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Abstract. We present a new model of a two-dimensional computing
device called sgraffito automaton and demonstrate its significance. In
general, the model is simple, allows a clear design of important compu-
tations and defines families exhibiting good properties. It does not exceed
the power of finite-state automata when working over one-dimensional
inputs. On the other hand, it induces a family of picture languages that
strictly includes REC and the deterministic variant recognizes languages
in DREC as well as those accepted by four-way automata.

Keywords: two-dimensional languages, sgraffito automaton, bounded
Turing machine, REC.

1 Introduction

The theory of two-dimensional languages generalizes concepts and techniques
from the theory of formal languages. The basic element, which is a string, is
extended to a two-dimensional array, usually called a picture. Various classes of
picture languages can be formed, especially by generalizing one-dimensional com-
putational or generative models, which possibly leads to some two-dimensional
variant of the Chomsky hierarchy. Naturally we can ask, whether the induced
families inherit properties of their one-dimensional counterparts. The answer is
typically negative. A more complex topology of pictures causes that families of
picture languages are of a different founding.

A four-way finite automaton (4FA) [2] is a good example. It is a finite-state
device composed of a control unit equipped with a head moving over an input
picture in four directions: left, right, up and down. Even if the automaton is a
simple extension of the two-way finite automaton, the formed family of languages
shows properties different from those of regular languages [4].

In 1991, Giammaresi and Restivo proposed the family of recognizable lan-
guages (REC) [3]. The languages in REC are defined using tiling systems. They
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also coincide with the languages recognizable by the two-dimensional on-line tes-
sellation automata [7] or definable using existential monadic second order logic.
The family is well established. It has many remarkable properties and the defined
recognizability is a very robust notion. It is even presented as the ground-level
class among the families of two-dimensional languages.

The non-determinism exhibited by REC makes it quite powerful. Even some
NP-complete problems belong to REC [10]. It somehow contradicts the vision of
a ground level class, taking into account the simplicity of resources sufficient to
recognize (one-dimensional) regular languages. This fact has inspired the further
proposal of DREC [1] – the family of deterministically recognizable languages.

We introduce a new two-dimensional computing device called sgraffito au-
tomaton (2SA).

Sgraffito (Italian: “scratched”), in the visual arts, a technique used in
painting, pottery, and glass, which consists of putting down a prelimi-
nary surface, covering it with another, and then scratching the superficial
layer in such a way that the pattern or shape that emerges is of the lower
colour. (Encyclopædia Britannica Online. Retrieved 20 March, 2012,
from http://www.britannica.com/EBchecked/topic/537397/sgraffito)

The automaton has a finite state control and works on a picture consisting of
symbols with different weights (as if they were put on its background in order
from the lightest to the heaviest). 2SA can move its head over the picture in four
directions. It must rewrite scanned symbol in each step and the symbol can be
rewritten by a lighter symbol only (this corresponds to scratching some of the
top layers). The automaton accepts by entering an accepting state.

The power of 2SAs collapses to finite-state automata when working over one-
row pictures, while the induced two-dimensional family strictly includes REC
and exhibits the same closure properties. A significant advantage of the model is
its simplicity. The design of many important computations is simple and clear.
An interesting family is settled by the deterministic variant of the automaton.
It covers DREC as well as L(4FA). Thus deterministic sgraffito automata are a
new stronger deterministic alternative to DREC. This complements the result
given by Jirička and Král who showed how to simulate 4FAs using deterministic
forgetting automata [8].

Section 2 recalls basic notions and properties of picture languages. Sgraffito
automata are introduced in Section 3 and we show there that one-dimensional
sgraffito automata recognize exactly the class of regular languages. Sections 4
and 5 show several closure properties for languages accepted by nondeterministic
and deterministic 2SAs. Concluding remarks are presented in Section 6.

