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Abstract

For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-
mRNA) splicing represents an essential step toward the production of functional
messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the
production of different mRNAs. Although complex organisms use alternative splicing
to expand protein function and phenotypic diversity, patterns of alternative splicing are
often altered in cancer cells. Alternative splicing contributes to tumorigenesis by
producing splice isoforms that can stimulate cell proliferation and cell migration or
induce resistance to apoptosis and anticancer agents. Cancer-specific changes in
splicing profiles can occur through mutations that are affecting splice sites and splicing
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control elements, and also by alterations in the expression of proteins that control
splicing decisions. Recent progress in global approaches that interrogate splicing
diversity should help to obtain specific splicing signatures for cancer types. The
development of innovative approaches for annotating and reprogramming splicing
events will more fully establish the essential contribution of alternative splicing to the
biology of cancer and will hopefully provide novel targets and anticancer strategies.
Metazoan genes are usually made up of several exons interrupted by introns. The
introns are removed from the pre-mRNA by RNA splicing. In conjunction with other
maturation steps, such as capping and polyadenylation, the spliced mRNA is then
transported to the cytoplasm to be translated into a functional protein. The basic
mechanism of splicing requires accurate recognition of each extremity of each intron by
the spliceosome. Introns are identified by the binding of U1 snRNP to the 50 splice site
and the U2AF65/U2AF35 complex to the 30 splice site. Following these interactions,
otherproteins andsnRNPsare recruited togenerate thecomplete spliceosomalcomplex
needed to excise the intron. While many introns are constitutively removed by the
spliceosome, other splice junctions are not used systematically, generating the
phenomenon of alternative splicing. Alternative splicing is therefore the process by
which a single species of pre-mRNA can be matured to produce different mRNA
molecules (Fig. 1). Depending on the number and types of alternative splicing events, a
pre-mRNA can generate from two to several thousands different mRNAs leading to the
production of a corresponding number of proteins. It is now believed that the expression
of at least 70 % of human genes is subjected to alternative splicing, implying an
enormous contribution to proteomic diversity, and by extension, to the development
and the evolution of complex animals. Defects in splicing have been associated with
human diseases (Caceres and Kornblihtt, Trends Genet 18(4):186–93, 2002, Cartegni
et al., Nat Rev Genet 3(4):285–98, 2002, Pagani and Baralle, Nat Rev Genet
5(5):389–96, 2004), including cancer (Brinkman, Clin Biochem 37(7):584–94, 2004,
Venables, Bioessays 28(4):378–86, 2006, Srebrow and Kornblihtt, J Cell Sci 119(Pt
13):2635–2641, 2006, Revil et al., Bull Cancer 93(9):909–919, 2006, Venables,
Transworld Res Network, 2006, Pajares et al., Lancet Oncol 8(4):349–57, 2007,
Skotheim and Nees, Int J Biochem Cell Biol 39:1432–1449, 2007). Numerous studies
have now confirmed the existence of specific differences in the alternative splicing
profiles between normal and cancer tissues. Although there are a few cases where
specific mutations are the primary cause for these changes, global alterations in
alternative splicing in cancer cells may be primarily derived from changes in the
expression of RNA-binding proteins that control splice site selection. Overall, these
cancer-specific differences in alternative splicing offer an immense potential to improve
the diagnosis and the prognosis of cancer. This review will focus on the functional
impact of cancer-associated alternative splicing variants, the molecular determinants
that alter the splicing decisions in cancer cells, and future therapeutic strategies.
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1 Introduction

For most of our 25,000 genes, the removal of introns by pre-messenger RNA
(pre-mRNA) splicing represents an essential step toward the production of functional
messenger RNAs (mRNA). Alternative splicing of a single pre-mRNA results in the
production of different mRNAs. Although complex organisms use alternative splicing
to expand protein function and phenotypic diversity, patterns of alternative splicing are
often altered in cancer cells. Alternative splicing contributes to tumorigenesis by
producing splice isoforms that can stimulate cell proliferation and cell migration or
induce resistance to apoptosis and anticancer agents. Cancer-specific changes in
splicing profiles can occur through mutations that are affecting splice sites and splicing
control elements, and also by alterations in the expression of proteins that control
splicing decisions. Recent progress in global approaches that interrogate splicing
diversity should help to obtain specific splicing signatures for cancer types. The
development of innovative approaches for annotating and reprogramming splicing
events will more fully establish the essential contribution of alternative splicing to the
biology of cancer and will hopefully provide novel targets and anticancer strategies.

Metazoan genes are usually made up of several exons interrupted by introns. The
introns are removed from the pre-mRNA by RNA splicing. In conjunction with other
maturation steps, such as capping and polyadenylation, the spliced mRNA is then
transported to the cytoplasm to be translated into a functional protein. The basic
mechanism of splicing requires accurate recognition of each extremity of each intron
by the spliceosome. Introns are identified by the binding of U1 snRNP to the 50 splice
site and the U2AF65/U2AF35 complex to the 30 splice site. Following these interac-
tions, other proteins and snRNPs are recruited to generate the complete spliceosomal
complex needed to excise the intron.
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While many introns are constitutively removed by the spliceosome, other splice
junctions are not used systematically, generating the phenomenon of alternative
splicing. Alternative splicing is therefore the process by which a single species of
pre-mRNA can be matured to produce different mRNA molecules (Fig. 1).
Depending on the number and types of alternative splicing events, a pre-mRNA
can generate from two to several thousands different mRNAs leading to the
production of a corresponding number of proteins. It is now believed that the
expression of at least 70 % of human genes is subjected to alternative splicing,
implying an enormous contribution to proteomic diversity, and by extension, to the
development and the evolution of complex animals.

Defects in splicing have been associated with human diseases [1–3], including
cancer [4–10]. Numerous studies have now confirmed the existence of specific dif-
ferences in the alternative splicing profiles between normal and cancer tissues.
Although there are a few cases where specific mutations are the primary cause for
these changes, global alterations in alternative splicing in cancer cells may be pri-
marily derived from changes in the expression of RNA-binding proteins that control
splice site selection. Overall, these cancer-specific differences in alternative splicing
offer an immense potential to improve the diagnosis and the prognosis of cancer.

This review will focus on the functional impact of cancer-associated alternative
splicing variants, the molecular determinants that alter the splicing decisions in
cancer cells, and future therapeutic strategies.

