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Abstract. The purpose of this paper is to present some results on the effects of
parametric perturbations on the Lyapunov exponents of discrete time-varying linear
systems. We fix our attention on the greatest and smallest exponents.
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1 Introduction

In the laast decade there has been great interest of researchers from the theory of
linear models in systems which combine logical switches and differential or differ-
ence equations. This interest is dictated first and foremost of the great utility of such
models for modeling real-world objects. The usefulness of this growing demand
depends on the methods of modeling, analysis and understanding of this structure.
Although construction of a hybrid model is a relatively simple task, its analysis is
already far from simplicity. During the analysis of hybrid systems many interesting
and difficult mathematical problems arise. Many of them are associated with the
dynamics, and in particular the stability of such models remains unsolved today.

Many properties of dynamic systems can be successfully characterized by certain
numbers called numerical characteristics or characteristic exponents. These include:
Lyapunov, Bohl, Perron, Izobov, Grobman exponents, generalized spectral radiuses.
These numbers describe the different types of stability, growth of trajectories or
sensitivity on parametric disturbances.
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Since the works of A. M. Lyapunov [40] and O. Perron [49, 50] the theory of
Lyapunov exponents became the subject of intense research, as evidenced by the
huge number of papers published on this subject.

This paper is devoted to the influence of parametric perturbations on the Lya-
punov exponents of discrete linear systems with time varying coefficients. Different
types of perturbations are considered, limited in terms of certain norms, tending to
zero in a specified rate. For each of them we describe their impact on the value of
Lyapunov exponents.

There are several monographs devoted in whole or in large part to the Lyapunov
exponents, e.g. [4, 6, 12, 32, 41, 46]. But only in the last two a problem of parametric
perturbations is discussed. Both of these items deals with continuous time systems,
and in addition, they are available only in Russian.

2 Definitions of Characteristic Exponents and Basic Properties

In this section we will introduce the notation and basic properties of Lyapunov ex-
ponents of linear discrete time-varying systems:

x(n+ 1) = A(n)x(n),n ≥ 0, (1)

where (A(n))n∈N is a bounded sequence invertible of s-by-s real matrices such that(
A−1(n)

)
n∈N is bounded.

The transition matrix of (1) is defined as

A (m,k) = A(m− 1)...A(k)

for m > k and A (m,m) = I, where I is the identity matrix. For a initial condition
x(0) = x0 ∈ Rs the solution of (1) is denoted by x(n,x0), so

x(n,x0) = A (n,0)x0.

Definition 1. Let b = (b(n))n∈N be a sequence of real numbers. The number (or the
symbol ±∞) defined as

λ (b) = limsup
n→∞

1
n

ln |b(n)|

is called the upper characteristic exponent or simply characteristic exponent of
sequence (b(n))n∈N. For a sequence v = (v(n))n∈N of vectors of normed space
(X ,‖∗‖) we define its characteristic exponent λ (v) as a exponent of sequence
(‖v(n)‖)n∈N .

It is easy to check that finite λ (b) is a characteristic exponent of sequence of b =
(b(n))n∈N if, and only if, the following two conditions are simultaneously satisfied:

1. For any ε > 0 there exists constant Dε such that for all n ∈ N the following
inequality is satisfied
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|b(n)| ≤ Dε exp((λ (b)+ ε)n) ;

2. For any ε > 0 the following equality is satisfied

limsup
n→∞

|b(n)|exp((−λ (b)+ ε)n) = ∞.

Fix an arbitrary norm ‖·‖ in Rs and denote induced operator norm by the same
symbol. Denote

sup
n∈N

‖A(n)‖= a, sup
n∈N

∥
∥A−1(n)

∥
∥= a′. (2)

Definition 2. For x0 ∈ Rs, x0 	= 0 the Lyapunov exponent λA(x0) of (1) is defined as
characteristic exponent of (x(n,x0))n∈N that is

λA(x0) = limsup
n→∞

1
n

ln‖x(n,x0)‖ .

