
From Equivalence to Almost-Equivalence,

and Beyond—Minimizing Automata with Errors

(Extended Abstract)

Markus Holzer and Sebastian Jakobi

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,jakobi}@informatik.uni-giessen.de

Abstract. We introduce E-equivalence, which is a straightforward gen-
eralization of almost-equivalence. While almost-equivalence asks for or-
dinary equivalence up to a finite number of exceptions, in E-equivalence
these exceptions or errors must belong to a (regular) set E. The compu-
tational complexity of minimization problems and their variants w.r.t.
almost- and E-equivalence are studied. Roughly speaking, whenever non-
deterministic finite automata (NFAs) are involved, most minimization
problems, and their equivalence problems they are based on, become
PSPACE-complete, while for deterministic finite automata (DFAs) the
situation is more subtle. For instance, hyper-minimizing DFAs is NL-
complete, but E-minimizing DFAs is NP-complete, even for finite E.
The obtained results nicely fit to the known ones on ordinary minimiza-
tion for finite automata. Moreover, since hyper-minimal and E-minimal
automata are not necessarily unique (up to isomorphism as for mini-
mal DFAs), we consider the problem of counting the number of these
minimal automata. It turns out that counting hyper-minimal DFAs can
be done in FP, while counting E-minimal DFAs is #P-hard, and belongs
to the counting class # · coNP.

1 Introduction

The study of the minimization problem for finite automata dates back to the
early beginnings of automata theory. This problem is also of practical relevance,
because regular languages are used in many applications, and one may like to
represent the languages succinctly. It is well known that for a given n-state de-
terministic finite automaton (DFA) one can efficiently compute an equivalent
minimal automaton in O(n logn) time [14]. More precisely, the DFA-to-DFA
minimization problem is complete for NL, even for DFAs without inaccessible
states [5]. This is contrary to the nondeterministic case since the nondeterminis-
tic finite automaton (NFA) minimization problem is known to be computation-
ally hard [17]. Minimization remains intractable even if either the input or the
output automaton is deterministic [17,21].

Recently another form of minimization for DFAs, namely hyper-minimization,
was considered in the literature [2,3,7,13]. While minimization aims to find an

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 190–201, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

From Equivalence to Almost-Equivalence 191

equivalent automaton that is as small as possible, hyper-minimization intends
to find an almost-equivalent automaton that is as small as possible. Here two
languages are considered to be almost-equivalent, if they are equivalent up to a
finite number of exceptions. Thus, an automaton is hyper-minimal if every other
automaton with fewer states disagrees on acceptance for an infinite number of
inputs. Hence, equivalence or almost-equivalence can be interpreted as an “er-
ror profile:” minimization becomes exact compression and hyper-minimization
is a sort of lossy compression. Minimal and hyper-minimal automata, share a
lot of similar traits, e.g., minimal and hyper-minimal DFAs have a nice struc-
tural description [3,15] and computing a minimal representation from a given
n-state DFA can be done efficiently in O(n log n) time [7,13,14]. Nevertheless,
there are subtle differences. The most important one is that ordinary minimal
DFAs are unique up to isomorphism, but this property doesn’t hold anymore for
hyper-minimal DFAs [7]. Novel investigations on hyper-minimization performed
in [8] and [20] show that hyper-minimization that returns a DFA that commits
the smallest number of errors can be efficiently computed, while simultaneously
bounding the size and the errors of the output DFA results in an NP-complete
decision problem. This is the starting point of our investigation.

