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Preface

We are glad to present the proceedings of the IPMU 2012 conference (Interna-
tional Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems) held in Catania, Italy, during July 9–13, 2012. The
IPMU conference is organized every two years with the focus of bringing together
scientists working on methods for the management of uncertainty and aggrega-
tion of information in intelligent systems. This conference provides a medium for
the exchange of ideas between theoreticians and practitioners in these and related
areas. This was the 14th edition of the IPMU conference, which started in 1986
and has been held every two years in the following locations in Europe: Paris
(1986), Urbino (1988), Paris (1990), Palma de Mallorca (1992), Paris (1994),
Granada (1996), Paris (1998), Madrid (2000), Annecy (2002), Perugia (2004),
Paris (2006), Malaga (2008), Dortmund (2010). Among the plenary speakers of
past IPMU conferences there are three Nobel Prize winners: Kenneth Arrow,
Daniel Kahneman, Ilya Prigogine.

The program of IPMU 2012 consisted of six invited talks together with 258
contributed papers, authored by researchers from 36 countries, including the
regular track and 35 special sessions. The invited talks were given by the fol-
lowing distinguished researchers: Kalyanmoy Deb (Indian Institute of Technol-
ogy Kanpur, India), Antonio Di Nola (University of Salerno, Italy), Christophe
Marsala (Université Pierre et Marie Curie, France), Roman Slowinski (Poznan
University of Technology, Poland), Tomohiro Takagi (Meiji University, Japan),
Peter Wakker (Erasmus University, The Netherlands). Michio Sugeno received
the Kampé de Fériet Award, granted every two years on the occasion of the
IPMU conference, in view of his eminent research contributions to the handling
of uncertainty through fuzzy measures and fuzzy integrals, and fuzzy control
using fuzzy systems.

The success of such an event is mainly due to the hard work and dedica-
tion of a number of people and the collaboration of several institutions. We
want to acknowledge the help of the members of the International Program
Committee, the additional reviewers, the organizers of special sessions, and the
volunteer students. All of them deserve many thanks for having helped to attain
the goal of providing a balanced event with a high level of scientific exchange
and a pleasant environment. A special mention is deserved by Silvia Angilella,
Salvatore Corrente, Fabio Rindone, and Giuseppe Vaccarella, who contributed
greatly to the organization of the conference and especially to the review process.



VI Preface

We acknowledge the use of the EasyChair conference system for the paper sub-
mission and review. We would also like to thank Alfred Hofmann and Leonie
Kunz, and Springer, for providing continuous assistance and ready advice when-
ever needed.

May 2012 Salvatore Greco
Bernadette Bouchon-Meunier

Giulianella Coletti
Mario Fedrizzi

Benedetto Matarazzo
Ronald R. Yager
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Giulianella Coletti
Dante Conti
Didier Coquin
Giorgio Corani
Chris Cornelis
Miguel Couceiro
Pedro Couto
Alfredo Cuzzocrea
Nuzillard Danielle
Bernard De Baets
Gert De Cooman
Yves De Smet



Organization IX

Guy De Tre
Roberto De Virgilio
Tufan Demirel
Glad Deschrijver
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Rosa M. Rodŕıguez
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Jǐrina Vejnarová
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Abstract. We consider binary operations on fuzzy quantities whose in-
teraction is specified by means of a joint possibility distribution. When
and to what extent is this interaction relevant? We discuss the prob-
lem and tackle it in the case of fuzzy quantities with a finite support,
called below fuzzy n-poles. We give a criterion for total irrelevance, once
the two fuzzy operands are specified. We argue that fuzzy arithmetics
should take inspiration from the arithmetics of random variables rather
than crisp arithmetics, so as to get rid of notational inconsistencies.

Keywords: Fuzzy arithmetics, discrete fuzzy numbers, possibility the-
ory, non-interactivity.

1 Introduction

In this paper we advocate an approach to fuzzy arithmetics which is directly
inspired by what happens in the case of random numbers (random variables): as
we argue below, this allows one to get rid of some notational inconsistencies, or
at least notational weaknesses, found in fuzzy arithmetics. To achieve our point,
we shall take the chance to discuss and solve (at least limited to a finite setting)
a relevant problem: when is the result of a binary (algebraic) operation between
two fuzzy quantities independent of the interaction between these quantities?

Let us start from probabilities and take the product of two equidistributed
random numbers X and Y: of course the result depends on their joint probability
distribution, which might range from probabilistic independence

(
Prob{X = x,

Y = y} = Prob{X = x}×Prob{Y = y}
)
to deterministic equality (X = Y with

probability 1). In the latter case X × Y , X2 and Y 2 would be equidistributed,
while in general X × Y and X2 (or Y 2) are genuinely distinct random numbers,
each one with its own probability distribution. Just as in probability theory
one specifies a random number or a random couple by assigning its respective
probability distribution, in fuzzy arithmetics a fuzzy quantity X may be specified
by giving a possibility distribution over the real line, and a fuzzy couple XY
by giving a joint possibility distribution. Then notations as Poss{X = x} or
Poss{X = x, Y = y} take the place of Prob{X = x} and Prob{X = x, Y = y}
as found in probability theory. Actually, in the literature the “distribution” of
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a fuzzy quantity is often specified by means of a normal1 fuzzy set: we deem
that using possibilities rather than degrees of membership μX(x) or μXY (x, y)
is more convenient, since it makes it fairer to compare random numbers to fuzzy
quantities; anyway, the rules one uses, based on maxima and minima as they are,
are the same, and so this paper might be readily converted to the language of
sets rather than logic. A consistent approach to fuzzy arithmetics based on joint
interactive possibilities and on a generalized form of Zadeh’s extension principle
so as to perform binary operations (cf. (2) below) has been already advocated
in the literature, e.g. in [1], [2].

To introduce our point, we take e.g. two fuzzy numbersX and Y with common
triangular distribution (a, b, c), a < b < c:

Poss{X = x} = Poss{Y = x} = x− a

b− a
for a < x ≤ b ,

Poss{X = x} = Poss{Y = x} = c− x

c− b
for b ≤ x < c , else 0

(the support is here the open interval ]a, c[) and consider the two limit cases of
deterministic equality:

Poss{X = x, Y = y} = Poss{X = x} = Poss{Y = y} for x = y ,

Poss{X = x, Y = y} = 0 for x �= y

and non-interactivity, a notion which is deemed to be an adequate possibilistic
analogue for probabilistic independence (cf. e.g. [3]):

Poss{X = x, Y = y} = min
[
Poss{X = x},Poss{Y = y}

]
If X and Y are non-interactive, the distributions of X × Y and X2 (or Y 2) are
different if a < 0 and c > 0, but equal if a and c have the same sign, as shown by
straightforward calculations performed according to Zadeh’s extension principle
in its standard form, cf. e.g. [4], [5]. Unfortunately, in fuzzy arithmetics one
writes X × X even to cover the case when the two equidistributed factors are
non-interactive, and soX×X might not be the same asX2. This is confusing, but
we shall show that this source of confusion, which never shows up in probability
theory, can be totally removed.

Precisely as happens with random couples, the two marginal distributions
of the fuzzy quantities X and Y are derivable from their joint distribution, cf.
(1) below, but if only the marginal distributions Poss{X = x} and Poss{Y = y}
are given, one cannot re-construct the joint distribution Poss{X = x, Y = y},
unless one has some further information, e.g. that the two fuzzy quantities are
non-interactive. The problem we pose is: when is interactivity irrelevant as to
perform a binary operation, e.g. a product X × Y , at least limited to the case of
knowing that either deterministic equality or non-interactivity holds true, while

1 Normal means that at least one of the degrees of membership is equal to 1.
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other forms of interactivity are ruled out a priori? Below we will cover in detail
the case of “overall” irrelevance and fuzzy n-poles, i.e. fuzzy quantities with a
finite support of size n. For a solution cf. below theorem 1 and corollary 1. In
ongoing work we are investigating other cases, that cover the continuous case
and “partial” irrelevance, i.e. when one knows a priori that there is either non-
interactivity or deterministic equality. Actually, to aggregate two pre-assigned
marginal distributions, one might resort to the pervasive notion of copula [6]
in a fuzzy context, and so be able to discuss irrelevance under more flexible
assumptions than ours.

Below we prefer to use the less committal terms fuzzy quantity or fuzzy n-pole
rather than fuzzy number (continuous or finite), because in the literature one
often demands that the distribution of a fuzzy number verifies certain convexity
properties, cf. e.g. and [4], [5]; clearly the notions of irrelevance (complete or
partial) as discussed here do have an obvious bearing also upon the arithmetics
of fuzzy numbers stricto sensu. The present authors deem that one should feel
free to speak about finite, countable or continuous fuzzy numbers, exactly as one
speaks about finite, countable or continuous random numbers, however unruly
their distribution might be. Actually, a general principle that we are defending
below is that fuzzy arithmetics had be better developed so as to mimic random
arithmetics rather than crisp arithmetics. In the latter an implication such as x =
y ⇒ x × y = x2 is quite trivial, but, if one assumes that X = Y simply means2

that X and Y are equidistributed, whatever their interaction, the corresponding
implication is in general false both in a random and in a fuzzy setting; cf. above
and cf. also the final remark.

Some basic notions are quickly re-taken in the next section; the reader is
referred to standard texts on fuzziness and possibilities, e.g. to [3], [5], [4].

2 Preliminaries: α-Slices and α-Chunks

Fuzzy quantities with a finite support are called below n-poles if n is the size of
the support. The marginal possibility distributions ΠX = [μ1 = 1 ≥ μ2 ≥ . . . ≥
μn] and ΠY = [ν1 = 1 ≥ ν2 ≥ . . . ≥ νm] are fixed, but the joint distribution
Π = ΠXY is not:

πi,j = Poss{X = xi, Y = yj} , 1 ≤ i ≤ n, 1 ≤ j ≤ m (1)

μi = Poss{X = xi} = max
1≤j≤m

πi,j , νj = Poss{Y = yj} = max
1≤i≤n

πi,j

2 Only a sophistic philosopher would ask whether the two crisp 7’s in 7× 7 are or are
not the “same” 7 and how they “relate” to each other, even if the first is an abscissa,
say, while the second is an ordinate, but the corresponding question is inescapable
in a random or in a fuzzy setting, since “probably 7 × probably 7” or “vaguely 7
× vaguely 7” may yield different results depending on how the two equidistributed
factors relate to each other. Probabilists have come to terms quite successfully with
this fishy point, and write X = Y only when the two factors are deterministically
equal, being contented with something like PX = PY in the case when they are only
equidistributed.
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Ordering the two marginal distributions as we did entails no real restriction
but is quite convenient. Without risk of confusion Π denotes both the joint
distribution and the corresponding n×m matrix with possibility πi,j in position
(i, j); we think of ΠX as a a column vector ordered bottom down and of ΠY as
row vector ordered left to right. We deal only with joint distributions Π that
are admissible, i.e. compatible with the two pre-assigned marginal distributions
ΠX and ΠY .

A remarkable case of joint distribution is non-interactivity when πi,j =
min[μi, νj ]; observe that in this case all rows and columns in the matrix Π are
monotone. One has drastic interactivity when the matrix Π is all-zero, save for
its top row and its leftmost column which are equal to ΠY and ΠX , respectively.
If X and Y are equidistributed, ΠX = ΠY , one has deterministically equality
when the matrix Π is all-zero save for its main diagonal, where πi,i = μi = νi.

To resume we give the following outline:

Synopsis 1. Admissible joint possibilities: Poss{X = xi, Y = yj} = πi,j with
the prescribed marginal possibilities
Marginal possibilities: Poss{X = xi} = max1≤j≤m πi,j , Poss{Y = yj} =
max1≤i≤n πi,j

Non-interactivity: Poss{X = xi, Y = yj} = min[Poss{X = xi},Poss{Y = yj}]
Drastic interactivity: πi,j = 0 unless i = 1 or j = 1; the top row and the leftmost
column of the matrix Π are equal to ΠY and ΠX , respectively
Deterministic equality (only for ΠX = ΠY ): πi,j = 0 unless i = j; the main
diagonal of the matrix Π is equal to ΠY = ΠX

We shall deal with binary3 operations Z = X ◦ Y which take on δ distinct
values z, δ ≤ m× n:

Poss{Z = z} = max
x,y:x◦y=z

Poss{X = x, Y = y} (2)

Writing degrees of membership rather than possibilities and assuming non-
interactivity, one re-finds the formula based on Zadeh’s extension principle as
usually stated in fuzzy arithmetics, cf. e.g. [4], [5].

As an example, let us have a look at dipoles, n = m = 2, assuming ΠX = ΠY ;
with 0 < ξ ≤ 1, a check shows that there are essentially two cases, i.e. case I:

y1 y2 = ym
x1 1 ξ

x2 = xn ξ ζ

0 ≤ ζ ≤ ξ, which gives non-interactivity for ζ = ξ and drastic interactivity for
ζ = 0, and case II:

y1 y2
x1 1 τ
x2 η ξ

3 We think of the supports of X and Y as ordered according to their possibilities, and
not the values they take on. Actually, we shall never explicitly use the fact that the
three supports of X, Y and Z are made up of numbers, and so, in this sense, we are
slightly generalising with respect to discrete fuzzy numbers as in [7].
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0 ≤ η ≤ τ ≤ ξ, which gives deterministic equality for η = τ = 0 and again
non-interactivity for η = τ = ξ (case I and II overlap for ξ = ζ = η = τ).

Let us move to general n × m joint distributions Π = ΠXY . Let r be the
number of distinct entries in the join of ΠX and ΠY and let α be one of these
entries: α might occur as a (possibly repeated) component only in ΠX , only in
ΠY or in both ΠX and ΠX . One has

r ≤ n +m− 1 (3)

since α = 1 occurs at least once both in ΠX and in ΠY . We are going to partition
the matrix Π into r “slices”, one for each α. Note that the following definition
involves only ΠX and ΠY but does not involve the joint distribution ΠXY . The
“geometric” notions defined below serve only to be able to state the lemmas and
the theorem of Section 3 in a compact way.

Definition 1. α-slices and α-chunks: An α-slice is made up of all the positions
(i, j) in the matrix Π such that either [μi = α and νj ≥ α] or [μi ≥ α and
νj = α]. If α occurs only in ΠX the α-slice is called horizontal, if it occurs only
in ΠY the α-slice is called vertical, else it is called angular. If α occurs in ΠX ,
a horizontal α-chunk is made up of all the positions (i, j) in the α-slice with a
fixed i; if α occurs in ΠY , a vertical α-chunk is made up of all the positions
(i, j) in the α-slice with a fixed j.

Only angular slices have both horizontal and vertical chunks, and then each
horizontal chunk intersects each vertical one (when we say “intersects”, we mean
that the intersection is not void); if α has k occurrences in ΠX there are k
horizontal α-chunks, if α has h occurrences in ΠY there are h vertical α-chunks
(an angular α-slice might be a rectangle, e.g. this always happens for α = 1). As
an example with marginal possibilities 1 > ξ > ζ > θ take:

1 ξ ξ ζ θ
1 � � •
ζ • • • •
θ

(4)

where stars evidence the ξ-slice (a vertical slice, because ξ heads only columns,
which is partitioned into two vertical chunks, one position each), while bullets
evidence the ζ-slice (an angular one, as ζ heads both a column and a row);
the latter slice has two chunks, one horizontal and one vertical, intersecting at
position (2, 4); the 1-chunk coincides with position (1,1), the angular θ-chunk
consists of the bottom row and the right-most column. As a further example let
us go back to dipoles, ξ < 1: the 1-slice boils down to the single position (1, 1),
while the ξ-slice takes over the remaining three positions; in the latter slice there
are two ξ-chunks intersecting at position (2, 2), one horizontal and one vertical.

The following lemma, actually a characterization of admissible distributions,
is quite obvious, since μi is the maximum over its row and νj is the maximum
over its column:
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Lemma 1. In an admissible joint distribution Π the positions in an α-slice
whose entries are equal to α appear in all the horizontal α-chunks if the slice
is horizontal, in all the vertical α-chunks if the slice is vertical, and in all the
horizontal plus all the vertical α-chunks if the slice is angular; all the remaining
entries in the α-slice, if any, are < α.

3 Results and Examples

We come to the key notion in this paper:

Definition 2. Irrelevance: Given ΠX and ΠY , the admissible joint distribution
Π is irrelevant for the binary operation ◦ when the distribution of Z = X ◦ Y is
the same whatever the admissible Π.

Definition 3. Stability: A set of positions (i, j) in Π is called α-stable, if it has
the same maximum joint possibility α whatever the admissible joint distribution
Π with the pre-assigned marginal distributions ΠX and ΠY . A partition into δ
sets of the n ×m positions (i, j) is called stable if each of its δ sets is α-stable
for some of the α’s.

Such a partition will be also called a stable δ-chotomy of the matrix Π . From
(2) one soon derives:

Lemma 2. The admissible joint possibility distribution Π is irrelevant with re-
spect to the binary operation ◦ if and only if the δ counterimages {(i, j) : xi◦yj =
z} give back a stable δ-chotomy of the matrix Π.

The structure of α-stable sets and so of stable δ-chotomies will be made clear
by the following two results:

Lemma 3. A set of positions is α-stable if and only if the following conditions
are met: i) it does not intersect any β-slice with β > α, ii) it includes at least
an α-chunk.

Proof. Sufficiency is obvious, just use lemma 1. We move to necessity. Observe
that in the special case of admissible non-interactivity all the entries in the β-
slices with β > α are > α, and so i) has to hold. As for ii), assume that the α-slice
is horizontal and no horizontal α-chunk is included. Then, if α occurs k times in
ΠX there are k positions in distinct rows that are left out. Construct as follows a
joint Π that is soon checked to be admissible: Π coincides with non-interactivity
outside the α-slice, is all-zero inside the α-slice, save over those k positions where
it is equal to α. Clearly, this admissible Π would violate stability. In the case
when the α-slice is horizontal or angular one proceeds in a similar way.

Theorem 1. A δ-chotomy of Π is stable iff each of its δ sets includes at least
one α-chunk plus possibly some positions in β-slices with β ≤ α.

The theorem is a straightforward consequence of Lemma 2 and 3. The corollary
below gives a quick way to spot cases when there cannot be irrelevance.
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Lemma 4. There are at most max[k, h] disjoint α-stable sets with the same α,
where k = k(α) is the number of occurrences of α in ΠX and h = h(α) is the
number of its occurrences in ΠY .

Proof. Recall that any horizontal α-chunk intersects any vertical α-chunk, and
so to have disjoint α-chunks they must be all horizontal or all vertical.

Because of the preceding lemma and of Theorem 1 stable partitions are neces-
sarily δ-chotomies with δ ≤ ρ, where

ρ =̇
∑

1≤ι≤r

max[k(αι), h(αι)] (5)

Recall that r is the number of distinct components αi in the join of ΠX ad ΠY ,
cf (3), while k and h are defined in Lemma 4. So, one has:

Corollary 1. A necessary condition for irrelevance is that the operation ◦ takes
on at most ρ distinct values.

Example 1. Let ΠX = ΠY = [1 > μ2 > μ3] be given with support {3, 2, 1}; in
this case ρ = r = 3; the three slices are angular, each with one horizontal and one
vertical chunk (for α = 1 the two chunks coincide). We take into account the sum
X + Y , the product XY , X ◦Y =̇X , the maximum X ∨Y , the minimum X ∧Y ,
X ∗Y =̇XY ∧3, X 
Y =̇(X+Y )∧3. The question is: when does one need to know
also joint possibilities to perform the operation? Sum and product take on too
many distinct values, cf. the last corollary, and so the interaction is relevant. It
is relevant also for X ∗Y , as the counterimage of 2 is (3, 2) and (2, 3) and so does
not include any appropriate chunk, and also for X∨Y , as the two counterimages
of 2 and 1 do not include chunks, cf. Theorem 1. Instead, Theorem 1 implies
that irrelevance holds for X ◦Y , X ∧Y and X 
Y . Let us go back to Z = X ∨Y ;
one has ΠZ = [1, μ2, μ3] both for non-interactivity and deterministic equality,
as soon checked; instead, if the admissible joint distribution Π is drastic, cf.
Section 2, one has ΠZ = [1, 0, 0]: so, one has only “partial irrelevance”, cf. the
Introduction.

Final Remark. In fuzzy arithmetics one may come across claims as:

in general X −X �= 0

which means that, when X and Y are equidistributed but non-interactive, in
general their difference X−Y is not crisp 0; of course, were they deterministically
equal, their difference would be equal to crisp 0. We prefer to write

in general ΠX = ΠY does not imply X − Y = crisp 0

while of course X −X (X − Y with X and Y deterministically equal) is always
crisp 0, precisely as happens in probability. So, once more: to operate on ran-
dom and fuzzy quantities one should specify quite clearly how they inter-relate.
However, theorem 1 tells one that there are special cases when this piece of in-
formation is irrelevant; corollary 1 gives a simply way to check that irrelevancy
cannot hold, because the binary operation takes on “too many” distinct values.
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Abstract. This paper deals with methods for ranking fuzzy intervals
in connection with probabilistic and interval orderings. According to the
interpretation of a fuzzy interval, various such extensions can be laid
bare. In this paper, we especially consider extensions of probabilistic or-
derings using possibilistic interpretations of fuzzy intervals, crisp substi-
tutes thereof, and gradual numbers. This framework can encompass the
comparison of fuzzy random variables: coupling one form of probabilistic
comparison with one form of interval comparison induces a method for
ranking random fuzzy intervals.

1 Introduction

The comparison of fuzzy intervals has generated a plethoric literature, unfortu-
nately quite scattered and with many ad hoc proposals. Some authors such as
Yuan [21], Wang and Kerre [19] tried to organize the set of existing methods,
distinguishing the ones that change fuzzy intervals into precise numbers so as to
get a ranking, from the ones that build fuzzy dominance relations. They also pro-
posed some postulates any reasonable fuzzy interval comparison method should
satisfy. Another possible guiding line for classifying comparison methods is to
rely on the fact that fuzzy intervals generalize intervals, and represent a form of
uncertainty. We can then propose a joint extension of interval and probability
distribution comparison [8]. For classical intervals, the so-called interval order-
ing was proposed by Fishburn [12] and there also exists the canonical ordering
induced by the interval extension of the maximum and the minimum. In proba-
bility theory, there exists stochastic dominance of the first order and statistical
preference relations between random variables. Putting them together leads to
recovering known fuzzy interval comparison methods. This point of view also
naturally leads to handle the comparison of fuzzy random variables. In a previ-
ous article [1] a generalisation of stochastic dominance to random fuzzy intervals
was proposed viewing fuzzy intervals as nested classical ones. In the present arti-
cle, fuzzy intervals are viewed as possibility distributions or as classical intervals
of gradual numbers [14]. Defuzzification methods for random fuzzy intervals are
also exploited under this point of view.

The paper is organized as follows: in the next Section, we recall some def-
initions and properties useful for the rest of the paper, namely techniques for
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comparing intervals, probabilistic variables and gradual numbers. In Section 3,
we study ranking methods for fuzzy intervals interpreted as possibility distribu-
tions or standard intervals of gradual numbers. In Section 4, we define extensions
of stochastic dominance and statistical preference to fuzzy random variables us-
ing their level cuts and possibility and necessity measures, as well as gradual
numbers, and provide some of their properties. In Section 5 we briefly con-
sider extensions of statistical preference. This paper complements another one
[1] based on the random set interpretation.

2 Preliminaries

A fuzzy interval can be viewed as a generalized interval [9] and a relaxation of
the notion of probability distribution [7]. More precisely there exist basically
four interpretations of a fuzzy interval [8]:

1. An ordinal possibility distribution where possibility degrees reflect similarity
to plausible values: probabilistic comparisons can be reformulated by chang-
ing probability into possibility and necessity [10].

2. A consonant random interval [11]: it is then natural to envisage probabilistic
extensions of interval orders (see [3,5]).

3. A standard interval of gradual numbers [14]: then one must define methods
for comparing gradual numbers and extend them to intervals thereof.

4. A probability family [7]: one may then consider interval extensions of prob-
ability distribution comparisons.

One then obtains an organized range of well-founded fuzzy interval comparison
methods (to be compared with one another). This framework also lends itself to
the comparison of random fuzzy intervals.

In this paper we focus on the first and the third points of view. The second
point of view, in connection with first order stochastic dominance, was considered
in [1]. Let us recall basic notions of comparison between intervals and random
variables, as well as more recent gradual numbers.

2.1 Ranking Intervals

Let A = [a, a] and B = [b, b] be two intervals. Thus a, a, b and b are real numbers
with a ≤ a and b ≤ b. The ranking of intervals A and B relies on one of the four
relations >i, i = 1, 2, 3, 4, defined as follows:

[a, a] >1 [b, b] ⇔ a > b; [a, a] >2 [b, b] ⇔ a > b (1)

[a, a] >3 [b, b] ⇔ a > b; [a, a] >4 [b, b] ⇔ a > b. (2)

The relation >1 is the strongest, >4 is the weakest,>2 and >3 are of intermediary
strength. Indeed the following properties hold:
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– A >1 B ⇒ A >2 B ⇒ A >4 B; A >1 B ⇒ A >3 B ⇒ A >4 B.
– A ≥4 B if and only if ¬(B >1 A).

The following known interval comparison techniques can be retrieved:

– The relation >1 is the interval order (Fishburn [12]).
– Interval extension of the usual ordering: [a, a] � [b, b] iff a ≥ b and a ≥ b.

Indeed A � B iff max([a, a], [b, b]) = [a, a] iff min([a, a], [b, b]) = [b, b].
– Subjective (pessimistic/optimistic) ordering à la Hurwicz:

[a, a] >λ [b, b] iff λa + (1 − λ)a > λb + (1 − λ)b, λ ∈ [0, 1].
Moreover A � B iff [a, a] >λ [b, b], ∀λ ∈ [0, 1].

2.2 Comparison of Random Variables

Let (Ω × Ω,F , P ) be a joint probability space. The statistical preference of a
random variable a# on Ω over another one b# is: P (a# > b#) = P ({(ω, ω′) :
a#(ω) > b#(ω′)}). One often chooses between two kinds of assumptions on
random variables, with densities pa and pb respectively. They can be:

– Continuous and independent: P (a# > b#) =
∫

x>y
pa(x)pb(y)dxdy;

– Functionally related: P (a# > b#) = P ({ω : a#(ω) > b#(ω)})(ω = ω′).

From such a valued relation, one may define, for each threshold 1 > θ ≥ 0.5
relation >P

θ between two random variables a# and b#:

a# >P
θ b# ⇐⇒ P (a# > b#) > θ.

For continuous random variables and θ = 0.5 one may consider the relation:

a# >P b# ⇐⇒ P (a# > b#) > P (b# > a#). (3)

This relation >P may involve cycles (a Condorcet effect). Cycles with length 3
can be eliminated by choosing θ sufficiently high (as in De Baets et al.[7]).

There also exists 1rst order stochastic dominance: a# is stochastically dom-
inated by b# if ∀x ∈ R, P ({ω : a#(ω) > x}) ≤ P ({ω : b#(ω) > x}), in other
words, the inequality Fa(x) ≥ Fb(x), ∀x ∈ R holds between cumulative distribu-
tions Fa and Fb of a# and b# respectively.

Finally, in many applications (e.g. decision theory) comparing random vari-
ables comes down to comparing the mean values of a# and b# (or their trans-
forms by a monotonic function).

2.3 Comparison of Gradual Numbers

A gradual number [14] is a mapping r̃ : (0, 1] −→ R that assigns to any positive
α ∈ (0, 1] a real number r̃(α) = rα. A typical example of gradual number is
the converse of a cumulative probability distribution F−1 that is used in Monte-
Carlo simulations, namely for any randomly chosen α a real value F−1(α) is
computed. However there is no monotonicity requirement for gradual numbers,
which cannot be interpreted as membership functions.

Let r̃ and s̃ be two gradual numbers. The comparison between gradual num-
bers can be based on any of the following approaches:
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– A partial ordering between r̃ and s̃ is naturally defined as

r̃ ≥ s̃ iff rα ≥ sα, ∀α ∈ (0, 1]. (4)

In some way, it generalizes stochastic dominance of probability distributions
to non-monotonic functions ]0, 1] −→ R.

– Comparing gradual numbers can also be achieved by evaluating the length
of zones in [0, 1] where rα > sα and those where rα < sα:

r̃ >P s̃ iff
∫ 1

0

1rα≥sαdα >

∫ 1

0

1rα≤sαdα (5)

Clearly, if r̃ = F−1
X , s̃ = F−1

Y and variables X and Y are linked in the sense
that y = F−1

Y (FX(x)), the statistical preference relation >P between such
random variables is retrieved.

– Another method consists in exploiting the surfaces between gradual numbers:

r̃ >S s̃ iff
∫ 1

0

max(0, rα − sα)dα >

∫ 1

0

max(0, sα − rα)dα. (6)

– Finally, it is natural to summarize a gradual number r̃ by the value m(r̃) =∫ 1

0
rαdα. This evaluation generalizes the mean value of a random variable to

gradual numbers. It is easy to check that r̃ >S s̃ iff m(r̃) > m(s̃).

3 Ranking Fuzzy Intervals

Definition 1 (Fuzzy intervals [9]). A fuzzy interval Ã is a fuzzy set of real
numbers characterized by a membership function μÃ taking its values on the unit
interval such that:

– ∃a, a ≥ a, ∀x ∈ [a, a], μA(x) = 1.
– μÃ(λx1 + (1 − λ)x2) ≥ min(μÃ(x1), μÃ(x2)), ∀λ ∈ [0, 1] and ∀x1, x2 ∈ R.

The α−cut Ãα of Ã is then an interval defined as follows: Ãα =
{
x : μÃ(x) ≥ α

}
=

[aα, aα], where aα = inf Ãα and aα = sup Ãα In this Section, we consider fuzzy
intervals as possibility distributions and classical intervals of gradual numbers
and recall the corresponding ranking methods.

3.1 Ranking Ordinal Possibility Distributions

Consider Ã, B̃ two fuzzy intervals with membership functions μÃ and μB̃ re-
spectively. The possibility and necessity of Ã ≤ B̃, denoted respectively by
pos(Ã ≤ B̃) and nec(Ã ≤ B̃) are well-known [10] and defined as follows:

pos(Ã ≥ B̃) = sup
x≥y

(min(μÃ(x), μB̃(y)); (7)

nec(Ã > B̃) = 1 − pos(Ã ≤ B̃) = 1 − sup
x≤y

(min(μÃ(x), μB̃(y)) (8)
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They are the possibilistic counterparts of statistical preference relations, and
such that nec(Ã > B̃) > 0 =⇒ pos(Ã > B̃) = 1. It is obvious [6] that the
following connections with interval order hold:

1. pos(Ã ≥ B̃) ≥ α iff Ãα ≥4 B̃α iff aα ≥ bα

2. nec(Ã ≥ B̃) ≥ α iff Ã1−α ≥1 B̃1−α iff a1−α ≥ b1−α

To retrieve other relations >2, >3 let us express them as follows on intervals:
A >2 B if ∀x ∈ A, ∃y ∈ B : x > y and A >3 B if ∃x ∈ A, ∀y ∈ B : x > y (for
A >1 B and A >4 B, one must use ∀ twice and ∃ twice respectively).

The gradual extension of >2, >3 is then:

nec2(Ã > B̃) = inf
x

max(1 − A(x), sup
x>y

B(y)); (9)

pos3(Ã > B̃) = sup
x

min(A(x), inf
x≤y

1 − B(y)). (10)

Then, as expected: nec2(Ã > B̃) ≥ α iff Ã1−α ≥2 B̃α iff a1−α ≥ bα and pos3(Ã >

B̃) ≥ α iff Ãα ≥3 B̃1−α iff aα ≥ b1−α. Note that supx>y B(y) = pos3(x > B̃) =
pos(x > B̃) and infx≤y 1 − B(y) = nec2(x > B̃) = nec(x > B̃).

3.2 Ranking Fuzzy Intervals as Intervals of Gradual Numbers

A fuzzy interval Ã can be viewed as an interval of gradual numbers obtained
by picking a number in each α-cut of Ã. Mappings α → aα and α → aα define
gradual numbers ã and ã. A fuzzy interval can thus be viewed as a standard
interval of gradual numbers, bounded by ã and ã [14]:

Ã = {r̃ : aα ≤ r̃(α) ≤ aα, ∀α ∈ (0, 1]} = {r̃ : ã ≤ r̃ ≤ ã} = {r̃ : r̃ ∈ Ã}.
Then we can retrieve a number of ranking methods as follows:

1. The fuzzy intervals can be compared using interval relations >i on gradual
bounds of Ã and B̃. Using the partial order r̃ ≥ s̃ we define Ã ≥1 B̃ as aα ≥
bα, ∀α ∈ [0, 1], which enforces nec(Ã ≥ B̃) = 1. Likewise, Ã ≥4 B̃ comes
down to poss(Ã ≥ B̃) = 1. In contrast, Ã ≥2 B̃ reads aα ≥ bα, ∀α ∈ [0, 1],
i.e., ã ≥ b̃ and Ã ≥3 B̃ reads aα ≥ bα, ∀α ∈ [0, 1], i.e., ã ≥ b̃.
Joining these two relations, one retrieves Ã � B̃ if and only if m̃ax(Ã, B̃) =
Ã, where m̃ax is the function max extended to fuzzy intervals. The Hurwicz
criterion can also be extended to a partial order: Ã ≥λ B̃ if ∀α ∈ (0, 1]:λaα +
(1 − λ)aα ≥ λbα + (1 − λ)bα. It can be read λã + (1 − λ)ã ≥ λb̃ + (1 − λ)b̃.

2. Some defuzzification-based ranking methods can be interpreted in the grad-
ual number setting. For instance, Yager index [20] replaces Ã by the scalar
value:

Y (Ã) =
∫ 1

0

(
aα + aα

2
)dα. (11)

It can be retrieved as the mean value m( ã+ã
2 ) of the gradual mid-point

α → aα+aα

2 . The approach by L. Campos, A. Munoz [2] is also retrieved by
computing the Hurwicz-like index, that takes the form m(λã + (1 − λ)ã).
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3. The order relation >S based on comparisons of surfaces between gradual
numbers is used by Fortemps and Roubens [13] among many others. The
method they propose comes down to separately comparing ã and b̃, then
ã and b̃ by >S (by surfaces

∫ 1

0 max(0, aα − bα)dα, etc., as in (6)) and fi-
nally compare the sum of these contributions. It is equivalent to checking if

m( ã+ã
2 ) ≥ m( b̃+b̃

2 ).

4 Stochastic Dominance of Fuzzy Random Variables

Fuzzy random variables were first introduced by Kwakernaak [16] as follows:

Definition 2. A fuzzy random variable X̃# is a function from a probability
space (Ω, F, P ) to a set of fuzzy intervals FI(R) assigning to each ω ∈ Ω a fuzzy
interval X̃(ω).

Given the α-cut X̃α(ω) = [x̃α(ω), x̃α(ω)], it holds x̃α(ω) = inf {x/X(ω)(x) ≥ α},
x̃α(ω) = sup {x/X(ω)(x) ≥ α}. They are dependent real random variables (via
the choice of ω). In the following we generalize stochastic dominance to fuzzy
random variables, using specific orderings of fuzzy intervals, based on possibility
and necessity of dominance, and based on gradual numbers.

4.1 Stochastic Dominance of Fuzzy Random Variables Using
Possibilty and Necessity

Let Ã# and B̃# be two fuzzy random variables and α-pos and β-nec denote
respectively α-possibly and β-necessarily.

1. Ã# ≤s.d
(α-pos,β-nec) B̃# (Ã# is (α-pos, β-nec)-stochastically dominated by B̃#)

if: P
{
ω : pos(Ã(ω) > x) ≥ α

}
≤ P
{
ω : nec(B̃(ω) > x) ≥ β

}
, ∀x ∈ R

2. Ã# ≤s.d
(α-pos,β-pos) B̃# (Ã# is (α-pos, β-pos)-stochastically dominated by B̃#)

if P
{
ω : pos(Ã(ω) > x) ≥ α

}
≤ P
{
ω : pos(B̃(ω) > x) ≥ β

}
, ∀x ∈ R

3. Ã# ≤s.d
(α-nec,β-nec) B̃# (Ã# is (α-nec, β-nec)-stochastically dominated by B̃#)

if P
{
ω : nec(Ã(ω) > x) ≥ α

}
≤ P
{

ω : nec(B̃(ω) > x) ≥ β
}

, ∀x ∈ R

4. Ã# ≤s.d
(α-nec,β-pos) B̃# (Ã# is (α-nec, β-pos)-stochastically dominated by B̃#)

if P
{
ω : nec(Ã(ω) > x) ≥ α

}
≤ P
{

ω : pos(B̃(ω) > x) ≥ β
}

, ∀x ∈ R

The form ≤s.d
(α-pos,β-nec) is the strongest,≤s.d

(α-nec,β-pos) is the weakest and ≤s.d
(α-pos,β-pos)

and ≤s.d
(α-nec,β-nec) are intermediary, due to the implications between them as fol-

lows:

Proposition 1. Let Ã# and B̃# be two fuzzy random variables on a probability
space (Ω, F, P ) and α, β two real numbers in the interval ]0, 1]. We have then:
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1. Ã# ≤s.d
(α-pos,β-nec) B̃# ⇒ Ã# ≤s.d

(α-nec,β-nec) B̃# ⇒ Ã# ≤s.d
(α-nec,β-pos) B̃#.

2. Ã# ≤s.d
(α-pos,β-nec) B̃# ⇒ Ã# ≤s.d

(α-pos,β-pos) B̃# ⇒ Ã# ≤s.d
(α-nec,β-pos) B̃#.

3. Ã# ≤s.d
(α-q,β-nec) B̃# ⇒ Ã# ≤s.d

(α-q,β-pos) B̃#, ∀q ∈ {pos, nec} , ∀α, β ∈ [0, 1]

4. Ã# ≤s.d
(α-pos,β-r) B̃# ⇒ Ã# ≤s.d

(α-nec,β-r) B̃#, ∀r ∈ {pos, nec} , ∀α, β ∈ [0, 1]

For given any q ∈ {pos, nec} and r ∈ {pos, nec} , the relation ≤s.d
(α-q,β-r) becomes

stricter when α decreases and/or β increases.

Proposition 2. 1. Ã# ≤s.d
(α-q,β-r) B̃# ⇒ Ã# ≤s.d

(γ-q,β-r) B̃#, ∀q, r ∈ {pos, nec}
and ∀α, β, γ ∈ [0, 1] such that γ ≥ α.

2. Ã# ≤s.d
(α-q,β-r) B̃# ⇒ Ã# ≤s.d

(α-q,δ-r) B̃#, ∀q, r ∈ {pos, nec} and ∀α, β, δ ∈
[0, 1] such that δ ≤ β.

3. Ã# ≤s.d
(α-q,β-r) B̃# ⇒ Ã# ≤s.d

(γ-q,δ-r) B̃#, ∀α, β, γ, δ ∈ [0, 1] such that γ ≥ α
and δ ≤ β.

Proposition 3. The relations ≤s.d
(α-p,β-q), p, q ∈ {pos, nec} are transitive under

some assumptions:

1. Ã# ≤s.d
(α-q,β-r) B̃# and B̃# ≤s.d

(γ-r,δ-t) C̃# implies Ã# ≤s.d
(α-q,δ-t) C̃#.

for all q, r, t ∈ {pos, nec} and α, β, γ, δ ∈ [0, 1] such that γ ≤ β.

2. Ã# ≤s.d
(α-q,β-nec) B̃# and B̃# ≤s.d

(γ-pos,δ-t) C̃# implies Ã# ≤s.d
(α-q,δ-t) C̃#.

for all q, t ∈ {pos, nec} and α, β, γ, δ ∈ [0, 1] such that γ ≤ β.

Relations between stochastic dominance of fuzzy random variables using possi-
bility and necessity and stochastic dominance of random intervals can be proved
(note that P (Ã#

α >1 x) = P (Ã#
α >2 x) and P (Ã#

α >3 x) = P (Ã#
α >4 x)):

Proposition 4. Let Ã# and B̃# be two fuzzy random variables. ∀α ∈ (0, 1):

1. Ã# ≤s.d
(α-pos,(1−α)-nec) B̃# iff P (Ãα >3 x) ≤ P (B̃α >1 x), ∀x ∈ R

2. Ã# ≤s.d
(α-pos,α-pos) B̃# iff P (Ãα >3 x) ≤ P (B̃α >3 x), ∀x ∈ R

3. Ã# ≤s.d
((1−α)-nec,(1−α)-nec) B̃# iff P (Ãα >1 x) ≤ P (B̃α >1 x), ∀x ∈ R

4. Ã# ≤s.d
((1−α)-nec,α-pos) B̃# iff P (Ãα >1 x) ≤ P (B̃α >3 x), ∀x ∈ R

4.2 Stochastic Dominance of Fuzzy Random Variables Using
Gradual Random Variables

As fuzzy random variables take values on fuzzy intervals, they are also random
intervals of gradual numbers. We must study gradual random variables.

Definition 3. A gradual random variable s̃# is a function ω → s̃(ω) from a
probability space (Ω, F, P ) to a set of gradual numbers GN(R).
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Remark. For ω ∈ Ω, s̃(ω) is a gradual number, thus ∀α ∈ (0, 1], s̃(ω)(α) is a real
number that we denote by sα(ω). Consequently ∀α ∈ (0, 1], s̃#

α is a real random
variable on (Ω, F, P ).

Using definitions of stochastic dominance of real random variables and ranking
methods for gradual numbers, we define stochastic dominance of gradual random
variables as follows:

Definition 4. Let t̃# and s̃# be two gradual random variables. t̃# is stochasti-
cally dominated by s̃#, denoted by t̃# ≤s.d s̃# if ∀α ∈ (0, 1], P {ω : tα(ω) > x} ≤
P {ω : sα(ω) > x}, ∀x ∈ R.

In other words the stochastic dominance of a gradual random variable t̃# by
another one s̃# is equivalent to the stochastic dominance of the real random
variable tα by sα, ∀α ∈ (0, 1]

Using properties of possibility and necessity, we establish a connection between
stochastic dominance of fuzzy random variables, using possibility and necessity
and stochastic dominance of random gradual numbers.

Proposition 5. For any two fuzzy random variables Ã# and B̃#, ∀α, β ∈
(0, 1) :

– Ã# ≤s.d
(α-pos,β-nec) B̃# iff (ã

#
)α ≤s.d (̃b

#
)1−β;

– Ã# ≤s.d
(α-pos,β-pos) B̃# iff (ã

#
)α ≤s.d (̃b

#

)β ;

– Ã# ≤s.d
(α-nec,β-nec) B̃# iff (ã#)1−α ≤s.d (̃b

#
)1−β;

– Ã# ≤s.d
(α-nec,β-pos) B̃# iff (ã#)1−α ≤s.d (̃b#)β .

A form of stochastic dominance between fuzzy random variables can be obtained
by stochastic dominance of fuzzy gradual numbers ã# and ã

# bounding them.
Four ordering relations Ã# >i

s.d. B̃# are obtained, that extend relations >i, i =
1, 2, 3, 4:

– Ã# ≥1
s.d. B̃# ⇐⇒ ∀r̃# ∈ Ã#, ∀s̃# ∈ B̃#, r̃# ≥s.d s̃#, i.e., ã# ≥s.d b̃

#

;

– Ã# ≥2
s.d. B̃# ⇐⇒ ∀r̃# ∈ Ã#, ∃s̃# ∈ B̃#, r̃# ≥s.d s̃#, i.e., ã# ≥s.d b̃

#
;

– Ã# ≥3
s.d. B̃# ⇐⇒ ∃r̃# ∈ Ã#, ∀s̃# ∈ B̃#, r̃# ≥s.d s̃#, i.e., ã

# ≥s.d b̃
#

;

– Ã# ≥4
s.d. B̃# ⇐⇒ ∃r̃# ∈ Ã#, ∃s̃# ∈ B̃#, r̃ ≥s.d s̃#, i.e., ã

# ≥s.d b̃
#

.

Relations between stochastic dominance of gradual random variables and stochas-
tic dominance of suitable real random variables are clear. For instance, Ã# ≥1

s.d.

B̃# iff ∀α ∈ (0, 1], (ã#)α ≥s.d (̃b
#

)α. In fact, Ã# >1
s.d. B̃# is very strong since

it implies that P (Ã# ∩ B̃# = ∅) = 1. Similar propositions could be written for
the three other relations.
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5 Statistical Preference between Fuzzy Random Variables

We only hint the extension of statistical preference to fuzzy random variables,
using possibilistic, fuzzy average, and gradual number comparisons.

We can define P (Ã# >P
θ B̃#) using possibilistic comparison relations between

fuzzy realizations Ã(ω) and B̃(ω′). For instance, a joint extension of >P
θ and

interval ordering is: Ã >1P
θ B̃ if P (nec(Ã# > B̃#) > nec(B̃# > Ã#)) ≥ θ,

which is affected by the dependence structure between Ã(ω) and B̃(ω′). But
nec(Ã(ω) > B̃(ω′)) > 0 implies nec(B̃(ω′) > Ã(ω)) = 0 so this definition comes
down to: Ã >1P

θ B̃ ⇐⇒ P (nec(Ã# > B̃#) > 0) > θ.
Three other notions of statistical preference between fuzzy random variables

can be defined, namely, Ã# >2P
θ B̃# (with valued relation nec2) Ã# >3P

θ B̃#

(with pos3) and Ã# >4P
θ B̃# ⇐⇒ B̃# ≥1P

θ Ã# (with pos).
Besides, there are several ways to define an average statistical preference:

1. using the mean value interval Im(Ã) = [
∫ 1

0
aαdα,

∫ 1

0
aαdα][11,17], we can

consider: P (Im(Ã#) >i Im(B̃#)) > θ ≥ 0.5, applying any of the four basic
interval comparison relations to Im(Ã(ω)) and Im(B̃(ω));

2. using the random variable induced by the λ-pessimistic value: mλ(Ã#)(ω) :
P (mλ(Ã#) > mλ(B̃#)) > θ;

3. using the fuzzy mean value of the fuzzy random variable: P (E(Ã#) >i

E(B̃#)) > θ ≥ 0.5, i = 1, 2, 3, 4, where E(Ã#) =
∫

Ω
Ã(ω)dP (ω) is a fuzzy

Aumann integral [18].

Using gradual numbers, P (s̃# > r̃#) ≥ θ must be defined first, and there are
several possible choices such as:

– using stochastic dominance inside: P ({(ω, ω′) : ∀α, sα(ω) > tα(ω′)}) ≥ θ or
yet ∀α ∈ (0, 1], P (sα# > rα#) ≥ θ, which is a weaker form;

– or with averages:
∫ 1

0
P (sα# > rα#)dα ≥ θ or P (m(s̃)(ω) >P

θ m(r̃)(ω′)}) > ρ;
– finally, nesting stochastic prererences: P ({(ω, ω′) : s̃(ω) >P

θ r̃(ω′)}) > ρ.

On this basis, several statistical preference relations P (Ã# >i B̃#) ≥ θ between
fuzzy random variables Ã# and B̃#, based on the four relations >i, can be
defined as P (Ã# >i B̃#) = P (s̃# > r̃#) choosing suitable fuzzy bounds of Ã#

and B̃# for s̃# and r̃#: for i = 1: s̃# = ã# and r̃# = b̃
#

; for i = 2: s̃# = ã# and

r̃# = b̃
#

; for i = 3: s̃# = ã
# and r̃# = b̃

#

; for i = 4: s̃# = ã
# and r̃# = b̃

#
.

Finally, the λ-pessimistic value can be used, deriving the gradual random
variable m̃λ(Ã(ω)) = λã(ω) + (1 − λ)ã(ω), and computing statistical preference
between fuzzy random variables using these random gradual number substitutes.

6 Conclusion

This paper pursues the study of fuzzy interval comparison methods from the
point of view of their relations to the comparison of intervals and random vari-
ables. While in [1] , we have considered fuzzy intervals as special cases of random
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intervals, here we consider fuzzy intervals as possibility distributions and as in-
tervals of gradual numbers. Remains to be studied the point of view of imprecise
probability on this question. One possible application of this approach to rank-
ing fuzzy intervals is to provide a systematic way of modelling fuzzy stochastic
constraints in linear programming problems.
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Óbuda University, Bécsi út 96/b, H-1034 Budapest, Hungary

{christer.carlsson,robert.fuller,jmezei}@abo.fi

Abstract. In this paper we introduce an interval-valued mean for interval-valued
fuzzy numbers. We also define a variance for interval-valued fuzzy numbers. We
discuss some basic properties of the new concepts. The mean value and variance
can be utilized as a ranking method for interval-valued fuzzy numbers.

1 Introduction

The concepts of mean value and variance play a fundamental role in probability and
possibility theory. In probability theory these basic characteristics of distributions can
be defined as expected values of specific functions of the random variables. Dubois [8]
showed that some concepts (e.g. mean value) in statistics can naturally be interpreted in
the context of possibility theory. In possibility theory, there exist several ways to define
mean value and variance of fuzzy numbers, for example, Dubois and Prade [5] defined
an interval-valued expectation of fuzzy numbers, viewing them as consonant random
sets; Yoshida et al. [22] introduced a possibility mean, a necessity mean and a cred-
ibility mean of fuzzy numbers; Liu [13] proposed a novel concept of expected value
for normalized fuzzy variables motivated by the theory of Choquet integrals. Grze-
gorzewski [10] defined the mean value of intuitionistic fuzzy numbers. Dubois et al. [7]
defined the potential variance of a symmetric fuzzy interval.

Carlsson and Fullér [3] defined the basic characteristics of fuzzy numbers based on
Laplace’s principle of Insufficient Reason: the possibilistic mean value (variance) of a
fuzzy number is the weighted average of probabilistic mean values (variances) of the
respective uniform distributions on the level sets of the fuzzy number. In this paper we
extend the results of [4] and generalize the definitions of [3] to a wider class of fuzzy
sets, namely interval-valued fuzzy numbers (IVFN’s). In 2010 Zhang and Jiang [24]
introduced the notations of weighted possibilistic mean and variance of IVFN’s. The
definitions introduced in [24] are significantly different from the results of this paper:
we present a different approach to extend the mean value and variance using a different
structure of level-sets.

IVFN’s (and in general type-2 fuzzy sets) are extensively used in different problems
of decision-making [21,15] and in financial modelling (stock index forecasting [11],
time to market prediction [1]). On the other hand, there are only a few quantitative
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methods to rank IVFN’s [20] which makes the use of this type of modelling difficult in
many situations. In this paper we show that the mean value and variance can be used to
obtain a ranking method for IVNF’s satisfying some reasonable properties.

This paper is organized as follows. After recalling some preliminary concepts in
Sect. 2, the crisp and interval-valued mean value of an IVFN are defined in Sect. 3.
In Sect. 4, we introduce the concept of variance for IVFN’s as the generalization of
the possibilistic variance. The new definitions are illustred in Sect. 5 where we employ
them for a project selection problem. Finally, conclusions are presented in Sect. 6.

2 Interval-Valued Fuzzy Numbers

A fuzzy number A is a fuzzy set in R with a normal, fuzzy convex and continuous
membership function of bounded support. The family of fuzzy numbers is denoted by
F . Fuzzy numbers can be considered as possibility distributions. An interval-valued
fuzzy set is defined by a mapping A from the universe X to the set of closed intervals
of [0, 1] [6]. Let A(u) = [A∗(u), A∗(u)], where A∗ and A∗ are called lower fuzzy
set and upper fuzzy set of A, respectively. An interval-valued fuzzy set is said to be
an interval-valued fuzzy number, if A∗ and A∗ are fuzzy numbers [16]. The family of
interval-valued fuzzy numbers will be denoted by IVFN. An IVFN is also a special case
of type-2 fuzzy sets introduced by Zadeh [23].

For the γ-level sets of A∗ and A∗ we will use the notations [A∗]γ = [a1(γ), a2(γ)],
[A∗]γ = [A1(γ), A2(γ)] and [A]γ = ([A∗]γ , [A∗]γ). If A,B ∈ IVFN, then their sum
A + B is defined by the max-min extension principle, with lower fuzzy set A∗ + B∗
and upper fuzzy set A∗ +B∗, that is,

[A+B]γ = ([A∗ +B∗]γ , [A∗ +B∗]γ) = [A]γ + [B]γ

for all γ ∈ [0, 1].
If A ∈ IVFN, then B ∈ F is an embedded fuzzy number of A if

A∗(u) ≤ B(u) ≤ A∗(u),

for all u ∈ R. The set of all the embedded fuzzy numbers of A ∈ IVFN will be denoted
by F(A).

The class of interval-valued fuzzy numbers can be characterized using a different
concept of level-sets introduced in [16]: the [γ1, γ2]-level set of A ∈ IVFN is defined as

A[γ1,γ2] = {x ∈ X : A∗(x) ≥ γ1, A
∗(x) ≥ γ2} = [AL([γ1, γ2]), AU ([γ1, γ2])].

An interval-valued fuzzy set, A, is an interval-valued fuzzy number if

1. A is normal, i.e., there exists x0 ∈ R, such that A(x0) = [1, 1],
2. For arbitrary [γ1, γ2] ∈ [I]− [0, 0], A[λ1,λ2] is a closed bounded interval.

We obtain the same class of IVFN’s if we use this definition and if we require that A∗

and A∗ are fuzzy numbers.
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Using the definition of [γ1, γ2]-level set, Zhang and Jiang [24] introduced the f -
weighted interval-valued possibilistic mean of A ∈ IVFN as

Ef (A) = [E−
f (A), E+

f (A)],

where

E−
f (A) =

∫ 1

0

∫ 1

γ1

AL([γ1, γ2])f([γ1, γ2])dγ2dγ1

and

E+
f (A) =

∫ 1

0

∫ 1

γ1

AU ([γ1, γ2])f([γ1, γ2])dγ2dγ1.

In this definition f : [I] → R is a non-negative, monotone increasing weighting func-
tion which satisfies the normalization condition∫ 1

0

∫ 1

γ1

f([γ1, γ2])dγ2dγ1 = 1.

The f -weighted possibilistic mean of A is the arithmetic mean of E−
f (A) and E+

f (A)
([24]):

Ēf (A) =
E−

f (A) + E+
f (A)

2
.

The authors showed that the f -weighted possibilistic mean is a linear operator.
Additionally, Zhang and Jiang [24] introduced the f -weighted variance of A ∈ IVFN

as

Varf (A) =

∫ 1

0

∫ 1

γ1

[
AU ([γ1, γ2])−AL([γ1, γ2])

2

]2
f([γ1, γ2])dγ2dγ1.

3 Mean Value for Interval-Valued Fuzzy Numbers

Following Carlsson, Fullér and Mezei [4] we will introduce a mean value for interval-
valued fuzzy numbers.

Definition 1 ([4]). A mean (or expected) value of A ∈ IVFN is defined as

E(A) =

∫ 1

0

γ(M(Uγ) +M(Lγ))dγ, (1)

where Uγ and Lγ are uniform probability distributions defined on [A∗]γ and [A∗]γ ,
respectively, and M stands for the probabilistic mean operator.

It is easy to see that

E(A) =

∫ 1

0

γ
A1(γ) +A2(γ) + a1(γ) + a2(γ)

2
dγ =

E(A∗) + E(A∗)
2

,
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where E(A∗) and E(A∗) denote the possibilistic mean value of A∗ and A∗, respec-
tively, as introduced by Carlsson and Fullér in 2001 [3]. In other words, the possibilistic
mean of an interval-valued fuzzy number is nothing else, but the arithmetic mean of the
mean values of its upper and lower fuzzy numbers. If A = A∗ = A∗ ∈ F is an ordinary
fuzzy number then this definition collapses into the possibilistic mean value introduced
in [3].

Note 1. Alternatively, we could use a different approach to define the mean value of
A ∈ IVFN by

E′(A) =

∫ 1

0

2γ
E(U ′

γ) + E(L′γ)
2

dγ =

∫ 1

0

γ(E(U ′
γ) + E(L′γ))dγ,

where U ′
γ and L′γ are uniform probability distributions on the [A1(γ), a1(γ)] and

[a2(γ), A2(γ)] (possibly degenerate) intervals, respectively. It is easy to see that E(A) =
E′(A).

The following lemma shows that the mean operator is linear in the sense of the max-min
extended operations addition and multiplication by a scalar on IVFN.

Lemma 1. If A,B ∈ IVFN and c ∈ R, then

1. E(cA) = cE(A),
2. E(A+B) = E(A) + E(B).

Example 1. We will calculate the possibilistic mean value of an interval-valued fuzzy
number with triangular lower and upper membership functions. The membership func-
tion of a triangular fuzzy number A can be written as,

A(x) =

⎧⎪⎪⎨⎪⎪⎩
1− a− x

α
if a− α ≤ x ≤ a

1− x− a

β
if a ≤ x ≤ a+ β

0 otherwise

and we use the notation A = (a, α, β). An interval-valued fuzzy number T = (T∗, T ∗)
of triangular form can be represented by six parameters T = (a, α, β;A, θ, τ) where
T∗ = (a, α, β) stands for its lower fuzzy number and T ∗ = (A, θ, τ) denotes its upper
fuzzy number. The γ-level sets of T∗ and T ∗ are

[T∗]γ = [a− (1− γ)α, a + (1− γ)β]

and
[T ∗]γ = [A− (1− γ)θ, A+ (1− γ)τ ],

respectively. We can calculate the possibilistic mean value of T as,

E(T ) =
E(T ∗) + E(T∗)

2
=

A+ a

2
+

β − α

12
+

τ − θ

12
.
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In order to define an inter-valued mean value (expectation) of A ∈ IVFN, we need to
consider the possibilistic mean values of all the embedded fuzzy numbers. It is easy to
see that the set

{u ∈ R | ∃B ∈ F(A) such that E(B) = u}

is an interval. We will use the notations E−(A) and E+(A) for the left and right end-
points of this interval, respectively.

Definition 2. An interval-valued mean (or expected) value of A ∈ IVFN is defined as

EI(A) = [E−(A), E+(A)].

It is easy to see that the embedded fuzzy number with the minimal (maximal) possi-
bilistic mean value is defined by the γ-level sets [A1(γ), a2(γ)] ([a1(γ), A2(γ)]). Using
this, the interval-valued possibilistic mean (or expected) value can be written as

EI(A) = [E−(A), E+(A)] =

[∫ 1

0

γ(A1(γ) + a2(γ))dγ,

∫ 1

0

γ(a1(γ) +A2(γ))dγ

]
.

E−(A) and E+(A) can be considered as the lower and upper possibilistic mean values
of A, respectively. The possibilistic mean value of A ∈ IVFN is nothing else but the
arithmetic mean of the lower and upper mean values of A:

E(A) =
E−(A) + E+(A)

2
.

The following lemma is a direct consequence of the definition:

Lemma 2. If A,B ∈ IVFN and c ∈ R, then

1. EI(cA) = cEI(A),
2. EI(A+B) = EI(A) + EI(B).

Example 2. To illustrate the interval-valued expectation of an A ∈ IVFN and to com-
pare this new definition to the f -weighted interval-valued possibilistic mean, we will
use the interval-valued fuzzy number of triangular form from Example 3.1 in [24]. The
upper and lower fuzzy numbers of A are defined as

A∗(x) =

⎧⎪⎪⎨⎪⎪⎩
1− 0.3− x

0.2
if 0.1 ≤ x ≤ 0.3

1− x− 0.3

2
if 0.3 ≤ x ≤ 2.3

0 otherwise

and

A∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− 0.3− x

0.1
if 0.2 ≤ x ≤ 0.3

1− x− 0.3

β
if 0.3 ≤ x ≤ 0.8

0 otherwise
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The lower and upper mean values can be calculated as

E−(A) =

∫ 1

0

γ(0.3− 0.2(1− γ) + 0.3 + 0.5(1− γ))dγ = 0.35

and

E+(A) =

∫ 1

0

γ(0.3− 0.1(1− γ) + 0.3 + 2(1− γ))dγ = 0.617.

From this, we obtain that the interval-valued mean of A is [0.35, 0.617] and the crisp
mean value is

E(A) =
E−(A) + E+(A)

2
= 0.48,

while the f -weighted interval-valued possibilistic mean and f -weighted possibilistic
mean calculated in [24] are [0.402, 0.542] and 0.472, respectively.

4 Variance for Interval-Valued Fuzzy Numbers

Now we will introduce a variance for interval-valued fuzzy numbers.

Definition 3. The possibilistic variance of A ∈ IVFN is defined as

Var(A) =

∫ 1

0

γ(var(Uγ) + var(Lγ))dγ, (2)

where Uγ and Lγ are uniform probability distributions defined on [A∗]γ and [A∗]γ ,
respectively, and var stands for the probabilistic variance operator.

It is easy to see that

Var(A) =

∫ 1

0

γ
(A1(γ)−A2(γ))

2 + (a1(γ)− a2(γ))
2

12
dγ =

Var(A∗) + Var(A∗)
2

where E(A∗) and E(A∗) denote the possibilistic variance of A∗ and A∗, respectively,
as introduced by Fullér and Majlender in 2003 [9]. In other words, the possibilistic
variance of an interval-valued fuzzy number is nothing else, but the arithmetic mean of
the variances of its upper and lower fuzzy numbers. If A = A∗ = A∗ ∈ F is an ordinary
fuzzy number then this definition collapses into the possibilistic variance introduced in
[9].

Lemma 3. If A,B ∈ IVFN and c, d ∈ R, then

1. Var(cA+ d) = c2Var(A).
2. If A∗(u) ≤ B∗(u) and A∗(u) ≤ B∗(u) for every u ∈ R, then Var(A) ≤ Var(B).

Proof. The lemma follows from the properties of the possibilistic mean value [3]:

Var(cA+ d) =
Var(cA∗ + d) + Var(cA∗ + d)

2

=
c2Var(A∗) + c2Var(A∗)

2
= c2Var(A).

The second part follows from the observations that Var(A∗) ≤ Var(B∗) andVar(A∗)≤
Var(B∗).
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Example 3. We will calculate the variance of an interval-valued fuzzy number with tri-
angular lower and upper membership functions. The interval-valued fuzzy number T =
(T∗, T ∗) of triangular form is represented by six parameters T = (a, α, β;A, θ, τ). We
can calculate the variance of T as,

E(T ) =
Var(A∗) + Var(A∗)

2
=

(β + α)2 + (τ + θ)2

24
.

Note 2. Using the approach from Note 1, we can define a different concept of variance,

Var′(A) =

∫ 1

0

2γ
var(U ′

γ) + var(L′γ)
2

dγ =

∫ 1

0

γ(var(U ′
γ) + var(L′γ))dγ,

where U ′
γ and L′γ are uniform probability distributions on the [A1(γ), a1(γ)] and

[a2(γ), A2(γ)] (possibly degenerate) intervals, respectively. It is easy to see that in gen-
eral, Var(A) �= Var′(A). If A = A∗ = A∗ ∈ F , (A is an ordinary fuzzy number),
Var′(A) = 0.

5 New Ranking Method for Interval-Valued Fuzzy Numbers

There exist several methods for ranking fuzzy quantities, specifically fuzzy numbers.
In [18,19], a set of ordering properties was introduced to analyze ranking methods for
fuzzy sets (here we formulate them for interval-valued fuzzy numbers, A,B,C ∈ IVFN
[20]):

A1) For any A ∈ IVFN : A � A.
A2) If A � B and B � A, then A ∼ B.
A3) If A � B and B � C, then A � C.
A4) If A ∩B = ∅ and A is on the right of B, then A � B.
A5) The order of A and B is not effected by the other C ∈ IVFN under comparison.
A6) If A � B, then A+ C � B + C.
A7) If A � B and C ≥ 0, then AC � BC.

Wu and Mendel [20] analyzed two ranking methods for interval-valued fuzzy sets.
Namely,

1. Mitchell’s method [14], which is based on the ranking of randomly chosen embed-
ded type-1 fuzzy sets. This method satisfies [A1] and [A4].

2. A centroid-based ranking method, which uses the centroids of all the embedded
type-1 fuzzy sets and satisfies the first 5 properties.

The mean value defined in (1) can be utilized as a ranking method for interval-valued
fuzzy numbers: Let A,B ∈ IVFN. Then,

A � B ⇐⇒ E(A) ≥ E(B). (3)

We can formulate the following proposition.
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Proposition 1 ([4]). Ranking method (3) satisfies the first six properties A1-A6.

Let A,B ∈ IVFN. Then,

E(A) > E(B)⇒ A � B

and if
E(A) = E(B) and Var(A) < Var(B)⇒ A � B

This ranking method for interval-valued fuzzy numbers (considered as a refinement
of the ranking method suggested in [4]) can be applied to capital budgeting decisions
when the revenues from projects are represented by interval-valued trapezoidal fuzzy
numbers (see [4]).

5.1 Project Selection with Interval-Valued Fuzzy Numbers

Many decision problems concern projects in which the cost and benefits accrue over a
number of years. If costs and benefits are entirely monetary then we talk about capital
budgeting or capital investment decisions. In most of the cases future cash flows (and in-
terest rates) are not known exactly, and decision makers have to work with their estima-
tions, such as ’around 10, 000 in the next few years’ (or ’close to 4 %’). Fuzzy numbers
appear to be an adequate tool to represent imprecisely given cash flows ([2,12,17]).

In many real-life decision making problems (e.g. portfolio selection), the decision
makers have to face a situation when two or more alternatives (projects) offer the same
estimated profit (net-present value). In this case the definition of variance can be used:
using ranking method (3), we identify the investment opportunities with the highest
estimated revenue and if there is more than with the same value, we choose the one
with the smallest variance.

Suppose that revenues from projects are represented by interval-valued trapezoidal
fuzzy numbers, that is, the lower and upper fuzzy numbers are of trapezoidal form. The
membership function of a trapezoidal fuzzy number A can be written as,

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1− a− x

α
if a− α ≤ x ≤ a

1 if a ≤ x ≤ b

1− x− b

β
if b ≤ x ≤ b+ β

0 otherwise

and we use the notation A = (a, b, α, β). An interval-valued fuzzy number R =
(R∗, R∗) of trapezoidal form can be represented by eight parameters

R = (a, b, α, β;A,B, θ, τ)

where R∗ = (a, b, α, β) stands for its lower fuzzy number and R∗ = (A,B, θ, τ)
denotes its upper fuzzy number.
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Let Ri = (ai, bi, αi, βi;Ai, Bi, θi, τi) be a given net fuzzy cash flow of a project
over n periods. We assume that the project starts with an initial investment (cost) X ,
where X > 0 is a crisp number. The fuzzy net present value (FNPV) of the project is
computed by,

FNPV =

n∑
i=1

Ri

(1 + r)i
−X, (4)

where r is the (risk-adjusted) discount rate.

Example 4. Consider a project with an initial cost of 20 and fuzzy cash flows for
3 periods, R1 = (11, 12, 2, 2; 10, 13, 3, 4), R2 = (9, 10, 3, 2; 8, 11, 3, 4) and R3 =
(3, 4, 3, 3; 2, 6, 4, 4). If the discount rate is 5% then by substituting the discounted fuzzy
returns into (4), we obtain the fuzzy net present value:

FNPV = (1.23, 3.95, 7.22, 6.31;−1.49, 7.54, 9.03, 10.89).

From (1) it follows that the possibilistic mean value of a trapezoidal interval-valued
fuzzy number R = (a, b, α, β;A,B, θ, τ) is,

E(A) =
A+B + a+ b

4
+

β − α

12
+

τ − θ

12
.

Using this equation, we can calculate the mean value of the fuzzy net present value as
E(FNPV ) = 2.89. From (2) we can obtain the variance of the fuzzy net present value:
Var = 13.76.

Then we can rank projects according to the mean value of their fuzzy net present value
and if we find two projects with maximal value, we choose the one with smaller vari-
ance.

6 Conclusions

We have introduced the interval-valued expectation for interval-valued fuzzy numbers.
The crisp mean value is the arithmetic mean of the lower and upper mean values of the
IVFN. We have shown that this mean operator is linear with respect to the extended
addition and multiplication by a scalar of interval-valued fuzzy numbers. We also in-
troduced the variance of IVFN’s. A ranking method is proposed for interval-valued
fuzzy numbers based on their mean value and variance and we showed an applica-
tion to capital budgeting decisions when the revenues from projects are represented by
interval-valued trapezoidal fuzzy numbers.
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Abstract. We compute the extended semi-trapezoidal approximation of
a given fuzzy number, with respect to the weighted average Euclidean dis-
tance. The metric properties of the extended weighted semi-trapezoidal
approximation of a fuzzy number, proved in the present article, help us to
solve problems of weighted approximations (semi-trapezoidal and semi-
triangular) under conditions and to obtain general results of aggregation
of the weighted approximations.

Keywords: Fuzzy number, Semi-trapezoidal fuzzy number, Approxi-
mation.

1 Introduction

The extended trapezoidal fuzzy number of a fuzzy number was computed and
the main properties were studied in [9], [10]. Fuzzy numbers with left-hand
max (0, 1− |x|sL) and right-hand max (0, 1− |x|sR) type side functions
(sL, sR > 0) were introduced in [8]. In [3], several aspects like computation, met-
ric properties and applications of the extended semi-trapezoidal approximation
(also called the extended parametric approximation) of a fuzzy number were dis-
cussed. In the present paper we compute the extended weighted semi-trapezoidal
aproximation of a fuzzy number, that is the nearest extended semi-trapezoidal
fuzzy number of a fuzzy number, with respect to the weighted average Euclidean
distance, and we give some important metric properties of it. As possible applica-
tions, we point out the benefits in the calculus of the weighted semi-trapezoidal
(symmetric semi-trapezoidal, triangular, symmetric triangular) approximations
of a given fuzzy number, with additional requirements (see, e.g., [1], [2]). More-
over, we consider an important property of aggregation, as a generalization of
some recent results (see [4]).

2 Preliminaries

We consider the α-cut representation of a fuzzy number A, that is

Aα = [AL (α) , AU (α)] , α ∈ [0, 1] ,

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 29–38, 2012.
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and we denote by F (R) the set of all fuzzy numbers. For A,B ∈ F (R) , Aα =
[AL (α) , AU (α)] and Bα = [BL (α) , BU (α)], the quantity dλ (A,B) given by

d2λ (A,B) =

∫ 1

0

λL (α) (AL (α)−BL (α))2 dα (1)

+

∫ 1

0

λU (α) (AU (α)−BU (α))2 dα

where λL and λU are nonnegative weighted functions such that
∫ 1

0
λL (α) dα > 0

and
∫ 1

0
λL (α) dα > 0, defines a weighted distance between A and B (see, e. g.,

[11]). If λL (α) = λU (α) = 1, for every α ∈ [0, 1], then we get the well-known
average Euclidean distance between A and B. Many other weighted functions
λL, λU and hence different weighted distances are proposed in the literature (see
[7], [13]).

An important subfamily of F (R) is the set of trapezoidal fuzzy numbers. A
trapezoidal fuzzy number is a fuzzy number A with linear sides, that is

AL (α) = a− σ (1− α) , (2)

AU (α) = b+ β (1− α) , α ∈ [0, 1] , (3)

where a, b, σ, β ∈ R, a ≤ b, σ ≥ 0, β ≥ 0. In [9] (see also [10], [11]), the notion
of extended trapezoidal fuzzy number was introduced to facilitate the calculus
of the triangular and trapezoidal approximations of fuzzy numbers. According
to [10], an ordered pair of polynomials of degree 0 or 1 is called an extended
trapezoidal fuzzy number. In fact, an extended trapezoidal fuzzy number is a
pair (AL, AU ) as in (2), (3), without any additional conditions.

A (sL, sR) parametric fuzzy number (see [8]) is a fuzzy number A such that

AL (α) = a− σ (1− α)
1/sL (4)

AU (α) = b+ β (1− α)1/sR , (5)

where a, b, σ, β, sL, sR ∈ R, a ≤ b, σ ≥ 0, β ≥ 0, sL > 0, sR > 0. The notion
of extended trapezoidal fuzzy number is generalized to parametric case in [3].
An extended (sL, sR) parametric fuzzy number A is an ordered pair of func-
tions (AL, AU ) as in (4)-(5), with sL > 0, sR > 0, but without any other
condition on a, b, σ, β ∈ R. Throughout this paper we use the more adequate
terminology proposed in [12], that is (sL, sR) semi-trapezoidal fuzzy number
instead of (sL, sR) parametric fuzzy number. We denote by F

sL,sR
T (R) the set

of (sL, sR) semi-trapezoidal fuzzy numbers, by F e
sL,sR(R) the set of extended

(sL, sR) semi-trapezoidal fuzzy numbers and by (a, b, σ, β)sL,sR
an element of

F e
sL,sR(R). A (sL, sR) semi-trapezoidal fuzzy number with σ = β is called a

symmetric (sL, sR) semi-trapezoidal fuzzy number. A (sL, sR) semi-trapezoidal
fuzzy number with a = b is called an (sL, sR) semi-triangular fuzzy number. A
(sL, sR) semi-trapezoidal fuzzy number with a = b and σ = β is called a symmet-
ric (sL, sR) semi-triangular fuzzy number. We denote by F

sL,sR
S (R), F sL,sR

t (R)
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and F
sL,sR
s (R) the set of symmetric (sL, sR) semi-trapezoidal, (sL, sR) semi-

triangular and symmetric (sL, sR) semi-triangular fuzzy numbers, respectively.
For the weighted functions λL and λU let us define the following integrals

l =

∫ 1

0

λL (α) dα (6)

m =

∫ 1

0

λL (α) (1− α)
1/sL dα (7)

n =

∫ 1

0

λL (α) (1− α)
2/sL dα (8)

u =

∫ 1

0

λU (α) dα (9)

v =

∫ 1

0

λU (α) (1− α)1/sR dα (10)

w =

∫ 1

0

λU (α) (1− α)
2/sR dα. (11)

Because

a− σ (1− α)1/sL =
1√
l

(√
la− m√

l
σ

)
− σ
(
(1− α)1/sL − m

l

)
b+ β (1− α)

1/sR =
1√
u

(√
ub+

v√
u
β

)
+ β
(
(1− α)

1/sR − v

u

)
,

for every α ∈ [0, 1], any A = (a, b, σ, β)sL,sR
∈ F e

sL,sR(R) can be represented as

AL (α) =
1√
l
L−X

(
(1− α)1/sL − m

l

)
(12)

AU (α) =
1√
u
U + Y

(
(1− α)1/sR − v

u

)
, (13)

where

L = a
√
l − m√

l
σ (14)

X = σ (15)

U = b
√
u+

v√
u
β (16)

Y = β (17)

and l,m, u, v are given in (6), (7), (9), (10). Thus, an extended (sL, sR) semi-
trapezoidal fuzzy number given by (12)-(13) will be denoted by [L,U,X, Y ]sL,sR

.
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3 Extended Weighted Semi-trapezoidal Approximation
of a Fuzzy Number

The extended trapezoidal approximation of a fuzzy number was determined in
[10]. The extended (sL, sR) semi-trapezoidal approximation of a fuzzy number
(together the main metric properties) were studied in [3]. The formulas for calcu-
lating the extended weighted (sL, sR) semi-trapezoidal approximation of a fuzzy
number are given in this section.

To find the extended weighted semi-trapezoidal approximation Aλ,e
sL,sR =

(ae, be, σe, βe)sL,sR
of a fuzzy number A,Aα = [AL (α) , AU (α)] , α ∈ [0, 1], that

is the nearest extended (sL, sR) semi-trapezoidal fuzzy number with respect to
the metric (1) we must minimize

f (a, b, σ, β) =

∫ 1

0

λL (α)
(
AL (α)− a + σ (1− α)

1/sL
)2

dα

+

∫ 1

0

λU (α)
(
AU (α)− b− β (1− α)1/sR

)2
dα,

with respect to a, b, σ, β but without any condition on a, b, σ, β. We immediately
have

f (a, b, σ, β) = la2 + nσ2 + ub2 + wβ2 − 2maσ + 2vbβ

− 2a

∫ 1

0

λL (α)AL (α) dα+ 2σ

∫ 1

0

λL (α)AL (α) (1− α)
1/sL dα

− 2b

∫ 1

0

λU (α)AU (α) dα− 2β

∫ 1

0

λU (α)AU (α) (1− α)
1/sR dα

+

∫ 1

0

λL (α)A2
L (α) dα+

∫ 1

0

λU (α)A2
U (α) dα.

Theorem 1. Aλ,e
sL,sR = (ae, be, σe, βe)sL,sR

, where

ae =
n
∫ 1

0 λL (α)AL (α) dα−m
∫ 1

0 λL (α)AL (α) (1− α)
1/sL dα

nl −m2
(18)

be =
w
∫ 1

0 λU (α)AU (α) dα− v
∫ 1

0 λU (α)AU (α) (1− α)
1/sR dα

uw − v2
(19)

σe =
m

∫ 1

0
λL (α)AL (α) dα− l

∫ 1

0
λL (α)AL (α) (1− α)

1/sL dα

nl−m2
(20)

βe =
−v

∫ 1

0 λU (α)AU (α) dα + u
∫ 1

0 λU (α)AU (α) (1− α)
1/sR dα

uw − v2
(21)

is the extended weighted (sL, sR) semi-trapezoidal approximation of A.



Metric Properties of the Extended Weighted Semi-trapezoidal 33

Proof. We obtain {ae, be, σe, βe} given in (18)-(21) as a solution of the system

∂f

∂a
= 2la− 2

∫ 1

0

λL (α)AL (α) dα− 2mσ = 0 (22)

∂f

∂b
= 2ub− 2

∫ 1

0

λU (α)AU (α) dα + 2vβ = 0 (23)

∂f

∂σ
= 2nσ + 2

∫ 1

0

λL (α)AL (α) (1− α)1/sL dα− 2ma = 0 (24)

∂f

∂β
= 2wβ − 2

∫ 1

0

λU (α)AU (α) (1− α)
1/sR dα+ 2vb = 0. (25)

By the Schwarz inequality it follows that(∫ 1

0

λL (α) (1− α)
1/sL dα

)2

≤
∫ 1

0

λL (α) dα

∫ 1

0

λL (α) (1− α)
2/sL dα, (26)

with equality if and only if λL (α) = λL (α) (1− α)
2/sL almost everywhere α ∈

[0, 1]. With the notations in (6)-(11) we immediately obtain nl > m2. We prove
uw > v2 in the same way. Because

∂2f

∂a2
= 2l > 0,∣∣∣∣∣ ∂

2f
∂a2

∂2f
∂a∂b

∂2f
∂b∂a

∂2f
∂b2

∣∣∣∣∣ =
∣∣∣∣2l 00 2u

∣∣∣∣ = 4lu > 0∣∣∣∣∣∣∣
∂2f
∂a2

∂2f
∂a∂b

∂2f
∂a∂σ

∂2f
∂b∂a

∂2f
∂b2

∂2f
∂b∂σ

∂2f
∂σ∂a

∂2f
∂σ∂b

∂2f
∂σ2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
2l 0 −2m
0 2u 0
−2m 0 2n

∣∣∣∣∣∣ = 8u
(
nl−m2

)
> 0

∣∣∣∣∣∣∣∣∣∣

∂2f
∂a2

∂2f
∂a∂b

∂2f
∂a∂σ

∂2f
∂a∂β

∂2f
∂b∂a

∂2f
∂b2

∂2f
∂b∂σ

∂2f
∂b∂β

∂2f
∂σ∂a

∂2f
∂σ∂b

∂2f
∂σ2

∂2f
∂σ∂β

∂2f
∂β∂a

∂2f
∂β∂b

∂2f
∂β∂σ

∂2f
∂β2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
2l 0 −2m 0
0 2u 0 2v
−2m 0 2n 0
0 2v 0 2w

∣∣∣∣∣∣∣∣ = 16
(
nl −m2

) (
uw − v2

)
> 0.

we obtain that (ae, be, σe, βe) given in (18)-(21) minimize the function f .

Remark 1. If λL (α) = λU (α) = 1, α ∈ [0, 1] and sL = sR = 1 in (18)-(21) we ob-
tain the extended trapezoidal approximation of A (see [10]). If λL (α) = λU (α) =
1, α ∈ [0, 1] in (18)-(21) we obtain the extended (sL, sR) semi-trapezoidal
approximation of A (see [3]).

4 Metric Properties of the Extended Weighted
Semi-trapezoidal Approximation

In this section we give some essential metric properties of the extended weighted
semi-trapezoidal approximation.
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Due to (12)-(13) we have the possibility to write the distance between two
extended (sL, sR) semi-trapezoidal fuzzy numbers almost like the Euclidean dis-
tance in R4. An application of this result is the proof, similarly with Theorem 8
in [3], of continuity of the weighted-semitrapezoidal approximation. The result
was already obtained ([12], Proposition 7.2) by using notions of Convex Analysis.

Theorem 2. If A,B ∈ F e
sL,sR (R) such that A = [L1, U1, X1, Y1]sL,sR

and B =
[L2, U2, X2, Y2]sL,sR

then

d2λ (A,B) = (L1 − L2)
2
+ (U1 − U2)

2
(27)

+
nl −m2

l
(X1 −X2)

2 +
uw − v2

u
(Y1 − Y2)

2 .

Proof. Because ∫ 1

0

λL (α)
(
(1− α)

1/sL − m

l

)
dα = 0

and ∫ 1

0

λU (α)
(
(1− α)1/sR − v

u

)
dα = 0

we get∫ 1

0

λL (α) (AL (α)−BL (α))
2
dα

=

∫ 1

0

λL (α)

(
1√
l
(L1 − L2) +

(
(1− α)

1/sL − m

l

)
(X1 −X2)

)2

dα

=
1

l
(L1 − L2)

2
∫ 1

0

λL (α) dα

+ (X1 −X2)
2
∫ 1

0

λL (α)
(
(1− α)

1/sL − m

l

)2
dα

+ 2 (L1 − L2) (X1 −X2)
1√
l

∫ 1

0

λL (α)
(
(1− α)1/sL − m

l

)
dα

= (L1 − L2)
2
+

nl −m2

l
(X1 −X2)

2

and analogously,∫ 1

0

λU (α) (AU (α) −BU (α))
2
dα = (U1 − U2)

2
+

uw − v2

u
(Y1 − Y2)

2
,

therefore (27) is immediate.

Theorem 3. (i) If A ∈ F (R) and Aλ,e
sL,sR is the extended weighted semi-

trapezoidal approximation of A then

d2λ(A,B) = d2λ(A,Aλ,e
sL,sR) + d2λ(A

λ,e
sL,sR , B), (28)
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for every B ∈ F e
sL,sR(R).

(ii) If A,B ∈ F (R) and Aλ,e
sL,sR , Bλ,e

sL,sR are the extended weighted semi-
trapezoidal approximations of A and B, respectively, then

dλ(A
λ,e
sL,sR , Bλ,e

sL,sR) ≤ dλ(A,B). (29)

Proof. The below equalities are proved as the corresponding equalities in the
particular case λL (α) = λL (α) = 1 (see Appendix B and C in [3])

∫ 1

0

λL (α)
(
AL (α) −

(
Aλ,e

sL,sR

)
L
(α)
)((

Aλ,e
sL,sR

)
L
(α)−BL (α)

)
dα = 0 (30)∫ 1

0

λU (α)
(
AU (α) −

(
Aλ,e

sL,sR

)
U
(α)
)((

Aλ,e
sL,sR

)
U
(α)−BU (α)

)
dα = 0 (31)∫ 1

0

λL (α)
((

Aλ,e
sL,sR

)
L
(α)−

(
Bλ,e

sL,sR

)
L
(α)
)

(32)

×
(((

Aλ,e
sL,sR

)
L
(α)−

(
Bλ,e

sL,sR

)
L
(α)
)
− (AL (α)−BL (α))

)
dα = 0∫ 1

0

λU (α)
((

Aλ,e
sL,sR

)
U
(α)−

(
Bλ,e

sL,sR

)
U
(α)
)

(33)

×
(((

Aλ,e
sL,sR

)
U
(α)−

(
Bλ,e

sL,sR

)
U
(α)
)
− (AU (α)−BU (α))

)
dα = 0.

(i) We have

d2λ(A,B) =

∫ 1

0

λL (α)
(
AL (α)−

(
Aλ,e

sL,sR

)
L
(α)
)2

dα

+

∫ 1

0

λL (α)
((

Aλ,e
sL,sR

)
L
(α)−BL (α)

)2
dα

+2

∫ 1

0

λL (α)
(
AL (α)−

(
Aλ,e

sL,sR

)
L
(α)
)((

Aλ,e
sL,sR

)
L
(α)−BL (α)

)
dα

+

∫ 1

0

λU (α)
(
AU (α)−

(
Aλ,e

sL,sR

)
U
(α)
)2

dα

+

∫ 1

0

λU (α)
((

Aλ,e
sL,sR

)
U
(α)−BU (α)

)2
dα

+2

∫ 1

0

λU (α)
(
AU (α)−

(
Aλ,e

sL,sR

)
U
(α)
)((

Aλ,e
sL,sR

)
U
(α)−BU (α)

)
dα

and taking into account (1), (30) and (31) we obtain (28).
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(ii) We get

d2λ(A,B) =

∫ 1

0

λL (α)
((

Aλ,e
sL,sR

)
L
(α)−

(
Bλ,e

sL,sR

)
L
(α)
)2

dα

+

∫ 1

0

λL (α)
(((

Aλ,e
sL,sR

)
L
(α) −

(
Bλ,e

sL,sR

)
L
(α)
)
− (AL (α)−BL (α))

)2
dα

−2
∫ 1

0

λL (α)
((

Aλ,e
sL,sR

)
L
(α)−

(
Bλ,e

sL,sR

)
L
(α)
)

×
(((

Aλ,e
sL,sR

)
L
(α)−

(
Bλ,e

sL,sR

)
L
(α)
)
− (AL (α)−BL (α))

)
dα

+

∫ 1

0

λU (α)
((

Aλ,e
sL,sR

)
U
(α)−

(
Bλ,e

sL,sR

)
U
(α)
)2

dα

+

∫ 1

0

λU (α)
(((

Aλ,e
sL,sR

)
U
(α) −

(
Bλ,e

sL,sR

)
U
(α)
)
− (AU (α)−BU (α))

)2
dα

−2
∫ 1

0

λU (α)
((

Aλ,e
sL,sR

)
U
(α)−

(
Bλ,e

sL,sR

)
U
(α)
)

×
(((

Aλ,e
sL,sR

)
U
(α)−

(
Bλ,e

sL,sR

)
U
(α)
)
− (AU (α)−BU (α))

)
dα

and taking into account (1), (32) and (33) we immediately obtain (29).

5 Applications

5.1 Weighted Semi-trapezoidal and Semi-triangular Approximations
Preserving Parameters

Let us assume that the parameters Pk, k ∈ {1, ..., q} are preserved by the ex-
tended weighted (sL, sR) semi-trapezoidal approximation of a fuzzy number A,
that is

Pk

(
Aλ,e

sL,sR

)
= Pk (A) , ∀k ∈ {1, ..., q} . (34)

Taking into account Theorem 3, (i) we obtain the equivalence of the problem
of finding the weighted (sL, sR) semi-trapezoidal approximation of a given A ∈
F (R), that is

min
B∈F sL,sR

T (R)
dλ (A,B)

Pk (A) = Pk (B) , k ∈ {1, ..., q}

with the following problem

min
B∈F sL,sR

T (R)
dλ
(
Aλ,e

sL,sR , B
)

Pk

(
Aλ,e

sL,sR

)
= Pk (B) , k ∈ {1, ..., q} .
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In addition, it is easy to see that the optimization problem

min
B∈F sL,sR

t (R)
dλ (A,B)

Pk (A) = Pk (B) , k ∈ {1, ..., q}

is equivalent to the following problem

min
B∈F sL,sR

t (R)
dλ
(
Aλ,e

sL,sR , B
)

Pk

(
Aλ,e

sL,sR

)
= Pk (B) , k ∈ {1, ..., q}

and similarly in the symmetric case for semi-trapezoidal and semi-triangular ap-
proximations. In this way, the computation of the (symmetric) semi-trapezoidal
and (symmetric) semi-triangular approximations is simplified.

It is worth noticing here that the classical parameters associated with a fuzzy
number (expected value, expected interval, value, ambiguity, etc.) can be easily
extended to satisfy (34). As an example, let us consider the weighted value of a
fuzzy number A, introduced by

V alλ (A) =

∫ 1

0

λL (α)
(
1− (1− α)

1/sL
)
AL (α) dα

+

∫ 1

0

λU (α)
(
1− (1− α)

1/sR
)
AU (α) dα.

If sL = sR = 1 and λL (α) = λU (α) = 1 then we get the classical formula of
value of a fuzzy number (see [5] or [2]). In addition,

V alλ
(
Aλ,e

sL,sR

)
= V alλ (A) ,

therefore the method described above is applicable.

5.2 Weighted Semi-trapezoidal, Weighted Semi-triangular
Approximations and Aggregation

In [4] the trapezoidal approximation of fuzzy numbers is discussed in relation
to data aggregation. It is proved that if the average is chosen as the aggrega-
tion operator there is no difference whether the trapezoidal approximation is
performed before or after aggregation. Among trapezoidal approximations, the
nearest trapezoidal fuzzy number and the nearest trapezoidal fuzzy number pre-
serving the expected interval, with respect to dλ, are considered.

We define the weighted distance between {A1, ..., Ap} ⊂ F (R) and B ∈
F

sL,sR
T (R) as

D2
λ ({A1, ..., Ap} , B) =

p∑
i=1

d2λ (Ai, B) .

Because (
1

p
· (A1 + ...+Ap)

)λ,e

sL,sR

=
1

p
·
(
(A1)

λ,e
sL,sR

+ ...+ (Ap)
λ,e
sL,sR

)
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and taking into account (28) we obtain

D2
λ ({A1, ..., Ap} , B1)−D2

λ ({A1, ..., Ap} , B2)

= d2λ

(
1

p
· (A1 + ...+Ap) , B1

)
− d2λ

(
1

p
· (A1 + ...+Ap) , B2

)
,

for every B1, B2 ∈ F
sL,sR
T (R), as a first step towards a generalization of the

result of aggregation in [4].
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Abstract. We consider the problem of reasoning with uncertain evi-
dence in Bayesian networks (BN). There are two main cases: the first
one, known as virtual evidence, is evidence with uncertainty, the second,
called soft evidence, is evidence of uncertainty. The initial inference al-
gorithms in BNs are designed to deal with one or several hard evidence
or virtual evidence. Several recent propositions about BN deal with soft
evidence, but also with ambiguity and vagueness of the evidence. One
of the proposals so far advanced is based on the fuzzy theory and called
fuzzy evidence. The original contribution of this paper is to describe the
different types of uncertain evidence with the help of a simple example,
to explain the difference between them and to clarify the appropriate
context of use.

Keywords: bayesian networks, uncertain evidence, virtual evidence, like-
lihood evidence, soft evidence, fuzzy evidence.

1 Introduction

Bayesian networks (BN) [Pe88, Je96] are powerful tools for knowledge repre-
sentation and inference under uncertainty. They combine multiple sources of
information to provide a formal framework within which complex systems can
be represented and processed. The different sources of information are not al-
ways perfect, therefore, the observation can be uncertain and imprecise. For the
purpose of this paper, we present five types of evidence: hard evidence, virtual
evidence (VE), also called likelihood evidence, that is evidence with uncertainty
[Pe88], soft evidence (SE) that is evidence of uncertainty [VK02], and two ap-
proaches of fuzzy evidence [MM11, TL07]. These methods are applied and pre-
sented on a simple example. A result of this work is to clarify the distinction
between these different types of evidence. The presence of several soft evidences
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has to be treated using specific algorithms. We detail the case of a single evidence
and briefly explain the case of several evidences.

2 Different Types of Evidence in Bayesian Networks

2.1 Definitions and Vocabulary

Evidence in BN may be regular or uncertain. Regular evidence, called also hard
evidence specifies which value a variable is in. This is the usual way to enter an
observation to be propagated in a BN [Pe88, Je96]. Uncertain evidence specifies
the probability distribution of a variable. We focus on two types of uncertain ev-
idences. According to [VK02, PZ10], we use the terms virtual evidence and soft
evidence as follows: virtual evidence [Pe88] can be interpreted as evidence with
uncertainty, and can be represented as a likelihood ratio. This kind od evidence
is also called likelihood evidence. Soft evidence [VK02], can be interpreted as evi-
dence of uncertainty, and is represented as a probability distribution of one ormore
variables.

Many BN engines accept a probability distribution as input for the update.
Most existing implementations of uncertain evidence are virtual evidence, but
the literature is not consistent about naming uncertain evidence. The term soft
evidence is used in many cases incorrectly as indicated in Table 1. In the cases
listed in Table 1, the evidence is considered to be a virtual evidence and is
propagated by adding a virtual node.

Table 1. Different Names of the Virtual Evidence (VE) in the BN Engines

BN engines Names of the VE Web Site

BNT Soft evidence http://www.cs.ubc.ca/~murphyk/
Software/BNT/bnt.html

Bayesialab Likelihood distribution http://www.bayesia.com

NETICA Likelihood http://www.norsys.com

HUGIN Likelihood findings http://www.hugin.com

GeNIe Soft evidence http://genie.sis.pitt.edu

2.2 Algorithms Dealing with Uncertain Evidence

The issue of how to deal with uncertain evidence in BN appears in [Pe88] and
has recently been the subject of many algorithms developments as indicated in
Table 2. To clarify the distinction between the different types of evidence in BN
we present in the following sections an illustrative example and the modeling of
the different types of evidence.
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Table 2. Algorithms dealing with uncertain evidence (VE: virtual evidence, SE: soft
evidence)

Algorithms Type of References
evidence

VE method VE [Pe90]

Jeffrey’s rule VE and single SE [Je83]

IPFP SE First appeared in [Kr37]
(Iterative Proportional Studied in [Cs75, Fi70, PD05]
Fitting Procedure) Extended in [Bo89, Cr00]

The big Clique algorithm SE [VK02]
and extension

Derived Algorithm VE and SE [PZ10]
Combining VE method,
Jeffrey’s rule and IPFP

3 Comparison of Different Types of Evidence
with a Simple Example

3.1 Presentation of the ”Snow Example”

Our example models the influence of the amount of snow on the congestion
(Fig. 1). The variable S represents the ”amount of snow in mm” with values in
[0, 120] and the variable C represents the ”congestion” with values in {yes, no}.

Fig. 1. Bayesian network graph of the snow example

The conditional probability of C given S is defined by the equation:

P (C = yes | S) = e−
1
2×(S−60

40 )2 (1)

This probability function can be understood as follows: under the threshold of
60 mm of snow, the congestion is all the more probable that the amount of snow
is important. Beyond this threshold, people leave their homes less and less and
subsequently the probability of congestion decreases. Whereas some BN engines
deal with continuous variables, or even mixted variables, the most common way
is to use a discretization of the variable S (see Table 3). The BN engine Netica
[Ne] offers the possibility to obtain the Conditional Probability Table (CPT) of
the node S discretized from the equation (1). In the following cases, the CPT
P (C|S) is conformed to the equation (1), to ensure a proper comparison of results
of the different methods. Our starting model is described by the graph presented
in Fig. 1 and by the probabilities given in Tables 3 and 4 for the probabilities.
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Table 3. P (S)

S1 0 0.6
S2 ]0,40] 0.22
S3 ]40,80] 0.14
S4 ]80,120] 0.04

Table 4. P (C | S)

S1 S2 S3 S4

yes 0.3247 0.6058 0.96 0.6058
no 0.6753 0.3942 0.04 0.3942

We propagate the same observation for the different types of evidence to
ensure a good comparison. Assume that the amount of snow is effectively 80
mm. We are going to compute P (C = yes|e), P (C = yes|ve), P (C = yes|se)
where e represents an hard evidence, ve denotes a virtual evidence and se denotes
a soft evidence. The last two parts concern the case of ambiguity.

3.2 Junction Tree Algorithm

We apply the junction tree inference algorithm [La88, Je90] to different types of
evidence. We will trace the changes in calculation and graph during the successive
stages of this algorithm. It can be summarized as follows:

– Construction process (or transformation of the graph): moralizing the graph,
triangulating the graph, forming the junction tree.

– Initialization process: initializing the potential of cliques and separators.
– Propagation process: ordered series of local manipulations, called message

passing, on the join-tree potentials. The result is a consistent join tree.
– Marginalization process: from the consistent join tree, compute the posterior

probability P (V ) for each variable of interest V .

After construction of the junction tree, the network of our example is reduced to a
single clique {SC}. The construction process is valid for all types of BN. However,
the other three phases are different depending on the presence or absence of
observations. In this paper, we study the case of presence of observation.

3.3 Hard Evidence

Hard evidence is an observation of a random variable having with certainty a
particular value V = v. To encode observations on a variable V , we consider the
notion of likelihood ΛV as indicated in [HD96], which is encoded as follows: If V
is observed, then ΛV (v) = 1 when v is the observed value of V and ΛV (v) = 0
otherwise. If V is not observed, then ΛV (v) = 1 for each value v. The likelihood
encoding of evidence is used in the initialization process to enter the observa-
tion in the junction tree. A hard evidence is represented by a likelihood where
ΛV (v) = 1 for exactly one value v. Assume that the amount of snow observed
is 80 mm. This observation is interpreted as S = S3 and illustrated in Table 5.
The probability P (C = yes | e) where e denotes the hard evidence S = S3 is a
part of the definition of the BN: P (C = yes | e) = 0.96 (see Table 4).
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Table 5. Likelihood encoding an hard evidence

S C

v S1 S2 S3 S4 yes no
ΛV (v) 0 0 1 0 1 1

The drawback of discretization is that all values in the same interval are
treated in the same way no matter their position in the interval. In our example,
the observation of 41 mm or 79 mm provides the same results. Since the chosen
discretization is coarse with only 4 states, the result may be not satisfying. The
finer the discretization, the more relevant are the results, and the larger is the
CPT. A discretization of S with 13 states provides P (C = yes | e) = 0.93 and
with 60 states we obtain P (C = yes | e) = 0.893, where e represents the hard
evidence S = Si and Si is the interval containing 80 in the chosen discretization.

3.4 Virtual Evidence

Virtual Evidence (VE), proposed by Pearl in [Pe88], provides a convenient way of
incorporating evidence with uncertainty. A VE on a variable V is represented by a
likelihood ΛV where each ΛV (v) is a real number in [0, 1]. Pearl’s method extends
the givenBN by adding a binary virtual node which is a child of V . In our example,
we add a node Sobs and a directed edge from S toward Sobs (see Fig. 2).

Fig. 2. Bayesian Network graph encoding a virtual evidence on S

In our example, we consider now the virtual evidence ve on S represented
by the likelihood given in Table 7. This translates that the observed amount of
snow is about 80 mm, and since the measure is rough, both intervals S3 and S4

must be considered. In the BN, the main value of Sobs, say yes, corresponds to
the virtual evidence ve that is represented by the CPT of the virtual node Sobs

(Table 6).

Table 6. CPT of P (Sobs | S)

S1 S2 S3 S4

Sobs = yes 0 0 0.5 0.5
Sobs = no 1 1 0.5 0.5

Table 7. Likelihood encoding ve

S C
v S1 S2 S3 S4 yes no

ΛV (v) 0 0 0.5 0.5 1 1
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The virtual evidence ve can be easily propagated by propagating the hard
evidence Sobs = yes in the augmented BN; we obtain P (C = yes | ve) = P (C =
yes | Sobs = yes) = 0.881. This result can be obtained as follows:

P (C = yes | ve) =
∑

i P (C = yes | Si)×Q(S = Si)∑
c,i P (C = c | Si)×Q(S = Si)

(2)

where Q(S = Si) = P (S = Si | Sobs = yes) represents the quantified values as
indicated in [TA04]. In the VE method, the propagated value is the marginal on
S, represented by the quantified values Q.

3.5 Soft Evidence

Soft evidence (SE), named by Valtorta in [VK02], can be interpreted as evidence
of uncertainty. SE is given as a probability distribution of one or several variables
R(Y ), Y ⊆ X , where X is the set of variables. Therefore, there is uncertainty
about the specific state Y is in but we are sure of the probability distribution
R(Y ). Since R(Y ) is a certain observation, this distribution should be preserved
by updating belief. This is the main difference with virtual evidence for which
this is not required.

In case of a single soft evidence, Chan and Darwiche [CD05] showed that
a soft evidence can be converted into a virtual evidence and updating can be
carried out by virtual evidence method as detailed in [PZ10]. This method is
not directly applicable to the situation in which multiple soft evidences are pre-
sented since it does not guarantee that the soft evidence R(Y ) will be preserved
after updating. Updating several SE requires specific algorithms to preserve the
initial distribution (see Table 2). An interesting use of soft evidence regarding
discretization is proposed in [DB08].

In our example, we assume that we have a soft evidence se on S, given by
the distribution R(S) = (0, 0, 0.5, 0.5). This means that we are sure that the

amount of snow is in the interval [40, 120]. The likelihood ratio is L(S) = R(S)
P (S)

where P (S) is the marginal probability of S given in Table 3. Thus, in our
example, L(S) = 0 : 0 : 0.5

0.14 : 0.5
0.04 . After normalization, we obtain (0 : 0 : 0.222 :

0.778). Eventually, these values of the likelihood ratio are considered as a virtual
evidence; we obtain P (C = yes | se) = 0.783.

The comparison of the values of P (C = yes | ve) = 0, 881 and P (C =
yes | se) = 0, 783 obtained in our example can be explained as follows.
The soft evidence (0, 0, 0.5, 0.5) has been converted into the virtual evidence
(0, 0, 0.222, 0.778) by using the likelihood ratio. Thus, the probability 0.222 as-
sociated to S3 is less than the initial probability 0.5, in order to compensate the
influence of the prior distribution over S, in which S3 is more probable than S4

(see table 1). Since S3 leads to congestion with a higher probability than S4,
updating the VE (0, 0, 0.5, 0.5) leads to a higher probability of congestion than
updating the ve (0, 0, 0.222, 0.778).
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4 Fuzzy Evidence

In this section, we consider the proposition presented in [MM11] to model fuzzy
evidence by using the fuzzy logic theory. In that aim, we consider the BN of the
Fig. 1 in which the node S is replaced by the node Sf whose possible states are
representing the amount of snow in natural language: Sf

1 =’not at all’, Sf
2 =’a

little’, Sf
3 =’some’ and Sf

4 =’a lot’. We substitute vagueness by a member-
ship degree and we model the relationship between the amount of snow and
the linguistics states of snowing by the fuzzy sets shown in Fig. 3. The CPT
of P (C | Sf) is given in Table 8. In order to be consistent with the previous
example, it has been computed according to equation 1 and Fig. 3. The algo-
rithm used to propagate ambiguous observations is based on the junction tree
algorithm. Assume that the amount of snow is 80 mm. The fuzzy evidence fe
can be expressed thanks to the following membership degrees:

Fig. 3. Fuzzy sets of Sf

Table 8. P (C | Sf )

Sf
1 Sf

2 Sf
3 Sf

4

P (C = yes | Sf
i ) 0.3247 0.67 0.9137 0.6707

μ1(80) = 0, μ2(80) = 0, μ3(80) = 0.5, μ4(80) = 0.5.

Table 9 shows the likelihood encoding of the fuzzy evidence fe. It is used in the
junction tree algorithm as in the previous section.

Table 9. Likelihood encoding fe

S C

v Sf
1 Sf

2 Sf
3 Sf

4 yes no
ΛV (v) 0 0 0.5 0.5 1 1
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The result is obtained by:

P (C = yes | fe) =
∑

i P (C = yes | Sf
i )× μi(80)∑

c,i P (C = c | Sf
i )× μi(80)

(3)

This method applied to the snow example provides P (C = yes | fe) = 0.792.
The important distinction between uncertain evidence and fuzzy evidence is

that with a fuzzy evidence, there is no uncertainty about the value ’not at all’,
’a little’, ’some’ and ’a lot’ of the snowfall but rather an ambiguity about the
degree to which a value matches the category ’not at all’, ’a little’, ’some’ and
’a lot’. This ambiguity is treated by fuzzy sets (Fig. 3).

5 Fuzzy Reasoning in Bayesian Networks

In this section, we introduce fuzzy Bayesian equations, as down in [TL07]. Ac-
cording to Zadeh’s definition [Za68], the probability of a fuzzy event Ã in X is
given by

P (Ã) =
∑
x∈X

μÃ(x) × P (x) (4)

In our context, X denotes a variable from the Bayesian network and x is one
of its value. μÃ is the membership function of Ã and μÃ(x) is the grade of

membership of x into Ã.
We present fuzzy Bayesian equations through our snow example. The Bayesian

network considered is described by Fig. 1 and Tables 3 and 4. We are interested
in fuzzy events consisted of Si; for example the fuzzy event S̃ = ’some’ (see
Fig. 3) is described by the membership function: μS̃(S1) = 0, μS̃(S2) = 0.0625,
μS̃(S3) = 0.9375, μS̃(S4) = 0.0625. In this case, following eq. 11 in [TL07],
Bayesian equation is

P (C = yes | S̃) =
∑
i∈I

μS̃(Si)× P (S = Si | C = yes)× P (C = yes)/P (S̃) (5)

The marginal fuzzy probability is P (S̃) =
∑

i∈I μS̃(Si)× P (S = Si) (see eq. 12

in [TL07]) Thus we can figure out P (C = yes | S̃) = 0.92.

We may also be interested in fuzzy events of Cj , for example C̃ =
’little congestion’. Then, following eq. 10 in [TL07], Bayesian equation is

P (C̃ | S = Si) =
∑
j

μC̃(Cj)×P (S = Si | C = Cj)×P (C = Cj)/P (S = Si) (6)

If S̃ and C̃ are both fuzzy events, then we have (see eq. 13 in [TL07])

P (C = C̃ | S = S̃) =
∑

j∈J
∑

i∈I μC̃(Cj)× μS̃(Si)× P (S = Si | C = Cj)

×P (C = Cj)/P (S̃) (7)
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The advantage of this method is threefold. First, we can insert fuzzy observation
as shown in (5). Second, we can calculate the probability of a fuzzy event as
shown in (6). Finally, we can calculate the probability of a fuzzy event conditional
to another fuzzy event as shown in (7).

6 Conclusion

This paper considers the problem of reasoning with uncertain evidence in
Bayesian Networks. The use of uncertain evidence significantly extends the power
of Bayesian networks since it is needed in lots of real applications. A key con-
tribution of our work is to describe and to explain the different ways of model-
ing and updating uncertain evidences. We also propose so-called fuzzy evidence
which are pertinent for ambiguous observations. Our comparison between hard
evidence, virtual evidence, soft evidence and fuzzy evidence, showed that each
kind of evidence is adequate for a specific context.

Even if the term ”soft evidence” has been used in a confusing way in the
literature, it is clear that virtual evidence reflects an observation with uncertainty
whereas soft evidence expresses an observation of uncertainty.

This throw light on the posterior probability of the observed node which not
change in the case of soft evidence because we are certain about this probability
distribution, but it changes in virtual evidence because we are uncertain of the
probability distribution which is thus modified by the marginalization process.
Concerning fuzzy evidence, the observation can belong in the same time to more
than one class (80 mm is considered in the same time as ’some’ and ’a lot’
snowfall with membership degrees).

In the last section, we presented fuzzy reasoning in Bayesian network. This
method allows to insert fuzzy evidence, to calculate the probability of fuzzy
event, and to calculate the probability of fuzzy event conditional to a fuzzy
observation.
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Abstract. We use the metric properties of the nearest extended
weighted semi-trapezoidal fuzzy number and the Karush-Kuhn-Tucker
theorem to compute the weighted semi-trapezoidal approximation of a
fuzzy number preserving the weighted ambiguity. The proposed approach
is more general than existing methods and it can be applied to other ap-
proximations of fuzzy numbers under conditions.

Keywords: Fuzzy number, Ambiguity, Approximation, Semi-trapezoidal
fuzzy number.

1 Introduction

Different kinds of approximations of fuzzy numbers (interval, triangular, trape-
zoidal, semi-triangular, semi-trapezoidal, with or without conditions) were pro-
posed in many recent papers, to avoid the important difficulties in the data
processing with fuzzy numbers. On the other hand, the ambiguity is an impor-
tant characteristic which was introduced [7] to simplify the task of representing
and handling of fuzzy numbers.

Formulas for computing the extended semi-trapezoidal approximation of a
fuzzy number, with respect to average Euclidean distance and weighted average
Euclidean distance were determined in [5] and [6], respectively. The properties
already proved in [6], together the Karush-Kuhn-Tucker theorem, are used to
find the nearest semi-trapezoidal fuzzy number of a given fuzzy number A, with
respect to weighted average Euclidean distance (called weighted semi-trapezoidal
approximation ofA in the sequel), such that the ambiguity, in a generalized form,
is preserved. As an important consequence, the trapezoidal approximation (with
respect to average Euclidean distance) preserving ambiguity in its original form,
is immediately obtained.

2 Preliminaries

We consider the α-cut representation of a fuzzy number A, that is
Aα = [AL (α) , AU (α)] , α ∈ [0, 1], and we denote by F (R) the set of all fuzzy
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numbers. For A,B ∈ F (R) , Aα = [AL (α) , AU (α)] and Bα = [BL (α) , BU (α)],
the quantity dλ (A,B) introduced by

d2λ (A,B) =

∫ 1

0

λL (α) (AL (α)−BL (α))
2
dα (1)

+

∫ 1

0

λU (α) (AU (α)−BU (α))
2
dα

where λL and λU are nonnegative functions such that
∫ 1

0
λL (α) dα > 0 and∫ 1

0 λU (α) dα > 0, defines a weighted distance between A and B (see, e. g., [8]).
If λL (α) = λU (α) = 1, for every α ∈ [0, 1], we get the well-known average Eu-
clidean distance between A and B, denoted by d. Many other weighted functions
λL, λU and hence different weighted distances are proposed in the literature (see
[10]).

The S-ambiguity AmbS (A) of A ∈ F (R) with respect to a reducing function
S (that is S : [0, 1]→ [0, 1] is increasing, S (0) = 0 and S (1) = 1) is defined by

AmbS (A) =

∫ 1

0

S (α) (AU (α) −AL (α)) dα. (2)

If S (α) = α then we obtain the ambiguity Amb (A) of a fuzzy number A (see
[7]).

A trapezoidal fuzzy number is a fuzzy number A with linear sides, that is

AL (α) = a− σ (1− α) , (3)

AU (α) = b+ β (1− α) , α ∈ [0, 1] , (4)

where a, b, σ, β ∈ R, a ≤ b, σ ≥ 0, β ≥ 0. In [12] (see also [13]), the notion of ex-
tended trapezoidal fuzzy number was introduced to facilitate the calculus of the
nearest triangular and trapezoidal approximations of fuzzy numbers. According
to [12], an ordered pair of polynomials of degree 0 or 1 is called an extended
trapezoidal fuzzy number. In fact, an extended trapezoidal fuzzy number is a
pair (AL, AU ) as in (3), (4), without any additional conditions.

A (sL, sR) semi-trapezoidal fuzzy number (see [14]) is a fuzzy number A,Aα =
[AL (α) , AU (α)] , α ∈ [0, 1] given by

AL (α) = a− σ (1− α)
1/sL (5)

AU (α) = b+ β (1− α)1/sR , (6)

where a, b, σ, β, sL, sR ∈ R, a ≤ b, σ ≥ 0, β ≥ 0, sL > 0, sR > 0. The notion of
extended trapezoidal fuzzy number is generalized to the semi-trapezoidal case
in [5]. An extended (sL, sR) semi-trapezoidal fuzzy number A is an ordered
pair of functions (AL, AU ) as in (5)-(6), with sL > 0, sR > 0, but without any
other condition on a, b, σ, β ∈ R. We denote by F

sL,sR
T (R) the set of (sL, sR)

semi-trapezoidal fuzzy numbers and by F
sL,sR
e (R) the set of extended (sL, sR)

semi-trapezoidal fuzzy numbers.
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Let us denote l =
∫ 1

0 λL (α) dα,m =
∫ 1

0 λL (α) (1− α)
1/sL dα,

n =
∫ 1

0 λL (α) (1− α)
2/sL dα, u =

∫ 1

0 λU (α) dα, v =
∫ 1

0 λU (α) (1− α)
1/sR dα

and w =
∫ 1

0
λL (α) (1− α)

2/sR dα, for the weighted functions λL and λU .
Any extended (sL, sR) semi-trapezoidal fuzzy number A = (a, b, σ, β)sL,sR

can
be represented as (see [6])

AL (α) =
1√
l
L−X

(
(1− α)1/sL − m

l

)
(7)

AU (α) =
1√
u
U + Y

(
(1− α)

1/sR − v

u

)
, (8)

where

L =
√
la− m√

l
σ (9)

X = σ (10)

U =
√
ub+

v√
u
β (11)

Y = β. (12)

Thus, an extended (sL, sR) semi-trapezoidal fuzzy number given by (7)-(8) will
be denoted by [L,U,X, Y ]sL,sR

. We have [L,U,X, Y ]sL,sR
∈ F sL,sR (R) if and

only if X ≥ 0, Y ≥ 0 and 1√
l
L+ m

l X ≤ 1√
u
U − v

uY.

The below Karush-Kuhn-Tucker theorem (see [11], pp. 281-283) is an useful
tool in the finding of the parametric or trapezoidal approximations of fuzzy
numbers under conditions (see e.g. [9], [1]-[3]).

Theorem 1. Let f, g1, ..., gp : Rn → R be convex and differentiable functions.
Then x solves the convex programming problem

min f (x)

s.t.gi (x) ≤ hi, i ∈ {1, ..., p}

if and only if there exists μi, i ∈ {1, ..., p}, such that

(i) ∇f (x) +
p∑

i=1

μi∇gi (x) = 0

(ii) gi (x)− hi ≤ 0, ∀i ∈ {1, ..., p}
(iii) μi ≥ 0, ∀i ∈ {1, ..., p}
(iv) μi (gi (x)− hi) = 0, ∀i ∈ {1, ..., p} .

3 Extended Weighted Semi-trapezoidal Approximation
and Metric Properties

The extended trapezoidal approximation of a fuzzy number was determined in
[12]. The extended (sL, sR) semi-trapezoidal approximation of a fuzzy num-
ber together the main metric properties were studied in [5]. The formulas of
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calculus of the extended weighted (sL, sR) semi-trapezoidal approximation of
a fuzzy number and its metric properties were given in [6]. Namely, the ex-
tended weighted semi-trapezoidal approximation Aλ,e

sL,sR = (ae, be, σe, βe)sL,sR
of A ∈ F (R) , Aα = [AL (α) , AU (α)] , α ∈ [0, 1], is given by

ae =
n
∫ 1

0 λL (α)AL (α) dα−m
∫ 1

0 λL (α)AL (α) (1− α)
1/sL dα

nl−m2
(13)

be =
w
∫ 1

0
λU (α)AU (α) dα− v

∫ 1

0
λU (α)AU (α) (1− α)

1/sR dα

uw − v2
(14)

σe =
m

∫ 1

0
λL (α)AL (α) dα− l

∫ 1

0
λL (α)AL (α) (1− α)1/sL dα

nl −m2
(15)

βe =
−v

∫ 1

0 λU (α)AU (α) dα+ u
∫ 1

0 λU (α)AU (α) (1− α)
1/sR dα

uw − v2
. (16)

We obtain the extended weighted semi-trapezoidal approximation of A ∈ F (R)
in the representation [Le, Ue, Xe, Ye]sL,sR

by using (9)-(12). Of course, if λL (α) =
λU (α) = 1, α ∈ [0, 1] and sL = sR = 1 in (13)-(16) we obtain the extended
trapezoidal approximation of A (see [12]). If λL (α) = λU (α) = 1, α ∈ [0, 1] in
(13)-(16) we obtain the extended (sL, sR) semi-trapezoidal approximation of A
(see [5]).

The distance between A,B ∈ F sL,sR
e (R) , A = [L1, U1, X1, Y1]sL,sR

and B =

[L2, U2, X2, Y2]sL,sR
can be represented almost like the Euclidean distance in R4

by (see [6])

d2λ (A,B) = (L1 − L2)
2
+ (U1 − U2)

2
+

nl −m2

l
(X1 −X2)

2
(17)

+
uw − v2

u
(Y1 − Y2)

2
.

The proof of the following result, already presented in [6], is similar with the
proof in the weighted trapezoidal case (see [5]).

Proposition 1. If A ∈ F (R) and Aλ,e
sL,sR is the extended weighted semi-

trapezoidal approximation of A then

d2λ(A,B) = d2λ(A,Aλ,e
sL,sR) + d2λ(A

λ,e
sL,sR , B), (18)

for every B ∈ F
sL,sR
e (R).

4 Weighted Semi-trapezoidal Approximation Preserving
the Weighted Ambiguity

If the parameters Pk, k ∈ {1, ..., q} are preserved by the extended weighted
(sL, sR) semi-trapezoidal approximation of a fuzzy number A, that is

Pk

(
Aλ,e

sL,sR

)
= Pk (A) , ∀k ∈ {1, ..., q} ,
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then, taking into account Proposition 1, we obtain the equivalence of the problem
of finding the weighted (sL, sR) semi-trapezoidal approximation of a given A ∈
F (R), that is

min
B∈F sL,sR

T (R)
dλ (A,B)

Pk (A) = Pk (B) , k ∈ {1, ..., q}

with the following problem

min
B∈F sL,sR

T (R)
dλ
(
Aλ,e

sL,sR , B
)

Pk

(
Aλ,e

sL,sR

)
= Pk (B) , k ∈ {1, ..., q} .

Below we consider the weighted ambiguity of a fuzzy number to illustrate the sim-
plification of the problems passing to extended weighted (sL, sR) semi-trapezoidal
approximation. We consider the following definition of the weighted ambiguity
of a fuzzy number A,Aα = [AL (α) , AU (α)] , α ∈ [0, 1]:

Ambλ (A) =

∫ 1

0

λU (α)
(
1− (1− α)

1/sR
)
AU (α) dα

−
∫ 1

0

λL (α)
(
1− (1− α)

1/sL
)
AL (α) dα.

If sL = sR = 1 and λL (α) = λU (α) = 1 then we get the classical formula of
ambiguity of a fuzzy number (see [7] or [4]).

By a direct computation we obtain the following results.

Proposition 2.
Ambλ

(
Aλ,e

sL,sR

)
= Ambλ (A) . (19)

Proposition 3. Let [L,U,X, Y ]sL,sR
∈ F

sL,sR
e (R). Then

Ambλ

(
[L,U,X, Y ]sL,sR

)
=

m− l√
l

L+
u− v√

u
U +

m2 − nl

l
X +

v2 − uw

u
Y. (20)

Taking into account (17)-(20) we find the weighted (sL, sR) semi-trapezoidal
approximation preserving the weighted ambiguity of a fuzzy number A,

[LT (A) , UT (A) , XT (A) , YT (A)]sL,sR
= [LT , UT , XT , YT ]sL,sR

as a solution of the problem

min
L,U,X,Y ∈R

{
(L− Le)

2
+ (U − Ue)

2
+

nl −m2

l
(X −Xe)

2
(21)

+
uw − v2

u
(Y − Ye)

2

}
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m− l√
l

L+
u− v√

u
U +

m2 − nl

l
X +

v2 − uw

u
Y (22)

=
m− l√

l
Le +

u− v√
u

Ue +
m2 − nl

l
Xe +

v2 − uw

u
Ye

X ≥ 0, Y ≥ 0 (23)

1√
l
L+

m

l
X ≤ 1√

u
U − v

u
Y. (24)

Because

L = Le +

√
l (v − u)√
u (m− l)

(U − Ue)−
m2 − nl√
l (m− l)

(X −Xe) (25)

−
√
l
(
v2 − uw

)
u (m− l)

(Y − Ye) ,

we must solve

min
U,X,Y ∈R

{( √
l (v − u)√
u (m− l)

(U − Ue)−
m2 − nl√
l (m− l)

(X −Xe) (26)

−
√
l
(
v2 − uw

)
u (m− l)

(Y − Ye)

)2

+ (U − Ue)
2

+
nl−m2

l
(X −Xe)

2 +
uw − v2

u
(Y − Ye)

2

}
under conditions

X ≥ 0, Y ≥ 0 (27)(
v − u√
u (m− l)

− 1√
u

)
U +

(
m

l
− m2 − nl

l (m− l)

)
X +

(
v

u
− v2 − uw

u (m− l)

)
Y (28)

≤ − 1√
l
Le +

v − u√
u (m− l)

Ue −
m2 − nl

l (m− l)
Xe −

v2 − uw

u (m− l)
Ye.

Let us denote

a1 =
2l (v − u)

2

u (m− l)
2 + 2, a2 = −

2 (v − u)
(
m2 − nl

)
√
u (m− l)

2 , (29)

a3 = −
2l (v − u)

(
v2 − uw

)
u
√
u (m− l)

2 , a4 = −a1Ue − a2Xe − a3Ye, (30)

a5 =
v − u−m+ l√

u (m− l)
, a6 = −

2 (v − u)
(
m2 − nl

)
√

u (m− l)2
, (31)
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a7 =
2
(
m2 − nl

)2
l (m− l)2

+
2
(
nl −m2

)
l

, a8 =
2
(
v2 − uw

) (
m2 − nl

)
u (m− l)2

, (32)

a9 = −a6Ue − a7Xe − a8Ye, a10 =
m

l
− m2 − nl

l (m− l)
, (33)

a11 = −
2l (v − u)

(
v2 − uw

)
u
√
u (m− l)

2 , a12 =
2
(
v2 − uw

) (
m2 − nl

)
u (m− l)

2 , (34)

a13 =
2l
(
v2 − uw

)2
u2 (m− l)

2 +
2
(
uw − v2

)
u

, a14 = −a11Ue − a12Xe − a13Ye (35)

a15 =
v

u
− v2 − uw

u (m− l)
(36)

a16 = − 1√
l
Le +

v − u√
u (m− l)

Ue −
m2 − nl

l (m− l)
Xe −

v2 − uw

u (m− l)
Ye. (37)

We get that [LT , UT , XT , YT ]sL,sR
is the weighted (sL, sR) semi-trapezoidal ap-

proximation preserving the weighted ambiguity of a fuzzy number A if and only
if (see (25))

LT = Le +

√
l (v − u)√
u (m− l)

(UT − Ue)−
m2 − nl√
l (m− l)

(XT −Xe)

−
√
l
(
v2 − uw

)
u (m− l)

(YT − Ye)

and (UT , XT , YT ) is the solution of the system (the Karush-Kuhn-Tucker condi-
tions, see Theorem 1, (i)− (iv))

a1U + a2X + a3Y + a4 + a5μ3 = 0 (38)

a6U + a7X + a8Y + a9 − μ1 + a10μ3 = 0 (39)

a11U + a12X + a13Y + a14 − μ2 + a15μ3 = 0 (40)

X ≥ 0, Y ≥ 0 (41)

a5U + a10X + a15Y ≤ a16 (42)

μ1 ≥ 0, μ2 ≥ 0, μ3 ≥ 0 (43)

μ1X = 0 (44)

μ2Y = 0 (45)

μ3 (a5U + a10X + a15Y − a16) = 0. (46)

5 Trapezoidal Approximation Preserving Ambiguity

To obtain the trapezoidal approximation with respect to average Euclidean dis-
tance d we consider λL (α) = λU (α) = 1, for every α ∈ [0, 1] and sL = sR = 1
in the above section, that is l = u = 1,m = v = 1

2 and n = w = 1
3 .
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Because (see (29)-(37)) a1 = 4, a2 = a3 = a6 = a11 = − 1
3 , a4 = −4Ue+

1
3Xe+

1
3Ye, a5 = 0, a7 = 2

9 , a8 = 1
18 , a9 = 1

3Ue − 2
9Xe − 1

18Ye, a10 = a15 = 1
3 , a12 =

1
18 , a13 = 2

9 , a14 = 1
3Ue − 1

18Xe − 2
9Ye, from (38)-(46) we get

12U − 12Ue −X +Xe − Y + Ye = 0 (47)

−6U + 6Ue + 4X − 4Xe + Y − Ye − 18μ1 + 6μ3 = 0 (48)

−6U + 6Ue +X −Xe + 4Y − 4Ye − 18μ2 + 6μ3 = 0 (49)

X ≥ 0, Y ≥ 0 (50)

X + Y ≤ −3Le + 3Ue −
1

2
Xe −

1

2
Ye (51)

μ1 ≥ 0, μ2 ≥ 0, μ3 ≥ 0 (52)

μ1X = 0 (53)

μ2Y = 0 (54)

μ3

(
X + Y + 3Le − 3Ue +

1

2
Xe +

1

2
Ye

)
= 0. (55)

By solving the above system and taking into account (9)-(12) we obtain the
trapezoidal approximation of a fuzzy number preserving the ambiguity (see [1]-
[3], [9]). Let us denote

Ω1 =

{
A ∈ F (R) :

∫ 1

0

(1− 3α)AL (α) dα+

∫ 1

0

(3α− 1)AU (α) dα ≥ 0

}
Ω2 =

{
A ∈ F (R) :

∫ 1

0

(3α− 1)AL (α) dα+

∫ 1

0

(α− 1)AU (α) dα > 0

}
Ω3 =

{
A ∈ F (R) :

∫ 1

0

(α− 1)AL (α) dα+

∫ 1

0

(3α− 1)AU (α) dα < 0

}
.

Theorem 2. Let A,Aα = [AL (α) , AU (α)] , α ∈ [0, 1] be a fuzzy number and
T (A) = (a, b, σ, β) the trapezoidal approximation (with respect to the metric d)
of fuzzy number A, preserving the ambiguity of A.

(i) If A ∈ Ω1 then

a =

∫ 1

0

(6α− 2)AL (α) dα

b =

∫ 1

0

(6α− 2)AU (α) dα

σ =

∫ 1

0

(12α− 6)AL (α) dα

β =

∫ 1

0

(−12α+ 6)AU (α) dα.
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(ii) If A ∈ Ω2 then

a = b =
1

2

∫ 1

0

(1− 3α)AL (α) dα+
1

2

∫ 1

0

(1 + 3α)AU (α) dα

σ = −6
∫ 1

0

αAL (α) dα+ 6

∫ 1

0

αAU (α) dα

β = 0.

(iii) If A ∈ Ω3 then

a = b =
1

2

∫ 1

0

(1 + 3α)AL (α) dα+
1

2

∫ 1

0

(1− 3α)AU (α) dα

σ = 0

β = −6
∫ 1

0

αAL (α) dα+ 6

∫ 1

0

αAU (α) dα.

(iv) If A /∈ Ω1 ∪Ω2 ∪Ω3 then

a = b =

∫ 1

0

(3α− 1)AL (α) dα+

∫ 1

0

(3α− 1)AU (α) dα

σ = 3

∫ 1

0

(α− 1)AL (α) dα+ 3

∫ 1

0

(3α− 1)AU (α) dα

β = 3

∫ 1

0

(1− 3α)AL (α) dα+ 3

∫ 1

0

(1− α)AU (α) dα.

6 Conclusion

The present paper together with [5] generalizes the problem of the approxima-
tion of fuzzy numbers with simpler form. More exactly, the approximation is
searched in the space of semi-trapezoidal fuzzy numbers and the approximation
is performed with respect to a general weighted L2-type metric. A method to find
the weighted semi-trapezoidal approximations preserving the weighted ambigu-
ity (introduced in this paper) is proposed. The method can be easily adapted to
other approximations problems such as weighted semi-trapezoidal approxima-
tions preserving (weighted) expected interval or the value. As in the case of the
trapezoidal or semi-trapezoidal approximations, further studies concerning ba-
sic properties such as the additivity or continuity will be tackled in forthcoming
papers.
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Abstract. The problem of the interval approximation of fuzzy numbers
is discussed. A new family of interval approximation operators based on
different distances between fuzzy numbers are considered.

Keywords: fuzzy number, interval approximation, distance between fuzzy
numbers.

1 Introduction

Fuzzy set theory was recognized as an effective tool for modelling and processing
imprecise information. However, sometimes membership functions representing
fuzzy sets are too complicated for calculations and further decision making and
hence some approximations are necessary. The biggest simplification is realized
via defuzzification, where a fuzzy number is reduced to a single point on the real
line. Unfortunately, although defuzzification leads to simple structures it results
in overmuch loss of information. Therefore interval approximation of a fuzzy set
is often advisable. In this approach we substitute a given fuzzy set by interval,
which is - in some sense - close to the former one.

The most popular interval approximation operator is, so called, nearest ordi-
nary set operator. However, this operator has a serious drawback - the lack of
continuity. Thus some other operators were suggested in the literature (see, e.g.
[2], [3], [8], [9]). In particular, Grzegorzewski [8] proposed the interval approxi-
mation leading to interval nearest to the original fuzzy number with respect to
L2-metric. In this paper we generalize results discussed in [8].

The paper is organized as follows. In Sec. 2 we recall basic notions related to
fuzzy numbers. In Sec. 3 we discuss the problem of interval approximation of
fuzzy numbers. Then, in Sec. 4, we propose the nearest interval approximation
with respect to the generalized Trutschnig distance. Next, in Sec. 5, we explore
the properties of the suggested approximation operator.

2 Fuzzy Numbers

Let A denote a fuzzy number, i.e. such fuzzy subset A of the real line R with
membership function μA : R → [0, 1] which is (see [5]): normal (i.e. there exist

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 59–68, 2012.
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an element x0 such that μA(x0) = 1); fuzzy convex (i.e. μA(λx1 + (1 − λ)x2) ≥
μA(x1) ∧ μA(x2), ∀x1, x2 ∈ R, ∀λ ∈ [0, 1]); whose μA is upper semicontinuous
and supp(A) is bounded (where supp(A) = cl({x ∈ R : μA(x) > 0}), and cl is
the closure operator). A space of all fuzzy numbers will be denoted by F(R).

It is known that for any fuzzy number A there exist four numbers
a1, a2, a3, a4 ∈ R and two functions lA, rA : R→ [0, 1], where lA is nondecreasing
and rA is nonincreasing, such that we can describe a membership function μA

in a following manner

μA(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x < a1
lA(x) if a1 ≤ x < a2
1 if a2 ≤ x ≤ a3
rA(x) if a3 < x ≤ a4
0 if a4 < x.

(1)

Functions lA and rA are called the left side and the right side of a fuzzy number
A, respectively.

Moreover, let Aα = {x ∈ R : μA(x) ≥ α}, α ∈ (0, 1], and A0 = supp(A),
denote an α-cut of a fuzzy number A. As it is known, every α-cut of a fuzzy
number is a closed interval, i.e. Aα = [AL(α), AU (α)], where AL(α) = inf{x ∈
R : μA(x) ≥ α} and AU (α) = sup{x ∈ R : μA(x) ≥ α}.

The core of a fuzzy number A is the set of all points that surely belong to A,
i.e. core(A) = {x ∈ R : μA(x) = 1} = Aα=1.

One of the most important aspects of fuzzy data analysis is the usage of
a suitable distance on the family F(R), a distance that is both not too hard
to calculate and which reflects the intuitive meaning of fuzzy sets. The most
popular one is the distance d2 : F(R) × F(R) → [0,+∞) which is actually the
L2-distance in F(R) defined for two arbitrary fuzzy numbers A and B as follows
(see, e.g. [7])

d2(A,B) =

√∫ 1

0

(AL(α)−BL(α))2dα+

∫ 1

0

(AU (α)− BU (α))2dα, (2)

where [AL(α), AU (α)] and [BL(α), BU (α)] are the α−cuts of A and B, respec-
tively. Distance (2) is a particular case of the weighted distance

dZL(A,B) =

√∫ 1

0

(AL(α)−BL(α))2λ(α)dα +

∫ 1

0

(AU (α) −BU (α))2λ(α)dα

where λ is an integrable and nonnegative weighting function. Some authors as-
sume that a weighting function λ is increasing on [0, 1] and such that λ(0) = 0.
These properties mean that higher weight and thus greater importance is at-
tributed to higher α-cuts. Such typical weighted function applied by many au-
thors is simply λ(α) = α (e.g. [16]). However, non-monotonic weighting function
may be also of interest like bi-symmetrical weighting functions (see [11], [12]).

Another interesting distance was proposed by Bertoluzza et al. [1] and gener-
alized by Trutschnig et al. [14] which can be expressed in terms of the squared
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Euclidean distance between the mids and spreads of the interval level sets of
the two fuzzy numbers involved. For each fuzzy number A ∈ F(R) we define the
following two functions: its mid

mid(A(α)) =
1

2
(AL(α) +AU (α)) (3)

and spread

spr(A(α)) =
1

2
(AU (α) −AL(α)), (4)

which attribute to each α-cut Aαthe center and the half of the length of that
α-cut, respectively. Then for two arbitrary fuzzy numbers A and B we get the
distance δθ : F(R)× F(R)→ [0,+∞) as follows

δ2θ(A,B) =

∫ 1

0

(
[mid(A(α)) −mid(B(α))]

2
+ θ [spr(A(α)) − spr(B(α))]

2
)
dα,

(5)
where θ ∈ (0, 1] is a parameter indicating the relative importance of the spreads
against the mids.

One can easily check that for θ = 1 the Trutschnig distance (5) is equivalent
to the most widespread distance (2), i.e. δ2θ=1(A,B) = 1

2d
2
2(A,B) for any A,B ∈

F(R). It means that (2) attaches the same importance to mids and spreads.
However, it seems that the distance between mids is often more important than
that of the spreads because especially mids determine the position of the set.
Hence distances A ∈ F(R) with θ < 1 should be rather of interest.

We may also consider the generalized Trutschnig distance δθ,λ : F(R)×F(R)→
[0,+∞) such that

δ2θ,λ(A,B) =

∫ 1

0

(
[mid(A(α))−mid(B(α))]2 + θ [spr(A(α))− spr(B(α))]2

)
λ(α)dα,

(6)

where λ : [0, 1]→ [0, 1] is a weighting function. Of course, if λ = 1 then δθ,λ = δθ.
To represent a fuzzy number in a concise way some characteristics of fuzzy

numbers are commonly applied. Probably the most important one is the expected
interval EI(A) of a fuzzy number A, introduced independently by Dubois and
Prade [6] and Heilpern [13]. It is given by

EI(A) = [EIL(A), EIU (A)] =

[∫ 1

0

AL(α)dα,

∫ 1

0

AU (α)dα

]
. (7)

Carlson and Fuller [2] proposed the so-called interval-valued possibilistic mean:

M(A) = [M∗(A),M∗(A)] =

[
2

∫ 1

0

AL(α)αdα, 2

∫ 1

0

AU (α)αdα

]
. (8)

The middle point of the expected interval given by

EV (A) =
1

2

(∫ 1

0

AL(α)dα +

∫ 1

0

AU (α)dα

)
(9)
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is called the expected value of a fuzzy number and it represents the typical value
of the fuzzy number A (see [6], [13]). The middle point of the interval-valued
possibilistic mean, i.e.

M(A) =

∫ 1

0

(AL(α) +AU (α))αdα (10)

is called the crisp possibilistic mean value of A and serves also as a natural
location parameter of a fuzzy number. Another parameter characterizing the
typical value of the magnitude that the fuzzy number A represents is called the
value of fuzzy number A and is defined by (see [4])

V al(A) =

∫ 1

0

(AL(α) +AU (α))λ(α)dα, (11)

where λ denotes, as before, the weighting function. One can easily see that M(A)
is a particular case of V al(A) for the linear weighting function λ(α) = α.

To describe the nonspecifity of a fuzzy number we usually use so-called width
of a fuzzy number (see [3]) defined by

w(A) =

∫ ∞

−∞
μA(x)dx =

∫ 1

0

(AU (α)−AL(α))dα. (12)

Another index characterizing the vagueness of fuzzy number A, called the am-
biguity, is given by (see [4])

Amb(A) =

∫ 1

0

(AU (α) −AL(α))λ(α)dα. (13)

3 Interval Approximation of a Fuzzy Number

Suppose we want to approximate a fuzzy number by a crisp interval. Thus we
have to use an operator C : F(R) → I(R) which transforms fuzzy numbers into
family of closed intervals I(R) on the real line (of course, I(R) ⊂ F(R)). Different
methods for finding interval approximations of fuzzy sets are used. The easiest
way is to substitute a fuzzy number either by its support

C0(A) = supp(A) (14)

or by its core
C1(A) = core(A), (15)

but using this methods all information due to fuzziness of the notion under
discussion is neglected. Hence probably the best known and the most popular in
practice operator is

C0.5(A) = {x ∈ R : μA(x) ≥ 0.5} . (16)
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This operator seems to be a compromise between two extremes C0 and C1.
Moreover, it has a quite natural interpretation: any x ∈ R belongs to the ap-
proximation interval C0.5(A) of a fuzzy number A if and only if its degree of
belongingness to A is not smaller than its degree of belongingness to the com-
plement of A (i.e. ¬A). C0.5(A) is sometimes called in literature the nearest
ordinary set of a fuzzy set A. However, this simple and natural operator has a
very unpleasant drawback – the lack of continuity (see, e.g. [8]).

Last three methods, i.e. (14), (15) and (16) are particular cases of the general
α−cut method for obtaining interval approximations of fuzzy numbers

Cα(A) = {x ∈ R : μA(x) ≥ α} = Aα, α ∈ (0, 1], (17)

i.e. we substitute given fuzzy number by its α−cut, where α may be interpreted
as a degree of conviction or acceptability of the imprecise information. Actually,
C0(A) = Aα=0, C0.5(A) = Aα=0.5 and C1(A) = Aα=1. Unfortunately all Cα

operators reveal the lack of continuity.
Although one can try to approximate a fuzzy number in many ways, an inter-

val approximation of a fuzzy number should fulfil at least two natural require-
ments, comprised in a following definition:

Definition 1. An operator C : F(R)→ I(R) is called an interval approximation
operator if for any A ∈ F(R)
(1) C(A) ⊆ supp(A)
(2) core(A) ⊆ C(A).

The definition given above leads to very broad family of operators including,
of course, all Cα operators. However it seems desirable to apply approximation
operators which satisfy some additional requirements, like continuity, invariance
to translation and scale, monotonicity, identity, preservation of some important
characteristics, etc. The broad list of requirements for trapezoidal approximation
operators that might be useful also there is given in [10].

Hence looking for the interval approximation having some desired properties
Grzegorzewski [8] tried to find the operator CG : F(R) → I(R) which for any
A ∈ F(R) produces the interval nearest to A with respect to metric (2). The
solution is

CG(A) =

[∫ 1

0

AL(α)dα,

∫ 1

0

AU (α)dα

]
. (18)

which is actually equivalent to the expected interval, i.e. CG(A) = EI(A). Oper-
ator CG is continuous, invariant to translation and scale. It is worth noting that
the interval approximation operator (18) is also the nearest to A with respect
to the Hamming distance among all the intervals of the same width (see [3]).

4 Interval Approximation with Respect to δθ,λ Distance

In this section we will consider the interval approximation operator which pro-
duces outputs nearest to inputs with respect to the generalized Trutschnig dis-
tance (6). Given A ∈ F(R) with α-cuts [AL(α), AU (α)] we’ll try to find a closed
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interval CT,θ,λ(A) = [cL, cU ] which is nearest to A with respect to metric δθ,λ. We
can apply δθ,λ since each interval is also a fuzzy number with constant α−cuts
for all α ∈ (0, 1]. Hence (CT,θ,λ(A))α = [cL, cU ] for each α ∈ (0, 1]. Therefore,
we have to minimize δθ,λ(A,CT,θ,λ(A)) with respect to cL and cU , where

δ2θ,λ(A,CT,θ,λ(A)) =

∫ 1

0

[
(mid(Aα)−mid(Cα))

2 + θ (spr(Aα)− spr(Cα))
2
]
λ(α)dα.

In order to minimize δθ,λ(A,CT,θ,λ(A)) it suffices to minimize function
D(cL, cU ) = δ2θ,λ(A,CT,θ,λ(A)). By (3) and (4) we get

D(cL, cU ) =
1

4

∫ 1

0

[
(AL(α) +AU (α) − cL − cU )

2

+θ (AU (α)−AL(α) − cU + cL)
2
]
λ(α)dα.

Thus we have to find partial derivatives

∂D(cL, cU )

∂cL
= −1

2

∫ 1

0

(AL(α) +AU (α)− cL − cU )λ(α)dα

+
θ

2

∫ 1

0

(AU (α) −AL(α)− cU + cL)λ(α)dα

∂D(cL, cU )

∂cU
= −1

2

∫ 1

0

(AL(α) +AU (α)− cL − cU )λ(α)dα

−θ

2

∫ 1

0

(AU (α) −AL(α)− cU + cL)λ(α)dα

and then solving ∂D(cL,cU )
∂cL

= 0 and ∂D(cL,cU )
∂cU

= 0 we get

(cL + cU )

∫ 1

0

λ(α)dα =

∫ 1

0

(AL(α) +AU (α)) λ(α)dα

(cU − cL)

∫ 1

0

λ(α)dα =

∫ 1

0

(AU (α)−AL(α)) λ(α)dα.

The solution is

cL =

∫ 1

0
AL(α)λ(α)dα∫ 1

0 λ(α)dα
(19)

cU =

∫ 1

0
AU (α)λ(α)dα∫ 1

0 λ(α)dα
. (20)

Moreover, since ∂D2(cL,cU )
∂c2L

= ∂D2(cL,cU )
∂c2U

= 1
2 (1+θ)

∫ 1

0 λ(α)dα > 0 and ∂D2(cL,cU )
∂cU∂cL

= ∂D2(cL,cU )
∂cL∂cU

= 1
2 (1 − θ)

∫ 1

0 λ(α)dα hence

det

⎡⎣ ∂D2(cL,cU )
∂c2L

∂D2(cL,cU )
∂cU∂cL

∂D2(cL,cU )
∂cL∂cU

∂D2(cL,cU )
∂c2U

⎤⎦ = θ

(∫ 1

0

λ(α)dα

)2

> 0
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so cL and cU given by (19) and (20), respectively, minimize D(cL, cU ) and -
simultaneously - minimize δθ,λ(A,CT,θ,λ(A)). Therefore, CT,θ,λ(A) = [cL, cU ] is
the interval nearest to A with respect to the generalized Trutschnig distance (6).

Looking on our results we obtain immediately an interesting conclusions.

Remark 1. For any parameter θ ∈ (0, 1] the interval approximation operator
CT,θ,λ : F(R) → I(R) producing intervals nearest to the input with respect to
metric δθ,λ does not depend on θ.

Hence, further on our interval approximation operator will be no longer de-
noted as CT,θ,λ but by CT,λ, i.e. we have

CT,λ(A) =

[∫ 1

0
AL(α)λ(α)dα∫ 1

0 λ(α)dα
,

∫ 1

0
AU (α)λ(α)dα∫ 1

0 λ(α)dα

]
. (21)

5 Properties

In this section we consider some properties of the interval approximation oper-
ators CT,λ suggested in Sec. 3.

Proposition 1. The interval approximation operator CT,λ is invariant to trans-
lations, i.e. CT,λ(A+ z) = CT,λ(A) + z for any A ∈ F(R) and for any z ∈ R.

Proposition 2. The interval approximation operator CT,λ is scale invariant,
i.e. CT,λ(γ ·A) = γ · CT,λ(A) for any A ∈ F(R) and for any γ ∈ R\{0}.

Proposition 3. The interval approximation operator CT,λ fulfills the identity
criterion, i.e. if A ∈ I(R) then CT,λ(A) = A.

The proofs of the above three propositions are standard.

Proposition 4. The interval approximation operator CT,λ is monotonic, i.e.
for any A,B ∈ F(R) if A ⊆ B then CT,λ(A) ⊆ CT,λ(B).

Proof: Since A ⊆ B there exist a nonnegative function h(α) ≥ 0 such that
AL (α) = BL(α)+h(α) for all α ∈ (0, 1]. Hence for CT,λ(A) = [cL(A), cU (A)] we

get cL(A)
∫ 1

0 λ(α)dα =
∫ 1

0 AL(α)λ(α)dα =
∫ 1

0 (BL(α) + h(α))λ(α)dα

=
∫ 1

0
BL(α)λ(α)dα+

∫ 1

0
h(α)λ(α)dα. By the theorem on mean value for integrals

there exist such constant ξ ∈ (0, 1) that
∫ 1

0 h(α)λ(α)dα = h(ξ)
∫ 1

0 λ(α)dα so
cL(A) = cL(B) + h(ξ) ≥ cL(B).

Similarly, if A ⊆ B then there exist a function k(α) ≥ 0 such that AU (α) =
BU (α) − h (α) for all α ∈ [0, 1]. In the same manner we can see that there
exist a constant ζ ∈ (0, 1) such that cU (A) = cU (B) − k(ζ) ≤ cU (B). Thus
finally CT,λ(A) = [cL(A), cU (A)] ⊆ [cL(B), cU (B)] = CT,λ(B) and the criterion
of monotony holds. ��

It would be also desirable that if two fuzzy numbers A and B are close –
in some sense – then their interval approximations are also close. One can also
prove that
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Proposition 5. If the weighting function λ is continuous then the interval ap-
proximation operator CT,λ is continuous, i.e.

∀(ε > 0) ∃(σ > 0) d(A,B) < σ ⇒ d(CT,λ(A), CT,λ(B)) < ε,

where d : F(R) × F(R) → [0,+∞) denotes a metric defined in the family of all
fuzzy numbers.

It can be shown that our interval approximation operator CT,λ is preserves some
indices characterizing fuzzy numbers mentioned in Sec. 2.

Proposition 6. If A is a symmetrical fuzzy number then the interval approxi-
mation operator CT,λ preserves the expected value, i.e. EV (CT,λ(A)) = EV (A).

Proof: By (9) and (21)

EV (CT,λ(A)) =
cL + cU

2
=

∫ 1

0 (AL(α) +AU (α))λ(α)dα

2
∫ 1

0 λ(α)dα
. (22)

However, if A ∈ F(R) is symmetrical then its α-cuts satisfy the relation: AU (α) =
2q − AL(α) for each α ∈ (0, 1], where q = 1

2 (AL(0) + AU (0)). Substituting
AU (α) = 2q −AL(α) into (22) we get EV (CT,λ(A)) = q. By (9) we obtain that
for a symmetrical fuzzy number EV (A) = q. So the theorem holds. ��
Proposition 7. The interval approximation operator CT,λ preserves the value
of a fuzzy number, i.e. V al(CT,λ(A)) = V al(A).

Proposition 8. The interval approximation operator CT,λ preserves the ambi-
guity of a fuzzy number, i.e. Amb(CT,λ(A)) = Amb(A).

The proofs of the last two propositions are straightforward.

Proposition 9. Let CT,α denote the interval approximation operator for the
linear weighting function λ(α) = α. Then EV (CT,α(A)) = M(A) = V al(A) and
w(CT,α(A)) = 2Amb(A).

Proof: By (9) and (10) we get

EV (CT,α(A)) =

∫ 1

0
(AL(α) +AU (α))αdα

2
∫ 1

0 αdα
=

∫ 1

0

(AL(α) +AU (α))αdα = M(A)

which is also equivalent to V al(A) for λ(α) = α. Similarly, we obtain

w(CT,α(A)) =

∫ 1

0
(AU (α)− AL(α))αdα∫ 1

0
αdα

= 2

∫ 1

0

(AU (α)−AL(α))αdα = 2Amb(A)

��
Now we will compare the interval approximation operator CT,λ with the approx-
imation operators discussed in Sec. 3. Let us firstly consider a situation with
equally weighting for all α-cuts. Thus putting λ(α) = 1 into (21) and comparing
the output with (18) we get another intriguing result that the interval approxi-
mation with respect to metric δθ coincide with the interval approximation with
respect to L2-metric d2.
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Theorem 1. Let CT,1 : F(R) → I(R) denote an interval approximating opera-
tor producing intervals nearest to the input with respect to metric δθ with equally
weighted α-cuts, i.e. λ(α) = 1 for each α ∈ (0, 1]. Then the interval approx-
imation operator CT,1 is equivalent with the Grzegorzewski operator (18), i.e.
CT,1 = CG.

Comparing (8) with (21) one can easily prove

Theorem 2. Let CT,α denote the interval approximation operator for the linear
weighting function λ(α) = α. Then the interval approximation operator CT,α

producing intervals nearest to the input with respect to δθ,α is the interval-valued
possibilistic mean, i.e. CT,α(A) = M(A).

Taking into account last remark one may be interested in the comparison of the
interval approximation interval obtained using the Grzegorzewski operator (18)
and the approximation interval (21) nearest to the input with respect to metric
δθ,λ with the linear weighting function λ(α) = α. The following lemma holds.

Lemma 1. For any fuzzy number A its interval approximation CG(A) contains
CT,α(A), i.e. CT,α(A) ⊆ CG(A).

The most important subfamily of fuzzy numbers are trapezoidal fuzzy numbers
FT (R) ⊂ F(R). A membership function of any trapezoidal fuzzy number A can
be described in a following manner

μA(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x < a1
x−a1

a2−a1
if a1 ≤ x < a2

1 if a2 ≤ x ≤ a3
a4−x
a4−a3

if a3 < x ≤ a4
0 if a4 < x,

where a1 ≤ a2 ≤ a3 ≤ a4. In [8] it was shown that in the subfamily of trapezoidal
fuzzy numbers the interval approximation operators CG and (16) are equivalent,
i.e. CG(A) = C0.5(A) ∀A ∈ FT (R). Now let us consider the interval approx-
imation operator CT,α corresponding to metric δθ,λ with the linear weighting
function λ(α) = α for the subfamily of trapezoidal fuzzy numbers.

Theorem 3. In the subfamily of trapezoidal fuzzy numbers the interval approx-
imation operators CT,α is equivalent to the interval approximation operator (17)
for α = 2

3 , i.e.

CT,α(A) = C2/3(A) ∀A ∈ FT (R). (23)

Proof: The α−cuts of the trapezoidal fuzzy numbers are given by
Aα = [AL(α), AU (α)] = [a1 + (a2 − a1)α, a4 − (a4 − a3)α]. Hence CT,α(A) =[
2
∫ 1

0
(a1 + (a2 − a1)α)αdα, 2

∫ 1

0
(a4−(a4−a3)α)αdα

]
=
[
1
3a1 +

2
3a2,

2
3a3 +

1
3a4
]
.

Since A2/3 =
[
1
3a1 +

2
3a2,

2
3a3 +

1
3a4
]
= C2/3 thus we get the desired conclusion.

��
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6 Conclusions

In the paper we have considered the interval approximation operator of fuzzy
numbers leading to intervals nearest to the original fuzzy number with respect
to the generalized Trutschnig distance. We have shown that this operator has
not only many interesting properties but it also generalizes some other approxi-
mation operators like suggested in [8] and others.
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Abstract. The fuzzy transform setting (F-transform) is proposed as a
tool for representation and approximation of type-1 and type-2 fuzzy
numbers; the inverse F-transform on appropriate fuzzy partition of the
membership interval [0,1] is used to characterize spaces of fuzzy numbers
in such a way that arithmetic operations are defined and expressed in
terms of the F-transform of the results. A type-2 fuzzy number is repre-
sented as a particular fuzzy-valued function and it is expressed in terms of
a two-dimensional F-transform where the first dimension represents the
universe domain and the second dimension represents the membership
domain. Operators on two dimensional F-transform are then proposed
to approximate arithmetic operations with type 2 fuzzy numbers.

Keywords: Fuzzy Transform, Fuzzy Numbers, Fuzzy Arithmetic, Type-
2 Fuzzy Numbers.

1 Introduction

The fuzzy transform (F-transform) has recently been introduced by I. Perfilieva
in [3] and [4]. Several connections between theory (with extensions to the mul-
tidimensional case in [14]) and applications are covered e.g. in [1], [2], [5], [6],
[7], [8], [13] and [15]. A special issue of Fuzzy Sets and Systems (Vol. 180, 2011,
pages 1-184) has been devoted to recent results on F-transform, its properties
and its applications.

The F-transform offers a new setting to obtain good approximations (includ-
ing interpolation) of functions of single and multiple variables and is proposed
here as a tool to approximate and to represent fuzzy numbers (or intervals)
of type-1 and type-2. A type-1 fuzzy number u is represented in terms of its
level cuts [u]α = [u−α , u+

α ] for all α ∈ [0, 1]; the two functions u− : α −→ u−α
and u+ : α −→ u+

α are usually called the lower and the upper branches of
the LU-representation (L=lower, U=upper). The two branch functions u− and
u+ are approximated by the F-transform on appropriate fuzzy partitions of the
membership interval [0, 1].

A similar construction can be proposed to approximate and represent a type-
2 fuzzy number, by the use of a two-dimensional F-transform where the first

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 69–78, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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dimension represents the universe (or primary) domain and the second dimension
represents the membership interval [0, 1].

The F-transform setting is finally used to obtain good approximations of the
arithmetic operations with type-1 and type-2 fuzzy numbers; in fact, using the
F-transform approximation, we are able to obtain the F-transform of the stan-
dard arithmetic for fuzzy numbers as expressed in terms of the α-cuts of the
operands in addition, scalar multiplication, difference, product, division, maxi-
mum, minimum, including the application of the Zadeh’s extension principle to
extend real-valued functions to fuzzy arguments.

The organization of the paper is as follows. In section 2 we begin with the basic
definitions and properties of type-1 fuzzy numbers and we describe the unidi-
mensional F-transform and its basic properties. In section 3 we use F-transform
to represents type-1 fuzzy numbers and we illustrate the corresponding arith-
metic operators. In section 4 we extend the use of F-transform to approximate
type-2 fuzzy numbers.

2 F-Transform and Its Basic Properties

We briefly recall the basic definitions and properties of the F-transform (see [3]).

Definition 1. A fuzzy partition for a given real compact interval [a, b] is con-
structed by a decomposition P = {a = x1 < x2 < ... < xn = b} of [a, b] into
n − 1 subintervals [xk−1, xk], k = 2, ..., n and by a family A = {A1, A2, ..., An}
of n fuzzy numbers (the basic functions) identified by the membership values
A1(x), A2(x), ..., An(x) for x ∈ [a, b]; the required properties (to complete this
notation, we set x0 = a and xn+1 = b) are as follows:

1. each Ak : [a, b] −→ [0, 1] is continuous with Ak(xk) = 1, Ak(x) = 0 for
x /∈ [xk−1, xk+1];
2. for k = 2, 3, ..., n − 1, Ak is increasing on [xk−1, xk] and decreasing on
[xk, xk+1]; A1 is decreasing on [a, x2]; An is increasing on [xn−1, b];

3. for all x ∈ [a, b] the following holds
n∑

k=1

Ak(x) = 1.

We denote a fuzzy partition by the pair (P,A). On each subinterval ]xk−1, xk[ of
the decomposition P, only two basic functions Ak−1(x) and Ak(x) are non zero
for k = 2, ..., n.

We consider the direct and inverse F-transform defined in [3]; a compact
interval [a, b] is given, and a fuzzy partition (P,A) of [a, b] is selected. Given m
distinct points tj ∈ [a, b], j = 1, ...,m, such that each set Tk = {tj|Ak(tj) > 0},
k = 1, ..., n, is nonempty (assuming t1 < t2 < ... < tm), we say that T =
{t1, t2, ..., tm} is sufficiently dense with respect to (P,A).

Definition 2. (from [3]) The (direct) F-transform of an integrable function f :
[a, b] −→ R on partition (P,A) is the n-tuple of real numbers F = (F1, F2, ..., Fn)
given by
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Fk =

b∫
a

f(x)Ak(x)dx

/ b∫
a

Ak(x)dx for k = 1, ..., n.

If f is known at m sufficiently dense points t1, t2, ..., tm ∈ T with respect to
(P,A), the discrete direct F-transform is

Fk =
m∑
j=1

f(tj)Ak(tj)

/
m∑
j=1

Ak(tj) for k = 1, ..., n.

Definition 3. (from [3]) Given the fuzzy transform F = (F1, F2, ..., Fn) of a
function f : [a, b] −→ R on a fuzzy partition (P,A), the inverse F-transform

( iF-transform) is the function f̂F : [a, b] −→ R given by

f̂F (x) =
n∑

k=1

FkAk(x) for x ∈ [a, b]. (1)

Note the important property that f̂F (x) is monotonic on each subinterval
[xk−1, xk], and it is increasing if Fk−1 > Fk, decreasing if Fk−1 < Fk or constant
if Fk−1 = Fk. The F-transform of monotone functions is analyzed in [7].

The following approximation property ([3]) is one of the fundamentals of the
F-transform setting.

Theorem 1. ([3]) If f : [a, b] −→ R is a continuous function then, for any
positive real ε, there exists a fuzzy partition (Pε,Aε) such that the associated F-

transform F ε = (F1,ε, F2,ε, ..., Fnε,ε)
T and the corresponding iF-transform f̂F ε

:
[a, b] −→ R satisfy ∣∣∣f(x)− f̂F ε

(x)
∣∣∣ < ε for all x ∈ [a, b].

The basic properties of the F-transform are described in [3] (see also [12]):

Theorem 2. Let f : [a, b] −→ R be continuous and let F = (F1, F2, ..., Fn)
T be

its F-transform with respect to a given partition (P,A). Then

(i) each Fk is a minimizer of the function φk(y) =
b∫
a

(f(x) − y)
2
Ak(x)dx;

(ii) the iF-transform satisfies

b∫
a

f̂F (x)dx =

b∫
a

f(x)dx or (discrete case)
m∑
j=1

f̂F (tj) =
m∑
j=1

f(tj). (2)

and, for all k = 1, ..., n,
Fk = f̂F (xk). (3)
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The F-transform and the iF-transform are additive and homogeneous, hence
linear ([3]):

Theorem 3. Let f, g : [a, b] −→ R be two continuous functions and let F =
(F1, F2, ..., Fn)

T and G = (G1, G2, ..., Gn)
T be the corresponding F-transform

with respect to a given partition (P,A). Then

(1) the F-transform of f + g is F +G;
(2) the F-transform of λf is λF for all λ ∈ R.

Consequently, ̂(f + g)F+G = f̂F + ĝG and (̂λf)λF = λf̂F .

3 F-Transform Approximation of Fuzzy Numbers

We will denote by RF the set of fuzzy numbers or intervals, i.e. normal, fuzzy
convex, upper semicontinuous and compactly supported fuzzy sets defined over
the real line.

Let u ∈ RF be a fuzzy number. For α ∈]0, 1], the α-level set of u (or simply
the α−cut) is defined by [u]α = {x|x ∈ R, u(x) ≥ α} and for α = 0 by the
closure of the support [u]0 = cl{x|x ∈ R, u(x) > 0}. The core of u is the set of
elements of R having membership grade 1, i.e., [u]1 = {x|x ∈ R, u(x) = 1}.

It is well-known that the level− cuts are ”nested”, i.e. [u]α ⊆ [u]β for α > β.
A fuzzy set u is a fuzzy number if and only if the α−cuts are nonempty compact
intervals of the form [u]α = [u−α , u+

α ] ⊂ R. The ”nested” property is the basis for
the LU representation (L for lower, U for upper). We refer to the functions u−(.)
and u+

(.) as the lower and upper branches on u, respectively; a fuzzy number is

then defined, equivalently, by the pair (u−, u+) of functions u− : α −→ u−α and
u+ : α −→ u+

α representing its lower and upper branches.
If u = (u−, u+) and v = (v−, v+) are two given fuzzy intervals, the addition

u+ v and the scalar multiplication ku are defined as having α-cuts, for α ∈ [0, 1]

[u+ v]α = [u]α + [v]α = {x+ y|x ∈ [u]α, y ∈ [v]α}
[ku]α = k[u]α = {kx|x ∈ [u]α}, [0]α = {0}.

The subtraction u−v is defined as the addition u+(−v) where −v = (−1)v and
the standard multiplication uv and division u

v (if 0 /∈
[
v−0 , v+0

]
) have α-cuts, for

α ∈ [0, 1]

[uv]α = [(uv)
−
α , (uv)

+
α ] (4)

(uv)
−
α = min

{
u−αv−α , u−αv+α , u+

αv−α , u+
αv+α

}
(uv)

+
α = max

{
u−α v−α , u−αv+α , u+

αv−α , u+
αv+α

}
and
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[
u

v
]α = [

(u
v

)−
α

,
(u
v

)+
α
] (5)(u

v

)−
α
= min

{
u−α
v−α

,
u−α
v+α

,
u+
α

v−α
,
u+
α

v+α

}
(u
v

)+
α
= max

{
u−α
v−α

,
u−α
v+α

,
u+
α

v−α
,
u+
α

v+α

}
.

The F-transform can be used to approximate any fuzzy number u ∈ RF , by
approximating its α-cuts [u]α = [u−α , u+

α ] with the F-transform of the two mono-
tonic functions u−α , u+

α as functions of α ∈ [0, 1].
Let (P,A) be a fuzzy partition of interval [0, 1] with P = {0 = α1 < α2 <

... < αn = 1} and A = {A1, A2, ..., An}, the basic functions, identified by the
membership values A1(α), A2(α), ..., An(α) for α ∈ [0, 1], i.e. Ak ∈ [0, 1]F .

Let U−
k and U+

k , k = 1, 2, ..., n , be the F-transforms of functions u−α and u+
α ;

then their iF-transforms û−α and û+
α are given by

û−α =
n∑

k=1

U−
k Ak(α) for α ∈ [0, 1]

û+
α =

n∑
k=1

U+
k Ak(α) for α ∈ [0, 1].

