

Lecture Notes in Computer Science 7410
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Hsu-Chun Yen Oscar H. Ibarra (Eds.)

Developments
in Language Theory
16th International Conference, DLT 2012
Taipei, Taiwan, August 14-17, 2012
Proceedings

13

Volume Editors

Hsu-Chun Yen
National Taiwan University
Department of Electrical Engineering
Taipei 106, Taiwan
E-mail: yen@cc.ee.ntu.edu.tw

Oscar H. Ibarra
University of California
Department of Computer Science
Santa Barbara, CA 93106, USA
E-mail: ibarra@cs.ucsb.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31652-4 e-ISBN 978-3-642-31653-1
DOI 10.1007/978-3-642-31653-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012941733

CR Subject Classification (1998): F.1.1-3, F.4.2-3, F.3, E.4, G.2.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 16th International Conference on Developments in Language Theory (DLT
2012)was held at National Taiwan University, Taiwan, during August 14–17, 2012.

This volume of Lecture Notes in Computer Science contains the papers that
were presented at DLT 2012. The volume also includes the abstracts and ex-
tended abstracts of four invited lectures presented by Erzsébet Csuhaj-Varjú,
Juraj Hromkovic, Kazuo Iwama, and Jarkko Kari, and a special memorial pre-
sentation given by Andrew Szilard in honor of our dear friend Sheng Yu who
passed away on January 23, 2012.

The authors of the papers submitted to DLT 2012 come from 18 countries
including Canada, China, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Hungary, India, Italy, Japan, South Korea, The Netherlands, New
Zealand, Slovakia, the UK, and the USA. Each submitted paper was reviewed
by at least three Program Committee members, with the assistance of external
referees. Finally, 34 regular papers and four short papers were selected by the
Program Committee for presentation at the conference.

We wish to thank all who made this meeting possible: the authors for submit-
ting papers, the Program Committee members and external referees (listed in
the proceedings) for their excellent work, and our five invited speakers. Finally,
we wish to express our sincere appreciation to the sponsors, local organizers, Pro-
ceedings Committee, and the editors of the Lecture Notes in Computer Science
series and Springer, in particular Alfred Hofmann, for their help in publishing
this volume.

August 2012 Hsu-Chun Yen
Oscar H. Ibarra

Organization

Program Committee

Marie-Pierre Béal University of Marne-la-Vallée, France
Maxime Crochemore King’s College London, UK
Erzsébet Csuhaj-Varjú Eötvös Loránd University, Hungary
Manfred Droste Universität Leipzig, Germany
Dora Giammarresi Università degli Studi di Roma “Tor Vergata”,

Italy
Tero Harju University of Turku, Finland
Markus Holzer Justus Liebig University Giessen, Germany
Juraj Hromkovic ETH Zurich, Switzerland
Oscar H. Ibarra (Co-chair) University of California, Santa Barbara, USA
Masami Ito Kyoto Sangyo University, Japan
Michal Kunc Masaryk University, Czech Republic
Giancarlo Mauri Università degli Studi di Milano-Bicocca, Italy
Giovanni Pighizzini Università degli Studi di Milano, Italy
Gheorghe Pãun Romanian Academy, Romania
Bala Ravikumar Sonoma State University, USA
Wojciech Rytter Warsaw University, Poland
Kai Salomaa Queen’s University, Canada
Colin Stirling University of Edinburgh, UK
Wolfgang Thomas RWTH Aachen, Germany
Mikhail V. Volkov Ural State University, Russia
Bow-Yaw Wang Academia Sinica, Taiwan
Hsu-Chun Yen (Co-chair) National Taiwan University, Taiwan
Sheng Yu University of Western Ontario, Canada

Organizing Committee

Oscar H. Ibarra University of California, Santa Barbara, USA
Bow-Yaw Wang Academia Sinica, Taiwan
Hsu-Chun Yen (Chair) National Taiwan University, Taiwan

Proceedings Committee

Oscar H. Ibarra University of California, Santa Barbara, USA
Hsu-Chun Yen National Taiwan University, Taiwan

VIII Organization

Steering Committee

Marie-Pierre Béal University of Marne-la-Vallee, France
Véronique Bruyère University of Mons, Belgium
Cristian S. Calude University of Auckland, New Zealand
Volker Diekert Universität Stuttgart, Germany
Juraj Hromkovic ETH Zurich, Switzerland
Oscar H. Ibarra University of California, Santa Barbara, USA
Masami Ito Kyoto Sangyo University, Japan
Natasha Jonoska University of South Florida, USA
Juhani Karhumäki (Chair) University of Turku, Finland
Antonio Restivo University of Palermo, Italy
Grzegorz Rozenberg Leiden University, The Netherlands
Wojciech Rytter Warsaw University, Poland
Arto Salomaa University of Turku, Finland
Kai Salomaa Queen’s University, Canada
Mikhail Volkov Ural State University, Russia
Takashi Yokomori Waseda University, Japan
Sheng Yu University of Western Ontario, Canada

Additional Reviewers

Marcella Anselmo
Golnaz Badkobeh
Nicolas Bedon
Jean-Camille Birget
Hans-Joachim Boeckenhauer
Henning Bordihn
Véronique Bruyère
Cezar Campeanu
Giulio Caravagna
Arturo Carpi
Olivier Carton
Julien Cervelle
Jean-Marc Champarnaud
Namit Chaturvedi
Alfredo Costa
Jürgen Dassow
Alberto Dennunzio
Mike Domaratzki
Frank Drewes
Fabien Durand
Szilard Zsolt Fazekas
Ingo Felscher
Claudio Ferretti

