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Abstract

MicroRNAs (miRNAs) are a group of endogenous, small noncoding RNAs of
approximately 22 nucleotides in lengths. As a new class of signaling
modulators, miRNAs have attracted great attention for their unique features,
including multitarget regulation, tissue specificity, and evolutionary conserva-
tion. These small endogenous RNAs are able to interact with many important
genes and play critical roles in a wide range of biological processes, including
cell proliferation and differentiation. Strikingly, miRNAs are frequently
dysregulated in human cancers. A number of studies have shown that miRNAs
are involved in cancer pathogenesis by regulating oncogenes or tumor
suppressor genes. Here, we review recent studies of miRNAs in cancer
development and discuss their potential applications in cancer therapeutics.
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1 Introduction

MicroRNAs (miRNAs) are a group of endogenous, small noncoding RNAs of
*22 nucleotides. The human genome contains at least one thousand of distinct
miRNAs, which potentially regulate over 30 % of the transcriptome. So far, a
number of evidence shows that miRNAs make significant contribution to the
formation and development of tumors, especially metastasis. In this chapter, we
will start with the introduction of miRNA biogenesis, and summarize the global
dysregulation of miRNAs in cancer, and then explain the roles of miRNAs in
metastasis and their interaction with conventional protein modulators in several
signaling pathways, and finally discuss the potential of miRNAs in therapeutical
applications.

2 Biogenesis of miRNAs

The majority of primary miRNA (pri-miRNA) transcripts are produced by RNA
polymerase II [9, 72]. The lengths of these pri-miRNAs vary from a few hundred
to thousands of nucleotides with one or more double-stranded regions. Some pri-
miRNAs have independent transcriptional units with mono- (e.g. miR-21) or
polycistronic miRNA-precursor structure (e.g. the miR-17-92-1 cluster) [8, 45],
whereas others locate in the intron (e.g. miR-10b) or extron (e.g. miR-198) of
messenger RNAs [8, 106]. These polymerase II-directed pri-miRNAs are post-
transcriptionally capped at 50 end or polyadenylated at 30 end, respectively.
However, recent data indicate that a subset of miRNAs may instead be transcribed
by RNA Polymerase III, such as C19MC, one of the largest human miRNA
clusters [111]. Expression of individual miRNAs is controlled by transcription
factors, such as c-Myc or p53. However, the regulatory mechanism of miRNAs at
the transcriptional level remains unclear [22, 46, 96, 135].

Following transcription, the pri-miRNA is cleaved by a complex of Drosha and
DGCR8 proteins (also known as Pasha), which contains two double-stranded
RNA-binding domains [21, 36, 42, 68, 71]. DGCR8 directly interacts with the pri-
miRNA and determines the accurate cleavage site. Then the Drosha finishes the
cleavage step. An imperfect stem-loop structure of *50–70 nt in length is
released, containing a hairpin stem, a terminal loop and two single-stranded
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flanking regions as the precursor miRNA (pre-miRNA). The double-stranded stem
and the flanking regions are indispensable for the processing of pre-miRNA, but
the loop region is less critical for this step [43, 141, 142].

After processing in the nucleus, the pre-miRNAs are transported to the cyto-
plasm by the nucleocytoplasmic shuttling protein, exportin-5, which recognizes a
two-nucleotide overhang left by Drosha at the 30 end of the pre-miRNA hairpin.
Exportin-5-mediated transport to the cytoplasm is an energy-dependent process, in
which GTP is bound to the Ran protein [139]. In the nucleus, in the presence of a
high concentration of RanGTP, exportin-5 induces the Drosha/DGCR8 complex to
release pre-miRNA and transport pre-miRNA out of the nucleus. In the cytoplasm,
the low concentration of RanGTP results in the separation of pre-miRNA from
exportin-5. During the subsequent step, another RNase III enzyme, Dicer, cleaves

Fig. 1 An illustration of three miRNA biogenesis pathways, including (1) canonical pathway;
(2) Drosha/DGCR-independent pathway; or (3) Dicer-independent pathway (adapted from
http://en.wikipedia.org/wiki/MicroRNA. With permission from Creative Commons Attribution-
ShareAlike 3.0 License)