It is well known (see [7]) that û−α and û+
α are monotone functions and it is

immediate to see that û−1 ≤ û+
1 because u−α ≤ u+

α for all α ∈ [0, 1]. It follows
that {[û−α , û+

α ];α ∈ [0, 1]} define the α-cuts of fuzzy number û ∈ RF .
In the discrete F-transform setting, U−

k and U+
k , k = 1, 2, ..., n , can be ob-

tained from m level-cuts [u−α′
i
, u+

α′
i
] such that 0 ≤ α′1 < α′2 < ... < α′m ≤ 1 is

sufficiently dense with the fuzzy partition (P,A).
It is immediate to verify that the F-transform approximation û ∈ RF of

u ∈ RF preserves the mean interval[
1∫
0

u−αdα,
1∫
0

u+
αdα

]
=

[
1∫
0

û−αdα,
1∫
0

û+
αdα

]
.

Furthermore, the fuzziness Fuz(u) =
0.5∫
0

(u+
α − u−α )dα −

1∫
0.5

(u+
α − u−α )dα can be

forced to be preserved, i.e., Fuz(u) = Fuz(û), by choosing a decomposition P
with α = 0.5 as a point; indeed, if the fuzzy partition of [0, 1] has the point
αk = 0.5, it is possible to obtain two separate fuzzy partitions of [0, 0.5] and
[0.5, 1] with nodes {0 = α1 < α2 < ... < αk = 0.5} and {0.5 = αk < αk+1 <
... < αn = 1} and basic functions {A1, A2, ..., Ak} and A = {Ak, Ak+1, ..., An}
such that they are disjoint and their union is the partition (P,A) of [0, 1].

3.1 Spaces of Functions Generated by F-Transform

Let [a, b] be a given interval and consider a fuzzy partition (P,A) of [a, b], with
P = {a = x1 < x2 < ... < xn = b} and A = {A1, A2, ..., An}. A particular case
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of discrete F-transform is when we take the points t1, t2, ..., tm to be coincident
with the basic points x1 < x2 < ... < xn of P.

Definition: A function ϕ : [a, b] −→ R such that the following equality holds

ϕ(x) =

n∑
k=1

ϕ(xk)Ak(x), ∀x ∈ [a, b] (6)

is said to be generated by the F-transform with the fuzzy partition (P,A).

We denote by F(P,A) the space of functions ϕ : [a, b] −→ R of the form
(6) and we say that F(P,A) is the space reproduced by the fuzzy partition
(P,A). If ϕ ∈ F(P,A) it is immediate to see that {ϕ(xk), k = 1, 2, ..., n} is
its discrete F-transform at points x1, x2, ..., xn; in fact, for k = 1, ..., n we have
n∑

j=1

ϕ(xj)Ak(xj) = ϕ(xk) and
n∑

j=1

Ak(xj) = 1, because Ak(xj) = 0 if k �= j

and Ak(xk) = 1. It follows that the iF-transform of ϕ ∈ F(P,A) with respect
to (P,A) is ϕ itself and the space F(P,A) contains exactly the functions having
themselves as iF-transform.

Remark 1. Consider that, in general, it is not true that ϕ coincides with its

iF-transform ϕ̂Φ(x) =
n∑

k=1

ΦkAk(x).

The space F(P,A) is in one-to-one correspondence with Rn by the following
bijection j(P,A) : Rn ←→ F(P,A)

j(P,A)(ϕ1, ..., ϕn) =

n∑
k=1

ϕkAk

and the inverse of the bijection j(P,A) is obtained by the F-transform with respect
to (P,A).

Examples of basic functions A = {A1, A2, ..., An} to construct fuzzy partitions
(P,A) are given in [12].

3.2 Fuzzy Numbers Generated by F-Transform

We can construct a space of fuzzy numbers generated by F-transform with a
given partition (P,A) of [0, 1].

Let P = {0 = α1 < α2 < ... < αn = 1} be given; a fuzzy number u ∈ RF with
α-cuts [u−α , u+

α ] α ∈ [0, 1] such that the following equalities hold

u−α =

n∑
k=1

u−αk
Ak(α), ∀α ∈ [0, 1] (7)

u+
α =

n∑
k=1

u+
αk

Ak(α), ∀α ∈ [0, 1] (8)

is said generated by the F-transform with the fuzzy partition (P,A).
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The space F(P,A) is in one-to-one correspondence with

V2n = {(u−,u+)| u−,u+ ∈ Rn with u−1 ≤ ... ≤ u−n ≤ u+
n ≤ ... ≤ u+

1 }.

Consider the bijection jF(P,A) : V2n ←→ F(P,A)

[jF(P,A)(u
−,u+)]α =

[
n∑

k=1

u−k Ak(α),

n∑
k=1

u+
k Ak(α)

]
;

the inverse of the bijection jF(P,A) is obtained by the F-transform.
A representation of u ∈ F(P,A) in terms of its α-cuts is the following

u = {
[
u−k , u+

k

]
; k = 1, ..., n} and

[u]α =

[
n∑

k=1

u−k Ak(α),

n∑
k=1

u+
k Ak(α)

]

3.3 Fuzzy Arithmetic with F-Transform

From the linearity of the F-transform, it follows that F(P,A) is a linear space.
The standard arithmetic operations, including the application of Zadeh’s exten-
sion principle (for extension of a continuous function), are immediate to obtain
in terms of F-transform representation.

Let u, v ∈ F(P,A)

u = {
[
u−k , u+

k

]
; k = 1, ..., n},

[u]α =

[
n∑

k=1

u−k Ak(α),

n∑
k=1

u+
k Ak(α)

]
,

v = {
[
v−k , v+k

]
; k = 1, ..., n},

[v]α =

[
n∑

k=1

v−k Ak(α),
n∑

k=1

v+k Ak(α)

]
.

We have

u+ v = {
[
u−k + v−k , u+

k + v+k
]
; k = 1, ..., n}

λu = {
[
λu−k , λu+

k

]
; k = 1, ..., n}, if λ ≥ 0

λu = {
[
λu+

k , λu−k
]
; k = 1, ..., n}, if λ < 0

uv = {
[
(uv)−k , (uv)+k

]
; k = 1, ..., n},

(uv)
−
k = min

{
u−k v−k , u−k v+k , u+

k v−k , u+
k v+k

}
(uv)

+
k = max

{
u−k v−k , u−k v+k , u+

k v−k , u+
k v+k

}
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u/v = {
[
(u/v)−k , (u/v)+k

]
; k = 1, ..., n},

(u/v)−k = min
{
u−k /v−k , u−k /v+k , u+

k /v−k , u+
k /v+k

}
(u/v)+k = max

{
u−k /v−k , u−k /v+k , u+

k /v−k , u+
k /v+k

}
.

Consider finally a given continuous function y = f(x1, ..., xd) of d real variables
x1, ..., xd and d fuzzy numbers uj = {[uj−

k , uj+
k ]; k = 1, ..., n}, j = 1, ..., d, corre-

sponding to the partition (P,A) and αk ∈ [0, 1], k = 1, ..., n. Let v = f(u1, ..., ud)
denote the fuzzy extension of f . The resulting intervals

[
v−k , v+k

]
are obtained

by solving the box-constrained optimization problems

(EP)k :

⎧⎨⎩ v−k = min
{
f(x1, ..., xd)|xj ∈ [uj−

k , uj+
k ], j = 1, ..., d

}
v+k = max

{
f(x1, ..., xd)|xj ∈ [uj−

k , uj+
k ], j = 1, ..., d

} (9)

and the α-cuts of v are approximated on (P,A) by

[v]α =

[
n∑

k=1

v−k Ak(α),

n∑
k=1

v+k Ak(α)

]
.

Two important characteristics of the optimization problems (9), to be solved
for each αk ∈ P, are that a) for given k = 1, ..., n, function f(x1, ..., xd) is
to be minimized and maximized for values of the variables on the same in-
tervals xj ∈ [uj−

k , uj+
k ], j = 1, ..., d, and b) all the intervals are nested, i.e.,

[uj−
k+1, u

j+
k+1] ⊆ [uj−

k , uj+
k ] for j = 1, ..., d. To solve the 2n problems (9) we use an

ad-hoc implementation of the multiple population differential evolution (DE) al-
gorithm, described and analyzed in [9], where the two properties a) and b) above
are taken into accout by solving the 2n min and max optimization problems si-
multaneously, so reducing the number of evaluations of function f(x1, ..., xd).

4 F-Transform and Type-2 Fuzzy Numbers

Consider a fuzzy valued function f : [a, b] −→ RF with [f(x)]α = [f−α (x), f+
α (x)],

α ∈ [0, 1]. For all x ∈ [a, b], the level cuts of the fuzzy number f(x) can be approx-
imated in terms of the 2-dimensional F-transform defined by a fuzzy partition
(P,A) of [0, 1] and a fuzzy partition (Q,B) of [a, b]. Let P ={0 = α1 < α2 < ... <
αp = 1} be a decomposition of [0, 1] with basic functions A = {A1, A2, ..., Ap}
and let Q ={a = x1 < x2 < ... < xq = b} be a decomposition of [a, b] with basic

functions B = {B1, B2, ..., Bq}. Then, the approximation f̂(x), for all x ∈ [a, b],

has α-cuts [f̂−α (x), f̂+
α (x)] with

f̂−α (x) =
p∑

i=1

q∑
j=1

F−
i,jBj(x)Ai(α)

f̂+
α (x) =

p∑
i=1

q∑
j=1

F+
i,jBj(x)Ai(α)
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where F−
i,j and F+

i,j are obtained by a 2-dimensional F-transform, i.e. by mini-
mizing the functionals

F−
i,j = argmin

yi,j

1∫
0

b∫
a

(
f−α (x)− yi,j

)2
Bj(x)Ai(α)dxda

F+
i,j = argmin

yi,j

1∫
0

b∫
a

(
f+
α (x)− yi,j

)2
Bj(x)Ai(α)dxda

It is easy to see that Φ−i (x) =
q∑

j=1

F−
i,jBj(x) and Φ+

i (x) =
q∑

j=1

F+
i,jBj(x) are the

unidimensional F-transforms of f−α (x) and f+
α (x), for fixed x, with respect to

the fuzzy partition (P,A) of [0, 1]; and that Ψ−j (α) =
p∑

i=1

F−
i,jAi(α) and Ψ+

j (α) =

p∑
i=1

F+
i,jAi(α) are the unidimensional F-transforms of f−α (x) and f+

α (x), for fixed

α, with respect to the fuzzy partition (Q,B) of [a, b]. It follows that F−
i,j and

F+
i,j can be viewed either in terms of the F-transform of Φ−i (x) and Φ+

i (x) with
respect to the fuzzy partition (Q,B) of [a, b] or in terms of the F-transform of
Ψ−j (α) and Ψ+

j (α) with respect to the fuzzy partition (P,A) of [0, 1].
As a type-2 fuzzy number is essentially a fuzzy-valued function, we can ap-

proximate it by using a two-dimensional F-transforms. Analogously to type-1
fuzzy numbers , type-2 fuzzy numbers on [a, b] can be generated in way similar
to the space F(P,A), by choosing matrices Φ−,Φ+ of order q × p and

u−α (x) =
p∑

i=1

q∑
j=1

Φ−i,jBj(x)Ai(α)

u+
α (x) =

p∑
i=1

q∑
j=1

Φ+
i,jBj(x)Ai(α)

where u(x) ∈ F(P,A) is the fuzzy membership value of x ∈ [a, b] and (Q,B) is a
fuzzy partition of [a, b].

We require Φ−1,j ≤ ... ≤ Φ−p,j ≤ Φ+
p,j ≤ ... ≤ Φ+

1,j for all j, because the
secondary membership functions are read on the columns of the matrices. The
nodes of the two partitions define a grid on [a, b] × [0, 1] and the secondary
membership functions are ”vertical” for each x.

The space of type-2 fuzzy numbers generated by the fuzzy partitions (P,A)
and (Q,B) can be embedded into R2(p×q) using two matrices Φ−,Φ+ of order
q × p.

5 Concluding Remarks

We suggest the use os the F-transform setting to obtain good approximations of
fuzzy numbers and fuzzy-valued functions.

Two properties of the F-transform seem to be of particular interest in our
case: the F-transform has a monotonicity property useful to well approximate
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the monotonic branches of the membership function of a fuzzy numbers, and F-
transform preserve the integral of the approximated function, which translated
to the invariance of the so called fuzziness of a fuzzy number.

Further work is planned to improve the approximation of type-1 and type-2
fuzzy numbers and to extend operators based on F-transform for operations with
type-2 fuzzy numbers.
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project PRIN 2008JNWWBP 004 (Models and Fuzzy Calculus for Economic and
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Abstract. In this paper, a new approach based on fuzzy Haar wavelet is
proposed to solve linear fuzzy Fredholm integral equations of the second
kind (FFIE-2). Moreover, the error estimate of the proposed method is
given. Finally, illustrative examples are included to show the accuracy
and efficiency of the proposed method.
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1 Introduction

Wavelet theory is relatively new and an emerging area in mathematical research.
Wavelet permits the accurate representation of a variety of functions and oper-
ators. Also, wavelets are the suitable and powerful tool for approximating func-
tions based on wavelet basis functions.

Fuzzy integral equations arise in many applications such as physics, geo-
graphic, medical, biology, social sciences, etc. Many practical problems in science
and engineering can be transformed into Fuzzy Fredholm integral equations of
the second kind, thus their solution is one of the main goals in various areas of ap-
plied sciences and engineering. Many authors, such as [5,22,23,29] used the Haar
wavelet for numerical solution of differential, integral and integro-differential
equations in the crisp case. The simplest wavelets are based on the Haar func-
tions, which they are piecewise constant functions on real line.

Systems of linear and nonlinear equations arise from various areas of science
and engineering. Since many real world systems are too complex to be defined
in precise terms, imprecision is often involved. Analyzing such systems requires
the use of fuzzy information. Therefore, the fuzzy concept proposed by Zadeh,
[28,29] is deemed to be quite useful in many applications. Thus, the need for
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solving linear systems whose parameters are all of partially represented fuzzy
numbers, is apparent.

The concept of fuzzy integral was initiated by Dubois and Prade [11] and then
investigated by Kaleva [20], Goetschel and Voxman [17], Nanda [24] and others.
Also, the subject of fuzzy integration is used for solving fuzzy integral equa-
tions. In [20], Kaleva defined the integral of fuzzy function using the Lebesque
type concept for integration. The fuzzy Riemann integral and its numerical in-
tegration was investigated by Wu in [19]. In [6], the authors introduced some
quadrature rules for solving the integral of fuzzy-number-valued mappings. In
[12], the authors gave one of the applications of fuzzy integral for solving FFIE-
2. Friedman et al. [14] presented a numerical algorithm for solving FFIE-2 with
arbitrary kernel. Also, they investigated numerical procedures for solving FFIE-
2 by using the embedding method [15]. Babolian et al. [4] used the Adomian
decomposition method (ADM) to solve FFIE-2. Abbssbandy et al. [1] obtained
solution of FFIE-2 by using Nystrom method.

Here, by using fuzzy Haar wavelet, we propose a numerical approach for solv-
ing FFIE-2

ũ(x) = f̃(x)⊕ λ� (FR)

∫ b

a

k(x, t) � ũ(t)dt, λ > 0,

where k(x, t) is an arbitrary kernel function over the square a ≤ x, t ≤ b, and
ũ(x) is a fuzzy real valued function. Also, we present the error estimation for
approximating the solution of FFIE-2.

This paper is organized as follows: In Section 2, we review some elementary
concepts of the fuzzy set theory and brief of Haar wavelets. In Section 3, we
drive the proposed method to obtain numerical solution of FFIE-2 based on
fuzzy Haar wavelet. Error estimation of the proposed method is given in Section
4. Section 5 presents some numerical examples for proposed method. Finally,
Section 6 gives our concluding remarks.

2 Preliminaries

Definition 1 [2]. A fuzzy number is a function ũ : R → [0, 1] having the
properties:

(1) ũ is normal, that is ∃ x0 ∈ R such that ũ(x0) = 1,
(2) ũ is fuzzy convex set

(i.e. ũ(λx+ (1− λ)y) ≥ min {ũ(x), ũ(y)} ∀x, y ∈ R, λ ∈ [0, 1]),

(3) ũ is upper semi-continuous on R,
(4) the { x ∈ R : ũ(x) > 0} is compact set, where A denotes the closure of A.

The set of all fuzzy numbers is denoted by RF .
An alternative definition which yields the same RF is given by Kaleva [20].

Definition 2 [20]. An arbitrary fuzzy number is represented, in parametric form,
by an ordered pair of functions (ũ(r), ũ(r)), 0 ≤ r ≤ 1, which satisfy the following
requirements:
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(1) ũ(r) is a bounded left continuous non-decreasing function over [0,1],
(2) ũ(r) is a bounded left continuous non-increasing function over [0,1],
(3) ũ(r) ≤ ũ(r) , 0 ≤ r ≤ 1.

The addition and scaler multiplication of fuzzy numbers in RF are defined as
follows:

(1) ũ⊕ ṽ = (ũ(r) + ṽ(r), ũ(r) + ṽ),

(2) (λ� ũ) =

⎧⎨⎩ (λũ(r), λũ(r)) λ ≥ 0,

(λũ(r), λũ(r)) λ < 0.

Definition 3 [3]. For arbitrary fuzzy numbers ũ = (ũ(r), ũ(r)), ṽ = (ṽ(r), ṽ(r))
the quantity D(ũ, ṽ) = sup

r∈[0,1]
max{|ũ(r) − ṽ(r)| , |ũ(r) − ṽ(r)| } is the distance

between ũ and ṽ.
The following properties hold [6]:

(1) (RF , D) is a complete metric space,
(2) D(ũ⊕ w̃, ṽ ⊕ w̃) = D(ũ, ṽ) ∀ ũ, ṽ, w̃ ∈ RF ,
(3) D(k � ũ, k � ṽ) = |k|D(ũ, ṽ) ∀ ũ, ṽ ∈ RF ∀ k ∈ R,
(4) D(ũ⊕ ṽ, w̃ ⊕ ẽ) ≤ D(ũ, w̃) +D(ṽ, ẽ) ∀ ũ, ṽ, w̃, ẽ ∈ RF .

Definition 4 [3]. Let f̃ , g̃ : [a, b] → RF be fuzzy real number valued functions.
The uniform distance between f̃ , g̃ is defined by

D∗(f̃ , g̃) = sup
{
D(f̃(x), g̃(x) | x ∈ [a, b]

}
. (1)

Definition 5 [3]. A fuzzy real number valued function f̃ : [a, b] → RF is said
to be continuous in x0 ∈ [a, b], if for each ε > 0 there is δ > 0 such that
D(f̃(x), f̃(x0)) < ε, whenever x ∈ [a, b] and |x− x0| < δ. We say that f̃ is fuzzy
continuous on [a, b] if f̃ is continuous at each x0 ∈ [a, b], and denotes the space
of all such functions by CF [a, b].

Definition 6 [19]. Let f̃ : [a, b]→ RF . f̃ is fuzzy-Riemann integrable to I ∈ RF

if for any ε > 0, there exists δ > 0 such that for any division P = {[u, v] ; ξ} of
[a, b] with the norms Δ(p) < δ, we have,

D

(∑
P

∗(v − u)� f̃(ξ), I

)
< ε, (2)

where
∑∗

denotes the fuzzy summation. In this case, it is denoted by I =

(FR)
∫ b

a
f̃(x)dx.

In [17], the authors proved that if CF [a, b], its definite integral exists, and also,

(FR)
∫ b

a
f̃(t; r)dt =

∫ b

a
f̃(t, r)dt,

(FR)
∫ b

a
f̃(t; r)dt =

∫ b

a
f̃(t, r)dt.

(3)
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Lemma 1 [3]. If f̃ , g̃ : [a, b] ⊆ R→ RF are fuzzy continuous functions, then the
function F : [a, b]→ R+ by F (x) = D(f̃(x), g̃(x)) is continuous on [a, b], and

D

(
(FR)

∫ b

a

f̃(x)dx, (FR)

∫ b

a

g̃(x)dx

)
≤

∫ b

a

D(f̃(x), g̃(x))dx. (4)

Definition 7 [23]. The Haar wavelet is the family of functions as follows:

hn(t) = H(2jt− k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 t ∈ [kp ,

k+0.5
p ),

−1 t ∈ [k+0.5
p , k+1

p ),

0 otherwise,

(5)

where j = 0, 1, ..., J indicates the level of the wavelet, and k = 0, 1, ..., p−1 is the
translation parameter, p = 2j. The integer number J determines the maximal
level of resolution and the index of n is calculated from the relation n = m+k+1.
Also, define h1(t) = 1 for all t. The orthogonality property of Haar wavelet is
given by

< hi(t), hl(t) >=

∫ 1

0

hi(t)hl(t)dt =

⎧⎨⎩
2−j i = l,

0 i �= l,
(6)

where < ., . > denotes the inner product form.
Here, we define the fuzzy wavelet function as follows:

Definition 8 [16]. For f ∈ CF ([0, 1]) and Haar wavelet function H(t) a real
valued bounded function with support ofH(t) ⊂ [0, 1], the fuzzy wavelet function
defined by

(Wjf)(t) =

2j+1∑
k=1

∗f̃
(

k

2j

)
�H(2jt− k) t ∈ [0, 1], (7)

where H(2jt− k) is as the same in Definition 7, and
∑ ∗ means addition with

respect to ⊕ in RF .

Definition 9 [21]. The fuzzy linear system

A� x̃ = B � x̃⊕ ỹ, (8)

where A = (aij), B = (bij), 1 � i, j � n are crisp coefficient matrices and ỹ a
fuzzy number vector, is called dual fuzzy linear system.



Numerical Solution of Linear Fuzzy Fredholm Integral Equations 83

Definition 10 [26]. A fuzzy number vector (x̃1, x̃2, ..., x̃n) given by x̃i =
(xi(r), xi(r)), i = 1, ..., n, 0 ≤ r ≤ 1, is called a solution of (8) if

⎧⎪⎨⎪⎩
∑∗n

j=1 aij � x̃j =
∑n

j=1 aij � x̃j =
∑n

j=1 bij � x̃j + ỹi, i = 1, ..., n,

∑∗n
j=1 aij � x̃j =

∑n
j=1 aij � x̃j =

∑n
j=1 bij � x̃j + ỹi, i = 1, ..., n.

(9)

To solve dual fuzzy linear systems, one can refer to [13, 26].

3 Proposed Method for Solving Linear FFIE-2

The FFIE-2 is as follows:

ũ(x) = f̃(x) ⊕ λ� (FR)

∫ b

a

k(x, t)� ũ(t)dt, λ > 0 (10)

where k(x, t) is an arbitrary kernel function over the square 0 ≤ x, t ≤ 1, and
ũ(x) is a fuzzy real valued function. In [8], the authors presented sufficient con-
ditions for the existence and unique solution of (10) as following theorem:

Theorem 3 [8]. Let k(x, t) be continuous for a ≤ x, t ≤ b, λ > 0, and f̃(x)
a fuzzy continuous of x, a ≤ x ≤ b. If

λ <
1

M(b− a)
,

where
M = max

a≤x,t≤b
|k(x, t)|,

then the iterative procedure
ũ0(x) = f̃(x),

ũk(x) = f̃(x) ⊕ λ� (FR)

∫ b

a

k(x, t)� ũk−1(t)dt, k ≥ 1

converges to the unique solution of (10). Specially,

sup
a≤x≤b

D(ũ(x), ũk(x)) ≤
Lk

1− L
sup

a≤x≤b
D(ũ0(x), ũ1(x)),

where L = λM(b − a).

Throughout this paper, we consider fuzzy Fredholm integral equation (10) with
a = 0, b = 1 and λ = 1, thus FFIE-2 defined in (10) converts to the following
equation

ũ(x) = f̃(x) ⊕ (FR)

∫ 1

0

k(x, t)� ũ(t)dt. (11)
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Now, we use fuzzy wavelet like operator due to approximate solution of equation
(11). Thus, we consider:

ũ(x) ∼=
m∑
j=1

∗ ãj � hj(x) = ÃT
m �Hm(x), (12)

where m = 2J+1, the J indicates maximal level of resolution. The fuzzy Haar
coefficient vector Ãm and Haar function vector Hm(x) are defined as:

Ãm = [ã1, ã2, ..., ãm]T , (13)

Hm(x) = [h1(x), h2(x), ..., hm(x)]T . (14)

By substituting (12) into (11), we obtain the following system of equations

m∑
j=1

∗ ãj � hj(x) = f̃(x)⊕ (FR)

∫ 1

0

k(x, t)
m∑
j=1

∗ãj � hj(t)dt. (15)

Suppose that k(x, t) ∼=
∑m

i=1

∑m
j=1 kijhi(x)hj(t) in matrix form

k(x, t) ∼= HT
m(x)KHm(t), (16)

where K = [kij ], 1 ≤ i, j ≤ m, and kij =< hi(x), < k(x, t), hj(x) >> .

We define the m−square Haar matrix Ĥm×m as follows:

Ĥm×m = [Hm(
1

2m
), Hm(

3

2m
), ..., Hm(

2m− 1

2m
)]T . (17)

Thus, we have

K ∼= (Ĥ−1)T K̂(Ĥ−1),

where K̂ = [k̂ij ]m×m, k̂ij = k(2i−1
2m , 2j−1

2m ).

Using relation (12), (13) and (17) we obtain

[ũ(
1

2m
), ũ(

3

2m
), ..., ũ(

2m− 1

2m
)] = ÃT

m � Ĥm×m. (18)

Correspondingly, we have

[f̃(
1

2m
), f̃(

3

2m
), ..., f̃(

2m− 1

2m
)] = C̃T

m � Ĥm×m. (19)

The fuzzy Haar coefficient vector C̃T
m can be obtained by solving fuzzy linear

system (19).
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By approximating functions f̃(x), ũ(x) and k(x, t) in the matrix form with
the help of (12), (16), and substituting in FFIE-2 (11) we get:

HT
m(x)� Ãm = HT

m(x) � C̃m ⊕ (FR)

∫ 1

0

HT
m(x)Kh(t)HT

m(t)� Ãmdt. (20)

This gives

HT
m(x) � Ãm = HT

m(x)� C̃m ⊕HT
m(x)K �

∫ 1

0

Hm(t)HT
m(t)dt� Ãm. (21)

The orthogonality of the sequence {hn} on [0, 1) implies that∫ 1

0

Hm(t)HT
m(t)dt = Dm×m, (22)

where m−square matrix D is diagonal matrix given by D = [dij ]m×m,

dij =

{
2−j i = j,
0 i �= j.

(23)

So, we obtain the following system of equations

Ãm = C̃m ⊕ (KD � Ãm). (24)

The above system is a dual fuzzy linear system. Clearly, after solving above
system, the coefficients of Ãm will be obtained.

4 Error Estimation

Now, we obtain error estimation for given FFIE-2 as (11). Suppose that

ũn(x) =
2n+1∑
k=1

∗ũ
(

k

2n

)
�H(z),

is approximate solution of ũ(x), where z = 2nt− k.
Therefore, we get:

D (ũ(x), ũn(x)) =

= D

⎛⎝(FR)

∫ 1

0

k(x, t) � ũ(t)dt, (FR)

∫ 1

0

k(x, t)

2n+1∑
k=1

∗ũ
(

k

2n

)
�H(z)dt

⎞⎠
≤M

∫ 1

0

D

⎛⎝ũ(t),

2n+1∑
k=1

∗ũ
(

k

2n

)
�H(z)

⎞⎠ dt,

where M = max 0≤x,t≤1 |k(x, t)|. Therefore, we have:
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D (ũ(x), ũn(x)) ≤M

∫ 1

0

D (ũ(t), ũn(t)) dt,

sup
x∈[0,1]

D (ũ(x), ũn(x)) ≤M sup
x∈[0,1]

D (ũ(x), ũn(x))

Therefore, if M < 1, we will have:

lim
n→∞ sup

x∈[0,1]
D (ũ(x), ũn(x)) = 0.

5 Numerical Examples

In this section, we present two examples. Also, we compare obtained solution by
using proposed method with exact solution.

For following examples, since the FFIE-2 as (11) is defined only for t ∈ [0, 1],
the transformation z = (b− a)x+ a, s = (b− a)t + a must be done.

Example 1.[19] Consider the following FFIE-2:

f(x, r) = (
−2
π

)cos(x)(r2 + r),

f(x, r) = (
−2
π

)cos(x)(3 − r),

k(x, t) = cos(x− t), 0 ≤ x, t ≤ π

2
, λ =

4

π
,

and a = 0, b = π
2 .

The exact solution of this example is as follows:

u(x, r) = sin(x)(r2 + r),

u(x, r) = sin(x)(3 − r).

Example 2 .[18] Consider the following FFIE-2:

f(x, r) = rx +
3

26
− 3

26
r − 1

13
x2 − 1

13
x2r,

f(x, r) = 2x− rx +
3

26
r +

1

13
x2r − 3

26
− 3

13
x2,

k(x, t) =
(x2 + t2 − 2)

13
, 0 ≤ x, t ≤ 2,

and a = 0, b = 2.
The exact solution of this example is as follows:

u(x, r) = rx,

u(x, r) = (2 − r)x.

We can compare the numerical solution obtained by proposed method with J =
5, x = 0.6 and the exact solution in Table 1 and Table 2.
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Table 1. Numerical results for Example 1

r− level u(x, r) u(x, r) u5(x, r) u5(x, r) |u− u5| |u− u5|

0.0000 0.0000 2.4271 0.0000 2.4311 0.0000 0.0041
0.1000 0.0890 2.3461 0.0891 2.3501 0.0001 0.0038
0.2000 0.1942 2.2652 0.1945 2.2691 0.0003 0.0037
0.3000 0.3155 2.1843 0.3160 2.1880 0.0005 0.0035
0.4000 0.4530 2.1034 0.4538 2.1070 0.0008 0.0034
0.5000 0.6068 2.0225 0.6078 2.0259 0.0010 0.0033
0.6000 0.7767 1.9416 0.7780 1.9449 0.0013 0.0031
0.7000 0.9627 1.8607 0.9643 1.8639 0.0016 0.0030
0.8000 1.1650 1.7798 1.1669 1.7828 0.0020 0.0029
0.9000 1.3834 1.6989 1.3857 1.7018 0.0023 0.0027
1.0000 1.6180 1.6180 1.6208 1.6208 0.0027 0.0165

Table 2. Numerical results for Example 2

r− level u(x, r) u(x, r) u5(x, r) u5(x, r) |u− u5| |u− u5|

0.0000 0.0000 2.4000 -0.0135 2.4197 0.0135 0.0197
0.1000 0.1200 2.2800 0.1062 2.2980 0.0118 0.0180
0.2000 0.2400 2.1600 0.2298 2.1763 0.0102 0.0163
0.3000 0.3600 2.0400 0.3515 2.0547 0.0085 0.0147
0.4000 0.4800 1.9200 0.4731 1.9330 0.0069 0.0130
0.5000 0.6000 1.8000 0.5948 1.8114 0.0052 0.0114
0.6000 0.7200 1.6800 0.7164 1.6897 0.0036 0.0097
0.7000 0.8400 1.5600 0.8381 1.5681 0.0019 0.0081
0.8000 0.9600 1.4400 0.9598 1.4464 0.0002 0.0064
0.9000 1.0800 1.3200 1.0814 1.3247 0.0014 0.0047
1.0000 1.2000 1.2000 1.2031 1.2031 0.0031 0.0031

6 Conclusions

In this paper, we presented a new approach to solve linear FFIE-2 using fuzzy
Haar wavelet like operator. Also, we proved the error estimation for approxi-
mated solution of FFIE-2.
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Abstract. We first recall the concept of Z-numbers introduced by Zadeh.  These 
objects consist of an ordered pair (A, B) of fuzzy numbers.  We then use these Z-
numbers to provide information about an uncertain variable V in the form of a Z-
valuation, which expresses the knowledge that the probability that V is A is equal 
to B.  We show that these Z-valuations essentially induce a possibility distribution 
over probability distributions associated with V.  We provide a simple illustration 
of a Z-valuation.  We show how we can use this representation to make decisions 
and answer questions.  We show how to manipulate and combine multiple Z-
valuations. We show the relationship between Z-numbers and linguistic 
summaries. Finally we provide for a representation of Z-valuations in terms of 
Dempster-Shafer belief structures, which makes use of type-2 fuzzy sets. 

1 Introduction 

Zadeh [1] defined a Z-number associated with an uncertain variable V as an ordered 
pair of fuzzy numbers, (A, B) where A is a fuzzy subset of the domain X of the variable 
V and B is a fuzzy subset of the unit interval.  A Z-number can be used to represent the 
information about an uncertain variable of the type where A represents a value of the 
variable and B represents an idea of certainty or probability.  A Z-number is closely 
related to the idea of linguistic summary [2, 3]. Zadeh [1] refers to the ordered triple, (V, 
A, B) as a Z-valuation and indicates this is equal to the assignment statement V is (A, B.  
Generally this Z-valuation is indicating that V takes the value A with probability equal 
B.  Some examples of these Z-valuations are 

                                       (Age Mary, Young, likely) 
                                       (Income Bill, about 200K, not likely) 

                       (Enemy number of soldiers, about 300, pretty sure) 
                                       (Weight Bill, heavy, confident) 

Thus Z-valuations are providing some information about the value of the associated 
variable.  A number of issues arise regarding these objects such as the representation of 
the information contained in a Z-valuation, the manner in which we can manipulate this 
information and our ability to combine or fuse multiple pieces of information of this type.  
Many of the answers are dependent upon the nature of the underling uncertainty 
associated with the variable.  
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2 Modeling Z-Valuations  

Consider now we have the information V is (A, B) where (A, B) is a Z-number and it 
is assumed the V is a random variable.  This Z-valuation can be viewed as a 
restriction on V interpreted as  

Prob(V is A) is B. 

While we don’t know the underlying probability distribution (density), from this 
information we can obtain a possibility distribution G, fuzzy subset, over the space P 
of all probability distributions on X. Assume p is some probability distribution (or 
density function) over X. Using Zadeh’s definition of the probability of a fuzzy subset 

[4] we express the probability that V is A, Probp(V is A)) as A(x)p(x)dx
X .  

Using this we can get G(p), the degree to which p satisfies our Z–valuation, 
Probp(V is A) is B, as 

G(p) = B(Probp(V is A)) = B( A(x)p(x)dx
X ) 

In this way, we can represent the information contained in V is (A, B), under the 
assumption that V is a random variable, as a possibility distribution over the space P 
of probability distributions. 

While the space P is a large space, simplifying assumptions, such as assuming the 
underlying distribution is a particular class of parameterized distributions, such as a 
normal or uniform, can be used to simplify the space and allow use of the 
information. 

Here we shall provide an example that will help illustrate the usefulness of the 
preceding approach.  Assume V is a variable corresponding to the "waiting time" for a 
bus to come.  The exponential distribution provides a useful formulation for modeling 
random variables corresponding to waiting times of the type described above [5].  We 
recall the density function of an exponential distribution is 

fV (x) = λe−λx  for x ≥ 0 and λ ≥ 0. 

We also recall for this type of distribution that  

Prob(a ≤ V ≤ b) = fv(x)dx
a

b
  = λe−λx dx

a

b
  = e-aλ - e-bλ 

             Prob(V ≤ b) = Prob(0 ≤ V ≤ b) = 1 - b-bλ 
Consider now we have the information the waiting time for a bus is almost certainly 
no greater than 10 minutes. 

Here we have information about the waiting time for the bus, V, expressed as a Z-
valuation, V is (A, B).  Here V is a random variable whose probability density 
function is expressible in terms of an exponential distribution.  In addition, A is the 
linguistic value “less than 10 minutes” and B is the linguistic value “almost 
certainly”. 

In this illustration A is simply an interval type fuzzy subset; 

A(x) = 1 for x ≤ 10 and A(x) = 0  for x > 10 



92 R.R. Yager 

 

In this situation for any λ we have  

Probλ (V is A) = A(x)fλ (x)dx
0

∞
  = e−λxdx

0

10
  =1− e−10λ  

In this example our underlying space P of probability distribution is the class of all 
exponential distributions. Each distribution of the type is uniquely defined by its 
parameter λ ≥ 0.  Hence we see our space P can be simply represented by the space 
{λ ≥ 0} with the understanding that each λ corresponds to an exponential distribution. 

Consider now the linguistic value B, which is “almost certainly”.  For simplicity 
we shall define this using a crisp interval fuzzy subset 

B(y) = 1 if 0.9 ≤ y ≤ 1 and B(y) = 0if 0 ≤ x < 0.9 

We obtain the membership function G over the space λ ∈ [0, ∞], corresponding to the 

family of exponential distribution functions, as G(λ) = B(1− e−10λ ).With our 

definition for B we get 

G(λ) = 1  if 1− e−10λ  ≥ 0.9 and G(λ) = 0 if 1− e−10λ  < 0.9 

Solving this we get G(λ) = 1 if λ ≥ 0.23.  Thus here then we have a possibility 
distribution G over exponential distributions with parameter λ such that G(λ) = 0 if λ 
< 0.23 and  G(λ) = 1 if λ ≥ 0.23 

We can use the information contained in G to answer various questions.  Let us 
find out what is the expected waiting time, E(V).  Recalling that the expected value of 
a random variable with an exponential distribution is 1/λ we have EV 

=



{
G(λ)

1

λ

}
λ∈[0, ∞]
U .  Here the membership grades are EV(t) = 0  if t >  4.35 and EV(t) 

= 1 if t ≤ 4.35. Thus the expected waiting time is the linguistic value less the 4.35 
minutes. 

Another question we can ask is what is the probability that the waiting time will be 
greater than fifteen minutes.  Here we see that for an exponential distribution with 
parameter λ we have 

Probλ(V ≥ 1.5) = λe−λxdx
15

∞
  = e−15λ − e−∞λ  = e−15λ . 

Denoting ProbG(V ≥ 15) as the probability of waiting more than 15 minutes we see 

using Zadeh's extension principle that  

ProbG(V ≥ 15) = 

λ∈[0,∞]
U G(λ)

e−15λ








 = 
λ≥0.23
U G(λ)

e−15λ








 

Since e-(15)(0.23) = 0.03 and e−(15)λ  decreases as λ increases with e−(15)λ → 0 as 
λ → ∞ we get that ProbG(V ≥ 15) ≤ 0.03.  Thus the ProbG(V ≥ 15) has the linguistic 

value of "not more then 0.03"  
Other more sophisticated questions can be answered. One question is what is the 

probability that the waiting will be short.  Assume we represent short as a fuzzy set S.  
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Here if fλ is an exponential distribution with parameter λ then Probλ(V is short) = 

S(x)λe−λxdx
0

∞
 .  Using this we can obtain  

ProbG(V is short) = 
G(λ)

Pr obλ (V is short)







λ≥023

U . 

We can use this information to help make a decision.  Consider the following decision 
rule 

 If the probability that the waiting time is short is High then take a bus. 
 If the probability that the waiting is short is not High then walk. 

We now can express High as a fuzzy subset H of the unit interval.  Using this we 
need to determine the degree to which concept HIGH is satisfied by the value 
ProbG(V is short).  In this case because of the simple nature of ProbG(V is short) as 

"at least S(x)(0.23)e−.23xdx
0

∞
 " we can use this value to obtain a measure of the 

satisfaction of the concept High.  Thus we let  

α = High( S(x)(0.23)e−.23x )dx
0

∞
 ) 

indicate the degree to which the value of V satisfies the condition that the waiting 
time is short is High.  Here then we see if α ≥ 0.5 we take a bus and if α < 0.5 we 
walk. 

3 Operations on Z-Valuations 

Let us now return to the more general situation where V is a general random variable.  
As we have previously indicated a Z-valuation, V is (A, B) induces a possibility 
distribution G over the space P of all probability distributions where 

G(p) = B A(x)p(x)dx
−∞
∞





. 

Having our information in this format allows us to perform many operations with this 
information.  These operations are greatly added by the extension principle of Zadeh 
[6]. Let us look at some of these. 

Assume we have q Z-valuations on the variable V each on the form V is (Aj,Bj) for 

j = 1 to q.  Each of these induces a possibility distribution Gj over the space of all 

probability distributions P.  For p ∈ P we have Gj(p) = B( Aj(x)⋅p(x)dx)
−∞
∞
 .  Now 

the overall information about the underlying probability distribution is obtained by 
combining these q possible distributions into a fused possibility distribution G on P. 
Various methods can be used to combine these q distributions, the choice depends on 
the semantics associated with the relationships between the pieces of information, the 
multiple Z–valuations.  In the following we briefly describe some of these. 
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One approach to combine these is to take the conjunction of the q possibility 
distributions, here we get G(p) = Minj [Gj(p)].  In this situation we are indicating that 

we must simultaneously accommodate all of the sources of information.   
Another possible aggregation of these individual possibility distributions can be 

made using the OWA operator [7, 8].  In the case of aggregating q objects we have a 
collection of q weights, wj for j = 1 to q such that wj ∈ [0, 1] and their sum is one.  If 

we let indp be an index function such the indp(j) is the index of the jth largest of the 

Gi(p) then we obtain G(p) = w jGind( j)(p)
j=1

q

 . The OWA operator allows us to 

implement quantifier-guided aggregation.  Here we have a quantifier Q such as most 
or almost all and need only satisfy Q of the Z-valuations.   

Let us look at the pure conjunction aggregation in the situation in which we are 
interested in the waiting time for the bus.  In the preceding we had a person express 
their perception of the waiting time.  Consider now we have a second person whose 
experience with respect bus the waiting time is summarized as follow: 

Most often I have to wait about five minutes for the bus. 

Here again we have the information about the value of V expressed as a Z-valuation, V 
is (A2, B2).  In this case A2 is the linguistic value “ about 5 minutes" and B2 would be 

value "most often."  In a manner analogous to the preceding we obtain for this Z-
valuation a possibility distribution G2 over the domain λ ≥ 0.  Once having obtained G2 

can then combine it with our original distribution to obtain a combined distribution.  
In the preceding in the face of multiple Z-valuation on some variable we tried to 

find a solution to simultaneously satisfy all of these.  In essence we looked at these as 
q observations of the same phenomena.  Another possible view of the situation is that 
the q Z-valuations where made on different sets of observation.  For example in the 
case of the bus the different observations where based on the experience of different 
people who use the bus at different times of the day.  In this case we consider each of 
these perceptions based on different sample of observations.  Let us step outside our 
current problem and consider how to combine this type of information.   

Assume we have an experiment with possible outcomes Y = {y1, …, yr}.  Assume 

we perform the experiment n times and obtain nias the number of times outcome yi 

occurs, our estimate of the probability of yi is ni/n.  Assume we have an additional set of 

observations consisting of m experiments in which mi is the number of times yi occurs.  

In this case our estimate of the probability of yi is mi/m.  We now can combine these 

two to obtain a situation in which we have performed m + n experiments in which mi + 

ni is the number of times yi has occurred.  In this case the combined estimated 

probability of yi is pi = 
mi + ni
m + n

.  We note that we can express this as 



 On a View of Zadeh's Z-Numbers 95 

 

pi =
mi

m + n
 + 

ni
m + n

 = 
m

m + n

mi
m
+ n

m + n

ni
n

 

If 
m

m + n
 = α then pi = α mi

m
 + (1 - α) 

ni
n

.  This is simply a weighted sum of the two 

estimates.  If m = n then α = 0.5.  It is interesting to observe that the term α can be 
seen as capturing the relative experience or expertise associated with each observer. 

We can now use this to motivate an alternate way to combine multiple Z-valuation 
perceptions of the value of V.  For simplicity we shall initially assume only two 
observations expressed as Z-valuations:  V is (A1, B1) and V is (A2, B2).  Each of 

these generates a possibility distribution Gi over the space P, 

Gi(p) = Bi p(x)Ai(x) dx
X







. 

Assume we assign a reliability (expertise or credibility) of wi to each of these and 

require that w1 + w2 = 1.  Using this we define the combined possibility distribution 

G = w1G1 ⊕ w2G2.  Using the extension principle and the rules of fuzzy arithmetic 

we then calculate G(p) such that G(P) Max
p=w1p1⊕w2p2

[G1(p1)∧G2(p2 )] where p = 

w1p1 ⊕ w2p2 in defined such that p(x) = w1p1(x) + w2p2(x). 

Assume now V and U are two independent random variables.  Let us now assume 
we have Z-valuations about each of these 

V is (A1, B1) and U is (A2, B2). 

As described in the preceding the information contained in each of these can be 
expressed as a possibility distribution over the space of probability distributions P. 
Here then we obtain GU and GV.  Consider now a random variable W = U + V. 

Using Zadeh's extension principle and the fact that the sum of random variables 
involves the convolution of the respective density functions [9] we can obtain the 
possibility distribution over P, GW, associated with the random variable W.  We 

recall that if p1 and p2 are two density functions their convolution is defined as the 

density function p = p1 o p2 such that  

p(z) = p
1

(z− y)p2 (y)dy
−∞
∞
 = p1(x)p2 (z− x)dx

−∞
∞
   

Using these we can now find the possibility distribution GW associated with W = U + 

V.  In particular for any pw ∈ P we obtain 

Gw(pw) = Maxpu ,pv
[GU (pu )∧GV(pv)]  

Subject to pw = pu o pV that is pw(w) = pu (w− y)pv(y)dy
−∞
∞
 . 
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If W = aU + bV we can also obtain GW [9].  In this case for any pw ∈ P we obtain 

Gw(pw) = Maxpu ,pv
[GU (pu )∧GV(pv)]  subject to pw(w) = 

b

| ab |
pu(

w − by

a
)⋅pv(y)dy

−∞
∞
  

We provide an illustration of this in the case of our example of waiting for a bus.  
Assume we must take two buses and we are interested in the total waiting time.  
Assume the information about the waiting time of the first bus is expressed as V is 
(A1, B1) and that of the second bus is expressed as U is (A2, B2).  Our interest here is 

in the sum of the two waiting times, W = V + U.  First we see that for V is (A1, B1) 

we can generate a possibility distribution GV over the space of exponential 

distributions such that GV(λ) is possibility of an exponential distribution for V with 

parameter λ. Here GV(λ) = B1 ( A1(x)λe−λx dx
0

∞
 ) .  Similarly for the waiting time 

of the second bus we have GU(δ) = B2 ( A2(x)δe−δxdx
0

∞
 ) .  We now can find the 

knowledge GW.  Here for each λ and δ we get pW = pλ o pδ where 

pw(w) = λe−(w−y)λδ e−δydv
0

∞
 = λδe−wλ e−(δ−λ)ydy

0

∞
  

Let us recall [9] that if V and U are two random variables with respective probability 
distribution functions pV and pV then if W is the random variable defined as W = 

Max[V, U] then the probability density pW associated with W is obtained as  

pW(z) = pV(z) ⋅ Prob(U ≤ z) + pU(z) Prob(V ≤ z) 

where Prob(U ≤ z) = pu(x)dx
−∞
z
 and Prob(V ≤ z) = p

V
(x)dx

−∞
z
  

In the case where R = Min[U, V] then pR is obtained as 

pR(z) = pu(z)(1 - Prob(V ≤ z)) + pV(z)(1 - Prob(U ≤ z)) 

Assume the information we have about the values of the variables U and V are 
expressed via Z-valuations, V is (A1, B1) and U is (A2, B2).  Using our previous 

approach we can obtain for each of these a possibility distribution over the space of 
probability distributions such that GU(pu) is the possibility that pu is the underlying 

probability distribution associated with U and similarly GV(pv) is the possibility that 

pv is the underlying probability distribution associated with V.  From this we can 

obtain the respective possibility distributions associated with W and R.  In particular 
for any pw ∈ P we have  

GW(pw) = Maxpu ,pv
[GU(pu) ∧ GV(pv)] 
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Sub to 

pW(z) = pv(z)Prob(U ≤ z) + pu(z)Prob(V ≤ z) 

and 

GR(pw) = Maxpu ,pv
[GU(pu) ∧ GV(pv)] 

Sub to  

pR(z) = pv(z)(1 - Prob(U ≤ z)) + Pu(z)(1 - Prob(V ≤ z)) 

We consider the following illustration.  At a bus stop there are two different buses a 
person can take to get their destination.  The waiting time for each of the buses as 
expressed in terms of Z-valuation, U is (A1, B1) and V is (A2, B2), U being the wait 

time for one bus and V being the wait time for the other bus.  Here then we can 
assume the underlying distribution for these variables are exponential.  Thus here 
letting λ and δ be the associated parameters we get  

Gu(λ) = B1 ( A1(x)λe−λxdx
0

∞
 )  and Gv(δ) = B2 ( A2(x)δe−δxdx

0

∞
 ))  

Here then for any pair λ and δ 
pW(z) = λe−λz ( e−δz )+ (δe−δz )(e−λz )                             (I) 

pR(z) λe−λz (1− e−δz )+δe−δz (1− e−λz )   (II) 

Finally we obtain  
            GW(pw) = Maxλ, δ[GU(λ) ∧ GV(δ)]   Subject to (I) 

             GR(pR) = Maxδ, λ[GU(λ) ∧ GV(δ)]  Subject to (II) 

4 Reasoning with Z-Valuations 

In some cases it may be possible to infer one Z-valuation from another Z-valuation.  
Consider the Z-valuation V is (A, B), from this we obtain a possibility distribution G 

over P such that for p ∈ P we have G(p) = B(ProbP(V is A) = B( A(x)p(x)dx ).  

Using Zadeh's entailment principle [6] we can infer any G* where G*(P) ≥ G(p).   
Consider now another Z-valuation V is (A1, B1) where A ⊇ A1 and B1 is “at 

least" B.  Here B1 has B1(z) = Max
y

[B(y)∧H(y, z)]  where H(y, z) is a crisp 

relationship such that H(y, z) = 1 if z ≥ y and H(x, z) = 0 if y > z.  We see here that for 
any z, B1(z) ≥ B(z).  More interestingly assume z1 > z.  Consider now B1(z1) = 

Max
x

[B(x)∧H(x, z1)] .  Since z1 > z then H(z, z1) = 1 from this we see that B1(z1) ≥ 

B(z). 
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Consider now the possibility distribution G1 generated from the Z-valuation, 

V is (A1, B1).  For any p we have G1(p) = B1( A1(x)p(x)dx ).  Since A ⊆ A1 then 

A(y) ≤ A1(y) for any y. Hence for any p we have A1(x)p(x)dx
X  ≥ A(x)p(x)dx

X . 

Furthermore since B1(z1) ≥ B(z) for z1 ≥ z then we see that G1(p) ≥ G(p).  The 

implication here is that from a Z-valuation V is (A, B) we can always infer the Z-
valuation V is (A1, at least B) where A ⊆ A1. 

An example of this in the context of our waiting time for a bus would be the 
following.  From the original perception, a waiting time of about three minutes is 
likely we can infer a waiting time of over two minutes is more than likely. 

If B is such that B(0) = 0, B(1) = 1 and B(x) ≥ B(y) if x ≥ y we shall say B is an 
affirmative type confidence value. Assume B1 and B2 are affirmative type 

confidences such that B1 ⊆ B2. We shall say B1 is a more strongly affirmative 

confidence.  Consider now the valuation V is (A, B1) where B1 is an affirmative type 

confidence.  We see the associated G is G1(p) = B1( A(x)p(x)dx
X ).  We also 

observe that if B2 is also affirmative where B1 ⊆ B2 then G2(p) = 

B2( A(x)p(x)dx
X ) ≥ G1(P).  Using the entailment principle we can then infer V is 

(A, B2) from V is (A, B1).  Thus we infer a less strongly affirmative Z-valuation. 

Assume A1 and A2 are values such that A1 ⊆ A2 we say that A2 is less precise 

than A1. We see that if we have the Z-valuation V is (A1, B1) we can infer the 

valuation V is (A2, B2) since G1(p) = B1( A1(x)p(x)dx
X ) ≤ B2( A2(x)p(x)dx

X ).  

Thus we always infer a more imprecise less strongly affirmative valuation from a 
given valuation. 

Let B be a confidence value such that B(1) = 0, B(0) = 1 and B(x) ≥ B(y) if x ≤ y.  
We shall refer to B as a refuting type confidence.  Assume B3 and B4 are two 

refuting type confidence such that B3 ⊆ B4 we shall say that B3 is more strongly 

refuting.  Consider now the Z–valuation V is (A, B3) where B3 is a refuting type 

confidence, in this case G3(p) = B3( A(x)p(x)dx
X ).  We see if B4 is a less strongly 

refuting confidence, B3 ⊆ B4 then G4(p) = B4( A(x)p(x)dx
X  ≥ G3(p).  We see that 

we can infer V is (A, B4) from V is (A, B3).  In addition if A4 is less precise then A3, 

A3 ⊆ A4 we easily can show that from V is (A3, B3) we infer V is (A4, B4). 

Assume B is a fuzzy subset of the unit interval corresponding to a degree of 

confidence.  We define its antonym B̂  as a fuzzy of the unit interval such that B̂ (x) = 

B(1 - x).  We see for example if B is very big then B̂  is very small.  If B is near 0.7 

then B̂  near 0.3.  We also note if B is a supporting type confidence, B(x) = 1 and 
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B(x) ≥ B(y) if x ≥ y, then B̂ (x) = B(1 - x) is a refuting type confidence.  Assume A is 
a value we define its negation, A  as a fuzzy subset such that A (x) = 1 - A(x). 

Consider now the Z-valuation, V is (A, B).  This induces the knowledge G where 

G(p) = B( A(x)p(x)dx
X ).  Consider now the Z-valuation, V is ( A , B̂ ).  This 

induces the knowledge G  where  

G (p) = B̂ ( A(x)p(x)dx
X ) = B̂  ( ((1−A(x))p(x)dx

X  

G (p) = B̂ (1− A(x)p(x)
X ) = B( A(x)p(x) ) = G(p) 

Thus we see that the valuation V is (A, B) and V is ( A , B̂ ) provide the same 
information. 

A more general situation is the following.  Assume V is a variable taking its value 
in X.  Consider the statement (Prob V is A) is B.  This then can be seen as a Z-
valuation V is (A, B).  Consider now the question what is the probability that V is D.  
Let us see what we can say here.  We see that V is (A, B) indices the possibility 
distribution G over the space probability distributions P where 

G(P) = 
B( A(x)p(x)dx)

X
p











p
U  

We observe that for any probability distribution p we have ProbP(V is D) = 

D(x)p(x)dx .  From this we see that Prob(V is D) given V is (A, B) is a fuzzy subset 

H over [0, 1] such that for each y ∈ [0, 1] we have H(y) = MaxP ∈ Ry
 [G(p)] = MaxP 

∈ Ry
 [B( A(x)p(x)dx

X )] where Ry = {p/ D(x)p(x)dx
X  = y.  Essentially this is 

fuzzy probability  

H = 



G(p)

D(x)p(x)dx
X











p
U  = 

B( A(x)p(x)dx)
X
D(x)p(x)dx

X











p
U  

5 Linguistic Summaries and Z-Valuations 

In [2, 3] we introduced the idea of linguistic summaries here we show the strong 
connection between the idea of Z-valuations and linguistic summaries.  We first 
review the idea of a linguistic summary.  Assume Y = {y1, … yn} are a set of objects 

that manifest some feature V that takes its value in the space X.  Here for simplicity 
we shall assume X is discrete, X = {x1, … xq}.  Furthermore we let V(yj) indicate  

the value of this feature for object yj.  Here then our data D consists of the  
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bag <V(y1), … V(yn)>.  We note that we can associate with this data D a probability 

distribution P over the space X such that for each xj ∈ X 

pj = 
Card(D j)

n
 

where Dj = {yk / V(yk) = xj }.  Thus pj is the proportion of elements in Y that have 

for V the value of xj. 

As described in [2, 3] a linguistic summary provides a way to express the 
information contained in D in a linguistic fashion.  In particular a linguistic summary 
consists of three items: 

                          1. A summarizer, S 
                          2. A quantity in agreement, Q 
                          3. A measure of validated or truth of this summary, T. 

A linguistic summary provides a human friendly way of expressing the information in 
the data set D. 

Here we note that a summarizer S is a fuzzy subset of the domain of V, X, 
corresponding to some linguistic concept.  A quantity in agreement is formally a 
fuzzy subset of the unit interval corresponding to some idea of proportion.  Typically 
it is a representation of some linguistic expression of proportion such as most, “about 
half”, “almost all”, "most". 

The truth or validity of the linguistic summary (S, Q) with respect to the data D can 
be obtained as follows: [2, 3] 

1. For each di = V(yi) calculate the degree to which dj satisfies the summarizer S, 

S(di) 

2. Let r = 
1

n
S(di )

i=1

n

 , the proportion of D that satisfy S. 

3. Then T = Q(r), the membership great of r is the proposed quantity in agreement. 

We note that for any summarizer SK and quantity in agreement QK we can calculate 

TK, its validity as providing an appropriate summary of the data D.  Now one can 

consider the space R of all pairs (SK, QK) and for each of these TK indicates the 

possible membership of (SK, QK) in the set of valid summaries of the data D. 

In a more abstract view, TK is a representation of the validity of the linguistic 

summary (SK, QK) for a probability distribution P over the space X.  In this case the 

probability distribution is such that pj = Prob(xj) = 
Card(D j)

n
 

We now can view Zadeh’s concept of a Z-valuation in this light.  Essentially we 
can view the Z-valuation, V is (A, B), as a linguistic summary.  Here A is the 
summarizer and B is the quantity in agreement.  Furthermore in this perspective the 
linguistic summary (A, B) is assumed to be a valid summary of the underlying 
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probability distribution.  Here the problem now becomes that of determining which 
underlying probability distributions are compatible with the expression Z-valuation, 
linguistic summary.  Thus in the fuzzy subset G earlier introduced, G(P) is the 
possibility that P is the underling probability distribution.  On the other in the case of 
linguistic summarization we start with a known probability distribution P and we are 
interested in providing a valid linguistic summary of the information contained in P.  
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Abstract. Although fuzzy quadratic programming problems are of the
utmost importance in an increasing variety of practical fields, there are
remaining technological areas in which has not been tested their appli-
cability or, if tried, have been little studied possibilities. This may be
the case of Renewable Energy Assessment, Service Quality, Technology
Foresight, Logistics, Systems Biology, etc. With this in mind, the goal of
this paper is to apply a parametric approach previously developed by au-
thors to solve some of these problems, specifically the portfolio selection
problem by using BM&FBOVESPA data of some Brazilian securities
and the economic dispatch problem, which schedules a power generation
in an appropriate manner in order to satisfy the load demand.

Keywords: fuzzy mathematical optimization, quadratic programming,
soft computing, fuzzy sets and systems.

1 Introduction

Soft Computing methodologies have repeatedly proven their efficiency and effec-
tiveness in modeling situations and solving complex problems on a wide variety
of scenarios. In the case of the formulation of real world problems their param-
eters are seldom known exactly and therefore they have to be estimated by the
decision maker.

Thus, problems as energy management [20], portfolio selection and investment
risk [1,8], control systems [12], production problem and scheduling [19], among
others, can be formulated as a fuzzy quadratic programming problem [6]:

min c̃tx+ 1
2x

tQ̃x

s.t. Ãx ≤f b̃

x ≥ 0,

(1)

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 102–111, 2012.
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where x ∈ Rn, c̃ ∈ F(R)n, b̃ ∈ F(R)m, Ã ∈ F(R)n×m is an m × n matrix
with fuzzy entries, and Q̃ ∈ F(R)n×n is an n × n symmetric matrix with fuzzy
entries, and the symbol “≤f” represents the fuzzy order relation. F(R) defines
the set of fuzzy numbers ã = (aL, aU , α, β)LR, where aL ≤ aU , α > 0, β > 0, and
aL, aU , α, β ∈ R. Each fuzzy number is represented by a membership functions
μ : R → [0, 1], where each a ∈ Rn provide the decision maker’s satisfaction
degree.

But there are still technological environments in which their applicability
has not yet been tested, or if it has tested, their possibilities have not been
investigated deep enough. This may be the case of Renewable Energies, Service
Quality Evaluation, Technological Foresight, Logistics or Systems Biology. They
are advanced technological areas of vital importance to our society that, due to
the great relevance of the solutions given to the problems that may rise in them,
they can affect our way of living and interacting.

With this in mind, the goal of this paper is to apply a parametric approach
[16,14] developed by authors to solve two real-world problems with an imprecise
order relation in the set of constraints.

The paper is organized as follows: Section 2 describes the parametric approach
that solve quadratic programming problems with an imprecise order relation in
the set of constraints. In Section 3 two problems are modeled and solved by the
proposal method: the portfolio selection problem using historical data took by
BM&FBOVESPA, Brazil; and the economic dispatch problem, which schedules a
power generation in an appropriate manner in order to satisfy the load demand.
Finally, conclusions are presented in Section 4.

2 Using a Parametric Approach to Solve Quadratic
Programming Problems with Fuzzy Constraints

There are some approaches that solve quadratic programming problems with
uncertainty of the order relation in the set of constraints, such as the extension
of Zimmermann’s original approach [23,24] described in [2], and other based on
Werners’s work [22] and also extended in [2]. They require that a decision maker
choose an acceptable satisfaction level.

We are going to apply a parametric approach developed and tested by authors
in last works [16,5,7] which provides a fuzzy solution (not a point -singleton like-
solution). This method finds the curve that generates all optimal solutions to
each different satisfaction level and moreover it does not depend on defining
this level. The uncertanties can be presented in other parts of the mathematical
formulation such as costs of the objective function. To solve this kind of problem,
we can apply the approaches described in [17,15].

As in [16], the constraints of a quadratic problem are defined as having a
fuzzy nature, that is, some violations in the accomplishment of such restrictions
are permitted. Therefore, if we denote each constraint

∑n
j=1 aijxj , by (Ax)i and

i = 1, . . . ,m, the problem can be addressed as follows
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min ctx+ 1
2x

tQx

s.t. (Ax)i ≤f bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

(2)

where the membership functions

μi : R
n → (0, 1], i = 1, . . . ,m

on the fuzzy constraints are to be determined by the decision maker. It is clear
that each membership function will give the membership (satisfaction) degree
such that any x ∈ Rn accomplishes the corresponding fuzzy constraint upon
which it is defined. This degree is equal to 1 when the constraint is perfectly
accomplished (no violation), and decreases to zero for greater violations. For
non-admissible violations the accomplishment degree will equal zero in all cases.
In the linear case (and formally also in the non linear one), these membership
functions can be formulated as follows

μi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (Ax)i ≤ bi

1− (Ax)i − bi
di

bi ≤ (Ax)i ≤ bi + di

0 (Ax)i > bi + di

where di is the maximum permited violation for ith constraint function, with
i = 1, . . . ,m. In order to solve this problem, first let us define for each fuzzy
constraint,

Xi =
{
x ∈ Rn | (Ax)i ≤f bi,x ≥ 0

}
.

If X =
⋂

Xi(i = 1, . . . ,m) then the former fuzzy quadratic problem can be
addressed in a compact form as

min

{
ctx+

1

2
xtQx | x ∈ X

}
.

It is clear that ∀α ∈ (0, 1], an α-cut of the fuzzy constraint set will be the classical
set

X(α) = {x ∈ Rn | μX(x) ≥ α}

where ∀x ∈ Rn,

μX(x) = minμi(x(α)), i = 1, . . . ,m

Hence an α-cut of the i-th constraint will be denoted by Xi(α). Therefore, if
∀α ∈ (0, 1],

S(α) =

{
x ∈ Rn | ctx+

1

2
xtQx = min cty +

1

2
ytQy, y ∈ X(α)

}
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the fuzzy solution to the problem will therefore be the fuzzy set defined by the
following membership function

S(x) =

{
sup{α : x ∈ S(α)} x ∈

⋃
α S(α)

0 otherwise.

Provided that ∀α ∈ (0, 1],

X(α) =
⋂

i=1,...,m

{x ∈ Rn | (Ax)i ≤ ri(α),x ≥ 0,x ∈ Rn}

with ri(α) = bi+di(1−α). The operative solution to the former problem can be
found, α-cut by α-cut, by means of the following auxiliary parametric quadratic
programming model,

min ctx+ 1
2x

tQx

s.t. (Ax)i ≤ bi + di(1− α), i = 1, . . . ,m
xj ≥ 0, j = 1, . . . , n, α ∈ [0, 1].

(3)

Thus, the fuzzy quadratic programming problem was parameterized at the end
of the first phase. In the second phase the parametric quadratic programming
problem is solved for each of the different α values using conventional quadratic
programming techniques.

The results obtained for each α value generate a set of solutions and then
the Representation Theorem can be used to integrate all these specific alpha-
solutions.

3 Numerical Experiments

In order to illustrate the above described parametric method to solve quadratic
programming problems under fuzzy environment, we are going to focus on two
practical problems. The first problem is based on a general portfolio selection
problem, while the other is focused on solving an economic dispatch problem.

The tests were all performed on a PC with 2.7GHZ Intel� CoreTM i7, 4GB
RAM running Mac OSX Lion operational system. All the problems presented in
this work were resolved using fmincon function to solve constraint programming
problems of ToolBox Optimization of Matlab� 7.11 program.

3.1 Portfolio Selection Problem

The general portfolio selection problem was described by Markowitz [11] to an-
alyze the risk investments. This analysis is an important research field in the
modern finance, that vagueness, approximate values and lack of precision are
very frequent in that context, and that quadratic programming problems have
shown to be extremely useful to solve a variety of portfolio models, in the follow-
ing we will present a general solution approach for fuzzy quadratic programming
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problems that, if needed, can be easily particularized to solve more specific port-
folio models [9,18,3]. It is important to emphasize that, at the present time, we do
not try to improve other solution methods for this kind of important problems,
but only to show how our solution approach performs.

In order to show the performance of our method, we used the set of historical
data shown in Table 1 took by BM&FBOVESPA that is the most important
Brazilian institution to intermediate equity market transactions and the only se-
curities, commodities and futures exchange in Brazil. It was chosen ten Brazilian
securities and the columns 2-11 represent Celesc, Cemip, Coelce, CPFL, Copel,
Eletrobras, EDP, AES Tiete, Light, and Tractebel securities data, respectively.
These securities form the Electric Power index in this market. The returns on
the ten securities, during the period of March 2006 up to December 2011, are
presented in Table 1.

Table 1. Fuzzy portfolio selection problem

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Periods Celesc Cemig Coelce CPFL Copel Eletrobras EDP AES Tiete Light Tractebel

20
06

Mar 0.0289 -0.1038 -0.0455 -0.0526 -0.0742 0.0771 -0.0762 0.0752 -0.3400 0.0516

Jun -0.0701 -0.0755 -0.0784 -0.1489 -0.0632 -0.0372 -0.1181 -0.1538 -0.0283 -0.0698

Set 0.0427 -0.0764 0.0286 0.0482 0.1673 0.0208 0.0288 0.0957 0.0823 0.0227

Dez 0.9521 0.1875 0.0830 0.0733 0.0200 0.0605 0.1576 0.0770 0.3133 0.0222

20
07

Mar 0.0740 0.0001 0.0481 0.0275 -0.0250 0.0196 -0.1060 -0.0077 0.0347 0.0057

Jun 0.1648 -1.4610 0.4623 0.2505 0.2793 0.2086 0.2374 0.1333 0.2045 0.1838

Set -0.0220 -0.0523 0.0365 -0.0903 -0.1365 -1.1561 -0.2988 -0.1755 -0.0033 -0.0161

Dez 0.0682 -0.2000 -0.1581 -0.0558 -0.0933 -0.1241 -0.0550 0.5383 -0.0716 0.0517

20
08

Mar 0.0454 -0.0222 0.0413 -0.0479 0.0885 -0.5263 0.0339 0.0595 0.1100 -0.0537

Jun 0.0886 0.1898 -0.1980 0.0273 -0.0167 0.4872 0.0067 0.0876 -0.0475 -0.3558

Set -0.0700 -0.0340 -0.0919 -0.0225 -0.7341 -0.6659 -0.1480 -0.0613 -0.1800 0.8236

Dez -0.2693 -0.1835 0.1770 -0.1774 0.4233 0.2037 0.0524 -0.0228 -0.5528 -2.6951

20
09

Mar -0.0364 0.0360 0.0132 0.0016 0.0747 -0.0108 0.0351 -0.1343 -0.0028 -0.1524

Jun 0.0176 -0.3089 0.0582 0.0104 0.1172 0.0953 0.1035 0.2673 0.1373 0.1770

Set 0.0670 0.0241 0.2049 0.0034 0.1292 -0.0380 0.0736 0.1000 -0.0210 -0.0911

Dez 0.0268 0.1456 0.0130 0.0954 0.1536 0.2405 0.1297 0.0331 0.0010 0.0493

20
10

Mar 0.0201 -0.0064 0.0007 -0.0503 -0.0107 0.1069 -0.0344 -0.0482 0.0501 0.0250

Jun -0.0742 -0.1284 -0.1467 0.1028 0.0212 -0.0981 -0.0087 -0.0560 0.0010 -0.2713

Set 0.0256 0.0470 0.0184 -0.0183 0.0013 -0.1067 0.0598 -0.5072 0.0868 0.0798

Dez 0.1212 -0.0277 0.0559 0.0607 0.1024 0.0306 -0.0030 0.1093 0.0437 0.0376

20
11

Mar 0.0493 0.1135 0.0902 0.0673 0.0596 0.0474 0.1108 0.0617 0.0300 0.0726

Jun -0.0511 0.0152 -0.0435 -1.0803 -0.0711 -0.1809 -0.0662 -0.0559 -0.0681 0.0190

Set -0.1089 -0.1421 0.0126 -0.0810 -0.2242 -0.2895 -0.1897 0.0105 -0.0259 -0.0757

Dez -0.0185 0.1665 0.0534 0.2071 0.1285 0.0919 0.2203 0.0843 0.0845 0.1257
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This example will consider performance of portfolios with respect to “return”
and “risk”. This assumes that a Real, which is the Brazilian currency, of realized
or unrealized capital gains is exactly equivalent to a Real of dividends, no better
and no worse. This assumption is appropriate for certain investors, for example,
some types of tax-free institutions. Other ways of handling capital gains and
dividends, which are appropriate for other investors, can be viewed in [11].

Here we show the results obtained for the problems by the fuzzy quadratic
programming methods introduced in Section 2. In Tables 1 were presented the
solution of the real-world portfolio selection problem.

Table 2. Fuzzy portfolio selection problem

α #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 FunObj

0.0 0.1759 0.0593 0.5523 0.0000 0.0000 0.0000 0.0000 0.2124 0.0000 0.0000 0.0083
0.1 0.1989 0.0421 0.5468 0.0000 0.0000 0.0000 0.0000 0.2122 0.0000 0.0000 0.0091
0.2 0.2200 0.0247 0.5430 0.0000 0.0000 0.0000 0.0000 0.2122 0.0000 0.0000 0.0101
0.3 0.2443 0.0077 0.5363 0.0000 0.0000 0.0000 0.0000 0.2117 0.0000 0.0000 0.0111
0.4 0.3114 0.0000 0.5140 0.0000 0.0000 0.0000 0.0000 0.1746 0.0000 0.0000 0.0124
0.5 0.4151 0.0000 0.4759 0.0000 0.0000 0.0000 0.0000 0.1090 0.0000 0.0000 0.0147
0.6 0.5189 0.0000 0.4378 0.0000 0.0000 0.0000 0.0000 0.0433 0.0000 0.0000 0.0180
0.7 0.6290 0.0000 0.3710 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0224
0.8 0.7516 0.0000 0.2484 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0282
0.9 0.8741 0.0000 0.1259 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0357
1.0 0.9967 0.0000 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0448

3.2 Economic Dispatch Problem

The second problem is focused on solving an economic dispatch problem, which
schedules a power generation in an appropriate manner in order to satisfy the
load demand while minimizing the total operational cost, i.e, this problem allo-
cates the load demand to the committed generating units in the most economical
or profitable way, while respecting security and reliability constraints. In recent
years, environmental factors such as global warming and pollution have increased
to critical levels in some places. In this context, renewable energy resources like
wind power have shown a wide potential to reduce pollutant emissions, which
were also formed by fuel consumption for thermal power plants. Nevertheless,
the expected generation output from a wind farm is difficult to predict accurately
because of the intermittent natural variability of the wind. New challenges arise
with regard to the integration of large amounts of wind generation into the
traditional power system.

The electrical power system from some countries are interconnected that in-
volves several generations areas with different power plants such as thermal,
hydro, wind, and solar. The objective is to reach the most economical gener-
ation policy that could supply the load demand without violating constraints,
such as power balance, security, transmission line and generation limits, power
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system spinning reserve requirement. In this work, the system under study is
composed by thermal power plants and a wind energy system. Thus, the goal of
this problem is to determine the optimal amounts of generation power over the
study period so that the the total thermal unit fuel cost is minimized subject to
different constraints [10,13,4,20].

Without loss of generality, a economic dispatch problem with wind penetra-
tion consideration can be formulated by a quadratic programming problem. The
objective function represents the cost curves of differential generators and the
total fuel cost FC(PG) can be represented on the following way:

minFC(PG) =

M∑
i=1

ai + biPGi + ciP
2
Gi (4)

whereM is the number of generators committed to the operating system, ai, bi, ci
are the cost coefficients of the i-th generator, and PGi is the real power output
of the i-th generator.

Because of the physical or operational limits in practical systems, there is a
set of constraints that should be satisfied throughout the system operations for
a feasible solution. The first constraint is called power balance and satisfies the
total demand, which has to be covered by the total thermal power generation
and the wind power. This relation can be represented by

M∑
i=1

PGi +Wav ≥f PD (5)

where Wav is the available wind power and ≥f represents the uncertainties from
the wind farm generation and the transmission loss. This loss can be computed
based on Kron’s loss formula but it is not the focus in this work. So, we assume
this transmission loss

The second constraint is the generation capacity for each thermal power unit.
For normal system operations, real power output of each generator is restricted
by lower and upper bounds as follows:

Pmin
Gi ≤ PGi ≤ Pmax

Gi (6)

where Pmin
Gi and Pmax

Gi are the minimum and maximum power from generator i.
There are many other mathematical formulations more complex but the aim of

this work is not to solve economic dispatch models, that here are soly considered
for the sake of illustrating the fuzzy quadractic programming problems solution
approach presented, which in fact is the goal and main aim of this contribution.

In this paper, we apply the fuzzy quadratic programming approach, described
in [5], to solve a economic dispatch problem based on a typical IEEE 30-bus
test system with six generators [21]. The system parameters including fuel cost
coefficients and generator capacities are listed in Table 3. The load demand used
in the simulations is 2,834GW and the available wind power is 0,5668GW.

Here we show the results obtained for the problems by the fuzzy quadratic
programming methods introduced in Section 2. The unit committed problem
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Table 3. Fuel cost coefficients and generator capacities

Generator i ai bi ci Pmin
Gi Pmin

Gi

G1 10 200 100 0.05 0.50
G2 10 150 120 0.05 0.60
G3 20 180 40 0.05 1.00
G4 10 100 60 0.05 1.20
G5 20 180 40 0.05 1.00
G6 10 150 100 0.05 0.60

described in this work were solved by using the linear approach of the φi function
as presented by Problem (3). In Tables 4 were presented the solution of the real-
world economy dispatch problem.

Table 4. Fuzzy energy generation

α Decision Variables FunObj

0.0 0.0501 0.2501 0.3751 0.9167 0.3751 0.3001 477.6953
0.1 0.0530 0.2525 0.3826 0.9217 0.3826 0.3030 484.2223
0.2 0.0560 0.2550 0.3901 0.9267 0.3901 0.3060 490.7662
0.3 0.0590 0.2575 0.3975 0.9317 0.3975 0.3090 497.3270
0.4 0.0620 0.2600 0.4050 0.9366 0.4050 0.3120 503.9047
0.5 0.0650 0.2625 0.4124 0.9416 0.4124 0.3150 510.4993
0.6 0.0680 0.2650 0.4199 0.9466 0.4199 0.3180 517.1108
0.7 0.0709 0.2675 0.4273 0.9516 0.4273 0.3209 523.7392
0.8 0.0739 0.2699 0.4348 0.9565 0.4348 0.3239 530.3846
0.9 0.0769 0.2724 0.4423 0.9615 0.4423 0.3269 537.0468
1.0 0.0799 0.2749 0.4497 0.9665 0.4497 0.3299 543.7259

4 Conclusions

Fuzzy quadratic programming problems are of utmost importance in an increas-
ing variety of practical fields because real-world applications inevitably involve
some degree of uncertainty or imprecision. In contrast with to what happens in
fuzzy linear programming problems, unfortunately to date, not much research
has been done in this important class of problems.

Some of these problems are the portfolio selection problem aand the the eco-
nomic dispatch problem. In these context this paper has applied an operative
and novel method for solving Fuzzy Quadratic Programming problems which is
carried out by performing two phases where a set of optimal solutions is obtained
to each α, β, γ ∈ [0, 1] that finally provide to the user with a fuzzy solution.

The authors aim to extend the line of investigation involving Fuzzy Quadratic
Programming problems in order to try to solve practical real-life problems by
facilitating the building of Decision Support Systems.
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Abstract. When calculating the class-conditional probability of con-
tinuous attributes with naive Bayesian classifier (NBC) algorithm, the
existing methods usually make use of the superposition of many normal
distribution probability density functions to fit the true probability den-
sity function. Accordingly, the value of the class-conditional probability is
equal to the sum of values of normal distribution probability density func-
tions. In this paper, we propose a NPNBC model, i.e. the naive Bayesian
classifier based on the neighborhood probability. In NPNBC, when calcu-
lating the class-conditional probability for a continuous attribute value in
the given unknown example, a small neighborhood is created for the con-
tinuous attribute value in every normal distribution probability density
function. So, the neighborhood probabilities for each normal distribution
probability density function can be obtained. The sum of these neighbor-
hood probabilities is the class-conditional probability for the continuous
attribute value in NPNBC. Our experimental results demonstrate that
NPNBC can obtain the remarkable performance in classification accu-
racy when compared with the normal method and the kernel method. In
addition, we also investigate the relationship between the classification
accuracy of NPNBC and the value of neighborhood.

Keywords: naive Bayesian classifier, neighborhood probability,
NPNBC, normal method, kernel method.

1 Introduction

In the supervised classification problems, NBC [4] is a simple and efficiently
probabilistic model based on Bayesian theory. NBC performs well over a wide
range of practical applications, including medical diagnosis [7], text categoriza-
tion [12], email filtering [11] and information retrieval [8]. Compared with more
sophisticated classification algorithms, such as decision tree and neural network,
NBC can offer very good classification accuracy [2]. And, NBC can deal with
the classification problems with a large number of variables and large data sets.

According to the prior probability and the class-conditional probability of
the unknown sample, NBC calculates the posterior probability and determine

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 112–121, 2012.
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the class for the unknown sample. NBC assumes that all attributes of a sample
are independent. This means that each attribute is conditionally independent
of every other attribute. In the learning problems, the attributes may be con-
tinuous and nominal. The continuous or normal attributes refer to attributes
taking on numerical values (integer or real) or categorical values respectively. In
NBC model, for the nominal-valued attributes, the class-conditional probability
is equal to the frequency (the number of times the value was observed divided
by the total number of observations) [4]. However, for the continuous-valued
attributes, the case is more complex. One must estimate the class-conditional
probability function from a given set of training data with class information.
There are mainly two methods for estimating the class-conditional probabil-
ity function: the normal method [9] and the kernel method [6]. In the normal
method, NBC assumes that the continuous-valued attributes are generated by a
single Gaussian distribution. The mean and standard deviation can be straightly
calculated from the training dataset. The normal method is a simple and com-
mon technique. It is fast in training and testing and requires little memory. But
when the continuous-valued attributes do not hold for Gaussian distribution,
the normal method can not perform well. To deal with this case, John and Lan-
gley [6] propose to use Parzen windows method [10] to estimate the underling
class-conditional probability function. It used the superposition of many normal
distribution probability density functions to fit the true probability density func-
tion of the continuous-valued attributes. The means of Gaussian distributions
are the given attribute values and standard deviation is the windows width [9].
This method is called kernel method because every Gaussian distribution is seen
as a kernel [6].

In this paper, we propose the naive Bayesian classifier based on the neighbor-
hood probability-NPNBC. In NPNBC, when we calculate the class-conditional
probability for a continuous attribute value in the given unknown example, a
small neighborhood is created for the continuous attribute value in every kernel.
So, the neighborhood probabilities for each kernel can be obtained. The sum-
mation of these neighborhood probabilities is the class-conditional probability
for the continuous attribute value in NPNBC. Our experimental comparisons
demonstrate that NPNBC can obtain the remarkable performance in classifi-
cation accuracy compared with the normal method [9] and the kernel method
[6]. In addition, we also investigate the relationship between the classification
accuracy of NPNBC and the value of neighborhood. The rest of the paper is
organized as follows: In section 2, we summarize the two exiting methods for
dealing with the continuous-valued attributes. NPNBC is proposed in section 3.
In section 4, we describe our experimental setup and results. Finally, we make a
conclusion and outline the main directions for future research.

2 The Related Works

NBC algorithm [4] works as follows: Assume A1, A2, · · ·, Ad are d attributes. A
sample X is represented by a vector {x1, x2, · · · , xd}, where xi is the value of
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attribute Ai(1 ≤ i ≤ d). According to the Bayesian theory, NBC calculates the
probability p(C|X) that a given sample X belongs to a given class C:

p(C|X) = p(X|C)p(C)
p(X) ∝ p(X|C)p(C) = p(x1, x2, · · · , xd|C)p(C)

= p(x1|C)p(x2|C) · · · p(xd|C)p(C) =

[
d∏

i=1

p (xi |C )

]
p(C).

The value of p(C) can be easily estimated from the training data set. p(xi|C)
is the class-conditional probability of the attribute-value xi(1 ≤ i ≤ d). If xi is
continuous, there are mainly two methods to calculate the value of p(xi|C): the
normal method [9] and the kernel method [6]. In the following, we review these
methods respectively.

2.1 The Normal Method

Let x
(j)
i (1 ≤ j ≤ NC , 1 ≤ i ≤ d) be the value of attribute Ai in the ith sample

of class C, where NC is the number of samples in the class C. The normal
method [9] assumes that the distribution of attribute Ai follows the Gaussian
normal distribution. For the continuous attribute value xi(1 ≤ i ≤ d) in the
unknown sample {x1, x2, · · · , xd}, we calculate the value of p(xi|C) according to
the following formulation:

p(xi|C) = g(xi;μC , σC) =
1√

2πσC
exp[− (xi−μC)2

2σ2
C

],

where μC =

NC∑
j=1

x
(j)
i

NC
, and σ2

C =

NC∑
j=1

(
x
(j)
i −μC

)2

NC−1 .

The mean μC and variance σC are estimated from the values of attribute Ai(1 ≤
i ≤ d) in the training dataset with class C. The benefit of the normal method
[9] is that if the true distribution of attribute Ai follows the normal distribution
the performance of NBC is very well. However, in fact, the assumption of the
normal distribution may not hold for all domains. This suggests that we should
explore other methods to estimate the distribution of attribute Ai.

2.2 The Kernel Method

John and Langley [6] use the average of a large set of Gaussian kernels to estimate
the distribution of attribute Ai(1 ≤ i ≤ d). In the kernel method, we calculate
the value of p(xi|C) as follows:

p (xi |C ) = 1√
2πNCh

NC∑
j=1

exp

{
−

[
xi−x

(j)
i

]2
2h2

}
, (1)

where, the parameter h is the width of the window. In this paper, we set
h = 1√

NC
.

By transforming the form of formulation (1), we can see that

p (xi |C ) = 1
NC

NC∑
j=1

{
1√
2πh

exp

{
−

[
xi−x

(j)
i

]2
2h2

}}
= 1

NC

NC∑
j=1

{
g
[
xi;x

(j)
i , h

]}
.
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3 NBC Based on Neighborhood Probability-NPNBC

In this section, we will introduce a novel naive Bayesian model: the naive Bayesian
classifier based on neighborhood probability (simply NPNBC). We first depict
the basic idea of NPNBC. Then, the principle of NPNBC is given. Finally, we
verify the feasibility of NPNBC.

3.1 The Basic Idea of NPNBC

As discussed in previous sections, the kernel method used the average value of
many normal kernels to estimate the value of p(xi|C) [6]. From formulation (1) we

can see that the value of p(xi|C) is relevant to the length between xi and x
(j)
i (1 ≤

j ≤ NC , 1 ≤ i ≤ d). For the given h, if the length between xi and a certain data

point x
(j)
i is larger, i.e.

∣∣∣xi − x
(j)
i

∣∣∣ > 3.5, the value of 1√
2πh

exp

{
−

[
xi−x

(1)
i

]2
2h2

}
is

smaller. We call 1√
2πh

exp

{
−

[
xi−x

(1)
i

]2
2h2

}
as the probability density unit (PDU)

of x
(j)
i . For example, let h = 1, if

∣∣∣xi − x
(j)
i

∣∣∣ = 4.15, then the PDU of x
(j)
i is

0.000073. When we compute the class-conditional probability p(xi|C), because

the value of the PDU of x
(j)
i is very small, the class information that xi gains from

x
(j)
i is little and x

(j)
i exerts very weak influence to the classification determination

of xi. In this case, we can consider that the information of x
(j)
i is lost while

determining the class for xi.

The basic idea of NPNBC is that when the value of
∣∣∣xi − x

(j)
i

∣∣∣ is very small,

xi can still obtain more information about classification from x
(j)
i rather than

lose the information of x
(j)
i . In NPNBC, we extend the neighborhood definite

integral to the PDU of x
(j)
i and calculate the neighborhood probability of xi

lying within a small interval [xi − ϑ, xi + ϑ], where ϑ is a small value. In other

words, NPNBC uses the value
xk+ϑ∫
xk−ϑ

{
1√
2πh

exp

{
−

[
xi−x

(j)
i

]2
2h2

}}
dx to replace

the PDU of x
(j)
i . In NPNBC we call

xk+ϑ∫
xk−ϑ

{
1√
2πh

exp

{
−

[
xi−x

(j)
i

]2
2h2

}}
dx as the

neighborhood probability unit (NPU) of x
(j)
i . By introducing the NPU of x

(j)
i ,

the value of class-conditional probability p(xi|C) can be computed according to
the following formulation:

p (xi |C ) = 1
NC

NC∑
j=1

{
xi+ϑ∫
xi−ϑ

{
1√
2πh

exp

{
−

[
x−x

(j)
i

]2
2h2

}}
dx

}
. (2)

Referring to Fig.1, we give an example to depict NPNBC in detail. Also, we

assume that there are three values x
(1)
i , x

(2)
i , x

(3)
i of continuous attribute Ai with
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Fig. 1. The example of NPNBC

class C, we calculate the value of p(xi|C) for the unknown attribute value xi

according to the following expression:

p (xi |C ) = 1
3 (Sabcd + Sabef + Sabgh)

= 1
3

3∑
j=1

{
xk+ϑ∫
xk−ϑ

{
1√
2πh

exp

{
−

[
xi−x

(j)
i

]2
2h2

}}
dx

}
,

where, Sabcd is the area of region abcd, Sabef the area of region abef, and Sabgh

the area of region abgh.

3.2 The Principle of NPNBC

For a given sample X = {x1, x2, · · · , xd}, where x1, x2, · · · , xd are all continuous
values of attributes A1, A2, · · · , Ad. NPNBC calculates the probability p̂(C|X)
that a given sample X belongs to a given class C:

p̂(C|X) =
∫ ∫

· · ·
∫
Ω

p (C |X ) dΩ ∝
∫ ∫

· · ·
∫
Ω

p (X |C ) p (C) dΩ

= p (C)
x1+ϑ∫
x1−ϑ

p (x1 |C ) dx1

x2+ϑ∫
x2−ϑ

p (x2 |C ) dx2 · · · · ·
xd+ϑ∫
xd−ϑ

p (xd |C ) dxd

= p(C)
NC

d∏
i=1

{
NC∑
j=1

{
xi+ϑ∫
xi−ϑ

1√
2πh

{
exp

{
−

[
xi−x

(j)
i

]2
2h2

}}
dxi

}}
,

where, p (C) = NC

N , NC is the number of samples in the class C, N is the total
number of samples in the training data set. In conclusion, the probability p(C|X)
can be calculated in NPNBC with the following expression:

p̂ (C |X ) = 1
N

d∏
i=1

{
NC∑
j=1

{
xi+ϑ∫
xi−ϑ

1√
2πh

{
exp

{
−

[
xi−x

(j)
i

]2
2h2

}}
dxi

}}
. (3)

3.3 The Feasibility of NPNBC

According to the conclusion of the kernel method [6], for a given sample X =
{x1, x2, · · · , xd}, we can compute the value of p(C|X) as follows:

p (C |X ) = 1
N

d∏
i=1

{
NC∑
j=1

1√
2πh

{
exp

{
−

[
xi−x

(j)
i

]2
2h2

}}}
. (4)
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Fig. 2. [A] The relationship between |xk − μ| and TI and [B] the relationship between
f(xk) and TI

To verify the feasibility of NPNBC, we need to compare formulation (3) with
(4) and find the difference and relation between (3) and (4). So, we first introduce
the definition of transformation increment (TI).

Definition 1. Assume f (x) = 1√
2πσ

exp
[
− (x−μ)2

2σ2

]
, let

xk+ϑ∫
xk−ϑ

f (x) dx = f (xk)+

ΔE (xk, μ), then we call ΔE (xk, μ) as the transformation increment of xk with
regard to μ.

TI establishes the relation between
xk+ϑ∫
xk−ϑ

f (x) dx and f(xk). Now, we observe

the following two relationships: (1) between |xk − μ| and TI; (2) between f(xk)
and TI according to the Fig.2. Let σ = 1.0.

For the given ϑ, from Fig.2-[A], we can see that as the values of |xk − μ|
are reduced, the TI increases; in Fig.2-[B], we can see that as the values of
f(xk) increase, the TI also increases. It offers the possibility for the realization
of NPNBC. By introducing the following theorems and deductions, we give an
in-depth understanding of TI and depict the feasibility of NPNBC.

Theorem 1. Let f (x) = 1√
2πσ

exp

[
− (x−μf )

2

2σ2

]
and g (x) = 1√

2πσ
exp

[
− (x−μg)2

2σ2

]
.

For a given xk, if f (xk) � g (xk), then,
xk+ϑ∫
xk−ϑ

f (x) dx �
xk+ϑ∫
xk−ϑ

g (x) dx.

Theorem 2. Let f1 (x) = 1√
2πσ

exp

[
− (x−μf1)

2

2σ2

]
, f2 (x) = 1√

2πσ
exp

[
− (x−μf2)

2

2σ2

]
,

g1 (x) =
1√
2πσ

exp

[
− (x−μg1)

2

2σ2

]
, and g2 (x) =

1√
2πσ

exp

[
− (x−μg2)

2

2σ2

]
. For a given xk,

when {[ΔE (xk, μg1) +ΔE (xk, μg2)]− [ΔE (xk, μf1) +ΔE (xk, μf2)]}
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-{[f1 (xk) + f2 (xk)]− [g1 (xk) + g2 (xk)]} > 0, if f1 (xk) + f2 (xk) > g1 (xk) +
g2 (xk), then, the following inequality (5) must be true:

xk+ϑ∫
xk−ϑ

f1 (x) dx+
xk+ϑ∫
xk−ϑ

f2 (x) dx ≺
xk+ϑ∫
xk−ϑ

g1 (x) dx+
xk+ϑ∫
xk−ϑ

g2 (x) dx. (5)

This occurs because the sum of TIs of f1 (xk) and f2 (xk) is larger than that
of g1 (xk) and g2 (xk). When the value of PDU is large, the TI is also large,
as shown in Fig.2-[A] and theorem 1. But, with the increase of |xk − μ|, the
reduction of TI is not a constant value.

From the theorem 1 and theorem 2 we can see that if f (xk) > g (xk),
xk+ϑ∫
xk−ϑ

f (x) dx >
xk+ϑ∫
xk−ϑ

g (x) dx must be true; However, if f1 (xk) + f2 (xk) >

g1 (xk) + g2 (xk),
xk+ϑ∫
xk−ϑ

f1 (x) dx +
xk+ϑ∫
xk−ϑ

f2 (x) dx >
xk+ϑ∫
xk−ϑ

g1 (x) dx+
xk+ϑ∫
xk−ϑ

g2 (x) dx

may be not true.

Deduction 1. Let

fi (x) =
1√
2πσ

exp

[
− (x−μfi)

2

2σ2

]
, gj (x) =

1√
2πσ

exp

[
− (x−μgj )

2

2σ2

]
,

where i = 1, 2, · · · , Ni, j = 1, 2, · · · , Nj. For a given xk, when

{
Nj∑
j=1

ΔE
(
xk, μgj

)
−

Ni∑
i=1

ΔE (xk, μfi)

}
−
{

Ni∑
i=1

fi (xk)−
Nj∑
j=1

gj (xk)

}
> 0, (6)

if
Ni∑
i=1

fi (x) >
Nj∑
j=1

gj (x), then, the inequality (7) must be true:

Ni∑
i=1

[
xk+ϑ∫
xk−ϑ

fi (x) dx

]
<

Nj∑
j=1

[
xk+ϑ∫
xk−ϑ

gj (x) dx

]
. (7)

Deduction 2. Let

f
(i)
p (x) = 1√

2πσ
exp

[
− (x−μfip)

2

2σ2

]
, g

(j)
q (x) = 1√

2πσ
exp

[
− (x−μgjp)

2

2σ2

]
,

where p = 1, 2, · · · , Np, q = 1, 2, · · · , Nq. For a given xk, if
d∏

i=1

[
Np∑
p=1

f
(i)
p (x)

]
>

d∏
i=1

[
Nq∑
q=1

g
(j)
q (x)

]
, then, the following inequality
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Table 1. The comparison of classification accuracy (%)

Dataset Number Number Number NPNBC Kernel Normal
of attributes of classes of instances method method

Glass 9 7 214 54.29 51.40 50.47
Ionosphere 34 2 351 92.78 91.74 82.62

Iris 4 3 150 96.00 96.00 95.33
Parkinson 22 2 195 79.00 70.77 69.23

d∏
i=1

{
Np∑
p=1

[
xk+ϑ∫
xk−ϑ

f
(i)
p (x) dx

]}
>

d∏
i=1

{
Nq∑
q=1

[
xk+ϑ∫
xk−ϑ

g
(j)
q (x) dx

]}
(8)

may be not true.
Ultimately, the deduction 2 guarantees that when we determine the class label

for new sample X , NPNBC may obtain the conclusion which is different from
the kernel method [6]. It offers the possibility for the realization of NPNBC.

4 Experiments and Results

In this section, we validate and analyze the performance of NPNBC by compar-
ing NPNBC with the normal method [9] and the kernel method [6] on 4 UCI
standard datasets [13]: Glass Identification, Iris, Ionosphere and Parkinson. The
description of data sets and experimental results can be seen from Table 1. The
results are obtained via 10 runs of 10-folds cross validation [1] on each data set.

In the experiment, we use the standard tools in Weka 3.7 [18]-NativeBayes-K
and NativeBayesSimple-to implement kernel method and Normal method. We
discuss the relationship between the parameter ϑ in equation (3) and the classifi-
cation accuracy of NPNBC. Fig.3 summarizes the learning curves of NPNBC on
these four UCI datasets. Let ϑ range from 0.1 to 2 in step of 0.1. From Fig.3 we
know that with the values of the small neighborhood being increased, the classi-
fication accuracy of NPNBC will increase. In Glass, when ϑ=0.16, the classifica-
tion accuracy of NPNBC is 0.5429. In Ionosphere, when ϑ=0.1, the classification
accuracy of NPNBC is 0.9278. In Iris, when ϑ=0.14, the classification accuracy
of NPNBC is 0.9600. In Parkinson, when ϑ=0.14, the classification accuracy of
NPNBC is 0.7900. Through this experiment, we validate that the classification
accuracy of NPNBC is sensitive to the change of the value of neighborhood. In
addition, the comparative results are listed in Table 1. From Table 1 we can
see that the proper selection of parameter ϑ can guarantee NPNBC significantly
outperforms the kernel method and the normal method in the classification ac-
curacy. We also give the comparison of time complexity between NPNBC and
two other previous methods of naive Bayesian classifier in Talbe 2 where n is
the number of training samples, m is the number of testing samples, k is the
number of attributes of in the sample.
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Fig. 3. The learning curves of NPNBC on the four UCI datasets

5 Conclusion

In this paper, we propose the naive Bayesian classifier based on the neighbor-
hood probability (NPNBC). In NPNBC, when calculating the class-conditional
probability for a continuous attribute value in the given unknown example, a
small neighborhood is created for the continuous attribute value in every ker-
nel. The summation of these neighborhood probabilities is the class-conditional
probability for the continuous attribute value in NPNBC. The experimental re-
sults show that NPNBC demonstrates remarkable performance in classification
accuracy compared to previous methods. Our scheduled further development in
this research topic includes: (1) determine the optimal neighborhood for NPNBC

Table 2. The comparison of time complexity

Training time complexity Testing time complexity

NPNBC O(nk) O(mnk)
Normal method O(nk) O(mk)
Kernel method O(nk) O(mnk)
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based on fuzzy integral [14] and fuzzy measure [15]; and (2) Compare the classifi-
cation performance of NPNBC with fuzzy decision tree [16], [17], support vector
machine [3], extreme learning machine [5], and other techniques.
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Abstract. This paper analyzes the ASPIC+ argumentation system. It shows that
it is grounded on two monotonic logics which are not Tarskian ones. Moreover,
the system suffers from four main problems: i) it is built on a poor notion of
contrariness, ii) it uses a very restricted notion of consistency, iii) it builds on
some counter-intuitive assumptions, and iv) it may return undesirable results.

1 Introduction

An argumentation system consists of a set of arguments and an attack relation among
them. A semantics is applied for evaluating the arguments. It computes one (or more)
set(s) of acceptable arguments, called extension(s). One of the most abstract systems
is that proposed by Dung in [7]. It leaves the definition of the notion of argument and
that of attack relation completely unspecified. Thus, the system can be instantiated in
different ways for reasoning about defeasible information stored in a knowledge base.
An instantiation starts with an underlying logic which is a pair (L, CN). The part L
represents the logical language in which the information of the knowledge base are en-
coded. It is thus, a set of well-formed formulas. The second component of a logic is
its consequence operator CN. It represents the reasoning patterns that are used. In an
argumentation system, CN is used for generating arguments from a knowledge base and
also for defining attacks among arguments. It is worth mentioning that in almost all
existing argumentation systems, the underlying logic (L, CN) is monotonic (see [8]).
This makes the construction of arguments monotonic, that is an argument remains an
argument even when arbitrary information is received. However, the status of an argu-
ment may change. Consequently, the logic produced by the argumentation system is
nonmonotonic. In sum, an argumentation system is grounded on a monotonic logic and
produces a nonmonotonic one.

Recently, Prakken proposed an instantiation of Dung’s system [11], called ASPIC+.
It is an extended version of ASPIC system which was developed in [2]. ASPIC+ takes as
input an unspecified set of formulas, a contrariness function between formulas and two
sets of rules: strict rules and defeasible ones. From these sets, arguments are built and
attacks between arguments are specified. Thus, the only parameter which is somehow
left unspecified is the underlying logic. In [11], it was claimed that this system satisfies
the rationality postulates defined in [6] and in [10] it is argued that the logic underlying
ASPIC+ is too general that it captures even Tarskian monotonic logics [12].

Our aim in this paper is to investigate the properties of this system, especially since
some of the claims in [10,11] contradict those made in [1]. We start by showing that

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 122–131, 2012.
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ASPIC+ builds on strong assumptions, and on too restrictive notions of contrariness and
consistency. These poor notions may lead to the violation of the rationality postulates
of [6], namely the one on consistency. In a second part of the paper, we investigate the
monotonic logic underlying ASPIC+. Prakken claims that strict and defeasible rules
may play two roles: either they encode information of the knowledge base, in which
case they are part of the language L, or they represent inference rules, in which case
they are part of the consequence operator CN. In this paper, we define precisely the two
corresponding logics, and show that they are monotonic but are not among the Tarskian
ones. Moreover, we show that when rules encode information, then the system is fully
instantiated apart from the kind of formulas that may be stored in L. This unique gener-
ality is fatal for the system since it may lead to the violation of the rationality postulates
defined in [6], namely consistency. When the rules are part of the consequence operator,
the logic is far from capturing Tarski’s logics [12], contrarily to what is claimed in [10].
Indeed, not only it is unable to capture the monotonic logics that do not allow negation,
but it is also unable to capture even those which have negation in their logical language.
The main problem comes from the definition of consistency which is too poor.

The paper is structured as follows: In section 2, we recall ASPIC+ and show its
limits. Section 3 recalls the monotonic logics of Tarski. In section 4, we discuss deeply
the case where rules encode knowledge, while in section 5 we study the case where they
encode inference rules. The last section is devoted to some concluding remarks.

2 APIC+ Argumentation Framework

In [11], Prakken has proposed an instantiation of Dung’s framework, called ASPIC+. It
considers an abstract logical language L, that is a language which may be instantiated
in different ways. It may for instance contain propositional formulas, etc. The only
requirement on L is that it is equipped with a notion of contrariness, denoted by .̄

Definition 1 (Contrariness). Let L be a logical language and ¯ is a contrariness func-
tion from L to 2L. For x, y ∈ L, if x ∈ ȳ, then if y /∈ x̄ then x is called a contrary of y,
otherwise x and y are called contradictory.

Remark 1. It is worth mentioning that the above definition of contrariness does not
capture the real intuition of contrary as discussed by several philosophers and logicians
(e.g. [5]). Indeed, a formula x is a contrary of y iff they cannot be both true but they can
both be false. They are contradictory if the truth of one implies the falsity of the other
and vise versa. Let us consider the following simple example:

Example 1. Assume that L = {>,≥, <,≤,=, �=}. For instance, >̄ = {<,≤,=} and
<̄ = {>,≥,=}. Note that > is the contrary of < and vise versa and <∈ >̄ and >∈ <̄.
According to Def. 1, > and < are contradictory while this is not the case.

In addition to the language L, two kinds of rules are assumed: strict rules and defeasible
ones.

Definition 2 (Rules). Let x1, . . . , xn, x be elements of L. A strict rule is of the form
x1, . . . , xn → x meaning that if x1, . . . , xn hold then without exception x holds. A
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defeasible rule is of the form x1, . . . , xn ⇒ x meaning that if x1, . . . , xn hold then
presumably x holds.Rs (resp.Rd) stands for the set of all strict (resp. defeasible) rules
with Rs ∩Rd = ∅.

A notion of consistency is associated to this logical formalism as follows.

Definition 3 (Consistency). A set X ⊆ L is consistent iff � x, y ∈ X such that x ∈ ȳ,
otherwise it is inconsistent.

Remark 2. Note that the above notion of consistency only captures binary conflicts
between formulas. That is, it does not capture ternary or more conflicts. Let us consider
the following example:

Example 2. Assume that L contains propositional formulas and that X = {x, x →
y,¬y}. It is clear that x̄ = {¬x,¬¬¬x, . . .}, ¬̄y = {y,¬¬y, . . .} and ¯x→ y = {x ∧
¬y,¬¬(x ∧ ¬y), . . .}. From Definition 3, the set X is consistent whereas it is not!

In [11], arguments are built from a knowledge base K. It may contain four categories
of information: axioms (which are certain information) (Kn), ordinary premises (Kp),
assumptions (Ka) and issues (Ki). The set Kn is assumed to be consistent. These sub-
bases are disjoint and K = Kn ∪Kp ∪Ka ∪Ki. In what follows, for a given argument,
the function Prem (resp. Conc, Sub, DefRules, TopRule) returns all the formulas of
K which are involved in the argument (resp. the conclusion of the argument, its sub-
arguments, the defeasible rules that are used, and the last rule used in the argument).

Definition 4 (Argument). An argument A is:

– x if x ∈ K with Prem(A) = {x}, Conc(A) = x, Sub(A) = {A}, DefRules(A) =
∅, TopRule(A) = undefined.

– A1, . . . , An −→ x1 (resp. A1, . . . , An =⇒ x) if A1, . . . , An, with n ≥ 0, are
arguments such that there exists a strict rule Conc(A1), . . . , Conc(An)→ x (resp.
a defeasible rule Conc(A1), . . . , Conc(An)⇒ x).
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = x,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An) (resp. DefRules(A) =
DefRules(A1) ∪ . . . ∪ DefRules(An) ∪ {Conc(A1), . . . Conc(An)⇒ x}),
TopRule(A) = Conc(A1), . . ., Conc(An) → x (resp. TopRule(A) = Conc(A1),
. . ., Conc(An)⇒ x).

An argument A is strict if DefRules(A) = ∅, defeasible if DefRules(A) �= ∅, firm if
Prem(A) ⊆ Kn, and plausible if Prem(A) � Kn.

Arguments may not have equal strengths in [11]. Thus, a partial preorder denoted by
� is available. For two arguments, A and B, the notation A � B means that A is at
least as good as B. The strict version of� is denoted by�. This preorder should satisfy

1 The symbols −→ and =⇒ are used to denote arguments. In [11], arguments are denoted by
→ and ⇒ while these latter are used for defining rules.
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two basic requirements: The first one ensures that firm and strict arguments are stronger
than all the other arguments, while the second condition says that a strict rule cannot
make an argument weaker or stronger.

Definition 5 (Admissible argument ordering). LetA be a set of arguments. A partial
preorder � on A is an admissible argument ordering iff for any pair A,B ∈ A:

R1: if A is firm and strict and B is defeasible or plausible, then A � B.
R2: if A = A1, . . . , An → x, then ∀i = 1, n, Ai � A and for some i = 1, n, A � Ai.

Remark 3. The previous requirements reduce the generality of the preference relation.
For instance, requirement R1 is violated by the preference relation proposed in [4]. In
that paper, each argument promotes a value and the best argument is the one which
promotes the most important value. Assume that there are two arguments A and B
which promote respectively values v1 and v2 with v1 being more important than v2. If
we assume that A is defeasible and B is both strict and firm, then from requirement R1,
B should be preferred to A. However, in [4], A is strictly preferred to B.

Since information in a knowledge base K may be inconsistent, arguments may be con-
flicting too. In [11], Prakken has modeled three ways of attacking an argument: under-
mining its conclusion, or one of its premises or one of its defeasible rules.

Definition 6 (Attacks). Let A and B be two arguments.

– A undercuts B (on C) iff Conc(A) ∈ C̄ with C ∈ Sub(B) and of the form
C1, . . . , Cn =⇒ x.

– A rebuts B (on C) iff Conc(A) ∈ x̄ for some C ∈ Sub(B) of the form C1, . . . , Cn

=⇒ x. A contrary-rebuts B iff Conc(A) is a contrary of x.
– A undermines B iff Conc(A) ∈ x̄ for some x ∈ Prem(B) \ Kn. A contrary-

undermines B iff Conc(A) is a contrary of x or if x ∈ Ka.

Remark 4. Note that the first relation (undercut) applies the notion of contrariness on
an argument. This is technically wrong since contrariness ¯ is a function defined for
formulas of the language L. Neither arguments nor defeasible rules are elements of
the set L. Moreover, due to the incorrect definition of the notion of contrariness, the
notions of ‘contrary-rebut’ and ‘contrary-undermine’ do not make sense since they are
assumed to be non symmetric while this is not always the case. Besides, in [11], the
author claims that these three relations are syntactic and do not reflect any preference
between arguments. However, in the definition of rebut, it is clear that an argument
whose top rule is strict cannot be attacked by an argument with a defeasible top rule.
Thus, the former is preferred to the latter. Moreover, this preference is not intuitive as
shown by the following example.

Example 3. Assume an argumentation system with the two following arguments:
A :⇒ p, p⇒ q, q ⇒ r, r → x
B :→ d, d→ e, e→ f, f ⇒ ¬x.
According to the above definition, A rebuts B but B does not rebut A. Thus, {A}
is an admissible set and consequently x is concluded from the corresponding knowl-
edge base. This is not intuitive since there is a lot of uncertainty on r. Works on
non-monotonic reasoning would rather prefer B to A since defeasible rules violate
transitivity and thus, p may not be r.
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As in any preference-based argumentation system, in [11] preferences between argu-
ments are used in order to decide which attacks result in defeats.

Definition 7 (Defeat). Let A and B be two arguments.

– A successfully rebuts B if A rebuts B on C and either A contrary-rebuts C or
not(C � A).

– A successfully undermines B if A undermines B on x and either A contrary-
undermines B or not(x � A).

– A defeats B iff no premise of A is an issue and A undercuts or successfully rebuts
or successfully undermines B.

Remark 5. Note that the previous definition uses preferences only when the attack re-
lation is symmetric. While this avoids the problem of conflicting extensions described
in [3], it greatly restricts the use of preferences.

The instantiation of Dung’s system is thus the pair (As, defeat) where As is the set
of all arguments built using Definition 4 from (K, Cl(Rs),Rd). Cl(Rs) is the closure
of strict rules under contraposition, that is Cl(Rs) contains all strict rules and all their
contrapositions. A contraposition of a strict rule x1, . . . , xn → x is, for instance, the
strict rule x2, . . . , xn, x̄ → x̄1, where x̄ and x are contradictory. Recall that in [6],
contraposition was proposed for ensuring the rationality postulate on consistency.

Dung’s acceptability semantics are applied for evaluating the arguments.

Definition 8 (Acceptability semantics). Let B ⊆ As, A ∈ As. B is conflict-free iff
�A,B ∈ B s.t. A defeats B. B defends A iff ∀B ∈ As if B defeats A, then ∃C ∈ B
s.t. C defeats B. B is admissible iff it is conflict-free and defends all its elements. B is a
preferred extension iff it is a maximal (for set inclusion) admissible set.

In [11], it was shown that under several conditions, each extension B of the argumen-
tation system (As, defeat), the set {Conc(A) | A ∈ B} is consistent. This result is
surprising especially since there are notions that are ill-defined like undercutting. More-
over, due the limits of the notions of contrariness and consistency, the result produced
in [11] is incorrect. Let us consider the following example.

Example 2 (Continued): Assume again that L contains propositional formulas, and
that Kn = {x, x → y,¬y} and all the other sets are empty. From Definition 3, the set
Kn is consistent, thus it satisfies the requirement of [11]. Consequently, the following
arguments are built: A1 : x, A2 : x → y, A3 : ¬y. Note that the three arguments
are not attacking each others. Thus, the set {A1, A2, A3} is an admissible/preferred set.
This set supports three conclusions which are inconsistent. Another source of problems

for ASPIC+ is the abstract aspect of the language L. Indeed, it is argued that it can be
instantiated in any way. The following example shows that some instantiations may lead
to undesirable results, namely inconsistent ones.

Example 4. Assume that L contains propositional formulas, that all the sets are empty
except Rd = {⇒ x,⇒ ¬x ∨ y,⇒ ¬y}. Only the following three arguments can be
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built: A1 :⇒ x, A2 :⇒ ¬x ∨ y, A3 :⇒ ¬y. Note that the three arguments are not
attacking each others. Thus, the set {A1, A2, A3} is an admissible/preferred set. This
set supports three conclusions which are inconsistent contrarily to what is claimed in
[11]. Note that this example would return this undesirable result even if the definition
of consistency was more general than the one given in Definition 3.

The previous example reveals another problem with ASPIC+ system. Its result is not
closed under defeasible rules. Indeed, the three conclusions x, ¬x ∨ y, and ¬y are
inferred while y which follows from the two first ones is not deduced. In works on non-
monotonic reasoning, namely the seminal paper [9], it is argued that one should accept
as plausible consequences all that is logically implied by other plausible consequences.
This property is known as right weakining.

Finally, in [10] it was argued that the underlying logic of ASPIC+ captures classical
logics, namely propositional and first order logics. It is sufficient to assume that the sets
Rd, Kn, Ka and Ki are empty, and that strict rules are the reasoning patterns of propo-
sitional or first order logics. The authors claim that ASPIC+ still satisfies the rationality
postulate in this case. The following example shows that this claim is incorrect.

Example 4 (Continued): Assume that L contains propositional formulas, Kp = {x,
¬x∨y,¬y} and thatRs contains all the reasoning patterns of propositional logic. Thus,
the following arguments can be built: A1 : x, A2 : ¬y, A3 : ¬x∨y, A4 : A2, A3 → ¬x,
A5 : A1, A3 → y, A6 : A1, A2 → ¬(¬x ∨ y). It is easy to check that A1 rebuts A4, A4

rebuts A1, A2 rebuts A5, A5 rebuts A2, A3 rebuts A6, A6 rebuts A3, A4 undermines
A5 and A6 on x, A5 undermines A4 and A6 on ¬y, and A6 undermines A4 and A5

on ¬x ∨ y. Consequently, the set {A1, A2, A3} is admissible/preferred which violates
consistency. Note that this example would return this undesirable result even if the
definition of consistency was more general than the one given in Def. 3 (see [1]).

3 Tarski’s Monotonic Logics

Before studying the underlying logic of ASPIC+, let us first recall the abstract logic
(L, CN) as defined by Tarski [12]. While there is no requirement on the language L, the
consequence operator CN should satisfy the following basic axioms.

1. X ⊆ CN(X) (Expansion)
2. CN(CN(X)) = CN(X) (Idempotence)
3. CN(X) =

⋃
Y⊆fX

CN(Y )2 (Finiteness)
4. CN({x}) = L for some x ∈ L (Absurdity)
5. CN(∅) �= L (Coherence)

Once (L, CN) is fixed, a notion of consistency arises as follows:

Definition 9 (Consistency). Let X ⊆ L. X is consistent w.r.t. the logic (L, CN) iff
CN(X) �= L. It is inconsistent otherwise.

2 Y ⊆f X means that Y is a finite subset of X .
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Almost all well-known monotonic logics (classical logic, intuitionistic logic, modal
logic, etc.) are special cases of the above notion of an abstract logic. The following
logic for representing the color and the size of objects is another Tarskian logic.

Example 5. Let L = Lcol∪Lsize∪Lerr with Lcol = {white, yellow, red, orange, blue,
black}, Lsize = {tiny, small, big, huge}, and Lerr = {⊥}. The consequence operator
captures the fact that if two different colours or two different sizes are present in the
description of an object, then information concerning that object is inconsistent. We
define CN as follows: for all X ⊆ L,

CN(X) =

⎧⎪⎪⎨⎪⎪⎩
L if (∃x, y ∈ X s.t. x �= y

and ({x, y} ⊆ Lcol or {x, y} ⊆ Lsize))
or if (⊥ ∈ X)

X else

For example, CN(∅) = ∅,

CN({red, big}) = {red, big}, CN({red, blue, big}) = CN({⊥}) = L. The set {red,
big} is consistent, while {red, blue, big} is inconsistent. Note that this logic does not
need any connector of negation.

4 Rules as Object Level Language

As said before, the (strict and defeasible) rules in ASPIC+ may either encocde infor-
mation or reasoning patterns. In this section, we investigate the first case. Our aim is to
study the properties of the corresponding logic, denoted by (Lo, CNo).

The language Lo is composed of the logical formulas of the set L. Note that in [11]
no particular requirement is made on L, neither on the kind of connectors that are used
nor on the way of defining the formulas. However, as said before, L is equipped with
the contrariness function .̄ The language Lo contains also two kinds of information:
strict rules (elements ofRs) encoding certain knowledge like ‘penguins do not fly’ and
defeasible rules (elements ofRd) encoding defeasible information like ‘generally birds
fly’. Note that in ASPIC system [2], the same language is considered with the difference
that L contains only literals. Thus, Lo = L ∪Rs ∪Rd with L ∩ (Rs ∪Rd) = ∅.

An important question now is what are the contents of the bases Kn, Kp, Ka and
Ki in this case. Since Kn contains axioms, or undefeasible information, this may be
represented by strict rules since these latter encode certain information. Similarly, since
ordinary premises are defeasible, then they should be represented by defeasible rules.
Otherwise, the language would be redundant and ambiguous. In sum, K = Ka ∪ Ki.

When strict and defeasible rules encode knowledge, the consequence operator of the
logic used in ASPIC+ is not specified. The only indication can be found in Definition
4 of the notion of argument. A possible CNo would be the following:

Definition 10 (Consequence operator). CNo is a function from 2Lo to 2Lo s.t. for all
X ⊆ Lo, x ∈ CNo(X) iff there exists a sequence x1, . . . , xn s.t.

1. x is xn, and
2. for each xi ∈ {x1, . . . , xn},
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– ∃y1, . . . , yj → xi ∈ X ∩ Rs (resp. ∃y1, . . . , yj ⇒ xi ∈ X ∩ Rd) s.t.
{y1, . . . , yj} ⊆ {x1, . . . , xi−1}, or

– xi ∈ X ∩ L

Example 6. Let X = {x, x→ y, t⇒ z}, CNo(X) = {x, y, z}.

Property 1. Let X ⊆ Lo.

– CNo(X) ⊆ L

– If X ⊆ L, then CNo(X) = X
– CNo(∅) = ∅

Now that the logic (Lo, CNo) is defined, let us see whether it is a Tarskian one.

Proposition 1. Let (Lo, CNo) be as defined above. CNo is monotonic, satisfies idempo-
tence, coherence and finiteness axioms.

The next result shows that CNo violates expansion and absurdity axioms.

Proposition 2. Let (Lo, CNo) be as defined above.

– For all X ⊆ Lo s.t. either X ∩Rs �= ∅ or X ∩Rd �= ∅, it holds that X �⊆ CNo(X).
– There is no x ∈ Lo s.t. CNo({x}) = Lo.

The previous result shows that the logic (Lo, CNo) is not a Tarskian one since CNo vi-
olates the key axioms proposed in [12]. Moreover, the notion of consistency given in
Definition 3 is weaker than that proposed in [12]. According to Tarski, a set X ⊆ L is
consistent iff CN(X) �= L. Thus, this notion captures not only binary minimal conflicts
(as with Definition 3), but also ternary or more ones.

5 Rules as Reasoning Patterns

In the previous section, we have seen how strict and defeasible rules are used for en-
coding certain and defeasible information. The second way of using these rules is as
inference rules. In [11], it is argued that strict rules may represent classical reasoning
patterns, like modus ponens whereas defeasible rules may capture argument schemes.
In this section, we study the resulting logic denoted by (Li, CNi).

Let us start by defining the logical language Li. In this case, it is exactly the set L,
that is Li = L. Thus, the only requirement on Li is that it has a contrariness func-
tion .̄ It is worth mentioning that the distinction made in [11] between the four bases
Kn,Kp,Ki,Ka is meaningful. Thus, arguments are built from these bases.

Let us now define the consequence operator CNi. It is similar to CNo, except that strict
and defeasible rules express inference schemas.

Definition 11 (Consequence operator). CNi is a function from 2Li to 2Li s.t. for all
X ⊆ Li, x ∈ CNi(X) iff there exists a sequence x1, . . . , xn s.t.

1. x is xn, and
2. for each xi ∈ {x1, . . . , xn},
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– ∃y1, . . . , yj → xi ∈ Rs (resp. ∃y1, . . . , yj ⇒ xi ∈ Rd) s.t. {y1, . . . , yj} ⊆
{x1, . . . , xi−1}, or

– xi ∈ X

Proposition 3. The logic (Li, CNi) is monotonic. It satisfies expansion, idempotence,
coherence, and finiteness.

Property 2
– CNi(∅) = cl(Rs ∪Rd) where cl(Rs ∪Rd) is the smallest set such that:

• if→ x ∈ Rs (resp.⇒ x ∈ Rd), then x ∈ cl(Rs ∪Rd)
• if x1, . . . , xn → x ∈ Rs (resp. x1, . . . , xn ⇒ x ∈ Rd) and {x1, . . . , xn} ⊆
cl(Rs ∪Rd), then x ∈ cl(Rs ∪Rd)

– CNi(∅) = ∅ iff �→ x ∈ Rs and �⇒ x ∈ Rd for any x ∈ L

Example 7. LetRs = {x, y → z;→ x} andRd = {⇒ y}. cl(Rs ∪Rd) = {x, y, z}.

The previous property shows that the coherence axiom of Tarski may be violated by
CNi. It is namely the case when cl(Rs ∪ Rd) = L. CNi does not guarantee neither the
absurdity axiom. Indeed, there is no x ∈ Li such that CNi({x}) = Li. In case strict
rules encode propositional logic, then such formula exists. However, we can build other
logics which do not offer such possibility. Let us consider the following logic which
expresses the links between the six symbols of comparisons described in Example 1.

Example 1 (Continued): Assume that Li = {>,≥, <,≤,=, �=,≥ ∧ ≤, > ∨ <},
Rd = ∅, and Rs = {>→ ≥, <→ ≤,=→ ≥ ∧ ≤, �=→ > ∨ <}. Note that there is
no element in Li that has the whole set Li as a set of consequences.

As a consequence, the logic (Li, CNi) is not a Tarskian one since it violates the coher-
ence and absurdity axioms. Note that this result holds even when CNi encodes exactly
the classical inference #. The reason in this case is due to the poor definition of con-
sistency. As shown is Example 2, in propositional logic the set {x, x → y,¬y} is
inconsistent while it is consistent according to Definition 3.

It is also worth mentioning that there is another family of Tarskian logics that cannot
be captured by the monotonic logic (Li, CNi). It is the family of logics whose language
does not allow negation or contrariness like the one given in Example 5.

6 Conclusion

This paper investigated ASPIC+ argumentation system. It shows that this system suf-
fers from the following drawbacks: i) The system is grounded on several assumptions
which may appear either counter-intuitive like the one on rebut, or restrictive like the
one on the preference relation between arguments. ii) The system uses a too restric-
tive notion of consistency. This not only reduces the generality of the system, but also
leads to undesirable results. iii) The system returns results which may not be closed
under defeasible rules. Thus, it violates the right weakening axiom [9]. iv) The sys-
tem violates the rationality postulate on consistency. There are different sources of this
problem: the notion of consistency which does not capture ternary or more conflicts
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between formulas, the abstract nature of the elements of the language L, and finally the
use of rebut relation. In [1], it was shown that symmetric relations lead to the violation
of consistency. v) Contrarily to what is claimed in [11,10], the underlying logics of AS-
PIC+ cannot encode the Tarskian ones: neither the ones which make use of a notion of
negation nor the ones which do not.
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Abstract. The analysis of voluminous patterns is often problematic due to the 
confounding effect of features that are not relevant to the problem at hand. For 
instance, the classification of biomedical spectra is often best achieved through 
the identification of a subset of highly discriminatory features while ignoring 
the non-relevant ones. With respect to pattern classification, we present a fea-
ture reduction strategy, which begins with the instantiation of many classifiers 
operating on different subsets of features, employing a feature sampling method 
to identify discriminatory feature subsets. These subsets are further aggregated 
to improve the overall performance of the underlying classifiers. We empirical-
ly demonstrate, using a voluminous biomedical dataset, that this strategy pro-
duces superior classification accuracies compared against a set of benchmarks. 

Keywords: feature aggregation, magnetic resonance spectra, feature selection, 
pattern classification, biomedical informatics, biomedical data analysis. 

1 Introduction 

The complexity of biomedical spectra is often due to their voluminous nature and 
requires the latest pattern analysis methods for their successful classification [1–7]. 
Biomedical spectral classification involves constructing a predictive mapping be-
tween the spectra (patterns) and their respective disease states (classes). Formally, a 
pattern classifier is a computational system that constructs a mapping, ƒ:X→Ω, where 
X={(xk,wk), k=1,2,…,N}, xk∈ℜn, wk∈Ω={1,2,…,c}, N is the number of spectra, n is 
the number of spectral features; and c is the number of disease states. A correct classi-
fication occurs when the classifier maps spectrum, xi, to disease state, wp, and wp=wi. 

While many pattern classifiers exist [8–13], effective classification normally re-
quires a complementary pre-processing strategy. In this regard, the classification of 
biomedical spectra often requires only a subset of spectral features, those possessing 
significant discriminatory power, while the remaining features have a tendency to 
confound the effectiveness of the underlying classifier [14]. In such cases, a sensible 
pre-processing strategy is to select the discriminatory features and prune the con-
founding ones. To this end, we present a classification system, fuzzy feature sampling 
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and aggregation (FSA), that identifies discriminatory feature subsets using a fuzzy 
logic based sampling rule and feature aggregator. We empirically evaluate this pre-
processing strategy using magnetic resonance spectra and compare the performance 
against a set of benchmarks. Section 2 provides details on this strategy and Section 3 
describes the experiment design including the benchmark classifiers and dataset. Sec-
tion 4 is a presentation of the results followed by concluding remarks in Section 5. 

2 Dimensionality Reduction Using Feature Sampling 

The pseudo code for the FSA algorithm is listed below. FSA is a variation of the clas-
sification algorithm based on a stochastic feature selection architecture developed by 
the author [15–16]. The two principle differences are the use of the fuzzy sampling 
method (line 2.b) and the fuzzy feature aggregation method (line 2.c.ii). We now 
present the FSA classification architecture and motivation in more detail. 

FSA Algorithm 
1. Initialize classification parameters 
2. Iterate: until accuracy/iteration thresholds are met 

a. Instantiate a classifier 
b. Select feature subsets using frequency histogram 

and fuzzy sampling method 
c. Iterate: t-fold validation for classifier 

i. Allocate spectra to design or test sets 
ii. Mix subsets using fuzzy aggregation 

iii. Train classifier using design spectra 
iv. Assess performance using test spectra 

d. Update feature frequency histogram, if necessary 
e. Update current best classifier, if necessary 

3. Return best classifier and feature subset pair 

The motivation for pre-processing strategies using feature selection is to simplify the 
determination and construction of optimal class boundaries that delineate patterns 
(spectra) belonging to one class (disease state) from those belonging to other classes 
[15], [17–18]. Formally, feature selection involves finding a mapping g′:X→X′, 
where X′⊆ℜm (m<<n) is the reduced spectral feature space. Pattern classification 
involves constructing a mapping from the reduced spectral feature space to the space 
of class labels (disease states), g:X′→Ω. FSA is a dimensionality reduction technique 
that may be used with any homogeneous or heterogeneous set of classifiers. Essential-
ly, FSA iteratively presents, in a highly parallelized fashion, many feature regions 
(contiguous feature subsets) to the set of classifiers, and retains the best classifi-
er/region pair. FSA randomly allocates the original spectra into design or test sets. 
Once the design phase is complete, the test set is used to validate the classification 
performance. Coupled with internal t-fold validation, this provides a reliable measure 
of the effectiveness of the underlying classification system. 
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The first step (line 1 above) involves parameter initialization. One selects the min-
imum and maximum number of feature regions and the minimum, a, and maximum, 
b, sizes for a feature region. For a spectrum, x=[x1…xn], a feature region is defined to 
be a contiguous subset of its features, xαβ=[xα…xβ] (1≤a≤α≤β≤b≤n). Other parameters 
include: those specific to each type of pattern classifier; sampling rate for each clas-
sifier type; fitness function used to evaluate performance; and stopping criteria (accu-
racy threshold, Pε, and maximum number of iterations, η). The second step involves: 
the instantiation of a pattern classifier; the selection of a candidate set of feature re-
gions from the dataset’s original spectral features; and the aggregation of the selected 
feature regions. The feature regions are randomly selected (satisfying the above men-
tioned criteria) and all other features are pruned. 

In this investigation, we use one classifier type within FSA, linear discriminant 
analysis (LDA) [19]. LDA computes linear boundaries between c classes while taking 
into account between-class and within-class variances. LDA allocates a spectrum, x, 
to disease state w for which the probability distribution, pw(x), is greatest. That is, x is 
allocated to w, if qwpw(x)≥qvpv(x) (∀v=1,2,…,c [v≠w]), where qw is the proportional 
probability of the disease state. The discriminant function, Dw, for disease state w 
(where μw is the mean for w and W is the covariance matrix of X) is 

  (1) 

However, FSA is not restricted to this classifier. One may use any homogeneous or 
heterogeneous set of classifiers such as neural networks, Bayesian classifiers, evolu-
tionary approaches, or support vector machines [9–10], [20–24]. 

FSA assesses the performance of each specific classifier instance. First, the feature 
region subset is randomly allocated to either a design set or a test set. Second, the 
classifier instance is trained using the design set regions to produce prediction coeffi-
cients. Accuracy is measured using the coefficients with the test set feature regions. 
This is repeated several times (t-fold validation) with different design and test sets 
allocations. If the performance (accuracy), P, of the current classifier instance exceeds 
the histogram fitness threshold then the frequency histogram (see below) is updated to 
reflect the fact that the feature regions contributed to a “successful” classification. The 
above steps are repeated until: (i) P>Pε; or (ii) the number of iterations exceeds η. 

P is measured using a c×c confusion matrix, R, of actual versus predicted disease 
states. Several fitness functions may be used such as: Po=N–1∑iRii, the ratio of correctly 
classified spectra to total spectra (i,j=1...c); PA=c–1∑i(Rii/∑jRij) the average accuracy for 
each state; or a chance-corrected measure of agreement such as the κ-score, Pκ=(Po–
PL)/(1–PL) (PL=N–2∑i(∑jRij∑jRji) is the agreement due to chance) [25]. 

2.1 Feature Performance Histogram 

An important constituent of FSA is the feature performance histogram, e=[e1…en] 
(ei∈[0,1]), which is used to generate an ad hoc cumulative distribution function that is 
subsequently used to randomly sample new subsets of features regions. The histogram 
reflects the current classification “performance” of each individual feature. That is, if 
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a feature, xi, is regularly present in feature regions that contribute to high (low) values 
of P, then ei will also be high (low). Instead of uniformly sampling from the set of 
original features when selecting feature regions, feature sampling is based on past 
“success” (large components of e). The fuzzy logic update rule uses e and the classifi-
cation accuracy for the current classifier iteration, PC. The updated histogram, e′, is 
computed as 

  (2) 

where ∧ is a t-norm (in this study, we use the product operator), ∨ is an s-norm (we 
use the probabilistic), h1(x)=x2 is the concentration operator, h2(x)=x½ is the dilation 
operator, and ε=0.5 is a threshold below which no adjustment is made to the corres-
ponding histogram element. The rationale behind (2) is that an update should only 
occur when the current classification accuracy is greater than chance and PC should 
have an attenuated effect on ei. Before FSA begins, e must be initialized to a reasona-
ble set of values; we use ei=0.05 (∀i=1…n). Intuitively, the initial values need to be 
the same, as there is no prior information about performance, so all features should 
have equal likelihood of being selected. Also, the initial values should be small, but 
not 0, so that any spectral feature has some likelihood, however small, to be selected 
during an iteration. 

2.2 Aggregating Feature Regions 

Another important constituent of FSA is the fuzzy logic based aggregation of spectral 
feature regions to produce new feature combinations. In terms of classification map-
pings, we are moving from determining class boundaries within the original feature 
space to determining class boundaries within a new parameterized (feature region 
combinations) space. As a pre-processing strategy, the intent here is that if the origi-
nal spectral feature space had non-linear class boundaries (such as piece-wise linear 
discontinuities, convex hulls, and so on), the new parameter space, in which the pa-
rameters themselves are “non-linear”, may have simpler (for instance, near-linear) 
class boundaries [26–28]. Given two feature regions (as previously defined), 
z1=[zα…zβ] and z2=[zδ…zγ] (1≤a≤α≤β≤b≤n and 1≤a≤δ≤γ≤b≤n), we may define a new 
fuzzy aggregation of spectral features, z, as 

  (3) 
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where ○ is either the t-norm or s-norm. We use the product and probabilistic sum 
operators for the respective t-norm and s-norm because of their properties of smoothly 
combining operands. Using (3), z has equal likelihood of being assigned one of the 
following: (i) the pair-wise aggregation (conjunction or disjunction, depending on ○) 
of each z1 feature with each z2 feature (first case in (3)); (ii) the pair-wise aggregation 
(conjunction or disjunction, depending on ○) of all features in either z1 or z2 (second 
or third case in (3), respectively); or (iii) one of the original feature regions, z1 or z2 
(last case in (3)). As biomedical spectra are typically scaled to the unit interval, (3) 
can be easily applied. 

3 Experiment Design 

The latest biomedical spectroscopic modalities produce information rich but complex 
and voluminous data [29]. For instance, magnetic resonance spectroscopy, which 
exploits the interaction between an external homogenous magnetic field and a nucleus 
that possesses spin, is a reliable and versatile spectroscopic modality [30]. Coupled 
with robust multivariate methods, it is especially useful in the classification and inter-
pretation of high-dimensional biomedical spectra of tissues and biofluids [31].  
Typically, the curse of dimensionality, a low spectrum to feature ratio, is a serious 
classification challenge with biomedical spectra: the excess degrees of freedom tend 
to cause overfitting, which affects the reliability of the chosen classifier. We will use 
a dataset with this characteristic to assess the classification performance of FSA. 

We obtained a biomedical dataset of tissue spectra acquired from a magnetic re-
sonance spectrometer. There are N=150 spectra composed of n=3860 spectral features 
(metabolite concentrations). The spectra are divided into a “normal” class (Nn=86) 
and an “abnormal” class (Na=64). These data were normalized to the unit interval. 
Figure 1 plots the minimum, maximum, and median feature values for the normal (i) 
and abnormal (ii) tissue spectra. 

 
 
  

 

Fig. 1. Magnetic resonance spectral plot of minimum, maximum (gray), and median (black) 
feature values for the (i) normal, Nn=86, and (ii) abnormal, Na=64, classes 
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3.1 Validation Protocol 

Pattern classification studies are biased when they use the entire dataset to determine 
the predictive mapping. This approach leads to implausible prediction outcomes that 
do not take into account the possibility of overfitting, wherein the mapping possesses 
no generalized predictive power for new patterns. Therefore, it is important to per-
form some type of results validation. For instance, patterns in X may be randomly 
allocated to a design set, XD, containing ND patterns or a test set, XT, containing NT 
patterns (ND+NT=N). Now, a classification mapping is produced using only design 
patterns, ƒ´:XD→Ω, while accuracy is measured using ƒ´ with the validation patterns. 
We use this validation approach in this investigation: ND=86, with 43 normal and 40 
abnormal spectra; and NT=64, with 43 normal and 21 abnormal spectra. We also use 
internal t-fold cross validation (t=9); for each experiment, we randomly build t differ-
ent test and design set pairs and, in turn, present the pairs to the current classifier in-
stance being tested. In this study, FSA performance is measured using κ (see Section 
2); however, we present the final classification results using PO. In all cases described 
in Section 4, we report the median confusion matrix as well as the mean and standard 
deviation of PO. Finally, all performance results using PO are based on the disease 
state predictions using test set patterns. 

3.2 Experiment Parameters 

We use two standard classification approaches as benchmarks against which to meas-
ure the effectiveness of FSA. The first benchmark is LDA, as described in Section 2, 
using all spectral features. We also use LDA with ten different averages of the fea-
tures, using window sizes of 2, 4, 5, 10, 20, 193, 386, 772, 965, and 1930. The second 
benchmark is a support vector machine (SVM) [21], [32] again using all spectral fea-
tures and averaged features as previously described. We also use a several kernel 
functions, K(x1,x2), to effect non-linear projections of the features [22]: polynomial, 
(a1x1·x2+a2)

d; sigmoid, tanh(a1x1·x2+a2); and Gaussian, exp(–½|x1–x2|
2/σ). In the in-

terest of brevity, we only report the best LDA and SVM classification results. The 
FSA parameters include: minimum and maximum number of feature regions, a=2, 
b=5, respectively; feature region cardinality range, 5–50; classifier type, LDA; fuzzy 
feature aggregation rule, equal likelihood of cases in (3); stopping criteria, maximum 
number of iterations, η=100000, and accuracy threshold, Pε=0.99 (note that in no 
experiment was the accuracy threshold exceeded); and t=9. All results presented in 
the next section are only for test set spectra (NT=64). 

4 Results and Discussion 

Table 1 lists the average FSA classification results using the test set spectra. The con-
fusion matrix of actual versus predicted disease states listed in this table is the median 
matrix of the t=9 classification runs. The overall classification accuracy, PO, is the 
mean value over the runs. The results from FSA and three variants are presented in a 
quadrant fashion: the original spectral feature regions (“Original”) versus the fuzzy 
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aggregation rule to combine regions (“Aggregate”); and random sampling (“Ran-
dom”) of the features versus fuzzy feature sampling of the performance histogram 
(“Histogram”). Aggregate and Histogram comprise the FSA strategy. 

We see that FSA, the fuzzy feature sampling rule coupled with the fuzzy feature 
region aggregation method, produced the best overall result, PO=0.94±0.02, while the 
lowest value, PO=0.84±0.03, occurred using a random sampling of the original fea-
tures. From the point of view of feature regions, we also observe that fuzzy feature 
aggregation produced superior classification results compared to using the original 
feature regions. This may be due to inherent non-linearities in the class boundaries 
that can be delineated in the parameterized space but cannot be delineated in the orig-
inal feature space. From the point of view of the feature performance histogram, it is 
clear that fuzzy feature sampling produced superior classification results compared to 
the purely random sampling approach. In biomedical applications, it is important to 
minimize the number of false positives that the prediction method generates (a false 
positive causes needless patient anxiety and needless healthcare expenditures). In our 
case, this means having as few normal spectra being erroneously predicted to fall into 
the abnormal disease state. Again, we observe that the fuzzy feature sampling coupled 
with fuzzy feature aggregation generated only two false positives; as percentages, 
10% versus 19% and 24%. Table 2 lists the average classification results using the 
benchmarks. With LDA, the best result, PO=0.81±0.03, was achieved using feature 
averaging with a window size of 20 (193 averaged features). This result is statistically 
comparable to using random sampling of the original features. With SVM, the best 
result, PO=0.88±0.02, was achieved using a Gaussian kernel and feature averaging 
with a window size of 20. This result is statistically comparable to both random sam-
pling with feature aggregation and fuzzy sampling of the original features. However, 
SVM produced statistically poorer classification results than FSA. 

Table 1. Average FSA Classification Results (Test Set) 

Sampling 
Actual 
versus 
Predicted 

Feature Regions 
Original Aggregate 

Normal Abnormal Accuracy Normal Abnormal Accuracy 

Random 
Normal  38  5 0.88  39  4 0.91 
Abnormal  5  16 0.76  4  17 0.81 
PO 0.84±0.03 0.88±0.02 

 Normal  40  3 0.93  41  2 0.95 
Histogram Abnormal  4  17 0.81  2  19 0.90 
 PO 0.89±0.03 0.94±0.02 

Table 2. Average Benchmark Classification Results (Test Set) 

Actual vs. 
Predicted 

LDA SVM 
Normal Abnormal Accuracy Normal Abnormal Accuracy 

Normal  37  6 0.86  40  3 0.93 
Abnormal  6  15 0.71  5  16 0.76 
PO 0.81±0.03 0.88±0.02 
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Table 3 lists the spectral feature regions that were selected using FSA and the three 
variants. Three variants identified two discriminatory features, while the fourth, using 
random sampling and the original features, identified three regions. Interestingly, 
while the latter variant produced the poorest classification results of the four, it also 
required far more of the original features to achieve this inferior result: 131 versus 23 
(original with histogram), 19 (aggregate with random), and 39 (FSA). The two aggre-
gation cases improved the performance of the respective random and histogram coun-
terparts through the use of aggregation of regions. In the former case, one feature 
region, [x397…x404], was aggregated (see Histogram Region 1 in Table 3). In the latter 
case, three feature regions were aggregated, [x1989…x1996] (Region 1), [x3001…x3012], 
and [x3474…x3492] (Region 2) (see Histogram in Table 3). An interesting biomedical 
observation relates to the feature regions identified using the histogram sampling and 
region aggregation. These variants identified four discriminatory regions, roughly 
around indices 400, 1900, 3000, and 3500. The first three regions correspond to con-
centrations of biological metabolites that were previously identified by the biomedical 
expert to have significance in the discrimination between normal and abnormal dis-
ease states. While the final region does not have any known biological significance, it 
is numerically essential to the strong classification performance of FSA. 

Table 3. Spectral Feature Regions Selected Using FSA and Variants 

Sampling 
Feature Regions 

 Original Aggregate 

Random 
Region 1 [x221…x255] [x397…x404] ∧ [x397…x404] 
Region 2 [x395…x441] [x2987…x2997] 
Region 3 [x415…x463] ∅

Histogram 
Region 1 [x407…x417] [x1889…x1896] ∧ [x1889…x1896] 
Region 2 [x2981…x2992] [x3001…x3012] ∧ [x3474…x3492] 

5 Conclusion 

Via empirical evaluation using a voluminous biomedical dataset of magnetic reson-
ance spectra, we have demonstrated the effectiveness of the fuzzy feature sampling 
and aggregation classification system that identifies discriminatory feature subsets 
using a fuzzy logic based sampling rule and feature aggregator. Figure 2 is a summary 
plot of the mean classification results (including their standard deviations) of this 
approach, including three variants, compared to the benchmark classifier results. It is 
clear that feature aggregation coupled with fuzzy feature sampling produced the best 
overall classification result; a 6% improvement over the best of the variants and a 7% 
improvement over the best benchmark. Moreover, this result was achieved using only 
1% of the original spectral features. Future research activities will revolve around the 
fuzzy aggregation rule (for instance, examining other candidate operators for the pa-
rameterized feature space) and the feature update rule (for instance, examining the 
effects of a simulated annealing operation on the histogram sampling). 
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Fig. 2. Summary plot of classification performance using FSA, its variants (O+R, random sam-
pling of original features, O+H, histogram sampling using the original features, and A+R,  
random sampling of the aggregated features), and benchmarks. 
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Abstract. The practice of evidence-based medicine involves consulting 
documents from repositories such as Scopus, PubMed, or the Cochrane Library. 
The most common approach for presenting retrieved documents is in the form 
of a list, with the assumption that the higher a document is on a list, the more 
relevant it is. Despite this list-based presentation, it is seldom studied how 
physicians perceive the importance of the order of documents presented in a 
list. This paper describes an empirical study that elicited and modeled 
physicians’ preferences with regard to list-based results. Preferences were 
analyzed using a GRIP method that relies on pairwise comparisons of selected 
subsets of possible rank-ordered lists composed of 3 documents. The results 
allow us to draw conclusions regarding physicians’ attitudes towards the 
importance of having documents ranked correctly on a result list, versus the 
importance of retrieving relevant but misplaced documents. Our findings should 
help developers of clinical information retrieval applications when deciding 
how retrieved documents should be presented and how performance of the 
application should be assessed.   

Keywords: Physician preferences, Evidence-Based Medicine, Document 
Retrieval, Rank-ordered Lists, Information Retrieval. 

1 Introduction 

As part of our research on clinical decision support systems, we have developed a 
method for automatically retrieving documents from the Cochrane Library that are 
relevant in the context of a patient-physician encounter [1]. An evaluation of our 
method’s performance prompted us to reflect on the following question: “What are 
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physician’s expectations and preferences with regards to the rank-ordered 
presentation of retrieved documents?” Specifically, how do physicians rate the 
importance of being presented with relevant document on a particular position in a 
list? Alternatively, how do they value documents that are relevant but misplaced on a 
list (for example, presented in 2nd instead of 1st place)?  

Information retrieval applications that are currently in use return lists of ranked 
documents where document features are used to estimate a document’s relevance for 
a given query and to compute positions in a ranked list.  The established method of 
evaluating the relevance of documents is to compare retrieved documents with a gold 
standard for retrieval, which is usually provided by an expert. The effectiveness of the 
automatic application is then measured in terms of precision – the number of relevant 
documents a query retrieves divided by the total number of documents retrieved, and 
recall – the number of relevant documents retrieved divided by the total number of 
relevant documents that should have been retrieved for the query.  However, these 
metrics do not take into account the position of a document on a rank-ordered list and 
how physicians perceive mistakes with regard to relevant but misplaced documents. 
Other measurements such as mean average precision that averages precision over a 
number of queries has the effect of promoting relevant results closer to the top of a 
list, however it cannot capture preferences with regard to relevant documents that are 
out of position on a list. In order to illustrate such an occurrence, assume that for a 
given query, the gold standard indicates that the correct triple of documents should be 
[a, b, c], while the information retrieval application retrieved a triple [b, k, c]. 
Comparing these two triples it can be observed that the retrieval application did not 
retrieve the most relevant document a, it did retrieve a relevant document b but placed 
it in the wrong position (1st instead of 2nd), retrieved an irrelevant document k, and 
retrieved and presented a document c in the correct position.  All measures of the 
effectiveness of a retrieval application would focus on the fact that two out of three 
documents were correctly retrieved while ignoring the order in which they are 
presented. Such a view would be correct if physicians do not differentiate in terms of 
the position on which a given document is presented. However, it is not clear if this 
assumption is correct. Therefore, we studied the following question: is it correct when 
evaluating the performance of an information retrieval application to ignore 
physicians’ preferences associated with the order (position) in which documents are 
presented? The search for the answer to this question forms the basis of the paper.  

The paper is organized as follows. In the next section we briefly discuss research 
on list-based presentation of search results. In section 3 we describe a study that 
gathered physician preferences with regard to rank-ordered lists of 3 documents (prior 
consultations with physicians confirmed that a list with maximum length of 3 
documents should be used to present evidence at the point-of-care).  Physicians were 
asked to provide preference information through pairwise comparisons of subsets of 
rank-ordered lists and these comparisons were analyzed using a GRIP method, which 
is outlined in the same section. The results of the experiment are presented in Section 
4 and the paper concludes with a discussion in Section 5. 
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2 Background Research 

Presenting information as a list is widely used but also widely criticized, because 
ranked presentation style coupled with the low precision of search engines make it 
hard for users to find the information they are looking for [2]. In spite of such 
criticism and subsequent attempts to introduce other methods such as clustering for 
organizing search results, list-based presentation continues to be the dominant way for 
organizing information presentation.   

Other researchers have studied whether users evaluating list-based presentation 
follow a depth-first strategy (the user examines each entry in the list in turn starting 
from the top, and decides immediately whether to open the document in question), or 
a breadth-first strategy (the user looks ahead at a number of list entries and then 
revisits the most promising ones) [3]. The results showed that a significant majority 
(85%), of users relies on a depth-first strategy. Another study used eye tracking 
(measuring spatially stable gaze during which visual attention was directed to a 
specific area of the display), to estimate how users process list-based information [4]. 
The results indicated that users tended to view the first and second-ranked entries 
right away, and then there is a large gap before viewing the third-ranked entry. A 
study by Keane et al. [5], also confirmed the inclination of users to access items at the 
beginning of list. The authors showed that high position on a list often trumpets 
document’s relevance. Considering the potential impact of this inherent user behavior 
on search results, a school of research is actively devising solutions to overcome the 
effect of falsely over-promoting web pages by placing them at the top of results list 
where they will be selected preferentially by users [6, 7].  

All these findings have strong implications for the presentation of evidence-based 
documents to physicians. We hypothesize that if documents presented close to the top 
of a list have little relevance or are irrelevant, it is likely the entire list will be 
discarded. While the above statement is confirmed by the research quoted earlier, 
there is no evidence of how strong physician’s preferences are with regards to 
ordering and positions on rank-ordered lists. Specifically, little is known about how 
much value they place on receiving relevant documents in the correct order on a list 
versus how they assess being presented with relevant documents but not necessarily 
in the right order. 

3 Experimental Design 

The problem of assessing rank-ordered documents by a physician can be seen as a 
multiple criteria evaluation problem, where each criterion represents physician's 
preferences with regards to the relevance of a document presented at a given position 
on a list. In other words, the value function is a preference model of a specific 
physician or a group of physicians, which serves to rank a set of rank-ordered lists of 
documents, taking into account preferences concerning relevance and position of 
documents on a list. As a preference model, an additive value function can be used, 
which is a sum of marginal value functions that represent preferences of a physician 
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on specific criteria.There are many theoretical approaches to estimating an additive 
value function, including those that rely on the ordinal regression model. In these 
approaches, preferential information is captured first through the pairwise 
comparisons of a subset of alternatives (i.e. lists of documents), and then a value 
function compatible with this information is built [8, 9]. Such a value function 
represents preferences of a specific user and it can be applied to assess other 
alternatives that have not been evaluated before. 

In our study we used the Generalized Regression with Intensities of Preference 
(GRIP) method (see [10] for detailed discussion), that derives an additive value 
function using partial preferential information given by a user in the form of pairwise 
comparisons of selected alternatives (so-called reference alternatives), and ordinal 
intensities of preference among some of them. It constructs not only the preference 
relation in the considered set of alternatives, but it also gives information about 
intensities of preference for pairs of alternatives from this set for a given decision 
maker. After obtaining results of pairwise comparisons, GRIP checks if any additive 
value function compatible with the provided preferential information exists. If such a 
function cannot be found, the method is able to identify pairwise comparisons that 
prevent representation by an additive value function. Such pairwise comparisons are 
called inconsistent and need to be revised (modified or removed), before proceeding 
further. Once inconsistencies have been addressed, GRIP constructs marginal value 
functions for all considered criteria and derives from them an additive value function. 
This function has to satisfy certain mathematical properties, and because it is 
computed on a basis of all possible marginal value functions that are consistent with 
provided preferential information, it is often called a representative additive value 
function. In the analysis presented in the paper we focus only on the marginal value 
functions associated with the representative function as they provide required insight 
into physicians’ preferences with regards to the retrieved documents. 

The experimental design of our study is illustrated in Figure 1. The study consisted 
of three phases. The first phase started with devising a set of coded triples that 
represented all feasible combinations of retrieved documents. Each position in a 
triple, which was considered by GRIP as criterion to be evaluated, was coded as X, N 
or Y, where X indicates an irrelevant document at a given position, N indicates that a 
retrieved document is relevant but is placed in an incorrect position on a rank-ordered 
list, and Y indicates that a relevant document was retrieved and ranked correctly. 
Thus, for example the triple [b, k, c] mentioned in Section 1 was coded as NXY given 
[a, b, c] as a gold standard. The coding scheme produced 24 feasible triples out of 27 
possible combinations (the smaller number of considered triples is due to some triples 
being infeasible – i.e. a triple YYN is not feasible because it has two documents that 
are in the correct position and are relevant, thus the third document cannot be 
misplaced but can be either irrelevant (X) or correct (Y)).  

From the set of 24 triples, a subset of 10 reference triples was selected for 10 
pairwise comparisons that corresponded to less obvious evaluations. For example, 
YYX is intuitively preferred over XYX (retrieving two relevant documents placed 
correctly on first two positions is preferred over retrieving just one relevant document  
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that is correctly placed); while comparing NNN with YYX is more difficult (is it 
preferred that all retrieved documents are relevant but misplaced as opposed to 
retrieving two documents that are relevant and positioned correctly and a third one 
that is irrelevant?). Using coded triples for pairwise comparisons allowed us to avoid 
bias associated with such factors as graphic presentation, or trust in a particular author 
or publisher.  

In the second phase, 6 experienced physicians, all from Ottawa area teaching 
hospitals, evaluated pairs of reference triples. Study participants represented a range 
of clinical specialties – emergency medicine, community medicine, internal medicine, 
intensive care medicine and anesthesiology. All were experienced with using 
electronic repositories of clinical documents.  Prior to the experiment they were 
informed about the purpose of the study, the experimental design, and how they 
should conduct pairwise comparisons. Examples of comparisons using triples that 
were not evaluated in the study were presented and explained. Each physician was 
asked to independently assess each pair and to state if one triple was preferred over 
the other, or if they were equally preferred.  

 
 

 

Fig. 1. Experimental design 

In the third phase, results of Phase 2 evaluations were used by GRIP to derive three 
marginal value functions that measure physician preferences regarding the specific 
position of a document in a triple (1st, 2nd and 3rd).  
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4 Results 

Coded reference triples were presented to the physicians for pairwise evaluation. 
Table 1 presents the results of the pairwise comparisons of these triples. Each of the 
physicians (denoted as P1, P2, … P6) was asked to express her/his preferences for 

one triple (T1) over another (T2) as: T1 preferred over T2 (denoted by symbol “”), 

T2 preferred over T1 (denoted by symbol “”), and T1 equally preferred to T2 

(denoted by symbol “∼”). Responses of physicians P2 and P3 as well as P5 and P6 
were identical and therefore are grouped together as (P2_3) and (P5_6), respectively.  

Table 1. Physician’s pairwise comparisons of triples 

T1 T2  P1 P2_3 P 4 P5_6 
NNN YYX     

NNX YXY     

NXN XYY   ∼      ∼ 

NXX XYX     

XNX XXY   ∼  

XNN YXX     

NNN YXY     

NNX XYY   ∼  

XNN XYX     

NXX XXY     

 
The responses presented in Table 1 formed an input for GRIP. The method was 

applied iteratively to preferential information provided by each physician. First, GRIP 
identified those responses that no additive value function was able to represent. Such 
inconsistent responses were removed manually, and then a representative value 
function able to reconstruct the remaining responses was found. GRIP identified 
inconsistent pairwise comparisons in responses given by all physicians, except P1; 
they are marked with grey background in Table 1.  

Considering that value domains for each position are discrete (codes X, N and Y), 
the resulting marginal value function derived as described above becomes a set of the 
breakpoints. These breakpoints (codes Y and N) are represented in Table 2 for each 
physician and for each position. The marginal value of code X on any position is 
equal to 0; therefore it has been excluded from the table. 

The analysis of the values in Table 2 provides insights into physician preferences 
with regards to the presentation of documents. Starting with position 1, all physicians 
place a high importance on having a relevant document on the 1st position of a list. A 
correct document (Y) on position 1 receives the highest marginal value across all  
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Table 2. Breakpoint marginal values at positions 1, 2, and 3 in a triple 

Position 1 Position 2 Position 3 
P1 P2_3 P4 P5_6 P1 P2_3 P4 P5_6 P1 P2_3 P4 P5_6 

N 0.31 0.31 0.1 0.26 N 0.19 0.31 0.2 0.26 N 0.19 0.19 0.1 0.11 

Y 0.42 0.42 0.4 0.53 Y 0.35 0.35 0.4 0.32 Y 0.23 0.23 0.2 0.16 

 
 

participants. However physicians are less uniform while placing value on having a 
misplaced but relevant document (N) on this position. Some are willing to accept 
misplacement – for example, the analysis of responses provided by P1 and P2_3 for 
position 1, indicates a smaller drop in marginal values. However, for P4 and P5_6, the 
difference in marginal values is much more pronounced, indicating that these 
physicians are less willing to accept on the top position, a document that is relevant 
but should be ranked lower. Thus, the general conclusion that can be drawn for 
position 1 is that all physicians want to have the most relevant document in the 1st 
position on a rank-ordered list. 

Moving to positions 2 and 3, physicians are less definitive in their preferences.  
While all of them value a relevant document (Y) on position 2 higher than on position 
3, their preferences are not so definitive with regards to a misplaced document (N) on 
these two positions. While for P1 there is no difference if a misplaced document is 
placed on position 2 or 3; however this is not the case for P2_3 and P5_6 who clearly 
take position into account by assigning higher value to misplaced document (N) if it is 
on position 2 rather than 3. Responses of P4 fall somewhere in-between – while there 
is a preference for position 2 over 3, the difference is not that pronounced. In 
summary, it is possible to conclude that when moving to lower positions, rank order is 
still important but with diminishing magnitude in the difference between values for 
correct (Y) and misplaced (N) documents.  

The overall conclusion that we draw from the GRIP analysis is that rank order is 
important for physicians when viewing a list of documents. In particular, it is 
important that they are presented with a correct document on the 1st position of a 
rank-ordered list.  After position 1, their attitude varies, for some it is still very 
important that the second most relevant document is correctly placed in position 2, 
while for others relevance of the documents dominates over ranking for positions 2 
and 3 (a document needs to be relevant but can be misplaced). This is coupled with a 
general reduction in the value of retrieved documents if they are placed on lower 
positions in a rank-ordered list.  

5 Discussion 

This paper presented the results of an empirical experiment to model physician 
preferences with regard to the presentation of rank-ordered list of documents. In 
particular we wanted to learn if “it is correct when evaluating the performance of an 
information retrieval application to ignore physicians’ preferences associated with 
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the order (position) in which documents are presented? ’’Physicians were asked to do 
pairwise comparisons of rank-ordered triples of documents, and their responses were 
analyzed using the GRIP method. The results of the experiment show that there is no 
definitive method of presenting rank-ordered medical documents, however, these 
general conclusions can be drawn: 

 
• Physicians pay significant attention to the 1st position on a rank-ordered list and 

they expect that the most relevant document is presented first, 
• From a physician’s perspective, the importance of presented documents 

diminishes the lower it is positioned on a rank-ordered list. 
 

These conclusions indicate that the answer to our research question is negative, 
meaning that it is not correct to ignore order in which documents are presented while 
evaluating a performance of an information retrieval application.  

The obtained results correlate with research on general user searches on the Web 
(e.g. [4, 5]). They also indicate that when measuring the performance of information 
retrieval applications it is not sufficient to evaluate only retrieval of correct 
documents, because physicians clearly put value on the position on a list where a 
document is presented.  

The findings of our study are useful when developing clinical information retrieval 
applications. They indicate that rank-ordered lists should be short (participating 
physicians were willing to evaluate lists composed of maximum 3 documents), and 
that it is imperative to place the most relevant document in the 1st position on a rank-
ordered list.  However, physicians differ in how they assess subsequent positions – for 
some having a correctly positioned relevant document in position 2 on a list is very 
important, while for others, after the first position the relevance of a document gains 
over its correct positioning.  

In future work we intend to use the results of this study in developing a method for 
more accurately evaluating medical document retrieval. This will translate into 
revising traditional evaluation metrics such as precision and recall so, for example, a 
precision value calculated for a document triple YNX will be higher than for a triple 
NYX (this is not captured when using existing document retrieval performance 
measures).  
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Abstract. Bayesian networks are typically designed in collaboration
with a single domain expert from a single institute. Since a network
is often intended for wider use, its engineering involves verifying whether
it appropriately reflects expert knowledge from other institutes. Upon
engineering a network intended for use across Europe, we compared the
original probability assessments obtained from our Dutch expert with
assessments from 38 experts in six countries. While we found large vari-
ances among the assessments per probability, very high consistency was
found for the qualitative properties embedded in the series of assessments
per assessor. The apparent robustness of these properties suggests the
importance of enforcing them in a Bayesian network under construction.

1 Introduction

Bayesian networks are rapidly becoming the models of choice for reasoning with
uncertainty in decision-support systems, most notably in domains governed by
biological processes. While much attention has focused on algorithms for learn-
ing Bayesian networks from data, our experiences with designing networks for
the biomedical field show that systematically collected data are often wanting,
or are not amenable to automated model construction. Often therefore, expert
knowledge constitutes the only source of information for a network’s design.
Since the construction of a high-quality Bayesian network is a difficult and time-
consuming creative process, for both the engineers involved and the consulted
experts, common engineering practice is to closely collaborate with just a single,
or a very small number of experts, even if the network is intended for wider use.

In collaboration with two experts from the Central Veterinary Institute in the
Netherlands, we are in the process of developing a decision-support system to
supply veterinary practitioners with an independent tool for the early detection
of Classical Swine Fever (CSF) in pigs. At the core of the system lies a Bayesian
network for computing the posterior probability of a CSF infection being present,
given the clinical signs observed at a pig farm by an attending veterinarian. For
its design, in-depth interviews were held with the two participating experts and
case reviews were conducted with eight Dutch swine practitioners. The condi-
tional probabilities required for the network were mostly not available from the
literature, nor were sufficiently rich data available for their estimation. As a
consequence, all required probabilities were assessed by a single CSF expert.
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While being built with Dutch experts, our Bayesian network for the early de-
tection of Classical Swine Fever is intended for use across the European Union.
Bayesian networks in fact are often intended for wider use than just by the ex-
perts with whom they are being constructed. Engineering a network then involves
verifying whether it appropriately reflects practices and insights from other ex-
perts as well. Upon engineering our CSF network, we had the opportunity of
attending project meetings with pig experts and veterinary practitioners in six
European countries outside the Netherlands. During these meetings, we were
granted time with the experts to discuss some details of the current network.
Among other information, we gathered assessments for a limited number of con-
ditional probabilities for our network. Our intention was not to elicit assessments
from multiple experts in order to aggregate these for use in our network. Rather,
we were interested in whether or not experts from different countries would pro-
vide similar assessments for relations between diseases and clinical signs that
are supposed to hold universally across countries. We thus mimicked a realistic
elicitation setting and compared the obtained assessments with each other and
with the original assessments provided by our Dutch expert.

During the project meetings, we obtained a total of 58 series of probability
assessments from 38 experts in six countries. We investigated the assessments
obtained for the separate probabilities by establishing summary statistics, both
per country and across countries. We further studied the series of assessments ob-
tained and the qualitative properties of dominance embedded in them. We found
large variances among the numerical assessments per probability, both within
and between countries. Much higher consistency was found for the embedded
dominance properties, however. Apparently, this type of qualitative information
is more robust than numerical information. This robustness suggests the im-
portance of explicitly eliciting qualitative properties of probability and ensuring
that these are properly captured in a Bayesian network under construction.

The present paper reports our findings and experiences from the project meet-
ings. In Sect. 2, we briefly introduce the background of our application. Sect.
3 describes the set-up of the meetings and the elicitation method used. Sect. 4
summarises the assessments obtained. In Sect. 5, we analyse our findings from
a qualitative perspective. The paper ends with our reflections in Sect. 6.