2 Function of Cancer-Associated Splice Variants

Alternative splicing is part of the normal expression program of the majority
of human genes. The initial reports describing the importance of alternative
splicing in the control of sex determination in Drosophila [11] were followed by
several examples linking splicing to the regulation of gene expression in human
cells. For example, it was shown that alternative splicing controls the production of
membrane-associated or secreted forms of immunoglobulins [12], and the syn-
thesis of hormones with distinct physiological functions [13]. The most striking
examples of the effect of splicing on gene expression are found in the nervous
system where alternative splicing is used to expand the functional repertoire of
receptor molecules. One notable example is the alternative splicing of the Slo gene
that leads to the production of different proteins playing a role in the perception of
different sound frequencies during audition [14].

The contribution of alternative splicing to gene expression is not always to
expand protein diversity. Indeed, alternative splicing can also regulate the level of
gene expression by producing mRNA isoforms containing premature stop codons
that activate nonsense-mediated RNA decay (NMD). However, a global analysis
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Fig. 1 Patterns of alternative splicing. Gray boxes represent exons or exonic fragments that are
alternatively spliced. a cassette exon, b mutually exclusive exons, c alternative 50 splice sites,
d alternative 30 splice sites, e intron retention, f alternative promoters can affect the identity of the
first exon, and g alternative polyadenylation sites can impact the structure of the terminal exon
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of the effect of knocking-down a specific NMD component on the abundance of
3126 alternative splicing events suggests that this pathway is not general but rather
affects a selected group of pre-mRNAs [15]. Interestingly, splicing factors such
as PTB and SC35 autoregulate their own expression by promoting the production
of the NMD-sensitive isoforms [16–18]. Recent studies indicate that this mode of
regulation is a hallmark of many splicing regulatory factors that belong to the SR
and hnRNP family of proteins [17, 19].

Despite the involvement of alternative splicing in the expression and diversity
of selective sets of genes, the global impact of the functional diversity imparted by
alternative splicing still remains incomplete and controversial [20]. However,
some of the best available evidence documenting the breadth and significance of
alternative splicing has been provided by the study of cancer cells. Selected
examples ordered by cellular functions are presented below.

2.1 Cellular Proliferation

Expression of the fibroblast growth factor receptor (FGFR) family is closely linked
to cellular proliferation and cancer. Alternative splicing of FGFR1 and FGFR2
pre-mRNAs produce splice variants that have different affinities for their respec-
tive ligands. The FGFR2-IIIc splice isoforms is overexpressed in advanced stages
of prostate cancers and transforms human mammary epithelial cells when
expressed ectopically [21, 22]. FGFR2-IIIc accumulates in mesenchymal cells
while FGFR2-IIIb is preferentially produced in epithelial cells. In a rat model
system, prostate cancer cells expressing the FGFR2-IIIc-specific exon in a reporter
construct revealed unexpected mesenchymal-epithelial transitions in primary
tumors and lung micrometastases, revealing their phenotypic plasticity [23].

Proto-oncogenes and tumor-suppressor genes are essential players in the regu-
lation of cellular proliferation. The majority of these genes express isoforms that are
generated by alternative splicing. For example, the pre-mRNA encoding the p53
protein is alternatively spliced to produce isoforms whose abundance vary in breast
tumors [24]. Other members of the p53 family such as p73 and p63 are alternatively
spliced leading to the inclusion or the exclusion of the transcription transactivation
domain. Inclusion of the transactivation domain transforms these tumor-suppressor
proteins into oncoproteins [25]. The transcriptional activity of p53 is itself controlled
via the alternative splicing of MDM2. Variations in the splicing of MDM2 in cancer
tissues influence its accumulation in the nucleus and therefore affect its capacity to
repress the transcription of p53 [26, 27]. Other examples of cancer-associated
changes in alternative splicing are listed in Table 1.

2.2 Cellular Invasion

Integrins are a family of cell adhesion transmembrane proteins. Their expression
modulates the invasive properties of cancer cells. Numerous integrin splice
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variants that either facilitate or inhibit cellular proliferation have been described
[28]. The cell–cell adhesion glycoprotein CD44 whose expression is associated
with the metastatic potential of cancer cells [29] is produced in more than 20
splicing isoforms. Isoforms that contain exon v6 induce metastasis in mammary
and pancreatic carcinomas in rats [30], while inclusion of exon v10 modifies
CD44 adhesion properties and contributes to cancer progression [31]. Integrins
often interact with fibronectin, itself produced in various versions. The alternate
EDB- and EDA-containing isoforms of fibronectin are involved in cell adhesion
and spreading [32]. In breast and colon cancers, overexpression of RonD, the
splice variant of the transmembrane receptor MSF (macrophage-stimulating fac-
tor) is overexpressed, which enhances the migratory properties of cancer cells [33].
Table 1 lists additional genes whose change in alternative splicing has been shown
to affect cell adhesion properties and invasiveness.

2.3 Angiogenesis

Several splicing changes affect angiogenesis, most notably those of the vascular
endothelial growth factor (VEGF) in which an alternative 30 splice site causes an
antiangiogenic form to be produced in normal tissues [34]. Recently, it was also
shown that prostate tumors have reduced incorporation of exon 7. Experimental
inhibition of exon 7 inclusion reduced the ability of transplanted cells to induce
angiogenesis in mice [35]. Exon 7 incorporation is positively regulated by the
RNA-binding protein T-STAR (also known as SLM-2) [36]. VEGF expression is
itself affected by the alternative splicing products of the Estrogen receptor alpha
and the cholecystokin-2/gastrin receptor (CCK2 R) [37, 38]. Another relevant
event is the removal of exon 3 of Survivin, which gives it a specific function in
promoting angiogenesis [39].

2.4 Resistance to Apoptosis

Alternative splicing has a strong impact on the function of proteins implicated in
apoptosis. A comprehensive inventory of isoforms derived by alternative splicing
of apoptotic genes and a summary of their known functions appeared recently [40].
The functional consequences of alternative splicing have been demonstrated for
the death receptor Fas, as well as the adaptor and regulatory proteins APAF1 and
Survivin. The function of apoptotic mediators such as Bcl-x, Bfk, Mcl1, Bim
and Bid, and several caspases were also shown to be modulated by alternative
splicing [40]. The alternative splicing of these genes produces isoforms that often
have different and sometimes opposing activities.

A close association with cancer is particularly well documented for the splicing
variants of Bcl-x. Competing 50 splice sites dictate the expression of the Bcl-xL and
Bcl-xS isoforms, two proteins with antagonist regulatory functions [41]. Bcl-xL is an
anti-apoptotic protein that protects the integrity of mitochondria, and is overexpressed

Cancer-Associated Perturbations in Alternative Pre-messenger 59



in many types of cancer cells [42–46]. On the other hand, the pro-apoptotic isoform
Bcl-xS can heterodimerize with Bcl-xL to abrogate its anti-apoptotic activity [47].
Furthermore, Bcl-xL overexpression is directly responsible for the resistance of cancer
cells to stresses and chemotherapeutic drugs [41, 48–56].