MicroRNAs in Cancer 121

http://en.wikipedia.org/wiki/MicroRNA


the loop portion of the hairpin structure and yielding *22 nt small RNA duplexes,
consisting of a mature miRNA strand and a partially complementary strand.
Knocking out Dicer blocks the formation of mature miRNAs, indicating that this
cleavage is essential for miRNA biogenesis [6, 37, 51, 62]. Dicer cleavage activity
is regulated by TRBP, which binds to the amino-terminal DExD/H-box helicase
domain of Dicer and induces a conformational rearrangement of Dicer [84].

In addition to the above described canonical miRNA biogenesis pathway,
alternative pathways have also been proposed (Fig. 1) [12, 21, 109, 137]. For
example, a pre-miRNA-like hairpin structure, which serves as Dicer substrate
without cleaving by Drosha/DGCR8 complex, can be generated by many Drosha/
DGCR8-independent pathways (e.g. miR-62 or mir-1071) [2, 14, 97, 109].
Another type of miRNAs does not require the cleavage of Dicer. Pri-miR-451 is
processed by Drosha/DGCR8 to format a short pre-miRNA with only *18 nt of
duplex stem, which is too short to be recognized by Dicer. Instead, pre-mir-451 is
directly cleaved by Ago protein and other proteins [12, 15, 138].

After the miRNA duplex is generated, one strand (named as the guide strand) is
loaded into a protein complex called RNA-induced silencing complex (RISC),
whereas the other strand gets degraded by cleavage or a bypass mechanism [41].
Argonaute proteins (AGOs) are the catalytic components of the RISC. AGOs have
eight related family members in human, including four AGOs and four PIWI
proteins. Typically, the mature miRNA-RISC binds to the 30 untranslated region
(30UTR) of an mRNA containing a partially complementary sequence with the seed
region of miRNAs (the 2nd to 8th nt of the mature miRNA). If the seed region of a
miRNA can anneal with mRNAs, RISC cleaves these target mRNAs or suppresses
their translation without affecting the transcriptional level of these miRNAs.

3 The Dysregulation of miRNAs in Cancer

In 2004, Croce and colleagues reported that miRNAs are not randomly distributed
in the human genome [10]. For example, chromosome 4 has fewer than average
miRNAs, whereas chromosomes 17 and 19 have significantly more miRNAs.
Indeed, over 50 % miRNAs are located at fragile sites or chromosomal regions that
are associated with cancers. After systematic analysis of over 200 miRNAs from
more than 300 samples, Lu and colleagues revealed distinct expression profiles of
miRNAs between normal and tumor cells or tissues [82]. Another interesting
finding demonstrated in that work is that miRNA expression profiles can be used to
classify poorly differentiated tumors with higher accuracy than mRNA expression
files, thus indicating that miRNAs may be used as diagnostic markers.

With the development of high-throughput sequencing technology or gene chip
technology, the expression patterns of miRNAs have been intensively investigated
in a variety of cells or tissues. A global picture of dysregulation of miRNAs in
cancers is emerging, with many miRNAs found down-regulated or overexpressed
in different types of tumors. For example, miR-21 or miR-17-92 cluster is up-
regulated in a range of tumors [89].
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miRNAs may suppress or promote carcinogenesis, acting as either tumor
suppressors or oncogenes. Those miRNAs as tumor suppressors are often down-
regulated in tumors and can regulate oncogenes. For example, let-7 family has
been found to negatively regulate expression of RAS, an oncogene that con-
tributes to the pathogenesis of human tumors [56]. Those miRNAs are frequently
inactivated either by gene deletion or promoter modification, such as
methylation.