We provide a general framework for error profiles of automata. To this end
we introduce the concept of E-equivalence. Two languages L1 and L2 are E-
equivalent1 if their symmetric difference lies in E, i.e., L1 �L2 ⊆ E. Here E
is called the error language. Although E-equivalence (∼E) is a generalization
of equivalence (≡) and almost-equivalence (∼), the problems to decide whether
two languages given by finite automata are equivalent, almost-equivalent, or
E-equivalent, respectively, are all of same complexity. To be more precise, when-
ever NFAs are involved in the language specification the decision problem is
PSPACE-complete, while for DFAs it is NL-complete. When turning to minimiza-
tion w.r.t. the above mentioned relations ∼ and ∼E , the results mirror those for
ordinary DFA and NFA minimization, with some notable exceptions. For in-
stance, hyper-minimizing deterministic machines, that is the DFA-to-DFA min-
imization problem w.r.t. almost-equivalence, is shown to be NL-complete while
E-minimization of DFAs in general turns out to be NP-complete, even for some
finite E. Note, that the finiteness of E does not contradict the NL-completeness
of hyper-minimizing DFAs. We also study some problems related to minimiza-
tion such as canonicity, minimality, and variants thereof; a precise definition of
these problems is given in the sections to come. For all these problems we obtain
precise complexity bounds depending on whether NFAs or DFAs are given as
inputs—see, e.g., Table 2. Moreover, since hyper-minimal and E-minimal au-
tomata are not necessarily unique (up to isomorphism as for minimal DFAs),

1 A close inspection shows that E-equivalence allows us to cover a lot of prominent
“equivalence” concepts from the literature such as, e.g., (i) equivalence—E = ∅,
(ii) almost-equivalence and k-equivalence—E is finite and E = Σ≤k, respectively,
(iii) equivalence modulo the empty word—E = {λ}, (iv) closeness—E is a sparse
set, and (v) cover automata—E = Σ≥k. A detailed discussion on this subject is
given in the full version of the paper.

192 M. Holzer and S. Jakobi

we consider the problem of counting the number of these minimal automata. It
turns out that counting hyper-minimal DFAs can be done in FP, while counting
E-minimal DFAs is #P-hard, and belongs to the counting class # · coNP. The
upper bound for counting minimal NFAs is #PSPACE. Due to space constraints
almost all proofs are omitted.

2 Preliminaries

We assume familiarity with the basic concepts of complexity theory [22] such
as the inclusion chain L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE. Here L (NL, respec-
tively) is the set of problems accepted by deterministic (nondeterministic, re-
spectively) logarithmic space bounded Turing machines. Moreover, let P (NP,
respectively) denote the set of problems accepted by deterministic (nondetermin-
istic, respectively) polynomial time bounded Turing machines and let PSPACE
be the set of problems accepted by deterministic or nondeterministic polyno-
mial space bounded Turing machines. We are also interested in counting the
number of solutions to particular problems. Let FP be the class of polyno-
mial time computable functions. Higher counting complexity classes are in-
troduced via a predicate based approach—see, e.g., [11]. If C is a complexity
class of decision problems, let # · C be the class of all functions f such that
f(x) = |{ y | R(x, y) and |y| = p(|x|) }|, for some C-computable two-argument
predicate R and some polynomial p. Observe, that # ·P coincides with Valiant’s
counting class #P, i.e., #P = # ·P, introduced in his seminal paper on comput-
ing the permanent of a matrix [26]. Moreover, in particular we have the inclusion
chain #P = # · P ⊆ # · NP ⊆ # · PNP = # · coNP, by Toda’s result [25].

Next we need some notations on finite automata as contained in [15]. A nonde-
terministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F), where Q
is the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q is the
initial state, F ⊆ Q is the set of accepting states, and δ : Q × Σ → 2Q is the
transition function. The language accepted by the finite automaton A is defined
as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 	= ∅ }, where the transition function is recur-
sively extended to δ : Q×Σ∗ → 2Q. A finite automaton is deterministic (DFA)
if and only if |δ(q, a)| = 1, for all states q ∈ Q and letters a ∈ Σ. In this case we
simply write δ(q, a) = p for δ(q, a) = {p}, assuming that the transition function
is a mapping δ : Q×Σ → Q. So any DFA is complete, i.e., the transition function
is total, whereas for NFAs it is possible that δ maps to the empty set.