Another example of a splicing event linked to apoptosis is FIR, a known
inhibitor of MYC. In this case, a shorter splice isoform of FIR switches protein
activity to facilitate the overexpression of MYC, inhibiting apoptosis [57]. The
alternative splicing of protein kinase C delta (PKCd) was also shown to produce an
isoform that can protect human teratocarcinoma cells from apoptosis [58]. Other
recent examples of splice isoforms affecting apoptosis are presented in Table 1.

2.5 Multidrug Resistance

Drug transporters defend cells against cytotoxic agents. Thus, alterations in their
alternative splicing may alter the efficacy of anticancer agents. One major group of
transporters are known as the multidrug resistance-associated proteins (MRP;
ABCC gene family). Alternative splicing of many genes in this group creates
functional variants, as is the case with MRP1 that produces splicing variants
conferring resistance to doxorubicin in ovarian tumors [59]. Alternative splicing of
MRP4, a drug-efflux pump mediating the efflux of nucleotide analogs, generates a
non-functional protein via introduction of premature termination codons [60].
Differential expression of two mRNA isoforms of the ATP-binding cassette
transporter gene ABCB 5 was reported in melanoma cells [61]. Several alterna-
tively spliced P-glycoprotein transcripts have been found in multidrug-resistant
cells and their expression correlates with drug resistance [62, 63]. Finally, BCRP
(ABCG2) splice variants are differentially expressed in human drug-selected
breast cancer cell lines [64].

The deregulated expression of dominant negative variants of p63 and p73
lacking the transactivation domain can inhibit the transactivation of target genes
and apoptosis, thus contributing to chemoresistance [65]. A splice variant of the
spindle checkpoint gene Mad2 abrogates mitotic arrest and adriamycin-induced
apoptosis [66]. Finally, a MAP-kinase activating death domain (MADD) splice
variant of the IG20 gene suppresses tumor cell survival and enhances susceptibility
to apoptosis and anticancer drugs [67].

3 Alternative Splicing Control: Basic Principles

Before discussing specific examples of molecular alterations responsible for
cancer-specific splicing patterns, it is important to review some key principles of
splice site control and selection. Splice site selection is determined first by the
sequence of splice sites. The sequence of constitutive splice sites that are used
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all the time usually matches the consensus CAG/GUGAGU, for a 50 splice site
(«/» indicates the junction between exon and intron), and a polypyrimidine-rich
tract followed by CAG/at the 30 splice site (Fig. 2a). In contrast, alternative splice
sites usually display various mismatches to the consensus sequence, which make
them intrinsically weaker splice sites. This intrinsic weakness renders them
amenable to modulation by control factors that may increase or decrease their use.
Hence, the use of alternative splice sites is often influenced by the presence of
nearby exonic or intronic auxiliary elements that promote or repress splicing.
These sequence elements function by recruiting proteins that either directly
modulate splice site recognition, affect the formation of specific splicing com-
plexes or change the conformation of the pre-mRNA to promote the use of certain
splice site combinations.

Direct modulation of splice site recognition is promoted by members of the SR
family of proteins, which are frequently associated with stimulatory elements.
However, other types of proteins with stimulatory activity have been identified (for
example, CELF, hnRNP H, hnRNP L, TIA1, and TIAR) [68]. When these proteins
are bound in the proximity of a splice site, they may interact with other compo-
nents of the splicing machinery (U1 snRNP at the 50 splice site or U2AF at the 30

splice site) to improve their binding (Fig. 2b). Alternatively, some sequence ele-
ments located near splice sites may repress their use (Fig. 2c) by recruiting pro-
teins that hinder the recognition or utilization of the adjacent splice sites.

In addition to the direct role of proteins recruited in the vicinity of a splice site,
changes in the conformation of the pre-mRNA may also influence splicing deci-
sions. These changes sometimes involve the formation of a secondary structure that
blocks the utilization of a splice site [69]. In other cases, the changes are induced by
an interaction between proteins bound at different locations on a pre-mRNA. Such
spatial rearrangement can stimulate the use of a splice site located outside of the
loop, and may simultaneously repress splice sites located inside that loop (Fig. 2d).
Although this model was initially proposed to explain the mechanism of action of
the hnRNP A1 protein in alternative splicing [70–72], it is also relevant to the
mechanism of action of hnRNP H, and possibly hnRNP I/PTB and Nova-1 proteins
[72–75]. hnRNP A1 may also counteract the activity of certain SR proteins through
a different model which proposes that hnRNP A1 can nucleate and spread over
regions of a pre-mRNA through cooperative RNA binding [76, 77].

Detailed investigations of selected alternative splicing events indicate that
splice site selection is determined by a combination of several layers of positive
and negative regulators. Thus, the frequency with which a given alternative
splicing pattern is used will be determined by: (1) the intrinsic strength of each
splice site involved, (2) the number, identity, and the position of control elements,
and (3) the relative concentration and affinity of each RNA-binding protein to its
respective binding site. The phosphorylation of specific SR and hnRNP proteins
will also have an impact on splice site selection since this modification can affect
their activity and cellular distribution [78].
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4 Molecular Basis for Splicing Alterations in Cancer

Different types of molecular perturbations can cause alterations in alternative
splicing profiles. Point mutations at splice sites have been linked to numerous
diseases and have been proposed to account for 15 % of human genetic diseases
[2, 79]. This number is likely to be considerably larger since mutations in introns,
which constitute the majority of the gene sequence, are rarely considered. A recent
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study suggests that as much as 60 % of the point mutations that cause genetic
diseases affect splicing decisions [80]. Thus, we can anticipate that several cancer-
related genes sustain mutations at splice sites or in regions bound by proteins that
control the selection of splice sites. Exonic mutations that create a stop codon can
also affect the function of a splicing control element, thereby modifying splicing
profiles [81]. In other cases, missense mutations, again through changes in splic-
ing, may have a more profound impact on protein structure than the predicted
change in amino acids caused by the mutations. Finally, even mutations that are
considered to be neutral because they do not change amino acids can have an
impact on alternative splicing [2, 3]. The following sections present some exam-
ples of mutations (Fig. 3) and changes in the expression of splicing factors (Fig. 4)
that affect the splicing of cancer-associated genes.