2 Preliminaries

A picture P over a finite alphabet Σ is a two-dimensional matrix of elements
from Σ. We denote the number of rows and columns of P by rows(P )
and cols(P ), respectively. The pair (rows(P ), cols(P )) is called the size of P .
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The empty picture Λ is defined as the only picture of size (0, 0). The set of
all pictures over Σ is denoted by Σ∗,∗, while Σm,n denotes the subset of pic-
tures of size (m,n). A picture language over Σ is a subset of Σ∗,∗. Assuming
1 ≤ i ≤ rows(P ) and 1 ≤ j ≤ cols(P ), P (i, j) (or shortly Pi,j) identifies the
symbol located in the i-th row and the j-th column in P .

Two (partial) binary operations are used to concatenate pictures. Let P and
Q be pictures over Σ of sizes (k, l) and (m,n), respectively. The column con-
catenation P �Q is defined iff k = m, the row concatenation P �Q is defined iff
l = n. The corresponding products are depicted below:

P �Q =

P1,1 . . . P1,l Q1,1 . . . Q1,n

...
. . .

...
...

. . .
...

Pk,1 . . . Pk,l Qm,1 . . . Qm,n

P �Q =

P1,1 . . . P1,l

...
. . .

...
Pk,1 . . . Pk,l

Q1,1 . . . Q1,n

...
. . .

...
Qm,1 . . . Qm,n

We also define Λ �P = P �Λ = Λ �P = P �Λ = P for any picture P .
In addition, we introduce the clockwise rotation PR, vertical mirroring PVM

and horizontal mirroring PHM.

PR =

Pm,1 . . . P1,1

...
. . .

...
Pm,n . . . P1,n

PVM =

P1,n . . . P1,1

...
. . .

...
Pm,n . . . Pm,1

PHM =

Pm,1 . . . Pm,n

...
. . .

...
P1,1 . . . P1,n

Let π : Σ → Γ be a mapping between two alphabets. The projection by π of
P ∈ Σm,n is P ′ ∈ Γm,n such that P ′(i, j) = π (P (i, j)) for each admissible i, j.
Note that each introduced operation can be naturally extended to languages.

Let S = {�,�,�,⊥,#} be a set of special markers (sentinels). In the text we
always implicitly assume that Σ ∩S = ∅ for any alphabet Σ. For P ∈ Σm,n, we
define a boundary picture ̂P over Σ ∪ S of size (m + 2, n + 2). Its symbols are
given by Figure 1(a).

Usually, only # is used to mark the border. Our version simplifies the defini-
tion of bounded computations, keeping the recognition abilities unchanged.

The two-dimensional on-line tessellation automaton (2OTA), depicted in Fig-
ure 1(b), is a restricted type of a cellular automaton. For an input P ∈ Σ∗,∗,
a computation is performed in rows(P ) + cols(P )− 1 parallel steps. During the
k-th step, each cell at coordinates (i, j), where i + j − 1 = k, performs a state-
transition depending on P (i, j) and the final states of the left and top neighbor
cells. If the neighbor lies at the border of P , it is a fictive cell whose final state
is defined as the corresponding symbol in ̂P . The result of the computation is
determined by the final state of the bottom-right cell.

Tiling systems (TS) [4] specify tiling recognizable languages. Since it holds
L(TS) = L(2OTA), the related languages are referred simply as recognizable
languages and the family is denoted by REC. The deterministic variant DREC
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(a) Boundary picture.
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(b) 2OTA.

Fig. 1. (a) A scheme for the boundary picture. (b) 2OTA example. The 3-rd diagonal
and the direction of spreading computation are depicted.

[1] coincides with the closure under rotation of L(2DOTA). It holds L(4DFA) �⊆
DREC, where 4DFA abbreviates a deterministic 4FA.

3 Sgraffito Automata

We give a definition of bounded 2D Turing machines first, since sgraffito au-
tomata are their special instances. Let H = {R,L,D,U,Z} be the set of the head
movements, where the first four elements denote directions (right, left, down, up)
and Z stands for zero (none) movement. Furthermore, let us define a mapping
ν : S → H such that

ν(�) = R, ν(�) = L, ν(�) = D, ν(⊥) = U and ν(#) = Z.