We also define λA(0) =−∞ .

Observe that by the equivalence of all norms in Rs the above definition does not
depend on the particular choice of the norm. The next Theorem contains some basic
properties of Lyapunov exponents.

Theorem 1. For the Lyapunov exponents of (1) the following properties hold:

1. if x0 ∈ Rs and c ∈ R, c 	= 0 then λA(x0) = λA(cx0);
2. if x1,x2 ∈ Rs then λA (x1 + x2)≤ max{λA (x1) ,λA (x2)} ;
3. if x1,x2 ∈ Rs and λA (x1) 	= λA (x2) then

λA (x1 + x2) = max{λA (x1) ,λA (x2)} ;

4. if x1, ...,xl ∈ Rs\{0} and the numbers λA (x1) , ...,λA (xl) are distinct, then the
vectors x1, ...,xl are linearly independent;

5. if x1, ...,xs is a basis or Rs then

limsup
n→∞

1
n

ln |detA (n,0)| ≤
s

∑
l=1

λA (xl) ; (3)

6. if x0 ∈ Rs then λA(x0)≤ a;
7. if x0 ∈ Rs then λA(s)≤ λA(x0), where v = (v(n))n∈N is given by

v(n) =

{
∑n−1

l=0 x(l,x0) if λ (x0)≥ 0
∑∞

l=n x(l,x0) if λ (x0)< 0
.

The proof of points 1-4 is given in [6], Theorem 2.1, inequality (3), which is called
Lyapunov inequality was shown in [22], point 6 is a obvious consequence of (2)
and the definition of λA(x0), point 7 is proved in [16], Lemma 4. As a consequence
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of point 4 we see that the set {λA(x0) : x0 ∈ Rs\{0}} contains at most s elements,
say −∞ ≤ λ1 (A) < λ2 (A) < ... < λr (A) < ∞, and the set {λ1,λ2, ...,λr} will be
called the spectrum of (1). The greatest and the smallest exponent we will denote by
λg(A) and λs(A), respectively. An immediate consequence of definition of operator
norm is the following result, which express the greatest exponent just in terms of
the matrices (A(n))n∈N .

Theorem 2. The greatest exponent λr (A) of (1) is given by the following formula

λg(A) = limsup
n→∞

1
n

ln‖A(n− 1)...A(0)‖ . (4)

Together with (1) we will consider the so-called dual or adjoint system

y(n+ 1) = B(n)y(n),n ≥ 0, (5)

where B(n) =
(
AT (n)

)−1
. The transition matrix of the dual system is given by

B(m,k) = B(m− 1)...B(k)

for m > k and B(m,m) = I.
Observe that an application of Lyapunov inequality (3) to the dual system leads

to the following extension of point 6 of Theorem 1.

Lemma 1. If x0 ∈ Rs\{0}, then λ (x0) is finite.

Further extension of this result can be found in [37]. It demonstrates the following
conditions weaker than (2) conditions

limsup
n→∞

1
n

ln‖A (n,0)‖< ∞

and

limsup
n→∞

1
n

ln‖B(n,0)‖ < ∞

imply the finiteness of λ (x0) for x0 ∈ Rs\{0} .
Denote by {μ1,μ2, ...,μr} , μr < μr−1 < ... < μ1 the spectrum of dual system.

For each λi and μi we consider the following subspaces of Rs

Ei = {v ∈ Rs : λ (v)≤ λi}
and

Fi = {v ∈ Rs : μ(v)≤ μi} ,
and we set E0 = Fs+1 = {0}. The multiplicities ni and mi of Lyapunov exponent
λi and μi are defined as dimEi − dimEi−1 and dimFi − dimFi+1, respectively for
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i = 1, ...,s. If we have two bases v1, ...,vs and w1, ...,ws of Rs, then we will call them
dual if

〈
vi,wj

〉
= δi j , where < u,v > is the standard scalar product in Rs and δi j is

the Kronecker symbol. For a base V = {v1, ...,vs} of Rs we define the sum σV of
Lyapunov exponents

σV =
s

∑
i=1

λA(vi).