Two finite automata A and B are equivalent, A ≡ B, if and only if they ac-
cept the same language, i.e., L(A) = L(B). Recently, hyper-minimal automata
were studied in the literature [2,3]. Two finite automata A and B are almost-
equivalent, A ∼ B, if and only if the symmetric difference L(A)�L(B) is finite,
i.e., |L(A)�L(B)| < ∞. A finite automaton is minimal (hyper-minimal, re-
spectively) if it admits no smaller equivalent (almost-equivalent, respectively)
automaton. While minimal DFAs are unique up to isomorphism, this is not
necessarily true for hyper-minimal DFAs anymore—see Figure 1. Nevertheless,
hyper-minimal DFAs obey a nice structural characterization [3]. In this paper we

From Equivalence to Almost-Equivalence 193

0 1

a

b

b

a
0 1

a

b

b

a

Fig. 1. Two hyper-minimal DFAs for the language (a∗ + bb∗a)∗ which are not isomor-
phic to each other; the symmetric difference of the languages accepted by these two
DFAs is equal to the finite set {λ}

consider another form of equivalence, by explicitly parameterizing the difference
that is allowed between related languages. Let E be any subset of Σ∗, called the
error language. Then we say that two languages L1 and L2 over the alphabet Σ
are E-equivalent, L1 ∼E L2, if and only if their symmetric difference lies in E,
i.e., if L1�L2 ⊆ E—alternatively, the equivalent condition L1∪E = L2∪E can
be used. Moreover, this naturally carries over to finite automata; namely two
finite automata A and B are E-equivalent, A ∼E B, for some error language E,
if and only if L(A) ∼E L(B). A finite automaton is E-minimal if it admits
no smaller E-equivalent automaton. It is easy to see that that ∼E is an equiv-
alence relation. These equivalence relations defined on languages or automata
naturally carry over to relations on states. For instance, let A = (Q,Σ, δ, q0, F).
Then p ∼E q, for p, q ∈ Q, if and only if Ap ∼E Aq. Here Ap (Aq , respectively)
is the automaton A, where the initial state is p (q, respectively) instead of q0.

3 Finite Automata Equivalence, Minimization, and
Related Problems

This section is four folded. First we consider the problem of testing equivalence
of automata w.r.t almost- and E-equivalence. Then we consider the canonicity
and the E-canonicity problem. Finally, in the last two subsections, we deal with
the hyper-minimization and E-minimization problem. The precise definitions of
these problems will be given in the appropriate subsections.

3.1 Equivalence Problems

The easiest problem for automata is that of ordinary equivalence. This is the
problem of deciding for two given automata A and B, whether A ≡ B holds.
The complexity of this classical problem is well known. For DFAs the problem
is NL-complete [5], and it is PSPACE-complete for NFAs [21]. This situation is
resembled for the almost-equivalence and the E-equivalence problem, where for
the latter problem, besides the automataA and B, a DFA AE specifying the error
language E is given as input. One can show that when the error language E is
given by an NFA instead of a DFA, the E-equivalence problem instantly becomes
PSPACE-complete, which is why we only consider DFAs for the description of
the error language.

194 M. Holzer and S. Jakobi

Theorem 1 (Almost- and E-Equivalence). The problem of deciding for
two given finite automata A and B, whether A ∼ B, is NL-complete for DFAs
and PSPACE-complete for NFAs. The statement also holds for the relation ∼E

instead of ∼, where for ∼E, a third input DFA AE is given, that specifies the
error language E = L(AE). �
Hence, for all three error profiles the complexity of the equivalence problem is the
same. For the next problems to come, in particular for the minimization prob-
lems, this will be not the case anymore. In most cases there will be a significant
difference in complexity between problems on DFAs based on almost-equivalence
and E-equivalence.

3.2 Canonical Languages

In general a hyper-minimal or E-minimal DFA for a language L can be smaller
than the minimal DFA that accepts L. But this is not always the case, which leads
to the notion of a language L being canonical, which means that the minimal
DFA accepting L is also hyper-minimal [3]. When using E-minimality instead
of hyper-minimality we speak of an E-canonical language. Recently canonical
languages were studied in [24] from a descriptional complexity perspective. We
start our investigations on the canonicity problem.

Theorem 2 (Canonicity). The problem of deciding for a given finite automa-
ton A, whether the language L(A) is canonical, is NL-complete for DFAs, and
PSPACE-complete for NFAs.