4.1 Mutations at Splice Sites and in Auxiliary Elements

According to the Cancer Genome Project of the Welcome Trust Sanger Institute
(http://www.sanger.ac.uk/genetics/CGP/Census/), about 363 human genes have
mutations that have been associated with cancer; 90 % of these genes have
somatic mutations, approximately 20 % show germline mutations that predispose
to cancer, and 10 % show both somatic and germline mutations. Specifically, 42
of these 363 genes have sustained mutations that affect splicing. Splicing muta-
tions are the most prevalent type of mutations found in the NF1 gene, which is
implicated in neurofibromatosis, the most common form of autosomal dominant
cancer in humans [82]. Mutations in the splice sites of NF2 are used as markers to
grade the severity of the disease [83].

Similarly, approximately 30 mutations affecting the splice sites of p53 have
been reported in different cancers [84]. Another interesting example concerns the
tumor suppressor gene APC, where two mutations have been closely associated
with the development of familial adenomatous polyposis [85]. One of these
mutations creates a splice site that promotes the deletion of one nucleotide
resulting in the production of a truncated APC protein. Other mutations that

Fig. 2 Control of splice site selection. a Schematic representation of a splicing unit (top) and an
alternative splicing unit (bottom). The consensus sequences of a 50 splice site, a branch site and a
30 splice site are shown. R purine, Y pyrimidine. Elements that control splicing decisions are
shown and include positively acting exonic and intronic splicing enhancers (ESEs and ISEs,
respectively), as well as negatively acting exonic and intronic splicing silencers (ESSs, ISSs,
respectively). b Proteins bound to exonic or intronic enhancers can recruit or stabilize the binding
of splicing factors to the 30 (left) or 50 (right) splice site. In the illustrated examples, an SR protein
bound to an ESE enhances U2AF and U2 snRNP binding to the 30 splice site/branch site region
[102, 217], while binding of TIA1 to ISE can stimulate recognition of an adjacent upstream 50

splice site by the U1 snRNP [126]. c Splicing inhibition. Steric interference caused by the
presence of a protein bound in the proximity of a splice site impedes its recognition. The SR and
hnRNP H proteins can, respectively, inhibit the binding of the U2 and U1 snRNPs [218], [219].
d Change in pre-mRNA conformation can be promoted by an interaction between hnRNP A1
proteins bound to introns flanking an alternative exon, provoking repression of the looped out
exon, and stimulation of splicing between the distal pair of exons [72]

b
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weaken or create new splice sites in different genes associated with cancers are
listed in Fig. 3. This list includes well-known genes such BRCA1, BRCA2,
CDKN2, PTEN, KIT, ATM, and XPC.

Mutations in cis-acting splicing regulatory elements can also modify the
relative abundance of splicing variants or induce the utilization of new splice
sites. For example, a mutation of an exonic element in the BRCA1 gene reduces
the binding of ASF/SF2, thereby increasing the exclusion of exon 18 [86]. Many
mutations that affect splicing control elements have been described in the
BRCA1 gene [87]. A polymorphism in the intron upstream of exon 2 in KLF6
creates a binding site for SRp40 that activates cryptic sites in exon 2 [88]. This
mutation is associated with an increased risk of prostate cancer. The altered
KLF6 proteins may counteract the tumor-suppressor activity of the wild-type
protein. Intronic and exonic mutations in the cadherin CDH17 gene that do not
directly affect the splice junctions have been proposed to interfere with splicing
decisions [89]. Other examples of this type of mutation have been reported in
NF1, APC, and MLH1 genes (Fig. 3).

The diversity of splicing control elements suggests that most intronic or exonic
mutations that were initially considered silent mutations may in fact have an
important impact on constitutive and alternative splicing. For the same reasons,
a large subset of single nucleotide polymorphisms (SNPs) found within the human
population may modulate alternative splicing. For example, a SNP in an SRp40
binding site in the APC gene correlates with exon omission and attenuated familial
adenomatous polyposis [90]. These differences may predispose some individuals
to develop certain types of cancers, while other polymorphisms may increase their
resistance. Consistent with this view, a recent study has identified a high frequency
of alternative splicing in microsatellite regions linked with human longevity or
resistance to anticancer treatments [91].

4.2 Alterations in the Activity of Splicing Proteins

While many cis-acting mutations have been shown to affect splicing, the majority
of alterations in alternative splicing profiles appear to proceed from changes in the
expression or activity of splicing factors [4]. Because a proof for the direct con-
tribution of such changes to cancer is not always available, only experimentally
proven cases will be discussed below.

4.2.1 Chromosomal Translocations
In some cancers, as in Ewing’s sarcomas, chromosomal translocations affect the
genes EWS and TLS (FUS or hnRNP P2) that encode RNA-binding proteins. The
interaction of these proteins with splicing factors such as SF1, U1C, YB-1 and
some SR proteins may explain why their translocation has an impact on splicing
control [92–95]. Translocations between these genes and transcription factors
of the ETS family result in the production of chimeric proteins with strong
transcriptional activity and oncogenic properties, as for example EWS-FLI1,
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EWS-NOR1, and TLS-ERG [96]. The failure of the hybrid proteins EWS-FLI1
and TLS-ERG to recruit the YB-1 and SR proteins may compromise their role in
splicing [95, 97]. The interaction of EWS-FLI1 and TLS-ERG with transcrip-
tionally active form of RNA polymerase II [94, 95, 98] may affect the cotran-
scriptional selection of splice sites. EWS-NOR1 can interact with the snRNP
protein U1C. EWS-NOR1 can also enhance the use of a distal 50 splice site in a
reporter pre-mRNA more efficiently than the EWS protein alone [99]. In leukemia,
the well-known Bcr-Abl translocation has been associated with splicing defects in
SLP65, Bruton’s tyrosine kinase, Pyk2 and Ikaros. However, the mechanism
responsible for these alterations may be indirect since Bcr-Abl enhances the
expression of SRPK1, a kinase that modulates the activity of SR proteins [100].

4.2.2 Alterations in the Expression and Localization
of Splicing Control Factors

Viral transformation was first associated with the upregulation and increased
activity of SR proteins [101], and this change affected fibronectin pre-mRNA
splicing [102]. The first case of a deregulation in the expression of hnRNP and SR
proteins in cancer cells was observed in colon adenocarcinomas [103]. Since then,
alterations in the expression of a variety of RNA-binding proteins have been

Fig. 3 Alternative splicing of selected cancer-related genes (see main text for details)
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reported in different types of cancers [104] (see Table 2). For example, expression
of the SR protein ASF/SF2 is upregulated in many types of cancers and can elicit
the transformation of immortal rodent fibroblasts [105]. Notably,
ASF/SF2 shifts the alternative splicing of three pre-mRNAs: BIN1 produces an
isoform that lacks tumor–suppressor activity; a MNK2 kinase variant can phos-
phorylate eiF4E in a MAP kinase-independent manner; the S6K1 kinase is spliced
to produce an oncogenic isoform [105]. Since ASF/SF2 overexpression in breast
cancer has been linked to cell motility through the production of RonD [33], ASF/
SF2 may contribute to early and late steps of carcinogenesis.