The base v1, ...,vs is called normal if for each i = 1, ...,s there exists a basis of Ei

composed of vectors {v1, ...,vs}. Formally, we should say that a basis is normal
with respect to family Ei, i = 1, ...,s. It can be shown (see [7], remark after Theorem
1.2.5) that there always exist normal bases v1, ...,vs and w1, ...,ws ( respectively of
the families Ei and Fi) which are dual. It can be also shown (see [7], Theorem 1.2.3)
that for the normal bases the sum σV of Lyapunov exponents is minimal and then,
according to Lyapunov inequality (3), equal to

limsup
n→∞

1
n

ln |detA (n,0)| .

For a basis v1, ...,vs matrix V (n), n ∈ N whose columns are x(n,v1),..., x(n,vs) is
called fundamental matrix of (1). For a fundamental matrix the kernel G (n,m) =
V (n)V −1(m), n,m ∈ N is called a Green’s matrix of (1). If the base is normal,
then the fundamental and Green’s matrices are called normal. In many our further
consideration a crucial role will be played by the possibility of reduction of our
system to an upper triangular one. It is guaranteed by the following theorem from
[7], Theorem 7.

Theorem 3. For each sequence (A(n))n∈N there exists a sequence (U(n))n∈N of or-
thogonal matrices such that Cn =UT

n+1AnUn is upper triangular.

Together with (1) we consider the following perturbed system

z(n+ 1) = (A(n)+Δ(n))z(n), (6)

where Δ = (Δ(n))n∈N is a sequence of s-by-s real matrices from a certain class
M. Under the influence of the perturbation Δ , the characteristic exponents of (1)
vary, in general, discontinuously. It is possible that a finite shift of the characteristic
exponents of the original system (1) corresponds to an arbitrarily small sup‖Δ(n)‖ .
In particular, it is possible for an exponentially stable system to be perturbed by
an exponentially decreasing perturbation and the resulting system is not stable. The
quantities

Λu (M) = sup
{

λg(A+Δ) : Δ ∈M
}

Λl (M) = inf
{

λg(A+Δ) : Δ ∈M
}

are referred to as the maximal upper and minimal lower movability boundary of
the higher exponent of (1) with perturbation in the class M. We may also consider
similar quantities for the others elements of the spectrum.
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The determination of the movability boundaries of the higher exponent under var-
ious perturbations is one of the main problem in the theory of Lyapunov exponents.
This problem has been studied for continuous-time systems for many classes M.
For example, upper bound for the higher exponent of (1) under small perturbations,
the so-called central exponent Ω(A), was constructed in [12], p. 114. The attainabil-
ity of this estimate was proved in [47] with the use of the classical rotation method.
This problem was solved in [31] and [30] for linear systems with perturbations de-
creasing at infinity at various rates and in [5] for linear systems with perturbations
determined by integral conditions. Later in [43] and [44] perturbations infinitesimal
in mean with a weight function have been investigated. The recent monograph [32]
is almost completely devoted to this problem.

3 Bounded Perturbation

In this chapter we will consider the perturbation set

Mq = {Δ = (Δ(n))n∈N : ‖Δ‖∞ < q} , (7)

where ‖Δ‖∞ = sup‖Δ(n)‖ . In the next paragraph we present a definition of sta-
bility of Lyapunov exponents and a sufficient condition for the stability. Next, we
will present analytic formulas for maximal upper and minimal lower movability
boundaries of the higher exponent of (1) with perturbation in the class Mq in two-
dimensional stationary case. After that, we will present basic facts about generalized
spectral radius and finally, we will show how this tool may be used to determine
Λu (Mq) and Λu (Mq) in case of stationary system.

We have the following definition.

Definition 3. The Lyapunov exponents of system (1) are called stable if for any
ε > 0 there exists δ > 0 such that the inequality

sup
n∈N

‖Δ(n)‖< δ (8)

implies the inequality
∣∣λ ′

i (A)−λ ′
i (A+Δ)

∣∣< ε , i = 1, ...,s.

