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Abstract. An efficiency of an multi-robot systems depends on proper coordinating
tasks of all robots. This paper presents a game theoretic approach to modelling and
solving the pick-up and collection problem. The classical form of this problem is
modified in order to introduce the aspect of an uncertainty related to an informa-
tion about the workspace inside of which robots are intended to perform the task.
The process of modelling the problem in game theoretic framework, as well as co-
operative solution to the problem is discussed in thise paper. Results of exemplary
simulations are presented to prove the suitability of theapproach presented.
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1 Introduction

In multi-robot systems the primary, complex task is distributed between a number of
robots that can perform some simple operations called further sub-tasks. Those sys-
tems benefit from the property that even complex process can be solved by a number
of simple robotic units. Considering mobile robotics domain, many practical appli-
cations of such systems can be pointed out. That is enough to mention a problem of
a transportation of large, and heavy parts by a number of smaller transporters, explo-
ration task as well as pick up and collection problem. The results of application of
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multi-robot systems are two fold. On the one hand we benefit from the innate, afore-
mentioned features of these systems like scalability and their distributive nature. But
on the other hand, there is a need of coordination of actions of particular units which
is not a simple task. Considering distributed mobile robot systems, in many cases the
problem of sharing the common workspace and resources appears. This implies that,
without proper method of coordination even simple task of moving robots inside of
an empty workspace can not be performed. The problem is getting more complex if
the information provided to the system is uncertain. In spite of the problems related,
advantages of these systems cause they have been intensively investigated. There-
fore a series of different methods of solving the problem of coordination have been
proposed suggested by different authors [1, 2, 7, 8, 9, 10, 16].

One of the tools which suites well to the discussed problem, is the Game Theory,
which provides a smart framework for modelling and solving the problems that have
conflicting nature. It is easy to notice that in multi-robot systems, mutual interactions
between individual robots may result in conflict, which is often caused by the fact
of sharing common resources. That is the reason many researches try to apply this
framework to model different aspects of multi-robot systems [3, 4, 5, 11, 15]. In this
paper an approach to model and solve the pick up and collection task in multi robot
environment is presented. This problem is a popular benchmark in Multi-Agents
Systems which allows to verify different control, coordination and task distribution
strategies. Classical formulation of this problem, which has been investigated in
many papers [12, 13, 14] does not take into account uncertainty of information about
the workspace the team of robots is provided with [10]. To extend of the primary
pick-up collection problem it is assumed that the number as well as location of the
objects the team is intended to collect is uncertain. In this case the problem is getting
more interesting, and hard to solve by off-line task planners. Such modification of
the problem is the point of this paper. The rest of the paper is organized as follows.
After introducing the basic control system framework a model of the workspace
is described. Next part of the article define the tasks particular robots are able to
perform. After this the problem statement is presented. Another part of the article
describes the process of modelling the problem in the game theoretic framework. In
the last section simulations that prove the appropriateness of presented approach are
presented and discussed.

1.1 The System Framework Overview

In this section a brief overview of the system’s framework is presented. Figure 1
illustrates conceptual architecture of the multi-robot control system. It is assumed
that the system is the centralized one. That means that the control is determined by
the module responsible for the task planning and then sent to the individual robotic
units. The task planner computes the set of actions that are to be executed by each
robot. That implies the system works in a synchronous way. The problem solver
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cannot send the new set of actions to the group of robots, until the last robot reports
completion of its task. Therefore the system should not be perceived as a distributed
control system (multi-agent). The control is centralized and sent to the individual
robots synchronously. On the other hand the information about the workspace is
collected and then updated in a distributive way. The model of the workspace in-
troduced to the system in the beginning of the process, is successively updated by
individual robots. In the system described, the blackboard exchange mechanism is
applied, what means that each robot has an access to some system variables, and is
able to read them and overwrite them, while collecting new information.

Fig. 1 Conceptual diagram of the system

2 Model of the Workspace

The pick-up and collection problem consists of collecting by the group of robots a
number of objects scattered inside the workspace. The system is provided with in-
formation about the location of objects described in the Cartesian coordinates sys-
tem fixed to the workspace. However, the information about the fact that there is
the given object on the known position is not certain one. This uncertainty must
be taken into account during the process of planning the task, what implies it must
be included in the model of the workspace. Moreover each robotic unit is assumed
to have some operational range, that describe its possibility of the movement dur-
ing the single cycle of the process. This aspect of the limited mobility of robotic
units must also be included in the model. Taking aforementioned aspects into ac-
count, the workspace is modeled as a weighted visibility graph, which determines



