
G. Yang (Ed.): Proceedings of the ICCEAE2012, AISC 181, pp. 673–679. 
springerlink.com               © Springer-Verlag Berlin Heidelberg 2013 

The Asymptotic Equipartition Property  
for Nonhomogeneous Markov Chains Indexed by Trees 

Peng Weicai and Chen Peishu 

Department of Mathematics 
Chaohu University, Chaohu, Anhui  

238000, P.R. China 

Abstract. In this paper, the tree T is a general tree. We prove the strong law of 
large numbers and the asymptotic equipartition property (AEP) for finite 
nonhomogeneous Markov chains indexed by trees. The results generalize some 
known results. 

Keywords: Nonhomogeneous Markov chain, Tree, Strong law of large numbers. 

1   Introduction 

By a tree T we mean an infinite, locally finite, connected graph with a distinguished 
vertex o  called the root and without loops or cycles. We only consider trees without 
leaves. That is, the degree of each vertex (except o ) is required to be at least 2. Let 
σ ,τ  be vertices of a tree. Write τ σ≤ if τ  is on the unique path connecting o  

to σ , and σ  for the number of edges on this path. For any two vertices σ , τ , 

denote by  σ τ∧  the vertex farthest from o satisfying   

,σ τ σ σ τ τ∧ ≤ ∧ ≤  

The set of all vertices with distance $n$ from the root o  is called the n-th generation 

of T, which is denoted by 
n

L , 
0

{ }L o= .  We denote by ( )nT  the subtree of a tree 

T containing the vertices from level 0  to level n, ( )
( )

n
mT the subtree of a tree  T  

containing the vertices from level m  to level n. 
Let  t be a vertex of  T, predecessor of the vertex t is another vertex which is 

nearest from t on the unique path from root o to t. We denote the  predecessor of t by 

1
t
, the predecessor of 1

t
 by 2

t
, the predecessor of N

t
 by N+1

t
（ ） and 0 t=

t
, where 

N=0,1,2,.... We also say that N
t
 is the N-th predecessor of t.  

 
Definition 1 (Tree-indexed nonhomogeneous Markov chains). Let T be a  tree, S 

be a states space (finite or countable ), { , }X Tσ σ ∈  be a collection of S-valued 

random variables defined on the probability space ( , , )PΩ  . Let 
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{ ( ), }p p x x S= ∈                            (1) 

be a distribution on $S$, and  

( ( | )), , ,
t

P y x x y S t T∈ ∈                        (2) 

be  stochastic matrices on 2S . If for any vertices t, 

( )  1 
t t s t

P X y X x and X for t s= = ∧ ≤
 

( ) ( ), ,
t t t

P X y X x P y x x y S= = = = ∈
            

(3)
 

and                           ( )= ( )
o

P X x p x=                       (4) 

{ , }
t

X t T∈  will becalled S-value nonhomogeneous Markov chains indexed by  tree 

with the initial distribution (1) and transition matrix (2). If for all t 

( ( )) ( ( )), ,
t

P y x P y x x y S= ∈                     (5) 

{ , }
t

X t T∈ will be called S-value homogeneous Markov chains indexed by  tree T. 

It is easy to see that if { , }
t

X t T∈  is a $S$-valued Markov chains indexed by a 

tree defined as above, then 

( ) ( ) ( )

( )

( 1 )

0
( ) ( ) ( ) ( ),

n n n

n

N

T T T

t t t

t T

P x P X x p x P x y
+∈

= = = ∏                 (6)  

( )

( )

( 1 )

0 ( 1)
( ) ( ) ( )

n N

t t
n

N

T

t N N

t T

P x p x P x x
−

+

=

∈

= ∏                               (7) 

2   Strong Limit Theorems 

Lemma 1 (see [4])  Let T be an infinite  tree. Let { , }
t

X t T∈  be a T -indexed 

nonhomogeneous Markov chain with countable states space S defined as 

before, }{ ( , ),
t

Tg x y t ∈  be functions defined on 2S . For any given nonnegative 

integer N, 

( ) ( 1 ) ,
( 1 )

( 1 ) ,

( )

( 1 )

( )

( )

( 1)

( , )
[ ]

n t N t Nt T tN

t N t Nt

n
tN

g X X

n N g X X

Nt T

e
t

E e X

λ

λ
λ ω

+∈ +

+

+

−

+∈



=
∏               (8) 

where λ  is a real number. Then { }( , ), , 1
n N n N

t F n Nλ ω
− −

≥ +  is a nonnegative 

martingale. 
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Theorem 1. Let T be an infinite  tree,  { , }
t

X t T∈  be a T -indexed 

nonhomogeneous Markov chain with countable states space S, }{ ( , ),
t

Tg x y t ∈  be  

functions defined on 2S . For any given nonnegative integer  N , let 

( )