Another group of miRNAs, referred to as oncomirs, are found to be overex-
pressed in cancers. For example, miR-17-92 cluster with six miRNA genes: miR-17,
miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a-1, can induce cell prolif-
eration, inhibit apoptosis or promote tumorigenesis by cooperating with MYC in
lymphomas [33, 96].

miRNAs are also involved in the epigenetic process: either as players or targets
in the epigenetic regulation. The methylation of CpG islands in promoter regions
leads to silencing of miRNA expression. For example, miR-127, targeting an
oncogene-BCL6, is silenced in bladder tumors, but this silence could be rescued
using demethylating agents [111]. On the other hand, miRNAs could also regulate
enzymes that involves in methylation of CpG islands, such as DNA methyl-
transferases (DNMT). miR-29 could target DNMT3A and DNMT3B, thus
resulting in reactivating p16 tumor suppressor gene [128].

One key question is whether dysregulation of miRNAs is cause or consequence
to cancer? [17] Components of the miRNA-machinery have been implicated in
tumorigenesis. For example, it was reported that expression of Dicer was down-
regulated in lung cancer and this downregulation correlated with shortened post-
operative survival [57]. In addition, three human Argonaute genes—AGO3,
AGO1, and AGO4, which are clustered on chromosome 1 (1p34–35)—are fre-
quently deleted in Wilm’s tumor of the kidney and have also been associated with
other tumors [24]. In the next section, we will discuss the role or miRNAs in
cancer development or metastasis.

4 miRNAs and Cancer Metastasis

Metastases account for 90 % deaths among cancer patients [40]. However, our
understanding of the molecular mechanism underlying metastatic dissemination
remains obscure [127]. The invasion-metastasis cascade is a dynamic and multi-
step process. In brief, primary tumor cells break away from neighbouring cells,
invade adjacent tissue, enter the circulation systems, extravasate out of the vas-
culature, seed at distant sites, enter the foreign tissue parenchyma, and finally
proliferate from microscopic growths into macroscopic secondary tumors [26].
A large number of studies have showed that miRNAs play a critical role in the
initiation and progression of different cancers.

A number of miRNAs act to promote cancer metastasis. For example, miRNA-
10b is highly expressed in metastatic breast cancer cells and regulates cell
migration and invasion [86]. Overexpression of miR-10b in otherwise non-
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metastatic breast tumor cells endows them with invasive and metastatic capability.
Significantly, the level of miR-10b expression in primary breast carcinomas
correlates with clinical progression. The expression of miR-10b is under the
control of Twist, a transcription factor that orchestrates epithelial–mesenchymal
transitions (EMT). miR-10b inhibits translation of HOXD10 protein, resulting in
the increase of RHOC, a well-characterized prometastatic gene. In addition, miR-
373 and miR-520c were identified as another metastasis promoting genes [49].
Overexpression of miR-373 or miR-520c promoted an in vitro migration and
invasion of breast cancer cells. miR-373 and miR-520c inhibit CD44, a metastatic
suppressor in breast, prostate or colon cancers.

On the other hand, miRNAs can act as inhibitors of metastasis at different
stages. Let-7 serves as a tumor suppressor gene by inhibiting the expression of
HMGA2 and RAS [56]. Let-7 expression is lower in lung tumors, whereas RAS
protein is significantly higher in these tissues. miR-31, another anti-metastatic
human miRNA, represses multiple steps of the invasion-metastasis cascade.
Down-regulation of miR-31 enhances the migration and invasion in human breast
cancer cells. This miRNA can repress a cohort of prometastatic target genes,
including Fzd3, ITGA5, MMP16, RDX, and RhoA [88, 110, 113, 127].

Angiogenesis plays a critical role in the tumorigenesis and cancer progres-
sion. Vascular endothelial growth factor (VEGF) is a potent proangiogenic
factor that is up-regulated in human tumors. miR-126 can directly target the
30UTRs of Spred-1, VCAM-1, and PIK3R2 [27], negative regulators of VEGF/
FGF signaling. In mammals, miR-126 is encoded by intron 7 of the EGF-like
domain7 (Egfl7) gene, an endothelial cell-specific secreted peptide that inhibits
migration of smooth muscle cell [120]. Thus, miR-126 shows a parallel
expression pattern with Egfl7 in tissues or cell lines [28, 99]. Indeed, miR-126
regulates multiple aspects of endothelial cell biology, including cell migration,
capillary network stability, and cell survival [27]. Thus, miR-126 promotes
VEGF/FGF signaling and angiogenesis by repressing endogenous inhibitors in
endothelial cells.