72 K. Skrzypczyk and M. Mellado

possible movements of individual units in the given state of the process. The graph
is defined as W = (V,E) where V = {v1,v2, ...,vM} is the set of vertices of the graph,
that represent M objects deployed inside of the workspace. The following features
are related to the given vertex:

vi = [xo,i,yo,i,Po,i,ro,i] (1)

In (1) variables (xo,i,yo,i) denote the position of ith object, Po,i is the probability of
the fact that ith object is located inside of the circle of the centre fixed in (xo,i,yo,i)
and the radius ro,i. Since for considered problem both shape and orientation of ob-
jects is not important, each object is described only by position of geometrical cen-
tre. Second part of the model is the set of edges E that describes spatial relations
between objects. As it was mentioned before, each robot is assumed to have a given
operational range rR,i for i = 1,2, ...,N, where denotes a number of robots. That
means it can only reach an object that is closer than the range of the robot. More-
over, a robot cannot move directly to an object if there is another object on the way.
The reason of such assumption is that such movement can disturb the searching or
picking-up process proceeded by other robot. The set of objects that lay on the the
way between ith and jth object is denoted by:

V obst
i, j = {vk, ...,vl , ...,vm} ⊂V (2)

Thus the edges of the graph are defined:

E = {vi,v j,wi, j : vi,v j ∈V,wi, j ∈ R} (3)

The weighting factor wi, j in (3) is calculated using the formula:

wi, j =

{∥∥vi − v j
∥∥ if

∥∥vi − v j
∥∥ < rR,i ∧V obst

i, j = φ
∞ otherwise

(4)

The weighting factor is equal to the distance between the object and the robot if
this distance is smaller than operational range of the robot. Also must be assured
that there is no any other object laying between the robot and the given object.
Otherwise the weighting factor is equal to infinity. The model contains information
about the workspace the system is provided with. The real state of the workspace is
described by:

V real = {Pr,1,Pr,2, ...,Pr,M} Pr,i = 0,1 (5)

Elements of this set describe the fact if really there is the given object inside of this
workspace or not. In fact the set (5) denotes a true, initial state of the workspace and
in general can differ from the description given by (1).
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2.1 Robots and Their Actions

Within the workspace W operate N mobile robots. The group of robots is denoted
as a set R = {R1,R2, ...,RN}. The state of ith robot is defined by its position and
described by a vector:

Xi = [xR,i,yR,i] (6)

where elements of the (6) denote the position of ith robot described in the coordinate
frame of the workspace W . Since it is not important for considered problem, the
orientation of the robot is neglected. In terms of the assumed model of the workspace
as well as the process of task planning, the robot can be located only in finite number
of places, which are defined by objects’ location. Therefore, motion between these
locations is assumed to be solved by a path planner avoiding any possible collision.
Thus the position of the ith robot, in terms of the model, is defined

mi = m, m = 1,2, ...,M for
√
(xR,i − xo,mi)

2 +(yR,i − yo,mi)
2 < ro,mi (7)

Therefore the state of the team in the given discrete moment n, n = 1,2, ... of the
process is given by:

M(n) = {mi}, i = 1,2, ...,N (8)

Each robot depending on its state (7) is able to perform a given number of actions.
The set of actions admissible in the given state mi for ith robot is denoted by:

Ami
i = {ai,1,ai,2, ...,ai,Ki} (9)

where Ki is a number of admissible actions of the ith robot in the state mi. Each
action the given robot can take is the one of the three following ones.

• GoTo(Ri,v j) - is the action that consists in moving the ith robot close to the
jth object. This action, in order to be admissible, must satisfy the precondition:
wmi, j 	= ∞, whereas a result of applying this action is described by the postcondi-
tion: mi = j, Po, j = Pr, j

• PickU p(Ri,v j) - is second action that can be taken by a given robot. It consists
in picking up and collecting the object v j by the robot Ri. This action can be
performed if it is satisfied the following: mi = j, Po, j 	= 0 vmi /∈V col where V col

denotes the set of objects that have already been collected. Applying this action
results in the postcondition: Po, j = 0; V col =V col ∪ v j

• Wait(Ri) - this is third action the given robot can take. The result of applying this
action is stopping the robot for one planning cycle. This action does not need any
preconditions.
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2.2 Problem Statement

Using the introduced notation the problem can be clearly sated as follows. For each
descrete moment of time n which is the planning cycle, find a set of actions A0(n) =
{a0i} i = 1,2, ...N, n = 1,2, ... that if applied will results in satisfying the following:

V =V col (10)

It is required the condition (10) to be satisfied, after as small as possible number of
planning cycles. Moreover the aim of the planning process is an uniform distribu-
tion of collected objects that reduce the amount of energy spent by the team. The
(10) is a condition of terminating the collection process and means that all known
objects are collected. It is important to stress that all the process of task planning is
not the off-line one. Since there is an uncertainty of the information, the tasks are
scheduled in the step by step mode, while the information is being updated by the
robots performing the mission. That is the reason that the result of the task planning
might not be optimal. It depends strongly on the level of uncertainty of information
the system is provided with.

