[r,s,t] – Colouring of One Kind of Join Graphs

Mo Ming-Zhong and Pan Yu-Mei

Department of Mathematics and Computer Science, Liuzhou Teachers College, Liuzhou, Guangxi, 545004, P.R. China {momingzh, pym2003168}@163.com

Abstract. The concept of [r,s,t]-colourings was introduced by A. Kemnitz and M.Marangio in 2007 as follows: Let G = (V(G), E(G)) be a graph with vertex set V(G) and E(G). Given non-negative integers r, s and t, an [r,s,t]-colouring of a graph G = (V(G), E(G)) is a mapping C from $V(G) \cup E(G)$ to the colour set $\{0, 1, 2, \dots, k-1\}$ such that $|c(v_i) - c(v_j)| \ge r$ for every two adjacent vertices v_i , v_j , $|c(e_i) - c(e_j)| \ge s$ for every two adjacent edges e_i , e_j , and $|c(v_i) - c(e_j)| \ge t$ for all pairs of incident vertices and edges, respectively. The [r,s,t]-chromatic number $\chi_{r,s,l}(G)$ of G is defined to be the minimum k such that G admits an [r,s,t]-colouring. In this paper, we determine the [r,s,t]-chromatic number for join graphs $O_m + C_n$.

Keywords: Empty graph, Cycle, Join graphs, [r, s, t]-colouring, [r,s,t]-chromatic number.

1 Introduction

The graphs we shall consider are finite, simple and undirected, unless stated otherwise, we follow the notations and terminologies in [1,2]. Let *G* be a graph. We denote its vertex set, edge set, minimum degree, maximum degree, order, size by $V(G), E(G), \delta(G), \Delta(G), p(G)$ and q(G), respectively, and vertex chromatic number, edge chromatic number and total chromatic number by $\chi(G), \chi'(G)$ and $\chi_T(G)$ respectively. A (p,q) graph has order *p* and size *q*.

The join G + H [3] of two disjoint graphs G and H is the graph having vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup \{xy | x \in V(G), y \in V(H)\}$.

Following the conception of vertex coloring, edge coloring and total coloring, in 2007, A. Kemnitz and M. Marangio[4] put forward the concept of [r,s,t]-coloring of graphs.

Let G = (V(G), E(G)) be a graph with vertex set V(G) and E(G). Given nonnegative integers r, s and t, an [r,s,t]-colouring of a graph G = (V(G), E(G)) is a mapping C from $V(G) \cup E(G)$ to the colour set $\{0, 1, 2, \dots, k-1\}$ such that $|c(v_i)-c(v_j)| \ge r$ for every two adjacent vertices v_i , v_j , $|c(e_i)-c(e_j)| \ge s$ for every two adjacent edges e_i , e_j , and $|c(v_i)-c(e_j)| \ge t$ for all pairs of incident vertices and edges, respectively. The [r,s,t]-chromatic number $\chi_{r,s,t}(G)$ of *G* is defined to be the minimum *k* such that *G* admits an [r, s, t]-colouring.

It is a generalization of classical vertex coloring,edge coloring and total coloring of a graph, which has broad significant applications.

In [4], A. Kemnitz and M. Marangio gave the [r,s,t]-chromatic number of general graphs of the boundary and some related properties, also discussed the [r, s, t]-chromatic number of the complete graph of order n. Other results on [r,s,t]-colouring are presented in [5, 6]. In our paper, we determine the [r,s,t]-chromatic number for join graphs $O_m + C_n$.

2 Useful Results

We begin by stating some useful results from the literature. A. Kemnitz and M. Marangio [4] have proved the following properties for [r, s, t]-colourings.