Enrico Formenti
Anna Frid
Wladimir Fridman
Zsolt Gazdag
Stepan Holub
Johanna Högberg
Szabolcs Iván
Sebastian Jakobi
Artur Jeż
Natasha Jonoska
Pekka Kilpeläinen
Dennis Komm
Stavros Konstantinidis
Sacha Krug
Martin Kutrib
Klaus-Jörn Lange
Mark Lawson
Thierry Lecroq
Markus Lohrey
Violetta Lonati
Christof Löding
Maria Madonia
Andreas Malcher

Organization IX

Christoph Matheja
Mark-Jan Nederhof
Cyril Nicaud
Dirk Nowotka
Zoltán L. Németh
Alexander Okhotin
Friedrich Otto
Beatrice Palano
Xiaoxue Piao
Wojciech Plandowski
Antonio E. Porreca
Matteo Pradella
Narad Rampersad
Michael Rao
Stefan Repke

Gwenaël Richomme
Mathieu Sablik
Victor Selivanov
Arseny Shur
Andreas Sprock
Ludwig Staiger
Richard Stefanec
Benjamin Steinberg
Alexander Szabari
Maurice H. ter Beek
Krisztián Tichler
Nicholas Tran
György Vaszil
Heiko Vogler

Sponsoring Institutions

National Taiwan University, Taiwan, ROC
National Science Council, Taiwan, ROC
Ministry of Education, Taiwan, ROC
Academia Sinica, Taiwan, ROC
European Association for Theoretical Computer Science

Table of Contents

Invited Talks

The Kind Hearted Dragon Prof. Sheng Yu, 1950-2012 1
Andrew L. Szilard

P and dP Automata: Unconventional versus Classical Automata 7
Erzsébet Csuhaj-Varjú

Recovering Strings in Oracles: Quantum and Classic 23
Kazuo Iwama

Determinism vs. Nondeterminism for Two-Way Automata:
Representing the Meaning of States by Logical Formulæ 24

Juraj Hromkovič, Rastislav Královič, Richard Královič, and
Richard Štefanec

Cellular Automata, the Collatz Conjecture and Powers of 3/2 40
Jarkko Kari

Regular Papers

Quotient Complexities of Atoms of Regular Languages 50
Janusz Brzozowski and Hellis Tamm

Decidability of Geometricity of Regular Languages 62
Marie-Pierre Béal, Jean-Marc Champarnaud,
Jean-Philippe Dubernard, Hadrien Jeanne, and
Sylvain Lombardy

Inside the Class of REGEX Languages . 73
Markus L. Schmid

Computing the Edit-Distance between a Regular Language and a
Context-Free Language . 85

Yo-Sub Han, Sang-Ki Ko, and Kai Salomaa

Semigroups with a Context-Free Word Problem . 97
Michael Hoffmann, Derek F. Holt, Matthew D. Owens, and
Richard M. Thomas

Generalized Derivations with Synchronized Context-Free Grammars 109
Markus Holzer, Sebastian Jakobi, and Ian McQuillan

XII Table of Contents

Non-erasing Variants of the Chomsky–Schützenberger Theorem 121
Alexander Okhotin

Regular and Context-Free Pattern Languages over Small Alphabets 130
Daniel Reidenbach and Markus L. Schmid

On Context-Free Languages of Scattered Words . 142
Zoltan Ésik and Satoshi Okawa

Homomorphisms Preserving Deterministic Context-Free Languages 154
Tommi Lehtinen and Alexander Okhotin

Unary Coded NP-Complete Languages in ASPACE (log log n) 166
Viliam Geffert and Dana Pardubská

Dense Completeness . 178
Andreas Krebs and Klaus-Jörn Lange

From Equivalence to Almost-Equivalence, and Beyond—Minimizing
Automata with Errors (Extended Abstract) . 190

Markus Holzer and Sebastian Jakobi

Analogs of Fagin’s Theorem for Small Nondeterministic Finite
Automata . 202

Christos A. Kapoutsis and Nans Lefebvre

States and Heads Do Count for Unary Multi-head Finite Automata 214
Martin Kutrib, Andreas Malcher, and Matthias Wendlandt

Visibly Pushdown Automata with Multiplicities:
Finiteness and K-Boundedness . 226

Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbot

Unambiguous Constrained Automata . 239
Michaël Cadilhac, Alain Finkel, and Pierre McKenzie

Two-Dimensional Sgraffito Automata . 251
Daniel Pr̊uša and Frantǐsek Mráz

Two-Way Transducers with a Two-Way Output Tape 263
Olivier Carton

Learning Rational Functions . 273
Adrien Boiret, Aurélien Lemay, and Joachim Niehren

Converting Nondeterministic Automata and Context-Free Grammars
into Parikh Equivalent Deterministic Automata . 284

Giovanna J. Lavado, Giovanni Pighizzini, and Shinnosuke Seki

Table of Contents XIII

Fine and Wilf’s Theorem for k-Abelian Periods . 296
Juhani Karhumäki, Svetlana Puzynina, and Aleksi Saarela

Pseudoperiodic Words . 308
Alexandre Blondin Massé, Sébastien Gaboury, and Sylvain Hallé

Acceptance Conditions for ω-Languages . 320
Alberto Dennunzio, Enrico Formenti, and Julien Provillard

Checking Determinism of Regular Expressions with Counting 332
Haiming Chen and Ping Lu

Biautomata for k-Piecewise Testable Languages . 344
Ondřej Kĺıma and Libor Polák

On Centralized PC Grammar Systems with Context-Sensitive
Components . 356

Friedrich Otto

Unidirectional Derivation Semantics for Synchronous Tree-Adjoining
Grammars . 368

Matthias Büchse, Andreas Maletti, and Heiko Vogler

The State Complexity of Star-Complement-Star . 380
Galina Jirásková and Jeffrey Shallit

