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Abstract. Mixture Models(MMs) are a typical class of statistical models and 
have been applied to image processing in many situations, among which 
Gaussian MM (GMMs) are widely adopted. Main drawbacks of classical 
models involve that they need presetting the number of clusters, have not 
considered the influence of outliers. They will lead to unreasonable image 
segmentation results. This paper proposes the Self-Growing Regularized 
GMMs(SGRGMMs), which generalizes the classical GMMs, for image 
segmentation. We compute the unknown parameters using the self-branching 
competitive leaning and a new generalized EM algorithm, Regularized 
EM(REM). We carried out experiments on the segmentation of some images 
and our approach can automatically determine the number of clusters and 
efficiently erase the influence of outliers. 
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1   Introduction 

Image segmentation can be viewed as a process to partition an image into a series of 
non-overlapping regions. Currently, there have existed some approaches including 
histogram thresholding[1] and classification based methods. in which the pixels with 
same gray or color are grouped to one class. Many classification approaches are based 
on statistical learning models and the frequently used ones involve vector 
quantization, mixed models and Markov random fields. Mixture Models(MMs) are 
established on statistical theory and have received wide attention in image 
segmentation[2-9]. Gaussian mixture models(GMMs) are a kind of MMs whose 
components are Gaussian distributions. In image segmentation using GMMs, one 
assumes that data comply with Gaussian mixture distribution with unknown 
parameters and then determines the optimal parameters by EM algorithm. In 
segmentation of remotely sensed images, P. Masson and W. Pieczynski proposed a 
stochastic variant of EM to segment satellite images[9]. They pointed out that EM 
related algorithms had large dependence on the initialization. Recently, some 
researchers further develop GMMs and combine GMMs with Markov Random Fields 
for the spatial constraints of pixels[5,6]. However, there are still three drawbacks in 
GMMs and EM algorithm. First, one must preset the initial number of clusters, which 
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is almost unreasonable in many practical cases. Second, the unsuitable initialization of 
centers may lead to the local converge of EM algorithm. Third, in general, the GMMs 
incline to be affected by outliers. 

In this paper we propose the SGRGMM model and the REM algorithm by 
imposing a regularized item on the MAP function to obtain parameter estimation. The 
Self-Branching Competitive Learning[10] is used to determine the initial number and 
locations of clusters. We carry out experiments on remotely sensed images and 
standard test images and get better results compared to GMMs+EM. 

2   Mixture Models and EM Algorithm 

In the probability space with d dimension, given sample X and probability density 
function pi(X|θi), i≤ r, the mixture model has the following form 
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Here, ( )i ip X θ  can be any probability density function. In particular, if ( )ip ⋅  is 

the Gaussian distribution ( )iG ⋅ , then we get GMMs that are frequently used in image 

segmentation. The coefficients iα , which may be distorted by outliers, affect the 

performance of the estimators. 
In common, it is assumed that we know the number of clusters and then compute 

the maximal likelihood estimation(MLE) of parameters by EM algorithm. EM is an 
iterative optimal method proposed by A. P. Dempster et al in 1977 and can be used to 
calculate the optimal parameters of mixture models when sample are incomplete[3]. 
In sequent years, EM is developed and many variants of it are proposed, such as 
Stochastic EM(SEM)[12]. However, it is not convenient to directly apply EM to (1) 
when estimating parameters.  

3   Regularized Mixture Models and Generalized EM Algorithm 

The conventional GMMs and EM algorithm classify the pixels of an image into 
several groups, each of which denotes a region with specified feature values. In 
common, the irregular parts in images, such as isolated points, will affect the 
convergence of EM algorithm and the segmentation quality of images. To erase the 
influence, we propose a regularized EM algorithm(REM) that defines a regularized 
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where 0β ≥ is the regularized factor , ( )l Θ  is the likelihood function and 

1
1

M

ii
α

=
= . 

When ( )|i j ip x θ satisfies Gaussian distribution (3), ( )',i i iθ μ= Σ with d=2, then (13) 

becomes 
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To compute the unknown parameter j
iα  it needs to solve the following Lagrange 

equation. From (3) we get  
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where jλ  is the Lagrange multiplier. Solve above equation and we have  
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Obviously, ( )1 1 2k
jλ β≥ ≥ − . Then we obtain the iterative equation at kth step as 
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To find the priors of each component we take the mean of all j
iα  about j and then 

get  
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The iα  need normalizing about i so as to satisfy  1j
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probabilities of iα  will be used to calculate j
iω  in every iteration. Let 
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In the iteration process, the normalized iα  is used to update j
iω  in (4). For iμ , we 

have 
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From (3), we get the covariance matrix for multivariate data as 
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4   Experiment Results on Remotely Sensed Images 

Remotely sensed images are widely adopted in city planning, Agriculture and 
resource survey. Here, we apply our algorithm to segmentation of color remotely 
sensed images. Figure 1 (a)  show a remotely sensed image and its segmented image 
(b) by our approach with 10σ = , K=10. The results present a favorable segmentation 
result.  

   

            (a)  origin                (b) segmented image 

Fig. 1. The segmentation results by our approach 

5   Experiment Results on Standard Test Images 

We used two standard figures to compare the performance of classical EM and REM 
in segmentation quality. With the same set of preset parameters, we got the final 
variances and priors. From the data distribution in feature space as shown in Figure 2, 
we knew that the data distribution of Donna was more irregular than that of Lena, 
which made the final priors for Donna had more adjustment. So the difference in 
segmentation results between (c) and (d) in Figure 2 was less than that between (a) 
and (b). Since classical EM algorithm was sensitive to initialization and noise, thus 
the change of priors improved the segmentation quality. 
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  (a) EM                  (b) REM 

  

(c) EM                   (d) REM 

Fig. 2. The segmentation results by our approach and GMM+EM 
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