local and long-distance
connections. However, flexibly combining different kinds of information from dif-
ferent brain regions poses enormous implementational problems. On the other hand,
if different types of information can have their own recognisable signal types, then
this coordination problem is drastically simplified. If different signal types can be
nondestructively combined to form multidimensional vectors, then combinatorial
representation systems are much easier to implement. Communications problems
are further simplified if the multiple types of information can be sent concurrently
over the same transmission lines without a great deal of destructive interference.

15.5.5 Temporal Coding and Signal Multiplexing

Multiplexing of signals permits them to be combined nondestructively, broadcast,
and then demultiplexed by local assemblies that are tuned to receive them. Tempo-
ral coding of information in patterns of spikes lends itself to multidimensional sig-
nalling, multiplexed transmission, and broadcast strategies for long-distance neural
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coordinations. The brain can thus be reconceptualised, from the connectionist im-
age of a massive switchboard or telegraph network to something more like a radio
broadcast network or even an internet (John 1972).

Neurophysiological evidence exists for temporal coding in virtually every sen-
sory system, and in many diverse parts of the brain (Cariani 1995; 2001c, Miller
2000, Perkell and Bullock 1968, Mountcastle 1967), and at many time scales
(Thatcher and John 1977). We have investigated temporal codes for pitch in the early
stages of the auditory system (Cariani and Delgutte 1996, Ando and Cariani 2009,
Cariani 1999). The neural representation that best accounts for pitch perception, in-
cluding the missing fundamental and many other assorted pitch-related phenomena,
is based on interspike intervals, which are the time durations between spikes in a
spike train. Periodic sounds impress their repeating time structure on the timings
of spikes, such that distributions of the interspike intervals produced in auditory
neurons reflect stimulus periodicities. Peaks in the global distribution of interspike
intervals amongst the tens of thousands of neurons that make up the auditory nerve
robustly and precisely predict the pitches that will be heard. In this kind of code,
timing is everything, and it is irrelevant which particular neurons are activated the
most. The existence of such population-based statistical, and purely temporal repre-
sentations begs the question of whether information in other parts of the brain could
be represented this way as well (Cariani and Micheyl 2012).

Temporal patterns of neural spiking are said to be stimulus-driven in they reflect
the time structure of the stimulus or stimulus-triggered if they produce response
patterns that are unrelated to that time structure. The presence of stimulus-driven
patterns of spikes convey to the rest of the system that a particular stimulus has
been presented. Further, neural assemblies can be electrically conditioned to emit
characteristic stimulus-triggered endogenous patterns that provide readouts that a
given combination of rewarded attributes has been recognised (John 1967, Morrell
1967).

The neuronal evidence for temporal coding also provokes the question of what
kinds of neuronal processing architectures might conceivably make use of infor-
mation in this form. Accordingly several types of neural processing architectures
capable of multiplexing temporal patterns have been conceived (Izhikevich 2006,
Cariani 2004, Chung et al. 1970, Raymond and Lettvin 1978, Pratt 1990, Wasser-
man 1992, Emmers 1981, Singer 1999).

We have proposed neural timing nets that can separate out temporal pattern com-
ponents even if they are interleaved with other patterns. They differ from neural
networks that use spike synchronies amongst dedicated neural channels, which is a
kind of time-division multiplexing. Instead, signal types are encoded by characteris-
tic temporal patterns rather than by “which neurons were active when”. Neural tim-
ing nets can support multiplexing and demultiplexing of complex temporal pattern
signals in much more flexible ways that do not require precise regulations of neural
interconnections, synaptic efficacies, or spike arrival times (Cariani 2001a; 2004).

The potential importance of temporal-pattern-based multiplexing for neural net-
works is fairly obvious. If one can get beyond scalar signals (e.g. spike counts or
firing rates), then what kind of information a given spike train signal contains can
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be conveyed in its internal structure. The particular input line on which the signal
arrives is then no longer critical to its interpretation. One now has an information
processing system in which signals can be liberated from particular wires. Although
there are still definite neuronal pathways and regions where particular kinds of in-
formation converge, these schemes enable processing to be carried out on the level
of neuronal ensembles and populations. They obviate the need for the ultra-precise
and stable point-to-point synaptic connectivities and transmission paths that purely
connectionistic systems require.