Proof (Sketch). We only discuss the statement for DFAs, where we consider the
complement of our problem. Then the result follows by the complementation
closure of NL [16,23]. For NL-hardness we reduce the directed graph reachability
problem 2GAP for acyclic graphs [18] to the non-canonicity problem. Given an
acyclic graph G = (V,E) and two vertices s and t, we construct in a natural way
a DFA A with initial state s and final state t, whose transitions correspond to
the edges of the graph. Undefined transitions lead to a sink state. If there is no
path from s to t in G, then L(A) = ∅ is canonical, and otherwise L(A) is finite
(since G is acyclic) but not empty, and thus, not canonical.

The containment within NL boils down to the following property: a mini-
mal DFA A is not hyper-minimal [3] if and only if the automaton contains a
preamble state2 that is almost-equivalent to some other state, by the structural
characterization of hyper-minimal DFAs [3]. We can decide this property on a
not necessarily minimal input DFA A in NL by checking whether there exists a
pair of states p and r in A, satisfying the following properties: (i) p is a preamble
state, (ii) p 	≡ r, (iii) p ∼ r, and (iv) p 	≡ q, for all kernel states q. This proves
the NL upper bound, and shows the stated NL-completeness of the canonicity
problem for DFAs. �
2 A state p in the finite automaton A is a preamble state if it is reachable from the
start state of A by a finite number of inputs, only; otherwise the state is called a
kernel state.

From Equivalence to Almost-Equivalence 195

Table 1. Results on the computational complexity of deciding canonicity and E-
canonicity of regular languages

Finite automata
Canonicity problem DFA NFA

∼ NL PSPACE

∼E, for DFA AE with E = L(AE) coNP
PSPACE ≤ ·
· ∈ coNEXP

Now we turn to the problem of deciding, whether the language accepted by
some given finite automaton is E-canonical. For NFAs, this problem is PSPACE-
hard, and contained in coNEXP. Here we could not conclude a PSPACE upper
bound from an NL upper bound for the DFA problem as before, because the E-
canonicity problem for DFAs is significantly harder than the canonicity problem.
In contrast to the NL-completeness result for canonical languages, it turns out
that the problem of deciding E-canonicity for a language L(A) for some given
DFA A and a given error language E is coNP-complete.

Theorem 3 (E-Canonicity). The problem of deciding for two given DFAs A
and AE, whether the language L(A) is E-canonical, for E = L(AE), is coNP-
complete, even if E is finite. If the automaton A is an NFA, then the problem
becomes PSPACE-hard, and is contained in coNEXP. �

We summarize our results on canonical and E-canonical languages in Table 1.
Note that ordinary equivalence is not included, since the corresponding decision
problem—is the minimal DFA for the given language minimal?—is trivial.

3.3 Minimization Problems

Mostly, the decision version of the minimization problem is studied. For instance
the DFA-to-DFA problem is defined as follows: given a DFA A and an integer3 n,
does there exist an equivalent n-state DFA B? This notation naturally general-
izes to other types of finite automata. The DFA-to-DFA minimization problem is
complete for NL, even for DFAs without inaccessible states [5]. This is contrary
to the nondeterministic case since the NFA minimization problem is known to
be PSPACE-complete [17], even if the input is given as a DFA.

Now the question arises, whether the complexity of the minimization problem
changes, when equivalence is replaced by almost- or E-equivalence, respectively.
Note, that by the results on equivalence, almost-equivalence, and E-equivalence
in Subsection 3.1, one deduces upper bounds on the minimization since the prob-
lem description gives rise to simple guess-and-check algorithms. For instance, the
DFA-to-DFA E-minimization belongs to NP, because for a DFA A one can guess

3 When considering NFA-to-DFA minimization problems, we assume n to be given in
unary notation. In all other cases, n may as well be given in binary notation.

196 M. Holzer and S. Jakobi

an n-state DFA B and verify whether A ∼E B on a nondeterministic polyno-
mial time bounded Turing machine by Theorem 1. In fact, this problem will be
classified to be NP-complete.