On State Complexity of Finite Word and Tree Languages 392
Aniruddh Gandhi, Bakhadyr Khoussainov, and Jiamou Liu

Squares in Binary Partial Words . 404
Francine Blanchet-Sadri, Yang Jiao, and John M. Machacek

The Avoidability of Cubes under Permutations . 416
Florin Manea, Mike Müller, and Dirk Nowotka

Hairpin Completion with Bounded Stem-Loop . 428
Szilárd Zsolt Fazekas, Robert Mercaş, and Kayoko Shikishima-Tsuji

Morphic Primitivity and Alphabet Reductions . 440
Hossein Nevisi and Daniel Reidenbach

Short Papers

On a Hierarchy of Languages with Catenation and Shuffle 452
Nils Erik Flick and Manfred Kudlek

Characterizing Languages by Normalization and Termination in String
Rewriting (Extended Abstract) . 459

Jeroen Ketema and Jakob Grue Simonsen

XIV Table of Contents

Geometry and Dynamics of the Besicovitch and Weyl Spaces 465
Ville Salo and Ilkka Törmä

A Generalization of Girod’s Bidirectional Decoding Method to Codes
with a Finite Deciphering Delay . 471

Laura Giambruno, Sabrina Mantaci, Jean Néraud, and Carla Selmi

Author Index . 477

The Kind Hearted Dragon

Prof. Sheng Yu, 1950-2012

Andrew L. Szilard

Department of Computer Science,
The University of Western Ontario London,

Ontario, Canada, N6A 5B7
als@csd.uwo.ca

Abstract. Professor Sheng Yu passed away on January 23, 2012, the
first day of the Lunar New Year, the Year of the Dragon. He was only
sixty-one years old. His death was a tremendous loss to his family, friends,
colleagues, co-workers, co-authors, co-editors, members of conference
program committees, students, the theoretical Computer Science Com-
munity and especially to his beloved wife, Lizhen. Through his teachings,
international committee work, seminars and some 150 refereed publica-
tions, he left us a huge legacy of many interesting and important re-
search contributions in the areas of the theory and implementation of
automata and formal languages, fuzzy logic, object-oriented modeling
methodologies, parallel processing for parallel programming languages,
important software projects for automaton-theory research, the creation
of the international Conference on Implementation and Application of
Automata (CIAA) and a gallery of vivid memories of the wonderful times
shared. He is remembered for his enormous energy, diligence, anticipa-
tory thoughtfulness, over-the-top generosity, measured politeness, noble
sportsmanship and committed friendship.

On Thursday, January 26, three days after the beginning of the Chinese New
Year of the Dragon, the following announcement appeared in the London Free
Press, the major newspaper in my home town:

Yu, Sheng - Unexpectedly at his home on Monday, January 23, 2012,
Sheng Yu, Professor of Computer Science, UWO, age 61.

Beloved husband of Lizhen Zhang, dear son of Runqing Liu and the
late Youlong Yu, loving brother of He Yu, Zhe Yu, Rui Yu, Lei Yu and
the late Li Yu.

Dr. Yu, born in Tianjin, China, a distinguished teacher and interna-
tionally recognized eminent researcher, received his Computer Science
graduate degrees at University of Waterloo; MSc in 1982 and PhD in
1986. He taught at Kent State University from 1987 to 1989 before
coming to the University of Western Ontario. His research and teaching
spanned an enormous theoretical area: Automata and Formal language
theory, implementation of automata, object-oriented analysis and de-
sign, programming languages, especially object-oriented programming

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 1–6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 A.L. Szilard

languages and parallel programming languages, a highly valued mem-
ber of the editorial boards of four prominent international journals, of
some 50 scientific conference program committees, a holder of numerous
scientific grants, an author of more than 169 scientific papers in refer-
eed journals, books and refereed conference proceedings, a graduate
supervisor of 11 PhD/post-doctoral fellows and many MSc students, a
hard-working member of 52 UWO committees and an inspiring teacher
of 19 Computer Science graduate/undergraduate courses at UWO. He
will be forever remembered and missed by his family, colleagues, numer-
ous students and the international community of theoretical computer
scientists.

The funeral service will be conducted at the James A. Harris Fu-
neral Home, 220 St. James St. at Richmond St., on Friday, February
3, at 11:00 am, with visitation prior from 10-11 am. Private cremation.
Friends may send condolences through: www.HarrisFuneralHome.ca

The Harris Funeral home is one of the largest and most prestigious funeral homes
in our city, London, Ont. It has a large parking lot, which, after 9:30 am on Friday,
February 3, began to fill up with cars. It was a cool but sunny day, andMr. Harris,
the funeral director of the home, was surprised to see so many cars coming to the
funeral of a Chinese university teacher, whose entire family, except his wife, lived
in China. He hurriedly reprinted 150 copies of the English language handouts for
the arriving guests filling the 150-person seating capacity of the large ceremonial
room leaving only standing-room for those visitors who were arriving at the end.
It seemed as if all the members of the elite Chinese academic community in the
London area came to pay their respects. They entered, and according to Chinese
custom, they bowed deeply three times while facing Sheng, who was dressed in
his best and rarely-worn suit in his eternal slumber in the open casket made of
heavy walnut. They then turned to express their condolences in Chinese to Lizhen
and to Sheng’s four attending relatives who, after a near miracle of being able to
obtain Canadian visas right away during the Chinese New Year holiday period,
were hurriedly flown to Canada from China. Sheng’s casket was surrounded by
thousands of flowers in large bouquets and flanked by huge wreaths that were sent
from such distant places as the Atlantic provinces and New Zealand. Were there
any wreaths and flowers left in the local shops? - I wondered.