To formulate our main results for a Green’s matrix of (1) denote by xi(m,n) the i-th
column of it and by μi the characteristic exponent of the sequence (‖xi(m,n)‖)m∈N ,
i = 1, ...,s. The next theorem [18] constitutes discrete time version of Malkin [45]
sufficient condition for continuity of Lyapunov exponents.

Theorem 4. Suppose that for certain Green’s G (m,n) matrix of (1) and any γ > 0
there exists d > 0 such that

‖xi(m,n)‖ ≤ d exp [(μi + γ)(m− n)] for m,n ∈ N, m ≥ n, i = 1, ...,s (9)
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and

‖xi(m,n)‖ ≤ d exp [(μi − γ)(m− n)] for m,n ∈ N, n ≥ m, i = 1, ...,s, (10)

then the Lyapunov exponents of system (1) are stable.

Using Theorem 4 it can be shown that the Lyapunov exponents of time-invariant
system are stable for invertible matrix system.

Theorem 5. Lyapunov exponents of time-invariant system

x(n+ 1) = Ax(n), (11)

with invertible matrix A are stable.

Consider a time-invariant two-dimensional system

x(n+ 1) = Ax(n),n ≥ 0, (12)

where A is a two-by-two matrix in Jordan canonical form

A =

[
a1 0
0 a2

]
(13)

or

A =

[
a1 0
1 a2

]
, (14)

where a1, a2 are positive. Together with (12) we consider the following disturbed
system

y(n+ 1) = (A+Q(n))y(n), (15)

where (Q(n))n∈N,

Q(n) =

[
q11(n) q12(n)
q21(n) q22(n)

]

is a sequence of two-by-two matrices such that
∣
∣qi j(n)

∣
∣≤ q (16)

for all i, j = 1,2 and all n = 0,1, ... .
In the considered case the set of Lyapunov exponents of system (15) con-

tains at most 2 elements, say λ1 (A+Q) ≤ λ2 (A+Q) . We will try to describe
the influence of the perturbation (Q(n))n∈N, on the greatest Lyapunov exponent
of (12). We will investigate the following counties λ min

2 (A,q) = minλ2 (A+Q) ,
λ max

2 (A,q) = maxλ2 (A+Q),where the maxima and minima are taken over all per-
turbation sequences (Q(n))n∈N satisfying (16).

The following Theorem contains analytic expressions for λ max
2 (A,q).
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Theorem 6. We have

λ max
2 (A,q) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ln

[
1
2

(
a1 + a2 + 2q+

√
(a2 − a1)

2 + 4q2

)]

if A is given by (13)

ln

[
1
2

(
a1 + a2 + 2q+

√
(a2 − a1)

2 + 4q(1+ q)

)]

if A is given by (14)

.

The problem of evaluating λ min
2 (A,q) seems to be much harder. Some particular

cases are provided in the next Theorem.

Theorem 7. If A is given by (13) and 4q ≤ |a2 − a1| , then we have

λ min
2 (A,q) = ln

a1 + a2 +
√
(|a2 − a1|− 4q) |a2 − a1|

2
.

4 Generalized Spectral Radius and Subradius

Denote by ρ(A) the spectral radius of a matrix A. Consider a nonempty set Σ of
s-by-s matrices. For m ≥ 1, Σm is the set of all products of matrices in Σ of length
m,

Σm = {A1A2...Am : Ai ∈ Σ , i = 1, ...,m} .
Set

αm = sup
A∈Σm

‖A‖ , αm = inf
A∈Σm

‖A‖ ,

β m = sup
A∈Σm

ρ(A), β
m
= inf

A∈Σm
ρ(A)

and define:
- the joint spectral subradius

ρ̂∗(Σ) = inf
m≥1

α1/m
m ,

- the joint spectral radius

ρ̂(Σ) = inf
m≥1

α1/m
m ,

-the generalized spectral subradius

ρ∗(Σ) = inf
m≥1

β 1/m
m

,

-the generalized spectral radius

ρ(Σ) = sup
m≥1

β 1/m
m .
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The concepts of joint and generalized spectral radii were introduced in [53] and in
[20] (see also [21]), respectively. Next in [8] and [23] two different proofs of the
equality