3 Modelling the Problem

The pick-up and collection problem is a typical example of a process when multiple
robotic units must share common resources during execution the common mission.
That implies mutual interactions of the units can lead to ineffective or even to inabil-
ity of execution of the mission. In this section the process of modelling the pick-up
and collection problem in game theoretic framework is described. The process of ex-
ecution of the considered task can be perceived as a game between individual robotic
units (players). Each of them is able to perform a set of the actions described in sec-
tion 2.1. Depending on the given combination of actions taken by individuals and
the current state of the process, the game results in some cost the team is trying to
minimise (in case of team problem). Let us model considered process as a game re-
lated to the given discrete moment of the planning process: G(n) = {N,A(n), I(n)},
where where N denotes number of players (robots) taking part in the game, A(n) is
an action space of the given nth step of the process:

A(n) = Am1
1 ×Am2

2 × ...×AmN
N (11)

where Ami
i is an action set of the ith robot in the state mi defined by (9). Third

component of the game is the cost function I. The game theory derives from the
economical sciences and in this context the cost function denoted the amount of
costs that the players had to pay for taking individual combination of strategies. In
terms of robotics, the cost function has no physical interpretation, and the value the
function returns is considered as a numerical quantity that is to be minimized. De-
signing the cost function is the key point in creating the game theoretic framework
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for the considered problem. The value of the cost function, arguments of which are
particular actions of the robotic units, reflects the quality of execution of the con-
sidered task. The form of this function must encapsulate all the features of multi
robot execution of the mission. In discussed approach the following form of the cost
function was applied:

I =
N

∑
i=1

Ii(ak),ak ∈ Amk
k k = 1,2, ...,N (12)

Each component Ii is the cost function related to the ith robot. This component of
the cost functions, consists of the two parts:

Ii(ak) = Iexp,i + Irew,i (13)

The first one is related to profitability of the action applied. Since a presence of
the object in the location is given with some probability, there is a need to estimate
the costs of moving the robot to the given position. The higher probability of the
presence of the object and the lower is the distance to it, the more profitable is
taking the considered action. This component for the action ak = GoTo(Ri,v j) is
defined by:

Iexp,i(ak) =

{
∞ if v j = vi, j, j = 1, ...,N

α Po,ai
Li,vi

+β
P∗

o,vi
L∗o,vi

+ b otherwise
, k = 1,2, ...,N (14)

where Po,ai is the probability of existence of the object vi selected by ith robot as a
result of action ak. The value Li,vi is the cost of moving ith robot to the given object
ai. This value is equal to the weighting factor w. The value of the other part of de-
scribed component is related to proximity of the object vi, to the closest uncollected
object. Thus P∗

o,vi
and L∗

o,vi
denote the probability of existance of the object closest

to vi and distance between the closest, uncollected object and the object vi. The role
of coefficients α,β as well as the bias b is adjusting the model. The value of this
component for actions PickU p, and Wait is equal to 0.

The value given by second component in (13) can be described as a reward taken
by individual player, for picking up the given object. This value depends on the
state of the overall process, and can vary depending on the distribution of number
of objects collected by individual robots. The aim is to provide uniform distribution
and obtain the best possible value of the cost function. Therefore the value of this
factor, defined for PickU p action is given by:

Irew,i(ak) =

{−R if δ̂i > 0 ∧ mv0 = vi ∧ L̂∗
i < Lvk ,vk0

R otherwise
(15)

where R is some positive, real value. Therefore, this factor can be positive or nega-
tive according to whether the decision taken by ith robot is cooperative or noncoop-
erative The action is considered to be noncooperative one if the conditions pointed
in (15) are satisfied. The first part of the condition determine if number of collected
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objects by ith robot is not lowest one (including the object collected as a result of
action ak). The value is determined from:

δ̂i = N̂i − min (N̂k)
k=1,...,N,k 	=i

(16)

where N̂k, k = 1, ...,N is the number of collected objects by kth robot, after taking
the action ak. Next conditions determine if the object vi the ith robot is about to pick
up is the closest uncollected object for other robot. To know if it is, it is checked
if the distance L̂∗

i to other closest object for ith robot is smaller than Lvk ,vk0 . Such
form of the component stimulates the cooperative behaviour of the team. It allows
to provide uniform distribution of number of collected elements as well as minimise
the energy spent by a team. This term is equal to 0 for GoTo and Wait actions.