People from all walks of life came: students, colleagues, friends, secretaries,
Lizhen’s coworkers, faculty wives, university officials and others. A huge delega-
tion from the University of Waterloo and their friends were noted as distinguished
friends that included Janusz and Maria Brzozowski, Jeff Shallit, Ming Li, Nancy
and David Mathews, and Mary Chen, the widow of our late friend Derick Wood,
whom Sheng eulogized in Blois, France at CIAA 2011. Kai Salomaa and Suning
Wang came from Kingston, Andrei Paun from Ruston, Louisiana, and many
other eminent researchers in Theoretical Computer Science came to be present
at this sorrowful, soul-wrenching but significant occasion. Many people sent their
condolences who could not be present. In the following lines, I will try to give
my account of this important event.

The Kind Hearted Dragon Prof. Sheng Yu, 1950-2012 3

Everyone there seemed composed, melancholy and quiet, holding back the
display of deep feelings and sad tears. Only one Vietnamese lady lost control
of her emotions. She was the manager of the famous Dragon Court Chinese
restaurant of London, where Sheng and Lizhen celebrated their wedding after
Lizhen’s arrival to London some twenty years ago. This simple old lady knew
Sheng very well, not just as her regular customer coming with dozens of friends
to many palatial dinners there, but also as her long-time fond acquaintance. She
could not hold back her tears and broke into loud desperate cries before being
very politely helped by my colleague, Kaizhong Zhang to collect herself on this
very somber, quiet and dignified occasion.

In the ceremonial room, on an enormous digital screen facing the audience, a
slide show displayed many hundreds of pictures from Sheng’s life. We could see
pictures of Sheng from his childhood with his parents, from his teenage years, mil-
itary years, university years. There were photos with DerickWood andMary Chen
when Lizhen and Sheng were married in Waterloo, many pictures with Arto, Kai
andKaarina Salomaa, photos with Grzegorz andMaja Rozenberg, with Oscar and
Naida Ibarra, with Janusz and Maria Brzozowski, with Lucian and Silvana Ilie,
with his post-docs Cezar Campeanu and Stavros Konstantinidis, with Lila Kari
and her family, with his international visitors Nelma Moreira and Rogério Reis,
with Canadian colleagues such as Jeffrey Shallit, Helmut Jürgensen and Ian Mc-
Quillan, with some of his many international friends such asMasami Ito,Giancarlo
Mauri, Juhani Karhumäki, Giovanni Pighizzini, Markus Holzer, with some of his
PhD studentsYuanGao andHanlin Lu, pictureswith some of hismany co-authors,
program committee members and friends. The continuous slide show, which pro-
jected many large high-quality pictures, contributed by Sheng’s family and our
community of his close friends, was showing Sheng in different poses: we saw him
lecturing, receiving awards, smiling while serving food to his guests in restaurants
or gesturing while making a point during a vivid discussion. The pictures played
a capricious trick of fooling us momentarily that Sheng, with his friendly genuine
smile, was still there alive among us.

At 11:00 o’clock, the chimes of Middlesex College sounded, while the Cana-
dian flag at the top of University College waved at half mast in Sheng’s honor,
the officiant, Rev. Tracy Crick-Butler, began the ceremony to say farewell to our
friend as he embarked upon his eternal journey. Mahler’s melancholic soft music
filled the room and Sheng’s attending five-member family was asked to come
closer to the coffin for the private casket-closing. A separating curtain in front of
the casket was pulled close while the rest of us sat in hushed silence witnessing
only some family members’ muted cries coming from behind the curtain. When
the curtain reopened, the family was reseated in the front row to listen to the
solemn, tender introductory words of the officiant who welcomed the large gath-
ering on this sad occasion to honor our departed dear friend. She gave a short
summary of Sheng’s life, mentioning his achievements and the beautiful lasting
love affair with Lizhen who had to wait many years before Sheng could bring
his sweetheart to Canada to be married there. The reverend then asked Sheng’s
visiting sister to give her memorial speech.

4 A.L. Szilard

Sheng’s sister came to the podium, as an experienced teacher, she was not in
awe of the microphone, and she spoke in Chinese, stopping after each sentence to
allow the attending niece to translate her phrases from Mandarin to English. She
thanked both the Chinese and the Canadian government officials for making it
possible for members of her family to be present and expressed her deep love, her
pride that she felt towards her youngest brother and her heartbreaking sorrow
that he has passed away so young.

The officiant then asked Kai Salomaa to read the eulogy written by his fa-
ther. The beautiful healing text of this eulogy served as a handout to the many
attendees. Kai read Arto Salomaa’s carefully constructed sentences. Listening to
the speech we could almost hear Arto’s strong voice telling us the touching story
of how the brilliant mature student, whose studies were delayed by the Chinese
cultural revolution, had achieved 105% in Arto’s course on recursive functions at
the University of Waterloo; a student, who became his protégé, then his frequent
co-author and his life-long dear friend. [2]

While Kai was speaking, the slide show was running in the background, dis-
playing many happy pictures of Arto and Kai with Sheng. Arto’s eulogy men-
tioned that Karel Culik II, was Sheng’s PhD supervisor at U. of Waterloo and
that Karel remembered him as his ”best student, valuable co-author and family
friend.” The eulogy also noted that Sheng came to Turku (Finland) as Arto’s
post-doctoral student, where he was interviewed as an expert table-tennis player,
and his ping-pong philosophy was meticulously quoted in the local newspaper.
We learned that Arto and Sheng started their work on the equivalence of Szilard
Languages and on a special public-key cryptosystem. In Arto’s words ”Sheng
was a wonderful person to work with. Both insightful and diligent, he was also
willing to do most of the writing of papers and the correspondence in submitting
them. In discussions he often had a crucial idea from which the solution could
be deduced.” Arto wrote 26 papers with Sheng joined by occasional coauthors:
such as Han, Jiang, Kinber, Mateescu, (Kai) Salomaa and Wood. The topics in-
cluded the undecidability of the inclusion problem for pattern languages, codes
with a finite delay and the P=NP problem, the definition and study of Parikh
matrices and the resulting subword histories and subword conditions, primality
types of PCP solutions, commutativity conditions for languages, the prime de-
composition of languages vs. length codes, the state complexity of reversal and
of combined operations. [2]
What a wonderful productive, cooperative friendship!