Definition 1. A (nondeterministic) two-dimensional bounded Turing machine
(2BTM) is a tuple M = (Q,Σ, Γ, δ, q0, QF ) where

– Σ is an input alphabet,
– Γ is a working alphabet such that Σ ⊆ Γ ,
– Q is a finite, nonempty set of states,
– q0 ∈ Q is the initial state,
– QF ⊆ Q is the set of final states, and
– δ : (Q \QF )× (Γ ∪ S) → 2Q×(Γ∪S)×H is a transition relation.

Moreover, for any pair (q, a) ∈ Q× (Γ ∪ S), every (q′, a′, d) ∈ δ (q, a) fulfils

– a ∈ S implies d = ν(a) ∧ a′ = a, and
– a /∈ S implies a′ /∈ S.
If ∀q ∈ Q, ∀a ∈ Γ ∪ S : |δ(q, a)| ≤ 1, we say M is a deterministic 2BTM.

The notions like configuration and computation of the machine M are easily
defined as usual. Let P ∈ Σ∗,∗ be an input. In the initial configuration of M
on P , its working tape contains ̂P , its control unit is in state q0 and the head
scans the top-left corner of P . When P = Λ, the head scans the bottom-right
corner of ̂P containing #. The machine accepts P iff there is a computation of
M starting in the initial configuration on P and finishing in a state from QF .
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Definition 2. A two-dimensional sgraffito automaton (2SA) is a tuple A =
(Q,Σ, Γ, δ, q0, QF , μ) where

– (Q,Σ, Γ, δ, q0, QF ) is a 2BTM,

– μ : Γ → N is a weight function and the transition relation satisfies

(q′, a′, d)∈δ(q, a) ⇒ μ(a′)<μ(a) for all q, q′∈ Q, d ∈ H, a, a′∈ Γ.

A is a deterministic 2SA (2DSA) if the underlying 2BTM is deterministic.

Lemma 1. Let M = (Q,Σ, Γ, δ, q0, QF ) be a 2BTM. Let k ∈ N be an inte-
ger such that during each computation of M over any picture from Σ∗,∗, each
tape field is scanned by the head of M in at most k configurations. Then, there
is a 2SA A such that L(A) = L(M). Moreover, if M is deterministic, A is
deterministic too.

Proof. LetA = (Q,Σ, Γ2, δ2, q0, QF , μ) be a 2SA, where Γ2 = Σ∪(Γ × {1, . . . , k})
and each instruction (q, a) → (q′, a′, d) from δ is represented in δ2 by the follow-
ing set of instructions:

(q, a) → (q′, (a′, 1) , d) ,
(q, (a, i)) → (q′, (a′, i+ 1) , d) ∀i ∈ {1, . . . , k − 1}.

Finally, we define

μ(a) = k + 1 ∀a ∈ Σ,
μ ((a, i)) = k + 1− i ∀(a, i) ∈ Γ × {1, . . . , k} .

It is easy to see that L(A) = L(M) and if δ is deterministic, then it produces
deterministic δ2. ��

Lemma 1 says that, instead of designing a 2SA, it is sufficient to describe a
2BTM for which the number of transitions over each tape field is bounded by a
constant. This will be utilized in the constructive proofs we present. Note that
one-dimensional constant-visit machines were already studied by Hennie [5].

Definition 3. Let M = (Q,Σ, Γ, δ, q0, QF ) be a 2BTM, P an input picture, j
an integer such that 1 ≤ j ≤ cols(P ), and let C be a finite computation of M
over P . The horizontal crossing sequence for C between columns j and j + 1,
denoted Kj , is constructed by the following procedure:

1. Initialize Kj := ∅.
2. Iterate through all configurations in C = (c0, c1, . . . , cm) except the last one.

Let ck be the current one. Consider the computation step of M that changes
ck to ck+1. If the head is moved from the j-th to j+1-st column or vice versa
and it occurs in the r-th row of P , append (q, r) to Kj where q is the state
entered by the control unit in ck+1. Continue by the next iteration.
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The definition is a two-dimensional generalization of the crossing sequence de-
fined in [6]. It records all activities performed between two columns and thus
allows to combine computations done over different pictures as it is given by the
proposition which follows. Note also that the vertical crossing sequence could be
defined analogously for crossings between two neighboring rows.