ρ̂(Σ) = ρ(Σ) (17)

were given for the bounded set Σ . In [20] it was also shown that for bounded set Σ
we have

ρ̂(Σ) = lim
m→∞

α1/m
m = limsup

m→∞
β 1/m

m . (18)

Later for bounded set Σ we will denote the common value of ρ̂(Σ) and ρ(Σ) by
ρ(Σ). The concepts of joint and the generalized spectral subradii were introduced
in [26] to present conditions for Markov asymptotic stability of a discrete linear
inclusion. In this paper it has been also shown that

ρ̂∗(Σ) = ρ∗(Σ) (19)

for finite Σ . In [9] these concepts have been related to the so called mortality prob-
lem. We say that the set of matrices Σ is mortal if the zero matrix can be expressed
as the product of finitely many matrices from Σ . It appears that Σ is mortal if, and
only if, ρ̂∗(Σ) = 0. Finally, in [13] inequality (19) was extended to the case of any
nonempty set of matrices and it was shown that

ρ̂∗(Σ) = lim
m→∞

α1/m
m = liminf

m→∞
β 1/m

m
. (20)

Later for nonempty set Σ we will denote the common value of ρ̂∗(Σ) and ρ∗(Σ)
by ρ∗(Σ). Because of the equalities (17) and (19) we can introduce the following
definition.

Definition 4. For bounded set Σ we will denote the common value of ρ̂(Σ) and
ρ(Σ) by ρ(Σ) and called it generalized spectral radius. For nonempty set Σ we will
denote the common value of ρ̂∗(Σ) and ρ∗(Σ) by ρ∗(Σ) and called it generalized
spectral subradius.

Denote by D (Σ) the set of all infinite sequences of elements of Σ . For fixed d ∈
D (Σ) , d = (A(1),A(2), ...) define Φd(m) = A(m− 1)...A(1)A(0) and

ρ(d) = limsup
m→∞

‖Φd(m)‖ 1
m .

From the definitions of ρ(Σ), ρ∗(Σ) and ρ(d) the following inequality follows

ρ∗(Σ) ≤ ρ(d)≤ ρ(Σ)

for bounded set ∑ . Much deeper relations between these three quantities is given by
the next Theorem.
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Theorem 8. For any nonempty set Σ we have

ρ∗(Σ) = inf
d∈D(Σ)

ρ(d). (21)

For any nonempty and bounded set ∑ we have

ρ(Σ) = sup
d∈D(Σ)

ρ(d) (22)

and if Σ is in addition closed then the sup is max. Moreover, if the matrices in
nonempty and bounded Σ are invertible, then for each γ ∈ (ρ∗(Σ),ρ(Σ)) there exists
d ∈ D (Σ) such that ρ(d) = γ.

Equalities (21) and (22) have been proved in [13] and [23], respectively. The at-
tainability of sup in (22) has been established in [20] for finite Σ and next in [54]
this result has been extended to the case of compact set. The last statement of the
Theorem is shown in [15].

Unfortunately, if the family Σ is not just a single matrix, the computation of
ρ(Σ) and ρ∗(Σ) are not easy tasks at all. The problem of numerical computation of
ρ(Σ) and ρ∗(Σ) is discussed in [9]-[11], [24], [25] and [42]; see also the references
therein.

5 Central Exponents: Definitions and Basic Properties

Using the concept of central exponents of families of sequences, we now define the
concept of upper and lower central exponents of system (12).