15.5.6 Emergent Annotative Tags and Their Uses

Both stimulus-driven and stimulus-triggered temporal response patterns can func-
tion as higher-level annotative “tags” that are added to a signal to indicate that it
has a particular cognitive attribute. Neural signal tags characteristic of a particular
neural assembly would signify that it had been activated. Tags produced by sensory
association cortical areas would connote sensory attributes and conjunctions; those
produced by limbic circuits would indicate hedonic, motivational, and emotive va-
lences, such that these neural signal patterns would bear pragmatic content. A neu-
ral assembly producing a characteristic triggered response pattern could potentially
function as a cognitive timing node (MacKay 1987).

Neural assemblies could be adaptively tuned to emit new tag patterns that would
mark novel combinations of perceptual, cognitive, conative, and mnemonic activa-
tion. New tags would constitute new symbolic neural signal primitives that are asso-
ciated with new attributes and concepts. The appearance of a particular tag indicates
that a particular state-of-affairs has been detected. Formation of new assemblies
and associated signal tags would be means by which new, dedicated “perceptual
symbols” could be formed from semantically and pragmatically meaningful iconic
sensory representations (Barsalou 1999).

The global interconnectedness of cortical and subcortical structures permits
widespread sharing of information that has built-up to some minimal threshold of
global relevance, in effect creating a global workspace (Baars 1988, Dehaene and
Naccache 2001, Rose 2006). In response to a particular triggering stimulus, say a
picture of a large dog, the contents of such a global workspace would become suc-
cessively elaborated over time as the signals produced by different sets of neural
assemblies interacted (Fig. 15.8). Successive assemblies would add their own an-
notations to the circulating pattern associated with various experiences with other
similar animals and these would in turn facilitate or suppress the activation of other
assemblies.

Linkages between particular sensory patterns and motivational evaluations could
be formed that add tags related to previous reward or punishment history, thereby
adding to a sensory pattern a hedonic marker. In this way, these complex, elaborated
neural signal productions could be imbued with pragmatic meanings which could be
conferred on sensory representations that in turn have causal linkages with the exter-
nal world. Neural signal tags with different characteristics could thus differentiate
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Fig. 15.8 A visual metaphor for the elaboration of evoked neural temporal pattern resonances
through successive interaction. The concentric circles represent stimulus-driven and stimulus-trig-
gered temporal patterns of spikes produced by neural assemblies, which interact with those of other
assemblies

patterns that encode the syntactic, semantic, and pragmatic aspects of an elaborated
neural activity pattern. Eventually, the signals in the global workspace would con-
verge into a stable set of neural signals that then sets a context for subsequent events,
interpretations, anticipations, and actions.

What we have outlined is an open-ended representational system in which exist-
ing primitives can be combined and new primitives formed. Combinatoric creativity
is achieved in such a system by independent signal types that can be nondestruc-
tively combined in complex composite signals. The complex composites form vec-
tors of attributes that can be individually accessed. Emergent creativity is achieved
when new signal types are created through reward-driven adaptive tuning of new
neural assemblies. When new signal types are created, new effective signal dimen-
sions appear in the system.

What we do not yet know is the exact nature of the central temporal codes that
would be involved, the binding mechanisms that would group attribute-related sig-
nals together into objects, the means by which relations between objects could be
represented in terms of temporal tags, and how universals might be distinguished
from individual instances (Marcus 2001).

Despite its incomplete and highly tentative nature, this high level schematic nev-
ertheless does provide a basic scaffold for new thinking about the generation of
novel conceptual primitives in neural networks. We want to provide encouragement
and heuristics to those who seek to design mixed analog-digital self-organising arti-
ficial brains that might one day be capable of producing the kinds of combinatorial
and emergent creativities that regularly arise in our own heads.
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Chapter 16
Computers and Creativity: The Road Ahead

Jon McCormack and Mark d’Inverno

Abstract This final chapter proposes a number of questions that we think are im-
portant for future research in relation to computers and creativity. Many of these
questions have emerged in one form or another in the preceding chapters and are di-
vided into four categories as follows: how computers can enhance human creativity;
whether computer art can ever be properly valued; what computing can tell us about
creativity; and how creativity and computing can be brought together in learning.