Lemma 1. If $H \subseteq G$ then

$$\chi_{r,s,t}(H) \leq \chi_{r,s,t}(G)$$

Lemma 2. If $r' \le r, s' \le s, t' \le t$ then

$$\chi_{r',s',t'}(G) \leq \chi_{r,s,t}(G)$$

Lemma 3. For the [r, s, t]-chromatic number of a graph G, there holds $\max \{r(\chi(G)-1)+1, s(\chi'(G)-1)+1, t+1\} \le \chi_{r,s,t}(G) \le r(\chi(G)-1)+s(\chi'(G)-1)+t+1\}$

According to the definition of chromatic number, chromatic index and join graphs, we can get the conclusion easily:

Lemma 4. For the join graphs $O_m + C_n$, there holds

(1)
$$\chi(O_m + C_n) = \begin{cases} 3 & n \text{ is even} \\ 4 & n \text{ is odd} \end{cases}$$

(2)
$$\chi'(O_m + C_n) = \begin{cases} \Delta + 1, & n = m + 1; \\ \Delta, & others. \end{cases}$$

3 The Main Results

Corollary 1. For join graphs $O_m + C_n$, it holds

- (1) If *n* is even and $n \neq m+1$, then $\max\{2r+1, s(\Delta-1)+1, t+1\} \le \chi_{r,s,t}(O_m + C_n) \le 2r + s(\Delta-1) + t+1;$
- (2) If *n* is even and n = m+1, then $\max\{2r+1, s\Delta+1, t+1\} \le \chi_{r,s,t}(O_m + C_n) \le 2r + s\Delta + t+1;$
- (3) If *n* is odd and $n \neq m+1$, then $\max\{3r+1, s(\Delta-1)+1, t+1\} \le \chi_{r,s,t}(O_m + C_n) \le 3r + s(\Delta-1) + t+1;$
- (4) If *n* is odd and n = m+1, then $\max\{3r+1, s\Delta+1, t+1\} \le \chi_{r,s,t}(O_m + C_n) \le 3r + s\Delta + t + 1$.

Proof. By Lemma 3 and Lemma 4, the conclusion is obviously.

Theorem 1. Let $O_m + C_n$ be a join graphs, n is even, if one of the following conditions holds, then, $\chi_{r,s,t}(O_m + C_n) = 2r + 1$.

(1) $n \ge m+2$, and $r \ge (n-1)s + 2t$;

- (2) n = m+1, and $r \ge (n+1)s + 2t$;
- (3) $n \le m$, and $r \ge (m+1)s + 2t$.

Proof. Let O_m is an empty graph and its vertex set $V(O_m) = \{v_1, v_2, \dots, v_m\}$, cycle C_n vertex set $V(C_n) = \{u_1, u_2, \dots, u_n\}$, edge set $E(C_n) = \{u_i u_{i+1} | i = 1, 2, \dots, n; if i+1 > n then (i+1) \mod n take place it \}$.

(1) If $n \ge m+2$, then $\Delta = \Delta(O_m + C_n) = \max\{n, m+2\} = n$, it holds $\chi'(O_m + C_n) = \Delta = n$ by Lemma 4. Let *C* be a coloring of $O_m + C_n$ as follows:

Colour the vertices of join $O_m + C_n$ with the $\chi(G) = 3$ colours 0, r, 2r as follows,

$$c(v_i) = 2r, \quad i = 1, 2, \dots, m;$$

$$c(u_i) = \begin{cases} 0, & i \equiv 1 \mod 2 \\ r, & i \equiv 0 \mod 2 \end{cases}, \quad i = 1, 2, \dots, n$$

and colour the edges of join $O_m + C_n$ with the $\chi'(O_m + C_n) = \Delta = n$ colours to obtain a proper [r, s, t]-colouring of $O_m + C_n$, hence $\chi_{r,s,t}(O_m + C_n) \le 2r + 1$, by Corollary 1 (1) we have $\chi_{r,s,t}(O_m + C_n) \ge 2r + 1$, then $\chi_{r,s,t}(O_m + C_n) = 2r + 1$.