Definition 5. The upper (lower) sequence of (1) is upper (lower) sequence of the
family {(

ln
‖x(n+ 1,x0)‖
‖x(n,x0)‖

)

n∈N
: x0 ∈ Rs,‖x0‖= 1

}
. (23)

The set of all upper (lower) sequences of (1) will be denoted by U (A) (L (A)). Ana-
logically, upper (lower) central exponent of (1) is defined as upper (lower) central
exponent of (23) and will be denoted as Ω (A) (ω (A)).

Notice that the definition is correct. One may obtain the following characterization
of upper and lower sequences in terms of transition matrix.

Theorem 9. Bounded sequences (r(n))n∈N and (R(n))n∈N are lower and upper se-
quences for (1), respectively, if and only if, for any ε > 0 there exist constants dr,ε
and DR,ε such that for all m > k we have

dR,ε exp

(
m−1

∑
i=k

(r(i)− ε)

)

≤ ‖A (m,k)‖ ≤ DR,ε exp

(
m−1

∑
i=k

(R(i)+ ε)

)

. (24)
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The lower central exponent does not require special consideration since the problem
can be reduced to the investigation of upper central exponent for the adjoint system.
This is the content of the next theorem.

Theorem 10. The lower central exponent ω of (1) is equal to the upper central
exponent of the adjoint system (5), taken with the opposite sign.

We have also the following formulas for upper and lower central exponent of (1) in
terms of transition matrix.

Theorem 11. There exist limits

lim
N→∞

1
N

(

lim
n→∞

1
n

n−1

∑
i=0

ln‖A (N + i, i)‖
)

lim
N→∞

1
N

(

lim
n→∞

1
n

n−1

∑
i=0

ln‖A ((i+ 1)N, iN)‖
)

,

and they are equal to

Ω (A) = inf
N∈N

1
N

(

lim
n→∞

1
n

n−1

∑
i=0

ln‖A (N + i, i)‖
)

= inf
N∈N

1
N

(

lim
n→∞

1
n

n−1

∑
i=0

ln‖A ((i+ 1)N, iN)‖
)

.

By Theorem 10 one can obtain analogical formulas for lower central exponent. Ob-
serve first that the orthogonality of matrices U(n) in Theorem 3 leads to the follow-
ing Theorem.

Theorem 12. With the notation of Theorem 3 we have

U (A) = U (C), L (A) = L (C).

In particular it implies that the central exponents of (A(n))n∈N and (C(n))n∈N are
equal.

Consider now system (1) with matrices A(n) being upper triangular with diagonal
elements aii(n). Denote Ad(n) = diag [aii(n)]i=1,...,s and by ai j(n) and zi j(n,k), the
elements of A(n) and A (n+1,k) , respectively. By a straightforward calculation we
have that for n > k

zi j(n,k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−1
∑

p=k

j
∑

l=i+1
ail(n− p)zl j(n− p− 1,k)

n
∏

q=n−p+1
aii(q) for i < j

n
∏

q=m
aii(q) for i = j

0 for i > j

. (25)
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The next Theorem describes relation between upper, lower sequences of the original
system and those with matrix coefficients Ad .

Theorem 13. We have U (A) = U (Ad), L (A) = L (Ad), Ω (A) = Ω (Ad) and
ω (A) = ω (Ad) .

If (A(n))n∈N and
(
A−1(n)

)
n∈N are bounded by a and a′, respectively, then from

definition of central and Lyapunov exponent is clear that

− lna′ ≤ ω (A)≤ λs(A)≤ λg(A)≤ Ω (A)≤ lna.

It is also not difficult to construct examples where Ω (A)< lna, λs(A)< λg(A) and
− lna′ < ω (A) . There are known examples for which λg(A)< Ω (A) .

Next theorem shows that under the condition that Δ(n)→ 0, the central exponents
of (1) and (6) coincide. Observe that invertibility of A(n) implies that A(n)+Δ(n)
are invertible starting from certain n0. We will assume that they are invertible for all
natural n and then the central exponents of (6) are well defined.

Theorem 14. If limn→∞ ‖Δ(n)‖ = 0 then L (A) = L (A+Δ), U (A) = U (A+Δ)
and in particular Ω(A) = Ω(A+Δ) and ω(A) = ω(A+Δ).