2 The Context

In a European project involving seven countries, a decision-support system is be-
ing developed for the early detection of Classical Swine Fever in pigs. CSF is an
infectious viral disease with a potential for rapid spread through contact between
infected and non-infected susceptible pigs. When a pig is first infected, it will
show an increased body temperature and a sense of malaise. Later in the infec-
tion, the animal is likely to develop an inflammation of the intestinal tract; also
problems with the respiratory tract are beginning to reveal themselves through
such signs as a conjunctivitis, snivelling, and coughing. The final stages of the
disease are associated with an accumulating failure of body systems, which will
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Fig. 1. The graphical structure of the Bayesian network for the early detection of CSF

ultimately cause the pig to die. The longer a CSF infection remains undetected,
the longer the virus can circulate without hindrance, not just within a herd but
also between herds, with major socio-economic consequences. Yet, the aspeci-
ficity of the early signs of the disease causes the clinical diagnosis of CSF to be
highly uncertain for a relatively long period after the infection has occurred.

Within the CSF project, we are developing a decision-support system to sup-
ply veterinary practitioners with an independent tool to identify CSF-suspect
situations as early on in an outbreak as possible. The system takes for its input
the clinical signs seen at a pig farm by an attending veterinarian and computes
the probability of a CSF infection being present; based upon the computed prob-
ability, a recommendation for further proceedings is given. For computing the
posterior probability of CSF given the observed clinical signs, the system builds
upon a Bayesian network which models the pathogenesis of the disease. Fig.
1 shows the network’s graphical structure; it currently includes 32 stochastic
variables, for which over 1100 (conditional) probabilities are specified.

3 Set-Up of the Project Meetings

Between December 2006 and May 2007, project meetings were held at renowned
veterinary institutes in Belgium, Denmark, Germany, Great-Britain, Italy, and
Poland. For each meeting, a small number of experts were invited from all over
the host country; the invitees ranged from veterinary pig practitioners to re-
searchers conducting experimental CSF infection studies. During the meetings,
we were granted some time to discuss details of the CSF network. Within the
allotted time, the experts were presented with a lecture about the working of
the network; in addition, the assessment task to be performed was introduced.
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Consider a pig without an infection of the mucous
in the upper respiratory tract. How likely is it that
this pig shows tear marks as a result of a conjunc-
tivitis ?
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expected

probable

(almost)

Fig. 2. A fragment of text for a requested probability, and the accompanying scale

For the assessment task, a tailored elicitation method was used, in which a
requested probability was presented to the assessor as a fragment of text stated in
veterinary terms and accompanied by a vertical scale with numerical and verbal
anchors as illustrated in Fig. 2; for further details of the elicitation method, we
refer to [1]. The assessor was asked to carefully consider the fragment of text
and to indicate his assessment by marking the scale. The use of the probability
scale was demonstrated during the plenary introduction of the task.

For our investigations, we selected twelve probabilities. In the present paper,
we focus on the six probabilities summarised in Table 1; for the other six prob-
abilities similar results were found. The six probabilities from the table were
elicited from the experts in the displayed order. The probabilities p1 through p4
denote the probabilities of finding the tear marks associated with a conjunctivitis
(abbreviated to ‘conjunct’) in an animal in the early stages of a CSF infection
(‘csf’) and, respectively, no further primary infections (‘no-other’), a respiratory
infection (‘resp’), a gastro-intestinal infection (‘intest’), and both types of pri-
mary infection (‘resp+intest’); note that in the current version of the network
the variable Conjunctivitis is related indirectly to both CSF and Primary other
infection. The probabilities p5 and p6 denote the probabilities of finding the clin-
ical sign of snivelling (‘sniv’) in an animal with or without a mucous infection

Table 1. The six probabilities discussed in this paper, with the original assessments

Probability Original assessment

p1 = Pr(conjunct | csf, no-other) 0.29
p2 = Pr(conjunct | csf, resp) 0.66
p3 = Pr(conjunct | csf, intest) 0.29
p4 = Pr(conjunct | csf, resp+intest) 0.66

p5 = Pr(sniv | muco) 0.20
p6 = Pr(sniv | no-muco) 0.01
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in the upper respiratory tract, respectively; these two probabilities define the
conditional probability table for the variable Snivelling in the network. For com-
parison purposes, Table 1 further includes the original assessments provided by
our Dutch expert during the elicitations for the network’s construction.

With the set-up outlined above, we obtained assessments for the probabilities
p1 through p6 from a total of 38 experts in six countries. In the sequel, we will
refer to these countries by the letters A through F , for reasons of anonymity.

4 Taking a Quantitative Perspective: Summary Statistics

We investigated the separate assessments obtained from the veterinary experts
by establishing various summary statistics, both per country and across coun-
tries. In this section, we report these standard statistics and review our findings.

4.1 The Data Obtained, the Analyses and the Results

Upon studying the responses obtained from our elicitation efforts, we found that
the experts had used different methods for indicating their assessments on the
probability scale. Most experts had put an explicit mark on the vertical line of
the scale, as was demonstrated during the plenary instruction. The positions of
these marks were measured and translated into numerical assessments for further
analysis. Some experts, however, had encircled one of the verbal anchors posi-
tioned beside the scale. Since the anchors indicate a fuzzy probability range [2],
these circles were not used for numerical analysis. We obtained 58 complete se-
ries of assessments from our 38 experts: 29 series for the probabilities p1 through
p4, and 29 series for the probabilities p5 and p6. In incomplete series, another 10
assessments were given, providing us with a total of 184 numerical assessments.

For each probability under study, we computed standard statistics over the
assessments obtained, which included the range, mean and standard deviation
of the assessments per country; we further determined the mean and standard
deviation of the six country means. Table 2 shows the resulting statistics for the
probability p1 in some detail; the statistics for the remaining five probabilities
are provided in Table 3. We further computed some statistics per probability

Table 2. Ranges, means x and standard deviations s of the assessments for the proba-
bility p1 per country; assessments and means in bold lie in the modal interval [0.7,0.8)

Country n Assessments Range x (s)

A 5 0.60 0.75 0.75 0.75 0.80 [0.60, 0.80] 0.73 (0.08)
B 6 0.30 0.40 0.50 0.71 0.75 0.85 [0.30, 0.85] 0.59 (0.22)
C 5 0.15 0.15 0.20 0.25 0.30 [0.15, 0.30] 0.21 (0.07)
D 5 0.40 0.50 0.75 0.90 0.95 [0.40, 0.95] 0.70 (0.24)
E 3 0.70 0.75 0.79 [0.70, 0.79] 0.75 (0.05)
F 7 0.15 0.34 0.50 0.64 0.75 0.75 0.79 [0.15, 0.79] 0.56 (0.24)

All means [0.21, 0.75] 0.59 (0.20)
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Table 3. Means x and standard deviations s of the assessments for the probabilities
p2, . . . , p6 per country; means in bold lie within the relevant modal interval

p2 p3 p4 p5 p6
Country n x (s) n x (s) n x (s) n x (s) n x (s)

A 5 0.80 (0.08) 5 0.70 (0.09) 5 0.81 (0.08) 5 0.58 (0.22) 5 0.15 (0.06)
B 6 0.77 (0.18) 6 0.58 (0.21) 6 0.82 (0.11) 7 0.78 (0.20) 6 0.47 (0.28)
C 6 0.27 (0.31) 5 0.24 (0.08) 6 0.43 (0.25) 6 0.68 (0.19) 5 0.13 (0.06)
D 5 0.70 (0.22) 4 0.46 (0.30) 4 0.78 (0.21) 3 0.82 (0.06) 3 0.50 (0.35)
E 3 0.78 (0.08) 3 0.74 (0.06) 2 0.82 (0.04) 3 0.83 (0.20) 4 0.46 (0.38)
F 7 0.75 (0.15) 7 0.65 (0.17) 7 0.75 (0.15) 7 0.78 (0.05) 7 0.19 (0.06)

All means 6 0.68 (0.21) 6 0.56 (0.19) 6 0.73 (0.15) 6 0.75 (0.10) 6 0.32 (0.18)

over all countries, which are summarised in Table 4. Note that the overall mean
per probability may differ from the mean of the country means as a result of
unequal sizes of the groups of assessors per country.

To conclude, we tested the null hypothesis of equal country means for each
probability under study. For this purpose, we performed an analysis of variance
using a significance level of 0.05. For all probabilities except p5, the null hypoth-
esis of equal means across countries was rejected. For the probabilities p1, . . . , p4
and p6, we further performed post-hoc testing of pairwise equality under the as-
sumption of equal variances. Post-hoc testing for p6 did not reveal any significant
pairwise differences of the means per country. For the probabilities p1, . . . , p4,
however, post-hoc testing showed significant pairwise differences involving coun-
try C. More specifically, for the probability p1, C’s country mean was found to
differ from the country means of both country A and country E . For the proba-
bility p2, C’s country mean differed from the country means of each of the other
countries. C’s country mean for p3 differed from those of countries A, E and F .
For probability p4, to conclude, C’s country mean was different from the country
means of both A and B. No further significant differences were found.

4.2 Discussion

The results of the numerical analyses per probability show very little consensus
in the assessments obtained per country and across countries. Since the elicita-
tion efforts in the six countries were not conducted in a controlled laboratory
setting, numerous factors may have influenced the assessments, ranging from
the way the task was introduced to the atmosphere in the group. Among these
factors, a likely explanation for the large differences in numerical assessments ob-
tained is found in the varying levels and expertise of the assessors, even within
the focused area of Classical Swine Fever: it is well known from the theory of
naive probability [3], that probability estimates are influenced by the assessor’s
experience. An interesting finding in this respect is that in some countries the
assessments for the first probability p1 were rather close to one another, while in
other countries larger ranges were found; this closeness of assessments may point
to similarities in background and experience, yet may also be explained from a
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Table 4. Ranges, modal intervals mod with frequencies # and means x with standard
deviations s of all assessments per probability; means in bold lie in the modal interval

n range mod (#) x (s)

p1 31 [0.15, 0.95] [0.7, 0.8) (12) 0.58 (0.25)
p2 32 [0.10, 1.00] [0.8, 0.9) (10) 0.67 (0.27)
p3 30 [0.15, 0.85] [0.7, 0.8) (8) 0.56 (0.23)
p4 30 [0.20, 1.00] [0.8, 0.9) (10) 0.72 (0.21)
p5 31 [0.26, 1.00] [0.7, 0.8) (12) 0.74 (0.18)
p6 30 [0.05, 0.96] [0.1, 0.2) (14) 0.30 (0.25)

bias introduced by someone remarking out loud that some scenario, for exam-
ple, is quite likely. Another explanation for the observed differences lies in the
commonly used anchoring-and-adjustment heuristic: using this heuristic, people
choose a relevant known probability as an anchor to tie their assessment to by
adjustment. From cognitive-science studies, it is well known that even for self-
generated anchors, the adjustments made are typically insufficient [4,5]. Since
our assessors generated the first assessment in each series by consulting their
memory, variations in these first assessments inevitably caused variations in the
subsequent related assessments by the anchoring-and-adjustment heuristic.

While the above observations can explain the variation among assessors,
they do not explain the observed differences between countries. Remarkable dif-
ferences were found, for example, for the means for each of the probabilities
p1, . . . , p4 from country C, compared to the means from the other countries. A
possible explanation is that the experts from country C found the four proba-
bilities very hard to assess, because these were conditioned on the presence of a
CSF infection and, as they stated, “CSF doesn’t exist in our country”. Another
possible explanation, supported by the sound recording of the elicitation, is that
the experts actually assessed the complements of the requested probabilities:
during the meeting a moderator had translated the fragments of text into the
experts’ mother tongue and we got strong indications from an independent na-
tive speaker who afterwards listened to the recording, that the translations were
not always to the point. A third, less likely, explanation is that the experts from
country C showed other biases than the assessors from the other countries.

Differences were also found between the assessments provided by our Dutch
expert and the assessments obtained from the experts from the other countries:
the Dutch assessments all lie in lower-ordered intervals than the modal intervals
found in the other countries. A likely explanation for this finding may be that our
expert provided his assessments from an entirely different background: the Dutch
expert had been closely involved in the construction of the network for more
than two years and had provided all probabilities required for its quantification,
while the other assessors did not have intimate knowledge of the network and
were confronted with a few probabilities in a single day’s meeting. Moreover,
as a result of the one-on-one elicitation sessions with our Dutch expert, any
questions regarding a requested probability could be answered on the spot and
obvious errors or inconsistencies could thus be prevented. In addition, our expert
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was explicitly trained in treating any variable not mentioned in a requested
probability, as an unknown. Although this issue was elaborated upon in the
plenary instruction for the other experts, it is not unlikely that probabilities
were assessed in the context of a default value for unmentioned variables.

To conclude we would like to mention that without tailored experimentation
in a more controlled elicitation setting, no definite conclusions can be drawn
about the origins of the observed differences in the probability assessments.

5 Taking a Qualitative Perspective: Stochastic Dominance

In the previous section, we reviewed numerical properties of the probability as-
sessments obtained from the veterinary experts in the six visited countries. From
our investigations, we concluded that the assessments showed little consensus.
We now address the qualitative properties embedded in the series of assessments.

5.1 The Data Obtained, the Analyses and the Results

For our qualitative analysis, we had available the same 58 series of numerical as-
sessments from which we established standard statistics in the previous section.
In addition to these numerical series, we had also available 10 complete sets of
verbal assessments, that is, assessments composed of encircled verbal anchors
from the probability scale. We observe that while we could not use these assess-
ments in our quantitative analysis, the stability of the rank order of the verbal
anchors does allow studying their qualitative properties [2].

For the qualitative analysis, we observe that although the six probabilities
under study are probabilistically independent, they are not so from a domain
point of view. Based upon common knowledge, for example, we can state that a
pig with a mucositis in the upper respiratory tract is more likely to snivel than
a pig without a mucositis. The statement essentially expresses that more severe
clinical signs are more likely given more severe values on a disease scale. Prop-
erties stating that one conditional probability distribution is ranked as superior
to another, are called properties of dominance [6]. In this section, we investigate
the dominance properties embedded in the series of assessments obtained.

For studying dominance properties, a total ordering of the conditioning con-
texts in the series of probabilities under study is required. For the probabilities
p1, . . . , p4 therefore a total ordering of the other primary infections is needed;
based upon domain knowledge, we decided to use the ordering ‘no-other’ <
‘intest’ < ‘resp’ < ‘resp+intest’. For the probabilities p5 and p6, we chose ‘no-
muco’ < ‘muco’ for the conditioning contexts. In addition, a total ordering of the
probabilities themselves is required. For the numerical assessments, the standard
numerical ordering is used. For the verbal assessments, we took the ordering on
the verbal anchors from the probability scale, that is, we assumed ‘impossible’ <
‘improbable’ < . . .< ‘probable’ < ‘certain’. Based upon common knowledge, we
should now find the following dominance properties in the series of assessments:
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– p1 ≤ p3 ≤ p2 ≤ p4;
– p6 ≤ p5.

We note that the assessments from our Dutch expert exhibit these properties.
For the probabilities p1, . . . , p4, the assessments of 18 of the 29 experts (62%)

who gave a complete numerical series, were found to obey the expected dom-
inance property. In seven series, a violation was caused by the assessment for
the probability p1 being too high compared to that for either p2, p3 or p4; in
the four remaining violating series, the assessment for the probability p4 was too
low compared to that for p2. The assessments of three of the five experts (60%)
who gave a complete set of verbal assessments for p1, . . . , p4, also obeyed the
expected dominance property. For the probabilities p5 and p6, we found that the
assessments of 28 of the 29 experts (97%) who gave a complete numerical series,
exhibited the expected property of dominance. The only violation was caused
by the assessments p5 = 0.40 and p6 = 0.50, given by an expert from country
B. The assessments of all five experts (100%) who gave a complete set of verbal
assessments for p5 and p6, embedded the expected dominance property.

5.2 Discussion

The results of our qualitative analysis show that the dominance properties em-
bedded in the obtained series of assessments are far more consistent among the
individual experts and across countries, than the statistics studied in Sect. 4.
For the probabilities p1, . . . , p4 for example, a relatively large number of experts
(62%) matched the expected property of dominance by providing assessments
with p1 ≤ p3 ≤ p2 ≤ p4. This finding is of interest since the probabilities were
presented to the experts for assessment in a different order: the assessors thus
did not simply provide increasingly higher, or lower, values. Assuming that they
employed an anchoring-and-adjustment heuristic, this finding means that after
providing an assessment for p1, an assessor adjusted towards a higher value for
p2; for the probability p3, he subsequently adjusted to a lower value, yet not
below his earlier assessment for p1; for the final probability in the series, again
an adjustment towards a higher value was performed, to beyond the assessment
for p2. Also of interest is the finding that six violations of the property of dom-
inance among the probabilities p1, . . . , p4 were caused not by an adjustment in
the wrong direction but by a wrong amount. More specifically, after having pro-
vided an assessment for p2, the adjustment to a lower value for p3 was too large,
with p3 ending up smaller than p1; alternatively, after having provided an as-
sessment for p3, the adjustment to a higher value for p4 was not large enough,
with p4 ending up smaller than p2. For the probabilities p5 and p6, the direction
of adjustment was (presumably) incorrect for a single pair of assessments.

6 Conclusions

As part of engineering a Bayesian network for the early detection of Classical
Swine Fever in pigs, we elicited a limited number of conditional probabilities from
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38 pig experts and veterinary practitioners from six European countries outside
the Netherlands. The goal of the elicitation was to gain insight in the extent
to which our Dutch expert-based network reflected the practices and insights of
veterinary experts across Europe. All in all, we obtained 58 series of probability
assessments, pertaining to two groups of related conditional probabilities. In this
paper, we investigated summary statistics over the separate assessments and
studied properties of stochastic dominance embedded in the assessment series.
While the statistics showed only limited consensus, the dominance properties
proved to be far more consistent among assessors and across countries. This
finding suggests that at least the properties of stochastic dominance captured in
our network have sufficient support in other European countries.

To our best knowledge, anchoring and adjusting has not been studied in tasks
where a series of more than two related probabilities is assessed. It is unknown
therefore, whether people would typically use the first anchor for all subsequent
assessments, or tie each assessment to the previous one. Insights in the strategies
which are commonly used by assessors can come only from carefully controlled
experiments. Based upon our experiences and pending experimental evidence,
we propose that assessors first establish a stable ordering on a series of related
probabilities; the probabilities subsequently are presented in the ordering agreed
upon. By thus prefixing the ordering of the probabilities, order violations ensuing
from incorrect amounts of adjustment are forestalled. If at all possible, moreover,
the assessors had best be provided with at least one reliable anchor, for example
based upon literature or estimated from a rich enough data collection. Variation
in individual assessments from multiple experts nonetheless is bound to occur
because of differences in background and experience.

Acknowledgement. We would like to thank the Classical Swine Fever experts
participating in the EPIZONE project meetings for their willingness to partake in the
probability assessment task.
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Abstract. Naive Bayesian networks are often used for classification
problems that involve variables of a continuous nature. Upon capturing
such variables, their value ranges are modelled as finite sets of discrete
values. While the output probabilities and conclusions established from
a Bayesian network are dependent of the actual discretisations used for
its variables, the effects of choosing alternative discretisations are largely
unknown as yet. In this paper, we study the effects of changing discreti-
sations on the probability distributions computed from a naive Bayesian
network. We demonstrate how recent insights from the research area of
sensitivity analysis can be exploited for this purpose.

1 Introduction

Naive Bayesian networks are being used for a large range of classification prob-
lems. These networks in essence are probabilistic graphical models of restricted
topology, describing a joint probability distribution over a set of stochastic vari-
ables. Efficient algorithms are available for computing any prior or posterior
probability of interest over the variables of a network, and over its main out-
put variable more specifically. Most of these algorithms assume all variables to
be discrete. A classification problem under study however, may involve variables
which are of a continuous nature. For capturing such variables, their value ranges
should be modelled as finite sets of discrete values. Several different methods are
available for automated discretisation of continuous-valued variables in general;
for an overview of such methods, we refer to [1]. For Bayesian-network modelling,
these general methods unfortunately tend to yield unsatisfactory results [2]. Yet,
while the output probabilities established from a Bayesian network are depen-
dent of the actual ways in which its variables are discretised [3], the effects of
choosing alternative discretisations are largely unknown.

In this paper, we study the effects of changing the discretisations of continuous-
valued feature variables on the posterior probability distributions computed
from a naive Bayesian network. We note that discretising a continuous vari-
able amounts to setting one or more threshold values to split its value range
into intervals. Choosing an alternative discretisation thus amounts to changing
one or more of these threshold values. From the conditional probability table for
the variable at hand it is now readily seen that changing even a single threshold
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value will result in changes in the values of many of the parameter probabilities
involved. These parameter values do not change independently: their changes
are functionally related through the change in threshold value. We will demon-
strate how this functional dependency allows exploiting recent insights from the
research area of sensitivity analysis of Bayesian networks in general [4], to effi-
ciently study the effects of changing discretisations. Throughout the paper, we
will illustrate our findings using real-world breast-cancer screening data.

The paper is organised as follows. In Sect. 2, we introduce our notations and
briefly review sensitivity analysis of Bayesian networks in general. In Sect. 3, we
establish functions that describe the effects of changing the discretisation of a
feature variable on the probability distributions computed from a naive Bayesian
network. The paper ends with our concluding observations in Sect. 4.

2 Preliminaries

We introduce our notational conventions and review recent insights from the
field of sensitivity analysis of Bayesian networks in general.

2.1 Naive Bayesian Networks

We consider joint probability distributions Pr(V) over setsV of discrete stochas-
tic variables. For our notations, we will use (possibly indexed) upper-case letters
V to denote single variables, and bold-faced upper-case letters V to indicate
sets of variables. The possible values of a variable V are denoted by (indexed
or primed) small letters vi; we will write v and v̄ more specifically, for the two
values of a binary variable V . Bold-faced small letters v are used to denote joint
value combinations for the variables from a set V.

A Bayesian network in general is a probabilistic graphical model describing
a joint probability distribution Pr(V) over the set of variables V. The variables
fromV are modelled as nodes in a directed acyclic graph, and the (in)dependency
relation among them is captured by arcs. Associated with each variable V in the
graph are parameter probabilities p(V | π(V )) from the distribution Pr which
jointly describe the influence of the possible values of the parents π(V ) of V
on the probabilities over V itself; these parameter probabilities constitute the
conditional probability table of the variable V . A naive Bayesian network now is
a Bayesian network of highly restricted topology, consisting of a single class vari-
able C and one or more feature variables Ei. In its graphical structure, all feature
variables are connected directly with the class variable, and are unconnected oth-
erwise; the feature variables are thereby modelled as mutually independent given
the class variable. Naive Bayesian networks are commonly used for computing
posterior probability distributions Pr(C | e) over the possible values of the class
variable, given a joint value combination e for the set E of feature variables.

2.2 Sensitivity Analysis

Sensitivity analysis is a general technique for studying the effects of parameter
variation on the output of a mathematical model. For Bayesian networks more
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specifically, sensitivity analysis amounts to investigating the effects of varying
the values of one or more parameter probabilities on an output probability of
interest; to this end, tailored algorithms have been developed [5,6].

In a one-way sensitivity analysis of a Bayesian network, a single parameter
probability p is being varied as x and the other parameter probabilities p′ from
the same conditional probability distribution are co-varied as (1−x)

(1−p) · p′. The
effects of this variation are described by a mathematical function f(x) which ex-
presses the output probability of interest in terms of the parameter under study.
For a marginal probability of interest, this sensitivity function f(x) is linear in
the parameter being varied. For a conditional probability of interest, the effects
of parameter variation are described by a fraction of two linear functions. The
function f(x) then essentially is a fragment of one of the branches of a rectan-
gular hyperbola [5]. Since both the parameter under study and the probability
of interest are restricted to values from [0, 1], the range of points is effectively
constrained to just a fragment of the hyperbola; the two-dimensional space of
feasible points in general is termed the unit window.

In the sequel, we will use higher-order sensitivity analyses in which multiple
parameter probabilities are being varied simultaneously. In general, in an n-way
sensitivity analysis in which n parameters are being varied, a marginal probabil-
ity of interest is described by a multi-linear function in these parameters. For a
conditional probability of interest, the sensitivity function again is a fraction of
two such functions. For example, a two-way sensitivity function that expresses a
posterior probability of interest Pr(c | e) in terms of two parameter probabilities
which are being varied as x and y, has the following form:

fPr(c|e)(x, y) =
fPr(c, e)(x, y)

fPr(e)(x, y)
=

a1 · x · y + a2 · x+ a3 · y + a4
b1 · x · y + b2 · x+ b3 · y + b4

where the constants ai, bi, i = 1, . . . , 4, are built from the non-varied parameters
of the network under study. The two parameter probabilities and the output
probability of interest again are restricted to the [0, 1]-range, which defines a
three-dimensional space of feasible points called the unit cube.

3 Studying the Effects of Discretisation

The basic formalism of naive Bayesian networks requires all included variables to
be discrete. Upon modelling domain knowledge, variables which take their value
from an intrinsically continuous value range will therefore have to be discretised.
Such a discretisation amounts to splitting the variable’s value range into two or
more disjoint intervals and associating each such interval with a value of a (newly
defined) discrete variable. In Sect. 3.1, we will study binary discretisations in view
of a binary class variable; in Sect. 3.2, we extend our results to naive Bayesian
networks including non-binary variables in general.
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3.1 Binary Discretisation in Two-Class Naive Bayesian Networks

We consider a continuous feature variable E and address its binary discretisation,
that is, we assume that the value range of E is split into two intervals by means of
a threshold value t. Slightly abusing notation, we will write E < t and E ≥ t for
the two values of the (now discretised) variable E, and use e′ to indicate either
of these values. Upon including the discretised variable E as a feature variable
in a naive Bayesian network with the binary class variable C, a conditional
probability table is constructed for E with the parameter probabilities p(E <
t | c) and p(E ≥ t | c), and the probabilities p(E < t | c̄) and p(E ≥ t |
c̄). It is now readily seen that changing the discretisation of E by choosing a
different threshold value t, will affect all parameters from this table. Since these
parameter probabilities do not stem all from the same conditional distribution,
we must conclude that we cannot study the effects of changing E’s discretisation
by conducting a one-way sensitivity analysis. It is not necessary however, to use
a full four-way sensitivity analysis in all parameters involved either. We observe
that by varying the parameter probability p(E < t | c), the variation of p(E ≥
t | c) is covered by standard co-variation; similarly, variation of p(E ≥ t | c̄)
is handled by varying p(E < t | c̄). A two-way sensitivity analysis thus should
suffice for studying the effects of changing the discretisation of E on the output
probabilities computed from a naive Bayesian network.

In Sect. 2, we reviewed the general form of a two-way sensitivity function
expressing an output probability Pr(c | e) computed from a Bayesian network
in terms of two parameter probabilities being varied as x and y:

fPr(c|e)(x, y) =
fPr(c, e)(x, y)

fPr(e)(x, y)
=

a1 · x · y + a2 · x+ a3 · y + a4
b1 · x · y + b2 · x+ b3 · y + b4

For studying the effects of changing the discretisation of our feature variable E,
the two parameter probabilities to be varied are p(E < t | c) and p(E < t | c̄) (or
their complements). We note that these parameter probabilities stem from dif-
ferent conditional distributions, that is, they are conditioned on different values
of the class variable. As a consequence, the two parameters have no interaction
effects and the constants a1 and b1 are equal to zero. The independency proper-
ties of a naive Bayesian network even further constrain the general form of the
function, as is shown in the following proposition.

Proposition 1. Let C be the binary class variable of a naive Bayesian network
which further includes the set E of feature variables. Let Pr(c | e) be the net-
work’s probability of interest, for a joint combination of observed values e for
E. Now, let x = p(e′ | c) and y = p(e′ | c̄) be the parameter probabilities for the
observed value e′ of the binary feature variable E. Then, the two-way sensitivity
function expressing Pr(c | e) in x and y is of the form

fPr(c|e)(x, y) =
a · Pr(c) · x

a · Pr(c) · x+ a′ · Pr(c̄) · y
where a and a′ are constants.
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Proof. Using Bayes’ theorem and exploiting the independency properties of a
naive Bayesian network, we find for our probability of interest Pr(c | e) that

Pr(c | e) = Pr(e | c) · Pr(c)
Pr(e | c) · Pr(c) + Pr(e | c̄) · Pr(c̄)

=

∏
e′k∈e Pr(e′k | c) · Pr(c)∏

e′k∈e Pr(e′k | c) · Pr(c) +
∏

e′k∈e Pr(e′k | c̄) · Pr(c̄)

The result follows with a =
∏

e′
k
∈e\e′ Pr(e

′
k | c) and a′ =

∏
e′
k
∈e\e′ Pr(e

′
k | c̄). �

We note that the constants a and a′ in the sensitivity function stated above
are readily computed from the parameter probabilities of the feature variables
in the naive Bayesian network; the two-way sensitivity function can in fact be
established without the need of any propagation, as a result of the conditional
independencies holding among the feature variables. We further note that if the
probability of interest pertains to the value c of the class variable C, then the
numerator of the sensitivity function does not include the parameter probability
being varied as y; similarly, for a probability of interest involving c̄, the numerator
does not include x. We observe that if the value e′ specified in the parameters x
and y for E differs from the actually observed value, then both the numerator
and the denominator of the sensitivity function include an additional constant.
Alternatively, we can choose the complements of x and y as the parameters to
be varied, which will again result in a function of the above form.

We illustrate the form of the two-way sensitivity function derived above by
means of a simple naive Bayesian network for classifying mammographic images.

Example 1. To distinguish between benign and malignant mass lesions, a simple
naive Bayesian network was constructed from breast-cancer screening data from
the UCI Data Repository [7]. The available data involved several discrete vari-
ables modelling properties of the mass lesions seen in mammographic images,
and a continuous variable describing the age of a patient. The naive Bayesian
network was constructed with the class variable Severity, with the values be-
nign and malignant ; the continuous variable Age and the five-valued variable
Shape were selected for its feature variables. We now suppose that we are in-
terested in the output probability Pr(Severity = benign | Age < t,Shape = 4)
for the class variable. In our analysis, we further focus on the effects of vary-
ing the two parameter probabilities x = p(Age < t | Severity = benign) and
y = p(Age < t | Severity = malignant) associated with the feature variable Age.

To establish the two-way sensitivity function which describes our output prob-
ability of interest in terms of the two parameter probabilities being varied, we
need to determine the prior probability of a mass lesion being benign and the
conditional probabilities of a shape-4 mass for benign lesions and for malignant
lesions respectively. We computed these probabilities from the data collection af-
ter removal of the five cases for which no value for the variable Age was available.
The prior probability of a benign lesion was found to be Pr(Severity = benign) =
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0.54. For the variable Shape, we found p(Shape = 4 | Severity = benign) = 0.16
and p(Shape = 4 | Severity = malignant) = 0.71. With these probabilities, we
determined the two-way sensitivity function fbenign(x, y) for the output proba-
bility of interest to be

fbenign(x, y) =
0.54 · 0.16 · x

0.54 · 0.16 · x+ 0.46 · 0.71 · y
Figure 1(a) shows the fragment of the function fbenign(x, y) that lies within
the unit cube; the function fmalignant (x, y) describing the effects of varying the
same parameter probabilities x and y on the complementary output probability
Pr(Severity = malignant | Age < t,Shape = 4) is shown in Fig. 1(b). From Fig.
1(a), we can read for example that a relatively small probability Pr(Severity =
benign | Age < t,Shape = 4) of a shape-4 mass lesion being benign in younger
patients will be found for small values of the parameter x. �

In Proposition 1, we stated the general form of a two-way sensitivity function
which expresses an output probability computed from a two-class naive Bayesian
network in terms of two parameter probabilities of a binary feature variable. This
two-way function specifies a value for the output probability for each combination
of values for the two parameters. We now recall that our aim is to use sensitivity
analysis as a means for studying the effects of changing the binary discretisation
of a continuous-valued feature variable. In view of such a discretisation, the two
parameters under study are not unrelated, as is assumed in a two-way sensitivity
analysis in general. We observe that since varying the threshold value t in a
binary discretisation affects all parameter probabilities of its feature variable,
the two parameters under study are dependent of t, and are in fact varied as
x(t) and y(t). As a result of this dependency, their variation is related through a
function h(t) = (x(t), y(t)). From the way in which discretisations are formalised,
we have that this function h(t) cannot be any arbitrary function. The following
lemma in fact shows that the function is either monotonically non-decreasing or
monotonically non-increasing in each of the dimensions of its co-domain.

Lemma 1. Let C be a binary class variable, let E be a continuous-valued feature
variable, and let t be a threshold value for binary discretisation of E. Let x(t) =
p(E < t | c) and y(t) = p(E < t | c̄) be parameter probabilities of E, and let h be
the function with h(t) = (x(t), y(t)). Then, h is monotonically non-decreasing in
both dimensions of its co-domain.

Proof. The property stated in the lemma derives from the interdependency of
test characteristics in epidemiology [8], and is easily verified by observing that
as the threshold t is shifted to larger values of the continuous variable E, then
the probability p(E < t | C) cannot decrease, regardless of the value of C. �

From the lemma, we have that the function h(t) is monotonically non-decreasing
in any output dimension pertaining to the value E < t of the feature variable
E; it is monotonically non-increasing in a dimension pertaining to E ≥ t.

For studying the overall effect of changing a binary discretisation, we must
now explicitly take the induced relation between the two parameter probabilities
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(a) fbenign (x, y) (b) fmalignant (x, y)

Fig. 1. Two-way sensitivity functions for the class variable Severity given Age < t and
Shape = 4, with the parameters x = p(Age < t | Severity = benign) and y = p(Age <
t | Severity = malignant), assuming independent variation

into account in the sensitivity function under study. Based upon considerations
of practicability, we propose to approximate this relation by y(t) = g(x(t)) for
some function g. Note that by doing so, the dimensionality of the sensitivity
function is reduced and its ease of interpretation is enhanced. Studying the
effects of changing a discretisation then requires the function

fPr(c|e)(x(t), g(x(t))) =
a1 · x(t) + a2 · g(x(t)) + a3
b1 · x(t) + b2 · g(x(t)) + b3

where the constants involved are again built from the non-varied parameters of
the network under study. We note that this function is a function in a single
parameter probability, but not a one-way sensitivity function; to simplify our
notations, we will again omit the explicit dependency of the parameter probabil-
ities x(t) and y(t) on t and write x and y for short. We note in addition that the
function g that is chosen to approximate the induced relation between the pa-
rameter probabilities x and y cannot be arbitrarily shaped, but should preserve
the monotonicity properties of its underlying function h; g is further defined by
knowledge of the problem at hand, as is shown in the following example.

Example 2. We consider again, from Example 1, the problem of establishing
the severity of mass lesions from mammographic images. From the available
data, we approximated the true relation between the parameter probabilities
x = p(Age < t | Severity = benign) and y = p(Age < t | Severity = malignant)
by a linear function: by means of linear regression of y on x, we constructed the
function y = 1.00 ·x−0.21; note that this function preserves the property of non-
decreasing values of y for increasing values of x. We now recall that the surface
fbenign(x, y) from Fig. 1(a) described the probability of interest Pr(Severity =
benign | Age < t,Shape = 4) in terms of the two parameters x and y under the
assumption of independent variation. By intersecting this surface with the plane
y = 1.00 · x− 0.21, we therefore find the function that expresses the probability
of interest in terms of x taking its actual, albeit approximated, variation effect
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(a) fbenign (x) and fmalignant (x) (b) fbenign (y) and fmalignant (y)

Fig. 2. Dimension-reduced functions for the class variable Severity given Age < t and
Shape = 4, taking the variational dependency of x and y into account

with y into consideration. The intersection curve thus describes the sensitivity
of the output probability to changes occasioned in x as a result of varying the
discretisation threshold t. The function capturing the intersection curve is

fbenign(x) =
0.09 · x

0.09 · x+ 0.33 · (1.00 · x− 0.21)

Figure 2(a) displays this function, along with the function for the complement of
the probability of interest. We observe that the depicted functions do not specify
a value for the probability of interest for the smaller values of the parameter
x. This finding originates from the approximated variational dependency of x
and y: for small values of x, there are no matching values g(x) for y within
the feasible range [0, 1]. Note that the finding underlines our earlier observation
that the depicted functions are no one-way sensitivity functions, but dimension-
reduced two-way sensitivity functions instead. Figure 2(b) again shows the two
intersection functions, this time from the perspective of the parameter y; the
variational dependency of x and y was now approximated by linear regression
of x on y, which resulted in x = 0.90 · y + 0.25. �

3.2 Discretisation in Naive Bayesian Networks in General

Thus far, we assumed the class variable of a naive Bayesian network to be binary
and considered binary discretisations only. We will now argue that our results
are readily generalised to naive Bayesian networks in general, that is, to naive
Bayesian networks which include an n-ary class variable and in which the value
range of a continuous variable is split into multiple disjoint intervals.

Non-binary Class Variables. We consider an n-ary class variable C with the
possible values cj , j = 1, . . . , n, n ≥ 2, and assume that we construct a binary
discretisation for our continuous-valued feature variable E through a thresh-
old value t as before. Changing the discretisation of E by choosing a different
threshold value will again affect all parameter probabilities specified for E. These
parameter probabilities now pertain to n different conditional probability distri-
butions, that is, to n distributions over E conditioned on all possible class values.
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To study the effects of changing E’s discretisation therefore, we have to vary as
xj the parameter probabilities p(E < t | cj) for all j = 1, . . . , n. The sensitivity
function describing the effects of this variation on an output probability of inter-
est thus is an n-way sensitivity function. Despite its higher dimensionality, this
sensitivity function again is highly constrained by the independency properties
of a naive Bayesian network. For an output probability Pr(ck | e) for some value
ck, 1 ≤ k ≤ n, of the class variable C, the sensitivity function in x1, . . . , xn more
specifically has the following form:

fPr(ck|e)(x1, . . . , xn) =
ak · Pr(ck) · xk

a1 · Pr(c1) · x1 + . . .+ an · Pr(cn) · xn

where aj, j = 1, . . . , n, again are constants; the proof and conditions of this
property are analogous to those of Proposition 1. The sensitivity function stated
above again assumes independent variation of its parameters x1, . . . , xn, as with
n-way analyses in general. As before however, these parameters are mutually re-
lated through a function h(t) = (x1(t), . . . , xn(t)) which is either monotonically
non-decreasing or monotonically non-increasing in each of the dimensions of its
co-domain. To take the variational relation among the parameters into account,
we propose again to approximate this relation by choosing a single focal param-
eter xi and to functionally relate each other parameter xj , j = 1, . . . , n, j �= i,
to xi by constructing a function gj with xj = gj(xi) which preserves the mono-
tonicity properties of the underlying function h. A dimension-reduced sensitivity
function then results, showing the overall effects of changing a discretisation on
a computed class probability.

Non-binary Discretisations. We address a continuous-valued feature variable
E for which we construct an m-ary discretisation, that is, whose value range is
split into m ≥ 3 disjoint intervals; for ease of exposition, we assume the class
variable again to be binary. We observe that constructing an m-ary discretisa-
tion amounts to setting threshold values tj , j = 1, . . . ,m − 1, with tj < tj+1.
For such a discretisation, we consider changing just a single threshold value tk,
1 ≤ k ≤ m − 1, keeping all other thresholds at their original values. We feel
that changing multiple threshold values simultaneously would not just compli-
cate the details of our analysis, but would also yield impractical results. Now,
changing the threshold value tk of the discretisation of our feature variable E
will again affect its conditional probability table. Not all parameter probabili-
ties will be influenced by the change, however: only the parameter probabilities
p(tk−1 ≤ E < tk | C) and p(tk ≤ E < tk+1 | C) will be affected, for each
possible value of the class variable. We recall that with binary discretisations
we could handle the relation between the affected parameter probabilities from
the same conditional distribution by standard co-variation, which allowed us to
reduce the dimensionality of the sensitivity function. For m-ary discretisations,
the commonly assumed co-variation scheme no longer applies, however: if the
parameter probability p(tk−1 ≤ Ei < tk | c) is varied as x, then the parameter
p(tk ≤ Ei < tk+1 | c) is varied as 1 − x −

∑
j=1,...,k−2,k+1,...,m−2 p(tj ≤ Ei <

tj+1 | c) and all other parameters p(tj ≤ Ei < tj+1 | c), j = 1, . . . ,m − 1,
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j �= k − 1, k, from the same distribution are kept constant. It is readily seen
however, that this scheme of variation will again result in a two-way sensitivity
function of the form stated in Proposition 1. By taking the variational relation
between the two parameter probabilities into account as before therefore, again
a dimension-reduced sensitivity function results that allows studying the overall
effects of the change in discretisation on a class probability of interest.

4 Conclusions and Further Research

Focusing on naive Bayesian networks, we studied the effects of changing the
discretisation of a network’s continuous feature variable on the posterior prob-
abilities computed for its class variable. We showed that recent insights from
sensitivity analysis of Bayesian networks in general serve to analytically de-
scribe these effects. We argued more specifically that changing the discretisation
of a feature variable affects multiple parameter probabilities, and showed how
the relation that is thus induced among these parameters can be explicitly taken
into account for establishing a dimension-reduced sensitivity function that shows
the overall effects of the change of discretisation on a class probability of inter-
est. We currently are extending our results to Bayesian network classifiers in
general and are studying changes in discretisation that induce a change of the
most likely class value. We hope to be able to report our further insights in the
discretisation effects in Bayesian network classifiers in the near future.
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Department of Computer Science
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Abstract. We study the problem of incomplete data in Formal Concept
Analysis in fuzzy setting, namely the problem of constructing a concept
lattice of incomplete data. We develop a simple general framework for
dealing with unknown values in fuzzy logic, define incomplete fuzzy for-
mal contexts, and present a method of constructing concept lattices of
such contexts.

Keywords: Incomplete Data, Concept Lattice, Fuzzy Logic.

1 Introduction

Formal Concept Analysis (FCA) [16,8] is an exploratory method of analysis
of binary tabular data. The method identifies some important clusters (formal
concepts) in the data and organizes them into a structure called concept lattice.
FCA has found various interesting applications in several areas (see [7] and the
references therein). Formal Concept Analysis in fuzzy setting [2] allows the data
to contain not only binary values, but values from the unit interval [0, 1], or,
more generally, from arbitrary residuated lattice. The values are interpreted, as
usual in fuzzy logic, as degrees to which some information is true.

Incomplete data in FCA has been studied by several authors [6,11,12,14],
who focused namely on attribute implications in incomplete data. The problem
of finding a concept lattice of incomplete data has not been studied up to now.
In [13], we offer first results in this area for classical (crisp) FCA. The present
paper contains a generalization of the results from [13] to the fuzzy setting from
[1,2].

In this paper, we develop a method of constructing a fuzzy concept lattice of
incomplete data. Our main motivation is that the user might be interested in
studying the structure of data even in situations when the data are not complete.
As it turns out, the concept lattice can be constructed and its size is usually rea-
sonable small (in situations when there is not a large amount of incompleteness
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in the data). It also contains the information on all concept lattices which can
be obtained by possible completions of the data.

The organization of the paper is as follows. Section 2 contains basic definitions
from residuated lattices, fuzzy sets, and fuzzy FCA used in the paper. In Sec. 3
we develop a simple general framework for working with unknown values in fuzzy
logic. Section 4 contains our main results and in Sec. 5 we present an illustrative
example.

Due to the limited space, we omit proofs.

2 Preliminaries

2.1 Residuated Lattices and Fuzzy Sets

We use complete residuated lattices as structures of truth values of fuzzy logic.
We recall basic definitions here, see [2] for details.

A complete residuated lattice [2] is an algebra 〈L,∧,∨,⊗,→, 0, 1〉, where
〈L,∧,∨, 0, 1〉 is a complete lattice with the least element 0 and the greatest
element 1; 〈L,⊗, 1〉 is a commutative monoid (i.e., ⊗ is commutative, associa-
tive, and a⊗1 = 1⊗a = a for each a ∈ L); ⊗ (product) and→ (residuum) satisfy
the so-called adjointness property: a ⊗ b ≤ c iff a ≤ b → c for each a, b, c ∈ L
(the order ≤ on L is defined as usual by a ≤ b iff a ∧ b = a).

Elements a of L are called truth degrees, ⊗ and → (truth functions of) “fuzzy
conjunction” and “fuzzy implication”.

A subset L′ ⊆ L is called a complete residuated sublattice of L, if it contains the
elements 0 and 1 and is closed with respect to arbitrary products, residua, and
(possibly infinite) infima and suprema. L′ together with appropriate restrictions
of the operations of L is a complete residuated lattice. A complete residuated
sublattice L′ ⊆ L is generated by a subset P ⊆ L′, if it is the smallest complete
residuated sublattice of L (w.r.t. set inclusion) containing P .

The set LV of all mappings from V to L with operations defined elementwise
forms a complete residuated lattice denoted LV .

A homomorphism of complete residuated lattices h : L → L′ is called com-
plete, if it preserves arbitrary suprema and infima:

∨
j∈J h(aj) = h(

∨
j∈J aj),∧

j∈J h(aj) = h(
∧

j∈J aj).
For a, b ∈ L we set ¬a = a → 0 and a ↔ b = (a → b) ∧ (b → a). The

operations ¬ and↔ are called negation and biresiduum, respectively. For a non-
negative integer n, the n-th power of a ∈ L is defined inductively by a0 = 1,
an+1 = a⊗ an.

Common examples of complete residuated lattices include those defined on
the unit interval [0, 1], (i.e. L = [0, 1]), ∧ and ∨ being minimum and maximum,
⊗ being a left-continuous t-norm with the corresponding →. The three most
important pairs of adjoint operations on the unit interval are

�Lukasiewicz:
a⊗ b = max(a + b− 1, 0),

a→ b = min(1− a + b, 1),
(1)
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Gödel:

a⊗ b = min(a, b),

a→ b =

{
1 if a ≤ b,
b otherwise,

(2)

Goguen:

a⊗ b = a · b,

a→ b =

{
1 if a ≤ b,
b
a otherwise.

(3)

Complete residuated lattices on [0, 1] given by (1), (2), and (3) are called standard
�Lukasiewicz, Gödel, and Goguen (product) algebras, respectively.

The �Lukasiewicz operations can be restricted to any equidistant finite chain
L = {0, 1

n , . . . , n−1
n , 1}, the Gödel operations can be restricted to any subset L of

[0, 1], containing 0 and 1. The residuated lattices obtained by these restrictions
are called a finite �Lukasiewicz chain and a Gödel chain, respectively.

A residuated lattice L is simple, if for each a ∈ L, a < 1, there exists an integer
n > 0 such that an = 0. This property can be weakened for complete residuated
lattices: L is weakly simple if for each a ∈ L, a < 1 it holds

∧
n∈{1,2,...} a

n = 0.
Standard �Lukasiewicz algebra is simple, standard Goguen algebra is weakly

simple. Standard Gödel algebra is not weakly simple.
A truth stressing hedge (or simply a hedge) [9,10] on a residuated lattice L is

a unary operation ∗ satisfying (i) 1∗ = 1, (ii) a∗ ≤ a, (iii) (a → b)∗ ≤ a∗ → b∗,
(iv) a∗∗ = a∗, for all a, b ∈ L. The condition (iii) has the following equivalent
form: (iii)’ a∗ ⊗ b∗ ≤ (a ⊗ b)∗. A hedge ∗ is (a truth function of) the logical
connective “very true” [10].

Among all hedges, the greatest one is given by a∗ = a and is called identity.
The smallest hedge is called the globalization and is given by 1∗ = 1 and a∗ = 0
for a < 1.

An element a ∈ L is said to be a fixpoint of a hedge ∗, if a∗ = a. The set of all
fixpoints of ∗ is denoted by ∗(L). We have the following simple characterization
of ∗(L).
Lemma 1. A subset H ⊆ L is a set of all fixpoints of some hedge ∗H on L, if
and only if the following conditions are satisfied:

1. 1 ∈ H,
2. H is closed w.r.t. ⊗,
3. H is closed w.r.t. arbitrary suprema.

For each a ∈ L it holds

a∗H =
∨
{h ∈ H | h ≤ a}. (4)

An L-set (or fuzzy set) A in universe X is a mapping A : X → L, where values
A(x), x ∈ X , are interpreted as degrees to which x is an element of A. The set
of all L-sets in universe X is denoted by LX . A binary L-relation between sets
X and Y is an L-set I ∈ LX×Y .

An L-set A ∈ LX is also denoted {A(x)/x |x ∈ X}. If for all x ∈ X distinct
from x1, x2, . . . , xn we have A(x) = 0, we also write {A(x1)/x1,

A(x2)/x1, . . . ,
A(xn)/xn}. We usually write x instead of 1/x.



174 M. Krupka and J. Laštovička

Mappings h : L1 → L2 of two residuated lattices L1 and L2 can transform
L1-sets to L2-sets: for an L1-set A ∈ (L1)

X the composition h ◦ A is an L2-set,
h ◦A ∈ (L2)

X .

2.2 Formal Concept Analysis in Fuzzy Setting

Formal Concept Analysis has been introduced by Wille [16] (see also [8]). The
fuzzy version of FCA we use in this paper has been developed by Belohlavek [1],
and, independently, by Pollandt [15]. Our standard reference is [2]. The extension
to hedges is given in [4,3,5].

Let L be a complete residuated lattice. By a formal L-context we understand
a triple 〈X,Y, I〉, where X and Y are sets and I is an L-relation between X and
Y , I : X × Y → L. The sets X and Y are interpreted as a set of objects, resp.
attributes, and for any x ∈ X , y ∈ Y the value I(x, y) ∈ L is interpreted as the
degree to which the object x has the attribute y.

For any L-set A ∈ LX of objects we define an L-set A↑I ∈ LY of attributes
by

A↑I (y) =
∧
x∈X

A(x)→ I(x, y). (5)

Similarly, for any L-set B ∈ LY of attributes we define an L-set B↓I of objects
by

B↓I (x) =
∧
y∈Y

B(y)→ I(x, y). (6)

The L-set A↑I is interpreted as the L-set of all attributes shared by objects from
A. Similarly, the L-set B↓I is interpreted as the L-set of all objects having the
attributes from B in common. If there is no danger of confusion, we write simply
↑ and ↓ instead of ↑I and ↓I .

An L-formal concept of a formal L-context 〈X,Y, I〉 is a pair 〈A,B〉 ∈ LX×LY

such that A↑ = B and B↓ = A. A is called the extent, B the intent of 〈A,B〉.
The set of all formal concepts of 〈X,Y, I〉 is denoted B(X,Y, I) and called the
L-concept lattice of 〈X,Y, I〉.

The condition

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1), (7)

defines a partial ordering on B(X,Y, I). Together with this ordering, B(X,Y, I)
is a complete lattice with infima and suprema given by

∧
j∈J
〈Aj , Bj〉 =

〈 ⋂
j∈J

Aj ,

( ⋃
j∈J

Bj

)↓↑〉
, (8)

∨
j∈J
〈Aj , Bj〉 =

〈( ⋃
j∈J

Aj

)↑↓
,
⋂
j∈J

Bj

〉
, (9)

and is called the L-concept lattice of 〈X,Y, I〉.
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The following is a generalization of the notion of L-concept lattices to L-
concept lattices with hedges. Let ∗X , ∗Y be two hedges on L. Set for each
A ∈ LX , B ∈ LY ,

A↑∗XI (y) =
∧
x∈X

A(x)∗X → I(x, y), B↓∗YI (x) =
∧
y∈Y

B(y)∗Y → I(x, y), (10)

and let

B(X∗X , Y ∗Y , I) =
{
〈A,B〉 ∈ LX × LY | A↑∗XI = B,B↓∗YI = A

}
. (11)

The set B(X∗X , Y ∗Y , I) with a partial ordering, defined by (7), is again a com-
plete lattice, and is called the L-concept lattice of 〈X,Y, I〉 with hedges ∗X, ∗Y .

If ∗X is the identity, then we denote B(X∗X , Y ∗Y , I) by B(X,Y ∗Y , I). Each
element of B(X,Y ∗Y , I) is also a formal concept of B(X,Y, I): B(X,Y ∗Y , I) ⊆
B(X,Y, I). The main properties of B(X,Y ∗Y , I) are summarized in the following
theorem.

Theorem 1. (1) It holds B(X,Y ∗Y , I) = {〈A,B〉 ∈ B(X,Y, I) | A = D↓I for
some D ∈ (∗Y (L))Y }.

(2) B(X,Y ∗Y , I) is a
∧
-sublattice of B(X,Y, I).

The main idea of adding hedges to fuzzy concept lattices is that it allows us
affect the size of concept lattices. In many applications it is not necessary to work
with all formal L-concepts from B(X,Y, I). The restriction to L-concepts from
B(X,Y ∗Y , I) has the advantage that the lattice B(X,Y ∗Y , I) is much smaller
than the whole concept lattice B(X,Y, I). We shall use this advantage later in
the paper.

Below are some simple results on a correspondence between homomorphisms
of residuated lattices and homomorphisms of concept lattices [2,13].

Lemma 2. Let h : L→ L′ be a complete homomorphism of complete residuated
lattices, 〈X,Y, I〉 a formal L-context. Then for each A ∈ LX and B ∈ LY it
holds

(h ◦A)↑h◦I = h ◦A↑I , (h ◦B)↓h◦I = h ◦B↓I . (12)

Lemma 3. Let h : L→ L′ be a complete homomorphism of complete residuated
lattices, 〈X,Y, I〉 a formal L-context. Then for each formal concept 〈A,B〉 ∈
B(X,Y, I) it holds 〈h ◦A, h ◦B〉 ∈ B(X,Y, h ◦ I).

We denote the induced mapping B(X,Y, I)→ B(X,Y, h ◦ I) by hB(X,Y,I).

Theorem 2. Let h : L → L′ be a complete homomorphism of complete residu-
ated lattices, 〈X,Y, I〉 a formal L-context. Then the mapping hB(X,Y,I) is a com-
plete homomorphism. If h is injective, then so is hB(X,Y,I), if h is surjective,
then so is hB(X,Y,I).

Theorem 3. Let L be isomorphic to the direct product L1 × L2, p1 : L → L1

and p2 : L → L2 are the respective projections. Then B(X,Y, I) is isomorphic

to the direct product B(X,Y, p1 ◦ I)×B(X,Y, p2 ◦ I) and the mappings p
B(X,Y,I)
1

and p
B(X,Y,I)
2 correspond to the respective Cartesian projections.
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3 Residuated Lattices with Variables

In this section, we develop a simple general framework for working with unknown
values in fuzzy logic. Our assumptions are the following. We have a complete
residuated lattice L which serves as a structure of truth values. In addition, we
have a finite set U = {u1, . . . , un}, whose elements represent distinct unknown
values from L. Elements of U are called variables.

To enable the possibility of applying operations of a complete residuated lat-
tice (i.e., arbitrary products, residua, and infinite infima and suprema) to truth
degrees from L and variables, we assume another complete residuated lattice K,
together with a mapping ιU : U → K and an injective complete homomorphism
ιL : L→ K. The mappings ιU , resp. ιL are used to identify elements of U , resp.
L, with some elements of K. For brevity, we often suppose that U ⊆ K and
L ⊆ K, and ιU and ιL are the respective canonical inclusions.

To make sure that each element ofK can be computed from truth degrees from
L and variables, we assume that K is generated by the set ιU (U) ∪ ιL(L) ⊆ K.

Elements of K can be viewed as terms, constructed from elements of L and
variables by means of operations of a complete residuated lattice (including
arbitrary infima and suprema). In this interpretation, different terms can denote
the same element (for example, the terms “u1 ⊗ u2” and “1 ⊗ u1 ⊗ u2” denote
the same element of K, namely ιU (u1)⊗ ιU (u2)).

Mappings v : U → L are called assignments. They model situations when
we assign values to the variables. Since K is generated by ιU (U) ∪ ιL(L) ⊆ K,
then for each assignment v there exists at most one complete homomorphism
v̄ : K→ L, such that v̄ ◦ ιU = v and v̄ ◦ ιL = idL (i.e., v̄ is uniquely determined
by its values from ιU (U)∪ ιL(L) ⊆ K: for u ∈ U , v̄(ιU (u)) = v(u) and for a ∈ L,
v̄(ιL(a)) = a). If v̄ exists, then we say that it is the complete homomorphism
that extends the assignment v to K.

If the homomorphism v̄ exists, then the assignment v is called admissible. The
set of all admissible assignments is denoted by V . The variables u1, . . . , uk are
called independent, if each assignment is admissible (i.e., V = LU ). The other
cases model situations when there are some known dependencies between the
unknown values. For example, if ιU (u1) ≤ ιU (u2), then there is no admissible
assignment v such that v(u1) > v(u2).

Note that each complete homomorphism v̄ : K → L induces the admissible
assignment v = v̄ ◦ ιU . Thus, we have a bijective correspondence between V and
the set of all complete homomorphisms from K to L.

The following theorem shows two fundamental properties of our framework:

1. Generality: for every possible dependency between variables there exists a
suitable residuated lattice K.

2. Efficiency: this residuated lattice is (up to isomorphism) the smallest element
of the class of residuated lattices satisfying the generality requirement 1.

Theorem 4. The following hold for each subset V ⊆ LU .
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(1) Let K ⊆ LV be the residuated lattice, generated by the subset ιU (U) ∪
ιL(L) ⊆ LV , where the mappings ιU and ιL are defined by (ιU (u))(v) = v(u)
and (ιL(a))(v) = a. Then for each v ∈ V there is exactly one complete homo-
morphism v̄ : K→ L, extending v to K.

(2) Let K′ be a complete residuated lattice with a mapping and ι′U : U → K ′

and a complete homomorphism ι′L : L → K′, such that for each v ∈ V there is
a complete homomorphism v̄′ : K′ → L, extending v to K′. Then there exists
a surjective complete homomorphism s : K′ → K such that for each v ∈ V it
holds v̄′ = v̄ ◦ s.

The following theorem gives a sufficient condition for K = LV .

Theorem 5. If L is weakly simple, then for the residuated lattice K from the
previous theorem it holds K = LV .

4 Incomplete Contexts and Their Concept Lattices

Let U = {u1, . . . , uk} be a set of variables, L a residuated lattice, V ⊆ LU a set
of assignments, representing known dependencies between the variables. Using
Theorem 4, we construct the minimal residuated lattice K such that V is the
set of admissible assignments.

We use this framework throughout the rest of this paper. For brevity, we
suppose that U ∪ L ⊆ K and the mappings ιU , ιL are the respective canonical
inclusions.

An incomplete context with variables u1, . . . , uk is a formal K-context 〈X,Y,
I〉, where I takes values only from L and U : I(X × Y ) ⊆ U ∪ L (i.e., the table,
representing the formal context, contains only elements of L and variables).

For an admissible assignment v : U → L, the formal L-context 〈X,Y, v̄ ◦ I〉 is
called the v-completion of 〈X,Y, I〉.

Elements of the K-concept lattice B(X,Y, I) are called incomplete concepts. If
for an incomplete concept 〈A,B〉 ∈ B(X,Y, I) it holds A(X) � L or B(Y ) � L,
then 〈A,B〉 is called strictly incomplete.

For 〈A,B〉 ∈ B(X,Y, I) and an admissible assignment v ∈ V , the pair 〈v̄ ◦
A, v̄ ◦ B〉 is called the v-completion of 〈A,B〉. By Lemma 3, 〈v̄ ◦ A, v̄ ◦ B〉 ∈
B(X,Y, v̄ ◦ I).

In the next theorem, we investigate the structure of the K-concept lattice
B(X,Y, I). The proof follows easily from Theorems 4, 2, 3.

Theorem 6. B(X,Y, I) is isomorphic to a complete sublattice of the direct prod-
uct
∏

v∈V B(X,Y, v̄ ◦ I). The mappings v̄B(X,Y,I) : B(X,Y, I) → B(X,Y, v̄ ◦ I)
correspond to the respective Cartesian projections.

If L is weakly simple, then B(X,Y, I) is isomorphic to
∏

v∈V B(X,Y, v̄ ◦ I).

The above theorem has two principal consequences. First, the lattice B(X,Y, I)
can be quite large; in cases when L is weakly simple, the size of B(X,Y, I)
depends exponentially on the number of admissible assignments, which again
depends exponentially on the number of variables (Theorem 4). Second, the
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mappings v̄B(X,Y,I) are surjective. Thus, each formal concept of the L-concept
lattice B(X,Y, v̄ ◦ I) is a v-completion of some formal concept of B(X,Y, I).

The second consequence means that the incomplete concept lattice B(X,Y, I)
contains the information on formal concepts of all v-completions of the incom-
plete context 〈X,Y, I〉. The first consequence represents the major obstacle to
using the incomplete concept lattice B(X,Y, I) in practice.

The problem of the size of the incomplete concept lattice B(X,Y, I) can be
dealt with using hedges. Since L is a complete sublattice of K, it satisfies the
requirements of Lemma 1. Thus, we can use the hedge ∗L and construct the
concept lattice B(X,Y ∗L , I) ⊆ B(X,Y, I) (see Theorem 1). The following theo-
rem shows that this concept lattice retains the property that for each admissible
assignment v ∈ V , each formal concept from B(X,Y, v ◦ I) is a v-completion of
some formal concept from B(X,Y ∗L , I).

Theorem 7. For each v ∈ V , the restriction v̄B(X,Y ∗L ,I) : B(X,Y ∗L , I) →
B(X,Y, v ◦ I) of v̄B(X,Y,I) is surjective.

5 Illustrative Example

Let L be the finite Gödel chain with L = {0, 0.5, 1}. L is not weakly simple
(it holds 0.52 = 0.5 in L). Further let U = {u1, u2}, and V be the set of all
assignments v such that v(u1) ≤ v(u2). V has 6 elements.

The residuated lattice K from Theorem 4 has 135 elements out of 36 = 729
elements of LV (see Theorem 5). Elements of K can be viewed as terms build
up from variables u1, u2 and constants 0, 0.5, 1 (or, more exactly, as classes of
undistinguishable terms; see the previous section).

Consider an incomplete formal context 〈X,Y, I〉, where X = {x1, x2, x3, x4},
Y = {y1, y2, y3}, and aK-relation I ∈ KX×Y is given by the table in Fig. 1 (left).
The concept lattice B(X,Y, I) has 5120 elements. However, the concept lattice
B(X,Y ∗L , I) is much smaller. It consists of the following 15 formal concepts:
c1 = 〈{x1, x2, x3, x4}, ∅〉, c2 = 〈{x1, x3, x4}, {0.5/y3}〉, c3 = 〈{x1,

0.5→u1/x2},
{0.5/y1, 0.5∧¬u1/y3}〉, c4 = 〈{x2,

0.5→u2/x3, x4}, {u2∨¬u2/y2}〉, c5 = 〈{0.5→u2/x3,
x4}, {u2∨¬u2/y2,

0.5∨¬u2/y3}〉, c6 = 〈{0.5/x1,
u1/x2}, {y1, ¬u1/y3}〉 , c7 = 〈{x2,

u2/x3, x4}, {y2}〉, c8 = 〈{x1}, {0.5/y1, 0.5/y3}〉, c9 = 〈{u2/x3, x4}, {y2, u2→0.5/y3}〉,
c10 = 〈{0.5/x1,

0.5/x3, x4}, {y3}〉, c11 = 〈{0.5→u1/x2}, {u1∨¬u1/y1, y2,
¬u1/y3}〉,

c12 = 〈{u2∧0.5/x3, x4}, {y2, y3}〉, c13 = 〈{0.5/x1}, {y1, y3}〉, c14 = 〈{u1/x2}, {y1,
y2,

¬u1/y3}〉, c15 = 〈∅, {y1, y2, y3}〉. The concept lattice B(X,Y ∗L , I) is depicted
in Fig. 1 (right).

Consider now admissible assignments v1, v2, v3, such that v1(u1) = v1(u2) =
0, v2(u1) = v2(u2) = 0.5, v3(u1) = 0, v3(u2) = 1. In Fig. 2 (top) there are
depicted the completions 〈X,Y, v̄1 ◦ I〉, 〈X,Y, v̄2 ◦ I〉, 〈X,Y, v̄3 ◦ I〉 and their
respective concept lattices B(X,Y, v̄1 ◦ I), B(X,Y, v̄2 ◦ I), B(X,Y, v̄3 ◦ I) (bot-
tom). The concepts in the figure are labeled as follows: if the label is c, then the
labeled concept is equal to v̄B(X,Y,I)(c) for the appropriate v ∈ {v1, v2, v3}.
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y1 y2 y3
x1 0.5 0 0.5
x2 u1 1 0
x3 0 u2 0.5
x4 0 1 1

c10

c1

c2 c3 c4

c5
c6 c7

c8 c9 c11

c12 c13 c14

c15

Fig. 1. An incomplete context 〈X,Y, I〉 (left) and its concept lattice B(X, Y ∗L , I)
(right)

y1 y2 y3
x1 0.5 0 0.5
x2 0 1 0
x3 0 0 0.5
x4 0 1 1

y1 y2 y3
x1 0.5 0 0.5
x2 0.5 1 0
x3 0 0.5 0.5
x4 0 1 1

y1 y2 y3
x1 0.5 0 0.5
x2 0 1 0
x3 0 1 0.5
x4 0 1 1

c1

c2

c4, c7

c3, c8 c10

c6, c13 c5, c9

c12, c14, c15

c1

c2 c3 c4

c5 c6 c7
c8

c10
c11

c13 c14

c15

c9, c12

c1

c2 c4, c7

c5, c9c3, c8 c10

c12 c6, c13

c11, c14, c15

Fig. 2. The completions 〈X,Y, v̄1 ◦ I〉, 〈X,Y, v̄2 ◦ I〉, 〈X,Y, v̄3 ◦ I〉 of the formal context
from Sec. 5 (top, from left to right) and the respective concept lattices (bottom)

6 Conclusion

The incomplete concept lattice B(X,Y ∗L , I) introduced in this paper provides
users the possibility to view conceptual hierarchies of incomplete data in fuzzy
formal contexts. This concept lattice contains the information on the completed
concept lattice for all possible completions. The main question remaining to
be answered is that on the size of the incomplete concept lattice. Here, the
critical factor is the number of variables in the table. In the above example,
the size of the incomplete lattice is not substantially larger than the size of
the concept lattice of a corresponding completed formal context (in the case of
the lattice B(X,Y, v̄2 ◦ I), it is nearly the same); our preliminary experiments
indicate that we can expect similar results in many real-world situations the
number of variables is not large.
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10. Hájek, P.: On very true. Fuzzy Sets and Systems 124(3), 329–333 (2001)
11. Holzer, R.: Knowledge acquisition under incomplete knowledge using methods from

formal concept analysis: Part I. Fundam. Inf. 63(1), 17–39 (2004)
12. Holzer, R.: Knowledge acquisition under incomplete knowledge using methods from

formal concept analysis: Part II. Fundam. Inf. 63(1), 41–63 (2004)
13. Krupka, M., Lastovicka, J.: Concept Lattices of Incomplete Data. In: Domenach,

F., Ignatov, D., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 180–194.
Springer, Heidelberg (2012)

14. Obiedkov, S.: Modal logic for evaluating formulas in incomplete contexts. In: Priss,
U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp.
314–325. Springer, Heidelberg (2002)

15. Pollandt, S.: Fuzzy Begriffe: Formale Begriffsanalyse von unscharfen Daten.
Springer, Heidelberg (1997)

16. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered Sets, Boston, pp. 445–470 (1982)



Imperfect Information Fusion Using Rules

with Bilattice Based Fixpoint Semantics

Daniel Stamate and Ida Pu
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Abstract. We present an approach to reasoning non-uniformly by de-
fault with uncertain, incomplete and inconsistent information using sets of
rules/extended logic programs in the context of multivalued logics with a
bilattice structure. A fixpoint semantics for extended logic programs used
in the process of inference is described, along with its computational ap-
proach. We show how this theoretic approach is applicable to the problem
of integration of imperfect information coming from multiple sources.

1 Introduction

Information integration has received much attention for a number of years now
in Database, Artificial Intelligence, Logic Programming, Multimedia Information
Systems, World Wide Web and other research communities. Various approaches
to information fusion have been proposed, adapted to the particular research
areas, as the integration of data in a distributed database or from different
databases, or the integration of information collected by an agent from other
sources, or merging belief bases represented via logic programs, or integrating
information coming from different sources as text, sound or image, or from Web
sources.

In order to propose an approach to information integration, two main ques-
tions may arise: (1) how is information coming from multiple sources combined?;
(2) given the problems of possible conflicting information coming from mutually
contradictory sources, of missing information coming from incomplete sources, or
of uncertain information coming from sources of limited reliability, what meaning
can one assign to the fused information? That is, what is the result of the inte-
gration? The information that is incomplete, or totally or partially inconsistent,
or uncertain will be called imperfect information in what follows.

Let us consider the following simple example of medical diagnosing in which
information from medical doctors and test results is integrated. It is not uncom-
mon in the case of a suspected potential serious condition (C) of a patient (P) to
run and combine results of alternative tests (Test1 and Test2), and the medical
doctor (MD1) to ask for another colleague’s (MD2) opinion in order to establish
a diagnosis. The following rules illustrate this process:

Diagnosis(P,C)← Tests(P,C) ∧MDsSuspect(P,C)
Tests(P,C)← Test1(P,C)⊕ Test2(P,C)
MDsSuspect(P,C)←MD1Suspects(P,C)⊗MD2Sustects(P,C)

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 181–190, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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With respect to the question (1) above, the approach to the information integra-
tion that we propose in this paper is based on the logic programming paradigm,
as it uses inference rules to integrate information in a logic based context. The
logic rules we use, however, form extended logic programs as there is a need
to employ, apart operations extending the conventional connectives as the con-
junction ∧, the disjunction ∨ and the negation ¬, two more operations ⊗ and
⊕ called the consensus and the collecting together (or gullibility) operations, to
be formally and most generally defined in the next section. In the above exam-
ple, we are looking for what is the consensus between the two MDs regarding a
suspected condition, and this will be combined with the results of the two tests,
collected together.

Note that medical tests are not 100% reliable so it makes sense to use con-
fidence degrees as logical values for atoms as Test1(P,C). On the other hand
one may get contradictory test results in which case it makes sense to use “in-
consistent” as a logical value for Tests(P,C). Or the tests may fail so it makes
sense to use “unknown” as a logical value for Tests(P,C). Therefore with respect
to the question (2), we choose an appropriate formalism based on multivalued
logics expressed by the concept of bilattice introduced in [4], that constitutes a
powerful tool in expressing the three aspects of imperfect information, namely
the uncertainty, the incompleteness and the inconsistency.

In order to illustrate the concept of bilattice, assume first that we want to
express the truthness of an information A. In the ideal case we may employ
the logical values true or false, but in reality this approach may often be too
simplistic. If we use a degree between 0 and 1 instead of a classical logical value,
the approach is more appropriate in expressing uncertainty but less helpful in
expressing lack of information, or the presence of contradictions in information.
Indeed, no value from [0,1] can express, alone, incompleteness or inconsistency.

A natural idea would then be to use a pair 〈c, d〉 instead of one value as
above, that would consist in a degree of confidence c and a degree of doubt
d, both numbers in [0,1], which do not necessarily add up to 1 (otherwise the
single value c would suffice and we would be again in the previous case). 〈c, d〉
can be regarded as a logical value. In this setting 〈0, 1〉 and 〈1, 0〉, represent no
confidence, full doubt, and full confidence, no doubt, so they would correspond to
the classical logical values false and true, respectively. On the other hand 〈0, 0〉
and 〈1, 1〉, represent no confidence, no doubt, and full confidence, full doubt,
respectively, and express a total lack of information or a total inconsistency,
respectively. Let us call these values unknown and inconsistent.

Two orders, namely the truth and the information (or knowledge) orders,
denoted ≤t and ≤i, can naturally be defined on the set of confidence-doubt pairs,
denoted LCD and called the confidence-doubt logic [10], as follows: 〈x, y〉 ≤t

〈z, w〉 iff x ≤ z and w ≤ y, and 〈x, y〉 ≤i 〈z, w〉 iff x ≤ z and y ≤ w, where
≤ is the usual order between reals. The meet and join operations w.r.t. ≤t and
≤i are denoted ∧, ∨ for the former order, and ⊗ and ⊕ for the latter order,
respectively. They are explicitly expressed below:
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〈x, y〉 ∧ 〈z, w〉 = 〈min(x, z),max(y, w)〉; 〈x, y〉 ∨ 〈z, w〉=〈max(x, z),min(y, w)〉
〈x, y〉 ⊗ 〈z, w〉 = 〈min(x, z),min(y, w)〉; 〈x, y〉 ⊕ 〈z, w〉=〈max(x, z),max(y, w)〉

Note that ∧ and ∨ can be naturally interpreted as extensions of the classical
conjunction and disjunction. Moreover, ⊗ and ⊕ are two new operations whose
definitions are naturally consistent with the meaning of the words consensus
and gullibility, respectively. An extension of the classical negation for confidence-
doubt pairs is naturally defined by ¬〈x, y〉 = 〈y, x〉.

We conclude this section by noting that LCD illustrates the concept of bilattice
that is formally presented below.

2 Extended Logic Programs on Bilattices

Bilattices, which were introduced by Ginsberg in [4], offer one of the most capable
frameworks to express, in the same time, the characteristics of the information
to be incomplete, totally or partially inconsistent, or uncertain. In addition,
bilattices have an algebraic structure that allows to express approaches built on
this concept in an elegant manner, and to facilitate elegant and often shorter
proofs of results. Due to their powerful capability in expressing and reasoning
with imperfect information, and/or to serve as multivalued logics, they have
found numerous applications in various areas of Computer Science including
Artificial Intelligence and extended Logic Programming [4,2,3,6,7,9,1,10].

Definition 1. A bilattice is a triple 〈B,≤t,≤i〉, where B is a nonempty set, and
≤t and ≤i are partial orders each giving B the structure of a complete lattice.

Given the bilattice B, join and meet operations under ≤t, called the truth order,
are denoted ∨ and ∧, called extended disjunction and extended conjunction, and
join and meet operations under ≤i, called the information (or knowledge) order,
are denoted ⊕ and ⊗, called collecting together (or gullibility) and consensus,
respectively. The greatest and least elements under ≤t are denoted by true and
false, which correspond to and extends the classical logical values. The greatest
and least elements under ≤i are denoted ( and ⊥, called inconsistent and un-
known, respectively. B has a negation, denoted ¬, if ¬ is a unary operation on B
that is antimonotone w.r.t. the truth order and monotone w.r.t. the information
order. In addition ¬true = false, ¬false = true, ¬⊥ = ⊥ and ¬( = (. A
bilattice is infinitely distributive if all infinitary as well as finitary distributive
laws hold. An example of such a bilattice is provided by LCD.

From now on the bilattices we consider in this paper are assumed to be in-
finitely distributive bilattices with negation. Fitting [2,3] extended the notion of
logic program, that we will call extended program, to bilattices as follows. Let B
be a bilattice, whose elements will be referred to as logical values.

Definition 2. (1) A formula is an expression built up from literals and elements
of B, using ∧, ∨, ⊗, ⊕, ¬, ∃, ∀. (2) A rule r is of the form H(v1, ..., vn) ←
F (v′1, ..., v

′
m) where the atomic formula H(v1, ..., vn) is the head, and the formula
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F (v′1, ..., v
′
m) is the body. It is assumed that the free variables of the body are

among v1, ..., vn. (3) An extended program is a finite set of rules, assuming that
no predicate letter appears in the head of more than one rule.

Note that the restrictions from (2) and (3) in the above definition cause no loss
of generality, since any program as above but without these restrictions, can be
rewritten into a program as defined above, as shown by [2,3]. On the other hand,
any conventional logic program with negation can be written as in Definition 2, if
one employs ∧, ∨ and true only, from the operations and elements of the bilattice
B. For technical reasons, from now on, we consider any extended program to be
instantiated s.t. all the free variables are replaced by ground terms (i.e. terms
without variables). Note that, due to the way extended programs have been
defined, their instantiated versions have no more than one rule with the same
atom in the head.

Example 1. Consider the following extended program on the bilattice LCD:

A← B ⊕ F ; B ← ¬E; D ← B ∨ C; E ← 〈0.7, 0.3〉; C ← C ⊗ E.

Roughly speaking, by using the rules, E is assigned a confidence of 0.7 and a
doubt of 0.3, or the logical value 〈0.7, 0.3〉; also B is assigned the logical value
〈0.3, 0.7〉. Note that the confidence and doubt for F cannot be directly derived
from the extended program as there is no rule defining F . In such a case in
which the extended program does not provide any evidence that permits to infer
a degree of confidence and doubt for F , we can assign F a confidence and doubt
by default. Possible default values can be suggested for instance by the reliability
of the source providing the information F , or by the frequency of cases when
the information provided by the source was true in the past, or simply we can
consider the logical value 〈0, 0〉 if nothing is known about the source, or 〈0, 1〉 if
a pessimistic approach is preferred w.r.t. the source, and so on.

The process of deriving information from an extended program will be for-
mally introduced in the next section. The main idea implemented by this process
is that the information is derived by firing the program rules, and by employing
the default logical values associated with the sources, provided that the default
information that is used is consistent with the program rules.

Given an extended program P and a bilattice B, an interpretation is a mapping
that assigns a logical value from B to each atom from the Herbrand base (called
also ground atom). Its role in this framework is to formally express information.
Note that an interpretation can be intuitively represented as a (finite or infinite)
table composed of two rows: the ground atoms are placed in the first row, and
their corresponding logical values are placed in the second row, as illustrated by
the interpretation I below, based on LCD:

I =

[
A B C D E F
〈1, 0〉 〈0, 0〉 〈0, 1〉 〈1, 1〉 〈0.4, 0.8〉 〈0, 1〉

]
.

Note that the default values corresponding to the sources in Example 1 can be
formally provided as an interpretation too, that we call default interpretation. We
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introduced a similar concept called hypothesis in [7] whose role was to compensate
incomplete information.

3 Bilattice Based Fixpoint Semantics

The following naturally extends the truth and information orders to the set of
interpretations denoted by IntP . Moreover we define the order ≤p between two
interpretations I and J to express the fact that the “known information” from
I (that is, the set of atoms from the Herbrand base associated to logical values
not equal to ⊥) is a part of the “known information” from J . In this case we
simply say that J extends I, or I is a part of J .

Definition 3. If I and J are interpretations then:
(1) I ≤t J if I(A) ≤t J(A) (2) I ≤i J if I(A) ≤i J(A)
(3) I ≤p J if I(A) �= ⊥ implies I(A) = J(A)
for any ground atom A.

The interpretations can be extended to closed formulae (i.e. formulae not con-
taining free variables) as follows: I(X ∧ Y ) = I(X)∧ I(Y ), and similarly for the
other operations of the bilattice, I((∃x)F (x)) =

∨
s∈GT I(F (s)), and I((∀x)F (x))

=
∧

s∈GT I(F (s)), where GT stands for the set of all ground terms.

Definition 4. The ultimate evaluation U(I, C) of a closed formula C w.r.t. in-
terpretation I is a logical value α defines by: if J(C) = I(C) for any interpreta-
tion J s.t. I ≤p J then α = I(C), else α = ⊥.

Roughly speaking, the ultimate evaluation of a formula C w.r.t. an interpretation
I captures the logical value of C that is invariant to any extension of information
beyond I. For instance if I(A1) = true for a ground atom A1 and I(A) = ⊥ for
any other ground atom A then U(I, A1 ∨ A2) = true and U(I, A1 ⊕ A2) = ⊥,
where A2 is a ground atom s.t. A1 �= A2. This is due to the fact that A1 ⊕ A2

changes its value when extending I, while A1∨A2 does not. Informally speaking,
the information in I is sufficient to establish the final logical value of the latter
formula, but not of the former.

The value U(I, C) can be efficiently computed as shown by the following:

Proposition 1. Let I� be the interpretation obtained from I by assigning the
value ( to any atom A s.t. I(A) = ⊥, and C a closed formula. If I(C) = I�(C)
then U(I, B) = I(B), else U(I, C) = ⊥.

The first inference operator ΦP associated with an extended program P , called
the production operator, transforms an interpretation I into the interpretation
ΦP (I) that intuitively corresponds to the information generated through the
activation of the program rules. Formally, for any ground atom A:

if there is A← C ∈ P then ΦP (I)(A) = U(I, C), else ΦP (I)(A) = ⊥ (E1)
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We show that the production operator has the following interesting properties:

Proposition 2. ΦP is monotone w.r.t. ≤i and ≤p orders.

The second type of inference assumes the use of a fixed default interpretation D.
The question that arises is: for which ground atoms precisely can one use the
default logical values assigned to them by D? The answer will be given by the
definition of the so called default operator that we provide below.

First we introduce two intermediary operators called the revision operator,
denoted Rev, and the refining operator, denoted ΨP , whose roles are to revise and
refine an arbitrary interpretation X . The revision of X w.r.t. the interpretation
J is the interpretation Rev(X, J) = X ′ s.t. X ′(A) = X(A) for any ground atom
A for which either J(A) = ⊥ or X(A) = J(A), and X ′(A) = ⊥ for any other
ground atom A. Roughly speaking, Rev transforms in ⊥ any logical value X(A)
not matching J(A), when J(A) �= ⊥ (that is, the revision of X is “compatible”
with J). The refinement of X w.r.t. the interpretation I is the interpretation

ΨP (X, I) = Rev(X,ΦP (Rev(X, I)⊕ I)). (E2)

Roughly speaking, X is first revised to be “compatible” with the information
from I, then I is added obtaining an interpretation that will be used to activate
the program rules and to derive a new interpretation I ′, with respect to which
X will be revised to be “compatible” with I ′ (and thus to be “compatible” with
the program rules also).

By making use of the refining operator ΨP , we wish to obtain the default
information X (that is, X ≤p D) that can complete the interpretation I which
represents the sure information derived from the extended program so far. For-
mally, we have the following requirements/conditions:

(1) X ≤p D (2) X = ΨP (X, I) and
(3) under the previous two conditions X is maximal w.r.t. ≤p.

Roughly speaking, X is to be a part of the default interpretation D (condition
(1)), that is stable when refined w.r.t. I (condition (2)). In addition X is supposed
to complete as much as possible the information in I (condition (3)). That is,
we are interested in the maximal fixpoints of the operator λXΨP (X, I) that are
parts of D, which we call actual default interpretations w.r.t. I and D. We show
below that there exists a unique actual default interpretation w.r.t. I and D.

Proposition 3. Let I be an interpretation and D be a default interpretation.
The following hold: (1) The (λX)ΨP (X, I) operator has a greatest fixpoint be-
low D w.r.t. ≤p, denoted by DefDP (I). 2) DefDP (I) is the limit of the follow-
ing sequence of interpretations that is decreasing w.r.t. ≤p, which is defined by:
X0 = D; Xn = ΨP (Xn−1, I) if n is a successor ordinal; and Xn = inf≤p,m<nXm

if n is a limit ordinal.
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Note that the first part of Proposition 3 involves that DefDP (I) is the unique
actual default interpretation, while the second part provides a means of com-
putation for DefDP (I). This computation consists of starting with the default
interpretation D and iterating the operator (λX)ΨP (X, I) until a fixpoint is
reached. We call DefDP the default operator, as it is obvious that it reflects the
application of the inference by default.

The two types of inference described above are now combined via a new
operator, denoted ΓP and called the integrating operator, defined by:

ΓP (I) = ΦP (I)⊕DefDP (I). (E3)

Roughly speaking, in order to generate the total information that can be derived
from the extended program P , we start with the least degree of information char-
acterized by an interpretation I0 in which all the ground atoms are unknown,
denoted by Const⊥ (i.e. Const⊥(A) = ⊥ for any ground atom A). We apply
the two types of inference to the current information, which corresponds to one
application of the ΓP operator, and we get a new interpretation I1. This itera-
tive process continues until nothing changes, that is, until a fixpoint is reached.
Formally we define the sequence S of interpretations as follows, and study its
properties:

I0 = Const⊥; In = ΓP (In−1) for a successor ordinal n;
In = sup≤p,m<nIm for a limit ordinal n.

Theorem 1. The following hold: (1) S is increasing w.r.t. ≤p (and thus w.r.t.
≤i) and reaches a limit denoted by s; (2) ΓP (s) = s and (3) for any x s.t.
ΓP (x) = x we have s ≤i x.

Thus s is the least fixpoint of ΓP w.r.t. ≤i, and represents the total information
that can be inferred from the extended program P completed with the default
information D. We choose s to designate the semantics of P w.r.t. the default
interpretation D, and we refer to it as the fixpoint semantics of P w.r.t. D. We
omit to refer to D when this is not essential or is understood from the context.

We conclude this section by a result that shows that the fixpoint semantics
of the extended program P is closed to the application of the program rules, or
in other words, is a fixpoint of the production operator.

Theorem 2. If s is the fixpoint semantics of P then ΦP (s) = s.

4 Computational Results

Proposition 4. If V alues(P ) is the set of logical values appearing in the ex-
tended program P , and Closure(H) is the closure of the set of logical values from
a subset H of the bilattice B, to which one adds true, false, (, and ⊥, w.r.t. the
finite and infinite applications of the negation, join and meet operations, then
〈Closure(V alues(P )),≤t,≤i〉 is a finite bilattice.
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Computationally speaking, even if the bilattice B is infinite, and the closure
ordinals corresponding to the calculations of the fixpoints of the refining operator
ΨP and the integrating operator ΓP may be at least ω (i.e. the first infinite
ordinal), only a finite number of logical values from B are used in the calculation
of the fixpoint semantics of P . More precisely, these logical values belong to the
finite bilattice Closure(V alues(P )). Moreover, if P is a function free extended
program, then the effective calculation of the fixpoint semantics of P is feasible
as shown by the following:

Theorem 3. If the extended program P is function free then, for any interpre-
tations I and X, the following hold: (1) the calculation of ΦP (I) according to
equation (E1) terminates; (2) the calculation of ΨP (X, I) according to equation
(E2) terminates; (3) the calculation of DefDP by a finite number of iterations of
(λY )ΨP (Y, I) starting with D, terminates; (4) the calculation of ΓP (I) according
to equation (E3) terminates; (5) the fixpoint semantics of P can be computed in
a finite number of steps by iterative application of (λY )ΓP (Y ) and starting with
the interpretation Const⊥.

Along the lines of Theorem 3, we propose now an algorithm for the computation
of the fixpoint semantics of a function free extended program P w.r.t. the default
interpretation D. In the pseudo-code below the interpretations are represented
as finite sets of pairs of atoms and logical values of the form (A, v).

1. function Rev(Y,Z)
2. W := Y ;
3. for every pair (A, v1) ∈ W
4. if v1 
= ⊥ and (A, v2) ∈ Z and v2 
= ⊥ and
5. v2 
= v1
6. then replace (A, v1) with (A,⊥) in W ;
7. return W ;

8. function Phi(P, I)
9. I� := I ;
10. J = ∅;
11. for any pair (A, v) ∈ I�
12. if v = ⊥ then
13. replace (A, v) with (A,) in I�;
14. for any rule A ← B in P
15. if I(B) = I�(B) then insert (A, I(B)) in J
16. else insert (A,⊥) in J ;
17. for any atom A not appearing in J insert (A,⊥) in J ;
18. return J ;

19. function FixpointSemantics(P,D)
20. I2 := Const⊥;
21. repeat
22. I1 := I2;
23. J2 := D;
24. repeat
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25. J1 := J2;
26. J2 := Rev(J1, Phi(P,Rev(J1, I1)⊕ I1))
27. until J1 = J2;
28. I2 := Phi(P, I1)⊕ J1
29. until I1 = I2;
30. return I1.

The code lines 1-7 implement the revision operator Rev. The code lines 8-18
implement the production operator ΦP . In particular the lines 11-13 prepare
the ultimate evaluation of formulae in rule bodies (according to Definition 4 and
Proposition 1) which is performed in the lines 14-16. The main function provided
in the lines 19-30 performs the actual computation of the fixpoint semantics
(according to the construction of the sequence S in Theorem 1 and Theorem 3).
In particular the lines 23-27 evaluate the default operator DefDP , and the line
28 evaluates the integrating operator ΓP .

Example 2. If we consider the extended program from Example 1 with the de-
fault interpretation D that assigns 〈0, 1〉 to each ground atom, and apply the
above algorithm, we obtain the fixpoint semantics of P represented by the fol-
lowing interpretation:

I =

[
A B C D E F

〈0.3, 1〉 〈0.3, 0.7〉 〈0, 0〉 〈0.3, 0〉 〈0.7, 0.3〉 〈0, 1〉

]
.

5 Further Results and Ongoing Work

Our approach can be related to Fitting’s work regarding the reasoning under
uncertainty based on bilattices and extended logic programs. In particular [2,3]
present the multivalued stable models for extended programs in the context of
bilattices, in particular of Belnap’s four valued logic, that generalize the concept
of stable models in the conventional bivalued logic. We have:

Theorem 4. Let P be an extended program considered on the bilattice B, and
mstable(P ) be its multivalued stable model, as defined in [2,3], which is the
smallest w.r.t. the information/knowledge order. Then the fixpoint semantics of
P w.r.t. the default interpretation D assigning the value false to any ground
atom, as defined in this work, coincides with mstable(P ).

We show also that our semantics captures the α-fixed models of extended pro-
grams on bilattices, introduced by us in [6]. For different logical values α, in
particular false, true and ⊥, the α-models provide various meanings to the same
extended program P , depending on how one chooses to complete the missing
information by adopting a pessimistic, optimistic, or skeptical approach, respec-
tively. It was proven in [6] that α-fixed models capture conventional semantics
as the Kripke-Kleene semantics [3] and the well-founded semantics, which in
turns coincides with Przymusinski’s three-valued stable semantics [8]. Thus the
fixpoint semantics presented in this work is a natural extension of the above
well-known three-valued semantics of conventional logic programs.
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Theorem 5. Given an extended program P considered on the bilattice B, for
any logical value α from B, the α-fixed model of P as defined in [6], coincides
with the fixpoint semantics of P w.r.t. the default interpretation that uniformly
assigns the value α to any ground atom.

Corollary 1. Let P be a conventional logic program with negation considered in
the context of the bilattice LCD. The following hold: (1) The fixpoint semantics
of P w.r.t. the default interpretation D assigning the value false to any ground
atom, coincides with the well-founded semantics of P , and with Przymusinski’s
three-valued stable semantics of P ; (2) The fixpoint semantics of P w.r.t. the
default interpretation D assigning the value ⊥ to any ground atom, coincides
with the Kripke-Kleene semantics of P .

We currently investigate how the semantics defined for information integration
in this approach can be related to a recent work presented in [5], which pro-
vides a logic programming based approach making use of a program semantics
based on conventional stable models, for merging belief bases. It would be inter-
esting to understand more precisely how the two approaches integrating infor-
mation/beliefs and their corresponding program semantics relate to each other,
although the present framework is more general as based on multivalued logics.

Moreover we intend to explore the possibility of extending this approach by
considering imprecise degrees of confidence and doubt (i.e. confidence and doubt
intervals) instead of punctual values, and we are looking for corresponding ap-
propriate algebraic structures to use in this context instead of bilattices.
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Abstract. The Resource Description Framework (RDF) defines an in-
teresting way of representing data based on a simple principle of ex-
pressing any piece of information as a triple: subject-property-object.
This notion gains a lot of interest as a promising form of representing
any type of data and facts on the Web.

This paper is about automatic assimilation of information.
We propose two procedures: one for assessing relevance between two

pieces of information, another for information integration. Both of them
can be executed by an agent on the behalf of the user. In a nutshell,
the idea is as follows: an agent browses the web and finds some facts,
determines their relevance to the facts already known to the user, and
integrates them. The proposed procedures are based on compatibility
of user’s information with the web contents, and on the level of user’s
confidence in the information already known to the user.

1 Introduction

In 2001, the concept of Semantic Web has been introduced [1] as a new paradigm
of storing and utilizing data on the Web. The primary data representation for-
mat used by the Semantic Web is ontology [2]. Ontology is a set of concepts in a
specific domain, together with their detailed definitions, ordered in a hierarchical
way. A fundamental building block of any ontology-based representation is Re-
source Description Framework – RDF. At the same time, RDF becomes a basic
element of Linked Data (LD) paradigm [3]. In LD, all information is represented
as a vast network of interconnected RDF triples.

An RDF triple contains three elements: subject-property-object. A subject is
an element that a particular piece of information is about, an object is an element
that describes the subject, and a property indicates relationship between the
subject and the object of a given triple. There is no restrictions on the type of
items that can be used as subjects, objects, and properties. In general, a subject
in one triple can be an object in another triple, as well as the whole triple can
be either object or subject.

A very important feature of RDF is related to identification of triples’ ele-
ments. The Uniform Reference Identifiers – URIs – are used here [3]. An element
of a triple represented by an URI points to a place on the web – a web page or a
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location on the page. All subjects and properties of RDF triples are identified by
URIs. Only objects can be represented by URIs or any numerical or character
literals. An example of a simple network of triples – called RDF graph – with
URIs is shown in Figure 1. It represents information about the resource JS. This
resource is of a type person, has a given name John, and a family name Smith.
It is a creator of a www.ualberta.ca with a title university of alberta.

In this paper we treat an RDF graph (Figure 1) as a definition of a item, i.e.,
the central resource is defined by all resources to which the central resource is
connected. These defining resource are called features.

http://www.ualberta.ca

University of Alberta Web Site

http://purl.org/dc/elements/1.1/title
http://www.ualberta.ca/JS

http://purl.org/dc/elements/1.1/creator

http://xmlns.com/foaf/0.1/Person

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
John

http://xmlns.com/foaf/0.1/givenName

Smith

http://xmlns.com/foaf/0.1/familyName

Fig. 1. RDF graph: example

The application of URIs to identify elements of RDF triples means that there
is no need to “have” pieces of information stored locally, only the addresses of
their locations are required.

The introduction of RDF-based information representation creates the oppor-
tunity to treat the use’s knowledge base as an “extension” of the web. This idea
is based on the fact that the information known to the user is stored as her
“private” RDFs. The private triples are still connected to elements on the web
via URIs, and they represent the information experienced by the user.

Such a concept allows for a new way of searching for information and its
assimilation. The search process means releasing of software agents that work
on the behalf of the user. They crawl the web for new information, compare
it with the information known to the user – her private RDF triples – and
depending of its novelty, integrate this information with the user’s knowledge.

In this paper, that indirectly introduces the concept of agent-based search, we
focus on a number of procedures required for: determining a novelty of informa-
tion; integrating a new information with the user’s knowledge; assessing levels
of compatibility between the user’s information and the web contents; and esti-
mating confidence in the user’s information after the integration process. As a
result, we are introducing and showing how to build/maintain the user’s knowl-
edge base containing information and facts experienced by the user – her agents
– on the web, together with experience-based compatibility of this information,
and confidence in it.
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2 Repository of User’s Experience and Knowledge

An automatic process of collecting new information on the user’s behalf means
that the information currently known to the user has to be clearly identified
and stored. The experience in searching the web for information – experience in
browsing the web, looking for data at different locations, gaining information and
learning new things, all this need to be captured in a local repository representing
the user’s current state of knowledge. Such repository in not isolated but fully
“integrated” with the web – it is an extension of the web.

2.1 Personal Linked Data and Special Properties

The increasing popularity of LD has triggered an idea of using RDF triples as
the fundamental components of the user’s personal repository. Hence, we will
call this repository a “personal LD” or pLD for short.

Similarly as in the case of LD, the pLD is a mesh of triples. However, all
triples in the pLD represent information the user knows, i.e., information that
the user (her software agents) has already “seen and experienced”. The fact that
each element of a triple can be an URI, means that the pLD does not need to
store all pieces of information. What is stored in the pLD are URIs pointing to
places on the web that contain information the user is aware of.

In order to represent user’s processes of searching and collecting information
in a more realistic manner, we need the ability to express experience-based com-
patibility 1 of information, and levels of confidence in this information. Thus, we
introduce three special RDF properties to represent this information:

– individual relevance (REL) to store values of relevance between two pieces
of information being compared;

– information compatibility (IC) to store experience-based compatibility of the
information expressed by a triple with the web contents;

– confidence level (CL) to bind a given triple to a value representing confidence
in the stored information.

The first property (REL) is added to a given triple (already known) every time
a new piece of information is being compared with the triple, and the level of
relevance exceeds a threshold value set up by the user. This threshold value rep-
resents the user’s minimum level of relevance between two pieces of information
which the user is willing to accept. Eventually, the triple has a number of REL
properties that are used to calculate values of IC and CL.

The fragment of the pLD is presented in Figure 2. There are four REL prop-
erties created for the triple < ri; px; ra >, three for the triple < ri; py; rb >,
and two for < ri; px; rc >. This means the resource ra was a part of four dif-
ferent comparisons of ri with some other resources, rb with three, and rc with two

1 The compatibility we consider here is the result of encountering variety of pieces of
information on the web, and comparing them with the already known information.
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Fig. 2. A snippet of pLD with new RDF triples: REL, IC, and CL

comparisons. Based on these RELs, the values of properties IC and CL – for
each triple individually – are calculated (Section 3).

2.2 Personal Linked Data as User’s Knowledge Base

The proposed pLD, equipped with three special RDF triples, is the user’s knowl-
edge base. It is suitable for: 1) representing user’s state of knowledge – via keep-
ing references to all pieces of information the user (her agents) encountered and
assimilated during the previous browsing activities; 2) representing degrees of
compatibility of stored pieces of information – determined based on the relevance
between known pieces of information and pieces experienced by the user (her
agents) during the information collection processes; 3) representing confidence
levels in pieces of information stored in the base – determined as a combination
of information compatibility and frequency of exposure to related information.

The compatibility property can be interpreted as an assurance that RDF
triples stored in the pLD “agree” with the information on the web, while the
confidence property can be interpreted as the user’s belief in these RDF triples.
If we take a resource and look at its connections with other resources (features),
some of these connections are correct and have a high value of confidence – in-
dicators that these pieces of information are in the agreement with information
available on the web, and they have been encountered by the user (her agents)
multiple times. It should be noted that a single triple can have a high compatibil-
ity value but a low confidence level (information known to the user is in “sync”
with the web, but it has been encountered just a very few times). However, if
a triple is “seen” multiple times but its compatibility value is low the value of
confidence in that triple is also low.
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3 Information Assimilation Mechanism

A process of assimilation of information is conducted in two stages [5]: determin-
ing relevance of new information when compared with the information already
known to the user2; and its integration with the already known information.

3.1 Relevance Determination

The first phase of the assimilation process is determining a level of relevancy
of the new information when compared with the known information. It is done
via assessment of similarity between a new piece of information – new resource
– and the contents of the pLD. The similarity assessment means comparison of
features of resources. This approach seems natural – a set of resources that are
features of the new resource are compared with the features of known resources
stored in the pLD. It is done on the one-by-one basis, i.e., the new resource and
its features are compared with the resources and their features that already exist
in the pLD.

In general, the comparison of triples can take place in four different scenarios,
defined by all possible combination of resources’ features – shared or unique, and
properties – common or unique. A thorough analysis of the process of determin-
ing similarity between resources in LD has been preformed in [6].

For the purpose of our ultimate goal – assimilation of information – we con-
sider only one of these scenarios. This scenario takes into consideration only the
resources that are connected to both new and known resources via the same
properties. We will call them bilateral features. The features that are connected
to both resources via different connections (properties) will be called here uni-
lateral features. The bilateral features contribute directly to the relevance of two
resources according to the formula:

relevance(ri, rj) =

∑
rk∈Rb

i,j

CL(< ri; p∗; rk >) ∗ IC(< ri; p∗; rk >)∑
rl∈Ri

CL(< ri; p∗; rl >) ∗ IC(< ri; p∗; rl >)
(1)

where Ri represents the set of all features of the known resource ri, R
b
i,j the set

of bilateral features between ri and the new resource rj . P∗ indicates that any
common property is acceptable, as long as it connects ri with a bilateral feature.
The IC(< ri; p∗; rk >) represents compatibility of information, i.e., a degree of
compatibility of the triple < ri; p∗; rk >, while CL(< ri; p∗; rk >) represents a
level of confidence in this triple. The numerator represents a sum of products
IC ∗CL for the bilateral features, while the denominator represents a sum of the
products for all features of the resource ri. This means that a relevance value is
calculated in the reference to the known resource.

2 We will use the term “new information” or “new resource” to describe the informa-
tion to be assimilated, and the term “known information” or “known resource(s)”
to indicate the information already known to the user.
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Example I. Let us take a look at Figure 3. It represents two resources – the
known resource ri, and the new resource rj . As we can see on the pLD side, each
connection is marked by its type (numerical value in bold), as well as the values
of IC and CL associated with it.

The first step in determining the level of relevance between the resources ri
and rj is to identify shared features (resources) and common properties. The
sets are: Rsh

i,j = {rA, rB , rC , rD}, and Pi,j = {1, 2, 3, 4}. Based on these sets we

can determine bilateral features: Rb
i,j = {rA, rB , rC}, and a set of connections

linking them to ri: P b
i,j = {1, 2, 4}. The level of relevance of ri and rj can be

determined as:

relevance(ri, rj)

=
.7∗.6 + .6∗.8 + .9∗.5

.7∗.6 + .6∗.8 + .9∗.5 + .2∗.4 + .5∗.7 + .9∗.6 + .6∗.7 + .8∗.7 + .1∗.5

=
1.35

3.35
= 0.403
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Fig. 3. Determining relevance between two resources ri and rj

3.2 Knowledge Integration

Once the level of relevance is determined, the process of integration means adding
the new resource and its features to the pLD. This process takes three steps:

– adding a triple SameAs between known and new resources, and adding triples
REL, CL and IC to it;

– modifying triples REL, CL and IC of bilateral and unilateral features;
– adding triples REL, CL and IC to connections between new resource and
its features.
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Adding the New Resource. The new resource is being added if the determined
level of relevance exceeds the threshold value identified by the user. The triple

< known resource;SameAs;new resource >

is created. The value of REL added to it is obtained via aggregation, for example
using min function, of the determined level of relevance and the trust value3 as-
sociated with the source of the information. The value of IC is calculated based
on it (for the case of a single REL, the value of IC is equal to REL). The value
of CL is calculated using Equation 3.

Modifying Connections to Bilateral Features. This modification means
adding another REL and updating ICs and CLs of the connections between
ri (known resource) and each bilateral feature. At first, the determined rele-
vance value is assigned as REL to each connection. The IC value for each such
connection is re-calculated based on all relevance values (REL) associated with
it:

IC(< ri; p∗; ra >) = RELavg − α ∗RELstd (2)

where ra is a bilateral feature, and p∗ a property of the connection. The RELavg

and RELstd are average and standard deviation calculated over all RELs of a
given connection. The value of α (in the range from 0.0 to 0.5) represents user’s
disbelief in treating an average value as a good representative of set of values.
Large value means large disbelief. Our interaction with a number of individuals
has led to α = 0.25.

The CL values are calculated according to:

CL(< ri; p∗; ra >) = LapR(< ri; p∗; ra >)− β ∗RELstd(< ri; p∗; ra >) (3)

where

LapR(< ri; p∗; ra >) =
N + 1

N + 2
(4)

is called a Laplace ratio, and N represents a number of REL properties assigned
to < ri; p∗; ra >. The value of β represents user’s belief that standard deviation
should be included in the determination of confidence values. Higher values of
β means the user wants to include the influence of variability of the relevance
values. Once again, our interaction with users had led to β = 1.0.

Modifying Connections to Unilateral Features. Based on the definition of
the unilateral features it is known that the connection from ri to the unilateral
feature and the connection from rj to the same unilateral feature are different.

3 The trust value can be obtained as the result of other calculations, or some default
value can be assumed. The process of determining the trust in an information source
is beyond the scope of this paper.
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Therefore, we do not modify the connection between ri and the feature, but
we add a new connection between ri and the feature – this connection has the
property of the connection between the new resource rj and the feature. The
values of REL, IC, and CL are the same as calculated for Adding the new
resource above.

Modifying Connections of the New Resource. Each connection between
the new resource and all its features is also labeled with properties REL, IC,
and CL calculated as for Adding the new resource above.

Example II. Both resources ri and rj from Example I need to be integrated.
The process of integration requires one more value – user’s trust in the source
of information, i.e., in the origin of resource rj . For the purpose of this example
we assume the value of trust is equal to 0.7.

There are two new connections: between ri and rj with the property SameAs,
and between ri and rD with the property 1. The first one is due to the relevance
between ri and rj calculated in Example I, while the second is due to the fact
that the resource rD is a unilateral feature.

The modification of connections occurs for the connections from ri to bilateral
features. It means the addition of the determined relevance value as another
REL. The IC is re-calculated using this updated set of REL, while CL is re-
calculated using the Laplace Ratio.

Figure 4 shows the integrated information together with all obtained levels of
IC and CL. The connections in bold represent new or modified connections of
the resource ri.
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Fig. 4. Assimilation of a resource rj to pLD
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4 Case Study

A very simple case study is included to illustrate the proposed process of infor-
mation assimilation. The example shows how an existing knowledge base (con-
taining a few triples) is expended by integrating two sets of triples found by a
software agent.

4.1 Experimental Setup

Three resources, together with their features, have been taken from dbpedia.org.
They represent three resources: Georges Braque, Pablo Picasso, and Braque, Fig-
ure 5. As it can be seen, the connections are labeled with acronyms of properties:
SUB – subject, MOV – movement, INDby – influenced by, IND – influenced.

It is assumed that the information about the resource Georges Braque GBrq
is a part of the user’s pLD. The initial values of REL and IC are set to 0.5,
and CL to 0.67 (Laplace Ratio in the case of a single connection). The user’s
threshold for acceptance of the new information is 0.5. The trust in the source
of information is 0.7.

4.2 Integration Process

At first, the resource Pablo Picasso PPic is being integrated with pLD (step
marked with int-1). Secondly, Braque Brq is added (marked as int-2), Figure 5.
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Fig. 5. pLD after integrating Georges Braque (GBrq) with Pablo Picasso (PPic), and
Braque (Brq)
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The relevance value between GBrq and PPic has been determined to be
7/13, and it exceeds the threshold. The triple with the property SameAs (bold
line) has been added. It is equipped with REL = [min(7/10, 7/13) = 7/13],
IC = 7/13 = 0.54 and CL = 2/3 = 0.67. All bilateral features are affected: their
values of IC and CL are equal to 0.51 and 0.72 respectively.

The relevance value between GBrq and Brq has been determined to be 6/9.
The value is the IC associated with SameAs property (bold line) is 6/9 = 0.67,
and of CL is 0.67.

Now, the connections of the resource GBrq to the features common with
PPic and Brq have three different set of IC and CL values: one due to integra-
tion of PPic only (int-1): Paul Cezanne, cubism, Roberto Cueva del Rio, due
to assimilation of Brq (int-2): French painters, Gojmir Anton Kos, and due to
both GBrq and PPic (int-1 & int-2): Byron Galvez, cubism, Diego Rivera, Piet
Mondrian. For values of IC and CL see Figure 5.

5 Conclusion

The paper presents the results of initial research activities focused on assimi-
lation of new information by the user (her software agents) browsing the web.
The approach uses a data representation format called RDF. The novel method
allows for assessing relevance of new information, and integrating it with al-
ready known information. The important aspect of this approach is its ability
to assess compatibility of the information with the web contents at the time of
its integration – this compatibility is experience-based, i.e., it is the “sum” of
all observations done by the user. Additionally, the level of confidence in the
information is determined.

Future work will target an issue of considering only specific types of con-
nections, it will focus on mechanism of “re-learning” after the user’s knowledge
base is integrated with new information, a broader type of update – involving
connections of all neighboring resources – is also required.
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Abstract. The paper presents a quantitative approach for handling un-
certain information in knowledge bases using multivalued logics with an
intuitive double algebraic structure of lattice and semilattice. The logical
values, seen as quantities, represent various degrees of truth associated
to the base facts, which may be combined and propagated by apply-
ing inference rules forming an extended logic program. A corresponding
quantitative semantics is defined for uncertain knowledge bases, that ex-
tends successful conventional semantics as the well-founded semantics.

1 Introduction

Real world information is not always exact, but mostly imperfect, in the sense
that we handle estimated values, probabilistic measures, degrees of uncertainty,
etc, rather than exact values and information which is certainly true or false.

In the conventional database or knowledge base systems the information han-
dled is assumed to be rather exact, as a fact either is in the base (so it is true)
or is not (so it is false). That is, in such a context we use quite simplified models
of the “real” world.

This paper presents an approach for querying and updating knowledge bases
with uncertain information. In our approach, a knowledge base can be defined
in a quantitative declarative language, and is seen as a pair Δ = (P, F ), where
P is essentially a function free, extended logic program with negation and F is
a set of facts.

In order to model such knowledge bases, we extend Kleene’s three-valued logic
(true, false and unknown) by adding new values representing quantities seen as
various degrees of truth. We structure these values by defining two orders, the
truth order and the knowledge order. We then extend Przymusinski’s three-
valued stable semantics [10] to a multivalued/quantitative one, along the lines
of Fitting [9]. We use these extensions for describing the quantitative semantics
of knowledge bases with uncertain information and their updates.

Let us illustrate our approach using a simple example. Consider we want
to produce a list of albums by Leonard Bernstein, sorted according to their
jazziness. To do this we use:

– a relation A(AlbumNo,Artist) and
– the estimates of an expert as to the music type (baroque, classic romantic,

jazzy, etc). Let us think of these estimates as of a relationE(AlbumNo, Type).

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 201–210, 2012.
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Each tuple in the relation E is associated with a number/quantity, say a real
between -1 and 1, indicating the expert’s opinion as to whether the album
is of the type: 1 (or -1) indicates that the expert thinks the music of the
album is certainly (or is not at all, respectively) of the type; 0 expresses that
the expert has no particular opinion (so no information available); 0.9 (or
-0.9) means that the expert is highly confident that the music is (or is not,
respectively) of the type, etc.

The query Q that we want to answer is defined by the simple logic program
formed of one rule whose body is a conjunct of two atoms as follows:

Q(X)← A(X, leonardBernstein) & E(X, jazz)

The question arising here is how we combine the uncertain information provided
by relationE with the certain information from the relationA. A natural solution
would be to assign the value 1 to all the tuples in the relation A and -1 to all
the tuples in the complementary relation (i.e. not stored in A), and to combine
a tuple value with an estimate of the expert by using min operation. Various
functions that may be used to define logical operations for combining uncertain
information are discussed in [8].

In the light of our discussion, there are applications where we need (a) more
than two logical values and (b) more that one order over these values (i.e. more
than one way of structuring the set of logical values). Indeed, the values can
be ordered w.r.t. their degree of truth as for instance -1 and 1, being seen as
false and true, are the least and the greatest values, respectively. The values can
be ordered also w.r.t. their degree of information or knowledge as for instance
0, -1, and 1, being seen as unknown, false and true, are the least, one maximal
and another maximal values, respectively. Therefore we will introduce and use
a multivalued logic with two orders, a truth order and a knowledge order.

Let us mention that there exist several formalisms on which various ap-
proaches tackling the matter of uncertain, incomplete and inconsistent infor-
mation in logic programs, databases and knowledge bases, are based. Some of
the most used formalisms include the probability theory [13,11,3], the theory
of fuzzy logic/sets [5], the multivalued logics [9,6,12], and the possibilistic logic
[5,4,7]. [2] provides interesting unified views of various approaches treating the
problem of uncertainty, vagueness and probabilistic reasoning in logic programs.

In the following Section 2 we formally introduce the multivalued logic that
we use, while in Section 3 we define programs on such a logic, and their quan-
titative semantics. In Section 4 we study uncertain knowledge bases and their
updating based on the quantitative semantics we introduce. Finally we provide
some concluding remarks and research directions in Section 5.

2 The Logic Lm

The multivalued logic that we introduce and use in this paper comprises the usual
values of the three-valued logic, i.e. true, false and unknown, as well as additional
values expressing various degrees of truth. As illustrated in the example provided
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in the introduction, we use numbers/quantities to represent these logical values,
as follows: 1 for true, −1 for false, 0 for unknown, and ±1/m, . . . ,±(m− 1)/m
for different degrees of truthness or falseness, where m is a positive integer. The
values 1 and −1 express exact information while the values 0,±1/m, . . . ,±(m−
1)/m express partial or uncertain information; particularly, the value 0 expresses
the lack of information. We denote by Lm the set of these 2m+1 logical values,
that is,

Lm = {±(n/m) | n = 0, . . . ,m}.
As mentioned in the introduction, we consider two orders on the set Lm, the
truth order that we denote by ≤t, and the knowledge order that we denote by
≤k. The truth order shows the degree of truth, and the knowledge order shows
the degree of knowledge (or of information). The logical values of Lm are thus
ordered as follows:

– truth order: −1 ≤t −n1/m ≤t −n2/m ≤t 0 ≤t n2/m ≤t n1/m ≤t 1
– knowledge order: 0 ≤k −n2/m ≤k −n1/m ≤k −1 and 0 ≤k n2/m ≤k

n1/m ≤k 1,

for all the integers n1 and n2 between 0 and m s.t. n1 ≥ n2.
Note that L1 is isomorphic with the well known Kleene’s three-valued logic

that comprises the values true, false and unknown. On the other hand L2 is a
five-valued logic having two new values w.r.t. L1, namely 1/2 and −1/2, which,
in the context of the logic L2, will be interpreted qualitatively as possibly true
and possibly false, respectively.

Motivation for possible uses of the logics Lm, with various values for m, can
be found in various applications relevant to the area of knowledge based systems.
For instance, in [1], in order to express degrees of belief in the handled knowledge,
one uses linguistic labels like null evidence, negligible evidence, small evidence,
some evidence, half likely, likely, most likely, extremely likely, and certain. These
labels, seen as qualitative representations of belief degrees, may be mapped into
the non negative part of L8, corresponding to the quantities 0, 1/8, 2/8, 3/8, 4/8,
5/8, 6/8, 7/8, and 1, respectively. Obviously the opposite labels correspond in
the same way to the non positive part of L8. The advantage in using numbers for
belief degrees instead of labels is the possibility of flexibly defining operators that
combine these degrees, using different mathematical functions (see [8]). In our
framework, this reduces to defining the logical connectives. However linguistic
labels are more appropriate to use when dealing for instance with knowledge
based systems, in particular during the process of knowledge acquisition from
human experts, before converting these labels into quantities.

We shall use the logic L2 as a context for our examples, for illustrative pur-
poses. However all our results are valid for the logic Lm for an arbitrary m.
Unless mentioned otherwise, from now on we refer to the general logic Lm.

In the truth order, we shall use the logical connectives ∧,∨ and ¬ that we
define as follows (see [8] for various functions that may be adapted and used to
define logical connectives):
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l1 ∧ l2 = min(l1, l2), l1 ∨ l2 = max(l1, l2) and ¬l = −l

for any l, l1 and l2 in Lm. The connectives ∧ and ∨ are in fact the meet and
join operations in the truth order. It is not difficult to see that (Lm,∧,∨) is
a complete lattice w.r.t. this order. In the knowledge order, Lm is a complete
semilattice.

3 Logic Programs and Their Quantitative Semantics

The programs that we use in this paper are essentially conventional logic pro-
grams with negation, adapted to the context of the logic Lm, in the sense that
the logical values of Lm can appear as 0-arity predicate symbols in the bodies of
the rules. Another difference from the conventional logic programs lies in the se-
mantics defined here, which is a quantitative one in order to express uncertainty.
We consider function free logic programs that are to be used, in our approach,
as inference mechanisms in the knowledge bases we introduce.

3.1 Programs

The programs that we consider are built from atoms, which are predicate symbols
with a list of arguments, for example Q(a1, .., an), where Q is the predicate
symbol. An argument can be either a variable or a constant, and we assume
that each predicate symbol is associated with a nonnegative integer called its
arity. A literal is an atom A, or a negated atom of the form ¬A. Atoms are called
also positive literals, and negated atoms are called also negative literals. A rule
is a statement of the form A← B1, B2, ..., Bn, where A is an atom and each Bi

(i = 1, ..., n) is either a literal or a value from Lm, seen in this case as a 0-arity
predicate. The atom A is called the head of the rule and B1, B2, ..., Bn is called
the body of the rule. A program is a finite set of rules. Such a program consisting
of five rules is illustrated below.

P : A← ¬B; B ← ¬C; C ← ¬A; D ← 1/2; E ← A,¬D.

A positive program is a program in which the negation symbol ¬ does not appear.
The Herbrand universe of a program P is the set of all constants that appear

in P (and if no constant appears in P then the Herbrand universe is assumed to
be a fixed singleton). By instantiation of a variable x we mean the replacement of
x by a constant from the Herbrand universe. If we instantiate all the variables of
an atom or of a rule, then we obtain an instantiated atom or rule. The Herbrand
base of a program P is the set of all possible instantiations of the atoms appearing
in P . The Herbrand base of a program P is denoted by HBP .

3.2 Valuations and Models

Given a program P , we define a valuation to be any function that assigns a
logical value from Lm to every atom of the Herbrand base. We shall make use of
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two special valuations that we denote by 0 and −1. The valuation 0 assigns the
value 0 to every atom in the Herbrand base; it is the “nothing known” valuation.
The valuation −1 assigns the value −1 to every atom in the Herbrand base; it
is the “all false” valuation.

Given a valuation v, we extend it to elements of Lm (seen here as predicates
of arity 0), to literals and to conjunctions of literals and 0-arity predicates from
Lm as follows:

v(l) = l, where l is any element of Lm,
v(¬A) = ¬v(A), where A is any instantiated atom,
v(B1 ∧B2 ∧ ... ∧Bn) = v(B1) ∧ v(B2) ∧ ... ∧ v(Bn), for n ≥ 0,

where the Bi’s are instantiated literals or elements from Lm.
We can extend the two orders ≤t and ≤k to the set V of all valuations in a

natural way: for any valuations u and v, we say that

u ≤t v if u(A) ≤t v(A) for all A in HBP and
u ≤k v if u(A) ≤k v(A) for all A in HBP .

It is then not difficult to see that, in the truth order, V becomes a complete
lattice while, in the knowledge order, V becomes a complete semilattice.

In the truth order, we say that a valuation v satisfies an instantiated rule
A ← B1, B2, ..., Bn if v(A) ≥t v(B1 ∧ B2 ∧ ... ∧ Bn). This definition is natural,
as it expresses the fact that if A is deduced from B1, B2, ..., Bn then A must be
assigned a logical value greater than or equal to the value assigned to B1 ∧B2 ∧
... ∧ Bn. Now, if a valuation v satisfies all possible instantiations of the rules of
a program P , then v is called a model of P . Given a program P , we shall denote
by P ∗ the set of all possible instantiations of the rules of P . Note that P ∗ is also
a program, possibly much larger, in general, than P , but finite.

Given a program P , we define the immediate consequence operator of P to be
a mapping ΦP : V → V defined as follows: for every valuation u in V , ΦP (u) is
a valuation s.t. for every atom A of the Herbrand base,

ΦP (u)(A) = lubt{u(C) | A← C in P ∗}.

Here lubt denotes the least upper bound in the truth order.

3.3 Quantitative Semantics of Positive Programs

We can show easily that if P is a positive program then its immediate conse-
quence operator ΦP is monotone in the truth order. Now, as the set V of all
valuations is a complete lattice, ΦP has a least fixpoint w.r.t. ≤t, denoted by
lfpt ΦP . We can show that this least fixpoint is, in fact, the least model of P
w.r.t. ≤t. So we call lfpt ΦP the quantitative semantics of P , or simply the
semantics of P . It follows that the semantics of P can be computed as the limit
of the following sequence of iterations of ΦP :
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u0 = −1 and un+1 = ΦP (un) for n ≥ 0.

Here,−1 is the valuation that assigns the value−1 to every atom of the Herbrand
base. Note that since the programs contain no function symbols the computation
of the semantics lfptΦP terminates in a finite number of steps. Note also that,
due to the way the semantics is computed, i.e. by iterating the immediate conse-
quence operator to reach its fixpoint or, equivalently, by repeatedly applying the
rules until nothing new is obtained, the semantics can be intuitively interpreted
as the total knowledge that can be extracted/inferred from the program.

3.4 Quantitative Semantics of Programs with Negation

If the program P contains negative literals then the immediate consequence op-
erator ΦP is no more monotone. As a consequence we can no more define the
semantics of P as the least model of P w.r.t. the truth order, since such a model
may not exist. So we have to look for a new definition of semantics for P extend-
ing the semantics of positive programs. The idea, explained intuitively through
the following example, is, again, to try to deduce all the possible knowledge from
a program with negation.

Example 1. Consider the logic L2 and the following program P , where A,B,C
and D are predicates of arity 0:

A← ¬B; B ← ¬C; C ← ¬A; D ← 1/2; E ← A,¬D.

Note that P is already instantiated, that is P ∗ = P . We begin by assuming
“nothing known” about the negative literals of the program i.e., we begin with
the valuation v0 = 0 for the negative literals. Now, if we replace all the negative
literals of P ∗ by their values under v0 (i.e. by 0), then we obtain the following
positive program denoted by P/v0:

A← 0; B ← 0; C ← 0; D ← 1/2; E ← A, 0.

The semantics of P/v0 is:

lfpt ΦP/v0 =

[
A B C D E
0 0 0 1/2 0

]
.

As a result, we have increased our knowledge, since we now know that D is asso-
ciated with 1/2 (as opposed to 0 that we had assumed initially). This increased
knowledge is represented by the valuation v1 = lfptΦP/v0 .

The next step is to use v1 instead of v0. That is, we can now replace all the
negative literals of P ∗ by their new values under v1, and infer more knowledge
from the new positive program P/v1 we thus obtain. This knowledge is given
by the semantics lfptΦP/v1 of the program P/v1, that we denote by v2. The
process continues with generating new positive programs and computing their
semantics until no new knowledge can be inferred. Although we do not illustrate
the complete process here, in our example the total knowledge inferred from the
positive programs we build (and hence from the original program P ), is given
by the valuation:
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v2 = lfpt ΦP/v2 =

[
A B C D E
0 0 0 1/2 −1/2

]
Intuitively speaking, the total knowledge inferred from the program, i.e. the
valuation v2 above, naturally represents the semantics of the program.

We formally define the semantics of a program P with negation as follows.

Definition 1. The mapping GLP : V → V defined by GLP (v) = lfptΦP/v, for
all v in V , is called the extended Gelfond-Lifschitz transformation of P .

Using the algebraic properties of complete lattice and complete semilattice of
Lm w.r.t. ≤t and ≤k respectively, we can show the following:

Theorem 1. The operator GLP is monotone in the knowledge order.

Now, as the set V of all valuations is a complete semilattice in the knowledge
order, GLP has a least fixpoint w.r.t. ≤k, denoted by lfpkGLP . In the previous
example, this least fixpoint is the valuation v2. We can show that the fixpoints of
GLP are models of P , and we call them multivalued models of P . The lfpkGLP

is the multivalued model of P that has the least degree of information. In fact,
lfpkGLP represents all the information/knowledge that one can extract from P ,
as we have seen in the previous example. So we choose lfpkGLP to represent
the semantics of P and we call it the quantitative semantics of P . It follows that
the quantitative semantics of P can be computed as the limit of the following
sequence of iterations of GLP :

v0 = 0 and vn+1 = GLP (vn) for any n ≥ 0.

The limit can be reached in a finite number of iterations due to the function
free programs we consider. We note that, if we use the three-valued logic L1

then the quantitative semantics described here coincides with Przymusinski’s
three-valued stable semantics [10] that, in turn, coincides with the well-founded
semantics.

4 Knowledge Bases with Uncertain Information

4.1 Quantitative Semantics for Knowledge Bases

The rules of a program represent our general perception or knowledge of a part
of the “real” world. Our general perception represented by the rules, is then con-
fronted to the observation of “real” world facts. Informally, a fact is a statement
such as “an ostrich possibly cannot fly”, describing the results of our observation.
More formally, a fact is an instantiated atom along with the logical value that ob-
servation assigns to it. As a consequence, we shall represent facts as pairs of the
form 〈A, l〉, where A is an instantiated atom and l is any value from Lm. For in-
stance, in logic L2, the fact above will be represented as 〈 Flies(ostrich),−1/2〉.
We have the following
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Definition 2. An uncertain knowledge base is a pair Δ = (P, F ), where P is a
program and F is a set of facts in the context of the logic Lm.

Now, when we observe a fact 〈A, l〉 and we place it in the knowledge base,
we certainly intend to assign the logical value l to A, no matter what value is
assigned to A by the quantitative semantics of P . In other words, the semantics
of the knowledge base will be that of P modified so that A is assigned the value l.
More formally, in order to define the semantics of a knowledge base Δ = (P, F ),
we first transform P ∗, using F , as follows:

– Step 1: Delete from P ∗ every rule whose head appears in a fact of F
– Step 2: Add a rule A← l for every fact 〈A, l〉 in F .

Let us denote by P 
F the program obtained by applying the above steps 1 and
2 to P ∗. Note that Step 1 removes every rule of P ∗ that can possibly influence
the value assigned to A in the semantics of Δ; and Step 2 guarantees that A
will actually be assigned the value l. Informally speaking, the two steps above
resolve any potential inconsistency between rules and facts in the knowledge
base by giving priority to facts1. However, inconsistency may be generated by
contradictory facts alone, hence the following definitions:

Definition 3. A knowledge base Δ = (P, F ) is called consistent if F does not
contain two facts of the form 〈A, l〉 and 〈A, l′〉 with l �= l′.

Definition 4. The quantitative semantics of a consistent knowledge base Δ =
(P, F ) is defined to be the quantitative semantics of the program P 
 F .

The following proposition shows that facts are trivially contained in the seman-
tics of the knowledge base.

Proposition 1. Let Δ = (P, F ) be a knowledge base and let v be its semantics.
Then, for every fact 〈A, l〉 in F , we have v(A) = l.

Given a knowledge base Δ whose semantics is v, we call a knowledge base fact
any pair 〈A, v(A)〉, where A is an instantiated atom.

4.2 Knowledge Base Updating

Informally, by updating a knowledge base Δ = (P, F ) we mean adding a fact
〈A, l〉 in the set F . Of course, the intention is that the atom A must be assigned
the value l in the semantics of the updated knowledge base.

The knowledge base updating is formally defined as follows:

Definition 5. Let Δ = (P, F ) be a consistent knowledge base. The update of
Δ by a fact 〈A, l〉, denoted by upd(Δ,A, l), is a new consistent knowledge base
Δ′ = (P, F ′), where F ′ is defined by:

(1) remove from F every fact 〈A, l′〉 such that l′ �= l and
(2) to the result thus obtained, add 〈A, l〉.

1 Note that inconsistency cannot appear due to rules alone.
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4.3 Properties of Updates

The updating operation, as defined here, enjoys certain properties that corre-
spond to intuition. In order to state these properties, let us call two knowledge
bases Δ and Δ′ (with the same Herbrand base) equivalent if they have the same
semantics. We shall denote this by Δ ≡ Δ′. The first property of updating is
idempotence, as expressed by the following:

Proposition 2. For any knowledge base Δ, and for any instantiated atom A
and logical value l, we have: upd(upd(Δ,A, l), A, l) ≡ upd(Δ,A, l).

The following property says that, under certain conditions, the order in which
updates are performed is not important:

Proposition 3. For any knowledge base Δ, and for any instantiated atoms A
and A′ and logical values l and l′ we have:
upd(upd(Δ,A, l), A′, l) ≡ upd(upd(Δ,A′, l), A, l), and if A and A′ are distinct
atoms then upd(upd(Δ,A, l), A′, l′) ≡ upd(upd(Δ,A′, l′), A, l).

The following proposition states a property of “reversibility” for updates. Roug-
hly speaking, this property means that if we modify the value of a knowledge
base fact 〈A, l〉 from l to l′, and from l′ back to l, then we recover the original
knowledge base facts (that is, the original and the final knowledge bases are
equivalent).

Proposition 4. Let Δ be a knowledge base and let 〈A, l〉 be a knowledge base
fact in Δ. Then upd(upd(Δ,A, l′), A, l) ≡ Δ.

Another property of updates is monotonicity. Roughly speaking, this property
means that if the value of a knowledge base fact increases then so does the
knowledge base semantics. In the knowledge order, this property holds for any
knowledge base:

Proposition 5. Let Δ = (P, F ) be a knowledge base with semantics v, let 〈A, l〉
be any fact, and let v′ be the semantics of the knowledge base Δ′ = upd(Δ,A, l).
Then the following statements hold:

(1) if l ≥k v(A) then v′ ≥k v and (2) if l ≤k v(A) then v′ ≤k v.

In the truth order, however, monotonicity holds only for knowledge bases with
positive programs:

Proposition 6. Let Δ = (P, F ) be a knowledge base with semantics v, let 〈A, l〉
be any fact, and let v′ be the semantics of the knowledge base Δ′ = upd(Δ,A, l).
If P is a positive program, then the following statements hold:

(1) if l ≥t v(A) then v′ ≥t v and (2) if l ≤t v(A) then v′ ≤t v.

5 Conclusion

In order to express uncertainty in knowledge bases we have introduced a multival-
ued logic called Lm, with a double algebraic structure of lattice and semilattice
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w.r.t. two orders - the truth order and the knowledge order, respectively. We
have defined a quantitative semantics for logic programs and knowledge bases
in the context of the logic Lm, which extends successful conventional semantics
as the three-valued stable semantics and the well-founded semantics.

We note that the logic Lm may be used to express various degrees of uncer-
tainty but not inconsistency. That is, the problem of dealing with constraints
and/or inconsistent data has not been tackled here. Moreover, in our approach
a consistent knowledge base remains so after performing any update operation
on it.

Future work concerns the extension of the approach presented here such that
the knowledge base facts have imprecise degrees of uncertainty as intervals of
punctual values.

References

1. Baroni, P., Giacomin, M., Guida, G.: A- and V-uncertainty: an exploration about
uncertainty modeling from a knowledge engineering perspective. International
Journal on Artificial Intelligence Tools 16(2) (2007)

2. Baral, C.: Logic Programming and Uncertainty. In: Benferhat, S., Grant, J. (eds.)
SUM 2011. LNCS, vol. 6929, pp. 22–37. Springer, Heidelberg (2011)

3. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming 9(1) (2009)

4. Benferhat, S., Prade, H.: Compiling possibilistic knowledge bases. In: Proc. of the
17th European Conference on Artificial Intelligence (2006)

5. Bosc, P., Prade, H.: An Introduction to the Fuzzy Set and Possibility Theory-Based
Treatment of Flexible Queries and Uncertain or Imprecise Databases. Uncertainty
Management in Information Systems. Kluwer Academic Publishers (1996)

6. Deschrijver, G., Arieli, O., Cornelis, C., Kerre, E.: A bilattice-based framework for
handling graded truth and imprecision. J. Uncertainty, Fuzziness and Knowledge-
Based Systems 15(1) (2007)

7. Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view.
Fuzzy Sets and Systems 144, 3–23 (2004)

8. Fagin, R.: Combining fuzzy information from multiple systems. J. Computer and
System Sciences 58, 1 (1999)

9. Fitting, M.: Fixpoint semantics for logic programming - a survey. Theoretical Com-
puter Science 278(1-2) (2002)

10. Przymusinski, T.C.: Extended Stable Semantics for Normal and Disjunctive Pro-
grams. In: Proc. of the Seventh Intl. Conference on Logic Programming (1990)

11. Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate Operators in Probabilistic
Databases. Journal of the ACM 52(1) (2005)

12. Stamate, D.: Queries with multivalued logic based semantics for imperfect informa-
tion fusion. In: Proc. of 40th IEEE International Symposium on Multiple-Valued
Logic (2010)

13. Subrahmanian, V.S.: Probabilistic Databases and Logic Programming. In:
Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, p. 10. Springer, Heidelberg (2001)



Weighted Attribute Combinations

Based Similarity Measures

Marco Baioletti, Giulianella Coletti, and Davide Petturiti

Dip. Matematica e Informatica, Università di Perugia,
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Abstract. In this paper we introduce three parameterized similarity
measures which take into account not only the single features of two
objects under comparison, but also all the significant combinations of
attributes. In this way a great expressive power can be achieved and
field expert knowledge about relations among features can be encoded in
the weights assigned to each combination. Here we consider only binary
attributes and, in order to face the difficulty of weights’ elicitation, we
propose some effective techniques to learn weights from an already la-
belled dataset. Finally, a comparative study of classification power with
respect to other largely used similarity indices is presented.

Keywords: weighted attribute combination, similarity measure, binary
data, classification.

1 Introduction

An important task in many fields, such as artificial intelligence, statistics and
information retrieval, is to quantify how two given objects O1 and O2 are “simi-
lar”. Usually this is done by means of a similarity measure, i.e., a function which
given the descriptions of O1 and O2 returns a real number, generally in [0, 1].

While a similarity measure is based on the concept of proximity between
objects, it is also possible to quantify how much they differ each other, obtaining
a corresponding dissimilarity measure.

The most naive approach to model dissimilarity between objects is to map
them in a metric space and use the ensuing distance function to express dis-
similarity. Of course, the metric assumption is quite strong and deeply tied to
the nature of the available data nevertheless it is often inconsistent with human
reasoning. Indeed Tversky, in his seminal work [15], showed that human assessed
similarity violates “naturally” two metric conditions such as symmetry and the
triangular inequality.

In this paper we focus on similarity measures for binary data, i.e., for objects
described in terms of presence/absence attributes. Following Tversky’s proposal,
in the relevant literature (see, e.g., [12,7]) a plethora of different similarity indices
have been proposed in the case of binary data and these, in turn, have been
extended to fuzzy data [3]. Given the considerable number of existing measures,
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in [1,2] a qualitative study of similarity relation is carried on while in [11] a
comparison between largely used measures is provided.

The most famous similarity measure for binary data used in computer science
is certainly the Jaccard index. In this case, let A and B denote the sets of positive
attributes in objects O1 and O2, then the similarity is given by

J(A,B) =
|A ∩B|
|A ∪B| (1)

where | · | denotes the set cardinality. Other well-known similarity measures are,
for example, the Dice index and the Ochiai index, but there exist many others.

All the cited measures are essentially based on the cardinality of a description
A, meaning that only the single features are taken into account and all are given
the same “importance”.

A first generalization of this approach is to diversify the relevance of each
attribute xi assigning it a non-negative real weight wi. This is the case, for
example, of the following weighted version of Jaccard index

Jw(A,B) =

∑
xi∈A∩B wi∑
xi∈A∪B wi

. (2)

However, also this generalization does not take into account the possible in-
teractions among attributes. Indeed the simultaneous presence of two or more
attributes in two objects O1 and O2 can make them more similar, while if this
combination appears only in one of them, they should be less similar.

This way of reasoning is quite common in human behaviour. For instance,
suppose that we are comparing two cars. If we know both cars are red, then we
are willing to say that they are relatively similar and the same holds true if we
know that both cars are expensive. Nevertheless, if we know that both are red
and expensive, we consider them much more similar to each other. In fact, this
combination of two attributes lead us to think both cars are Ferrari. Surely, this
is not enough to reach such a conclusion: other combinations of attributes are
needed. On the other hand, if we know that the first car has also a little horse
sign, while the second car has not, then their degree of similarity should be less.

Following this line, we propose a generalization of Jaccard measure which
takes into account, at least in theory, all the possible subsets of attributes, giving
to each of them a non-negative weight.

In this way we obtain a family of similarity measure with a high expressive
power and in which it is possible to convey background knowledge about the
application domain, through the weights.

This expressiveness is due to the great freedom in assessing a large number
of parameters, but then this could cause a difficulty in eliciting the weights. To
face this problem it is necessary to put some constraints on the weight function
in order to reduce the number of parameters to be specified.

Here we propose a method to automatically learn the weights from a classified
dataset: this can be used also to help an expert in the eliciting process. We finally
compare the similarities learned with this method to other well-known similarity
measures, in a classification task.
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2 Preliminaries

We assume that objects are described by means of a set X = {x1, x2, . . . , xn}
of binary features whose presence or absence is “significant” for the particular
application. In this way the description of an object O consists essentially of a
binary random vector (a1, a2, . . . , an) ∈ {0, 1}n or, equivalently, a subset A ∈
P(X) where xi ∈ A if and only if ai = 1.

In this setting a similarity measure is generally defined as a function S :
P(X) × P(X) → [0, 1]. There is no universal consensus about the properties a
similarity measure should satisfy: commonly required properties are reflexivity,
symmetry, some kinds of monotonicity and T -transitivity, where T is a t-norm.

Recall that a t-norm T is a commutative, associative, monotonic, binary op-
eration on [0, 1] having 1 as neutral element [10]. In particular, we denote with
TM , TP , TL and TD the minimum, the algebraic product, the �Lukasiewicz and
the drastic t-norm, respectively, observing that TD < TL < TP < TM .

Notice that T -transitivity requires S(A,B) ≥ T (S(A,C), S(C,B)) for every
A,B,C ∈ P(X) and it is especially meaningful for T equal to TP or TL since,
in this case the functions δ(A,B) = − logS(A,B) and δ′(A,B) = 1 − S(A,B)
satisfy the triangle inequality [4], respectively.

3 Weighted Attribute Combinations Based Similarities

We call significance assessment a function σ : P(X) → [0,+∞) satisfying the
following conditions:

(S1) σ(∅) = 0;
(S2) σ({xi}) > 0 for every xi ∈ X .

The function σ assigns a non-negative real weight to each combination of at-
tributes quantifying its “significance” in evaluating the similarity between two
objects. Notice that requirement (S2) imposes to assign a positive weight to
singletons. This restriction has a clear semantic interpretation: since choosing
the description of objects, only those attributes which the expert considers “sig-
nificant” are taken into account, then it is quite natural to require for them a
positive significance weight.

The function σ is then used to compute another function ϕ : P(X)→ [0,+∞)
defined for every A ∈ P(X) as:

ϕ(A) =
∑
B⊆A

σ(B). (3)

It is possible to verify that ϕ satisfies the following properties:

(P1) ϕ(A) = 0 if and only if A = ∅;
(P2) ϕ is monotonic w.r.t. set inclusion;

(P3) ϕ

(
k⋃

i=1

Ai

)
≥

∑
∅�=I⊆{1,...,k}

(−1)|I|+1ϕ

(⋂
i∈I

Ai

)
for k ∈ N and Ai ∈ P(X).
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We stress that in the case the significance assessment σ fulfils the further nor-
malization condition

∑
A∈P(X)

σ(A) = 1, then ϕ is a belief function in the context

of the Dempster-Shafer theory of evidence [14].
Now we introduce three classes of similarity measures ranging in [0, 1], each

parameterized by a significance assessment σ:

S1(A,B) =
ϕ(A ∩B)

ϕ(A \B) + ϕ(B \A) + ϕ(A ∩B)
, (4)

S2(A,B) =
ϕ(A ∩B)

ϕ(AΔB) + ϕ(A ∩B)
, (5)

S3(A,B) =
ϕ(A ∩B)

ϕ(A ∪B)
. (6)

Notice that for i = 1, 2, 3, in the case A = B = ∅, then a 0
0 form is achieved. In

this circumstance, in order to guarantee reflexivity, we set

Si(∅, ∅) = 1. (7)

It is easily seen that measures Si, i = 1, 2, 3, are a generalization of the weighted
Jaccard index (2), indeed in the case σ(A) = 0 for all A ∈ P(X) s.t. |A| > 1 we
obtain the same measure. Moreover, for every σ, (P3) implies

S1(A,B) ≥ S2(A,B) ≥ S3(A,B). (8)

In fact, the three generalizations have the role to stress in a different way the
weight of the aggregation of the features present in both objects or in only one
of them.

By the definition of similarities Si, i = 1, 2, 3, and properties (P1)–(P3) the
following proposition easily follows.

Proposition 1. For i = 1, 2, 3 and for every significance assessment σ it holds:

(strict reflexivity) Si(A,B) = 1 if and only if A = B, for A,B ∈ P(X);
(symmetry) Si(A,B) = Si(B,A) for every A,B ∈ P(X);
(exclusiveness) Si(A,B) = 0 if and only if A ∩B = ∅ �= B, for A,B ∈ P(X).

The following proposition shows two forms of monotonicity [3,5] of the intro-
duced similarity measures.

Proposition 2. For i = 1, 2, 3 and for every significance assessment σ it holds:

(monotonicity) if A ∩ B ⊇ A ∩ B′ and B \ A ⊆ B′ \ A and A \ B ⊆ A \ B′,
then Si(A,B) ≥ Si(A,B′), for every A,B,B′ ∈ P(X);

(chain monotonicity) if A ⊆ B ⊆ C, then Si(A,B)
≥ Si(A,C) and Si(B,C) ≥ Si(A,C), for every A,B,C ∈ P(X).

Proof. Both properties follow from the monotonicity of ϕ and the strict mono-
tonicity of the function f(x, y) = x

y+x with respect to both variables. �
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We note that the role of σ is crucial in measuring similarity, in fact for different
choices of σ we can have different orders in similarity for every Si, i = 1, 2, 3, as
Example 1 shows.

Example 1. Consider the feature set X = {x1, x2} and the following significance
assessment: σ(∅) = 0, σ({x1}) = σ(X) = 1 and σ({x2}) = 2. If we take A =
{x1}, B = D = X and C = {x2}, then straightforward computations show that
Si(A,B) < Si(C,D) for i = 1, 2, 3.

On the other hand if we consider the significance assessment σ′(∅) = 0,
σ′({x2}) = σ′(X) = 1 and σ′({x1}) = 2 then we have Si(A,B) > Si(C,D)
for i = 1, 2, 3.

We investigate now the T -transitivity of similarity measures Si, i = 1, 2, 3, fo-
cusing on TD, TL, TP and TM t-norms.

First of all we notice that due to exclusiveness property, none of the three
families of similarity measures can be TP -transitive or TM -transitive as proved
in [6]. Nevertheless, due to the great freedom of the significance assessment σ, it
holds that generally all the three similarity measures are not T -transitive with
T a Frank t-norm [10], as shown by the next example.

Example 2. Consider the feature set X = {x1, x2, x3} together with the signif-
icance assessment σ(∅) = 0, σ({x2}) = σ({x3}) = σ({x1, x2}) = σ({x1, x3}) =
σ({x2, x3}) = 1, σ({x1}) = 20 and σ(X) = 75;

For A = {x1}, B = X and C = {x1, x2} it results Si(A,B) = 20
23 , Si(A,C) =

20
21 and Si(C,B) = 22

23 , for i = 1, 2. Moreover, for A′ = {x1, x2}, B′ = {x1, x3}
and C′ = {x1} we have S3(A

′, B′) = 1
5 and S3(A

′, C′) = S3(C
′, B′) = 10

11 .
It is easily checked that for the given A, B, C, A′, B′ and C′ it holds

Si(A,B) < T (Si(A,C), Si(C,B)), i = 1, 2, and

S3(A
′, B′) < T (S3(A

′, C′), S3(C
′, B′)),

with T equal to TM , TP , TL. In particular, since for every Frank t-norm T , it
holds TL < T < TM [10], then the conclusion follows for every t-norm of the
Frank’s class.

The following example shows the lack of T -transitivity is due to a particular
choice of σ. Indeed, a different assessment of σ leads to T -transitivity for some
t-norms.

Example 3. Consider the feature set of Example 2 on which the following signif-
icance assessment is given: σ(∅) = σ({x1, x2}) = σ({x1, x3}) = σ({x2, x3}) = 0,
σ(X) = 1, σ({x2}) = 6 and σ({x1}) = σ({x3}) = 26.

For every A,B,C ∈ P(X) one can check that

Si(A,B) ≥ TL(Si(A,C), Si(C,B)),

for i = 1, 2, 3, implying each similarity Si (with the given σ) is TL-transitive.
Notice that TL-transitivity implies, for example, also T SW

−0.5-transitivity, where
T SW−0.5(x, y) = max(2x+2y−2−xy, 0) is the Sugeno-Weber t-norm with parameter
−0.5. Previous statement directly follows from T SW

−0.5 < TL.
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For what concerns TD-transitivity, the following result holds.

Proposition 3. For i = 1, 2, 3 and for every significance assessment σ it holds:

(TD-transitivity) Si(A,B) ≥ TD(Si(A,C), Si(C,B)), for A,B,C ∈ P(X).

Proof. If Si(A,C) �= 1 �= Si(C,B) the conclusion is trivial. On the contrary,
by the strict reflexivity property, Si(A,C) = 1 only in the case A = C, and
analogously Si(C,B) = 1 only in the case C = B. In both cases the conclusion
follows. �

4 Learning the Significance Assessment

In the previous section we have seen some examples with a small number of
attributes, in which it was possible to reason about all the existing subsets and
to assign to each of them a meaningful weight.

In real applications this is scarcely possible: the number of attributes can be
much larger, making infeasible for an expert even to consider all the possible
subsets. Moreover, since there is an almost complete freedom on the values of σ,
an operative criterion to elicit it does not exist: the significance assessment can
only reflect a subjective judgement.

Therefore it is necessary to find a procedure which allows to find in a mechan-
ical way the weights for all the subsets (or for a part of them) in a way to have
“good results” with the corresponding similarity measures. A possible solution
for these problems is to learn the similarity function from some available already
classified data.

Suppose we have a set D = {(x1, y1), . . . , (xN , yN)} of N labelled data, called
training set. Each xi is a n-tuple and yi is its corresponding class label, belonging
to a finite set C. The principle is that objects assigned to the same class should
be as similar as possible, while objects in different classes should be dissimilar.

This approach is strictly related to metric function learning (see, e.g., [16,8,17]),
where the goal is to learn a Mahalanobis metric function from data. In particu-
lar, we adapt the technique of Neighbourhood Component Analysis, used in [8],
to our problem.

A similarity function and the classified data D can indeed be used to define a
nearest-neighbourhood classifier: given any object O, assign to O the class which
corresponds to the nearest object O′ ∈ D to O.

As done in [8], for a fixed similarity Si, the problem is to find the value of σ
which maximizes NLOO(σ), the number of correctly classified objects in D by
means of leave-one-out (LOO) technique. Namely, for each O ∈ D, we compute
the nearest-neighbour O′ ∈ D \ {O} and see whether the class of O′ is the same
as the class of O. The affirmative case is considered a success, while the negative
case is a failure: NLOO(σ) is therefore the number of successes.

This is a continuous optimization problem, in which the objective function,
however, is not continuous. Therefore the standard techniques for optimization
problems (such as gradient-descent) cannot be used. Indeed in [8], they replace
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the objective function with a differentiable one, obtained by using a soft max to
compute the nearest-neighbour O′ ∈ D \ {O}.

We have decided to use two different stochastic incomplete methods to face
this optimization problem: Particle Swarm Optimization (PSO) and Differential
Evolution (DE).

Both these algorithms operate on a population of a fixed number of candidate
solutions, i.e., possible values for σ. The population is subject to an evolution
phase for K epochs. At the end the best candidate found in all the epochs is
returned as a solution for the optimization problem. The algorithms differ in the
way the population evolves. For a comprehensive description of both algorithms,
refer to [13] for Differential Evolution and to [9] for Particle Swarm Optimization.

Although there is no guarantee that PSO and DE produce optimal solutions,
these algorithms often provide very good or near optimal solutions, in a reason-
able computational time.

However, the number of possible components of σ is too large, therefore we
propose two different limitations on the number of considered subsets. These
limitations reduce the search space and provide a compact form for σ, so they
produce a great reduction in computation time. Even though this affects the
completeness (only some of the possible candidate solutions will ever be taken
into account), it is possible however to obtain good non-optimal solutions.

A first bound is L, the maximum acceptable cardinality of the subsets: σ(A)
is forced to 0 for those subsets such that |A| > L. In this way σ is sparse and
has O(nL) non-zero elements.

Another possible bound is M , the maximum number of non-zero elements in
σ, which has no relation with the cardinality but preserves the property (S2).

The two bounds can be combined together, in this way there are only up to
M non-zero values of σ, corresponding to subsets with at most L elements.

It is easy to see that L and M can be used to have a trade off between
completeness and computation time: smaller values make the search procedure
faster, while higher values could produce a higher value for the objective function.

5 Experimental Results

We have implemented in C two procedures which learn σ from labelled data
using, respectively, PSO and DE, to optimize the objective function NLOO(σ).

To test the efficiency of our proposal we have performed a series of experiments
in which we compared the accuracy of a NN-classifier based on the learned
similarity functions S1, S2, S3, with respect to the same classifier based on three
classical similarity measures: Jaccard (J), Dice (D) and a similarity based on

the Euclidean distance d2: E(A,B) = 1− d2(A,B)2

n . The classifiers are compared
by computing their accuracy on a different dataset T , called test data, in which
all the data are already classified.

We generated random datasets with m instances of n binary attributes and c
possible classes, usingWeka’s package weka.datagenerators.classifiers.cl-
assification.RDG1which creates a set of randomly generated rules and assigns
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a class to each instance according to this rule set. The dataset is divided in a
training set and a test set, with a classical 4-fold cross-validation scheme. For
each triple (m,n, c) we performed t = 50 experiments and reported the accuracy
of S1, S2, S3, J, E,D. The number of attributes n has been varied from 8 to 12,
the number of classes from 3 to 5, while for each value of n we have used a
suitable value for m, which provides training sets of roughly the 35% of all the
possible combinations of values.

After some preliminary tests, we decided to set L = 3 and M = 2n, which is
a good compromise between completeness and computation time.

Notice that a search procedure, like PSO or DE, in a high dimensional space
often produces solutions with the same quality or even worse than a search in
a restricted subspace (like imposing the constraints on L and M) because the
algorithm could be not able to explore all the possible dimensions. A preliminary
test we have performed justified this fact.

In Table 1 we show the results obtained with the DE algorithm, while in Table
2 are presented the analogous data obtained with the PSO.

Table 1. Mean percentage classification error obtained with DE

n m c S1 S2 S3 J E D

8 120 3 16.7% 16.9% 18.7% 21.8% 22.0% 21.8%

8 120 4 17.6% 16.9% 20.3% 24.8% 24.4% 24.8%

8 120 5 19.4% 19.5% 21.4% 26.4% 26.7% 26.4%

9 240 3 12.9% 13.0% 14.9% 19.0% 19.4% 19.0%

9 240 4 13.2% 13.6% 15.5% 21.6% 21.9% 21.6%

9 240 5 15.1% 14.9% 17.0% 23.1% 23.1% 23.1%

10 480 3 9.6% 10.0% 11.6% 17.7% 17.4% 17.7%

10 480 4 9.9% 10.2% 12.6% 19.8% 19.5% 19.8%

10 480 5 9.8% 9.8% 12.2% 19.4% 19.5% 19.4%

11 960 3 7.7% 7.8% 9.4% 16.1% 16.2% 16.1%

11 960 4 8.0% 8.1% 10.5% 17.5% 17.4% 17.5%

11 960 5 9.8% 9.8% 11.8% 19.5% 19.5% 19.5%

12 1920 3 5.2% 5.3% 7.1% 14.6% 14.5% 14.6%

12 1920 4 7.0% 7.0% 9.0% 16.5% 16.4% 16.5%

12 1920 5 8.1% 8.1% 10.4% 18.2% 18.0% 18.2%

First of all, notice that the accuracy results obtained with all the similarities
Si are systematically better than those obtained with all the classical measures.
Note that as n increases, the accuracy should increase because with a higher
number of attributes it should be easier to determine the correct class. Anyway,
the accuracy of classical measures shows a much slower growth with respect
to our measures, thus the difference among the latter and the former tends to
increase as well.

As expected, for a fixed combination of n and m, as c increases the accuracy
of all the similarities tends to decrease.



Weighted Attribute Combinations Based Similarity Measures 219

Table 2. Mean percentage classification error obtained with PSO

n m c S1 S2 S3 J E D

8 120 3 17.3% 16.7% 18.6% 21.8% 22.0% 21.8%

8 120 4 17.9% 17.7% 19.3% 24.8% 24.4% 24.8%

8 120 5 20.0% 20.1% 22.6% 26.4% 26.7% 26.4%

9 240 3 13.3% 12.8% 15.0% 19.0% 19.4% 19.0%

9 240 4 13.6% 13.8% 16.3% 21.6% 21.9% 21.6%

9 240 5 14.6% 14.6% 18.4% 23.1% 23.1% 23.1%

10 480 3 9.7% 9.8% 12.1% 17.7% 17.4% 17.7%

10 480 4 9.8% 10.3% 12.4% 19.8% 19.5% 19.8%

10 480 5 9.6% 9.7% 13.1% 19.4% 19.5% 19.4%

11 960 3 8.0% 8.1% 10.3% 16.1% 16.2% 16.1%

11 960 4 8.4% 8.6% 10.8% 17.5% 17.4% 17.5%

11 960 5 10.3% 10.1% 12.6% 19.5% 19.5% 19.5%

12 1920 3 5.5% 5.7% 8.0% 14.6% 14.5% 14.6%

12 1920 4 7.4% 7.4% 9.4% 16.5% 16.4% 16.5%

12 1920 5 8.5% 8.6% 10.9% 18.2% 18.0% 18.2%

Although S3 is the more immediate generalization of Jaccard index, the exper-
imental results show that among our measures S3 always produces worst results,
while S1 appears to be slightly better than S2. A possible explanation for this
behaviour is that S1 handles separately common feature combinations and those
which belong to only one object, providing a more precise similarity measure.

Finally, the results obtained with PSO and those obtained with DE are com-
parable, none of them appears to be better, possibly there is a slight dominance
of the DE results on PSO.

6 Conclusions and Future Works

In this paper we have presented three generalizations of Jaccard measure which
take into account the simultaneous presence of two or more attributes. We have
also described a method for learning the parameter σ of each measure (the
significance assessment) and proved that our measures always perform better
than classical similarity measures in a classification task.

A first line of future investigation is to characterize the significance assess-
ments which give rise to a TL-transitive similarity measures, because of its theo-
retical importance. Such a characterization could provide a “natural” constraint
on σ, making it easier to be elicited and learned.

The choice of learning σ by optimizing NLOO function is somehow arbitrary
and it would be worth to see if other techniques are more suitable for this aim.
Moreover, the bound on M can change the nature of the optimization problem to
be solved: a mixed combinatorial-continuous formulation is possible, thus making
other resolving technique, like genetic algorithms, more apt.
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Finally, since similarity measures are also used in clustering, it would be inter-
esting to compare the behaviour of a clustering algorithm with all the similarity
measures here proposed and the classical ones.
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Abstract. Triadic concept analysis (TCA) is a method of relational
data analysis whose aim is to extract a hierarchically structured set of
particular clusters from a three-way data describing objects, attributes,
and conditions. We present two algorithms for the problem of computing
all such clusters from a data describing degrees to which objects have
attributes under conditions.

1 Introduction

Various methods of analysis of three-way (or in general multi-way) data proved
to be applicable in many areas including psychometrics, chemometrics, signal
processing, computer vision, neuroscience, and data mining, [15], [16], [19]. In
this paper, we focus on triadic concept analysis (TCA), a particular method
of analysis of three-way relational data. The input to TCA consists of a three-
dimensional table that captures a relationship between objects, attributes, and
conditions. We assume that the relationship is a matter of degree rather than
a yes-no relationship, that is an object has an attribute under a condition to a
degree. Common examples of such data include results of querying a database
at different points in time, folksonomies, and the like. The degrees in which
objects, attributes and conditions are related are assumed to form a residu-
ated lattice, an ordered scale of degrees equipped with truth functions of logical
connectives [20].

The output of TCA is a hierarchically ordered set of clusters, called triadic
fuzzy concepts. Triadic fuzzy concepts are triplets 〈A,B,C〉, where A is a fuzzy
set of objects, B is a fuzzy set of attributes and, C is a fuzzy set of condi-
tions, such that A, B, C are maximal in the sense that all objects of A have
all attributes of B under all conditions of C. The set of all triadic fuzzy con-
cepts, called concept trilattice, can be ordered by three quasiorders induced by
componentwise subsethood relations and forms a complete trilattice, for details
see [8].
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TCA was first proposed in [22] as a method of analysis of three-dimensional
Boolean matrices and generalized to the case of matrices with grades in [8]. TCA
extends formal concept analysis (FCA), a method of analysis of two-dimensional
Boolean matrices developed in [21]. Since then several extensions to the case of
matrices with grades was proposed [5]. The output of FCA is a set of clusters,
called formal (or dyadic) concepts. Since the inception of TCA and FCA, a strong
mathematical background for both methods was developed, [10], [11] ,[12], [3];
and many applications were proposed, most notably decompositions of both
Boolean matrices and matrices with grades, [7], [9] .

The aim of this paper is to develop algorithms for computation of the set of
triadic fuzzy concepts present in the input table. For boolean matrices, one can
compute triadic conceps using Trias algorithm proposed in [14]. However, for
matrices with grades no such algoritm exists. We present two ways to compute
all triadic concept of such inputs. The first approach consist in trasformation of
the matrix with grades into ordinary matrix, computation of the set of ordinary
triadic concepts using the Trias algoritm, and transformation of the result back
into fuzzy setting. The second algorithm is an extension of the Trias algorithm
to the case of graded data in a way that allows for a direct computation of
triadic fuzzy concepts. We prove correctness of the presented algorithms and
discuss their computational complexity.

The paper is organized as follows. In Section 2 we recall basic notions from
fuzzy logic, formal concept analysis and triadic concept analysis. In Section 3
and Section 4 we cover the two approaches to computation of triadic concepts.
We conclude the paper with some ideas for further research in Section 5.

2 Preliminaries

2.1 Fuzzy Logic and Fuzzy Sets

In this section we recall the fundamental notions from fuzzy logic and fuzzy sets
theory. For a more detailed treatment on the material contained in this section
we refer the reader to [3],[13].

A concept central to fuzzy logic is the concept of graded truth. In fuzzy setting,
we allow logical propositions to not only be fully true or fully false, but also
partially true. We assume that truth degrees form a complete residuated lattice,
[20]. A complete residuated lattice L is a tuple 〈L,∧,∨,⊗,→, 1, 0〉 such that

– 〈L,∧,∨, 1, 0〉 is a complete lattice with the greatest element 1 and the least
element 0, i.e. a partially ordered set, where infima (∧) and suprema (∨) of
arbitrary subset of L exist,

– 〈L,⊗〉 is a commutative monoid with the neutral element 1, i.e. ⊗ is asso-
ciative and commutative, and a⊗ 1 = a holds for all a ∈ L,

– the adjointnes property a⊗ b ≤ c iff b ≤ a→ c holds for all a, b, c ∈ L.

The operations ⊗ and → are taken as truth functions of conjunction and im-
plication, respectively, ∧ and ∨ are semantical counterparts of universal and
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existencial quantifiers, respectively. Complete residuated lattices cover wide
range of structures of truth degrees, including all of the most widely used ones.
Perhaps the most common example is a unit interval L = [0, 1] with ∧,∨ being
maximum and minimum, respectively, ⊗ being a (left-continuous) t-norm, and
→ given by a → b = ∨{c | a ⊗ c ≤ b}. Particular cases (and in a sense the
important ones [3],[13]) are standard �Lukasiewicz, Gödel, and product algebras
where ⊗ is defined by

a⊗ b =

⎧⎨⎩
max(0, a+ b− 1) (�Lukasiewicz algebra)
min(a, b) (Gödel algebra)
a · b (product algebra)

In applications, another common choice of L is a finite chain equipped with a
restriction of a t-norm. For example, L = {a1 = 0, . . . , an = 1} ⊆ [0, 1] with ⊗
defined either by ai⊗aj = amax(i+j−n,0) (�Lukasiwicz chain) or as a restriction of
Gödel t-norm to L. Residuated lattices are used in several areas of mathematics,
most notably in mathematical fuzzy logic [13].

Now we recall the notions of fuzzy sets and fuzzy relations. An L-set (fuzzy
set) A in a universal set X is a map A : X → L. For x ∈ X , A(x) is the degree
to which x belongs to A. The set of all L-sets over X is denoted by LX . A
fuzzy set A is also denoted by {A(x)/x | x ∈ X}, we do not enumerate elements
x ∈ X such that A(x) = 0. An n-ary L-relation (fuzzy relation) R between sets
U1, . . . , Un is an L-set over U1 × . . . Un.

The operations with L-sets are defined componentwise. For example, the union
of L-sets A,B ∈ LX is defined as L-set (A ∪B) ∈ LX such that

(A ∪B)(x) = A(x) ∨B(x)

for all x ∈ X . An L-set A is a subset of an L-set B if A(x) ≤ B(x) for all x ∈ X ,
denoted by A ⊆ B.

Carthesian product of fuzzy sets A1, . . . , An in X1, . . . , Xn, respectively, is the
n-ary fuzzy relation A1 ⊗ · · · ⊗An ∈ LX1×···×Xn defined by

(A1 ⊗ · · · ⊗An)(x1, . . . , xn) = A1(x1)⊗ · · · ⊗An(xn)

For example, the Carthesian product of fuzzy sets A ∈ LX and B ∈ LY is the
binary relation A⊗B on X × Y given by (A⊗B)(x, y) = A(x) ⊗B(y).