(2) If n = m + 1, then $\Delta = \Delta(O_m + C_n) = \max\{n, m + 2\} = m + 2 = n + 1$, it holds $\chi'(O_m + C_n) = \Delta + 1 = n + 2$ by Lemma 4. Let *C* be a coloring of $O_m + C_n$ as follows:

Firstly, colour the vertices of $O_m + C_n$ with three colours 0, r, 2r as follows:

$$c(v_i) = 2r, \quad i = 1, 2, \cdots, m;$$

$$c(u_i) = \begin{cases} 0, & i \equiv 1 \mod 2 \\ r, & i \equiv 0 \mod 2 \end{cases}, \quad i = 1, 2, \cdots, n$$

Secondly, colour the edges of $O_m + C_n$ with the n+2 colours $t, t+s, t+2s, \dots, t+ns, t+(n+1)s$ as follows,

$$c(v_{i}u_{j}) = t + [(i + j - 2) \mod n]s, \quad i = 1, 2, \dots, m; \quad j = 1, 2, \dots, n.$$

$$c(u_{i}u_{i+1}) = \begin{cases} t + ns & i \equiv 1 \mod 2 \\ t + (n+1)s & i \equiv 0 \mod 2 \end{cases}, \quad i = 1, 2, \dots, n \quad , \quad \text{if suffix } i + 1 > n \quad \text{then}$$

 $(i+1) \mod n$ takes place i+1.

Since $\chi'(O_m + C_n) = \Delta = n$, hence the edge colouring *c* is proper, so we abtain a proper [r, s, t]-colouring of $O_m + C_n$, hence $\chi_{r,s,t}(O_m + C_n) \le 2r + 1$. At the same time, it holds $\chi_{r,s,t}(O_m + C_n) \ge 2r + 1$ by Corollary 1 (2), therefore $\chi_{r,s,t}(O_m + C_n) = 2r + 1$.

(3) If *n* is a even and $n \le m$, then $\Delta = \Delta(O_m + C_n) = \max\{n, m+2\} = m+2$, it holds $\chi'(O_m + C_n) = \Delta = m+2$ by Lemma 4. Let *C* be a coloring of $O_m + C_n$ as follows:

Firstly, colour the vertices of $O_m + C_n$ with three colours 0, r, 2r as follows:

$$\begin{split} c(v_i) &= 2r, \quad i = 1, 2, \cdots, m; \\ c(u_i) &= \begin{cases} 0, & i \equiv 1 \, \mathrm{mod} \, 2 \\ r, & i \equiv 0 \, \mathrm{mod} \, 2 \end{cases}, \quad i = 1, 2, \cdots, n. \end{split}$$

Secondly, colour the edges of $O_m + C_n$ with the m+2 colours $t, t+s, t+2s, \dots, t+(m+1)s$, since $\chi'(O_m + C_n) = \Delta = m+2$, hence the edge colouring *C* is proper, then obtain a proper [r, s, t]-colouring of $O_m + C_n$, hence $\chi_{r,s,t}(O_m + C_n) \le 2r+1$. At the same time, it holds $\chi_{r,s,t}(O_m + C_n) \ge 2r+1$ by Corollary 1 (1), therefore $\chi_{r,s,t}(O_m + C_n) = 2r+1$.

Theorem 2. Let $O_m + C_n$ be a join graphs, *n* is odd, if one of the following conditions holds, then $\chi_{r,s,t}(O_m + C_n) = 3r + 1$.

- (1) $n \ge m+2$ and $r \ge (n-1)s+2t$;
- (2) n = m + 1 and $r \ge (n+1)s + 2t$;
- (3) $n \le m$ and $r \ge (m+1)s + 2t$.

Proof. Let empty graph O_m vertex set $V(O_m) = \{v_1, v_2, \dots, v_m\}$, cycle C_n vertex set $V(C_n) = \{u_1, u_2, \dots, u_n\}$, edge set $E(C_n) = \{u_i u_{i+1} | i = 1, 2, \dots, n; if i+1 > n then (i+1) \mod n take place it \}$. If n is odd, by Lemma 4 we have $\chi(O_m + C_n) = 4$.