6 Regular Systems and Regularity Coefficients

In order to measure the irregularity of the system (1) some numerical characteristics,
which are called coefficients of regularity are introduced. In this section we will
consider three of them.

1. Lyapunov’s coefficient of regularity ([40]) is defined as:

σL = minσV − liminf
n→∞

1
n

ln |detA (n,0)| ,

where minimum is taken over the set of all bases. In fact it is enough to take the
minimum over the set of normal bases.

2. Perron’s coefficient of regularity ([49]). Consider the values

λ ′
1 ≤ λ ′

2 ≤ ...≤ λ ′
s (26)

and
μ ′

s ≤ μ ′
s−1 ≤ ...≤ μ ′

1 (27)

of the Lyapunov exponents of (1) and (5), respectively, counted with their multiplic-
ities. Then Perron’s coefficient of regularity is defined as

σP = max
i=1,...,s

(
λ ′

i + μ ′
i

)
.
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3. Grobman’s coefficient of regularity ([12]). For a pair of dual bases V = {v1, ...,vs}
and W = {w1, ...,ws} we define defect of dual bases

γ (V,W ) = max
i=1,...,s

(λ (vi)+ μ(wi)) .

Then Grobman’s coefficient of regularity is defined as:

σG = minγ (V,W ) , (28)

where the minimum is taken over all pairs of dual bases.
We will also say about regularity of the sequence (A(n))n∈N instead of regularity

coefficient of (1).
The introduced coefficients σP, σL and σG are related by the following

inequalities

0 ≤ σP ≤ σG ≤ sσP (29)

and
0 ≤ σG ≤ σL ≤ sσG. (30)

(see, [7] Theorem 1.2.6 for the proof of (29) and [16] Lemma 1 for the proof of
(30)). It appears that considering regularity coefficients we may restrict ourselves to
the uppertriangular system according to the following Theorem from [7].

Theorem 15. If sequence (C(n))n∈N is constructed for sequence (A(n))n∈N accord-
ing to Theorem 3, then the regularity coefficients σP, σL and σG are the same for
(A(n))n∈N and (C(n))n∈N.

The next Theorem contains the main result of this section.

Theorem 16. If
λ (Δ)<−σG , (31)

then the spectra of (1) and (6) coincide.

As it is shown in the next theorem, in case of diagonal matrices A(n), spectra of (1)
and (6) coincide for perturbations with characteristic exponent equal to −σG.

Theorem 17. If the matrices A(n) are diagonal and

λ (Δ)≤−σG < 0, (32)

then the spectra of (1) and (6) coincide.

Together with (1) consider the following non-homogeneous system

x(n+ 1) = A(n)x(n)+ f (n), (33)

where the sequence f =( f (n))n∈N belongs to the class F consisting of all sequences
g of s-dimensional vectors such that
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−∞ < λ (g)< ∞.

For an initial condition x0 the solution of (33) is denoted by x(n,x0) so

x(n,x0, f ) = A (n,0)x0 +
n−1

∑
i=0

A (n, i+ 1) f (i). (34)

From this formula it follows that the set
{

λ
(
(x(n,x0, f ))n∈N

)
: x0 ∈ Rs,x0 	= 0

}
con-

tains at most s+1 elements. Denote by χ(A, f ) the minimal characteristic exponents
of solution of (33) that is

χ(A, f ) = min
x0 	=0

λ
(
(x(n,x0, f ))n∈N

)
. (35)

We introduce a quantity σ(A) which will measure the difference between Lyapunov
exponents of the non-homogeneous system (33) and of f . Define σ(A) by the fol-
lowing formula

σ(A) = sup
f∈F

(χ(A, f )−λ ( f )) . (36)

Finally, we have the following result.

Theorem 18. The following inequality holds

σG

s
≤ σ(A)≤ σG. (37)

In particular, system (1) is regular if, and only if, σ(A) = 0.
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