The sad part of Arto’s eulogy came later when we learned that ”Sheng was, for
several years, planning a Handbook of State Complexity, with several coauthors.
The book was already in the program of the publisher Springer-Verlag but Sheng
always had to postpone the project because of other duties.” [2]

Our community lost an important future work from him. Sheng’s seminal
study of state complexity and his chapter on regular languages in the Handbook
of Formal Languages showed his unique invaluable contribution to our field. For
his important work, a special issue of the journal TCS was published for Sheng’s
60th birthday.

The Kind Hearted Dragon Prof. Sheng Yu, 1950-2012 5

From the eulogy, we learnt about Sheng’s generous caring for his PhD stu-
dents, how he helped them with writing papers and with managing problems of
everyday life, that he worked long days at his office, that he originated the CIAA
conference series, and that he organized the unforgettable DLT 2010 conference
in London, Ont., as well as the conference Fifty Years of Automata Theory in
2000 at UWO. [2]

But Arto left the most remarkable and most clearly defining attribute of
Sheng’s character to the last: his reliability, competence, thoughtfulness and
sincere self-giving concern in taking care of his friends - whether as a chauffeur,
a host, a cook or an adviser - always helpful, always there when needed.

After Kai’s delivery of this moving eulogy, we heard from Hanan Lutfiyya,
Chair of Computer Science at Western U. She mentioned Sheng’s enduring work
ethic, his wide range of interests, friendliness, thoughtfulness and helpfulness.
She pointed out how he lent books to students and gave rides to colleagues late
at night. [1]

Then I spoke, mainly about my shock upon hearing that Sheng passed away. It
was on the first day of the Chinese New Year. I recalled that the mythical Chinese
dragon is a symbol of power, strength and good luck, as opposed to the European
concept of a fire-breathing evil dragon. I related my painful steps through the
five stages of grief: Denial, Anger, Bargaining, Depression and Acceptance and
how important he was to our department of Computer Science and to me as a
supportive colleague, a hard-working coauthor, an amiable conference and travel
companion, a generous table-tennis partner and an irreplaceable friend. [3]

My tribute was followed by Mary Chen, who said, in English and Chinese,
that she was the Graduate Secretary when Sheng came for his studies to U. of
Waterloo, and that Sheng was a good friend of her late husband Derick Wood and
how thrilled she was listening to Sheng’s moving invited lecture to commemorate
Derick at CIAA 2011 in Blois, France.

The last speaker was Kaizhong Zhang. He expressed his personal tragedy
of losing his best friend. Sheng and Kaizhong became trusted worthy friends
the first day Kaizhong arrived at Western. Sheng helped him with everything:
settling in London, work, social life and Sheng became a valuable sage adviser
to him. Sheng and Lizhen were dining together with Kaizhong and Jinfei, as
two couples on the weekend before the Chinese New Year; they were looking
forward to a prosperous year of the Dragon. Kaizhong was even playing tennis
with Sheng on that weekend. The next day, Saturday, Sheng was playing ping-
pong before going back to work. Kaizhong could not understand why such an
active man did not wake up on the first day of the Chinese New Year of the
Dragon.

The memorial service came to an end, and the five members of Sheng’s im-
mediate family departed for a private cremation. The rest of us attendees were
left wondering if we - who benefited so much from Sheng’s generosity, from
his kindness, noble sportsmanship, his well-prepared, inspiring lectures and his
important research - had we remembered to thank him enough for all he has
done for us throughout the years, for all his generous support, his self-giving

6 A.L. Szilard

care, his hard work, his thoughtfulness, his courage, his sacrifices, his committed
and cooperative friendship? We went away hoping that Sheng knew all along
how much he was and how much he, the dragon with a kind heart, will stay
continually in our soul.

References

1. Lutfiyya, H.: http://www.csd.uwo.ca/People/hanan_sheng.html
2. Salomaa, A.: In Memoriam Sheng Yu (1950-2012). International Journal of Foun-

dations of Computer Science 23(2), 243–246 (2012),
http://www.csd.uwo.ca/People/arto_sheng.html

3. Szilard, A.: In memoriam Prof. Sheng Yu (1950-2012),
http://www.csd.uwo.ca/People/andy_sheng.html

http://www.csd.uwo.ca/People/hanan_sheng.html
http://www.csd.uwo.ca/People/arto_sheng.html
 http://www.csd.uwo.ca/People/andy_sheng.html

P and dP Automata:

Unconventional versus Classical Automata�

Erzsébet Csuhaj-Varjú

Department of Algorithms and Their Applications,
Faculty of Informatics,

Eötvös Loránd University,
Pázmány Péter sétány 1/c, 1117 Budapest, Hungary

csuhaj@inf.elte.hu

Abstract. In this paper we discuss P automata and their distributed
systems, called dP automata, constructs combining properties of clas-
sical automata and membrane systems being in interaction with their
environments. We describe the most important variants and their prop-
erties, demonstrate their standard and non-standard features compared
to characteristics of classical automata.

1 Introduction

The theory of membrane systems or P systems has been a vivid research area
for years [35]. The concept of a membrane system was introduced in [29] with
the aim of constructing a computing device which mimics the architecture and
the behavior of the living cell. Briefly, a P system is a structure of hierarchically
embedded membranes, each having a label and enclosing a region containing a
multiset of objects and possibly other membranes. The unique out-most mem-
brane is called the skin membrane. During the functioning of the P system, the
objects in the different regions may change and move across the membranes.
The rules of the changes and the communication between the membranes can be
defined in various manners, thus making possible to define and study different
types of P systems, with different motivations.