2.2 Formal Concept Analysis, Triadic Concept Analysis

A formal context (or dyadic context) is a triplet 〈X,Y, I〉 where X and Y are
non-empty sets and I is a fuzzy relation between X and Y , i.e. I ⊆ LX×Y . X
and Y are interpreted as the sets of objects and attributes, respectively; I is
interpreted as the incidence relation (“to have relation”). That is, 〈x, y〉 ∈ I is
interpreted as the degree to which object x has attribute y. A formal context
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K = 〈X,Y, I〉 induces a pair of operators ↑ : LX → LY and ↓ : LY → LX defined
for C ⊆ LX and D ⊆ LY by

C↑(y) =
∧
x∈X

C(x)→ I(x, y),

D↓(x) =
∧
y∈Y

D(y)→ I(x, y).

These operators, called concept-forming operators, form a fuzzy Galois connec-
tion [1] between X and Y . A formal concept (or dyadic concept) of 〈X,Y, I〉 is
a pair 〈C,D〉 consisting of sets C ⊆ LX and D ⊆ LY such that C↑ = D and
D↓ = C; C and D are then called the extent and intent of 〈C,D〉. The set of all
formal concepts of 〈X,Y, I〉 is denoted by B(X,Y, I) (or just B(I)) and is called
the concept lattice of 〈X,Y, I〉.

A triadic fuzzy context is a quadruple 〈X1, X2, X3, I〉 where X1, X2, and X3

are the set of objects, attributes, and conditions, respectively; I is a ternary
fuzzy relation between X1, X2, and X3, with I(x1, x2, x3) being interpreted as
the truth degree of “object x1 has attribute x2 under condition x3”. When it is
convenient we take {i, j, k} = {1, 2, 3} and denote the degree I(x1, x2, x3) also
by I{xi, xj , xk}. From K a number of dyadic fuzzy contexts can be induced. For

a fuzzy set Ck : Xk → L, we define a dyadic fuzzy context 〈Xi, Xj, I
ij
Ck
〉 by

IijCk
(xi, xj) =

∧
xk∈Xk

(Ck(xx)→ I{xi, xj , xk}).

The concept-forming operators induced by 〈Xi, Xj, I
ij
Ck
〉 are denoted by (i,j,Ck).

Therefore, for fuzzy sets Ci ∈ LXi and Cj ∈ LXj , xj ∈ Xj, and xk ∈ Xk, we put

C
(i,j,Ck)
i (xj) =

∧
xi∈Xi

Ci(xi)→ IijCk
(xi, xj),

C
(i,j,Ck)
j (xi) =

∧
xj∈Xj

Cj(xj)→ IijCk
(xi, xj).

A triadic fuzzy concept of 〈X1, X2, X3, I〉 is a triplet 〈A1, A2, A3〉 of fuzzy sets

Ai ∈ LXi such that A1 = A
(1,2,A3)
2 , A2 = A

(2,3,A1)
3 , and A3 = A

(3,1,A2)
1 . A1, A2,

and A3 are called the extent, intent, andmodus of 〈A1, A2, A3〉. We denote the set
of all triadic fuzzy concepts of K = 〈X1, X2, X3, I〉 by T (X1, X2, X3, I) (or just
T (K)), and call it the concept trilattice of 〈X1, X2, X3, I〉. By the basic theorem
of triadic concept analysis [8] T (X1, X2, X3, I) equipped with quasiorders �i,
i = 1, 2, 3, defined by 〈A1, A2, A3〉 �i 〈B1, B2, B3〉 iff Ai ⊆ Bi is indeed a trilat-
tice [22].

We need the following theorem.

Theorem 1 ([8], Geometrical interpretation of triadic concepts). For
every triadic fuzzy context K = 〈X1, X2, X3, I〉:
(a) If 〈A1, A2, A3〉 ∈ T (K) then A1 ⊗ A2 ⊗ A3 ⊆ I. Moreover, 〈A1, A2, A3〉

is maximal with respect to pointwise set inclusion, i.e. there does not exist
〈B1, B2, B3〉 ∈ 〈LX1 ,LX2 ,LX3〉 other than 〈A1, A2, A3〉 such that Ai ⊆ Bi

for every i = 1, 2, 3.
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(b) If A1⊗A2⊗A3 ⊆ I then there exists 〈B1, B2, B3〉 ∈ T (K) such that Ai ⊆ Bi

for every i = 1, 2, 3.

3 Reduction to the Ordinary Case

In this section we describe the first approach to computation of a concept tril-
latice. The approach relies on a connection between concept trillatices of graded
data and concept trilattices of Boolean data. The idea inspired by [2] and [18] is
the following: first, we transform a triadic fuzzy context into an ordinary triadic
context, then we carry out the computation using some algorithm for the ordi-
nary case, and finally we transform the obtained concept trilattice back to the
fuzzy setting. The needed connection between the fuzzy and ordinary setting is
established in the following theorem.

Theorem 2. (Boolean representation) Let K = 〈X1, X2, X3, I〉 be a fuzzy tri-
adic context and Kcrisp = 〈X1×L,X2×L,X3×L, Icrisp〉 with Icrisp defined by
((x1, a), (x2, b), (x3, c)) ∈ Icrisp iff a ⊗ b ⊗ c ≤ I(x1, x2, x3) be a triadic context.
Then T (K) is isomorphic to T (Kcrisp).

Proof. Recall that for a fuzzy set A ∈ LX , we define an ordinary set +A, ⊆ X×L
by

+A, = {(x, a) | x ∈ X, a ∈ L,A(x) ≥ a}
In the opposite direction, given an ordinary set B ⊆ X ×L such that (x, a) ∈ B
implies (x, b) ∈ B for all b ≤ a, and the set {a | (x, a) ∈ B} has the greatest
element, the fuzzy set -B. is defined by

-B.(x) =
∨
{a | (x, a) ∈ B}

For more details, see [3].
Now, consider mappings ϕ : T (K)→ T (Kcrisp) defined by

ϕ(〈A1, A2, A3〉) = 〈+A1,, +A2,, +A3,〉, (1)

and ψ : T (Kcrisp)→ T (K) defined by

ψ(〈B1, B2, B3〉) = 〈-B1., -B2., -B3.〉. (2)

Theorem 1 implies that 〈+A1,, +A2,, +A3,〉 ∈ T (Kcrisp) for all 〈A1, A2, A3〉 ∈
T (K), and ψ(〈B1, B2, B3)〉 ∈ T (K) for all 〈B1, B2, B3〉 ∈ T (Kcrisp).

Namely, let 〈A1, A2, A3〉 ∈ T (K). Then

(xi, b) ∈ (+Aj,(i,j,�Ak�) iff

for all ((xj , a), (xk, c)) ∈ +Aj, × +Ak,
{(xi, b), (xj , a), (xk, c)} ∈ Icrisp iff

for all xj ∈ Xj, xk ∈ Xk, a ≤ Aj(xj), b ≤ Ak(xk)

a⊗ b⊗ c ≤ I{xi, xj , xk} iff

for all xj ∈ Xj, xk ∈ Xk

Aj(xj)⊗Ak(xk)⊗ b ≤ I{xi, xj , xk} iff

b ≤ Ai(xi).
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Algorithm 1. ComputeConcepts(K = 〈X1, X2, X3, I〉)

1. Icrisp ← ∅
2. foreach (x1, x2, x3) ∈ X1 ×X2 ×X3:
3. foreach (a, b, c) ∈ L× L× L such that a⊗ b⊗ c ≤ I(x1, x2, x3):
4. Icrisp ← Icrisp ∪ {((x1, a), (x2, b), (x3, c))}
5. Fcrisp ← ComputeOrdinaryConcepts(〈X1 × L,X2 × L,X3 × L, Icrisp〉)
6. F ← ∅
7. foreach 〈A1, A2, A3〉 ∈ Fcrisp :
8. F ← F ∪ {〈�A1�, �A2�, �A3�〉}
9. return F

This proves 〈+A1,, +A2,, +A3,〉 ∈ T (Kcrisp).
For the opposite direction, let 〈B1, B2, B3〉 ∈ T (Kcrisp). Then

(-Aj.(i,j,�Ak�)(xi) = b iff

b =
∨
{a | -Aj.(xj)⊗ -Ak.(xj)⊗ a ≤ I(xi, xj , xk), xj ∈ Xj , xk ∈ Xk} iff

b =
∨
{a | ((xi, a), (xj , c), (xk, d)) ∈ Icrisp, ((xj , c), (xk, d)) ∈ Aj ×Ak} iff

b =
∨
{a | (xi, a) ∈ A

(i,j,Ak)
j } = -Ai.(xi)

Therefore ψ(〈B1, B2, B3)〉 ∈ T (K).
Since -+A,. = A for each fuzzy set A, the mappings ϕ and ψ are mutually

inverse and ϕ is a bijection. Moreover, +A, ⊆ +B, iff A ⊆ B for all fuzzy sets A
and B and thus ϕ preserves �1,�2,�3. ��

The previous theorem immediately gives the algorithm listed as Algorithm 1. On
lines 1-4, the transformation of the input triadic fuzzy context K to an ordinary
context is carried on. The next step, on line 5, is the computation of concept
trilattice using some algorithm for the ordinary case. Finally, on lines 7-8, the
ordinary triadic concepts are trasformed back into fuzzy triadic concepts (see
the map ψ in the proof of the previous theorem).

Complexity Since the complexity of the whole algorithm depends on the choice
of ComputeOrdinaryConcepts, we discuss only the complexity of transfor-
mations from and to ordinary setting. The cycle on line 2 lasts |X1| · |X2| · |X3|
iterations, while the cycle on line 3 lasts |L|3 iterations. The backwards trans-
formation on lines 7-8 takes |T (K)| · |L| · (|X1|+ |X2|+ |X3|) operations. Since
in the worst case the number of triadic concepts is exponential in the size of its
context, the later term dominates the time complexity. Therefore the complexity
of the transformations is O(|T (K)| · |L| · (|X1|+ |X2|+ |X3|)).

4 Trias in Fuzzy Setting

In this section we show that by a direct fuzzification of Trias algorithm [14] we
obtain a direct algorithm for computation of the set of triadic fuzzy concepts
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Algorithm 2. FuzzyTrias(K = 〈X1, X2, X3, I〉)

1. foreach (x1, x2, x3 ∈ X1 ×X2 ×X3):
2. I(1)(x1, (x2, x3)) ← I(x1, x2, x3)
3. T ← ∅
4. 〈A,B〉 ← FirstConcept(〈X1, X2 ×X3, I

(1)〉)
5. do
6. 〈C,D〉 ← FirstConcept(〈X2, X3, B〉)
7. do
8. if A = C(1,2,D)

9. then T ← T ∪ {〈A,C,D〉}
10. while 〈C,D〉 ← NextConcept(〈X2, X3, B〉, 〈C,D〉)
11. while 〈A,B〉 ← NextConcept(〈X1, X2 ×X3, I

(1)〉, 〈A,B〉)
12. return T

present in the input data. We call the algorithm FuzzyTrias and list it as
Algorithm 2.

For an input triadic fuzzy context K = 〈X1, X2, X3, I〉), FuzzyTrias first
on lines 2-3 constructs a dyadic fuzzy context K(1) = 〈X1, X2 ×X3, I

(1)〉 where
the binary fuzzy relation I(1) is defined by I(1)(x1, (x2, x3)) = I(x1, x2, x3).
Then it calls subroutines FirstConcept and NextConcept to compute and
iterate through the set of formal concepts of K(1). These subroutines form an
interface to some algorithm for computation of concept lattice of dyadic fuzzy
context, such as NextClosure [4] or Lindig algoritm [6]. FirstConcept returns
the first generated concept, NextConcept returns the concept generated after
the one passed to it as an argument. In the pseudocode we use a convention
that NextConcept returns false if its argument is the last generated concept.
Any other returned value is, when interpreted as logical value, considered true.
It does not matter whether the algorithm first generates all formal concepts and
then iterates through them, or it computes formal concepts on demand. On lines
4-11 FuzzyTrias iterates through all concepts 〈A,B〉 of K(1). The extent A is
considered a candidate for an extent of some triconcepts of T (K), the intent B is
in fact a binary fuzzy relation between X2 and X3 and thus can be understood as
dyadic fuzzy context 〈X2, X3, B〉. On lines 7-10 the algoritm iterates through all
formal concepts 〈C,D〉 of this context. For each 〈C,D〉 it checks if A = C(1,2,D)

(which is in fact a check whether 〈A,C,D〉 is a triadic concept; see the proof
of correctness that follows). If so, 〈A,C,D〉 is added to the set of triadic fuzzy
concepts. At the end, the set of all triadic concepts is returned.

Correctness We need the following lemmas.

Lemma 1. If 〈A1, A2, A3〉 ∈ T (K), then 〈Ai, Aj〉 ∈ B(IijAk
) for all {i, j, k} ∈

{1, 2, 3}

Proof. Easy to observe from the definition of a triadic fuzzy concept. ��
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Lemma 2. Let K = 〈X1, X2, X3, I〉 be fuzzy triadic context and K(1) =
〈X1, X2 ×X3, I

(1)〉 a fuzzy dyadic context with I(1)(x1, (x2, x3)) = I(x1, x2, x3).
Then

(i) A
↓
I(1)

1 = I23A1
for all A1 ∈ LX1

(ii) if 〈A1, A2, A3〉 ∈ T (K) then A1 is an extent of some concept in B(K(1))

Proof. (i) By an easy computation.

(ii) It suffices to prove A
↓
I(1)

↑
I(1)

1 ⊆ A1. Since for every fuzzy binary relation
I it holds I(x, y) =

∨
〈A,B〉∈B(I) A(x) ⊗B(y), we have

A
↓
I(1)

↑
I(1)

1 (x1) = I23A1

↑
I(1) (x1) =

=
∧

(x2,x3)∈X2×X3

I23A1
(x2, x3)→ I(1)(x1, (x2, x3)) =

=
∧

(x2,x3)∈X2×X3

(
∨

〈B2,B3〉∈B(I(1))

B2(x2)⊗B3(x3))→ I(1)(x1, (x2, x3)) =

=
∧

(x2,x3)∈X2×X3

∧
〈B2,B3〉∈B(I(1))

B2(x2)⊗B3(x3)→ I(1)(x1, (x2, x3)) ≤

≤
∧

(x2,x3)∈X2×X3

A2(x2)⊗ A3(x3)→ I(x1, x2, x3) = A1(x1)

��

Remark 1. The opposite direction of Lemma 2 (ii) does not hold in general.
Indeed, there is a fuzzy triadic context K such that there is an extent A of K(1)

that is not an extent of any triconcept of T (K). As an example, let L be a
three-element �Lukasiewicz chain and K = 〈X,Y, Z, I〉 be given by the following
table.

z1 z2
y1 y2 y3 y1 y2 y3

x1 0.5 1 0 0 0.5 1
x2 0 1 0 1 1 1
x3 0 0 0.5 1 0 1

Then {0/x1, 0.5/x2, 1/x3} is an extent of some concept of K(1), but at the
same time it is not an extent of any triconcept of K. ��

The desired correctness of FuzzyTrias is given in the following theorem.

Theorem 3. Given a triadic fuzzy context K = 〈X1, X2, X3, I〉, FuzzyTrias
outputs T (K).

Proof. First, observe that the following claims hold.
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– Claim 1: For every triadic concept 〈A1, A2, A3〉 ∈ T (K) there is B ∈ LX2×X3

such that 〈A1, B〉 ∈ B(X1, X2 ×X3, I
(1)) and 〈A2, A3〉 ∈ B(X2, X3, B).

– Claim 2: For every dyadic concept 〈A,B〉 ∈ B(X1, X2 ×X3, I
(1)) and every

〈C,D〉 ∈ B(X2, X3, B) it holds that if A = C(1,2,D) then 〈A,C,D〉 is a triadic
fuzzy concept.

From Claim 2 it follows that each tripple 〈A,C,D〉 that passes the test on line
8 is a triadic concept of K. Claim 1 then implies that every triadic concept of
K is generated on lines 4-11.

Complexity. The time complexity of FuzzyTrias depends on the time com-
plexity of underlying algorithm for computation of dyadic fuzzy concepts. It is
well known, that in the worst case the number of dyadic fuzzy concepts is expo-
nential in the size of input data and in the number of degrees in the residuated
lattice, and that the computation of one dyadic fuzzy concept takes polyno-
mial time. The sizes of K(1) and I23A (for any A ∈ LX1) are linear in the size
of K. Since FuzzyTrias contains two nested cycles that iterate through all
the dyadic fuzzy concepts of K(1) and I23A (lines 5-11) we can conclude that
the number of iteration the algorithm goes throught is exponential in the size
of input. Since the complexity of operations done for each iteration of the in-
ner cycle (lines 7-10) and the complexity of the creation of K(1) (lines 1-2) are
polynomial, the complexity of the whole algorithm is dominated by the number
of dyadic fuzzy concepts. Therefore, we can conclude that the time complexity
of FuzzyTrias is O(p1(|X1|, |X2|, |X3|, |L|) · |B(K(1))| · p2(|X1|, |X2|, |X3|, |L|) ·
max〈A,B〉∈B(K(1)){|B(X2, X3, B)|}), where p1 and p2 are polynomials that cap-
ture the time of computation of a dyadic concept and their exact form depends
on the algorithm we choose for this task.

5 Conclusions

We have presented two algorithms for computation of the set of all triadic fuzzy
concepts of a triadic fuzzy context. First algorithm consist in transformation of
the graded input data to the Boolean data and carring out the computation using
some already existing algorithm for the ordinary setting. The second algorithm is
a fuzzified version of Trias algorithm. We proved correctness of both algorithms
and discussed their time complexity. Future research shall include the following.

– Efficient implementation and experimental comparison of both presented
algorithms. The motivation lies in the fact that experiments conducted with
algorithms for dyadic concept analysis of graded data [6] revealed that in
practice the direct algorithm is more effective than the algorithm based on
transformation to the ordinary case. Intuitively, one expects similar situation
in the case of algorithms for triadic concept analysis.

– Further development of FuzzyTrias algorithm. The presented algorithm
has exponential time delay, that is the computation of one triadic concept
may take exponential time. We will study the possibilities to overcome this
and develop an algorithm with polynomial time delay.
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Abstract. The classification of data with dynamically changing uncer-
tainty characteristics is a problem for many practical applications. As
an example in the field of nondestructive testing (NDT), magnetic flux
leakage (MFL) measurements are used to inspect pipelines. The data
is analyzed manually afterwards. In this paper we use a framework for
handling uncertainties called Trust Management and a extended fuzzy
rule based classifier to identify different installations within pipelines by
MFL-data. The results show a classification performance of over 90%
with an additional, reliable measure for the trustworthiness of every sin-
gle classification result.

Keywords: Classification, Uncertainty, Trust Management, Nondestruc-
tive Testing, Magnetic Flux Leakage.

1 Motivation and Background

Worldwide there are about two million kilometers of pipelines for substances like
water, gas, oil and other refined products [4]. This network is a main backbone of
today’s resource distribution. To maintain a safe operation of this infrastructure,
these pipelines have to be inspected regularly. As most parts of the pipes are not
accessible, the inspection is mostly done by so called in-line inspection. Special
machines, called pipeline inspection gauge (PIG), with sensors for nondestruc-
tive testing (NDT) are pumped through the pipelines and collect data about its
state. This technology is essential to ensure a fully operable infrastructure and
to avoid damage caused to the environment as a result of leaking substances.
As most of the pipelines are made of steel, a magnetic inspection is adequate.
A well-established technique is the magnetic flux leakage testing (MFL). The
steel pipe is magnetized and the flux leakage field is measured [13]. These data
collected in the pipelines have to be analyzed afterwards for locations with flaws
and potentially critical inhomogeneities. Due to the length of the pipelines, some
are several hundred kilometer long, an enormous amount of intensive data anal-
ysis is required. All data have to be inspected closely by a human data analyst.
These analysts are highly trained specialists for finding corrosion, cracks, dents
and other critical things in the pipelines. As this analysis is safety critical, the
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results have to meet strict requirements [14]. The autonomous operation of the
inspection tool has several consequences: There is no human intervention or ob-
servation during the measurement process. A repetition is near to impossible;
one has to take the data as they come. But when a particular structure occurs
in the data, what is it? Is it critical or not? To take this decision, the analyst has
to understand the specifics of magnetic measurement data and the measurement
process. Additionally the data are biased with a lot of unforeseeable effects (see
[15]) that can be seen as introducing uncertainty to the data. These uncertainties
go far beyond the classical measurement error of the sensors as there are many
interacting physical effects and unsupervised circumstances. The localization of
the tool in the pipeline is not always measured accurately, the magnetic flux
sensors can get dirty or loose contact to the pipe body due to jerking and vibra-
tion. Also measurement conditions like the tools speed or the pipe wall thickness
can change. All these effects are indeterministic and effect local properties of
the measurement data. The analyst thus has to look at them as being affected
by dynamically changing uncertainty. Our goal is to improve the data analysis
within this task by providing a pre-classified dataset which considers these un-
certainties explicitly. Basically, a good classification performance, with a focus
on minimizing false negatives, is designated. False negatives are the most seri-
ous mistake, as they correspond to a missed region, which is potentially critical.
But the illustrated purpose also yields some tough additional requirements for
the software used. The whole workflow has to be transparent, so that the cal-
culated results are comprehensible and interpretable. If misclassification occurs,
one must be able to know exactly what happened in the whole data processing
chain. As this holds for both directions, from the raw-data to the classification
result and the other way round, we call it bidirectional traceability. Another key
feature is that all parameters of the whole data analysis workflow should be as
clear and intuitive as possible and free of random initialization. In this paper we
propose such a workflow for classifying particular common non-defects such as
installations and welds in the pipeline data.

2 State of the Art

2.1 Classification of MFL Data

For a MFL measurement in pipelines, the pipe wall is magnetized to saturation
with permanent magnets near to the wall. The principle is to measure the compo-
nents of the leakage field between the poles of the magnets by a three dimensional
hall-sensor. The structure of the steel pipe is reflected in this field, although one
cannot recalculate the geometrical structure of the material directly [9]. The
measurement thus needs to be calibrated and interpreted afterwards. For an in-
troduction to the theoretical background see [13]. A detailed description of the
application for in-line inspection can be found in [17]. The work of [15] gives
exemplary data of defect measurements. For the investigation in the paper we
use real pipeline data from a leading company for pipeline inspection services. In
Fig. 1 the axial component of a MFL measurement is shown for illustration. The
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”ring” around the pipeline is a signal caused by a girth weld. An automation of
the analysis of MFL data has been widely discussed. An example of dimension
reduction and feature extraction respectively is given in [16]. They use a nine
dimensional feature vector, extracted from the three components of the magnetic
field. The axial component is the main source of information for the feature vec-
tor, five features are exclusively calculated from this component. In [3] and [7]
artificial neural networks are used to classify defects in MFL data. However nei-
ther of them works on real data from operational pipelines. The work of [3]
only use simulated defects. For more realistic measurements, artificial defects
like special shallow wells are used [7].

Fig. 1. Axial channel of the MFL signal for a girth weld

2.2 Classification under Uncertainty

For the classification of MFL data, one source of uncertainty arises during the
measurement process and another comes into play during the operation phase of
the classifier. Uncertainty here means a low trustworthiness of a measurement
or a result. In detail, the source of uncertainty can be an external one, i.e. the
feature vector or a part of it is uncertain, or an internal one, i.e. the classi-
fier itself is uncertain, e.g. due to poor training data. As the feature vector is
the input of the classifier, the external and the internal uncertainties superpose
when data are analyzed. To cope with these uncertainties, a discriminant value
of the class assignment at the output can be obtained. It is derived in all major
classification algorithms, e.g. based on internal distance measures. A classifier is
then less certain the larger the distance or the less the discriminance is in the
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operation phase. An approach to get a more significant discriminance measures
is the concept of conflict and ignorance [6]. For an application in fuzzy rule based
classification see [10]. For a given feature vector, the ignorance is a measure for
the distance to any class, the conflict is a measure for the degree of overlap
between classes at the feature vector. This measures at the classifiers output
are much more comprehensible than the common discriminance measures, but
only address the internal uncertainty, i.e. the class structure. In [2] we extended
a SVM classifier in order to increase the robustness by explicitly modeling the
external uncertainty of the input data at runtime, i.e., dynamically during the
operation phase. In [11] we made a similar extension to a fuzzy rule based clas-
sifier, called CLARISSA (CLAssification by a Robust, Intelligent State Space
Analysis). Both extensions fuse the information of the inputs uncertainties with
the internal uncertainties of the class structure to provide a reliable measure
for the output uncertainty. The classification performance of this algorithms is
successfully tested on results on acknowledged benchmark datasets like IRIS,
WINE and WBCD [8]. Within the Trust Management framework [1](see below),
the fuzzy rule based classifier of [11] is used in a special mode, where the classifier
can reject the feature vector due to a lack of knowledge about the corresponding
position in the feature space, i.e. in case of ignorance. For a safety critical but
supervised classification task like the one in this paper, this is an appropriate if
not even mandatory way. The basic idea of a rejecting classifier was proposed
in [5]. For an example in dealing with the needed thresholds see [12]. If such a
classifier rejects a feature vector or its classification, respectively, instead of a
class the reason for the reject gets obvious. In union with the above-mentioned
concepts of conflict and ignorance, there are two possible reasons: The allocation
to a class is ambiguous, i.e. more than one class would fit the feature vector, or
the feature vector is too far away from learned classes. This way, the reason for a
low output certainty can be tracked down to the level of single training examples
or overlaps between classes if the CLARISSA-approach is used. Besides this, a
proper classifier can serve as a drain for uncertainties in the feature vector. If a
feature is uncertain, but not needed for the non-ambiguous allocation to a class,
this feature is not taken into account. In this case the result is certain despite
of an input uncertainty. The results in [11] hence showed a better classification
performance for noisy data and a strong correlation of the output uncertainty
and the probability of misclassification.

3 Modeling Uncertainties with Trust Management

In this NDT application, we extended the workflow with a framework which ex-
plicitly processes uncertainties, called Trust Management [1]. The information
about the trustworthiness respectively uncertainties of a part or data in a techni-
cal system can be determined in different ways. For sensors often a sensor model
or additional information from other sensors is used. For example, a sensor read-
ing near to the end of a measurement range often is not very trustworthy due
to non-linear sensor effects. In the further processing steps, the trustworthiness
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results can hence not be better then that of the data they rely on, except there
was redundancy in the source data or additional information is provided e.g. by
a system model. In the framework of Trust Management, the trustworthiness is
reflected by a Trust Signal which is a meta-information to a normal signal, e.g. a
sensor-reading, or to an internally generated signal, which depends on uncertain
information. Also system components or functional modules can be attributed
with a Trust Signal. In our case, all sources of uncertainty are reflected by Trust
Signals. A Trust Signal has a scalar value from the interval [0, 1], called the Trust
Level, and indicates the trustworthiness of the signal/component it is associated
with. Two rules generally apply here: If it is 1.0 the data can be fully trusted,
hence it can be handled as normal. If the Trust Level is 0.0, the value has not
to influence the output. It is important to note that the Trust Signal is not a
probabilistic representation, because it does not depend on or declare anything
about the statistical properties of the data it is assigned to. The module, which
receives the Trust Signal enhanced data, has to decide in which way it incorpo-
rates the regular and the Trust Level data into the processing of its output. If
the input data are not trustworthy enough, it can switch to a fall back strat-
egy or gradually fade out the influence of the affected input(s). As the modules
are normally part of a data processing chain, the module should again make a
statement about the trustworthiness of its output, according to its specific data
processing and the trustworthiness of its inputs.

4 Concept and Realization

For the classification of MFL-data, we realized a multi-staged data processing
workflow shown in Fig. 2. It mainly divides into five parts:

– the searching for regions that contain installations, called Regions Of Inter-
est (ROI),

– the evaluation of the uncertainties of the raw data in the particular ROI,
– the calculation of the feature vector for the ROI,
– the evaluation of the uncertainties of every single feature in the vector,
– the classification of the feature vector with the CLARISSA-classifier.

In the first step, the parts of the pipeline which have to be classified are de-
termined by a ROI algorithm. After that, the raw-data in the ROI are closely
inspected for defect or disturbed sensors, noise, and other common data flaws.
Models for the calculation of particular Trust Levels are designed based on back-
ground knowledge provided by experts and statistical evaluation. Thereafter a
12-dimensional feature vector, similar to the one in [16] is computed. The Trust
Level for each feature is again calculated with a manually designed model, fol-
lowing the approach in [1]: Typical and well known values of the features are
initially trustworthy. If there are special properties of the feature, like the sensi-
tivity to noise or nonlinear effects near the end of the measurement range, they
may lower the certainty of the raw data and the features which are based on
them. The final step is to use the features with their according Trust Level as
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Fig. 2. General overview of the workflow components

the input for the CLARISSA-classifier. It gradually fades the uncertain features
out of the classification depending on the particular Trust Level, i.e. due to the
external information about the uncertainty. Additionally it implicitly fuses the
input Trust Levels with the uncertainty of the internal structure of the trained
classifier and provides an output Trust Level for any assigned class. A high Trust
Level refers to a certain decision about a class label.

5 Investigation and Results

This section is divided into three parts. First we will have a look on the raw
performance in classification; second we will assess the reliable of the results.
Then the consequences will be discussed.

5.1 Investigation Set-Up

For the investigation, we trained the classifier with about 1000 hand-picked ex-
amples from a database of real data. The examples were taken from different
pipelines with a diameter from 6” to 48” to get a robust classifier for a broad
spectrum of signal characteristics and pipelines. The concrete performance is
examined for data from a real 50 km long, 16”-diameter pipeline. It contains
over 6500 marked installations from all different classes.

5.2 Pure Classification Performance

The general performance of a classifier for pipeline inspection has two aspects:
the part of detected ROIs, which cover the installations, called the probability of
detection (POD), and the performance of a correct classification of a ROI, called
the probability of identification (POI). The POD is a performance measure for
the actual ROI-algorithm and its data preprocessing. A not-found ROI cannot be
classified. The POI is a performance measure for the classifier itself. Hence, the
classical performance measures for classification tasks can be applied in a given
set of ROIs. To give a significant performance measure for the overall workflow,
we use the correct classifications against the ground truth given by experienced
human analysts, counting not-found ROIs as false negatives, which is a more
pessimistic performance measure. The overall performance of the workflow is
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rated in finding an installation and assigning the right label to it. Here 90,8% of
right labels are obtained. The remaining 9.2% split into 4.1% false negatives (not
found by the ROI-finder, thus not a mistake of the classifier), 3.0% of rejects
and 2.1% wrong class labels. Half of the rejects are due to ambiguity, the rest
due to a lack of knowledge. In a practical scenario, where the ground truth is
not available, the 3.0% of the ROIs which are rejected by the classifier can be
classified manually and thus improve the performance up to 93.8%. For the pure
classification performance is already improved by the CLARISSA-approach. If
an uncertain feature causes an ambiguous class label, the classification is re-
jected. This effect raises the amount of rejects and lowers the amount of wrong
class labels by each 0.1% (To measure this effect, all feature Trust Levels are set
to 1.0). Despite this does no seem a great gain, with the lowering of wrong class
label assignments it optimizes the most critical part of the results. In further in-
vestigations, we found this mechanism much more important for raw-data which
is seriously disturbed. As the ROI-algorithm is not perfect, it produces negative
reports. I.e., a ROI is indicated, but no installation is localized there. For the
investigated pipeline the amount of negative reports is 3.2% compared to the
number of installations in the ground truth. In this set about 8 of 10 ROIs are
rejected due to ignorance and thus are predestined for further manual inspec-
tion. This investigation stands for a variety of pipelines with different diameters
and measurement conditions where we get similar results. The trained classifiers
as well as the other workflow parameters do not need to be adapted or retrained
for different pipelines and PIGs.

5.3 Assessment of the Results with Trust Management

To investigate the benefits of having the opportunity of assessing the reliability
of the workflows results, we need to have a closer look on the particular results
it produces within the Trust Management framework. After analyzing a pipeline
automatically, a list of ROIs is produced. Each of them contains

– its location and orientation along the pipeline,
– measures for the trustworthiness of the raw data and the deduced features,

called data Trust Levels,
– a class label or a reason for the reject from the classifier,
– a measure for the trustworthiness of the classification result, calculated by

CLARISSA, called classification Trust Level,
– a measure for the overall trustworthiness of the regions of interest, called to-

tal Trust Level, which is in this case the minimum of the data- and classifica-
tion Trust Level. It hence reflects the trustworthiness of a final classification
result.

For the above mentioned pipeline the distribution of correct classifications and
negative reports is shown in Fig. 3 by a histogram over 10 equally spaced bins
of the total trust level. It shows that 67% of the classified ROIs have a trust
level higher than 0.7. In this set all classifications are correct. The other way
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Fig. 3. Classification results and their total Trust Levels. On the x-axis the [0, 1]-
interval is split up into 10 bins with a width of 0.1. The y-axis show the relative
amount of right and wrong classifications in the respective interval.

round, 95% of the negative reports get a trust level smaller than 0.3. This U-
Shape is a very characteristic. And this concrete distribution is also similar for a
broad spectrum of inspected pipelines. As the trust levels are hierarchically built
upon the measurement data and some general and abstract expert knowledge,
they offer the opportunity to trace back the reason for an uncertain result. It
is possible to differentiate between a lack of knowledge in the classifier and
insufficient trustworthiness of the raw data and the features deduced from them.
In a scenario like this, it helps to improve the specific part of the workflow, e.g.
to get more or better training data if the classifier cannot produce trustworthy
results from trustworthy raw-data or to spend more manual efforts.

5.4 Discussion

The usage of trust management and the CLARISSA-classifier for the classifica-
tion of MFL data leads to two major results. First of all, we can classify instal-
lations in pipelines with a high performance, despite the varying data quality
and all above-mentioned dynamic uncertainties in the raw data. Second, with
the Trust Level of a result we provide a reliable additional measure to rate the
trustworthiness of the result for a concrete pipeline under inspection. They serve
as a detailed source of information about potentially occurring uncertainties of
the results and also assist in engineering and parameterization of the work-
flow. For a safety critical NDT task like pipeline inspection this ensures a high
quality of the results which are automatically classified with a high trust level.
This example further shows that the method of Trust Management is suited
more generally for data analysis tasks with varying degrees of uncertainty in the
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underlying raw-data and classifiers. By modeling the expert knowledge about
the possible flaws in the data at a general level, a good measure for the data
quality is achieved. By the use of the CLARISSA-classifier, we can provide de-
tailed information about the reason for a possible reject and the trustworthiness
of a result.

6 Conclusion and Outlook

In this paper we showed an application of an extended fuzzy rule based classifier
to automatically analyze magnetic flux leakage data from in-line pipeline in-
spection. To deal with the dynamic uncertainties in the raw data we apply Trust
Management to model them explicitly. The classification workflow uses the in-
formation about the individual uncertainties to weight a certain feature higher
compared to an uncertain one and thus achieves better results in terms of classi-
fication performance. As the whole processing workflow is closely monitored by
Trust Management and no black-box algorithms are used, it offers bidirectional
traceability, which is a key feature needed for safety critical classification tasks.

Acknowledgment. The work has been partly supported by the German Fed-
eral Ministry of Economics and Technology, support code KF2312001ED9.
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Abstract. In the paper, a new ant based algorithm for clustering a set
of well categorized objects is shown. A set of well categorized objects
is characterized by high similarity of the objects within classes and rel-
atively high dissimilarity of the objects between different classes. The
algorithm is based on versions of ant based clustering algorithms pro-
posed earlier by Deneubourg, Lumer and Faieta as well as Handl et al.
In our approach, a new local function, formulas for picking and dropping
decisions, as well as some additional operations are proposed to adjust
the clustering process to specific data.

Keywords: ant based clustering, well categorized objects.

1 Preliminaries

In data mining, we encounter a diversity of methods supporting data analysis
which can be generally classified into two groups, called supervised and unsuper-
vised learning, respectively (cf. [1]). One of unsupervised approaches investigated
by us is clustering of data. In the paper, we consider the ant based clustering
algorithm based mainly on versions proposed by Deneubourg [2], Lumer and
Faieta [8] as well as Handl et al. [7]. The last algorithm is called ATTA. Cluster-
ing algorithms examine data to find groups (clusters) of items (objects, cases)
which are similar to each other and dissimilar to the items belonging to other
groups.

In some cases, the use of algorithms proposed earlier in the literature leads to
a number of resulting groups smaller than the real one. At the beginning of our
research, we take into consideration a set of objects clustered into two disjoint
classes. After an ant based clustering process, we need to obtain two coherent
clusters on a grid on which objects were initially scattered. To satisfy this re-
quirement, after empirical studies, a new local function, formulas for picking and
dropping decisions as well as some additional operations are proposed to adjust
the clustering process to specific data.

In making picking and dropping decisions, we propose to use some threshold
similarity which is adjusted to data (objects) to be clustered. Such an adjustment
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is based on the fact that, in a set of well categorized objects, the objects belonging
to different classes are significantly dissimilar whereas the objects belonging to
the same class are strongly similar. Our proposition is also characterized by more
deterministic picking and dropping decisions than in algorithms presented earlier
in the literature. If some conditions are satisfied, picking and dropping operations
are made deterministically, i.e., with the probability equal to 1. Moreover, some
additional operations should prevent, first of all, unwanted situation, namely,
forming more smaller clusters of very similar objects which should belong to one
bigger cluster and making all ants busy by carrying objects for which there are
no proper clusters to drop them into. The current paper should be treated as
the first stage of improving ant based clustering algorithms for well categorized
objects.

In this paper, for simplicity, we assume that objects to be clustered belong to
two disjoint classes. However, the presented approach can be extended, in the
future, to many-class categorizations of objects (cases). Let U = {u1, u2, . . . , un}
be a set of all objects. We take into consideration the situation in which objects
are described in the attribute space enabling us to determine some numerical
similarity measure d(ui, uj) between any two objects ui, uj ∈ U , where i, j =
1, 2, . . . , n. In the clustering area, a variety of similarity measures can be applied
(see, for example, [6]). After a clustering process, we obtain two disjoint sets
of objects: Ck1 (a set of objects clustered in class k1) and Ck2 (a set of objects
clustered in class k2), where Ck1 ⊆ U , Ck2 ⊆ U , Ck1∩Ck2 = ∅, and Ck1∪Ck2 = U .
In our case, a set U of objects described above is well categorized if and only if:

– diam(Ck1) << single link(Ck1 , Ck2),
– diam(Ck2) << single link(Ck1 , Ck2),

where:

– diam(Ckj ) = max
u,v∈Ckj

d(u, v), j = 1, 2,

– single link(Ck1 , Ck2) = min
u∈Ck1

,v∈Ck2

d(u, v).

The rest of the paper is organized as follows. Section 2 presents more exactly
our new algorithm. Section 3 delivers results of experiments performed on real
life data using the algorithm proposed in Section 2. Finally, Section 4 provides
conclusions.

2 Algorithm

The ant based clustering algorithm proposed in this paper is mainly based on
algorithms proposed earlier by Deneubourg [2], Lumer and Faieta [8] as well as
Handl et al. [7]. A number of modifications have been implemented, that adjust
the algorithm to the problem of clustering well categorized data. In such data,
objects belonging to the same class are highly similar, whereas objects belonging
to different classes are relatively highly dissimilar.
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A set of steps is formally listed in Algorithm 1. In this algorithm: U is a set
of labeled objects (cases) being clustered (the size of U is n), N is a number
of iterations performed for the clustering process, Ants is a set of ants used
in the clustering process, ppick(u) and pdrop(u) are probabilities of the picking
and dropping operations made for a given object u, respectively (see Formulas
3 and 4).

A local function, in our approach, is not directly calculated on the basis of dis-
similarity measures of objects, but on the basis of a content of a given neighbor-
hood. For the neighborhood to be checked, a relative number of similar objects
to a given one is determined. This relative number constitutes a local function.
Let P be a set of all places of the square grid G on which objects are scattered.
Let the size of G be M ×M . Each place p of G is described by two coordinates,
that will be written as p(i, j), where i, j = 1, . . . ,M . Let π(p) be a neighborhood
of the place p(i, j) where the object u is foreseen to be dropped or where the
object u is foreseen to be picked up. This neighborhood π(p) is defined as a
square surrounding p(i, j), i.e.:

π(p) = {p∗(i∗, j∗) ∈ P : abs(i∗ − i) <= r and abs(j∗ − j) <= r},

where r is a radius of perception of ants and abs denotes the absolute value.
Let U(p) denote the set of objects occupying a given place p because, in our

approach, a given place p can be occupied by more than one object, i.e., some
heaps can be created. A local function floc(u) for the object u designated to pick
up from or to drop at the place p is calculated as:

floc(u) =
N

π(p)
sim

N
π(p)
all

, (1)

where:

– N
π(p)
sim is a number of all objects u∗ in the neighborhood π(p) similar to u,

i.e.:

d(u∗, u) <= ϑsim,

where d is a given dissimilarity measure normalized to the interval [0, 1], and
ϑsim is a similarity threshold,

– N
π(p)
all is a number of all objects placed in the neighborhood π(p).

If some conditions are satisfied, picking and dropping operations are made de-
terministically, i.e., with the probability equal to 1. The decision to pick up a
given object u is always made if:

– density of a neighborhood of u is less than threshold density minDens - this
helps us to avoid forming more smaller clusters of very similar objects which
should belong to one bigger cluster,

– a local function floc(u) calculated for u (according to Formula 2) is less than

or equal to ϑpick
sim , where ϑpick

sim is a similarity threshold for picking objects up.
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Density of a neighborhood π(p) for the object u, designated to pick up from or
to drop at the place p, is calculated as:

dens(u) =
N

π(p)
all

(r + 1)2
, (2)

where:

– N
π(p)
all is a number of all objects placed in the neighborhood π(p),

– (r + 1)2 - is a number of all places in the neighborhood π(p).

Density is incremented during a clustering process.
The decision to drop a given object u is always made if:

– u is carried by the same ant for a long time, i.e., the ant cannot find a proper
cluster for u (for this reason, a special counter workT ime for each ant is set,
this counter determines how long, i.e., how many iterations, the ant carries
the same object; if a given threshold is exceeded, the ant is released) - this
prevents making all ants busy by carrying objects for which there are no
proper clusters to drop them into,

– a local function floc(u) calculated for u (according to Formula 2) is greater

than or equal to ϑdrop
sim , where ϑdrop

sim is a similarity threshold for dropping
objects.

Picking and dropping decisions for the object u can be formally expressed by
the following threshold formulas:

ppick(u) =

{
1 if floc(u) <= ϑpick

sim
1

(1−ϑpick
sim )2

(floc(u)− 1)2 otherwise (3)

and

pdrop(u) =

{
1 if f >= ϑdrop

sim
1

(ϑdrop
sim )2

f2
loc otherwise

(4)

An example of a threshold function for the picking operation if ϑpick
sim = 0.8 is

shown in Figure 1 whereas an example of the threshold function for the dropping
operation if ϑdrop

sim = 0.6 is depicted in Figure 2.

Thresholds ϑpick
sim and ϑdrop

sim for picking and dropping operations, respectively,
are automatically adjusted to data according to the definition of well categorized
data given in Section 1. We assume that ϑpick

sim = ϑdrop
sim = ϑsim. ϑsim is set

between the largest diameter and the smallest single link. Searching for threshold
is performed according to Algorithm 2.

3 Experiments

Our experiments were carried out on real MMPI data. The data were collected
and examined by a team of researchers consisting of W. Duch, T. Kucharski,
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Fig. 1. An exemplary threshold function for the picking operation

Fig. 2. An exemplary threshold function for the dropping operation

J. Gomu�la, R. Adamczak [3]. In our earlier paper [10], using the same data,
we have examined different similarity measures used in the ant based clustering
process. The data are categorized into nineteen nosological classes and the refer-
ence class (norm). Each class corresponds to one of psychiatric nosological types:
neurosis (neur), psychopathy (psych), organic (org), schizophrenia (schiz ), delu-
sion syndrome (del.s), reactive psychosis (re.psy), paranoia (paran), sub-manic
state (man.st), criminality (crim), alcoholism (alcoh), drug addiction (drug),
simulation (simu), dissimulation (dissimu), and six deviational answering styles
(dev1, dev2, dev3, dev4, dev5, dev6 ). Each object (patient) is described by a
data vector consisting of thirteen descriptive attributes. Values of attributes are
expressed by the so-called T-scores. The T-scores scale, which is traditionally
attributed to MMPI, represents the following parameters: offset ranging from 0
to 100 T-scores, average equal to 50 T-scores, standard deviation equal to 10
T-scores.

Below, we present results obtained for four data sets. The first data set
(MMPI1) consists of objects categorized by experts into two classes: the refer-
ence class (norm) and the 6th deviational answering style (dev6 ). The second
data set (MMPI2) consists of objects categorized by experts into two classes:
alcoholism (alcoh) and the 2nd deviational answering style (dev2 ). The third
data set (MMPI3) consists of objects categorized by experts into two classes:
psychopathy (psych) and the 4th deviational answering style (dev4 ). The last
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Algorithm 1. Algorithm for Ant Based Clustering

for each object ui ∈ U do
Place ui randomly on a grid G;
Set o as dropped;

end
for each ant aj ∈ Ants do

Place aj randomly on a grid place occupied by one of objects from U ;
Set aj as unladen;
workT ime(aj) ← 0;

end
for k ← 1 to N do

for each ant aj ∈ Ants do
if aj is unladen then

if place of aj is occupied by dropped object u then
Draw a random real number r ∈ [0, 1];
if dens(u) < minDens or r ≤ ppick(u) then

set o as picked;
set aj as carrying the object;

else
move aj randomly to another place occupied by one of
objects from U ;

end

else
move aj randomly to another place occupied by one of objects
from U ;

end

else
Draw a random real number r ∈ [0, 1];
if r ≤ pdrop(u) then

move u randomly to a new place on a grid;
set u as dropped;
set aj as unladen;
workT ime(aj) ← 0;

else
workT ime(aj) ← workT ime(aj) + 1;

end

end
if workT ime(aj) > maxWorkT ime then

set u as dropped;
set aj as unladen;
move aj randomly to another place occupied by one of objects from
U ;
workT ime(aj) ← 0;

end

end
increase minDens;

end
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Algorithm 2. Algorithm for searching for the threshold for picking and
dropping operations

Input : U = {u1, u2, . . . , un} - a set of objects to be clustered.
Output: ϑsim - threshold for picking and dropping operations.
D ← ∅;
for each object ui ∈ U , i = 1, . . . n do

for each object uj ∈ U , j = i+ 1, . . . n do
D ← d(ui, uj);

end

end
Sort D in non-descending order;
Find a maximal difference (dm+1 − dm) between two consecutive distances in D,
where m = 1, . . . , card(D)− 1;

ϑsim ← dm+dm+1

2
;

data set (MMPI4) consists of objects categorized by experts into two classes:
dissimulation (dissimu) and the 5th deviational answering style (dev5 ).

The results of an ant based clustering process performed by means of our
algorithm have been compared (see Table 1), in terms of properly formed clusters
for categorized objects, with results obtained using the well known k-means
algorithm [9]. For comparison, results of three popular analytical evaluation
measures have been used:

– F-measure [11],
– the Dunn index [4], [5],
– the intra-cluster variance.

Experiments for the ant based clustering have been performed with the following
parameters:

– dissimilarity measure: Euclidean,
– grid size: 100× 100,
– no. of ants : 40,
– radius of perception: 3,
– no. of iterations : from 50000 to 100000.

Experiments for the k-means clustering have been performed with the following
parameters:

– dissimilarity measure: Euclidean,
– maximal no. of iterations : 400000.

Exemplary Figures 3 and 4 show that clusters have been properly formed. All
objects belonging to the same class have been concentrated in one region on
the grid. This was the main goal in our research to obtain objects belonging
to the same class collected in one cluster as well as to have clusters sharply
distinguished, i.e., placed in discernible places on the grid. However, it is easy to
see in figures that for sets with imbalanced distribution of objects among classes
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Table 1. Results of experiments

Data Set F-measure Dunn index Intra-cluster variance

The proposed algorithm

MMPI1 (norm - dev6) 1.00 1.42 12 121 347.00

MMPI2 (alcoh - dev2) 1.00 1.79 940 343.15

MMPI3 (psych - dev4) 1.00 1.34 2 873 406.20

MMPI4 (dissimu - dev5) 1.00 0.66 1 921 829.7

The k-means algorithm

MMPI1 (norm - dev6) 0.85 0.09 12 126 835.00

MMPI2 (alcoh - dev2) 1.00 1.79 940 343.15

MMPI3 (psych - dev4) 1.00 1.34 2 873 406.20

MMPI4 (dissimu - dev5) 0.98 1.01 1 847 465.60

a) b)

Fig. 3. Exemplary spatial distribution on the grid after performing Algorithm 1 for
sets MMPI1 (a) and MMPI2 (b)

a) b)

Fig. 4. Exemplary spatial distribution on the grid after performing Algorithm 1 for
sets MMPI3 (a) and MMPI4 (b)

(i.e., a significantly different number of objects in particular classes), a cluster
for a minority class consists of more scattered objects. This is one of problems
of our proposition which needs to be solved in the future. Another problem is
to determine a way to adjust changes of a minimum density parameter during a
clustering process.
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It is worth noting that, for sets MMPI1 and MMPI4, clusters have been
properly formed in accordance with classes to which objects were classified by
the experts. The k-means algorithm made some mistakes for these sets in spite
of well categorized objects. It can follow from imbalanced distribution of objects
among classes. In this case, the proposed method works better.

4 Conclusions

In the paper, we have examined a problem of clustering sets of well categorized
objects. Due to definitions of a new local function, formulas for picking and
dropping decisions as well as some additional operations, we have obtained the
algorithm building singular distinguishable clusters for objects belonging to the
same class. Experiments have been performed for two-class sets of objects. In
the future, we plan to evaluate, and alternatively modify, our approach for sets
of objects with more than two classes or with classes with less sharp boundaries.
Moreover, there is a need to propose the ant based algorithm with a hierarchical
process of clustering to form as few clusters as possible with internal homoge-
neous structures. In this case, the second stage should consist of ants moving
not singular objects but the whole groups of them.

Acknowledgments. This paper has been partially supported by the grant No.
N N519 654540 from the National Science Centre in Poland.
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Abstract. Uninorms are known to have a kind of partial compensatory
behaviour, which makes them useful for decision theory and related fields.
Residuated uninorms play a prominent role in the theory of substructural
logics and, in particular, in mathematical fuzzy logic. We shall present
here some construction methods that result in residuated uninorms along
with some recent classification theorems which show the limitation of
the constructions. Among them is a very recent Mostert-Shields style
classification theorem on SIU-algebras.

Keywords: Uninorm, aggregation operator, associativity, compensation,
rotation, rotation-annihilation, triple rotation, twin rotation.

1 Introduction and Preliminaries

Aggregation operators (that is, [0, 1]2 → [0, 1] mappings M that are increasing
and satisfy M(0, 0) = 0 and M(1, 1) = 1) play an important role in several
fields of applied mathematics such as fuzzy modelling/control and fuzzy decision
making. In these fields, it is very important to have a large spectrum of such
operations at hand so that the practitioner can find the aggregation operator
that best fits to the application in question.

Uninorms are commutative, isotone monoids on [0, 1]. They were introduced
in [30] to generalize the notion of t-norms and t-conorms by allowing the neutral
element t to belong to the open unit interval ]0, 1[. T-norms (resp. t-conorms)
are uninorms with neutral element 1 (resp. 0). Uninorms can be considered asso-
ciative, partially compensative aggregation operators: Indeed, denoting the unit
element of the uninorm by t, its value is in between the minimum and the max-
imum functions on its subdomain [0, t]× [t, 1]. The first paper about associative
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aggregation operations is [3] where the author, using the name “aggregative op-
erator” has introduced a special class of uninorms. This class coincides with
what we recently call representable uninorm class, and contains, for instance the
“Three Pi” operator of Yager (see Fig. 1)

M(x, y) =
xy

xy + (1− x)(1 − y)
. (1)

Representable uninorms are those ones, which have a representation by means of
a one-place function, similar to continuous Archimedean t-norms and t-conorms;
as said above, this class coincides with Dombi’s class of aggregative operators.

Residuated lattices have been introduced in the 30s of the last century by
Ward and Dilworth [29] to investigate ideal theory of commutative rings with
unit. Examples of residuated lattices include Boolean algebras, Heyting algebras
[7], MV-algebras [1], basic logic algebras, [9] and lattice-ordered groups; a variety
of other algebraic structures can be rendered as residuated lattices. Residuated
lattices turned out to be algebraic counterparts of substructural logics [26,25,8].
Applications of substructural logics and residuated lattices span across proof
theory, algebra, and computer science.

FLe-algebras are particular residuated lattices (see Definition 1). They can be
considered generalizations of residuated uninorms for lattices. On [0, 1], monoidal
operations of FLe-algebras and integral FLe-algebras are referred to as left-
continuous uninorms and left-continuous t-norms, respectively. Those uninorms
and t-norms are left-continuous, as two-place functions, because they are
residuated.

The first observations on the structure of uninorms were presented in [6]:
Any uninorm U has an underlying t-norm T and t-conorm S acting on the
subdomains [0, t]× [0, t] and [t, 1]× [t, 1] of [0, 1]2, respectively. Keeping in mind
that any uninorm (in either the narrow or the broad sense) has its underlying
t-norm and t-conorm, in order to construct uninorms the following two questions
emerge:

Q1: Given a pair of a t-norm and a t-conorm (acting on the subdomains
[0, t]× [0, t] and [t, 1]× [t, 1], respectively) how can we extend the operation on
the remaining parts (that is, on [0, t]× [t, 1] and [t, 1]× [0, t]) in such a way that
the resulted operation becomes a uninorm?
As one may guess, the investigation of this amounts to checking the associativity
of the resulted operation.

Q2: If there exists an associative extension for a given pair of t-norm and
t-conorm, how many such extension does there exist? Provide a list.
The first question may be referred to as the construction problem, whereas the
second may be referred to as the classification problem.

As for the construction problem, it is easy to see that the minimum and the
maximum operations both work, that is, for any pair T and S, evaluating the rest
of the domain by either of them, one always obtains an associative operation; that
is, a uninorm. Both for left-continuous t-norms and for left-continuous uninorms,
those with an involutive negation are of special interest. For t-norms negation is
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defined by ¬x = x→ 0, while for uninorms negation is defined as ¬x = x→ f ,
where f is a fixed, but arbitrary element of [0, 1], and stands for falsum just like 0
does in case of a t-norm. Involutive t-norms and uninorms have very interesting
symmetry properties [11,14,10,23] and, as a consequence, for involutive t-norms
and uninorms we have beautiful geometric constructions which are lacking for
general left-continuous t-norms and uninorms [12,19,22].

As for the classification problem of residuated lattices, this task seems to be
possible only by posing additional conditions. A first result in this direction is
due to Mostert and Shields who investigated certain topological semigroups on
compact manifolds with connected, regular boundary in [27]. Being topologi-
cal means that the monoidal operation of the residuated lattice is continuous
with respect to the underlying topology. They proved that such semigroups are
ordinal sums in the sense of Clifford [2] of product, Boolean, and �Lukasiewicz
summands. Next, the dropping of the topologically connected property of the
underlying chain can successfully be compensated by assuming the divisibility
condition (which is, in fact, the dual notion of the well-known naturally ordered
property). Under the assumption of divisibility, residuated chains, that is BL-
chains, have been classified, again, as ordinal sums of product, Boolean, and
�Lukasiewicz summands. The divisibility condition proved to be strong enough
for the classification of residuated lattices over arbitrary lattices too [20]. Fodor
at al. have classified those uninorms which have continuous underlying t-norm
and t-conorm [5,4]. Here we classify strongly involutive uninorms algebras (SIU-
algebras), that is bounded, representable, sharp, involutive FLe-algebras over
arbitrary lattices for which their cone operations are dually isomorphic. Let us
remark that assuming the duality condition proved to be equivalent to assum-
ing the divisibility condition only for the positive and negative cones of such
algebras.

2 Preliminaries

As said in the introduction, uninorms are commutative, isotone monoids on [0, 1].
On general universe, however, we shall refer to residuated uninorms as monoidal
operations of FLe-algebras:

Definition 1. Call U = 〈X, ∗◦,≤, t, f〉 an FLe-algebra if C = 〈X,≤〉 is a poset
and ∗◦ is a commutative, residuated monoid over C with neutral element t. Define
the positive and the negative cone of U by X+ = {x ∈ X | x ≥ t} and X− =
{x ∈ X | x ≤ t}, respectively. Call an FLe-algebra U involutive, if for x ∈ X ,
(x′)′ = x holds, where x′ = x→∗◦ f . Call an involutive FLe-algebra U sharp,
if t = f . Call a sharp, involutive FLe-algebra a SIU-algebra, if for x, y ∈ X−,
x′ ∗◦ y′ = (x ∗◦ y)′ holds.

The defining condition for SIU-algebras is equivalent to the requirement that the
negative and the positive cone operations are BL-algebras [14,10]. On [0, 1] this
means that the underlying t-norm and t-conorm are assumed to be continuous.
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A negation N on [a, b] ⊂ R is a decreasing unary operation on [a, b] satisfying
N(a) = b and N(b) = a. A negation is called strong (or an involution) if it
is involutive, i.e. if N(N(x)) = x for any x ∈ [a, b]. Consider a left-continuous
binary operationM on [a, b] ⊂ R which is commutative, associative, and isotone:
The residual implication IM corresponding to M is the binary operation IM on
[a, b] defined by IM (x, y) = max{t ∈ [a, b] |M(x, t) ≤ y} . The residual negation
NM corresponding to M is the negation NM on [a, b] defined by NM (x) =
IM (x, a). We say thatM has a strong residual negation ifNM is a strong negation
on [a, b]. M is called rotation-invariant w.r.t. a strong negation N on [a, b] if the
following equivalence holds for any x, y, z ∈ [a, b]: M(x, y) ≤ z ⇔ M(N(z), x) ≤
N(y) .

Let U be an FLe-algebra. The algebra U is called conic if every element of X
is comparable with t, that is, if X = X+ ∪X−. U is called bounded if X has top
( and bottom ⊥ element. If X is linearly ordered, we speak about FLe-chains.
Since ∗◦ is residuated, it is as well partially-ordered (isotone), and therefore,
′ : X → X is an order-reversing involution. A partially-ordered monoid is called
integral (resp. dually integral) if the underlying poset has its greatest (resp.
least) element and it coincides with the neutral element of the monoid. It is
not difficult to see that ∗◦ restricted to X− (resp. X+) is integral (resp. dually
integral).

3 Rotation of Uninorms

Proposition 1. [13] Consider a strong negation N with unique fixpoint c and a
left-continuous binary operation M on [0, 1] which is commutative, associative,
and isotone. Let M1 be the linear transformation of M into [c, 1], I− = [0, c]
and I+ = ]c, 1]. Then the binary operation Mrot on [0, 1] defined by

Mrot(x, y) =

⎧⎪⎪⎨⎪⎪⎩
M1(x, y) , if x, y ∈ I+

N(IM1 (x,N(y))) , if x ∈ I+ and y ∈ I−

N(IM1 (y,N(x))) , if x ∈ I− and y ∈ I+

0 , if x, y ∈ I−
(2)

is a left-continuous rotation-invariant operation which is commutative, associa-
tive, and isotone if and only if either

(C1) M(x, y) = 0 implies min(x, y) = 0 or

(C2) there exists c ∈ ]0, 1] such that M(x, y) = 0 if and only if x, y ≤ c.

Moreover, it holds that Mrot ≤ min if and only if M ≤ min. Mrot is called the
rotation of M (with respect to N).

Proposition 1 reveals that exactly those uninorms are suitable for playing the
role of M , for which their underlying t-norm satisfies condition (C1) or condi-
tion (C2):
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Theorem 1. Consider a strong negation N with unique fixpoint c and a left-
continuous uninorm U with neutral element t. Let U1 be the linear transforma-
tion of U into [t, 1] and denote the image of e under this linear transformation
by c∗. Then the rotation Urot is a left-continuous uninorm with neutral ele-
ment c∗.

Example 1. The rotation of the “Three Pi” operator defined in (1) and the
rotation of the uninorm U , which is defined by

U(x, y) =

{
min(x, y) , if max(x, y) ≤ 1

2 ,

max(x, y) , otherwise.
(3)

with respect to N(x) = 1− x are depicted in Figure 1.
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Fig. 1. The rotation of “Three Pi‘” (left) and the rotation of U , see Example 1

4 Rotation-Annihilation with Uninorms

Proposition 2. [13] Consider a strong negation N with unique fixpoint c, d ∈
]c, 1[ and define a strong negation Nd by

Nd(x) =
N(x · (d−N(d)) +N(d))−N(d)

d−N(d)
.

Consider a left-continuous binary operation M on [0, 1] which is commutative,
associative, and isotone and let M1 be the linear transformation of M into [d, 1].

(D1) If x, y > 0 implies M(x, y) > 0, then let M∗ be a left-continuous t-
subnorm that is rotation-invariant w.r.t. Nd. Further, let I− = [0, N(d)[,
I0 = [N(d), d] and I+ = ]d, 1].

(D2) If there exist x, y > 0 such that M(x, y) = 0, then let M∗ be a left-
continuous t-norm that is rotation-invariant w.r.t. Nd (or equivalently, let
M∗ be a left-continuous t-norm with residual negation Nd). Further, let
I− = [0, N(d)], I0 = ]N(d), d[ and I+ = [d, 1].
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Let M1 be the linear transformation of M into [d, 1], M2 be the linear transfor-
mation of M∗ into [N(d), d] and M3 be the annihilation of M2 defined by

M3(x, y) =

{
0 , if x, y ∈ [N(d), d] and x ≤ N(y)

M2(x, y) , if x, y ∈ [N(d), d] and x > N(y) .

Then the binary operation Mra on [0, 1] defined by

Mra(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1(x, y) , if x, y ∈ I+

N(IM1 (x,N(y))) , if x ∈ I+, y ∈ I−

N(IM1 (y,N(x))) , if x ∈ I−, y ∈ I+

0 , if x, y ∈ I−

M3(x, y) , if x, y ∈ I0

y , if x ∈ I+ and y ∈ I0

x , if x ∈ I0 and y ∈ I+

0 , if x ∈ I− and y ∈ I0

0 , if x ∈ I0 and y ∈ I−

(4)

is a left-continuous rotation-invariant operation which is commutative, associa-
tive, and isotone. Moreover, it holds that Mra ≤ min if and only if M ≤ min.
Mra is called the rotation-annihilation of M and M∗ (with respect to N).

Theorem 2. Consider a strong negation N with unique fixpoint c, d ∈ ]c, 1[
and a left-continuous uninorm U with neutral element t. Let U1 be the linear
transformation of U into [d, 1] and denote the image of t under this linear trans-
formation by t∗. Then Mra, the rotation-annihilation of U and a suitable M∗

(as in Proposition 2, depending on the zero values of U) is a left-continuous
uninorm with neutral element t∗.

Example 2. Consider N(x) = 1 − x and d = 2/3. For ε ∈ [0, 1], the rotation-
invariant t-subnorm, which is dual to Sε

L, is given by T ε
L = max(0, x+ y− 1− ε).

In Figure 2, two rotation-annihilations are presented.

5 Twin Rotation of Semigroups

Since the related recent classification theorem is about the general lattice-ordered
case, we change our universe of discourse from the unit interval to lattices here.
In [19] the authors gave a structural description of conic, involutive FLe-algebras
by proving that the cone operations of any involutive, conic FLe-algebra uniquely
determine the FLe-algebra via (5):

Theorem 3. [19] (Conic Representation Theorem) For any conic, involu-
tive FLe-algebra it holds true that
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Fig. 2. Rotation-annihilation of “Three Pi” and T 0.3
L (left), and of U (defined in (3))

and TL (right), see Example 2

Fig. 3. Some uninorms that were constructed by iteratively applying some of the pre-
sented methods
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x ∗◦ y =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x⊕ y if x, y ∈ X+

x⊗ y if x, y ∈ X−

(x→⊕ y′)′ if x ∈ X+, y ∈ X−, and x ≤ y′

(y→⊗ x′)′ if x ∈ X+, y ∈ X−, and x �≤ y′

(y→⊕ x′)′ if x ∈ X−, y ∈ X+, and x ≤ y′

(x→⊗ y′)′ if x ∈ X−, y ∈ X+, and x �≤ y′

(5)

where ⊗ and ⊕ denote the negative and the positive cone operation of ∗◦,
respectively.

Theorem 3 gives rise to a new construction method, the so-called twin-rotation.

Definition 2. [19] (Twin-rotation construction) Let X1 be a partially or-
dered set with top element t, and and X2 be a partially ordered set with bottom
element t such that the connected ordinal sum osc〈X1, X2〉 of X1 and X2 (that
is putting X1 under X2, and identifying the top of X1 with the bottom of X2)
has an order reversing involution ′. Let ⊗ and ⊕ be commutative, residuated
semigroups on X1 and X2, respectively, both with neutral element t. Assume,
in addition, that

1. in case t′ ∈ X1 we have x→⊗ t′ = x′ for all x ∈ X1, x ≥ t′, and
2. in case t′ ∈ X2 we have x→⊕ t′ = x′ for all x ∈ X2, x ≤ t′.

Denote U⊕⊗ = 〈osc〈X1, X2〉, ∗◦,≤, t, f〉 where f = t′ and ∗◦ is defined as follows:

x ∗◦ y =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x⊗ y if x, y ∈ X1

x⊕ y if x, y ∈ X2

(x→⊕ y′)′ if x ∈ X2, y ∈ X1, and x ≤ y′

(y→⊕ x′)′ if x ∈ X1, y ∈ X2, and x ≤ y′

(y→⊗ (x′ ∧ t))′ if x ∈ X2, y ∈ X1, and x �≤ y′

(x→⊗ (y′ ∧ t))′ if x ∈ X1, y ∈ X2, and x �≤ y′

. (6)

Call ∗◦ (resp. U⊕⊗ ) the twin-rotation of ⊗ and ⊕ (resp. of the first and the second
partially ordered monoid).

It is not difficult to see that U⊕⊗ in Definition 2 is well-defined, it is an involutive
FLe-algebra if and only if ∗◦ is associative, Conditions 1 and 2 of Definition 2 are
necessary for U⊕⊗ to be an involutive FLe-algebra, and that U⊕⊗ is conic.

Willing to construct involutive FLe-algebras, the only remaining question is
which pairs of a t-norm and a t-conorm work? In other words, which pairs of a
t-norm and a t-conorm can be used in the twin-rotation construction such that
∗◦ is associative? A partial answer to this was given in [15], where SIU-algebras
on [0, 1] have been classified. This result has recently been generalized in [18],
where SIU-algebras (over arbitrary lattices) are classified:

Theorem 4. [18] U = 〈X, ∗◦,≤, t, f〉 is a SIU -algebra if and only if its negative
cone is a BL-algebra with components which are either product or minimum
components, ⊕ is the dual of ⊗, and ∗◦ is given by (5).
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Fig. 4. Illustration for the classification of SIU-algebras, see Theorem 4

References

1. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-
Valued Reasoning. Kluwer, Dordrecht (2000)

2. Clifford, A.H.: Naturally totally ordered commutative semigroups. Amer. J.
Math. 76, 631–646 (1954)

3. Dombi, J.: Basic concepts for a theory of evaluation: The aggregative operator.
European J. Oper. Res. 10, 282–293 (1982)

4. Fodor, J.: Personal communication

5. J. Fodor and B. De Baets, A single-point characterization of representable uni-
norms, Fuzzy Sets and Systems (to appear, 2012), doi:10.1016/j.fss.2011.12.001

6. Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainty, Fuzzi-
ness and Knowledge-Based Systems 5, 411–427 (1997)

7. Johnstone, P.T.: Stone spaces. Cambridge University Press, Cambridge (1982)

8. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathe-
matics, vol. 151, p. 532 (2007)
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Abstract. It has been shown that the lattice E of indistinguishability
operators, the lattice H of sets of extensional sets and the lattices U and
L of upper and lower approximations respectively are isomorphic. This
paper will study the relation between E , H, U and L under the effect of
the natural mean aggregation, i.e. the quasi arithmetic mean, associated
to the t-norm.
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1 Introduction

The concept of indistinguishability operator has been defined as the natural
fuzzification of the classical mathematical concept of equivalence relation, and
these operators give a way to tackle Poincaré’s Paradox and relax Leibniz’s Law
of Identity [10].

Whereas classical equivalence relations can be very rigid and therefore define
a tight relation in the universe of discourse, their fuzzy version relaxes this
tightness and several interesting properties emerge. Probably one of the most
relevant is the duality between indistinguishability operators and metric spaces.

In the classical context equivalence relations lead to the definition of equiva-
lence classes. These classes are crisp sets and only sets that are union of equiv-
alence classes become observable under the effect of this equivalence relation.
Their fuzzy version, named extensional sets, are softer and present several re-
sults which allow us to have a much deeper comprehension of the corresponding
indistinguishability operator.

In [9] it is shown that the lattice of indistinguishability operators E , sets of
extensional sets H and upper and lower approximations, U and L respectively,
are isomorphic. These isomorphisms consider only the intersection and union
of indistinguishability operators. Other kind of operators have to be considered
in order to take into account the semantic information of these concepts. For
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instance, a very interesting field is how several indistinguishability operators
can be aggregated. This problem is of great importance in practical contexts,
where several attributes have to be considered at the same time [7].

This paper will study the relation between E , H, U and L when we consider
the aggregation of indistinguishability operators by means of the natural mean
operator. The results will show that at this level these concepts are not isomor-
phic. While some implications are preserved, there are some that fail, so the
results in [9] are not extendable to this context. It will be shown which ones are
preserved and counterexamples of the other ones will be given.

Although the results obtained do not provide isomorphisms between E , H, U
and L, from a practical point of view the inequalities obtained are still of great
use. As it will be shown, we can provide bounds that can be effectively calculated
with very low computational cost; while in some contexts, for instance when the
data set is very large, the precise calculation may be very costly.

This work is structured as follows: The main concepts and results used and
involved in the work will be given in Section 2. In Section 3 it is shown how
E , H, U and L can be given a lattice structure and it is proved that they are
all isomorphic. Section 4 contains the main core of the work. This section will
deal with the aggregation of indistinguishability operators by means of the quasi-
arithmetic mean defined by the generator of the t-norm, and it will be proved how
the mean of extensional sets, upper and lower approximations do not coincide in
general with the extensional set, upper and lower approximation respectively of
means since only one inequality remains true. A very simple counterexample will
illustrate the inequality that fails. Finally Section 5 will deal with the conclusions
of the work, where the main results of this paper will be summarized and possible
future lines of research will be outlined.

2 Preliminaries

In this section the main concepts and results related to Indistinguishability op-
erators used in this work will be recalled. In this paper we will assume that the
t-norm is always continuous and Archimedean, this way it will be possible to
operate in terms of the additive generator t of the t-norm. [8]

Definition 1. Let T be a t-norm.

– The residuation
−→
T of T is defined for all x, y ∈ [0, 1] by

−→
T (x|y) = sup{α ∈ [0, 1]|T (α, x) ≤ y}.

– The birresiduation
↔
T of T is defined for all x, y ∈ [0, 1] by

↔
T (x, y) = min{−→T (x|y),−→T (y|x)} = T (

−→
T (x|y),−→T (y|x)).

It is straightforward from the definition to see that these definitions can be
rewritten in terms of the additive generator t of the t-norm. This will prove to
be very useful along the paper to simplify some calculus.
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Proposition 1. Let T be a t-norm generated by an additive generator t. Then:

– T (x, y) = t[−1](t(x) + t(y))

–
−→
T (x|y) = t[−1](t(y)− t(x))

Definition 2. Let T be a t-norm. A fuzzy relation E on a set X is a T -indis-
tinguishability operator if and only if for all x, y, z ∈ X

a) E(x, x) = 1 (Reflexivity)
b) E(x, y) = E(y, x) (Symmetry)
c) T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

Following we recall the definition of extensional sets. While indistinguishability
operators fuzzify equivalence relations, extensional sets represent the fuzzifica-
tion of equivalence classes together with their unions and intersections [3].

Definition 3. Let X be a set and E a T -indistinguishability operator on X. A
fuzzy subset μ of X is called extensional if and only if:

∀x, y ∈ X T (E(x, y), μ(y)) ≤ μ(x).

We will denote HE the set of all extensional fuzzy subsets of X with respect
to E.

Proposition 2. Let X be a set, E a T -indistinguishability operator on X and
μ a fuzzy subset of X. Then:

μ ∈ HE ⇔ Eμ ≥ E

The set of extensional fuzzy subsets can be characterized as follows.

Proposition 3. [2] Let E be a T -indistinguishability operator and HE its set of
extensional fuzzy sets. Then, ∀μ ∈ HE , (μi)i∈I a family of extensional sets and
∀α ∈ [0, 1] the following properties hold:

1.
∨

i∈I μi ∈ HE

2.
∧

i∈I μi ∈ HE

3. T (α, μ) ∈ HE

4.
−→
T (μ|α) ∈ HE

5.
−→
T (α|μ) ∈ HE

Theorem 1. [2] Let H be a subset of [0, 1]X satisfying the properties of Propo-
sition 3. Then there exists a unique T -indistinguishability operator E such that
H = HE.

The set of all sets of extensional sets on X will be denoted by H.
Following we define two operators φE and ψE that, given a fuzzy subset

μ, provide its best upper and lower approximation by extensional sets of E
respectively.
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Definition 4. Let X be a set and E a T -indistinguishability operator on X.
The maps φE : [0, 1]

X → [0, 1]X and ψE: [0, 1]
X → [0, 1]X are defined ∀x ∈ X

by:

φE(μ)(x) = sup
y∈X

T (E(x, y), μ(y))

ψE(μ)(x) = inf
y∈X

−→
T (E(x, y)|μ(y)).

φE(μ) is the smallest extensional fuzzy subset greater than or equal to μ; hence it
is its best upper approximation by extensional sets. Analogously, ψE(μ) provide
the best approximation by extensional fuzzy subsets less than or equal to μ.
From a topological viewpoint these operators can be seen as closure and interior
operators on the set [0, 1]X [3]. It is remarkable that these operators also appear
in a natural way in the field of fuzzy rough sets [4],[5] and fuzzy modal logic [1]
where they stand for a fuzzy possibility and necessity respectively.

In [4] it is proved that these operators can be characterized by the following
families of properties.

Theorem 2. Given a set X and an operator φ: [0, 1]X → [0, 1]X, φ is the
upper approximation of a certain indistinguishability operator if and only if the
following properties are fulfilled.

1. μ ≤ μ′ ⇒ φE(μ) ≤ φE(μ
′)

2. μ ≤ φE(μ)
3. φE(μ ∨ μ′) = φE(μ) ∨ φE(μ

′)
4. φE(φE(μ)) = φE(μ)
5. φE({x})(y) = φE({y})(x)
6. φE(T (α, μ)) = T (α, φE(μ))

Theorem 3. Given a set X and an operator φ: [0, 1]X → [0, 1]X, φ is the
upper approximation of a certain indistinguishability operator if and only if the
following properties are fulfilled.

1. μ ≤ μ′ ⇒ ψE(μ) ≤ ψE(μ
′)

2. ψE(μ) ≤ μ
3. ψE(μ ∧ μ′) = ψE(μ) ∧ ψE(μ

′)
4. ψE(ψE(μ)) = ψE(μ)
5. ψE(

−→
T (x|α)(y) = ψE(

−→
T (y|α)(x)

6. ψE(
−→
T (α|μ)) = −→T (α, ψE(μ))

The set of all upper (lower) approximations, i.e. the set of all operators verifying
the properties of Theorem 2 (Theorem 3), will be denoted U (L).

3 The Lattices of Indistinguishability Operators, Sets
of Extensional Fuzzy Subsets, Upper and Lower
Approximations

In this section, operations on E , H, U and L will be defined that give these sets
a lattice structure. The last result states that these lattices are isomorphic.
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It is well known that given two indistinguishability operators E,F , its inter-
section E ∩F is also an indistinguishability operator. However the union E ∪ F
does not preserve transitivity and hence is not in general an indistinguishability
operator. This fact motivates the following definition.

Definition 5. Let T be a t-norm and R a fuzzy proximity (a reflexive and
symmetric fuzzy relation) on a set X. The transitive closure R of R is the T -
indistinguishability operator defined by

R =
⋂
E∈A

E

where A is the set of T -indistinguishability operators on X greater than or equal
to R.

This way, the union operator can be closed under transitivity and hence become
an internal operation in E . It is then straightforward to see that E has a lattice
structure with the natural ordering given by ≤ and the operations E ∩ F and
E ∪ F .

A similar situation appears in H. Given HE , HF ∈ H two sets of extensional
fuzzy subsets, the intersection of them is the set of extensional fuzzy subsets of
a certain indistinguishability operator, but not its union. We have to define then
the concept of extensional closure.

Definition 6. Let J ⊆ [0, 1]X . Its extensional closure J is defined by:

J :=
⋂

H∈[0,1]X ,J⊆H

H

where H is a set of fuzzy subsets of X satisfying the properties of Proposition 3:

Now H becomes a lattice considering the ordering given by ⊆ and the operations
HE ∩HF and HE ∪HF .

The situation is analogous in the case of upper and lower approximations.
φE ∧ φF is still an upper approximation but not φE ∨ φF , and a dual result
happens in L. We have to define again closure and interior operators in order to
close these operations.

Definition 7. Let f be a map defined on [0, 1]X → [0, 1]X. The φ-closure f of
f is defined as:

f =
∧

f≤φ,φ∈U
φ

where U is the set of maps φ : [0, 1]X → [0, 1]X satisfying the properties of
Theorem 2.

Definition 8. Let f be a map defined on [0, 1]X → [0, 1]X. The ψ-closure f̃ of
f is defined as:

f =
∨

ψ∈L,f≤ψ

ψ
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where L is the set of maps ψ : [0, 1]X → [0, 1]X satisfying the properties of
Theorem 3.

It can be proved that the set of all upper approximations by extensional sets
on a universe X is a lattice U with the ordering ≤ and the operations ∧ and ∨.
Analogously, L will be the lattice (L,≤,∨,∧) of lower approximations.

Finally, it is interesting to ask whether it is possible to rewrite the set of
extensional fuzzy subsets, upper approximation and lower approximation of the
intersection E ∩ F and closed union E ∪ F of indistinguishability operators in
terms of the initial sets of extensional fuzzy subsets and approximations of the
indistinguishability operators. This problem has been solved with the following
result. As an interesting corollary we will have that E ,H, U and L are isomorphic
lattices.

Theorem 4. [9] Let E,F be two T -indistinguishability operators on a set X.
Then:

– HE∩F = HE ∪HF

– HE∪F = HE ∩HF

– φE∧F = φE ∧ φF

– φE∪F = φE ∨ φF

– ψE∧F = ψE ∧ ψF

– ψE∪F = ψE ∨ ψF

Corollary 1. E ∼= H ∼= U ∼= L

4 Natural Means Operating on Indistinguishability
Operators, Sets of Extensional Fuzzy Subsets, Upper
and Lower Approximations

This section will try to extend the isomorphism given in Theorem 4 to the field
of natural means. In Theorem 4 it was possible, for instance, to rewrite the set
of extensional subsets associated to the intersection of two indistinguishability
operators as the closed union of the initial sets of extensional subsets of the
indistinguishability operators. The problem this section will face is the same one
applied to quasi-arithmetic means. The result will be that some implications are
preserved but the whole result of Theorem 4 cannot be transfered to natural
mean aggregations of indistinguishability operators. The results that are pre-
served will be proved and counterexamples will be given to illustrate the parts
that fail.

First of all, let us recall the definition of quasi-arithmetic mean.

Definition 9. Let t : [0, 1] → [0,∞) be a continous strict monotonic map and
x, y ∈ [0, 1]. The quasi-arithmetic mean mt of x and y is defined as:

mt(x, y) = t−1( t(x)+t(y)
2 )

The next result proves that continuous quasi-arithmetic means are in bijection
with t-norms.
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Proposition 4. [7] The map assigning every continuous Archimedean t-norm
with additive generator t the quasi-arithmetic mean mt is a bijection.

In this paper we will call quasi-arithmetic means simply means or natural means.
The term natural comes from the fact that the same additive generator t of
the t-norm T is used to define the mean of T -indistinguishability operators. In
practical contexts this means that after all the only choice that has to be made
is the t-norm or equivalently its additive generator t.

It is well known that the natural mean of two indistinguishability operators
is an indistinguishability operator too.

Proposition 5. Let T be a t-norm and E, F two T -indistinguishability opera-
tors. Then the mean of E and F defined as:

mt(E,F )(x, y) = t−1( t(E(x,y))+t(F (x,y))
2 )

is a T indistinguishability operator on X.

Lemma 1. Let E be a T -indistinguishability operator on a set X. μ ∈ HE if
and only if ∀x, y ∈ X:

t(E(x, y)) + t(μ(y)) ≥ t(μ(x))

Proof. μ ∈ HE ⇔ T (E(x, y), μ(y)) ≤ μ(x) ⇔ t−1(t(E(x, y)) + t(μ(y))) ≤ μ(x).
And as t is a monotone decreasing function this is equivalent to t(E(x, y)) +
t(μ(y)) ≥ t(μ(x))

First of all lets analyze the mean of extensional sets.

Proposition 6. Let t be the additive generator of a t-norm T and E, F two
T -indistinguishability operators with associated sets of extensional sets HE and
HF respectively. Then:

mt(HE , HF ) ≤ Hmt(E,F )

Proof. Let μ ∈ HE and ν ∈ HF . We have to see that

T (mt(E,F )(x, y),mt(μ(y), ν(y))) ≤ mt(μ(x), ν(x)).

Expanding, this is analogous to prove that

t−1(t(t−1(
t(E(x, y)) + t(F (x, y))

2
)) + t(t−1(

t(μ(y)) + t(ν(y))

2
)))

≤ t−1(
t(μ(x)) + t(ν(x))

2
).

Simplifying,

t−1(
t(E(x, y)) + t(F (x, y))

2
) +

t(μ(y)) + t(ν(y))

2
)) ≤ t−1(

t(μ(x)) + t(ν(x))

2
).

Which is equivalent to: t(E(x, y)) + t(F (x, y)) + t(μ(y)) + t(ν(y)) ≥ t(μ(x)) +
t(ν(x)).
And this is true because μ ∈ HE and ν ∈ HF .
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Lets show in a counterexample that equality is not reached in general.

Example 1. Let X be a finite set of cardinality 3. Let us consider the following
T -indistinguishability operators with T the �Lukasiewicz t-norm.

E =

⎛⎝1 0.6 0.7
0.6 1 0.8
0.7 0.8 1

⎞⎠ F =

⎛⎝1 0.8 0.7
0.8 1 0.6
0.7 0.6 1

⎞⎠
The natural mean mt(E,F ) of E and F is:

mt(E,F ) =

⎛⎝1 0.7 0.7
0.7 1 0.7
0.7 0.7 1

⎞⎠
Let us consider the fuzzy subset μ =

(
1 1 0.7

)
.

μ ∈ Hmt(E,F ) since Eμ ≥ mt(E,F ) (Proposition 2).
But the extensional fuzzy subsets of E must have the third component ≥ 0.8

and the ones of F must have it ≥ 0.7. Hence it is not possible to find α ∈ HE

and β ∈ HF such that μ = mt(α, β).

The situation is very similar when we study what happens with the natural mean
of upper approximations.

Proposition 7. Let t be the additive generator of a t-norm T and E, F two T -
indistinguishability operators with associated upper approximations φE and φF

respectively. Then:
mt(φE , φF ) ≥ φmt(E,F )

Proof. Let μ ∈ [0, 1]X be a fuzzy subset and x ∈ X . We have to see that
mt(φE , φF )(μ(x)) ≥ φmt(E,F )(μ(x)).
Expanding the expression we have to see

t−1(
t(supy∈X t−1(t(E(x, y)) + t(μ(y))) + t(supy∈X t−1(t(F (x, y)) + t((μ(y)))

2
)

≥ sup
y∈X

t−1(t(t−1(
t(E(x, y)) + t(F (x, y))

2
+ t(μ(y))).

This is equivalent to

t−1(
infy∈X(t(E(x, y)) + t(μ(y))) + infy∈X(t(F (x, y)) + t(μ(y)))

2
)

≥ t−1(∈ fy∈X(
t(E(x, y)) + t(F (x, y))

2
+ t(μ(y)))).

Equivalently,

inf
y∈X

(t(E(x, y)) + t(μ(y))) + inf
y∈X

(t(F (x, y)) + t(μ(y)))

≤ inf
y∈X

(t(E(x, y)) + t(F (x, y)) + 2t(μ(y))).

Which is true because the addition of infima is smaller than or equal to the
infimum of the addition.
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Equality is not reached in general either. Further we illustrate it with the same
indistinguishability operators E, F as in Counterexample 1.

Again, in the case of lower approximations only an inequality is true.

Proposition 8. Let t be the additive generator of a t-norm T and E, F two T -
indistinguishability operators with associated lower approximations ψE and ψF

respectively. Then:
mt(ψE , ψF ) ≤ ψmt(E,F )

Proof. Let μ ∈ [0, 1]X be a fuzzy subset and x ∈ X .
Rewriting this inequality terms of t, it has to be proved

t−1(
t(infy∈X(t−1(t(μ(y))− t(E(x, y))) + t(infy∈X(t−1(t(μ(y))− t(F (x, y)))

2
)

≤ inf
y∈X

t−1(t(μ(y)) − t(t−1(
t(E(x, y)) + t(F (x, y))

2
)))

Simplifying we have the equivalent expression

t−1(
supy∈X(t(μ(y))− t((E(x, y))) + supy∈X(t(μ(y)) − t((F (x, y)))

2
)

≤ inf
y∈X

t−1(t(μ(y)) − t(E(x, y)) + t(F (x, y))

2
)

Which is equivalent to

sup
y∈X

(t(μ(y)) − t(E(x, y))) + sup
y∈X

(t(μ(y)) − t(F (x, y)))

≥ sup
y∈X

(2t(μ(y))− t(E(x, y)) − t(F (x, y))).

And this is true because the addition of suprema is greater than or equal to the
supremum of the addition.

Equality is not true in general as it is shown with the following counterexample.

Example 2. Let us consider the same T -indistinguishability operators and the
same fuzzy subset of Example 1.

μ ∈ Hmt(E,F ) and μ ∈ HF but μ /∈ HE .
Upper and lower approximations are fixed points on the set of extensional

fuzzy subsets, so:
φmt(E,F )(μ) = φF (μ) = μ, ψmt(E,F )(μ) = ψF (μ) = μ.
But μ /∈ HE ⇒ φE(μ) > μ and ψE(μ) < μ.
So φmt(E,F )(μ) < mt(φE , φF ) and ψmt(E,F )(μ) > mt(ψE , ψF ), and hence

equality is not reached.



270 G. Mattioli and J. Recasens

5 Concluding Remarks

This work has studied if it was possible to extend the set-theoretical isomorphism
between E , H, U and L to the application of the natural mean operator. Coun-
terintuitively, the result has been that this is not possible. It has been proved,
however that some inequalities actually hold and how in general equality is not
reached has been shown with a simple counterexample.

As future work it would be interesting to study how much does the mean of
the operators differ from the operator of the means. This means to study how
far is the bound found from the real value. Another possible line of research to
find under which weaker hypothesis it is possible to find equality, and therefore
have a proper extension of the isomorphism found in Theorem 4. The authors
expect to present results on these topics in forthcoming works.
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6. Bělohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer
Academic Publishers, New York (2002)

7. Jacas, J., Recasens, J.: Aggregation of T-Transitive Relations. Int J. of Intelligent
Systems 18, 1193–1214 (2003)

8. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers,
Dordrecht (2000)

9. Mattioli, G., Recasens, J.: Dualities and Isomorphisms between Indistinguishabil-
ities and Related Concepts. In: FUZZ IEEE, Taiwan (2011)

10. Recasens, J.: Indistinguishability Operators. Modelling Fuzzy Equalities and Fuzzy
Equivalence Relations Series: STUDFUZZ, vol. 260 (2011)

11. Valverde, L.: On the Structure of F-indistinguishability Operators. Fuzzy Sets and
Systems 17, 313–328 (1985)

12. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inform. Sci. 3, 177–200 (1971)



Aggregation Operators for Awareness

of General Information

Doretta Vivona1 and Maria Divari2
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Abstract. The aim of this paper is to present a definition of awareness
of information and some aggregation operators of this quantity.

1 Introduction

The inspiration of this paper was born by discussion of a second degree level
dissertation in Nursering Science at ”‘Sapienza” University of Rome (February
2010). In this dissertation, was discussed the possibility that the patient was
able to have more awareness about received diagnosis.

In general, the information of an event (crisp or fuzzy) is not linked with
awareness of the same event.

For example: we cannot have an information about an illness, but at the same
time, we cannot know all its implications.

It could be very usefull to have awareness of the information, as it occcurs in
medicine. In fact, we can know the diagnosis (information about a diagnosis),
but we are not able to take into account all implications of the given information.

As a consequence, the introduction of parameters which help to reach more
awareness, reduces the possibility that information is fuzzy [7, 8].

The aggregation operators are a instrument usefull to collect dates of any
phenomenon. Many authors have studied these operators [2, 3, 6].

In this paper, first, we shall introduce a definition and some properties of the
measures of awareness of information. Second, we shall propose a class of the
measures of awareness, solving a system of functional conditions.

Finally, we shall consider a particular aggregation operators applied to this
awareness.

2 Preliminaries

Let Ω be an abstract space and F the σ-algebra of all not empty fuzzy sets F
[9, 7], such that (Ω,F) is a measurable space.

Our setting is the information theory without probability or fuzzy measure,
called general information in the sense of Kampé De Feriét-Forte-Benvenuti [4, 5].

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 271–275, 2012.
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We recall that the measure of general information [1] is a map

J(·) : F → [0,+∞]

such that:

(i) F ′ ⊃ F ⇒ J(F ′) ≤ J(F ) ,
(ii) J(∅) = +∞ , J(Ω) = 0 .

3 Statment of the Problem: Awareness AWJ

Fixed an information J , we consider three increasing functions:

μJ , λJ , νJ : F → [0, 1]

called quality of information, ability of learning and availability of understanding,
(shortly information, learning and understanding, respectively).

We think that the fuzziness AWJ of the information J is a function Ψ which
depends only on μJ , λJ and νJ i.e. AWJ : F → [0, 1] and

AWJ (F ) = Ψ
⎧⎩μJ (F ), λJ (F ), νJ (F )

⎫⎭.

We describe the natural properties of AWJ from the natural properties of
μJ , λJ , νJ .

Fixed F, we think that if the quality of information is max (μJ (F ) = 1), the
learning is max (λJ (F ) = 1) and the understanding is max (νJ (F ) = 1), then
awareness is max: AWJ (E) = 1.

On the other hand, if the information, learning and understanding are all null
μJ(F ) = λJ (F ) = νJ (F ) = 0, we impose that awareness is min: AWJ (F ) = 0.

Moreover, we think that awareness AWJ (F ) is increasing with respect to the
three variables because μJ , λJ , νJ are themselves monotone.

The properties of the function Ψ are the following:

1) Ψ(1, 1, 1) = 1 ,
2) Ψ(0, 0, 0) = 0 ,

3) Ψ
⎧⎩μJ (F

′), λJ (F
′), νJ(F ′)

⎫⎭ ≤ Ψ
⎧⎩μJ(F ), λJ (F ), νJ (F )

⎫⎭,

∀ F ′, F ∈ F , F′ ⊃ F.

Putting μJ (F ) = x, λJ (F ) = y, νJ(F ) = z, μJ(F
′) = x′, λJ (F

′) = y′, νJ(F ′) =
z′, x′ ≤ x, y′ ≤ y, z′ ≤ z, we obtain the following system of functional conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1′) Ψ(1, 1, 1) = 1

(2′) Ψ(0, 0, 0) = 0

(3′) Ψ(x′, y′, z′) ≤ Ψ(x, y, z), x′ ≤ x, y′ ≤ y, z′ ≤ z.
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First, we give the following:

Proposition 1. A class of solution of the system [(1′)− (3′)] is

Ψh(x, y, z) = h−1
⎧⎩h(x) · h(y) · h(z)

⎫⎭, (1)

where h : [0, 1]→ [0, 1] is any increasing function with h(0) = 0 and h(1) = 1.

Proof. Our proof starts with the observation that from the values of the function
h it is:

1′) Ψh(1, 1, 1) = h−1
⎧⎩h(1) · h(1) · h(1)

⎫⎭ = 1;

2′) Ψh(0, 0, 0) = h−1
⎧⎩h(0) · h(0) · h(0)

⎫⎭ = 0.

Moreover, as h and h−1 are increasing, for x′ ≤ x, y′ ≤ y, z′ ≤ z it results:

3′) Ψh(x
′, y′, z′) = h−1

⎧⎩h(x′) · h(y′) · h(z′)
⎫⎭ ≤ h−1

⎧⎩h(x) · h(y) · h(z)
⎫⎭ =

Ψh(x, y, z). ��

Second, we prove:

Proposition 2. If k : [0, 1] → [0, 1] is any increasing function with k(0) =
0, k(1) = 1 and θ : [0, 1]× [0, 1]→ [0, 1] is any increasing function with respect
to both variables and θ(0, 0) = 0, θ(1, 1) = 1, then a class of solution of the
system [(1′)− (3′)] is

Ψk(x, y, z) = k−1
⎧⎩k(x) · θ

[
k(y), k(z)

]⎫⎭. (2)

Proof. Our proof is similar to the one in the previous Proposition: from the
values of the functions k and θ,

1′) Ψk(1, 1, 1) = k−1
⎧⎩k(1) · θ

[
k(1), k(1)

]⎫⎭ = 1;

2′) Ψh(0, 0, 0) = k−1
⎧⎩k(0) · θ

[
k(0), k(0)

]⎫⎭ = 0.

Moreover, as k, k−1 and θ are increasing, for x′ ≤ x, y′ ≤ y, z′ ≤ z :

3′) Ψk(x
′, y′, z′) = k−1

⎧⎩k(x′)·θ
[
k(y′), k(z′)

]⎫⎭ ≤ k−1
⎧⎩k(x)·θ

[
k(y), k(z)

]⎫⎭ =

Ψk(x, y, z). ��

Remark 1. For example we can choose θ(u, v) = u · v, or θ(u, v) = u ∧ v, or
θ(u, v) = u ∨ v: they are increasing functions.

4 Some Aggregation Operators for AWJ

An aggregation operator [3, 6] is a procedure by which a unique value can be
associated to the results obtained through different tests or different values of a
data base.

The unique value is a kind of mean or average.
In this paragraph this paper we shall characterize some classes of aggregation

operators for awareness.
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We propose an approach based on the axioms of the paper [2]: for the aggre-
gation operator we request only the natural properties of idempotence, mono-
tonicity and continuity from below.

Given an information measure J, let AWJ the family of the AWJ (·). We
characterize the aggregation operator

L : AWJ → [0,K],

0 < K < +∞ of n ∈ [0,+∞] awarenesses AWJ (F1), AWJ (F2), ..., AWJ (Fn),
with AWJ ∈ AWJ, Fi ∈ F , ∀ i = 1, ..., n.

We recall that L has the following properties:

(I) AWJ (Fi) = c, ∀i = 1, ..., n =⇒ L(c, c, ..., c︸ ︷︷ ︸
n

) = c idempotence,

(II) AWJ (F1) ≤ AWJ (F
′
1) =⇒

L(AWJ (F1), ..., AWJ (Fn)) ≤ L(AWJ(F1), ..., AWJ (Fn)) monotonicity,

(III) AWJ (F1m)↗ AWJ (F1) =⇒
L(AWJ (F1m), ..., AWJ (Fn)) ↗ L(AWJ (F1), ..., AWJ (Fn)) continuity from
below.

From [(I)-(III)], putting AWJ (Fi) = xi ∈ [(0,+∞), i = 1, ..., n, we have the
following system of conditions:⎧⎪⎪⎨⎪⎪⎩

(I ′) L(c, c, ..., c︸ ︷︷ ︸
n

) = c

(II ′) x′1 ≤ x1 =⇒ L(x′1, ..., xn) ≤ L(x1, ..., xn)
(III ′) x1m ↗ x1 =⇒ L(x1m, ..., xn)↗ L(x1, ..., xn).

4.1 Solution of the Problem

In this paragraph, we get three classes of solutions of the system [(I’)-(III’)].

Proposition 3. Two solutions of the system [(I’)-(III’)] are:

L(x1, x2, ..., xn) = ∧n
i=1xi ,

and
L(x1, x2, ..., xn) = ∨n

i=1xi .

Proof. It is immediate the check. ��

Proposition 4. If l : [0,+∞]→ [0,+∞] is any continuous, increasing function
with respect to the first variable, then a class of solution of the system [(I’)-(III’)]
is:

L(x1, x2, ..., xn) = l−1
⎧⎩ l(x1) + l(x2) + ...+ l(xn)

n

⎫⎭
where
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Proof. The proof is easy:

(I ′) L(c, c, ..., c︸ ︷︷ ︸
n

) = l−1
⎧⎩ l(c)+l(c)+...+l(c)

n

⎫⎭ = l−1
⎧⎩n l(c)

n

⎫⎭ = c;

(II ′) derives from the monotonicity of the function l;
(III ′) is a consequence of the continuity of l. ��

Remark 2. If the function h is linear, then the aggregation operator L is the
aritmetic average.

5 Conclusion

In this paper, we have introduced awareness of a given information AWJ , which
depend on the so-called quality of information μJ , ability of learning λJ , and
availability of understanding νJ .

Then, we have considered some agggregation operarors of awareness and we
have given some forms of these operators.

It could be interesting an application to general conditional information, be-
cause many diagnosises can be conditioned by contigent aspects as tests.
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Abstract. In this paper the recently introduced class of effort-
dominating impact functions is examined. It turns out that each
effort-dominating aggregation operator not only has a very intuitive in-
terpretation, but also is symmetric minitive, and therefore may be ex-
pressed as a so-called quasi-I-statistic, which generalizes the well-know
OWMin operator.

These aggregation operators may be used e.g. in the Producer Assess-
ment Problem whose most important instance is the scientometric/biblio-
metric issue of fair scientists’ ranking by means of the number of citations
received by their papers.

Keywords: Aggregation operators, impact functions, arity-monotonic,
OWMax, OWMin, OMA, OWA, Hirsch’s h-index, scientometrics.

1 Preliminaries

Information aggregation is a process that plays a very important role in many
human activities, e.g. in statistics, engineering, and scientometrics. For example,
in the Producers Assessment Problem [5,7] we are interested in the construction
of a class of mappings that project the space of arbitrary-sized real vectors of
individual goods’ quality measures into a single number that reflects both (a)
general quality of goods, and (b) the producer’s overall productivity.

Nondecreasing, symmetric, and arity-monotonic aggregation operators useful
in the PAP are called impact functions. For example, in [6] the most fundamen-
tal properties of L-, S-, quasi-L-, and quasi-S-statistics, which generalize OWA
[13], OWMax [2], OMA [10], and symmetric maxitive aggregation operators,
respectively, were analyzed.

In [7] the class of effort-dominating operators was introduced. It was used to
construct possibility distributions of impact functions’ output values under —
but not limited to — right-censored input data. As this very appealing class of
aggregation operators has not been thoroughly examined yet, in this paper we
are interested in finding how they are related to other functions known from the
aggregation theory [cf. 8].
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1.1 Notational Convention

From now on let I = [a, b] denote any closed interval of the extended real line, R̄ =
[−∞,∞]. The set of all arbitrary-length vectors with elements in I, i.e.

⋃∞
n=1 I

n,
is denoted by I1,2,.... If not stated otherwise explicitly, we assume that n, m ∈
N = {1, 2, . . .}. Moreover, let [n] = {1, 2, . . . , n}.

For any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ In, we write x ≤ y if and only if
(∀i ∈ [n]) xi ≤ yi. Let x(i) denote the ith order statistic of x = (x1, . . . , xn). For
x,y ∈ In, we write x ∼= y if and only if there exists a permutation σ of the set
[n] such that x = (yσ(1), . . . , yσ(n)). A vector (x, x, . . . , x) ∈ In is denoted briefly
by (n ∗ x). For each x ∈ In and y ∈ Im, (x,y) denotes the concatenation of the
vectors, i.e. (x1, . . . , xn, y1, . . . , ym) ∈ In+m.

If f, g : I → R̄ then f � g (g dominates f) if and only if (∀x ∈ I) f(x) ≤ g(x).
The image of f is denoted by img f.

1.2 Aggregation Operators

Let E(I) denote the set of all aggregation operators in I1,2,..., i.e. E(I) = {F :
I1,2,... → I}. The class of aggregation operators reflects the very general idea of
combining multiple numeric values into a single one, in some way representative
of the whole input. Note that the aggregation (averaging) functions [cf. 8,11]
form a particular subclass of aggregation operators.

In this paper we focus our attention on nondecreasing, arity-monotonic, and
symmetric aggregation operators. Such operators are called impact functions1.

Definition 1. We say that F ∈ E(I) is nondecreasing, denoted F ∈ P(nd), if

(∀n) (∀x,y ∈ In) x ≤ y =⇒ F(x) ≤ F(y).

Definition 2. We call F ∈ E(I) arity-monotonic, denoted F ∈ P(am), if

(∀n, m) (∀x ∈ In) (∀y ∈ Im) F(x) ≤ F(x,y).

Definition 3. We say that F ∈ E(I) is symmetric, denoted F ∈ P(sym), if

(∀n) (∀x,y ∈ In) x ∼= y =⇒ F(x) = F(y).

Moreover, let us consider the following pre-order2 on I1,2,.... For any x ∈ In and
y ∈ Im we write x � y if and only if n ≤ m and x(n−i+1) ≤ y(m−i+1) for all
i ∈ [n]. Recall that x(n−i+1) denotes the ith largest element of x.

We have recently shown (see [7] for the proof) that an aggregation operator
F satisfies the three above properties if and only if F is a morphism (order-
preserving mapping) between the pre-ordered set

(
I1,2,..., �

)
and (R̄,≤).

1 Originally, in [5,7] we have required impact functions to fulfill some additional bound-
ary conditions, which are not needed in this context.

2 Formally, it is easily seen that � is not anti-symmetric (and hence is not a partial
order, contrary to our statement in [7]) unless it is defined on the set of equivalence
classes of ∼=. Thanks to Prof. Michał Baczyński for pointing out this error.
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Theorem 1. Let F ∈ E(I). Then F ∈ P(nd) ∩ P(am) ∩ P(sym) if and only if

(∀x,y ∈ I1,2,...) x � y =⇒ F(x) ≤ F(y). (1)

2 Effort-Dominating Impact Functions

Given an aggregation operator F ∈ E(I) and a constant v ∈ img F, let F−1[v] :={
x ∈ I1,2,... : F(x) = v

}
denote the v-level set ofF. Additionally, if F ∈ P(sym) then,

to avoid ambiguity, we assume that F−1[v] consists only of vectors in I1,2,... that
are unique w.r.t. to the relation ∼= (e.g. their terms are sorted nonincreasingly).

Let us recall the notion of an effort-measurable aggregation operator [7].

Definition 4. We say that F ∈ P(nd) ∩ P(am) ∩ P(sym) is effort-measurable,
denoted F ∈ P(em), if

(
F−1[v], �

)
is a partially ordered set with a unique least

element for any v ∈ img F.

In other words, F ∈ P(em) if and only if for any v ∈ img F,
(
F−1[v], �

)
is a lower

semilattice (a meet- or ∧-semilattice).

Example 1. Not every F ∈ P(nd) ∩ P(am) ∩ P(sym) is effort-measurable. E.g. for
a quasi-L-statistic [cf. 6] L� such that L�(x1, . . . , xn) =

∑n
i=1(n−i+1)x(n−i+1),

we have L−1
� [3] = {(3), (1, 1), (1.5, 0), (1, 0, 0), . . .} , which has no least element

w.r.t. �. Moreover, the lp-indices proposed in [4; cf. also 3] also are not effort-
measurable. �

For any given F ∈ P(em) and v ∈ img F, let μv denote the least element of
F−1[v], i.e. μv := min{F−1[v]}. Clearly, for w = min{img F} we have μw = (a).
Additionally, from now on M(F) := {μv : v ∈ img F}.
Example 2. Consider the aggregation operator Max ∈ P(em), defined as Max(x1,

. . . , xn) = x(n) for (x1, . . . , xn) ∈ I1,2,.... We have img Max = I, Max−1[v] =
{(x1, . . . , xn) ∈ I1,2,... : x(n) = v}, μv = (v) ∈ I1, and M(Max) = I1. �

From the class of effort-measurable aggregation operators let us distinguish the
set of effort-dominating operators.

Definition 5. We say that F ∈ P(em) is effort-dominating, denoted F ∈ P(ed),
if (M(F), �) is a chain.

We see that in case of effort-dominating aggregation operators we have μv �
μv′ ⇐⇒ v < v′ for all v, v′ ∈ img F. It is very important to note that each
F ∈ P(ed) may be defined in the following, highly intuitive manner. For any
x ∈ I1,2,... it holds

F(x) = argmax
v∈img F

{μv ∈ M(F) : μv � x} . (2)

We therefore look for the greatest v such that μv is still dominated by the input
vector (cf. Fig. 1).
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5.3

51
i

x(n−i+1)

×
××

×

×

μv1

μv2

μv3

μv4

Fig. 1. x(n−i+1) as a function of i for x = (5.3, 3.2, 1.8, 1.5, 0.5) and the process of
determining F(x)

Example 3. Let I = [0,∞]. The widely-known Hirsch’s h index [9], introduced
in 2005 in the field of bibliometrics, is an impact function H such that for
(x1, . . . , xn) ∈ I1,2,... we have H(x1, . . . , xn) = max{i = 0, 1, . . . , n : x(n−i+1) ≥
i} under the convention x(n+1) = x(n). We have μ0 = (0), and μn = (n ∗ n) for
n ∈ N, therefore H ∈ P(ed). �

Example 4. Let I = [0,∞]. The rp-index [3,4] for p ≥ 1 is an impact function

rp(x1, . . . , xn) := sup{r ≥ 0 : sp,r � x},

where (x1, . . . , xn) ∈ [0,∞]1,2,... and sp,r ∈ I	r
, r > 0, denotes a sequence

sp,r =

{(
p
√

rp − 0p, p
√

rp − 1p, . . . , p
√

rp − �r − 1�p
)

if p < ∞,

(r, r, . . . , r) if p = ∞,

under the assumption sp,0 = (0), see Fig. 2.

r

1

�r�1
i

sp,r
i

p = ∞

p = 2

p = 1

Fig. 2. sp,r
i as a function of i for p = 1, 2,∞
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It may be shown that for any x ∈ [0,∞]1,2,..., r∞(�x�) = H(x), and r1(�x�) =
W(x), where W is the Woeginger’s w-index [12].

Clearly, each rp-index is effort-dominating [7] — we have μv = sv,r. The r∞-
index may be expressed as a symmetric maxitive or a symmetric modular ag-
gregation operator [6]. However, for x(2) ≥ x(1) ≥ 0, e.g. we have r1(x(2), x(1)) =
(x(2) ∧ 2)∧ (1 + (x(1) ∧ 1)), for which there do not exist nondecreasing functions
f1,2, f2,2 : I → R̄, such that r1(x(2), x(1)) = f1,2(x(2))∨f2,2(x(1)), or r1(x(2), x(1)) =
f1,2(x(2)) + f2,2(x(1)). �

3 Symmetric Minitive Aggregation Operators

Let us first recall the notion of a triangle of functions [cf. 6]:

Definition 6. A triangle of functions is a sequence

� = (fi,n)i∈[n],n∈N,

where (∀n) (∀i ∈ [n]) fi,n : I → I.

Such objects may be used to generate interesting classes of aggregation opera-
tors, e.g. quasi-S- (consising of — but not limited to — all symmetric maxitive
operators), and quasi-L-statistics (symmetric modular operators [cf. 10]). Here
we introduce another one.

Definition 7. A quasi-I-statistic generated by � = (fi,n)i∈[n],n∈N is a func-
tion qI� ∈ E(I) defined for any (x1, . . . , xn) ∈ I1,2,... as

qI�(x) =
n∧

i=1

fi,n(x(n−i+1)). (3)

Please note that ∧ denotes the minimum (Infimum) operator, hence the name.
We obviously have qI� ∈ P(sym) for any triangle of functions �.

It is easily seen that quasi-I-statistics generalize OWMin operators [1], for
which we have fi,n(x) = ci,n ∨ x for some ci,n ∈ I, and symmetric minitive
aggregation operators, i.e. the set of all F ∈ E(I) such that (∀n) (∀x,y ∈ In) it

holds F(x
S∧ y) = F(x) ∧ F(y), where x

S∧ y = (x(n) ∧ y(n), . . . , x(1) ∧ y(1)).

The following theorem states that, without loss of generality, triangles of func-
tions generating nondecreasing quasi-I-statistics may be assumed to be of a par-
ticular form.

Theorem 2. Let I = [a, b] and � = (fi,n)i∈[n],n∈N. Then qI� ∈ P(nd) if and
only if there exists � = (gi,n)i∈[n],n∈N satisfying the following conditions:
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(i) (∀n) (∀i ∈ [n]) gi,n is nondecreasing,
(ii) (∀n) (∀i ∈ [n]) gi,n(b) = g1,n(b),
(iii) (∀n) g1,n � · · · � gn,n,

such that qI� = qI�.

Proof. (=⇒) Let us fix n. Let en = qS�(n ∗ b) =
∧n

i=1 fi,n(b). Therefore, as
qI� ∈ P(nd), for all x ∈ In it holds qI�(x) ≤ en. As a consequence,

qI�(x) =
n∧

i=1

fi,n(x(n−i+1)) =
n∧

i=1

(
fi,n(x(n−i+1)) ∧ en

)
.

Please note that, as qI� is nondecreasing, we have (∀x ∈ In) (∀i ∈ [n]) qI�(x) ≤
qI�((n−i)∗b, i∗x(i)), because (x(n), . . . , x(1)) ≤ ((n−i)∗b, i∗x(i)). We therefore
have qI�(x) ≥ fj,n(x(n−i+1)), where 1 ≤ i ≤ j ≤ n. However, by definition, for
each x there exists k ∈ [n] for which qI�(x) = fk,n(x(n−k+1)). Thus,

qI�(x) = qI�((n − 1) ∗ b, 1 ∗ x(1))
∧ qI�((n − 2) ∗ b, 2 ∗ x(2))
...
∧ qI�((n − n) ∗ b, n ∗ x(n)).

Consequently,

qI�(x) =
n∧

i=1

⎛⎝ n∧
j=i

fj,n(x(n−i+1)) ∧ en

⎞⎠ .

We may thus set gi,n(x) :=
∧n

j=i fj,n(x) ∧ en for all i ∈ [n]. We see that g1,n �
· · · � gn,n, and g1,n(b) = · · · = gn,n(b) = en.

We will show that each gi,n is nondecreasing. Assume otherwise. Let there
exist i and a ≤ x < y ≤ b such that gi,n(x) > gi,n(y). We have qS�((n− i)∗ b, i∗
x) = gi,n(x) > qS�((n − i) ∗ b, i ∗ y) = gi,n(y), a contradiction.

(⇐=) Trivial. �

Please note that, clearly, whenever � fulfills all the above conditions then it
holds img qI� =

⋃∞
n=1

(⋃n
i=1 img gi,n

)
.

Now let us find out when a nondecreasing quasi-I-statistic is arity-monotonic.

Theorem 3. Let I = [a, b] and � = (fi,n)i∈[n],n∈N be such that (∀n) (∀i ∈ [n])
fi,n is nondecreasing, fi,n(b) = f1,n(b), and f1,n � · · · � fn,n. Then qI� ∈ P(am)

if and only if (∀n) (∀i ∈ [n]) fi,n � fi,n+1, and fn+1,n+1(a) ≥ f1,n(b).

Proof. (=⇒) We have (∀x ∈ I) qI�(x) = f1,1(x). Moreover, qI�(x, a) = f1,2(x) ∧
f2,2(a). Therefore, qI�(x) ≤ qI�(x, a) if f2,2(a) ≥ f1,1(b) (when x = b) and
f1,2 � f1,1.

Fix n. qI�(n ∗ b) ≤ qI�(n ∗ b, a) implies that fn+1,n+1(a) ≥ f1,n(b) = · · · =
fn,n(b). Now take arbitrary x ∈ In. qI�(x(n), (n − 1) ∗ a) ≤ qI�(x(n), (n) ∗ a),
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implies that f1,n � f1,n+1 (note that, according to the assumption, f1,n+1(a) ≤
· · · ≤ fn+1,n+1(a)). For qI�(x(n), x(n−1), (n−2)∗a) ≤ qI�(x(n), x(n−1), (n−1)∗a)
to hold for any b ≥ x(n) ≥ x(n−1) ≥ a, we must have additionally f2,n � f2,n+1.
By considering the remaining n− 2 terms of x we approach the condition (∀i ∈
[n]) fi,n � fi,n+1.

(⇐=) Trivial. �

4 The Relationship between the Two Classes

We are obviously interested in the relationship between the nondecreasing, arity-
monotonic quasi-I-statistics and effort-dominating aggregation operators. It
turns out that all effort-dominating aggregation operators belong to the class
of quasi-I-statistics.

Theorem 4. Let F ∈ P(ed) and I = [a, b]. Then there exists � = (fi,n)i∈[n],n∈N
such that qI� = F.

Proof. Take any F ∈ P(ed). For any n and i ∈ [n], let li,n := min{μv
(n−i+1) :

|μv| = n}, and ui,n := max{μv
(n−i+1) : |μv| = n}. As M(F) is a chain w.r.t. �

and F ∈ P(nd) ∩ P(am) ∩ P(sym), we have li,n ≤ ui,n ≤ li,n+1.
Let us first consider restriction of F to I1. For any x(1) ∈ I we have:

F(x(1)) = max{v : μv
(1) ≤ x(1), |μv| = 1}

:= f1,1(x(1)).

Note that f1,1 is nondecreasing.
Furthermore, for b ≥ x(2) ≥ x(1) ≥ a it holds:

F(x(2), x(1)) =

⎧⎨⎩
(
max{v : μv

(2) ≤ x(2), |μv| = 2} for x(2) ≥ l1,2

∧ max{v : μv
(1) ≤ x(1), |μv| = 2}) and x(1) ≥ l2,2,

f1,1(x(2)) otherwise,

which may be written as:

F(x(2), x(1)) = f1,2(x(2)) ∧ f2,2(x(1)),

where:

f1,2(x(2)) =
{

f1,1(x(2)) for x(2) < l1,2,
max{v : μv

(2) ≤ x(2), |μv| = 2} otherwise,

f2,2(x(1)) =
{

f1,1(u1,1) for x(1) < l2,2,
max{v : μv

(1) ≤ x(1), |μv| = 2} otherwise.

Note that both f1,2 and f2,2 are nondecreasing, f1,1 � f1,2 � f2,2, f1,2(b) = f2,2(b),
and f2,2(a) ≥ f1,1(b) = f1,1(u1,1).
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Now for n = 3, let b ≥ x(3) ≥ x(2) ≥ x(1) ≥ a. It holds:

F(x(3), x(2), x(1)) =

⎧⎪⎪⎨⎪⎪⎩
(
max{v : μv

(3) ≤ x(3), |μv| = 3} for x(3) ≥ l1,3

∧ max{v : μv
(2) ≤ x(2), |μv| = 3}) and x(2) ≥ l2,3,

∧ max{v : μv
(1) ≤ x(1), |μv| = 3}) and x(1) ≥ l3,3,

f1,2(x(3)) ∧ f2,2(x(2)) otherwise,

which is equivalent to:

F(x(3), x(2), x(1)) = f1,3(x(3)) ∧ f2,3(x(2)) ∧ f3,3(x(1)),

where

f1,3(x(3)) =
{

f1,2(x(3)) for x(3) < l1,3,
max{v : μv

(3) ≤ x(3), |μv| = 3} otherwise,

f2,3(x(2)) =
{

f2,2(x(2)) for x(2) < l2,3,
max{v : μv

(2) ≤ x(2), |μv| = 3} otherwise,

f3,3(x(1)) =
{

f1,2(u1,2) for x(1) < l3,3,
max{v : μv

(1) ≤ x(1), |μv| = 3} otherwise.

By applying similar reasoning for any n > 3, we approach the equation

F(x(n), . . . , x(1)) =
n∧

i=1

fi,n(x(n−i+1)),

where for i < n we have

fi,n(x(n−i+1)) =
{

fi,n−1(x(n−i+1)) for x(n−i+1) < li,n,
max{v : μv

(n−i+1) ≤ x(n−i+1), |μv| = n} otherwise,

and

fn,n(x(1)) =
{

f1,n−1(u1,n−1) for x(1) < ln,n,
max{v : μv

(1) ≤ x(1), |μv| = n} otherwise.

This formula generates each fi,n being nondecreasing, f1,n � · · · � fn,n, fi,n−1 �
fi,n, fi,n(b) = f1,n(b), and fn,n(a) ≥ f1,n−1(b), thus F is a nondecreasing, arity-
monotonic quasi-I-statistic, which completes the proof. �

Example 5. By the construction above, we have:

rp(x1, . . . , xn) =

{∧n
i=1

(
(n ∧ x(n−i+1)) ∨ (i − 1)

)
if p = ∞,∧n

i=1

((
n ∧ p

√
xp

(n−i+1) + (i − 1)p
)
∨ (i − 1)

)
if p ∈ [1,∞).

�
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Interestingly, if we are given an already nondecreasingly-sorted input vector x ∈
In and an effort-dominating impact function F for which the value max{v :
μv

(n−i+1) ≤ x(n−i+1), |μv| = n} may be computed in O(1)-time for all i, n (just
as in Example 5) then F(x) may be computed in O(n)-time.

On the other hand, not each qI� ∈ P(nd) ∩ P(am) belongs to P(ed).

Example 6. Let I = [0, 2] and � = (fi,n)i∈[n],n∈N be such that f1,1 = �x�,
f1,2(x) = x, f2,2(x) = 2, and (∀n ≥ 3) (∀i ∈ [n]) fi,n(x) = 2. We see that
qI� ∈ P(em) ∩P(nd)∩P(am). However, e.g. μ0 = (0) � μ0.5 = (0.5, 0) �� μ1 = (1).
Therefore, M(qI�) is not a chain w.r.t. �, and hence qI� �∈ P(ed). �

For the sake of completeness, we shall show which triangles of functions generate
effort-dominating quasi-I-statistics.

Theorem 5. Let I = [a, b] and � = (fi,n)i∈[n],n∈N be such that (∀n) (∀i ∈ [n])
fi,n is nondecreasing, fi,n(b) = f1,n(b), f1,n � · · · � fn,n, and qI� ∈ P(am). Then
qI� ∈ P(ed) if and only if

(∀n) (∀i ∈ [n]) (∀x < ui,n) fi,n+1(x) = fi,n(x),

where ui,n = min{y : fi,n(y) = fi,n(b)}.
Proof. (=⇒) Assume the opposite. Take the smallest n and the smallest i ∈ [n]
for which there exists x < ui,n such that fi,n(x) < fi,n+1(x). We have 2 cases.

(i) Let (∃y) such that fi,n(y) = fi,n+1(x). As each function is nondecreasing,
y > x holds. But in this case the least element (w.r.t. �) of {x : qI�(x) =
fi,n+1(x)} does not exist and hence qI� is not even effort-measurable.

(ii) Otherwise, we have μfi,n(x) �� μfi,n+1(x) (note that fi,n(x), fi,n+1(x) ∈
img qI�), and therefore M(qI�) is not a chain, a contradiction.

(⇐=) By arity-monotonicity, we have (∀n) (∀i ∈ [n]) fi,n � fi,n+1, and
fn+1,n+1(a) ≥ f1,n(b). Take any v, v′ ∈ img qI� such that v < v′. Let us take
the smallest m such that (∃x) f1,m(x) = v and the smallest m′ such that
(∃y) f1,m(y) = v′. Note that, by the assumptions taken, (∀n < m) (∀x ∈ In)
qI�(x) < v, and the same holds for m′ and v′. Additionally, we have m ≤ m′.

It holds μv
(m−i+1) = min{x : fi,m(x) ≥ v} for i ∈ [m], and μv′

(m′−j+1) =

min{x : fj,m′(x) ≥ v′} for j ∈ [m′]. But (∀i ∈ [m]) μv
(m−i+1) ≤ μv′

(m′−i+1),
because fi,m(μv

(m−i+1)) = fi,m′(μv
(m−i+1)) and each function is nondecreasing.

Therefore, μv � μv′
, QED. �

5 Conclusions

In this paper we have shown that all effort-dominating aggregation operators,
among which we may find Gagolewski-Grzegorzewski’s rp-indices [3,4], Hirsch’s
h-index = r∞(�x�) [9], and Woeginger’s w-index = r1(�x�) [12], are symmetric-
minitive.
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Effort-dominating aggregation operators, proposed in [7], have a very intuitive
interpretation: their value may be determined by comparing an input vector with
elements of a set of “minimal quality requirements” needed to reach a particular
“quality level”.

Such aggregation operators may be used e.g. in the Producer Assessment
Problem [see 5,7], whose most important instance is the issue of fair ranking of
scientists by means of the number of citations received by their papers.
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Abstract. In this paper the notions of α-migrative t-conorms over a
fixed t-conorm S0, and α-migrative uninorms over another fixed uni-
norm U0 with the same neutral element are introduced. All continuous
t-conorms that are α-migrative over the maximum, the probabilistic sum
and the �Lukasiewicz t-conorm are characterized. Uninorms belonging to
one of the classes Umin, Umax, idempotent or representable that are α-
migrative over a uninorm U0 in Umin or Umax are also characterized.

Keywords: Aggregation function, migrativity, t-norm, t-conorm,
uninorm.

1 Introduction

Aggregation functions have experienced a great development in recent years due
to its many applications in various fields, both scientific and social (see for exam-
ple [4,8,16]). In particular, various kinds of aggregation functions are particularly
important for its role in the theory of fuzzy sets and their applications (see [18]).
This is the case of t-norms, t-conorms and, more generally, conjunctions and
disjunctions that intend to generalize the logical connectives “AND”, “OR” of
classical logic. Often the study of these connectives is directed toward the char-
acterization of those that verify certain properties that may be useful in each
context. The study of these properties for certain aggregation functions usually
involves the resolution of functional equations. Examples for both, t-norms and
t-conorms, as for uninorms, can be found in [7,12,13,14,18,19].

One of this properties is α-migrativity, introduced in [11]. For any α ∈ [0, 1]
and a mapping F : [0, 1]2 → [0, 1], this property is described as

F (αx, y) = F (x, αy) for all x, y ∈ [0, 1]. (1)

The migrativity property (and its generalizations) has been studied for t-norms
in [12,13], for semicopulas, quasi-copulas and copulas in [10,20,3] and for aggre-
gation functions in general in [6,15,5]. The interest of this property comes from
its applications, for example in decision making processes ([6]), when a repeated,
partial information needs to be fusioned in a global result, or in image processing
([20]).

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 286–295, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Note that in the equation (1) the product αx can be replaced by any t-norm
T0 obtaining the property for t-norms called (α, T0)-migrativity, that can be
written as

T (T0(α, x), y) = T (x, T0(α, y)) for all x, y ∈ [0, 1] (2)

being T0 a t-norm and α ∈ [0, 1]. This generalization of the migrativity for
t-norms has been recently studied in [13].

In this paper we conduct a similar study for other generalizations, based on
the same idea of the equation (2), but for t-conorms and for uninorms. Thus,
we define the analougus concepts (α, S0)-migrative t-conorm, where S0 is a t-
conorm, and (α,U0)-migrative uninorm, where U0 is also a uninorm. Our study
is similar to the one presented in [13] for these new properties, characterizing
the (α, S0)-migrative t-conorms and, in the case of uninorms, we begin the study
with some of the possible cases to consider depending on the previously fixed
uninorm.

This article is organized into different sections. After this introduction, we
include a preliminary section to establish the necessary notation and recall
some basic definitions. Next, two main sections are devoted to the continuous t-
conorms and uninorms cases where the underlying operations being continuous.
We end with a section of conclusions and future work.

2 Preliminaries

We will assume the basic theory of t-norms and t-conorms, see [1,18]. We will
just give in this section initial definitions, all the notations and results required
can be found in [18].

Definition 1. A binary application T : [0, 1]2 → [0, 1] is called a t-norm if it is
associative, commutative, non-decreasing in each place and such that T (1, x) = x
for all x ∈ [0, 1].

Definition 2. A binary application S : [0, 1]2 → [0, 1] is called a t-conorm if it is
associative, commutative, non-decreasing in each place and such that S(0, x) = x
for all x ∈ [0, 1].

Definition 3. A function N : [0, 1] → [0, 1] is called a negation if it is non-
increasing with N(0) = 1 and N(1) = 0. If a negation N is continuous and
strictly decreasing, then it is called strict negation. If a negation N is involutive,
i.e. N(N(x)) = x for all x ∈ [0, 1], then N is called a strong negation.

Definition 4. Given a binary application F : [0, 1]2 → [0, 1] and a strict nega-
tion N , its N -dual is defined as the application F ∗

N : [0, 1]2 → [0, 1] given by

F ∗
N (x, y) = N−1(F (N(x), N(y))) for all x, y ∈ [0, 1].

In the case of N(x) = 1− x, we will denote the N -dual as F ∗.
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It is well known that, when N is a strong negation, the dualization operation
is involutive, that is, for any binary application F it is verified (F ∗

N )∗N = F .
Moreover, the next proposition is satisfied.

Proposition 1. Let N be a strong negation. A binary application F : [0, 1]2 →
[0, 1] is a t-norm if and only if its dual application F ∗

N is a t-conorm.

Definition 5. Given a t-norm T0 and α ∈ [0, 1], a t-norm T is said to be
(α, T0)-migrative or α-migrative over T0 if

T (T0(α, x), y) = T (x, T0(α, y)) for all x, y ∈ [0, 1]. (3)

A detailed study of continuous t-norms that are α-migrative over the minimum,
the product and the �Lukasiewicz t-norms can be found in [13]. An extension of
this work has been made in [21] where continous t-norms α-migrative over any
continous t-norm T0 are characterized.

2.1 Uninorms

Definition 6. A binary application U : [0, 1]2 → [0, 1] is called a uninorm if
it is associatve, commutative, non-decreasing in each place and has a neutral
element e ∈ [0, 1].

Evidently, a uninorm with neutral element e = 1 is a t-norm and a uninorm with
neutral element e = 0 is a t-conorm. For any other value e ∈]0, 1[ the operation
works as a t-norm in the [0, e]2 square, as a t-conorm in [e, 1]2 and its values are
between minimum and maximum in the set of points A(e) given by

A(e) = [0, e[× ]e, 1] ∪ ]e, 1]× [0, e[.

We will usually denote a uninorm with neutral element e and underlying t-
norm and t-conorm, T and S, by U ≡ 〈T, e, S〉. For any uninorm it is satisfied
that U(0, 1) ∈ {0, 1} and a uninorm U is called conjunctive if U(1, 0) = 0 and
disjunctive when U(1, 0) = 1. On the other hand, the most studied classes of
uninorms are:

– Uninorms in Umin (respectively Umax), those given by minimum (respectively
maximum) in A(e).

– Idempotent uninorms, those that satisfy U(x, x) = x for all x ∈ [0, 1].
– Representable uninorms, those that are continuous in [0, 1]2 \ {(1, 0), (0, 1)}.

In what follows we give a characterization of the uninorms in Umin and Umax

that will be mainly used in the paper. Characterization of idempotent and rep-
resentable uninorms can be found in [2] and [14], respectively.

Theorem 1. ([14]) Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element
e ∈ ]0, 1[. Then, the sections x 2→ U(x, 1) and x 2→ U(x, 0) are continuous except
perhaps in x = e if and only if U is given by one of the following formulas.
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(a) If U(0, 1) = 0, then

U(x, y) =

⎧⎪⎨⎪⎩
eTU

(
x
e ,

y
e

)
if (x, y) ∈ [0, e]2

e + (1− e)SU

(
x−e
1−e ,

y−e
1−e

)
if (x, y) ∈ [e, 1]2

min(x, y) otherwise,

(4)

where TU is a t-norm, and SU is a t-conorm.
(b) If U(0, 1) = 1, then the same structure holds, changing minimum by maxi-

mum in A(e).

Uninorms as in case a) will be denoted by Umin and those as in case b) by Umax.

3 (α,S0)-Migrative t-Conorms

In this section we will study the case of continuous t-conorms. Note that if we
require equation (1) to be a t-conorm and we take the value x = 0, we obtain
y = αy for all y ∈ [0, 1]. That is, no α-migrative t-conorms exist for α �= 1, while
for α = 1 all t-conorms satisfy (1).

The same applies if we look for t-conorms that satisfy (3) for given t-norm
T0. It is clear from this that we need to adapt the migrativity equation to the
case of t-conorms requiring migrativity over a fixed t-conorm S0.

Definition 7. Let α be in [0, 1] and S0 any t-conorm. We will say that a t-
conorm S is (α, S0)-migrative or that S is α-migrative over S0, if for all x, y ∈
[0, 1] it is verified

S(S0(α, x), y) = S(x, S0(α, y)). (5)

Note that from the previous definition any t-conorm S is always (0, S0)-migrative
and also (1, S0)-migrative for any t-conorm S0. Thus, in what follows we will
focus on the case α ∈ ]0, 1[.

Another immediate consideration is that, due to associativity and commuta-
tivity, S0 is always (α, S0)-migrative for all α. In addition, by duality we obtain
the next result.

Proposition 2. Consider α ∈ ]0, 1[ and S0 a t-conorm. A t-conorm S is (α, S0)-
migrative if and only if its dual t-norm S∗ is (1 − α, T0)-migrative, where T0 is
the dual t-norm of S0.

Proof. We have that the formula of (α, S0)-migrativity for S

S(S0(α, x), y) = S(x, S0(α, y))

is equivalent to

1− S(1− (1− S0(α, x)), y) = 1− S(1− (1 − x), 1− (1− S0(α, y))).

And thus, taking into account that S∗(x, y) = 1− S(1− x, 1− y), we obtain:

S∗(1 − S0(α, x), 1 − y) = S∗(1 − x, 1− S0(α, y)),
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and now, replacing S∗0 (x, y) = 1− S0(1− x, 1 − y)

S∗(S∗0 (1− α, 1− x), 1 − y) = S∗(1 − x, S∗0 (1− α, 1 − y)),

and changing T0 = S∗0 , z = 1− x, t = 1− y we obtain

S∗(T0(1− α, z), t) = S∗(z, T0(1− α, t)),

and the result is satisfied. ��

Thus, next results can be derived for t-conorms from known results for t-norms,
see [12] and [13]. First, directly from Theorem 3 in [13] we obtain the next result.

Proposition 3. Consider α ∈ ]0, 1[ and S0 a t-conorm. The next statements are
equivalent for any t-conorm S:

i) S is (α, S0)-migrative.
ii) S0 is (α, S)-migrative.
iii) α-sections of S and S0 coincide. That is, S(α, x) = S0(α, x) for all x ∈ [0, 1].

Next three theorems characterize (α, S0)-migrative continuous t-conorms de-
pending on the t-conorm S0: maximum, probabilistic sum and �Lukasiewicz
t-conorm.

Theorem 2. Consider α ∈ ]0, 1[ and S0 = max the maximum t-conorm. Any
t-conorm S is (α,max)-migrative if and only if S is an ordinal sum of two t-
conorms S1, S2 of the form

S = 〈(0, α, S1), (α, 1, S2)〉. (6)

Proof. Just note that S is (α,max)-migrative if and only if S∗ is (1 − α,min)-
migrative and then we can apply Theorem 4 in [13]. ��

Note that the previous characterization is true for any t-conorm not necessarily
continuous. In next cases we do restrict to the continuous case. Both results can
be easily derived from duality like in Theorem 2. We only prove the first one
since the other is quite similar.

Theorem 3. Consider α ∈ ]0, 1[ and S0 = SP the probabilistic sum t-conorm.
Given a continuous t-conorm S, the next statements are equivalent.

i) S is (α, SP)-migrative.
ii) S is a strict t-conorm with additive generator s verifying

s(α+ x− αx) = s(α) + s(x) for all x ∈ [0, 1]. (7)

iii) S is a strict t-conorm with additive generator s and there exists a continuous,
strictly increasing function s0 : [0, α]→ [0, s0(α)] with s0(0) = 0 and s0(α) <
+∞ such that s is given by

s(x) = ks0(α) + s0

(
1− 1− x

(1− α)k

)
if 1− (1− α)k ≤ x < 1− (1− α)k+1, for all k ≥ 0.
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Proof. i) ⇔ ii) S is (α, SP)-migrative, if and only if S∗ is (1−α, TP)-migrative,
and by the results for t-norms ([12], Theorem 2), if and only if S∗ is strict and
the additive generator t of S∗ satisfies

t((1− α)x) = t(1− α) + t(x) for allx ∈ [0, 1]. (8)

As we know that the relation between the additive generator t of S∗ and the
additive generator s of S is s(1− x) = t(x) then, changing x = 1− z, and using
(8), we obtain

s(α+ x− αx) = s(1− z + αz) = s(1− (1− α)z) = t((1− α)z) =

= t(1− α) + t(z) = s(α) + s(1− z) = s(α) + s(x).

ii)⇔ iii) The additive generator s of S satisfies (7), if and only if the additive
generator t of S∗ satisfies (8).

Translating the result for t-norms ([12], Theorem 3), we have that t satisfies
(8) if and only if there exists a continuous, strictly decreasing function t0 :
[1− α, 1]→ [0, t0(1− α)[ with t0(1− α) < +∞ and t0(1) = 0 such that

t(x) = kt0(1− α) + t0

(
x

(1 − α)k

)
if x ∈ ](1− α)k+1, (1− α)k],

where k is any non-negative integer.
Again, taking into account that s(x) = t(1 − x), there exists a continuous,

strictly increasing function s0 such that s0(x) = t0(1−x), s0 : [0, α]→ [0, s0(α)[
with s0(α) < +∞ and s0(0) = 0 such that

s(x) = t(1− x) = ks0(α) + s0

(
1− 1− x

(1− α)k

)
if x ∈ [1− (1− α)k, 1− (1− α)k+1[, and then the theorem is proved. ��

Definition 8. Given a ∈ [0, 1], we define recursively a
(n)
L by a

(0)
L = 1, a

(1)
L = a

and

a
(k)
L = TL(a

(k)
L , a) for all k ≥ 2.

With this notation, we can state the result for (α, SL)-migrative t-conorms.

Theorem 4. Consider α ∈ ]0, 1[ and S0 = SL the �Lukasiewicz t-conorm. Given
a continuous t-conorm S, the next statements are equivalent.

i) S is (α, SL)-migrative.

ii) S is a nilpotent t-conorm with normalized additive generator s (such that
s(1) = 1) verifying

s(α+ x) = s(α) + s(x) for all x ∈ [0, 1− α].
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iii) S is a nilpotent t-conorm with normalized additive generator s and there
exists an automorphism ϕ0 of the interval [0, 1] and a real number a with
n−1
n ≤ a ≤ n

n+1 where n = max{k | 1− α ≥ k−1
k }, such that

ϕ0

(
α− (1− α)

(n)
L

α

)
=

1− a− a
(n)
L

1− a

and s is given by

s(x) = 1− a
(k)
L − (1− a)ϕ0

(
1− x− (1− α)

(k)
L

α

)

if 1− (1− α)
(k−1)
L ≤ x < 1− (1− α)

(k)
L , when 1 ≤ k ≤ n and, however

s(x) = 1− (a
(n)
L + a− 1)− (1− a)ϕ0

(
1− x− (1 − α)

(n)
L + α

α

)

if 1− (1− α)
(n)
L ≤ x ≤ 1.

4 (α,U0)-Migrative Uninorms

In this section we start the study for the case of uninorms. In a similar way to
the cases for t-norms and t-conorms, we can give the next definition.

Definition 9. Consider α ∈ [0, 1] and U0 a uninorm with neutral element e ∈
]0, 1[. We will say that a uninorm U with neutral element e is (α,U0)-migrative
or that U is α-migrative over U0, if, for all x, y ∈ [0, 1]

U(U0(α, x), y) = U(x, U0(α, y)). (9)

From now on we will suppose that e ∈ ]0, 1[ is fixed and that all uninorms U0, U
used have the same neutral element e. Note that therefore a first obvious result
is that any uninorm U is (e, U0)-migrative for any uninorm U0.

Proposition 4. Consider α ∈ [0, 1] and U0 any uninorm with neutral element
e. The next statements are equivalent for a uninorm U with neutral element e:

i) U is (α,U0)-migrative.
ii) U0 is (α,U)-migrative.
iii) U(α, x) = U0(α, x) for all x ∈ [0, 1].

Proof. It is similar to Theorem 3 in [13].

Now we will distinguish the cases considering U0 in Umin and Umax. In all cases
we will also suppose that α �= e and that underlying t-norms and t-conorms are
continuous.
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4.1 When U0 is in Umin

In this section we will deal with uninorms U0 in Umin. Following Proposition 4, to
find which uninorms are (α,U0)-migrative, we have to find out which uninorms
have their α-section equal to the α-section of U0. We will do it by considering
the most common classes of uninorms (see the Preliminaries).

Proposition 5. Consider α ∈ [0, 1], U0 ≡ 〈T0, e, S0〉min and U ≡ 〈T, e, S〉min.
Then,

i) If α < e, U is (α,U0)-migrative if and only if T is (αe , T0)-migrative.
ii) If α > e, U is (α,U0)-migrative if and only if S is (1−α

1−e , S0)-migrative.

Proof. i) Consider α < e.
If U is (α,U0)-migrative, then, by Proposition 4, we have that U(α, x) =

U0(α, x) for all x ∈ [0, 1].
If x ≤ e, then U0(x, α) = eT0(

x
e ,

α
e ) and U(x, α) = eT (xe ,

α
e ) and therefore

T (z, α
e ) = T0(z,

α
e ), for all z ∈ [0, 1], that means that T is (αe , T0)-migrative.

On the reverse, if T is (αe , T0)-migrative, we have T (z, α
e ) = T0(z,

α
e ) for all

z ∈ [0, 1], and then U(x, α) = U0(x, α) for all x ∈ [0, e]. Also, as U,U0 ∈ Umin,
U(x, α) = U0(x, α) = x for all x ∈ [e, 1]. Therefore, U is (α,U)-migrative.

ii) If α > e, the proof is similar to the previous case. ��

Proposition 6. Consider α ∈ [0, 1] and U0 ≡ 〈T0, e, S0〉min. If U is in Umax or
it is a representable uninorm, then U is not (α,U0)-migrative.

Proof. Consider α < e (the case α > e is similar), then as U0 ≡ 〈T0, e, S0〉min,
U0(α, x) = min(α, x) for all x > e. We distinguish two cases:

– If U ∈ Umax, then for all x > e, U(α, x) = max(α, x) = x, and so U(α, x) �=
U0(α, x).

– If U is representable, we have that all sections are strictly increasing and
again that for all x > e, U(α, x) �= U0(α, x).

Therefore, in both cases, α-sections of U and U0 does not coincide, and so U is
not (α,U0)-migrative. ��

Proposition 7. Consider α ∈ [0, 1] and U0 ≡ 〈T0, e, S0〉min. If U is an idempo-
tent uninorm with associated function g, then

i) If α < e, U is (α,U0)-migrative if and only if g(α) = 1, U(α, 1) = α and T0

is an ordinal sum of the form

T0 =
〈(

0,
α

e
, T1

)
,
(α
e
, 1, T2

)〉
. (10)

ii) If α > e, U is (α,U0)-migrative if and only if g(α) = e and S0 is an ordinal
sum of the form

S0 =

〈(
0,

α− e

1− e
, S1

)
,

(
α− e

1− e
, 1, S2

)〉
.



294 M. Mas et al.

Proof. i) If α < e and U is (α,U0)-migrative, then by Proposition 4, U(α, x) =
min(α, x) = α and then for all x > e, U(α, x) = min(x, y) = U0(α, x), and
as U is idempotent, this means that g(α) = 1 and U(α, 1) = min(α, 1) = α.
For x < e, migrativity of U over U0 means that T0 is migrative over min,
and taking into account the same result for t-norms, we have that there exist
two t-norms T1 and T2 such that T0 is given by (10).

ii) Is similar to the previous case. ��

4.2 When U0 is in Umax

All results in this section can be obtained similarly to the previous ones.

Proposition 8. Consider α ∈ [0, 1], U0 ≡ 〈T0, e, S0〉max and U ≡ 〈T, e, S〉max.
Then,

i) If α < e, U is (α,U0)-migrative if and only if T is (αe , T0)-migrative.
ii) If α > e, U is (α,U0)-migrative if and only if S is (1−α

1−e , S0)-migrative.

Proposition 9. Consider α ∈ [0, 1] and U0 ≡ 〈T0, e, S0〉max. If U is in Urep ∪
Umin, then U is not (α,U0)-migrative.

Proposition 10. Consider α ∈ [0, 1] and U0 ≡ 〈T0, e, S0〉max. If U is an idem-
potent uninorm with associated function g, then

i) If α < e, U is (α,U0)-migrative if and only if g(α) = e and T0 is an ordinal
sum of the form T0 =

〈(
0, α

e , T1

)
,
(
α
e , 1, T2

)〉
.

ii) If α > e, U is (α,U0)-migrative if and only if g(α) = 0, U(α, 0) = α and S0

is an ordinal sum of the form S0 =
〈(

0, α−e
1−e , S1

)
,
(

α−e
1−e , 1, S2

)〉
.

5 Conclusions and Future Work

In this article we have introduced and studied an extension of the migrativity
property for t-conorms and uninorms. In the first case we have characterized
all continuous t-conorms α-migrative over the maximum, probabilistic sum and
�Lukasiewicz t-conorms. We have made a similar characterization for uninorms
in classes Umin and Umax. This study may be extended to α-migrativity for:

– t-conorms over any continuous t-conorm (the case of t-norms has been solved
in a paper in press, [21]).

– idempotent and representable uninorms (when U and U0 are both represent-
able, the migrativity property will be equivalent to solve a restricted Cauchy
equation similarly to the case of Archimedean t-norms and t-conorms, see
[5,12,21]), continuous uninorms in ]0, 1[2 (see [17]) or the locally internal ones
(U(x, y) ∈ {x, y}) in the region A(e) (see [9]).
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Abstract. A fuzzy relation R between two finite universes is considered.
A uniform theoretical characterization of lower and upper assessments of
subsets and partitions of R by pairs of fuzzy sets, pairs of real numbers
and pairs of fuzzy relations is proposed. The notions of LU-fuzzy sets,
LU-coefficients and LU-fuzzy relations are introduced and their proper-
ties are discussed. Some assessments based on aggregation functions are
presented.

Keywords: fuzzy relations, aggregation functions, rough sets, rough
fuzzy sets, soft evaluations, approximation.

1 Introduction

Soft assessments based on various generalizations of the notion of a set, e.g.,
fuzzy sets [3], rough sets [9], rough fuzzy sets and fuzzy rough sets [4], shadowed
sets [10] or near sets [11] have been successfully applied in various areas of
engineering, natural sciences and social sciences. Contrary to a crisp assessment
(usually a real number), a soft assessment allows some degree of ambiguity.

In our study we assume a fuzzy relation R describing the degrees of relation-
ship of elements from a finite universe V to another finite universe W . Through-
out this paper we will use the notations 2̃V and F(V ) for the family of all
non-empty subsets from V and the family of all fuzzy sets defined on V , re-
spectively. Given x ∈ V , the set of all elements from W which are related to x
is called the R-neighborhood of x. More accurately, the R-neighborhood of x is
characterized by a fuzzy set rx ∈ F(W ) defined for all y ∈ W by rx(y) = R(x, y).
When A ∈ 2̃V and the cardinality of A is at least 2, the R-neighborhood of A is
created by the R-neighborhoods of elements included in A. Hence

rA = {rx : x ∈ A} = R/A, (1)

which is the granule (subset) of R induced by A. In [1] we investigated real-
valued evaluations of granules of a fuzzy relation with the aim to assess the

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 296–305, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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relationship between sets of elements from two related universes. In this paper
we explore which pair of fuzzy sets (rA, rA) ∈ F(W )×F(W ) can be considered
as a soft assessment of R/A. Recall that the inverse relation of R is the relation
R−1 ∈ F(W × V ) such that for all (y, x) ∈ W × V : R−1(y, x) = R(x, y). Then
the R−1-neighborhood of a set Z ∈ 2̃W is given by

r−1
Z = {r−1

y : y ∈ Z} = R−1/Z. (2)

Evaluations of R-neighborhoods (or R−1-neighborhoods) of subsets from a finite
universe by pairs of fuzzy sets from another related universe will be studied in
Section 2.

Soft assessments (rA, rA) and (r−1
Z , r−1

Z ) can be combined and used in an
interval-valued assessment of the R-neighborhood of the set A× Z ∈ 2̃V×W (or
R−1-neighborhood of the set Z × A ∈ 2̃W×V ). Evaluations of R-neighborhoods
of subsets from the Cartesian product of two related universes will be explored
in Section 3.

It is well known that the relationship between a fuzzy set and its partition into
crisp clusters can be described by a pair of coarser fuzzy sets called rough fuzzy
sets [4]. A relation R ∈ F(V ×W ) may be partitioned according to a partition
P of elements from V, W or V × W . Soft evaluations of R-neighborhoods of
clusters from P can be used in a soft evaluation of the granulation of R induced
by P by a pair of coarser fuzzy relations. An extension of rough fuzzy sets to
rough fuzzy relations and then to the generalized rough fuzzy relations will be
discussed in Section 4.

Note that assessments associated with a fuzzy relation between two universes
have been studied, e.g., in [5,7,8] with the aim to provide various generaliza-
tions of rough sets. Our focus is on upper and lower assessments of subsets and
partitions of a fuzzy relation from a more general point of view. We introduce
the notion of LU -assessments and we derive LU -assessments based on a pair of
fuzzy sets, a pair of real numbers or a pair of fuzzy relations. An assessment by
rough sets is a particular case of an LU -assessment based on a pair of sets.

2 Assessments by Pairs of Fuzzy Sets

Let R ∈ F(V ×W ). Lower and upper assessments of R-neighborhoods of subsets
from 2̃V by pairs of fuzzy sets (rA, rA) ∈ F(W ) × F(W ) can be used, e.g., in
the following applications:
Case 1: Approximation of individual R-neighborhoods of elements from A ∈ 2̃V .
In this case we expect that for all (x, y) ∈ A×W

rA(y) ≤ rx(y) ≤ rA(y). (3)

Case 2: Assessment of A in a family of sets Ω = {Ωy ∈ 2V , y ∈W}. If
⋃

y∈W Ωy

covers V and we expect that⋃
{Ωy : rA(y) = 1} ⊂ A ⊂

⋃
{Ωy : rA(y) = 1}, (4)
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we obtain a rough set approximation of A in the knowledge base Ω.
Case 3: Sharpening (pessimistic or optimistic partial defuzzification) of a soft
evaluation of R/A by an evaluation function h :

⋃
n∈N [0, 1]n → [0, 1], where N

is the set of all positive integers. Then for y ∈ W we obtain the membership
grade h(R/A)(y) = h(r−1

y (x) : x ∈ A) and we expect that

rA(y) ≤ h(R/A)(y) ≤ rA(y). (5)

In all applications, fuzzy sets r and r should satisfy some common properties.

Definition 1. A mapping ϕ : 2̃V × F(V × W ) → F(W )2 is called an LU -
assessment of granules of fuzzy relations on V ×W induced by non-empty subsets
from V if for an arbitrary A ∈ 2̃V and R ∈ F(V ×W )

ϕ(A,R) = (rA, rA) (6)

such that for all y ∈W the following hold:

P1) rA(y) ≤ rA(y),
P2) if R(x, y) = 0 for all x ∈ A then rA(y) = rA(y) = 0,
P3) if R(x, y) = 1 for all x ∈ A then rA(y) = 1,
P4) if for S ∈ F(V ×W ) we have that S(x, y) ≤ R(x, y) for all x ∈ A then

sA(y) ≤ rA(y) and sA(y) ≤ rA(y).

The pair of fuzzy sets (rA, rA) is called an LU -fuzzy set associated with the
granule R/A.

Property P2 guarantees that each assessment of the empty set of R is the empty
set. On the other hand, property P3 requires that only the upper assessment
of a non-empty crisp subset of R is a nonempty crisp subset of W . According
to the property P4, any increase in the strength of the relationship between
V and W results in an increase of membership coefficients in both assessments
r and r.

Remark 1. Note that fuzzy set ϕ̃R/A ∈ F(W ) defined for all y ∈ W by
ϕ̃R/A(y) = rA(y)− rA(y) describes ambiguity of assessment of R/A by (rA, rA).

We recognize two types of duality between the lower and the upper fuzzy sets
in LU - assessments.

Definition 2. An LU-assessment ϕ : 2̃V × F(V ×W ) → F(W )2 is dual with
respect to complementary relations on V ×W if for all A ∈ 2̃V , R ∈ F(V ×W )
and y ∈W

rA(y) = 1− rcA(y), (7)

where Rc(x, y) = 1− R(x, y) for all (x, y) ∈ V ×W , and it is dual with respect
to complementary subsets on V if for all A ∈ 2̃V , R ∈ F(V ×W ) and y ∈ W

rA(y) = 1− rAc(y), (8)

where Ac = V \A.
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Analogously, we recognize two types of monotonicity of LU -assessments. Mono-
tonicity with respect to the inclusion of fuzzy relations is characterized by prop-
erty P4 in Definition 1. Monotonicity with respect to the inclusion of subsets
from V may vary from application to application. We will discuss the three cases
mentioned at the beginning of this section.

Case 1: When the cardinality of A ∈ 2̃V increases, there is more ambiguity in an
assessment of an individual R-neighborhood rx, x ∈ A by (rA, rA). Therefore,
for A,B ∈ 2̃V , A ⊂ B we expect that rB ⊂ rA and rA ⊂ rB, and therefore
ϕ̃R/A ⊂ ϕ̃R/B.

Case 2: When the cardinality of A ∈ 2̃V increases, the cardinality of its ap-
proximate representation in the knowledge base Ω also increases. Hence, for
A,B ∈ 2̃V , A ⊂ B we expect that rA ⊂ rB and rA ⊂ rB .

Case 3: Monotonicity of (r, r) depends on the properties of the evaluation func-
tion h. Obviously, there are also LU -assessments which are not monotonic with
respect to the inclusion of subsets from V .

Comparing the properties from Definition 1 with the properties of aggregation
functions [2], we easily conclude that LU -assessments can be based on aggrega-
tion functions, especially triangular norms (t-norms) [6] and triangular conorms
(t-conorms).

Proposition 1. Let T be a t-norm and S a t-conorm. Then a mapping ϕTS :
2̃V × F(V ×W )→ F(W )2 defined for all (A,R) ∈ 2̃V ×F(V ×W ) by

ϕTS(A,R) = (rTA, rSA) (9)

such that for all y ∈W

rTA(y) = T (r−1
y (x), x ∈ A), (10)

rSA(y) = S(r−1
y (x), x ∈ A), (11)

is an LU-assessment of granules of fuzzy relations on V ×W induced by non-
empty subsets from V .

Lemma 1. LU -assessment ϕTS satisfies the following properties:

i) rTA ⊂ rx ⊂ rSA for all x ∈ A,
ii) if A = {x}, x ∈ V then rTA = rx = rSA,
iii) if for y ∈W : R(x, y) = 1 for all x ∈ A then rTA(y) = rSA(y) = 1,
iv) if A,B ∈ 2̃V , A ⊂ B then rTB ⊂ rTA and rSA ⊂ rSB ,

v) if S is the dual t-conorm to T then for all y ∈W : rTA(y) = 1− rc
S
A(y).

The assessment ϕTS can be used in applications described by Case 1.

Fuzzy sets are often approximated by crisp sets. For α ∈ (0, 1], the α-cut of a
fuzzy set f ∈ F(W ) is the crisp subset of W

fα = {y ∈ W : f(y) ≥ α}. (12)
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Proposition 2. Assume α ∈ (0, 1]. Then a mapping ϕα : 2̃V × F(V ×W ) →
F(W )2 defined for all (A,R) ∈ 2̃V ×F(V ×W ) by

ϕα(A,R) = (rαA, rαA) (13)

such that for all y ∈W

rαA(y) =

{
1 if (r−1

y )α ⊂ A,
0 otherwise,

(14)

and

rαA(y) =

{
1 if (r−1

y )α ∩A �= ∅,
0 otherwise,

(15)

is an LU-assessment of granules of fuzzy relations on V ×W induced by non-
empty subsets from V .

Lemma 2. LU -assessment ϕα satisfies the following properties:

i) if
⋃

y∈W (r−1
y )α ⊃ V then⋃

{(r−1
y )α : rαA(y) = 1} ⊂ A ⊂

⋃
{(r−1

y )α : rαA(y) = 1},
ii) if A,B ∈ 2̃V , A ⊂ B then rαA ⊂ rαB and rαA ⊂ rαB ,
iii) if (r−1

y )α �= ∅ then rαA(y) = 1− rαAc(y),
iv) if α1, α2 ∈ (0, 1], α1 ≤ α2 then rα2

A ⊂ rα1

A and rα2

A ⊂ rα1

A .

The assessment ϕα can be used in applications described by Case 2. The pair of
sets

(⋃
{(r−1

y )α : rαA(y) = 1},
⋃
{(r−1

y )α : rαA(y) = 1}
)
is a generalized rough set

[12]. It represents a lower and an upper approximation of A in the knowledge base
created by the α-cuts ofR−1-neighborhoods of elements fromW . Contrary to the
ϕTS assessment, when r−1

y (x) = 1 for all x ∈ A, we may still obtain rα(y) = 0.
This will happen when r−1

y (x) = 1 for some x ∈ Ac. The assessment ϕα classifies
elements y ∈ W as strongly related to A (which means that rα(y) = 1), related
to A (i.e., rαA(y) = 1) and not related to A (elements with rαA(y) = 0) at level α.

Proposition 3. Let h be an aggregation function and α, β ∈ (0, 1], β < α.
Then a mapping ϕh,β,α : 2̃V × F(V ×W ) → F(W )2 defined for all (A,R) ∈
2̃V × F(V ×W ) by

ϕh,β,α(A,R) = (rh,βA , rh,αA ) (16)

such that for all y ∈W

rh,βA (y) =

{
0 if h(r−1

y (x), x ∈ A) ≤ β,
h(r−1

y (x), x ∈ A) otherwise,
(17)

and

rh,αA (y) =

{
1 if h(r−1

y (x), x ∈ A) ≥ α,
h(r−1

y (x), x ∈ A) otherwise,
(18)

is an LU-assessment of granules of fuzzy relations on V ×W induced by non-
empty subsets from V .
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Lemma 3. LU-assessment ϕh,β,α satisfies the following properties:

i) for A,B ∈ 2̃V , A ⊂ B, if h(r−1
y (x), x ∈ A) ≤ h(r−1

y (x), x ∈ B) then

rh,βA ⊂ rh,βB and rh,αA ⊂ rh,αB ;

if h(r−1
y (x), x ∈ A) ≥ h(r−1

y (x), x ∈ B) then rh,βA ⊃ rh,βB and rh,αA ⊃ rh,αB ,

ii) if r−1
y (x) = 1 for all x ∈ A then rh,βA (y) = rh,αA (y) = 1,

iii) if α1, β1, α2, β2 ∈ (0, 1];β2 ≤ β1 < α1 ≤ α2 then rh,β1

A ⊂ rh,β2

A

and rh,α2

A ⊂ rh,α1

B ,

iv) if α ∈ (0.5, 1] and β = 1− α, then for all y ∈W : rh,βA (y) = 1− rc
h,α
A (y).

Fuzzy sets rh,βA and rh,αA represent a pessimistic and an optimistic partial de-
fuzzification of a fuzzy set h(R/A) given for all y ∈ W by

h(R/A)(y) = h(r−1
y (x), x ∈ A).

The membership grades of elements from W with low contributions to h(R/A)

are sharpened in the fuzzy set rh,βA to 0. On the other hand, the membership

grades with high contributions are sharpened in the fuzzy set rh,αA to 1. Vague
concepts “low” and “high” are specified by the thresholds β and α, respectively.

All definitions, propositions and lemmas in this section can be easily modified
and used for characterization of LU -assessments of granules of the inverse fuzzy
relation R−1 ∈ F(W × V ) induced by subsets from 2̃W by pairs of fuzzy sets
(r−1, r−1) defined on V .

3 Interval-Valued Assessments

In this section we focus on interval-valued assessments of granules of a fuzzy
relation R ∈ F(V × W ) created by subsets of elements from 2̃V×W . For an
arbitrary pair of sets (A,Z) ∈ 2̃V × 2̃W , the R-neighborhood of A×Z is a subset
of R given by

R/(A× Z) = (R/A) ∩ (R−1/Z). (19)

We are interested in an evaluation of R/(A × Z) by a pair of coefficients from
the unit interval. Analogously as an LU -assessment by a pair of fuzzy sets, a
proper lower and upper evaluation by a pair of real numbers should satisfy some
general properties similar to the properties listed in Definition 1.

Definition 3. A mapping ρ : 2̃V×W × F(V ×W ) → [0, 1]2 is called a proper
interval-valued assessment of granules of fuzzy relations on V ×W induced by
non-empty subsets from V ×W if for an arbitrary pair of sets (A,Z) ∈ 2̃V × 2̃W

and R ∈ F(V ×W )

ρ(A× Z,R) = (R(A,Z), R(A,Z)) (20)

such that



302 S. Bodjanova and M. Kalina

P1) R(A,Z) ≤ R(A,Z),
P2) if R(x, y) = 0 for all (x, y) ∈ A× Z then R(A,Z) = R(A,Z) = 0,
P3) if R(x, y) = 1 for all (x, y) ∈ A× Z then R(A,Z) = 1,
P4) if for S ∈ F(V ×W ) we have that S(x, y) ≤ R(x, y) for all (x, y) ∈ A× Z

then S(A,Z) ≤ R(A,Z) and S(A,Z) ≤ R(A,Z).

The pair of coefficients (R(A,Z), R(A,Z)) is called an LU -coefficient associated
with the granule R/(A× Z).

Coefficients R(A,Z) and R(A,Z) can be interpreted as a lower and an upper
degree of the relationship of a set A ∈ 2̃V to a set Z ∈ 2̃W , respectively.

Proposition 4. Consider R ∈ F(V × W ), (A,Z) ∈ 2̃V × 2̃W and aggrega-
tion functions h1, h2, g1, g2. Let the pair of fuzzy sets defined for all y ∈ W by
(rA(y), rA(y)) =

(
h1(r

−1
y (x), x ∈ A), h2(r

−1
y (x), x ∈ A)

)
be an LU-assessment of

R/A and the pair of fuzzy sets defined for all x ∈ V by (r−1
Z (x), r−1

Z (x)) =
(g1(rx(y), y ∈ Z), g2(rx(y), y ∈ Z)) be an LU-assessment of R−1/Z. Then the
pair of coefficients (R(A,Z), R(A,Z)) such that

R(A,Z) = g1(rA(y), y ∈ Z), (21)

R(A,Z) = g2(rA(y), y ∈ Z) (22)

is a proper interval-valued assessment of R/(A × Z). The pair of coefficients

(R−1(Z,A), R
−1

(Z,A)) where

R−1(Z,A) = h1(r
−1
Z (x), x ∈ A), (23)

R
−1

(Z,A) = h2(r
−1
Z (x), x ∈ A) (24)

is a proper interval-valued assessment of R−1/(Z × A).

Remark 2. In general,R(A,Z) �= R−1(Z,A) and R(A,Z) �= R−1(Z,A). There-
fore, the relationship of A to Z is different from the relationship of Z to A.
However, if in Proposition 4 we use h1 = g1 = G1 and h2 = g2 = G2, where G1

and G2 are associative aggregation functions, then R(A,Z) = R−1(Z,A) and

R(A,Z) = R
−1

(Z,A).

Because R/A = R/(A×W ) and R−1/Z = R−1(Z×V ), granules R/A and R−1/Z
evaluated in Section 1 by LU -fuzzy sets can be also evaluated by LU -coefficients
proposed in Definition 3.

Lemma 4. Let R ∈ F(V ×W ), A ∈ 2̃V and ϕ(A,R) = (rA, rA) be a proper LU-
assessment of R/A. Assume an aggregation function G. Then for all Z ∈ 2̃W ,
the coefficient ρ(A× Z,R) = (R(A,Z), R(A,Z)) given by

R(A,Z) = G(rA(y), y ∈ Z), (25)

R(A,Z) = G(rA(y), y ∈ Z) (26)

is a proper interval-valued assessment of R/(A× Z).
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Remark 3. When (rA, rA) = (rαA, rαA), where rαA, rαA are described in Propo-
sition 2, and G is the arithmetic mean, then the coefficients R(A,Z), R(A,Z)
from Lemma 4 can be interpreted as the proportions of elements from Z which
are strongly related and which are related to A at level α, respectively.