Proposition 1. Let M be a 2BTM accepting pictures P = P1
�P2 and R =

R1
�R2 where rows(P ) = rows(R). Let CP and CR be accepting computations of

M over P and R, respectively. If the horizontal crossing sequence for CP between
columns cols(P1) and cols(P1)+1 is identical to the horizontal crossing sequence
for CR between columns cols(R1) and cols(R1) + 1, then M accepts P1

�R2.

Next we show that 2SAs accepting one-row pictures only accept exactly the
class of regular (one-dimensional) languages. Actually, the result is only a slight
generalization of a theorem by Hennie [5].

Theorem 1. Let A1 = (Q,Σ, Γ, δ, q0, QF , μ) be a 2SA accepting a one-
dimensional picture language (L(A1) ⊆ Σ1,∗ = Σ∗). There is a finite-state
automaton A2 such that L(A2) = L(A1).

Proof. When A1 works over a one-row picture, it is possible to eliminate its
vertical moves without changing the result of the computation. E.g. if δ(q, a)
contains an instruction moving up (q′, a′,U) (for some q, q′ ∈ Q, a, a′ ∈ Γ ),
we can replace it by the set of all instructions of the form (q′′, a′,Z) such that
(q′′,�,D) is in δ(q′,�). Hence, we can assume A1 makes no vertical moves.
Further, we modify A1 in such a way that it can enter a final state only when
returning from � to the rightmost input symbol (for a nonempty input).

We show how to construct a nondeterministic finite state automaton A2 ac-
cepting {�} · L(A1) · {�}. On input � w �, the automaton A2 guesses a com-
putation of A1 on w by guessing all the horizontal crossing sequences between
columns of ŵ and checking if the crossing sequences correspond to an accepting
computation. If the guessed and verified computation is accepting, A2 accepts,
otherwise it rejects. The length of any horizontal crossing sequence of A1 on any
one-dimensional input picture is limited by the constant 2 ·maxa∈Σ μ(a). Hence
we can include all such possible crossing sequences into the set of states of A2.

A2 starts by reading �, guessing a crossing sequence between the first two
columns of ŵ and entering the state corresponding to this crossing sequence. The
sequence must have an even number length (possibly zero ). A2 also distinguishes
in states, whether it scans the first symbol of w or not. It continues as follows. Let
s be the crossing sequence corresponding to its current state. A2 reads the next
input symbol a (in a column j) and enters a state corresponding to a nonempty
crossing sequence s′ representing crossings between the columns j and j + 1.
The sequence s′ has to be consistent with s and a. To check that, A2 guesses
a sequence of instructions performed by A1 while visiting the j-th column and
verifies that the induced head movements match the sequences s, s′. If j = 1, A1

knows that the first instruction must start in the state q0, otherwise the state
before applying an instruction is determined by s or s′.
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A2 will enter an accepting state after reading a =� if s is consistent with
crossings between two last columns of ŵ and if it ends by (qf , 1), where qf ∈ QF .

It is easy to verify that L(A2) = {�} · L(A1) · {�}. Hence, L(A2) is a regular
language. As the class of regular languages is closed under the left and the right
quotient [6], L(A1) is regular too. ��

4 Closure Properties

Theorem 2. Both L(2SA) and L(2DSA) are closed under union, intersection,
rotation and mirroring.

Proof. Let A1, A2 be two 2SAs and let L1 = L(A1), L2 = L(A2). We can con-
struct a 2SA that starts to compute as A1 and when A1 finishes, it computes as
A2. The recognition of L1∩L2 or L1∪L2 requires to accept iff both simulations
accept or at least one of the simulations accepts, respectively. For recognizing
LR
1 , a 2SA moves its head to the top-right corner of the input and simulates A1,

treating columns as rows and vice versa. Similarly, in order to recognize LVM
1 or

LHM
1 , a 2SA moves its head to the top-right or the bottom-left corner, respec-

tively, and simulates A1, taking rows or columns, respectively, in the reversed
order.

If A1, A2 are deterministic, the designed automata are deterministic too. ��
Theorem 3. L(2SA) is closed under row and column concatenations and
projection.