16.1 Where to From Here?

At the end of the book it seems important to consider the most critical questions
that have arisen whilst editing the preceding chapters. Throughout the book, a broad
range of views on computers and creativity have been expressed. Some authors ar-
gue that computers are potentially capable of exhibiting creative behaviours, or of
producing artefacts which can be evaluated in a similar context as human artworks.
Others believe that computers will never exhibit autonomous creativity and that we
should think of computers and creativity only in the sense of how computers can
stimulate creativity in humans. A number of authors even downplay the concept
of creativity itself, seeing other approaches such as training and practice, or social
mechanisms, as more central in understanding the creation of novel artefacts.

Whilst there is some disagreement about the relationship between computers and
creativity, there is a general consensus that computers can transform and inspire
human creativity in significantly different ways than any other artificial or human
made device. The range of possibilities is evident in this volume, which contains
many exciting efforts describing the computer’s use in developing art practices, mu-
sic composition and performance.

J. McCormack (�)
Centre for Electronic Media Art, Monash University, Caulfield East, Victoria 3145, Australia
e-mail: Jon.McCormack@monash.edu

M. d’Inverno
Department of Computing, Goldsmiths, University of London, London, UK
e-mail: dinverno@gold.ac.uk

J. McCormack, M. d’Inverno (eds.), Computers and Creativity,
DOI 10.1007/978-3-642-31727-9_16, © Springer-Verlag Berlin Heidelberg 2012

421

mailto:Jon.McCormack@monash.edu
mailto:dinverno@gold.ac.uk
http://dx.doi.org/10.1007/978-3-642-31727-9_16


422 J. McCormack and M. d’Inverno

Nevertheless, on the broad issue of how computers relate to creativity, we are still
left with many more questions than we have answers. This final chapter contains a
selective cross-section of what we think are the twenty-one most important ques-
tions, many of which are raised in one form or another in the preceding chapters.
Whilst all these questions are clearly interrelated and overlapping, we have cate-
gorised them into four topics: (i) how computers can enhance human creativity, (ii)
whether computer art can ever be properly valued, (iii) what computing and com-
puter science can tell us about creativity, and finally—while not covered specifically
in this book but an important motivation for future research—(iv) how creativity and
computing can be brought together in learning.

I How Can Computers Enhance Human Creativity?
i No one likes software that makes simplistic assumptions about what we mean

or are trying to do (think of the failed Microsoft Word paperclip or automated
typing correction). This raises the question: what are the kinds of responses
and interactions we desire of computational systems so as to inspire, provoke,
and challenge us to develop meaningful creative dialogues with machines,
and to have both the confidence in the system and in ourselves?

ii Relatedly, how can we remain mindful about the ways in which new technol-
ogy can limit or defer creativity? We are increasingly seeing software devel-
oped which is intended to make creative decisions on our behalf. For exam-
ple, modern digital cameras now take responsibility for many aspects of the
creative photographic process, automatically adjusting numerous dependent
properties in order to give the “best” picture. Should we be concerned when
creative decision making is implicitly transferred to software at the expense
of human creative exploration?

iii Can we re-conceptualise the methods of interaction between computers and
people so as to better encourage creative flow and feedback? We have had
many years of the mouse, keyboard and screen as the primary interface, but
we have now entered the era of networked mobility and surface touch in-
terfaces, where simple hand or body gestures form the locus of interaction.
What new ways of enhancing creative exchange are possible if we move be-
yond the standard mass-market paradigms and consumer technologies?

iv How can our developing relationship with computers be better understood
in order to encourage new opportunities for experiencing both human- and
computer-generated creative artefacts?

v Is there a point at which individual human creativity can no longer be en-
hanced by technology or society, no matter how sophisticated? A number of
recent computational systems have demonstrated a “counterintuitive” design
logic that exceeds human designs significantly. These designs were possible
for a computer to find, but seemingly impossible for human designers to dis-
cover. Will the goal of augmenting or enhancing human creativity always be
limited by our cognitive capacity and inherent genetically and socially con-
ferred biases? Do computers face different limitations, or can they exceed
areas of human creativity independently as they have begun to do in limited
areas of human endeavour?
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II Could Computer Art Ever Be Properly Valued?
i When is the computer considered to have had “too much” involvement in the

process of making art? To what extent is the produced artefact then devalued
as a potential work of art because of the amount of automation? Is it right to
challenge this perception, and, if so, how can it be challenged?