4 Assessments by Pairs of Fuzzy Relations

Let P(V ) denote the family of all partitions of elements from V . Consider a
partition P = {P1, . . . , Pk} ∈ P(V ) and a partition Q = {Q1, . . . , Qm} ∈
P(W ), k,m ∈ N . Then the partition P ×Q ∈ P(V ×W ) is created by clusters
Pi × Qj , i = 1, . . . , k, j = 1, . . . ,m and the R-neighborhood of P × Q can be
described by the granulation of R created by granules R/(Pi ×Qj). Hence

R{P ×Q} = {R/(Pi ×Qj) : Pi ∈ P,Qj ∈ Q}. (27)

In this section we explore an evaluation of R{P ×Q} by a pair of coarser fuzzy
relations (R{P ×Q}, R{P ×Q}) ∈ F(U ×W ). Proper lower and upper evalua-
tions should satisfy some common properties similar to the properties listed in
Definition 1 and Definition 3.

Definition 4. A mapping ξ : P(V ×W ) × F(V ×W ) → F(V ×W ) is called
a proper LU-assessment of granulations of fuzzy relations on V ×W induced by
partitions of elements from V ×W if for an arbitrary pair of partitions (P,Q) ∈
P(V ) × P(W ), P = {P1, . . . , Pk}, Q = {Q1, . . . , Qm}, k,m ∈ N and R ∈ F
(V ×W )

ξ(P ×Q,R) = (R{P ×Q}, R{P ×Q}) (28)

such that for all (x, y) ∈ V ×W, i = 1, . . . , k, j = 1, . . . ,m

P1) if (x, y) ∈ Pi ×Qj then R{P ×Q}(x, y) = Rij ≤ R{P ×Q}(x, y) = Rij ,

P2) if R(x, y) = 0 for all (x, y) ∈ Pi ×Qj then Rij = Rij = 0,

P3) if R(x, y) = 1 for all (x, y) ∈ Pi ×Qj then Rij = 1,
P4) if for S ∈ F(V ×W ) we have that S(x, y) ≤ R(x, y) for all (x, y) ∈ Pi ×Qj

then Sij ≤ Rij and Sij ≤ Rij.

The pair of fuzzy relations (R{P ×Q}, R{P ×Q}) is called an LU -fuzzy relation
associated with the granulation R{P ×Q}.
Proposition 5. Assume R ∈ F(V ×W ). Let ρ = (R,R) be a proper interval-
valued assessment of granules of R created by subsets from V ×W . Then for
P = {P1, . . . , Pk} ∈ P(V ) and Q = {Q1, . . . , Qm} ∈ P(W ), k,m ∈ N the pair of
fuzzy relations on V ×W

ξ(P ×Q,R) = (R{P ×Q}, R{P ×Q})

defined for all (x, y) ∈ Pi ×Qj, i = 1, . . . , k, j = 1, . . . ,m by

R{P ×Q}(x, y) = R(Pi, Qj), (29)

R{P ×Q}(x, y) = R(Pi, Qj), (30)

is an LU-fuzzy relation associated with the granulation R{P ×Q}.
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Dubois and Prade defined in [4] rough fuzzy set associated with a partition
P ∈ P(V ) and a fuzzy set f ∈ F(V ) as the pair (f, f) of fuzzy sets in the
quotient space U/P such that for each Pi ∈ P

f(Pi) = min
x∈Pi

f(x) and f(Pi) = max
x∈Pi

f(x). (31)

Note that P induces a granulation (partition) of f . Fuzzy sets f∗, f∗ ∈ F(V )
defined for all x ∈ V by

f∗(x) = f(Pi) and f∗(x) = f(Pi) if x ∈ Pi (32)

are coarser versions of f . We say that f∗ and f∗ are lower and upper approxi-
mations of f with respect to P , respectively. Now we will extend the notion of
a rough fuzzy set to the notion of a rough fuzzy relation.

Definition 5. Let R be a fuzzy relation from U to W . Consider a partition
P = {P1, . . . , Pk} of U and a partition Q = {Q1, . . . , Qm} of W . Then the rough
fuzzy relation associated with P × Q and R is defined as the pair (RR,RR) of
fuzzy relations from U/P to W/Q such that for all (Pi, Qj) ∈ P ×Q

RR(Pi, Qj) = min
(x,y)∈Pi×Qj

R(x, y) and RR(Pi, Qj) = max
(x,y)∈Pi×Qj

R(x, y). (33)

Fuzzy relations R∗, R∗ ∈ F(U ×W ) defined for all (x, y) ∈ U ×W by

R∗(x, y) = RR(Pi, Qj) if (x, y) ∈ Pi ×Qj (34)

and
R∗(x, y) = RR(Pi, Qj) if (x, y) ∈ Pi ×Qj (35)

are coarser versions of R. We say that R∗ and R∗ are the lower and the upper
approximations of R with respect to P ×Q. Clearly, the pair of fuzzy relations
(R∗, R∗) is an LU -fuzzy relation associated with granulation R{P ×Q}. Using
LU -fuzzy relations, we can generalize rough fuzzy relations as follows.

Definition 6. Let R be a fuzzy relation from U to W . Consider a partition
P = {P1, . . . , Pk} of U , a partition Q = {Q1, . . . , Qm} of W and an LU-fuzzy
relation ξ = (R{P×Q}, R{P×Q}) such that for all i = 1, . . . k and j = 1, . . . ,m :
if (x, y) ∈ Pi ×Qj then R{P ×Q}(x, y) = Rij and R{P ×Q}(x, y) = Rij . Then
the generalized rough fuzzy relation associated with P × Q, R and ξ is defined
as the pair (RR,RR) of fuzzy relations from U/P to W/Q such that for all
(Pi, Qj) ∈ P ×Q

RR(Pi, Qj) = Rij and RR(Pi, Qj) = Rij . (36)

Remark 4. When for all (x, y) ∈ Pi ×Qj, i = 1, . . . k and j = 1, . . . ,m

RR(Pi, Qj) ≤ R(x, y) ≤ RR(Pi, Qj),

the generalized rough fuzzy relation from Definition 6 can be used as a coarser
approximation of the granulation of R created by P ×Q.
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5 Conclusion

We provided a theoretical background and some examples of soft evaluations
of granules and granulations of fuzzy relations between two universes by lower
and upper assessments (LU -assessments). When the goal of an evaluation is an
approximation, various LU - assessments based on rough set theory can be used.
More about the relationship between rough sets and LU -fuzzy sets and some
applications of LU -assessments in decision making under uncertainty will be
presented in our future work.
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Abstract. Integrals are currently used in multiple criteria analysis for
synthesizing into a global evaluation the advantages possessed by a po-
tential choice. As such, integrals are operators that increase with the
criteria evaluations. However, an item may be also evaluated in terms of
its defects. Then the more and the greater the defects, the smaller the
evaluation should be. An operator that can provide a synthesis of the
defects of an item in this sense is called a desintegral. Desintegrals are
maximal when no defects at all are present, while integrals are maximal
when all advantages are sufficiently present. So, the greater the value
of an integral, or a desintegral, the better the corresponding item since
advantages are greater, or defects are smaller respectively. Desintegrals
implicitly refer to a negative scale, since an order-reversing mapping
of the scale used for evaluating each criterion transforms the degree to
which the value is advantageous into a degree to which it is disadvanta-
geous, and conversely. In this paper, we provide an organised description
of counterparts to Sugeno integrals that synthesize positive or negative
evaluations in the qualitative framework of a totally ordered residuated
lattice equipped with an involutive negation. We exploit three kinds of
criteria weighting schemes that are allowed by this algebraic structure.

1 Introduction

Choquet integrals and Sugeno integrals are widely used in multiple criteria ag-
gregation, respectively in quantitative and in qualitative settings [9]. Roughly
speaking, quantitative integration amounts to cumulate elementary evaluations
in order to build a global one, and any strict increase of these evaluations lead to a
cumulative effect as expected. In the qualitative setting, Sugeno integrals rather
provide a synthesis of the elementary evaluations, and are only increasing in a
broad sense. Thus, using integrals, we start from the bottom / minimal value of
any evaluation, say 0, and cumulate or synthesize elementary evaluations, which
have thus a positive flavor, as contributions to the global evaluation.

Desintegration is the converse. We start with the top/ maximal evaluation,
say 1, and each time a negative feature is reported, it contributes to diminish
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the global evaluation. In the negative evaluation framework, we call the counter-
part of a Sugeno integral a desintegral. With the idea of desintegrals, we try to
model evaluations such that if an object has some properties, then its evaluation
becomes worse. More generally, the better a feature is satisfied, the worse the
global evaluation. So the features, properties or criteria have a negative flavor.

Moreover, the form of the aggregation operation is affected by the way the
criteria weights modify the local evaluations, and the pessimistic or optimistic
nature of the evaluation. So there may exist variants of qualitative aggregation
techniques that differ from Sugeno integrals not only due the polarity of the
involved scales, but also in the handling of the importance weights.

The paper is structured as follows. The next section is devoted to the descrip-
tion of the considered landscape of aggregation operations, and their motivations.
Section 3 focuses on the properties of one example of residuated implication-
based counterpart of Sugeno integrals, that combines qualitative ratings in neg-
ative scales and construct a gobal rating on a positive scale. In the conclusion we
mention some open problems and briefly discuss the joint use of Sugeno integrals
and the Sugeno desintegrals when some criteria have a positive flavor and others
have a negative flavor.

2 General Setting and Motivation

In a bipolar evaluation framework one may handle reasons in favor of an alterna-
tive and reasons against it. In most situations, criteria are evaluated on positive
scales and the resulting aggregation is also valued on a positive scale. Namely
assuming this scale is the unit interval, the bottom 0 is viewed as worse than
the top 1 and the aggregation is monotonically increasing. However one may
consider aggregating negative criteria, that is, features that are to be explicitly
avoided. In that case the local evaluation scales are negative (0 is better than
1), and if the global scale is a positive one, the aggregation operation needs to
be monotonically decreasing. The more fulfilled are the negative features, the
smaller is the global evaluation.

2.1 Algebraic Framework

Let us consider a set of criteria C = {C1, . . . , Cn}. Some objects or acts are
evaluated according to the criteria. The evaluation scale associated to each cri-
terion is a totally ordered scale L, for instance a finite one or [0, 1]. In such a
context an object is viewed as a function f from C to L, encoded as a vector
(f1, . . . , fn) ∈ [0, 1]n. fi is the evaluation of f according to the criterion Ci.

We consider L as a Heyting algebra, i.e., a complete residuated lattice with
top 1 and bottom 0. More precisely, < L,∧,∨,→, 0, 1 > is a complete lattice. Of
course, < L,∧, 1 > is a commutative monoid (i.e ∧ is associative, commutative
and for all a ∈ L a ∧ 1 = a). The operator → called the residuum is such that
(a → b) ∧ a ≤ b, and moreover a → b = sup{c : a ∧ c ≤ b}. In such a case →
is Gödel implication. Let us present some basic properties of residuated lattices
useful in the sequel: For all a, b, c ∈ L,
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– a ≤ b if and only if a→ b = 1;
– a→ a = 1, a→ 1 = 1, 0→ a = 1, 1→ a = a;
– a ≤ b entails c→ a ≤ c→ b and b→ c ≤ a→ c.

The adjointness property reads: a ≤ b→ c if and only if a∧b ≤ c. Moreover as L
is a totally ordered set the prelinearity property: for all a, b, (a→ b)∨(b→ a) = 1
is always satisfied.

In order to handle the polarity of the evaluation scale, we also need an order-
reversing operation on L, denoted by 1− ·, that is decreasing and involutive (a
Kleene negation). If L is a positive scale (1 means good, 0 means bad), then
{1− a : a ∈ L} is a negative scale (1 means bad, 0 means good). On a complete
residuated lattice, a negation is defined by ¬a = a→ 0 such that ¬a = 1 if a = 0
and 0 otherwise, hence not involutive. This intuitionistic negation clearly differs
from the Kleene negation.

Overall the structure < L,∧,∨,→, 1−·, 0, 1 > is a complete De Morgan resid-
uated lattice, since < L,∧,∨, 1 − ·, 0, 1 > is a De Morgan algebra. We consider
such a framework because of its qualitative nature that fits the requirements of
Sugeno integral.

2.2 Aggregation and Scale Polarity

Due to the polarity of the evaluation scales, there are 4 cases to be considered
for an aggregation operation L1 × ...× Ln 2→ L:

1. Scales Li and L are positive (satisfaction).
2. Scales Li are negative (dissatisfaction) and L is positive (satisfaction).
3. Scales Li are positive (satisfaction) and L is negative (dissatisfaction).
4. Scales Li and L are negative (dissatisfaction).

In the first case of positive scales, there are two elementary qualitative aggre-
gation schemes that make sense: ∧n

i=1fi if one is very demanding, and ∨n
i=1fi if

one fulfilled criterion is enough.
In the second case where negative ratings are merged on a positive scale, the

value xi is all the greater as the evaluation is bad, and the global score is all
the greater as the resulting evaluation is better. The counterpart of these two
elementary aggregations can be handled by first reversing the negative scales
and then aggregating the results as previously, or on the contrary aggregating
the negative scores and reversing the global result:

– The demanding case reads: ∧n
i=1(1 − fi) = 1− ∨n

i=1fi
– The loose global evaluation reads ∨n

i=1(1 − fi) = 1− ∧n
i=1fi

Note that when aggregating negative scores ∨ is demanding while ∧ is loose.
Then, the aggregation operation is monotonically decreasing. The two other cases
can be discussed likewise. We now successively examine qualitative weighted
aggregations in cases 1 and 2, with positive and then negative input scales. In
both cases, the global evaluation lies in a positive scale.
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2.3 Three Qualitative Weighted Aggregations for Positive Scales

Let πi be the importance level of criterion i, valued on a positive scale. Namely,
πi is all the greater as criterion i is important. These levels are not used in the
same way in a loose or a demanding aggregation. Moreover they may alter the
local evaluations fi in at least three manners.

Saturation Levels. The most well-known cases for positive criteria are when
the importance weights act as saturation levels. The corresponding prioritized
aggregation schemes are of the form SLMAXπ(f) = ∨n

i=1πi ∧ fi (prioritized
maximum) and SLMINπ(f) = ∧n

i=1(1−πi)∨fi (prioritized minimum). They are
special cases of Sugeno integral, where the weights μ(A) generalize importance
weights πi to groups of criteria A ⊆ C. The fuzzy measure μ : 2C → [0, 1] is an
increasing set function such that μ(∅) = 0 and μ(C) = 1, as larger groups of
criteria are more important than smaller ones. The Sugeno integral of f with
respect to μ is denoted by

∮
μ
(f) = ∨A⊆Cμ(A) ∧ ∧i∈Afi

1 If all local evaluations

fi equal a constant a then
∮
μ
(f) = a. The prioritized maximum and prioritised

minimum are recovered if μ is a possibility or a necessity measure respectively.

Softening Thresholds. Another approach to the weights πi is to consider
them as softeners that make local evaluations less demanding. One may for in-
stance, consider that fi ≥ πi is enough to reach full satisfaction. Otherwise
one sticks to evaluation fi. More precisely, such a modified satisfaction is com-

puted with the Gödel implication: πi → fi where x→ y =

{
1 if x ≤ y
y otherwise

. Note

that πi = 0 represents such a high tolerance as to consider the criterion to
be ever fulfilled. This thresholding scheme is easily applied to the demanding
aggregation in the form STMINπ(f) = ∧n

i=1πi → fi. Note that in the previ-
ous prioritization scheme SLMAXπ(f) = 1− SLMINπ(1− f). Preserving this
connection leads to define the loose counterpart of the STMINπ connective as

STMAXπ(f) = ∨n
i=1πi � fi where x � y = 1− x→ (1− y) =

{
0 if x ≤ 1− y
y otherwise

.

This non commutative conjunction was introduced in [4]. In the more general
case of weighting groups of criteria by means of a monotonic increasing set-
function μ, a residuated implication-based counterpart of a Sugeno integral is of
the form ∮ ↑

μ

(f) = ∧A⊆Cμ(A)→ ∨i∈Afi.

Proposition 1. If μ is a possibility measure, then
∮ ↑
μ
(f) = STMINπ(f).

1 This notation whereby the capacity appears as a subscript is unusual for integrals.
It is conveniently concise for this paper where the domain plays no particular role.
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Proof. Suppose μ = Π based on the possibility degrees πi. It is obvious that∮ ↑
Π
(f) ≤ STMINπ(f) as the former considers the infimum over many more sit-

uations. Now let A be a set such that
∮ ↑
Π(f) = maxj∈A πj → ∨i∈Afi. Let k,  

such that
∮ ↑
Π
(f) = πk → f�. If πk → f� = 1, then

∮ ↑
Π
(f) ≥ STMINπ(f)

is obvious. Otherwise πk → f� < 1. But by construction f� ≥ fk. Hence∮ ↑
Π
(f) = f� ≥ πk → fk ≥ STMINπ(f). QED.

The extension of the STMAXπ aggregation is
∮ r�
μ

(f) = ∨A⊆Cμ(A) � ∧i∈Afi.

Drastic Thresholdings. Note that STMINπ(f) cannot be considered as a
proper generalization to fuzzy events of a necessity measure, since when the fi’s
belong to {0, 1}, we do not get STMINπ(f) = N(A) = mini�∈A(1 − πi) for
A = {i|fi = 1}. It is known [5] that the natural extension of necessity measures
to fuzzy events based on Gödel implication is DTMINπ(f) = mini(1 − fi) →
(1− πi). The effect of the weight πi on the rating fi is as follows: if fi ≥ πi, the
rating becomes maximal, i.e. 1, otherwise it is always turned into 1 − πi. Two
remarks are worth stating. First, the local rating scale reduces to the binary
scale {1− πi, 1}. Second, if πi is high, the local rating is drastically downgraded
to 1−πi. The loose counterpart of the DTMINπ connective is DTMAXπ(f) =
∨n
i=1fi � πi where � is the same non-commutative conjunction as above. The

extension of the DTMINπ aggregation to weighting groups of criteria is of the
form (where A is the complement of A)∮ ⇑

μ

(f) = ∧A⊆C
(
∧i∈A (1 − fi)→ μ(A)

)
.

Proposition 2. if μ is a necessity measure based on π, then
∮ ⇑
μ
(f) = DTMINπ(f).

The extension of the DTMAXπ aggregation is
∮ l�
μ
(f) = ∨A⊆C ∧i∈A fi � μ(A).

2.4 Three Qualitative Weighting Methods for Negative Scales

Let us turn to the case where we rate local features on negative scales and
get a global evaluation on a positive scale. Under this convention, a value ti
acts as a tolerance or permissiveness level on a negative scale: the higher ti,
the less important criterion i. Then the threshold scheme for negative criteria
goes as follows: the tolerance level ti now serves to turn negative flexible ratings
(fi now represents a degree of defect or violation, where the greater fi, the
worse the rating) into positive ones that are further aggregated on a positive
scale. There are again three qualitative aggregation schemes that reflect the
three cases encountered in the positive case. They are called desintegrals since
they will involve decreasing set functions ν, called a fuzzy antimeasure: It is a
decreasing set function ν : 2C → [0, 1] such that ν(∅) = 1 and ν(C) = 0.
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Saturation Levels. The result of applying tolerance ti to the negative rating
fi results in a positive rating that cannot be below ti. Moreover the local rating
scale is reversed, which leads to a local positive rating (1−fi)∨ti. The correspond-
ing demanding aggregation scheme is SLMINneg

t (f) = ∧n
i=1(1 − fi) ∨ ti, while

the loose one is of the form SLMAXneg
t (f) = ∨n

i=1(1− ti) ∧ (1− fi). Note that
SLMINneg

t (f) = SLMIN1−π(1−f) and SLMAXneg
t (f) = SLMAX1−π(1−f).

The corresponding extension of SLMAXneg
t based on a monotonically decreas-

ing function ν to the weighting of groups of defects is given by the expression∮ �

ν

(f) = ∨A⊆C
(
ν(A) ∧ ∧i∈A(1− fi)

)
where we recognize the formal Sugeno integral

∮
ν(·)(1 − f). Morover

∮ �

ν (f) =

SLMAXneg
t (f) if ν(A) = maxi∈A(1− ti).

Softening Thresholds. Here ti is viewed as a tolerance threshold such that it is
enough to have fi ≤ ti (i.e. the defect rating remains smaller than the threshold)
for the requirement to be totally fulfilled. Recall that now the requirement is to
avoid defects. If the object possesses the defect to an extent higher than ti, then
the rating value is reversed, leading to a poor positive local rating. This weighting
scheme is captured by the formula (1− ti)→ (1− fi) where→ is Gödel implica-
tion. This thresholding scheme is easily applied to the demanding aggregation in
the form STMINneg

t (f) = ∧n
i=1(1−ti)→ (1−fi). We can define the loose coun-

terpart of the STMINneg
t connective as STMAXneg

t (f) = ∨n
i=1(1− ti)� (1−fi)

using the non commutative conjunction introduced before. In the more gen-
eral case of weighting groups of defects by means of a monotonic decreas-
ing set-function ν, a residuated implication-based desintegral that generalizes
STMINneg

t is of the form∮ ↓

ν

(f) = ∧A⊆C
(
(1− ν(A))→ ∨i∈A(1− fi)

)
.

It is easy to check that
∮ ↓
ν
(f) =

∮ ↑
1−ν

(1− f).

Proposition 3. If ν(A) = Δ(A) = ∧i∈Ati, then
∮ ↓
ν
(f) = STMINneg

t (f).

The antimeasure Δ is known as a guaranteed possibility measure [5]. Moreover,
the corresponding extension of STMAXneg

t is the desintegral∮ r�
1−ν(1− f) = ∨A⊆C

(
(1− ν(A)) � ∧i∈A(1 − fi)

)
.

Drastic Thresholdings. The last weighting scheme can be described as fol-
lows. If fi > ti then the local rating is considered bad and the (positive) result is
downgraded to ti. If fi ≤ ti then the local rating is fine and the (positive) result
is 1. It corresponds again to using Gödel implication and now computing fi → ti.
Note that ti = 0 means complete intolerance with respect to the slightest posses-
sion of defect i. Demanding that no bad feature be satisfied leads to a demanding
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aggregation of positive ratings fi ≤ ti. This is DTMINneg
t (f) = ∧n

i=1fi → ti,
that is a guaranteed possibility function Δ applied to fuzzy event f [5]. Note that
the local negative rating scale is changed into a binary positive scale {ti, 1}. The
loose counterpart of DTMINneg

t is DTMAXneg
t = ∨n

i=1(1 − fi) � (1 − ti). The
extension of the DTMINneg

t aggregation to tolerance levels attached to groups
of defects corresponds to the following desintegral with respect to antimeasure
ν is given by ∮ ⇓

ν

(f) = ∧A⊆C ∧i∈A fi → ν(A),

with the following convention: ∧i∈∅fi = 0 (otherwise, one must restrict the above
expression to non-empty sets).

Proposition 4. If ν(A) = Δ(A) = ∧i∈Ati, then
∮ ⇓
ν (f) = DTMINneg

t (f).

Proof. According to the definitions we have
∮ ⇓
ν (f) ≤ DTMINneg

t (f), so let

us prove that DTMINneg
t (f) ≤

∮ ⇓
ν
(f). Let A∗ be the set associated to the

minimum in the definition of
∮ ⇓
ν (f), i.e.,

∮ ⇓
ν (f) = ∧i∈A∗fi → ∧i∈A∗ ti. The only

possible values are 1 and ∧i∈A∗ti. On both sides, we can have different criteria

associated to the minimum. We denote them by j and k, i.e.,
∮ ⇓
ν
(f) = fj → tk.

If
∮ ⇓
ν (f) = 1, there is no difficulty. If

∮ ⇓
ν (f) < 1, then fj > tk. As fj = ∧x∈A∗fi

we have fk ≥ fj > tk. So fj → tk = fk → tk ≥ infi∈C(fi → ti). So
∮ ⇓
ν
(f) ≥

DTMINneg
t (f).

The extension of DTMAXneg
t is

∮ l�
ν (1− f) = ∨A⊆C ∧i∈A (1 − fi) � ν(A).

The above survey can be summarized using the following terminology: we call
(qualitative) integral (resp. desintegral) a weighted aggregation operation that is
increasing (resp. decreasing) with respect to the local ratings. We call an integral
or a desintegral conjunction-based (resp. implication-based) when it takes the
form of a maximum (resp. minimum) of the conjunction of (resp. implication
between) weights and ratings. We call an integral or a desintegral drastic (resp.
soft) when the result can only belong to the set of weights, making the local
rating scale binary (resp. when the result belongs to the original rating scale
or its reverse). In the following we more particularly study drastic desintegrals
with respect to general set-functions. Indeed, one may find situations where the
weighting function is nonmonotonic. For instance, if good objects are those that
possess exactly k properties out of n > k.

3 Properties of the Drastic Desintegrals

In this section, we consider, as an example, the properties of drastic desintegrals∮ ⇓
σ
(f), where σ : 2C → [0, 1] is a general set-function. The name desintegral is

justified by the following

Proposition 5. If f ≤ g then
∮ ⇓
σ (g) ≤

∮ ⇓
σ (f).
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The Sugeno integral
∮
μ
with respect to a fuzzy measure μ is an aggregation

function satisfying the following properties.

Proposition 6. For all functions f, g and for all a in [0, 1],∮
μ(f ∧ g) ≤

∮
μ(f) ∧

∮
μ(g),

∮
μ(f ∨ g) ≥

∮
μ(f) ∨

∮
μ(g)∮

μ(a ∧ f) = a ∧
∮
μ(f),

∮
μ(a→ f) ≤ a→

∮
μ(f).

As may be expected the drastic desintegrals satisfy similar but opposite prop-
erties. More precisely the following result, proved in [6] for an MV-algebra with
an antimeasure, is still satisfied in our context.

Proposition 7. For all functions f, g and for all a in [0, 1],∮ ⇓
σ
(f ∧ g) ≥

∮ ⇓
σ
(f) ∨

∮ ⇓
σ
(g),

∮ ⇓
σ
(f ∨ g) ≤

∮ ⇓
σ
(f) ∧

∮ ⇓
σ
(g)∮ ⇓

σ (a ∧ f) ≤ a→
∮ ⇓
σ (f),

∮ ⇓
σ (a→ f) ≥ a ∧

∮ ⇓
σ (f).

In order to use the drastic desintegrals we need to understand how the set
functions used can be interpreted.

Proposition 8. For all A ⊆ A, σ(A) represents an upper bound of the global
satisfaction rating that an object can receive with a drastic desintegral if it sat-
isfies all properties in the group A to a degree higher than σ(A).

Proof. Since the hypothesis implies ∧Ci∈Afi > σ(A), ∧Ci∈Afi → σ(A) = σ(A),

which entails
∮ ⇓
σ
(f) ≤ ∧Ci∈Afi → σ(A).

Example 1. We consider three criteria C1, C2, C3. We want to select objects that
satisfy only C1, only C2 or only C3. We consider σ defined as follows σ(C1) =
σ(C2) = σ(C3) = 1; σ is 0 otherwise.

Let us compute
∮ ⇓
σ (1, 0, 0): If A �= {C1} then ∧Ci∈Afi = 0 and ∧Ci∈Afi →

σ(A) = 1. If A = {C1} then ∧Ci∈Afi → σ(A) = 1 → 1 = 1. So we have∮ ⇓
σ
(1, 0, 0) = 1. Similarly we have

∮ ⇓
σ
(0, 1, 0) =

∮ ⇓
σ
(0, 0, 1) = 1.

Let us compute
∮ ⇓
σ (1, 1, 0) : If A = {C1, C2} then ∧Ci∈Afi = 1 and ∧Ci∈Afi →

σ(A) = 1 → 0 = 0. So we have
∮ ⇓
σ
(1, 1, 0) = 0. Similarly we have

∮ ⇓
σ
(1, 0, 1) =∮ ⇓

σ (0, 1, 1) =
∮ ⇓
σ (0, 1, 1) = 0.

In the above example, if we consider σ such that σ(C1) = σ(C2) = σ(C3) = 0.5

and σ is 0 otherwise then
∮ ⇓
σ (1, 0, 0) =

∮ ⇓
σ (0, 1, 0) =

∮ ⇓
σ (0, 0, 1) = 0.5. Also we

have
∮ ⇓
σ
(1, 1, 0) =

∮ ⇓
σ
(1, 0, 1) =

∮ ⇓
σ
(0, 1, 1) = 0.

The global evaluation of an object calculated with a drastic desintegral, be-
longs to the interval [0, 1]. In order to interpret the obtained result, for example
in order to select objects, we need to identify the objects that obtain the best
evaluation and those that receive the worst one.

Proposition 9.
∮ ⇓
σ
(f) = 1 if and only if ∀A, ∃Ci ∈ A such that fi ≤ σ(A).∮ ⇓

σ
(f) = 0 if and only if ∃A such that σ(A) = 0 and ∀Ci ∈ A, fi > 0.
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Proof.
∮ ⇓
σ
(f) = 1 if and only if ∀A, ∧Ci∈Afi → σ(A) = 1 i.e. ∀A, ∧Ci∈Afi ≤

σ(A), which is equivalent to ∃Ci ∈ A such that fi ≤ σ(A).
∮ ⇓
σ (f) = 0 if and only

if ∃A such that ∧Ci∈Afi → σ(A) = 0, i.e, σ(A) = 0 and ∧Ci∈Afi > 0.

We conclude this section with mathematical properties classically studied for
aggregation functions.

Proposition 10.
∮ ⇓
σ (0, . . . , 0) = 1,

∮ ⇓
σ (1, . . . , 1) = ∧A⊆Cσ(A),∮ ⇓

σ
(c, . . . , c) = ∧{A|σ(A)<c}σ(A), (with convention ∧A∈∅σ(A) = 1).∮ ⇓

σ (1A) = ∧B⊆Aσ(B) (we denote the characteristic function of A by 1A).

Proof.
∮ ⇓
σ
(0,. . ., 0) = ∧A⊆C0 → σ(A) = 1,

∮ ⇓
σ
(1, . . . , 1) = ∧A⊆C1 → σ(A) =

∧A⊆Cσ(A).
∮ ⇓
σ (c, . . . , c) = ∧A⊆Cc → σ(A) where c → σ(A) is 1 if c ≤ σ(A) and

is σ(A) otherwise.
If B �⊆ A then ∧Ci∈B1A → σ(A) = 0→ σ(A) = 1.
If B ⊆ A, then ∧Ci∈B1A → σ(B) = 1→ σ(B) = σ(B).

If there exists A such that σ(A) = 0 then
∮ ⇓
σ
(1, . . . , 1) =

∮ ⇓
σ
(c, . . . , c) = 0.

More generally, if σ is a fuzzy antimeasure then
∮ ⇓
σ (0, . . . , 0) = 1,

∮ ⇓
σ (1, . . . , 1) =∮ ⇓

σ
(c, . . . , c) = 0 and

∮ ⇓
σ
(1A) = σ(A). Note that this particular case can be also

proved using the results presented in [6].

4 Concluding Remarks

This paper outlines a framework for a class of general aggregation functions
on a complete residuated, totally ordered set with an order-reversing negation.
As some of them use residuated implications, they cannot be generated from
standard Sugeno integrals and negation. A number of questions remain pending.
For instance, Sugeno integral can be written in two equivalent ways as∮

μ

(x) = ∨A⊆C μ(A) ∧ ∧i∈Afi = ∧A⊆C μ(A) ∨ ∨i∈Afi.

In the right-hand side expression we can recognise a Kleene-Dienes implication-
based qualitative integral (a � b = (1 − a) ∨ b) with respect to the conjugate
set-function μ(A) = 1 − μ(A). Hence the natural question is whether this type
of identity remains valid on our qualitative structure, for Gödel implication,
and the corresponding non-commutative conjunction. Besides, other algebraic
frameworks are worth studying from this perspective, like MV-algebras [6].

Another question is the simultaneous handling of positive and negative criteria
for decision evaluation. Suppose the set of the criteria is divided into two parts:
the set of positive criteria denoted C+ and the set of negative criteria denoted C−
where C+ ∪ C− = C and C+ ∩ C− = ∅. On C+, a fuzzy measure μ represents the
satisfactory level needed to have a good evaluation. Hence the global evaluation
with respect to the positive criteria can be calculated using for example the
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Sugeno integral with respect to μ:
∮
μ
. On C− an antimeasure ν, represents an

upper bound of the global satisfaction level an object can receive if it satisfies
all the properties with a level bigger than ν. Hence the global evaluation with
respect to the negative criteria can be computed using for example the drastic

desintegral with respect to ν:
∮ ⇓
ν .

One may try to merge the positive evaluations obtained from a integral over
positive criteria and a desintegral with respect to negative ones, or on the con-
trary handle them separately for making a final comparison of objects. We tend
to favor a separate handling of positive and negative aspects, in contrast with
other approaches like Cumulative Prospect Theory that are numerical, or the
ones of Grabisch [8,7] that try to work with a single qualitative bipolar scale
where available combination of positive and negative values look debatable. See
also [10]. On the contrary, we are more in the spirit of bivariate bipolar ap-
proaches to evaluation such as the ones proposed by Bonnefon and colleagues
[2,3]. However, their approach is restricted to Boolean valuation scales (all-or-
nothing positive or negative criteria) and importance levels bear on single cri-
teria. The framework presented in this paper opens the way to a generalization
of qualitative bipolar decision evaluation to criteria with more refined value
scales and generalized weightings of groups of criteria. Our bipolar approach is
also somewhat similar to Atanassov “Intuitionistic Fuzzy Set” (AIFS) aggre-
gation function theory[1], since it also handles pairs of positive and negative
values. However, in the AIFS approach, a pair (μ, ν) of membership and non-
membership values is such that μ + ν ≤ 1 and is interpreted as an uncertainty
gap of the form [μ, 1 − ν], while in our view the positive and negative evalu-
ations are to be considered as two independent precise evaluations to be used
conjointly.
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Abstract. Aggregation functions have been widely studied in literature.
Nevertheless, few efforts have been dedicated to analyze those properties
related with the family of operators in a global way. In this work, we
analyze the stability in a family of aggregation operators The stability
property for a family of aggregation operators tries to force a family to
have a stable/continuous definition in the sense that the aggregation of
n − 1 items should be similar to the aggregation of n items if the last
item is the aggregation of the previous n− 1 items. Following this idea
some definitions and results are given.

1 Introduction

Many properties have been studied in relation with the aggregation operator
functions such as continuity, commutativity, monotonicity, associativity (and a
large etcetera) (see for example [1,4,5,6,7,8], among others). But in contrast, few
efforts have been dedicated to research the relations among the members of a
family of aggregation operators. As has been pointed recently [15], these common
properties (as for example continuity) show us some desirable characteristics
related with each aggregation function An, but do not give us any information
about the consistency of the family of aggregation operators in the sense of the
relations that should exist among its members.

In the context of aggregation operators, it is usually assumed that the infor-
mation that has to be aggregated is given in terms of a vector of elements in the
unit interval, assigning to each vector another number in the unit interval, which
constitutes the aggregated value of the original information. Taking into account
that, in practice, most of the time one cannot guarantee that the cardinal of the
information is going to be fixed (some information can get lost or deleted due
to errors in observation or transmission, or because sometimes one gets some
additional information not previously taken into account), we need to be able to
solve each aggregation problem without knowing a priori the cardinal of data.

Trying to eliminate the classical assumption that considers the aggregations
functions as independent pieces of the aggregation process, we will define here
the idea of stability in a family of aggregation functions {An} (from now on

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 317–325, 2012.
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FAO) breaking this idea of independence that usually is assumed. This is, the
operators that compose a FAO have to be somehow related so the aggregation
process remains the same throughout the dimension n of the data. For example,
it would seem quite strange to propose an FAO using the minimum for n = 2,
the arithmetic mean for n = 3, the geometric mean for n = 4 and the median for
n = 5 (and though it could seem that a formal approach could solve this problem
by demanding a conceptual unity through a mathematical formula, it should be
noted that the last example allows a trivial compact mathematical formulation).
Therefore, it seems logical to study properties giving sense to the sequences A(2),
A(3), A(4), . . . ,. Otherwise we may have only a bunch of disconnected operators.

2 Stability of a Family of Aggregation Operators

Aggregation implies not only the ability to aggregate an arbitrary finite number
of information units, but also to make it following some general instruction. Such
a general instruction can not be simply a formula depending on the number of
items to be aggregated. With this aim, we have considered a property close
to the continuity of functions in order to assure some robustness in the result
of the aggregation process. Let An(x1, . . . , xn) be the aggregated value for the
n-dimensional data x1, . . . , xn. Now, let us suppose that a new element xn+1

has to be aggregated. If xn+1 is close to the aggregation result An(x1, . . . , xn)
given by the n-dimensional data x1, . . . , xn, then the result of aggregating the
n + 1 elements should not differ too much with the result of aggregation of
n items. Following the idea of stability for any mathematical tool, if |xn+1 −
An(x1, . . . , xn)| is small, then |An+1(x1, . . . , xn, xn+1)− An(x1, . . . , xn)| should
be also small. This idea is partially gathered in the self − identity definition
given in [17].

Definition 1. (Yager 1997). Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of
aggregation operators. Then, it is said that the family {An} satisfies the self-
identity property if, ∀n ∈ N and ∀x1, . . . xn ∈ [0, 1], the following holds:

An(x1, x2, ...xn−1, An−1(x1, x2..., xn−1)) = An−1(x1, x2, ..., xn−1) (1)

Let us observe that self-identity is close to the stability idea in the sense that if
the new item that has to be aggregated coincides with the aggregation value of
the previous data, then the new result should not change. Nevertheless, in the
self-identity definition it is implicitly imposed the fact that the information has
to be aggregated in some order, specifically from left to right, so we have to put
the last data in the n− th position of the aggregation function.

Let us remark that if the aggregation operator is not symmetric (i.e. there
exist a n for which the aggregation operator An is not symmetric), then the
position of the new data is relevant in the final output of the aggregation pro-
cess. For example, in the backward inductive extension {Ab

n, n ∈ N} and forward
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inductive extension {Af
n, n ∈ N} (see [3] for more details) of any binary aggre-

gation operator, defined for n > 2 as Ab
n = L2 (x1, L2(. . . , L2(xn−1, xn) . . .)) for

n > 2 , and Af
n = L2 (. . . , (L2(L2(x1, x2), x3)), . . . , xn) for n > 2 , where L2 is

a binary aggregation operator, i.e. L2 : [0, 1]2 → [0, 1].
It can be proved that the family of aggregation functions {Af

n, n ∈ N} satisfies
the self identity property if L2 is idempotent. But, the family {Ab

n, n ∈ N}
does not satisfy the self identity property since the order in which this family
aggregate the information is inverse (i.e. from right to left). In our opinion, the
family Ab

n = L2 (x1, L2(. . . , L2(xn−1, xn) . . .) for n > 2 should be consistent
in the sense of stability when the information is aggregated from right to left .
Taking into account this, we present the following definitions of stability, that
extend the notion of self-identity both in the direction of allowing its application
to non-symmetric operators.

Definition 2. Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation
operators. Then, it is said that ∀n ≥ 3 and ∀{xn}n∈N in [0, 1]:

1. It fulfills the property of R-strict stability, if the following holds:

An(x1, x2, ...xn−1, An−1(x1, x2..., xn−1)) = An−1(x1, x2, ..., xn−1) (2)

An will be called R-strictly stable family.

2. It fulfills the property of L-strict stability, if the following holds:

An(An−1(x1, x2, ..., xn−1), x1, x2, ...xn−1) = An−1(x1, x2, ..., xn−1) (3)

An will be called L-strictly stable family.

3. It fulfills the property of L-R strict stability if An satisfies the two points
above, and it will be called L-R strict stable family.

Let us observe that if An is symmetric, then the three previous definitions are
equivalent and coincide with the self-identity property defined by Yager. Now,
it is very easy to check that with any binary idempotent operator the induc-
tive extension forward (Af ) satisfies the property of R-strict stability, and the
inductive extension backward (Ab) satisfies the property of L-strict stability.

Although the previous definition presents a reasonable approach to the idea
of consistency of a FAO (i.e., from the point of view of its stability), it is im-
portant to note that not all consistent families are included in this definition.
Let us consider the example of the productory family of aggregation operators,

defined as

{
Pn(x1, . . . , xn) =

n∏
i=1

(xi), n ∈ N

}
. In our opinion, this family de-

fines an aggregation process that can be considered as consistent, because the
set of successions {xn}n∈N in which the productory FAO fails to be stable has
probability zero. But it does not satisfy any of the three previous definitions.
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Therefore, in order to extend the proposed approach to other consistent
FAOs, we propose the following two definitions, that express a relaxed version
of the same stability concept: in the first one, stability is fulfilled in the limit,
while in the second one, a weaker concept of stability is reached by demanding
the operators to be, in the limit, almost sure stable.

Definition 3. Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation
operators. Then, it is said that ∀n ≥ 3 and ∀{xn}n∈N in [0, 1]:

1. It fulfills the property of R-stability, if the following holds:

lim
n→+∞

∣∣An(x1, ...xn−1, An−1(x1, ..., xn−1))−An−1(x1, ..., xn−1)
∣∣ = 0 (4)

An will be called R-stable family.

2. It fulfills the property of L-stability, if for all succession {xn}n∈N in [0, 1],
the following holds:

lim
n→+∞

∣∣An(An−1(x1, ..., xn−1), x1, ...xn−1)−An−1(x1, ..., xn−1)
∣∣ = 0 (5)

An will be called L-stable family.

3. It fulfills the property of L-R stability if An satisfies the above two points,
and it will be called L-R stable family.

3 Weak Stability of a Family of Aggregation Operators

In the previous section, we have defined the concept of strict stability and
stability (in a weakly version). Therefore, this last definition (stability in the
limit) properly extends the application range of the stability notion proposed in
this paper to some consistent, non-strictly stable FAOs, as some of the most
used weighted mean operators. However, again the productory FAO Pn fails
to fulfil this notion of consistency. For example, if (x1, x2, ) = (1/2, 1, 1, ), then
Pn−1 = 1/2, but Pn(x1, , xn−1, Pn−1) = (Pn−1)

2 = 1/4, ∀ n > 2, so the pro-
ductory family is neither strictly stable nor stable. Nevertheless, since:

Pn (x1, ...xn−1, Pn−1(x1, ..., xn−1))− Pn−1 (x1, ..., xn−1)

is equal to
n−1∏
i=1

xi ·
n−1∏
i=1

xi −
n−1∏
i=1

xi =

n−1∏
i=1

xi ·
(

n−1∏
i=1

xi − 1

)
.

The productory is not stable only because of those successions {xn}n∈ N such

that
n∏

i=1

xn −→
n→∞

c ∈ (0, 1), which entails that xn −→
n→1

1 (but notice that the

opposite is not true, since if ∃k / xk = 0 then
∞∏

n=1
xn = 0.
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This leads to guess that these successions that makes the product FAO to
not fulfil stability actually constitute a very reduced subset SP of the set S of all
successions in [0, 1], or in other words, the probability of gathering a collection
of data which potentially leads to a non-stable behavior is small enough or even
zero.

It is possible to formalize these ideas by means of the probability concept. Let
S = {{xn}n∈N : xi ∈ [0, 1] ∀i} be the set of successions in [0, 1], and let {An} be a
FAO involved in the aggregation process of a succession sn−1 = (x1, , xn−1) ∈ S.
Consider an experiment given by ”observe the stability of {An(sn)}”, or in other
words, ”observe the distance between An(sn−1, An−1(sn−1)) and An−1(sn−1)”
(for the case of the stability from the right). The sample space E associated
is given by the set of the possible stability levels of {An(sn)}. Thus, if the
cardinality of S tends to infinite, it is possible to obtain the probability of the
event given by ”gathering a succession sn which leads to a stable behavior of
{An} FAO ”, ie, P [ lim

n→+∞ |An(sn−1, An−1(sn−1))−An−1(sn−1)| = 0 ].

This way, if the value of the data items (X1, ..., Xn, ...) are assumed to be
U([0, 1]) independent variables, then it is possible to introduce a probability
measure over the set of successions S through the conjoint probability distribu-
tion function.

P (a1 ≤ X1 ≤ b1, ..., an ≤ Xn ≤ bn, ...) =

∞∏
i=1

P (ai ≤ Xi ≤ bi) =

∞∏
i=1

(bi − ai) (6)

Where ai, bi ∈ [0, 1] ∀i. Thus, for example, the probability of a given succession
{xn}n∈ N is clearly zero, and the probability of the set of all successions such
that xi ∈ [0, 1/2] ∀i ≤ N and xi ∈ [0, 1] ∀i > N , for a given N , is (1/2)N . Then,

it is possible to see that SP =

{
{xn}n∈ N/

∞∏
n=1

xn −→
n→∞

c ∈ (0, 1)

}
in which the

productory FAO fails to be stable has probability zero.
Effectively, as pointed above, SP ⊂ S1 = {(xn)n∈ N/xn → 1}. And notice

that, for each ε > 0, S1 can be partitioned into the sets

Cn =
{
{xk}k∈ N/

∣∣xk − 1
∣∣ < ε, ∀k ≥ n

}
,

n ∈ N . Since Cn

⋂
Cm = ∅ if n ∼= m, it then holds that:

P (SP ) ≤ P ({{xn}n∈N/ xn → 1}) = P

( ⋃
n∈N

Cn

)
=

∞∑
n=1

P (Cn) ≤
∞∑

n=1

∞∏
k=n

εk = 0 (7)

And thus it can be said that the probability of the productory FAO not being
stable is zero.

Therefore, the productory FAO verifies the notion of stability in a weaker
version, that can be characterized in terms of almost sure convergence to a
strictly stable FAO. This leads to introduce the concept of almost sure stability,
or weak stability, as follows:
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Definition 4. Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation
operators. Then, we will say that ∀n ≥ 3 and ∀{xn}n∈N in [0, 1]:

1. It fulfills the property of R-weak stability, if the following holds:

P [(xn) / lim
n→+∞

|An(x1, ...xn−1, An−1(x1, ..., xn−1))− An−1(x1, ..., xn−1)| = 0] = 1,

(8)

An will be called R-weakly stable family.

2. It fulfills the property of L-weak stability, if the following holds:

P [(xn) / lim
n→+∞

|An(An−1(x1, ..., xn−1), x1, ...xn−1)− An−1(x1, ..., xn−1)| = 0] = 1,

(9)

An will be called L-weak stable family

3. It fulfills the property of L-R weak stability if An satisfies the above two
points, and it will be called L-R weakly stable family.

Now, it is possible to look for the relationships between these three different
levels of stability. Since the stable and weakly stable FAOs converge to strictly
stable FAOs, and the stable FAOs are a special case of weakly stable FAOs,
it is easy to see that the following results hold:

Proposition 1. Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation
operators. Then the following holds:

1. If the family {An}n satisfies the property of strict stability then it also sat-
isfies the property of stability.

2. If the family {An}n satisfies the property of stability then it satisfies the
property of weak stability.

Therefore, if a FAO is not weakly stable, then it does not verify any of the three
levels of stability. We will call such a FAO instable.

Definition 5. Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation
operators. Then, we will say that:

1. It fulfills the property of R-instability, if the family is not R-weakly stable,
and it will be called R-unstable family.

2. It fulfills the property of L-instability, if the family is not L-weakly stable,
and it will be called L-unstable family.

3. It fulfills the property of L-R instability if An satisfies the above two points,
and it will be called L-R unstable family.

4 Stability Levels of Some Well-Known Families
of Aggregation Operators

In this section, the stability level some of the most frequently used aggregation
operators is analyzed, looking at these operators in a global way (as families)
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in order to know in advance the level of robustness of the aggregation process
involved in them.

In Table 1 we show the stability level of the most used families of aggregation
operators. As can be seen in this table, the OWA, and the weighted mean oper-
ators, in general, are families unstable (as we show in the following proposition),
since their stability will be strictly dependent on the way in which the weights
are defined Let us observe, for example, that if any condition is imposed to the
weights we could have OWA or weighted mean families unnatural as an operator
that for n = 2 is the maximum, for n = 3 is the minimum, for n = 4 is the mean,
and so on.

Table 1. Level of stability of some families of aggregation operators

Family of aggregation Strict Stability Weak Instability

operators {An}nε N stability stability

Minn = Min(x1, . . . , xn) R, L R, L R, L –

Maxn = Max(x1, . . . , xn) R, L R, L R, L –

Mdn = Md(x1, . . . , xn) R, L R, L R, L –

Mn =
∑n

i=1
xi
n

R, L R, L R, L –

Gn = (
∏n

i=1 xi)
1/n R, L R, L R, L –

Hn = n∑n
i=1 1/xi

R, L R, L R, L –

Qn =
∏n

i=1 x
i
i – – R, L –

Pn =
∏n

i=1 xi – – R, L –

Af
n = Af

n(x1, . . . , xn) R R R L

Ab
n = Ab

n(x1, . . . , xn) L L L R

Wn =
n∑

i=1

xi · wi - – – R, L

On =
n∑

i=1

x(i) · wi – – – R, L

Note: R and L indicate level of stability from the right and from the left respectively.
Note: The weights of the weighted families of aggregation operator do not have additional restrictions.

Recall that, for any data cardinality n, the weights are usually assumed to form

a vector wn = (wn
1 , ..., w

n
n) ∈ [0, 1]n, such that

n∑
i=1

wn
i = 1. The corresponding

weighted mean operator is then given by Wn(x1, . . . , xn) =
n∑

i=1

xi · wi.

It is important to stress that our aim is not to propose a new method to deter-
mine these weights (as it would depend on the problem being considered), but
simply to specify the relationships that should exist between two weights vectors
of different dimension in order to produce a consistent aggregation process.

Proposition 2. ∀x1, . . . xn ∈ [0, 1], the weighted mean operator family given
by {Wn : [0, 1]n → [0, 1], n ∈ N} and the OWA operators family given by
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{On : [0, 1]n → [0, 1], n ∈ N} are unstable FAOs if their weights do not have
any additional restriction.

Proof. If any constraint is imposed to the weights in a OWA family, the family
denoted as {IAn} and defined as

IAn(x1, . . . , xn) =

{
Max(x1, . . . , xn) if n odd
Min(x1, . . . , xn) if n even

can be viewed as a particular case of OWA.
Since the OWA aggregation function is symmetric, the three definitions of

weak stability are equivalent (L weak, R weak and LR weak). To prove that
{IAn} is unstable, since the definition of L weak stability is

P

[
(xn) / lim

n→+∞
|An(x1, ...xn−1, An−1(x1, ..., xn−1))− An−1(x1, ..., xn−1)| = 0

]
= 1

It is enough to find a family R of successions with P (R) > 0 and satisfying also
that ∀(xn) ∈ R, lim

n→+∞ |An(x1, ...xn−1, An−1(x1, ..., xn−1))−An−1(x1, ..., xn−1)|
�= 0 which trivially can be founded.

5 Conclusions and Final Remarks

In our opinion an aggregation family should never be understood just as a family
of n-ary operators. Rather, all these aggregation operators must be deeply related
following some building procedure throughout the aggregation process. To this
aim, we have presented here two properties that follows such an objective. It is
clear that we should not define a family of aggregation operators {An} in which
A2 is the mean, A3 geometric mean, A4 is the minimum. Thus, in our opinion the
aggregation process demands a conceptual unit idea rather than a mathematical
formula.

The stability notion proposed in this paper makes emphasize in the idea of
robustness-stability-continuity of the family in the sense that the operator de-
fined for n data items should not differ too much of the operator defined for
n− 1 elements.

Another aspect that should be considered in the aggregation process is related
with the structure of the data. The notion of consistency in the relation among
the aggregation functions is not trivial and could depend on the structure of
the data. In [1] a possible definition of consistency in the framework of recursive
rules is done. For more general situations, we present a mechanism that permits
us to build the aggregation function taking into account the structure of the
data that has to be aggregated. Nevertheless, the definition proposed here is
just a seminal effort and possible modifications coming from a further analysis
(we think) merit to be carried out.
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of the Fifth International Summer School on Aggregation Operators, AGOP, pp.
183–187. Universitat de les Illes Balears, Palma de Mallorca (2009)
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Abstract. From the birth of fuzzy sets theory, several extensions have been pro-
posed changing the possible membership values. Since fuzzy connectives such
as t-norms and negations have an important role in theoretical as well as applied
fuzzy logics, these connectives have been adapted for these generalized frame-
works. Perhaps, an extension of fuzzy logic which generalizes the remaining ex-
tensions, proposed by Joseph Goguen in 1967, is to consider arbitrary bounded
lattices for the values of the membership degrees. In this paper we extend the
usual way of constructing fuzzy negations from t-norms for the bounded lattice
t-norms and prove some properties of this construction.

Keywords: L-Fuzzy logics, bounded lattices, t-norms, L-negations,
L-automorphisms.

1 Introduction

The necessity of considering truth values beyond the classical “true” and ”false” was
manifested a very long time back. For example, Plato claimed that between true and
false there is a third alternative and Eubulides of Miletus, alerted us with sorites para-
dox, on the difficulty of determining a threshold for vague properties (sets), and so, of
saying when an object satisfies or not some property. In modern times, the Polish and
American logicians Jan Łukasiewicz and Emil Post, respectively, introduce the idea of
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3-valued logics. Later, Kurt Gödel extended it by considering n possible truth values
and Lotfi Zadeh in [26] introduced the theory of fuzzy sets, where the membership
degrees can take values in [0, 1] and so, in their logical counterpart, the truth values of
propositions are real numbers in [0, 1]. From then, several extensions of fuzzy set theory
have been proposed; for example, Interval-valued fuzzy sets, Atanassov’s intuitionistic
fuzzy sets, interval-valued intuitionistic fuzzy sets, n-dimensional fuzzy sets and some
others which can be considered as a special case of lattice-valued fuzzy sets introduced
by Joseph Goguen in [12]. For the latter, given a lattice, the membership degree of an
element is a value of that lattice.

An important question in fuzzy logic is the way of extending the classical proposi-
tional connectives for the fuzzy framework. In the beginning of the fuzzy logics, several
particular functions or a family of such functions were proposed to represent the con-
junction, disjunction, negation and implication. But, most of these proposals have some
common properties, which led Claudi Alsina, Enric Trillas and Llorenç Valverde in [2]
to use the notion of triangular norm (t-norm in short)1 and its dual notion (t-conorms)
to model conjunction and disjunction in fuzzy logics. For the case of negations, Enric
Trillas in [25] proposed the axiomatic that is accepted nowadays. There are some re-
lations among the connectives. For example it is well known that each t-norm can be
obtained from a t-conorm and the standard negation (N(x) = 1 − x) and conversely,
each t-conorm can be obtained from a t-norm and the standard negation, i.e. t-norm
and t-conorms are dual connectives. An interesting question, is whether from t-norms,
t-conorms and fuzzy implications it is possible to obtain, in a canonical way, a negation.

Since fuzzy connectives, i.e. t-norms, t-conorms, negations and implications, play
an important role in fuzzy logics, theoretically as well as in applications, several works
have been made to introduce connectives in each one of the extensions of fuzzy logic
(see for example [5,10]). In the case of lattice-valued fuzzy set theory, basically, there
are two directions to include lattice-valued logical connectives:

1. Add connectives to the lattice structures beyond of the infimum and supremum op-
erators, i.e. to consider enriched lattices with some extra operators, and in general,
to consider properties which relate different connectives. For example, BL-algebras
[15] and MV-algebras [8] which provides the algebraic setting for the basic logic2

and for Łukasiewicz’s infinite-valued propositional logic, respectively.
2. Generalize the notion of fuzzy connective for lattice-valued fuzzy logics by con-

sidering the same (or analogous) axioms (conditions) as those required for such
connectives. This have been made, mainly, with the aggregation operators (t-norms
and t-conorms) and negations (see for example [6,4,9,17,20,22]).

In this paper we follow this second direction to study the way of constructing bounded
lattice negations from bounded lattice t-norms and how these constructions are pre-
served when a bounded lattice automorphism is applied to the negation and the t-norm.

1 T-norm was introduced by Karl Menger in [19] to model distance in probabilistic metric
spaces. But Berthold Schweizer and Abe Sklar in [24] were who gave the axiomatic form
as it is known today. A deep study on t-norms can be found in the books [1,18].

2 Basic Logic in [15] is a positive propositional logic with two connectives: an implication and
a strong conjunction.
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The paper is organized as follows. In section 2 we provide a background on bounded
lattices. In sections 3 and 4 we provide the notions of negation and t-norm on bounded
lattices and some properties of these connectives. The section 5 is the main one of this
paper, and provides the way of obtaining negations from t-norms on bounded lattices,
as well as some properties. Finally, in section 6 some final remarks on the paper are
stated.

2 Bounded Lattices

In this subsection we define some useful concepts on bounded lattices which are based
in the papers [6,22]. If the reader needs a deeper text on lattice theory we suggest the
books [7,11,13].

Definition 1. Let ≤ be a partial order on a set L. The partial order set 〈L,≤〉 is a
lattice if for all a, b ∈ L the set {a, b} has a supremum and infimum (in L). If there are
two elements, 1 and 0, in L such that 0 ≤ x ≤ 1 for each x ∈ L, then 〈L,≤, 0, 1〉 is
called a bounded lattice.

Definition 2. Let ∧ and ∨ be two binary operations on a nonempty set L. Then the
algebraic structure 〈L,∨,∧〉 is a lattice if for each x, y, z ∈ L, the following properties
hold:

1. x ∧ y = y ∧ x and x ∨ y = y ∨ x;
2. (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∧ z);
3. x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x.

If there are elements 1 and 0 in L such that, for all x ∈ L, x ∧ 1 = x and x ∨ 0 = x,
then 〈L,∨,∧, 0, 1〉 is a bounded lattice.

Remark 1. It is well known that definitions 1 and 2 are equivalent. This allows us to use
both definitions indiscriminately. Therefore, according to necessity, we shall use one
or another. Indeed, if we consider a bounded lattice 〈L,≤, 0, 1〉 as a partially ordered
set, then the following binary operations: ∀ x, y ∈ L, x ∧ y = inf{x, y} and x ∨
y = sup{x, y} are such that 〈L,∨,∧, 0, 1〉 is a bounded lattice in algebraic sense.
Conversely, from a bounded lattice 〈L,∨,∧, 0, 1〉 in the algebraic sense, the partial
order ≤ on L defined by x ≤ y iff x ∨ y = y or, equivalently, x ≤ y iff x ∧ y = x, is
such that 〈L,≤, 0, 1〉 is a bounded lattice.

Definition 3. Let 〈L,≤L〉 be a lattice. L is said to be complete if any X ⊆ L has an
infimum and a supremum (in L).

Each complete lattice L is a bounded lattice, in fact 0L = inf L (or sup ∅) and 1L =
supL (or inf ∅).

Definition 4. Let 〈L,≤L, 0L, 1L〉 and 〈M,≤M , 0M , 1M 〉 be bounded lattices. A map-
ping f : L → M is said to be a lattice order-homomorphism, or just an ord-
homomorphism, if, for all x, y ∈ L, it follows that
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1. If x ≤L y then f(x) ≤M f(y);
2. f(0L) = 0M and f(1L) = 1M .

Remark 2. From now on, we assume that L and M are bounded lattices with the fol-
lowing structure: 〈L,≤L, 0L, 1L〉 and 〈M,≤M , 0M , 1M 〉, respectively.

Let f, g : Ln → L. If f(x1, . . . , xn) ≤L g(x1, . . . , xn) for each x1, . . . , xn ∈ L then
we write f ≤L g.

Definition 5. A mapping f : L −→ M is a lattice algebraic-homomorphism, or just
an alg-homomorphism, if, for all x, y ∈ L, we have

1. f(x ∧L y) = f(x) ∧M f(y);
2. f(x ∨L y) = f(x) ∨M f(y);
3. f(0L) = 0M and f(1L) = 1M .

Proposition 1. Every alg-homomorphism is an ord-homomorphism, but not every ord-
homomorphism is an alg-homomorphism.

Proof. See page 30 in [14]. ��

Definition 6. An ord-homomorphism (alg-homomorphism) f : L → M is an
ord-isomorphism (alg-isomorphism) if there exists an ord-homomorphism (alg-
homomorphism) f−1 : M → L such that f ◦ f−1 = IdM and f−1 ◦ f = IdL,
where IdM (IdL) is the identity function on M (L). f−1 is called the inverse of f .

Contrary to the case of ord-homomorphism and alg-homomorphism, both notions of
isomorphism agree, in the sense that f is an ord-isomorphism if and only if (iff) f is an
alg-isomorphism. Therefore, we will call simply isomorphism to both ord-isomorphisms
and alg-isomorphisms. The next proposition presents a well known characterization of
isomorphisms on bounded lattices.

Proposition 2. A function f : L→M is an isomorphism iff f is bijective and for each
x, y ∈ L, we have that

x ≤L y iff f(x) ≤M f(y) (1)

When L and M are the same lattice, we call isomorphisms of automorphisms, or L-
automorphisms when it is important to remark the lattice. Thus, the Proposition 2
guarantee that our notion of automorphism on a bounded lattice is equivalent with the
usual notion of automorphism, as for example in [4]. We will denote the set of all
automorphisms on a bounded lattice L by Aut(L). Since, clearly, IdL is an automor-
phism and automorphisms are closed under composition and inversion, then the algebra
〈Aut(L), ◦〉 is a group. In algebra, an important tool is the action of the groups on sets
[16]. In our case the action of the automorphism group transforms lattice functions in
other lattice functions.

Definition 7. Given a function f : Ln → L, the action of an L-autormorphism ρ over
f is the function fρ : Ln → L defined as in equation (2).

fρ(x1, . . . , xn) = ρ−1(f(ρ(x1), . . . , ρ(xn))) (2)

fρ is said to be conjugate of f .
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Notice that if f : Ln → L is conjugate of g : Ln → L and g of h : Ln → L then, as
automorphisms are closed under composition, f is conjugate of h; and if f is conjugate
of g then, because the inverse of an automorphism is also an automorphism, g is also
conjugate of f . Thus, the automorphism action on the set of n-ary functions on L (LLn

)
determines an equivalence relation on LLn

.

3 Negations on L

Fuzzy negations are generalizations of the classical negation ¬ and, as in classical log-
ics, they have been used to define other connectives from binary connectives. In this
subsection we present a natural extension of fuzzy negations by considering arbitrary
bounded lattices as possible truth values.

Definition 8. A mapping N : L → L is a negation on L or just an L-negation, if the
following properties are satisfied for each x, y ∈ L:

(N1) N(0L) = 1L and N(1L) = 0L and;
(N2) If x ≤L y then N(y) ≤L N(x).

Moreover, the L-negation N is strong if it also satisfies the involutive property, i.e.

(N3) N(N(x)) = x for each x ∈ L.

The L-negation N is called frontier if it satisfies the property:

(N4) N(x) ∈ {0L, 1L} iff x = 0L or x = 1L.

Observe that each strong L-negation is a frontier L-negation and that an L- negation is a
frontier L-negation iff it is both non-filling (N(x) = 1L iff x = 0L) and non-vanishing
(N(x) = 0L iff x = 1L) (see [3], pg. 14).

Proposition 3. Let N be a strong L-negation. Then

1. N is strict;
2. If N(x) ≤L N(y) then y ≤L x;
3. N is bijective.

Proof. 1. If y <L x then by (N2), N(x) ≤L N(y). Suppose that N(x) = N(y) then
N(N(x)) = N(N(y)) and so x = y, which is in contradiction with the premise.
Therefore, N(x) <L N(y).

2. If N(x) ≤L N(y) then, by (N2), N(N(y)) ≤L N(N(x)) and so y ≤L x.
3. Because N is strict then N is trivially injective. As for any y ∈ L, N(N(y)) = y,

then N is also surjective. So, N is bijective. ��
From this proposition, it follows that for each strong L-negation, x ‖L y iff N(x) ‖L

N(y).
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Proposition 4. The functions N⊥, N� : L→ L defined by

N⊥(x) =
{
1L if x = 0L
0L otherwise

and

N�(x) =
{
0L if x = 1L
1L otherwise

are L-negations, such that for any L-negation N , we have that N⊥ ≤L N ≤L N�.

Proof. Straightforward. ��

Proposition 5. Let N : L → L, ρ be an L-automorphism. For each i = 1, . . . , 4, N
satisfies the property (Ni) iff Nρ satisfies (Ni).

Proof. (⇒)

(N1) Nρ(0L) = ρ−1(N(ρ(0L))) = ρ−1(N(0L)) = ρ−1(1L) = 1L. Analogously,
Nρ(1L) = 0L;

(N2) If x ≤L y then ρ(x) ≤L ρ(y) and so N(ρ(y)) ≤L N(ρ(x)). Therefore, by
isotonicity of ρ−1, ρ−1(N(ρ(y)) ≤l ρ

−1(N(ρ(x)));
(N3) Nρ(Nρ(x)) = ρ−1(N(ρ(ρ−1(N(ρ(x))))))=ρ−1(N(N(ρ(x))))=ρ−1(ρ(x)) =

x; and
(N4) If Nρ(x) = 0L then, by eq. (2) and because ρ(0L) = 0L, N(ρ(x)) = 0L. So,

since N satisfies (N4), ρ(x) ∈ {0L, 1L} and therefore x = 0L or x = 1L.

(⇐) Straightforward from the previous item and the fact that for any function f : L→
L, (fρ)ρ

−1

= f . ��

Corollary 1. Let N : L → L be a mapping and ρ be an L-automorphism. N is an
(strong, frontier) L-negation iff Nρ is an (strong, frontier) L-negation.

Proof. Straightforward from Proposition 5. ��

4 T-norms on L

Classical conjunctions have been modeled in fuzzy logics via functions called t-norms.
In this subsection we present the natural generalization to consider arbitrary bounded
lattices as possible truth values.

Definition 9. (see [9]) A mapping T : L × L → L is a t-norm on L if the following
properties are satisfied for each x, y, z ∈ L:

(T1) T (x, y) = T (y, x);
(T2) T (x, T (y, z)) = T (T (x, y), z);
(T3) if y ≤L z then T (x, y) ≤L T (x, z); and
(T4) T (x, 1L) = x.

T is positive if for each x, y ∈ L it satisfies the property
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(T5) T (x, y) = 0L iff x = 0L or y = 0L.

An x ∈ L is an idempotent element of T if T (x, x) = x.

An element x ∈ L − {0L} such that T (x, y) = 0L for some y ∈ L − {0L} is called a
zero divisor of T . Clearly, T is positive iff T has no zero divisors.

The next lemma and proposition were stated in [4], but the paper not includes the
proof, perhaps because their simplicity.

Lemma 1. Let T be a t-norm on L. Then for each x, y ∈ L, T (x, y) ≤L x ∧L y.

Proof. By (T3) and (T4), T (x, y) ≤L T (x, 1L) = x and T (x, y) ≤L T (1L, y) = y.
Therefore, T (x, y) ≤L x ∧L y. ��
Proposition 6. Let T be a t-norm on L. Then T⊥ ≤L T ≤L T�, where

T�(x, y) = x ∧L y and T⊥(x, y) =
{

x ∧L y if x = 1L or y = 1L
0L otherwise

. (3)

Proof. Clearly, T⊥ and T� are t-norms on L. By Lemma 1, T ≤L T� and trivially,
T⊥ ≤L T . ��
Proposition 7. Let T be a t-norm on L. Each x ∈ L is an idempotent element of T iff
T = T�.

Proof. (⇒) Let x, y ∈ L. Then by Lemma 1, T (x, y) ≤l x∧L y and since each element
of L is idempotent for T , then (*) T (x, y) ≤L T (x ∧L y, x ∧L y). On the other hand,
since x∧L y ≤L x and x∧L y ≤L y, then by (T3), T (x∧L y, x∧L y) ≤L T (x, y). So,
by (*), T (x, y) = T (x ∧L y, x ∧L y) = x ∧L y, i.e. T = T�.

(⇐) Straightforward from equation (3). ��
Proposition 8. Let T : L × L → L, ρ be an L-automorphism. For each i = 1, . . . , 5,
T satisfies the property (Ti) iff T ρ satisfies (Ti).

Proof. (⇒) Let x, y, z ∈ L, then

(T1) Straightforward;
(T2) T ρ(x, T ρ(y, z)) = ρ−1(T (ρ(x), ρ(ρ−1(T (ρ(y), ρ(z)))))) by eq. (2)

= ρ−1(T (ρ(x), T (ρ(y), ρ(z))))
= ρ−1(T (T (ρ(x), ρ(y)), ρ(z))) by (T2)
= ρ−1(T (ρ(ρ−1(T (ρ(x), ρ(y)))), ρ(z)))
= T ρ(, T ρ(x, y), z) by eq. (2)

(T3) If y ≤L z then ρ(y) ≤L ρ(z) and so, by (T3), T (ρ(x), ρ(y)) ≤L T (ρ(x), ρ(z)).
Therefore,ρ−1(T (ρ(x), ρ(y))) ≤L ρ−1(T (ρ(x), ρ(z))), i.e.T ρ(x, y) ≤L T ρ(x, z);

(T4) T ρ(x, 1L) = ρ−1(T (ρ(x), ρ(1L))) = ρ−1(T (ρ(x), 1L)) = ρ−1(ρ(x)) = x; and
(T5) T ρ(x, y) = 0L iff ρ−1(T (ρ(x), ρ(y))) = 0L iff T (ρ(x), ρ(y)) = 0L iff, by (T5),

ρ(x) = 0L or ρ(y) = 0L iff x = 0L or y = 0L.

(⇐) Straightforward from the previous item and the fact that for any function f : Ln →
L, (fρ)ρ

−1

= f . ��
Corollary 2. Let T : L × L → L be a mapping and ρ be an L-automorphism. T is a
t-norm on L iff T ρ is a t-norm on L.

Proof. Straightforward from Proposition 8. ��
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5 Negation on L Obtained from t-norms on L

In [18,21] it was observed that it is possible to obtain, in a canonical way, a fuzzy nega-
tion NT from a t-conorm T . This negation is called natural negation of T or negation
induced by T . In the most general case, where we have a t-conorm on a bounded lattice
L, it is not always possible to obtain a fuzzy negation, because the construction of NT

is based in the supremum of, possibly, infinite sets.

Proposition 9. Let L be a complete lattice and T be a t-norm on L. Then the function
NT : L→ L defined by

NT (x) = sup{z ∈ L : T (x, z) = 0L} (4)

is an L-negation.

Proof. (N1) NT (1L) = sup{z ∈ L : T (1L, z) = 0L} = sup{0L} = 0L and
NT (0L) = sup{z ∈ L : T (0L, z) = 1L} = supL = 1L;

(N2) If x ≤L y then for any z ∈ L, T (x, z) ≤L T (y, z) and therefore, if T (y, z) = 0L
then T (x, z) = 0L. So, {z ∈ L : T (y, z) = 0L} ⊆ {z ∈ L : T (x, z) = 0L}.
Hence, NT (y) = sup{z ∈ L : T (y, z) = 0L} ≤L sup{z ∈ L : T (x, z) = 0L} =
NT (x). ��

Theorem 1. Let T be a t-norm on L. If T is positive then NT = N⊥.

Proof. If x �= 0L and z ∈ L then, by (T5), T (x, z) = 0L iff z = 0L. So, by eq. (4),
NT (x) = sup{0L} = 0L. Therefore, NT = N⊥. ��

Theorem 2. Let T be a t-norm on L. If NT is a frontier negation then each x ∈
L−{0L} is a zero divisor of T .

Proof. If x �= 1L, then, as NT is frontier, NT (x) �= 0L and so sup{z ∈ L : T (x, z) =
0L} �= 0L. So, {z ∈ L : T (x, z) = 0L} �= {0L}. Thus, since T (x, 0L) = 0L,
{0L} ⊂ {z ∈ L : T (x, z) = 0L}. Therefore, there exists z ∈ L−{0L} such that
T (x, z) = 0L. Hence, x is a zero divisor of T . ��

Theorem 3. Let T be a t-norm on L and ρ be an L-automorphism. Then Nρ
T = NTρ .

Proof. Let x ∈ L, then Nρ
T (x)=ρ−1(NT (ρ(x)))=ρ−1(sup{z∈L : T (ρ(x), z)=0L})=

ρ−1(sup{z∈L : T ρ(x, ρ−1(z))=0L})= sup{ρ−1(z) ∈ L : T ρ(x, ρ−1(z))=0L} =
sup{z∈L : T ρ(x, z) = 0L}=NTρ(x). ��

6 Final Remarks

In this paper, we have generalized the notions and some properties of fuzzy negations
and t-norms for negations and t-norms valued in arbitrary bounded lattices, as well
as actions of automorphisms on the same lattice. In particular, we have extended the
way of constructing fuzzy negations from t-norms for this case and we have proved
that these constructions are preserved under the action of L-automorphisms. Finally,
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we have also introduced the new class of frontier L-negations and proved that if an
L-negation obtained from a t-norm is frontier then each element in the lattice is a zero
divisor of the t-norm.

Each one of the other extensions of fuzzy logics (e.g Interval-valued, Atanassov
Intuitionistic, fuzzy multisets, etc.), can also be naturally generalized by considering an
arbitrary lattice instead of 〈[0, 1],≤〉. For example, as made in [6,23] with the interval-
valued extension. Thus, as a future work we intend to explore how the negation obtained
from a t-norm is related with these constructions.
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Abstract. Aggregation of continuous logic variables or degrees of fuzzy mem-
bership using soft computing aggregation models assumes the availability of all 
input data. Unfortunately, in many applications some inputs are missing. In this 
paper we propose an aggregation process that tolerates missing data. The ag-
gregation process is implemented in the context of LSP evaluation criteria. Us-
ing the proposed method the aggregators automatically reconfigure themselves 
so that only the available data are aggregated. The corresponding evaluation  
decisions can be based on incomplete data. 

Keywords: Aggregation, LSP method, missing data, missingness-tolerant  
aggregation, null values, penalty functions.  

1 Introduction 

Flexible query answering systems increasingly use soft computing evaluation criteria 
for comparison and ranking of alternatives. Each alternative is described by n 
attributes that are used as inputs for various user evaluation criteria. Users specify 
their requirements either by creating a specific criterion function, or by editing para-
meters of a predefined criterion function. When the evaluation criterion is defined, the 
next step in the evaluation process consists of collecting input data from various data-
bases accessible over the Internet. The collected data are then used to evaluate and 
compare all available alternatives, and to generate a sorted list according to decreas-
ing level of satisfaction of user requirements.  

Traditional soft computing criterion functions can be used only if all input 
attributes are available. Unfortunately, the process of collecting data from various 
Internet sources frequently yields incomplete data where one or more attributes are 
missing. In such cases, incomplete alternatives must be omitted even in cases where 
those attributes that are available look very attractive. 

A typical example of this process is encountered in flexible query answering sys-
tems used in on-line real estate. Such systems provide information about homes that 
are offered for sale. The user specifies a criterion for home evaluation and expects to 
get a list of suitable homes starting with the best alternative. In a typical case, the real 
estate web site is providing up to 30 individual home attributes [1]. These attributes 
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describe the internal properties of home. However, homebuyers are also interested in 
knowing the quality of neighborhood surrounding the home location, and these data 
must come from sources different from the real estate companies. Consequently, the 
attributes collected from various sources, and that increases the probability of incom-
plete data. If a very attractive home, located in a very attractive location, misses a 
single attribute (e.g. information about the availability of public paid parking in a 
relative vicinity of home), such a home cannot be directly evaluated using a soft com-
puting criterion function and offered to the user. Consequently, there is clear practical 
interest to develop soft computing criteria that can tolerate missing data. 

The problem of missing data is ubiquitous in statistical analysis [2-5]. Statisticians 
usually differentiate three types of “missingness.” If the attributes 1,..., na a  are used 

to compute an indicator 1( ,..., )nx G a a=  then the probability ip  that an attribute ia  

is missing can be constant and independent of the values of 1,..., na a . Such an 

attribute is missing completely at random (denoted MCAR). If ip  does not depend on 

ia  but it can depend on ,ka k i≠ , then this form of missingness is missing at random 

(denoted MAR). If ip  is a function of ia , then this case is classified as missing not at 

random (MNAR). The MNAR cases usually occur when data are intentionally omit-
ted (in self-administered surveys these are regularly inconvenient values that respon-
dents refuse to disclose). For example, instead of disclosing that a home does not have 
a breakfast room/area, or a laundry, a home seller may decide to leave those attributes 
unknown (without a value). An example of MAR is the case where the probability of 
missing data about the type of floor is value-independent, i.e. the same for all types of 
floor, but it depends on the type of home, and can be different for a condo, town-
house, duplex, or a single family house. 

In statistical analysis the treatments of missing data include the deletion of all in-
complete data sets, or substitution of missing data with some appropriate substitutes 
(e.g. mean substitution, regression substitution, and other techniques [2,3]). The goal 
of statistical techniques is to provide best estimates of statistical parameters of the 
population based on incomplete sample data. The goal of suitability aggregation is 
different and consists of evaluating an incompletely specified object of MNAR type 
generating a realistic estimate of its overall suitability. 

The problem of missing data is also present in database systems [6,7] and in related 
fuzzy decision models [8,9]. In database systems missing (or unknown) data are clas-
sified as missing and applicable (A), and missing and inapplicable (I) [6,9]. So, each 
atomic relation of a tuple can have four distinct values: known (true or false) and 
unknown (A, or I). Then, a four-valued logic can be used to manipulate missing in-
formation in a way that enables search and processing of incomplete tuples. If the 
cases A and I are not differentiated, then they are considered a null value and a three-
valued logic is used to deal with incomplete tuples. 

In this paper we propose a missingness-tolerant aggregation that is applicable to 
soft computing criteria based on evaluation logic [10], and the LSP evaluation method 
[11]. In the context of the LSP method we investigate a process of evaluation of  
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`attributes and aggregation of suitability in cases where some of input attributes are 
missing (they are unknown, but applicable, and MNAR). Such context is different 
from similar problems in statistical analysis or in the search of a relational database. 
The corresponding methodology is presented in subsequent sections. 

2 The Structure of LSP Criterion Functions 

LSP criterion functions are mappings of the form [0,1]nR I→ =  that have a standar-

dized structure shown in Fig. 1. The criterion function is organized in a way that per-
mits systematic expression of user requirements. Input attributes 1,..., na a  are either 

numerical values (e.g. the area of home) or numerically coded discrete values of 
attributes (e.g. numerical codes for various types of roof or floor). Each attribute is 
separately evaluated using an elementary criterion function that maps the values of 
attribute to the degree of truth (or, alternatively, the degree of fuzzy membership) 

: , 1,...,ig R I i n→ = . Elementary criteria reflect user needs regarding each individu-

al attribute. In the evaluation logic interpretation, the degrees of truth 1,..., nx x are 

called elementary preferences and they denote the degrees of suitability of attributes 

1,..., na a  from the standpoint of satisfying user requirements. 

 

 

Fig. 1. A general LSP model of evaluation criterion 

The final phase of the LSP method is a logic aggregation of the degrees of truth 

1,..., nx x  to generate the overall preference x that reflects the overall suitability of an 

evaluated object [11]. The logic aggregation function : nL I I→  is organized as a 
tree-like structure based on superposition of basic evaluation logic aggregators: partial 
conjunction, partial disjunction, neutrality, partial absorption, etc. [10-13]. Therefore, 
the LSP criterion determines the overall suitability 1( ,..., )nx G a a= and for this calcu-

lation it is necessary to know the values of all attributes. If some of the attributes are 
missing, then there are only two options: either we exclude the incomplete object, or 
(as shown below) we substitute null values with appropriate substitutes.  
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3 Penalty-Controlled Numerical Coding of Missing Data 

Let us first note that in almost all cases the values of attributes are nonnegative. In 
very rare cases (e.g. if evaluation includes temperatures or elevation with respect to 
the see level) the values of attributes can be negative. However, we can claim with 
certainty that the values of attributes are never less than some large negative threshold 

value T (e.g. 3010T = − ) . Therefore, in regular cases , 1,...,ia T i n> = . For incom-

plete sets of attributes the values , {1,..., }ia T i n≤ ∈  can be used for numerical cod-

ing of missing input data. 
Elementary criteria ( ), 1,...,i ig a i n=  can be arbitrary functions. The most frequent 

canonical forms are the following: 

• Preferred large values (unacceptable if  ia A≤ , and perfect if iA B a< ≤ ): 

   λ( ) max(0,min(1, ( ) / ( ))), {1,..., }i ia a A B A i n= − − ∈  

• Preferred small values (perfect if ia C≤ , and unacceptable if  iC D a< ≤ ): 

   σ( ) max(0,min(1, ( ) / ( ))), {1,..., }i ia D a D C i n= − − ∈  

• Preferred range of values (assuming A B C D< < < , perfect if [ , ]ia B C∈ , 

and unacceptable if  ia A≤  or ia D≥ ): 

   ρ( ) λ( ) σ( ) 1, {1,..., }i i ia a a i n= + − ∈  

For simplicity, let us assume that the elementary criteria are based on one of these 
functions: ( ) φ( ) {λ( ),σ( ),ρ( )}i i i i i ig a a a a a= ∈ (generally, φ : R I→ ). 

If , {1,..., }ia i n∈  is missing, we can differentiate two cases: the case where there 

is no reason for penalty, and the case where there is a reason for penalty. The cases 
where it is justifiable to apply a penalty for missing data are those where we have 
reasons to believe that if ia were known, the overall suitability would be less than the 

suitability computed using reduced criterion that excludes ia . In other words, these are 

cases where ia  is intentionally missing because it has an inconvenient value. Let 

iP I∈  denote a desired penalty for this specific attribute (frequently, it is possible to 

use the same penalty for all attributes). Cases without penalty are characterized using 
0iP = . The effect of maximum penalty 1iP =  should be the same as the effect of 

( ) 0i ig a = . Consequently, the elementary criteria can express missing data as fol-

lows: 

 
1 ,  (missing data)

( ) ; now,  : [ 1,1]
φ( ),  (regular data)

i i
i i i i

i i

P a T
x g a g R

a a T

− + ≤
= = → − >

. 

This definition generates the following characteristic values of preference/suitability: 
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1 Missing data without penalty ( 0)

1 0 Missing data with a degree of penalty 1 ; (0 1)

0 Missing data with max. penalty ( 1), or no satisfaction

0 1 Partial satisfaction of user req

i i

i i i i

i i

i

x P

x P x P

x P

x

= − =
− < < = + < <
= =
< < uirements

1 Total (perfect) satisfaction of user requirementsix =

 

Therefore, elementary attribute criteria transmit information about missing data as 
negative or zero values of preference/suitability. The next step is to organize the ag-
gregation process so that it tolerates negative data (data in the range [-1,1]). 

4 Missingness-Tolerant Aggregation 

Aggregation of preference can be based on a variety or aggregators. In this paper we 
assume that the essential aggregator (the generalized conjunction/disjunction [12]) is 
based on quasi-arithmetic means [14-19]. Let a preference aggregation function of m 

variables be 1( ,..., ,..., )m k mz A x x x= , and let kx  be an attribute whose value is 

,kx e e I= ∈ , yielding the aggregated preference 1( ,..., ,..., )e m mz A x e x= . If kx  

is missing then we must use the reduced criterion 1 1 1 1( ,..., , ,..., )m k k mA x x x x− − +  

and for some values of e we can get the unchanged result: 

1 1 1 1 1( ,..., , ,..., ) ( ,..., ,..., )m k k m m m eA x x x x A x e x z− − + = =  

If a unique constant value of e satisfies the above relation for any {1,..., }k n∈  and 

for any input values, then it is called the extended neutral element [17]. Such element 
should substitute all missing data. 

Unfortunately, in evaluation logic the extended neutral element does not exist. 
However, for all aggregators based on quasi-arithmetic means we can select 

1 1 1 1( ,..., , ,..., )m k k me A x x x x− − +=  and the following holds: 

1 1 1 1

1 1 1 1 1 1 1

( ,..., , ,..., )

( ,..., , ( ,..., , ,..., ), ,..., )
m k k n

m k m k k m k m

A x x x x

A x x A x x x x x x
− − +

− − − + +

=
 

This relationship has the following intuitive interpretation: if an input is missing then 
the most reasonable assumption is that its value (in the sense of preference or suitabil-
ity) is in concordance with the values of remaining attributes in the group. This prop-
erty can be called the concordance principle. In other words, if an attribute has a val-
ue that is in concordance with the aggregated value of remaining attributes in a group, 
then such an attribute is redundant, it does not affect the aggregated preference, and it 
can be omitted without consequences. 

The concordance principle shows that if kx  is missing then there are two options. 

The first option is to use the original aggregator 1( ,..., ,..., )m k mA x x x  where the 

missing value is substituted by the concordance value 

1 1 1 1( ,..., , ,..., )k k m k k mx C A x x x x− − += =  and the result of aggregation will again 
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be 1 1 1 1( ,..., , ,..., )m k k mA x x x x− − + . Clearly, the second option, which is simpler and 

more natural, is the “use what you have” option which omits the missing attribute and 

uses directly the reduced aggregator 1 1 1 1( ,..., , ,..., )m k k mA x x x x− − + . 

The concordance principle is related to associativity properties studied in [15,17-
19]. In the case of aggregation based on quasi-arithmetic means with a strictly mono-
tonic generator function : { }F I R→ ∪ ±∞  a simple proof of the concordance prin-

ciple is the following: 

1
1

1 1

( ,..., ,..., ) ( ) , 0 1, 1,..., , 1
m m

m k m i i i i
i i

A x x x F W F x W i m W−

= =

 
 = < < = =
 
 
 

Then, we insert in this aggregator the following value of kx :  

1
1 1 1 1

1 1

1
( ,..., , ,..., ) ( ) , 1

1

m m

k m k k m i i k i
k i i

i k i k

x A x x x x F W F x W W
W

−
− − +

= =
≠ ≠

 
 
 = = − =
− 

 
 

   

The proof can be completed as follows: 

1
1 1 1 1 1 1 1

1

( ,..., , ( ,..., , ,..., ), ,..., ) ( )
m

m k m k k m k m i i
i

A x x A x x x x x x F W F x−
− − − + +

=

 
 =
 
 
      

1
1

1 1 1

( ) ( ) ( )
1

k m m
k

i i i i i i
ki i i k

i k

W
F W F x W F x W F x

W

−
−

= = = +
≠

 
 
 = + +

− 
 
 

    

1

1

1 ( )
1

m
k

i i
k i

i k

W
F W F x

W
−

=
≠

 
  
 = + −   
 

 = 1

1

1
( )

1

m

i i
k i

i k

F W F x
W

−

=
≠

 
 
 
− 

 
 

  

1 1 1 1( ,..., , ,..., )m k k mA x x x x− − +=  

 

For example, if we have a simple arithmetic mean 1 2 30.5 0.3 0.2z x x x= + +  and if 

1x  is missing, then we should use the reduced aggregator 2 30.6 0.4z x x= + , or the 

original aggregator where we insert the concordance value 1 2 30.6 0.4x x x= +  to 

obtain the same result of aggregation: 2 3 2 30.5(0.6 0.4 ) 0.3 0.2z x x x x= + + +  

2 30.6 0.4x x= + . 

The concordance principle in the simplest case of two variables 2 1 2( , )A x x  means 

that if one variable is missing (e.g. 2x ) then the preference is computed as 
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2 1 1 1( , )A x x x= , i.e. the resulting value is the value of the remaining variable. In the 

case of three variables, 3 1 2 3( , , )A x x x , the missing variable (e.g. 3x ) should be subs-

tituted by the concordance value 2 1 2( , )A x x  yielding 3 1 2 2 1 2( , , ( , ))A x x A x x =  

2 1 2( , )A x x , and so forth. 

In the case where two variables ( jx and kx ) are missing the presented technique 

can be expanded in an analogous way, as follows: 

2 1 1 1 1 1

1

1 1
{ , } { , }

1 1 2 1 1 1 1 1 1

1 2

( ,..., , ,..., , ,..., )

1
( ) , 1

1

Then,

( ,..., , ( ,..., , ,..., , ,..., ), ,...

..., ,

j k m j j k k m

m m

i i j k i
j k i i

i j k i j k

m j m j j k k m j

k m

x x A x x x x x x

F W F x W W W
W W

A x x A x x x x x x x

x A

− − + − +

−

= =
∉ ∉

− − − + − + +

− −

= =

 
 
 = − − =
− − 

 
 

 

1 1 1 1 1 1

1

1

1

1 1 1
{ , } { , } { , }

1

( ,..., , ,..., , ,..., ), ,..., )

( )

( ) ( ) ( )
1 1

1 (
1

j j k k m k m

m

i i
i

m m m
j k

i i i i i i
j k j ki i i

i j k i j k i j k

j k
i

j k

x x x x x x x x

F W F x

W W
F W F x W F x W F x

W W W W

W W
F W F x

W W

− + − + +

−

=

−

= = =
∉ ∉ ∉

−

 
 =
 
 
 
 
 = + +

− − − − 
 
 

 +
= +  − − 



  

1

1 1
{ , } { , }

2 1 1 1 1 1

1
) ( )

1

( ,..., , ,..., , ,..., )

m m

i i i
j ki i

i j k i j k

m j j k k m

F W F x
W W

A x x x x x x

−

= =
∉ ∉

− − + − +

   
   
   =

− −   
   
   

=

 
     

In a general case we can have a set of μ missing inputs { }, θ {1,..., }ix i m∈ ⊂ , 

μ | θ | {1,..., 1}m= ∈ − . In such a case we first compute the aggregate of existing 

(known) inputs (this is a direct generalization of the previous cases μ 1=  and μ 2= ): 

1
μθ θ

θ θ θ
θ

1
(... ...) ( ) , 1

1

m m

k m i i i i ik i
i i i i

i

x A x F W F x W W
W

−
−∈ ∉

∉ ∈ ∉
∈

 
 

= = − = 
−  
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Then, this value can be inserted as a substitute for all missing inputs using a general 
substitution relation for 0 μ m< < , as follows: 

μ μθ θ θ θ θ(... ... ...) (... ... (... ...)...) (... ...)m i k m i m i m ii k i i i
A x x A x A x A x− −∉ ∈ ∉ ∉ ∉= =  

The presented technique as applicable in all cases where we use the zero penalty. In 
cases where we want to have nonzero penalty, we have 

θ θ

μ μθ θ θθ

(... ... ...)

(... ...[(1 ) (... ...)] ...) (... ...) ,

0 1, θ, 0 μ .

m i ki k

m i k m i m ii i ik

k

A x x

A x P A x A x

P k m

∉ ∈

− −∉ ∉ ∉∈
= − ≤

≤ ≤ ∈ < <

 

In the case of partial conjunction, partial disjunction, and neutrality, if 0 μ m< <  

then we have 1 0, θi ix P i= − ≤ ∈ ≠∅  and 0, θix i≥ ∉ ; note that the cases of 

maximum penalty ( 1)iP =  and no value ( 0)ix =  are equivalent. Thus, the penalty-

controlled missingness-tolerant aggregator is defined as follows: 

1

μθ θ θ

1

( ,..., ), 0 1, 1,..., , μ 0, θ

(... ...[| | (... ...)] ...), 0 μ

(| |,...,| |), 1 0, 1,..., , μ

m m i

m i k m ii i k

m m i

A x x x i m

z A x x A x m

A x x x i m m

−∉ ∉ ∈

 ≤ ≤ = = =∅
= < <

− − ≤ < = =

 

Using the quasi-arithmetic mean 1
1 1( ( ) ... ( ))m mz F W F x W F x−= + +  we can now 

perform missingness-tolerant aggregation based on the following algorithm: 

1. Using preferences 1,..., , [ 1,1], 1,...,m ix x x i m∈ − =  generated by penalty-

controlled elementary criteria  compute the sum of weights of known attributes: 
 

0
, 0 1

i
sum i sumx

W W W
≥

= ≤ ≤  

2. If  1sumW = , return 1
1 1( ( ) ... ( ))m mz F W F x W F x−= + +  (no missing data). 

3. If 0sumW = , return ( )1
1 (| |)m

i iiz F W F x−
== −  , i.e. a negative average negated 

penalty ( | | 1i x xx P P= − = ¬ ), which is a non-positive value that will propagate 

in the subsequent stage of aggregation. 

4. Compute the reduced aggregated preference ( )1 1
0

( )
i

sum i ix
x F W W F x− −

≥=    

5. If all penalties of missing data are zero, then return the aggregated preference 

z x= . Otherwise return 1

0 0

( ) (| | )

i i

i i i i
x x

z F W F x W F x x−

≥ <

 
 = +
 
 
  . 
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Generally, the value of penalty can be different for each input attribute. More often 
than not, it is convenient to use a fixed penalty ,iP P i= ∀ . Penalties propagate 

(coded as negative preferences) through the aggregation structure and disappear when 
combined with regular positive preference scores. 

Let us now investigate the missingness-tolerant aggregation in the case of conjunc-
tive ( ) and disjunctive ( ) partial absorption functions [13,10]. The conjunctive par-

tial absorption (CPA) is a combination of a mandatory input x and a desired/optional 
input y. The mandatory input x must be (at least partially) satisfied. Assuming 0x > , 
the optional input (y) can partially compensate an insufficient level of x: 

Δ( )x y x x y= ∇  (Δ denotes a full conjunction or a hard partial conjunction and∇
denotes the total disjunction, i.e. any form of disjunction or the arithmetic mean; we 

assume that Δ and ∇ are modeled using quasi-arithmetic means). Applying strictly 
the missingness-tolerant algorithm to the CPA aggregator we have: 

Δ( ), 0, 0

Δ[ | | ], 0, 0

[| | (| | )]Δ (| | ), 0, 0

| |Δ (| | | |), 0, 0

x x y x y

x x y x x y
x y

x x y y x y y x y

x x y x y

 ∇ ≥ ≥

 ∇ ≥ <= 

∇ ∇ < ≥

− ∇ < <






 



 

If the optional input y is missing ( 0, 0x y≥ < ) the nonexistent value is substituted 

by | | (1 )yy x P x= − , where yP  denotes the desired y-penalty. In the case of maximum 

penalty ( 1yP = ) the aggregation is equivalent to zero optional input, and in the case 

without penalty we have x y x= . If the mandatory input x is missing 

( 0, 0)x y< ≥  then in the case of maximum penalty we have 0x y = . In the case 

of zero penalty, however, we have x y y= , which may sometimes be a questiona-

ble result. If we use penalty 0xP >  then x y y< . If both inputs are missing, the 

output is a partial absorption of negated input penalties. E.g., for partial absorption 
based on the arithmetic and harmonic means, if 1 | | 1 | | 1 / 2x yP x P y= − = = − = , 

( ) / 2x y x y∇ = +  and Δ 2 / ( )x y xy x y= + , then we have the following CPA: 

2 ( ) / (3 ), 0, 0

2 (1 | |) / (3 | |) 6 / 7, 0,

| | 0.5 , , 0

2 ( ) / (3 ) 0.5, ,

x x y x y x y

x y y x x y
x y

x y y x y

x x y x y x y

+ + ≥ ≥
 + + = ≥ = −=  = = − ≥
 + + = − = − = −





 

 

The disjunctive partial absorption is a combination of a sufficient input x and a de-
sired/optional input y. The sufficient input x can fully compensate the lack of optional 
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input y. The desired input can partially (and frequently significantly) compensate the 

lack of sufficient input: ( )x y x x y= ∇ Δ  (∇  denotes a full disjunction or a hard 

partial disjunction andΔ  denotes the total conjunction, i.e. any form of conjunction or 
the arithmetic mean). The missingness-tolerant disjunctive partial absorption aggrega-
tor can be organized in the same way as in the case of conjunctive partial absorption. 

5 Conclusions 

In many LSP evaluation problems input data can be missing, and it is necessary to 
perform evaluation with incomplete input data. In such cases we must perform eval-
uation using the reduced set containing only the available input attributes. However, if 
incomplete input data reflect an intention to hide inconvenient inputs, it is appropriate 
to use penalty to discourage the practice of hiding disadvantages, and to compute 
overall suitability that is more realistic than the result obtained without penalty. 
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3 ERIC, Université de Lyon, France
agnes.rico@univ-lyon1.fr

4 Bolyai Institute, University of Szeged, Aradi vértanúk tere 1,
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Abstract. For a distributive lattice L, we consider the problem of inter-
polating functions f : D → L defined on a finite set D ⊆ Ln, by means
of lattice polynomial functions of L. Two instances of this problem have
already been solved.

In the case when L is a distributive lattice with least and greatest
elements 0 and 1, Goodstein proved that a function f : {0, 1}n → L can
be interpolated by a lattice polynomial function p : Ln → L if and only
if f is monotone; in this case, the interpolating polynomial p was shown
to be unique.

The interpolation problem was also considered in the more general
setting where L is a distributive lattice, not necessarily bounded, and
where D ⊆ Ln is allowed to range over cuboids D = {a1, b1} × · · · ×
{an, bn} with ai, bi ∈ L and ai < bi. In this case, the class of such partial
functions that can be interpolated by lattice polynomial functions was
completely described.

In this paper, we extend these results by completely characterizing the
class of lattice functions that can be interpolated by polynomial functions
on arbitrary finite subsets D ⊆ Ln. As in the latter setting, interpolating
polynomials are not necessarily unique. We provide explicit descriptions
of all possible lattice polynomial functions that interpolate these lattice
functions, when such an interpolation is available.

1 Introduction and Motivation

The importance of aggregation functions is made apparent by their wide use, not
only in pure mathematics (e.g., in the theory of functional equations, measure
and integration theory), but also in several applied fields such as operations
research, computer and information sciences, economics and social sciences, as
well as in other experimental areas of physics and natural sciences. In particular,
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the use of aggregation functions has attracted much attention in decision theory
for it provides an elegant and powerful formalism to model preference [1,6] (for
general background on aggregation functions, see [7]).

In the qualitative approach to decision making, Sugeno integral [14,15] re-
mains one of the most noteworthy aggregation functions, and this is partially
due to the fact that it provides a meaningful way to fuse or merge criteria within
universes where essentially no structure, other than order, is assumed (unlike
other classical aggregation functions, such as weighted arithmetic means, which
require a rich arithmetical structure).

Even though primarily defined over real intervals, Sugeno integrals can be
extended to wider domains (not only to arbitrary linearly ordered sets or chains,
but also to bounded distributive lattices with bottom and top elements 0 and 1,
respectively) via the notion of lattice polynomial function. Essentially, a lattice
polynomial function is a combination of variables and constants using the lattice
operations ∧ and ∨. As it turned out (see e.g. [2,9]), Sugeno integrals coincide
exactly with those lattice polynomial functions that are idempotent (that is,
which preserve constant tuples); in fact, it can be shown that the preservation
of 0 and 1 suffices.

Apart from their theoretical interest, the consideration of Sugeno integrals on
distributive lattices (rather than simply on scales or linearly ordered sets) or on
finite Boolean algebras [10] is both useful and natural since scores for different
criteria may be incomparable (for instance, when “ignorance” and “indifference”
are possible scores).

Now in many real-life situations, we are faced with the problem of finding an
aggregation operation based on scarce data that are not sufficient to determine
a unique function. This fact gives rise to an interesting problem that appears in
complete analogy with the classical theory of real polynomial functions, namely,
that of interpolation. In this paper we are interested on aggregation functions
defined over lattices and thus we consider the problem of interpolating lattice
functions f : Ln → L on finite sets D ⊆ Ln by means of Sugeno integrals or,
more generally, by lattice polynomial functions.

The interpolation problem also has a learning flavor. The problem of covering
a set of data by a set of Sugeno integrals, has been considered in the linearly
ordered case [11,13]. More precisely, the condition of existence of a Sugeno in-
tegral interpolating a set of data has been laid bare, and the set of solutions
(when non-empty) has been characterized as being upper and lower bounded
by particular Sugeno integrals (easy to build from data). This process has been
shown to be closely related to the version space approach in learning [12]. The
theorems presented in this paper generalize these results to the more general
case of partially ordered scales, and also open the possibility of the elicitation
of families of generalized Sugeno integrals from, e.g., pieces of data where local
and global evaluations may be imprecisely known.

The paper is organized as follows. In Section 2 we recall basic notions and
terminology, provide the preliminary results needed throughout the paper, and
address the interpolation problem we shall be dealing with. As it will become
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clear, a solution to this problem (when it exists) is not necessarily unique. Thus
we present in Section 3 necessary and sufficient conditions for the existence of
such a solution and, as a by-product, describe all possible solutions. Moreover, by
confining ourselves to linearly ordered sets, we derive previous results obtained
in this restricted setting. In Section 4 we address problems left open, and in
Section 5 we discuss possible applications of our results.

2 Preliminaries

Throughout this paper let L be a distributive lattice. Recall that a polynomial
function over L is a mapping p : Ln → L that can be expressed as a combination
of the lattice operations ∧ and ∨, projections and constants.

In the case when L is bounded, i.e., with a least and a greatest element
(which we denote by 0 and 1, respectively), Goodstein [5] showed that polynomial
functions p : Ln → L coincide exactly with those lattice functions that can be
represented in disjunctive normal form (DNF for short) by

p (x) =
∨

I⊆[n]

(
cI ∧

∧
i∈I

xi

)
, where x = (x1, . . . , xn) ∈ Ln. 1 (1)

Furthermore, by taking c∗I :=
∨

J⊆I cJ , we also have

p (x) =
∨

I⊆[n]

(
c∗I ∧

∧
i∈I

xi

)
,

and thus we can assume that the coefficients cI are monotone in the sense that
cI ≤ cJ whenever I ⊆ J . Under this monotonicity assumption we can recover
the coefficients of the DNF from certain values of the polynomial function p. To
this extent, for each I ⊆ [n], let 1I be the tuple in Ln whose i-th component is
1 if i ∈ I and 0 if i /∈ I. In this way, p (1I) = cI .

These facts are reassembled in the following theorem, which asserts in partic-
ular that polynomial functions are uniquely determined by their restrictions to
the hypercube {0, 1}n.

Theorem 1 (Goodstein [5]). Let L be a bounded distributive lattice, and let
f be a function f : {0, 1}n → L. There exists a polynomial function p over L
such that p|{0,1}n = f if and only if f is monotone. In this case p is uniquely
determined, and can be represented by the DNF

p (x) =
∨

I⊆[n]

(
f (1I) ∧

∧
i∈I

xi

)
.

Goodstein’s theorem can be seen as a solution to an instance of the Interpolation
Problem (see below), namely, interpolation on the hypercube D = {0, 1}n: a
1 As usual, the empty meet has value 1 and, dually, the empty join has value 0.
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function f : {0, 1}n → L can be interpolated by a polynomial function p : Ln →
L if and only if f is monotone, and in this case p is unique.

This result was generalized in [3] by allowing L to be an arbitrary (possibly
unbounded) distributive lattice and by considering functions f : D → L, where
D = {a1, b1} × · · · × {an, bn} with ai, bi ∈ L and ai < bi, for each i ∈ [n]. Let
êI be the “characteristic vector” of I ⊆ [n] (i.e., the tuple êI ∈ Ln whose i-th
component is bi if i ∈ I and ai if i /∈ I). The task of finding a polynomial function
(or rather all polynomial functions) that takes prescribed values on the tuples
êI can be regarded as yet another instance of the Interpolation Problem.

Restricted Interpolation Problem. Given D :=
{
eDI : I ⊆ [n]

}
and a func-

tion f : D → L, find all polynomial functions p : Ln → L such that p|D = f .

In [3], necessary and sufficient conditions were established for the existence
of an interpolating polynomial function. Moreover, it was shown that in this
more general setting, uniqueness is not guaranteed, and all possible interpolating
polynomial functions were provided, thus settling the Restricted Interpolation
Problem.

In this paper we extend these results by solving the following general inter-
polation problem.

Interpolation Problem. Let L be a distributive lattice. Given an arbitrary
finite set D ⊆ Ln and f : D → L, find all polynomial functions p : Ln → L such
that p|D = f .

3 Main Results

Let D ⊆ Ln be a finite set, and consider a partial function f : D → L. In this sec-
tion we provide necessary and sufficient conditions that guarantee the existence
of a polynomial function p : Ln → L that interpolates f , that is, p|D = f . As
a by-product, we will determine all possible interpolating polynomial functions
over a natural extension of the distributive lattice L which we now describe.

By the Birkhoff-Priestley representation theorem, we can embed L into a
Boolean algebra B; see, e.g., [4]. For the sake of canonicity, we assume that L
generatesB; under this assumption B is uniquely determined up to isomorphism.
The boundary elements of B will be denoted by 0 and 1. This notation will not
lead to ambiguity since if L has a least (resp. greatest) element, then it must
coincide with 0 (resp. 1). The complement of an element a ∈ B is denoted by
a′: a ∨ a′ = 1 and a ∧ a′ = 0.

Given a function f : D → L, we define the following two elements in B for
each I ⊆ [n]:

c−I :=
∨
a∈D

(
f(a) ∧

∧
i/∈I

a′i
)

and c+I :=
∧
a∈D

(
f(a) ∨

∨
i∈I

a′i
)
.
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Observe that I ⊆ J implies c−I ≤ c−J and c+I ≤ c+J . Let p− and p+ be the
polynomial functions over B given by these two systems of coefficients:

p−(x) :=
∨

I⊆[n]

(
c−I ∧

∧
i∈I

xi

)
and p+(x) :=

∨
I⊆[n]

(
c+I ∧

∧
i∈I

xi

)
.

As it will become clear, p− and p+ are the least and greatest polynomial functions
over B whose restriction to D coincides with f (whenever such a polynomial
function exists). First, we need to establish a few auxiliary results.

Given I ⊆ [n] and a = (a1, . . . , an),x = (x1, . . . , xn) ∈ Bn, let xa
I be the

n-tuple whose i-th component is ai if i ∈ I, and xi otherwise. If I = {i}, then
we write xai

i instead of xa
I .

Lemma 1. Let p : Bn → B be a polynomial function over B. For I ⊆ [n] and
x ∈ Bn, the polynomial functions q−I and q+I given by

q−I (a) := p(xa
I ) ∧

∧
i∈I

a′i and q+I (a) := p(xa
I ) ∨

∨
i∈I

a′i,

are nonincreasing.

Proof. Since monotonicity is defined componentwise, to show that q−I is nonin-
creasing it suffices to consider the case when I is a singleton.

So let I = {i} and a ∈ Bn. In this case, p(xa
I ) can be regarded as a unary

polynomial function and thus, by (1), it is of the form s∨ (ai∧ t), for some s ≤ t.
Hence, q−I can be expressed as

q−I (a) =
(
s ∨ (ai ∧ t)

)
∧ a′i.

By distributivity, we get q−I (a) = s ∧ a′i, which shows that the first claim holds.
The second claim follows dually, and the proof of the lemma is complete. ��

Corollary 1. Let p : Bn → B be a polynomial function over B. For every I ⊆
[n] and a ∈ Bn,

p(1I) ≤ p(a) ∨
∨
i∈I

a′i and p(1I) ≥ p(a) ∧
∧
i�∈I

a′i.

Proof. Let b = a0[n]\I ; clearly, a,1I ≥ b. Since p is nondecreasing, we have

p(1I) ≥ p(b), and since b′i = 1 for every i ∈ [n]\ I, it follows from Lemma 1 that

p(1I) ≥ p(b) ∧
∧
i�∈I

b′i ≥ p(a) ∧
∧
i�∈I

a′i.

This shows that the second claim holds; the first follows similarly. ��

Using Corollary 1, we can now provide necessary conditions on the coefficients
of interpolating polynomials.
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Lemma 2. Let f : D → L be a function defined on a finite set D ⊆ Ln, and
let p : Bn → B be a polynomial function over B given by (1). If p|D = f , then
c−I ≤ cI ≤ c+I .

Proof. Suppose p|D = f . By Corollary 1, for every I ⊆ [n] and a ∈ D,

p(a) ∧
∧
i�∈I

a′i ≤ p(1I) ≤ p(a) ∨
∨
i∈I

a′i.

Since p(a) = f(a), for every a ∈ D, it follows that∨
a∈D

(
f(a) ∧

∧
i�∈I

a′i
)
≤ p(1I) ≤

∧
a∈D

(
f(a) ∨

∨
i∈I

a′i
)
,

and hence c−I ≤ cI ≤ c+I as desired. ��

To show that this condition is also sufficient, we make use of the following lemma.

Lemma 3. Let f : D → L be a function defined on a finite set D ⊆ Ln. Then
p−(b) ≥ f(b) ≥ p+(b), for every b ∈ D.

Proof. By definition of p− and using the fact that for each I ⊆ [n],

c−I =
∨
a∈D

(
f(a) ∧

∧
i/∈I

a′i
)
≥ f(b) ∧

∧
i�∈I

b′i,

we have

p−(b) =
∨

I⊆[n]

(
c−I ∧

∧
i∈I

bi
)
≥
∨

I⊆[n]

(
f(b) ∧

∧
i�∈I

b′i ∧
∧
i∈I

bi
)

= f(b) ∧
∨

I⊆[n]

(∧
i�∈I

b′i ∧
∧
i∈I

bi
)
.

By repeated application of distributivity, it is not difficult to verify that∨
I⊆[n]

(∧
i�∈I

b′i ∧
∧
i∈I

bi
)
= 1,

and thus p−(b) ≥ f(b). Dually, we can also verify that f(b) ≥ p+(b), which
completes the proof. ��

We can now characterize the class of functions over a distributive lattice L that
can be interpolated on finite domains by polynomial functions over the Boolean
algebra generated by L. In fact, the following theorem explicitly determines all
possible interpolating polynomial functions, whenever such polynomial functions
exist.

Theorem 2. Let f : D → L be a function defined on a finite set D ⊆ Ln, and
let p : Bn → B be a polynomial function over B given by (1). Then the following
conditions are equivalent:
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1. p interpolates f , i.e., p|D = f ;
2. c−I ≤ cI ≤ c+I ;
3. p− ≤ p ≤ p+.

Proof. Clearly, (2)⇐⇒(3). By Lemma 2, (1) =⇒ (2). Moreover, if (3) holds, then
using Lemma 3 we conclude that for every b ∈ D,

f(b) ≤ p−(b) ≤ p(b) ≤ p+(b) ≤ f(b).

Hence, p|D = f . ��

From Theorem 2 it follows that a necessary and sufficient condition for the
existence of a polynomial function p : Bn → B such that p|D = f is c−I ≤ c+I ,
for every I ⊆ [n].

Moreover, if for every I ⊆ [n], there is cI ∈ L such that c−I ≤ cI ≤ c+I , then
and only then there is a polynomial function p : Ln → L such that p|D = f .

The latter condition leads us to considering the case when L is a complete
lattice (i.e., for which arbitrary joins and meets exist), and to defining two op-
erators cl and int as follows: For b ∈ B, let

cl (b) :=
∧

x∈Lx≥b

x and int (b) :=
∨

x∈Lx≤b

x.

It is not difficult to see that for any b1, b2 ∈ B, we have

cl (b1 ∨ b2) = cl (b1) ∨ cl (b2) and int (b1 ∧ b2) = int (b1) ∧ int (b2) .

Using this fact, the necessary and sufficient condition given above for the exis-
tence of an interpolating polynomial function over L can be translated into the
following system of inequalities.

Corollary 2. If L is complete, then there is a polynomial function p : Ln → L
such that p|D = f if and only if for every I ⊆ [n] there is cI ∈ L such that
c−I ≤ cI ≤ c+I or, equivalently,

cl(c−I ) =
∨
a∈D

cl
(
f(a) ∧

∧
i/∈I

a′i
)
≤
∧
a∈D

int
(
f(a) ∨

∨
i∈I

a′i
)
= int(c+I ),

for every I ⊆ [n].

Remark 1. Corollary 2 generalizes Theorem 10 in [3] which established neces-
sary and sufficient conditions for the existence of a solution of the Restricted
Interpolation Problem.

In the case when L is a finite chain, a solution to the Interpolation Problem
was given in [11] and where, rather than polynomial functions, the interpolat-
ing functions were assumed to be Sugeno integrals, i.e., idempotent polynomial
functions; see [8,9].
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Now if L is a finite chain, then

cl(c−I ) =
∨
{f(a) : a ∈ D, ∀i /∈ I, ai < f(a)}, and

int(c+I ) =
∧
{f(a) : a ∈ D, ∀i ∈ I, ai > f(a)}.

Hence, cl(c−I ) ≤ int(c+I ) if and only if for every a,b ∈ D,

f (a) > f (b)⇒ ∃i /∈ I : ai ≥ f (a) or ∃i ∈ I : bi ≤ f (b) . (2)

It is not difficult to see that condition (2) holds for every I ⊆ [n] if and only
if condition (3) (see theorem below) also holds. The following result basically
reformulates Theorem 3 of [11] in the language of lattice theory.

Theorem 3 ([11]). Let L be a finite chain, and let f : D → L be a function
defined on a finite subset D ⊆ Ln. Then there exists a polynomial function
p : Ln → L such that p|D = f if and only if

∀a,b ∈ D : f (a) > f (b)⇒ ∃i ∈ [n] : bi ≤ f (b) < f (a) ≤ ai. (3)

4 Further Work

When we consider a function f : D → L, a polynomial function can be indentified
if and only if for every I ⊆ [n] there exists cI ∈ L such that c−I ≤ cI ≤ c+I . In
some practical cases this condition would be not satisfied, i.e., the data would
be inconsistent with respect to a polynomial function. In such a case one issue
can be to build a family of polynomial functions as it is done in the totally
ordered context in [13]. More precisely, a partition of the dataset can be built
in which each set of the partition is compatible with a family of polynomial
functions. In general, many partitions are possible since their definition without
other conditions depends on the order in which the data are considered. We can
add a condition to choose one partition. For example, we can decide to look for
the smallest partition in terms of number of subsets.
The complexity to check the conditions c−I ≤ c+I for all I ⊆ [n] is at least 2n, so
these conditions become costly when n increases. In the totally ordered context
presented in [11] the complexity can be reduced since the check only needs p2

comparisons of compatibility where p is the cardinality of D. This raises the
question of finding a similar result in our context.

5 Applications and Concluding Remarks

To replace missing data is a common problem for the statistical treatment of
data. There are many methods to give a value to the missing data. On the
other hand, Sugeno integral is classically used in decision theory to represent the
behavior of a decision-maker. Since polynomials functions are a generalization
of Sugeno integrals, it seems natural to make use of these polynomial functions
to replace the missing data.
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Abstract. Weakly quasi-convex fuzzy sets have been defined as an ex-
tension of the class of quasi-convex fuzzy sets. We study the binary com-
mutative aggregation operators which preserve weak quasi-convexity. It
is shown, that there is only one such aggregation operator and it is the
trivial (the largest) one. As a corollary we obtain that in general the in-
tersection of weakly quasi-convex fuzzy sets is not weakly quasi-convex.

1 Introduction

Convexity plays a prominent role in various applications, most of all perhaps in
the optimization theory. When working with fuzzy sets and fuzzy optimization
(see [1]), it is necessary to specify the notion of convexity for fuzzy sets.

A very common definition of a convex fuzzy set is the following:

Definition 1. A fuzzy set μ of a linear space is said to be convex, if for all
x, y ∈ supp μ and λ ∈ [0, 1] there is

μ(λx + (1 − λ)y) ≥ λμ(x) + (1 − λ)μ(y).

However, this definition is in many cases not very convenient. First, it cannot be
used for more general fuzzy sets, like lattice-valued ones. The second and more
important reason is, that convexity of a fuzzy set in this sence is not equivalent
with the convexity of its cuts. (An α-cut of a fuzzy set μ will be denoted by
(μ)α.) Therefore the quasi-convex fuzzy sets are defined as follows:

Definition 2. A fuzzy subset μ of a linear space is quasi-convex, if for all x, y ∈
supp μ and λ ∈ [0, 1] there is

μ(λx + (1 − λ)y) ≥ min{μ(x), μ(y)}.
It is easy to show that a fuzzy set is quasi-convex if and only if all its cuts are
convex.

In [4] the concept of quasi-convexity is slightly weakened, where just existence
of a value above the minimum of the endpoints is required:

Definition 3. ([4]) A fuzzy subset μ of a linear space is weakly quasi-convex if
for all x, y ∈ supp μ there exists λ ∈ (0, 1) such that

μ(λx + (1 − λ)y) ≥ min{μ(x), μ(y)}.
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Clearly every quasi-convex fuzzy set is also weakly quasi-convex while the oppo-
site is not true, as it can be seen from the proofs later.

In a similar way to the case of quasi-convexity we can show that a fuzzy set is
weakly quasi-convex if and only if for each α ∈ (0, 1] the set {λx + (1 − λ)y; 0 <
λ < 1}∩(μ)α is nonempty, whenever x, y ∈ (μ)α and (μ)α �= ∅ (for details see [4]).

Preservation of convexity under intersection is one of the basic properties of
convex sets. There is a natural question about the preservation of the above
mentioned generalizations of convexity. Moreover, we will not restrict ourselves
to the intersection, but we will consider an arbitrary binary commutative aggre-
gation operator.

By a binary aggregation operator on the unit interval we understand a map-
ping A : [0, 1]2 → [0, 1] that is non-decreasing in both variables and fulfills
A(0, 0) = 0, A(1, 1) = 1. For more details see [2]

2 Case of Quasi-convex Fuzzy Sets

Considering intersections of fuzzy sets we come to the notion of a triangular
norm. However, triangular norms are special cases of aggregation operators and
therefore we formulate our question in the following way: Suppose μ and ν are
quasi-convex fuzzy sets. Under which aggregation of their values is the result
again a quasi-convex fuzzy set? For fuzzy sets μ, ν and an aggregation operator
A by their aggregation we mean the fuzzy set A(μ, ν)(t) = A(μ(t), ν(t)).

This problem has been solved in [3] for lattice valued aggregation operators
with the following result:

Proposition 1. Let A : L2 → L be an aggregation operator on a bounded lattice
L, let μ, ν : Rn → L be quasi-convex fuzzy sets. Then the following are equivalent:

1. The lattice-valued fuzzy set A(μ, ν) is quasi-convex,
2. A(α ∧ γ, β ∧ δ) = A(α, β) ∧ A(γ, δ) for each α, β, γ, δ ∈ L.

For real valued symmetric (commutative) aggregation operators the following
result was obtained in [3]:

Proposition 2. Let A : [0, 1]2 → [0, 1] be a symmetric aggregation operator, let
μ, ν be quasi-convex fuzzy sets on the real line. Then the following are equivalent:

1. The fuzzy set A(μ, ν) is quasi-convex,
2. A(α, α) = A(α, 1) for each α ∈ [0, 1].

Our aim is to provide a similar description of suitable aggregation operators for
weakly quasi-convex fuzzy sets.

3 Main Results
We will consider an arbitrary symmetric binary aggregation operator on a unit
interval. First we will formulate some necessary conditions for A to preserve
weak quasi-convexity.
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Proposition 3. Let A be a symmetric binary aggregation operator such that
for each weakly quasi-convex fuzzy sets μ and ν the fuzzy set A(μ, ν) is weakly
quasi-convex. If α ∈ (0, 1], then A(α, 1) = 1.

Proof. Suppose that A preserves weak quasi-convexity. Denote by Q the set of
all rational numbers and let α ∈ (0, 1]. Take μ, ν : [0, 1] → [0, 1] such that

μ(t) =

{
1, t ∈ Q,

α, t ∈ R \ Q,
ν(t) =

{
1, t ∈ (R \ Q) ∪ {0, 1},
α, t ∈ (0, 1) ∩ Q.

Clearly both μ, ν are weakly quasi-convex. For their aggregation we have

A(μ, ν)(0) = A(μ, ν)(1) = A(1, 1) = 1.

As we assume that A(μ, ν) is weakly quasi-convex there has to be at least one
t ∈ (0, 1) for which A(μ, ν)(t) ≥ 1. Accounting the symmetry of A this implies
that A(α, 1) = 1. 
�
Both fuzzy sets in the proof were examples of weakly quasi-convex fuzzy sets
that are not quasi-convex.

The second necessary condition deals with the diagonal elements of A.

Proposition 4. Let A be a symmetric binary aggregation operator such that
for each weakly quasi-convex fuzzy sets μ and ν the fuzzy set A(μ, ν) is weakly
quasi-convex. If α ∈ (0, 1], then A(α, α) = 1.

Proof. Suppose that A preserves weak quasi-convexity. Take μ, ν : [0, 1] → [0, 1]
such that

μ(t) =

{
1, t = 0,

α, t ∈ (0, 1],
ν(t) =

{
α, t ∈ [0, 1),
1, t = 1.

These fuzzy sets are again weakly quasi-convex. Using the result of Proposi-
tion 3 we see that their aggregation is the fuzzy set with the boundary values
A(μ, ν)(0) = A(μ, ν)(1) = A(α, 1) = 1.

As A preserves weak quasi-convexity, there has to be some t ∈ (0, 1) such that
A(μ, ν)(t) = 1. From this we obtain A(α, α) = 1 for each α ∈ (0, 1]. 
�
So we see that for suitable aggregation operators the values of the aggregation
in the semi-open square (0, 1]2 have to be 1. The value A(0, 0) is equal to 0 by
the definition of an aggregation operator and the remaining values are shown in
the following proposition.

Proposition 5. Let A be a symmetric binary aggregation operator such that
for each weakly quasi-convex fuzzy sets μ and ν the fuzzy set A(μ, ν) is weakly
quasi-convex. If α ∈ (0, 1], then A(α, 0) = 1.

Proof. Suppose that A preserves weak quasi-convexity. Take μ, ν : [0, 1] → [0, 1]
such that

μ(t) =

{
α, t ∈ Q,

0, t ∈ R \ Q,
ν(t) =

{
α, t ∈ (R \ Q) ∪ {0, 1},
0, t ∈ (0, 1) ∩ Q.
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These are weakly quasi-convex fuzzy sets and by the consideration similar to the
previous ones we come to the conclusion A(α, 0) = A(α, α) = 1. 
�
As a consequence we get that if a symmetric aggregation operator preserves weak
quasi-convexity, it has to be the operator for which A(0, 0) = 0 and A(α, β) = 1
in all other cases, i.e. the largest possible aggregation operator. Conversely, it is
trivial to see that such aggregation operator preserves weak quasi-convexity.

We can therefore summarize the following:

Proposition 6. The only symmetric aggregation operator A such that for any
weakly quasi-convex fuzzy sets μ, ν the fuzzy set A(μ, ν) is weakly quasi-convex
is the mapping A(0, 0) = 0 and A(α, β) = 1 otherwise.

4 Conclusion

We have shown that the only symmetric aggregation operator preserving weak
quasi-convexity is the largest one. Hence for any non-trivial symmetric aggre-
gation there exist weakly quasi-convex fuzzy sets μ, ν such that A(μ, ν) is not
weakly quasi-convex. As any triangular norm that is used to represent intersec-
tions of fuzzy sets is a special case of a symmetric aggregation operator (and
the maximal aggregation operator is not a triangular norm), we can state, that
in general any intersection of weakly quasi-convex fuzzy sets does not preserve
weak quasi-convexity.
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Abstract. The concept of universal integral, recently proposed, general-
izes the Choquet, Shilkret and Sugeno integrals. Those integrals admit a
bipolar formulation, useful in those situations where the underlying scale
is bipolar. In this paper we propose the bipolar universal integral gener-
alizing the Choquet, Shilkret and Sugeno bipolar integrals. To complete
the generalization we also provide the characterization of the bipolar
universal integral with respect to a level dependent bi-capacity.

Keywords: Choquet, Sugeno and Shilkret integrals, universal integral,
bipolar integrals.

1 Introduction

Recently a concept of universal integral has been proposed [14]. The univer-
sal integral generalizes the Choquet integral [2], the Sugeno integral [18] and
the Shilkret integral [17]. Moreover, in [12], [13] a formulation of the universal
integral with respect to a level dependent capacity has been proposed, in or-
der to generalize the level-dependent Choquet integral [9], the level-dependent
Shilkret integral [1] and the level-dependent Sugeno integral [15]. The Choquet,
Shilkret and Sugeno integrals admit a bipolar formulation, useful in those situ-
ations where the underlying scale is bipolar ([5], [6], [10], [8]). In this paper we
introduce and characterize the bipolar universal integral, which generalizes the
Choquet, Shilkret and Sugeno bipolar integrals. We introduce and characterize
also the bipolar universal integral with respect to a level dependent capacity,
which generalizes the level-dependent bipolar Choquet, Shilkret and Sugeno in-
tegrals proposed in [9], [8].

The paper is organized as follows. In section 2 we introduce the basic concepts.
In section 3 we define and characterize the bipolar universal integral. In section 4
we give an illustrative example of a bipolar universal integral which is neither the
Choquet nor Sugeno or Shilkret type. In section 5 we define and characterize the
bipolar universal integral with respect to a level dependent bi-capacity. Finally,
in section 6, we present conclusions.
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2 Basic Concepts

Given a set of criteria N = {1, . . . , n}, an alternative x can be identified with a
score vector x = (x1, . . . , xn) ∈ [−∞,+∞]

n
, being xi the evaluation of x with

respect to the ith criterion. For the sake of simplicity, without loss of generality,
in the following we consider the bipolar scale [−1, 1] to expose our results, so
that x ∈ [−1, 1]n. Let us consider the set of all disjoint pairs of subsets of N , i.e.
Q =

{
(A,B) ∈ 2N × 2N : A ∩B = ∅

}
. With respect to the binary relation �

onQ defined as (A,B) � (C,D) iff A ⊆ C and B ⊇ D,Q is a lattice, i.e. a partial
ordered set in which any two elements have a unique supremum (A,B)∨(C,D) =
(A ∪ C,B ∩D) and a unique infimum (A,B)∧ (C,D) = (A ∩ C,B ∪D). For all
(A,B) ∈ Q the indicator function 1(A,B) : N → {−1, 0, 1} is the function which
attains 1 on A, -1 on B and 0 on (A ∪B)c.

Definition 1. A function μb : Q → [−1, 1] is a normalized bi-capacity ([5], [6],
[10]) on N if

– μb(∅, ∅) = 0, μb(N, ∅) = 1 and μb(∅, N) = −1;
– μb(A,B) ≤ μb(C,D) ∀ (A,B), (C,D) ∈ Q : (A,B) � (C,D).

Definition 2. The bipolar Choquet integral of x = (x1, . . . , xn) ∈ [−1, 1]n with
respect to a bi-capacity μb is given by ([5], [6], [10], [9]):

Chb(x, μb) =

∫ ∞

0

μb({i ∈ N : xi > t}, {i ∈ N : xi < −t})dt. (1)

The bipolar Choquet integral of x = (x1, . . . , xn) ∈ [−1, 1]n with respect to the
bi-capacity μb can be rewritten as

Chb(x , μb) =
n∑

i=1

(
|x(i)| − |x(i−1)|

)
μb({j ∈ N : xj ≥ |x(i)|}, {j ∈ N : xj ≤ −|x(i)|}),

(2)

being () : N → N any permutation of index such that 0 = |x(0)| ≤ |x(1)| ≤ . . . ≤
|x(n)|. Let us note that to ensure that ({j ∈ N : xj ≥ |t|}, {j ∈ N : xj ≤ −|t|}) ∈
Q for all t ∈ R, we adopt the convention - which will be maintained trough all
the paper - that in the case of t = 0 the inequality xj ≤ −|t| = 0 must be
intended as xj < −|t| = 0.
In this paper we use the symbol

∨
to indicate the maximum and

∧
to indicate the

minimum. The symmetric maximum of two elements - introduced and discussed
in [3], [4] - is defined by the following binary operation:

a � b =

⎧⎨⎩
− (|a| ∨ |b|) if b �= −a and either |a| ∨ |b| = −a or = −b
0 if b = −a
|a| ∨ |b| else.

In [16] it has been showed as on the domain [−1, 1] the symmetric maximum
coincides with two recent symmetric extensions of the Choquet integral, the
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balancing Choquet integral and the fusion Choquet integral, when they are com-
puted with respect to the strongest capacity (i.e. the capacity which attains zero
on the empty set and one elsewhere). However, the symmetric maximum of a
set X cannot be defined, being � non associative. Suppose that X = {3,−3, 2},
then (3 �−3)� 2 = 2 or 3� (−3 � 2) = 0, depending on the order. Several pos-
sible extensions of the symmetric maximum for dimension n, n > 2 have been
proposed (see [4], [7] and also the relative discussion in [16]). One of these exten-
sions is based on the splitting rule applied to the maximum and to the minimum
as described in the following. Let X = {x1, . . . , xm} ⊆ R, the bipolar maximum

of X , shortly
∨b

X , is defined as follow: if there exists an element xk ∈ X such

that |xk| > |xj | ∀j : xj �= xk then
∨b

X = xk; otherwise
∨b

X = 0. Clearly,
the bipolar maximum of a set X is related to the symmetric maximum of two
elements by means of ∨b

X =
(∨

X
)

�

(∧
X
)
. (3)

In the same way and for an infinite set X , it is possible to define the concept of
supbip X as the symmetric maximum applied to the supremum and the infimum
of X .

Definition 3. The bipolar Shilkret integral of x = (x1, . . . , xn) ∈ [−1, 1]n with
respect to a bi-capacity μb is given by [8]:

Shb(x, μb) =
∨
i∈N

b
{|xi| · μb({j ∈ N : xj ≥ |xi|}, {j ∈ N : xj ≤ −|xi|})} . (4)

Definition 4. A bipolar measure on N with a scale (−α, α), α > 0, is any
function νb : Q→ (−α, α) satisfying the following properties:

1. νb(∅, ∅) = 0;
2. νb(N, ∅) = α, νb(∅, N) = −α;
3. νb(A,B) ≤ νb(C,D) ∀ (A,B), (C,D) ∈ Q : (A,B) � (C,D).

Definition 5. The bipolar Sugeno integral of x = (x1, . . . , xn) ∈ (−α, α)n with
respect to the bipolar measure νb on N with scale (−α, α) is given by [8]:

Sub(x, νb) =
∨
i∈N

b{
sign (νb ({j ∈ N : xj ≥ |xi|}, {j ∈ N : xj ≤ −|xi|})) ·

·
∧
{|νb({j ∈ N : xj ≥ |xi|}, {j ∈ N : xj ≤ −|xi|})| , |xi|}

}
. (5)

3 The Universal Integral and the Bipolar Universal
Integral

In order to define the universal integral it is necessary to introduce the concept
of pseudomultiplication. This is a function ⊗ : [0, 1] × [0, 1] → [0, 1], which is
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nondecreasing in each component (i.e. for all a1, a2, b1, b2 ∈ [0, 1] with a1 ≤ a2
and b1 ≤ b2, a1 ⊗ b1 ≤ a2 ⊗ b2), has 0 as annihilator (i.e. for all a ∈ [0, 1],
a ⊗ 0 = 0 ⊗ a = 0) and has a neutral element e ∈]0, 1] (i.e. for all a ∈ [0, 1],
a ⊗ e = e ⊗ a = a). If e = 1 then ⊗ is a semicopula, i.e. a binary operation
⊗ : [0, 1]2 → [0, 1] that is nondecreasing in both components and has 1 as
neutral element. Observe that in the definition of semicopula it is not necessary
to state that 0 is a annihilator, because this can be elicited. A semicopula satisfies
a⊗ b ≤ min{a, b} for all (a, b) ∈ [0, 1]2, indeed, suppose that a = min{a, b} then
a⊗b ≤ a⊗1 = a. It follows that for all a ∈ [0, 1], 0 ≤ 0⊗a ≤ 0 and 0 ≤ a⊗0 ≤ 0,
i.e. a⊗0 = 0⊗a = 0 and, then, 0 is a annihilator. A semicopula ⊗ : [0, 1]2 → [0, 1]
which is associative and commutative is called a triangular norm.

A capacity [2] or fuzzy measure [18] on N is a non decreasing set function
m : 2N → [0, 1] such that m(∅) = 0 and m(N) = 1.

Definition 6. [14] Let F be the set of functions f : N → [0, 1] and M the set
of capacities on N . A function I : M × F → [0, 1] is a universal integral on the
scale [0, 1] (or fuzzy integral) if the following axioms hold:

(I1) I(m, f) is nondecreasing with respect to m and with respect to f ;
(I2) there exists a semicopula ⊗ such that for any m ∈M , c ∈ [0, 1] and A ⊆ N ,

I(m, c · 1A) = c⊗m(A);
(I3) for all pairs (m1, f1), (m2, f2) ∈M × F , such that for all t ∈ [0, 1],

m1 {i ∈ N : f1(i) ≥ t} = m2 {i ∈ N : f2(i) ≥ t}, I(m1, f1) = I(m2, f2).

We can generalize the concept of universal integral from the scale [0, 1] to the
symmetric scale [−1, 1] by extending definition 6.

Definition 7. Let Fb be the set of functions f : N → [−1, 1] and Mb the set
of bi-capacities on Q. A function Ib : Mb × Fb → [−1, 1] is a bipolar universal
integral on the scale [−1, 1] (or bipolar fuzzy integral) if the following axioms
hold:

(I1) Ib(mb, f) is nondecreasing with respect to mb and with respect to f ;
(I2) there exists a semicopula ⊗ such that for any mb ∈ Mb, c ∈ [0, 1] and

(A,B) ∈ Q, I(mb, c · 1(A,B)) = sign(mb(A,B)) (c⊗ |mb(A,B)|);
(I3) for all pairs (mb1 , f1), (mb2 , f2) ∈Mb × Fb, such that for all t ∈ [0, 1],

mb1 ({i ∈ N : f1(i) ≥ t} , {i ∈ N : f1(i) ≤ −t}) =
= mb2 ({i ∈ N : f2(i) ≥ t} , {i ∈ N : f2(i) ≤ −t}), I(mb1 , f1) = I(mb2 , f2).

Clearly, in definition 6, F can be identified with [0, 1]n and in definition 7, Fb can
be identified with [−1, 1]n, such that a function f : N → [−1, 1] can be regarded
as a vector x ∈ [−1, 1]n. Note that the bipolar Choquet, Shilkret and Sugeno
integrals are bipolar universal integrals in the sense of Definition 7. Observe that
the underlying semicopula ⊗ is the standard product in the case of the bipolar
Choquet and Shilkret integrals, while ⊗ is the minimum (with neutral element
β = 1) for the Sugeno integral.
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Now we turn our attention to the characterization of the bipolar universal
integral. Due to axiom (I3) for each universal integral Ib and for each pair
(mb, x ) ∈ Mb × Fb, the value Ib (mb, x ) depends only on the function h(mb,x) :
[0, 1]→ [−1, 1], defined for all t ∈ [0, 1] by

h(m,x)(t) = mb ({i ∈ N : xi ≥ t} , {i ∈ N : xi ≤ −t}) . (6)

Note that for each (mb, x ) ∈Mb×Fb such a function is not in general monotone
but it is Borel measurable, since it is a step function, i.e. a finite linear combi-
nation of indicator functions of intervals. To see this, suppose that () : N → N
is a permutation of criteria such that |x(1)| ≤ . . . ≤ |x(n)| and let us consider the
following intervals decomposition of [0, 1]: A1 = [0, |x(1)|], Aj =]|x(j)|, |x(j+1)|]
for all j = 1, . . . , n− 1 and An+1 =]|x(n)|, 1]. Thus, we can rewrite the function
h as

h(m,x)(t) =
n∑

j=1

mb

({
i ∈ N : xi ≥ |x(j)|

}
,
{
i ∈ N : xi ≤ −|x(j)|

})
· 1Aj (t). (7)

Let Hn be the subset of all step functions with no more than n-values in

F ([0,1],B([0,1]))
[−1,1] , the set of all Borel measurable functions from [0, 1] to [−1, 1].

Proposition 1. A function Ib : Mb×Fb → [−1, 1] is a bipolar universal integral
on the scale [−1, 1] related to some semicopula ⊗ if and only if there is a function
J : Hn → R satisfying the following conditions:

(J1) J is nondecreasing;
(J2) J(d · 1[x,x+c]) = sign(d)(c ⊗ |d|) for all [x, x + c] ⊆ [0, 1] and for all d ∈

[−1, 1];
(J3) I(mb, f) = J

(
h(mb,f)

)
for all (mb, f) ∈Mb × Fb.

4 An Illustrative Example

The following is an example of a bipolar universal integral (which is neither
the Choquet nor Sugeno or Shilkret type), and illustrates the interrelationship
between the functions I, J and the semicopula ⊗. Let Ib : Mb×Fb → R be given
by

I(mb, f) = supbip
{

t ·mb ({f ≥ t} , {f ≤ −t})
1− (1− t) (1− |mb ({f ≥ t} , {f ≤ −t}) |) | t ∈]0, 1]

}
. (8)

Note that (8) defines a bipolar universal integral, indeed if mb ≥ m′
b and f ≥ f ′

then h(mb,f) ≥ h(m
′
b,f

′) and being the function t · h/[1− (1− t)(1− |h|)] non de-
creasing in h ∈ R, we conclude that I(mb, f) ≥ I(m′

b, f
′) using the monotonicity

of the bipolar supremum. Moreover

I(mb, c · 1(A,B)) = sign(mb(A,B))
t · |mb ({f ≥ t} , {f ≤ −t}) |

1 − (1− t) (1− |mb ({f ≥ t} , {f ≤ −t}) |) =

= sign(mb(A,B))(c ⊗ |mb(A,B)|). (9)
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This means that the semicopula underlying the bipolar universal integral (9) is
the Hamacher product

a⊗ b =

{
0 if a = b = 0
a·b

1−(1−a)(1−b) if |a|+ |b| �= 0.

Now let us compute this integral in the simple situation of N = {1, 2}. In this
case the functions we have to integrate can be identified with two dimensional
vectors x = (x1, x2) ∈ [−1, 1]2 and we should define a bi-capacity on Q. For
example

mb ({1} , ∅) = 0.6, mb ({2} , ∅) = 0.2, mb ({1} , {2}) = 0.1,

mb ({2} , {1}) = −0.3, mb (∅, {1}) = −0.1 and mb (∅, {2}) = −0.5.
First let us consider the four cases |x1| = |x2|. If x ≥ 0:

I (mb, (x, x)) = x, I (mb, (x,−x)) =
0.1x

0.1 + 0.9x
,

I (mb, (−x, x)) =
−0.3x

0.3 + 0.7x
and I (mb, (−x,−x)) = −x.

For all the other possible cases, we have the following formula

I (mb, (x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨b
{
y , 0.6x

0.6+0.4x

}
x > y ≥ 0

∨b
{

0.1|y|
0.1+0.9|y| , 0.6x

0.6+0.4x

}
x ≥ 0 > y > −x

∨b
{

0.1x
0.1+0.9x , −0.5|y|

0.5+0.5|y|
}

x ≥ 0 ≥ −x > y

∨b
{
x , −0.5|y|

0.5+0.5|y|
}

0 > x > y

∨b
{
x , 0.2y

0.2+0.8y

}
y > x ≥ 0

∨b
{

−0.3|x|
0.3+0.7|x| , 0.2y

0.2+0.8y

}
y ≥ 0 > x > −y

∨b
{

−0.3y
0.3+0.7y , −0.1|x|

0.1+0.9|x|
}

y ≥ 0 ≥ −y > x

∨b
{
y , −0.1|x|

0.1+0.9|x|
}

0 > y > x.

(10)

5 The Bipolar Universal Integral with Respect
to a Level Dependent Bi-capacity

All the bipolar fuzzy integrals (1), (4) and (5) as well as the universal integral,
admit a further generalization with respect to a level dependent capacity ([9],
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[8], [13]). Next, after remembering previous definitions, we will give the concept
of bipolar universal integral with respect to a level dependent capacity.

Definition 8. [9] A bipolar level dependent bi-capacity is a function μbLD :
Q× [0, 1]→ [−1, 1] satisfying the following properties:

1. for all t ∈ [0, 1], μbLD(∅, ∅, t) = 0, μbLD(N, ∅, t) = 1, μbLD(∅, N, t) = −1;
2. for all (A,B, t), (C,D, t) ∈ Q× [0, 1] such that (A,B) � (C,D),

μbLD(A,B, t) ≤ μbLD(C,D, t);
3. for all (A,B) ∈ Q, μbLD(A,B, t) considered as a function with respect to t

is Borel measurable.

Definition 9. [9] The bipolar Choquet integral of a vector x = (x1, . . . , xn) ∈
[−1, 1]n with respect to the level dependent bi-capacity μbLD is given by

ChbLD(x) =

∫ maxi|xi|

0

μbLD({i ∈ N : xi ≥ t}, {i ∈ N : xi ≤ −t}, t)dt. (11)

A level dependent bi-capacity μbLD is said Shilkret compatible if for for all
t, r ∈ [−1, 1] such that t ≤ r, and (A,B), (C,D) ∈ Q with (A,B) � (C,D),
tμbLD((A,B), t) ≤ rμbLD((C,D), r).

Definition 10. [8] The bipolar level dependent Shilkret integral of x =
(x1, . . . , xn) ∈ [−1, 1]n with respect to a Shilkret compatible bi-capacity level de-
pendent, μbLD, is given by

ShbLD(x, μbLD) =
∨
i∈N

b

{
sup

t∈ ]0,|xi| ]
{t · μbLD({j ∈ N : xj ≥ t}, {j ∈ N : xj ≤ −t}, t)}

}
.

(12)

Definition 11. [8] A bipolar level dependent measure on N with a scale [−α, α]
with α > 0, is any function νbLD : Q× [−α, α]→ [−α, α] satisfying the following
properties:

1. νbLD(∅, ∅, t) = 0 for all t ∈ [−α, α];
2. νbLD(N, ∅, t) = α, νbLD(∅, N, t) = −α for all t ∈ (α, β);
3. for all (A,B), (C,D) ∈ Q such that (A,B) � (C,D), and for all t ∈ [−α, α],

νbLD(A,B, t) ≤ νbLD(C,D, t).

Definition 12. [8] The bipolar level dependent Sugeno integral of x =
(x1, . . . , xn) ∈ [−α, α]

n
with respect to the bipolar measure νbLD is given by∨

i∈N

b
{
supbip

t∈ ]0,|xi| ]{sign [νbLD({j ∈ N : xj ≥ t}, {j ∈ N : xj ≤ −t}, t)]

·min {|νbLD({j ∈ N : xj ≥ t}, {j ∈ N : xj ≤ −t}, t)| , t}}
}
= SubLD(x, νbLD).(13)
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A level dependent bi-capacity can be, also, indicated as M t
b = (mb,t)t∈]0,1] where

mb,t is a bi-capacity. Given a level dependent bi-capacity M t
b = (mb,t)t∈]0,1] for

each alternative x ∈ [−1, 1]n we can define the function hMt
b ,f

: [0, 1]→ [−1, 1],
which accumulates all the information contained in M t

b and f , by:

hMt
b ,f

(t) = mb,t ({j ∈ N : xj ≥ t}, {j ∈ N : xj ≤ −t}) (14)

In general, the function hMt
b ,f

is neither monotone nor Borel measurable. Follow-
ing the ideas of inner and outer measures in Caratheodory’s approach [11], we

introduce the two functions
(
hMt

b ,f

)∗
: [0, 1] → [−1, 1] and

(
hMt

b ,f

)
∗
: [0, 1] →

[−1, 1] defined by (
hMt

b ,f

)∗
= inf

{
h ∈ H | h ≥ hMt

b ,f

}
,(

hMt
b ,f

)
∗
= sup

{
h ∈ H | h ≥ hMt

b ,f

}
. (15)

Clearly, both functions (15) are non increasing and, therefore, belong to H. If the
level dependent bi-capacity M t

b is constant, then the three functions considered
in (14), (15) coincide.

LetMb the set of all level dependent bi-capacities on Q, for a fixed M t
b ∈ Mb

a function f : N → [−1, 1] is M t
b -measurable if the function hMt

b ,f
is Borel

measurable. Let F
Mt

b

[−1,1] be the set of all M
t
b measurable functions. Let us consider

L[−1,1] =
⋃

Mt
b∈Mb

M t
b × F

Mt
b

[−1,1]

Definition 13. A function Lb : L[−1,1] → [−1, 1] is a level-dependent bipolar
universal integral on the scale [−1, 1] if the following axioms hold:

(I1) Ib(m, f) is nondecreasing in each component;
(I2) there is a bipolar universal integral Ib : Mb × Fb → R such that for each

bipolar capacity mb ∈Mb, for each x ∈ [−1, 1]n and for each level dependent
bipolar capacity M t

b ∈Mb, satisfying mb,t = mb for all t ∈]0, 1], we have

Lb

(
M t

b , x
)
= Ib (mb, x) ;

(I3) for all pairs (Mb1 , f1), (Mb2 , f2) ∈ L[−1,1] with hMb1
,f1 = hMb2

,f2 we have

Lb (Mb1 , f1) = Lb (Mb2 , f2) .

Obviously the bipolar Choquet, Shilkret and Sugeno integrals with respect to a
level dependent capacity are level-dependent bipolar universal integrals in the
sense of Definition 13.

Finally, we present the representation theorem which gives necessary and suffi-
cient conditions to be a function Lb : L[−1,1] → [−1, 1] a level-dependent bipolar
universal integral.
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Proposition 2. A function Lb : L[−1,1] → [−1, 1] is a level-dependent bipolar
universal integral related to some semicopula ⊗ if and only if there is a semi-
copula ⊗ : [0, 1]

2 → [0, 1] and a function J : H → R satisfying the following
conditions:

(J1) J is nondecreasing;
(J2) J(d ·1]0,c]) = sign(d)(c⊗|d|) for all [x, x+c] ⊆ [0, 1] and for all d ∈ [−1, 1];
(J3) Lb (Mb, f) = J (hMb,f ) for all (M t

b , f) ∈ L[−1,1].

6 Conclusions

The concept of universal integral generalizes, over all, the Choquet, Shilkret
and Sugeno integrals. Those integrals admit a bipolar formulation, helpful for
the case in which the underlying scale is bipolar. In this paper we have defined
and characterized the bipolar universal integral, thus providing a common frame
including the bipolar Choquet, Shilkret and Sugeno integrals. Moreover, we have
also defined and characterized the bipolar universal integral with respect to a
level dependent bi-capacity, which includes, as notable examples, the bipolar
level dependent Choquet, Shilkret and Sugeno integrals.
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Based on Level Dependent Capacities. In: IFSA-EUSFLAT. Citeseer (2009)
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Abstract. This paper studies the relation between associativity of uni-
norms and geometry of their level sets which is enabled by adopting the
concepts of web geometry, a branch of differential geometry, and the Rei-
demeister closure condition. Based on this result, the structure of some
special classes of uninorms is described. Namely, it is the class of uni-
norms with involutive underlying t-norms and t-conorms and the class of
uninorms with involutive underlying t-norms and idempotent underlying
t-conorm (as well as the corresponding dual cases).

Keywords: associativity, contour, level set, Reidemeister closure condi-
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1 Introduction

The notion of uninorm has been introduced by Yager and Rybalov [12] as a
generalization of the notions of triangular norm (t-norm for short) and triangular
conorm (t-conorm for short). It is a commutative, associative, non-decreasing

binary operation ∗ : [0, 1]
2 → [0, 1] with a neutral (unit) element e ∈ [0, 1]. A

t-norm is exactly a uninorm with a neutral element e = 1 while a t-conorm is
exactly a uninorm with a neutral element e = 0. For an overview and the basic
results on uninorms, see the related papers [4,5].

In inspiration by the previous results [10,9], this paper intents to show a rela-
tion between associativity of uninorms and geometry of their level sets. This task
is done by adopting the concepts of web geometry [1,2], a branch of differential

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 370–378, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Web-Geometric View on Uninorms and Structure of Some Special Classes 371

geometry, and the Reidemeister closure condition [11]. We focus here only on
the uninorms with a neutral element e ∈ ]0, 1[; the definition of a uninorm with
e = 1 resp. e = 0 coincide with the definition of a t-norm resp. t-conorm and
such cases have been treated already elsewhere [10]. Concerning another results
dealing with the associativity of uninorms in a geometric way, we refer to the
work by Jenei [6] and Maes and De Baets [7].

2 Preliminaries

Having a t-norm ◦ : [0, 1]
2 → [0, 1] resp. a t-conorm • : [0, 1]

2 → [0, 1] their
induced negators are defined as functions ¬◦ : [0, e]→ [0, e] resp. ¬• : [0, e]→ [0, e]

given by

¬
◦ x = sup{y ∈ [0, 1] | x ◦ y = 0} ,

¬
• x = inf{y ∈ [0, 1] | x • y = 1} .

A t-norm resp. a t-conorm is called involutive if its corresponding negator is
involutive, i.e., if ¬◦ ¬◦ x = x resp. ¬• ¬• x = x for all x ∈ [0, 1]. In such cases ¬◦ resp.

¬
• is a decreasing bijection of [0, 1].

A uninorm ∗ : [0, 1]
2 → [0, 1] (can be a t-norm or a t-conorm) is called idem-

potent if x ∗ x = x for all x ∈ [0, 1]. While the only idempotent t-norm resp.
t-conorm is the minimum resp. the maximum, the class of idempotent uninorms
is richer [3,8].

The next definion and theorem describe how a uninorm is given by a t-norm
and a t-conorm.

Definition 1. Let ∗ : [0, 1]
2 → [0, 1] be a commutative, non-decreasing binary

operation with a neutral element e ∈ ]0, 1[. We define the binary operations

∧∗ : [0, 1]
2 → [0, 1] and

∗∨ : [0, 1]
2 → [0, 1] by:

x ∧∗ y =
(e · x) ∗ (e · y)

e
, (1)

x
∗∨ y =

(
(e + (1− e) · x) ∗ (e + (1− e) · x)

)
− e

1− e
(2)

where + resp. · denotes usual addition resp. multiplication of real numbers. It
can be trivially observed that

x ∗ y = e ·
(

x
e ∧∗

y
e

)
for (x, y) ∈ [0, e]

2
,

x ∗ y = e+ (1− e) ·
(

x−e
1−e

∗∨ y−e
1−e

)
for (x, y) ∈ [e, 1]2 .

Theorem 1. [5] Let ∗ : [0, 1]
2 → [0, 1] be a uninorm with a neutral element

e ∈ ]0, 1[. Then ∧∗ and
∗∨ is a t-norm and a t-conorm, respectively.

Due to this fact, in the case of a uninorm ∗ : [0, 1]
2 → [0, 1] the operation ∧∗ resp.

∗∨ is called underlying t-norm resp. underlying t-conorm of ∗.
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0 1
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1

x1 x2

y1

y2

0 1
0

1

P

Q

R

S

Fig. 1. Left: Four points, (x1, y1), (x1, y2), (x2, y1), and (x2, y2), forming the rectangle
P = 〈x1, x2〉 × 〈y1, y2〉. Right: Illustration of the equivalence relation � defined on the
set of rectangles. The gray curves represent level sets of a uninorm. Observe that Q � R
which does not hold for any other pair.

3 Web-Geometric View on Uninorms

Let 
 : [0, 1]
2 → [0, 1] be a binary operation. Its a-level set, for some a ∈ [0, 1],

is the set
{(x, y) ∈ [0, 1]

2 | x 
 y = a} . (3)

Further, we say that (a, b), (c, d) ∈ [0, 1]2 are equivalent, and we write (a, b) �
(c, d), if a 
 b = c 
 d. Notice that the relation � is an equivalence induced by 

and, immediately, the equivalence classes of � are exactly the level sets of 
 as
introduced in (3).

By a rectangle P in [0, 1]2 we mean a set of points (called vertices) of the type

P = {(x1, y1), (x1, y2), (x2, y1), (x2, y2)} .

where x1, x2, y1, y2 ∈ [0, 1] are called the coordinates of the rectangle P. We de-
note the fact, that the rectangle P is uniquely given by the coordinates
x1, x2, y1, y2, by

P = 〈x1, x2〉 × 〈y1, y2〉 ,
Note that if we interchange the two x-coordinates or interchange the two y-
coordinates in the above notation we obtain an equivalent rectangle as the no-
tation, actually, denotes again the same set of vertices. Thus

〈x1, x2〉 × 〈y1, y2〉 = 〈x2, x1〉 × 〈y1, y2〉 = 〈x1, x2〉 × 〈y2, y1〉 = 〈x2, x1〉 × 〈y2, y1〉 .

Clearly, every rectangle is a proper subset of [0, 1]
2
and it is a set of either four

vertices, two vetices, or one vertex. An example of a rectangle is illustrated in
Figure 1-left; note that, although a rectangle is a set of points, we will con-
nect them, for better visibility, by lines and thus depict our rectangle as a real
rectangle.
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0 1
0

1

e

e
P

Q

0 1
0

1

e

e
P

Q

R

Fig. 2. Left: Example of a pair of rectangles P,Q that are (e, e)-aligned, i.e., P �e,e Q.
Indeed, this pair is (e, e)-local since the neutral element e is a coordinate of both of
the rectangles. Moreover, the pairs of vertices where e is a coordinate lay on the same
level set. Right: Example of rectangles that are not (e, e)-aligned, i.e., P 
�e,e Q 
�e,e R.
The pair P,Q is not (e, e)-aligned as e is not a coordinate of Q. The pair P,R is not
(e, e)-aligned as the pairs of vertices where e is a coordinate do not lay on the same
level set.

Now, we are going to define some relations on the set of rectangles; see Fig-
ure 1-right and Figure 2 for an illustration.

Definition 2. We say that two rectangles, P and R, are equivalent according
to 
 (denoted by P � Q) if there exist a, b, c, d,m, n, o, p ∈ [0, 1] such that P =
〈a, b〉 × 〈c, d〉, R = 〈m,n〉 × 〈o, p〉, and

(a, c) � (m, o) ,

(a, d) � (m, p) ,

(b, c) � (n, o) ,

(b, d) � (n, p) .

Definition 3. Let e ∈ [0, 1] be a neutral element of 
, i.e., x 
 e = e 
 x = x
for all x ∈ [0, 1]. e say that two rectangles, P and R, are (e, e)-local if there
exist b, c, d,m, n, p ∈ [0, 1] such that P = 〈e, b〉 × 〈c, d〉, R = 〈m,n〉 × 〈e, p〉. If,
moreover,

(e, c) � (m, e) , (4)

(e, d) � (m, p) , (5)

(b, c) � (n, e) (6)

then we say that P and R are (e, e)-aligned according to 
 (denoted by P 4e,e Q).

Remark 1. Less precisely, two rectangles, P and R, are (e, e)-local if e is an x-
coordinate of one and a y-coordinate of the other. Further, they are (e, e)-aligned
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0 1
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1

e

e

(x ∗ y) ∗ z

x ∗ (y ∗ z)

y x ∗ y

z

x

y

y ∗ z

Fig. 3. Correspondence between associativity of a general uninorm and equivalence of
(e, e)-aligned rectangles

if they are (e, e)-local and if those pairs of vertices where e appears lay on same
level sets (see Figure 2). Notice that the equations (4), (5), and (6), according
to the definition of the neutral element, can be written also as

c = m, (7)

d = m 
 p , (8)

b 
 c = n . (9)

Observe that, on the set of (e, e)-local rectangles, � is a subrelation of 4e,e.
Moreover, both � and 4e,e are equivalences.

The following theorem gives a characterization of the associativity of general
uninorms. The whole idea of the proof is illustrated in Figure 3.

Theorem 2. Let ∗ : [0, 1]
2 → [0, 1] be a commutative non-decreasing binary

operation with a neutral element e ∈ [0, 1]. Then the following two statements
are equivalent:

(i) ∗ is associative (and hence a uninorm),
(ii) P 4e,e R implies P � R for every pair of (e, e)-local rectangles P,R ⊂

[0, 1]
2
.

Proof. First, we prove the implication i ⇒ ii. Let ∗ be a uninorm and
b, c, d,m, n, p ∈ [0, 1] such that P = 〈e, b〉 × 〈c, d〉 and R = 〈m,n〉 × 〈e, p〉 are
(e, e)-local and (e, e)-aligned rectangles. Thus (7), (8), and (9) hold and, in or-
der to prove P � R, we have to show b ∗ d = n ∗ p. The proof is concluded by
establishing the equalities
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b ∗ d = (b ∗m) ∗ p = (b ∗ c) ∗ p = b ∗ (c ∗ p) = n ∗ p

which follow by consecutive invocation of (8), (7), the associativity of ∗, and,
finally, (9) from the left to the right in this order.

Now, we proceed with proving the implication ii ⇒ i. We are going to show
that the equality x ∗ (y ∗ z) = (x ∗ y) ∗ z will be satisfied for any x, y, z ∈ [0, 1].
Let us consider the following (e, e)-local rectangles (see Figure 3)

P = 〈e, x〉 × 〈y, y ∗ z〉 ,
R = 〈y, x ∗ y〉 × 〈e, z〉 .

The rectangles are (e, e)-aligned; indeed, the equivalences

(e, y) � (y, e) ,

(e, y ∗ z) � (y, z) ,

(x, y) � (x ∗ y, e) ,

thanks to the definition of the neutral element, hold (consult with Fig-
ure 3). Whence, by the assumption, the rectangles are also equivalent and the
equivalence

(x, y ∗ z) � (x ∗ y, z) ,

which is just another way of representing the promised associativity equation,
holds too.

4 Structure of Uninorms Given by Idempotent and
Involutive t-Norms and t-Conorms

This section introduces a result describing the structure of uninorms with idem-
potent or involutive underlying t-norms and t-conorms. We are going to describe
which functional values in the area [0, e[× ]e, 1] can a uninorm ∗ achieve if ∧∗ and
∗∨ (see (1) and (2), respectively) are given. The proof has been achieved with a
help of the web-geometric approach described above. However, as the proof is
rather long and technical, we present here only the results. Recall that the case
when both the underlying t-norm and the t-conorm are idempotent has been
described already [3,8].

The first theorem describes the situation when both the underlying t-norm
and the underlying t-conorm are involutive. See Figure 4 for an illustration.

Theorem 3. Let ∗ : [0, 1]
2 → [0, 1] be a commutative, non-decreasing binary

operation with a neutral element e ∈ ]0, 1[ such that ∧∗ resp.
∗∨, defined as in

(1) resp. (2), is an involutive t-norm resp. an involutive t-conorm. Then the
following two statements are equivalent:
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Fig. 4. A uninorm with involutive underlying t-norm and t-conorm. According to Theo-
rem 3, the only possible functional values on the sub-domain [0, e[× ]e, 1]∪ ]e, 1]× [0, e[
are given either as the minimum (left part) or as the maximum (right part) of the
arguments.

1. The operation ∗ is associative and thus an uninorm.
2. The operation ∗ satisfies

either x ∗ y = min{x, y} for all (x, y) ∈ [0, e[× ]e, 1] ∪ ]e, 1]× [0, e[ ,

or x ∗ y = max{x, y} for all (x, y) ∈ [0, e[× ]e, 1] ∪ ]e, 1]× [0, e[ .

The second theorem describes the uninorms with an involutive underlying t-
norm and an idempotent underlying t-conorm (which is always the maximum
operation). Notice that the situation with an idempotent underlying t-norm and
an involutive underlying t-conorm is just the dual case. See Figure 5 for an
illustration.

Theorem 4. Let ∗ : [0, 1]
2 → [0, 1] be a commutative, non-decreasing binary

operation with a neutral element e ∈ ]0, 1[ such that ∧∗ resp.
∗∨, defined as in

(1) resp. (2), is an involutive t-norm resp. the maximum t-conorm. Then the
following two statements are equivalent:

1. The operation ∗ is associative and thus an uninorm.
2. There exist a value b ∈ [e, 1] such that

x ∗ y =

{
min{x, y} if (x, y) ∈ [0, e[× ]e, b[ ∪ ]e, b[× [0, e[ ,
max{x, y} if (x, y) ∈ [0, e[× ]b, 1] ∪ ]b, 1]× [0, e[

and such that

either x ∗ y = min{x, y} for all (x, y) ∈ [0, e[× {b} ∪ {b} × [0, e[ ,
or x ∗ y = max{x, y} for all (x, y) ∈ [0, e[× {b} ∪ {b} × [0, e[ .
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0 1
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1

e

e

b

b

∧∗

∗∨ = max

min

min

max

max

Fig. 5. A uninorm with involutive underlying t-norm and idempotent (i.e. the max-
imum) underlying t-conorm. According to Theorem 4, there is a boundary b ∈ [e, 1]
separating the sub-domain [0, e[ × ]e, 1] ∪ ]e, 1] × [0, e[ into two sub-areas; in one the
functional values are given as the minimum and in the second the functional values are
given as the minimum of the arguments.

5 Concluding Remarks

The class of uninorms with involutive underlying t-norms and t-conorms and the
class of uninorms with involutive underlying t-norms and idempotent underlying
t-conorm (as well as the corresponding dual cases) have been investigated and
their structure has been described with a help of the web-geometric view on uni-
norms, especially by means of the Reidemeister closure condition. More precisely
speaking, for a uninorm of such a kind with a neutral element e ∈ ]0, 1[, possible
functional values have been described for the points in the area [0, e[× ]e, 1]. As
mentioned before, we have not dealt with the case when the underlying t-norm
and the t-conorm are both idempotent as this case has already been solved else-
where [3,8]. Let us remark, however, that even this result can be derived easily
using the same approach.
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Abstract. In this contribution we introduce a notion of an m-polar
aggregation operator as a generalization of aggregation operators and
bipolar aggregation operators, and we introduce the main properties of
these aggregation operators. Extensions of some (bipolar) aggregation
operators to m-polar aggregation operators are also introduced, as well
as metrics on the category space K×[0, 1] related tom-polar aggregation.

Keywords: aggregation operator, bipolar aggregation operator, Cho-
quet integral, bi-capacity.