Let us turn our attention to hyper-minimization. For the DFA-to-NFA hyper-
minimization result, we use nearly the same automaton as constructed in [17]
for the classical DFA-to-NFA minimization problem, together with an extended
fooling set [4] for this automaton, which was presented in [10]. Then the fol-
lowing result on the descriptional complexity of hyper-minimal NFAs, which
is interesting on its own, leads to a classification of the hyper-minimization
problem.

Lemma 4. Let L ⊆ Σ∗ be a regular language, and let F be an extended fooling
set for L, i.e., F = { (xi, yi) | 1 ≤ i ≤ n }, such that for 1 ≤ i ≤ n it is xiyi ∈ L,
and for 1 ≤ i, j ≤ n with i 	= j, it is xiyj /∈ L or xjyi /∈ L. Further let L0 ⊆ Σ∗ be
an infinite language satisfying vw ∈ L ⇐⇒ w ∈ L for every v ∈ L0 and w ∈ Σ∗.
Then any NFA A with L(A) ∼ L needs at least |F | states. �
Then the result on the hyper-minimization problem reads as follows.

Theorem 5 (Hyper-Minimization). The problem of deciding for a given
DFA A and an integer n, whether there exists a DFA B with n states, such
that A ∼ B, is NL-complete. The problem becomes PSPACE-complete for NFAs,
even if the input is given as a DFA. �
For the E-minimization problems, the situation is a bit different, since the
DFA-to-DFA E-minimization is NP-complete—even if E is finite. To prove NP-
hardness, it is tempting to use the NP-complete problem MINIMUM INFERRED
FINITE STATE AUTOMATON which is defined in [6], and where [9] is given
as reference. Unfortunately, in [9] this problem is defined for Mealey machines
instead of DFAs as studied here. This makes a direct application complicated
due to subtle differences between these machines—a detailed discussion on this
subject is given in the full version of this paper. Nevertheless, we are able to
succeed proving the following complexity result on E-minimization.

Theorem 6 (E-Minimization). The problem of deciding for two given
DFAs A and AE, and an integer n, whether there exists a DFA B with n states,
such that A ∼E B, for E = L(AE), is NP-complete. This even holds, if the
language E is finite. The problem becomes PSPACE-complete for NFAs, even if
the input is given as a DFA.

Proof (Sketch). We only sketch the proof for NP-completeness of the DFA-to-
DFA E-minimization. Since A ∼E B can be verified for DFAs in determin-
istic polynomial time by Theorem 1, the problem description gives rise to a
straightforward guess-and-check algorithm on a nondeterministic polynomial
time bounded Turing machine. Hence the problem belongs to NP.

For NP-hardness we use a reduction from MONOTONE 3SAT [6]. Given a
Boolean formula ϕ = c0 ∧ c1 ∧ · · · ∧ ck−1 with variables X = {x0, x1, . . . , xn−1},
where each ci is either a positive clause of the form ci = (xi1 ∨ xi2 ∨ xi3) or

From Equivalence to Almost-Equivalence 197

a negative clause of the form ci = (¬xi1 ∨ ¬xi2 ∨ ¬xi3), we construct a DFA
A = (Q ∪ P ∪ {r, f, s}, {a, b, c}, δ, q0, {f}), where Q = {q0, q1, . . . , qk−1}, and
P = {p0, p1, . . . , pn−1}. Its transition function δ is depicted in Figure 2. The
integer for the E-minimization instance is set to n+ k+ 2, which is exactly one
less than the number of states in A. Finally, the finite error language is

E = { aiban−j | 0 ≤ i ≤ k − 1, ci contains xj or ¬xj } ∪
{ aibajb, aibajc | 0 ≤ i ≤ k − 1, 1 ≤ j ≤ n− 1 } ∪

{ an+jb | 0 ≤ j ≤ n− 1 }.
A DFA AE accepting this language can easily be constructed in polynomial time.

q0 . . . qi . . . qk−1

p0. . .pi1. . .pn−1f

r

a a a a

a

aaaaa, c

b, c

b, if ci negativeb, if ci positive b

b

c

c

Fig. 2. The DFA A constructed from the Boolean formula ϕ. The b-transitions from
states q0, q1, . . . , qk−1 are only sketched—it is δ(qi, b) = pi1 , if ci = (¬xi1 ∨¬xi2 ∨¬xi3),
and δ(qi, b) = r otherwise. All undefined transitions go to the sink state s, which is not
shown.