While over expression of SR proteins has been linked to cancer, downregula-
tion and altered phosphorylation are relevant to apoptosis, a process that is often
defective in cancer cells. A reduction in ASF/SF2 can induce apoptosis. Genomic
DNA fragmentation is blocked because the drop in ASF/SF2 changes the alter-
native splicing profile of the ICAD nuclease to favor the expression of the inactive
isoform [106]. Similarly, induction of the apoptotic pathway through activation of
the death receptor Fas dephosphorylates SR proteins [107]. Fas and the anticancer
drug gemcitabine increase the levels of ceramide that activates protein
phosphatase 1 (PP1), which in turn can act on SR proteins. Since ceramide

Fig. 4 Specific examples of mutations reported to affect alternative splicing in cancer. Mutations
are organized according to their impact on the inactivation or activation of splice sites by directly
changing the structure of the splicing signals or control elements. The name of the gene that is
affected, the type of cancer in which it was reported, and relevant references are given
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promotes a shift toward the production of the pro-apoptotic Bcl-xS protein, a
reduction in phosphorylation of SR proteins may elicit apoptosis.

An increase in the levels of hnRNP I/PTB and SRp20 in ovarian cancers that
are resistant to doxorubicin correlates with the overexpression of some isoforms of
the multidrug resistance protein MRP1 [59]. Moreover, PTB knockdown
suppresses growth and invasiveness [108]. Overexpression of the alternative
splicing factor SPF45 is often observed in tumors and may confer resistance to
chemotherapeutic agents [109].

Components of the constitutive splicing machinery may also be subject to
differential regulation in tumors. The branchpoint binding protein SF1 is down-
regulated in mouse intestinal tumorigenesis. Expression of SF1 is regulated by
b-catenin and it affects alternative splicing of several genes including WISP1,
FGFR3 and the Estrogen receptor-beta [110]. In pancreatic tumors, the expression
of U2AF35 (part of the other main protein complex that recognizes 30 splice sites)
is also often repressed. This situation promotes the synthesis of a constitutively
active isoform of the CCK-B receptor and a resulting stimulation of cellular
proliferation [111]. The breast cancer-associated scaffold attachment factor
SAFB1 interacts with a plethora of splicing factors and affects splicing [112].

In general, however, while several studies have reported increased expression
of specific RNA-binding proteins in cancer tissues, the functional impact of these
differences in the alternative splicing of important genes in cancer remains poorly
documented. A few of the most important cases where this link has been estab-
lished are presented below.

FGFRs. Approximately 10 distinct elements control the alternative splicing of
the mutually exclusive IIIb and IIIc exons in FGFR2 (Fig. 4a). Fox-2 and hnRNP I/
PTB proteins have been implicated in the activity of some of these controlling
elements [113, 114]. hnRNP I/PTB also controls the alternative splicing of FGFR1.
Interestingly, the high levels of hnRNP I/PTB in glioblastomas may promote the
exclusion of exon a, thereby improving its affinity for the ligand [115].

CD44. An increase in the expression of some SR proteins is associated with the
progression from the pre-neoplastic to the metastatic status of mammary tumors
[103, 116]. This observation correlates with modifications in the alternative
splicing of the cell-surface glycoprotein CD44 in human mammary tumors [103].
In ovarian cancers, an increase in the expression of SR proteins and their hyper-
phosphorylated forms has also been observed [117]. In addition, exon v9 of CD44
contains a stimulatory element that can be bound by low molecular weight SR
proteins [118].

Sam68 and hnRNP A1 also contribute to the alternative splicing of CD44 by
controlling the inclusion of exon v5 [119, 120]. A protein of the same family as
Sam68, T-STAR (SLM2), can also bind to the v5 exon to promote its inclusion and
this is antagonized by other RNA-binding proteins such as SRp30c, hnRNP G, and
SAF-B, as well as by SIAH-1, a ubiquitin ligase and candidate tumor suppressor
[121]. The inclusion of exon v5 is stimulated by the phosphorylation of Sam68
following activation of the Ras signaling pathway. This stimulation requires the
participation of the splicing co-activator SRm160, which interacts with Sam68
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[122]. As demonstrated in a recent study, the binding of Tra2b to exon v4 of CD44
and its synergic action with the nucleic acid-binding protein YB-1 enhance the
inclusion of both exons v4 and v5 [123].

Interestingly, overexpression of Brm, a component of the SWI/SNF chromatin
remodeling complex can promote the inclusion of the v5–v9 exons through a
process that requires Sam68 [124].

Ron. The binding of the SR protein ASF/SF2 to a sequence of exon 12 on the
pre-mRNA of Ron, a tyrosine kinase transmembrane receptor, improves the uti-
lization of its 30 splice site and enhances the exclusion of the immediate upstream
exon 11. Upregulation of ASF/SF2 in cancer cells is associated with enhanced
exon 11 skipping and generation of RonD, an isoform that improves the motility
and invasive properties of these cells. RonD is upregulated in metastatic breast and
colon cancers [33, 125].

Fas. Alternative splicing of the pre-mRNA encoding the cell death receptor Fas
generates two isoforms through inclusion or skipping of exon 6. The membrane-
bound long isoform activates the extrinsic apoptotic pathway, while the soluble
short isoform that lacks the transmembrane domain is an anti-apoptotic factor.
The production of the long isoform is facilitated by TIA1 and TIAR that bind to a
U-rich sequence situated immediately downstream of the 50 splice site of alter-
native exon 6. These proteins stimulate the binding of the U1 snRNP at this 50

splice site (Fig. 4b) [126]. In contrast, the exclusion of exon 6 is enhanced by the
binding of hnRNP I/PTB to exon 6 which interferes with the communication
between the downstream U1 snRNP bound to the 50 splice site and U2AF bound to
the upstream 30 splice site [127].