1 Introduction

Aggregation operators has become an indispensable tool in many domains and
the field of aggregation theory is widely growing in the past years [1,2]. An aggre-
gation operator is a function working on an arbitrary number of inputs from unit
interval [0, 1], i.e., A :

⋃
n∈N

[0, 1]n −→ [0, 1]. The bipolar aggregation started to be

interesting in seventies [12,17] and the need for bipolar aggregation operators is
still growing. Among several bipolar aggregation operators recall symmetric and
asymmetric Choquet integral [3,4,18,19], their generalization used in cumulative
prospect theory [22], symmetric maximum and minimum [5]. However, defini-
tion of a bipolar aggregation operator was introduced for the first time in [14].
The bipolar scale allows to deal with positive, supporting information as well as
negative, excluding one. Several bipolar concepts have been developed recently,
among others recall bipolar fuzzy logic and bipolar fuzzy set theory [24].

Our work in the field of the automatic text analysis for affect or other qualita-
tive indicators brought us to the need of further extension of bipolar aggregation.
Namely, instead of two categories positive/negative our approach requires more
categories. Therefore the aim of this contribution is the introduction of m-polar
aggregation operators and their basic properties.

As an example assume the classification of text documents into m different
categories 1, . . . ,m based on the words (phrases) contained in the document. In
this example we focus just to a specific collection of important words (phrases)
that are contained in some dictionary D. Each word (phrase) w ∈ D is assumed
to be important for exactly one of the given categories. We focus to such extremal
words simply because it makes a good distinction between categories and it

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 379–387, 2012.
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keeps the dictionary D short enough. To each w ∈ D we assign two values:
kw ∈ {1, . . . ,m} denotes the category for which w is important and xw ∈ [0, 1]
denotes a degree how much is the word central for the category kw. The degree
xw is usually high enough, for example xw = 1 means that word(phrase) w
appears only in text documents from category kw.

Each text document d can be expressed as a collection of words(phrases)
contained in it, i.e., d = (w1, . . . , wn). Since we are interested only in words
from the dictionary D we transform the vector (w1, . . . , wn) into the vector
(v1, . . . , vn), where

vi =

{
(kwi , xwi) if wi ∈ D

0 else.

Now we want to aggregate pairs vi together in order to produce one overall
score pair (k, x) which will show us that document d belongs to category k with
centrality x. This is where the aggregation on m-polar inputs take place.

Note that related concepts to m-polar aggregation are the Choquet integral
with respect to a k-ary capacity [9,10], multiple-output Choquet integral models
and Choquet-integral-based evaluations by fuzzy rules [20,21]. It appears that
there is a need for general theory of m-polar aggregation operators.

2 m-Polar Aggregation Operators

We will start with definitions of an aggregation operator and a bipolar aggrega-
tion operator [2,14].

Definition 1. (i) A mapping A :
⋃
n∈N

[0, 1]n −→ [0, 1] is called an aggregation

operator if
(A1) A is non-decreasing, i.e., for any n ∈ N, x,y ∈ [0, 1]n, x ≤ y it holds

A(x) ≤ A(y);

(A2) 0, 1 are idempotent elements of A, i.e., for any n ∈ N, A(0, . . . , 0︸ ︷︷ ︸
n-times

) = 0

and A(1, . . . , 1︸ ︷︷ ︸
n-times

) = 1;

(A3) for n = 1, A(x) = x for all x ∈ [0, 1].

(ii) A mapping B :
⋃
n∈N

[−1, 1]n −→ [−1, 1] is called a bipolar aggregation oper-

ator if
(B1) B is non-decreasing, i.e., for any n ∈ N, x,y ∈ [−1, 1]n , x ≤ y it holds

B(x) ≤ B(y);

(B2) 0, 1,−1 are idempotent elements of B, i.e., for any n ∈ N, B(0, . . . , 0︸ ︷︷ ︸
n-times

) =

0, B(1, . . . , 1︸ ︷︷ ︸
n-times

) = 1 and B(−1, . . . ,−1︸ ︷︷ ︸
n-times

) = −1;

(B3) for n = 1, B(x) = x for all x ∈ [−1, 1] .
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In the case of an aggregation operator, i.e., without polarity, all inputs belong
just to one category, i.e., all inputs are non-negative. In the bipolar case, the
inputs already belong to two categories: non-negative and non-positive, while
0 is something in between, i.e., it belongs to both categories. Bipolar inputs
can be taken in the following way: positive input, for example 0.3, is in fact
input composed of two parts (+, 0.3), negative input, for example −0.5 can be
similarly represented as (−, 0.5). In the following we will extend the number
of categories to any natural number m and we will deal with the set of input
categories K = {1, . . . ,m}.

Definition 2. Let m ∈ N and let K = {1, . . . ,m} be the set of m categories.
Assume the input pairs of the form (k, x), with k ∈ K, x ∈ ]0, 1] and a neutral
input 0 ∈ R (which belongs to each category), with convention 0 = (k, 0) for all
k ∈ K. A mapping M :

⋃
n∈N

(K × [0, 1])n −→ K × [0, 1], will be called an m-polar

aggregation operator if

(M1) M is non-decreasing, i.e, if xi ≤ yi then for

M((k1, x1), . . . , (ki−1, xi−1), (ki, xi), (ki+1, xi+1), . . . , (kn, xn)) = (k, x)

M((k1, x1), . . . , (ki−1, xi−1), (ki, yi), (ki+1, xi+1), . . . , (kn, xn)) = (p, y)

we have one of the following cases: (k = p = ki) ∧ (x ≤ y), or (k = p �=
ki) ∧ (x ≥ y), or (k �= p ∧ k �= ki) ∧ (p = ki). Note that in the case when
min(x, y) = 0 we assume the representation where k = p.

(M2) M(0, . . . , 0︸ ︷︷ ︸
n-times

) = 0 and M((k, 1), . . . , (k, 1)) = (k, 1) for all k ∈ K;

(M3) for n = 1, M((k, x)) = (k, x) for all (k, x) ∈ K × [0, 1].

The space K × [0, 1] will be called a category space. For standard aggregation
operators we get K = {1} and therefore the category specification can be omit-
ted. In a bipolar case K = {1, 2} and we can identify for example positive inputs
with the first category and negative inputs with the second category, i.e., for 0.3
and −0.5 we have 0.3 ∼ (1, 0.3) and −0.5 ∼ (2, 0.5). After some computations,
the following proposition can be proved.

Proposition 1. For m = 1 m-polar aggregation operator is an aggregation op-
erator. For n = 2 m-polar aggregation operator is a bipolar aggregation operator.

In the following we will assume K = {1, . . . ,m}.

Example 1. (i) The basic example of an m-polar aggregation operator is the
oriented maximum operator which is for x = ((k1, x1), . . . , (kn, xn)) with
ki ∈ K, xi ∈ [0, 1] given by

omax((k1, x1), . . . , (kn, xn)) = (clx(k1, . . . , kn),max(x1, . . . , xn))
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if {ki | xi = max(x1, . . . , xn)} = {k} for some k ∈ K (which means that
all maximal inputs are from the same category) with clx(k1, . . . , kn) = ki if
xi = max(x1, . . . , xn), in all other cases omax((k1, x1), . . . , (kn, xn)) = 0.
Note that in the bipolar case for two inputs the oriented maximum coincide
with the symmetric maximum defined by Grabisch [7]. For more inputs it
coincides with the splitting rule (see [8,11]) defined on the bipolar scale by

SPL(x1, . . . , xn) = (

n∨
i=1

x+
i ) 
 (

n∨
i=1

x−i ),

where 
 stands for the bipolar symmetric maximum and there is x+ =
(max(0, x1), . . . ,max(0, xn)) and x− = (max(0,−x1), . . . ,max(0,−xn));

(ii) Projection to i-th coordinate is an m-polar aggregation operator.

(iii) For x = ((k1, x1), . . . , (kn, xn)) with ki ∈ K, xi ∈ [0, 1] let

xi = ((i, d1), . . . , (i, dn))

for i = 1, . . . ,m, where dj = xj if j-th input belong to i-th category and
dj = 0 otherwise. Then the above is a decomposition of x to m parts
according to categories (which in the bipolar case corresponds to positive
x+ and negative x− part of the input).
Generalizing the bipolar case [13,14], an ordinal sum construction for m-
polar aggregation operators can be introduced as follows: let Ak be an aggre-
gation operator for all k ∈ K and let ∗ :

⋃
n∈N

(K× [0, 1])n −→ K× [0, 1] be an

m-polar aggregation operator. Then the operator M∗ :
⋃

n∈N
(K× [0, 1])n −→

K × [0, 1], given by

M∗((k1, x1), . . . , (km, xm)) =

{
(k,Ak(x)) if ki = k for all i

∗(A1(x1), . . . , Am(xm)) else,

is an m-polar aggregation operator, which will be called m-polar ∗-ordinal
sum of aggregation operators.

(iv) In the case that the set K is ordered the m-polar aggregation operator called
the ordered category projection can be assumed. In such a case, without any
loss of generality, assume that category 1 is the most important, category 2 is
the second most important and so on. Let Ak be an aggregation operator for
all k ∈ K. Then the m-polar aggregation operator OP :

⋃
n∈N

(K×[0, 1])n −→

K × [0, 1] given by

OP ((k1, x1), . . . , (kn, xn)) = (k,Ak(xk)),

where k = min(k1, . . . , kn), with convention 0 = (m, 0), will be called an
ordered category projection.
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3 Properties of Multi-polar Aggregation Operators

In this section we will discuss the basic properties of m-polar aggregation oper-
ators. First we will start with the introduction of a metric on the category space
K × [0, 1].

3.1 Metric on K × [0, 1]

Definition of a metric onK×[0, 1] is important for several properties, for example
for definition of continuity.

Definition 3. Let d : (K × [0, 1])2 −→ R+
0 be given by

d((k1, x), (k2, y)) =

{
|x− y| if k1 = k2

x+ y else.

Then d will be called an oriented distance on K × [0, 1].

Proposition 2. Let d : (K×[0, 1])2 −→ R+
0 be an oriented distance on K×[0, 1].

Then d is a distance, i.e.,

(i) d((k1, x), (k2, y)) ≥ 0 for all (k1, x), (k2, y) ∈ K × [0, 1];

(ii) d((k1, x), (k2, y)) = 0 if and only if k1 = k2 and x = y;

(iii) d((k1, x), (k2, y)) = d((k2, y), (k1, x)) for all (k1, x), (k2, y) ∈ K × [0, 1];

(iv) d((k1, x), (k3, z)) ≤ d((k1, x), (k2, y)) + d((k2, y), (k3, z)) for all
(k1, x), (k2, y), (k3, z) ∈ K × [0, 1].

One can imagine the domain K × [0, 1] and the above defined distance on it as
m paths with the common origin, where no shortcuts outside paths are allowed.
Then distance between two points is the distance one should walk to get from
the first point to the second point.

3.2 Properties of m-Polar Aggregation Operators

Among the most important properties of aggregation operators we will begin
with positive homogeneity and continuity. These two properties are important
in investigation of fuzzy m-polar integrals, especially for the m-polar Choquet
integral.

Definition 4. Let M :
⋃
n∈N

(K× [0, 1])n −→ K× [0, 1] be an m-polar aggregation

operator. Then

(i) M is positive homogenous if for all c ∈ [0, 1] there is M((k1, c·x1), . . . , (kn, c·
xn)) = (k, c · x), where M((k1, x1), . . . , (kn, xn)) = (k, x).
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(ii) M is continuous if for all i ∈ {1, . . . , n} and for all ε > 0 there exists a
δ > 0 such that if d((ki, xi), (qi, yi)) < δ then for

x = ((k1, x1), . . . , (ki−1, xi−1), (ki, xi), (ki+1, xi+1) . . . , (kn, xn))

and

y = ((k1, x1), . . . , (ki−1, xi−1), (qi, yi), (ki+1, xi+1) . . . , (kn, xn))

we have
d(M(x),M(y)) < ε.

(iii) M is associative if for all i ∈ {1, . . . , n} there is M((k1, x1), . . . , (kn, xn)) =
M((k, y), (q, z)), where (k, y) = M((k1, x1), . . . , (ki, xi)) and
(q, z) = M((ki+1, xi+1), . . . , (kn, xn)).

(iv) M is commutative (symmetric) if the value of M((k1, x1), . . . , (kn, xn)) does
not depend on the order of inputs.

Definition 5. Let M :
⋃
n∈N

(K× [0, 1])n −→ K× [0, 1] be an m-polar aggregation

operator. Then the element (k, x) ∈ K × [0, 1] is called

(i) a k-category neutral element of M if x is a neutral element of an aggregation
operator A given by

A(x1, . . . , xn) = M((k, x1), . . . , (k, xn)).

(ii) a neutral element of M if

M((k1, x1), . . . , (k, x), . . . , (kn, xn)) = M((k1, x1), . . . , (kn, xn))

for all ki ∈ K, xi ∈ [0, 1].

After introducing associativity, commutativity and neutral element of an m-
polar aggregation operator we are able to define an m-polar t-norm. Natural
requirement is that if all inputs belong just to one category then the m-polar
t-norm is just an ordinary t-norm. However, monotonicity connected with above
mentioned property imply the following lemma.

Lemma 1. Let M :
⋃

n∈N
(K × [0, 1])n −→ K × [0, 1] be an m-polar aggregation

operator such that M((k, x), 0) = 0 = M(0, (k, x)) for all k ∈ K, x ∈ [0, 1]. Then
M((k1, x1), (k2, x2)) = 0 for all k1, k2 ∈ K, x1, x2 ∈ [0, 1], k1 �= k2.

Therefore we are able to give the following definition.

Definition 6. A mapping T :
⋃

n∈N
(K×[0, 1])n −→ K×[0, 1] is an n-ary m-polar

t-norm if it is given by

T ((k1, x1), . . . , (kn, xn)) =

{
Tk(x1, . . . , xn) if ki = k for all i

0 else,

where Tk is a standard t-norm.
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Recall that YinYang bipolar t-norms were defined in [24], however, in our case
bipolar t-norm refer to a t-norm defined on a different domain than in [24].

In the bipolar case, bipolar t-norms are just linear transformations of null-
norms on [0, 1]. Similarly, m-polar t-conorms can be defined as commutative,
associative, m-polar aggregation operators with neutral element 0 such that

C((k, x1), . . . , (k, xn)) = (k, Ck(x1, . . . , xn)),

where Ck is an ordinary t-conorm for k ∈ K. In the bipolar case, bipolar t-
conorms are just linear transformations of uninorms on [0, 1] which confirms the
connection between uninorms and bipolar aggregation (see for example [23]).
Assume a ∗-ordinal sum from Example 1, where ∗ is an ordered category projec-
tion from the same example, and Ak is a t-conorm for all k ∈ K. In the bipolar
case {1, 2}- and {2, 1}-ordered category projections corresponds to maximal and
minimal uninorms, i.e. such that U(x, y) = max(x, y) (U(x, y) = min(x, y)) for
all x, y ∈ [0, 1], x ≤ e ≤ y, where e is a neutral element of the uninorm U.
Here {1, 2} ({2, 1}) denotes the order of importance of categories. Similarly, in
m-polar case such an ordinal sum yield an m-polar t-conorm.

4 Conclusions

In this contribution we have defined m-polar aggregation operators and their ba-
sic properties. We expect application of our results in all domains where (bipolar)
aggregation in applied and where more category classification is needed.

Our future work [16] is dedicated to definition of several m-polar Choquet
integrals (extending bipolar Choquet integrals [3,4,19,22]), m-polar balancing
Choquet integral (extending balancing Choquet integral [15]), Choquet integral
with respect to a multi-capacity (extending the concept of bi-capacity [6]) and
study of their properties. Note that the multi-capacity is defined as follows:

Let Q = {(E1, . . . , Em) | Ei ∩ Ej = ∅,
⋃m

i=1 Ei ⊆ X}. Then the function
v : Q −→ K × [0, 1] is a normed multi-capacity if

(i) v(∅, . . . , ∅) = 0, v(∅, . . . , X︸︷︷︸
i-th

, . . . , ∅) = (i, 1);

(ii) if Ei ⊆ Fi then for
v(E1, . . . , Ei, . . . , Em) = (k, x) and v(E1, . . . , Fi, . . . , Em) = (q, y) we have
one of the following options: k = q = i ∧ x ≤ y or k �= i = q or k = q �=
i ∧ x ≥ y.

We will explore related concepts of Choquet integrals defined in [9,10,20,21]:
the Choquet integral with respect to a k-ary capacity, multiple-output Choquet
integral models and Choquet-integral-based evaluations by fuzzy rules.
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Abstract. This paper deals with methods for ranking uncertain quan-
tities in the setting of imprecise probabilities. It is shown that many
techniques for comparing random variables or intervals can be general-
ized by means of upper and lower expectations of sets of gambles, so as
to compare more general kinds of uncertain quantities. We show that
many comparison criteria proposed so far can be cast in a general form.

1 Introduction and Motivation

In decision-making, one is interested by two, not necessarily related questions:
on the one hand, one may wish to know if a decision is better than another; on
the other hand it is also important to determine whether a decision is good or
not, per se. So given a set of potential actions A, a preference relation � on A
and a set D of desirable actions must be obtained. An action is to be viewed as
a mapping from a state space Ω to a set of consequences C, equipped with a
complete preordering relation ≥ expressing that one consequence is better than
another. This can be done by a utility mapping u : C → L, where L is a totally
ordered value scale. Then, the basic comparison between actions is the Pareto
ordering, whereby a ≥P b is defined as usual: u(a(ω)) ≥ u(b(ω)), ∀ω ∈ Ω and
u(a(ω)) > u(b(ω)) for at least one state. In contrast, desirability underlies a
bipolar view of the value scale L, that is, there exists 0 ∈ L where λ > 0 is
a rating with a positive flavor. An example of neutral action is then precisely
such that u(a0(ω)) = 0, ∀ω ∈ Ω. Clearly, one should have that {a, a >P 0} ⊂ D
while {a, 0 >P a}∩D = ∅. Additional conditions may be required, depending on
the nature of the scale L. In order to define a more refined preference ordering
of actions than the Pareto-ordering, one needs to express whether the benefits
and inconvenients of one action can be counterbalanced or not by the benefits
and inconvenients of another action. In this view, we may retain in favor of a its
positive sides that are not counterbalanced by similar assets of b and negative
sides of b that are not present with a. This can take the form of a difference-like
internal operation between two actions a and b yielding a third action a�b, such
that a � b(ω) > 0 if and only if a(ω) > b(ω). Then, the preference relation of a
over b is defined by the desirability of a � b:

a � b ⇐⇒ a � b ∈ D.
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In other words, a is preferred to b if the losses that a may cause are not worse
than those caused by b and a has more assets than b.

Walley [20] follows this approach: he defines the desirable set D from first
principles and actions are directly understood as gambles X : Ω → R the latter
corresponding to earning (if X(ω) > 0) or losing (if X(ω) < 0) a certain amount
of money, and there is no utility function per se. The gamble is thus assumed
to be a primitive object whose desirability is stable under sums and positive
scalar multiplication. There is no distortion of the scale by a utility function.
Uncertainty units are measured on the bipolar value scale R, when restricting
to Boolean gambles (that are all desirable since provoking no loss) encoding
events: A : Ω → {0, 1} ⊆ R. The lower probability P (A) is defined as the
least value r ∈ R such that A outperforms the constant act r̃(r) = r, that is
P (A) = sup{r : A − r ∈ D}.

The issue of comparing uncertain variables is at the heart of choice under
uncertainty. In this paper we consider various comparison criteria in the settings
of Savage, Walley and related authors [2]. We show that all of them take the
form of checking whether X �Y is desirable. We show it takes the form of some
function of the lower expectation of a quantity g(X, Y ) being positive, where
g : R2 → R can be written as g(x, y) = f(x, y) − f(y, x), with f increasing in
the first component and decreasing in the second one. The paper is organised as
follows.

In Section 2, we review known notions of dominance in the (classical) proba-
bilistic setting. We show that all of these orderings can be expressed by means
of the formula EP [g(X, Y )] ≥ 0. Then we consider the case where uncertainty is
modelled by mere intervals. In Section 3, we show that some orderings from the
imprecise probability literature can be seen as extensions of the previous ones.
In particular, Denoeux [7] extends first stochastic dominance to the context
of random sets and Troffaes [19] surveys several extensions of the expectation
dominance in the context of credal sets. We also recall extensions of statistical
dominance to the general context of upper and lower probabilities [15] and also
to the general context of imprecise probabilities [4]. In Section 4, we propose
a general formula that encompasses the above criteria. It is closely related to
the formula EP [g(X, Y )] ≥ 0 proposed in Section 2. Finally, we provide some
specific comments about the special cases of closed intervals and fuzzy intervals,
respectively. Many interval and fuzzy ranking methods can be seen as special
cases of preference relations between gambles.

2 Comparing Random Variables v.s. Ill-Known
Quantities

The most elementary forms of uncertainty for gambles is when the state of the
world is known probabilistically (for instance there is some statistical evidence
on the variability of X(ω)) or when the information is incomplete (if ω occurs
we only know that X(ω) ∈ E ⊂ R.) This section reviews different stochastic
orderings in the literature, contrasts them with interval orderings, and puts
them in a single format.
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2.1 Stochastic Orderings

Consider two random variables X : Ω → R and Y : Ω → R defined on the same
probability space (Ω,F , P ).

There are three main kinds of stochastic orderings in the literature:

1. First order stochastic dominance [12]: X dominates Y if P (X > x) ≥ P (Y >
x), ∀x ∈ R, or equivalently, when P1(x,∞) ≥ P2(x,∞), ∀x ∈ R, where
P1 and P2 respectively denote the probability measures induced by each
variable. We will denote it X ≥1st Y .

2. Dominance in the sense of expected utility [18]: Given an increasing function
u : R → R, X dominates Y wrt u if EP (u(X)) ≥ EP (u(Y )). We will denote
it X ≥u Y . It is well known that X ≥1st Y if and only if X ≥u Y , for
all increasing utility functions u : R → R. A special case is Dominance in
Expectation: X dominates Y if EP (X) ≥ EP (Y ). This relation represents
the particular case of the previous one, when the utility function u is the
identity function u(x) = x, ∀x ∈ R.

3. Statistical preference [5]: X is statistically preferred to Y if P (X > Y ) +
0.5P (X = Y ) ≥ 0.5. It is clear that the above inequality is equivalent to
P (X > Y ) ≥ P (Y > X). It is also related to the sign of the median of
the difference X − Y . In fact, in [4] the following sequence of implications is
established:

Me(X−Y ) > 0 ⇒ P (X > Y ) > P (Y > X) ⇒ P (X > Y ) ≥ P (X > Y ) ⇒ Me(X−Y ) ≥ 0.

2.2 A Common Formulation

All the above stochastic orderings can be put into a common formulation. Con-
sider a function g : R2 → R increasing (not necessarily strictly increasing) in the
first component and decreasing (again, non necessarily strict) in the second one.
All the above orderings can be expressed as follows1:

X is preferred to Y if EP [g(X, Y )] ≥ 0, (1)

Furthermore, we will observe that, in all the cases, the function g can be ex-
pressed as a difference: g(x, y) = f(x, y) − f(y, x), where f is increasing in
the first component and decreasing in the second one. Let us also consider the
“swap mapping” sw:R2 → R2 defined as sw(x, y) = (y, x), ∀ (x, y) ∈ R2. Then
g : R2 → R is the mapping g = f − f ◦ sw. Therefore, all these criteria can be
equivalently written (due to the linearity of the expectation) as:

X is preferred to Y if EP [f(X, Y )] ≥ EP [f(Y, X)]. (2)

Below, we provide the specific expression for the function g(x, y) = f(x, y) −
f(y, x) for each of the above orderings. Notice that f is constant in the second
1 Capital letters are used for random variables and lower-case letters are used for

numbers in the real line.
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component for the first three preference relations (first stochastic dominance,
dominance wrt a utility function and dominance of expectation). So, in those
cases, it can be identified with an increasing utility function u : R → R, such
that u(x) = f(x, y), ∀ y ∈ R, x ∈ R.

1. First order stochastic dominance: Consider the function gx0 : R2 → R de-
fined as

gx0(x, y) = ux0(x) − ux0(y), where ux0(x) = 1x>x0 =

{
1 if x > x0

0 otherwise.
(3)

The mapping fx0(x, y) = ux0(x) is increasing in the first component and it
is constant in the second one. Therefore, gx0(x, y) = fx0(x, y) − fx0(y, x) is
increasing in the first component and decreasing in the second one. Further-
more, we can easily check that X stochastically dominates Y (first order) if
and only if

EP [gx0(X, Y )] ≥ 0, ∀x0 ∈ R.

2. Dominance wrt an increasing utility function: For each specific utility func-
tion u : R → R, we will consider the functions fu : R2 → R and gu : R2 → R
respectively defined as fu(x, y) = u(x) and gu(x, y) = fu(x, y) − fu(y, x) =
u(x) − u(y), ∀ (x, y) ∈ R2. Then, we can easily check that X dominates Y
wrt u when EP (gu(X, Y )) ≥ 0. Dominance of expectation is retrieved using
u(x) = x in the above expressions.

3. Statistical preference: Consider the function f : R2 → R defined as

f(x, y) = 1x>y =

{
1 if x > y

0 otherwise.
(4)

Now, let us define g as the difference g(x, y) = f(x, y)−f(y, x). We easily ob-
serve that EP [f(X, Y )] = P (X > Y ). Therefore, X is statistically preferred
to Y if and only if EP [g(X, Y )] = EP [f(X, Y ) − f(Y, X)] ≥ 0.

2.3 Comparing Ill-Known Quantities Modeled by Real Intervals

Let ω ∈ Ω be the state of the world and let us consider the respective outcomes
of the gambles X and Y , X(ω) = x and Y (ω) = y, in this case. Suppose that
both of them are ill-perceived. The available incomplete information about them
is respectively represented by the disjunctive intervals [a, b] and [c, d]. Various
modes of comparison of intervals were reviewed in Aiche and Dubois [1]. These
comparisons rely in the comparison of the endpoints:

– [a, b] ≤−
+ [c, d] if a ≤ d ; [a, b] ≤−

− [c, d] if a ≤ c.
– [a, b] ≤+

+ [c, d] if b ≤ d; [a, b] ≤+
− [c, d] if b ≤ c.

The following implications are obvious:

[a, b] ≤+
− [c, d] ⇒ [a, b] ≤−

− [c, d] ⇒ [a, b] ≤−
+ [c, d]; (5)
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[a, b] ≤+
− [c, d] ⇒ [a, b] ≤+

+ [c, d] ⇒ [a, b] ≤−
+ [c, d]; (6)

[a, b] ≤+
− [c, d] ⇒ ¬([a, b] <−

+ [a, b]). (7)

These relations are known in the literature:

– The relation ≤+
− is an interval order (Fishburn [10]). In the case of indepen-

dent random variables X and Y , P (X > Y ) = 1 is generally equivalent to
Support(Y ) <+

− Support(X).
– ≤−

− is the maximin criterion; ≤+
+ is the maximax criterion

– The simultaneous use of ≤−
− and ≤+

+: [a, b] ≤lat [c, d] if and only if [a, b] ≤−
−

[c, d] and [a, b] ≤+
+ [c, d]. This is the canonical order induced by the lattice

structure of intervals, equipped with the operations max and min extended
to intervals:
[a, b] ≤lat [c, d] ⇔ max([a, b], [c, d]) = [c, d] ⇐⇒ min([a, b], [c, d]) = [a, b] (we
call it lattice interval order).

Finally, one way of comparing intervals consists in choosing a number in each
interval and to compare these numbers. The selection of representatives of the
intervals can be based on some pessimism index α ∈ [0, 1] reflecting the atti-
tude of a decision-maker. This is the well-known Hurwicz criterion, such that
if [a, b] ≤α [c, d] means αa + (1 − α)b ≤ α c + (1 − α)d. It is obvious that
[a, b] ≤lat [c, d] ⇐⇒ [a, b] ≤α [c, d], ∀α ∈ [0, 1]. Note that the Hurwicz order
of intervals plays the same role with respect to the lattice interval order as the
ranking of random variables by their expected utility with respect to stochastic
dominance.

These orderings again take the form g(X, Y ) ≤ 0 for one or several functions g.

– For the interval ordering, just let g+
−(X, Y ) = inf[aX , bX ] � [aY , bY ] = aX −

bY where � is the interval difference. For its dual ≤−
+, then g−+(X, Y ) =

sup[aX , bX ] � [aY , bY ] = bX − aY

– For the maximin and maximax, just let g(X, Y ) = inf[aX , bX ] − inf[aY , bY ]
and ḡ(X, Y ) = sup[aX , bX ] − sup[aY , bY ], respectively

– For the lattice ordering, the two above conditions must be met.
– For the Hurwicz criterion: gα(X, Y ) = αg(X, Y ) + (1 − α)ḡ(X, Y ).

The latter is not equivalent to the Hurwicz-like comparison of [aX , bX ]� [aY , bY ]
to 0. Indeed, since [aX , bX ] � [aY , bY ] = [aX − bY , bX − aY ], the latter reads:

g�α (X, Y ) = αg+
−(X, Y )− (1−α)g−+(X, Y ) = α(aX − bY )+ (1−α)(bX − aY ) ≤ 0

instead of α(aX − aY ) + (1 − α)(bX − bY ) ≤ 0. In fact g�α (X, Y ) ≥ 0 reads
αaX + (1 − α)bX ≥ (1 − α)aY + αbY . So, if α < 1/2, this is a weakening of the
interval ordering, while if α > 1/2, this is a strengthening of its negation. Note
that g�α (X, Y ) − gα(X, Y ) = (bY − aY )(1 − 2α) so that the relative strength of
these criteria depends on the degree of pessimism α and the two criteria coincide
for a neutral attitude (α = 1/2).
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3 Preference Relations within Imprecise Probability
Theory

In the imprecise probabilities setting, a preference relation for pairs of variables
(or gambles) can be understood in two different ways:

W1. The expert initial information is assessed by means of comparative pref-
erence statements between gambles and, afterwards, a set of joint feasible
linear previsions or, equivalently, a pair of lower and upper previsions on
the set of gambles is derived from it. This is the approach followed in the
general theory of imprecise probabilities (see [3,4,20]).

W2. A pair of lower and upper previsions is considered on the class of gambles.
A preference relation based on it is considered. Such relation is closely
related to the notion of “almost preference” in Walley’s framework. This is
the approach considered in [7,15,16,19], for instance.

Here, we will consider the second approach.

3.1 Generalizations of First Stochastic Dominance

Denoeux [7] has generalized the notion of first stochastic dominance to the case
of random intervals. Let m1 and m2 respectively denote the (generalized) basic
mass assignments whose focal elements are closed intervals of the real line, cor-
responding to sets Fj , j = 1, 2. Denote their belief functions by Bel1 and Bel2,
respectively, and their (dual) plausibility functions by Pl1 and Pl2:

Belj(A) =
∑

[a,b]∈Fj,[a,b]⊆A

mj([a, b]) and P lj(A) =
∑

[a,b]∈Fj,[a,b]∩A�=∅
mj([a, b]), j = 1, 2

Four generalizations of first stochastic dominance are provided in [7]:

– m1 ≤(−,+)
1st m2 if Bel1(x,∞) ≤ Pl2(x,∞), ∀x ∈ R.

– m1 ≤(−,−)
1st m2 if Bel1(x,∞) ≤ Bel2(x,∞), ∀x ∈ R.

– m1 ≤(+,+)
1st m2 if Pl1(x,∞) ≤ Pl2(x,∞), ∀x ∈ R.

– m1 ≤(+,−)
1st m2 if if Pl1(x,∞) ≤ Bel2(x,∞), ∀x ∈ R.

When, in particular, both families of focal elements are singletons (n = m =
1), we easily observe that each of the four above relations reduces to each of
the interval comparisons considered in Subsection 2.3. In contrast, when the
endpoints of every focal interval coincide, all the four above criteria coincide
with the criterion of first stochastic dominance considered in Subsection 2.1.

3.2 Generalizations of Expectation Dominance

In [14,19], several strategies to find optimal decisions within the imprecise prob-
abilities setting are surveyed. When the underlying preference criterion induces
a total ordering, the optimal decision is unique. Otherwise, it may induce a set
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of optimal decisions. In this subsection, we will list the preference criteria asso-
ciated to those optimal decision strategies. So, for each particular criterion, we
refer to the preference criterion itself instead of referring to the optimal decision
associated to it (as it is done in [14,19]). All the criteria listed in this subsection
extend the dominance of expectation. Let us first introduce some notation. Con-
sider a set of gambles K (bounded mappings from Ω to R.) In agreement with
[19], we will assume that all the gambles in K are measurable wrt the field F
and a pair of dual coherent lower and upper previsions P and P defined on K.
They represent a credal set P (a closed convex set of probability measures) on
F , in the sense that:

P = {P additive probability : P ≥ P} = {P additive probability : P ≤ P}

and P = inf P and P = supP . Let us denote by EP and EP the natural
extensions of P and P , respectively, to the class of all F -measurable gambles,
i.e.:

EP (Z) = inf{EP (Z) : P ∈ P}, and EP (Z) = sup{EP (Z) : P ∈ P}.

Consider now a pair of F -measurable gambles (or random variables) X : Ω → R
and Y : Ω → R.

1. Maximin criterion ([11]): it consists in replacing the expectation with the
lower expectation. X is preferred to Y if EP (X) ≥ EP (Y ). It is a total
ordering.

2. Maximax criterion ([17]): it consists in replacing the expectation with the
upper expectation. X is preferred to Y if EP (X) ≥ EP (Y ). It is also a total
ordering.

3. Hurwicz criterion ([13]): it considers a pessimistic index α ∈ [0, 1]. According
to it, X is preferred to Y if αEP (X) + (1 − α)EP (X) ≥ αEP (Y ) + (1 −
α)EP (Y ). It is also a total ordering.

4. Interval dominance ([21]): X is said to be preferred to Y if EP (X) ≥ EP (Y ).
(It does not induce a total ordering.)

5. Maximality: EP (X−Y ) ≥ 0. It coincides with the almost preference relation
considered by Walley [20]. (It does not induce a total ordering.)

6. E-admissibility: X is preferred to Y if there exists at least one probability
P ∈ P such that EP (X) ≥ EP (Y ). (It does not induce a total ordering.)

7. Interval extension of expectation preference: X is preferred to Y if EP (X) ≥
EP (Y ) and EP (X) ≥ EP (Y ). In other words, if the maximum of the in-
tervals [EP (X), EP (X)] and [EP (Y ), EP (Y )] (wrt interval-arithmetics) co-
incides with [EP (X), EP (X)]. (It does not induce a total ordering.)

Implication Relations. We can straightforward obtain that:

– [1 and 2] ⇔ 7 ⇔ [3 is fulfilled for every α ∈ [0, 1]].
– 4 ⇒ 1, 2, 3, and 7.
– 5 ⇒ 6.
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Furthermore, given two arbitrary gambles, the following inequality can be easily
checked [20]:

EP (X) − EP (Y ) ≤ EP (X − Y )

Therefore, the implication 4 ⇒ 5 also holds. However, under several different
independence assumptions EP (X − Y ) coincides with EP (X) − EP (Y ) (see [6]
for a detailed list). Therefore, under such assumptions, interval dominance is
equivalent to maximality dominance.

3.3 Generalizations of Statistical Preference

Two different generalizations of the notion of statistical preference to convex
probability sets P were introduced in some previous works:

– Combining statistical preference and interval ordering [15,16]: X is said to
dominate Y when 2

P (X > Y ) ≥ P (Y ≥ X). (8)

– Signed-preference [4]. The approach followed there to introduce
signed-preference is W1. Thus, to relate that generalization with the present
one, we will refer here to the notion of almost- signed-preference. X is said
to be almost-signed-preferred to Y when EP (1X>Y − 1Y >X) ≥ 0.

In the special case where P defines mere intervals for X and Y , Eq. (8) reduces
to interval ordering ≥−

+. A different approach considers intervals as uniform dis-
tributions over them. The statistical preference criterion has been particularized
to this case, in order to define a total ordering over the family of closed intervals
in several works (see [15,16], for instance).

4 A General Common Expression of Preference between
Gambles

Most of the preference relations reviewed in Subsections 3.2 and 3.3 can be
expressed as particular cases of one of the following preference relations, which
respectively generalize Eqs (1) and (2):

Eμ[g(X, Y )] ≥ 0, with μ ∈ {P , P} (9)

Eμ1 [f(X, Y )] ≥ Eμ2 [f(Y, X)], with μ1, μ2 ∈ {P, P} (10)

In fact, using the mappings f(x, y) = x and g = f − f ◦ sw defined in Subsection
2.2 for comparing expectations, if we choose:

– the set function μ = P and Eq. (9), we get the maximality criterion.
– the set functions μ1 = μ2 = P , and Eq. (10), we get the maximin criterion.

2 In this expression, X > Y represents the subset {ω ∈ Ω : X(ω) > Y (ω)}.
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– the set functions μ1 = μ2 = P , and Eq. (10), we get the maximax criterion.
– the set functions μ1 = P and μ2 = P , and Eq. (10), we get the interval-

dominance criterion.

Considering the mappings f(x, y) = 1x>y and g = f − f ◦ sw defined in Eq. (4),
if we choose:

– the set function μ = P and Eq. (9), we get the almost-signed preference
relation.

– the set functions μ1 = P and μ2 = P , and Eq. (10), we get the criterion
introduced in [15,16].

In this section, we try to encompass generalizations of the notion of first stochas-
tic dominance (Subsection 3.1) as well.

4.1 General Formulation

Eqs (9) and (10) generalize most of the preference methods reviewed in Sub-
section 3.2 and the two methods considered in Subsection 3.3. But they do not
generalize the criteria reviewed in Subsection 3.1. This is due to the fact that
the formulation followed in Subsection 3.1 (taken from [7]) is a bit different.
There, a family of probability measures on R2 is considered. On the contrary, a
family of probability measures P on Ω and a random vector (X, Y ) : Ω → R2 is
considered in Subsections 3.2 and 3.3, following the nomenclature of [4,15,16,19].

As we will clarify below, most of those preference criteria reviewed in Sections
2 and 3 can be encompassed into one of the two following forms of dominance
criteria. Let us consider a set of probability measures Q on a field G ⊆ ℘(R2)
and the mapping g = f − f ◦ sw, where f : R2 → R is increasing in the first
component and decreasing in the second one, and sw is the swap mapping.

1. First form: The first component is said to dominate the second one when:

Eμ(g) ≥ 0, where μ ∈ {Q, Q} (11)

2. Second form: The first component is said to dominate the second one when:

Eμ1(f) ≥ Eμ2(f ◦ sw), where μ1, μ2 ∈ {Q, Q, } (12)

where Q and Q respectively denote the lower and upper envelopes of the set Q,
Q = inf Q and Q = supQ.

These two criteria generalize the majority3 of the preference relations consid-
ered in Section 3:
3 We generalize all of them, except for the E-admissibility and the Hurwicz criterion.

A more general formula encompassing all criteria could be written, but we avoid it
for the sake of simplicity.
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– Generalization of stochastic orderings -Subsections 2.1 and 2.2 - In order
to generalize those notions, we just have to consider the singleton Q =
{P(X,Y )}, where P(X,Y ) represents the joint probability measure induced by
(X, Y ) on G, i.e., the probability measure defined as follows:

P(X,Y )(C) = P ((X, Y )−1(C)) = P ({ω ∈ Ω : (X, Y )(ω) ∈ C}), C ∈ G.

Thus, any of the above equations (Eq. (11) or (12)) applied to this family Q
coincides with Eq. (1).

– Generalization of first stochastic dominance - Subsection 3.1 - Given two
(generalized) plausibility measures Pl1 and Pl2, consider the family of prob-
ability measures:

Q = {Q prob. : Q1 ≤ Pl1, Q2 ≤ Pl2}
where Q1 and Q2 are the marginals of Q for X and Y respectively. Using
the family of functions {fx0 = 1x>x0 : x0 ∈ R} of Eq. (3), and the second
form above, we generalize the four Denoeux criteria for comparing random
intervals considered in Subsection 3.1:
• For μ1 = Q and μ2 = Q, we generalize the criterion ≤(−+)

1st .
• For μ1 = μ2 = Q, we generalize the criterion ≤(−−)

1st .
• For μ1 = μ2 = Q, we generalize the criterion ≤(++)

1st .
• For μ1 = Q and μ2 = Q, we generalize the criterion ≤(+,−)

1st .
In particular, when both families of focal sets are singletons, or, equivalently,
when the family Q can be written as:

Q = {Q : Q([a, b] × [c, d]) = 1},
the above criteria are reduced to the corresponding criteria of comparison
between intervals (Subsection 2.3).

– Generalization of expectation dominance Using the mapping f(x, y) = x,
∀x ∈ R, we generalize some of the criteria of Subsection 3.2. Consider the
set of probability measures P on F ⊆ ℘(Ω) and the pair of random variables
X and Y defined on Ω, and let P(X,Y ) and P(X,Y ) respectively denote the
lower and upper probabilities associated to the family: P(X,Y ) = {P(X,Y ) :
P ∈ P}, where, for each probability measure P ∈ P , P(X,Y ) denotes the
probability measure induced by (X, Y ) as we have considered above.
• For μ1 = PX,Y and μ2 = PX,Y , in Eq. (12), we get the interval dominance

criterion.
• For μ1 = μ2 = PX,Y , in Eq. (12), we get the maximin criterion.
• For μ1 = μ2 = PX,Y , in Eq. (12), we get the maximax criterion.
• For μ = PX,Y , in Eq. (11), we get the maximality criterion.

– Generalization of statistical preference Now consider f(x, y) = 1x>y defined
in Eq. (4). Then we can generalize the statistical preference relations con-
sidered in Subsection 3.3. In particular:
• For μ1 = PX,Y and μ2 = PX,Y in Eq. (12), we get the criterion considered

in Eq. (8).
• For μ, in Eq. (11), we get almost signed-preference.
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4.2 The Special Case of Fuzzy Intervals

A fuzzy interval Ã (usually called a fuzzy number in the literature) can be
interpreted (among other many interpretations) as a possibility distribution on
the real line, such that the α-cuts of Ã, i.e. (Ã)α = {a : Ã(a) ≥ α}, are
convex (fuzzy interval). Let aα and bα be the infimum and the supremum of
each cut, respectively. The possibility distribution Ã : R → [0, 1] is associated to
a possibility measure ΠÃ(B) = supb∈B Ã(b). It is the upper bound of the convex
set of probability measures P(Ã) satisfying the following restrictions:

P (Aα) ≥ 1 − α, ∀α ∈ [0, 1], (13)

where Aα = [aα, bα], α ∈ (0, 1] is the α-cut of Ã. According to this view,
fuzzy ranking methods can be defined using imprecise probability criteria listed
above. Many such methods are based on comparison of the end-points of the α-
cuts. In particular, under the random interval interpretation of fuzzy sets, they
are related to the comparison of percentiles. This mode of comparison is very
closely related to first stochastic dominance and Denoeux definitions (reviewed
in Subsection 3.1) directly apply (see [1]).

Some other methods are related to the comparison of expected intervals
[8], [

∫ 1

0
aαdα,

∫ 1

0
bαdα] bounded by upper and lower expectations induced by

P(Ã). So they can be seen as expectation-dominance methods, in fact partic-
ular cases in the family of methods reviewed in Subsection 3.2. Usually absent
from fuzzy ranking methods is the Walley style maximality criterion. If X and
Y are ill-known quantities induced by Ã1 and Ã2 respectively, we must check if
EP (X − Y ) =

∫ 1

0 (a1α − b2α)dα > 0, assuming a dependence structure between
X and Y allowing the use of fuzzy interval subtraction [9]. It clearly comes down
to comparing

∫ 1

0
a1αdα to

∫ 1

0
b2αdα, and then reduces to an extension of interval

ordering ≥−
+. This would not be true with other kinds of dependence structures.

Therefore, many fuzzy ranking methods can be viewed as special cases of pref-
erence relations between gambles, and they are closely related to Eq.s (11) and
(12). This point deserves a special study of its own.
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Abstract. In classical Bernoulli processes, it is assumed that a single
Bernoulli experiment can be described by a precise and precisely known
probability distribution. However, both of these assumptions can be re-
laxed. A first approach, often used in sensitivity analysis, is to drop
only the second assumption: one assumes the existence of a precise dis-
tribution, but has insufficient resources to determine it precisely. The
resulting imprecise Bernoulli process is the lower envelope of a set of
precise Bernoulli processes. An alternative approach is to drop both as-
sumptions, meaning that we don’t assume the existence of a precise prob-
ability distribution and regard the experiment as inherently imprecise.
In that case, a single imprecise Bernoulli experiment can be described
by a set of desirable gambles. We show how this set can be extended to
describe an imprecise Bernoulli process, by imposing the behavioral as-
sessments of epistemic independence and exchangeability. The resulting
analysis leads to surprisingly simple mathematical expressions charac-
terizing this process, which turn out to be the same as the ones obtained
through the straightforward sensitivity analysis approach.

Keywords: imprecise Bernoulli processes, sets of desirable gambles,
epistemic independence, exchangeability, sensitivity analysis, Bernstein
polynomials, IID processes, exchangeably independent natural extension.

1 Introduction

In classical probability theory, a Bernoulli process is defined as an infinite se-
quence of binary variables X1, . . . , Xn, . . . that are independent and identically
distributed (IID). In this definition, a single Bernoulli experiment is implicitly
assumed to have a precise and precisely known probability distribution. However
this assumption can be relaxed. A first approach, used in sensitivity analysis,
is to assume the existence of a precise probability distribution, but allowing
it to be imprecisely known, for example due to limited resources. The result-
ing imprecise Bernoulli process is then the lower envelope of a set of precise
Bernoulli processes. A second approach is to regard a single Bernoulli experi-
ment as inherently imprecise, thereby dropping the assumption an underlying
precise probability distribution. In such cases, using sensitivity analysis can no
longer be justified and their is no known alternative method that is computation-
ally tractable. In this paper, we offer a solution to this problem by introducing

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 400–409, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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our notion of an imprecise Bernoulli process, defining it by imposing the be-
havioral assessments of exchangeability and epistemic independence. This is a
generalisation of the precise-probabilistic definition, since applying our defini-
tion to precise distributions, is equivalent with imposing the IID property. We
describe our imprecise Bernoulli process using the language of coherent sets of
desirable gambles [3,4,7], because these constitute the most general and powerful
imprecise probability models we know of. We give a short introduction to the
relevant theory in Section 2. In Section 3, we look at how the marginal model
for one variable, describing a single Bernoulli experiment, can be represented as
a coherent set of desirable gambles. Section 4 recalls how the assessment of ex-
changeability can be mathematically formulated in the theory of coherent sets of
desirable gambles. In Section 5, we add the assessment of epistemic independence
to that of exchangeability and extend the marginal model for a single variable to
the smallest (most conservative) imprecise Bernoulli process satisfying those two
requirements. We call this the exchangeably independent natural extension of
the marginal model. We end by showing in Section 6 that the resulting imprecise
Bernoulli process is identical to the one obtained by applying the sensitivity anal-
ysis approach mentioned above. This leads us to conclude that an assessment of
exchangeability and epistemic independence serves as a behavioural justification
for the rather strong assumptions associated with sensitivity analysis.

2 Desirability and Coherence

Let us begin by giving a short introduction to the theory of coherent sets of
desirable gambles, as it will be an important tool for our analysis. We refer to
Refs. [3,4,7] for more details and further discussion. Consider a finite, non-empty
set Ω, called the possibility space, which describes the possible and mutually
exclusive outcomes of some experiment.

Sets of Desirable Gambles: A gamble f is a real-valued map on Ω which
is interpreted as an uncertain reward. If the outcome of the experiment turns
out to be ω, the (possibly negative) reward is f(ω). A non-zero gamble is called
desirable if we accept the transaction in which (i) the actual outcome ω of the
experiment is determined, and (ii) we receive the reward f(ω). The zero gamble is
not considered to be desirable, mainly because we want desirability to represent
a strict preference to the zero gamble.

We will model a subject’s beliefs regarding the possible outcomes Ω of an
experiment by means of a set D of desirable gambles, which will be a subset of
the set G(Ω) of all gambles on Ω. For any two gambles f and g in G(Ω), we say
that f ≥ g if f(ω) ≥ g(ω) for all ω in Ω and f > g if f ≥ g and f �= g.

Coherence: In order to represent a rational subject’s beliefs regarding the
outcome of an experiment, a set D ⊆ G(Ω) of desirable gambles should satisfy
some rationality requirements. If these requirements are met, we call the set D
coherent.
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Definition 1 (Coherence). A set of desirable gambles D ⊆ G(Ω) is called
coherent if it satisfies the following requirements, for all gambles f , f1, and f2
in G(Ω) and all real λ > 0:

C1. if f = 0 then f /∈ D;
C2. if f > 0 then f ∈ D;
C3. if f ∈ D then λf ∈ D [scaling];
C4. if f1, f2 ∈ D then f1 + f2 ∈ D [combination].

Requirements C3 and C4 make D a convex cone: posi(D) = D, where we have
used the positive hull operator posi which generates the set of finite strictly
positive linear combinations of elements of its argument set:

posi(D) :=
{ n∑

k=1
λkfk : fk ∈ D, λk ∈ R+

0 , n ∈ N0

}
.

Here R+
0 is the set of all positive real numbers, and N0 the set of all natural

numbers (positive integers). The axioms also guarantee that if f < 0 then f /∈ D.

Weakly Desirable Gambles: We now define weak desirability, a concept that
will lie at the basis of our discussion of exchangeability. Loosely speaking, a
gamble is weakly desirable if adding anything desirable to it renders the result
desirable.

Definition 2 (Weak desirability). Consider a coherent set D of desirable
gambles. Then a gamble f is called weakly desirable if f + f ′ is desirable for all
desirable f ′: f + f ′ ∈ D for all f ′ in D. We use WD to denote the set of all
weakly desirable gambles associated with D.

Coherent Lower and Upper Previsions: With a set of gambles D, we can
associate a lower prevision P D and an upper prevision P D, which can respec-
tively be interpreted as a lower and upper expectation. For any gambles f we
define:

P D(f) := sup{μ ∈ R : f − μ ∈ D} and P D(f) := inf{μ ∈ R : μ − f ∈ D}. (1)

P D(f) is the subject’s supremum acceptable price for buying the uncertain re-
ward f , and P D(f) his infimum acceptable price for selling f . Observe that the
so-called conjugacy relation P D(−f) = −P D(f) is always satisfied. We call a
real functional P on G(Ω) a coherent lower prevision if there is some coherent
set of desirable gambles D on G(Ω) such that P = P D.

3 Imprecise Bernoulli Experiments

In order for the infinite sequence X1, . . . , Xn, . . . of variables to represent
an imprecise Bernoulli process, a necessary requirement is that all individual
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variables have the same marginal model, describing our subject’s uncertainty
about a single Bernoulli experiment. In our framework, this is a coherent set of
desirable gambles D1. Let us take a closer look at what this model looks like.

Consider a binary variable X taking values in the set X = {a, b}. A gamble
f on X can be identified with a point (f(a), f(b)) in two-dimensional Euclidean
space. A coherent set of desirable gambles D1 is a convex cone in this space (the
grey area in the figure below), which has to include all gambles f > 0 (the dark
grey area) but cannot include the zero gamble (the white dot).

f(a)

f(b)

−1

1

1

−1

rb θ

ra

−θ

Da
1

Db
1

Dint
1

Such a cone can be characterised using its extreme rays Da
1 and Db

1 (the thick,
gray lines in the figure above), which in turn are characterised by the gambles
ra = (1 − θ, −θ) and rb = (θ − 1, θ) (the black dots):

Da
1 := {λara : λa > 0} and Db

1 := {λbrb : λb > 0}.

It follows from coherence that 0 ≤ θ ≤ θ ≤ 1.
Since the cone D1 need not be closed, each of its extreme rays might be

included or not. We use δa (δb) to indicate wether Da
1 (Db

1) is included in D1 or
not, by setting it equal to 1 or 0 respectively. Coherence imposes some restrictions
on the possible values of δa and δb. For instance, δa must equal 1 if θ = 0 and
0 if θ = 1. Similarly, δb has to be 1 if θ = 1 and 0 if θ = 0. Finally, δa and δb

cannot both equal 1 if θ = θ.
Define δDa

1 to be Da
1 if δa = 1 and to be the empty set ∅ if δa = 0. Analogous

definitions hold for δDb
1 and for other sets defined further on. We use Dint

1 to
denote the set of all gambles f ∈ D1 that are not part of one of the extreme rays
Da

1 or Db
1 and thus lie in the interior of D1:

Dint
1 := {λ + λara + λbrb : λ > 0, λa ≥ 0, λb ≥ 0}.

We can now generally define an arbitrary coherent set of desirable gambles de-
scribing our subject’s beliefs about a single binary variable as follows:

D1 := Dint
1 ∪ δDa

1 ∪ δDb
1. (2)
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All that is needed to uniquely determine a set of desirable gambles described by
this equation, is the values of θ, θ, δa and δb.

4 Exchangeability

A sequence of variables is called exchangeable if, simply put, the order of the
variables is irrelevant. In classical Bernoulli processes, exchangeability is a di-
rect consequence of the IID property. In an imprecise-probabilistic context, it
turns out that this is not necessarily the case (see, for instance, [1,2] for an
approach to IID processes without exchangeability), and we therefore impose
exchangeability explicitly as one of the defining properties. This leads to a gen-
eralisation of the precise-probabilistic definition, since exchangeability implies
that the individual variables have identical marginal models (and are therefore
identically distributed in the precise case).

Defining Exchangeability in Terms of Desirable Gambles: Consider a
finite sequence of variables X1, . . . , Xn and an associated set Dn of desirable
gambles on X n. This sequence assumes values x = (x1, . . . , xn) in X n. We use
Pn to denote the set of all permutations π of the index set {1, . . . , n}. With
any such permutation π ∈ Pn, we associate a permutation of X n, defined by
πx = π(x1, . . . , xn) := (xπ(1), . . . , xπ(n)). Similarly, for any gamble f in G(X n),
we define the permuted gamble πtf = f ◦ π, so (πtf)(x) = f(πx).

If a subject assessess the sequence X1, . . . , Xn to be exchangeable, this means
that for any gamble f ∈ G(X n) and any permutation π ∈ Pn, he is indifferent
between the gambles πtf and f , which we translate by saying that he regards
exchanging πtf for f as weakly desirable, see [6, Section 4.1.1] and [3] for more
motivation and extensive discussion. Equivalently, we require that the gamble
f−πtf is weakly desirable.1 We define WPn :={f−πtf : f ∈ G(X n) and π ∈ Pn}.

Definition 3 (Exchangeability). A coherent set Dn of desirable gambles
on X n is called exchangeable if all gambles in WPn are weakly desirable:
WPn ⊆ WDn .

An infinite sequence of variables X1, . . . , Xn, . . . is called exchangeable if each
of its finite subsequences is, or equivalently, if for all n ∈ N0 the variables
X1, . . . , Xn are exchangeable. This is modelled as follows: the subject has an
exchangeable coherent set of desirable gambles on X n, for all n ∈ N0.

For such a family of sets Dn of desirable gambles to consistently represent
beliefs about an infinite sequence of variables, it should also be time consistent.
This means that, with n1 ≤ n2, if we consider a gamble h on X n2 that really only
depends on the first n1 variables, it should not matter, as far as its desirability
is concerned, whether we consider it to be a gamble on X n1 or a gamble on X n2 :
h ∈ Dn2 ⇔ h ∈ Dn1 . See Ref. [3] for a formal definition of this intuitive property.
1 We do not require it to be actually desirable, as it can be zero, and the zero gamble

is not regarded as desirable.
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As a direct consequence of exchangeability, for any gamble f ∈ G(X n) and
any permutation π ∈ Pn, the gamble πtf is desirable if and only if f is. Limiting
ourselves to those permutations in which only the indexes 1 and n are switched,
and gambles f that only depend on X1 or Xn, we see that exchangeability
implies that the marginal modal describing Xn is essentially identical to the one
describing X1, and therefore equal to D1, for all n ∈ N0.

Representation in Terms of Polynomials: Consider the set V of all polyno-
mial functions on [0, 1]. Subscripting this set with an integer n ∈ N means that
we limit ourselves to the set of polynomials of degree up to n. The Bernstein ba-
sis polynomials Bk,n(θ):=

(
n
k

)
θk(1−θ)n−k form a basis for the linear space Vn [5]:

for each polynomial p whose degree deg(p) does not exceed n, there is a unique
n-tuple bn

p = (b0, b1, . . . , bn) such that p =
∑n

k=0 bkBk,n(θ). We call a polyno-
mial p Bernstein positive if there is some n ≥ deg(p) such that bn

p > 0, meaning
that bi ≥ 0 for all i ∈ {0, . . . , n} and bi > 0 for at least one i ∈ {0, . . . , n}. The
set of all Bernstein positive polynomials is denoted by V+. We are now ready to
introduce the concept of Bernstein coherence for polynomials:
Definition 4 (Bernstein coherence). We call a set H of polynomials in V
Bernstein coherent if for all p, p1, and p2 in V and all real λ > 0:
B1. if p = 0 then p /∈ H;
B2. if p ∈ V+, then p ∈ H;
B3. if p ∈ H then λp ∈ H;
B4. if p1, p2 ∈ H then p1 + p2 ∈ H.
With any θ ∈ [0, 1], we can associate a binary probability mass function on
X = {a, b} by letting θa := θ and θb := 1 − θ. Such a mass function uniquely
determines a binomial distribution on X n. For every sequence of observations
x ∈ X n, its probability of occurrence is given by Pθ(x):=θCa(x)(1−θ)Cb(x), where
Ca(x) and Cb(x) respectively denote the number of occurrences of a and b in
the sequence x. The expectation associated with the binomial distribution with
parameters n and θ is then given by Mnn(f |θ) :=

∑
x∈X n Pθ(x)f(x), for all

gambles f on X n.
We can now define a linear map Mnn from G(X n) to V , defining it by Mnn(f) =

Mnn(f |·). In other words, if we let p = Mnn(f), then p(θ) = Mnn(f |θ) for
all θ ∈ [0, 1]. To conclude, we let Mnn(D):={Mnn(f) : f ∈ D} for all D ⊆ G(X n)
and (Mnn)−1(H) := {f ∈ G(X n) : Mnn(f) ∈ H} for all H ⊆ V .

Recent work [3] has shown that de Finetti’s famous representation result for
exchangeable events (binary variables) can be significantly generalised as follows:
Theorem 1 (Infinite Representation). A family Dn, n ∈ N0 of sets of
desirable gambles on X n is time consistent, coherent and exchangeable if and
only if there is some Bernstein coherent set H∞ of polynomials in V such that
Dn = (Mnn)−1(H∞) for all n ∈ N0. In that case this H∞ is uniquely given by
H∞ =

⋃
n∈N0

Mnn(Dn).

We call H∞ the frequency representation of the coherent, exchangeable and time
consistent family of sets of desirable gambles Dn, n ∈ N0.
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5 Imprecise Bernoulli Processes

We now have a way of representing our uncertainty regarding an infinite sequence
of variables X1, . . . , Xn, . . . that we assess to be exchangeable, by means of a
frequency representation H∞. The only remaining property we have to impose
in order to arrive at an imprecise Bernoulli process, is epistemic independence.
We call an infinite sequence of variables epistemically independent if learning
the value of any finite number of variables does not change our beliefs about
any finite subset of the remaining, unobserved ones. It is proven in Ref. [3] that
imposing this type of independence on an exchangeable sequence of variables
becomes really easy if we use its frequency representation.

Theorem 2 (Independence). Consider an exchangeable sequence of binary
variables X1, . . . , Xn, . . . , with frequency representation H∞. These variables
are epistemically independent if and only if

(∀k, n ∈ N0 : k ≤ n)(∀p ∈ V) (p ∈ H∞ ⇔ Bk,np ∈ H∞). (3)

We shall call such models exchangeably independent.

It follows that an imprecise Bernoulli process, defined by the properties of ex-
changeability and epistemic independence, can be described mathematically us-
ing a Bernstein coherent set H∞ of polynomials that satisfies Eq. (3). By The-
orem 1, H∞ is equivalent with a time consistent and exhangeable family of
coherent sets of desirable gambles Dn = (Mnn)−1(H∞), n ∈ N0. In order for
this imprecise Bernoulli process to marginalise to a given set of desirable gam-
bles D1, representing the marginal model we want to extend, we should have
that D1 = (Mn1)−1(H∞), or equivalently that H1 := Mn1(D1) = H∞ ∩ V1. We
start by investigating what the set of polynomials H1 looks like.

Polynomial Representation of the Marginal Model: For a given marginal
model D1, the corresponding set of polynomials is given by

H1 := Mn1(D1) = {Mn1(f) : f ∈ D1}, (4)

where Mn1(f) = θf(a) + (1 − θ)f(b). Due to the linearity of the transformation
Mn1, and considering that Mn1(ra) = θ − θ and Mn1(rb) = θ − θ, it follows from
Eqs. (2) and (4) that

H1 = Hint
1 ∪ δHa

1 ∪ δHb
1, (5)

where we defined

Hint
1 := {λ + λa(θ − θ) + λb(θ − θ) : λ > 0, λa ≥ 0, λb ≥ 0};

Ha
1 := {λa(θ − θ) : λa > 0}; (6)

Hb
1 := {λb(θ − θ) : λb > 0}. (7)

Proposition 1. Hint
1 is the set of all linear polynomials h in θ that are strictly

positive over [θ, θ]: h ∈ Hint
1 ⇔ h ∈ V1 and h(θ) > 0 for all θ ∈ [θ, θ].
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The next task is now to find the smallest Bernstein coherent set of polynomials
that satisfies Eq. (3) and contains the representation H1 of a given marginal
model D1. We will call this set the exchangeably independent natural extension
of H1.

Polynomial Representation of the Global Model: We start by defining
the following set of polynomials:

H∞ := posi{hp : h ∈ H1 and p ∈ V+}, (8)

which will be closely related to the sets

Hint
∞ := posi{hp : h ∈ Hint

1 and p ∈ V+};
Ha

∞ := posi{hp : h ∈ Ha
1 and p ∈ V+} = {(θ − θ)p : p ∈ V+}; (9)

Hb
∞ := posi{hp : h ∈ Hb

1 and p ∈ V+} = {(θ − θ)p : p ∈ V+}. (10)

For Ha
1 and Hb

1, the alternative characterisations that are given above are easy
to prove. For Hint

∞ , finding an alternative characterisation turns out to be more
involved.

Theorem 3. The following statements are equivalent:
(i) h ∈ Hint

∞ ;
(ii) (∃ε > 0)(∀θ ∈ [θ − ε, θ + ε] ∩ (0, 1)) h(θ) > 0;
(iii) h = ph′ for some p ∈ V+ and h′ such that (∀θ ∈ [θ, θ]) h′(θ) > 0.

When both θ �= 1 and θ �= 0, these tree statements are also equivalent with:

(iv) (∀θ ∈ [θ, θ] \ {0, 1}) h(θ) > 0.

It turns out that the set of polynomials H∞ is indeed very closely related to the
sets Hint

∞ , Ha
∞ and Hb

∞, since instead of using Eq. (8), H∞ can be equivalently
characterised by

H∞ = Hint
∞ ∪ δHa

∞ ∪ δHb
∞. (11)

We are now ready to formulate the most important result of this paper, which
says that a set H∞, given by Eq. (8), represents an imprecise Bernoulli process.

Theorem 4. H∞ is the smallest Bernstein coherent superset of H1 that satisfies
the epistemic independence condition (3).

This means that the set H∞ given by Eq. (8) is the exchangeably independent
natural extension of H1. It follows from Theorem 1 that H∞ represents an
imprecise Bernoulli proces that marginalises to D1 if D1 = (Mn1)−1(H∞). This
is equivalent to demanding that H∞ should contain no other polynomials in V1
than those in H1. Due to Eq. (11), it suffices to check this property separately
for each of the three subsets of H∞. For Ha

∞ and Hb
∞ this property follows from

Eqs. (5)–(7) and (9)–(10). For Hint∞ , it follows from Proposition 1, Theorem 3
and Eqs. (5)–(7). We conclude that H∞ is the smallest (most conservative)
representation of an imprecise Bernoulli process that marginalises to a set of
desirable gambles D1 that is given by Eq. (2).
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6 Justifying a Sensitivity Analysis Approach

It now only remains to explain how the results obtained above relate to our pre-
vious statement that a sensitivity analysis approach to dealing with imprecise
Bernoulli processes can be justified using an assessment of epistemic indepen-
dence and exchangeability.

Consider an arbitrary gamble f ∈ G(X n), n ∈ N0 and a probability θ ∈ [0, 1]
that characterises a probability mass function on X = {a, b}. As is shown in
Section 4, Mnn(f |θ) is the expectation of f , associated with the binomial dis-
tribution with parameters n and θ. If one defines an imprecise Bernoulli process
using the sensitivity analysis approach, this results in letting θ vary over an
interval [θ, θ] and the lower (upper) expectation of f associated with such an
imprecise Bernoulli process is then the minimum (maximum) of Mnn(f |θ) as θ
ranges over this interval.We will now show that this intuitive result is also ob-
tained using the type of imprecise Bernoulli process we considered in the previous
sections.

Theorem 5. Consider the set of polynomials H∞ defined by Eq. (8). Then for
any polynomial function p on [0, 1]:

P H∞(p) := sup{μ ∈ R : p − μ ∈ H∞} = min{p(θ) : θ ∈ [θ, θ]}. (12)

By Theorem 1 and Eq. (1), the lower prevision (or minimum expected value) of
a gamble f ∈ G(X n), n ∈ N0, corresponding with an imprecise Bernoulli process
represented by a Bernstein coherent set H∞ of polynomials, is given by

E(f) := P Dn
(f) = P (Mnn)−1(H∞)(f)

= sup{μ ∈ R : f − μ ∈ (Mnn)−1(H∞)}
= sup{μ ∈ R : Mnn(f) − μ ∈ H∞} = P H∞(Mnn(f)),

thereby implying the following de Finetti-like representation result for lower
previsions: P Dn

= P H∞ ◦ Mnn. Using Theorem 5, we find that

E(f) = min{Mnn(f |θ) : θ ∈ [θ, θ]},

which is exactly what we would get using the sensitivity analysis approach.
Notice also that E(f) := P (Mnn)−1(H∞)(f) = −E(−f) because of the conjugacy
relation between lower and upper previsions. As a direct consequence, we find
that, similarly:

E(f) = max{Mnn(f |θ) : θ ∈ [θ, θ]}.

7 Conclusions

The existence of a precise probability distribution describing the outcomes of a
single Bernoulli experiment is not crucial to the definition of a Bernoulli pro-
cess. It can be relaxed by replacing it with an assessment of exchangeability,
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which means that we consider the order of the different Bernoulli experiments
to be irrelevant. Taken together with epistemic independence, exchangeability
then becomes a defining property for an imprecise Bernoulli process. Using this
approach, we have derived an expression for the most conservative imprecise
Bernoulli process, corresponding with a given marginal model. The resulting
imprecise Bernoulli process is exactly the same as the one obtained using a
sensitivity analysis approach. An assessment of exchangeability and epistemic
independence can therefore be used as a behavioural justification for the strong
assumptions associated with the latter approach.

Although we have not discussed this here, we have also looked at how to
make multinomial processes imprecise, and we are confident that our results for
binomial processes can be generalised. We will report these results elsewhere,
together with proofs for (generalisations of) the theorems mentioned above.

We have used the very general theory of sets of desirable gambles to develop
our notion of an imprecise Bernoulli process. The important sensitivity analysis
result at the end, however, is stated purely in terms of lower and upper previsions,
which constitute a less general model than sets of desirable gambles. It would
be interesting to see if and how this result can be obtained directly using the
language of previsions, without using sets of desirable gambles.

Given the importance of binomial (and multinomial) processes in practical
statistics, we hope that our results can lead to a better understanding, and perhaps
to much needed practical applications, of imprecise probability theory in statistics.
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Abstract. By employing regression methods minimizing predictive risk,
we are usually looking for precise values which tends to their true re-
sponse value. However, in some situations, it may be more reasonable
to predict intervals rather than precise values. In this paper, we focus
to find such intervals for the K-nearest neighbors (KNN) method with
precise values for inputs and output. In KNN, the prediction intervals
are usually built by considering the local probability distribution of the
neighborhood. In situations where we do not dispose of enough data
in the neighborhood to obtain statistically significant distributions, we
would rather wish to build intervals which takes into account such distri-
bution uncertainties. For this latter we suggest to use tolerance intervals
to build the maximal specific possibility distribution that bounds each
population quantiles of the true distribution (with a fixed confidence
level) that might have generated our sample set. Next we propose a new
interval regression method based on KNN which take advantage of our
possibility distribution in order to choose, for each instance, the value of
K which will be a good trade-off between precision and uncertainty due
to the limited sample size. Finally we apply our method on an aircraft
trajectory prediction problem.

Keywords: Possibilistic regression, tolerance interval, K-nearest
neighbors.

1 Introduction

When dealing with regression problems, it may be risky to predict a point which
may be illusionary precise. In these cases, predicting an interval that contains
the true value with a desired confidence level is more reasonable. In this scope,
one can employ different statistical methods to find a response value prediction
interval. These intervals can be estimated once for the whole dataset based on
residuals. However, the disadvantage of this approach is to assume that predic-
tion interval sizes are independent of test instances. On the other hand, local
estimation methods, such as KNN regression, can be used to find an interval that
is more likely to reflect the instance neighborhood. In order to calculate such
local intervals we have to estimate the probability distribution of the neigh-
borhood. But, Even if we know the family of the probability distribution, the
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estimated local interval does not reflect the uncertainty on the estimated distri-
bution which is caused by the limited size of the sample set. The goal of this
paper is to find such interval for KNN.

One interpretation of the possibility theory is in term of families of probability
distributions [3]. For a given sample set, there exists already different methods
for building possibility distribution which encodes the family of probability dis-
tribution that may have generated the sample set[1,11]. The mentioned methods
are based on confidence bands. In this paper we suggest to use tolerance intervals
to build the maximal specific possibility distribution that bounds each popula-
tion quantile of the true distribution (with a fixed confidence level) that might
have generated our sample set. The obtained possibility distribution will bound
each confidence interval independently with a desired confidence level. On the
contrary, a possibility distribution encoding confidence band will bound all the
confidence intervals simultaneously with a desired confidence level. This is why
our proposed possibility distribution has always smaller α-cuts than the other
ones and it still guarantee to obtain intervals which contains the true value with
a desired confidence level. This is particularly critical in domains imposing some
security constraints. We embed this approach into KNN regression in order to
obtain statistically significant intervals. We also propose to take into account
the tolerance interval calculus while choosing the parameter K. The obtained
interval, will be a good trade-off between precision and uncertainty with respect
to the sample size.

This paper is structured as follows: we begin with a background on the possi-
bility and probabilistic interpretation of the possibility theory. We will then look
at the different possibility distribution inferred from the same sample set. In the
fourth section we will see different KNN interval regression algorithm and finally
we compare the mentioned approaches on the prediction of aircraft altitude.

2 Possibility Theory

Possibility theory, introduced by Zadeh [14,5], was initially created in order to
deal with imprecisions and uncertainties due to incomplete information which
may not be handled by a single probability distribution. In the possibility theory,
we use a membership function π to associate a distribution over the universe of
discourse Ω. In this paper, we only consider the case of Ω = R.

Definition 1. A possibility distribution π is a function from Ω to (R→ [0, 1]).

Definition 2. The α-cut Aα of a possibility distribution π(·) is the interval for
which all the point located inside have a possibility degree π(x) greater or equal
than α :Aα = {x|π(x) ≥ α, x ∈ Ω}

The definition of the possibility measure Π is based on the possibility distri-
bution π such as Π(A) = sup(π(x), ∀x ∈ A). One interpretation of possibility
theory is to consider a possibility distribution as a family of probability distri-
butions (see [3]). Thus, a possibility distribution π will represent the family of
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the probability distributions Θ for which the measure of each subset of Ω will
be bounded by its possibility measures :

Definition 3. A possibility measure Π is equivalent to the family Θ of proba-
bility measures such that

Θ = {P |∀A ∈ Ω,P (A) ≤ Π(A)}. (1)

In many cases it is desirable to move from the probability framework to the
possibility framework. Dubois et al.[6] suggest that when moving from probabil-
ity to possibility framework we should use the “maximum specificity” principle
which aims at finding the most informative possibility distribution. The “most
specific” possibility distribution for a finite mode probability distribution has
the following formula [4] :

π∗(x) = sup(1− P (I∗β), x ∈ I∗β)

where π∗ is the “most specific” possibility distribution, I∗β is the smallest β-
content interval [4]. Therefore, given f and its transformation π∗ we have :
A∗

1−β = I∗β . The equation (1) states that a possibility transformation using [6]
encodes a family of probability distributions for which each quantile is bounded
by a possibility α-cut.

Note that for every unimodal symmetric probability density function f(·), the
smallest β-content interval I∗β of f is also its inter-quantile by taking lower and

upper quantiles respectively at 1−β
2 and 1− 1−β

2 . Thus, the maximum specified
possibility distribution π∗(·) of f(·) can be built just by calculating the β-content
inter-quantile Iβ of f(·) for all the values of β, where β ∈ [0, 1].

3 Inferring Possibility Distribution from Data

Having a sample set drawn from a probability distribution function, one can use
different statistical equations in order to express different kinds of uncertainty
related to the probability distribution that underlies the sample set. Thus, it can
be valuable to take benefit of possibility distributions to encode such uncertain-
ties in a more global manner. Given the properties expected, we can describe
two different types of possibility distribution : possibility distribution encoding
confidence band and possibility transformation encoding tolerance interval. Af-
ter a brief description of the first one, we will focus more deeply on the last one
which is the most suitable for regression.

In frequentist statistics, a confidence band is an interval defined for each value
x of the random variable X such that for a repeated sampling, the frequency
of F (x) located inside the interval [L(x), U(x)] for all the values of X tends to
the confidence coefficient γ. The confidence band of a parametric probability
distribution can be constructed using confidence region of parameters of the
underlying probability distribution [2]. In this case the confidence band or its
maximum specified possibility transformation represents a family of probability
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distribution that may has been generated by all the parameters included in the
confidence region used to build the confidence band (see Aregui and Denoeux
[1] and Masson and Denoeux [11]).

A tolerance interval is an interval which guarantee with a specified confidence
level γ, to contain a specified α% proportion of the population. As the sample
set grows, confidence intervals downsize towards zero, however, increasing the
sample sample size leads the tolerance intervals to converge towards fixed values
which are the quantiles. We will call an α tolerance interval(tolerance region)
with confidence level γ, an α-content γ-coverage tolerance interval we represent
it by ITγ,α . Each α-content γ-coverage tolerance, by definition contains at least
α% proportion of the true unknown distribution, hence it can be encoded by
the (1 − α)-cut of a possibility distribution. So for a given γ we represent α-
content γ-coverage tolerance intervals, α ∈ (0, 1) of a sample set by (1−α)-cuts
of a possibility distribution which we name as γ-confidence tolerance possibility
distribution (γ-CTP distribution πCTP

γ ).

Possibility Transformation Encoding Tolerance Interval : Normal Case.
When our sample set comes from a univariate normal distribution, the lower
and upper tolerance bounds (XL and XU , respectively) are calculated by the
equation (2) in which X̄ is the sample mean, S the sample standard deviation,
χ2
1−γ,n−1 represents the p-value of the chi-square distribution with n− 1 degree

of freedom and Z1− 1−α
2

is the critical value of the standard normal distribution

with probability (1 − 1−α
2 ) [7]. The boundaries of the α-cut Aα = [XL, XU ] of

the built possibility distribution is defined as follows:

XL = X̄ − kS, XU = X̄ − kS where k =

√√√√ (n− 1)(1 + 1
n )Z

2
1− 1−α

2

χ2
1−γ,n−1

(2)

We obtain the following possibility distribution πCTP
γ :

πCTP
γ (x) = 1−max{α, x ∈ Aα} where Aα = ITγ,1−α (3)

For more detail on the different tolerance intervals see [7]. In the figure (3) we
represented the 0.95 CTP distribution (πCTP

0.95 using equation (2)) for different
sample set drawn from the normal distribution (all having (X,S) = (0, 1)).
The green distribution represents the probability-possibility transformation of
N (0, 1). Note that for n ≥ 100 the tolerance interval is approximately the same
as the estimated distribution.

Possibility Transformation Encoding Tolerance Interval : Distribution
Free Case. The problem of non-parametric tolerance interval was first treated
by Wilks [13]. Wald [12] generalized the method to the multivariate case. The
principle for finding a distribution free α-content γ-coverage tolerance interval
or region of continuous random variable X is based on order statistics. For more
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information on finding k in (2) values for distribution free tolerance intervals
and regions see [13,12,7]. Note that when constructing possibility distributions
encoding tolerance intervals based on Wilks method which requires finding sym-
metrical head and tail order statistics (Wald definition does not have the sym-
metry constraint), we obtain possibility distributions which do not guarantee
that our α-cuts include the mode and they are not also the smallest possible
α-cuts. In fact, for any symmetric unimodal distribution, if we choose the Wilks
method, we will have tolerance intervals which are also the smallest possible
ones and include the mode of the distribution. For the calculation of the sam-
ple size requirement for tolerance intervals see [7]. In figure 1, we have the blue
curves which represent the distribution-free 0.95-confidence tolerance possibility
distribution for a sample set of size 450 (0.95 DFCTP distribution) drawn from
N (0, 1) and the green distribution which represent the possibility transformation
for N (0, 1). In figure (2), we used two different sample set with n = 194 to build
two different 0.9 DFCTP distributions. In this example, in order to reduce the
required sample size, we restricted the biggest α to 0.98.
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Fig. 1. Distribution free 0.95-confidence
tolerance possibility distribution for a sam-
ple set with size 450 drawn from N (0, 1)
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Fig. 2. Distribution free 0.9-confidence
tolerance possibility distributions for a
sample set with size 194 drawn from
N (0, 1)

4 Interval Prediction with K-Nearest Neighbors

4.1 K-Nearest Neighbors (KNN)

Smoothing is the process of creating an approximating function that looks for
capturing relevant patterns in the data, while filtering noise. In a classical re-
gression problem, we have m pairs (−→x i, yi) of data where −→x i is a vector of input
variables and yi is the response value. These data follows an unknown mean
function r with a random error term ε defined as:

yi = r(−→x i) + εi, where E(εi) = 0. (4)
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AKNN estimator is a local estimator of the function r based on the neighborhood
of the considered instance. A KNN is defined as follows :

r̂(−→x ) = (

n∑
i=1

Kb(−→x −−→x i))
−1

n∑
i=1

Kb(−→x −−→x i)yi (5)

where Kb(u) =
1
2bI(|u| ≤ b) (I(·) is the indicator function) is an uniform kernel

with a variable bandwidth b = d(k), where d(k) is the distance between −→x and
its furthest K-nearest neighbors. Mack [10] considered the KNN estimator in a
general case with kernels other than the uniform kernel. In the same work, he
studied the bias and variance of this more general KNN estimator.

4.2 Possibilistic KNN with Fixed K

In some problems, we are not only interested in obtaining the most probable
regression response value, but we would rather look for intervals which for all
input instances simultaneously contain their corresponding response values with
a desired probability. It means that the frequency of all the response variables
which are contained in their corresponding prediction intervals is at least the
prefixed given value. As we saw in the definition of smoothing, equation (4), we
suppose that the error is a random variable. Based on our a priori knowledge
about the distribution of the error we can use different statistical methods to
predict a such intervals.

In machine learning problems, it is common to suppose that the response
variable yi in regression is a random variable distributed with N (f(xi), σ

2
i )

where σ2
i = V ar(εi) and estimate yi by its maximum likelihood estimation

ŷi = N (f̂ (xi), σ̂2
i). Based on the normality assumption of the errors, there

are two methods used in order to estimate N (f(xi), σ
2
i ). In the case of ho-

moscedasticity (the variance of the distribution is constant) for all error terms,
the sample variance of the residuals will be used as the estimation of the variance
of error. This method is usually used for global approaches like ordinary least
square estimation, SVM or neural networks in which the model is assumed to
be homoscedastic, or with negligible heteroscedasticity. The heteroscedasticity
(the variance depends on the input vector) may also be ignored when we do not
dispose of enough data in order to perform significant evaluations. In the other
hand, if we assume that our model is heteroscedastick, one can estimate the dis-
tribution of the error by a normal distribution which its mean is still estimated
by the KNN estimated value and its variance is estimated by the variance of the
sample set in the neighborhood of xi. Since KNN is a local estimation method
used for situations where it is less efficient to use a global model than a local one,
exploiting the neighborhood of the input data to estimate the local distribution
of error may be justified.

However, if the distribution of the error is estimated locally, it does not take
into account the sample size, therefore the estimated quantiles of the error or
the response variable may not contain the desired proportion of data. In order
to have a more cautious approach, we propose to build a possibility distribution
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with α-cuts which guarantee to contain, with a confidence level γ, the (1− α)%
proportion of the true unknown distribution. Possibility distributions for the
neighborhood of −→x i built by γ confidence bands guarantee with confidence level
γ, that all its α-cuts simultaneously contains at least (1 − α)% proportion of
true unknown distribution that may have generated the neighborhood of −→x i

(the simultaneous condition holds for one input instance). If we consider a γ-
CTP distribution πCTP

γ , it guarantee that each α-cut, independently, will contain
(1− α)% proportion of the true unknown distribution that may have generated
the data. Of course, this property is weaker, but it is sufficient in the case of
interval prediction and it leads to more specific possibility distributions. Thus,
given a input vector −→x we will take the mean X̄ = r̂(−→x ) and the standard
deviation S as the standard deviation of the yi of the K nearest instances. After
choosing a value for the confidence level γ (usually 0.95) we build πCTP

γ using

Equation 3. Now we will use the πCTP
γ distribution for each instance to obtains

intervals which ensure us to have simultaneously (1−α)% of the response variable
for all input instances. It means that for all input vector −→x i the percentage of
α-cuts which contains the corresponding yi will be at least γ (for ex: 0.95).

4.3 KNN Interval Regression with Variable K Using 0.95 CTP
Distribution

It is common to fix K and use a weighted KNN estimator, we will call this
combination as “KNN regression” or “KNN regression with fixed K”. The fixed
K idea in KNN regression comes from the homoscedasticity assumption. In this
section we propose to use the tolerance interval to find the “best” K for each xi.
Let the sample set containing the K-nearest neighbors of xi be Kseti. For each
xi, we begin by a initial value of K and we build the 0.95 CTP distribution of
Kseti. Now taking the K which yields the most specific 0.95 CTP distribution
means that for each xi, we choose the value of K that has the best trade off
between the precision and the uncertainty to contain the response value. Indeed,
when K decreases the neighborhood considered is more faithful but uncertainty
increases. On the contrary, when K increases, the neighborhood becomes less
faithful but the size of the tolerance intervals decrease. In fact the mentioned
possibility distribution takes into account the sample size, so its α-cuts will
reflect the density of neighborhood. Thus, by choosing the K that minimizes a
fixed α-cut (the 0.05-cut in our case) ensures to have the best trade off between
the faithfulness of the neighborhood and the uncertainty of the prediction due
to the sample size.

The idea is to use prediction intervals which are the most reasonable. For in-
stance, for each given −→x i and k, the 0.05-cut of the πCTP

γ contains at least, with
a prefixed γ confidence level, 95% of the true distribution that may have gener-
ated yi, because it contains at least 0.95% of the population of the true unknown
normal distributions that may have generated the Kseti. This approach explores
the neighborhood for the value of k that is the most statistically significant. The
MINK and MAXK in the algorithm 1 are global limits which stop the search
if we did not found the best K. This may occurs when we have some area of
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Algorithm 1. Possibilistic local KNN

1: MINK ← K
2: IntervalSizemin ← Inf
3: for all i ∈ 5, . . . ,MAXK do
4: Kseti ← Find the K nearest neighbors of xi

5: IntervalSize ← 0.05-cut of 0.95 CTP distribution of Kseti
6: if IntervalSize ≤ IntervalSizemin then
7: MINK ← i
8: IntervalSizemin ← IntervalSize
9: end if
10: end for

the dataset where the response variable is relatively dense. In practice, we know
that this kind of local density is not always a sign of similarity, therefore we put
these two bounds to restrict our search in the region where we think to be the
most likely to contain the best neighborhood of xi.

5 Application to Aircraft Trajectory Prediction

In this section, we compare the effectiveness of the regression approaches men-
tioned previously with respect to an aircraft prediction problem. Our data set is
composed of 8 continuous precise regression variables and one precise response
variable. The predictors are selected among more than 30 features obtained by
a principal component analysis on a variables set giving informations about the
aircraft trajectory, the aircraft type, its last positions and etc. Our goal is to
compare these methods when predicting the altitude of a climbing aircraft 10
minutes ahead. Because the trajectory prediction is a critical task, we are in-
terested in predicting intervals which contains 95% of the time the real aircraft
position, thus we mainly use the inclusion percentage to compare method results.
The database contains up to 1500 trajectories and all the results mentioned in
the following are computed from a 10-cross validation schema. In a first attempt
we will use 2

3 of instances will to tune the hyper-parameters. Then all of instances
will serve to validate the results using a 10-cross validation schema. In the hyper-
parameters tuning we used the Root Mean Squared Error (RMSE) of response
variable (trajectory altitude) to find the best fixedK and localK. The final result
for the fixed K was K = 11 with RMSE = 1197 and (MINK ,MAXk) = (7, 30)
with RMSE = 1177 for KNN regression with variable K. The kernel function
used in our methods was the Tricube kernel Kb(u) = 70

81b (1 − |u|
3
)3 I{|u|≤b} .

The RMSE found by the two approaches demonstrate that, for this data set, the
variable K selection method is as efficient as the conventional fixed K method.
We used the following methods to estimate a prediction interval for our response
variable : “KNN Interval regression with variable K using 0.95 CTP distribu-
tion” (VKNN-CTP), “KNN interval regression using 0.95 CTP distribution”
(KNN-CTP), “KNN Interval regression with global normal quantile” (KNN)
and “KNN Interval regression with local normal quantile” (LKNN). The table
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Table 1. Inclusion percentage compared to the interval size

KNN LKNN KNN-CTP VKNN-CTP

Inclusion percentage 0.933 0.93 0.992 0.976

0.95 Interval size (A0.05) 4664 (0) 4694 (1397) 7865 (2341) 5966 (1407)
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Fig. 3. 0.95-confidence tolerance possibil-
ity distributions for a sample set with sizes
5 to 100 and (X,S) = (0, 1) in green

Fig. 4. Histogram of K found by using
0.95 CTP distribution

below contains the mean interval size together with their standard deviation
in parenthesis and the inclusion percentage of the compared methods. We can
notice that the conventional fixed K KNN approaches (KNN-normal global and
local) are not enough underestimate the confidence interval size. As expected,
the KNN approaches based on the 0.95 CTP distribution, always over estimate
these intervals. The most specific estimation is made with the VKNN-CTP al-
gorithm. Figure 4 shows the histogram of different values of K found by using
the 0.95 CTP distribution. We can observe that the values of K are uniformly
distributed along the range with a maximum reached for K = 25. It suggest, as
expected, that the dataset is not homoscedastic.

6 Conclusion

In this work, we propose a method for building a possibility distribution encod-
ing tolerance intervals of a sample set drawn from a normal distribution with
unknown parameters. The α-cuts of the πCTP

γ distribution bound the (1− α)%
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proportions the true unknown normal distribution with the confidence level γ,
regardless of the size of the sample set. Then, we embed these new kind of pos-
sibility distributions into a KNN regression algorithm. The suggested method
is valuable to be employed for heteroscedastick data. This approach exploits
the neighborhood in order to find an “optimal” K for each input instance. The
possibility distribution allows us to choose intervals for the prediction that are
guaranteed to contain a chosen amount of possible response values. We compared
our approach with classical ones on an aircraft trajectory prediction problem. We
show that classical KNN provide smaller confidence intervals which fail to guar-
antee the required level of inclusion percentage. For future works, we propose to
build in the same way the possibility distributions encoding prediction intervals
[8][9]. We will also extend this approach to normal mixtures and distribution
free sample sets.
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Abstract. Classification models usually associate one class for each new
instance. This kind of prediction doesn’t reflect the uncertainty that is
inherent in any machine learning algorithm. Probabilistic approaches
rather focus on computing a probability distribution over the classes.
However, making such a computation may be tricky and requires a large
amount of data. In this paper, we propose a method based on the no-
tion of possibilistic likelihood in order to learn a model that associates
a possibility distribution over the classes to a new instance. Possibility
distributions are here viewed as an upper bound of a family of proba-
bility distributions. This allows us to capture the epistemic uncertainty
associated with the model in a faithful way. The model is based on a
set of kernel functions and is obtained through an optimization process
performed by a particle swarm algorithm. We experiment our method
on benchmark dataset and compares it with a naive Bayes classifier.

1 Introduction

It is well known that machine learning algorithms are constrained by some learn-
ing bias (language bias, hypothesis bias, algorithm bias, etc ...). In that respect,
learning a precise model may be illusionary. Moreover, in cases where secu-
rity issues are critical for instance, predicting only one class, without describing
the uncertainty about this prediction, may be unsatisfactory. Some algorithms
such as naive Bayes classifiers [12], Bayesian networks [14] or K-nearest-neighbor
methods [3] learn a probability distribution over classes rather than a precise
class. However, learning faithful probability distributions require a lot of data.
It is also sometimes needed to have some prior knowledge about the type of the
probability distribution that underlies the data (or to assume a particular type
by default).

Quantitative possibility measures can be viewed as upper bounds of proba-
bilities. Then, a possibility distribution represents a family of probability distri-
butions [7]. This view was first implicitly suggested by Zadeh [17] when empha-
sizing the idea that what is probable must be possible. Following this intuition
a probability-possibility transformation has been proposed [9]. This transforma-
tion associates a probability distribution with the maximally specific possibility
distribution which is such that the possibility of any event is indeed an up-
per bound of the corresponding probability. Possibility distributions are then
able to describe epistemic uncertainty and to describe knowledge states such

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 420–429, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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as total ignorance, partial ignorance or complete knowledge. There exist some
machine learning algorithms that are based on possibility theory (see [2,10,1] for
instance), but in most of the cases they consider imprecise data and are based
on qualitative possibility theory which encodes orderings rather than a family of
probability distributions.

In this paper, we propose a new classification algorithm which learns a pos-
sibility distribution over classes from precise data. This approach is similar to
the imprecise regression recently proposed in[15]. It is based on the notion of
possibilistic likelihood [16]. The proposed likelihood function is in agreement
with the view of possibility distribution as representing a family of probability
distributions and with the probability-possibility transformation. A possibilistic
classifier will be a set of kernel functions. The goal of our approach is to find
the possibilistic classifier that maximizes the possibilistic likelihood. Since find-
ing this maximum is not tractable in general, we use a meta-heuristics for the
optimization process. According to the properties of possibilistic likelihood, the
distribution learned encodes an upper bound of the possible probability distribu-
tions over the classes. The interest of using possibility distributions is manyfold.
First, it encodes epistemic uncertainty, which cannot be described by a sin-
gle probability distribution [5]. Second, possibility distributions are less precise
and informative than probability distributions, then they require less data to
be faithful and no prior knowledge. Third, possibility distributions are not con-
strained by having its degrees summing to 1. This latter point makes this kind
of distribution easier to approximate and to embed in an optimization process.

The paper is structured as follows. Section 2 provides some background about
possibility distributions and their interpretation in terms of a family of proba-
bilities. In section 3, we define the notion of possibilistic likelihood. Section 4
describes the framework of possibilistic classification based on possibilistic likeli-
hood. Lastly, we compare our approach with naive Bayes classifier on benchmark
datasets.

2 Background

2.1 Possibility Distribution

Possibility theory, introduced by Zadeh [17], was initially proposed in order to
deal with imprecision and uncertainty due to incomplete information as the one
provided by linguistic statements. This kind of epistemic uncertainty cannot be
handled by a single probability distribution, especially when a priori knowledge
about the nature of the probability distribution is lacking. A possibility distri-
bution π is a mapping from Ω to [0, 1]. In this paper we will only consider the
case where Ω = {C1, . . . , Cq} is a discrete universe (of classes in this paper). The
value π(x) is named possibility degree of x. For any subset of Ω, the possibility
measure is defined as follows :

∀A ∈ 2Ω, Π(A) = max{π(x), x ∈ A}.



422 M. Serrurier and H. Prade

If it exists at least one singleton x ∈ Ω for which we have π(x) = 1, the
distribution is normalized. We can distinguish two extreme cases of knowledge
situation:

• complete knowledge: ∃x ∈ Ω such as π(x) = 1 and ∀y ∈ Ω, y �= x, π(y) = 0;
• total ignorance: ∀x ∈ Ω, π(x) = 1.

The necessity is the dual measure of the possibility measure. We have:

∀A ∈ 2Ω, N(A) = 1−Π(A).

The α-level cuts of the distribution π are defined by:

Dα = {x ∈ Ω, π(x) ≥ α}.

2.2 A Possibility Distribution as a Family of Probability
Distributions

One view of possibility theory is to consider a possibility distribution as a family
of probability distributions (see [4] for an overview). Thus, a possibility distri-
bution π will represent the family of the probability distributions for which the
measure of each subset of Ω will be respectively lower and upper bounded by
its necessity and its possibility measures. More formally, if P is the set of all
probability distributions defined on Ω, the family of probability distributions
Pπ associated with π is defined as follows:

Pπ = {p ∈ P , ∀A ∈ Ω,N(A) ≤ P (A) ≤ Π(A)}. (1)

where P is the probability measure associated with p. In this scope, the situation
of total ignorance corresponds to the case where all probability distributions are
possible. This type of ignorance cannot be described by a single probability
distribution.

According to this probabilistic interpretation, a method for transforming prob-
ability distributions into possibility distributions has been proposed in [9]. The
idea behind this is to choose the most informative possibility measure that up-
per bounds the considered probability measure. This possibility measure cor-
responds to the tightest possibility distribution. Let us consider a set of data
X = {x1, . . . , xn} that are realizations of a random variable on Ω. Let α1, . . . , αq

be the frequency of the elements of X that belong respectively to {C1, . . . , Cq}.
Let us also assume that the frequencies of examples in class Ci are put in

decreasing order, i.e. α1 ≥ . . . ≥ αq. In the following, given a possibility dis-
tribution π, we note πi the value π(x ∈ Ci). It has been shown in [6] that the
transformation of p∗ (which is derived from the frequencies) into a possibility
distribution π∗ (see Equation (3)), is:

∀i ∈ {1, . . . , q}, π∗i =

q∑
j=i

αj . (2)

This possibility distribution is one of the cumulated functions of p∗. It is worth
noticing that it is the tightest one.
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Example 1. For instance, we considerX that leads to the frequency α1=0.5, α2 =
0.3, α3 = 0.2.We obtain π∗1 = 0.5 + 0.3 + 0.2 = 1, π∗2 = 0.3 + 0.2 = 0.5 and
π∗3 = 0.2.

3 Possibilistic Likelihood

There exist different kinds of methods for eliciting possibility distributions from
data. For instance, some approaches directly build the possibility distribution
on the basis of a proximity relation defined on the universe of the data [8]. G.
Mauris proposes a method for constructing a possibility distribution when only
very few pieces of data are available (even only one or two) based on probability
inequalities [13]. This latter method is justified in the probabilistic view of pos-
sibility theory. These methods, how different they are, have in common to build
the distributions directly. Formally a likelihood coincides to a probability value.
However, it is commonly used for evaluating the adequateness of a probability
distribution with respect to a set of data. In the following, likelihood functions
will be always viewed as adequateness functions. In this section we define a
likelihood function for a possibility distribution which supports the interpreta-
tion of a possibility distribution in terms of a family of probability distributions
(see [16] for details), and which then measures the adequateness of a possibility
distribution with respect to a set of data.

We only consider the case of a discrete universe, i.e. Ω = {C1, . . . , Cq}. In
order to define such a function we will propose an alternative to the logarithmic-
based likelihood function in the probabilistic case. The logarithmic-based likeli-
hood defined as follows (under the strict constraint

∑q
i pi = 1):

Llog(p|x1, . . . , xn) = −
n∑

i=1

log(p(xi))

or, when considering frequency directly

Llog(p|x1, . . . , xn) = −
q∑

i=1

αilog(pi).

It is equivalent to compute the joint probability of the elements of x with respect
to p. This definition of the likelihood has a strong limitation, since it gives a very
high weight to the error when probability is very low. This is especially true when
Ω is continuous. Since Llog is not defined when p(xi) = 0, an unbounded density
cannot be approximated by a bounded one by optimization of Llog. We propose
another likelihood function that overcomes these limitations:

Lsurf (p|x1, . . . , xn) = (
n∑

i=1

p(xi))−
1

2
∗

q∑
i=1

p2i

or, when considering frequency directly

Lsurf (p|x1, . . . , xn) = (

q∑
i=1

αi ∗ pi)−
1

2
∗

p∑
i=1

p2i .
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Roughly speaking, Lsurf favors the probability distributions that are close to
the optimal one in terms of surface. Thus, when, Ω is continuous, it allows for
the approximation of unbounded densities by bounded ones. It has been shown
in [16] that, given X , the probability distribution that maximizes Llog is the
same that the one that maximizes Lsurf .

We use the Lsurf for defining a possibilistic counterpart to the likelihood.
What we want to obtain is a function that is maximized for the possibility
distribution π with the following properties:

• π is a cumulated function of p
• ∀i, j, πi ≥ πj ≡ pi ≥ pj.

In the following we consider that the ordering of subsets, frequencies and pos-
sibility degrees reflect the possibility order, i.e. π1 ≥ . . . ≥ πq. We propose the
following function:

Lpos(π|x1, . . . , xn) =

q∑
i=1

(−αi ∗
i∑

j=1

(1 − πj))−
q∑

i=1

(1− πi)
2

2
+

q∑
i=1

(1− πi) (3)

The rationale behind this is to evaluate the cumulated distribution in the spirit

of Lsurf . Thus, the terms ((1−πi)∗ (1− (
∑q

j=i αi)))− (1−πi)
2

2 correspond to the

evaluation of Lsurf for the set Ci ∪ . . . ∪ Cq. Note that, if you considerCi∪. . .∪Cq

instead of Ci ∪ . . . ∪ Cq, what is obtained is the largest cumulative distribution
instead of the tightest one. In order to have a cleaner interpretation of this
likelihood function, we rewrite it again as follows :

Lpos(π|x1, . . . , xn) =

q∑
i=1

πi ∗ (
q∑

j=i

αj)−
1

2

q∑
i=1

π2
i +

q

2
−

q∑
i=1

αi ∗ i (4)

The first term
∑q

i=1 πi ∗(
∑q

j=i αj)− 1
2

∑q
i=1 π2

i corresponds to the Lsurf applied
to the cumulated probability distribution conditioned by the order induced by
the possibility degrees. If the αi’s and the πi’s are in the same ordering, we can
show that this part of the formulas is equivalent to the squared of the distance
between the optimal distribution (the most specific cumulated distribution) and
the current one. Thus, the terms q

2 −
∑q

i=1 αi ∗ i tends to favor the possibility
distributions that respect the frequency ordering.

Proposition 1. Given a set of data X = {x1, . . . , xn} belonging to a discrete
universe Ω = {C1, . . . , Cq}, the possibility distribution π∗ that maximizes the
function Lpos is the probability-possibility transformation of the optimal proba-
bility distribution p∗ (i.e. ∀i ∈ {1, . . . , q}, p∗i = αi), according to equation (2).

Proof. We look for the probability distribution π∗ that maximizes Lpos.
We have:

∀i = 1 . . . q,
δLpos(π|x1, . . . , xn)

δπi
=

q∑
j=i

αi − πi
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thus

∀i = 1 . . . q,
δLpos(π|x1, . . . , xn)

δπi
= 0⇔ pi =

q∑
j=i

αi.

Since the derivative of Lpos(π|x1, . . . , xn) with respect to πi (the parameters
of π) does not depend on the other variable πj , j �= i, we obtain π∗i = pi =∑q

j=i αi which corresponds to a cumulated distribution of the αi’s. Since the

part
∑q

i=1 αi ∗ i is maximized when α1 ≥ . . . ≥ αq, the distribution π∗ corre-
sponds exactly to Equation (2). �

This proposition shows that Lpos is an acceptable likelihood function for possibil-
ity distributions viewed as families of probabilities. As for Lsurf the likelihood
depends on the surface shared between the considered possibility distribution
and the optimal one. If we only consider one piece of data x such that x ∈ Cj

we obtain :

Lpos(π|x) =
1

n
(

j∑
i=1

πi −
1

2

q∑
i=1

π2
i +

q

2
− j) (5)

It is worth noticing that, when optimal distributions can only be approximated,
finding the best approximation with respect to Lpos is not equivalent to finding
the best probability approximation with respect to probabilistic likelihood and
then turning it into a possibility distribution.

Example 2. For instance, we consider X that leads to the frequency α1 = 0.5,
α2 = 0.3, α3 = 0.2. We know require that p3 = 0 and π3 = 0. In this context,
the optimal p with respect to Lsurf (Llog is not applicable here) is p1 = 0.6,
p2 = 0.4, p3 = 0. The optimal π with respect to Lposs is π1 = 1, π2 = 0.5,
π3 = 0. The transformation π′ of p is π′1 = 1, π′2 = 0.4, π′3 = 0. We observe
that π′ is different than π and that π is a better approximation of the optimal
possibility distribution given is Example 1.

This result is fundamental since it illustrates that using a probabilistic likelihood
and then the probability-possibility transformation is not an effective approach
for constructing a possibility distribution from data. The maximization of Lpos

is more adapted in this scope.

4 A Possibilistic Likelihood-Based Classifier

4.1 Principle

Since the representation of the examples corresponds necessarily to an incom-
plete view of the world, the goal of a possibilistic likelihood-based classification
is to look for imprecise hypotheses that take into account this incompleteness.
Thus, given a set of crisp data, we will search for a model that is as precise as pos-
sible and which provides a faithful description of the data. When the imprecision
tends to 0, we obtain a crisp hypothesis that describes the concept exactly. Then,
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what we obtain is a function that associates to each input example a possibility
distribution over that classes. Since it is based on the possibilistic likelihood,
the resulting distribution can be viewed as the upper bound of the family of
probability distributions that represents the imprecision about the classes that
may be associated to the example. The advantage of using possibility distribu-
tions rather than probability distributions in this scope is twofold. First, having
a faithful representation in terms of a probability distribution requires a large
amount of data. Indeed, computing the probability of a class is more demanding
than only finding the most probable class. Since a possibility distribution pro-
vides an upper bound, it is not as precise as a probability distribution, and then
requires less data for being learned. Second, a possibility distribution hasn’t the
constraint to have the sum of its degrees equal to 1, and then it is more easy to
approximate by optimization.

A classification database is a set of m pairs (−→x i, ci), 1 ≤ i ≤ m, where −→x i ∈
Rn is a vector of n input variables and ci ∈ {C1, . . . , Cq} is the class variable.
A possibilistic classifier Pcl is a function that associates to an input vector a
possibility distribution over the classes. The goal of Possibilistic-likelihood based
classifier is to find a possibilistic classifier Pcl that maximizes the possibilistic
likelihood for each piece of data :

Lpos(Pcl) =

∑m
i=1 Lpos(πi|ci)
m ∗ (q − 1)

(6)

where πi = Pcl(−→x i). The maximum is reached when the πi(ci) = 1 and 0 for
the other class (totally precise prediction). The division by m ∗ (q − 1) ensures
that Lpos(Pcl) is in [−1, 1]. Since the learning bias may prevent reaching this
maximum, we will obtain a possibility distribution that describes both the most
possible class and the plausibility of the other ones.

4.2 Construction and Learning of a Possibilistic Classifier

Let us consider a classification problem with q classes (C1 . . . Cq). We define a
possibilistic likelihood classifier like a family of q independent kernel functions
(e.g. Gaussian kernels in our application) Pcl = {kf1 . . . kfq}. We have

kfi(
−→x ) = ai,0 + ai,1 ∗K(s1,

−→x ) + . . .+ ai,r ∗K(sr,
−→x ),

where s1, . . . , sk are support vectors which are computed previously by using a
k-means algorithm. The possibility distribution is obtained by normalizing and
bounding the results of the kernel functions i.e.

π(ci) = [Pcl(−→x )](ci) =

⎧⎪⎪⎨⎪⎪⎩
1 if i = argmaxj=1...q(kfj(

−→x ))
1 if kfj(

−→x ) > 1
0 if kfj(

−→x ) < 0
kfj(

−→x ) otherwise

Finding the optimal functions kf1 . . . kfq constitutes an hard problem which is
not solvable by classical optimization methods. We propose to solve the problem
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by using a particle swarm optimization algorithm [11]. The goal of the particle
swarm method is to determine the Pcl that maximizes the possibilistic likeli-
hood. One of the advantages of the particle swarm optimization with respect to
the other meta-heuristics is that it is particularly suitable for continuous prob-
lems. Here, one particle represents the parameters of the kernel functions (the
parameters ai,1, . . . , ai,r for each kf1 . . . kfq). At each step the algorithm, each
particle is moved along its velocity vector (randomly fixed at the beginning).
For each particle, the velocity vector is updated at each step by considering the
current vector, the vector from the current particle position to its best known
position and the vector from the current particle position to the global swarm’s
best known position. The second advantage of the algorithm is that it is easy
to tune. The three parameters for the updating of the velocity ω, φp and φg

correspond respectively to the coefficient for the current velocity, the velocity
to the particle best known position and the velocity to the global swarm’s best
known position. The number of particles and the number of iterations depend
on the problem, but there are generic values that perform well in most of the
cases. We use these default values in the experimentations reported below.

5 Experimentations

In this section, we present some experiments with the algorithm described in the
previous section. In order to check the effectiveness of the algorithm, we used
five benchmarks from UCI1. All the dataset used have numerical attributes. The
Diabetes database describes 2 classes with 768 examples. The Ecoli database
contains 336 examples that describe 8 classes.The Ionosphere database describes
2 classes with 351 examples. The Magic telescope database contains 19020 ex-
amples that describe 2 classes.The Segment database describes 7 classes with
2310 examples. We compare our results with the naive Bayes classifier. For each
algorithm, we measure the accuracy but also the possibilistic likelihood. For
the naive Bayes classifier, we obtain the possibility distribution by applying the
probability-possibility transformation to the probability distribution obtained.
The results presented in the following table are for 10-cross validation. * indi-
cates that the result is significantly better than for the other method (paired
two-sided t-test, p = 0.05). Results are provided in the following table. Possi-
bilistic likelihood-based classifier is denoted as PLBC and naive Bayes classifier
as NBC.

database accuracy Poss. likelihood
PLBC NBC PLBC NBC

Diabetes 76.4[8.0] 75.7[5.1] 79.8[6.1] 79.0[4.7]
Ecoli 84.9[4.6] 86.9[2.5] 94.4[3.5] 96.8[1.4]
Ionosphere 93.7∗[3.4] 84.9[6.2] 93.8∗[3.4] 85.8[5.7]
Magic Telescope 81.3∗[0.6] 72.7[0.8] 83.3∗[0.8] 74.6[0.8]
Segment 87.4∗[1.8] 79.8[3.5] 97∗[0.6] 95.8[0.7]

1 http://www.ics.uci.edu/ mlearn/MLRepository.html
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The table shows that the PLBC approach outperforms NBC on 3 of the 5
databases with a statistically significant difference both for the accuracy and the
possibilistic likelihood. On the two remaining databases, there is no statistically
significant differences. Since the methods are clearly different in the theoretical
and the algorithmic points of view, it may be debatable to conclude that the
good performance is due to the use of the possibilistic setting. However, these
clearly results show that this approach competes with the probabilistic ones.

6 Conclusions and Further Works

In this paper we have proposed a classification method based on the possibilis-
tic likelihood. This approach allows us to predict a possibility distribution over
classes rather than a unique class. To the best of our knowledge, the algorithm
proposed is the first one that learns a possibility distribution understood as
family of probability distributions from precise data. The flexibility of possi-
bility distributions allows us to embed possibilistic likelihood into a complex
optimization process that learns directly the set of kernel functions that are the
core of the possibilistic classifier. Since possibility distributions are less precise
that probability distributions, it requires less data for learning. Thus, our pos-
sibility classification algorithm can be used when we do not have a very large
dataset at our disposal, or when prior knowledge is not available. In this con-
text, the model found will faithfully describes the most plausible class and the
imprecision around it. The experiments on benchmark datasets exhibits good
performance and suggests that the approach is promising.

One other advantage of possibility distributions it that we can easily intro-
duce some security margins. Then, we also plan to take into consideration the
quantity of data that are used for determining the possibility distribution at each
point in order to re-inject the uncertainty due the estimation based on a sample.
In the future, it will be also interesting to consider the decision process when
considering such kind of distribution. Indeed, we could make the distinction be-
tween the case of complete knowledge, partial ignorance and total ignorance.
Lastly, we have to compare our algorithm more deeply with the other proba-
bilistic approaches.
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Abstract. We consider linear programming problems with uncertain
constraint coefficients described by intervals or, more generally, possi-
bility distributions. The uncertainty is given a behavioral interpretation
using coherent lower previsions from the theory of imprecise probabili-
ties. We give a meaning to the linear programming problems by refor-
mulating them as decision problems under such imprecise-probabilistic
uncertainty. We provide expressions for and illustrations of the maximin
and maximal solutions of these decision problems and present computa-
tional approaches for dealing with them.
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bilities, decision making, maximinity, maximality.

1 Introduction

Linear programming problems thank their importance both to the great variety
of optimization questions that can be modeled by them and to the existence of
computationally efficient algorithms for solving them [2]. A linear programming
problem can be expressed in the following full (left) and compact (right) forms:

maximize
∑n

k=1 ckxk

subject to ∀m
�=1(

∑n
k=1 a�kxk ≤ b�),

∀n
k=1(xk ≥ 0)

≡
maximize cTx
subject to ax ≤ b,

x ≥ 0

where x in Rn is the optimization vector of dimension n ∈ N, a in Rm×n and
b in Rm are the constraint coefficient matrix and (column) vector with m ∈ N the
number of nontrivial constraints, and c in Rn is the objective function coefficient
vector—cT is its transpose. (The lower case matrix notation is justified below.)

We are interested in linear programming problems in which there is uncer-
tainty in some or all of the constraints. Being able to treat them allows us to
more realistically deal with real-life operations research problems [8, Section 5].

If we are uncertain about the value of a particular constraint coefficient, we
represent it by an upper case letter, e.g., A�k or B�, and similarly A and B if this
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matrix and vector have one or more uncertain components. To these (matrices
or vectors of) uncertain coefficients we must associate a model to formalize the
uncertainty. These problems can then be expressed as

maximize cTx
subject to Ax ≤ B, x ≥ 0

with given uncertainty model for (A, B)

This uncertainty means that, for a given choice of x, it may be uncertain whether
x satisfies the constraints or not, and therefore it is not clear what it means to
‘maximize’ cTx in such a problem.

Our approach is to transform the problem into a decision problem (Section 2)
in which a fixed penalty is received if any of the constraints are broken [7]. Since
this is a reformulation as a decision problem, it can then in principle be solved
using a suitable optimality criterion for the uncertainty models being used, for
instance maximizing expected utility when probability distributions are used, as
we do in Section 3 to introduce the basic ideas. In Section 4, we show how these
ideas are generalized to all uncertainty models that can be seen as coherent lower
or upper previsions [11] and introduce maximinity and maximality, the two cho-
sen amongst many compatible optimality criteria. We focus on two specific types
of uncertainty models: intervals—vacuous lower probabilities—in Section 5, and,
more generally, possibility distributions—maxitive upper probabilities—in Sec-
tion 6. A simplifying assumption we make in this paper is that the uncertainty
models for the various uncertain constraint coefficients are independent, the for-
mal meaning of which we will make precise for each type.

We were surprised at how different this approach is from those usually found in
the literature—we only have space for a fleeting overview. First the probabilistic
case: Dantzig [4] looked at the problem as a staged one: first choose x, observe
(A, B), and then ‘repair’ broken constraints. Charnes & Cooper [3] proposed to
solve the problem under the added ‘chance constraint’ that the probability of
failing a constraint is below some level. Our solution for the interval case with
maximinity, although arrived at differently, essentially reduces to the approach
of Soyster [9]; further results in this vein can be found in the domains of inexact
and robust optimization [5,1]. The possibility distribution case has been analyzed
from a very wide range of angles by the fuzzy sets community—all nevertheless
differing from ours; the approach of Jamison & Lodwick [6] is one to mention,
because they also pursue a penalty idea, but use a different optimality criterion.

To illustrate our methods, we introduce a running example, in which only one
constraint coefficient is uncertain (left: full form, right: shorthand form):

maximize 2x1 + 3x2
subject to 1x1 + 3x2 ≤ 2,

1x1 + 1x2 ≤ B2,
−3x1 − 3x2 ≤ −1,

x1 ≥ 0, x2 ≥ 0

≡ maximize cTx := 2x1 + 3x2
subject to x � B2

For reference, we first show, in Figure 1, the usual linear programming problem,
i.e., for some particular precisely known B2, and its solution.
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maximize cTx := 2x1 + 3x2
subject to x � 1

x1

x2

( 1
2 , 1

2 )
2
3

11
3

1
3

Fig. 1. Example linear programming problem: the constraints are drawn using hairy
lines; the feasible set is shaded dark gray; the convex solution set of optimization vectors
attaining the maximal value 5/2 is a singleton in this case, represented as a black dot

2 Reformulation as a Decision Problem
Now we describe the decision problem that we use in the case of uncertainty.
For each optimization vector x and each possible realization (a, b) of (A, B),
we associate a utility cTx, unless x fails a constraint, in which case the utility
becomes a penalty value L. This value L should be chosen so it is strictly worse
to fail the constraints than to satisfy them, and so L should be strictly less than
cTx for any x that is feasible for some possible realization (a, b).

We use Ax ≤ B as a shorthand for the event {(a, b) ∈ Rm×n × Rm : ax ≤ b}
and so the corresponding indicator function IAx≤B is 1 on this event and 0
elsewhere; idem for Ax � B. Then the gain or utility function associated to x is

Gx := cTxIAx≤B + LIAx�B = L + (cTx − L)IAx≤B. (1)

Given such a utility function and an uncertainty model for (A, B), we can use a
suitable optimality criterion to determine the optimal choices of x.

As can be gleaned from the formulation of our running example and Figure 1,
independent of the uncertainty about B2, any feasible optimization vector x will
have a value of at least 2/3, as achieved in (1/3, 0). Therefore we are allowed the
choice L = 0, which simplifies our discussion of the running example.

3 Probability Mass Functions
A simple probabilistic case serves as a good introduction to the main ideas of
our method. Assume the uncertainty about the independent scalar uncertain
variables is expressed using probability mass functions and let p be the corre-
sponding product probability mass function for (A, B) with Cartesian product
support A × B. Let P denote both the associated probability measure for sub-
sets of A×B and linear prevision (expectation operator) for gambles (real-valued
functions) on A × B.

Utility functions are gambles. The expected utility of choosing an optimization
vector x ≥ 0 is

P (Gx) = P (L + (cTx − L)IAx≤B) = L + (cTx − L)P (Ax ≤ B). (2)
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We give meaning to the linear program with uncertain constraints thus defined
by saying that the solution must maximize expected utility:

maximize cTx
subject to Ax ≤ B, x ≥ 0

with given p
→ maximize L + (cTx − L)P (Ax ≤ B)

subject to x ≥ 0

As the objective function is in general not affine in x, the resulting optimization
problem is in general no longer a linear program. In general, it is also difficult to
compute the probabilistic factor P (Ax ≤ B), let alone find an expression for it.
In Figure 2, we give a simple example that can nevertheless be solved by hand.

We use a conceptually useful generalization of the feasibility concept: an opti-
mization vector x is P (Ax ≤ B)-feasible; for correspondence with the standard
case, 0-feasible vectors are called infeasible and 1-feasible vectors feasible.

maximize cTx := 2x1 + 3x2
subject to x � B2

with pB2(b) =

⎧⎨
⎩

3/5, b = 1,
1/5, b ∈ {2/3, 4/3},

0, elsewhere

↓ MEU (L = 0)

maximize P (B2 ≥ b)

( maximize cTx
subject to x � b

)
subject to b ∈ {2/3, 1, 4/3}

x1

x2

( 1
2 , 1

2 )

(1, 1
3 )

2
3

2
3

1 4
3

1
3

1
3

Fig. 2. Example linear programming problem with probabilistic uncertainty: the feasi-
ble set is shaded dark gray, the 4/5-feasible set gray, and the 1/5-feasible set light gray;
because the set of optimization vectors is partitioned according to probability value,
the maximization can be done in a nested manner; the solution set of optimization
vectors attaining the maximal expected value 2 is given using black dots

4 Generalizing the Probabilistic Case

Coherent Lower and Upper Previsions. A wide range of uncertainty models
can be represented using coherent lower and upper previsions from the theory of
imprecise probabilities [11]. Like linear previsions, these are expectation opera-
tors, but whereas linear previsions can be interpreted as specifying fair prices for
buying and selling gambles, coherent lower and upper previsions can be respec-
tively interpreted as specifying supremum acceptable buying prices and infimum
acceptable selling prices. They are conjugate operators; given a coherent lower
prevision P , the conjugate coherent upper prevision is given by P (f) = −P (−f)
for every gamble f .

Coherent lower and upper probabilities are derived concepts for which we use
the same symbol: given an event E , we have P (E) = P (IE ) and P (E) = P (IE).
As before, we generalize the feasibility concept: an optimization vector x is called
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inner P (Ax ≤ B)-feasible and outer P (Ax ≤ B)-feasible; for correspondence
with the standard case, outer 0-feasible vectors are called infeasible and inner
1-feasible points feasible.

Optimality Criteria. When using coherent lower and upper previsions it is no
longer possible to maximize expected utility. Several generalizations have been
proposed, of which we consider maximinity and maximality. Troffaes [10] gives
a more detailed discussion of these and other optimality criteria.

Under the maximinity criterion, applied to our problem, those optimization
vectors x ≥ 0 are optimal that maximize the lower expected utility

P (Gx) = P (L + (cTx − L)IAx≤B) = L + (cTx − L)P (Ax ≤ B). (3)

Under the maximality criterion, those x ≥ 0 are optimal that are undominated
in comparisons with all other optimization vectors in the following sense:

inf
z∈Rn

P (Gx − Gz) = inf
z∈Rn

P
(
(cTx − L)IAx≤B − (cTz − L)IAz≤B

) ≥ 0. (4)

Additionally, we perform a further selection among maximin or maximal solu-
tions by imposing dominance, pointwise comparisons of utility functions:

∀z ∈ Rn : Gz = Gx or max(Gx − Gz) > 0. (5)

Applied to our problem, pairwise comparisons between x and z differ qualita-
tively based on where Gx and Gz take a value larger than L:

(i) If Ax ≤ B � Az ≤ B, then z does not dominate x because Gx and Gz are
incomparable.

(ii) If Ax ≤ B = Az ≤ B, then z dominates x if cTx < cTz and therefore x must
satisfy cTx ≥ max(Ax≤B)=(Az≤B) cTz; in particular, if Az ≤ B is empty for
all z, no selection is made—we do not consider this trivial case further on.

(iii) If Ax ≤ B ⊂ Az ≤ B, then z dominates x if cTx ≤ cTz and therefore
x must satisfy cTx > max(Ax≤B)⊂(Az≤B) cTz; in particular, if Az ≤ B is
nonempty, all those x for which Ax ≤ B is empty are weeded out.

In general, and also for the problems we consider in this paper, checking domi-
nance in a computationally efficient way remains an open problem.

5 Intervals

Assume the uncertainty about the A�k and B� is expressed using real intervals
[a�k, a�k] and [b�, b�]. Independence is implemented by taking Cartesian products
such as A:=[a, a]:=×1≤k≤n,1≤�≤m[a�k, a�k] and B :=[b, b]:=×1≤�≤m[b�, b�]. Then
we can model the uncertainty using joint vacuous coherent lower and upper
previsions P and P defined for every gamble f on A × B by

P (f) := min(a,b)∈A×B f(a, b) and P (f) := max(a,b)∈A×B f(a, b). (6)
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Intervals and Maximinity. In case the maximinity criterion is used, Equa-
tion (3) shows the quantity P (Ax ≤ B) is important. By Definition (6), it is 1—
and x is feasible—if and only if x satisfies the constraints ax ≤ b for all a ≤ a ≤ a
and b ≤ b ≤ b; otherwise it is 0. Because we may assume x ≥ 0, componentwise,
the inequality’s left-hand side will be maximal and the right-hand side minimal
for a = a and b = b; so if the constraints are satisfied for these values, they are
also satisfied for all the others: the feasible set is aX ≤ b := {x ≥ 0 : ax ≤ b}.

For feasible x, Equation (3) shows that the lower prevision is equal to cTx—
the penalty L falls out of the equation. So if the feasible set is nonempty, the
maximin solutions are the those that maximize this quantity:

maximize cTx
subject to Ax ≤ B, x ≥ 0

with a ≤ A ≤ a, b ≤ B ≤ b
→

maximize cTx
subject to ax ≤ b,

x ≥ 0

The resulting optimization problem is then again a linear program. This is il-
lustrated in Figure 3. Dominance is automatically satisfied, because Ax ≤ B is
equal (to A × B) for all feasible x.

maximize cTx := 2x1 + 3x2
subject to x � B2

with B2 ∈ [2/3, 4/3]

↓ maximinity

maximize cTx
subject to x � 2/3

x1

x2

(1, 1
3 )

2
3

2
3

4
3

1
3

1
3

Fig. 3. Example linear programming problem with interval uncertainty and maximin-
ity: the feasible set is shaded dark gray; the convex solution set of optimization vectors
attaining the maximal lower expected—i.e., maximin—value 2 is a singleton in this
case, represented as a black dot

If the feasible set is empty, all x ≥ 0 are maximin solutions. But now dom-
inance does come into play; e.g., Dominance (iii) weeds out everything outside
of aX ≤ b, which is the outer feasible set.

Intervals and Maximality. In case the maximality criterion is used, Equa-
tion (4) shows the quantity P (Gx −Gz) is important. Definition (6) tells us that
for optimization vectors x and z we have P (Gx − Gz) ≥ 0 if and only if there is
a pair (a, b) in A × B such that Gx(a, b) ≥ Gz(a, b).

In Dominance (ii), we stated that we only considered problems for which the
outer feasible set aX ≤ b is nonempty. As seen above, Dominance (iii) tells us
we can restrict attention to the outer feasible set when looking for maximal solu-
tions. Now, outer feasible x that satisfy dominance (5) also satisfy Equation (4),
because the latter here reduces to minaz≤b max(Gx − Gz) ≥ 0.
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maximize cTx := 2x1 + 3x2
subject to x � B2

with B2 ∈ [2/3, 4/3]

↓ maximality

maximize 0x1 + 0x2
subject to x � 4/3

cTx ≥ maxz�2/3 cTz,
cTx ≥ max1z1+1z2≤1x1+1x2 cTz (dominance)

x1

x2

(1, 1
3 )

2
3

2
3

4
3

1

1
3

Fig. 4. Example linear programming problem with interval uncertainty and maximal-
ity: the feasible set is shaded dark gray and the 1-outer feasible set light gray; the max-
imin solution corresponds to the leftmost black dot; the convex solution set of outer
feasible points with an upper expected value greater than or equal to the maximin
value is given by the hatched area; the maximal solutions satisfying dominance—given
by the thick black line—are the optimization vectors x corresponding to the gam-
bles (2x1 + 3x2)Ix�B2 = (2x1 + 3x2)I1x1+1x2≤B2 undominated within this hatched set

If moreover the feasible set aZ ≤ b is nonempty, then for outer feasible x—
with P (Ax ≤ B) = 1—we have by sub-additivity of P [11] and conjugacy that

minaz≤b P (Gx − Gz) ≤ P (Gx) − maxaz≤b P (Gz) = cTx − maxaz≤b cTz.

So no x with cTx smaller than the value maxaz≤b cTz of a maximin solution can
be maximal. Actually, this is already implied by Dominance (ii) and (iii), but
this criterion can be checked efficiently.

So x is maximal if and only if it satisfies dominance and ax ≤ b, so maximality
for intervals can be expressed as

maximize cTx
subject to Ax ≤ B, x ≥ 0

with a ≤ A ≤ a,
b ≤ B ≤ b

→
maximize 0Tx

subject to ax ≤ b, x ≥ 0,
cTx ≥ maxaz≤b cTz,
dominance

The resulting optimization problem is a classical feasibility problem compounded
with a dominance problem. This case is illustrated in Figure 4.

6 Possibility Distributions

Assume that the uncertainty models for the A�k and B� are unimodal possi-
bility distributions π�k and π�. Independence is implemented with the usual—
least complex—definition of joint possibility: πA(a) :=min1≤k≤n,1≤�≤m π�k(a�k),
πB(b) := min1≤�≤m π�(b�), and π(a, b) := min{πA(a), πB(b)}. For any D among
the A�k and B�, and 0 ≤ t < 1, we define bounds dt := inf{d ∈ R : π(d) > t} and
dt:=sup{d ∈ R : π(d) > t}. We write at, at, bt, and bt for the matrices and vectors
with respective components a�kt

, a�kt
, b�t

, and b�t
. Then A×B :=[a0, a0]×[b0, b0]

is (the closure of) the set of possible realizations of (A, B).
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We can model the uncertainty using a joint upper probability P defined for
every subset E of A × B by P (E) := sup(a,b)∈E π(a, b)—lower probabilities follow
by conjugacy and lower and upper previsions by Choquet integration [7].

Possibility Distributions and Maximinity. By Equation (3), we seek to
maximize P (Gx)=L+(cTx−L)P (Ax≤B)=L+(cTx−L)

(
1−P (Ax � B)

)
. With

every x there corresponds a unique value for P (Ax � B), so this maximization
can be done in a nested manner:

maxx≥0 P (Gx) = L + maxt∈[0,1](1 − t) maxx≥0{cTx − L : P (Ax � B) = t}
= L + maxt∈[0,1](1 − t) maxx≥0{cTx − L : P (Ax � B) ≤ t},

where the second equality follows from the fact that for P (Ax � B) = s < t
with fixed x and t it holds that (1 − s)(cTx − L) ≥ (1 − t)(cTx − L).

Next we show that P (Ax � B) = r := inf{0 ≤ τ < 1 : aτ x ≤ bτ }: We have
ax ≤ b for a and b such that π(a, b) > r, hence P (Ax � B) ≤ r. For any s < r
we have asx � bs, hence P (Ax � B) = sup(a,b)∈A×B{π(a, b) : ax � b} ≥ r. It
follows that P (Ax � B) ≤ t if and only if atx ≤ bt.

Hence the problem becomes

maximize cTx
subject to Ax ≤ B,

x ≥ 0
with given π

→ maximize L + (1 − t)

( maximize cTx − L
subject to atx ≤ bt,

x ≥ 0

)
subject to 0 ≤ t < 1

So we maximize over all 0 ≤ t ≤ 1, where for any particular t < 1, we just
need to solve a single linear program. This maximization over t can be done
using, e.g., a bisection algorithm. Dominance is again automatically satisfied,
now because Ax ≤ B is equal (to atx ≤ bt) for all (1 − t)-inner feasible x. This
case is illustrated in Figure 5.

maximize cTx := 2x1 + 3x2
subject to x � B2

with π2(b) =

⎧⎨
⎩

1, b = 1,
1/5, b ∈ [2/3, 4/3] \ {1},

0, elsewhere

↓ maximinity (L = 0)

maximize (1 − t)

( maximize cTx
subject to x � b2t

)
subject to t ∈ {0, 1/5}

x1

x2

( 1
2 , 1

2 )

(1, 1
3 )

2
3
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3
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3
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3

1
3

Fig. 5. Example linear programming problem with possibilistic uncertainty and max-
iminity: the feasible set is shaded dark gray and the 2/3-inner feasible set gray; the
solution set of optimization vectors attaining the maximin value 2 is given using black
dots
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Possibility Distributions and Maximality. We again start by focusing on
the core of Equation (4), which can be written as [7]:

P (Gx − Gz) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(cTz − L) + (cTx − cTz)P (Ax ≤ B)
+ (cTz − L)P (Ax ≤ B ∨ Az � B)
+ (cTz − L)P (Ax ≤ B ∧ Az � B), cTx ≥ cTz,

−(cTz − L) − (cTx − cTz)P (Az � B)
+ (cTx − L)P (Ax ≤ B ∨ Az � B)
+ (cTx − L)P (Ax ≤ B ∧ Az � B), cTx ≤ cTz.

In this expression, only the factor P (Ax ≤ B ∧ Az � B) is hard to compute for
given x and z. However, to determine whether or not z dominates x, we only
need to find out whether P (Gx − Gz) < 0 or not, so we do not need to compute
the factor’s value, but only whether it is larger than some critical value that
is a function of the (easily computable) rest of the expression. At the current
state of our investigations, this comparison requires us to solve at most m linear
programs per (x, z)-pair.

We have not yet found a way to exploit this result to derive an explicit op-
timization problem—such as the feasibility problem for the interval case—that
has the undominated elements as its solution. So currently we use an approxi-
mation approach for dealing with this kind of problem: we discretize the space
of optimization vectors and perform pairwise comparisons between points in this
grid; this approach is infeasible for problems with non-small n.

This case is illustrated in Figure 6 with an example we can solve exactly.

maximize cTx := 2x1 + 3x2
subject to x � B2

with π2(b) =

⎧⎨
⎩

1, b = 1,
9/10, b ∈ [2/3, 4/3] \ {1},

0, elsewhere

↓ maximality (L = 0)

maximize 0x1 + 0x2
either subject to x � 1, x �� 2/3

but not cTx < max1z1+1z2≤1x1+1x2 cTz
or subject to x � 4/3, x �� 1,

cTx ≥ max1z1+1z2≤1x1+1x2 cTz (dominance)
but not cTx < 10/9 maxz�1 cTz (cf. gray-filled dot)

x1

x2

(1, 1
3 )

2
3

2
3

11
3

1
3

10
9

25
18

( 5
9 , 5

9 )

Fig. 6. Example linear programming problem with possibilistic uncertainty and
maximality—note the modified possibility distribution: the inner feasible set is shaded
dark gray, (the infeasible part of) the 1-outer feasible set is shaded gray, the 9/10-outer
feasible set is shaded light gray; the solution set of is drawn using thick black lines and
the hatched area again consists of optimization vectors that are nonmaximal because
they are dominated (cf. Figure 4); the solution set consists of a union of intersections
of convex sets of optimization vectors
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7 Conclusions

We have used simple two-valued utility functions. Our approach is in principle
compatible with more complex utility functions. For example, in this paper,
we only deal with uncertainty in the constraints. Uncertainty in the objective
function could in principle be taken into account directly in the utility function
of the decision problem. To keep the computational complexity of the problems
we study still somewhat manageable, we have refrained from considering more
complex utility functions—but it is an obvious avenue for further research.

Currently, the two main new contributions of our research, as presented in this
paper, are the formulation of the feasibility problem for the interval-maximality
case and the formulation of the efficiently solvable nested optimization problem
for the possibility-maximinity case. We have bumped our head discovering that
finding an efficient approach for determining dominance is a worthy goal. But this
should not divert all our attention away from adding other types of uncertainty
models—such as linear-vacuous previsions, the next step up in complexity—to
the list of those we can efficiently find maximin solutions for.
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Abstract. Coherent lower previsions are amongst the most prominent uncer-
tainty models within imprecise probability theory. We show how they can model
information about the joint behaviour of two variables, when these are related by
means of a filter map: a model for the imprecise observation of a random variable
by means of a class of filters. Our construction preserves a number of interesting
properties, such as n-monotonicity, and it generalises a number of existing results
for multi-valued mappings.
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city, lower inverses.

1 Introduction and Motivation

This paper deals with a specific class of coherent lower previsions, and discusses some
of their properties. Before we explain why this class is interesting, let us mention a few
basic facts about coherent lower previsions, a quite general uncertainty model used in
the theory of imprecise probabilities. This should allow the reader to understand the
motivation in this introductory section, and to follow the basic arguments in the rest
of the paper. For a more thorough understanding, and for following the proofs, a more
involved knowledge of lower prevision theory is necessary; due to limitations of space,
we must point to Refs. [12,2] for the necessary details, and for a detailed discussion of
the interpretation of lower previsions and why they are useful uncertainty models.

1.1 Basic Notions

Consider a variable X assuming values in a non-empty set X . A subject is uncertain
about the actual value that X assumes in X . A gamble f on X is any bounded real-
valued variable f : X → R, interpreted as an uncertain reward f (X). The set of all
gambles on X is denoted by G (X ). It is a linear space, closed under point-wise addi-
tion and multiplication by real numbers.

A lower prevision is a real-valued functional P defined on some subset of G (X ),
called its domain and denoted by domP. P is said to avoid sure loss when∑n

k=1 P( fk)≤
sup[∑n

k=1 fk] for all n ∈ N0 and all f1, . . . , fn ∈ domP, where N0 is the set of all non-
negative integers (zero included). P is called coherent if [12, Section 2.5.3]:

n

∑
k=1

P( fk)−mP( f0)≤ sup

[ n

∑
k=1

fk−m f0

]
for all n,m ∈ N0 and f0, f1, . . . , fn ∈ domP.

(1)

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 440–449, 2012.
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A lower prevision P defined on all gambles is coherent if and only if [12, Section 2.3.3]
for all non-negative real λ and any pair f ,g of gambles on X :

C1. P( f )≥ inf f ;
C2. P(λ f ) = λP( f );
C3. P( f + g)≥ P( f )+P(g).

Avoiding sure loss is a weaker condition than coherence. If a lower prevision P avoids
sure loss, then we can correct it into a coherent lower prevision that is as small as
possible. This is done by means of the natural extension EP, whose main properties are
summarised in the following theorem:

Theorem 1. [12, Theorem 3.1.2] Let P be a lower prevision that avoids sure loss. Let
EP be the lower prevision on the set G (X ) of all gambles f given by

EP( f ) := sup

{
μ : f − μ ≥

n

∑
k=1

λk[ fk−P( fk)] for some n ∈ N0,λk > 0, fk ∈ domP

}
.

(2)
Then:

(i) EP is a coherent lower prevision;
(ii) EP is the point-wise smallest coherent lower prevision that satisfies EP( f )≥ P( f )

for all f ∈ domP;
(iii) P is coherent if and only if EP( f ) = P( f ) for all f ∈ domP.

One particular example of coherent lower previsions are the so-called vacuous lower
previsions. For any subset A of X —also called an event—the vacuous lower prevision
relative to A is defined on G (X ) by

PA( f ) = inf
x∈A

f (x) for all gambles f on X .

This lower prevision is used to model the information that X ∈ A (and nothing else).
A coherent lower prevision defined on indicators IA of events A only is called a co-

herent lower probability. To simplify notation, we will sometimes use the same symbol
to denote a set A and its indicator function IA, so we will write P(A) instead of P(IA).

Besides coherence, there are other mathematical properties that can be imposed on
lower previsions. For instance:

Definition 1. Let n ≥ 1. A lower prevision defined on the set G (X ) of all gambles is
called n-monotone if for all p ∈ N0, p≤ n, and all f , f1, . . . , fp in G (X ):

∑
I⊆{1,...,p}

(−1)|I|P

(
f ∧
∧
i∈I

fi

)
≥ 0,

where ∧ is used to denote the point-wise minimum.

n-monotone lower previsions have been studied in detail in [2,11]. Any n-monotone
lower prevision on G (X ) that satisfies P(X ) = 1 and P( /0) = 0 is in particular coher-
ent, and it corresponds to the Choquet integral with respect to its (coherent) restriction
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to events, which is called an n-monotone lower probability. A lower prevision that is
n-monotone for all n ≥ 1 is called completely monotone. Such is for instance the case
for the vacuous lower previsions PA considered above.

Another important class of completely monotone lower previsions are the linear
previsions.

Definition 2. A lower prevision P defined on the set G (X ) of all gambles is called a
linear prevision when it satisfies P( f +g) = P( f )+P(g) for every pair of gambles f ,g
on X , and moreover P( f ) ≥ inf f for every gamble f on X .

Any linear prevision corresponds to the expectation (Choquet or Dunford integral) with
respect to its restriction to events, which is a finitely additive probability.

Linear previsions can be used to characterise avoiding sure loss, coherence and nat-
ural extension. Consider, for any lower prevision P, the set

M (P) := {P linear prevision: (∀ f ∈ domP)P( f )≥ P( f )}

of all linear previsions that dominate it on its domain. Then P avoids sure loss if and
only if M (P) �= /0, and P is coherent if and only if

P( f ) = min{P( f ) : P ∈M (P)} for all f ∈ domP. (3)

In other words, a coherent lower prevision P is always the lower envelope of the set
M (P) of linear previsions that dominate it. Moreover, if P avoids sure loss, then its
natural extension EP can be calculated by taking the lower envelope of the set M (P):

EP( f ) = min{P( f ) : P ∈M (P)} for all f ∈ G (X ), (4)

and M (P) = M (EP).
In particular, the vacuous lower prevision on a set A is the lower envelope of the set

of linear previsions P satisfying P(A) = 1: M (PA) = {P linear prevision: P(A) = 1}.
Of particular interest in the context of this paper are the coherent lower proba-

bilities that assume only the values 0 and 1 on the set P(X ) of all events: (∀A ∈
P(X ))P(A) ∈ {0,1}.
Proposition 1. [12, Section 2.9.8] A lower probability P on P(X ) assuming only the
values 0 and 1 is coherent if and only if the set {A ∈P(X ) : P(A) = 1} is a proper
(set) filter.

A (set) filter on X is a non-empty collection F of subsets of X that is increasing (if
A ∈F and A ⊆ B then also B ∈F ) and closed under finite intersections (if A,B ∈F
then also A∩B ∈F ). A proper filter does not contain /0. The set of all proper filters on
X is denoted by F(X ).

Interestingly, coherent zero-one-valued lower probabilities have a unique coherent
extension from events to all gambles (see also Note 4 in [12, Section 3.2.6]):

Proposition 2. Consider any coherent lower probability P on P(X ) assuming only
the values 0 and 1, implying that F := {A : P(A) = 1} is a proper filter. Then the only
coherent extension of P to the set G (X ) is the lower prevision PF given by

PF ( f ) := sup
F∈F

PF( f ) = sup
F∈F

inf
x∈F

f (x) for all gambles f on X .
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The coherent lower previsions PF are completely monotone. In fact, they are the ex-
treme points of the convex set of all completely monotone coherent lower previsions on
G (X ) [1, Chapter VII]. It is the essence of Choquet’s Theorem [1] that any completely
monotone coherent lower prevision is a countably additive convex combination of such
PF .

We will also consider lower previsions in a conditional context, and consider two
random variables X and Y assuming values in X and Y , respectively. A conditional
lower prevision P(·|Y ) on G (X ×Y ) is a two-place real-valued function, defined on
G (X ×Y )×Y that to any ( f ,y) assigns the lower prevision P( f |y) of f , conditional
on Y = y. For fixed f , P( f |Y ) is a gamble on Y that assumes the value P( f |y) in y∈Y .
For fixed y ∈ Y , P(·|y) is a lower prevision on G (X ×Y ). A basic requirement for a
conditional lower prevision is that it should be separately coherent:

Definition 3. A conditional lower prevision P(·|Y ) on G (X ×Y ) is called separately
coherent when it satisfies the following conditions, for all gambles f ,g ∈ G (X ×Y ),
all real λ > 0 and all y ∈ Y :

SC1. P( f |y)≥ infx∈X f (x,y),
SC2. P(λ f |y) = λP( f |y),
SC3. P( f + g|y)≥ P( f |y)+P(g|y),

In that case, each P(·|y) is a coherent lower prevision on G (X ×Y ) that is completely
determined by its behaviour on G (X ), for P( f |y) = P( f (·,y)|y) [12, Lemma 6.2.4].
For this reason, we will also say that P(·|Y ) is a conditional lower prevision on G (X ).

1.2 Motivation

Consider two variables X and Y assuming values in the non-empty (but not necessarily
finite) sets X and Y .

Let us first look at a single-valued map γ between the spaces Y and X . Given a
linear prevision P on G (Y ), such a map induces a linear prevision Pγ on G (X ) by
Pγ(A) := P(γ−1(A)) = P({y ∈ Y : γ(y) ∈ A}) for all A⊆X , or equivalently

Pγ( f ) := P( f ◦ γ) for all gambles f on X , (5)

which is a well-known ‘change of variables result’ for previsions (or expectations). If
we have a variable Y , and the variable X is given by X := γ(Y ), then any gamble f (X) on
the value of X can be translated back to a gamble f (γ(Y )) = ( f ◦ γ)(Y ) on the value of
Y , which explains where Eq. (5) comes from: If the uncertainty about Y is represented
by the model P, then the uncertainty about X = γ(Y ) is represented by Pγ .

There is another way of motivating the same formula, which lends itself more readily
to generalisation. We can interpret the map γ as conditional information: if we know that
Y = y, then we know that X = γ(y). This conditional information can be represented by
a so-called conditional linear prevision P(·|Y ) on G (X ), defined by

P( f |y) := f (γ(y)) = ( f ◦ γ)(y) for all gambles f on X . (6)
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It states that conditional on Y = y, all probability mass for X is located in the single
point γ(y). Clearly P( f |Y ) = ( f ◦ γ)(Y ), which allows us to rewrite Eq. (5) as:

Pγ( f ) = P(P( f |Y )) for all gambles f on X , (7)

which shows that Eq. (5) is actually a special case of the Law of Iterated Expectations,
the expectation form of the Law of Total Probability, in classical probability (see, for
instance, [3, Theorem 4.7.1]).

Assume now that, more generally, the relation between X and Y is determined as
follows. There is a so-called multi-valued map Γ : Y →P(X ) that associates with
any y ∈Y a non-empty subset Γ (y) of X , and if we know that Y = y, then all we know
about X is that it can assume any value in Γ (y). There is no immediately obvious way
of representing this conditional information using a precise probability model. If we
want to remain within the framework of precise probability theory, we must abandon
the simple and powerful device of interpreting the multi-valued map Γ as conditional
information. But if we work with the theory of coherent lower previsions, as we are
doing here, it is still perfectly possible to interpret Γ as conditional information that
can be represented by a special conditional lower prevision P(·|Y ) on G (X ), where

P( f |y) = PΓ (y)( f ) = inf
x∈Γ (y)

f (x) for all gambles f on X (8)

is the vacuous lower prevision associated with the event Γ (y). Given information about
Y in the form of a coherent lower prevision P on G (Y ), it follows from Walley’s
Marginal Extension Theorem (see [12, Section 6.7]) that the corresponding informa-
tion about X is the lower prevision PΓ on G (X ) defined by

PΓ ( f ) = P(P( f |Y )) for all gambles f on X , (9)

which is an immediate generalisation of Eq. (7). This formula provides a well-justified
method for using the conditional information embodied in the multi-valued map Γ to
turn the uncertainty model P about Y into an uncertainty model PΓ about X . This ap-
proach has been introduced and explored in great detail by Miranda et al. [8].

What we intend to do here, is take this idea of conditional information one useful
step further. To motivate going even further than multi-valued maps, we look at an
interesting example, where we assume that the information about the relation between
X and Y is the following: If we know that Y = y, then all we know about X is that it lies
arbitrarily close to γ(y), in the sense that X lies inside any neighbourhood of γ(y). We
are assuming that, in order to capture what ‘arbitrarily close’ means, we have provided
X with a topology T of open sets. We can model this type of conditional information
using the conditional lower prevision P(·|Y ) on G (X ), where

P( f |y) = PNγ(y)
( f ) = sup

N∈Nγ(y)

inf
x∈N

f (x) for all gambles f on X (10)

is the smallest coherent lower prevision that gives lower probability one to any element
of the neighbourhood filter Nγ(y) := {N ⊆X : (∃O ∈ T )γ(y) ∈ O⊆ N} of γ(y). In-
formation about Y in the form of a coherent lower prevision P on G (Y ) can now be
turned into information P(P(·|Y )) about X , via this conditional model, using Eq. (9).
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2 Induced Lower Previsions

So, given this motivation, let us try and capture these ideas in an abstract model. All the
special cases mentioned above can be captured by considering a so-called filter map Φ
from Y to X , i.e. a mapΦ : Y → F(X ) that associates a proper filter Φ(y) with each
element y of Y .1 The simple idea underlying the arguments in the previous section,
is that this filter map represents some type of conditional information, and that this
information can be represented by a (specific) conditional lower prevision.

Using this filter map Φ , we associate with any gamble f on X ×Y a lower inverse
f◦ (under Φ), which is the gamble on Y defined by

f◦(y) := PΦ(y)( f (·,y)) = sup
F∈Φ(y)

inf
x∈F

f (x,y) for all y in Y , (11)

where PΦ(y) is the coherent lower prevision on G (X ) associated with the filter Φ(y).
Similarly, we define for any gamble g on X its lower inverse g• (under Φ) as the

gamble on Y defined by

g•(y) := PΦ(y)(g) = sup
F∈Φ(y)

inf
x∈F

g(x) for all y in Y . (12)

Eqs. (11) and (12) are obviously very closely related to, and inspired by, the expres-
sions (6), (8) and (10). In particular, we find for any A ⊆ X ×Y that (IA)◦ = IA◦ ,
where we let

A◦ := {y ∈ Y : (∃F ∈Φ(y))F×{y} ⊆ A}

denote the so-called lower inverse of A (under Φ). And if B⊆X , then

(B×Y )◦ = B• := {y ∈ Y : (∃F ∈Φ(y))F ⊆ B} ,

is the set of all y for which B occurs eventually with respect to the filter Φ(y).
Now consider any lower prevision P on domP ⊆ G (Y ) that avoids sure loss. Then

we can consider its natural extension EP, and use it together with the filter map Φ to
construct an induced lower prevision P◦ on G (X ×Y ):

P◦( f ) = EP( f◦) for all gambles f on X ×Y . (13)

The so-called X -marginal P• of this lower prevision is the lower prevision on G (X )
given by

P•(g) = EP(g•) for all gambles g on X . (14)

Eqs. (13) and (14) are very closely related to, and inspired by, the expressions (5), (7),
and (9). Induced lower previsions result if we use the conditional information embodied
in a filter map to turn an uncertainty model about Y into an uncertainty model about X .

1 We assume that the filter Φ(y) is proper [ /0 /∈ Φ(y)] mainly to make things as simple as pos-
sible. For details about how to manage without this and similar assumptions, see for instance
[8, Technical Remarks 1 and 2].
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3 Properties of Induced Lower Previsions

Let us define a prevision kernel from Y to X as any map K from Y × G (X ) to
R such that K(y, ·) is a linear prevision on G (X ) for all y in Y . Prevision kernels
are clear generalisations of probability or Markov kernels [7, p. 20], but without the
measurability conditions.

We can extend K(y, ·) to a linear prevision on G (X ×Y ) by letting K(y, f ) =
K(y, f (·,y)) for all gambles f on X ×Y . For any lower prevision P on Y that avoids
sure loss, we denote by PK the lower prevision on G (X ×Y ) defined by

PK( f ) = EP(K(·, f )) for all gambles f on X ×Y .

If P is a linear prevision on G (Y ), then PK is a linear prevision on G (X ×Y ). As an
immediate consequence, PK is always a coherent lower prevision on G (X ×Y ), as a
lower envelope of linear previsions [see Eq. (3)]. We also use the following notation:

K (Φ) =
{

K prevision kernel: (∀y ∈ Y )K(y, ·) ∈M (PΦ(y))
}

(15)

= {K prevision kernel: (∀y ∈ Y )(∀A ∈Φ(y))K(y,A) = 1} .

The next proposition can be seen as a special case of Walley’s lower envelope theorem
for marginal extension [12, Theorem 6.7.4]. We closely follow his original proof.

Proposition 3. Let n∈N, the set of natural numbers without zero, and let P be a lower
prevision that avoids sure loss, and is defined on a subset of G (Y ). Then:

(i) P◦ is a coherent lower prevision.
(ii) For all K ∈K (Φ) and P∈M (P), PK ∈M (P◦); and for all gambles f on X ×Y

there are K ∈K (Φ) and P ∈M (P) such that P◦( f ) = PK( f ).
(iii) If EP is n-monotone, then so is P◦.

Proof. We begin with the proof of (i). We use coherence condition (1). For arbitrary m
in N0, n in N0, and gambles f0, f1, . . . , fm in G (X ×Y ) we find that

n

∑
i=1

P◦( fi)−mP◦( f0) =
n

∑
i=1

EP(( fi)◦)−mEP(( f0)◦)

≤ sup
y∈Y

[ n

∑
i=1

( fi)◦(y)−m( f0)◦(y)

]
= sup

y∈Y

[ n

∑
i=1

PΦ(y)( fi(·,y))−mPΦ(y)( f0(·,y))
]

≤ sup
y∈Y

sup
x∈X

[ n

∑
i=1

fi(x,y)−m f0(x,y)

]
= sup

[ n

∑
i=1

fi−m f0

]
,

where the first inequality follows from the coherence of the natural extension EP [The-
orem 1(i)], and the second from the coherence of the lower previsions PΦ(y), y ∈ Y .

(ii). First, fix any P in M (P) and any K ∈K (Φ). Consider any gamble f on X ×Y .
We infer from Eqs. (15) and (11) that K(y, f ) ≥ f◦(y) for all y ∈ Y , and therefore
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PK( f ) = P(K(·, f ))≥ P( f◦)≥ EP( f◦) = P◦( f ), where the first inequality follows from
the coherence [monotonicity] of the linear prevision P, and the second from Eq. (4).
This shows that PK ∈M (P◦).

Next, fix any gamble f on G (X ×Y ). We infer from Eqs. (15) and (3) and the
coherence of the lower previsions PΦ(y), y ∈ Y that there is some K ∈ K (Φ) such
that f◦ = K(·, f ). Similarly, there is some P ∈M (P) such that EP( f◦) = P( f◦), and
therefore P◦( f ) = P(K(·, f )) = PK( f ).

(iii). For any gambles f and g on X ×Y , ( f ∧g)◦ = f◦ ∧ g◦, using Eq. (11) for
the converse inequality. To see the direct one, use that for any ε > 0,y ∈ Y there are
F1,F2 ∈Φ(y) such that f◦(y)≤ infx∈F1 f (x,y)+ ε and g◦(y)≤ infx∈F2 g(x,y)+ ε; given
F := F1∩F2 ∈Φ(y), it holds that

inf
x∈F

( f (x,y)∧g(x,y)) = ( inf
x∈F

f (x,y))∧ ( inf
x∈F

g(x,y))≥ ( f◦(y)− ε)∧ (g◦(y)− ε),

whence ( f ∧g)◦(y) ≥ ( f◦(y)∧ g◦(y))− ε . This tells us that taking the lower inverse
constitutes a ∧-homomorphism between G (X ×Y ) and G (Y ). A ∧-homomorphism
preserves n-monotonicity [2, Lemma 6]. ��
If we restrict our attention to the X -marginal P• of the lower prevision P◦ on G (X ×
Y ), we can go further: the following simple proposition is a considerable
generalisation of a result mentioned by Wasserman [13, Section 2.4]; see also
[14, Section 2]2. The integral in this result is the Choquet integral, see for instance
Ref. [6].

Proposition 4. Let n ∈ N and let P be a lower prevision that avoids sure loss, and is
defined on a subset of G (Y ). If EP is n-monotone, then so is P•, and moreover

P•(g) =C
∫

gdP• =C
∫

g•dEP = EP(g•) for all g ∈ G (X ). (16)

Proof. From Proposition 3(iii), P• is n-monotone. To prove Eq. (16), it suffices to prove
that the first and last equalities hold, because of Eq. (14). To this end, use that both EP
and P• are n-monotone, and apply [11, p. 56]. ��

It is also useful to consider the lower prevision Pr
◦, defined on the set of gambles

◦domP := { f ∈ G (X ×Y ) : f◦ ∈ domP}

as follows:
Pr
◦( f ) := P( f◦) for all f such that f◦ ∈ domP. (17)

If P is coherent, then of course Pr
◦ is the restriction of P◦ to ◦domP, because then EP

and P coincide on domP [see Theorem 1(iii)]. Interestingly and perhaps surprisingly,
all the ‘information’ present in P◦ is then already contained in the restricted model Pr

◦.

Proposition 5. Let P be a coherent lower prevision, with domP⊆ G (Y ). Then:

(i) Pr
◦ is the restriction of P◦ to the set of gambles ◦domP, and therefore a coherent

lower prevision on ◦domP.

2 Wasserman considers the special case that P is a probability measure and that g satisfies ap-
propriate measurability conditions, so the right-most Choquet integral coincides with the usual
expectation of g•. See also [9, Theorem 14].
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(ii) The natural extension EPr
◦ of Pr

◦ coincides with the induced lower prevision P◦:
EPr

◦ = P◦.

Proof. (i). It follows from Theorem 1(iii) that EP and P coincide on domP. For any
f ∈ ◦domP, we have f◦ ∈ domP and therefore P◦( f ) = EP( f◦) = P( f◦) = Pr

◦( f ), also
using Eqs. (13) and (17).

(ii). Since P◦ is coherent [Proposition 3(i)] and coincides with Pr
◦ on ◦domP, we infer

from Theorem 1(ii) that EPr
◦ ≤ P◦. Conversely, consider any gamble f on X ×Y , then

we must show that EPr
◦( f ) ≥ P◦( f ).

Fix ε > 0. By the definition of natural extension [for P] in Eq. (2), we see that there
are n in N0, non-negative λ1, . . . , λn in R, and gambles g1, . . . , gn in domP such that

f◦(y)−P◦( f )+
ε
2
≥

n

∑
k=1

λk[gk(y)−P(gk)] for all y ∈ Y . (18)

For each y ∈ Y , there is some set F(y) ∈ Φ(y) such that infx∈F(y) f (x,y) ≥ f◦(y)− ε
2 .

Now define the corresponding gambles hk on X ×Y , k = 1, . . . ,n by

hk(x,y) =

{
gk(y) if y ∈ Y and x ∈ F(y)

L if y ∈ Y and x /∈ F(y),

where L is some real number strictly smaller than minn
k=1 infgk, to be fixed shortly. Then

(hk)◦(y) = sup
F∈Φ(y)

inf
x∈F

hk(x,y) = sup
F∈Φ(y)

inf
x∈F

{
gk(y) if x ∈ F(y)

L otherwise

= sup
F∈Φ(y)

{
gk(y) if F ⊆ F(y)

L otherwise
= gk(y),

for any y ∈ Y , so (hk)◦ = gk ∈ domP and therefore hk ∈ ◦domP and Pr
◦(hk) = P(gk).

This, together with Eq. (18),allows us to infer that

f (x,y)−P◦( f )+ ε ≥
n

∑
k=1

λk[hk(x,y)−Pr
◦(hk)] for all y ∈ Y and x ∈ F(y).

Moreover, by an appropriate choice of L [small enough], we can always make sure that
the inequality above holds for all (x,y) ∈X ×Y (note that once L is strictly smaller
than minn

k=1 infgk decreasing it does not affect Pr
◦(hk) = P(gk)); then the definition of

natural extension [for Pr
◦] in Eq. (2) guarantees that EPr

◦( f ) ≥ P◦( f )− ε . Since this
inequality holds for any ε > 0, the proof is complete. ��

4 Conclusion

A multi-valued map Γ : Y → P(X )—associating a non-empty subset Γ (y) of X
with any y ∈ Y —allows us to define a filter map Φ : Y → F(X ) as follows:

Φ(y) := {B⊆X : Γ (y)⊆ B} for all y ∈ Y .
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Lower inverses and induced lower previsions for this specific type of filter map were
discussed by Walley [12, Section 4.3.5], and studied in detail by Miranda et al. [8]:
Section 3 extends their results to general filter maps. The credit for taking the first steps
in this domain, and for associating lower and upper probabilities and previsions—or
expectations—induced using multi-valued mappings is commonly given to Dempster
[4,5]. But, as Carl Wagner has pointed out to us in private communication, important
work by Straßen [10] predates Dempster’s by three years, was published in a well-
known and widely read journal, and has many of the relevant notions and results. To
give an example, Proposition 3(ii) in the marginal extension form was already present
in Straßen’s paper: his result holds for finite (or compact X ), multi-valued maps Φ ,
and linear previsions P. In those cases he goes even further than we do, because he
proves equality of the sets M (P◦) and {PK : K ∈K (Φ)}.

Acknowledgements. The research in this paper has been supported by IWT SBO
project 60043 and FWO project G.0125.12 (De Cooman), and by project MTM2010-
17844 (Miranda).
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Abstract. Conditioning belongs to the most important topics of any
theory dealing with uncertainty. From the viewpoint of construction of
Bayesian-network-like multidimensional models it seems to be inevitable.
In evidence theory, in contrary to the probabilistic framework, various
rules were proposed to define conditional beliefs and/or plausibilities (or
basic assignments) from joint ones. Two of them — Dempster’s condi-
tioning rule and focusing (more precisely their versions for variables) —
have recently been studied in connection with the relationship between
conditional independence and irrelevance and it has been shown, that for
none of them conditional irrelevance is implied by conditional indepen-
dence, which seems to be extremely inconvenient. Therefore we suggest
a new conditioning rule for variables, which seems to be more promis-
ing from the viewpoint of conditional irrelevance, prove its correctness
and also study the relationship between conditional independence and
irrelevance based on this conditioning rule.

Keywords: Evidence theory, conditioning, multidimensional models,
conditional independence, conditional irrelevance.

1 Introduction

The most widely used models managing uncertainty and multidimensionality
are, at present, so-called probabilistic graphical Markov models. The problem
of multidimensionality is solved in these models with the help of the notion
of conditional independence, which enables factorization of a multidimensional
probability distribution into small parts (marginals, conditionals or just factors).

It is easy to realize that if we need efficient methods for representation of
probability distributions (requiring an exponential number of parameters), so
much greater is the need of an efficient tool for representation of belief functions,
which cannot be represented by a distribution (but only by a set function), and
therefore the space requirements for its representation are superexponential. To
solve this problem many conditional independence concepts have been proposed
[3,8,11].
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However, another problem appears when one tries to construct an evidential
counterpart of Bayesian network: problem of conditioning, which is not suffi-
ciently solved in evidence theory. There exist many conditioning rules [6], but is
any of them compatible with our [8] conditional independence concept? In [16]
we dealt with two conditioning rules and studied the relationship between con-
ditional irrelevance based on them and our notion of conditional independence
[8], but the results were not satisfactory. Therefore, in this paper we propose a
new conditioning rule which seems to be more promising.

The contribution is organized as follows. After a short overview of necessary
terminology and notation (Section 2), in Section 3 we recall two conditioning
rules and introduce the new one. In Section 4 the above-mentioned concept of
conditional independence is recalled, a new concept of conditional irrelevance is
presented and the relationship between conditional independence and conditional
irrelevance is studied.

2 Basic Concepts

In this section we briefly recall basic concepts from evidence theory [12] concern-
ing sets and set functions.

2.1 Set Projections and Extensions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be a system of variables, each
Xi having its values in a finite set Xi. In this paper we will deal with a multidi-
mensional frame of discernment

XN = X1 ×X2 × . . .×Xn,

and its subframes (for K ⊆ N) XK =×i∈KXi.
When dealing with groups of variables on these subframes, XK will denote a

group of variables {Xi}i∈K throughout the paper.
A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will be denoted x↓K , i.e.

for K = {i1, i2, . . . , ik}

x↓K = (xi1 , xi2 , . . . , xik) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will denote a projection of A
into XM :1

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.
In addition to the projection, in this text we will also need an inverse operation
usually called cylindrical extension. The cylindrical extension of A ⊂ XK to XL

(K ⊂ L) is the set
A↑L = {x ∈ XL : x↓K ∈ A}.

Clearly, A↑L = A×XL\K .

1 Let us remark that we do not exclude situations where M = ∅. In this case A↓∅ = ∅.
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A more complicated case is to make common extension of two sets, which will
be called a join. By a join2 of two sets A ⊆ XK and B ⊆ XL (K,L ⊆ N) we
will understand a set

A $% B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that for any C ⊆ XK∪L naturally C ⊆ C↓K $% C↓L, but generally
C �= C↓K $% C↓L.

Let us also note that if K and L are disjoint, then the join of A and B is just
their Cartesian product A $% B = A × B, if K = L then A $% B = A ∩ B. If
K ∩ L �= ∅ and A↓K∩L ∩B↓K∩L = ∅ then also A $% B = ∅. Generally,

A $% B = (A×XL\K) ∩ (B ×XK\L),

i.e. a join of two sets is the intersection of their cylindrical extensions.

2.2 Set Functions

In evidence theory [12] (or Dempster-Shafer theory) two dual measures are used
to model uncertainty: belief and plausibility measures. Both of them can be
defined with the help of another set function called a basic (probability or belief)
assignment m on XN , i.e. ,

m : P(XN ) −→ [0, 1],

where P(XN ) is power set of XN and
∑

A⊆XN
m(A) = 1. Furthermore, we

assume that m(∅) = 0.
A set A ∈ P(XN ) is a focal element if m(A) > 0. Let F denote the set of all

focal elements, a focal element A ∈ F is called an m−atom if for any B ⊆ A
either B = A or B ∈/ F . In other words, an m− atom is a setwise-minimal focal
element.