Particularly important, biologically well-motivated variants of P systems are P
automata, purely communicating, accepting P systems which combine features of
classical automata andmembrane systems being in interaction with their environ-
ments. Briefly, a P automaton is a P systemwhich receives input in each computa-
tional step from its environment that change influences the operation of the system.
The input is given as a multiset of objects, where the objects can be elementary
ones, i.e., without any structure (for example, symbols) or non-elementary, struc-
tured ones (for example, a P system). In the course of the computation, the objects
do not change, thus, the P system works only with communication rules. Among
sequences of inputs, accepted input sequences are distinguished.

� Research supported in part by the Hungarian Scientific Research Fund (OTKA),
Grant no. K75952.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 7–22, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

8 E. Csuhaj-Varjú

The reader may easily notice obvious similarities between P automata and
classical automata, but differences between the two types of constructs can also
be noticed. For example, P automata differ from classical automata because the
computational resource they can use is provided by the objects of the already
consumed input multisets. This implies that the objects which enter the system
become part of the description of the machine, that is, the object of the com-
putation and the machine which performs the computation cannot be separated
as it can be done in the case of usual automata.

The first variant of P automata, introduced in [9,10], was the so-called one-way
P automaton where the underlying P system had only so-called top-down sym-
port rules with promoters (and implicitly inhibitors). Almost at the same time,
a closely related notion, the analyzing P system was defined in [16], providing a
slightly different concept of an automaton-like P system. Both models are com-
putationally complete, describe the class of recursively enumerable languages.

Since that time, several variants of the generic model have been introduced
and investigated, which differ from each other in the main ingredients of these
systems: the types of the objects the P system operates with, the way of defining
the acceptance, the way of communication with the environment, the types of
the communication rules used by the regions, and whether or not the membrane
structure changes in the course of the computation. For summaries, we refer to
[26,4,5,8,37].

During the years, it has been shown that P automata are not only tools for
describing the recursively enumerable language class, but they offer natural de-
scriptions for other classes of the Chomsky hierarchy as well, as the class of
regular, context-free, and context-sensitive languages. In addition, complexity
classes can also be represented by these constructs, for example, the generic
variant of P automata accepting with final states and applying its rules sequen-
tially, determines a language class with sub-logarithmic space complexity. In this
way, a ”natural description” of this particular complexity class is provided.

The theory has developed by introducing the concept of dP automata, dis-
tributed systems of P automata [31]. The aim of formulating the model was to
define a framework for distributed problem solving in terms of cooperating P
automata and also to provide measures and tools for efficient parallelizability of
languages. A dP automaton consists of a finite number of P automaton which
have their separate inputs and communicate from skin to skin membranes by
means of special rules. In addition to that the dP automata are suitable tols for
describing well-known language classes [14,32,33,34], these constructs provide
tools for representing well-known classes of classical automata as, for example,
non-deterministic multi-head finite automata [12].

In the following sections we describe the most important variants of P au-
tomata and dP automata. We discuss non-standard features of P automata,
namely, that the same construct is able to operate over both finite and infinite
alphabets, the underlying membrane structure may remain unchanged but it also
may dynamically alter under functioning, and that to obtain large computational

P and dP Automata: Unconventional versus Classical Automata 9

power they do not need workspace overhead. We also discuss how some variants
of classical automata can be represented in terms of P automata and dP automata.

We also propose new topics and problems for future research.

2 Preliminaries

We assume that the reader is familiar with formal language and automata theory
and with the basics of membrane computing; for more information we refer to
[36], [29], and [35].

An alphabet is a finite non-empty set of symbols. Given an alphabet V , we
denote by V ∗ the set of all strings over V . If the empty string, λ, is not included,
then we use the notation V +. The length of a string x ∈ V ∗ is denoted by
|x|, the number of occurrences of symbols from a set A ⊆ V in x is denoted
by |x|A, where if A is a singleton set, A = {a}, then we use the notation |x|a
instead of |x|{a}. The reverse (or the mirror image) xR of a nonempty string
x = x1x2 . . . xn, xi ∈ V, 1 ≤ i ≤ n, is defined as xR = xnxn−1 . . . x1, and
λR = λ.

The class of regular, context-free, context-sensitive and recursively enumerable
languages is denoted by L(REG), L(CF), L(CS) and L(RE), respectively.

A finite multiset over an alphabet V is a mapping M : V → N where N is the
set of non-negative integers; M(a) is said to be the multiplicity of a in M . A
finite multiset M can also be represented by a string x ∈ V ∗ where |x|a = M(a)
for all a ∈ M (clearly, all permutations of x represent the same multiset).

The set of all finite multisets over an alphabet V is denoted by V (∗), and we
use the notation V (+) to denote the set of nonempty (finite) multisets. If no
confusion arises, the empty multiset is denoted by λ as in the case of the empty
string; otherwise we use Λ. We note that the above notations slightly differ from
the customary notations in P systems theory, we use them to avoid confusion
when both V ∗ and V (∗) appear in the same context, that is, when we explicitly
need to distinguish between strings and multisets.

As we mentioned previously, a P system is a structure of hierarchically em-
bedded membranes, each having a label and enclosing a region containing a mul-
tiset of objects and possibly other membranes. The out-most membrane which is
unique and usually labeled with 1, is called the skin membrane. The membrane
structure is denoted by a sequence of matching parentheses where the matching
pairs have the same label as the membranes they represent. During the func-
tioning of the P system, the objects in the different regions may change and
move across the membranes. The rules of the changes and the communication
between the membranes can be defined in various manners, thus making possible
to define and study different variants of P systems, with different motivations.