Bcl-x. The alternative use of two 50 splice sites produces the pro- and anti-
apoptotic isoforms of Bcl-x (Fig. 4c). Several regulatory elements have been
identified in the regions flanking these splice sites. Intronic regulatory elements
(IRE) may repress the use of the 50 splice site of Bcl-xL following induction by
IL-6 and GM-CSF, or treatment with TPA [128]. In addition, two exonic regions
known as CRCE1 and CRCE2 mediate the pro-apoptotic effect conferred by
ceramide on the splicing of Bcl-x [129]. Given that the U2 snRNP-associated
protein SAP155 binds to CRCE1 and that its genetic depletion by RNA interfer-
ence also promotes Bcl-xS usage, the signaling pathway activated by ceramide
possibly prevents SAP155 binding. More recently, a role for Sam68 has also been
uncovered [130]. Although the cis-acting element mediating this function is cur-
rently unknown, Sam68 appears to interact with hnRNP A1 to elicit a splicing shift
toward Bcl-xS. Three other regions have been identified as important for con-
trolling the use of the alternative 50 splice sites. One of them (B2) is specifically
bound by hnRNP F/H proteins and is required to enforce the use of Bcl-xS 50 splice
site [131]. The B3 region is bound by SRp30c and enforces Bcl-xL usage [132].
Finally, a region (SB1) upstream of the Bcl-xS 50 splice site distinct from CRCE1
represses the use of the 50 splice site of Bcl-xS. This SB1-dependent splicing
repression is lifted by drugs that inactivate protein kinase C, as well as by a variety
of anticancer agents [133, 134]. The pathways that control this aspect of Bcl-xS

splicing vary considerably between different cancer cell lines.
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Caspase 2. Members of the SR and hnRNP family of proteins participate in the
alternative splicing control of caspase 2 [135]. Overexpressing SR proteins
enhances the exclusion of exon 9 to favor the production of the pro-apoptotic
isoform Casp2L. In contrast, overexpressing hnRNP A1 stimulates the inclusion of
exon 9 and the production of the anti-apoptotic isoform Casp2S [136]. The intronic
sequence In100 is a control element modulating the alternative splicing of caspase
2 (Fig. 4d). This element is bound by hnRNP I/PTB and it prevents splicing
between exons 9 and 10 through formation of a nonproductive complex with
splicing factors recruited at the In100 site [137].

4.2.3 Other Perturbations that Impact Alternative Splicing
As discussed above, cancer cells can accumulate genetic changes that directly
affect the splicing machinery or splicing regulatory elements in pre-mRNAs to
deregulate alternative splicing patterns. In addition, at least four other molecular
processes may affect the production of splicing variants to impact on carcino-
genesis. These include transcription, RNA editing, NMD, and signal transduction
events.

Transcription
Simple overexpression of pre-mRNAs may contribute to deregulated alternative
splicing. For overexpressed pre-mRNAs, there might not be enough available
control factors to modulate their splicing. In addition, the sequestration of splicing
factors by this pre-mRNA may affect the splicing of other pre-mRNAs, similar to
the situation occurring when triplet repeat expansion in the 30 untranslated region
of the DMPK pre-mRNA sequesters MBNL with an impact on the alternative
splicing of cardiac troponin T, tau, insulin receptor, ClC-1, and myotubularin-
related 1 pre-mRNAs [138, 139].

The mechanistic coupling of RNA synthesis by RNA polymerase II to alter-
native splice site choice has been documented [140, 141]. Both enhancer and core
promoter elements can modulate the alternative splicing of their nascent
pre-mRNA [142, 143]. Promoter identity can control alternative splicing through
the differential recruitment of transcription factors and cofactors, such as Brm
[124], CoAA [144] and Spi-1 [145], or by recruitment of specific splicing factors,
such as SRp20 [146]. Ultimately, promoter-specific transcription complexes can
dictate alternative splice site choice by altering the rate of elongation and/or the
processivity of RNA polymerase II [147, 148], or through physical interactions
with the splicing machinery. Consequently, factors that modify the status of
chromatin that change the intrinsic speed of the transcriptional complex or that
modify its sensitivity to pausing sites can potentially affect alternative splicing.

In addition to the impact of different complexes at a single promoter on alternative
splicing, there is now convincing evidence for the impact of multiple promoters of a
single gene on alternative splicing. For Bcl-x [149] and caspase-2 [150], the choice of
alternative promoters can define the ratio of splice variant expression. The literature
now contains a growing list of genes that contain alternative promoters [151]. In fact,
a recent bioinformatics analysis estimated that 52 % of human genes contain
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alternative promoters [152]. In this context, oncogenic alterations of transcription
factors, as well as genetic or epigenetic changes in promoter regions could influence
the alternative splicing patterns in tumor cells. We already know that there must be
considerable tissue- and cancer-specific variations in the combinatorial assemblies at
promoters. What remains to be discovered is the extent of the contribution of these
transcriptional aspects to global patterns of alternative splicing in cancer.

RNA Editing
RNA editing is a process that directly modifies specific adenosine residues into
inosines [153]. RNA editing can influence the secondary structure of specific
pre-mRNAs in preparation for splicing. In some types of tumors, editing defects
can affect the alternative splicing of the PTPN6 phosphatase and glutamate
receptor pre-mRNAs [154, 155]. Because the contribution of RNA editing to the
alternative splicing of cancer-related genes has not been investigated systemati-
cally, it is likely that more examples of this type exist.

NMD
NMD is a surveillance process that eliminates mRNA molecules containing a stop
codon localized more than 50 nucleotides upstream of exon/exon junction [156, 157].
Therefore, NMD can potentially neutralize the impact of mutations that create new
termination codons [157, 158]. While NMD can affect the accumulation of some
splicing variants, its widespread contribution in controlling the expression of splicing
isoforms is unlikely [15] but controversial [159]. Interestingly, the non-productive
isoforms of splicing factors that are generated from the alternative splicing of exons
enriched in ultra conserved sequences form a distinct class of NMD-regulated tran-
scripts [17, 19].

It is possible but yet undocumented that changes in the expression or activity of
factors involved in regulation of the NMD may promote the accumulation of the
mutated or aberrantly spliced transcripts and therefore may contribute to cancer.
Although the number of examples supporting a role for NMD in cancer remains
small [160, 161], this pathway appears to contribute to the elimination of mRNA
encoding proteins involved in drug-resistance [60]. Such alterations in the NMD
pathway may contribute to tumorigenesis.

Signal Transduction
Cell signaling impacts alternative splicing [162, 163] and a typical means by
which such changes can be mediated is by the phosphorylation of SR proteins,
which causes them to accumulate in different subcellular compartments [164]. The
upregulation of PKA and the MKK3/6/p38 signaling pathway results in the cyto-
plasmic localization of hnRNP I/PTB and hnRNP A1, respectively [165, 166].
Another splicing factor displaying this behavior is KSRP, which is implicated in
the inclusion a specific exon in the c-src mRNA in neurons [167]. KSRP
accumulates in the nucleus when neuroblastoma cells are induced to differentiate
[167]. Therefore, the altered subcellular localization of splicing factors via their
post-translational modification can potentially play a role in the deregulation of
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splicing in cancer cells. The impact of splicing factor localization on the cancer
phenotype is likely underappreciated, as documenting changes in localization is
considerably more laborious than determining changes in total expression levels of
the mRNA or protein.