Belief and plausibility measures are defined for any A ⊆ XN by the equalities

Bel(A) =
∑
B⊆A

m(B), P l(A) =
∑

B∩A �=∅
m(B),

respectively.
For a basic assignment m on XK and M ⊂ K, a marginal basic assignment

of m on XM is defined (for each A ⊆ XM ) by the equality

m↓M (A) =
∑

B⊆XK

B↓M=A

m(B). (1)

Analogously we will denote by Bel↓M and Pl↓M marginal belief and plausibility
measures on XM , respectively.

2 This term and notation are taken from the theory of relational databases [1].
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3 Conditioning

Conditioning belongs to the most important topics of any theory dealing with
uncertainty. From the viewpoint of the construction of Bayesian-network-like
multidimensional models it seems to be inevitable.

3.1 Conditioning of Events

In evidence theory the “classical” conditioning rule is the so-called Dempster’s
rule of conditioning defined for any ∅ �= A ⊆ XN and B ⊆ XN such that
Pl(B) > 0 by the formula

m(A|DB) =

∑
C⊆XN :C∩B=A

m(C)

Pl(B)

and m(∅|DB) = 0.
From this formula one can immediately obtain:

Bel(A|DB) =
Bel(A ∪BC)−Bel(BC)

1−Bel(BC)
,

P l(A|DB) =
Pl(A ∩B)

Pl(B)
. (2)

This is not the only possibility how to perform conditioning, another — in a way
symmetric — conditioning rule is the following one called focusing defined for
any ∅ �= A ⊆ XN and B ⊆ XN such that Bel(B) > 0 by the formula

m(A|FB) =

⎧⎨⎩
m(A)

Bel(B)
if A ⊆ B,

0 otherwise.

From the following two equalities one can see, in which sense are these two
conditioning rules symmetric:

Bel(A|FB) =
Bel(A ∩B)

Bel(B)
, (3)

Pl(A|FB) =
Pl(A ∪BC)− Pl(BC)

1− Pl(BC)
.

Formulae (2) and (3) are, in a way, evidential counterparts of conditioning in prob-
abilistic framework. Let us note that the seemingly “natural” way of conditioning

m(A|PB) =
m(A ∩B)

m(B)
(4)

is not possible, since m(A|PB) need not be a basic assignment. It is caused by
a simple fact that m, in contrary to Bel and Pl is not monotonous with respect
to set inclusion. A simple counterexample can be found in [16].
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Nevertheless, in Bayesian-networks-likemultidimensional models we need con-
ditional basic assignments (or beliefs or plausibilities) for variables. This problem
will be in the center of our attention in the next subsection.

3.2 Conditional Variables

In [16] we presented the following two definitions of conditioning by variables,
based on Dempster conditioning rule and focusing.

Let XK and XL (K∩L = ∅) be two groups of variables with values in XK and
XL, respectively. Then the conditional basic assignment according to Dempster’s
conditioning rule of XK given XL ∈ B ⊆ XL (for B such that Pl↓L(B) > 0) is
defined as follows:

mXK |DXL
(A|DB) =

∑
C⊆XK∪L:(C∩B↑K∪L)↓K=A

m(C)

Pl↓L(B)

for A �= ∅ and mK|L(∅|B) = 0. Similarly, the conditional basic assignment ac-

cording to focusing of XK given XL ∈ B ⊆ XL (for B such that Bel↓L(B) > 0)
is defined by the equality

mXK |FXL
(A|FB) =

∑
C⊆XK∪L:C⊆B↑K∪L&C↓K=A

m(C)

Bel↓L(B)

for any A �= ∅ and mK|FL(∅|FB) = 0.
In the above-mentioned paper we proved that these definitions are correct,

i.e. these rules define (generally different) basic assignments. Nevertheless, their
usefulness for multidimensional models is rather questionable, as we shall see in
Section 4.3.

Therefore, in this paper we propose a new conditioning rule which is, in a
way, a generalization of (4). Although we said above, that it makes little sense
for conditioning events, it is sensible in conditioning of variables, as expressed by
Theorem 1 below. The above-mentioned problem of non-monotonicity is avoided,
because a marginal basic assignment is always greater (or equal) to the joint one.

Definition 1. Let XK and XL (K ∩ L = ∅) be two groups of variables with
values in XK and XL, respectively. Then the conditional basic assignment of
XK given XL ∈ B ⊆ XL (for B such that m↓L(B) > 0) is defined as follows:

mXK |PXL
(A|PB) =

∑
C⊆XK∪L:

C↓K=A&C↓L=B

m(C)

m↓L(B)
(5)

for any A ⊆ XK .

Now, let us prove that this definition is makes sense.
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Theorem 1. The set function mXK |PXL
defined for any fixed B ⊆ XL, such

that m↓L(B) > 0 by Definition 1 is a basic assignment on XK .

Proof. LetB ⊆ XL be such thatm↓L(B) > 0.Asnonnegativity ofmXK|pXL
(A|pB)

for any A ⊆ XK and the fact that mXK |pXL
(∅|pB) = 0 follow directly from the

definition, to prove that mXK |pXL
is a basic assignment it is enough to show that∑

A⊆XK

mXK |PXL
(A|PB) = 1.

To check it, let us sum the values of the numerator in (5)∑
A⊆XK

∑
C⊆XK∪L:

C↓K=A&C↓L=B

m(C) =
∑

C⊆XK∪L

C↓L=B

m(C)

= m↓L(B),

where the last equality follows directly from (1). ��

4 Conditional Independence and Irrelevance

Independence and irrelevance need not be (and usually are not) distinguished
in the probabilistic framework, as they are almost equivalent to each other.
Similarly, in possibilistic framework adopting De Cooman’s measure-theoretical
approach [7] (particularly his notion of almost everywhere equality) we proved
that the analogous concepts are equivalent (for more details see [13]).

4.1 Independence

In evidence theory the most common notion of independence is that of random
set independence [5].3 It has already been proven [14,15] that it is also the only
sensible one, as e.g. application of strong independence to two bodies of evidence
may generally lead to a model which is beyond the framework of evidence theory.

Definition 2. Let m be a basic assignment on XN and K,L ⊂ N be disjoint.
We say that groups of variables XK and XL are independent with respect to a
basic assignment m (in notation K ⊥⊥ L [m]) if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L)

for all A ⊆ XK∪L for which A = A↓K ×A↓L, and m(A) = 0 otherwise.

This notion can be generalized in various ways [3,11,15]; the concept of condi-
tional non-interactivity from [3], based on conjunction combination rule, is used
for construction of directed evidential networks in [4]. In this paper we will use

3 Klir [9] calls it non-interactivity.
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the concept introduced in [8,15], as we consider it more suitable: in contrary to
other conditional independence concepts [3,11] it is consistent with marginaliza-
tion, in other words, the multidimensional model of conditionally independent
variables keeps the original marginals (for more details see [15]).

Definition 3. Letm be a basic assignment onXN andK,L,M ⊂ N be disjoint,
K �= ∅ �= L. We say that groups of variables XK and XL are conditionally
independent given XM with respect to m (and denote it by K ⊥⊥ L|M [m]), if
the equality

m↓K∪L∪M(A) ·m↓M (A↓M ) = m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )

holds for any A ⊆ XK∪L∪M such that A = A↓K∪M $% A↓L∪M , and m(A) = 0
otherwise.

It has been proven in [15] that this conditional independence concept satisfies
so-called the semi-graphoid properties taken as reasonable to be valid for any
conditional independence concept (see e.g. [10]) and it has been shown in which
sense this conditional independence concept is superior to previously introduced
ones [3,11].

4.2 Irrelevance

Irrelevance is usually considered to be a weaker notion than independence (see
e.g. [5]). It expresses the fact that a new piece of evidence concerning one variable
cannot influence the evidence concerning the other variable, in other words is
irrelevant to it.

More formally: a group of variables XL is irrelevant to XK (K ∩L = ∅) if for
any B ⊆ XL such that Pl↓L(B) > 0 (or Bel↓L(B) > 0 or m↓L(B) > 0)

mXK |XL
(A|B) = m(A) (6)

for any A ⊆ XK .4

It follows from the definition of irrelevance that it need not be a symmetric
relation. Its symmetrized version is sometimes taken as a definition of indepen-
dence. Let us note, that in the framework of evidence theory neither irrelevance
based on Dempster conditioning rule nor that based on focusing even in cases
when the relation is symmetric, imply independence, as can be seen from exam-
ples in [16].

Generalization of this notion to conditional irrelevance may be done as follows.
A group of variables XL is conditionally irrelevant to XK given XM (K,L,M
disjoint, K �= ∅ �= L) if

mXK |XLXM
(A|B) = mXK |XM

(A|B↓M ) (7)

is satisfied for any A ⊆ XK and B ⊆ XL∪M .

4 Let us note that somewhat weaker definition of irrelevance one can found in [2], where
equality is substituted by proportionality. This notion has been later generalized
using conjunctive combination rule [3].



Conditioning in Evidence Theory 457

Let us note that the conditioning in equalities (6) and (7) stands for an ab-
stract conditioning rule (any of those mentioned in the previous section or some
other [6]). Nevertheless, the validity of (6) and (7) may depend on the choice of
the conditioning rule, as we showed in [16] — more precisely irrelevance with
respect to one conditioning rule need not imply irrelevance with respect to the
other.

4.3 Relationship between Independence and Irrelevance

As mentioned at the end of preceding section, different conditioning rules lead
to different irrelevance concepts. Nevertheless, when studying the relationship
between (conditional) independence and irrelevance based on Dempster condi-
tioning rule and focusing we realized that they do not differ too much from each
other, as suggested by the following summary.

For both conditioning rules:

– Irrelevance is implied by independence.
– Irrelevance does not imply independence.
– Irrelevance is not symmetric, in general.
– Even in case of symmetry it does not imply independence.
– Conditional independence does not imply conditional irrelevance.

The only difference between these conditioning rules is expressed by the following
theorem proven in [16]

Theorem 2. Let XK and XL be conditionally independent groups of variables
given XM under joint basic assignment m on XK∪L∪M (K,L,M disjoint, K �=
∅ �= L). Then

mXK |FXLXM
(A|FB) = mXK |FXM

(A|FB↓M ) (8)

for any m↓L∪M-atom B ⊆ XL∪M such that B↓M is m↓M -atom and A ⊆ XK .

From this point of view focusing seems to be slightly superior to Dempster
conditioning rule, but still it is not satisfactory.

Now, let us make an analogous investigation for irrelevance based on the new
conditioning rule introduced by Definition 1.

Theorem 3. Let K,LM be disjoint subsets of N such that K,L �= ∅. It XK and
XL are independent given XM (with respect to a joint basic assignment m defined
on XK∪L∪M), then XL is irrelevant to XK given XM under the conditioning
rule given by Definition 1.

Proof. Let XK and XL be conditionally independent given XM then for any
A ⊆ XK∪L∪M such that A = A↓K∪M $% A↓L∪M

m(A) ·m↓M (A↓M ) = m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )
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and m(A) = 0 otherwise. From this equality we immediately obtain that for all
A such that m↓L(A↓L∪M ) > 0 (it implies that also m↓M (A↓M ) > 0) equality

m(A)

m↓L∪M (A↓L∪M )
=

m↓K∪M (A↓K∪M )

m↓M (A↓M )

is satisfied. Let us note that the left-hand side of the equality is equal to
mXK |XL∪M

(A↓K |A↓L∪M ), while the right-hand side equals mXK |XM
(A↓K |A↓L),

which means, that XL is irrelevant to XK . ��
The reverse implication is not valid, as can be seen from the next example.

Example 1. Let X1 and X2 be two binary variables (with values inXi = {ai, āi})
with joint basic assignment m defined as follows:

m({(a1, a2)}) =
1

4
,

m({a1} ×X2) =
1

4
,

m(X1 × {a2}) =
1

4
,

m(X1 ×X2 \ {(ā1, ā2)}) =
1

4
.

From these values one can obtain

m↓2({a2}) = m↓2(X2) =
1

2
.

Evidently, it is not possible to condition by {ā2} and we have to confine ourselves
to conditioning by {a2}:

mX1|PX2
({a1}|P {a2}) = 1

2 = m↓1({a1}),
mX1|PX2

({ā1}|P {a2}) = 0 = m↓1({ā1}),
mX1|PX2

(X1|P {a2}) = 1
2 = m↓1(X1),

i.e. X2 is irrelevant to X1,
5 but X1 and X2 are not independent, as the focal

element X1 ×X2 \ {(ā1, ā2)} is not a rectangle. ♦

Theorem 3 and Example 1 express the expected property: conditional indepen-
dence is stronger than conditional irrelevance. Nevertheless, it is evident from
the example, that irrelevance (with respect to this conditioning rule) does not
imply independence even in case of symmetry.

5 Conclusions

We introduced a new conditioning rule for variables in evidence theory, proved
its correctness and showed that conditional irrelevance based on this condition-
ing rule is implied by recently introduced conditional independence. From this

5 Since we can interchange X1 and X2, it is evident that also X1 is irrelevant to X2.
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viewpoint, it is superior to previously suggested conditioning rules. It will enable
us to decompose multidimensional models in evidential framework into condi-
tional basic assignments in a way analogous to Bayesian networks in probabilistic
framework.
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Abstract. We present a method for learning imprecise local uncertainty models
in stationary hidden Markov models. If there is enough data to justify precise local
uncertainty models, then existing learning algorithms, such as the Baum–Welch
algorithm, can be used. When there is not enough evidence to justify precise
models, the method we suggest here has a number of interesting features.

Keywords: Hidden Markov model, learning, expected counts, imprecise Dirich-
let model.

1 Introduction

In practical applications of reasoning with hidden Markov models, or HMMs, an im-
portant problem is the assessment of the local uncertainty models. In many applications,
the amount of data available for learning the local models is limited. This may be due
to the costs of data acquisition, lack of expert knowledge, time limitations, and so on
[4,9]. In this case, we believe using precise(-probabilistic) local uncertainty models is
hard to justify. This leads us to use imprecise(-probabilistic) local uncertainty models,
turning the HMM into an imprecise hidden Markov model (iHMM).

Convenient imprecise probability models are coherent lower previsions, see [6] for
a detailed exposition. In this paper we develop a method for learning imprecise local
models, in the form of coherent lower previsions, in iHMMs.

Learning of iHMMs has been explored earlier [1,5]. However, these papers deal with
learning transition models and do not consider learning emission models. In this paper,
we want to extend this to learning all the local models of an iHMM.

We start with a short introduction of the relevant aspects of HMMs and iHMMs in
Section 2. In Section 3, we show how to learn imprecise local models—first if the state
sequence is supposed to be known, and finally for hidden state sequences. In Section 4,
we recall basic aspects of the Baum–Welch algorithm, relevant to our purpose. In Sec-
tion 5, we apply our method to a problem of predicting future earthquake rates.

2 Hidden Markov Models and Basic Notions

2.1 Precise Hidden Markov Models

An HMM with length n has n state variables Xt that are hidden or unobservable, and
n observation variables Ot that are observable. The figure below shows a graphical

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 460–469, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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representation of a HMM, with the local uncertainty model (characterised by a mass
function in the precise case) for each variable shown next to the corresponding node.

X1 X2

O1 O2

Xn

On

pX1
pX2|X1

pXn|Xn−1

pO1|X1
pO2|X2

pOn|Xn

Each state variable Xt , with t in {1, . . . ,n}, takes one of the m possible values in the
finite set Xt = X := {ξ1, . . . ,ξm}. Each observation variable Ot , with t in {1, . . . ,n},
takes one of the p possible values in the finite set Ot = O := {ω1, . . . ,ωp}. We denote
by xt a generic value that Xt takes in X , and by ot a generic value that Ot takes in O .

The local uncertainty model pXt |Xt−1
describes probabilistic knowledge about state

variable Xt , conditional on the previous state variable Xt−1, with t in {2, . . . ,n}, and is
called a precise transition model. The probability that state variable Xt takes value xt ,
conditional on Xt−1 = xt−1, is written as pXt |Xt−1

(xt |xt−1).
The local uncertainty model pOt |Xt describes probabilistic knowledge about observa-

tion variable Ot , conditional on the corresponding state variable Xt , with t in {1, . . . ,n},
and is called a precise emission model. The probability that observation variable Ot

takes value ot , conditional on Xt = xt , is written as pOt |Xt (ot |xt).
The only variable we have not paid attention to so far is the first state variable X1.

The local uncertainty model pX1 describes probabilistic knowledge about the first state
variable X1, and is not conditional. It is called a precise marginal model. The probability
that state variable X1 = x1 is written as pX1(x1).

We write the state sequence as X1:n = x1:n and the observation sequence as O1:n =
o1:n. We use notations like Ap:n := (Ap, . . . ,An) if p ≤ n and Ap:n := /0 if p > n. For
notational convenience, we also use another way of denoting state and observation se-
quences. There is a unique l1:n ∈ ×n

i=1Xi such that the state sequence X1:n = x1:n can
be written as X1:n = (ξl1 , . . . ,ξln), and a unique h1:n ∈ ×n

i=1Oi such that the observation
sequence O1:n = o1:n can be written as O1:n = (ωh1 , . . . ,ωhn). We will use these unique
letters li and hi throughout.

We assume each HMM to be stationary, meaning that pOt |Xt = pO|X for all t in
{1, . . . ,n} and pXt |Xt−1

= pXi|Xi−1
for all t, i in {2, . . . ,n} . The probability pO|X(ωh|ξl),

with h in {1, . . . , p} and l in {1, . . . ,m}, of a state variable that takes value ξl emitting
value ωh is also denoted as Ehl. Furthermore, the probability pXt |Xt−1

(ξh|ξl), with l,h
in {1, . . . ,m} (this probability does not depend on t since the HMM is stationary), of a
transition from a state variable taking value ξl to a state variable taking value ξh is also
denoted as Tlh. Finally, the probability pX1(ξl) that the first state variable X1 assumes
the value ξl is also denoted by pl .

The model parameter θθθ is the vector with all parameters of the marginal, transition
and emission models. It has m(p+m+ 1) elements, and is explicitly defined as:

θθθ :=
[
p1 · · · pm T11 · · · Tmm E11 · · · Epm

]
.

We write models that depend on (components of) θθθ as models conditional on θθθ .
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In our HMMs, we impose the usual Markov condition for Bayesian networks: for any
variable, conditional on its mother variable, the non-parent non-descendent variables
are independent of it (and its descendants). Here, the Markov condition reduces to the
following conditional independence conditions. For each t in {1, . . . ,n}:

pXt |X1:t−1,O1:t−1
(xt |x1:t−1,o1:t−1,θθθ ) = pXt |Xt−1

(xt |xt−1),

pOt |X1:n,O1:t−1,Ot+1:n
(ot |x1:n,o1:t−1,ot+1:n,θθθ ) = pOt |Xt (ot |xt).

2.2 Imprecise Hidden Markov Models

An iHMM has the same graphical structure as an HMM, with the precise-probabilistic
local models replaced by imprecise-probabilistic variants. Convenient imprecise prob-
ability models are coherent lower previsions.

A coherent lower prevision (or lower expectation functional) P is a real-valued func-
tional defined on real-valued functions—called gambles—of variables. We denote the
set of all gambles on the variable X by L (X ). A gamble is interpreted as an uncertain
award or penalty: it yields f (x) if X takes value x in X . A coherent lower prevision P
defined on L (X ) satisfies the following requirements:

C1. P( f )≥minx∈X f (x) for all f in L (X );
C2. P(μ f ) = μP( f ) for all real μ ≥ 0 and all f in L (X );
C3. P( f + g)≥ P( f )+P(g) for all f ,g in L (X ).

With a coherent lower prevision, we can associate a conjugate coherent upper previ-
sion P as follows: P( f ) := −P(− f ) for all gambles f . The interpretation of coherent
lower and upper previsions is as follows. P( f ) is a subject’s supremum buying price
for the gamble f , and consequently P( f ) is his infimum selling price for f . For more
information, see for instance [6].

The lower and upper probability of an event A ⊆X are defined as P(A) := P(IA)
and P(A) := P(IA), where IA is the indicator (gamble) of a set A, which assumes the
value 1 on A and 0 elsewhere.

We denote the imprecise marginal model by Q
1
, defined on L (X1). The impre-

cise transition model for state variable Xt , for t in {2, . . . ,n}, is denoted by Q
t
(·|Xt−1),

defined on L (Xt ) and the imprecise emission model for observation variable Ot , for t
in {1, . . . ,n}, is denoted by St(·|Xt), defined on L (Ot). We assume our iHMM also to
be stationary, meaning that the local models do not depend on t.

In an iHMM, the Markov condition turns into the conditional irrelevance assess-
ment, meaning that, conditional on its mother variable, the non-parent non-descendant
variables are assumed to be epistemically irrelevant to the variable and her descendants
(see [3]). With this conditional irrelevance assessment, the following recursion relations
hold for the joint lower prevision Pt(·|Xt−1) on L (×n

i=t(Xi×Oi)):

Pt(·|Xt−1) = Q
t
(Et(·|Xt)|Xt−1) for t = n, . . . ,2,{

En(·|Xn) = Sn(·|Xn)

Et(·|Xt) = Pt(·|Xt−1)⊗ St−1(·|Xt−1) for t = n− 1, . . . ,1,
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The joint lower prevision P defined on L (×n
i=1(Xi×Oi)) of all the variables is given

by Pf (·) = Q
1
(Et(·|Xt)).

In the next section, we start by presenting a method for learning the imprecise local
uncertainty models of an iHMM, if both the observation sequence and the state se-
quence is given. Since the state sequence is actually unobservable, in Section 3.3 we
present a method to estimate the relevant quantities from only an observation sequence.

3 Learning Imprecise Local Uncertainty Models

Since transitions between state variables and emissions of observation variables can be
seen as instances of IID processes, whose behaviour is usefully summarised by mul-
tinomial processes, a convenient model to describe uncertainty about transition and
emission probabilities are the conjugate Dirichlet models. One important imprecise-
probabilistic variant of these is the imprecise Dirichlet model (IDM) [7].

3.1 Imprecise Dirichlet Model

Without going into too much detail, let us briefly recall the relevant ideas about the
IDM. If n(A) is the number of occurrences of an event A in N experiments, then the
lower and upper probability of A according to an IDM are defined as

P(A) =
n(A)
N + s

and P(A) =
n(A)+ s

N + s
,

where s is a hyperparameter called the number of pseudo-counts. This is a non-negative
real number on which the imprecision Δ(P(A)) := P(A)−P(A) = s/N+s depends. The
larger s, the more imprecise the inferences. If s = 0, the resulting precise model returns
the relative frequency P(A) = P(A) = n(A)/N of the occurrence of A.

Once we have chosen a value for s, we can use the IDM to infer interval estimates
for the probability of A from observations. The choice of s is, however, fairly arbitrary;
see also [7], where it is argued that for example s = 2 might be a good choice.

3.2 Known State Sequence

Our aim is to learn local models, based on a known observation sequence O1:n =
(ωh1 , . . . ,ωhn). Assume for the time being the state sequence X1:n = x1:n = (ξl1 , . . . ,ξln)
to be also known, then we can build imprecise estimates for the local uncertainty models
as follows.

We first define for each i and g in {1, . . . ,m} the following numbers (or rather func-
tions of the state sequence x1:n) nξi

and nξi,ξg as:

nξi
(x1:n) :=

n

∑
t=1

I{ξi}(xt) and nξi,ξg(x1:n) :=
n

∑
t=2

I{(ξi,ξg)}(xt−1,xt).

The interpretation of these numbers is immediate: nξi
is the number of times the value

ξi is reached in the whole state sequence x1:n and nξi,ξg
is the number of times that a

state transition from value ξi to value ξg takes place in the whole state sequence x1:n.
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Imprecise Transition Model: The event of interest here is the transition from a state
variable taking value ξi in X to the subsequent state variable taking value ξg in X .
This event occurs nξi,ξg times. The number of “experiments” N is the number of times
∑m

g=1 nξi,ξg that a transition from value ξi takes place. The IDM leads to the following
imprecise transition model (in terms of lower and upper transition probabilities):

Q({ξg}|ξi) =
nξi,ξg

s+∑m
g=1 nξi,ξg

and Q({ξg}|ξi) =
s+ nξi,ξg

s+∑m
g=1 nξi,ξg

.

Since here and in what follows, the IDM produces a linear-vacuous model [6,7] for the
probabilities, these lower and upper probabilities determine the imprecise model.

Imprecise Emission Model: The event of interest here is the emission of observa-
tion o in O from corresponding state variable taking value ξi in X . This event occurs
∑{t:ωht =o} I{ξi}(xt) times. The total number of times an emission from value ξi takes
place, is nξi

. The IDM then leads to the following imprecise emission model:

S({o}|ξi) =
∑{t:ωht =o} I{ξi}(xt)

s+ nξi

and S({o}|ξi) =
s+∑{t:ωht =o} I{ξi}(xt)

s+ nξi

.

Imprecise Marginal Model: The event of interest here is the state variable X1 taking
value ξi in X . The number of times this event occurs is I{ξi}(x1). The total number
of times state variable X1 takes any value is of course 1. The IDM then leads to the
following imprecise marginal model:

Q
1
({ξi}) =

I{ξi}(x1)

s+ 1
and Q1({ξi}) =

s+ I{ξi}(x1)

s+ 1
.

3.3 Unknown State Sequence

Since in an HMM the state sequence X1:n is unobservable (hidden), the numbers nξi

and nξi,ξg
are actually random variables Nξi

and Nξi,ξg
: functions of the hidden state

sequence X1:n. This means we can no longer use them directly to learn the imprecise
local models. Instead of using these random variables Nξi

and Nξi,ξg , we will rather
use their expected values, conditional on the known observation sequence o1:n and the
model parameter θθθ∗. Here θθθ ∗ is a local maximum of the likelihood, obtained by the
Baum–Welch algorithm (see Section 4). We define the expected counts n̂ξi

an n̂ξi,ξg as

n̂ξi
:= E
(
Nξi

∣∣o1:n,θθθ∗
)
=

n

∑
t=1

E
(
I{ξi}(xt)

∣∣o1:n,θθθ ∗
)
=

n

∑
t=1

pXt |O1:n
(ξi|o1:n,θθθ ∗)

n̂ξi,ξg
:= E

(
Nξi ,ξg

∣∣∣o1:n,θθθ ∗
)
=

n

∑
t=2

E
(
I{(ξi,ξg)}(xt−1,xt)

∣∣∣o1:n,θθθ ∗
)

=
n

∑
t=2

pXt−1:t |O1:n
(ξi,ξg|o1:n,θθθ ∗).
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We can calculate θθθ ∗, and from this pXt |O1:n
(ξi|o1:n,θθθ ∗) and pXt−1:t |O1:n

(ξi,ξg|o1:n,θθθ ∗),
efficiently with the Baum–Welch algorithm and forward and backward probabilities.
Instead of using real counts of transitions and emissions, we use the expected number
of occurrences of these events to build the imprecise local models. These expected
numbers of occurrences are non-negative real numbers instead of non-negative integers.
The estimated imprecise transition model is given by

Q({ξg}|ξi) =
n̂ξi,ξg

s+∑m
g=1 n̂ξi,ξg

and Q({ξg}|ξi) =
s+ n̂ξi,ξg

s+∑m
g=1 n̂ξi,ξg

,

the estimated imprecise emission model by

S({o}|ξi) =
∑{t:ωht =o} pXt |O1:n

(ξi|o1:n,θθθ ∗)
s+ nξi

and S({o}|ξi) =
s+∑{t:ωht =o} pXt |O1:n

(ξi|o1:n,θθθ ∗)
s+ nξi

,

and the estimated imprecise marginal model by

Q1({ξi}) =
pX1|O1:n

(ξi|o1:n,θθθ ∗)
s+ 1

and Q1({ξi}) =
s+ pX1|O1:n

(ξi|o1:n,θθθ ∗)
s+ 1

.

3.4 Imprecision of the Imprecise Local Uncertainty Models

The imprecision Δ(Q({ξh}|ξi)) of the imprecise transition model and the imprecision
Δ(S({o}|ξi)) of the imprecise emission model satisfy interesting properties.

Proposition 1. The harmonic mean HΔ (Q) of the set {Δ(Q({ξh}|ξi)) : i ∈ {1, . . . ,m}}
is given by HΔ (Q) = ms/ms+n−1 and the harmonic mean HΔ (S) of the set {Δ(S({o}|ξi)) :
i ∈ {1, . . . ,m}} is given by HΔ (S) = ms/ms+n.

Proof. The harmonic mean HΔ (Q) of {Δ(Q({ξh}|ξi)) : i ∈ {1, . . . ,m}} is given by

HΔ (Q) =
m

∑m
i=1

1
Δ (Q({ξh}|ξi))

=
ms

∑m
i=1

(
s+∑m

g=1 n̂ξi,ξg

)
=

ms

ms+∑n−1
t=1 ∑

m
i=1 E

(
I{ξi}(Xt)

∣∣o1:n,θθθ∗
) = ms

ms+∑n−1
t=1 1

=
ms

ms+ n− 1
.

The harmonic mean HΔ (S) of {Δ(S({o}|ξi)) : i ∈ {1, . . . ,m}} is given by

HΔ (S) =
m

∑m
i=1

1
Δ (S({o}|ξi))

=
ms

∑m
i=1

(
s+ nξi

) = ms
ms+ n

. ��

HΔ (Q) increases with m (if n > 1) and decreases with n, and HΔ (S) increases with m
and decreases with n. The IDM yields more precise estimates as the number of relevant
observations (of transitions or emissions) increases: the more relevant data, the more
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precise the estimates. For a fixed number of data (observation sequence length n), the
precision tends to decrease as the number of possible state values m increases. Notably
in cases where states are useful fictions (as in the earthquake example discussed further
on), there is a cost to increasing the number of states. The increase of the imprecision
with increasing m is, obviously, not present in precise HMM estimation. When making
inferences based on precise HMM estimation, for example using the Viterbi algorithm
for state sequence estimation, all results seem equally reliable, regardless of the number
of possible state values m. But when making inferences in iHMMs, based on the model
estimates provided by our method, for example using the EstiHMM algorithm [2], this
is not the case: for smaller m, inferences will be more precise (or decisive); and if m
is fairly large, inferences about state sequences will tend to become more imprecise.
Lumping states together will increase the predictive power (for a given observation
sequence), refining states will reduce it: there is a certain limit on what can be inferred
using an iHMM estimated from a given information sequence, which is not there if we
use a precise HMM estimation. Using precise HMM estimation, the coarseness of the
state space representation has no influence on the precision, irrespective of the amount
of data available. We believe this is a weakness rather than a strength of precise models.

4 The Baum–Welch Algorithm

We give a brief overview of how to find the model parameter θθθ ∗ using the Baum–
Welch algorithm. It is an EM algorithm specifically for learning HMMs (see, e.g., [9]).
It iteratively finds a (local) maximum θθθ ∗ of the likelihood, which we define presently.

4.1 Likelihood in Hidden Markov Models

The complete likelihood Lo1:n,x1:n(θθθ ) in an HMM, with the observation sequence O1:n =
o1:n as data, an arbitrary state sequence X1:n = x1:n and model parameter θθθ , is defined
as pO1:n,X1:n(o1:n,x1:n|θθθ ). By the Markov condition, this can be written as Lo1:n,x1:n(θθθ ) =
pl1∏

n
t=2 Tlt−1lt ∏

n
t=1 Eht lt . Although we are interested in the likelihood for the observa-

tion sequence Lo1:n(θθθ) := pO1:n(o1:n|θθθ), the Baum–Welch algorithm finds a maximum
θθθ∗ for the complete likelihood. Welch proves [8] that the Baum–Welch algorithm also
locally maximises the likelihood for the observations.

A θθθ ∗ that maximises Lo1:n,x1:n(θθθ ) also maximises lnLo1:n,x1:n(θθθ ), given by:

lnLo1:n,x1:n(θθθ ) =
m

∑
z=1

Iξz(x1) ln pz +
m

∑
i=1

m

∑
g=1

nξi,ξg lnTig +
n

∑
t=1

m

∑
zt=1

Iξzt
(xt) ln Ehtzt . (1)

The Baum–Welch algorithm consists in executing two steps—the Expectation (E) step
and the Maximisation (M) step—iteratively until some convergence is achieved.

4.2 Expectation Step

In the E step we calculate the expectation of the complete log-likelihood conditional
on the observations o1:n (and of course the model parameter θθθ ). We call this expecation
ln L̂o1:n(θθθ) :=E (lnLo1:n,X1:n(θθθ )|o1:n,θθθ ). It is given by the right-hand side of (1), but with
the indicators and the nξi,ξg replaced by their expectations, as in Section 3.3.
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4.3 Maximisation Step

In this step we search the argument θθθ∗ that maximises the expectation of the complete
log-likelihood.

Lemma 1. The argument θθθ ∗ that maximises the expected complete log-likelihood of
a HMM with observation sequence ωh1:hn is given by, for all i,g ∈ {1, . . . ,m} and all
h ∈ {1 . . . , p}:

p∗i = pX1|O1:n
(ξi|o1:n,θθθ ∗),T ∗ig =

n̂ξi,ξg

∑m
g=1 n̂ξi,ξg

, and E∗hi =
∑{t:ht=h} pXt |O1:n

(ξi|o1:n,θθθ∗)
n̂ξi

.

By repeatedly performing the E step followed by the M step (with in the E step θθθ taken
as θθθ ∗), we eventually reach a stable value of θθθ ∗, guaranteed to be also a local maximum
of the likelihood for the observation sequence.

Incidentally, Lemma 1 guarantees that our method, with the choice for the pseudo-
counts s = 0, gives local models that maximise the likelihood for the observation
sequence.

5 Predicting the Earth’s Earthquake Rate

5.1 Introduction

We apply our method to a problem where we are interested in using HMMs to predict
earthquake rates in future years. To do this, we will see that we need to learn a transition
model. To this end, we use data of counted annual numbers of major earthquakes (with
magnitude 7 and higher).

We assume that the earth can be in m different seismic states λ1, . . . ,λm and that
the occurrence of earthquakes in a year depends on the seismic state λ of the Earth
in that year. We assume that the Earth, being in a seismic state λ , “emits” a number
of earthquakes o governed by a Poisson distribution with parameter λ : pO|X(o|λ ) =
e−λ λ o/o!.

The data are (yearly) earthquake counts over 107 subsequent years, from 1900 to
2006. It is freely available on ����������	
���
���������������.

We model this problem as an iHMM of length 107, in which each observation vari-
able Oi corresponds to one of the 107 yearly earthquake counts. The states correspond
to the seismic states Earth can be in. The set of seismic states {λ1, . . . ,λm} defines the
possibility space X of the state variables in the HMM.

5.2 Results

Imprecise Transition Model. Since there is only 107 years of data, we believe that a
precise local transition model is not justified, so we decided to try an imprecise estima-
tion for the transition model. The emission model is kept precise for simplicity, due to
its relation to a Poisson process.

To show how the imprecision changes with changing number of possible state val-
ues m, we plot the learned transition model for varying m. The figure below shows,

http://neic.usgs.gov/neis/eqlists
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as a function of m (ranging from 3 to 10), the imprecision Δ(Q({λ·}|λ1)), . . . ,
Δ(Q({λ·}|λm)) of the transition probabilities of going from state λi to state λ·, for s = 2
(this imprecision depends on the state λi, but not on the state λ· the transition goes to).

m

Δ (Q({λ·}|λi))

3 4 5 6 7 8 9 10
0

0.5 imprecision Δ(Q({λ·}|λi)) with i in {1, . . .,m}
harmonic mean of the imprecisions

The harmonic mean of the imprecisions increases with m, as predicted by Proposition 1.

Predicting the Earthquake Rate. With the learned transition model (with m = 3), we
make predictions of the earthquake rate in future years. We do this in order to valid-
ate our learned model. We want to make inferences about the years 2007, 2016, 2026
and 2036: we are interested in the model describing the state variables of these years,
updated using the observation sequence. We can use this updated model to get some
idea of the future earthquake rate. To perform such updating, we can use the MePiCTIr
algorithm [3].

The figure below shows conservative approximations (the smallest hexagons with
vertices parallel with the borders of the simplex) of such updated models describing
future state variables. In the dark grey credal sets, we have used the transition model
estimates for s = 2, and in the light grey ones the estimated transition models for s = 5.

λ2

λ1λ3 2007 2016 2026 2036

The precision of the inferences decreases as we move forward in time. For 2007, we
can be fairly confident that the local seismic rate of the earth will be close to λ1, while
for 2036, we can only make very imprecise inferences about the seismic rate. This is a
property that predictions with precise HMMs do not have.

6 Conclusion

We have presented a new method for learning imprecise local uncertainty models in
stationary hidden Markov models. In contradistinction with the classical EM learning
algorithm, our approach allows the local models to be imprecise, which is useful if there
is insufficient data to warrant precision. We have studied some of the properties of our
learned local models, especially with respect to their imprecision.



A New Method for Learning Imprecise Hidden Markov Models 469

We conclude by proposing some avenues for further research. We have based the
present discussion on the maximum likelihood approach of learning in Bayesian net-
works. The epistemic nature of imprecise probability theory however suggests that a
Bayesian learning approach would be more appropriate, and we intend to investigate
this in the near future.
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Abstract. Possibilistic networks are important graphical tools for rep-
resenting and reasoning under uncertain pieces of information. In pos-
sibility theory, there are two kinds of possibilistic networks depending
if possibilistic conditioning is based on the minimum or on the prod-
uct operator. This paper explores inference in product-based possibilis-
tic networks using compilation. This paper also reports on a set of
experimental results comparing product-based possibilistic networks and
min-based possibilistic networks from a spatial point of view.

1 Introduction

Possibility theory [11,12] offers either an ordinal framework where only the
plausibility ordering between information is important or a numerical one for
representing uncertainty. This leads to two kinds of possibilistic networks: min-
based possibilistic networks and product-based possibilistic networks. Existing
works [1,2] for handling possibilistic inference through compilation only con-
cern min-based possibilistic networks. The present paper proposes an alterna-
tive implementation of inference using product-based possibilistic networks. We
will emphasize on similarities and differences between product-based possibilistic
networks, min-based possibilistic networks and Bayesian networks under compi-
lation, while using the same DAG structure. More explicitly, we will propose the
Prod-Π-DNNF method that focuses on compiling the CNF encoding associated
with the product-based possibilistic network in order to efficiently ensure infer-
ence. In the logical setting, there is an important difference in computational
complexity between the inference process from product-based and min-based
possibilistic logic. Indeed, the inference from product-based bases requires m
calls to the SAT (satisfiability tests) with m is the number of formulas in the
knowledge base. While inference in the min-based case only needs log2 n SAT
calls while n is the number of different certainty degrees used in the possibilistic
knowledge base. This paper shows that, in the compilation setting, the difference
in the inference process is less important. The paper unveils that the encoding
differs from the ordinal to the numerical interpretation. In fact, Prod-Π-DNNF
makes use of the strategy one variable per equal parameters per Conditional Pos-
sibility Table (CPT), contrarily to the min-based case which offers the possibility

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 470–480, 2012.
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to associate a unique variable to equal parameters per all CPTs. We also propose
an experimental study to emphasize on the differences regarding the behaviors
of product-based and min-based possibilistic networks under compilation.

The paper is organized as follows: Section 2 presents a brief refresher on
product-based possibilistic networks and compilation. Section 3 describes the
new method Prod-Π-DNNF. Section 4 is dedicated to the experimental study.

2 Basic Backgrounds

Let V = {X1, ..., XN} be a set of variables. We denote by DXi the domain
associated with Xi. By xi (resp. xij), we denote any of the instances of Xi (resp.
the jth instance of Xi). When there is no confusion we use xi to mean any
instance of Xi. DXi = {xi1, . . . , xin} where n is the number of instances of Xi.
Ω denotes the universe of discourse, which is the cartesian product of all variable
domains in V . Each element ω ∈ Ω is called an interpretation of Ω.

2.1 Possibility Theory

This subsection briefly recalls some elements of possibility theory; for more de-
tails we refer the reader to [11,12]. Possibility theory is seen as a simple and
natural model for handling uncertain data. Its basic building block, i.e., the con-
cept of a possibility distribution, denoted by π, is a mapping from Ω to the unit
interval [0, 1]. The particularity of the possibilistic scale is that it can be inter-
preted in twofold: a numerical one when values have a real sense and an ordinal
one when values only reflect a total pre-order between the different states of the
world. This paper explores the numerical interpretation of possibility theory.
The degree π(ω) represents the compatibility of ω with available pieces of infor-
mation. By convention, π(ω) = 1 means that ω is totally possible, and π(ω) = 0
means that ω is impossible. Uncertainty of an event φ ⊆ Ω can be expressed
by the possibility measure Π(φ) = maxω∈φπ(ω) which evaluates the extent to
which φ is consistent with the available beliefs. The product-based conditioning
[14] consists of proportionately increasing the possibility degrees of elements in
Ω consistent with φ. Formally,

Π(ω | φ) =
{

π(ω)
Π(φ) if ω |= φ and Π(φ) �= 0

0 otherwise
(1)

2.2 Possibilistic Networks

The two interpretations of the possibilistic scale lead to two counterparts of
standard Bayesian networks (BNs) [4], min-based possibilistic networks corre-
sponding to the ordinal interpretation and product-based possibilistic networks
corresponding to the numerical interpretation. It is well known that product-
based possibilistic networks are close to BNs since they share the same graphical
component (i.e., DAG) and also the product operator. There is however a major
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difference. It concerns the inference process. Indeed, the marginalisation in the
probabilistic framework uses the sum operation while in possibilistic framework
the marginalisation is based on the maximum operation.

A possibilistic network over a set of N variables V = {X1, .., XN}, denoted
by ΠG⊗, where ⊗ = {∗,min} comprises:
- A graphical component composed of a DAG where nodes represent variables
and edges encode links between variables. The parent set of any variable Xi

is denoted by Ui = {Ui1, ..., Uim} where Ui1 is the first parent of Ui and m
is the number of parents of Xi. In what follows, we use xi, ui, uij to denote,
respectively, possible instances of Xi, Ui and Uij .
- A numerical component that quantifies different links. Uncertainty of each
node in ΠG⊗ is represented by a local normalized possibility distribution in the
context of its parents (i.e., ∀ui,maxxiΠ(xi|ui) = 1).

The joint possibility distribution associated with ΠG⊗ is computed using the
so-called possibilistic chain rule. Formally:

Definition 1. Let ΠG⊗ be a possibilistic network of N variables, then the joint
possibility distribution is defined by the product-based chain rule expressed by:

π⊗(X1, . . . , XN) = ⊗i=1..N Π(Xi | Ui) (2)

where ⊗ corresponds to ∗ (resp. min) for ΠG∗ (resp. ΠGmin).

In this paper, we focus on ΠG∗ illustrated below.

Example 1. Let us consider the product-based possibilistic network ΠG∗ used
throughout the whole paper and composed of two binary variables A and B s.t.
Π(A) = [a1, a2] = [1, 0.4] and Π(B|A)=[b1|a1, b1|a2; b2|a1, b2|a2]=[1, 0.8; 0.8, 1].

We obtain a joint possibility distribution of ΠG∗ using Equation (2). For
instance, π∗(a1, b2)=Π(a1) ∗Π(b2|a1)=1 ∗ 0.8=0.8.

2.3 Compilation Concepts

Knowledge compilation is an artificial intelligence area related to a mapping
problem from intractable logical theories into suitable target compilation lan-
guages [5]. These latters are characterized by a succinctness criteria and a set of
queries and transformations performed in polynomial time with respect to the
size of compiled bases. Within the multitude of target compilation languages [10],
the Negation Normal Form (NNF) language represents the pivotal language from
which a variety of languages give rise by imposing some conditions on it. In this
paper, we focus our attention on a subset of NNF, i.e., Decomposable Negation
Normal Form (DNNF) language that satisfies the decomposability property stat-
ing that conjuncts of any conjunction share no variables [8]. A subset of DNNF,
called deterministic DNNF (d-DNNF) and less succinct than DNNF, is obtained
by adding the determinism (d) property stating that disjuncts of any disjunction
are logically contradictory [10]. DNNF supports a rich set of polynomial-time
operations which can be performed simply and efficiently. From the most used
ones, we can cite:



Compiling Product-Based Possibilistic Networks for Inference 473

- Conditioning: Let α be a propositional formula and let ρ be a consistent
term, then conditioning α on ρ, denoted by α|ρ generates a new formula in
which each propositional variable Pi ∈ α is set to ( if Pi is consistent with ρ1

and ⊥ otherwise.
- Forgetting: The forgetting of Pi from α is equivalent to a formula that do

not mention Pi. Formally: ∃Pi.α = α|Pi ∨ α|¬Pi.
In [13], authors have generalized the set of NNF languages by the Valued Nega-

tion Normal Form (VNNF) which offers an enriched representation of functions.
Within VNNF’s operations, we cite max-variable elimination which consists in
forgetting variables using the max operator. As a special case of VNNFs, Π-
DNNFs, which are the possibilistic counterpart of DNNFs, have been explored
in [2]. Note that formulas can be represented, in a compact manner, as Directed
Acyclic graphs (DAGs) using circuits (e.g., boolean circuits, arithmetic circuits,
etc.). The size of any circuit C, denoted by Size(C), corresponds to the number
of edges in its DAG.

3 Compilation-Based Inference of ΠG∗

Emphasis has been recently placed on inference in BNs under compilation [7,9,15].
The main idea consists in compiling the Conjunctive Normal Form (CNF) en-
coding associated with the BN into the d-DNNF language, then compiling it
to efficiently compute the effect of an evidence on a set of variables of interest
X . In this section, we propose to study the possibilistic counterpart of [9] with
product-based possibilistic networks. The proposed method, denoted by Prod-
Π-DNNF, requires two major phases as depicted by Figure 1: an encoding and
compilation phase and an inference one detailed below:

A 

B 

ΠG* 

Encoding 
and 

compilation 

Phase 1  

Inference 

Phase 2  Compiled base 

Evidence e 

  
 
 

Π(x|e) 
Instance of interest x   

a1 1 

a2 0.4 

b1 a1 1 

b2 a1 0.8 

b1 a2 0.8 

b2 a2 1 

Fig. 1. Principle of Prod-Π-DNNF

3.1 Encoding and Compilation Phase

The starting point of Prod-Π-DNNF is the CNF encoding of ΠG∗ as shown in
Figure 1. First, we need to represent instances of variables and also parameters
using a set of propositional variables dispatched into a set of instance indicators
and a set of parameter variables defined as follows:

1 Pi is consistent with ρ if there exists an interpretation that satisfies both Pi and ρ.
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- ∀Xi ∈ V , ∀xij ∈ DXi , we associate an instance indicator λxij . When there is
no ambiguity, we use λxi instead of λxij .
- ∀xij ∈ DXi , ∀ui ∈ DUi s.t. ui = {ui1, ..., uim}, we associate a parameter
variable θxi|ui

for each network parameter Π(xi|ui).
Using these propositional variables, the CNF encoding of ΠG∗, denoted by

C∗, is formally defined by Definition 2.

Definition 2. Let ΠG∗ be a product-based possibilistic network. Let λxij , (i ∈
{1, .., N} , j ∈ {1, .., k}) be the set of instance indicators and θxi|ui

be the set of
parameter variables, then ∀Xi ∈ V , C∗ contains the following clauses:

– Mutual exclusive clauses:

λxi1 ∨ λxi2 ∨ · · ·λxin (3)

¬λxij ∨ ¬λxik
, j �= k (4)

– Network parameter clauses: ∀ θxi|ui
, we have:

λxi ∧ λui1 ∧ . . . ∧ λuim → θxi|ui
(5)

θxi|ui
→ λxi (6)

θxi|ui
→ λui1 , · · · , θxi|ui

→ λuim (7)

The encoding C∗ is a logical representation of ΠG∗ using a set of clauses where
clauses (3) and (4) state that indicator variables are exclusive and clauses (5),
(6) and (7) simply encode the fact that the possibility degree of xi|ui is equal
to Π(xi|ui). C∗ can be improved by the so-called local structure defined as ad-
dressing specific values of network parameters (i.e., equal parameters and zero
parameters). In fact, each set of equal parameters per CPT can be assigned by
one propositional variable. Formally, let LCPT = {v1, ..., vp} be the set of unique
possibility degrees per CPT, then a network parameter θi should be associated
for each vi ∈ LCPT . An inconsistent theory can be involved by applying this
strategy and keeping clauses (6) and (7). For instance, if we substitute the equal
parameters θa2|b1 and θa1 by a single one (i.e., θ1), then we will obtain θ1 → λa1

and θ1 → λa2 which is inconsistent. To avoid this problem, additional clauses (6)
and (7) should be dropped from C∗. Aside from equal parameters, each θxi|ui

equal to 0, can be dropped from C∗ by replacing its clauses by a shorter clause
involving only indicator variables, namely: ¬λxi ∨ ¬λui1 ∨ · · · ∨ ¬λuim . Once
ΠG∗ is logically represented into C∗, this latter is then compiled into the most
succinct language DNNF. The compiled base is denoted by CDNNF .

Example 2. Considering ΠG∗ of Example 1. Table 1 represents its CNF en-
coding, C∗, using Definition 2, and Figure 2 represents the compiled base of this
encoding.
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3.2 Inference Phase

Given the compiled base CDNNF resulting from Phase 1, an instance of interest
x of some variables X ⊆ V and an evidence e of some variables E ⊆ V , we can
efficiently compute the effect of e on x, namely Πc(x|e). Using Equation (1), it
is clear that we should compute both of Πc(x, e) and Πc(e) while following these
three steps:

Table 1. CNF encoding C∗ of ΠG∗ of Example 1

Variable A Variable B

Mutual exclusive clauses Mutual exclusive clauses

(λa1 ∨ λa2) ∧ (¬λa1 ∨ ¬λa2) (λb1 ∨ λb2) ∧ (¬λb1 ∨ ¬λb2)

Parameter clauses Parameter clauses

Π(a1) = 1 (λa1 → θa1) ∧ (θa1 → λa1) Π(b1|a1) = 1 (λa1 ∧ λb1 → θ1)

Π(a2) = 0.4 (λa2 → θa2) ∧ (θa2 → λa2) Π(b1|a2) = 0.8 (λa2 ∧ λb1 → θ2)

- Π(b2|a1) = 0.8 (λa1 ∧ λb2 → θ2)
- Π(b2|a2) = 1 (λa2 ∧ λb2 → θ1)
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Fig. 2. Compiled base CDNNF
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Fig. 3. Max-prod circuit C∗
Π−DNNF

3.2.1 Updating Instance Indicators
This step serves to record the instance of interest x and the evidence e into
instance indicators λxi . It corresponds to conditioning the compiled base CDNNF

on e and x. The conditioned compiled base is denoted by [CDNNF |x, e]. Formally:
∀ λxi of Xi ∈ V , λxi is set to ( if xi ∼ e and xi ∼ x, ⊥ otherwise where ∼
denotes the compatibility relation, i.e., xi ∼ e refers to the fact that xi and e
agree on values.

3.2.2 Mapping Logical Representation into a Product-Based
Representation

In this step, we transform the logical compiled base resulting from the previous
step into a valued representation. In this step, it is important to note that the
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valued compiled bases, named arithmetic circuits and used in the probabilistic
method [9] cannot be applied in our case since its operators (i.e., * and +) are
different from those that should be used in the product-based case (i.e., * and
max). For this reason, we propose to use a new max-prod circuit suitable for the
product-based case. In fact, given the conditioned compiled base resulting from
the previous step, we should apply the following operations: (i) replace ∨ and ∧
by max and *, respectively, (ii) substitute each ( (resp. ⊥) by 1 (resp. 0) and
(iii) associate Π(xi|ui) to each θxi|ui

.

Definition 3. A max-prod circuit of a DNNF sentence CDNNF , denoted by
C∗

Π−DNNF , is a valued sentence where ∧ and ∨ are substituted by * and max,
respectively. Leaf nodes correspond to circuit inputs (i.e., indicator and param-
eter variables), internal nodes correspond to max and * operators, and the root
corresponds to the circuit output.

It is obvious that the mapping from logical to numerical representation is estab-
lished in a polynomial time since it corresponds to a set of trivial substitution
operations. The use of valued DNNFs with max and * operators (i.e., max-prod
circuits relative to product-based possibilistic networks) differs from the proba-
bilistic case since inference in bayesian networks requires valued d-DNNFs with
+ and * operators (i.e., arithmetic circuits relative to Bayesian networks). This
is essentially due to the fact that probabilistic computations require the de-
terminism property (i.e., d) to ensure polytime model counting [10]. Following
the succinctness relation between DNNF and d-DNNF stating that DNNF is
more succinct than d-DNNF [8], we can give this important theoretical result,
asserting that max-prod circuits are considered more compact than arithmetic
circuits.

Proposition 1. Let BN be a Bayesian network and C+
DNNF be its arithmetic

circuit using the probabilistic compilation method proposed in [9]. Let ΠG∗ be a
product-based possibilistic network sharing the same DAG structure as BN . Let
C∗

Π−DNNF be the max-prod circuit of ΠG∗. Then, from a theoretical point of
view, we have:

Size(C∗
Π−DNNF ) ≤ Size(C+

DNNF ) (8)

3.2.3 Computation
The max-prod circuit is a special case of VNNFs where operators only restrict
to max and *. In literature, max-prod circuits have been used under differ-
ent notations to answer different queries. In fact, in [6], authors have explored
circuits with max and *, called maximizer circuits to answer the Most Probable
Explanation2 (MPE) probabilistic query. While in [3], authors proposed decision
circuits which add the operator + to max and * of maximizer circuits in order to

2 A MPE is a complete variable instantiation with the highest probability given the
current evidence.
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evaluate influence diagrams. In our case, we are interested in computing Πc(x, e)
and Πc(e) by evaluating C∗

Π−DNNF . Even we are in presence of a max-prod cir-
cuit similar to maximizer and decision circuits, we cannot use neither MPE nor
evaluation of influence diagrams queries to compute Πc(x, e) and Πc(e). In fact,
evaluating C∗

Π−DNNF consists in applying max and * operators in a bottom-up
way. The final result can be found at the root. Inference is guaranteed to be
established in polytime since it corresponds to a simple propagation from leaves
to root. Note that such computation corresponds to max-variable elimination.

It is worth pointing out that the query used for evaluating C∗
Π−DNNF do not

correspond to a model counting problem as in the probabilistic case [9]. This
means that under compilation product-based possibilistic networks are not close
to probabilistic ones and do not share the same features as BNs.

Example 3. Considering the compiled base of Figure 2. Let us compute the ef-
fect of the evidence a1 on the instance of interest b2 (i.e., Πc(b2|a1)). To compute
Πc(a1, b2), we should first record a1 and b2 into instance indicators by setting
λa1 and λb2 (resp. λa2 and λb1) to ( (resp. ⊥). The logical compiled base arisen
from Step 1 is then mapped into a max-prod circuit depicted by Figure 3. By
applying max and * in a bottom-up fashion as shown in Figure 3, we can deduce
that Πc(a1, b2) is equal to 0.8. Hence, Πc(b2|a1) = 0.8

1 = 0.8.

4 Prod-Π-DNNF vs Min-Π-DNNF

Proposition 1 shows that max-prod circuits are more compact than arithmetic
circuits. We aim now to compare them to their qualitative counterpart in the
possibilistic framework i.e. min-max circuits. In fact, in previous works [1,2], we
have extended the idea of compiling BNs into min-based possibilistic networks
by proposing several variants of CNF encodings especially for causal networks
and binary possibilistic networks. Here, we are interested in comparing Prod-Π-
DNNF to Min-Π-DNNF [2]. Roughly speaking, Min-Π-DNNF follows the same
principles as Prod-Π-DNNF but one of the major differences resides in the possi-
bilistic local structure since Min-Π-DNNF do not use the same encoding strategy
as Prod-Π-DNNF, namely: one variable per equal parameters per CPT. In fact,
if we consider the scale LCPTs = {v1, ..., vp} of possibility degrees used in all
CPTs without redundancy, then Min-Π-DNNF uses possibilistic local structure
[2] which consists in assigning a propositional variable θi for each vi ∈ LCPTs.
This is essentially due to the idempotency property of the min operator.

Clearly, from a theoretical point of view, the possibilistic local structure al-
lows the generation of more compact compiled bases. Our target through the
current experimental study is to study in depth the emphasis of local structure
and possibilistic local structure while encoding the network and their behaviors
on compiled bases parameters. To this end, we consider randomly generated pos-
sibilistic networks by setting the number of nodes to 50, the maximum number
of parents per node to 3 and the number of instances per variable to 2 and 3.
We also vary possibility distributions (except for the normalization value 1) us-
ing two parameters: (EPCPTs (%)): the percent of equal parameters within all
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CPTs and (EPCPT ): the number of equal parameters per CPT. For each ex-
perimentation, we generate 100 possibilistic networks by setting %EPCPTs to
{0%, 10%, 30%, 50%, 70%, 100%}. For instance, 50% means that each possibility
degree vi appears in 50% of all CPTs. The extreme case 0% (resp. 100%) states
that each vi appears in only one CPT (resp. all CPTs). For each percentage of
%EPCPTs, we set two values to EPCPT , namely: (1): each vi appears once in a
CPT (except the degree 1 needed for normalization) and (> 1): each vi appears
randomly more than once.

Table 2. Prod-Π-DNNF vs Min-Π-DNNF (better values are in bold)

Prod-Π-DNNF Min-Π-DNNF
C∗ C∗

Π−DNNF Cmin Cmin
Π−DNNF

EPCPTs (%) EPCPT Variables Clauses Nodes Edges Variables Clauses Nodes Edges

0
1 372 1298 5716 13995 180 464 466482 1050671
>1 213 595 3140 6179 143 447 24003 58082

10
1 334 1099 2363 5394 131 429 156148 392150
>1 206 497 1377 2396 103 392 10931 27134

30
1 323 1062 1918 4148 119 415 58840 153619
>1 194 496 1064 1801 100 407 2879 8100

50
1 316 975 1795 3731 107 358 10395 26347
>1 202 492 1101 1870 96 438 3241 7422

70
1 306 936 2401 5475 107 408 23310 53928
>1 205 480 1668 3244 97 390 3827 8630

100
1 298 871 1453 2965 99 376 9526 23067
>1 197 466 880 1391 95 413 965 2050

The experimental results are shown in Table 2 where Cmin and Cmin
Π−DNNF de-

note, respectively the CNF encoding of ΠGmin and its min-max circuit (DNNF
using min and max operators). Let us study in depth CNF parameters and
compiled bases parameters of Prod-Π-DNNF and Min-Π-DNNF.

-CNF encodings: It is clear from columns 3, 4, 7 and 8 that Min-Π-DNNF uses
less CNF variables and clauses than Prod-Π-DNNF regardless of EPCPT > 1.
In fact, the variable gain (i.e., V ars Cmin

V ars C∗
) is around 38% and the clause gain

(i.e., Cls Cmin

Cls C∗ ) is around 40% by considering EPCPT = 1 for each percentage
of EPCPTs. Hence, we can deduce that by rising EPCPTs, the number of CNF
variables and clauses in Min-Π-DNNF is increasingly reduced, which proves the
interest of using possibilitic local structure.

- Compiled bases: Compiled bases parameters do not follow the same behavior
as CNF encodings. In fact, Prod-Π-DNNF is characterized by a lower number
of nodes and edges comparing to those of Min-Π-DNNF even if Min-Π-DNNF
outperforms Prod-Π-DNNF regarding CNF parameters. We can point out from
columns 3, 4, 5 and 6 that increasing the number of equal parameters per CPT
(i.e., EPCPT > 1) for each EPCPTs has a considerable impact on both CNF
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parameters and compiled bases parameters. More precisely, the node gain (i.e.,
Nde C∗

Π−DNNF

Nde Cmin
Π−DNNF

) is around 25% and the edge gain (i.e.,
Edg C∗

Π−DNNF

Edg Cmin
Π−DNNF

) is around

20% by considering EPCPT = {1, > 1}. The question that may arise is: Why
Prod-Π-DNNF has less nodes and edges than Min-Π-DNNF even if this latter
has less CNF parameters? In fact, a possible explanation is that possibilistic
local structure do not maintain the network structure which is indispensable in
compilation. When a propositional variable encodes several parameters pertain-
ing to some CPTs, in this case we cannot know neither its network variable nor
its parents. Contrarily to Prod-Π-DNNF, local structure increases of course the
number of CNF parameters but do not alter the network structure, which justi-
fies why from a spatial point of view, Prod-Π-DNNF outperforms Min-Π-DNNF
regarding compiled bases parameters.

5 Conclusion

This paper proposed a compilation-based inference method dedicated for product-
based possibilistic networks. Interestingly enough, Prod-Π-DNNF uses local
structure and max-prod circuits, which are theoretically more compact than
arithmetic circuits, in order to efficiently compute the impact of evidence on
variables. Our experimental study confirms the fact that having less CNF pa-
rameters do not obviously improve compiled bases parameters. Our future work
consists in exploring the different variants of CNF encodings studied in [1,2] for
product-based possibilistic networks.
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Abstract. The temporal dimension is a very important aspect which
must be taken into consideration when reasoning under uncertainty.

The main purpose of this paper is to address this problem by a new ev-
idential framework for modeling temporal changes in data. This method,
allowing to model uncertainty and to manage time varying information
thanks to the evidence theory, offers an alternative framework for dy-
namic probabilistic and dynamic possibilistic networks. It is applied to
a system reliability analysis for the sake of illustration.

Keywords: Dynamic graphical models, theory of evidence, time varying
information, managing uncertainty.

1 Introduction

Over the past years, available knowledge in various real-world applications has
been characterized by the uncertainty which may be either aleatory or epistemic.
Several network-based approaches have been developed for modeling knowledge
such as probabilistic, possibilistic and evidential graphical models. These graph-
ical models provide representational and computational aspects making them a
powerful tool for representing knowledge and reasoning under uncertainty.

In modeling knowledge, there is also the problem of changes over time of
the existing knowledge. A wide variety of methods have been developed to take
into account time varying information with uncertainties, including those relying
on network-based approaches. Murphy developed dynamic Bayesian networks
(DBNs) that aimed to represent the temporal dimension under the probabilistic
formalism [6]. This formalism provides tools to handle efficiently the aleatory
uncertainty, but not the epistemic uncertainty. Recently, Heni et al. [3] proposed
dynamic possibilistic networks (DPNs) for modeling uncertain sequential data.
Weber et al. [13] also introduced dynamic evidential networks (DENs) to model
the temporal evolution of uncertain knowledge. Based on an extension of the
Bayes’ theorem to the representation of the Dempster-Shafer’s belief functions
theory [10], DENs do not fully exploit the abilities of the evidential formalism.

The aim of the paper is to propose a new network-based approach consid-
ering the temporal dimension: the dynamic directed evidential network with
conditional belief functions (DDEVN).

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 481–490, 2012.
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The paper is structured as follows. In Sect.2, we briefly recall some theoretical
concepts related to static and dynamic graphical models. We sketch in Sect.3
the directed evidential network with conditional belief functions (DEVN) pro-
posed by Ben Yaghlane [1] and we introduce the DDEVN which extends static
DEVN to enable modeling changes over time. In Sect.4, we give the propagation
algorithm in the DDEVN. Section 5 is devoted to an illustration of the new
framework in the reliability area.

2 Static and Dynamic Directed Graphical Models

Graphical models [5], [8] combine the graph theory with any theory dealing with
uncertainty to provide a general framework for an intuitive and a clear graphical
representation of real-world problems. Some basic concepts related to static and
dynamic directed graphical models are recalled in this section.

2.1 Static Directed Graphical Models

A static directed graphical model (DGM) consists of two distinct parts: the
qualitative part and the quantitative part.

The qualitative part is represented in a DGM by a directed acyclic graph
(DAG) G = (N ,E), where N is a non empty finite set of nodes representing
the variables of the problem, and E is a set of directed edges representing the
conditional independencies between the variables.

The quantitative part is expressed by a set of local functions (potentials)
associated to each variable according to the uncertainty modeling framework.
For each root node X , an a priori function F(X) has to be defined over its
states. For other nodes, a conditional function F[Pa(X)](X) is specified for each
possible state of X knowing the states of its parents denoted by Pa(X).

Basically, DGMs do not allow to manage time varying knowledge because
they do not represent the temporal dimension. Nevertheless, various dynamic
networks have been proposed [2], [3], [6], [13].

2.2 Dynamic Directed Graphical Models

A dynamic directed graphical model (DDGM) is a directed graphical model
providing explicitly the temporal dimension. At each time slice k (k ≥ 0), a
variable X is represented in a DDGM by a node Xk. Thus, each time slice k is
represented by a set of nodes Nk including all the variables of this time slice k.

The qualitative dependency between a node Xk and a node Yk+1 is repre-
sented by a directed edge linking the two nodes. This edge, denoting a transition
function, is defined by a conditional value table as follows:

F[Xk](Yk+1) =

⎡⎢⎣ f [AXk
1 ](A

Yk+1

1 ) . . . f [AXk
1 ](A

Yk+1

QY
)

. . . . . . . . .

f [AXk

QX
](A

Yk+1

1 ) . . . f [AXk

QX
](A

Yk+1

QY
)

⎤⎥⎦ . (1)

where AXk
i is the i-th state of Xk and A

Yk+1

j is the j-th state of Yk+1.
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Dynamic directed graphical models used in [3], [6], [13] are supposed to be:

– Stationary: F[Xk](Yk+1) does not depend on k.
– Markovian: F(Yk+1) depends only on the distributions of the parent nodes

of Yk+1. Thus the future time slice is conditionally independent of the past
ones given the present time slice [6].

As a new set of nodes Nk is introduced in the DDGM to represent each new time
slice k, the major drawback of this standard DDGM representation is that with
a large number of time slices, the graphical structure becomes huge, and as a
result the inference process is cumbersome and time consuming. To overcome this
problem, the proposed solution for DDGM is to keep the network in a compact
form with only two consecutive time slices.

With the new representation, a DDGM is defined as a couple (G0,Gk), where
G0 denotes the DGM corresponding to time slice k = 0 and Gk denotes a 2-time
slices DGM (2-TDGM) in which only two nodes are introduced to represent a
same variable at successive time steps: the first node is used to model a variable
in the time slice k and the second one is used to represent this variable at the
time slice k + 1.

The concept of the outgoing interface Ik has been defined in [6] as:
Ik = {Xk ∈ Nk / (Xk, Yk+1) ∈ E(k, k + 1) and Yk+1 ∈ Nk+1} , where Nk

is the set of nodes modeling the time slice k, Nk+1 is the set of nodes modeling
the time slice k+1 and E(k, k+1) is the set of edges linking two nodes Xk and
Yk+1 belonging to the successive time slices k and k + 1.

In the 2-TDGM shown in Fig.1 (b), the interface I0 = {V 10, V 20, V 30} is the
set of nodes of time slice k = 0 which have got child nodes in time slice k+1 = 1.

A 1.5 DDGM is a graph resulting from a 2-TDGM by the elimination of nodes
not belonging to the outgoing interface Ik.

By the elimination of Rk and Ok (which do not belong to Ik) from the 2-
TDGM of Fig.1 (b), we obtain the 1.5 DDGM shown in Fig.1 (c).

3 Static and Dynamic Directed Evidential Networks
with Conditional Belief Functions

Evidential networks with conditional belief functions (ENCs) were initially pro-
posed by Smets [12] and studied later by Xu and Smets [14]. Xu proposed the
graphical representation and the inference algorithm which are exploited only
with binary relations between nodes [14]. Ben Yaghlane proposed in [1] the di-
rected evidential network with conditional belief functions (DEVN) to model the
relations for any number of nodes.

3.1 Directed Evidential Networks with Conditional Belief Functions

A DEVN is a DGM based on the evidence theory with a set of belief functions
M associated to each variable. For each root node X , having a frame of discern-
ment ΩX constituted by q mutually exhaustive and exclusive hypotheses, an a
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priori belief function M(X) has to be defined over the 2q focal sets AX
i by the

following equation:

M(X) = [m(∅) m(AX
1 )....m(AX

i )....m(AX
2q−1)] . (2)

with
m(AX

i ) ≥ 0 and
∑

AX
i ,AX

i ∈2ΩX

m(AX
i ) = 1 . (3)

where m(AX
i ) is the belief that X verifies the focal element AX

i ’s hypotheses.

For other nodes, a conditional belief function M [Pa(X)](X) is specified for each
possible focal set AX

i knowing the focal sets of the parents of X . The propaga-
tion algorithm is performed in a secondary computational data structure called
the modified binary join tree (MBJT) [1].

Modified Binary Join Tree. The MBJT was proposed in [1] as a refinement
of the binary join tree (BJT) [11]. Contrary to the BJT, the MBJT emphasizes
explicitly the conditional relations in the DEVN for using them when performing
the inference process [1]. The MBJT construction process is based on the fusion
algorithm [11].

The algorithm of the static MBJT construction process is described as follows:

Algorithm 1. Static MBJT Construction

Input: a DEVN, an elimination Sequence
Output: a MBJT

1. Determine the subsets that form the hypergraph H from the DEVN
2. Arrange the subsets of H in a binary join tree using the elimination sequence
3. Attach singleton subsets to the binary join tree
4. Make the join tree binary again if it becomes non-binary when attaching a singleton
subset to it
5. Draw rectangles containing the conditional relations between variables instead of
circles containing just the list of these variables (to obtain the MBJT)

Note that if we just perform steps 1, 2, 3 and 4, we obtain a BJT. These steps
are more detailed in [11] and more details for the MBJT are given in [1].

3.2 Dynamic Directed Evidential Networks with Conditional Belief
Functions (DDEVN)

DDEVNs are introduced in a way similar to other DDGMs, in the sense that
the considered problems are those whose dynamics can be modeled as stochastic
processes which are stationary and Markovian. DDEVN is defined as a couple
(D0,Dk), where D0 is the DEVN representing the time slice k = 0 and Dk

denotes a 2-time slice DEVN (2-TDEVN) with only two consecutive time slices.
The temporal dependencies between variables are represented in DDEVN by
transition-belief mass using (1).
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4 Propagation in DDEVN

The reasoning process is made in the DDEVN through an adaptation of the exact
Interface algorithm defined by Murphy for DBNs [6], [7]. With its two consecutive
time slices, a 2-TDEVN allows to compute the belief mass distribution of a
variable X at any time step k = T , starting from an observed situation at the
initial time step k = 0 and transition distributions illustrating the temporal
dependencies between two consecutive time slices.

Algorithm 2. Construction and initialization of M0

Input: a 2-TDEVN
Output: a MBJT M0, an outgoing interface I0

1. Identify I0 by selecting nodes in the outgoing interface of time slice k = 0
I0 ← {x ∈ N0 / (x, y) ∈ E(0, 1) and y ∈ N1}

2. Eliminate each node belonging to N1 from the 2-TDEVN
3. Construct the MBJT M0 from the resulting structure using Algorithm 1
4. Let P be the set of the given potentials1

For i=1 to length(P)
If P(i) is an a priori belief function distribution
assign P(i) to the corresponding singleton node2

Else
assign P(i) to the corresponding conditional node in M0.

End if
End for

Algorithm 3. Construction and initialization of Mk

Input: a 2-TDEVN
Output: a MBJT Mk, an outgoing interface Ik

1. Ik ← {x ∈ Nk / (x, y) ∈ E(k, k + 1) and y ∈ Nk+1}
2. Eliminate from the 2-TDEVN each node belonging to Nk and not to Ik (to obtain
a 1.5 DDEVN)
3. Construct the MBJT Mk from the 1.5 DDEVN using Algorithm 1
4. Let P be the set of potentials relative only to variables of time slice k + 1

For i=1 to length(P)
If P(i) is an a priori belief function distribution
assign P(i) to the corresponding singleton node in Mk.

Else
assign P(i) to the corresponding conditional node in Mk.

End if
End for

For the inference in the DDEVN, two MBJTs are created. The first MBJT,
denoted M0, represents the initial time step k = 0, while the second one, denoted
Mk, corresponds to each time slice k > 0. The propagation process can be
performed for computing nodes’ marginals, either in MBJT M0 or in MBJT Mk

1 The potentials are the a priori and the conditional mass tables associated to variables.
2 Singleton node is a node in a MBJT which contains just one variable in M0.
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Algorithm 4. Propagation in the DDEVN

Input: M0 and Mk

Output: marginal distributions
1. Performing the propagation process in M0

3

Let n be the number of singleton nodes in I0
For i=1 to n

node=I0(i);
Marg distr= Marginal distribution(node);
Add Marg Distr to the interface potentials IP0;

End for
2. If k > 0

For i=1 to k
For j=1 to length(IPi−1)
Current potential=IPi−1(j);
Associate Current potential to the corresponding singleton node in Mk;
End for
Performing the propagation process in Mk;
Let n be the number of singleton nodes in Ii;
For nb=1 to n

node=Ii(nb);
Marg Distr= Marginal Distribution(node);
Add Marg Distr to IPi;

End for
End for

End if
3. If k = 0

Compute Marginals(M0)
4

Else
Compute Marginals(Mk)

End if

depending on the time slice k. M0 is used for computing the nodes’ marginals
at time slice k = 0, while Mk is used when computing marginals in a time step
k ≥ 1. As when inferring in the junction tree [3], [6], the key idea is that when
advancing from the past time step k − 1 to the current time step k, we need to
store the marginals of variables in the outgoing interface Ik that will be useful
as observations introduced in the corresponding nodes in the next inference.

By recursively performing the bidirectional message-passing scheme in Mk,
we can compute the marginals of variables at any time step.

The construction processes of the MBJTs are given in the following
algorithms:

The propagation process in the DDEVN is given by the following algorithm:

3 The propagation process is performed as in the static MBJT. For details, the reader
is referred to [1].

4 To compute the marginal for a node, we combine its own initial potential with the
messages received from all the neighbors during the propagation process [1].
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5 Illustrative Case Study

For the sake of illustration, let us apply the DDEVN to the reliability analysis
of the well known valve system [9], [13]. It consists of three valves (components).
Each valve V i has two disjoint states ({Up}, {Down}): Up, shortly written U , is
the working state and Down, shortly written D, is the fail state. Thus, the frame
of discernment of each valve is Ω = {Up,Down} and its corresponding power
set is 2Ω = {∅, {Up}, {Down}, {Up,Down}}. The valve system has a 2-out-of-3
configuration, denoted 2oo3 which is a special configuration widely used in real
applications. To ensure the ability of this system to perform its function, two
valves at least must be operating to make the valve system functioning. In the
classical reliability analysis, the reliability of the valve system is its probability
to be in the state {Up} during a mission time.

Figure 1 (a) shows the DAG corresponding to the valve system in which each
node V i represents the i-th valve of the system, the node O represents the logical
’2oo3’ gate and the node R represents the valve system reliability.

5.1 Application of the DDEVN to the Valve System Reliability

The valve system is modeled by the DDEVN shown in Fig.1 (b). Each node V ik
represents the i-th valve in the time slice k, node Ok represents the logical 2oo3
gate in the time slice k, and node Rk represents the state of the system in the
k-th time slice.

Figure 1 (c) shows the 1.5 DDEVN created from the 2-TDEVN given in
Fig.1 (b) by removing all nodes in the time slice k not belonging to Ik.

The belief mass distributions of the three valves at the time step k+1 which
depend on their distributions at the time step k are represented in Tables 1, 2
and 3. Table 5 represents the a priori mass distributions of the valves at the
time step 0. The conditional mass distribution relative to node Rk is given in
Table 4. The conditional belief mass distribution relative to node Ok is defined
equivalent to the logical ’2oo3’ gate.

Tables 1 and 2. Conditional mass tables M[V 1k](V 1k+1) and M [V 2k](V 2k+1)

V 1k+1\V 1k U D U ∪D

U 0.998 0 0.000
D 0.001 1 0.001

U ∪D 0.001 0 0.999

V 2k+1\V 2k U D U ∪D

U 0.997 0 0.000
D 0.002 1 0.002

U ∪D 0.001 0 0.998

Tables 3 and 4. Conditional mass tables M[V 3k](V 3k+1) and M [Ok](Rk)

V 3k+1\V 3k U D U ∪D

U 0.996 0 0.000
D 0.003 1 0.003

U ∪D 0.001 0 0.997

Rk\Ok U D U ∪D

U 1 0 0
D 0 1 0

U ∪D 0 0 1



488 W. Laâmari, B. Ben Yaghlane, and C. Simon

Fig. 1. The DAG (a), the 2-TDEVN (b) and the 1.5 DDEVN (c) of the Valve System

Table 5. The a priori mass tables M(V 10), M(V 20) and M(V 30)

V i0 U D U ∪D

m(V i0) 1.0 0.0 0.0

Construction and Initialization of M0 and Mk. Using the 2-TDEVN in
Fig.1, the MBJTs M0 and Mk shown in Fig.2 are constructed by applying the
first three steps of algorithms 2 and 3. Using the a priori and the conditional mass
tables, M0 and Mk are initialized by assigning each belief function distribution
to the corresponding node (the fourth step of algorithms 2 and 3).

Performing the Propagation Process in the DDEVN. Suppose now that
we wish to compute the valve system reliability at time step k = 1200. We first

Fig. 2. The MBJTs M0 (a) and Mk (b) for the Valve System
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perform the inference process in M0 and we compute the marginals of nodes in
the outgoing interface I0 ={V 10, V 20, V 30} (the first step of algorithm 4).

The marginal distributions of the outgoing interface I0’s nodes will be used
when performing the second propagation in the MBJT Mk in the next time slice
(k = 1). They will be respectively introduced in nodes V 10, V 20 and V 30 of
Mk. After performing the inference algorithm, Mk yields the marginals of nodes
V 11, V 21 and V 31 (forming the outgoing interface I1) which are the sufficient
information needed to continue the propagation in the following time slice k = 2.
After carrying out the inference process in the MBJT Mk recursively for 1200
time slices, we obtain the following distribution for node R1200 corresponding
to the reliability of the valve system M(R1200) = [m(∅) = 0 m({Up}) =
0.00314 m({Down}) = 0.9656 m({Up,Down}) = 0.0313]

The lower bound (Bel(Up)) and the upper bound (Pl(Up)) of the system
Reliability over 1200 time steps are depicted in Fig.3.

Fig. 3. The Valve System Reliability over time

5.2 DEN and DDEVN for the System Reliability Assessment

A comparison of the static evidential network (EN) and the static DEVN was
proposed in [4]. It reveals that if we apply the two evidential models to assess a
system reliability under the closed or the open-world assumptions, they provide
the same reliability evaluation as the one given by the mathematical formula.

To show the capacity of the DDEVN to compute the system reliability over
time, it is important to compare the assessment of the system reliabilities that
it provides and those obtained by the dynamic evidential network (DEN). Re-
garding this aspect and after applying the two evidential models to the studied
system, we found no essential differences between them, since they provide the
same reliability evaluation of the system at each time slice k (from 0 to 1200).
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6 Conclusion

Inspired by the same aims of DBNs and DPNs and also with the intent to make
the DEVN able to dynamically model a problem under uncertainty, we have
extended in this paper the static DEVN into the dynamic DEVN that we called
DDEVN. DDEVN was applied to the reliability study of a well known system:
the valve system. We have shown that this new framework allows to efficiently
model the temporal evolution of this system with uncertainty. In future work,
the development of new algorithms to perform the propagation process in the
DDEVN will be of a great interest.
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Abstract. Bayesian networks are commonly used for classification: a
structural learning algorithm determines the network graph, while stan-
dard approaches estimate the model parameters from data. Yet, with
few data the corresponding assessments can be unreliable. To gain ro-
bustness in this phase, we consider a likelihood-based learning approach,
which takes all the model quantifications whose likelihood exceeds a given
threshold. A new classification algorithm based on this approach is pre-
sented. Notably, this is a credal classifier, i.e., more than a single class
can be returned in output. This is the case when the Bayesian networks
consistent with the threshold constraint assign different class labels to a
test instance. This is the first classifier of this kind for general topologies.
Experiments show how this approach provide the desired robustness.

Keywords: Classification, likelihood-based learning, Bayesian networks,
credal networks, imprecise probabilities, credal classifiers.

1 Introduction

The development of classifiers, i.e., algorithms to assign class labels to instances
described by a set of features, is a major problem of AI, with lots of impor-
tant applications, ranging from pattern recognition to prediction to diagnosis.
Probabilistic approaches to classification are particularly popular and effective.
In particular, the naive Bayes (e.g., [9, Chap. 17]) assumes conditional indepen-
dence for the features given the class. Despite the generally good performances
of this classifier, these assumptions are often unrealistic and other models with
less restrictive assumptions have been proposed. These can be expressed in the
framework of Bayesian networks [12] by directed graphs.

Besides classifiers based on special topologies (e.g., tree-augmented [7]), struc-
tural learning algorithms (e.g., K2 [9, Chap. 18]) can learn the network structure
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from data. Regarding the learning of the parameters, this can be either based on
Bayesian (e.g., a uniform Dirichlet prior) or frequentist (maximum-likelihood)
approaches. The latter is unbiased and independent from the prior specification,
but generally lead to inferior classification performances, especially on data sets
where the contingency tables, which contain the counts of the joint occurrences
of specific values of the features and the class, are characterised by several zeros
[7]. To obtain more reliable estimates for the Bayesian network parameters, a
likelihood-based approach [4,11] can be considered. This is a generalization of
the frequentist approach towards imprecise probabilities [13], i.e., robust models
based on sets of probability distributions. Loosely speaking, the idea is to con-
sider, instead of the single maximum-likelihood estimator, all the models whose
likelihood is above a certain threshold level. When applied to classification with
Bayesian networks, this approach produces a classifier based, instead of a single,
on a collection of Bayesian networks (with the same topology) or, in other words,
a credal network [6]. If different Bayesian networks associated to the classifier
assign different classes on a same test instance, the classifier returns all these
classes. This is an example of credal classification, comparable with those pro-
posed in [5], being in fact an extension of what we proposed in [1] for the naive
case. To the best of our knowledge, this is the first credal classifier for general
topologies.1 A notable feature of our classifier is that, in the likelihood evalua-
tion, we also consider the test instance with missing value for the class. This is
important to obtain more accurate classification performances when coping with
zero counts. The paper is organised as follows. We review background material
about classification with Bayesian networks (Sect. 2.1) and likelihood-based ap-
proaches (Sect. 2.2). Then, in Sect. 3.1, our approach is presented by means of
a simple example. Discussion on how to cope with zero counts is in Sect. 3.2,
while Sect. 3.3 reports the formula for the classifier. The classifier performances
are empirically tested in Sect. 4. Conclusions and outlooks are finally in Sect. 5.

2 Background

2.1 Classification with Bayesian Networks

Consider a set of variables X := (X0, X1, . . . , Xn), with Xi taking values in a
finite set ΩXi , for each i = 0, 1, . . . , n. Regard X0 as the class and other vari-
ables as features of a classification task based on a data set of joint observations,

i.e., D := {(x(j)
0 , x

(j)
1 , . . . , x

(j)
n )}Nj=1. A classifier is an algorithm assigning a class

label x∗0 ∈ ΩX0 to a generic test instance (x̃1, . . . , x̃n) of the features. In par-
ticular, probabilistic classifiers learn from data a joint probability mass function
P (X0, . . . , Xn) and, with 0-1 losses, assign to the test instance the class label:

x∗0 := arg max
x0∈ΩX0

P (x0|x̃1, . . . , x̃n). (1)

1 Other credal classifiers are based on the imprecise Dirichlet model, but there are no
classification algorithms for general topologies [5].
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The learning of a joint mass function from the data D can be approached within
the framework of Bayesian networks [12]. A Bayesian network induces a compact
specification of the joint based on independencies among its variables. These are
depicted by directed acyclic graphs with nodes in one-to-one correspondence with
the variables inX. Markov condition gives semantics: every variable is condition-
ally independent of its non-descendants non-parents given its parents. Structural
learning algorithms [9, Chap. 18] can learn the graph modeling independencies
in this way. Let G be this graph. For each i = 0, . . . , n, denote by Πi the parents
of Xi according to G. The factorization induced by these independencies is:

P (x0, x1, . . . , xn) =

n∏
i=0

P (xi|πi), (2)

where πi is the value of Πi consistent with (x0, x1, . . . , xn). To do classification,
i.e., to assign a class label as in (1) to the test instance, we check, for each
x′0, x

′′
0 ∈ ΩX0 , whether or not:

P (x′0|x̃1, . . . , x̃n)

P (x′′0 |x̃1, . . . , x̃n)
=

P (x′0, x̃1, . . . , x̃n)

P (x′′0 , x̃1, . . . , x̃n)
> 1. (3)

This inequality can be rewritten as:

P (x′0|π̃0)

P (x′′0 |π̃0)
·

n∏
i=1

P (x̃i|π̃′i)
P (x̃i|π̃′′i )

=
P (x′0|π̃0)

P (x′′0 |π̃0)

∏
i=1,...,n:X0∈Πi

P (x̃i|x′0, π̃i)

P (x̃i|x′′0 , π̃i)
> 1, (4)

where π̃0 is the value of the parents of X0 consistent with (x̃1, . . . , x̃n); π̃′i
and π̃′′i are the values of Πi consistent, respectively, with (x′0, x̃1, . . . , x̃n) and
(x′′0 , x̃1, . . . , x̃n) (for each i = 1, . . . , n), and the presence of X0 among the par-
ents of Xi is emphasized in the second product where (with a small abuse of
notation) π̃i denote the state of Πi \ {X0} consistent with (x̃1, . . . , x̃n). The first
derivation in (4) follows from (2), the second comes from the fact that the terms
in the products associated to variables Xi which are not children of X0 (nor X0

itself) are one. Hence, when doing classification with Bayesian networks, we can
focus on the Markov blanket of X0 (Fig. 1), i.e., (i) the class X0; (ii) the parents
of X0; (iii) the children of X0; and (iv) the parents of the children of X0.

X0

Fig. 1. A Bayesian network. The nodes of the Markov blanket of X0 are in grey.
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Regarding the quantification of the conditional probabilities in (2) (or, after
the above discussion, only of those in the Markov blanket of X0) from data,
standard techniques can be adopted. For the conditional P (Xi|πi), a Bayesian
approach with Dirichlet prior with parameter sti, for each xi ∈ ΩXi , would give:

P (xi|πi) :=
n(xi, πi) + sti

n(πi) + s
, (5)

for each i = 1, . . . , n, xi ∈ ΩXi , πi ∈ ΩΠi , where n(·) is a count function return-
ing the counts for the data in D satisfying the event specified in its argument.
Similarly, a frequentist (maximum-likelihood) approach would use expression (5)
with s = 0. These approaches are known to produce potentially unreliable esti-
mates if only few data are available, this being particularly true if zero counts
occur. An extension of the frequentist approach to partially overcome these prob-
lems is presented in the next section.

2.2 Likelihood-Based Learning of Imprecise-Probabilistic Models

Likelihood-based approaches [4,11] are an extension of frequentist approaches
intended to learn sets, instead of single, distributions, from data, this making
the corresponding parameters estimates more robust and hence reliable. The
basic idea is to start with a collection of candidate models, and then keep only
those assigning to the available data a probability beyond a certain threshold.
We introduce this with the following example.

Example 1. Consider a Boolean X, for which N observations are available,
and n of them report true. If θ ∈ [0, 1] is the chance that X is true, likelihood of
data is L(θ) := θn · (1− θ)N−n and its maximum θ∗ = n/N. For each α ∈ [0, 1],
consider the values of θ such that L(θ) ≥ αL(θ∗). Fig. 2 shows the behaviour of
these probability intervals, which can be also regarded as confidence intervals [8],
for increasing values of N .

N

P (X = true)

.65

.6

.55

.5
10007505002500

Fig. 2. Probability intervals obtained by likelihood-based learning for different values
of α for Ex. 1. The plot shows the upper bounds of the interval probability that the
variable is true as a function of the sample size N , when n/N = 1/2 (lower bounds are
symmetric). Black, gray and white points refer, respectively, to α = .8, .5, .15.
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The above technique can be extended to the general case, and interpreted as
a learning procedure [3,10] in the following sense. Consider a credal set P, i.e.,
a collection of probability distributions all over the same variable. Assume the
elements of P are indexed by parameter θ ∈ Θ, i.e., P := {Pθ}θ∈Θ. Given the
data D, consider the normalised likelihood:

L(θ) :=
Pθ(D)

supθ′∈Θ Pθ′(D) , (6)

likelihood-based learning consists in removing from P the distributions whose
normalised likelihood is below a threshold. Thus, given α ∈ [0, 1], we consider
the (smaller) credal set:

Pα := {Pθ}θ∈Θ:L(θ)≥α. (7)

Note that Pα=1 is a “precise” credal set including only the maximum-likelihood
distribution, while Pα=0 = P. Likelihood-based learning is said to be pure, if
the credal set P includes all the possible distributions that can be specified over
the variable under consideration.

3 Robust Likelihood-Based Classifiers

3.1 A Demonstrative Example

Consider a classification task as in Sect. 2.1 with a single feature and both
variables Boolean. Assuming that X0 → X1 is the graph obtained from the data
(note that this models no independence at all), (2) rewrites as:

P (x0, x1) := P (x1|x0) · P (x0), (8)

for each x0, x1. As a probability mass function over a Boolean variable can
be specified by a single parameter, all Bayesian networks over this graph are
parametrized by θ = (θ1, θ2, θ3) with θ1 := p(x0), θ2 := p(x1|x0), θ3 := p(x1|¬x0).
Let Pθ denote the corresponding joint distribution as in (8). A pure likelihood-
based approach consists in starting from Θ := [0, 1]3 ⊆ R3. The data set D to be
used to refine this credal set can be equivalently characterized by four counts,
i.e., n1 := n(x0, x1), n2 := n(x0,¬x1), n3 := n(¬x0, x1), n4 := (¬x0,¬x1). The
corresponding likelihood, i.e.,

L(θ) ∝ (θ1 · θ2)n1 · (θ1 · (1− θ2))
n2 · ((1− θ1) · θ3)n3 · ((1− θ1) · (1− θ3))

n4 , (9)

attains its maximum when the parameters are estimated by the relative frequen-
cies. For a more robust parameters estimation, given α ∈ [0, 1], all the quantifi-
cations satisfying (7) can be considered. A collection of Bayesian networks (all
over the same graph), i.e., a credal network [6] is therefore considered as a more
robust and reliable model of the process generating the data. This model can be
used for classification. Yet, when evaluating the ratio as in (3), different Pθ can
produce different optimal classes.
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To decide whether or not a class is dominating another one, a possible, con-
servative, approach consists in assuming that a probability dominates another
one if and only if this is true for all the distributions. In practice we extend (3)
to sets of distributions as follows:

inf
Pθ∈Pα

Pθ(x
′
0|x̃1, . . . , x̃n)

Pθ(x′′0 |x̃1, . . . , x̃n)
> 1. (10)

This is a well-known decision criterion for imprecise-probabilistic models called
maximality [13]. Unlike (3), testing dominance with (10) for each pair of classes
can lead to multiple undominated classes. This produces a credal classifier, which
can assign more than a class to test instances. To check (10), the likelihood should
be evaluated as a function of ratio (3). This can be done by sampling as in Fig. 3.
Yet, different models with different likelihoods can have the same ratio, i.e., the
function is not single-valued. Nevertheless, to check dominance it is sufficient to
determine whether or not the models (points) with ordinate (likelihood) greater
than α all have a ratio (abscissa) greater than one. To do that, it is possible to
focus on the left-most point (α-cut) where the likelihood upper envelope is α.

log
Pθ(x0|x1)

Pθ(¬x0|x1)

α = .15

α = 1

0
dominance threshold

Pθ(x0|x1) = Pθ(¬x0|x1)

left
α-cut

maximum-likelihood

Fig. 3. Likelihood-based classification of a test instance X1 = x1 for model in Sect. 3.1
with [n1, n2, n3, n4] = [2, 2, 1, 3]. Black line is the upper envelope (see Sect. 3.3) and
x-scale logarithmic. On this instance, (10) is not satisfied: x0 does not dominate ¬x0.

3.2 Coping with Zero Counts

In the above described procedure, likelihood was identified with the probability
P (D|θ) assigned by the Bayesian network associated to θ to the data. Yet, if
there is an attribute x̃i in the test instance such that the relative counts are
zero, the corresponding maximum-likelihood probability is zero, this preventing
dominances in (10). Similar problems occur even within the Bayesian framework
[12]. However, the test instance (x̃1, . . . , x̃n) has also been observed: it is an
incomplete datum with class X0 missing. Therefore, as in a semi-supervised
setting, it could be involved in the likelihood evaluation as well, i.e.,

L′(θ) ∝ P (D|θ) ·
∑

x0∈ΩX0

Pθ(x0, x̃1, . . . , x̃n). (11)
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Besides being more correct, this also prevents the above issue with zero counts.
The maximum-likelihood estimate of θ can be calculated with the EM algorithm,
which completes the test instance with fractional counts for the different values of
X0. We denote by n̂(·) the counting function obtained by augmenting the counts
about D with these fractional counts. Note that, while n() = N , n̂() = N + 1.

3.3 Analytic Formulae for the Upper Envelope of the Likelihood

Following the approach in Sect. 3.1 we derive here an analytic expression for the
upper envelope of the likelihood (11) as a function of the probability ratio (3).
Each point of this upper envelope corresponds to a particular quantification Pθ

of the Bayesian network. If θ(t) is a function of t ∈ [a, b] such that there is a
one-to-one correspondence between the quantifications Pθ(t) and the points of
the upper envelope of the likelihood (when t varies in [a, b]), then{(

Pθ(t)(x
′
0, x̃1, . . . , x̃n)

Pθ(t)(x
′′
0 , x̃1, . . . , x̃n)

, L′ (θ(t))
)

: t ∈ [a, b]

}
(12)

is a parametric expression for the graph of the upper envelope.
A function θ(t) with the above property was obtained in [4] for the case

without summation in (11), i.e., without considering the test instance in the
likelihood. This result is not directly applicable to the likelihood (11), but we
can obtain an approximation of the desired upper envelope if we use the function
θ̂(t) resulting from the expected likelihood delivered by the EM-algorithm, i.e.,
the likelihood corresponding to the augmented counts n̂(·). Our approximation
is then given by (12) with θ̂(t) instead of θ(t).

To simplify the analytic formulae, we assume that the children of X0 in the
Bayesian network are denoted by X1, . . . , Xk (with k ≤ n). We first define:

a := −min {n̂(x′0, π̃0), n̂(x̃1, x
′
0, π̃1), . . . , n̂(x̃k, x

′
0, π̃k)} , (13)

b := min {n̂(x′′0 , π̃0), n̂(x̃1, x
′′
0 , π̃1), . . . , n̂(x̃k, x

′′
0 , π̃k)} . (14)

For each t ∈ [a, b], let us consider the following functions:

x(t) :=
n̂(x′0, π̃0) + t

n̂(x′′0 , π̃0)− t
·

k∏
i=1

n̂(x̃i,x
′
0,π̃i)+t

n̂(x′
0,π̃i)+t

n̂(x̃i,x′′
0 ,π̃i)−t

n̂(x′′
0 ,π̃i)−t

, (15)

y(t) := y0(t) ·

⎡⎣ ∑
x0∈ΩX0

kx0(t)

⎤⎦ , (16)

where:

y0(t) := [n̂(x′0, π̃0) + t]
n(x′

0,π̃0) · [n̂(x′′0 , π̃0)− t]
n(x′′

0 ,π̃0)

·
k∏

i=1

[
[n̂(x̃i, x

′
0, π̃i) + t]

n(x̃i,x
′
0,π̃i)

[n̂(x′0, π̃i) + t]
n(x′

0,π̃i)
· [n̂(x̃i, x

′′
0 , π̃i)− t]

n(x̃i,x
′′
0 ,π̃i)

[n̂(x′′0 , π̃i)− t]
n(x′′

0 ,π̃i)

]
,(17)
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kx0(t) :=

⎧⎪⎨⎪⎩
[n̂(x0, π̃0) + t] ·

∏k
i=1

n̂(x̃i,x0,π̃i)+t
n̂(x0,π̃i)+t if x0 = x′0,

[n̂(x0, π̃0)− t] ·
∏k

i=1
n̂(x̃i,x0,π̃i)−t
n̂(x0,π̃i)−t if x0 = x′′0 ,

n̂(x0, π̃0) ·
∏k

i=1
n̂(x̃i,x0,π̃i)
n̂(x0,π̃i)

if x0 ∈ ΩX0 \ {x′0, x′′0}.
(18)

Theorem 1. If [x(a), x(b)] = [0,+∞], our approximation of the upper envelope
of the normalized likelihood (11) as a function of the probability ratio (3) is
parametrized by (x(t), y(t)/y(0)) with t ∈ [a, b].

Theorem 2. If x(a) > 0, the parametrization in Th. 1 holds in the region
[x(a), x(b)], while in the region [0, x(a)], a parametrization is (τ · x(a), y′(τ)/y(0))
with τ ∈ [0, 1] and:

y′(τ) := τ−a+n(x′
0)−n̂(x′

0) · y0(a) ·

⎡⎣τ kx′
0
(a) +

∑
x0∈ΩX0\{x′

0}
kx0(a)

⎤⎦ . (19)

The proofs of the two theorems are omitted for lack of space, but can be found
in [2]. As a simple application of these results, it is straightforward to evaluate
the upper envelope of the likelihood for the example in Fig. 3 when only the
complete data are considered in the likelihood, i.e., only y0(t) is considered in
(17). In this case, t ∈ [−2, 1] and:[

x(t)
y(t)

]
=

[
(2 + t) · (1− t)−1

(2 + t)2 · (1− t)

]
. (20)

Given the above parametrization of the likelihood upper envelope, classification
can be performed by checking whether or not the left α-cut has abscissa greater
than one. For the situation in Th. 1, this can be numerically done in few iteration
by bracketing the (unique) zero of g(t) := y(t) − αy(0) in the region t ∈ [a, 0],
unless the corresponding bounds on x(t) are greater (or smaller) than one (and
similarly proceed for Th. 2).

4 Preliminary Results

To describe the performance of a credal classifier, multiple indicators are needed.
We adopt the following:

– determinacy: percentage of instances classified with a single class;

– single accuracy: accuracy over instances classified with a single class;
– set-accuracy : accuracy over instances classified with more classes;

– indeterminate output size: average number of classes returned when the clas-
sification is indeterminate.
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Table 1. Main characteristics of the data sets

Dataset Iris Glass Ecoli Breast Haberman Diabetes Ionosphere

Size N 150 214 336 699 306 768 351
Features k 4 7 6 9 2 6 33
Classes |ΩX0 | 3 7 8 2 2 2 2

iono
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Fig. 4. Experimental results: determinacy of the likelihood-based classifier (left) and
comparison of the accuracy achieved by the standard network on the instances classified
determinately and indeterminately by the likelihood-based classifier (right)

Roughly speaking, a credal classifier identifies easy instances, over which it re-
turns a single class, and hard instances, over which it returns more classes. A
credal classifier is effective at recognizing hard instances if its precise counterpart
undergoes a considerable drop of accuracy on them. As a precise counterpart of
the likelihood-based credal classifier we consider a Bayesian network with the
same graph, but whose parameters are learned precisely as in (5); this model is
referred to as the standard network in the following. The graph is learned using
the K2 score [9, Chap. 18]. The considered data sets and their main character-
istics are shown in Tab. 1. We run 5 runs of 5 folds cross-validation, for a total
of 25 training/test experiments on each data set.

The determinacy of the likelihood-based classifier (with α = 0.15) is generally
around 90% or higher, as shown in the left plot of Fig. 4; in general, the deter-
minacy increases on larger data sets. The likelihood-based classifier is effective
at detecting hard instances; this can be appreciated by the right plot of Fig. 4,
which compares the accuracy obtained by the standard network on the instances
recognized as easy and hard by the likelihood-based classifier. The accuracy of
the standard network clearly drops on the instances indeterminately classified by
the likelihood-based model; the drop is statistically significant (Wilcoxon signed-
rank test, p-value < 0.01). The set-accuracy and the indeterminate output size
are meaningful only on data sets with more than 2 classes. On such data sets,
the likelihood-based classifier returns a number of classes which is on average
58% of the total classes, achieving on average a set-accuracy of 84%.
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In future more extensive experiments should be carried out, comparing the
likelihood-based model against credal classifiers already present in literature.

5 Conclusions and Outlooks

A new, likelihood-based approach, to classification with Bayesian networks has
been proposed. Instead of the single maximum-likelihood estimation of the net-
work parameters, all the parametrizations assigning to the available data a likeli-
hood beyond a given threshold are considered. All the classes which are optimal
at least for a network parametrization consistent with this constraint are re-
turned. This corresponds to a credal classifier which can eventually assign more
than a single class label to the test instance. Preliminary experiments show
that this approach is successful in discriminating hard- from easy-to-classify in-
stances. In the latter case the single, correct, class label is returned, while for
hard instances a set of classes, generally including the correct one, is returned.
As a future work, we intend to compare this model with other credal classifiers
and extend this approach to incomplete data sets.
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Collecting Information Reported by Imperfect

Information Sources

Laurence Cholvy

ONERA
2 avenue Edouard Belin
31055 Toulouse, France

Abstract. This paper studies how an agent can believe a new piece of
information, not only when it is directly provided by another agent but
also when it is reported through an agent who cites a third one. Two
models are presented, the first one in modal logic and the other one in
the Theory of Evidence. They both consider as primitive two positive
properties of agents: their ability of reporting true information and their
ability of reporting only true information, as well as their negative coun-
terparts i.e, their ability of reporting false information and their ability
of reported only false information.

Keywords: Beliefs, modal logic, Theory of Evidence.

1 Introduction

In a multi-agent system such as a system of surveillance and monitoring for ur-
ban, environmental, security or defense purposes, there are some agents whose
function is to collect information provided by some other agents called informa-
tion sources. These information sources (sensors, radars or humans) may observe
the current situation or they may be themselves informed by some other agents.

As for the agent in charge of collecting information, before processing the
piece of information it receives, and in particular before fusing it with other
pieces of information [1], [2], has to decide how strong it accepts it. Obviously, it
can accept this information if it trusts the information source for providing true
information or equivalently, if it trusts the information source for not delivering
false information. Thus, knowing that the source is truthful [3] will help the agent
to accept the piece of information it receives as a new belief. Symmetrically,
knowing that it is a liar will help it to accept its opposite as a new belief.

For instance, assume that in order to estimate the rate of a river flow I call
a friend who lives in the mountains near the glacier where the river springs are.
This friend tolds me that the outside temperature has risen recently. If I trust
this friend for telling me true information, then I can believe what he is reporting
i.e I can believe that the temperature near the glacier has risen recently. From
this, I will be able to deduce that the river flow will rise in few days. At the
opposite, assume that instead of calling my friend, I read the weather forecast
in my newspaper which reports that the temperature in the mountains has risen

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 501–510, 2012.
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recently. If I know that the weather forecast provided in this newspaper is always
false, then I can infer that what my newspaper is reporting is false i.e I can
conclude that the temperature has not risen in the mountains. Consequently, I
will be able to deduce that the river flow will not rise in few days1.

In [5], Demolombe studied several properties an information source can have,
among which validity and completeness are worth pointing out. Roughly speak-
ing, a valid agent only reports information that are true in the world and a
complete agent reports any information that are true in the world. Validity and
completeness are important in the question we address. Indeed, if the agent who
receives a new piece of information trusts the information source for being valid,
then it can believe this piece of information. At the opposite, an agent who does
not receive a given piece of information from an information source assumed to
be complete can believe that this piece of information is false.

Demolombe’s work focuses on pieces of information provided directly by an
information source. But in some cases, the information source does not pro-
vide explicitely the very information of interest but cites another source. This
is the case for instance when I am informed by my neighbour that one of his
friends living in the mountains told him that the temperature has risen recently
there. Here, my neighbour does not tell me that the temperature has risen in the
mountains but he reports that his friend reported it. Consequently, trusting my
neighbour for delivering true weather report is not useful here. However, trust-
ing my neighbour for telling me the truth and trusting my neighbour’s friend for
delivering true weather report will allow me to believe that indeed, the tempera-
ture has risen recently in the mountains. Notice that here, the very information
which interests me is reported through two agents, my neighbour’s friend and
my neighbour, the second one citing the first one. The question of estimating
if an agent can believe a piece of information when it is reported through sev-
eral agents is the object of our current research. In previous papers [7], [8] we
have investigated different models for addressing this question. Following De-
molombe, these models emphasize the importance of the property of validity.
But they also emphasize the importance of a dual property which characterizes
agents who report only false information. We will call them misinformers2. The
present paper extends [8] and considers the property of completeness as well as
its negative counterpart.

This paper is organized as follows. Section 2 presents a model in modal logic
and formally introduces the four properties: validity, completeness and their neg-
ative counterparts. Section 3 assumes uncertainty and presents a second model
based on Theory of Evidence. We prove that this second model extends the first
one. Finally, section 4 lists some concluding remarks.

2 A Logical Model

We consider an agent i who is about receiving a piece of information ϕ. We
aim at seeing how i can use its beliefs about the information sources in order to

1 Assuming that the river is only filled with the glacier water.
2 In our previous work, the term which was used was “invalid”.
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accept or not accept ϕ as a new belief. We first examine the case when i is in
direct contact with the information source. Then we study the case when there is
third agent between the source and i. Due to the limitation of the paper length,
the general case of any number of agents is not studied. All along this section,
the question is: (Q) Can i believe ϕ ?

2.1 The Logical Framework

The work which influenced us is Demolombe’s work [5] which, in particular, for-
malizes in modal logic the relations which exist between a piece of information,
its truth and the mental attitudes of the agent which produces this piece of
information. The operators of the modal logic used in this paper are: Bi (Bip
means “agent i believes that p”), Ki (Kip means “agent i strongly believes that
p); Iji (Iji p means “agent i informs agent j that p”). Operator Bi obeys KD

system which is quite usual for beliefs and operator Iji only obeys rule of equiva-
lence substitutivity [6]. Ki obeys KD system plus axiom (KT) i.e Ki(Kip→ p).
Furthermore we have Kip→ Bip and also Iji p→ KjI

j
i p and ¬Iji p→ Kj¬Iji p.

According to Demolombe, agent i is valid with regard to j for p iff, if i in-
forms j about p, then p is true. Thus valid(i, j, p) ≡ Iji p → p. Agent i is com-
plete with regard to j for p iff if p is the case then i informs j about p. Thus:
complete(i, j, p) ≡ p→ Iji p.

These notions are then be used to derive the beliefs of an agent who receives
a piece of information. For instance, Iifrisen ∧ Kivalid(f, i, risen) → Kirisen
is a theorem in this framework. It means that if my friend tells me that the
temperature has risen in the mountains and if I strongly believe that my friend
is valid with regard to the weather report in the moutains, then I strongly
believe that the temperature has risen there. In the same way, ¬Iif risen ∧
Kicomplete(f, i, risen) → Ki¬risen is a theorem. It means that if my friend
did not tell me that the temperature has risen in the mountains and if I strongly
believe that my friend is complete with regard to the weather report in the
moutains, then I strongly believe that the temperature has not risen there.

Validity and completeness are positive properties since in a situation of col-
lecting information, an information source which is valid and complete for some
ϕ is of the utmost importance. However, not all the information sources are as
perfect as this. This is why here, we introduce negative counterpart of these
properties and consider misinformers and falsifiers. According to our pro-
posal, a misinformer is an agent who only reports false information. A falsifier
agent is an agent who reports false information.

For giving these properties formal definitions, we consider a modal logic which
is a simpler version of the logic used in [5] with two operators, one for represent-
ing the agent beliefs and the other for representing the fact that an agent has
reported a piece of information. Biϕ means that agent i believes that ϕ. Modali-
ties Bi obeys the following axiomatics: Biϕ∧Bi(ϕ→ ψ)→ Biψ, Bi¬ϕ→ ¬Biϕ
and ϕ

Biϕ
. Riϕ means that the agent i reports that the proposition ϕ is true.

The modality R obeys the following axiomatics: Ri(ϕ ∧ ψ) ↔ Riϕ ∧ Riψ and
ϕ↔ψ

Rjϕ↔Rjψ
. The four properties we want to focus on are then modelled as follows:
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valid(i, ϕ) ≡ Riϕ→ ϕ

misinformer(i, ϕ) ≡ Riϕ→ ¬ϕ
complete(i, ϕ) ≡ ϕ→ Riϕ

falsifier(i, ϕ) ≡ ¬ϕ→ Riϕ

2.2 Agent i Is in Direct Contact with the Source

Here we consider that agent i is in direct contact with the information source
named j. There are two cases.

First case. j indeed reports ϕ and i is aware of it i.e we haveBiRjϕ. The following
proposition answers the question Q.

Theorem 1. The following formulas are theorems and their premisses are
exclusive.

BiRjϕ ∧Bivalid(j, ϕ)→ Biϕ
BiRjϕ ∧Bimisinformer(j, ϕ)→ Bi¬ϕ

I.e., if i believes that j reported ϕ and if it believes that j is valid (resp, mis-
informer) for information ϕ then it can conclude that ϕ is true (resp, false).
Furthermore, since i cannot believe j both valid and misinformer, it cannot
infer both ϕ and ¬ϕ

Second case. j did not report ϕ and i is aware of it, i.e we have Bi¬Rjϕ. The
following proposition answers the question Q.

Theorem 2. The following formulas are theorems and their premisses are
exclusive.

Bi¬Rjϕ ∧Bicomplete(j, ϕ)→ Bi¬ϕ
Bi¬Rjϕ ∧Bifalsifier(j, ϕ)→ Biϕ

I.e., if i believes that j has not reported ϕ while it believes that j is complete
for ϕ then it can conclude that ϕ is false. Furthemore, if i believes that j has
not reported ϕ while it believes that j is a falsifier for ϕ then it can conclude
that ϕ is true.

2.3 There Is a Third Agent between Agent i and the Source

Here we consider that agent i is not in direct contact with the agent which is
supposed to provide information, named k, but there is a go-between agent,
named j. There are four cases.

First Case. j reports that k reported ϕ and i knows it, i.e BiRjRkϕ. The fol-
lowing proposition answers the question Q.
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Theorem 3. The following formulas are theorems and the premisses are
exclusive.

BiRjRkϕ ∧Bivalid(j, Rkϕ) ∧Bivalid(k, ϕ)→ Biϕ
BiRjRkϕ ∧Bivalid(j, Rkϕ) ∧Bimisinformer(k, ϕ)→ Bi¬ϕ

BiRjRkϕ ∧Bimisinformer(j, Rkϕ) ∧Bicomplete(k, ϕ)→ Bi¬ϕ
BiRjRkϕ ∧Bimisinformer(j, Rkϕ) ∧Bifalsifier(k, ϕ)→ Biϕ

For instance, my neighbour told me that one of his friends who lives in the
moutains told him that the temperature has risen. Suppose I know that when
my neighbour says such a sentence, it is false i.e, I can infer that his friend did
not tell him that the temperature has risen. But suppose that I know that his
friend always informs him when the temperature rises. Then, I can conclude that
the temperature had not risen.

Second Case. j does not report that k reported ϕ and i knows it, i.e Bi¬RjRkϕ.
The following proposition answers the question Q.

Theorem 4. The following formulas are theorems and their premisses are
exclusive.

Bi¬RjRkϕ ∧Bicomplete(j,Rkϕ) ∧ Bicomplete(k,ϕ) → Bi¬ϕ
Bi¬RjRkϕ ∧ Bicomplete(j,Rkϕ) ∧Bifalsifier(k, ϕ) → Biϕ
Bi¬RjRkϕ ∧Bifalsifier(j, Rkϕ) ∧Bivalid(k, ϕ) → Biϕ

Bi¬RjRkϕ ∧Bifalsifier(j, Rkϕ) ∧Bimisinformer(k, ϕ) → Bi¬ϕ

Third Case. j reports that k did not report ϕ and i knows it, i.e BiRj¬Rkϕ.
The following proposition answers the question Q.

Theorem 5. The following formulas are theorems and their premisses are
exclusive.

BiRj¬Rkϕ ∧Bivalid(j,¬Rkϕ) ∧Bicomplete(k, ϕ)→ Bi¬ϕ
BiRj¬Rkϕ ∧Bimisinformer(j,¬Rkϕ) ∧Bivalid(k, ϕ)→ Biϕ

BiRj¬Rkϕ ∧Bimisinformer(j,¬Rkϕ) ∧Bimisinformer(k, ϕ)→ Bi¬ϕ
BiRj¬Rkϕ ∧Bivalid(j,¬Rkϕ) ∧Bifalsifier(k, ϕ)→ Biϕ

Fourth Case. j did not report that k did not report ϕ and i knows it, i.e
Bi¬Rj¬Rkϕ. The following proposition answers the question Q.

Theorem 6. The following formulas are theorems and their premisses are
exclusive.

Bi¬Rj¬Rkϕ ∧Bicomplete(j,¬Rkϕ) ∧Bivalid(k, ϕ) → Biϕ
Bi¬Rj¬Rkϕ ∧Bicomplete(j,¬Rkϕ) ∧Bimisinformer(k, ϕ) → Bi¬ϕ
Bi¬Rj¬Rkϕ ∧Bifalsifier(j,¬Rkϕ) ∧Bicomplete(k, ϕ) → Bi¬ϕ
Bi¬Rj¬Rkϕ ∧Bifalsifier(j,¬Rkϕ) ∧Bifalsifier(k, ϕ) → Biϕ
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3 Taking Uncertainty into Account

The previous model allows an agent to reason in a binary way with its beliefs
about the different sources being valid, misinformer, complete or falsifier. No
uncertainty can be expressed. This is why, here, we consider another kind of
formalism, the Theory of Evidence [9], to take uncertainty into account. Again,
we consider an agent i who is about receiving a piece of information ϕ. The
question is now: (Q) How strong can i believe ϕ ?

3.1 The Numerical Model

In order to answer question Q in an uncertainty setting, our model is based on
the degrees at which i thinks that the source j is valid (resp is a misinformer, or
complete,or is a falsifier). We consider a classical propositional language the two
letters of which are: ϕ and Rjϕ representing respectively the facts “information
ϕ is true” and “j reported information ϕ”3.

Definition 1. Consider two agents i and j and a piece of information ϕ. Let
dj ∈ [0, 1] and d′j ∈ [0, 1] two real numbers4 such that 0 ≤ dj + d′j ≤ 1. dj is
the degree at which i thinks that j is valid for ϕ and d′j is the degree at which
i thinks that j is a misinformer for ϕ (written V M(i, j, ϕ, dj , d

′
j)) iff i’s beliefs

can be modelled by the mass assignment mVM(i,j,ϕ,dj ,d
′
j) defined by:

mVM(i,j,ϕ,dj ,d
′
j)(Rjϕ→ ϕ) = dj

mV M(i,j,ϕ,dj,d
′
j)(Rjϕ→ ¬ϕ) = d′j

mV M(i,j,ϕ,dj,d
′
j)(True) = 1− (dj + d′j)

We have shown in [10] that exhaustive hypotheses of a frame of discernment
can be considered as logical interpretations and that assigning a mass on a dis-
junction of exhaustive hypothesis is equivalent to assigning this mass on any
propositional formula satisfied by all the interpretations in the disjunction. Con-
sequently, here, the mass assigment is expressed on formulas and not on the
eight interpretations of the language (the one in which j has reported ϕ and
j has reported information ¬ϕ and ϕ is true; the one in which j has reported
information ϕ and j did not report information ¬ϕ and ϕ is true,...) which would
be much more fastidious.

According to definition 1, if i believes at degree dj that j is valid for ϕ and
believes at degree d′j that j is a misinformer then its belief degree in the fact “if
j reports ϕ then ϕ is true” is dj ; its belief degree in the fact “if j reports ϕ then
ϕ is false” is d′j ; and its total ignorance degree is 1− (dj + d′j).

3 We insist on the fact that the language which is considered in this section is classical
and not modal. Consequently, Rjϕ is not a modal formula here but a propositionnal
letter.

4 These degrees should be indexed by i but index i is omitted for readibility.



Collecting Information Reported by Imperfect Information Sources 507

Definition 2. Consider two agents i and j and a piece of information ϕ. Let
cj ∈ [0, 1] and c′j ∈ [0, 1] two real numbers5 such that 0 ≤ cj + c′j ≤ 1. cj is the
degree at which i thinks that j is complete for ϕ and c′j is the degree at which i
thinks that j is a falsifier for ϕ (written CF (i, j, ϕ, cj , c

′
j)) iff i’s beliefs can be

modelled by the mass assignment mCF (i,j,ϕ,cj,c
′
j) defined by:

mCF (i,j,ϕ,cj,c
′
j)(ϕ→ Rjϕ) = cj

mCF (i,j,ϕ,cj,c
′
j)(¬ϕ→ Rjϕ) = c′j

mCF (i,j,ϕ,cj,c
′
j)(True) = 1− (cj + c′j)

According to definition 2, if i believes at degree cj that j is complete for ϕ and
believes at degree c′j that j is a falsifier then its belief degree in the fact “if ϕ
is true then j reports ϕ” is cj ; its belief degree in the fact “if ϕ is false then j
reports ϕ” is c′j ; and its total ignorance degree is 1− (cj + c′j).

3.2 Agent i Is in Direct Contact with the Source

Let us first give the following preliminary definitions.

Definition 3. mV MCF denotes the mass assignment obtained by combining the
two previous mass assignments. I.e,

mV MCF = mVM(i,j,ϕ,dj ,d
′
j) ⊕mCF (i,j,ϕ,cj,c

′
j).

This assignment represents the beliefs of i about j being valid, complete, a
misinformer or a falsifier for information ϕ.

Definition 4. mψ is the mass assignments defined by: mψ(ψ) = 1.

In particular, if ψ is Rjϕ, then mRjϕ represents the fact that agent i is certain
that j has reported ϕ. If ψ is ¬Rjϕ, then m¬Rjϕ represents the fact that agent
i is certain that j did not report ϕ.

First case. We assume that j reported ϕ and that i is aware of it . In this case,
i’s beliefs can be modelled by the following mass assignment m:

m = mVMCF ⊕mRjϕ

Theorem 7. Let Bel be the belief function associated with assignment m. Then,
Bel(ϕ) = dj and Bel(¬ϕ) = d′j

Consequently, when i knows that j reported ϕ and when V M(i, j, ϕ, dj , d
′
j) and

CF (i, j, , ϕ, cj , c
′
j), then i believes ϕ more than ¬ϕ if and only if dj > d′j i.e,

its belief degree in j’s being valid is greater that its belief degree in j’s being a
misinformer. This result is not surprising.

5 Again these degrees should be indexed by i but index i is omitted for readibility.
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Theorem 8.
If V M(i, j, ϕ, 1, 0) then Bel(ϕ) = 1 and Bel(¬ϕ) = 0 i.e, i believes ϕ and

does not believe ¬ϕ;
If V M(i, j, ϕ, 0, 1) then Bel(ϕ) = 0 and Bel(¬ϕ) = 1 i.e, i does not believe

¬ϕ and believes ϕ.

We find again the results of theorem 1.

Second case. j did not report ϕ and i is aware of it. In this case, i’s beliefs can
be modelled by the mass assignment m:

m = mV MCF ⊕m¬Rjϕ

Theorem 9. Let Bel be the belief function associated with assignment m. Then,
Bel(ϕ) = c′j and Bel(¬ϕ) = cj

Consequently, when i knows that j did report ϕ and when V M(i, j, ϕ, dj , d
′
j)

and CF (i, j, , ϕ, cj , c
′
j) then i believes ϕ more than ¬ϕ if and only if c′j > cj i.e,

its belief degree in j’s being a falsifier is greater that its belief degree in j’s being
complete.

Theorem 10.
If CF (i, j, ϕ, 1, 0), then Bel(ϕ) = 0 and Bel(¬ϕ) = 1 i.e, i does not believes

ϕ and believes ¬ϕ;
If CF (i, j, ϕ, 0, 1), then Bel(ϕ) = 1 and Bel(¬ϕ) = 0 i.e, i believes ϕ and

does not believe ¬ϕ.

We find again the results of theorem 2.

3.3 There Is a Third Agent between i and the Source

Like in section 3.2 we consider here that i is not in direct contact with the agent
k supposed to provide the information, but there is a go-between agent named j.
In order to answer question Q in this case, we consider a propositional language
whose letters are: ϕ, Rkϕ, RjRkϕ, Rj¬Rkϕ. These letters respectively represent
“information ϕ is true, k reported information ϕ, j reported that k reported ϕ,
j reported that k did not report ϕ.

Preliminaries. In this section, the mass assigment mV MCF is defined by:

Definition 5.
mV MCF = mV M(i,j,Rkϕ,dj ,d

′
j) ⊕mCF (i,j,Rkϕ,cj ,c

′
j) ⊕mV M(i,k,ϕ,dk,d′k) ⊕mCF (i,k,ϕ,ck,c′k)

This assignment represents the beliefs of i as regard to agent j being valid, com-
plete, a misinformer or a falsifier for information Rkϕ and as regard to agent k
being valid, complete, a misinformer or a falsifier for information ϕ.
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First case. Assume that j reported that k ϕ and that i is aware of it . In this
case, i’s beliefs are modelled by the mass assignment m defined by:

m = mV MCF ⊕mRjRkϕ

Theorem 11. Let Bel be the belief function associated with assignment m.
Bel(ϕ) = dk.ck

′ + dk.dj − dk.ck.dj − dk.c
′
k.d

′
j + c′k.dj and

Bel(¬ϕ) = d′k.ck + d′k.dj − d′k.ck.dj + ck.d
′
j − d′k.ck.d

′
j

Theorem 12.
If V M(i, j, Rkϕ, 1, 0) and V M(i, k, ϕ, 1, 0) then Bel(ϕ) = 1 and Bel(¬ϕ) = 0.
If V M(i, j, Rkϕ, 1, 0) and V M(i, k, ϕ, 0, 1) then Bel(ϕ) = 0 and Bel(¬ϕ) = 1.
If V M(i, j, Rkϕ, 0, 1) and CF (i, k, ϕ, 1, 0) then Bel(ϕ) = 0 and Bel(¬ϕ) = 1.
If V M(i, j, Rkϕ, 0, 1) and CF (i, k, ϕ, 0, 1) then Bel(ϕ) = 1 and Bel(¬ϕ) = 0.

We find again the results of theorem 3.

Three other cases.
The three other cases are not considered here due to the limitation of the paper
length but we can easily prove that we find results of theorem 4, theorem 5 and
theorem 6 in particular cases.

4 Concluding Remarks

In situation of information fusion, we expect that the agents who provide in-
formation fulfill some positive properties so that the agent who is in charge of
merging can believe the information it receives. However, information sources
may be imperfect and fulfill negative properties. In such a case, how do they
influence the believes of the agent who receives information ? This is the ques-
tion which has been addressed in this paper. Not only we dealt with information
provided directly by an agent but we also consider the case when there is a third
agent who cites the previous one, a case which has received little attention in
the litterature.

The logical model defined previously allows an user to deductively infer wether
it can accept a piece of information as a new belief. But this model also offers
the possibility to make abductive reasoning on the agent properties. For instance
given that BiRjRkφ and Bivalid(j, Rkφ) we can abductively find the epistemic
properties of the agents that are required to explain Biφ. Here, one of this plausi-
ble assumption is Bivalid(k, φ). Studying this abductive reasoning in a graph of
communicating agents constitutes an interesting extension of this present work,
not only in the logical setting but also in the evidential framework.

Another promising extension would be to introduce more uncertainty in the
model by considering that agents may be uncertain about information they de-
liver. This would allow us to deal with the case when an agent reports that some
fact is highly certain or when an agent reports that another agent has reported
that some fact was fairly certain. Modelling this kind of uncertainty and mixing
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it with the one which is introduced in this paper would allow us to deal with
more realistic reported information.

Another work we foresee is to compare the numerical model defined here with
the model expressed in possibilistic logic by [4] and also with the model of graded
trust of [11] which proposes a qualitative approach to graded beliefs.
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{argentini,blanzier}@disi.unitn.it

Abstract. In this work we consider the case of the ranking aggregation
problem that includes the true ranking in its formulation. The goal is to
find an estimation of an unknown true ranking given a set of rankings
provided by different quality experts. This is the case when bioinfor-
matic experts provide ranked items involved in an unknown biological
phenomenon regulated by its own physical reality. We devise an innova-
tive solution called Belief Ranking Estimator (BRE), based on the belief
function framework that permits to represent beliefs on the correctness
of each item rank as well as uncertainty on the quality of the rankings
from the subjective point of view of the expert. Moreover, weights com-
puted using a true-ranking estimator are applied to the original belief
basic assignment in order to take into account the quality of the input
rankings. The results of an empirical comparison of BRE with weighting
schema against competitor methods for ranking aggregation show that
our method improves significantly the performance when the quality of
the ranking is heterogeneous.

1 Introduction

The ranking aggregation problem faces the necessity to combine different rank-
ings on a finite set of items, in order to produce a new ranking that satisfies
specific criteria. The problem of ranking aggregation emerges when it is neces-
sary to combine the opinion of experts with different background, such as the
combination of ranked lists of differently expressed genes provided by different
microarray analysis methods, or the combination of search engine results [6], or
committee decision making. Most of the methods proposed for the combination
of rankings aim to minimize the distance between the input rankings for a given
ranking distance. This is the case of Spearman Footrule Optimal aggregator [6]
and the cross-entropy method [9] to approximate the Kendall Optimal aggrega-
tor. Other aggregator methods are based on heuristics such as Markov Chain
solutions [6] and the Borda Count[3] that includes the mean and the median.
Despite the presence of a true ranking is overlooked in the ranking aggregation
formulation, the relation between ranking aggregation methods and the true
ranking has been investigated [1] and it emerges that the quality of the results
is affected by the noise on the input rankings.

In this work ranking aggregation is faced assuming the existence of a true
ranking of the set of items and the goal is to find a satisfying estimation of the

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 511–520, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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unknown true ranking given a set of input rankings provided by experts with
different approximation quality. The main difference with respect to ranking ag-
gregation solutions based on minimization criteria is that we assume that the
true ranking over the set of items does exist. We claim that this is the case when
the rankings come from bioinformatic rankers because of the underlying physi-
cal reality of the unknown biological phenomenon at hand. The solution to the
ranking aggregation problem is based on Belief Function Theory. Belief Function
Theory provides a solid framework for reasoning with imprecise and uncertain
data, allowing the modeling of subjective knowledge in a non Bayesian way. Be-
lief function theory has been applied in decision making [12] and also in machine
learning problems such as clustering [8] and classification [13]. The application
of Belief Function to rankings gives the possibility to encode different a priori
knowledge about the correctness of the ranking positions and also to weight the
reliability of the experts involved in the combination. Moreover, to the best of
our knowledge the use of Belief Function on the ranking aggregation problem
has not been proposed yet in literature. Our solution, called Belief Ranking Es-
timator (BRE), estimates the true ranking in an unsupervised way given a set of
input rankings. We evaluate BRE on total rankings in synthetic data, comparing
our method against some ranking aggregation competitor methods. A prelimi-
nary version of this work has been presented as student poster at ECSQARU
2011 [2].

The paper is organized as follows. In the following two sections we briefly
present the ranking aggregation methods and the Belief Function framework. A
successive section is devoted to the presentation of our method and another to
the empirical evaluation results. Finally, we draw some conclusions.

2 Ranking Aggregation Methods

The state-of-the-art methods for the ranking aggregation problem can be divided
into optimization and heuristic methods. Optimization methods aim to find a
ranking that minimizes the distance of the input rankings, given a ranking dis-
tance. This category includes the Footrule Optimal aggregation and Kendall
optimal aggregation based respectively on the Spearman Footrule and Kendall
distances [5]. Since the Kendall optimal aggregation is a NP-hard problem [6],
stochastic search solution has been proposed such as the cross-entropy Monte
Carlo approach [9]. The Spearman Footrule Optimal aggregation for total rank-
ings is computable in polynomial time by reduction to the computation of the
minimum cost of perfect matching on a bipartite graph [6]. On the other hand,
heuristic methods, such as Borda Count[3][6] and Markov chain [6] provide more
simple solutions without optimizing any criterion. Borda Count assigns to each
item in a ranking a score corresponding to the position in which the item ap-
pears, for each item all the scores are summed up along all the rankings and
finally the items are ranked by their total score. As particular cases, the mean
and the median are simply the rankings provided by the re-ranked values of the
mean and median of the input rankings.
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3 Belief Functions Theory

The theory of the Belief Functions, also known as Dempster-Shafer theory, is
based on the pioneering work of Dempster [4] and Shafer [10]. More recent
advances of this theory has been introduced in the Transferable Belief Model
(TBM), proposed by Smets [11]. The framework is composed of three parts: (1)
Model the belief of an expert on a frame of decision, (2) combine and update the
belief and (3) make decision on the frame. We define Θ = {θ1, . . . , θk}, called
the frame of discernment, as the set of propositions exclusive and exhaustive in
a certain domain. A function m : 2Θ → [0, 1] is called basic belief assignment
(bba) if it satisfies :

∑
A⊆Θ m(A) = 1. The bba is a way to represent the belief

held by an expert on the frame Θ. m(A) represents the belief that supports the
set A and it makes no additional claims to any subsets included in A. In order
to combine distinct sources m1, . . . ,mn on Θ, the framework provides several
combination rules, such as conjunctive rules, disjunctive rules and cautious rules
[11]. One of the most used rule is the conjunctive rule defined as:

m1 ∩�m2(A) =
∑

B∩C=A

m1(B)m2(C) A ⊆ Θ (1)

The conjunctive rule is associative and it is justified when all the sources of beliefs
are supposed to assert the truth and to be independent. For Belief Function
theory is a generalization of probability in a Bayesian setting, homologous of the
conditioning and marginalization rules are expressed in the framework. In order
to make decisions dealing with belief functions, TBM [11] includes the pignistic
transformation function Betp defined as:

Betp(θ) =
∑
A⊆Θ

m(A)

1−m(φ)|A| ∀θ ∈ Θ (2)

which transforms the mass functions into a probability space.

4 Method

4.1 Notation and Definition of the Problem

Let X = {x1, . . . , xn} be a set of items to be ranked by an expert opinion. We de-
note as τ = (τ(1), . . . , τ(n)) a ranking associated to X , where τ(i) is the rank as-
sociated to the item xi. We suppose to have τTrank = {τTrank(1), . . . , τTrank(n)}
that is the golden true ranking on the items of X , and we denote as Rj the ex-
pert involved in the ranking, so for each expert we have a corresponding ranking
τRj = {τRj (1), . . . , τRj (n)}. We suppose also that the most important item for
a ranker Rj receives a rank value equal to n. This assumption in the case of
permutations does not lead to any loss of generality. The problem in its gen-
eral form is stated as follows. Given N rankings τRj of length n of the n items
X = {x1, . . . , xn}, namely permutations, that estimate with unknown quality
the unknown true ranking τTrank find a ranking that estimates the true ranking.



514 A. Argentini and E. Blanzieri

Algorithm 1. Belief Ranking Estimator

input I=τ 1, . . . , τN {a vector of N Rankings}
input T {Numbers of iterations}
input TE {True-ranking estimator method}

k= 0
BE=Belief From Rankings(I)
FinalRankk=Combination(BE)
while k != T do

w̄=ComputeWeights(I,TE(I))
BE=ApplyWeights(w̄,BE)
FinalRankk=Combination(BE)
I[pos(max(w̄))]=FinalRankk
BE=Belief From Rankings(I)
k++

end while
output FinalRankk

4.2 Belief Ranking Estimator

The Belief Ranking Estimator (BRE) method is an unsupervised algorithm that
iteratively computes an estimation of an unknown true ranking, given a sample of
unknown-quality permutations assumed to be approximations of the true ranking.
As showed in Alg. 1 the input parameters are the rankings, the number of itera-
tions and the true-ranking estimator method TE. The algorithm is structured in
the following parts: themapping of the item ranks into bba (Belief From Ranking),
the weights computation from the true-ranking estimator used (ComputeWeights),
the application of the weights to the current belief model of the rankers (Apply-
Weights), finally the output ranking is produced by the combination of all the
bba’s of the rankings. As true-ranking estimator is possible to use any ranking ag-
gregationmethod. After the first iteration, the method replaces the worst ranking
according to the weights, with the combined ranking produced in the previous iter-
ation. At each iteration, this replacement drives the method to combine rankings
that are supposed to be better than the original worst ranking, and to produce as
output a better estimator. With T = 0 the algorithm computes the combination
of the initial assignment without any weighting.

BBA from the Rankings: For our problem, we consider a simple frame of
discernment Θ = {P,¬P}, where P , ¬P are the hypotheses that an item is
ranked in the right position or not respectively. Given a set of N rankings
τ1, . . . τ j , . . . , τN of the same n items, the bba of the j-th ranking on the i-th
item is assigned as:

mji(P ) =
τ j(i)

n
mji(¬P ) = 0

mji(Θ) = 1− τ j(i)

n

(3)
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The bba definition reflects the fact that the high-ranked items should have more
belief to be in the right position from the point of view of the expert who ex-
pressed the ranking. Since the lack of external information about the correctness
of the ranking we are not able to assert if an item is not in the right position
(¬P ), the remain belief is assigned consequently to the uncertainty about the
two possible hypotheses, namely to Θ. We point out that the assignment of belief
in Eq. 3 is strongly related to the choice of having the high-rank values assigned
to the most important items.

Weight Computation: The weights of the rankings are computed as the nor-
malized values of the Spearman Footrule distance [5][6] between the rankings
and the true-ranking estimator method as following :

Wj =
F (τ j , τTE)

1
2n

2
∀j ∈ 1..N

Where F (· , · ) is the Spearman Footrule distance defined over two rankings π,σ
as F (π, σ) = Σn

i=1 | π(i) − σ(i) | and τTE is the ranking produced by the true-
ranking estimator. Since weight values are in the interval [0, 1], rankings are
estimated to be similar or dissimilar to the estimator when the weight values go
to 0 or tend to 1 respectively. According with this, the worst rankers will have
the higher weight values. By w̄ is denoted the vector of the weights computed
for all the N rankings.

Application of the Weights: The application of the weights to the correspon-
dent mass distribution of the rankings is computed in the ApplyWeight routine,
as follows:

if wj = Min({w1, . . . , wN})
m′

ji(P ) = mji(P ) + (Wj ∗mji(Θ))

m′
ji(¬P ) = 0

m′
ji(Θ) = 1−m′

ji(P )

if wj �= Min({w1, . . . , wN})
m′

ji(Θ) = mji(Θ) + (Wj ∗mji(P ))

m′
ji(¬P ) = 0

m′
ji(P ) = 1−m′

ji(Θ)

where mji are the bba of the j-th ranking on the i-th item, Min(· ) is the
minimum function and m′

ji are the modified bba’s. The idea is to reduce the
uncertainty, proportionally to the correspondent weight for the best rankings
(namely, the ranking with minimum weight), and to increase the uncertainty for
all the other rankings. Note that the bba’s of ¬P are not modified, since there
is no evidence of the items being in wrong positions.

Combination: The final step is the combination of the bba of each item among
all the rankings, using the conjunctive rule as follows:

mO
i (P ) = ∩�N

j=1mji(P )

mO
i (¬P ) = ∩�N

j=1mji(¬P )

mO
i (Θ) = ∩�N

j=1mji(Θ)

(4)
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τ1

a 1
b 3
c 2
d 6
e 4
f 5

P ¬P Θ

.17 0 .83

.50 0 .50

.33 0 .67
1 0 0
.67 0 .33
.83 0 .17

τ2

a 3
b 2
c 5
d 6
e 4
f 1

P ¬P Θ

.50 0 .50

.33 0 .67

.83 0 .17
1 0 0
.67 0 .33
.17 0 .83

τ3

a 4
b 1
c 3
d 6
e 5
f 2

P ¬P Θ

.67 0 .33

.17 0 .83

.5 0 .5
1 0 0
.83 0 .17
.33 0 .67

∩

P ¬P Θ

mO
a .86 0 .14

mO
b .72 0 .28

mO
c .94 0 .06

mO
d 1 0 0

mO
e .98 0 .02

mO
f .61 0 .09

Betp(P )
.93
.86
.97
1

.99

.95

O
a 2
b 1
c 4
d 6
e 5
f 3

Eq.2

Eq.3

Eq.4

Fig. 1. Example of BRE with NW schema: bba from rankings (Eq. 3), combination
(Eq. 4) and the ranking outcome (Eq. 2)

where i ∈ 1, . . . , n and mO
i is the combined belief distribution for the i-th item.

mO
i (¬P ) is zero since mji(¬P ) is not a focal element in our frame. The conflict

after the combination is equal zero since mji(¬P ) are not focal elements. The use
of the conjunctive rule is justified when all the sources of belief are assumed to
tell the truth and to be independent. These requirements are fully satisfied here,
since we suppose that the rankings are independent and totally reliable because
the unsupervised context does not allow to make other assumptions on their
quality. We apply the Eq. 2 on the mO

i in order to make decisions on the frame
Θ. The final ranking O = (O(1), . . . , O(i), . . . , O(n)) is produced by sorting all
the items with respect to BetPi(P ), that corresponds to the probability of the
i-th item of being in the right position.

Although there is no theoretical constraint about the number of iterations, we
propose as maximum number of iterations MAXT = N

2 +1. The rational of this
rule of the thumb is that replacing more then one half of the original rankings
can possibly lead to poor performance due to the replacement of some of the best
rankings with information affected by the worse ones. We refer respectively to
the weighting schema and the iterative version as BRE−1T and BRE−MAXT
version. A BRE −NW version corresponding to T=0, is also evaluated in this
work. BRE−NW combines the belief distribution of the input rankings without
the application of the weights, as showed in Fig. 1.
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5 Experimental Results on Synthetic Data

To the best of our knownledge no real data on total rankings includes an available
true ranking. For this reason we have decided to evaluate BRE on synthethic data
that suits perfectly the problem at hand. The aim of this series of experiments
is to evaluate the ranking produced by BRE against a set of competitors. The
set includes the mean, the median and a competitor based on optimization, the
Spearman Footrule optimal aggregation (Opt list) [6], for we deal with total
rankings and BRE uses the Spearman Footrule distance internally. As true-
ranking estimator inside BRE we use the same ranking aggregation method
competitors, the goal being to investigate if BRE increases the performance
with respect to the methods used as true-ranking estimator. The performance
is measured with the Spearman correlation coefficient ρ (defined as ρ(π, σ) =

1− 6
∑n

i=1(π(i)−σ(i))2

n(n2−1) [7]) and with the Spearman footrule distance (F ) computed

with respect to the true ranking (τTrank ) and are showed in Tab. 1. We notice
that ρ is a correlation coefficient, higher values up to 1 means rankings likely
similar. As regard to the Spearman Footrule distance F , values around 0 means
similar rankings.

For all the synthetic data experiments, the input rankings are randomly gen-
erated under the constraint to exhibit fixed values of ρ with a fixed ranking
τTrank of 300 items. In order to have more reliable results we performed 10 in-
dependent replicas of the procedure using the same generation parameters and
the results showed are the average over the replicas. The statistical significance
of the difference of the averages between BRE and its competitors used as esti-
mators are computed with a t-Test with α = 0.05. We generate our data with
a number of rankings to combine N equal to 3, 10, 30. For each N value, we
propose different cases that correspond to different values of ρ with respect to
the τTrank . With N = 3 we define 4 different cases: (case 1 ) 1 ranker extremely
good (ρ=.80) with respect to the others (ρ=.06, .01), (case 2 ) two good rankers
(ρ = .60, .40) and a very poor one (ρ=.01), (case 3 ) 3 rankers with high correla-
tion (ρ=.80, .60, .10), (case 4 ) 3 rankers with poor correlation (ρ=.01, .06, .03).
With N = 10 and N = 30, three cases good, equal and poor are defined. In the
case good the 80% of the rankers are highly correlated (ρ ∈ [0.95, 0.70]) and the
remaining 20% are low correlated (ρ ∈ [0.30, 0.1]). In the case equal the rankers
are equally distributed among the three types: highly, medium (ρ ∈ [0.70, 0.30])
and low correlated. Finally, the case poor is similar to the good one, but with
inverted percentages of highly and low correlated rankers. For N = 10, 30 ρ of
the generated rankings with respect to τTrank are randomly chosen within the
defined intervals.

The comparison between BRE with the mean as true-ranking estimator and
mean as aggregation method, shows that BRE-1T and BRE-MAXT outper-
forms the mean in most of the cases for both evaluation measures (ρ and F ),
except for the cases 1 and 4 (N=3) where the mean shows higher results. BRE-
1T shows significant performance in the majority of the evaluated cases. Re-
garding the poor case for N=10 and N=30, BRE-1T has shown a significant
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Table 1. Spearman correlation coefficent (ρ) and Spearman Footrule distance (F )
of BRE and of the competitor methods w.r.t. the true ranking. � means that BRE
is significantly better than the corresponding competitor, and � means that BRE is
significantly worse.

Evaluation measure ρ
Method T.E. 3 Rankers Cases 10 Rankers Cases 30 Rankers Cases

MAXT=3T MAXT=5T MAXT=15T
cases 1 2 3 4 good equal poor good equal poor

Mean .4781 .5419 .7958 .0782 .9621 .8760 .7793 .9856 .9543 .8802
Median .4257 .5106 .7678 .0693 .9748 .8656 .7641 .9941 .9546 .8579
Opt list .4065 .4953 .7515 .0594 .9754 .8686 .7681 .9957 .9663 .8787
BRE-NW .4888 .5254 .7799 .0804 .9383 .8453 .7723 .9409 .8941 .8074
BRE-1T Mean .3826 .5742 .8226� .0722 .9763� .9207� .8893� .9903� .9742� .9353�
BRE-MAXT Mean .3464 .5780 .8311� .0666 .9782� .9270� .8880� .9785� .9714� .9372�

BRE-1T Median .4305 .5865� .8229� .0699 .9751 .9208� .8890� .9904� .9743� .9342�
BRE-MAXTMedian .3981 .5915� .8319� .0660 .9781 .9276� .8914� .9784� .9709� .9371�

BRE-1T OptList .4717 .5826� .8234� .0729 .9767 .9212� .8856� .9904� .9755� .9374�
BRE-MAXTOptList .4415 .5844� .8328 � .0692 .9783 .9276� .8919� .9780� .9716� .9391�

Evaluation measure: F
Mean .4117 .4045 .2828 .5318 .1763 .2858 .3461 .1637 .2639 .3438
Median .4160 .4057 .2575 .5687 .0673 .2186 .2927 .02290 .1359 .2813
Opt list .4551 .4399 .2808 .6311 .0535 .1780 .2523 .0144 .0671 .1660

BRE-NW .4511 .4393 .2912 .6235 .1444 .2368 .3129 .1444 .1919 .2669
BRE-1T Mean .4938 .4132 .2578� .6262� .0926� .1688 .1982� .0592� .0936� .1482�
BRE-MAXT Mean .5079 .4108 .2475� .6282� .0888� .1625� .2014� .0852� .1044� .1525�
BRE-1T Median .4704 .4071 .2581 .6275� .0953� .1687� .1983� .0591� .0936� .1493�
BRE-MAXTMedian .4815 .4044 .2473 .6284� .0890� .1619� .1977� .0851� .1057� .1531�
BRE-1T OptList .4488 .4113� .2576� .6254 .0919� .1683� .2011� .0590� .0914� .1456�
BRE-MAXTOptList .4569 .4098� .2469� .6264 .0888� .1618� .1967� .0861� .1043� .1510�

improvement with respect to the mean in terms of F and ρ, whereas the mean
is more influenced by the low-quality rankings.

Taking into account the median as true-ranking estimator, we notice that
BRE-1T outperforms the median as baseline method in most of the cases eval-
uated for both evaluation measure, except for the good case with N=30 where
the median outperforms BRE. Also for the median, BRE-1T performance shows
a significant improvements in the poor cases for N = 10, 30 in terms of the
evaluation measures.

Opt list shows the best values of ρ and F with respect to the mean and the me-
dian in all the three cases with N=30 and N=10. BRE-1T with Opt list as estima-
tor outperforms significantly the Opt list method in all poor cases(N = 10, 30)
except for the good case (N=30,10) and the equal case with N=10 where the
Opt List shows the best results among all the other competitors as F distance.

From Tab. 1, we notice that BRE-MAXT shows significant improvement w.r.t.
the estimators in the same cases of the 1T version. We point out that in the good
and equal cases (N=10), BRE-MAXT outperforms signicantly the 1T version
even if just for small differences of ρ and F. Increasing the number of rankings
(N=30), the iterative version seems to be not so effective due to the majority of
good rankings. Since the 1T version outperforms signicantly the NW schema in
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Table 2. Average Spearman correlation coefficent (ρ) and Spearman Footrule dis-
tance (F ) of BRE and the other competitors w.r.t. true ranking for the 3 cases with
N=10, 30

Evaluation measure ρ
Methods True.Rank.Est 10 Rankers 30 Rankers

Mean .8725 .940
Median .8649 .9355
Opt list .8707 .9469
BRE-1T Mean .9288 .9666
BRE-1T Median .9283 .9663
BRE-1T Opt list .9326 .9629

Evaluation measure F
Mean .2694 .2572
Median .1929 .1467
Opt list .1613 .0825
BRE-1T Mean .1532 .1003
BRE-1T Median .1541 .1007
BRE-1T Opt list .1537 .0987

all the cases, the NW has been tested w.r.t. the competitors only for the cases
1 and 4 (N=3), but BRE-NW outperforms significantly median and Opt list in
terms of ρ only in the case 1. We can notice that our method with the weighting
schema gives a notable contribution to increase the performance with respect to
the aggregation methods used as true-ranking estimator in the cases where the
quality of the rankings is heterogeneous such as the equal and the poor cases.
In cases where the majority of the rankings are highly correlated as in the good
case, BRE provides also interesting results even if it outperforms significantly
only the mean.

Taking into account the average of the results among the three cases (N=10,
30) showed in Tab. 2, we can assert that BRE-1T outperforms the competitors
for both N values in terms of ρ and F . Only for N = 30 Opt list shows slightly
better value F (.0825) instead of BRE-1T (.987). We point out that the high
results reported by Opt list in terms of F are also related to the fact that Opt list
optimizes the F distance. As final consideration from Tab. 2, BRE with weighting
schema can be applied successfully even if the quality of the ranking is not known
a priori since BRE outperforms almost all the competitors in terms of average
of the three cases (good, equal and poor) for N=10, 30.

6 Conclusion

In this work we have presented the Belief Ranking Estimator (BRE), an unsu-
pervised method that estimates a true ranking given a set of input rankings.
BRE, through the use of the belief function framework, models the uncertainty
of each ranking and combine them according to weights computed as distances
from a true-ranking estimator that can be provided by any ranking aggregation
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method. From results on synthetic data, with low-quality input rankings BRE
with weighting schema has provided better estimation of the true ranking with
respect to the mean, median and the Footrule optimal aggregations method used
as competitors. Moreover, we point out that BRE shows significantly higher per-
formance with respect to the competitors also when an increasing of the number
of rankings is involved. As future work, we plan to extend BRE to the aggrega-
tion of top-k lists.
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Abstract. In fault-tree analysis, probabilities of failure of components
are often assumed to be precise and the events are assumed to be inde-
pendent, but this is not always verified in practice. By giving up some
of these assumptions, results can still be computed, even though it may
require more expensive algorithms, or provide more imprecise results.
Once compared to those obtained with the simplified model, the impact
of these assumptions can be evaluated. This paper investigates the case
when probability intervals of atomic propositions come from independent
sources of information. In this case, the problem is solved by means of
belief functions. We provide the general framework, discuss computation
methods, and compare this setting with other approaches to evaluating
the uncertainty of formulas.

Keywords: Fault-trees, Belief functions, Boolean satisfaction.

1 Introduction

One of the objectives of safety analysis is to evaluate the probabilities of dreadful
events. In an analytical approach, this dreadful event is described as a Boolean
function F of some atomic events, that represent the failures of the components
of a system, or possibly some of its configuration states. This method requires
that all probabilities of elementary component failures or configuration states
be known and independent, in order to compute the probability of the dread-
ful event. But in real life scenarios, those assumptions are not always verified.
This study takes place in the context of maintenance and dependability studies
(Airbus project @MOST) in aviation business.

In this paper, we first investigate different approaches using interval computa-
tions in order to compute the probability of a Boolean expression in terms of the
probabilities of its literals, a problem of direct relevance in fault-tree analysis.
The usual assumptions that probabilities of literals are known and the corre-
sponding events are independent are removed. We consider the situation when
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knowledge about probabilities is incomplete (only probability intervals are avail-
able), and envisage two assumptions about independence: first the case when no
assumption is made about dependence between events represented by atoms, and
then the case when the probability intervals come from independent sources of
information. We more specifically investigate the use of belief functions to model
the latter case, taking advantage of the fact that imprecise probabilities on a bi-
nary set are belief functions. We give results on the form of the global belief
function resulting from applying Dempster rule of combination to atomic belief
functions. We provide results on the computation of belief and plausibility of
various kinds of propositional formulas, as found in the application to fault tree
analysis. We compare the obtained results with those obtained in other scenarios
(stochastic independence between atoms, and the no independence assumption).

2 Evaluation of the Probability of a Boolean Expression

Let X be a set of Boolean variables x1, . . . , xn such that xi ∈ Ωi = {Ai,¬Ai};
A1, . . . , An denote atomic symbols associated to elementary faults or configura-

tion states of a system. We denote by Ω =

n∏
i=1

{Ai,¬Ai} the set of interpretations

X → {0, 1}. An element ω ∈ Ω is also called minterm, and it corresponds to a
stochastic elementary event. It can also be interpreted as describing the state of
the world at a given time. It can be written both as a maximal conjunction of
literals or denoted by the set of its positive literals (it is Herbrand’s notation).
Let F be a Boolean formula expressed by means of the variables xi: its models
form a subset [F ] of Ω, the set of states of the world where F is true; also called
the set of minterms of F . Hence, the probability of F, P (F ), can be written as
the sum:

P (F ) =
∑
ω∈[F ]

p(ω) (1)

where p(ω) stands for P ({ω}). When the independence of the xi’s is assumed
(i.e. Ai independent of Aj , ∀i �= j), this sum becomes:

P (F ) =
∑
ω∈[F ]

[
∏

Ai∈L+
ω

P (Ai)
∏

Ai∈L−
ω

(1− P (Ai))] (2)

where L+
ω is the set of positive literals of ω and L−ω the set of its negative literals.

In the case where P (Ai) is only known to lie in an interval, i.e. P (Ai) ∈
[li, ui], i = 1 . . . n, the problem is to compute the tightest range [lF , uF ] contain-
ing the probability P (F ). Let P be the convex probability family {P, ∀i P (Ai) ∈
[li, ui]} on Ω. In the following, we shall formally express this problem under var-
ious assumptions concerning independence.

2.1 Without Any Independence Hypothesis

Without knowledge about the dependency between the xi, i = 1 . . . n, finding the
tightest interval for the range [lF , uF ] of P (F ) boils down to a linear optimization
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problem under constraints. This goal is achieved by solving the two following
problems:

lF = min(
∑
ω�F

p(ω)) and uF = max(
∑
ω�F

p(ω))

under the constraints li ≤
∑
ω�Ai

p(ω) ≤ ui, i = 1 . . . n and
∑

p(ω) = 1.

Solving each of those problems can be done by linear programming with 2n

unknown variables p(ω). It is a particular case of the probabilistic satisfiability
problem studied in [3], where known probabilities are attached to sentences
instead of just atoms.

2.2 When Variables xi Are Stochastically Independent

In the case where the independence of the xi, i = 1 . . . n, is assumed,

p(ω) =
n∏

i=1

P (xi(ω)) (3)

where: xi(ω) =

{
Ai if ω |= Ai

¬Ai otherwise
. The corresponding probability family PI =

{
n∏

i=1

Pi | Pi({Ai}) ∈ [li, ui]}, where Pi is a probability measure on Ωi, is not

convex. Indeed, take two probability measures P , P ′ ∈ PI , P =
n∏

i=1

Pi and

P ′ =
n∏

i=1

P ′
i . For λ ∈ [0, 1], the sum λ

n∏
i=1

Pi+(1−λ)

n∏
i=1

P ′
i �=

n∏
i=1

(λPi+(1−λ)P ′
i ),

so it is not an element of PI .
This assumption introduces some non-linear constraints in the previous for-

mulation, hence the previous methods (section 2.1) cannot be applied. Instead
of a linear problem with 2n variables, we now have a non-linear optimization
problem with n variables. Interval Analysis can be used to solve it [1].

3 The Case of Independent Sources of Information

When there is no knowledge about the dependency between the xi’s, but the
information about P (Ai) comes from independent sources, belief functions can
be used to solve the problem of probability evaluation. The information P (Ai) ∈
[li, ui] is totally linked to its source. li can be seen as the degree of belief of Ai

and ui as its plausibility: li = Bel(Ai) and ui = Pl(Ai) in the sense of Shafer.

Proposition 1. The interval [li, ui] defines a unique belief function on Ωi.
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Proof: To see it we must find a unique mass assignment and the solution is:

• Bel({Ai}) = li = mi({Ai});
• Pl({Ai}) = 1−Bel({¬Ai}) = ui =⇒ mi({¬Ai}) = Bel({¬Ai}) = 1− ui;
• The sum of masses is mi({Ai})+mi({¬Ai})+mi(Ωi) = 1, so mi(Ωi) = ui− li.

We call such mi atomic mass functions. In order to combine two independent
mass functions, Dempster rule of combination should be used.

Definition 1 (Dempster-Shafer rule)
For two masses m1 and m2, the joint mass m1,2 can be computed as follows:
• m1,2(∅) = 0

• m1,2(S) =

∑
B∩C=S

m1(B)m2(C)

1−
∑

B∩C=∅

m1(B)m2(C)
, ∀S ⊆ Ω

In our problem, each source gives an atomic mass function, and there are n
sources, so the mass function over all Ω is : mΩ = m1 ⊕ · · · ⊕ mn. To find
this mΩ for n atomic mass functions, we can use the associativity of Dempster
rule of combination. Here, Ai, i = 1, . . . , n are atomic symbols, they are always
compatible, i.e. Ai ∧ Aj �= ∅ for all Ai, Aj , i �= j. So the denominator is one in
the above equation.

A focal element of mΩ is made of a conjunction of terms of the form Ai, ¬Aj

and Ωk (which is the tautology), for i �= j �= k. Hence it is a partial model. Let
P(F ) bet the set of partial models φ of a Boolean formula F , that are under
the form of conjunction of elements λi ∈ {Ai,¬Ai, Ωi}: φ = ∧

i=1,...,n
λi . Then,

P(F ) = {φ = ∧
Ai∈L+

φ

Ai ∧
¬Ai∈L−

φ

¬Ai |= F}, with L+
φ (resp. L−φ ) the set of positive

(resp. negative) literals of φ.

Proposition 2 (Combination of n atomic mass functions)
For n atomic masses mi, i = 1, . . . , n on Ωi, the joint mass mΩ on Ω can be
computed as follows for any partial model φ:

mΩ(φ) =
∏
i∈L+

φ

li
∏
i∈L−

φ

(1− ui)
∏
i/∈Lφ

(ui − li) (4)

This modeling framework differs from the usual one when atomic variables are
supposed to be stochastically independent. Here, the independence assumption
pertains to the sources of information, not the physical variables.

4 The Belief and Plausibility of a Boolean Formula

The belief of a Boolean formula F , of the form Bel(F ) =
∑
φ�F

mΩ(φ), theoreti-

cally requires 3n computations due to the necessity of enumerating the partial
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models for n atomic variables. Indeed, all conjunctions φ = ∧
i=1,...,n

λi must be

checked for each λi ∈ {Ai,¬Ai, Ωi}. Verifying that a partial model implies F
also requires 2n computations. Plausibility computation, given by the equation

Pl(F ) =
∑

S∧φ �=∅

mΩ(φ) requires to determine partial models not incompatible

with F . From the partial models, it will need at most 2n computation. But it
can also be computed by using the duality of belief and plausibility given by:

Pl(F ) = 1−Bel(¬F ) (5)

Example 1. Belief functions of the disjunction F = A1 ∨ A2

A1 ¬A1 Ω1

A2 A1 ∧ A2 ¬A1 ∧ A2 A2

l1l2 (1− u1)l2 (u1 − l1)l2
¬A2 A1 ∧ ¬A2 ¬A1 ∧ ¬A2 ¬A2

l1(1 − u2) (1− u1)(1− u2) (u1 − l1)(1 − u2)
Ω2 A1 ¬A1 Ω

l1(u2 − l2) (1− u1)(u2 − l2) (u1 − l1)(u2 − l2)

Partial models that imply F are {A1, A2, A1 ∧ ¬A2, A2 ∧ ¬A1, A1 ∧ A2}, so:
Bel(F ) = (u1 − l1)l2 + l1(u2− l2) + l1l2 + l1(1− u2) + l2(1− u1) = l1 + l2− l1l2,
that also reads 1− (1− l1)(1− l2). Likewise, partial models that are compatible
with F are {A1 ∧A2, Ω,A1, A2,¬A1,¬A2, A1 ∧¬A2, A2 ∧¬A1}, hence Pl(F ) =
u1 + u2 − u1u2 = 1− (1− u1)(1− u2).

4.1 Conjunctions and Disjunctions of Literals

In the more general case, we can compute the belief and plausibility of conjunc-
tions and disjunctions of literals indexed by K ⊆ {1, . . . , n}.
Proposition 3. The belief of a conjunction C, and that of a disjunction D of
literals xi, i ∈ K are respectively given by:

Bel(C) =
∏
i∈L+

C

li
∏
i∈L−

C

(1− ui); Bel(D) = 1−
∏
i∈L+

D

(1 − li)
∏

i∈L−
D

ui.

We can deduce the plausibility of conjunctions and disjunctions of literals, notic-
ing that

Bel(∨i∈L+Ai ∨ ∨i∈L−¬Ai) = 1− Pl(∧i∈L+¬Ai ∧ ∧i∈L−Ai)

.

Proposition 4. The plausibility of a conjunction C, and that of a disjunction
D of literals xi, i ∈ K are respectively given by:

Pl(C) =
∏
i∈L+

C

(1− li)
∏
i∈L−

C

ui; Pl(D) = 1−
∏

i∈L+
D

li
∏

i∈L−
D

(1− ui)
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4.2 Application to Fault-Trees

Definition 2 (Fault-tree). A fault-tree is a graphical representation of chains
of events leading to a dreadful event (failure).

Classical fault-trees are a graphical representation dedicated to Boolean func-
tions that are representable by means of two operators ∨(OR) and ∧(AND).

Only few applications of Dempster-Shafer theory to fault-Tree Analysis are
reported in literature. Limbourg et al. [2] created a Matlab toolbox where each
probability is modeled by a random interval on [0,1]. Instead of Dempster rule,
they use Weighted average [4] for the aggregation of the belief functions of dif-
ferent variables. Murtha [5] uses the same method in an application to small
unmanned aerial vehicles. Another method using 3-valued logic proposed by
Guth [6] is compared by Cheng to interval computation, over small examples of
Fault-trees [7]. The above results can be specialized to fault trees.

A path in a fault tree links the top (dreadful) event to the leaves of the tree:
it is called a cut. When this path has a minimal number of steps, it is said to
be a minimal cut. Each cut is a conjunction of atoms. As a consequence of the
above results we can compute the belief and plausibility of conjunctions and
disjunction of k atoms A1, . . . Ak:

Bel(C) =

k∏
i=1

li, P l(C) =

k∏
i=1

ui (6)

Bel(D) = 1−
k∏

i=1

(1− li), P l(D) = 1−
k∏

i=1

(1 − ui). (7)

From a Fault-tree F , an approximation can be obtained by means of minimal
cuts. For a given order (maximal number of atoms in conjunctions), appropriate
software can find the set of all Minimal Cuts that lead to the top event. The
disjunction of all those Minimal Cuts will give us a partial Fault-tree which will
be an approximation of F . Fig. 1 is an example of such a Partial Fault-tree.

The Boolean formula F ′ represented by this tree will always be under the form
of a disjunction of conjunctions of atoms C1∨ ...∨Cm. The formula written in this
form will be referred to as a Disjunctive Atomic Normal Form (DANF) (excluding

Fig. 1. Example of Partial Fault Tree
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negative literals). In order to compute the Belief function of such a formula, we
should generalize the computation of the belief of a disjunction of k atoms.

Proposition 5. [Belief of a disjunctive atomic normal form (DANF)]

Bel(C1 ∨ ... ∨ Cm) =

m∑
i=1

Bel(Ci)−
m−1∑
i=1

m∑
j=i+1

Bel(Ci ∧ Cj)

+
m−2∑
i=1

m−1∑
j=i+1

m∑
k=j+1

Bel(Ci ∧ Cj ∧Ck)− ...+ (−1)m+1Bel(C1 ∧ ... ∧Cm),

where Ci are conjunctions of atoms.

During the computation, the conjunctions of conjunctions, such as Ci ∧Cj ∧Ck

must be simplified, deleting redundant atoms. Note that this apparent additivity
of a generally non-additive function is due to the specific shape of focal elements
(partial models). In general, for S and T Boolean formulas, we cannot write
Bel(S ∨ T ) = Bel(S) + Bel(T )− Bel(S ∧ T ), because there are focal elements
in S ∨ T that are subsets of neither S nor T nor S ∧ T . Here due to the DANF
form, all partial models of C1 ∨ ...∨Cm are conjunctions of literals appearing in
the conjunctions.