( 1 )

( N+1)
( ) ( , ),

t t
n

N

n t N

t T

H g X Xω
+∈

=                          (9)

 

( N+1 )
( )

( 1 )

( N+1)
( ) [ ( , ) ]

t t t
n

N

n t N

t T

G E g X X Xω
+∈

=                      (10)

 

Let 0α > ，then 
( ) ( )

lim 0n n

n
n

H G

a

ω ω
→∞

−
=      a.e.  on ( )D α .      (11) 

where  

( )

( N+1 )

( )

( 1 )

( , )2

( N+1) ( N+1)
{

1
lim sup [ ( , ) ] ( ) }t Nt t

t t t
n

N

a g X X

t N
n t Tn

D BE g X X e X M
a

α
ω

+
→∞ ∈

= = < ∞ 

                       (12)

 

and   

{ }lim
n

n

B a
→∞

= = ∞                            (13) 

Proof:  By Lemma 1, we have known that { }( , ), , 1
n N n N

t F n Nλ ω− − ≥ +  is a 

nonnegative martingale. According to Doob martingale convergence theorem we have 

lim ( , ) ( , )
n N

n

t tλ ω λ ω−
→∞

= < ∞      a.e.                (14)
 

We have by (13) and (14) 

ln ( , )
lim sup 0n N

n
n

t

a

λ ω−

→∞
≤        a.e.                (15) 

By (8),(9) and (15), we get  

( N+1 )

( )

( 1 )

( , )

( N-1)

1
lim sup { ( ) ln[ [ ]]} 0Nt t

t
n

N

g X X

n
n

t Tn

H E e X
a

λ
λ ω

+

→∞
∈

− ≤      a.e.    (16) 

Let 0λ > , dividing two sides of (16) by λ , we have 

( N+1 )

( )

( 1 )

( , )

( N-1)
ln[ [ ]]1

lim sup { ( ) } 0

Nt t

t

n

N

g X X

n
n

t Tn

E e X
H

a

λ

ω
λ

+

→∞
∈

− ≤
      a.e.    (17)
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Taking 0 λ α≤ < − , we arrive at  

( )

( 1 )

( N+1) ( N+1)

1
lim sup { ( ) [ ( , ) ]}

t t t
n

N

n t N
n

t Tn

H E g X X X
a

ω
+

→∞
∈

− 
( N+1 )

( )

( 1 )

( , )

( N-1)

( N+1) ( N+1)

ln[ [ ]]1
lim sup [ ( , ) ]}

Nt t

t

t t t
n

N

g X X

t N
n

t Tn

E e X
E g X X X

a

λ

λ
+

→∞
∈

≤ −
( N+1 )

( )

( 1 )

( , )

( N-1)

( N+1) ( N+1)

[ ] 11
lim sup [ ( , ) ]}

Nt t

t

t t t
n

N

g X X

t N
n

t Tn

E e X
E g X X X

a

λ

λ
+

→∞
∈

−
≤ −

( N+1 )
( , )2

( N+1) ( N+1)

1
lim sup [ ( , ) ]

2

Nt t

t t t

X X

t N
n

n

E g X X e X
a

λλ
→∞

≤  

=
( )

2
M

λ
ω                         

. .      ( )a e D aω ∈
                          (18) 

where the first inequality follows by (17) and the fact that  

lim sup( ) lim sup lim sup
n n n n

n n n

c b c b
→∞ →∞ →∞

+ ≤ +  

the second follows by the inequality ln 1( 0)x x x≤ − >  

the third follows by the inequality 21
0 1

2

x xe x x e≤ − − ≤  

Letting 0λ +→ 0λ −→  in (18), by (10) we have  

( ) ( )
lim sup 0n n

n
n

H G

a

ω ω
→∞

−
≤

    

. .      ( )a e D aω ∈               (19) 

Let 0α λ− ≤ < . By (16), we similarly get 

( ) ( )
lim inf ( )

2

n n

n
n

H G
M

a

ω ω λ
ω

→∞

−
≥

     

. .      ( )a e D aω ∈            (20) 

Letting 0λ −→ , we can arrive at 

( ) ( )
lim inf 0n n

n
n

H G

a

ω ω
→∞

−
≥

      

. .      ( )a e D aω ∈             (21) 

Combing (19) and (21), we obtain (11) directly. This completes the proof of Theorem 1. 