(1) If $n \ge m+2$, then $\Delta = \Delta(O_m + C_n) = \max\{n, m+2\} = n$, by Lemma 4 we have $\chi'(O_m + C_n) = \Delta = n$. Let *C* be a coloring of $O_m + C_n$ as follows:

Firstly, colour the vertices of $O_m + C_n$ with four colours 0, r, 2r, 3r as follows:

 $c(v_i) = 3r, \quad i = 1, 2, \dots, m;$ $c(u_i) = \begin{cases} 0, & i \equiv 1 \mod 2, \quad i = 1, 2, \dots, n-1, \\ r, & i \equiv 0 \mod 2, \quad i = 1, 2, \dots, n-1, \\ 2r, & i = n \end{cases}$

Secondly, colour the edges of $O_m + C_n$ with the *n* colours $t, t + s, t + 2s, \dots, t + (n-1)s$, since $\chi'(O_m + C_n) = \Delta = n$ to obtain a proper [r, s, t] – colouring of $O_m + C_n$, hence $\chi_{r,s,t}(O_m + C_n) \le 2r + 1$. And it holds $\chi_{r,s,t}(O_m + C_n) \ge 3r + 1$ by Corollary 1 (3), then $\chi_{r,s,t}(O_m + C_n) = 3r + 1$.

(2) If n = m+1 and *n* is odd, then $\Delta = \Delta(O_m + C_n) = \max\{n, m+2\} = m+2 = n+1$, by Lemma 4 we have $\chi'(O_m + C_n) = \Delta + 1 = n+2$. Let *c* be a coloring of $O_m + C_n$ as follows:

Firstly, colour the vertices of $O_m + C_n$ with four colours 0, r, 2r, 3r as follows:

$$c(v_i) = 3r, \quad i = 1, 2, \dots, m;$$

$$c(u_i) = \begin{cases} 0, & i \equiv 1 \mod 2, \quad i = 1, 2, \dots, n-1, \\ r, & i \equiv 0 \mod 2, \quad i = 1, 2, \dots, n-1, \\ 2r, & i = n \end{cases}$$

Secondly, colour the edges of $O_m + C_n$ with the n+2 colours $t, t+s, t+2s, \dots, t+ns, t+(n+1)s$ to obtain a proper [r, s, t]-colouring of $O_m + C_n$, hence $\chi_{r,s,t}(O_m + C_n) \le 3r+1$, by Corollary 1 (4) we have $\chi_{r,s,t}(O_m + C_n) \ge 3r+1$, then $\chi_{r,s,t}(O_m + C_n) = 2r+1$.

(3) If *n* is odd and $n \le m$, then $\Delta = \Delta(O_m + C_n) = \max\{n, m+2\} = m+2$, by Lemma 4 we have $\chi'(O_m + C_n) = \Delta = m+2$, Let *C* be a coloring of $O_m + C_n$ as follows:

Firstly, to colour the vertices of $O_m + C_n$ with four colours 0, r, 2r, 3r as follows:

$$c(v_i) = 3r, \quad i = 1, 2, \cdots, m;$$

$$c(u_i) = \begin{cases} 0, & i \equiv 1 \mod 2, \quad i = 1, 2, \cdots, n-1, \\ r, & i \equiv 0 \mod 2, \quad i = 1, 2, \cdots, n-1, \\ 2r, & i = n \end{cases}$$

Secondly, to colour the edges of $O_m + C_n$ with the m+2 colours $t, t+s, t+2s, \dots, t+(m+1)s$, since $\chi'(O_m + C_n) = \Delta = m+2$, hence the edge colouring C is proper, and $r - (t + (m+1)s) \ge t$, so C is a proper [r, s, t]-colouring, hence $\chi_{r,s,t}(O_m + C_n) \le 3r+1$, by Corollary 1 (3) we have $\chi_{r,s,t}(O_m + C_n) \ge 3r+1$, then $\chi_{r,s,t}(O_m + C_n) = 3r+1$.

Theorem 3. If $n \ge 3$ is even and $s \ge max\{r, 2t\}$, then

$$\chi_{r,s,t}(O_m + C_n) = (\chi'(O_m + C_n) - 1)s + 1$$
.

Proof. If $n \ge 3$ is even, by Lemma 4 we have $\chi(O_m + C_n) = 3$, and C_n is a even cycle, then $n \ge 4$, hence

$$\chi'(O_m + C_n) - 1 \ge \Delta - 1 = \max\{n, m + 2\} - 1 \ge 4 - 1 = 3$$

Let *C* be a coloring of $O_m + C_n$ as follows:

Firstly, colour the edges of $O_m + C_n$ with the $\chi'(O_m + C_n)$ colours $0, s, 2s, \dots, (\chi'(O_m + C_n) - 1)s$, we can make *c* is proper edge colouring.