ii What are the implications of being clearer and bolder about just how much
computing is impacting on any creative output?

iii In relation to the previous question, are there ways of revealing the process
of computation that would provide an alternative or additional aesthetic to
the completed artefact or of the developing partnership between computers
and artists in producing their art?

iv Does it even make sense to ask if the same value system that humans use
to experience art can be applied to art made by a computer? If not, then is
there another value system that we can use to interact more richly and less
dismissively with computer generated artefacts?

v What creative authorship can we attribute to a work that is assembled from
existing code that has been written by others (who may be anonymous)?
There is clearly creativity in a remix or mash up (where different musical
fragments are bought together for a specific project), even though we know
the person doing the remix was not the original composer of each musical
phrase or fragment. With software things are different because the code is
generally hidden and is not so distinctively familiar as it is with music, for
example. This creates a new and challenging perspective about the ambiguity
of authorship in art that is partially or completely produced by software.

III What Can Computing Tell Us About Creativity?
i Is autonomous creative thinking beyond the capacity of any machine that we

can make now or in the future?
ii Does creativity necessarily involve the creation of useful or appropriate nov-

elty? Relatedly, how relevant is “value” to the definition of creativity? And
what kind of value matters most?

iii Broadly, the humanist view values what humans produce above what all
other things produce. Does the ability of software to produce unusual and
potentially non-human work mean that it can ever be given equal or even
greater value? Could we potentially benefit in some way by challenging our
value system and rethinking how things have value (and not just to us)?

iv What is the most practical approach to building creative systems? Should we
aim to mimic our own creative behaviour, the behaviours we find in nature, or
design completely new mechanisms? How can concepts of “emergence” be
usefully exploited in designing creative machines? Is it enough for a machine
to produce new combinations of existing primitives or does it have to create
completely new primitives to be a truly creative system?

v If we could ever define an algorithm that described in detail everything we
do as artists, then do we necessarily become limited as artists within that
description?
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vi The concept of creativity itself has changed significantly over the years. How
will the increasing adoption of computers for creative use change the concept
of creativity further?

IV How Does Creativity and Computing Matter to Education?
i Computing is not seen as a creative subject by the general public or even

at schools and universities in many countries around the world. How then
can we change the perception of computing, especially in early learning, so
that programming is seen as an engaging creative subject in the same way
as science, music and the arts? How can we then inspire students to develop
their creativity through computing?

ii In asking numerous friends, students and colleagues who are artists and mu-
sicians, and who have mastered both their artistic and programming practice,
whether artistic creation is more or less creative than programming, nearly
all say they are equally creative. Certainly we have never heard anyone say
that playing music is creative but programming music software is not, for
example. How can we use this kind of personal evidence to persuade people
in education and the arts that programming is also a creative act?

iii What kinds of environments provide the right level of feedback, intuition and
control to inspire the idea of programming as a creative act in early learning?

iv Can we find new ways of revealing and explaining computational processes
where the flow of computation is more readily accessible to an audience?
Could that help us in our desire to attract a greater diversity of students into
computing?

v Many companies are now beginning to recognise that they want technolo-
gists who can think like artists. However, traditional methods of education in
mainstream computing that focus exclusively on engineering-based problem
solving will not be sufficient for the new challenges of software develop-
ment. How can we design university computing programs that provide grad-
uates with the necessary knowledge and skills to best achieve their creative
potential?

Undoubtably there are many more questions that could easily be posed here, but
it’s clear to us that a better understanding of how computing impacts upon creativity
in all its guises will become increasingly paramount in coming years. Looking back
at the last decade, there is little doubt that the most influential new development with
computers in this period has been their role in enhancing our social and cognitive
space, and it is now social concerns that drive the design of many major computing
initiatives. Looking to the future, whilst it is clear that social concerns will remain
a driving force in the design of software, it also seems clear that many of the next
major innovations in the design of hardware and software will come from attempts
to extend our individual and collective creativity. As we set about building these
future computing systems, we hope that this book has served to inspire new ideas
on the origins, possibilities, and implications of the creative use of computers.
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