MiR-23b is highly conserved in all vertebrates. Several studies have demon-
strated that miR-23b is involved in invasion and metastasis, but the molecular
mechanism remains to be elucidated [107, 112]. We have recently demonstrated
that miR-23b, which is down-regulated in human colon cancer samples, can
potently repress cancer cell migration, invasion, growth, and angiogenesis both in
vitro and in vivo [143]. miR-23b can also inhibit VEGF at both transcriptional and
translational levels. This miRNA significantly inhibited tubule elongation and
branching in vascular formation assay using human umbilical vein endothelial
cells (HUVEC). However, miR-23 may regulate angiogenesis by indirectly sup-
pressing VEGF. This miRNA regulates a cohort of prometastatic genes or onco-
genes, including FZD7, MAP3K1, PAK2, TGFbR2, RRAS2, or uPA. Re-
expression of these individual targets largely reversed effects of miR-23, whereas
siRNA silencing of each target genes suppresses metastasis. These six genes
participate in critical signaling pathways, including the ERK, JNK, NFrB, PI3K,
TGFb, and Wnt pathways.
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As described above, miRNAs are frequently dysregulated in human cancers
[17, 82]. However, our understanding of role of miRNAs in tumor cell migration
remains limited. It is not clear how many miRNAs may affect cancer cell
migration, or whether the same miRNA regulates cell migration in different types
of cancer cells in a similar manner.

To address these questions, we have systematically investigated regulatory
capability of known human miRNAs on cancer cell migration, invasion, or
apoptosis [143]. Strikingly, it was found that over one quarter of the human
miRNAs tested demonstrated regulatory activities on cancer cell migration
(Fig. 2). Interestingly, many of the miRNAs initially identified in a screen in HeLa
cells behave in the same manner in four other epithelial cancer cell lines.

Endothelial cell migration plays an important role in the angiogenesis associ-
ated with other pathological processes such as atherosclerosis. Thus, we have
continued to expand our studies to endothelial cells. It seems that the cell
migration regulatory activity of miRNAs is not specific to epithelial cancer cells. It
is now well established that miRNAs regulate expression and function of target
genes in both physiological and pathological processes. miRNAs modulate many
cellular processes including cell migration.

5 miRNAs, Key Modulators in Cell Signaling Pathways

miRNAs play important regulatory roles in a wide range of cellular processes.
Individual miRNAs often have multiple target genes. Here, we focus on the roles
of miRNAs as modulators in several critical cancer-related signaling pathways,
including PI3K/Akt, Erk, MAPK, NF-jB, TGF-b, and mTOR.

5.1 PTEN/PI3K/AKT Signaling Pathway

The PTEN/PI3K/AKT pathway is important in regulating cell proliferation, cel-
lular metabolism, apoptosis, and cell survival. PI3K phosphorylates PIP2 to

Fig. 2 A pie diagram showing the distribution of miRNAs tested in the migration and
proliferation assay (Reprinted from [143]. With permission from Nature Publishing Group)
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generate PIP3, an important second messenger, which in turn recruits PDK1 and
AKT to the cell membrane. AKT is phosphorylated and activated by PIP3-
dependent PDK1, and then regulates many downstream effectors [11]. On the
other hand, PTEN dephosphorylates PIP3 to PIP2, thus attenuating the effects of
the AKT pathway.

PTEN is a bona fide target of miR-21 [90]. Overexpression of miR-21 con-
tributes to hepatocellular carcinoma (HCC) cells and vestibular schwannoma by
suppressing PTEN [87, 90]. Interestingly, when PTEN is suppressed by miR-21,
AKT induces the down-regulation of miR-199a-5p, leading to increased expres-
sion of hypoxia-inducible factor 1alpha (HIF a) and Sirtuin 1 (Sirt1) [114]. This is

Table 1 miRNAs regulating PTEN/PI3 K/AKT signaling pathway

miRNAs Targets Effect on AKT
pathway

References

miR-126 P85beta Down [38]