Proof. Let A1, A2 be two 2SAs and let L1 = L(A1), L2 = L(A2). To recognize
e.g. L1

�L2, a 2SA nondeterministically chooses a column in the input and marks
it. Then it simulates A1 over the left part (including the marked column) and,
after that, A2 over the right part (excluding the marked column).

Let π be a projection. For an input P , a 2SA accepting π(L1) guesses and
writes down P ′ such that π(P ′) = P . Then it simulates A1 over P ′. ��
Theorem 4. L(2DSA) is closed under complement.

Proof. A 2DSA A rejects an input iff it reaches a state q and scans some a such
that δ(q, a) is empty. Since it is a deterministic automaton, it can be modified
to accept the complement of L = L(A), i.e. the language L = Σ∗,∗

� L. ��
We use two languages over Σ = {0, 1} to demonstrate additional properties
of sgraffito automata. Their variants were already introduced in [4] and [9].
The language of “duplicates” Ldup consists of all pictures Q �Q, where Q is a
nonempty square over Σ. The language of “permutations” Lperm is a subset of
Ldup and consists of those pictures Q �Q, where each row and each column of Q
contains symbol 1 exactly once. Examples are shown in Figure 2.

Proposition 2 ([4,9]). Ldup and Lperm are not in REC, while their
complements are in REC.
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0 1 0 1 0 1 0 1

1 0 1 1 1 0 1 1

1 1 1 0 1 1 1 0

1 0 0 0 1 0 0 0

(a)

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0

(b)

Fig. 2. Sample pictures from (a) Ldup and (b) Lperm

Lemma 2. Ldup is not accepted by any 2SA.

Proof. By contradiction, let A = (Q,Σ, Γ, δ, q0, QF , μ) be a 2SA accepting Ldup.
Let c = maxa∈Σ μ(a) and let Ldup(n) be the subset of Ldup consisting of pictures
whose size is (n, 2n). Moreover, for P ∈ Ldup, let seq(P ) be the crossing sequence
of A on P between columns cols(P )/2 and cols(P )/2 + 1 for some (arbitrarily
chosen) accepting computation.

For a fixed n, we estimate the size of the set {seq(P ) |P ∈ Ldup(n)}. The
head can move horizontally in n different rows. Each crossing sequence contains
at most 2c elements with an identical row index, thus the length of each sequence
is not greater than 2cn. Hence, there are at most

2cn
∑

i=0

(|Q| · n)i = 2O(n logn)

different crossing sequences. Since |Ldup(n)| = 2n
2

, for a sufficiently large n
there are two different pictures P1 = Q1

�Q1, P2 = Q2
�Q2 in Ldup(n) such that

seq(P1) = seq(P2). By Proposition 1, A accepts P3 = Q1
�Q2, but P3 /∈ Ldup. ��

Since L(2DSA) is closed under complement, we obtain the following corollary.

Corollary 1. Ldup is not accepted by any 2DSA.

Theorem 5. L(2SA) is not closed under complement. L(2DSA) is not closed
under row, neither column concatenation.

Proof. We will prove that Ldup ∈ L(2SA). To do it, we use the decomposition of
Ldup given in [4]. Let Σ = {0, 1}. We have Ldup = L1 ∪ L2, where

L1 = {P ∈ Σ∗,∗ | cols(P ) �= 2 · rows(P )} ,

L2 = {Q1
�Q2 |Q1, Q2 ∈ Σ∗,∗ ∧ cols(Q1) = cols(Q2) = rows(Q1) ∧ Q1 �= Q2} .

L2 can be further expressed as

L2 = L3 ∩ (Σ∗,∗ �(L4 ∩ (Σ∗,∗ �L5
�Σ∗,∗)) �Σ∗,∗)

where
L3 = {P ∈ Σ∗,∗ | cols(P ) = 2 · rows(P )} ,
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L4 = {P ∈ Σ∗,∗ | cols(P ) = rows(P ) + 1} ,
L5 = {P ∈ Σ∗,∗ | rows(P ) = 1 ∧ P (1, 1) �= P (1, cols(P ))} .

L5 contains one-row pictures only and is regular.Σ∗,∗ is trivially in L(4DFA). The
languages L1, L3, L4 are recognizable by a 4DFA which checks the condition on
size by passing the input diagonally. Thus, the already proved closure properties
of L(2SA) guarantee Ldup is in L(2SA).