Particularly important, biologically well-motivated variants of P systems are
the so-called P systems with symport/antiport rules (introduced in [28]) where
the rules are purely communication rules, i.e., the objects do not change under the
functioning of the system, they are only communicated (transported) from one
region to some other one.

10 E. Csuhaj-Varjú

3 P Automata

The underlying membrane system of a P automaton is an antiport P system
possibly having promoters and/or inhibitors. For details on symport/antiport,
promoter and inhibitor the reader is referred to [35], Chapter 5.

Briefly, an antiport rule is of the form (x, out; y, in), where x, y ∈ V (∗). In
this case, the objects of y enter the region from the parent region (the directly
upper region) and in the same step the objects of x leave to the parent region.
The parent region of the skin region is the environment. All types of these
rules might be associated with a promoter or an inhibitor multiset, denoted by
(x, out; y, in)|Z , where x, y ∈ V (∗), Z ∈ {z,¬z | z ∈ V (∗)}. If Z = z, then the
rule can only be applied if the region contains all objects of multiset z, and if
Z = ¬z, then z must not be a sub-multiset of the multiset of objects present in
the region. If Z = λ, then the rules above are without promoters or inhibitors.

In the following we provide some formal details of P automata; following
mainly the notations of [8].

Definition 1. A P automaton (with n membranes or of degree n) is an (n+4)-
tuple, n ≥ 1, Π = (V, μ, P1, . . . , Pn, c0,F), where

– V is a finite alphabet of objects,
– μ is a membrane structure of n membranes with membrane 1 being the skin

membrane,
– Pi is a finite set of antiport rules with promoters or inhibitors associated to

membrane i for all i, 1 ≤ i ≤ n,
– c0 = (w1, . . . , wn) is called the initial configuration (or the initial state) of

Π where each wi ∈ V (∗) is called the initial contents of region i, 1 ≤ i ≤ n,
and

– F is a computable set of n-tuples (v1, . . . , vn) where vi ⊆ V (∗), 1 ≤ i ≤ n;
called the set of accepting configurations of Π.

An n-tuple (u1, . . . , un) of finite multisets of objects over V present in the n
regions of the P automaton Π is called a configuration of Π ; ui is the contents
of region i in this configuration, 1 ≤ i ≤ n.

A P automaton functions as a standard antiport P system (with promoters
or inhibitors), it changes its configurations by applying rules according to a
certain type of working mode. In the case of P automata, the most commonly
used variant of rule application is the non-deterministic maximally parallel mode
(shortly, maximally parallel mode) but the so-called sequential mode (introduced
in [9,10], also called 1-restricted minimally parallel in [18]) has been considered
as well due to its special importance. When the maximally parallel working mode
is used, at every step of the computation (configuration change) as many rule
application is performed simultaneously in each region as possible, while in the
case of sequential rule application mode exactly one rule is applied in each region
where the application of at least one rule is possible.

The set of the different types of known working modes is denoted by MODE,
we use notation seq and maxpar for the sequential and the maximally parallel
rule application mode, respectively.

P and dP Automata: Unconventional versus Classical Automata 11

Let Π = (V, μ, P1, . . . , Pn, c0,F), n ≥ 1, be a P automaton working in the
X-mode of rule application, where X ∈ MODE. The transition mapping of Π

is defined as a partial mapping δX : V (∗) × (V (∗))n → 2(V
(∗))n as follows:

For two configurations c, c′ ∈ (V (∗))n, we say that c′ ∈ δX(u, c) if Π enters
configuration c′ from configuration c by applying its rules in the X-mode, while
reading the input u ∈ V (∗), i.e., if u is the multiset of objects that enter the skin
membrane from the environment while Π changes its configuration c to c′ by
applying its rules in mode X.

The set of input sequences accepted by a P automaton Π = (V, μ, P1, . . . , Pn,
c0,F), n ≥ 1, with X-mode of rule application, X ∈ MODE, is defined as the
set of input sequences which enter the skin membrane until the system reaches
an accepting configuration, i.e.,

AX(Π) = {v1 . . . vs ∈ (V (∗))∗ | there are c0, c1, . . . , cs ∈ (V (∗))n, such that

ci ∈ δX(vi, ci−1), 1 ≤ i ≤ s, and cs ∈ F}.

A P automaton Π is said to be accepting by final states if F = E1 × . . . × En
for some Ei ⊆ V (∗), 1 ≤ i ≤ n, where Ei is either a finite set of finite multisets
or Ei = V (∗). If Π accepts by halting, then F contains all configurations c with
no c′ ∈ (V (∗))n such that c′ ∈ δX(v, c) for some v ∈ V (∗), X ∈ MODE.

By encoding the accepted multiset sequences of a P automaton to strings,
languages can be associated to the P automaton. While in the case of sequential
rule application mode, the set of multisets which can enter the system is finite,
thus the input multisets can obviously be encoded by a finite alphabet, in the
case of maximally parallel rule application mode the number of objects which
can enter the system in one step is not necessarily bounded by a constant. Thus,
in this case the accepted input sequences may correspond to strings over infinite
alphabets.

To restrict the languages of P automata to languages defined over finite al-
phabets, we apply a mapping to produce a finite set of symbols from a possibly
infinite set of input multisets.

Definition 2. For a P automaton Π = (V, μ, P1, . . . , Pn, c0,F), n ≥ 1, a finite
alphabet Σ, and a computable mapping f : V (∗) → Σ∗, we define the language
accepted by Π with respect to f using the X-mode rule application, where X ∈
MODE, as LX(Π, f) = {f(v1) . . . f(vs) ∈ Σ∗ | v1 . . . vs ∈ AX(Π)}.