4 Solution

The problem stated in this paper is called in terms of game theory the team problem
which consists in optimisation the common cost function. Moreover the considered
problem is cooperative one with total exchange of information and successive syn-
chronisation of task execution of individual robot. It is important to stress again that
the task execution process is the iterative one with successive update of knowledge
made by individual team mates. Therefore the solution of the single nth step of the
process is given by:

A0(n) = {a10,a20, ...,aN0}= min
a1,...,aN

I (17)

Applying the solution results in execution of the part of the primary problem and
update the knowledge about the workspace. The solution (17) is applied until the
stop condition is satisfied. The stop condition is defined by equality of the sets V =
V col what means that all the objects have been collected. The process also can stop
when all the actions determined by (17) are Wait actions. This second situation may
occur when there are objects described in model by very low probability factor. In
this case if possible benifits from checking up the existance of the objects are lower
than energy spent for this action the process may by stopped.

5 Simulation Results

In order to verify our approach the afore-described methodology was implemented
in the MATLAB environment. A number of simulations have been performed to
evaluate the proposed methodology of modelling and solving the pick up collection
task. In this section only two, selected and relevant experiments are presented and
discussed. In all presented simulations two robots {R1,R2} are intended to collect
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a set {v1,v2, ...,vM} of objects where the number of objects is equal to 10. Inside
the workspace, there are M objects distributed in a random way. The probabilities
of existence are randomly fixed to the given objects. In all (excluding the first one)
experiments 30% of objects are described by low probability factor. Among these
objects there are objects that do not exist in the workspace. Thus difference between
the real world and the model of the process is modeled. In first experiment the dis-
cussed method was verified using different scenario. This time ten objects were ran-
domly displaced inside of the workspace. Existence of each object was described by
probability factor (depicted by number outside the circle). Initial locations of robots
are close to each other what implies some possible difficulties in task allocation.
There are 2 objects described by low probability factor in the model, and which
did not exist in reality (objects depicted with double circle). Modeled scenario is
presented in fig. 2 while fig. 3 presents the solution of the problem, which is the
sequence of robots actions. It is worth to notice that also in this scenario, the task
was performed in a cooperative way. In stage 7 first robot leaves the object instead
of picking it up and moves to 6th object. That allowed to obtain uniform distribution
of collected objects between the robots.

Fig. 2 The layout of the objects and the model of the workspace used in first experiment

The goal of the next experiment is showing the functioning of the method in the
case when the objects are split into two separated subgroups (fig.4). Also the robots
start the work from two distant locations. In this experiment three objects were
modelled as not existing ones, described by low probability factors. Analysing the
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Fig. 3 Sequence of robot
actions - result of execution
of the task stated in first
experiment

Fig. 4 The layout of the objects and the model of the workspace used in second experiment

solution (fig. 5) it is easy to notice that the behaviour of the team is quite reasonable
and intuitive in terms of human behaviour. Robot 1 after picking-up 9th object, waits
and let the other robot collect the rest of objects. Thus energy saving aspect of the
team behaviour can be noticed.
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Fig. 5 Sequence of robot
actions - result of execution
of the task stated in second
experiment

6 Conclusion

In this paper an approach to model and solve the pick up and collection task in multi-
robot environment was presented. The discussed problem is a popular benchmark
in Multi-Agents Systems which allows to verify different control, coordination and
task distribution strategies. The extended version of the problem, that consists in
introducing uncertainty of the model was the key point of this article. It was assumed
that the number as well as location of the objects the team is intended to collect
is uncertain. A game theoretic approach to model and solve the aforementioned
problem was applied. Because the knowledge of the system about environment is
uncertain it is difficult to apply off-line planning. Instead of this an iterative step-
by-step execution of the task was applied. Implications of such approach are two
fold. On one hand it is possible to acquire knowledge about the environment and
the real state of the process. On the other hand this approach can not guarantee the
optimal execution of the task. Nevertheless a number of simulation, three examples
of which are presented in the paper, confirm the appropriateness of the approach.
Results of the simulations show that the method behaves in a rational (in terms
of human behaviour) way and the obtained solutions are acceptable. Such good
results are obtained of course in case of providing step by step synchronisation of
the process. Future investigation will be focused on examining the problem when
actions are not synchronised. In this case another uncertainty factor related to the
effect of the actions taken by robots, should have to be considered.
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