One can then show that ϕ is satisfiable if and only if there exists a DFA B,
with A ∼E B, that has n + k + 2 states—in this case, only state r is missing.
The overall idea is the following. Since every word in E contains at least one b
symbol, the error set does not allow E-equivalent automata to differ on inputs a
or c. Further, since words aibb and aibc with 0 ≤ i ≤ k − 1 do not belong
to E, the b-transitions from states qi must end in states pj , and the b-transitions
from pj must end in state f or the sink state s. The connection to ϕ is the
following: a state pi, corresponding to variable xi, goes to state f on input b
if and only if the variable xi should be assigned the Boolean value 1. And a
state qi, corresponding to a clause ci, goes to state pj on input b if and only
if the clause ci gets satisfied by the variable xj . In this way, any E-minimal
DFA B, with A ∼E B, corresponds to a satisfying truth assignment for ϕ, and
vice versa. �
A slight variant of these minimization problems is the following problem, where
also the number of errors is taken into account:

198 M. Holzer and S. Jakobi

Table 2. Results on the computational complexity of minimizing finite automata
with respect to different equivalence relations. The input to all problems is a finite
automaton A and an integer n, and the question is, whether there exists an n-state
finite automaton B, that is in the corresponding relation to A. For the problems on
E-minimization, a DFA AE specifying the error language E is given as additional input.

Minimization problem
DFA-to-. . . NFA-to-. . .

Equivalence relation DFA NFA DFA NFA

≡
NL

PSPACE PSPACE∼
∼E, for DFA AE with E = L(AE) NP

INSTANCE: An NFA A and integers e and n.
QUESTION: Is there an NFA B with n states, such that |L(A)�L(B)| ≤ e?

By adapting the proof on the PSPACE-hardness of the E-canonicity problem for
NFAs, we can show that this problem is PSPACE-hard, and belongs to NEXP,
even if the automaton B in the problem description is restricted to be determin-
istic. This is a generalization of a recently obtained result [8] on simultaneously
restricting the size of the automata and the number of errors in DFA-to-DFA
minimization w.r.t almost-equivalence. This problem was classified to be NP-
complete. Thus, for the simultaneously restricted minimization problems, only
DFA-to-NFA minimization for almost equivalence lacks a characterization. Since
ordinary DFA-to-NFAminimization is PSPACE-complete, the lower bound trans-
fers to the simultaneously restricted problem instance by setting e = 0, and the
upper bound follows from the more general NFA-to-NFA result from above. In
conclusion we obtain:

Corollary 7. The problem of deciding for a given NFA A and given integers e
and n, whether there is an NFA B with n states, such that |L(A)�L(B)| ≤ e, is
PSPACE-hard and belongs to NEXP. This statement also holds if at most one of
the automata A and B is restricted to be deterministic, and the problem becomes
NP-complete, if both automata A and B are restricted to be deterministic. �
We summarize our results on the decision versions of minimization problems in
Table 2.

3.4 Deciding Minimality

Here we consider the computational complexity of minimality problems. The
minimality problem is to decide for a given (deterministic or nondetermin-
istic) finite automaton, whether it is minimal w.r.t. some error profile. For
ordinary equivalence, deciding minimality is NL-complete for DFAs [5] and
PSPACE-complete for NFAs [17]. For deciding hyper-minimality, we obtain a
similar result.

From Equivalence to Almost-Equivalence 199

Theorem 8 (Deciding Hyper-Minimality). The problem of deciding for a
given finite automaton A, whether A is hyper-minimal, is NL-complete for DFAs,
and PSPACE-complete for NFAs. �
When deciding E-minimality, the complexity changes dramatically for DFAs,
but remains the same for NFAs.