By Corollary 1, Ldup /∈ L(2DSA), hence L(2DSA) is not closed under (w.l.o.g.)
the row concatenation. It holds

P1
�P2 =

(

(

(

PR
2

�PR
1

)R
)R

)R

,

thus L(2DSA) is not closed under the column concatenation as well. ��

Theorem 6. L(2DSA) is not closed under projection.

Proof. Let Σ1 = {0, 1}, Σ2 = {0, 1}, Σ = Σ1 ∪ Σ2 and let π : Σ → Σ1 be a
mapping such that π(0) = π(0) = 0, π(1) = π(1) = 1. Define a language L1

over Σ consisting of all pictures of the form Q1
�Q2, where Q1 is a square over

Σ containing exactly one symbol from Σ2 (at some position (i, j)), and Q2 is a
square over Σ such that π(Q2(i, j)) �= π(Q1(i, j)). Next, define

L2 = {P ∈ Σ∗,∗ | cols(P ) �= 2 · rows(P )} and L = L1 ∪ L2.

It is should be clear that π(L) = Ldup. To finish the proof we will construct a
2DSA A accepting L. Given some input P , A checks the size of P . When it is
(n, 2n), it marks the last column of the left half of P and verifies that this half
contains just one symbol from Σ2 (at a position (i, j)). A marks the whole i-th
row as working and moves the head back to position (i, j). Then it locates the
corresponding tape field in the right half of P , at position (i, n+ j). To do it, a
bouncing traversal style shown in Figure 3 is performed until the working row
is reached during the final phase of the movement. Finally, A checks whether
π(P (i, j)) �= π(P (i, n+ j)). ��

(a) Case one. (b) Case two.

Fig. 3. Locating the corresponding field in the opposite half using a bouncing style.
Dashed lines denote the marked working row. Oblique directions make an angle of 45◦.
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5 A Taxonomy of Picture Languages

Theorem 7. L(4FA) is included in L(2DSA).
Proof. Let A = (Q,Σ, δ, q0, QF ) be a 4FA and P an input over Σ. Define a
directed graph G = (V,E) as follows.

– vertices are all triples of the form (q, i, j), where 1 ≤ i ≤ rows( ̂P ), 1 ≤ j ≤
cols( ̂P ) and q ∈ Q,

– ((q1, i1, j1), (q2, i2, j2)) is an edge iff δ contains (q1, ̂P (i1, j1)) → (q2, d) and
(i2, j2) is the coordinate next to (i1, j1) in the direction given by d.

A accepts P iff, for some qf ∈ QF , there is a vertex (qf , i, j) reachable from
(q0, 2, 2). To decide this, it suffices to perform a depth first search in G. We give a
related procedure that labels visited nodes and edges. Vertices are in two states –
unexplored and explored, edges in three states – unexplored, tree edge, cross edge.
All elements are initially in the unexplored state.

1: v := (q0, 2, 2)
2: label v as explored
3: if v represents an accepting configuration then
4: ACCEPT
5: end if
6: if there is an unexplored edge e = (v, w) then
7: if w is unexplored then
8: label e as tree edge, move to w, set v := w
9: goto 2

10: else
11: label e as cross edge
12: goto 6
13: end if
14: else if there is an incoming tree edge (u, v) then
15: move to u, set v := u
16: goto 6
17: end if
18: REJECT

Labels of a vertex (q, i, j) and of its outgoing edges are recorded in the tape

field storing ̂P (i, j). The exception are vertices on the border, their labels are

represented in the nearest tape field storing an inner part of ̂P . Since each vertex
has the number of outgoing edges limited by | H | · |Q|, the proposed algorithm
can be performed by a 2DSA, a constant memory usage as well as a constant
number of traversals are guaranteed for each tape field. ��
Theorem 8. REC is included in L(2SA), DREC is included in L(2DSA).
Proof. Let L be a language in REC. It is accepted by a 2OTA A1. We can easily
construct a 2SA A2 simulating A1. It goes trough the input e.g. row by row,
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retrieves info needed to simulate a transition at each cell and represents the final
state in the corresponding tape field. It nondeterministically branches when A1

does so. If A1 is a 2DOTA, then A2 is a 2DSA, thus L(2DOTA) ⊆ L(2DSA).
Since L(2DSA) is closed under rotation, it includes the closure by rotation of
L(2DOTA) which equals DREC (shown in [1]). ��
Lemma 3. Lperm is accepted by a 2DSA.