MiR-7 EGFR Down [60]

miR-125b Down [74]

miR-184 MicroRNA-205, AKT2 Down [29, 140]

miR-331-3p ERBB-2 Down [23]

miR-8/miR-200 USH/FOG2 Down [52]

miR-330 E2F1 Down [70]

miR-320 p85 subunit Down [78]

miR-196a HoxA7, HoxB8, HoxC8 and HoxD8 Up [116]

miR-146b-5p EGFR Down [58]

miR-149* Akt1,E2F1 Down [76]

miR-451 Akt1, CyclinD1, MMP-2, MMP-9 and
Bcl-2

Down [93]

miR-375 PDK1 Down [124]

miR-222 PPP2R2A Up [133]

miR-217 KRAS Down [146]

miR-190 PHLPP Up [5]

miR-107 Down [19]

miR-216b KRAS Down [20]

miR-1 Up [34]

miR-133, miR-
223

IGF-1R Down [48]

miR-143 ERK5 and/or Akt Down [95]

miR-181d K-ras and Bcl-2 Down [132]
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one example of miRNAs capable of regulating another miRNA. In addition, PTEN
is not only regulated by miR-21, but also by Grhl3, which is a target of miR-21.
The interaction of these molecules constitutes a multilayer regulatory network in
PTEN/PI3K/AKT pathway [18]. A feed-forward regulatory circuit has been pro-
posed in which miR-21 is a downstream effector of AKT [115].

Many other miRNAs are involved in this pathway through either targeting
PTEN or other components. For example, miR-221 and -222 target PTEN as well
as TIMP3, leading to the enhancement of TRAIL resistance and cellular migration
[32]. miR-221 and -222 are down-regulated by miR-130a [1]. Similar to miR-21,
miR-155 may activate AKT pathway via targeting PPP2CA, SOCS1 or SHIP-1 [3,
69]. The miR-17-92 cluster contains six individual miRNAs, among which miR-19
acts as a key component by targeting PTEN [98]. In addition, other miRNAs,
including miR-205, 214, 26a, 29a, 29b, 23b, 301, 216a, or 217, can also target
PTEN [35, 50, 59, 65, 94, 117, 131, 136] (Table 1).

5.2 MAPK/ERK Signaling Pathway

Mitogen-Activated Protein Kinase (MAPK) or Extracellular signal-Regulated
Kinase (ERK) is well-studied protein kinases involved in multiple cellular pro-
cesses including cell cycle regulation. MAPK/ERK Pathway consists of a series
of proteins, which respond to extracellular signals by phosphorylating down-
stream substrates [64]. Disruption of this pathway leads to cancer and other
diseases [63].

MiR-17-5p can target more than 20 genes involved in the G1/S transition in cell
cycle, many of which are negative regulators of MAPK signaling cascade [16].
Overall, miR-17-5p promotes the migration of HCC cells through p38 MAPK
activation. In addition, miR-17-5 can target E2F1. E2F1-dependent down-regu-
lation of Wip1 is necessary in the activation of p38.

Let-7 family of miRNAs regulates many cellular processes, including cell
growth and differentiation [108]. Let-7 reduces the expression of RAS and inhibits
the MAPK/ERK pathway in papillary thyroid cancer [104]. In breast cancers, let-
7 g plays an antitumor role by reducing p44/42 MAPK [102]. As a modulator of
K-RAS, miR-143 decreases the proliferation and migration of prostate cancer cells
[134]. Many other miRNAs, including miR-18*, miR-143, miR-181, and miR-622,
also target K-RAS [31, 44, 118, 123, 132].