Theorem 9 (Deciding E-Minimality). The problem of deciding for two giv-
en DFAs A and AE , whether A is E-minimal, for E = L(AE), is coNP-complete.
The problem is PSPACE-complete, if A is given as an NFA. �

4 Counting Minimal Automata

It is well known that for each regular language there is a unique minimal DFA (up
to isomorphism) accepting this language. Since hyper-minimal and E-minimal
DFAs are not necessarily unique anymore, we are led with the following count-
ing problem: given a DFA A, what is the number of hyper-minimal DFAs B,
with A ∼ B? Naturally, this generalizes to determine the number of E-minimal
DFAs, and further to NFAs as input. Counting problems for finite automata were
previously investigated in, e.g., [1,12,19]. We show that there is again a signifi-
cant difference between the computational complexities of questions concerning
almost- and E-equivalence. Our first goal is to prove that the counting problem
for hyper-minimal DFAs lies in FP. For this we first derive the following lemma.

Lemma 10. Let A be a hyper-minimal DFA with p states in its preamble,
let K1,K2, . . . ,Km be the almost-equivalence classes in the kernel, and let pi,
for 1 ≤ i ≤ m, be the number of transitions that lead from preamble states to
some state in Ki. Then the number of hyper-minimal DFAs that are almost-
equivalent to A is 2p · ∏m

i=1 |Ki|pi , if p > 0, and |Ks|, if p = 0 and the initial
state lies in Ks. �
Applying this lemma to one of the DFAs in Figure 1 gives p = 0, and |Ks| = 2,
with s = m = 1, which means that besides the two depicted automata, there are
no other hyper-minimal DFAs, that are almost-equivalent to the depicted ones.
Since the values p, |Ki|, and pi, for 1 ≤ i ≤ m, from Lemma 10 can be derived
from a given DFA in polynomial time, we obtain the following result.

Theorem 11 (Counting Hyper-Minimal DFAs). Given a DFA A, then
the number of hyper-minimal DFAs B satisfying A ∼ B can be computed in
polynomial time, i.e., it belongs to FP. �
Our next goal is to show that the counting problem for E-minimal DFAs is at
least #P-hard, where we use a result from [27], that allows us to compute the
coefficients σi of a formal power series

∑
σix

i under certain conditions.

Theorem 12 (Counting E-Minimal DFAs). Given two DFAs A and AE,
the problem of computing the number of E-minimal DFAs B, with A ∼E B
and E = L(AE), is #P-hard and can be computed in # · coNP.

200 M. Holzer and S. Jakobi

Proof (Sketch). We only sketch the proof of #P-hardness by a reduction from the
MONOTONE 2SAT counting problem, which is shown to be #P-complete in [27],
and which is defined as follows. Given a Boolean formula ϕ = c0 ∧ c1 ∧ · · ·∧ ck−1

in conjunctive normal form over a set of variables X = {x0, x1, . . . , xn−1},
where each clause ci contains exactly two positive literals, i.e., ci = (xi1 ∨ xi2),
with xi1 , xi2 ∈ X , for all i ∈ {0, 1, . . . , k − 1}, compute the number of satisfying
truth assignments. Given an instance ϕ of this problem, we use the same tech-
nique as in the NP-completeness proof of Theorem 6, to construct the DFAs A
and AE . Due to the special structure of these automata, whenever for some
truth assignment α exactly t clauses of ϕ are satisfied by both of their literals,
and all other clauses only by one literal, then exactly 2t different E-minimal
DFAs B with A ∼E B can be derived from α, and any E-minimal DFA that
is E-equivalent to A corresponds to a specific assignment. Then the number of
E-minimal DFAs B with A ∼E B is

∑k
t=0 σt2

t, where σt is the number of as-
signments, that satisfy exactly t clauses of ϕ twice, and the others once. Using a
technique from [27], we can compute the number of satisfying truth assignments
for ϕ from this value in polynomial time. �
Instead of counting the number of hyper-minimal or E-minimal DFAs, one could
also count minimal NFAs. It is easy to see, using a similar strategy as in the proof
of Theorem 12, that these three NFA counting problems belong to #PSPACE,
which is equal to FPSPACE, the class of functions computable in polynomial
space [19]. What can be said about the lower bound on these NFA counting
problems? We have to leave open this question for counting minimal and hyper-
minimal NFAs. For counting the number of E-minimal NFAs, we can prove
#P-hardness with nearly the same proof as for Theorem 12. We summarize our
result as follows:

Theorem 13 (Counting E-Minimal NFAs). Given an NFA A and an ad-
ditional DFA AE, the problem of computing the number of E-minimal NFAs B,
with A ∼E B and E = L(AE), is #P-hard and contained in #PSPACE. �

References

1. Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theoret. Comput.
Sci. 107(1), 3–30 (1993)

2. Badr, A.: Hyper-minimization in O(n2). Internat. J. Found. Comput. Sci. 20(4),
735–746 (2009)

3. Badr, A., Geffert, V., Shipman, I.: Hyper-minimizing minimized deterministic finite
state automata. RAIRO–Inform. Théori. Appl./Theoret. Inform. Appl. 43(1), 69–94
(2009)

4. Birget, J.C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

5. Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems.
Inform. Comput. 97, 1–22 (1992)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. Freeman (1979)

From Equivalence to Almost-Equivalence 201

7. Gawrychowski, P., Jeż, A.: Hyper-minimisation Made Efficient. In: Královič, R.,
Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 356–368. Springer, Heidelberg
(2009)

8. Gawrychowski, P., Jeż, A., Maletti, A.: On Minimising Automata with Errors.
In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 327–338.
Springer, Heidelberg (2011)

9. Gold, E.M.: Complexity of automaton identification from given data. Inform. Con-
trol 37(3), 302–320 (1978)

10. Gruber, H., Holzer, M.: Finding Lower Bounds for Nondeterministic State Com-
plexity Is Hard (Extended Abstract). In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006.
LNCS, vol. 4036, pp. 363–374. Springer, Heidelberg (2006)

11. Hemaspaandra, L.A., Vollmer, H.: The satanic notations: Counting classes beyond
#P and other definitional adventures. SIGACT News 26(1), 2–13 (1995)

12. Holzer, M.: On emptiness and counting for alternating finite automata. In: Develop-
ments in Language Theory II (DLT); at the Crossroads of Mathematics, Computer
Science and Biology, pp. 88–97. World Scientific (1996)

13. Holzer, M., Maletti, A.: An n log n algorithm for hyper-minimizing a (minimized)
deterministic automaton. Theoret. Comput. Sci. 411(38-39), 3404–3413 (2010)

14. Hopcroft, J.: An n log n algorithm for minimizing the state in a finite automaton. In:
The Theory of Machines and Computations, pp. 189–196. Academic Press (1971)

15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

16. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17(5), 935–938 (1988)

17. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Com-
put. 22(6), 1117–1141 (1993)

18. Jones, N.D., Lien, Y.E., Laaser, W.T.: New problems complete for nondeterministic
log space. Math. Systems Theory 10, 1–17 (1976)

19. Ladner, R.E.: Polynomial space counting problems. SIAM J. Comput. 18(6),
1087–1097 (1989)

20. Maletti, A., Quernheim, D.: Optimal hyper-minimization. Internat. J. Found. Com-
put. Sci. 22(8), 1877–1891 (2011)

21. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential time. In: Switching and Automata Theory
(SWAT), pp. 125–129. IEEE Society Press (1972)

22. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
23. Szelepcsényi, R.: The method of forced enumeration for nondeterministic au-

tomata. Acta Inform. 26(3), 279–284 (1988)
24. Szepietowski, A.: Closure properties of hyper-minimized automata. RAIRO–

Inform. Théori. Appl./Theoret. Inform. Appl. 45(4), 459–466 (2011)
25. Toda, S.: Computational Complexity of Counting Complexity Classes. PhD thesis,

Tokyo Institute of Technology, Department of Computer Science, Tokyo, Japan
(1991)

26. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput.
Sci. 8(2), 189–201 (1979)

27. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

	From Equivalence to Almost-Equivalence, and Beyond—Minimizing Automata with Errors
	Introduction
	Preliminaries
	Finite Automata Equivalence, Minimization, and Related Problems
	Equivalence Problems
	Canonical Languages
	Minimization Problems
	Deciding Minimality

	Counting Minimal Automata
	References