The interface between signal transduction and splice site selection is just
beginning to be explored. The Ras/PI 3-kinase/AKT pathway is often activated in
human cancer [168]. This pathway can modulate the activity of SR proteins to
affect the alternative splicing of fibronectin and PKC bII [169, 170]. The Ras-
dependent signaling pathway is also implicated in the alternative splicing of CD44
[171]. The intricate interplay between alternative splicing and cell signaling is
illustrated by the fact that just as signaling affects alternative splicing, so alter-
native splicing can affect signaling. For example, the inclusion of exon v6 in CD44
promoted by Ras helps to sustain late Ras signaling [172]. The SR protein kinase
SRPK1 is overexpressed in many types of cancers and its downregulation
increases the sensitivity of cells to anticancer drugs [173], and MAP2 K is alter-
natively spliced in response to activation of SRPK1 [174]. Another recent example
of a link between signaling and splicing control involves the Notch3 signaling
pathway which regulates the splicing of Ikaros in leukemia by inducing the
RNA-binding protein HuD [175–177]. The deregulated expression of CDK12 and
cyclin L1/L2 can also affect alternative splicing decisions [178].

Thus, it would not be too surprising if cancer-specific alterations in signaling
pathways impact the production of isoforms that contribute to neoplastic trans-
formation. However, the contribution of signal transduction events to splicing
decisions that are relevant to cancer remains to be more fully investigated.

Arginine methylation of splicing factors also affects their localization and
activity [179, 180]. Recently, the arginine methylase CARM1 was shown to
control splicing decisions [181]. Although cancer-specific defects in the arginine
methylation of splicing factors are yet to be reported, important contributions of
this pathway to various aspects of cell growth can be anticipated.

5 Outlooks and Challenges

5.1 Global Detection of Splicing Variation in Cancer

The existence of cancer-specific signatures made up of individual alternative
splicing events was initially investigated by using large-scale compilation of
cDNAs and expressed-sequences tags (ESTs). Computational approaches revealed
considerable differences between the alternative splicing patterns of normal and
cancer prostate tissues [182, 183]. Genome-wide profiling of splicing events
became possible with the development of DNA oligonucleotide microarrays.
Using this technology, one of the first observations was that the genes displaying
tissue-specific alternative splicing were largely different from the genes presenting
tissue-specific differences in steady-state expression levels [184]. Indeed, a quarter
of the genes that showed alternative splicing between normal and cancerous
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prostate had no detectable change in overall gene expression level [185]. A similar
conclusion was obtained when mining for differences in expression profiles and
the detection of splicing isoforms between melanoma and melanocytes [186].
Overall, the classification of tumors was improved when alternative splicing was
considered, strongly arguing in favor of mining the wealth of alternative splicing
diversity for the purpose of developing a complementary disease-specific signature
that could have diagnostic and prognostic value.

Splicing-sensitive arrays were generated using limited sets of alternative splice
junction probes and used to detect splicing changes in cancer tissues. For example,
changes in splicing profiles and the abundance of splicing factors in Hodgkin
lymphoma was observed using an array that measured mRNA levels and 100
splicing events [187]. More recently, a similar design was used to compare
alternative splicing of 64 genes in breast cancer cell lines and xenografts [188].
In this case, four genes were found to be differentially spliced between breast
cancer and normal cell lines and four other tumor-associated genes were spliced
differently according to cell culture conditions.

A new technique called DASL was developed to measure the expression of
cancer-related splice isoforms. This technique combines targeted microarray and
PCR techniques and treats splicing isoforms as separate genes. DASL therefore
estimates changes in global gene expression level, as a normal microarray does,
while providing additional information on the ratio of splice isoforms variants
[189]. Recently, this approach has been used for the analysis of 1,500 different
splice variants from 364 genes in six prostate tumor cell lines and 22 prostate
tumors [185, 190]. Fourteen genes had different isoforms whose expression in
normal tissues inversely correlated with their expression in tumor samples,
implying a likely switch in alternative splicing.

Companies have also designed microarrays for cancer biomarker discovery
using known alternatively spliced junction probes identified through bioinfor-
matics mining of EST libraries. The Jivan cancer-specific splice variant array
covers 524 putative cancer-specific splices although this has been largely super-
seded by their total splice form microarray that includes 193,000 specific splice
junctions. ExonHit also has pathway-specific microarrays and a ‘genome-wide’
alternative splice junction microarray. The other approach to splicing discovery is
to print probes for every exon:exon junction and deduce alternative splicing pat-
terns from the relative junction expression patterns. The first large-scale splicing
microarrays using this approach covered about half of the known exon:exon
junctions in the human transcriptome and monitored splicing globally in multiple
normal and cancer cell lines [191]. Affymetrix now produces a Human Exon
GeneChip microarray that detects over 1,000,000 different human exons. This was
used to compare splicing between ten matched normal tumor colon cancer pairs
and nine high confidence differences were confirmed by RT-PCR [192].

One drawback of most current global approaches is that they rely on previously
documented splicing events and are therefore not designed to discover novel
splicing events. Because our current collection of existing splicing events is likely
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incomplete, biased, and poorly validated, there is a need to incorporate strategies
that can identify novel splicing events and technologies that can accurately vali-
date the quantitative differences detected between samples. Current microarray
technologies may be superseded in the future by high-throughput sequencing
technologies of single molecules [193]. However, although all the above
approaches are designed to improve the annotation and assessment of alternative
splicing events, they all fail to provide a description of the complete structure of
splice isoforms. Indeed, pre-mRNA often sustains multiple alternative splicing
events, sometimes involving regions that are far apart. Given that splicing deci-
sions taken in one region can affect the splicing outcome of an apparently distinct
unit [194], we cannot assume that all combinations of potential isoforms are
represented in the mRNA population. The only currently reliable way to obtain
this information remains through cDNA cloning and large-scale projects in this
direction would provide a useful complement to current high-throughput mapping
efforts directed at specific alternative splicing units.