Proof. We construct a 2DSA A recognizing Lperm. It starts by checking if an
input P is of size (n, 2n) and marks the n-th column. After that, it verifies if
the both halves Q1, Q2 represent permutations, i.e. if each their row and column
contains exactly one occurrence of symbol 1. This is done traversing P row by
row first, followed column by column.

The second stage compares the content of Q1 and Q2 row by row. Consider
processing an i-th row. The whole row is marked as working. The leftmost symbol
1 is located in the row. Let it be in a j-th column. Now, A moves the head to the
top of this column (coordinate (1, j)). Next, the field at the coordinate (1, n+ j)
is located using the bouncing style given by Figure 3(a). Finally, the position
(i, n+ j) is reached by moving the head down and stopping at the working row.
If there is symbol 1, the iteration finishes by clearing the used markers in the
i-th row and the process is ready to be started on the next row.

It remains to show thatA visits each field of the working tape constantly many
times and thus it is correctly defined (Lemma 1). Constantly many traversals
trough P are performed during the first stage. In the second stage, each iteration
works in a unique row and column. Especially the column uniqueness ensures
that different paths are always used to locate the tape field in the right half.
Thus, a constant number of visits is achieved on each field again. ��
Theorem 9. Families L(2DSA) and REC are incomparable.

Proof. After summarizing Proposition 2, Corollary 1 and Lemma 3, we get

Ldup ∈ (REC� L(2DSA)) and Lperm ∈ (L(2DSA)� REC) .

��

DREC L(4FA)

REC L(2DSA)

L(2SA)

(a) Families hierarchy.

∪ ∩ \ �, � π R,VM,HM

REC yes yes no yes yes yes

L(2SA) yes yes no yes yes yes

DREC yes yes yes no no yes

L(2DSA) yes yes yes no no yes

(b) Closure properties.

Fig. 4. (a) Relationships between REC, DREC, L(4FA) and the families recognizable by
sgraffito automata. Proper inclusions are denoted by arrows, the dashed lines connect
incomparable classes. (b) A summary of closure properties.
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6 Conclusions

We have introduced a new computational model called sgraffito automaton and
investigated its properties. The hierarchy formed by the induced classes of picture
languages, REC and DREC is shown in Figure 4(a), which is based on new as
well as already known theorems. If the automaton is restricted to work over one-
row pictures only, the recognition power degenerates to the power of finite-state
automaton. Such results give the families a great importance and entitle us to
see them as alternative ground levels in the two-dimensional hierarchy. This is
also well justified by the results on closure properties. The table in Figure 4(b)
demonstrates how they coincide with the properties of REC and DREC.

In our opinion, sgraffito automata deserve to be the subject of further research.
A special attention should be paid to 2DSAs, since they simulate 4FAs and define
thus an interesting deterministic family. The study of the automata can provide
additional insight on the fundamental differences between one-dimensional and
two-dimensional languages.
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Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer,
Heidelberg (2007)

2. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Proceedings of the
8th Annual Symposium on Switching and Automata Theory (SWAT 1967), FOCS
1967, pp. 155–160. IEEE Computer Society, Washington, DC (1967)

3. Giammarresi, D., Restivo, A.: Recognizable picture languages. International Jour-
nal of Pattern Recognition and Artificial Intelligence 6(2-3), 32–45 (1992)

4. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer-Verlag
New York, Inc., New York (1997)

5. Hennie, F.: One-tape, off-line Turing machine computations. Information and Con-
trol 8(6), 553–578 (1965)

6. Hopcroft, J., Ullman, J.: Formal languages and their relation to automata.
Addison-Wesley (1969)

7. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation
acceptors. Information Sciences 13, 95–121 (1977)
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