A similar result holds for computing the plausibility of a DNF.

Proposition 6 (Pl of a disjunctive atomic normal form (DANF)).

Pl(C1 ∨ ... ∨ Cm) =
m∑
i=1

Pl(Ci)−
m−1∑
i=1

m∑
j=i+1

Pl(Ci ∧ Cj)

+

m−2∑
i=1

m−1∑
j=i+1

m∑
k=j+1

Pl(Ci ∧ Cj ∧Ck)− ...+ (−1)m+1Pl(C1 ∧ ... ∧ Cm),

where Ci are conjunctions of literals.

Thanks to the duality between Belief and Plausibility, both computations are
quite similar, hence the time complexity does not increase. It is also much less
time consuming than an exhaustive computation as presented in section 3.

4.3 General Case

The general case of a Boolean formula with positive and negative literals is
more tricky. Such a formula can appear, for example, in fault-trees representing
different modes in a system, or representing exclusive failures [1]. Of course
we can assume the formula is in DNF format. But it will be a conjunction of
literals, and it is no longer possible to apply the two previous propositions.
Indeed when conjunctions contain opposite literals, they have disjoint sets of
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models but their disjunctions may be implied by partial models (focal elements)
that imply none of the conjuncts. For instance consider A ∨ (¬A ∧ B) (which
is just the disjunction A ∨ B we know how to deal with). It does not hold
that Bel(A ∨ (¬A ∧ B) = Bel(A) + Bel(¬A ∧B), since the latter sum neglects
m(B), where B is a focal element that implies neither A nor ¬A ∧ B. However
if C1 ∨ ... ∨ Cm are pairwise mutually inconsistent partial models such that no
disjunction of Ci and Cj contains a partial model implying neither Ci nor Cj ,
the computation can be simplified since then Bel(C1∨ ...∨Cm) =

∑m
i=1 Bel(Ci).

For instance, the belief in an exclusive OR Bel((A1 ∧ ¬A2) ∨ (A2 ∧ ¬A1)) is of
this form. More work is needed in the general case.

5 Comparison between Interval Analysis and
Dempster-Shafer Theory

Table 1 summarizes the results obtained using the two methods seen in section
2.2 and 3 applied to Boolean formulas: (i) the belief functions method with the
assumption that the probability values come from independent sources of infor-
mation, and (ii) the full-fledged interval analysis method under the assumption
that all atomic events are independent [1]. These two assumptions do not reflect
the same kind of situations. In particular the independence between sources
of information may be justified if elementary components in the device under
study are different from one another, which often implies that the sources of
information about them will be distinct. However the fact that such elementary
components interact within a device tends to go against the statistical indepen-
dence of their respective behaviors.

Those results are given for the basic Boolean operators with variables A, B,
C and D. The probability interval used for those computations are: P (A) ∈
[0.3, 0.8], P (B) ∈ [0.4, 0.6], P (C) ∈ [0.2, 0.4], and P (D) ∈ [0.1, 0.5].

Table 1. Comparison between Interval Analysis and Dempster-Shafer Theory

ConnectiveFormulaBelief Functions (i) Interval Analysis (ii)

OR A ∨B lF = lA + lB − lAlB = 0.58 lF = lA + lB − lAlB = 0.58
uF = uA + uB − uAuB = 0.92 uF = uA + uB − uAuB = 0.92

AND A ∧B lF = lAlB = 0.12 lF = lAlB = 0.12
uF = uAuB = 0.48 uF = uAuB = 0.48

IMPLIES A ⇒ B lF = lA + (1− uA)(1− uB) = 0.48 lF = 1− uA + lBuA = 0.52
uF = 1− lA(uB − lA) = 0.94 uF = 1− lA + uB lA = 0.88

ExOR A�B lF = lA(1− uB) + lB(1− uA) [0.44,0.56]
uF = uA + uB − lAlB − uAuB

[lF , uF ] = [0.2, 0.8]

Fault-tree
(Fig. 1)

F lF = lAlB + lBlC lD + lAlC lD −
2lAlB lC lD

lF = lAlB+(1−lA)lB lC lD+(1−
lB)lAlC lD

uF = uAuB+uBuCuD+uAuCuD−
2uAuBuCuD

lF = uAuB+(1−uA)uBuCuD+
(1− uB)uAuCuD

[lF , uF ] = [0.1292, 0.568] [lF , uF ] = [0.1292, 0.568]
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In Interval Analysis, knowing the monotonicity of a formula makes the de-
termination of its range straightforward. A Boolean formula is monotonic with
respect to a variable when we can find an expression of the formula where this
variable appears only in a positive or negative way. It is the case for the formulas
And, Or, and Implies.

But when the monotonicity is not easy to study, an exhaustive computation
for all intervals boundaries must be carried out, like for the Equivalence and
the Exclusive Or [1].

The difference between the results varies a lot with the formula under study.
Sometimes, using the Dempster-Shafer theory give the same results as interval
analysis, hence, in those cases, the dependency assumption does not have a
big influence on the output value; e.g in case of conjunction and disjunction
of literals, but also disjunction of conjunctions of atoms (as shown in table
1). This is not surprising as focal elements also take the form of conjunctions
of literals, and their masses are products of marginals. The fact that in such
cases the same results are obtained does not make the belief function analysis
redundant: it shows that the results induced by the stochastic independence
assumption are valid even when this assumption is relaxed, for some kinds of
Boolean formulas. For more general kinds of Boolean formulas, the intervals
computed by using belief functions are in contrast wider than when stochastic
independence is assumed.

In general, the probability family induced by the stochastic independence
assumption will be included in the probability family induced by the belief func-
tions. This proposition can be proved using the results of Fetz [9] and Couso
and Moral [10]. Any probability measure in P(m) = {P ≥ Bel} dominating
a belief function induced by a mass function m can be written in the form:

P =
∑
E⊆Ω

m(E) · PE where PE is a probability measure such that PE(E) = 1

that shares the mass m(E) among elements of E. For a function of two Boolean
variables x1 and x2, with two ill-known probability values P1(A1) = p1 and
P1(A2) = p2, p1 is of the form l1 +α(u1 − l1) for some α ∈ [0, 1] and p2 is of the
form l2 + β(u2 − l2) for some β ∈ [0, 1]. The explicit sharing, among interpreta-
tions, of the masses m(E), induced by probability intervals [l1, u1] and [l2, u2],
that enables P = P1P2 to be recovered is:

1. The masses on interpretations bear on singletons, hence do not need to be
shared.

2. The masses on partial models are shared as follows

– m(A1)β is assigned to A1A2, m(A1)(1− β) to A1¬A2.

– m(A2)α is assigned to A1A2, m(A2)(1 − α) to ¬A1A2.

– m(¬A1)β is assigned to ¬A1A2, m(¬A1)(1 − β) to ¬A1¬A2.

– m(¬A2)α is assigned to A1¬A2, m(A2)(1− α) to ¬A1¬A2.

3. m(Ω) is shared as follows: αβm(Ω) to A1A2, (1 − α)βm(Ω) to ¬A1A2,
α(1 − β)m(() to A1¬A2, (1− α)(1 − β)m(() to A1A2.
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It can be checked that the joint probability P1P2 is the form
∑
E⊆Ω

m(E)·PE using

this sharing of masses. This result can be extended to more than 2 variables.
It indicates that the assumptions of source independence is weaker than the
one of stochastic independence, and is of course stronger than no independence
assumption at all. So the belief function approach offers a useful and tractable
approach to evaluate the impact of stochastic independence assumptions on the
knowledge of the probability of dreadful events in fault-tree analysis.

6 Conclusion

The more faithful models are to the actual world, the more their complexity
increases. When assumptions are made to simplify the model, then it is im-
portant to know how far the results stand away from reality in order to use
them as appropriately as possible. Having a means to compare different kinds
of models and different kinds of assumptions can be a good asset in order to
make best decisions out of the models. In this paper, we have laid bare three
kinds of assumptions for the calculation of the probability of some risky event
in terms of probability of basic atomic formulas. We have focused on the belief
function approach that assumes independence between sources of information
proving imprecise probabilistic information. We did also gave a formal solution
for an application to fault-tree analysis based on a DNF conversion. A practical
scalable solution for handling general Boolean formulas is a topic for further
research.
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Abstract. The study presents an introduction to algebraic structures
related to belief functions (BFs) on 3-element frame of discernment.

Method by Hájek & Valdés for BFs on 2-element frames [15,16,20]
is generalized to larger frame of discernment. Due to complexity of the
algebraic structure, the study is divided into 2 parts, the present one is
devoted to the case of quasi Bayesian BFs.

Dempster’s semigroup of BFs on 2-element frame of discernment by
Hájek-Valdés is recalled. A new definition of Dempster’s semigroup (an
algebraic structure) of BFs on 3-element frame is introduced; and its sub-
algebras in general, subalgebras of Bayesian BFs and of quasi Bayesian
BFs are described and analysed. Ideas and open problems for future
research are presented.

Keywords: belief function, Dempster-Shafer theory, Dempster’s semi-
group, homomorphisms, conflict between belief functions, uncertainty.

1 Introduction

Belief functions (BFs) are one of the widely used formalisms for uncertainty
representation and processing that enable representation of incomplete and un-
certain knowledge, belief updating, and combination of evidence [18].

A need of algebraic analysis of belief functions (BFs) on frames of discernment
with more then two elements arised in our previous study of conflicting belief
functions (a decomposition of BFs into their non-conflicting and conflicting parts
requires a generalization of Hájek-Valdés operation ”minus”) [12] motivated by
series of papers on conflicting belief functions [1,6,9,17,19]. Inspired by this de-
mand we start with algebraic analysis of BFs on 3-element frame in this study.

Here we generalize the method by Hájek & Valdés for BFs on 2-element frame
[15,16,20] to larger frame of discernment. Due to complexity of the algebraic
structure, the study is divided into 2 parts; the present one is devoted to the
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special case of quasi Bayesian BFs (i.e., to the case of very simple BFs), the
second part devoted to general BFs is under preparation [13].

The study starts with belief functions and algebraic preliminaries, includ-
ing Hájek-Valdés method in Section 2. A Definition of Dempster’s semigroup
(an algebraic structure) of BFs on 3-element frame (Section 3) is followed by
a study of its subalgebras in general, of Bayesian BFs and of quasi Bayesian
BFs (Section 4). Ideas and open problems for future research are presented in
Section 5.

2 Preliminaries

2.1 General Primer on Belief Functions

We assume classic definitions of basic notions from theory of belief functions [18]
on finite frames of discernment Ωn = {ω1, ω2, ..., ωn}, see also [4–9]. A basic belief
assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such that

∑
A⊆Ω m(A) = 1;

the values of the bba are called basic belief masses (bbm). m(∅) = 0 is usually
assumed. A belief function (BF) is a mapping Bel : P(Ω) −→ [0, 1], Bel(A) =∑

∅�=X⊆A m(X). A plausibility function Pl(A) =
∑

∅�=A∩X m(X). There is a
unique correspondence among m and corresponding Bel and Pl thus we often
speak about m as of belief function.

A focal element is a subsetX of the frame of discernment, such that m(X) > 0.
If all the focal elements are singletons (i.e. one-element subsets of Ω), then we
speak about a Bayesian belief function (BBF); in fact, it is a probability distribu-
tion on Ω. If all the focal elements are either singletons or whole Ω (i.e. |X | = 1
or |X | = |Ω|), then we speak about a quasi-Bayesian belief function (qBBF),
that is something like ’un-normalized probability distribution’, but with a dif-
ferent interpretation. If all focal elements are nested, we speak about consonant
belief function.

Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕m2)(A) =∑
X∩Y=A Km1(X)m2(Y ) for A �= ∅, where K = 1

1−κ , κ =
∑

X∩Y=∅m1(X)
m2(Y ), and (m1⊕m2)(∅) = 0, see [18]. Let us recall Un the uniform Bayesian be-
lief function1 [9], i.e., the uniform probability distribution on Ωn, and normalized
plausibility of singletons2 of Bel: the BBF Pl P (Bel) such, that (Pl P (Bel))

(ωi) =
Pl({ωi})∑

ω∈Ω Pl({ω}) [2,8].

An indecisive BF is a BF, which does not prefer any ωi ∈ Ωn, i.e., BF which
gives no decisional support for any ωi, i.e., BF such that h(Bel) = Bel⊕Un = Un,
i.e., Pl({ωi}) = const., i.e., (Pl P (Bel))({ωi}) = 1

n , [10].
Let us define Exclusive BF as a BF such that Pl(X) = 0 for some ∅ �= X ⊂ Ω;

BF is non-exclusive otherwise, thus for non-exclusive BFs it holds true that,
Pl({ωi}) �= 0 for all ωi ∈ Ω. (Simple) complementary BF has up to two focal

1 Un which is idempotent w.r.t. Dempster’s rule ⊕, and moreover neutral on the set
of all BBFs, is denoted as nD0′ in [8], 0′ comes from studies by Hájek & Valdés.

2 Plausibility of singletons is called contour function by Shafer in [18], thus P l P (Bel)
is a normalization of contour function in fact.
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elements ∅ �= X ⊂ Ω and Ω \X . (Simple) quasi complementary BF has up to 3
focal elements ∅ �= X ⊂ Ω, Ω \X and Ω.

2.2 Belief Functions on 2-Element Frame of Discernment;
Dempster’s Semigroup

Let us suppose, that the reader is slightly familiar with basic algebraic notions
like a semigroup (an algebraic structure with an associative binary operation), a
group (a structure with an associative binary operation, with a unary operation
of inverse, and with a neutral element), a neutral element n (n ∗ x = x), an
absorbing element a (a ∗ x = a), an idempotent i (i ∗ i = i), a homomorphism f
(f(x ∗ y) = f(x) ∗ f(y)), etc. (Otherwise, see e.g., [4,7,15,16].)

We assume Ω2 = {ω1, ω2}, in this subsection. There are only three possible
focal elements {ω1}, {ω2}, {ω1, ω2} and any normalized basic belief assignment
(bba) m is defined by a pair (a, b) = (m({ω1}),m({ω2})) as m({ω1, ω2}) =
1 − a − b; this is called Dempster’s pair or simply d-pair in [4,7,15,16] (it is a
pair of reals such that 0 ≤ a, b ≤ 1, a+ b ≤ 1).

Extremal d-pairs are pairs corresponding to BFs for which either m({ω1}) = 1
or m({ω2}) = 1, i.e., ⊥ = (0, 1) and ( = (1, 0). The set of all non-extremal d-
pairs is denoted as D0; the set of all non-extremal Bayesian d-pairs (i.e. d-pairs
corresponding to Bayesian BFs, where a + b = 1) is denoted as G; the set of
d-pairs such that a = b is denoted as S (set of indecisive3 d-pairs), the set
where b = 0 as S1, and analogically, the set where a = 0 as S2 (simple support
BFs). Vacuous BF is denoted as 0 = (0, 0) and there is a special BF (d-pair)
0′ = (12 ,

1
2 ), see Fig. 1.

The (conjunctive) Dempster’s semigroup D0 = (D0,⊕, 0, 0′) is the set D0

endowed with the binary operation ⊕ (i.e. with the Dempster’s rule) and two
distinguished elements 0 and 0′. Dempster’s rule can be expressed by the formula

(a, b)⊕(c, d) = (1− (1−a)(1−c)
1−(ad+bc) , 1−

(1−b)(1−d)
1−(ad+bc) ) for d-pairs [15]. In D0 it is defined

further: −(a, b) = (b, a), h(a, b) = (a, b) ⊕ 0′ = ( 1−b
2−a−b ,

1−a
2−a−b ), h1(a, b) =

1−b
2−a−b , f(a, b) = (a, b) ⊕ (b, a) = (a+b−a2−b2−ab

1−a2−b2 , a+b−a2−b2−ab
1−a2−b2 ); (a, b) ≤ (c, d)

iff [h1(a, b) < h1(c, d) or h1(a, b) = h1(c, d) and a ≤ c] 4.
The principal properties of D0 are summarized by the following theorem:

Theorem 1. (i) The Dempster’s semigroup D0 with the relation ≤ is an or-
dered commutative (Abelian) semigroup with the neutral element 0; 0′ is the only
non-zero idempotent of D0.
(ii) G = (G,⊕,−, 0′,≤) is an ordered Abelian group, isomorphic to the additive
group of reals with the usual ordering. Let us denote its negative and positive
cones as G≤0′ and G≥0′ .
(iii) The sets S, S1, S2 with the operation ⊕ and the ordering ≤ form ordered
commutative semigroups with neutral element 0; they are all isomorphic to the
positive cone of the additive group of reals.

3 BFs (a, a) from S are called indifferent BFs by Haenni [14].
4 Note, that h(a, b) is an abbreviation for h((a, b)), similarly for h1(a, b) and f(a, b).
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Fig. 1. Dempster’s semigroup D0. Homomorphism h is in this representation a pro-
jection to group G along the straight lines running through the point (1, 1). All the
Dempster’s pairs lying on the same ellipse are mapped by homomorphism f to the
same d-pair in semigroup S.

(iv) h is an ordered homomorphism: (D0,⊕,−, 0, 0′,≤) −→ (G,⊕,−, 0′,≤);
h(Bel) = Bel ⊕ 0′ = Pl P (Bel), i.e., the normalized plausibility of singletons
probabilistic transformation.
(v) f is a homomorphism: (D0,⊕,−, 0, 0′) −→ (S,⊕,−, 0); (but, not an ordered
one).

For proofs see [15,16,20].

2.3 BFs on n-Element Frames of Discernment

Analogically to the case of Ω2, we can represent a BF on any n-element frame of
discernment Ωn by an enumeration of its m values (bbms), i.e., by a (2n−2)-tuple
(a1, a2, ..., a2n−2), or as a (2n−1)-tuple (a1, a2, ..., a2n−2; a2n−1) when we want to

explicitly mention also the redundant value m(Ω) = a2n−1 = 1−
∑2n−2

i=1 ai. For
BFs on Ω3 we use (a1, a2, ...., a6; a7) = (m({ω1}),m({ω2}),m({ω3}),m({ω1, ω2})
m({ω1, ω3}), m({ω2, ω3});m({Ω3})).

3 Dempster’s Semigroup of Belief Functions on
3-Element Frame of Discernment Ω3

3.1 Basics

Let us sketch the basics of Dempster’s semigroup of BFs on 3-element frame
of discernment Ω3 in this subsection. Following the subsection 2.3 and Hájek &
Valdés’ idea of the classic (conjunctive) Dempster’s semigroup [15,16,20], we have
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a unique representation of any BF on 3-element frame by Dempster’s 6-tuple or d-
6-tuple5 (d1, d2, d3, d12, d13, d23), such that 0≤ di, dij≤ 1,

∑3
i=1 di+

∑23
ij=12 dij≤

1. These can be presented them in 6-dimensional ’triangle’, Fig. 2.

Fig. 2. General BFs on 3-element frame
Ω3

Fig. 3. Quasi Bayesian BFs on 3-element
frame Ω3

Generalizing the Hájek – Valdés terminology we obtain two special Dempster’s
6-tuples 0 = (0, 0, ..., 0) representing the vacuous belief function (VBF) and
0′ = U3 = (13 ,

1
3 ,

1
3 , 0, 0, 0) corresponding to the uniform distribution of bbms

to all singletons. Generalization of extremal d-pairs are categorical d-6-tuples
(1, 0, ..., 0), (0, 1, 0, ..., 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, ..., 0, 1, 0), (0, ..., 0, 1)
which represent categorical BFs on Ω3. Further generalization of extremal (i.e.
categorical) d-pairs are exclusive d-6-tuples (a, b, 0, 1−a−b, 0, 0), (a, 0, b, 0, 1−a−
b, 0), (0, a, b, 0, 0, 1−a−b), we can see, that the categorical 6-tuples are the special
cases of exclusive 6-tuples, the most special case are categorical singletons.

There are simple d-6-tuples (a, 0, ..., 0), (0, a, 0, ..., 0), (0, 0, a, 0, 0, 0), (0, 0, 0, a,
0, 0), (0, ..., 0, a, 0), (0, ..., 0, a) corresponding to simple (support) BFs and 6 con-
sonant d-6-tuples (a, 0, 0, b, 0, 0), (a, 0, 0, 0, b, 0), etc. corresponding to consonant
BFs. We can note, that simple 6-tuples are special cases of consonant ones.

It is possible to prove that Dempster’s combination ⊕ is defined for any pair
of non-exclusive BFs (d-6-tuples) and that the set of all non-exclusive BFs is
closed under ⊕, thus we can introduce the following version of the definition:

Definition 1. The (conjunctive) Dempster’s semigroup D3 = (D3,⊕, 0, 0′) is
the set D3 of all non-exclusive Dempster’s 6-tuples, endowed with the binary
operation ⊕ (i.e. with the Dempster’s rule) and two distinguished elements 0
and 0′ = U3, where 0 = 03 = (0, 0, ..., 0) and 0′ = 0′3 = U3 = (13 ,

1
3 ,

1
3 , 0, 0, 0).

There is a homomorphism h : D3 −→ BBF3 = {Bel ∈ D3 |Bel is BBF} defined
by h(Bel) = Bel ⊕ U3; it holds true that h(Bel) = Pl P (Bel) [10].

5 For simplicity of expressions, we speak often simply on 6-tuples only.
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3.2 The Extended Dempster’s Semigroup

There are only single 2 extremal (categorical, exclusive) d-pairs on Ω2, thus the
extension of D0 to D+

0 , (where D+
0 = D0 ∪ {⊥,(} and ⊥ ⊕ ( is undefined) is

important for applications, but it is not interesting from the theoretical point of
view.

There are 6 categorical (exclusive) d-6-tuples in D+
3 (in the set of BFs defined

over Ω3) and many general exclusive 6-tuples (BFs) in D+
3 , thus the issue of

extension of Dempster’s semigroup to all BFs is more interesting and also more
important, because a complex structure of exclusive BFs is omitted in Demp-
ster’s semigroup of non-exclusive BFs, in the case of Ω3. Nevertheless, due to
the extent of this text we are concentrating only on the non-extended case in
this study.

4 Subalgebras of Dempster’s Semigroup

4.1 Subalgebras of D0 and Ideas of Subalgebras of D3

There are the following subalgebras of D0: subgroup of (non-extremal) BBFs
G = ({BBFs},⊕,−, 0′), two trivial subgroups 0 = ({0},⊕,−, 0) and 0′ =
({0′},⊕,−, 0′), (other two trivial groups ⊥ = (0, 1) and ( = (1, 0) are sub-
algebras of D+

0 ); there are 3 important subsemigroups S = ({(s, s) ∈ D0},⊕),
S1 = ({(a, 0) ∈ D0},⊕), S2 = ({(0, b) ∈ D0},⊕), further there are many sub-
semigroups which are endomorphic images of S1 and S2 by endomorphisms of
D0, for endomorhpisms of D0 see [3,5] and [10]. Note that there are also other
semigroups that are derived from the already mentioned subalgebras: D≥0

0 and
D≤0′

0
, positive and negative cones of G (i.e. G≥0′ , G≤0′) with or without 0′, ver-

sions of S, S1, S2 with or without absorbing elements 0′, (1, 0), (0, 1), versions
of S, S1, S2 without 0, and further S ∪G,S1 ∪G,S2 ∪G, S ∪G..., S1 ∪G..., S ∪
G..., S2 ∪ G..., 0 ∪ G, 0 ∪ G..., 0 ∪ G..., 0 ∪ 0′ = ({0, 0′},⊕), some of these sub-
semigroups given by union have variants without 0 and/or 0′ with or without
extremal elements ⊥ or ( (note that subalgebras with ⊥ or ( are subalgebras
of extended Dempster’s semigroup D+

0 in fact). Altogether there are many sub-
algebras, but there are only 4 non-trivial and really important ones: subgroup
G and 3 subsemigroups S, S1, and S2.

From [4,15,16] we know that 0 is neutral element of D0, thus 0 is also neutral
element of all subsemigroups ofD0 containing 0, henceD0 and its subsemigroups
containing 0 are monoids, i.e. we have the following observation.

Observation 1. Dempster’s semigroup D0 and its subsemigroups S, S1 and S2

are monoids.

The 3-element case is much more complex. In accordance with a number of pos-
sible focal elements and a representation of BFs by d-6-tuples we cannot display
general BFs on 3-element case by 3-dimensional but by 6-dimensional triangle,
see Fig. 2. Also the generalization of Dempster’s semigroup and its subalgebras
is much more complicated, as there is a significantly greater amount of struc-
turally more complex subalgebras. Subsequently the issue of homomorphisms
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of corresponding structures is more complex. Nevertheless, there is a simpli-
fied special case of quasi Bayesian BFs, which are representable by ”triples”
(d1, d2, d3, 0, 0, 0), as d12 = d13 = d23 = 0 for qBBFs, see Fig. 3. -

4.2 The Subgroups/Subalgebras of Bayesian Belief Functions

Before studying the simplified case of quasi Bayesian BFs we will utilize the
results on their special case of BBFs from [10].

Following [10] we have ”−” for any BBF (d1, d2, d3, 0, 0, 0), such that di >
0, and neutrality of 0′ = 0′3, in the following sense: −(d1, d2, d3, 0, 0, 0; 0) =

(x1, x2, x3, 0, 0, 0; 0) = (x1,
d1

d2
x1,

d1

d3
x1, 0, 0, 0; 0), where x1 = 1/(1 +

∑3
i=2

d1

di
) =

1/(1 + d1

d2
+ d1

d3
), such that, (d1, d2, d3, 0, 0, 0)⊕−(d1, d2, d3, 0, 0, 0) = U3 = 0′3.

We can prove equality of BBFs (d1, d2, d3, 0, 0, 0), such that di > 0 with non-
exclusive BBFs, further we have definition of ⊕, consequently we can prove
closeness of non-exclusive BBFs w.r.t. ⊕, hence G3 = ({(d1, d2, d3, 0, 0, 0) | di >

0,
∑3

i=1 di = 1},⊕,−, 0′3) is a group, i.e. subgroup ofD3−0. As we have 3 different
non-ordered elements, without any priority, we do not have any linear ordering
of G3 in general, thus neither any isomorphism to additive group of reals in
general. This is the difference of G3 subgroup of D3−0 from G subgroup of D0.

There are several subalgebras of special BBFs (subalgebras both of G3 and
of D3−0). Let us start with subalgebras of BBFs (d1, d2, d2, 0, 0, 0; 0) where
d2 = m(ω2) = m(ω3). The set of these BBFs is closed w.r.t. ⊕. There is
minus2=3(d1, d2, d2, 0, 0, 0; 0) = ( d2

d2+2d1
, d1

d2+2d1
, d1

d2+2d1
, 0, 0, 0; 0) = ( 1−d1

1+3d1
, 2d1

1+3d1
,

2d1

1+3d1
, 0, 0, 0; 0), for any 0 ≤ d1 ≤ 1, d2 = 1

2 (1−d1), such that (d1,
1
2 (1−d1),

1
2 (1−

d1), 0, 0, 0; 0) ⊕ minus2=3(d1,
1
2 (1 − d1),

1
2 (1 − d1), 0, 0, 0; 0) = (13 ,

1
3 ,

1
3 ), hence

minus2=3
6 is inverse w.r.t. ⊕ on the set. Thus G2=3 = ({(d1, d2, d2, 0, 0, 0; 0)},⊕,

minus2=3, 0
′
3) is subgroup of G3 and of D3−0. As there is a natural linear order

of d1’s from 0 to 1, consequently, there is also a linear order of G2=3, thus G2=3

is an ordered group of BBFs. Analogically there are ordered subgroups G1=3 and
G1=2. Based on these facts and on analogy of G2=3, G1=3, and G1=2 with G,
there is the following hypothesis. Unfortunately, isomorphisms of the subgroups
to (Re,+,−, 0) have not been observed till now.

Hypothesis 1. G2=3, G1=3, and G1=2 are subgroups of D3−0 isomorphic to
the additive group of reals.

Positive and negative cones G≥0′
1=2, G

≥0′
1=3, G

≥0′
2=3, G

≤0′
1=2, G

≤0′
1=3, G

≤0′
2=3, (G

>0′
1=2, G

>0′
1=3,

G>0′
2=3, G

<0′
1=2, G

<0′
1=3, G

<0′
2=3) of G1=2, G1=3, G2=3 with and without 0′ are subsemi-

groups of G3 and consequently also subsemigroups of D3−0.

4.3 The Subsemigroup of Quasi-bayesian Belief Functions

Let us turn our attention to the set of all non-exclusive quasi-Bayesian belief
functions D3−0 = {(a, b, c, 0, 0, 0); 0 ≤ a + b + c ≤ 1, 0 ≤ a, b, c}. This includes

6 The name minus2=3 reflects the fact, that the operation is a generalization of Hájek-
Valdés operation ”minus” (−(a, b) = (b, a)) to G2=3.
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neutral element 0 and idempotent 0′ = U3. Considering only non-exclusive
qBBFs, ⊕ is always defined, closeness w.r.t. ⊕ is obvious, hence we have a
subsemigroup (with neutral element, thus monoid) D3−0.

Subgroup G3 of D3 and its subalgebras are also subalgebras of D3−0. Analo-
gously to subsemigroups S and Si ofD0, there are subsemigroups S1 = ({(d1, 0, 0,
0, 0, 0)∈D3−0},⊕), S2 = ({(0, d2, 0, 0, 0, 0)∈D3−0},⊕), S3 = ({(0, 0, d3, 0, 0, 0)∈
D3−0},⊕) and S0 = ({(s, s, s, 0, 0, 0) ∈ D3−0},⊕) are subsemigroups of D3−0.
and similarly also S1−2 = ({(s, s, 0, 0, 0, 0)∈D3−0},⊕) (without (12 ,

1
2 , 0, 0, 0, 0)),

S1−3, and S2−3 of D3−0. All of them are isomorphic to the positive cone of the
additive group of reals Re≥0. Using isomorphicity of S1 (subsemigroup of D0),
there are simple isomorphisms zi : Si ⊂ D3 −→ S1 ⊂ D0: z1(d1, 0, 0, 0, 0, 0) =
(d1, 0), z2(0, d2, 0, 0, 0, 0) = (d2, 0), z3(0, 0, d3, 0, 0, 0) = (d3, 0). Analogously
there is z1−2 : S1−2 ⊂ D3 −→ S ⊂ D0: z1=2(s, s, 0, 0, 0, 0) = (s, s), where S
is already isomorphic to S1 (and Re≥0) using Valdes’ isomorphism ϕ : S1 → S
given by ϕ(x1, 0) = ( x1

1+x1
, x1

1+x1
), see [20].

For subsemigroup S0 in D3 we can use isomorphicity of S1 verified in the
previous paragraph, further we have to define new isomorphism ϕ3 : S1 → S
given by ϕ3(d1, 0, 0, 0, 0, 0) = ( d1

1+2d1
, d1

1+2d1
, d1

1+2d1
, 0, 0, 0) for 0 ≤ d1 ≤ 1, where

ϕ−1
3 (s, s, s, 0, 0, 0) = ( s

1−2s , 0, 0, 0, 0, 0) for 0 ≤ s ≤ 1
3 . Let us verify the ho-

momorphic properties: we have to verify ϕ3((a, 0, 0, 0, 0, 0) ⊕ (b, 0, 0, 0, 0, 0))
?
=

ϕ3(a, 0, 0, 0, 0, 0)⊕ϕ3(b, 0, 0, 0, 0, 0): ϕ3((a, 0, 0, 0, 0, 0)⊕(b, 0, 0, 0, 0, 0)) = ϕ3(a+
b− ab, 0, 0, 0, 0, 0) = (c, c, c, 0, 0, 0), where c = a+b−ab

1+2a+2b−2ab ;

(u, u, u, 0, 0, 0) ⊕ (v, v, v, 0, 0, 0) = (w,w,w, 0, 0, 0), where w = u+v−5uv
1−6uv , thus

ϕ3(a, 0, 0, 0, 0, 0)⊕ϕ3(b, 0, 0, 0, 0, 0) = ( a
1+2a ,

a
1+2a ,

a
1+2a , 0, 0, 0)⊕(

b
1+2b ,

b
1+2b ,

b
1+2b ,

0, 0, 0) = (s, s, s, 0, 0, 0), where s =
a

1+2a+ b
1+2b−5 a

1+2a
b

1+2b

1−6 a
1+2a

b
1+2b

= a+b+ab
1+2a+2b−2ab = c.

Hence ϕ3 is really a homomorphism, i.e. we have the following lemma:

Lemma 1. S0 is subsemigroup of D3−0 isomorphic to the positive cone of the
additive group of reals extended with ∞.

Let us consider subsemigroup D1−2=3 = ({(d1, d2, d2, 0, 0, 0},⊕) now. Analo-
gously to G2=3, d2 = d3, but d1 +2d2 ≤ 1 here. Thus G2=3 is proper subalgebra
of D1−2=3. There are subsemigroups S1,S2=3 = ({(0, d2, d2)},⊕) and S0, we
have already seen that S1 and S0 are isomorphic to Re≥0 and Re+≥0, the same
holds also for S2=3 using simple isomorphism z : S2=3 −→ S ⊂ D0, such that
z(0, d2, d2) = (d2, d2). A structure of the subsemigroup D1−2=3 is very similar to
that of D0, we can even extend the operation minus2=3 from G2=3 to the entire
D1−2=3, where minus2=3(d1, d2, d2, 0, 0, 0) = (x1, x2, x2), such that x1 = d1 +

2d2−2
2d1+d2−d2

1−2d2
2−3d1d2

3−d1−5d2
, x2 =

2d1+d2−d2
1−2d2

2−3d1d2

3−d1−5d2
. Assuming validity of Hy-

pothesis 1, the subsemigroup D1−2=3 = ({(d1, d2, d2, 0, 0, 0},⊕,minus2=3, 0, U3)
is isomorphic to Dempster’s semigroup D0. The same for D2−1=3 and D3−1=2.

We can observe that subsemigroups D1−2 = ({(d1, d2, 0, 0, 0, 0},⊕), D1−3,
D2−3, S1−2, S1−3, S2−3 are not includedD3−0 (due to exclusive BBFs, e.g. (d1, 1−
d1, 0, 0, 0, 0) for D1−2), thus they are subalgebras of D+

3−0 only.
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We can summarize the properties of subsemigroup D3−0 of qBBFs as:

Theorem 2. (i) Monoid D3−0 = (D3−0,⊕, 0, U3) is a subsemigroup of D3

with neutral element 0 = (0, 0, 0, 0, 0, 0) and with the only other idempotent
0′ = U3 = (13 ,

1
3 ,

1
3 , 0, 0, 0).

(ii) Subgroup of non-exclusive BBFs G3 = ({(a, b, c, 0, 0, 0) | a+ b+ c = 1, 0 <
a, b, c},⊕, ”− ”, U3) and its subalgebras are subalgebras of D3−0.
(iii) The sets of non-exclusive BFs S0, S1, S2, S3, S1−2, S1−3, S2−3 with the op-
eration ⊕ and VBF 0 form commutative semigroups with neutral element 0
(monoids); they all are isomorphic7 to the positive cone of the additive group
of reals Re≥0 (to Re+≥0 extended with ∞ in the case of S).
(iv) Subsemigroups D1−2=3, D2−1=3 and D3−1=2 (with their subalgebras Si’s,
G2=3,G1=3 and G1=2) are subsemigroups (resp. subgroups in the case of Gi’s) of
D3−0 (hence also of D3). Assuming validity of Hypothesis 1, D1−2=3, D2−1=3

and D3−1=2 are isomorphic to Dempster’s semigroup D0.
(v) Semigroups of non-exclusive BFs ({(a, b, 0, 0, 0, 0) | a+b < 1},⊕), ({(a, 0, c, 0,
0, 0) | a+ c < 1},⊕), ({(0, b, c, 0, 0, 0) | b+ c < 1},⊕), are subsemigroups of D3−0

and all three are isomorphic to D0 without set of BBFs G.
(vi) h is homomorphism: (D3−0,⊕, 0, U3) −→ (G3,⊕, ” − ”, U3); h(Bel) =
Bel⊕ 0′ = Pl P (Bel), i.e., the normalized plausibility of singletons probabilistic
transformation.

A generalization of the Hájek-Valdés operation ”minus”− and of homomorphism
f from D0 to D3−0 is still under development.

5 Ideas for Future Research and Open Problems

The presented introductive study opens many interesting problems related to
algebraic properties of belief functions on 3-element frame of discernment.

– Elaboration of the properties of D3−0 and related substructures required by
investigation of conflicting BFs [12]:
• a generalization of operation − to D3−0 analogously to the operation

minus2=3 from D1−2=3;
• and related issue: a generalization of the homomorphism f to D3−0.

– The basic study of qBBFs should be supplemented by description of the
extension D3−0 to D+

3−0 containing all quasi Bayesian BFs.
– Study of properties of general BFs, i.e. the semigroup D3 = (D3,⊕, 0, U3).

6 Conclusion

Dempster’s semigroup of belief functions on 3-element frame of discernment
was defined. Its substructures related to Bayesian and to quasi Bayesian belief
functions were described and analyzed.

7 o-isomorphic as in the case of D0 in fact, see Theorem 1. There is no ordering of
elements of Ω3, thus we are not interested in ordering of algebras Si in this text.
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A basis for a solution of the questions coming from research of conflicting
belief functions (e.g. an existence of a generalisation of Hájek-Valdés operation
”minus”) was established.
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Abstract. Critical decisions are made by decision-makers throughout
the life-cycle of large-scale projects. These decisions are crucial as they
have a direct impact upon the outcome and the success of projects. To aid
decision-makers in the decision making process we present an evidential
reasoning framework. This approach utilizes the Dezert-Smarandache
theory to fuse heterogeneous evidence sources that suffer from levels
of uncertainty, imprecision and conflicts to provide beliefs for decision
options. To analyze the impact of source reliability and priority upon
the decision making process, a reliability discounting technique and a
priority discounting technique, are applied. A maximal consistent subset
is constructed to aid in defining where discounting should be applied.
Application of the evidential reasoning framework is illustrated using a
case study based in the Aerospace domain.

Keywords: evidential reasoning, information fusion, Dezert-
Smarandache theory, Dempster-Shafer theory, discounting techniques.

1 Introduction

Decision making in large-scale projects are often sophisticated and complex pro-
cesses where selections have an impact on diverse stages of the project life-cycle
and ultimately the outcome of the project. Evidence supporting/opposing the
various design options can be extracted from diverse heterogeneous informa-
tion sources. However, evidence items vary in terms of reliability, completeness,
precision and may contain conflicting information. Aerospace is a highly com-
petitive field with constant demands on aircraft production to improve safety,
performance, speed, reliability and cost effectiveness [10]. Design decisions made
throughout an aircraft life-cycle are critical as they directly effect the factors
above. Decision making in Aerospace involves the evaluation of multiple de-
cision options against criteria such as detailed requirement specifications and
International Aviation Standards. To address these limitations we propose an
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evidential reasoning framework to support decision analysis using information
fusion techniques based on Belief Function theory to manage uncertainty and
conflict in evidence sources. The novelty of this paper lies in the application of
these techniques to decision-making in the Aerospace domain.

This research is an element of a larger collaborative project, DEEPFLOW,
which encompasses the areas of natural language processing, high performance
computing, computational semantics, and reasoning with uncertainty. The project
aims to develop a framework to identify, extract and reason with information
contained within large complex interrelated documents which can be applied to
many diverse problem domains. Information extracted from these data are used
as input to the evidential reasoning framework.

Investigations have been performed in the Aerospace domain where various
approaches have been applied to reason with data which are incomplete and un-
certain. Such approaches include Bayesian theory, Dempster-Shafer theory (DS)
and Dezert-Smarandache theory (DSm) which have been used to fuse uncertain
and unreliable information in areas involving sensor information fusion [1] and
target identification [4] where systems are required to deal with imprecise infor-
mation and conflicts which may arise among sensors. A study by Xiaoqing et al.
[5] provides an example of how argumentation and reasoning can be applied to
handle uncertainty and conflicts in decision making.

As summarized above, Bayesian methods and Evidence theories such as DS [6]
have commonly been used to handle uncertainty. As a generalized probability
approach, DS has some distinct features compared with Bayesian theory. DS
can represent ignorance caused by lack of information and can aggregate beliefs
when new evidence is accumulated. DSm can be considered as a generalization
of DS whereby the rule of combination takes into account both uncertain and
paradoxical information [3]. In this paper we apply DSm to fuse pieces of evidence
for decision making purposes.

Evidence sources involved in the fusion process may not always have equal
reliability or priority. Reliability can be viewed as an objective property of an
evidence source whereas priority is viewed as a subjective property expressed
by an expert [7]. Counter-intuitive results could be obtained if unequal sources
are fused and these factors are not taken into consideration. To highlight the
importance of all this in the decision making process we apply two discounting
techniques: reliability discounting using Shafer’s classical discounting approach
and priority discounting based on the importance discounting technique [7]. We
construct a maximal consistent subset to aid in defining where discounting should
be applied. To evaluate the proposed framework we present a scenario detailing a
decision making process in which a design engineer selects a material to construct
a wing spar of an aircraft. A spar is an integral structural member of the wing
which carries the flight loads and the weight of the wings.

The paper is organized as follows: in section 2 the basics of Evidence theory
and combination rules are introduced. In section 3 the reliability discounting and
priority discounting techniques are detailed. A case study in section 4 presents
an applied scenario based in the Aerospace domain comparing DS and DSm
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approaches and the impact of discounting factors on decision analysis. Conclu-
sions are provided in section 5.

2 Theory of Belief Functions

DS Theory. DS (evidential theory) is a generalization of traditional proba-
bility. This theory provides a mathematical formalism to model our belief and
uncertainty on possible decision options for a given decision making process. In
DS the frame of discernment denoted by Θ = {θ1, ..., θn} contains a finite set of
n exclusive and exhaustive hypotheses. The set of subsets of Θ is denoted by the
power set 2Θ. For instance, {A,C,W} is the frame for materials (aluminium,
composite, wood) from which an engineer selects one to construct a wing spar.

DSm. DSm proposes new models for the frame of discernment and new rules of
combination that take into account both paradoxical and uncertain information.
In DSm, the free DSm model, Θ = {θ1, ..., θn} is assumed to be exhaustive but
not necessarily exclusive due to the intrinsic nature of its elements, the set of
subsets are denoted by the hyper power-set DΘ (Dedekind’s lattice) described
in detail in [8] which is created with ∪ and ∩ operators. Using the hybrid DSm
(hDSm) model integrity constraints can be set on elements of Θ reducing cardi-
nality and computation time compared to the free model. When Shafer’s model
holds i.e. all exclusivity constraints on elements are included the DΘ reduces to
the power set 2Θ. We denote GΘ the general set on which will be defined the
basic belief assignments, i.e. GΘ = 2Θ when DS is adopted or GΘ = DΘ when
DSm is preferred depending on the nature of the problem.

A basic belief assignment (bba) expressing belief assigned to the elements of
GΘ provided by an evidential source is a mapping function m : GΘ → [0, 1]
representing the distribution of belief satisfying the conditions:

m(∅) = 0 and
∑

A∈GΘ

m(A) = 1 (1)

In evidence theory, a probability range is used to represent uncertainty. The
lower bounds of this probability is called Belief(Bel) and the upper bounds
Plausibility(Pl). The generalized Bl and the Pl for any proposition A ∈ GΘ

can be obtained by:

Bel(A) =
∑
B⊆A

B∈GΘ

m(B) and Pl(A) =
∑

B∩A �=0

B∈GΘ

m(B) (2)

In DSm the Proportional Conflict Redistribution Rule no. 5 (PCR5) has been
proposed as an alternative to Dempster’s rule for combining highly conflicting
sources of evidence. Below Dempster’s combination rule and PCR5 are briefly
detailed, a complete presentation of DSm can be found in [8].
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Dempster’s Rule of Combination. In DS, Dempster’s rule of combination is
symbolized by the operator ⊕ and used to fuse two distinct sources of evidence
B1 and B2 over the same frame Θ. Let Bel1 and Bel2 represent two belief
functions over the same frame Θ and m1 and m2 their respective bbas. The
combined belief function Bel = Bel1 ⊕ Bel2 is obtained by the combination of
m1 and m2 as: m(∅) = 0 and ∀C �= ∅ ⊆ Θ

m(C) ≡ [m1 ⊕m2](C) =

∑
A∩B=C m1(A)m2(B)

1−
∑

A∩B=∅m1(A)m2(B)
(3)

Dempster’s rule of combination is associative ([m1⊕m2]⊕m3 = m1⊕ [m2⊕m3])
and commutative (m1 ⊕m2 = m2 ⊕m1).

PCR5 Rule of Combination. The PCR5 rule can be used in DSm to com-
bine bbas. PCR5 transfers the conflicting mass only to those elements that are
involved in the conflict and proportionally to their individual masses. This pre-
serves the specificity of the information in the fusion process [3]. For two indepen-
dent bbas m1 and m2 the PCR5 rule defined by [8] is as follows: mPCR5(∅) = 0
and ∀(X �= ∅) ∈ GΘ

mPCR5(A) =∑
X1,X2∈GΘ

X1∩X2=A

m1(X1)m2(X2) +
∑

X∈GΘ

X∩A=∅

[
m1(A)2m2(X)

m1(A) +m2(X)
+

m2(A)2m1(X)

m2(A) +m1(X)
] (4)

All fractions in (4) which have a denominator of zero are discarded. All propo-
sitions/sets in the formula are in canonical form. PCR5 is commutative and not
associative but quasi-associative.

Probabilistic Transformation. We need to obtain pignistic probabilities for
decision making purposes for this study. Fused beliefs are mapped to a probabil-
ity measure using the generalized pignistic transformation approach DSmP [2],
an alternative to the familiar approach BetP proposed by Smets et al [9]. DSmP
is advantageous as it can be applied to all models (DS, DSm, hDSm) and can
work on both refined and non-refined frames. DSmP is defined by DSmPε(∅) = 0
and ∀X ∈ GΘ by

DSmPε(X) =
∑

Y ∈GΘ

∑
Z⊆X∩Y
C(Z)=1

m(Z) + ε · C(X ∩ Y )∑
Z⊆Y

C(Z)=1

m(Z) + ε · C(X ∩ Y )
m(Y ) (5)

where GΘ corresponds to the hyper power set; C(X ∩ Y ) and C(Y ) denote
the cardinals of the sets X ∩ Y and Y respectively; ε ≥ 0 is a tuning param-
eter which allows the value to reach the maximum Probabilistic Information
Content (PIC) of the approximation of m into a subjective probability measure
[2]. The PIC value is applied to measure distribution quality for decision-making.
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The PIC of a probability measure denoted P associated with a probabilistic
source over a discrete finite set Θ = {θ1, ..., θn} is defined by:

PIC(P ) = 1 +
1

Hmax
·

n∑
i=1

P{θi}log2(P{θi}) (6)

where Hmax is the maximum entropy value. A PIC value of 1 indicates the total
knowledge to make a correct decision is available whereas zero indicates the
knowledge to make a correct decision does not exist [2].

3 Evidential Operations

Evidence to support or refute design options in a decision making process can
be extracted from numerous information sources including reports, journals and
magazine articles. Some sources may be regarded as being reliable or have a
higher priority than others. It is important to manage these factors in the fusion
process to reduce errors in reporting beliefs for decision options. Prior knowledge
is applied to estimate both the reliability and priority discounting values.

To aid with determining which sources should be discounted before fusion, we
can construct a maximal consistent subset. This involves constructing a subset
of sources that are consistent with each other. Discounting could be applied to
sources deemed dissimilar or non-coherent. To measure the coherence between
evidence sources the Euclidean similarity measure based on distance is applied,
other distance measure are also applicable. This measure is commutative. Let
Θ = {θ1, ..., θn} where n > 1 and m1 and m2 are defined over GΘ, Xi is the ith
element of GΘ and |GΘ| the cardinality of GΘ, the function can be defined by:

S(m1,m2) = 1
1√
2

√√√√|GΘ|∑
i=1

(m1(Xi)−m2(Xi))2 (7)

Application of other similarity approaches could also have been applied, however,
Euclidean distance was selected for simplicity.

Reliability Discounting Techniques. In reliability discounting a discounting
factor α in [0, 1] can be applied to characterize the quality of an evidence source
[7]. For instance, evidence extracted from an aviation journal is considered higher
quality than a blog post. The reliability factor transforms the belief of each source
to reflect credibility. Shafer’s discounting technique [6] has been proposed for the
combination of unreliable evidence sources. Incorporation of the reliability factor
1− α ∈ [0, 1] in the decision making process is defined as:{

mα(X) = α ·m(X), ∀X ⊂ Θ
mα(Θ) = α ·m(Θ) + (1− α)

(8)

whereby α = 0 represents a fully reliable source and α = 1 an unreliable source.
The discounted mass is committed to m(Θ). Using prior knowledge, we set
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reliability factors whereby evidence extracted from a journal, magazine and blog
post are represented by the factors α = 0.1, α = 0.3, α = 0.7 respectively.

Priority Discounting Technique. Source priority can be viewed as a sub-
jective attribute whereby an expert can assign a priority value to an individual
source [3]. We characterize priority using a factor denoted β in [0, 1], repre-
sentative of a priority weight assigned by an expert to a source. The highest
priority assigned to a source is characterized by β = 1 and minimum β = 0.
In this research, pieces of evidence have been ranked in accordance to priority;
for instance, it is essential that the material selected to construct a wing spar is
verified to be safe. Therefore a piece of evidence supporting the material safety
is set with a priority factor of 1. Priority discounting is defined with respect to
∅ and not Θ as in the Shafer reliability approach. The discounting of a source
having a priority factor β can be defined as:{

mβ(X) = β ·m(X), for X �= ∅
mβ(∅) = β ·m(∅) + (1 − β)

(9)

which allows m(∅) ≥ 0, thereby preserving specificity of the primary information
as all focal elements are discounted with same priority factor [7]. When full prior-
ity is selected by the expert i.e. β = 1, the source will retain its full importance
in the fusion process. Therefore the original mass of the bba is not changed.
PCR5 is applied to demonstrate the fusion process when priority discounting is
used as Dempster’s rule of combination does not respond to the discounting of
sources towards the empty set [7]

4 Case Study

This study is intended to illustrate how heterogeneous information from dis-
parate sources can be fused to aid engineers when deciding upon material for a
wing spar. The PCR5 rule of combination has been selected to fuse pieces of ev-
idence. Dempster’s rule of combination is used for comparative purposes as this
rule may generate errors in decision making when the level of conflict between
evidence sources is high. Furthermore, priority discounting cannot be illustrated
using the DS approach. Before fusion, a maximal consistent subset (i.e. sets of
consistent evidential sources) is determined. Obtaining the maximum consistent
subset will aid in identifying sources to be discounted. Either reliability or pri-
ority discounting can be applied. The aim of applying these approaches is to
improve the correctness of fusion results. Decision making is based on pignistic
probabilities where results are presented using both DSmP and BetP transfor-
mation methods for comparative purposes.

Standards, Requirements and Evidence. The material selected to con-
struct a wing spar must fulfill specified design requirements. It is assumed that
an aviation expert has assigned priory and reliability values. To determine if ma-
terials adhere to these requirements we have extracted evidence from a total of
50 heterogeneous sources including: 18 journal articles, 6 technical white papers,
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9 books, 7 aviation magazines and 10 blogs (argumentation mining is being ap-
plied in DEEPFLOW to automatically extract these information). These sources
varied in terms of certainty and consistency, and the resulting knowledge base
could contain some conflicting evidence. Using this information, an input evi-
dence vector was constructed by mapping the evidence for the design options to
relevant design requirements fulfilled or otherwise. A sample vector is presented
in Table 1.

Table 1. Sample Evidence Vector

Aluminium Composite Wood

Evidence Tolerant material Damage resistance Limited availability

Reliability Journal (0.1) Magazine (0.3) Blog (0.7)

Requirement Safety Damage Tolerance Availability

Priority High priority (1) High priority (1) Low priority (0.2)

4.1 Implementation of Scenario

An engineer has the task of selecting a material from the set: aluminum (A),
composites (C) and wood (W) to construct a wing spar. The frame of discern-
ment Θ = {A,C,W}, is used in the fusion. For simplification, we assume that
the selected material needs to fulfill just four requirements: safety, damage toler-
ance, ease of fabrication and availability of supply. We use four different evidence
sources that assign belief to the hypotheses. The estimated respective bbas: m1,
m2, m3 and m4 are given in Table 2. These are estimated using information from
the digital knowledge base along with expert knowledge.

Table 2. Basic Belief Assignments for Evidence Sources

A C W Θ

m1 0.4 0.5 0 0.1
m2 0.7 0 0.3 0
m3 0.2 0.8 0 0
m4 0.4 0.4 0.1 0.1

Maximal Consistent Subset. It is known that conflict between evidence
sources can have a detrimental impact upon the fusion process. To address this,
we present a methodology to determine a maximal consistent subset. Before fu-
sion is performed, priority or reliability discounting factors can be applied to
those bbas which are considered dissimilar. An outline of this methodology is
presented in Algorithm 1. The first step is to rank the evidential sources repre-
sented by bbas (m1,m2,m3,m4) based on their information content. Information
content values were obtained using the PIC formula detailed in Equation 6. m4
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Algorithm 1. Calculation of Maximal Consistent Subset

FORALL bbas calculate information content using PIC approach
SELECT bba with highest information content, add to maximal consistent subset.
If more than one bba have the same PIC value, choose one arbitrarily
REPEAT

FIND most similar bbas using distance measure to those bbas in maximal con-
sistent subset

IF similarity value > threshold then join bba to maximal consistent subset
UNTIL similarity values for all remaining bbas not in maximal consistent subset
obtain value < threshold or no bbas remain

was identified as obtaining the highest PIC value and this is the first member of
a potential maximal consistent subset. In the next step, m4 is joined by other
bbas considered most similar to m4. The similarity (S) for the subsets: {m4,m1},
{m4,m2} and {m4,m3} was calculated. A threshold parameter (tuned by the
system designer) was set at 0.65 which was judged an acceptable threshold sim-
ilarity value. The highest similarity value of 0.86 was obtained for {m4,m1}.
Therefore the maximal consistent subset now consists of m1 and m4. We mea-
sure the similarity between the bbas in the current maximal consistent subset
and m2 and m3, respectively. It was observed that S(m2,m1,4) and S(m3,m1,4)
were both low 0.27 and 0.52, respectively (where m1,4 represents the both sub-
sets m1 and m4). Both these values fall below the threshold parameter, therefore
m2 and m3 are not considered members of the maximal consistent subset.

To highlight the importance of considering conflict in the decision making
process we present a number of examples where evidence sources are fused using
PCR5 and Dempster’s rule of combination. In the first example evidence sources
are considered equal; in the second and third, we use reliability and priority
discounting, respectively.

Example 1: No Discounting. We present the case where evidence was fused
using the PCR5 and Demspter’s rule of combination based on the assumption
that all sources are equal in terms of reliability and priority. Furthermore, the
maximal consistent subset and identification of dissimilar sources were not con-
sidered. The results obtained for this scenario are shown in Table 3. Pignistic
values are presented for both combination rules, m12...,m1234 corresponds to
the sequential fusion of the sources m1...,m4. The PIC criterion was applied to
obtain information content values for the probability distributions generated by
DSm and BetP.

Based on the results in Table 3 it can be seen that PCR5 and Dempster’s rule
of combination assigned different probability values to the hypotheses. Demp-
ster’s rule of combination distributes uniformly over all focal elements of 2Θ the
total conflicting mass resulting in a potentially imprecise and incorrect result. In
comparison, PCR5 obtains more realistic probabilistic values transferring con-
flicting masses proportionally to non-empty sets.
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Table 3. Dempster’s Rule of Combination and PCR5 Rule No Discounting

PCR5 Dempster’s Rule of Combination

Generalized BetP DSmPε=0 BetP DSmPε=0

m12 m123 m1234 m12 m123 m1234 m12 m123 m1234 m12 m123 m1234

A 0.62 0.38 0.40 0.62 0.38 0.40 0.92 1.00 1.00 0.92 1.00 1.00
C 0.24 0.59 0.58 0.24 0.59 0.58 0.00 0.00 0.00 0.00 0.00 0.00
W 0.14 0.03 0.02 0.14 0.03 0.02 0.08 0.00 0.00 0.08 0.00 0.00
Θ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PIC 0.30 0.30 1.00 1.00

Example 2: Reliability Discounting. Reliability weightings for the pieces of
evidence represented by bbas depend on the source from which the information
was extracted (where α1 =journal, α2 =magazine, α3 =blog and α4 =magazine).
This results in the discounting factors α1 = 0, α2 = 0.3, α3 = 0.7, α4 = 0.3. Tak-
ing into consideration the maximal consistent subset, reliability discounting fac-
tors are applied to the dissimilar sources m2 and m3. As m4 is a member of the
maximal consistent subset it is not discounted. Table 4 presents results where
reliability discounting is applied and evidence sources fused using Dempster’s
rule of combination and PCR5 respectively. Dempster’s rule of combination and
PCR5 rule assign the highest belief to hypothesis C followed by A when re-
liability factors and consistent subsets are considered. By applying reliability
discounting factors the degree of conflict between m2 and m3 was reduced. The
discounted mass was committed to Θ resulting in Dempster’s combination rule
assigning similar probabilities to the PCR5 approach. This highlights the ef-
fect that conflict can have on the fusion process when compared to the results
without discounting in Table 3.

Table 4. Dempster’s and PCR5 Rule of Combination Results Reliability Discounting

PCR5 Dempster’s Rule of Combination

Generalized BetP DSmPε=0 BetP DSmPε=0

m12 m123 m1234 m12 m123 m1234 m12 m123 m1234 m12 m123 m1234

A 0.469 0.341 0.364 0.479 0.341 0.364 0.502 0.502 0.351 0.517 0.351 0.351
C 0.485 0.644 0.615 0.497 0.651 0.616 0.459 0.459 0.637 0.470 0.637 0.639
W 0.046 0.015 0.021 0.024 0.008 0.020 0.040 0.040 0.012 0.012 0.012 0.009
Θ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PIC 0.32 0.32 0.36 0.37

Example 3: Priority Discounting. Pieces of evidence represented by bbas
were ranked in order of priority based on the expert opinion of a design engi-
neer (where β1 =safety, β2 =availability of supply, β3 =ease of fabrication and
β4 =damage resistance). The priority factors for the respective four bbas are:
β1 = 1, β2 = 0.2, β3 = 0.6, β4 = 1. The impact of this approach is demonstrated
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using the PCR5 rule of combination. m1 and m4 were identified as the high-
est priority bbas and both are members of the maximal consistent subset. By
applying priority discounting to m2 and m3 we can view the impact on the deci-
sion making process in Table 5 where hypothesis C obtains the highest pignistic
value followed by A. Marginal higher PIC values (i.e. the probability of making
a precise/correct decision is increased) were obtained compared to the PCR5
fusion in Table 3 where no discounting was performed. These results demon-

Table 5. PCR5 Rule of Combination with Priority Discounting

Generalized BetP DSmPε=0

m12 m123 m1234 m12 m123 m1234

A 0.453 0.351 0.372 0.463 0.352 0.372
C 0.508 0.633 0.606 0.523 0.643 0.607
W 0.039 0.016 0.022 0.013 0.005 0.021
Θ 0.000 0.000 0.000 0.000 0.000 0.000
PIC 0.31 0.32

strate how consistency measuring and discounting techniques may be beneficial
within decision support systems. Furthermore, the examples reflect the difficulty
in decision making within Aerospace. For example, the metal Aluminium has
commonly been applied to construct wing spars with advantageous properties
including ease of manufacture and repair. In comparison, the use of composites
in aircraft is more recent than aluminum resulting in less knowledge on its safety.
However, composites are light weight and cost effective. The use of DEEPFLOW
offers benefits here. For instance, in the cases of conflicts or inconclusive deci-
sions, DEEPFLOW could further examine and obtain additional evidence from
unstructured documents to strengthen or weaken the arguments.

5 Conclusion

This paper provides an overview of our proposed evidential reasoning framework
which is applied in the DEEPFLOW project. Furthermore, we detail a novel ap-
plication of this framework to decision analysis in the Aerospace domain. A case
study was used to illustrate the importance of selecting a valid combination rule
to analyze critical design decisions when information is conflicting and uncertain.
Furthermore, it highlighted the importance of taking into account discounting
factors obtained from prior knowledge and measuring consistency between ev-
idence sources before making design decisions. In future work we will further
investigate the complexity of the algorithm to obtain the maximal consistent
subset and the impact this has on the fusion process. As part of this research
we will also compare and contrast different distance measures to measure simi-
larity. This evidential framework can be applied to aid decision-making in other
problem domains where information may be incomplete and unreliable.
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2 Université de Technologie de Compiègne, U.M.R. C.N.R.S. 6599 Heudiasyc

B.P. 20529 F-60205 Compiègne, France
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Abstract. We study a new approach to regression analysis. We propose
a new rule-based regression model using the theoretical framework of be-
lief functions. For this purpose we use the recently proposed Evidential
c-means (ECM) to derive rule-based models solely from data. ECM allo-
cates, for each object, a mass of belief to any subsets of possible clusters,
which allows to gain a deeper insight on the data while being robust with
respect to outliers. The proposed rule-based models convey this added
information as the examples illustrate.

1 Introduction

Dempster-Shafer theory of evidence is a theoretical framework for reasoning with
partial and unreliable information [1]. It provides a very powerful tool to deal
with epistemic uncertainty, by allowing experts to express partial beliefs, such as
partial or even total ignorance in a very flexible way, and can be easily extended
to deal with objective probabilities. It provides tools to combine several pieces
of evidence, such as the conjunctive and the disjunctive rules of combination.
Furthermore, using for instance the pignistic transformation, it is possible to
solve decision making problems.

Real-world problems can be solved using the Dempster-Shafer theory of evi-
dence by modeling information pieces using a belief function on a specific domain,
and manipulating the resulting belief functions using available operations of this
framework. The two conventional sources of partial or unreliable knowledge are
human experts and observation data. In this work, we consider the latter. Ob-
servation data often contain partial and unreliable information. The framework
of belief functions is well suited to deal with such data.

Rule-based models are simple, yet powerful tools that can be used for a great
variety of problems, such as regression, classification, decision making and con-
trol. An example of such a model, defined in the framework of fuzzy sets, is the

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 554–563, 2012.
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Takagi-Sugeno fuzzy model [2]. Usually these types of models translate the do-
main knowledge and relation between the variables defined for the system model
in the form of if-then rules. The if-then rules provide a transparent description of
the system, which may reflect the possible nonlinearity of the system. One way
of obtaining rule-based models from data is using product-space clustering. A
clustering algorithm finds a partition matrix which best explains and represents
the unknown structure of the data with respect to the model that defines it [3].
Different clustering algorithms can be used, which will yield different information
and insights about the underlying structure of the data.

In this paper we study how to construct, within the framework of belief func-
tions, as understood in the transferable belief model [4], a rule-based model, by
means of product-space clustering for regression analysis. We use the Evidential
c-means (ECM) algorithm [5] to derive rule-based models solely from data.

Regression analysis is a technique for modeling and analyzing relationships
between variables. More specifically, regression analysis helps to ascertain the
causal effect of one variable upon another. In classical statistics, it is assumed
that the variables are measured in a precise and certain manner. In reality,
observation data often contain partial and unreliable information both on the
dependent and independent variables. Several approaches have been proposed
to deal with different origins of uncertainty in the data, such as fuzzy linear
regression [6,7], fuzzy rule-base models [2], fuzzy rule-base models with a belief
structure as output [8], nonparametric belief functions [9] and function regression
using neural network with adaptive weights [10]. The approach proposed in this
work combines the formalism to handle imprecise and partially conflicting data,
given by the belief function theory, with a transparent description of the system
in the form of if-then rules.

This paper is organized as follows. Section 2 reviews briefly the main concepts
underlying the theory of belief functions, and explains the clustering algorithm
used for deriving a credal partition from object data. Section 3 proposes a rule-
based model for regression analysis and the identification of the model param-
eters. An example is shown in Section 4 and finally the conclusions and future
work are given in Section 5.

2 Belief Functions

2.1 Basic Concepts

Dempster-Shafer theory of evidence is a theoretical framework for reasoning with
partial and unreliable information. In the following, we briefly recall some of the
basics of the belief function theory. More details can be found in [1,4,11]. In this
work, we adopt the subjectivist, nonprobabilistic view of Smet’s transferable
belief model (TBM) [4,11]

Let Ω be a finite set of elementary values ω called the frame of discernment.
A basic belief assignment (bba)[1] is defined as a function m from 2Ω to [0, 1],
satisfying:
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A⊆Ω

m(A) = 1 , (1)

which represents the partial knowledge regarding the actual value taken by ω.
The subsets A of Ω = {ω1, . . . , ωc} such that m(A) > 0 are the focal sets of
m. Each focal set A is a set of possible values for ω and the value m(A) can be
interpreted as the part of belief supporting exactly that the actual event belongs
to A. Perfect knowledge of the value of ω is represented by the allocation of the
whole mass of belief to a unique singleton of Ω and m is called a certain bba.
Complete ignorance corresponds to m(Ω) = 1, and is represented by the vacuous
belief function [1]. When all focal sets of m are singletons, m is equivalent to a
probability function and is called a Bayesian bba.

A bba m such that m(∅) = 0 is said to be normal [1]. This condition may be
relaxed by assuming that ω might take its value outside Ω, which means that
Ω might be incomplete [12]. The quantity m(∅) is then interpreted as a mass of
belief given to the hypothesis that ω might not lie in Ω.

The information provided by a bba m can be represented by a belief function
bel : 2ω 2→ [0, 1], defined as

bel(A) =
∑

∅�=B⊆A

m(B) ∀A ⊆ Ω. (2)

The quantity bel(A) represents the amount of support given to A. A bba m can
be equivalently represented by a plausibility function pl : 2Ω 2→ [0, 1], defined as

pl(A) =
∑

B∩A �=∅
m(B) ∀A,B ⊆ Ω. (3)

The plausibility pl(A) represents the potential amount of support given to A.
Given two bba’s m1 and m2 defined over the same frame of discernment Ω

and induced by two distinct pieces of evidence, we can combine them using a
binary set operation 	, which can be defined as [11]:

m1 	m2(A) =
∑

B�C=A

m1(B)m2(C), ∀A ∈ Ω. (4)

The conjunctive and disjunctive rule can be obtained by choosing 	 = ∩, and
	 = ∪, respectively. For the case of the conjunctive rule ∩ , the normality
condition m(∅) = 0 may be recovered, by using the Dempster normalization
procedure, by converting the subnormal BBA (m1 ∩m2) into a normal one (m1⊕
m2)

∗(A), defined as follows:

(m1 ⊕m2)
∗(A) =

(m1 ∩m2)(A)

1− (m1 ∩m2)(∅)
, ∀A �= ∅, (m1 ⊕m2)

∗(∅) = 0. (5)

The Dempster’s rule of combination [1], noted as ⊕ corresponds to the conjunc-
tive sum combined by the Dempster’s normalization. The choice of the combi-
nation rule depends on the reliability of the two sources. The conjunctive rule
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should be used when all sources of information are fully reliable and distinct.
Otherwise, if there are doubts over the reliability of at least one sources then
the disjunctive rule of combination should be chosen.

The decision making problem regarding the selection of one single hypothesis
in Ω, is solved in the transferable belief model framework, by using a pignistic
probability, BetP, defined, for a normal bba, by [11]:

BetP(ω) 

∑
ω∈A

m(A)

|A| ∀ω ∈ Ω, (6)

where |A| denotes the cardinality of A ⊆ Ω. It is shown, that this is the only
transformation between belief function and a probability function satisfying el-
ementary rationality requirements, in which each mass of belief m(A) is equally
distributed among the elements of A [13].

2.2 Evidential c-Means Algorithm

In [5], the Evidential c-Means (ECM) algorithm was proposed to derive a credal
partition from object data. In this algorithm the partial knowledge regarding the
class membership of an object i is represented by a bba mi on the set Ω. This
representation makes it possible to model all situations ranging from complete
ignorance to full certainty concerning the class label of the object. This idea was
also applied to proximity data [14].

A credal partition is defined as the n-tuple M = (m1,m2, . . . ,mn). It can be
seen as a general model of partitioning, where:

– when each mi is a certain bba, then M defines a conventional, crisp partition
of the set of objects; this corresponds to a situation of complete knowledge;

– when eachmi is a Bayesian bba, then M specifies a fuzzy partition, as defined
by Bezdek [15];

Determining a credal partition M from object data, using ECM, implies deter-
mining, for each object i, the quantities mij = mi(Aj), Aj �= ∅, Aj ⊆ Ω) in such
a way that the mass of belief mij is low (high) when the distance dij between
i and the focal set Aj is high (low). The distance between an object and any
non empty subset of Ω is defined by associating to each subset Aj of Ω the
barycenter v̄ of the centers associated to the classes composing Aj . Each cluster
ωk is represented by a center vk ∈ Rp. Specifically,

skj =

{
1, if ωk ∈ Aj

0 otherwise
. (7)

The barycenter v̄j associated to Aj is:

vj =
1

|Aj |

c∑
k=1

skjvk , (8)
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The distance dij is then defined as d2ij 
 ||xi − v̄j ||. The proposed objective
function for ECM, used to derive the credal partition M and the matrix V
containing the cluster centers, is given by:

JECM (M,V,A) =

n∑
i=1

∑
{j/Aj⊆Ω,Aj �=∅}

τα
j mβ

ijd
2
ij +

n∑
i=1

δ2mβ
i∅, (9)

subject to ∑
{j/Aj⊆Ω,Aj �=∅}

mij + mi∅ = 1, ∀i = 1, . . . , n, (10)

where β > 1 is a weighting exponent that controls the fuzziness of the partition,
δ controls the amount of data considered as outliers and mi∅ denotes mi(∅),the
amount of evidence that the class of object i does not lie in Ω. The weighting
coefficient τα

j was introduced to penalize the subsets in Ω of high cardinality and
the exponent α allows to control the degree of penalization. The second term
of (10) is used to give a separate treatment term for the empty set. This focal
element is in fact associated to a noise cluster, which allows to detect atypical
data. The minimization of (10) can be done using the Lagrangian method, with
the following update equation for the credal partition:

mij =
c
−α/(β−1)
j d

−2/(β−1)
ij∑

Aj �=∅
c
−α/(β−1)
j d

−2/(β−1)
ij + δ−2/(β−1)

, ∀i = 1, . . . , n, ∀j/Aj ⊆ Ω,Aj �= ∅,

(11)
and

mi∅ = 1−
∑

Aj⊆Ω,Aj �=∅
mij , ∀i = 1, . . . , n. (12)

The credal partition provides different structures, which can give different types
of information about the data. A possibilistic partition could be obtained by
computing from each bba mi the plausibilities pli({ωk}) of the different clusters,
using (3). The value pli({ωk}) represents the plausibility that object i belongs
to cluster k. In the same way, a probabilistic fuzzy partition may be obtained
by calculating the pignistic probability BetPi({ωk}), using (6) induced by each
bba mi. Furthermore, other approximations such as a hard credal partition and
lower and upper approximations of each cluster can be retrieved from the credal
partition [5]. The information obtained from the credal partition and its approx-
imations can be considered intuitive and simple to interpret. In this work, we
try to incorporate the additional degrees of freedom and information obtained
from the credal partition, in the rule-based classification systems.

3 Rule-Based Model

3.1 Regression Problem

Supervised learning is concerned with the prediction of an quantitative measure
of the output variable y, based on a vector x = (x1, . . . , xp) of n observed input
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variables. Let x be an arbitrary vector, and y the corresponding unknown output.
In classical regression literature, the objective is to determine the best mathemat-
ical expression describing the functional relationship between one response and
one or more independent variables. Following the nomenclature used, the prob-
lem is to obtain some information on y from the training set L = {(xi, yi)}ni=1

of n observations of the input and output variables. Classically, it is assumed
that the variables are measured in a precise and certain manner. In reality,
observation data often contain partial and unreliable information both on the
dependent and independent variables. For this case, it necessary to use a formal-
ism to handle such imprecise and partially conflicting data, such as the belief
function framework.

3.2 Model Structure

Given a data set with n data samples, given by X = {x1,x2, . . . ,xn}, y =
{y1, y2, . . . , yn} where each data sample has a dimension of p (n6 p), following
a structure similar to a Takagi-Sugeno fuzzy model [2], the objective is to obtain,
directly from the data, rule-based models according to

Rj : If x1 is Mj1and x2 is Mj2 and . . . and xp is Mjp then yj = fj(x), (13)

where Rj denotes the j-th rule, j = 1, 2, . . . ,K is the number of rules, x ∈ Rp

is the antecedent variable, Mj is the (multidimensional) antecedent set Mjq of
the j-th rule for q = 1, . . . , p. Each rule j has a different function fj yielding a
different value yj for the output. This type of system consists of a set of if-then
rules combined with an inference mechanism and logical connectives to establish
relations between the variables defined for the model of the system. This type of
model can be identified, by product space clustering. A possibility for the output
function, is to use an affine function for the output function as:

yj = aTj x+ bj .

The sets Mj are ill-known regions of Rp. For a given x it is not possible to define
exactly to which region Mj belongs, but instead, it is possible to compute a mass
function based on the credal partition M . From this mass function it is possible
to compute the pignistic expectation of y given by:

ybet(x) =
∑

Aj⊆Ω,Aj �=∅
mΩ(Aj)

1

|Aj |
yj (14)

where

mΩ(Aj) =
βj(x)∑

Bj⊆Θ,Bj �=∅
βj(x)

, (15)

βj(x) is the degree of activation, and |Aj | is the cardinality of Aj ⊆ Ω.
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3.3 Model Parameters

To form the rule-base model from the available learning set L, the structure of
the model is first determined and afterward the parameters of the structure are
identified. Clustering is applied to the learning set L, using ECM. The number
of rules characterizes the structure of a rule-based system and in our case cor-
responds to the number of non-empty subsets of partitions obtained from the
clustering algorithm.

In this work, we use ECM to partition the space using the framework of belief
function. The Evidential c-Means algorithm was proposed to derive a credal
partition from object data. In this algorithm the partial knowledge regarding
the observation data of an object is represented by a basic belief assignment
on the finite set of frame of discernment. This representation makes it possible
to model all situations ranging from complete ignorance to full certainty. Using
the credal partition it is possible to highlight the points that unambiguously
belong to one cluster, and the points that lie at the boundary of two or more
clusters. For this research we try to incorporate the added degrees of freedom
and information obtained from the credal partition, in the rule-based systems.
This type of model will provide a rich description of the data and its underlying
structure, while making it robust to partial and unreliable data.

Antecedent Belief Functions. The antecedent functions can be obtained
by projecting the credal partition onto the antecedent variables. The princi-
ple of generating antecedent functions by projection is to project the multidi-
mensional sets defined point wise in the rows of the credal partition matrix
M = (m1, . . . ,mn) onto the individual antecedent variables of the rules. This
method projects the credal partition matrix onto the axes of the antecedent
variables xq, 1 ≤ q ≤ p.

In order to obtain the mass of belief functions for the antecedent sets Mjq, the
multidimensional set defined pointwise in the j-th row of the partition matrix
M are projected onto the axes of the antecedent variables xq, by:

mMjq (xqi) = projq(mij). (16)

where mij is given by (11), defined on frame of discernment Ω. In order to obtain
a model, the point-wise defined sets Mjq can be approximated by appropriate
parametric functions. Several types of functions such as triangular, gaussian or
trapezoidal, can be used. In this work we choose a combination of gaussian
functions of the form

Mjq ≈ f(xq;σ1jq, c1jq , σ2jq , c2jq) = e

(
−(xq−c1jq)2

2σ2
1jq

+
−(xq−c2jq )2

2σ2
2jq

)
. (17)

When computing the degree of activation βj(x) of the j-th rule, the original clus-
ter in the antecedent product space is reconstructed by applying the intersection
operator in the cartesian product space of the antecedent variables:

βj(x) = mMj1(x1) ∧mMj2(x2) ∧ . . . ∧mMjp(xp), (18)
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where ∧ denotes a t-norm. Suitable possible t-norms are the product or the
minimum operator. In this work, we consider the p features to be uncorrelated,
hence we use the product operator. Other possibilities [16] include combination
operators which generalize Dempster rule and the cautious rule [17], based on
a generalized discounting process or alternatively a parameterized family of t-
norms containing both the product and the minimum as special cases, such as
Frank’s family of t-norms [18]

Consequents Parameters. The consequent parameters for each rule can be
estimated by the least-squares method. A set of optimal parameters with respect
to the model output can be estimated from the identification data set by ordi-
nary least-squares methods. This approach is formulated as a minimization of
the total prediction error of the model. Let V T

j = [aTj , bj ] be the vector of conse-
quent parameters, let Xe denote the regressor matrix [X ; 1] and let Wj denote a
diagonal matrix with the normalized degree of activation βj(x) in its i-th diag-
onal element. Denote X ′ = [W1Xe, . . . ,WKXe]. Assuming that the columns of
Xe are linearly independent, the resulting solution of the least-squares problem
y = X ′V + ε becomes

V = [X ′TX ′]−1X ′Ty. (19)

The determination of the consequent parameters concludes the identification of
the rule-based system.

4 Examples

In this section, two examples are presented to verify the validity of the proposed
strategy. One is a univariate function, while the other is the gas furnace data
of Box and Jenkins [19]. To assess model performance, the mean squares error
(MSE) will be used. We compare the results obtained using belief rule–base
models proposed in this paper to Takagi–Sugeno fuzzy rule–base models and
also to the results presented in [8]. The Takagi–Sugeno fuzzy rule–base models
antecedent membership functions are obtained using Fuzzy C-Means [15] while
the consequent parameters are obtained using by least-square estimation.

For the first example, let us consider the approximation of a nonlinear static
univariate function:

y(x) = 3 exp−x2

sin(πx) + η (20)

where η is a normal distribution with zero mean and variance 0.15 and x is an
input random sample vector of size n = 30, uniformly distributed in the domain
[−3, 3].

The Box and Jenkins gas furnace data is a well known and frequently used
benchmark data for modeling and identification. The data consist of 296 mea-
surements. The input u(t) is the gas flow rate and the output is CO2 concen-
tration in outlet gas y(t). A possible way of modeling this process is to consider
that the output y(t) is a function of the input variables x = [y(t− 1), u(t− 4)]T .
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For both examples a belief rule–base model was derived with c = 3 clusters.
The resulting model will have K = 2c − 1 rules, as we do not consider a rule
for the empty–set. This model was compared to a FCM T–S fuzzy model with
c = 3, 7 clusters, resulting in a model with 3 or 7 rules. The results for this model
can be found in Table 1.

Table 1. MSE for the univariate static function and the gas furnace example

Model Univariate Gas furnace

Ramdani [8] 0.018 0.045
FCM c = 3 0.432 0.070
FCM c = 7 0.013 0.064
ECM c = 3 0.017 0.063

Table 1 shows that the MSE obtained with the belief rule–base model proposed
in this paper are in line with previous studies. Notice that both FCM and ECM
use Euclidean distance as the inner product norm. A more suitable choice for
modeling this type of systems is to employ an adaptive distance norm, such as
the Mahalanobis distance, to detect clusters of different shape and orientation
[20]. This explains the poor results in the univariate case for the fuzzy–rule
base models with c = 3 clusters. Notice that in the case of the belief rule–
base models, a rule is derived for each possible subset of clusters. Thus local
models are identified for objects which are clearly identified as belonging to one
cluster, but also to objects in overlapping cluster regions. This is an advantage
of the proposed method as it helps to improve the results using a low number of
clusters. Adding more clusters may increase the number of overlapping cluster
regions and consequently the number of rules. This may result in a system which
will overfit the data. Furthermore, we note that the proposed model is developed
in an automated manner solely from data. This model combines the capability
to handle imprecise and partially conflicting data, given by the belief function
theory, with a transparent description of the system in the form of if-then rules.

5 Conclusions and Future Work

This paper proposes the use of the credal partition obtained from the Evidential
C-Means based on the theoretical framework of belief functions, to derive rule-
based models. This type of model provides a rich description of the data and
its underlying structure, which can be successfully translated into rules, while
making it robust to partial and unreliable data. Future research will focus on
assessing properties and characteristics of the proposed model.
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Abstract. Activity recognition under instances of uncertainty is cur-
rently recognised as being a challenge within the application domain of
Smart Homes. In such environments, uncertainty can be derived from
the reliability of sensor networks, the interaction between human and
physical objects and the variability of human activities. Nevertheless, it
is a difficult process to quantify these sources of uncertainty within the
context of an effective reasoning model in order to accurately recognize
activities of daily living (ADL). In this paper we propose an evidential
framework, where a sensor network is modelled as an evidence space and
a collection of ADLs is subsequently modelled as an activity space. The
relation between the two spaces is modelled as a multi-valued probabilis-
tic mapping. We identify two sources of uncertainty in terms of sensor
uncertainty and relation uncertainty that is reflected in the interaction
between sensors and ADLs. Estimations of the respective types of un-
certainty were achieved through manufacture statistics for the sensor
technology and by learning statistics from sensor data. A preliminary
experimental analysis has been carried out to illustrate the advantage of
the proposed approach.

Keywords: Belief functions, Sensor fusion, activity recognition, smart
homes.

1 Introduction

Activity recognition with uncertain, incomplete and sometimes inaccurate infor-
mation is necessary whenever any system interacts in an intelligent way with its
environment. This follows directly from the fact that understanding the world is
possible only by perceiving interactions with the environment through sensing
networks which provide partially processed sensory information, i.e. knowledge
and evidence sources about the environment. Due to the limited capability of any
single sensor unit in addition to the possibility of faults within the sensor net-
works such as malfunctioning of sensors, transmission errors between sensors and
receivers, the sensed information is inherently uncertain and incomplete [1] [2].
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Perceptual information is not readily captured in terms of simple truths and fal-
sities even though binary sensors are deployed within the environment. Therefore
when there is a general lack of sample sensor data and appropriate statistics are
not in place, neither logical nor standard probabilistic reasoning techniques are
uniformly applicable to such a recognition problem.

This is exactly the case which has commonly been recognised for Smart Home
systems deploying a range of sensor networks. A Smart Home is a residential
environment that is equipped with different types of sensors and computing
technologies. In such an environment, sensors are unobtrusively embedded in
familiar physical devices and appliances. Sensors, together with computational
intelligence as a whole, provide the ability to perceive the states of devices and
inhabitants’ interactions with the surroundings of the environment and can also
record events or actions which occur in real living, and react accordingly to the
dynamic changes of the environment itself. Such a seamless integration makes the
conventional interaction paradigm to shift from human-to-computer to human-
to-surrounding interaction and link intelligence to home environments, leading
to an emerging personal healthcare and assistive living paradigm. With this
paradigm, ADLs can be automatically monitored, and the risks and declines in
health and behavioural of residents can be monitored, assessed and accurately
altered. As a result, functional services and assistance of caregivers can be pro-
vided as required, which enable ageing inhabitants to stay at homes indepen-
dently as long as possible. Nevertheless, the precise assessment and recognition
process has to be carried out with inherently uncertain or incomplete sensory
information. Therefore it is fundamental to have a viable mechanism in place for
appropriately handling uncertainty existing within Smart Homes.

In recent years a number of reasoning with uncertainty techniques have been
proposed for Smart Homes in an effort to address the challenges associated with
uncertainty present in the data gleaned from the sensor networks. In [7], Tapia
used a probabilistic method to learn activity patterns and then applied the
learned knowledge to reason about activities. In [8], the authors developed an
uncertainty model based on a predicate representation of contexts and associ-
ated confidence values. The model proposed forms a basis for reasoning about
uncertainty using various mechanisms such as probabilistic logic, Bayesian net-
works and fuzzy logic, each of which is useful in handling uncertainty in different
contexts. Although the proposed model has the ability to handle uncertainty to
some extent, it remains unclear how inhabitants’ contexts of interest can be auto-
matically identified and how confidence values for predicates defined for contexts
can be effectively estimated.

Of particular interest to our study here are those studies which were developed
on the basis of the DS theory, as it is capable of handling and managing a range
of uncertainty tasks. In [3] Hong et al. proposed a general ontology for ADLs and
presented an evidential model for reasoning about the activities, which could be
tailored to general scenarios. Hyun in [4] illustrated that the DS theory could
provide an efficient way to incorporate and reduce the impact of uncertainty in
an inference process. Nevertheless in these studies, the authors have not clearly
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quantified the extent of the uncertainty involved in the reasoning procedure and
have not considered the role of activity patterns obtained from historical sensor
data. In our previous work [5], an analysis has been undertaken to investigate two
types of uncertainty, namely hardware uncertainty and context uncertainty, which
may exist in Smart Homes along with an improved approach of calculating dis-
counting values. In [6] a revised lattice structure and the weighting factor meth-
ods were developed for quantifying connections between different layers within a
lattice designed for the overall purpose of activity recognition. With the statisti-
cal weight factor method presented in [6], the lattice based evidential model can
incorporate statistical activity patterns into the activity recognition process.

In this study, we build upon the previous work and propose an evidential
framework for associating sensors to activities for the purposes of activity recog-
nition. In this approach we define a formal approach to represent sensors and
activities, i.e. to consider sensor networks as an evidence space and ADLs as
a hypothesis space, and to formulate the relation between the two spaces by
a mechanism of multi-valued mapping. Nevertheless, a problem with this for-
mulation is that the multi-valued mapping has difficulty in expressing the un-
certainty which is inherent in the relation between the sensed information and
the activities [9]. In order to deal with this issue, we initially propose to define
the multi-valued mapping in the DS theory as a probabilistic approach
where the extents of uncertainty can be represented in the form of conditional
probabilities. Following this, we describe sensor uncertainty by a means of man-
ufacture statistics in terms of prior probabilities and then formulate the product
of the conditional probabilities and the prior probabilities as basic probability
assignments (bpa). In this way, bpas are defined over all subsets of an activity
space, which satisfy the conditions of evidential functions in the DS theory and
can be further combined by Dempster’s rule of combination for the purposes of
inferring activities.

2 Activities and Uncertainty in Smart Homes

Designing smart homes is a goal that appeals to researchers in a variety of dis-
ciplines, including pervasive and mobile computing, artificial intelligence, sensor
technology, multimedia computing and agent-based software. Many researchers
have used typical activity scenarios as in [10] or descriptions of activities in [11]
to help illustrate the possible behaviours of inhabitants and the approaches of
monitoring activities within a smart environment. Figure 1 depicts a general
relationship structure between sensors and activities, where sensors are attached
to physical devices or appliances − objects − with which inhabitants interact
whilst conducting ADLs within smart homes, such as toileting, bathing, prepar-
ing meals, etc. From Figure 1, it can be viewed that an activity can be detected
by an inhabitant’s location along with the objects involved in the activity. For
example, a toileting activity consists of going to the bathroom, flushing the toilet,
turning on the tap and washing hands. All these sequences, the objects involved
and the activity structure can be abstractly explained by Figure 1.
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There are different levels of uncertainty which may exist in smart homes and
the inference process when recognizing activities. In order to incorporate the un-
certainty into an activity recognition process, the sources of uncertainty may be
characterized into two categories. The first is related to the reliability of sensors,
which is referred to as sensor uncertainty. This type of uncertainty originates
from the sensors themselves or within the sensor networks, such as the sensors
being broken, the sensors’ battery exhausted, the transmission errors between
the receiver and the transmitter, etc [12]. The sensor uncertainty is unavoidable
and unpredictable, however, this type of uncertainty can be estimated through
hundreds of thousands of lab based tests when the sensors are examined per-
forming typical operations. The second category of uncertainty is related to the
interaction between the sensors and the activities of inhabitants and is referred
to as relation uncertainty. In general the sensed information about the environ-
ment provided by the sensors is not sufficient to be able to identify an activity
with total certainty. For instance, the activity of going to the bathroom does not
mean that the inhabitant has used the toilet. This level of information merely
only implies the possibility that a toilet activity may have taken place. Hence,
it is crucial to know how likely an activity would occur given the condition of
sensors activated in order to recognize activities more precisely.

Fig. 1. Relation of Sensors − Objects − Activities

3 Basics of the Dempster-Shafer (DS) Theory of
Evidence

The DS theory of evidence remedies the limitations of the traditional Bayesian
belief model to allow the explicit representation of uncertainty and management
of conflict information involved in the decision making process [13]. It formulates
a proposition set as a frame of discernment, denoted by Θ and its power set 2Θ

is all the subsets of Θ.

Definition 1. Let Θ be a frame of discernment. Let m be a mass function,
which is defined as a assignment function assigning a numeric value in [0, 1] to
X ∈ 2Θ with two conditions as specified below.
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1) m(∅) = 0, 2)
∑
X⊆Θ

m(X) = 1

where X is called a focal element, focus or singleton if X is one element subset
with m(X) > 0.

Definition 2. Let Θ be a frame of discernment. Let m1 and m2 be two mass
functions defined for X,Y ⊆ Θ. Dempster’s rule of combination (or Dempster’s
rule) is, denoted by ⊕, defined as

(m1 ⊕m2)(A) =

∑
X∩Y=A m1(X)m2(Y )∑
X∩Y �=∅m1(X)m2(Y )

(1)

where the operator ⊕ is also called the orthogonal sum. N =
∑

X∩Y �=∅m1(X)
m2(Y ) is the normalization constant. E = 1−N is called the conflict factor. This
rule strongly emphasizes the agreement between multiple independent sources
and ignores all the conflicting evidence through a normalization factor.

Definition 3. Let A = 〈Ω,Θ, ψ〉 express the relation between sensors and ac-
tivities. Let Ω = {s1, s2, . . . , s|Ω|} be a set of evidence derived from sensors,
Θ = {a1, a2, . . . , a|Θ|} be an activity space, and ψ be a subset-valued mapping
(also called multi-valued mapping [9]) as follows:

ψ : Ω → 22
Θ×[0,1]

such that for every s ∈ Ω, we have a pair set of subsets and probabilities,

ψ(s) = {(A1, ps(A1|s)), (A2, ps(A2|s)), . . . , (An, ps(An|s))}. (2)

ψ(s) is named as an image of s, a focal probabilistic set. We can separate an
image to two components, they hold,

A1, A2, . . . An ∈ 2Θ, and ps(A1|s), ps(A2|s), . . . , ps(An|s) ∈ [0, 1].

For the convenience of our discussion, we introduce a term for an activity space
and a multi-valued mapping, called a granule set, denoted by G(s) and G(p) re-
spectively. A granule set of activities is then denoted by G(s) = {A1, A2, . . . An};
and the granule set of relation with a sensor s under the subset-valued mapping
is denoted by:

G(p) = { ps(A1|s), ps(A2|s), . . . , ps(An|s)}. (3)

Equation (3) precisely describes a formal association between sensors and activ-
ities, quantifying the uncertainty being inherent in their relation by means of
conditional probabilities. It can be noted that the focal probabilistic set ψ of a
sensor source s ∈ Ω satisfies the following conditions:
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(1) Ai �= ∅ for i = 1, . . . , n;
(2) ps(Ai|s) ≥ 0 for i = 1, ..., n;
(3)

∑n
i=1 ps(Ai|s) = 1.

The above conditions are slightly different than those presented in [9]. Here we
remove the constraint of Ai ∩ Aj = ∅ (i �= j) as it is likely that there is overlap
between two complex activities.

4 Formulation of Association between Sensors and
Activities

In the case of applying the previous formulation into the process of activity recog-
nition, it is necessary to look at a generalization of this formulation. Suppose we
have a group of activities to be involved as presented below:

A1, A2, . . . , A2|Θ|−1 ⊆ Θ.

which is supported by a collection of possible sensors Ξi, denoted by,

Si1, Si2, . . . , Si,2|Ξi|−1 ⊆ Ξi,where Ξi ⊆ Ω

For every A ⊆ Θ, by applying the subset-value mapping function ψ, Ξi can be
associated to A, we thus obtain a granule set of conditional probabilistic relation
below:

G(p) = {pi1(A|Si1), pi2(A|Si2), . . . , pi,2|Ξi|−1(A|Si,2|Ξi|−1)},

Consider all activity subsets in 2Θ, we can preset all respective conditional prob-
abilistic mappings in the form of a matrix.

⎡
⎢⎢⎢⎣

G(pi1)
G(pi2)

...
G(pi2|Ξi|−1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

pi1(A1|Si1) . . . pi1(Aj |Si1) . . . pi1(Θ|Ξi1)

pi2(A1|Si2) . . . pi2(Aj |Si2) . . . pi2(Θ|Ξi2)

...
...

...
...

...

p
i2|Ξi|−1

(A1|Ξi) . . . p
i2|Ξi|−1

(Aj |Si2|Ξi|−1
) . . . p

i2|Ξi|−1
(Θ|Ξi)

⎤
⎥⎥⎥⎥⎦ (4)

For each row, the conditions given in Definition 3 hold, which forms a basis for
defining a mass function. Once we have the mass functions, it is straightforward
to determine an activity of interest through a maximum selection.

5 Uncertainty with Sensor Sources

Given the formulation in Section 4, now we consider the formulation of the
uncertainty associated with the sensor sources. As previously mentioned, there
are a number of factors affecting the reliability of sensors, their reliability can
normally be estimated by manufacturer statistics. Such quantities can be directly
adapted to represent the degrees of sensor reliability. Thus for a group of sensors,



570 Y. Bi, C. Nugent, and J. Liao

namely Ξi, we can define prior probabilities for them, denoted by ri such that
ri : 2

Ξi → [0, 1] over all subsets of Ξi.

ri = {ri(Si1), ri(Si2), . . . , ri(Si,2|Ξi|−1)}. (5)

In relation to the above the representation of uncertainty, it is necessary to
consider how two categories of uncertainty expressed in Equations (4) and (5) can
be aggregated to represent the degrees of uncertainty for the activities involved.
We can write Equation (5) as a transposed one dimensional matrix and multiply
it with Equation (4), hence we have:

⎡⎢⎢⎢⎣
ri(Si1)
ri(Si2)

...
ri(Si,2|Ξi|−1)

⎤⎥⎥⎥⎦
T

×

⎡⎢⎢⎢⎣
G(pi1)
G(pi2)

...
G(pi2|Ξi|−1)

⎤⎥⎥⎥⎦ (6)

= [ pi1(A1|Si1)ri(Si1) + pi2(A1|Si2)ri(Si2) + . . .++pi,2|Ξi|−1(A1|Ξi)ri(Ξi)

pi1(A2|Si1)ri(Si1) + pi2(A2|Si2)ri(Si2) + . . .+ pi,2|Ξi|−1(A2|Ξi)ri(Ξi)

...
...

...

pi1(Θ|Si1)ri(Si1) + si2(Θ|Si2)ri(Ei2) + . . .+ pi,2|Ξi|−1(Θ|Ξi)ri(Ξi) ].

For any A ⊆ Θ we can write the above expression as a uniform formula as
presented in Equation (7).

pi1(A|Si1)ri(Si1) + pi2(A|Si2)ri(Si2) + . . .+ pi,2|Ξi|−1(A|Ξi)ri(Ξi) (7)

Equation (7) can be used to define a mass function 2Θ → [0, 1], since if A = ∅,
it results in zero, otherwise we have

∑
A⊆Θ

2|Ξi|−1∑
j=1

pij(A|Sij)ri(Sij) =
∑
j

∑
A

pij(A|Sij)ri(Sij)

=
∑
j

(ri(Sij)(
∑
A

pij(A|Sij))) =
∑
j

(ri(Sij)× (1)) =
∑
j

ri(Sij) = 1.

which satisfy the condition given in Definition 1.
Given different groups of sensors, denoted by Ξ1, Ξ2, . . ., in the same way, we

can obtain all respective mass functions. Through the use of Dempster’s rule of
combination we can combine pieces of sensor evidence together to recognize the
most likely activity. In an effort to convey these concepts we present a simple
tolieting scenario in the following Section to help illustrate how the underlying
concept and formulation can be used for the purpose of activity recognition.
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6 A Preliminary Evaluation

An example: consider the scenario where the bathroom door sensor and motion
sensor are activated, and then 3 sensors in the bathroom the light, flush and
hot tap are activated. There are many kinds of activities which may be related
to these sensors within the bathroom, such as ”Toileting”, ”Personal hygiene”,
and ”Washing hands”. In this scenario we use ”Toileting” as an example to
illustrate the reasoning process for activity recognition through calculating mass
probabilities.

First we consider a frame of discernment with two activities of toileting and
non-toileting, denoted by Θ = {a, ā}. A group of sensors considered here include
s1 for ”flush” and s2 for ”hot tap”, denoted by Ξ1 = {s1, s2}. When these
sensors are activated, they indicate strongly to support {a} and refute {ā},
whereas when they are deactivated, their support should be distributed over {ā}
and Θ. With the above notations, we can define an evidence space Ξ1 = {s1, s2}
and multi-valued mapping functions p11, p12, p13 : 2Θ → [0, 1] such that

p11({a}|{s1})=0.8,p11({ā}|{s1})=0,p11(Θ|{s1})=0.2;

p12({a}|{s2})=0,p12({ā}|{s2})=0.5,p12(Θ|{s2})=0.5;

p13({a}|Ξ1)=0.40,p13({ā}|Ξ1)=0.25,p13(Θ|Ξ1)=0.35.

The conditional probabilities above can be estimated from sensor data by sta-
tistical learning. An example for sensors of tap(hot)(ID: 68), tap(cold)(ID: 88),
flush(ID: 100), and light(ID: 101) is shown in Figure 2, which are used to derive
these mass probabilities.

Fig. 2. Statistical Probabilities of Sensors

The support for the activities from the different sensors may not be equally
important due to the difference of the sensor reliability. Consider that the signal
from sensor s1 is very weak and based on the degree of its estimated relia-
bility, we can assign 0.2 to s1, denoted by r1({s1}) = 0.2, 0.5 to s2, denoted
by r1({s2}) = 0.5 and 0.3 to Ξ1, denoted by r1(Ξ1) = 0.3. By using formula
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(6), we can obtain the mass values for the tolieting and non-toileting activi-
ties: m({a}) = 0.28,m({ā}) = 0.325,m(Θ) = 0.395. From this group of the
mass values, it is possible to select an activity based on the maximum selection.
Moreover, for each group of sensors Ξi, we can derive a mass function supported
for an activity hypothesis, and by using Equation (1) all mass functions can be
combined to constrain a single or a set of activities.

Experiment: In the previous Sections, we have presented an evidential frame-
work for activity recognition for Smart Homes. To assess its effectiveness we
have carried out an experiment using the dataset collected by the MIT labora-
tory [7]. In their experiments, 77 switch sensors were installed in a single-person
apartment to collect data about a resident’s activity over a period of two weeks.
These sensors were attached to daily objects such as drawers, refrigerators and
containers to record activation-deactivation events when the subject carried out
daily activities. In our experiment, we choose the data collected for one person,
namely subject 1, and used a leave-one-out cross-validation as an evaluation
method where 13 days of data were used for training and one day of data was
used for testing, and the final result is an average of all the folds. The esti-
mated performance is measured by Precision and Recall, respectively. A partial
conceptual comparison with the results reported in [7] is also performed. The
experimental results are shown in Table 1.

Table 1. Results from two weeks of sensor data [7]

Date True Positive False Positive False Negative Precision Recall

27/3 3 0 0 100% 100%
28/3 3 0 1 100% 75%
29/3 8 1 0 88.9% 100%
30/3 3 0 4 100% 42.9%
31/3 3 1 0 75% 100%
1/04 4 0 1 100% 80%
2/04 5 5 0 50% 100%
3/04 2 0 1 100% 66.7%
4/04 3 0 1 100% 75%
5/04 5 3 0 62.5 100%
6/04 9 9 0 50% 100%
7/04 6 0 0 100% 100%
8/04 5 1 0 83.3% 100%
9/04 9 10 1 47.3% 90%

total 68 30 9 69.4% 88.3%

From the results presented in Table 1 we can view that the proposed method
correctly recognize 69.4% of the toileting activities in precision, and 88.3% in
recall. In particular on the 27th March there are no false positive and false
negative values at all. In comparison with the results of 62% in precision and
83.5% in recall for the toileting activity recognition reported in [7], our method
outperforms their method in this sense.
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7 Summary and Future Work

In this paper we have introduced an evidential framework for associating sensors
to activities by means of a multi-valued probabilistic mapping for recognizing
activities in Smart Homes. We have identified two categories of uncertainty in
terms of sensor uncertainty and relation uncertainty, and formulated how to use
the framework to represent and aggregate them. A viable statistical approach
has been proposed to learn multi-valued probabilistic mappings for estimating
the degree of relation uncertainty. On the basis of the established formalism, we
have developed computational methods for inferring activities by aggregating
multi-valued probabilities committed to sensor-activity relation with the prior
probabilities committed to the reliability of sensor sources, both of which are ex-
pressed by matrices. A preliminary experiment has been performed on a toileting
activity using the MIT dataset [7], the results attained have demonstrated the
advantage of the proposed method. Plans for future work involve the notion to
scale up our experiments involving a broad range of sensor data encompassing a
variety of ADLs and to apply the proposed method in a real world environment,
such as that in a personal healthcare home environment.
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Abstract. Uncertain databases are used in some fields to store both certain and
uncertain data. When uncertainty is represented with the theory of belief func-
tions, uncertain databases are assumed to be evidential. In this paper, we suggest
a new method to quantify the source degree of dependence in order to enrich its
evidential database by adding this dependence information. Enriching evidential
databases with its sources degree of dependence can help user when making his
decision. We used some generated mass functions to test the proposed method.

Keywords: Theory of belief functions, combination, dependence, belief
clustering, evidential databases.

1 Introduction

Databases are used to store a high quantity of structured data which are usually perfect.
Most of the time, available data are imperfect, thus the use of uncertain databases in
order to store both certain and uncertain data. Many theories manage uncertainty such
as the theory of probabilities, the theory of fuzzy sets, the theory of possibilities and
the theory of belief functions. The theory of belief functions introduced by [4,11] is
used to model imperfect (imprecise and/or uncertain) data and also to combine them.
In evidential databases, uncertainty is handled with the theory of belief functions.

In many fields such as target recognition the number of evidential databases is great,
and they store most of the time the same information provided by different sources.
Therefore, integrating evidential databases reduces the quantity of data to be stored and
also helps decision makers when handling all available information. Decision makers
will use only an integrated evidential database rather than many separated ones.

To combine uncertain information from different evidential databases many com-
bination rules can be used. Integrating evidential databases is useful when sources are
cognitively independent. A source is assumed to be cognitively independent towards an-
other one when the knowledge of that source does not affect the knowledge of the first
one. Enriching evidential databases with information about its source dependence in-
forms the user about the interaction between sources. In some cases, like when a source
is completely dependent on another one, the user can decide to discard the dependent
source and its evidential database is not integrated. Thus, we suggest a method to es-
timate the dependence between sources and to analyze the type of dependence when
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sources are dependent, thus a source may be dependent towards another one by saying
the same thing (positive dependence) or saying the opposite (negative dependence).

In the following, we introduce preliminaries of Dempster-Shafer theory as well as ev-
idential databases in the second section. In the third section, a belief clustering method
is presented and its classification result is used to estimate the sources degree of in-
dependence. If sources seem to be dependent, it is interesting to investigate whether
this dependency is positive or negative in the fourth section. This method is tested on
random mass functions in the fifth section. Finally, conclusions are drawn.

2 Theory of Belief Functions

The theory of belief functions [4,11] is used to model imperfect data.
In the theory of belief functions, the frame of discernment also called universe of

discourse Ω = {ω1,ω2, . . . ,ωn} is a set of n elementary and mutually exclusive and
exhaustive hypotheses. These hypotheses are all the possible and eventual solutions of
the problem under study.

The power set 2Ω is the set of all subsets made up of hypotheses and union of hy-
potheses from Ω .

The basic belief function (bba) also called mass function is a function defined on
the power set 2Ω and affects a value from [0,1] to each subset. A mass function m is a
function:

m : 2Ω 2→ [0,1] (1)

such that:

∑
A⊆Ω

m(A) = 1 (2)

One or many subsets may have a non null mass, this mass is the source’s belief that the
solution of the problem under study is in that subset.

The belief function (bel) is the minimal belief allocated to a subset A justified by
available information on B (B⊆ A):

bel : 2Ω → [0,1]
A 2→ ∑

B⊆A,B �= /0

m(B) (3)

The implicability function b is proposed to simplify computations:

b : 2Ω → [0,1]
A 2→ ∑

B⊆A

m(B) = bel(A)+m( /0) (4)

The theory of belief functions is used to model uncertain information and also to com-
bine them. A great number of combination rules are proposed such as Dempster’s rule
of combination [4] which is used to combine two different mass functions m1 and m2

provided by two different sources as follows:

m1⊕2(A) = (m1⊕m2)(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

B∩C=A

m1(B)×m2(C)

1− ∑
B∩C= /0

m1(B)×m2(C)
∀A⊆Ω , A �= /0

0 if A = /0

(5)
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The pignistic transformation is used to compute pignistic probabilities from masses in
the purpose of making a decision. The pignistic probability of a singleton X is given by:

BetP(X) = ∑
Y∈2Θ ,Y �= /0

|X ∩Y |
|Y |

m(Y )
1−m( /0)

. (6)

2.1 Conditioning

When handling a mass function, a new evidence can arise confirming that a proposition
A is true. Therefore, the mass affected to each focal element C has to be reallocated in
order to take consideration of this new evidence. This is achieved by the conditioning
operator. Conditioning a mass function m over a subset A⊆Ω consists on restricting the
frame of possible propositions 2Ω to the set of subsets having a non empty intersection
with A. Therefore the mass allocated to C ⊆ Ω is transferred to {C∩A}. The obtained
mass function, result of the conditioning, is noted m[A] : 2Ω → [0,1] such that [10]:

m[A](C) =

⎧⎨⎩0 for C �⊆ A

∑
X⊆Ā

m(C∪X) for C ⊆ A (7)

where Ā is the complementary of A.

2.2 Generalized Bayesian Theorem and Disjunctive Rule of Combination

The generalized bayesian theorem (GBT), proposed by Smets [9], is a generalization
of the bayesian theorem where the joint belief function replaces the conditional proba-
bilities. Let X and Y be two dependent variables defined on the frames of discernment
ΩX and ΩY . Suppose that the conditional belief function bel[X ](Y ) represents the con-
ditional belief on Y according to X .

The aim is to compute the belief on X conditioned on Y . Thus, the GBT is used to
build bel[Y ](X):

bel[Y ](X) = b[Y ](X)− b[Y ]( /0)
bel[Y ](X) = ∏

xi∈X̄

b[xi](Ȳ ) (8)

The conditional belief function bel[X ](Y ) can be extended to the joint frame of discern-
ment ΩX ×ΩY , then conditioned on yi ⊆ ΩY and the result is then marginalized on X ,
the corresponding operator is the disjunctive rule of combination:

bel[X ](Y ) = b[X ](Y )− b[X ]( /0)
bel[X ](Y ) = ∏

xi∈X
b[xi](Y ) (9)

2.3 Evidential Database

Classic databases are used to store certain data, whereas data are not always certain
but can sometimes be uncertain and even incomplete. The use of evidential database
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(EDB), also called D-S database, for storing data from different levels of uncertainty.
Evidential databases proposed by [1] and [6] are databases containing both certain
and/or uncertain data. Uncertainty and incompleteness in evidential databases are mod-
eled with the theory of belief functions previously introduced.

An evidential database is a database having n records and p attributes such that every
attribute a (1≤ a ≤ p) has an exhaustive domain Ωa containing all its possible values:
its frame of discernment [6].

An EDB has at least one evidential attribute. Values of this attribute can be uncertain,
thus these values are mass functions and named evidential values. An evidential value
Via for the ith record and the ath attribute is a mass function such that:

mia : 2Ωa → [0,1] with:
mia( /0) = 0 and ∑

X⊆Ωa

mia(X) = 1 (10)

Table 1 is an example of an evidential database having 2 evidential attributes namely
road condition and weather. Records of this evidential database are road condition
and weather predictions for the five coming days according to one source. The domain
Ωweather = {Sunny S, Rainy R, Windy W} is the frame of discernment of the evi-
dential attribute weather and the domainΩRC = {Sa f e S, Perilous P, Dangerous D}
is the frame of discernment of the evidential attribute road condition.

Table 1. Example of an EDB

Day Road condition Weather

d1 {P∪D}(1) S(0.3) R(0.7)

d2 S(1) S(0.2) {S∪W}(0.6) {S∪R∪W}(0.2)

d3 {S∪P∪D}(1) {S∪R∪W}(1)
d4 S(0.6) {S∪P}(0.4) S(0.4) {S∪R∪W}(0.6)
d5 S(1) S(1)

3 Independence

Evidential databases previously described store a great number of records (objects).
Similar objects may be stored in that type of databases meaning that similar situations
can be redundant. Clustering techniques are used to group several similar objects into
the same cluster. When having n objects, the most similar ones are affected to the same
group. Applying a clustering technique to evidential database records (i.e. to mass func-
tions) is useful in order to group redundant cases. Some evidential clustering techniques
are already proposed such as [5,2,8]. A method of sources independence estimating is
presented in [3] and recalled in the following. In this paper we suggest to specify the
type of dependence when sources are dependent and also to use this information for
evidential database enrichment.
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3.1 Clustering

We use here a clustering technique using a distance on belief functions given by [7]
such as in [2]. The number of clusters C have to be known, a set T contains n objects
oi : 1≤ i≤ n which values mi j are belief functions defined on the frame of discernment
Ωa. Ωa is the frame of discernment of the evidential attribute.

This set T is a table of an evidential database having at least one evidential attribute
and at most p evidential attributes. mia is a mass function value of the ath attribute
for the ith object (record), this mass function is defined on the frame of discernment
Ωa (Ωa is the domain of the ath attribute). A dissimilarity measure is used to quantify
the dissimilarity of an object oi having {mi1, . . . ,mi j, . . . ,mip} as its attributes values
towards a cluster Clk containing nk objects o j. The dissimilarity D of the object oi and
the cluster Clk is as follows:

D(oi,Clk) =
1
nk

nk

∑
j=1

1
p

p

∑
l=1

d(mΩa
il ,mΩa

jl ) (11)

and

d(mΩa
1 ,mΩa

2 ) =

√
1
2
(mΩa

1 −mΩa
2 )tD(mΩa

1 −mΩa
2 ) (12)

with:

D(A,B) =

{
1 if A = B = /0
|A∩B|
|A∪B| ∀A,B ∈ 2Ωa

(13)

We note that 1
p ∑

p
l=1 d(mΩa

il ,mΩa
jl ) is the dissimilarity between two objects oi and o j. The

dissimilarity between two objects is the mean of the distances between belief functions
values of evidential attributes (evidential values). Each object is affected to the closest
cluster (having the minimal dissimilarity value) in an iterative way until reaching the
stability of the cluster repartition.

3.2 Independence Measure

Definition 1. Two sources are considered to be independent when the knowledge of one
source does not affect the knowledge of the other one.

The aim is to study mass functions provided by two sources in order to reveal any
dependence between these sources. Provided mass functions are stored in evidential
databases, thus each evidential database stores objects having evidential values for
some evidential attributes. Suppose having two evidential databases EDB1 and EDB2

provided by two distinct sources s1 and s2. Each evidential database contains about n
records (objects) and p evidential attributes. Each mass function stored in that EDB
can be a classification result according to each source. The aim is to find dependence
between sources if it exists. In other words, two sources s1 and s2 classifying each one
n objects. mia (ath attribute’s value for the ith object) provided by s1 and that provided
by s2 are referred to the same object i. If s1 and s2 are dependent, there will be a rela-
tion between their belief functions. Thus, we suggest to classify mass functions of each
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source in order to verify if clusters are independent or not. The proposed method is in
two steps, in the first step mass functions of each source are classified then in the second
step the weight of the linked clusters is quantified.

1. Step 1: Clustering
Clustering technique, presented in section 3.1, is used in order to classify mass
functions provided by both s1 and s2, the number of clusters can be the cardinality
of the frame of discernment. After the classification, objects stored in EDB1 and
provided by s1 are distributed on C clusters and objects of s2 stored in EDB2 are
also distributed on C clusters. The output of this step are C clusters of s1, noted Clk1

and C different clusters of s2, noted Clk2 , with 1≤ k1,k2 ≤C.
2. Step 2: Cluster independence

Once cluster repartition is obtained, the degree of independence and dependence
between sources are quantified in this step. The most similar clusters have to be
linked, a cluster matching is performed for both clusters of s1 and that of s2. The
dissimilarity between two clusters Clk1 of s1 and Clk2 of s2 is the mean of distances
between objects oi contained in Clk1 and all the objects o j contained on Clk2 :

δ 1(Clk1 ,Clk2) =
1

nk1

nk1

∑
l=1

D(ol ,Clk2) (14)

We note that nk1 is the number of objects on the cluster Clk1 and δ 1 is the dissimi-
larity towards the source s1.

Dissimilarity matrix M1 and M2 containing respectively dissimilarities between clusters
of s1 according to clusters of s2 and dissimilarities between clusters of s2 according to
clusters of s1, are defined as follows:

M1 =

⎛⎜⎜⎜⎜⎝
δ 1

11 δ 1
12 . . . δ 1

1C
. . . . . . . . . . . .
δ 1

k1 δ
1
k2 . . . δ 1

kC
. . . . . . . . . . . .
δ 1

C1 δ
1
C2 . . . δ 1

CC

⎞⎟⎟⎟⎟⎠ and M2 =

⎛⎜⎜⎜⎜⎝
δ 2

11 δ 2
12 . . . δ 2

1C
. . . . . . . . . . . .
δ 2

k1 δ
2
k2 . . . δ 2

kC
. . . . . . . . . . . .
δ 2

C1 δ
2
C2 . . . δ 2

CC

⎞⎟⎟⎟⎟⎠ (15)

We note that δ 1
k1k2

is the dissimilarity between Clk1 of s1 and Clk2 of s2 and δ 2
k1k2

is the

dissimilarity between Clk2 of s2 and Clk1 of s1 and δ 1
k1k2

= δ 2
k2k1

. M2 the dissimilarity
matrix of s2 is the transpose of M1 the dissimilarity matrix of s1. Clusters of s1 are
matched to the most similar clusters of s2 and clusters of s2 are linked to the most
similar clusters of s1. Two clusters of s1 can be linked to the same cluster of s2. A
different matching of clusters is obtained according to s1 and s2. A set of matched
clusters is obtained for both sources and a mass function can be used to quantify the
independence between each couple of matched clusters. Suppose that the cluster Clk1

of s1 is matched to Clk2 of s2, a mass function m defined on the frame of discernment
ΩI = {Dependent Ī, Independent I} describes how much this couple of clusters is
independent or dependent as follows:⎧⎪⎨⎪⎩

mΩI
k1k2

(Ī) = α(1− δ 1
k1k2

)

mΩI
k1k2

(I) = αδ 1
k1k2

mΩI
k1k2

(Ī∪ I) = 1−α
(16)
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whereα is a discounting factor. When α = 1, the obtained mass function is a probabilis-
tic mass function which quantifies the dependence of each matched clusters according
to each source. A mass function is obtained for each matched clusters Clk1 and Clk2 ,
thus C mass functions are obtained for each source. The combination of that C mass
functions mΩI

k1k2
using Dempster’s rule of combination is a mass function mΩI reflecting

the overall dependence of one source towards the other one:

mΩI =⊕mΩI
k1k2

(17)

After the combination, two mass functions describing the dependence of s1 towards s2

and that of s2 towards s1 are obtained. Pignistic probabilities are derived from mass
functions using the pignistic transformation in a purpose of making decision about the
dependence of sources. A source s1 is dependent on the source s2 if BetP(Ī) ≥ 0.5
otherwise it is independent. BetP(Ī) is the pignistic probability of Ī computed from
mΩI

s1 (Ī).

4 Negative and Positive Dependence

A mass function describing the independence of one source towards another one can
inform about the degree of dependence but does not inform if this dependence is positive
or negative. In the case of dependent sources, this dependence can be positive meaning
that the belief of one source is directly affected by the belief of the other one, thus both
sources have the same knowledge. In the case of negative dependence, the knowledge
of one source is the opposite of the other one.

Definition 2. A source is positively dependent on another source when the belief of the
first one is affected by the knowledge of the belief of the second one and both beliefs are
similar.

If a source s1 is negatively dependent on s2, s1 is always saying the opposite of what
said s2.

Definition 3. A source is negatively dependent on another source when their beliefs
are different although the belief of the first one is affect by the knowledge of the belief
of the second one.

If matched clusters contain the same objects thus these clusters are positively de-
pendent. It means that both sources are almost classifying objects in the same way. If
matched clusters contain different objects thus one source is negatively dependent on
the other because it is classifying differently the same objects. A mass function defined
on the frame of discernmentΩP = {Positive Dependent P, Negative Dependent P̄}
can be built in order to quantify the positivity or negativity of the dependence of a clus-
ter Clk1 of s1 and a cluster Clk2 of s2 such that Clk1 and Clk2 are matched according to
s1 as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

mΩP
k1k2

(P|Ī) = 1− |Clk1
∩Clk2

|
|Clk1

|

mΩP
k1k2

(P̄|Ī) = |Clk1
∩Clk2

|
|Clk1

|

mΩP
k1k2

(P∪ P̄|Ī) = 0

(18)
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We note that these mass functions are conditional mass functions because they do not
exist if sources are independent, thus these mass functions are dependent on the de-
pendency of sources. These mass functions are also probabilistic. In order to have the
marginal mass functions, the Disjunctive Rule of Combination proposed by Smets [9] in
section 2.2 can be used in order to compute the marginal mass functions defined on the
frame of discernmentΩP. Marginal mass functions are combined using Dempster’s rule
of combination presented in equation (5), then the pignistic transformation is used to
compute pignistic probabilities which are used to decide about the type of dependence
and also to enrich the corresponding evidential databases.

5 Example

The method described above is tested on generated mass functions. Mass functions are
generated randomly using the following algorithm:

Algorithm 1. Mass generating
Require: |Ω |, n : number of mass functions
1: for i = 1 to n do
2: Choose randomly F , the number of focal elements on [1, |2Ω |].
3: Divide the interval [0,1] into F continuous sub intervals.
4: Choose randomly a mass from each sub interval and attribute it to focal elements.
5: Attribute these masses to focal elements previously chosen.
6: The complement to 1 of the attributed masses sum is affected to the total ignorance m(Ω).
7: end for
8: return n mass functions

This algorithm is used to generate n random mass functions which decisions (using
the pignistic transformation) are not known, whereas in the case of positive or negative
dependence decision classes have to be checked.

1. Positive dependence:
When sources are positively dependent, the decided class (using the pignistic trans-
formation) of one is directly affected by that of the other one. To test this case,
we generated 100 mass functions on a frame of discernment of cardinality 5. Both
sources are classifying objects in the same way because one of the sources is posi-
tively dependent on the other as follows:
Applying the method described above, we obtained this mass function defined on

the frameΩP = {P, P̄} and describing the positive and negative dependence of s1

towards s2:
m(P) = 0.679, m(P̄) = 0.297, m(P̄∪P) = 0.024
Using the pignistic transformation BetP(P) = 0.691 and BetP(P̄) = 0.309, mean-
ing that s1 is positively dependent on s2. The marginal mass function of the positive
and negative dependence of s2 according to s1:
m(P) = 0.6459, m(P̄) = 0.3272, m(P̄∪P) = 0.0269
Using the pignistic transformation BetP(P)= 0.6593 and BetP(P̄) = 0.3407, mean-
ing that s2 is positively dependent on s1.
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Algorithm 2. Positive dependent Mass function generating
Require: n mass functions generated using algorithm 1, Decided classes
1: for i = 1 to n do
2: Find the m focal elements of the ith mass function
3: for j = 1 to m do
4: The mass affected to the jth focal element is transferred to its union with the decided

class.
5: end for
6: end for
7: return n mass functions

2. Negative dependence:
When sources are negatively dependent, one of the sources is saying the opposite
of the other one. In other words, when the classification result of the first source
is a class A, the second source may classify this object in any other class but not
A. Negative dependent mass functions are generated in the same way as positive
dependent mass functions but the mass of each focal element is transferred to focal
elements having a null intersection with the decided class. In that case, we obtain
this mass function of the dependence of s1 according to s2:
m(P) = 0.0015, m(P̄) = 0.9909, m(P̄∪P) = 0.0076
Using the pignistic transformation BetP(P)= 0.0053 and BetP(P̄) = 0.9947, mean-
ing that s1 is negatively dependent on s2. The marginal mass function of the depen-
dence of s2 according to s1:
m(P) = 0.0011, m(P̄) = 0.9822, m(P̄∪P) = 0.0167
Using the pignistic transformation BetP(P) = 0.00945 and BetP(P̄) = 0.99055,
meaning that s2 is negatively dependent on s1. These mass functions are added to
the corresponding evidential databases to enrich them. mΩI

k1k2
are not certain mass

functions, thus some degree of total ignorance appears in m(P̄∪P) when using the
DRC.

6 Conclusion

Enriching evidential databases with dependence information can inform users about
the degree of interaction between their sources. In some cases where one source is
completely dependent on an another one, the evidential database of that source can be
discarded when making a decision. In this paper, we suggested a method estimating the
dependence degree of one source towards another one. As a future work, we may try to
estimate the dependence of one source according to many other sources and not only
one source.
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Abstract. Interventions are tools used to distinguish between mere cor-
relations and causal relationships. These standard interventions are as-
sumed to have certain consequences, i.e. they succeed to put their target
into one specific state. In this paper, we propose to handle interventions
with uncertain consequences. The uncertainty is formalized with the be-
lief function theory which is known to be a general framework allowing
the representation of several kinds of imperfect data. Graphically, we in-
vestigate the use of belief function causal networks to model the results
of passively observed events and also the results of interventions with
uncertain consequences. To compute the effect of these interventions, al-
tered structures namely, belief mutilated graphs and belief augmented
graphs with uncertain effects are used.

1 Introduction

Causality is an important issue used in significant applications in several areas.
Bayesian networks [6,16] which are directed acyclic graphs have long been consid-
ered as tools to model causation. However, different networks can be equivalent if
they describe exactly the same conditional independence relation and induce the
same joint distributions. Only one of these networks follows the causal process,
the so-called causal network.

Upon observations, beliefs have to be revised. On a Bayesian network, two
main methods can be used for revising the beliefs when the input information
is uncertain: virtual evidence method [15] and Jeffrey’s rule [12]. On one hand,
virtual evidence uses a likelihood ratio to represent the strength of the confidence
towards the observed event. On the other hand, Jeffrey’s rule is an extension of
Bayesian conditioning. It is based on probability kinematics whose principle is
to minimize belief change. Even if these methods differ according to the way the
uncertain evidence is specified, in [5] the authors prove that they are equivalent
and that one can translate between them.

Pearl [16] has proposed to use the concept of intervention as a tool to distin-
guish between mere correlations and causal links. Interventions consist in exter-
nal actions that allow to test if setting the value of a variable causally affects
the value of another. A correlation without causation is therefore a symmetric

S. Greco et al. (Eds.): IPMU 2012, Part III, CCIS 299, pp. 585–595, 2012.
� Springer-Verlag Berlin Heidelberg 2012



586 I. Boukhris, Z. Elouedi, and S. Benferhat

relation that involves the observation of events simultaneously but an action on
one of them does not have an impact on the occurrence of the other ones. The
“do” operator was introduced by Pearl (e.g. [16]) to represent interventions in
the setting of probabilistic graphical models. It is used to distinguish between
observed states of variables and state of variables generated by interventions.
Alternative causal networks were proposed in other uncertainty frameworks. In
fact, possibilistic causal networks were proposed to handle cases requiring pure
qualitative and ordinal handling [2] and belief function causal networks [4] are
ideal tools in situations where data are missing.

However, acting on a variable and setting it into one specific value is not
always possible to achieve. Therefore, handling interventions whose consequences
are uncertain is required. Despite its need in real world applications, only few
works in the probabilistic setting addressed this issue (e.g. [9,13,22]). Besides in
these works, imperfect interventions are different from what is considered in the
scope of this paper. In fact, they are considered as external actions that change
the local probability distribution of the target variable.

The belief function theory offers natural tools to represent interventions with
uncertain consequences. It is considered as a general framework for reasoning
with uncertainty. Indeed, it has connections to other uncertainty frameworks
such as probability and possibility theories. Therefore, it is appropriate to man-
age imperfect data. However, no works have been proposed to deal with inter-
ventions that fail to put their targets into one specific state under the belief
function framework.

This paper presents a causal model able to represent the results of observations
that may be uncertain and also interventions with uncertain consequences. We
propose to handle these interventions on altered belief function causal networks,
namely mutilated graph and augmented graphs with uncertain effects.

The rest of the paper is organized as follows: In Section 2, we briefly recall the
basics of belief function theory and belief function causal networks. In Section
3, we introduce the Jeffrey-Dempster’s rule of conditioning [14]. Then in Section
4, we investigate its relations with the concept of belief function observations
and stress on the differences between observations and interventions for belief
causation. In Section 5, we detail how interventions with uncertain consequences
can be represented in the belief function framework. Section 6 concludes the
paper.

2 Belief Function Theory and Causal Networks

2.1 Basics of Belief Function Theory

In this section, we briefly sketch the basic concepts of belief function theory. For
more details see [17,19]. The basic belief assignment (bba), denoted by mΘ (or
m), is a mapping from 2Θ to [0,1] such that:∑

A⊆Θ

mΘ(A) = 1. (1)
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For each subset A of Θ, m(A) is called the basic belief mass (bbm). It represents
the part of belief exactly committed to the event A of Θ. Subsets of Θ such that
m(A)> 0 are called focal elements and denoted by FΘ . We denote the set of
focal elements belonging to a subset A of the frame of discernment as FA. When
the emptyset is not a focal element, the bba is called normalized. Total ignorance
corresponds to m(Θ) = 1 and certainty is represented by the allocation of the
whole mass to a unique singleton of Θ.

The plausibility function Pl : 2Θ → [0, 1] is defined as:

Pl(A) =
∑

B∩A �=∅
m(B). (2)

Two bba’s m1 and m2 provided by two distinct and reliable sources, may be
aggregated using Dempster’s rule of combination, denoted by ⊕, as follows:

m1 ⊕m2(A) =

{
K ·
∑

B∩C=A m1(B) ·m2(C), ∀B,C ⊆ Θ if A �= ∅
0 otherwise.

(3)

where K−1 = 1−
∑

B∩C=∅m1(B) ·m2(C) is the normalization factor.
Conditioning allows to change the knowledge the agent had, update masses

originally defined on A⊆ Θ, following the information that an event B ⊆ Θ is
true. With Dempster’s rule of conditioning, all non vacuous events implying B
will be transferred to the part of A compatible with the evidence namely, A∩B
[19]. In the case, where A ∩ B = ∅, several methods exist for transferring the
remaining evidence [20]. m(A|B) denotes the degree of belief of A in the context
where B holds with A,B ⊆ Θ. It is computed by:

m(A|B) =

∑
C,C∩B=A m(C)

Pl(B)
(4)

Specialization is an extension of set inclusion. A mass function m is a special-
ization of m′, denoted m 8 m′, iff there is a square matrix Σ with a general
term σ(A,B), A,B ⊆ Θ where:

∑
A⊆W σ(A,B) = 1, ∀B ⊆ Θ, σ(A,B) > 0 =⇒

A ⊆ B, A,B ⊆ Θ and m(A) =
∑

B⊆W σ(A,B)m′(B), ∀A ⊆ Θ.
A vacuous extension is changing the referential by adding new variables, a

mass function mX defined on ΘX will be expressed on ΘX×ΘY as follows:

∀x ⊆ ΘX , ∀y ⊆ ΘY ;m
X↑XY (x, y) =

{
mX(x) if y = ΘY

0 otherwise
(5)

Let mX(x|y) be defined on ΘX for y ⊆ ΘY . To get rid of conditioning, we have
to compute its ballooning extension. It is the least committed belief function
defined on ΘX × ΘY . If this deconditionalized subset has to be conditionalized
on x, it yields mX(x|y). It is defined as:

m
X �XY
y (θ) =

{
mX(x|y) if θ = (x, y) ∪ (ΘX , y)
0 otherwise.

(6)



588 I. Boukhris, Z. Elouedi, and S. Benferhat

2.2 Belief Function Causal Networks

A belief causal network [4] is a particular case of a belief function network [1,23].
In this graphical model denoted G, arcs describe causal relationships instead of
dependence relations. It is defined on two levels:

- Qualitative level: represented by a directed acyclic graph (DAG), G = (V,E)
where V is a set of variables and E is a set of arcs encoding causal links among
variables. A variable Aj is called a parent of a variable Ai if there is an edge
from Aj to Ai. A subset from the set of the parents of Ai, PA(Ai), is denoted
by Pa(Ai). A subset from one parent node, PAj(Ai), is denoted by Paj(Ai).

- Quantitative level: represented by the set of bba’s associated to each node in
the graph. For each root node Ai (i.e. Pa(Ai) = ∅) having a frame of discernment
ΘAi , an a priori mass mAi(a) is defined on the powerset 2ΘAi (i.e. a ⊆ ΘAi).
For other nodes, a conditional bba mAi(a|Pa(Ai)) is specified for each value of
Ai knowing each instance of Pa(A) such that

∑
a⊆ΘAi

mAi(a | Pa(Ai)) = 1 and

mAi(∅ | Pa(Ai)) = 0.
With belief function networks, it is possible to deal with ill-known or ill-

defined a priori knowledge including conditional ones to compute a posteriori
distribution and therefore solving the problem of choosing an appropriate a
priori. The definition of the joint distribution under a belief function framework is
different from the construction made in Bayesien networks. In fact, it is obtained
by combining the local distribution of each node (for more details see [3]):

mV =A1,...,An = ⊕Ai∈V (⊕Paj(Ai)m
Ai(ai|Paj(Ai)) �Ai×PAj(Ai))↑V . (7)

3 Jeffrey Rule of Conditioning

3.1 Jeffrey’s Rule in a Probabilistic Framework

An a prior probability PE is revised into a posterior distribution PE∗rI in the
presence of new uncertain information denoted by I, and PI(Ii) = pi. The coef-
ficients pi’s are seen as imposed constraints. Two natural properties have been
proposed:

- Success where the input information imposed the belief change operation as
a constraint. It means that after the revision operation, the input evidence should
be retained. The probability of each event Ii must be equal to pi: PE∗rI = pi.

- Minimal change which means that PE∗rI should minimize relative entropy
with respect to the original distribution under the probabilistic constraints de-
fined by the input I. In fact, the conditional probability degree of any event
A given any event Ii should remain the same in the original and the revised
distributions: ∀Ii, ∀A, PE∗rI(A|Ii) = PE(A|Ii).

Jeffrey’s rule is an extension of probabilistic conditioning defined as [12]:

PE∗rI(A) =
∑
1,...,n

pi
PE(A ∩ Ii)

PE(Ii)
. (8)

It is a unique solution that satisfies both success and minimal change properties.
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3.2 Extension of Jeffrey’s Rule to the Belief Function Framework

Several proposals have been suggested as counterparts of Jeffrey’s rule under the
belief function framework. Actually, in [18] the author considers that Jeffrey’s
generalization can be found using Dempster’s rule of combination. However,
in [21] it was pointed out that Dempster’s rule of combination is symmetric
while one characteristic of Jeffrey’s rule is its asymmetry [7]. Three extensions of
Jeffrey’s rule were proposed in [11]: plausible, credible and possible conditioning.
In [21], the author explains that the drawback of these rules is that they do not
satisfy the success properties and thus cannot be considered as true extensions of
it to belief functions. Therefore, he proposed another rule satisfying the success
and the minimal change constraints. However, like the rule proposed in [10], he
first assumes that the input evidence is defined on a partition of Θ and not on
2Θ. Then to be applied, the new evidence should be consistent with the agent’s
beliefs. Besides, it fails to extend Dempster’s rule of conditioning.

Recently, in [14] a revision rule was proposed, so-called the Jeffrey-Dempster’s
rule. It generalizes Jeffrey’s rule from probability to mass functions. It also suc-
ceeds to extend Dempster’s rule of conditioning. Accordingly, we adopt this rule
in this paper. The idea of this rule is to share proportionally the input masses
mI among a family of focal subsets of mE in conformity with the idea of minimal
change. A minimal requirement of minimal change is formalized as m(E ∗r I)
is a specialization of m which can be seen as a generalization of implication in
propositional logic. This revision rule can be written in an extensive way as:

m(E ∗r I)(C) =
∑

E,I,E∩I=C,Plk(I)>0

mE(E)mI(I)

PlE(I)
+ 1{Plk(C)=0}mI(C) (9)

where 1{Plk(C)=0} = 1 if PlE(C) > 0 and 0 otherwise.
In [8], it was shown that this revision rule coincides with Dempster’s rule of

combination when the input is strongly consistent with the prior mass function
which satisfies the minimal change constraint. The two properties like the one
proposed by Jeffrey still holds for mE∗rI with a restricted form of input data:

- Success the revision result mE∗rI is a specialization of mI , mE∗rI8mI .
- Minimal change If I ∈ FI is such that A ∈ FE , either A ⊆ I or A ⊆ Ic, and

∀F �= I ∈ FI , F ∩ I = ∅, then ∀A ⊆ I, mE∗rI(A|I) = mE(A|I).

4 Observations vs Interventions

4.1 Observations

Passively seeing the spontaneous behavior of the system tells us if some events
are statistically related to other ones. An observation may be certain or uncer-
tain. The effect of a certain observation is computed using Dempster’s rule of
conditioning (Eq. 4). In the case of an uncertain observation, beliefs have to be
revised using Jeffrey-Dempster’s rule of conditioning (Eq. 9). As mentioned in
Section 3, this rule is a generalization of Dempster’s rule of conditioning when
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mI is a certain bba. However, correlated events identified with observations are
not necessarily causally related.

Example 1. Let us represent beliefs about the presence of sugar in a cup of coffee
and the sweetness of the coffee with two variables S (ΘS = {s1, s2} where s1 is
yes and s2 is no) and C (ΘC = {c1, c2} where c1 is sweet and c2 is bitter). Let
us suppose that the prior beliefs are defined as mE({s1})=0.1, mE({s2})=0.7,
mE(ΘS)=0.2. If mI({s1})=0.9, mI({s2})=0.05 and mI(ΘS)=0.05 then beliefs
are revised by computing mE∗rI using Equation 9 (see Table 1). We find that
mE∗rI({s1})= 0.905, mE∗rI({s2}) = 0.085, mE∗rI(ΘS)= 0.01. As you notice,
mE∗rI({s1}) > mI({s1}) which reflects the confirmation effect of this rule.

Table 1. mE∗rI

mE

mI mI({s1})=0.9 mI ({s2})=0.05 mI(ΘS)=0.05

mE({s1})=0.1 {s1} = 0.9 ∗ 0.1/0.3 = 0.3 ∅=0 {s1} = 0.05 ∗ 0.1/1 = 0.005

mE({s2})=0.7 ∅ = 0 {s2} = 0.05 ∗ 0.7/0.9 = 0.04 {s2} = 0.05 ∗ 0.7/1 = 0.035

mE(ΘS)=0.2 {s1} = 0.9 ∗ 0.2/0.3 = 0.6 {s2} = 0.05 ∗ 0.2/0.9 =0.01 ΘS = 0.05 ∗ 0.2/1 = 0.01

4.2 Interventions

An intervention is an exterior action made in order to observe the behavior of
other variables after this manipulation. It is usually defined as succeeding to
force the target variable to take one specific value and makes its original causes
no more responsible of its state. Following the notation introduced by Pearl [16],
we use the do-operator, do(aij), to denote the fact of setting the value aij on
the variable Ai and (.|do(aij)) is used to compute the effect of an intervention.

Example 2. Assume that your friend has added all the quantity of the sugar in
the container into your cup. It is obvious that this action has an impact on the
sweetness of the coffee. It forces it to take the value “sweet”, i.e. do(sweet). Note
that this intervention does not affect your initial beliefs regarding the initial use
of sugar.

Motivated by the fact that in real world applications forcing a variable to take
one certain specific value is not generally feasible and that eventually like for
observations, the consequences of interventions may be uncertain, we propose to
qualify interventions as:

- standard interventions: External actions that succeed to force a variable to
take a specific fixed and known value. A certain bba is specified for the target
variable. It is the kind of interventions we presented above.

- interventions with uncertain consequences : Manipulations that may fail to
put their targets into exactly one state. Therefore, a new bba expressing the
uncertainty is specified for the target variables. This bba is defined either (1)
from only the effect of the intervention which means that it is the only responsible
of its current state. The manipulated variable becomes independent from its
original causes. (2) from the interaction between the effect of the intervention
and the initial causes of the target variable.
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5 Graphical Representation of Interventions

In [4], we have presented how to graphically represent standard interventions
under the belief function framework. In this section, we detail how to model in-
terventions with uncertain consequences. Altered belief function causal networks,
namely belief graph mutilation and belief graph augmentation with uncertain
effects are introduced: mutilated graphs are used to represent the effect of an
intervention that makes the manipulated variable independent from its origi-
nal causes and augmented graphs for interventions interacting with the initial
causes.

5.1 Belief Graph Mutilation for Interventions Controlling the State
of the Variable

Since only the intervention specifies the value of the manipulated variable, graph-
ically it amounts to cut the event off from its initial causes by deleting the causal
links pointing towards the event. By mutilating the graph, all the other causes
than the one of the intervention will be excluded. No changes affect other nodes.
Let G be a belief function network on which we attempt to make an intervention
on a variable Ai ∈ V to allow it take the value aij ∈ ΘAi (do(aij)), where V
is the set of all the nodes. Let us denote by FI , the set of the focal elements
representing the uncertain consequences of the intervention where a bbm αj is
allocated to each focal element. We define mutilation on two steps:

1. Arcs pointing to Ai in G will be deleted. The obtained mutilated graph is
denoted Gmut. Its associated belief distribution is denoted mGmut . This inter-
vention affects the computation of the joint distribution mG by transforming
it into mG(.|do(aij)).

2. The intervention, do(aij), leads to a change of the local bba of the variable
Ai such as:

∀a ⊆ Ai,m
Ai(a) =

{
αj if a ∈ FI

0 otherwise
(10)

Proposition 1. The global joint distribution upon attempting to force a variable
Ai to take the value aij is given by:
mV
G (.|do(aij)) ={
(⊕Ai =Aj∈V (⊕Paj(Aj)m

Aj (.|Paj(Aj)) �Aj×PAj(Aj))↑V )⊕mAi(a) if Ai = a, a ∈ FI .

0 otherwise .

(11)

Note that a standard intervention corresponds to observing Ai = aij i.e. applying
the definition of conditioning (Eq. 4, Eq. 9) after mutilating the graph (Eq.
10). However, an intervention with uncertain consequences does not correspond
to an uncertain observation on the mutilated graph (i.e. revision with Jeffrey-
Dempster’s rule of conditioning (Eq. 9)).

mV
Gmut

(.|FI) �= mV
G (.|do(aij)). (12)
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Example 3. Suppose that your friend puts few drops of lactose into the cup of
coffee. However it is known that unlike sugar, lactose is poorly soluble. Adding
lactose will affect the sweetness of the coffee but without certainty. It is consid-
ered an external intervention on the variable C that attempts to force it to take
the value “sweet” (i.e. C = c1). Accordingly, FI = {c1, ΘC}. Graphically this
action will lead to the disconnection of C from its original cause as shown in
Figure 1. Therefore, beliefs about the occurrence of S remain unchanged. The
joint belief distribution mSC

Gmut
associated to the mutilated graph represents the

effect of the intervention do(c1) on the joint distribution mSC
G .

In Table 2, we present the bba mSC
Gmut

. As S and C become independent, their
combination can be computed by making the pointwise product of their masses.
mSC
Gmut

= mS(s) ·mC(c) if c ∈ FI and 0 otherwise. The bba conditioned by the
uncertain inputs on the mutilated graph is revised using Jeffrey-Dempster’s rule
as shown in the left row of Table 2 which is as you notice different from mSC

Gmut
.

Fig. 1. Mutilated graph

Table 2. mSC
Gmut

mSC
Gmut

revised mSC
Gmut

{(s1, c1)} =0.07 0.091
{(s2, c1)} =0.49 0.637
{(s1, c1),(s2, c1)} =0.14 0.182
{(s1, c1),(s1, c2)} =0.03 0.009
{(s2, c1),(s2, c2)} =0.21 0.063
ΘS ×ΘC =0.06 0.018

5.2 Belief Graph Augmentation for Interventions Interacting with
Initial Causes

An extra node in the system, called “DO”, is added to the set of parents of the
node concerned by the intervention. The resulting augmented graph is denoted
Gaug and its associated belief distribution is denoted mGaug.

This variable can take the values in do(Ai=aij), ∀aij ∈ ΘAi and donothing .
donothing means that there is no action on the variable Ai, which corresponds to
the case of observations; do(Ai=aij) means that we attempt to force the variable
Ai to take the value aij . The new conditional joint distribution is then computed
from the node DO and the original causes.

Belief function graphical models present natural tools to model such causes
since conditionals can be defined per each edge.

If there are no interventions, then the bba of the DO node is defined by:

mDO(do) =

{
1 if do = donothing
0 otherwise

(13)

In this case:

mAi(a|donothing) =
{
1 if a = ΘAi

0 otherwise
(14)
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Proposition 2. An augmented belief causal graph where the DO node is set to
the value nothing encodes the same distribution that an original causal graph.

mV
Gaug

(.|DO = donothing) = mV
G (15)

An intervention that attempts to set the variable Ai to the value aij is a certain
action, then the bba relative to the DO node is a certain bba defined by:

mDO(do) =

{
1 if do = do(aij)
0 otherwise

(16)

Even thought it is a certain intervention, its consequences are uncertain. We de-
note by FI the set of the focal elements representing the uncertain consequences
of the intervention. In this case, we have:

∀a ⊆ ΘAi ,m
Ai(a|do(aij)) =

{
αj if a ∈ FI

0 otherwise
(17)

It is a generalization of the certain case where FI = {aij} and αj = 1.

Proposition 3. The new distribution of the target variable is computed from
the combined effect of the intervention with the original causes.

mAi(a|Paj(Ai), do) =

{
mAi(.|Paj(Ai))⊕mAi(.|do(aij))) if do = do(aij).
mAi(aij |Paj(Ai)) if do = donothing .
0 otherwise .

(18)

Example 4. Some restaurants use salt to remove the bitter taste of the coffee.
However this action may react with the initial causes (here the presence of sugar)
to determine the sweetness of the coffee. The new joint distribution is therefore
computed as shown in Table 3.

Fig. 2. Augmented graph

Table 3. mC(.|s, do)

{(s1, do(c1))} {(s2, do(c1))}
{c1} 0.94 0.47
{c2} 0.03 0.41
ΘC 0.03 0.12
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6 Conclusion

This paper provided a causal graphical model to deal with interventions under
the belief function framework. We explained that interventions generally have
uncertain consequences and should be well modeled. We showed that uncertain
interventions have a natural encoding under the belief function framework and
may be graphically modeled using belief causal networks. The effect of interven-
tions are computed on altered networks, namely mutilated and augmented belief
graphs with uncertain effects.

As future works, we intend to deal with interventions whose occurrences are
uncertain. We also plan to explore the relationships between interventions and
the belief changes using Jeffrey-Dempster’s rule.
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Abstract. This paper describes an extension of the standard k-modes
method (SKM) to cluster categorical objects under uncertain framework.
Our proposed approach combines the SKM with possibility theory in or-
der to obtain the so-called k-modesmethod based on possibilistic member-
ship (KM-PM). This latter makes it possible to deal with uncertainty in
the assignment of the objects to different clusters using possibilistic mem-
bership degrees. Besides, it facilitates the detection of boundary objects
by taking into account of the similarity of each object to all clusters. The
KM-PM also overcomes the numeric limitation of the existing possibilistic
clustering approaches (i.e. the dealing only with numeric values) and easily
handles the extreme cases of knowledge, namely the complete knowledge
and the total ignorance. Simulations on real-world databases show that
the proposed KM-PM algorithm gives more meaningful results.

1 Introduction

Clustering is a well known unsupervised technique from the machine learning
area. Clustering methods aim to partition objects into subsets called clusters
where objects of the same cluster share common characteristics, and objects
from different clusters are dissimilar to each other.

Clustering methods can be divided into two categories according to the struc-
ture of the clusters obtained. They consist of crisp (or hard) clustering and soft
clustering. In the crisp clustering, if an object is an element of a particular clus-
ter it cannot be a member of any other cluster i.e. each object is forced to belong
to exactly one cluster. However, in some cases, an object can share some simi-
larities with other objects belonging to different clusters. As a result, it is more
correct to take into account of these real-world situations and to adapt a soft
partitioning where an object can be associated to multiple clusters. In this case,
a membership degree is defined and it indicates the degree of belongingness of
objects to more than one cluster.

In fact, using soft clustering conveys more information than crisp clustering by
taking into account of different dependency and similarities between all objects
(in same or in different clusters).
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Among the well-known crisp clustering approaches, we can mention the k-
means method [2][12] which provides interesting results when it clusters data
with numeric attributes. This method has been improved by several researchers
to deal with uncertainty in the belonging of objects to different clusters. Different
soft clustering methods based on the k-means have been proposed namely the
fuzzy c-means [4], the evidential c-means [13] and the possibilistic c-means [11]
providing interesting results respectively in fuzzy, evidential and possibilistic
frameworks.

Nevertheless, working only with numeric values limits the use of these ap-
proaches especially in data mining field where there are large databases contain-
ing categorical values. In order to overcome this limitation, Huang [8][10] has
proposed the k-modes method, a version of the k-means approach dealing easily
with categorical databases. The standard version of the k-modes method has
been improved and combined by uncertainty theories namely the belief function
and the possibility theories in order to handle uncertain framework especially in
data mining field. We can mention the belief k-modes [3] and the possibilistic
k-modes [1] which are two crisp approaches giving interesting results to clus-
ter real-world uncertain databases with categorical attributes characterized by
imperfect values.

As soft clustering can be of great practical interest, in this paper, we develop
a new method under possibilistic environment in order to cluster categorical
objects into soft partitions. In other words, our proposed method adapts the
possibility theory to the k-modes approach in order to express the uncertainty in
the belonging of objects to all clusters. The choice of this non-classical theory i.e.
the possibility theory is due to its interesting clustering results in several works
[11][15][16][18] and its aptitude to easily handle extreme cases of knowledge. In
our method, we define a possibility distribution to each object reflecting the
degree of belongingness of the training instances to different clusters.

An important motivation for using the possibilistic membership values is their
ability to correctly interpret the degree of belongingness of each object to differ-
ent clusters. Moreover, they offer the possibility to help the user to determine
the final clusters and to identify the boundary objects.

This paper is organized as follows: Section 2 and Section 3 provide respectively
an overview of the k-modes method and the possibility theory; Section 4 focuses
on our proposed approach by explaining its main parameters. Section 5 details
experimental results using real-world databases.

2 The K-Modes Method

The k-means method [2][12] is a well known approach that has shown spectacular
performance for clustering objects with numeric attributes. Unfortunately, there
are many databases containing only categorical training instances in data mining
field and the k-means method is unable to cluster this type of attributes. To solve
this problem, the k-modes method has been developed in [8][10] and has been
improved in order to overcome the numeric limitation of the k-means approach
and to cluster categorical data.
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Generally, the k-modes algorithm uses the same principle as the k-means; but
removes some of its limitations and keeps its performance. Comparison of the
k-means the k-modes is described in Table 1.

Table 1. K-means vs. k-modes

K-means (MacQueen 1967) K-modes (Huang 1997)

Data Continuous Categorical

Cluster representative Mean (centroid) Mode

Distance measure Numeric data measure Simple matching

Update centroid/mode Average of the attribute values of Frequency-based method
objects belonging to the same cluster

Clustering process Same process

Assume that we have of two categorical objects X1=(x11, x12, ..., x1m) and
Y1=(y11, y12, ..., y1m) with m attributes. The simple matching dissimilarity
measure d (0 ≤ d ≤ m) is computed using Equation (1):

d (X1, Y1) =

m∑
t=1

δ (x1t, y1t) . (1)

δ (x1t, y1t) =

{
0 if x1t = y1t
1 if x1t �= y1t .

(2)

The objective function corresponding to the k-modes method for clustering a
set of n categorical objects S={X1, X2, ..., Xn} into k clusters with k ≤ n is
detailed in Equation (3):

min D (W,Q) =

k∑
j=1

n∑
i=1

ωijd (Xi, Qj) . (3)

With Q = (Q1, Q2, ..., Qk) k-modes of S, where Qj corresponds to a cluster Cj .

W=[ωij ] is an n × k matrix,
∑k

j=1 ωij = 1 and ωij ∈ {0, 1} is the membership
degree of the object Xi in the cluster Cj .

ωij =

{
0 if Xi /∈ Cj

1 if Xi ∈ Cj .
(4)

3 Possibility Theory

Possibility theory is an uncertainty theory proposed first by Zadeh in [17] then,
developed by several researchers including Dubois and Prade [5][6][7]. In this
section, we briefly review this theory by focusing on some of the basic concepts
then we examine some possibilistic clustering approaches.
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3.1 Possibility Distribution

Assume that Ω = {)1, )2, ..., )i} is the universe of discourse as defined in [17]
by Zadeh. The possibility distribution function denoted by π is a fundamental
concept in possibility theory and it associates to each element )i from Ω a
value from the interval L=[0, 1]. L presents the possibilistic scale and it can be
defined under qualitative case where only the order is important by (L,<) or
in the quantitative case by [0, 1] (numerical possibility degrees). If π()i) = 1 it
means that it is fully possible that )i is achieved. However, if π()i) = 0; )i

can be interpreted as an impossible event.
It is also important to mention the extreme cases of knowledge in possibil-

ity theory which are the complete knowledge and the total ignorance defined
respectively as follows:

– ∃)0, π ()0) = 1 and π ()) = 0 otherwise,
– ∀) ∈ Ω, π ()) = 1.

Moreover, a possibility distribution is normalized when it satisfies Equation (5):

maxi {π ()i)} = 1 . (5)

3.2 Possibilistic Clustering

Several possibilistic clustering approaches are based on the fuzzy clustering con-
cept. This latter has proved its performance to detect clusters with different
forms i.e. volume and thin clusters (curves or surfaces).

The fuzzy c-means method (FCM) [4] is a well known fuzzy clustering ap-
proach that has shown interesting results. It is a soft clustering approach where
each object is assigned to all the clusters with various degrees of membership.
However, the FCM has a trouble in noisy environment and uses a probabilis-
tic constraint leading to the misinterpretation of the compatibility degree of an
object to different clusters.

Despite its limitations, the FCM approach has been considered as the basis of
most fuzzy clustering approaches and even some possibilistic clustering methods
mainly the possibilistic c-means denoted by PCM [11] which overcomes the FCM
drawbacks.

Several works have dealt with the belonging of objects to different clusters
and have shown interesting results through the use of the possibility theory.
However, they are unable to work with categorical objects. They perform only
with quantitative attributes, which limits their use especially in the data mining
field where there is a large number of categorical databases.

4 The K-Modes Method with Possibilistic Membership

The use of an appropriate objective function is a primary task allowing the
success of clustering methods and guarantees interesting results. To this end,
we have followed these requirements to set the objective function of our method
(i.e. KM-PM):
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1. Adapt an appropriate dissimilarity measure to calculate the dissimilarity
between modes and objects.

2. Set membership degrees in order to specify the degree of belongingness of
each object to all clusters.

3. Represent the membership values through possibilistic degrees defined in
possibility theory for dealing with uncertainty.

The KM-PM method is based on the minimization of the following objective
function (O.F.) described and compared to the fuzzy k-modes (FKM) [9] and
the possibilistic c-means (PCM) [11] objective functions in Table 2.

Table 2. The O.F. of the KM-PM, the FKM and the PCM

Fuzzy k-modes Possibilistic c-means∑k
j=1

∑n
i=1 ω

α
ijd(Xi, Qj)

∑k
j=1

∑n
i=1 ω

α
ijd

2
ij +

∑k
j=1 ηj

∑n
i=1(1− ωij)

α

α > 1, 0 ≤ ωij ≤ 1 and
∑k

j=1 ωij = 1 η is the penalty term and α the fuzziness degree

d is the simple matching measure d2ij is squared Euclidean distance

KM-PM∑k
j=1

∑n
i=1 ωijd(Xi, Qj)

maxj ωij = 1 for all i and 0 ≤ ωij ≤ 1
d is the simple matching measure and ωij the possibilistic membership degree

The O.F. of the KM-PM has a close link with the fuzzy k-modes O.F. since,
both of them use the same dissimilarity measure d and a membership degree ω
describing the uncertainty in the belonging of the object to different clusters.
However, the possibilistic c-means O.F. differs from the O.F. of our method by
using the Euclidean distance applied to numeric attributes and the penalty term
to avoid the misinterpretation of the object [11].

Our proposed possibilistic method uses different parameters described in de-
tail as follows:

1. The simple matching dissimilarity measure: allowing the computation
of the dissimilarity between the objects and the modes. It compares each
attribute value relative to the mode to the attribute value of all objects
using Equation (1).

2. The possibilistic membership degree: ωij ∈[0, 1] is obtained as follows:
We compute the dissimilarity values between each object and modes using
Equation (1). After that, we transform the dissimilarity (dis) to a similarity
degree (sim) by applying this formula: sim = A− dis, where A is the total
number of attributes. Then, we divide the obtained value by A in order to
normalize it and to obtain ωij between 0 and 1. This latter will refer to the
degree of belongingness of the object i to the cluster j.
We can mention two extreme cases:

– ωij=0, it means that the object i does not belong to the cluster j i.e.
there is no similarity between the object and the mode.
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– ωij=1, in this case we are sure that the object i belongs to the cluster j
and we can conclude that it is similar to its mode.

Note that if ωij > ωi(j+1) (respectively ωij < ωi(j+1)) it means that the ob-
ject i belongs to the cluster j more (respectively less) than to the cluster j+1.

3. A new method to update clusters’ modes: we need a method that
takes into account of the possibilistic membership degrees ω of each object
to different clusters when it updates the modes. So, the updating of the
clusters’ modes will depend on the possibilistic membership degrees.
The following steps are followed to update the modes:
– First, we compute the dissimilarities between modes and objects then

we determine ωij of the object i to the cluster j as described above.
– After that, for each value v of the attribute t, we sum the degree ωijtv

relative to the object i in the cluster j.
– Finally, the value v that achieves the maximum of the summation will

represent the new value in the mode.
Therefore, the update of the cluster modes is described by the Equation (6):

∀j ∈ k, t ∈ A,Modejt = max
v

n∑
i=1

ωijtv . (6)

with
∀i ∈ n,max

j
(ωij) = 1 . (7)

Equation (7) guarantees the normalization.

By using these parameters, it is expected that the KM-PM gives us more accurate
and exact results since our method avoids the SKM drawbacks and keeps its
effectiveness.

The KM-PM algorithm, described as follows, takes as input a categorical data
set and the number of clusters to form (k). It provides as a result the objects
assigned to k clusters with possibilistic membership. As the KM-PM algorithm
is an extension of the SKM algorithm, it guarantees the minimization of the
objective function described in Table 2 by using the parameters defined above.

Algorithm. KM-PM

Begin

1. Select randomly the k initial modes, one mode for each cluster.
2. Allocate each object to all clusters based on possibilistic membership degrees

after computing the distance measure using Equation (1).
3. Update the cluster mode using Equation (6).
4. Retest the similarity between objects and modes. Reallocate objects to clusters

using possibilistic membership degrees then update the modes.
5. Repeat (4) until all objects are stable.

End.
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5 Experiments

5.1 The Framework

In order to test our proposed method and obtain correct results, we carry
out eight runs on different categorical real-world databases from UCI: Machine
Learning Repository [14]. The used data sets are illustrated in Table 3 where
#Classes presents the number of clusters to form.

Table 3. Description of the used data sets

Datatbases #Instances #Attributes #Classes Notations

Shuttle Landing Control 15 6 2 SLC

Balloons 20 4 2 Bal

Post-Operative Patient 90 8 3 POP

Congressional Voting Records 435 16 2 CVR

Balance Scale 625 4 3 BS

Tic-Tac-Toe Endgame 958 9 2 TE

Solar-Flare 1389 10 3 SF

Car Evaluation 1728 6 4 CE

5.2 Evaluation Criteria

To evaluate the performance of our method, we emphasize on three evaluation
criteria namely the accuracy, the number of iterations and the execution time.

1. The accuracy (AC) [8] is defined by this formula AC=
∑k

j=1 aj

n with k ≤ n,
n presents the total number of objects and aj is the number of correctly
classified objects.

2. The number of iterations (IN) presents the iterations number needed to
obtain the final partitions. They are relative to the main program.

3. The execution time (ET) is the time taken to execute the whole algorithm.

5.3 Experimental Results

The main aim of this section is to illustrate the experimental results given by
the new possibilistic method that uses possibilistic membership degrees. Thus,
we cross validate by dividing observations randomly into a training set and a
test set. We focus on the accuracy, the number of iterations and the execution
times. We apply our possibilistic algorithm to eight different categorical data
sets from UCI: Machine Learning Repository [14].

All results are analyzed and detailed in Table 4.
Through Table 4, we can observe that the KM-PM gives more accurate results

for most databases than the standard method (SKM). For example for the Solar-
Flare data set, we obtain an accuracy of 0.91 by applying the KM-PM and 0.87
by using the SKM.
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Table 4. The evaluation criteria of the proposed method vs. SKM

Data sets SLC Bal POP CVR BS TE SF CE
SKM

AC 0.61 0.52 0.684 0.825 0.785 0.513 0.87 0.795
IN 8 9 11 12 13 12 14 11

ET/second 12.431 14.551 17.238 29.662 37.819 128.989 2661.634 3248.613
KM-PM

AC 0.63 0.65 0.74 0.79 0.82 0.59 0.91 0.87
IN 4 4 8 6 2 10 12 12

ET/second 10.28 12.56 15.23 28.09 31.41 60.87 87.39 197.63

Moreover, the KM-PM algorithm guarantees interesting results obtained only
after few number of iterations and execution time. For the Balance scale data set
for example, only two iterations (corresponding to 31.41 seconds) are needed for
the KM-PM to obtain the final results. However, the SKM needs 13 iterations
(corresponding to 37.819 seconds) to get final partitions.

Besides, we observe that the ET (calculated per second) increases proportion-
ally with the number of instances in the training set. However, the ET corre-
sponding to the KM-PM is always lower than the standard approach especially
for the Solar-flare and the Car evaluation data sets.

Figure 1 explains graphically the AC of the KM-PM compared to the SKM.

Fig. 1. The AC of the KM-PM vs. SKM

It is obvious that Figure 1 emphasizes on the results of the KM-PM based on
the first evaluation criterion. It shows again that the KM-PM has the highest
AC.

The improvement of the SKM results through the KM-PM is due to the
ability of the new method to provide more precise assignment of each object
to the corresponding clusters. In fact, there are some objects in the training
set that cannot be classified to exactly one cluster due to their similarities to
more than one set. They have common characteristics. As a result, considering
these objects as parts of different clusters based on the possibilistic membership
degrees translates their similarities to several sets and does not force any instance
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to belong to just one cluster. Generally, we can conclude based on the AC, the
IN and the ET that the KM-PM improves the quality of clustering results. It
assigns the degree of belongingness of each object to all clusters in order to detect
boundary objects and to give precise membership.

6 Conclusion

In this paper, we have developed a new method combining possibility theory
and k-modes method in order to deal with categorical values and handle uncer-
tainty in the belonging of the objects to different clusters by using possibilistic
membership degrees.

In order to adapt appropriate parameters to our proposed approach, we have
analysed some existing methods mainly the PCM [11] and the FKM [9]. After
that, we have set some requirements to fix the objective function of our algo-
rithm. Finally, we have tested the KM-PM on several real-world databases [14]
and the results indicate the performance gain from this new possibilistic method.

As future work, other aspects of uncertainty in possibilistic framework will
be studied. Moreover, our proposed approach can be extended to develop other
methods such as the dynamic possiblistic k-modes.
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Abbaci, Katia I-400
Abbasbandy, Saeid III-79
Abdulrab, Habib I-491
Abid, Mohamed III-39
Ahmad, Khurshid III-379
Ah-Pine, Julien IV-238
Aiche, Farid III-9
Alcalde, Cristina II-305
Almeida, Rui Jorge III-554
Amgoud, Leila III-122, IV-480
Ammar, Asma III-596
Amor, Nahla Ben III-470
Anderson, Terry II-265
Angilella, Silvia IV-248
Antonucci, Alessandro III-491
Anzilli, Luca IV-44, IV-54
Aranda, M. Carmen I-250
Argentini, Andrea III-511
Armengol, Eva I-81
Ayachi, Raouia III-470
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Herrera, Francisco I-181
Herrero, José Luis I-71
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Mehra, Aparna IV-458
Mellouli, Khaled I-21
Menasalvas, Ernestina II-560
Menendez, Carlos II-295
Mesiar, Radko III-360, III-370, IV-278,

IV-559, IV-565
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Vejnarová, Jǐrina III-450
Vellasco, Marley IV-10
Vemuri, Nageswara Rao II-365
Verdegay, José Luis III-102
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