Spred1 is a negative regulator in MAPK/ERK pathway. miR-126 can enhance
the proliferation of mast cell by inhibiting spred1 [54]. In mesenchymal stem cells,
overexpression of miR-126 enhances ischemic angiogenesis by increasing the
protein levels of ERK1, pErk1, AKT, or pAKT [13]. miR-133b can promote the
development of cervical carcinoma by targeting MST2, CDC42, or RHOA [103].
In addition to modulating the PTEN/PI3K/AKT pathway, miR-21 regulates Spry1,
Spry2, Btg2, and Pdcd4, known negative regulators in the Ras/MEK/ERK path-
way. Other miRNAs are capable of regulating downstream effectors in MAPK/
ERK pathway, including miR-146 and miR-221/222 [83, 100, 122].
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5.3 NF-jB Signaling Pathway

NF-jB (nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein
complex that controls the transcription of many genes. When bound to an inhib-
itor-IjB, NF-jB is kept inactive in the cytoplasm. When cells are stimulated, an
IjB kinase, IKK, is activated to phosphorylate IjB, resulting in the degradation of
IjB and the activation of NF-jB. NF-jB then translocates into the nucleus and
turns on the expression of its target genes.

The expression of miR-9 can be regulated by the activated NF-jB. On the other
hand, miR-9 can affect the expression of NF-jB, forming a feedback regulation
[4]. It was also found that NFKB1 was suppressed when miR-9 was overexpressed
in ovarian cancer [39]. miR-146 can indirectly suppress NF-jB pathway by tar-
geting IL-1 receptor-associated kinase or TNF receptor-associated factor 6 [7],
thereby regulating IL-1 and Toll-like receptor signaling pathways.

Many other miRNAs also participate in the regulation of NF-jB pathway,
including miR-98, let-7, miR-21, miR-124, miR-155, miR-15, and -16 [47, 53, 75,
77, 81, 105, 130]. On the other hand, NF-jB signaling pathway controls the
expression of many genes, including miR-146, 147, or 143 [79, 121, 144].

5.4 TGF-b and mTOR Pathways

miR-21, miR-133 and 590, miR-17 cluster, miR200a, miR-106b-25 cluster, miR-
210, miR-26a, or miR520/373 regulate the effectors in the TGF-b signaling
pathway [61, 91, 119, 129]. The key modulators in the mTOR signaling pathway
can be regulated by miR-199a-3p, miR-100, miR-221, miR-223, miR-99a, miR-
218, miR-7, miR-376b, miR-520c and -373 [25, 30, 55, 66, 73, 80, 92, 101, 125].

From the limited examples described above, it is clear that miRNAs are
emerging as a group of important modulators of many signaling pathways
important for tumorigenesis and cancer metastasis. In a number of cases, miRNAs
and their target genes can form feedback regulatory loops. It is conceivable that
disruption of certain critical regulatory networks may contribute to tumor devel-
opment and progression.

6 Therapeutic Potential for miRNAs

As discussed above, aberrant expression and regulation of miRNA genes have
been associated with a wide range of human cancers. A number of miRNAs play
critical roles in cancer development and metastasis. Such miRNAs may have great
potential in serving as diagnostic biomarkers or therapeutic targets for human
cancers. Indeed, several miRNAs have been identified to inhibit cancer metastasis
in cellular or animal models. For example, Weinberg and colleagues demonstrated
that systemic administration of miR-10b antagomirs, an inhibitor against miR-10b,
inhibited breast cancer metastasis in tumor-bearing mice [85]. In another study,
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systemic administration of miR-26a in a mouse model of HCC using adeno-
associated virus (AAV) results in inhibition of cancer cell proliferation, induction
of tumor-specific apoptosis, and dramatic protection from disease progression
without obvious toxicity [67]. Their unique features, including multitarget regu-
lation and tissue specificity make miRNAs attractive target genes for developing
cancer therapeutics, although much more work is needed to make this a reality.

7 Concluding Remarks

One miRNA may regulate up to hundreds of genes. Accumulating data support that
miRNAs behave as buffer molecules capable of tuning the expression of target genes
to appropriate levels. Expression of a certain miRNA in tumors is expected to reg-
ulate a cohort of functionally relevant genes. Although the target-specific delivery of
siRNA/miRNA is still a challenging issue, detections of miRNAs in the serum
suggest a new strategy to package or deliver miRNAs into specific cells or tissues
[126, 145]. Another challenge is that we still lack a powerful approach to system-
atically identify the target genes regulated by miRNAs. A deeper understanding of
the relationship between miRNAs and their targets is necessary for developing
applications of these non-coding RNAs in cancer diagnostics and therapeutics.
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