5.2 Depleting Specific Splice Isoforms

We have seen that mutations in splicing elements of key genes and expression
defects of splicing control factors can contribute to neoplastic transformation.
The alterations in the splicing profiles observed in tumors may lead to the
production of novel isoforms. In other cases, the isoforms may correspond to
molecules that are normally expressed in other cell types or at other stages of
development. Most frequently, splicing alterations will involve differences in
the relative abundance of isoforms already expressed in the normal tissue.
Although several of these alterations may have a neutral impact, other splicing
alterations may confer growth advantages to cancer cells. For example, the
signaling pathways that inhibit cell proliferation or induce cell death may be
neutralized leading to cell propagation and invasion. Considering the enormous
potential for diversity emanating from alternative splicing, the number of iso-
forms that are known to affect the growth of cancer cells is most probably
vastly underestimated. More extensive annotation of the function of different
isoforms is a priority that represents a challenge both in terms of commitment
and methodology.

To help with the goal of attributing function to splice variants, the RNA
interference (RNAi) technology represents a useful approach because it can be
used to reduce the expression of specific isoforms. Although this approach has
been used successfully in Drosophila cells [195], it is yet to be used in a systematic
manner in human cells. If RNA interference-based approaches turn out to promote
transcriptional silencing in addition to RNA degradation [196, 197], depletion of
specific mRNA isoforms may only be possible with siRNAs targeting exon-exon
junctions. This caveat could seriously compromise the use of RNA interference as
a tool to assess isoform function.
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5.3 Reprogramming Alternative Splicing

A different approach aims at reprogramming alternative splicing decisions. The
spectacular physiological improvement obtained by reprogramming the Duchenne
muscular dystrophy gene in a mouse model [198] supports applying this strategy to
cancer. The original version of the approach employs a complementary oligonu-
cleotide to cover the targeted splice site (Fig. 5a). By blocking the 50 splice site of the
anti-apoptotic Bcl-xL with 20-O-methyl oligonucleotides, Mercatante et al. [199]
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could decrease the concentrations of the Bcl-xL isoform and increase the level of the
corresponding pro-apoptotic Bcl-xS isoform. This change in the splicing profile of
Bcl-x increased the sensitivity of cells to chemotherapeutic agents and even induced
apoptosis in some cell lines [200]. Similar approaches have been successfully
applied on the FGFR1 and the MYC pre-mRNAs [201, 202].

An alternative strategy involves using antisense oligonucleotides that target
splicing control elements (Fig. 5b). An oligonucleotide complementary to a
sequence upstream of 50 splice site of Bcl-xL strongly repressed the use of this site
[203] probably because its hybridization neutralizes a positive controlling element
[131]. In a similar way, inactivating intronic repressor elements can also be used to
modulate alternative splicing [202, 204]. Modification of the oligonucleotide with a
non-hybridizing tail that contains one or several binding sites for a protein produces
a bifunctional oligonucleotide that can recruit factors to a specific region on the pre-
mRNA. For example, binding of hnRNP A1 to the tail of a bifunctional oligonu-
cleotide sterically interferes with the efficient utilization of a neighboring 50 splice
site (Fig. 5c) [205]. The architecture of the tail can be modified to provide binding
sites for other factors [206]. The general concept is flexible and changing the identity
of the recruited protein or modifying the hybridization site can be used to stimulate
splicing (Fig. 5d and e) [72, 207]. A PNA (peptide-nucleic acid) version has also
been used with success. In this case, the tail is made of alternating serine and arginine
amino acids that mimic SR proteins in their ability to promote exon inclusion
(Fig. 5f) [208, 209]. The above approaches can be used to document the functions of
different splice isoforms and therefore help to define new therapeutic targets. The
development of oligonucleotides whose chemistries are compatible with human use
may offer new therapeutic means for anticancer treatment. Although trans-acting
non-coding nucleic acid molecules to reprogram splicing have been used by
researchers for many years, only recently did we realize that this molecular strategy
is used normally by cells to modulate splicing decisions. A snoRNA was recently
shown to shift the splicing of a serotonin receptor [210]. Likewise, microRNAs
(miRNAs) have very recently been shown to regulate alternative splicing during
muscle differentiation [211, 212]. Given that miRNA expression is often altered in
cancer cells [213], it is likely that additional examples of misregulation of splicing
through miRNAs will be found in cancer-associated genes.

Fig. 5 Reprogramming of alternative splicing through use of oligonucleotides. a An oligonu-
cleotide blocking a splice site favors the use of an alternative site. b Oligonucleotides
complementary to exonic or intronic controlling elements can prevent the binding of control
factors. If these elements are ESEs and ISEs as shown, the oligos will stimulate splicing to an
alternative site. c A complex between hnRNP A1 protein and the tail of an oligonucleotide partially
complementary to an exonic sequence can provoke steric interference to reduce the use of a splice
site and favor alternative splice site selection. d When the tail of the oligo contains a sequence of
high affinity for a SR protein, splicing to the adjacent site can be stimulated. e If the hnRNP A1
binding tail is contained in an oligo complementary to an intron region near the 50 splice site,
splicing stimulation can occur. f A PNA (peptide-nucleic acid) portion covalently linked to an RNA
sequence complementary to an exon can stimulate exon inclusion when the PNA tail contains
repetitions of the dipeptide arginine-serine to mimic the RS domain of SR proteins

b
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Another interesting approach consists in modifying the expression or activity
of proteins that affect alternative splicing. This strategy has potential value given
that the inhibition of the SRPK1 kinase through RNA interference reduces cellular
proliferation and increases apoptosis in cells derived from pancreatic tumors
[173, 174]. A more classic pharmacological approach consists in screening
libraries for chemical compounds to identify small antagonist molecules with
therapeutic value. An application of this strategy has resulted in the discovery of
compounds that inhibit other kinases specific for SR proteins and that affect
alternative splicing [214, 215]. Recently, screening assays have uncovered mole-
cules that directly target SR proteins and that preferentially inhibit splicing events
required for HIV replication [216]. These encouraging results justify that similar
approaches be attempted with other regulatory splicing factors.

6 Conclusions

Cancer can arise from alterations in a variety of cellular pathways including signal
transduction, cell cycle, and apoptosis. Alternative splicing is an important process
that participates in the complex regulation of these cancer-related pathways.
Despite incomplete information, it is becoming increasingly evident that defects in
alternative splicing imposed by mutations or changes in the levels of splicing
factors can generate isoforms whose activities contribute to the initiation and
progression of cancer. Given current efforts at documenting the function of splice
variants and at cataloguing cancer-specific splicing alterations, we can expect that
the role of alternative splicing in cancer will provide many novel anticancer tar-
gets. In the meantime, the results of different approaches aimed at reprogramming
splice site usage will pave the way for novel therapeutic strategies against cancer.
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