Secondly, to colour the vertices of $O_m + C_n$ with three colours t, t + s, t + 2s as follows:

$$c(v_i) = t + 2s, \quad i = 1, 2, \cdots, m;$$

$$c(u_i) = \begin{cases} t, & i \equiv 1 \mod 2 \\ t + s, & i \equiv 0 \mod 2 \end{cases}, \quad i = 1, 2, \cdots, n.$$

Since $s \ge \max\{r, 2t\}$ we have $(t+s)-t = s \ge r$, $(t+2s)-t = 2s \ge r$, $(t+2s)-(t+s) = s \ge r$, $|ks-t| \ge t$, $|ks-(t+s)| \ge t$, $|ks-(t+ss)| \ge t$, which $k = 0, 1, 2, \dots, \chi'(O_m + C_n)$, so *C* is a proper [r, s, t]- colouring, hence $\chi_{r,s,t}(O_m + C_n) \le (\chi'(O_m + C_n) - 1)s + 1$, by Lemma 3 we have $\chi_{r,s,t}(O_m + C_n) \ge (\chi'(O_m + C_n) - 1)s + 1$, then $\chi_{r,s,t}(O_m + C_n) = (\chi'(O_m + C_n) - 1)s + 1$.

Theorem 4. Let $O_m + C_n$ be a join graphs, if $s \ge r + 2t$, then

$$\chi_{r,s,t}(O_m + C_n) = (\chi'(O_m + C_n) - 1)s + 1$$

Proof. Let *c* be a coloring of $O_m + C_n$ as follows:

Firstly, to colour the edges of $O_m + C_n$ with the $\chi'(O_m + C_n)$ colours $0, s, 2s, \dots, (\chi'(O_m + C_n) - 1)s$, we can make *c* is proper edge colouring.

Secondly, to colour the vertices of $O_m + C_n$ with the following 4 colours selected as follows.

In the interval (0, s) is to select t, r+t, and in the interval (s, 2s) is to select $\max\{s+t, 2r+t\}$, $\max\{s+r+t, 3r+t\}$ these 4 colours, by Lemma 4 we have $\chi(O_m + C_n) \le 4$, so we can make *c* is proper vertices colouring, *c* is a proper [r, s, t]-colouring, hence $\chi_{r,s,t}(O_m + C_n) \le (\chi'(O_m + C_n) - 1)s + 1$, by Lemma 3 we have $\chi_{r,s,t}(O_m + C_n) \ge (\chi'(O_m + C_n) - 1)s + 1$, hence

$$\chi_{r,s,t}(O_m + C_n) = (\chi'(O_m + C_n) - 1)s + 1$$
.

4 Summaries

In this paper, we give the exact values of the [r, s, t]- chromatic number of the joint graph $O_m + C_n$ which depends on the parities of *m* and *n*, if r, s, t meet certain conditions.

Acknowledgment. Supported by Liuzhou Teachers College Foundation under the Grant number LSZ2010B003.

References

- [1] Bondy, J.A., Murty, U.S.R.: Graph theory. Springer, Berlin (2008)
- [2] Chartrand, G., Lesniak, L.: Graphs and digraphs. Greg Hubit Bookworks, California (1979)
- [3] Yap, H.P.: Total coloring of graphs. Lecture Notes in Mathematics, vol. 1623, pp. 1–11. Springer, Heidlberg (1996)
- [4] Kemnitz, A., Marangio, M.: [r, s, t]- colorings of graphs. Discrete Math. 307, 199–207 (2007)
- [5] Dekar, L., et al.: [r, s, t]-colorings of trees and bipartite graphs. Discrete Math. 310, 260–269 (2010)
- [6] Xu, C., Ma, X., Hua, S.: [r, s, t]-coloring of K_{n, n}. J. Appl. Math. Comput. 31, 45–50 (2009)