Let Sk ∈ , ( )
n

S k  be the number of k in the set of random variables 
( )nTX , and 

( )
n

NS k  be the number of k's  N-th descendants in the set of random variables 
( )nTX , that is 
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( )

( ) ( ),
n

n t

t T

S k Xδ
∈

=                          (22)

 

( )

( ) ( )
t

n

N

n k N

t T

S k Xδ
∈

=                         (23) 

Corollary 1. For any nonnegative integer N,  ( )
n

NS k   be  the number of k's  N-

th descendants. If moreover 

lim ( ) ( )
t t

t

P k l P k l
→∞

=                         (24) 

then 

( )

1
lim { ( ) ( ) ( )} 0N N

n t nn
n

l S

S k P k l S l
T→∞

∈

− =             (25) 

Further more, for any positive integer m <n-N, we have 

( )

1
lim { ( ) ( ) ( )} 0N m N m

n nn
n

l S

S k P k l S l
T

+

→∞
∈

− =           (26) 

Where ( | )mP k l  is the m-step transition probability determined by the transition 

matrix ( ( | ))
t

P y x . 

Proof. Let 
( N+1) N

( , ) ( )
t t t

t N k
g X X Xδ=   ( )n

n
a T=

 
 in Theorem 1, then (25) and (26) 

follow obviously. 
 

Theorem 2. If (24) holds, then 

( )

( )
lim ( )

N

n

n
n

S k
k

T
π

→∞
=                              (27) 

( )

( )
lim ( )n

n
n

S k
k

T
π

→∞
=                               (28) 

Where ( (0), , ( 1))bπ π π= − is the uniquestationary distribution determined by 

transition matrix 
,

( ( ) )
i j S

P i j ∈ . 

Proof. Obviously, (28) follows by setting N=0 in (32). Hence, we only need to proof 
(27). By Corollary 1, 

( )

( )
lim sup ( )

N

n

n
n

S k
k

T
π

→∞
−

 

( )

1
lim sup ( ) ( ) ( ) ( ) ( ) ( )N m N m m N m

n n nn
n

l S l S

S k P k l S l P k l S l k
T

π+ +

→∞
∈ ∈

= − + − 
  

( ) ( )m

l S

P k l kπ
∈

≤ −                                                          (29) 
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Since  

( ) ( ), ,mP k l k mπ→ → ∞                                
(30) 

by (30), the right hand side of (29) is arbitrary small for enough large m, which 
implies the equation (27). We complete the proof. 

Let  T be a tree,  

( )

( )

1
( ) ln ( ),

n
T

n n
f P X

T
ω = −                        (31)

 

will be called the entropy density.
 
If   { , }

t
X t T∈  is a T-indexed nonhomogeneous 

Markov chain with states space  S , we have by (6), 

( )
( 1)

0 1( )

1
( ) [ln ( ) ln ( )]

n
N

n t tn

t T

f P X P X X
T

ω
+∈

= − +               (32)
 

The convergence of  ( )
n

f ω  to a constant in a sense (
1

L  convergence , convergence 

in probability, a.e. convergence) is called the Shannon-McMillan theorem or the 
entropy theorem or the AEP in information theory. 
 
Theorem 3. Let T be an infinite tree, then  

lim ( ) ( ) [ (0 ), .... ( 1 )]
n

n
j S

f j H P j P b jω π
→∞

∈

= −
.

                (33)
 

Proof. By (9), (10) and (32), 

( )

( 1 )

0

1( ) ( ) ( )

( ) ln ( )1
ln ( ) ( )

n

N

n

t t t nn n n

t T

H p X
P X X f

T T T

ω
ω

+∈

= − = +                (34) 

( )

( 1 )

1 1( ) ( )

( ) 1
[ln ( ) ]

n

N

n

t t t tn n

t T

G
E P X X X

T T

ω

+∈

= −   

( )

( 1 )

1 1( )

1
= [ (0 ), ..... ( 1) ]

n

N

t t t tn

t T

H P X P b X
T

+∈

− −
     

           (35)
 

If (18) holds, we can prove easily 

( )

( 1 )

1 1 1 1( )

1
lim { [ (0 ), ....., ( 1 ) [ (0 ), ...., ( 1 )} 0

n

N

t t t t tn
n

t T

H P X P b X H P X P b X
T

+

→∞
∈

− − − =   (36)
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By Theorem 2, we get 

( )

( 1 )

1 1( )

1
lim [ (0 ), ....., ( 1 )]

n

N

t t tn
n

t T

H P X P b X
T

+

→∞
∈

× −

( )

( 1 )

1( )

1
lim [ (0 ), ....., ( 1 )] ( )

n

j tn
n

j St T

H P j P b j X
T

δ
→∞

∈∈

= −  

( ) [ (0 ), ....., ( 1 )]
j S

j H P j P b jπ
∈

= −
   

                                 (37) 

by (34), (35), (36) and (37), (33) holds. This is the end of the proof. 
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