The family of languages accepted by P automata with X-mode rule application
where X ∈ MODE, with respect to a family C of computable mappings is
denoted by LX,C(PA).

Throughout the paper, we will denote by MAPV,Σ the family of mappings
f which map the multisets from V (∗) to finite subsets of Σ∗ such that the
empty multiset is mapped to the empty word. A mapping f is non-erasing if
f : V (∗) → Σ∗ for some V,Σ with f(u) = λ if and only if u is the empty
multiset.

By definition, the notion of the language accepted by a P automaton depends
on the choice of the mapping f . Since f can be arbitrary, there might be cases

12 E. Csuhaj-Varjú

where the power of the P automaton arises from f and not from the P automaton
itself. Therefore, it is reasonable to consider mappings of low complexity.

4 Discussion of Features of P Automata

P automata combine properties of classical automata and natural systems.
In case of classical automata, the whole input sequence is given at the be-

ginning of the computation, in advance, but for P automata the input will be
available step by step, determined by its actual configuration (state). This way
the input will also be part of the machine, the computing device and the input
are not separated. This characteristics resembles a feature of natural systems:
the behavior of the system is determined by its existing constituents and their
interaction with the environment, there is no abstract component (or workspace)
for influencing the functioning of the system.

We note, however, that the concept of a membrane designated for storing
the possible input has been introduced and examined in the literature, see, for
example [15]. This characteristics represents a bounded local environment for
the modeled natural system. Equipping the input membrane with neighborhood
relations among the objects, we may introduce more complex input processing
activity than sequential processing of input symbols, based on locality in the
environment. The latter idea provides topics for future investigations.

By definition, there are P automata, where the number of objects entering the
skin membrane during a successful computation in the case of maximally paral-
lel rule application can be arbitrarily large. Due to this property, P automata are
also tools for describing languages over infinite alphabets, without any extension
or additional component added to the construct. An example demonstrating this
feature is the concept of a P finite automaton [13]. This variant is a P automa-
ton Π = (V, μ, P1, . . . , Pn, c0,F), which accepts by final states, and its alpha-
bet of objects, V , contains a distinguished element, a. The rules associated with
the skin region, P1, are of the form (x, out; y, in)|Z with x ∈ V (∗), y ∈ {a}(∗),
Z ∈ {z,¬z}, z ∈ V (∗); and if i �= 1, the rules of Pi are of the form (x, out; y, in)|Z
with Z ∈ {z,¬z}, x, y, z ∈ V (∗). The use of rules of the form (x, in)|Z in the skin
region is also allowed in such a way that the application of any number of copies
of the rule is considered ”maximally” parallel. The domain of the mapping f is
infinite and thus its range could also be defined to be infinite, as f : {a}(∗) →
T ∪ {λ} for an infinite alphabet T = {a1, a2, . . .} with f(ak) = ak for any k ≥ 1,
and f(∅) = λ. The language accepted by a P finite automaton Π is defined as
L(Π) = Lmaxpar(Π, f) for f as above. (Notice that T is infinite, thus the notion
of the language of the P automaton should be modified accordingly.) In [13] it was
shown that the languages which are defined over infinite alphabets and accepted by
P finite automata can be considered as extensions of the class of regular languages
to infinite alphabets. The construction significantly differs from other infinite al-
phabet extensions of regular languages defined by, for example, the finite memory
automata from [24] or the infinite alphabet regular expressions introduced in [27],
as it is shown in [13].

P and dP Automata: Unconventional versus Classical Automata 13

Accepting by final states, P automata provide possibilities of describing (pos-
sibly) infinite runs (sequences of configurations) as well. This feature is impor-
tant, since if P automata are models of natural systems being in interaction with
their environments, we also should consider communication processes not limited
in time. Counterparts of ω-Turing machines, called ω-P automata, introduced
in [17], were inspired by the above considerations. In [17], it was shown that for
any well-known variant of acceptance mode of ω-Turing machines one can con-
struct an ω-P automaton which simulates the computations of the corresponding
ω-Turing machine.

The generic variant of P automata is given with static membrane structure,
that is, the membrane structure does not change during the functioning of the
system. From modeling point of view, this condition is rather restrictive, since
the architecture of natural systems may change in the course of their functioning.
However, it is well-known that P systems with dynamically changing membrane
structure have been introduced and investigated (P systems with membrane cre-
ation, P systems with membrane division - for details we refer to [35]). Examples
for P automata with dynamically varying structures are the P automata with
marked membranes ([11]), inspired by the theory of P systems, brane calculi [3],
and classical automata theory, and active P automata, constructs proposed for
parsing sentences of natural languages in [1]. An active P automaton starts the
computation with one membrane containing the string to be analyzed, together
with some additional information assisting the computation. Then, it computes
with the structure of the membrane system, using operations as membrane cre-
ation, division, and dissolution. There are also rules for extracting a symbol
from the left-hand end of the input string and for processing assistant objects.
The computation is successful (accepting) if all symbols from the string are con-
sumed and all membranes are dissolved. It was shown that the model is suitable
for recognizing any recursively enumerable language, and with restrictions in the
types of rules, for determining other well-known language classes (the regular
language class and the class of context-sensitive languages) as well. This special
variant of P automata has the whole input at the beginning.

P automata, based on antiport P systems with dynamically varying structure
combine properties of self-configurating systems and systems re-configurating
theirselves under control coming from outside, since both the objects inside the
regions and the objects entering the system from the environment can launch
a re-configuration in the membrane structure. One interesting research topic
would be to examine the decidability of whether re-configuration takes place in
the course of the functioning and if this is the case to what extent the membrane
structure changes.

One other property of P automata is that the framework is suitable for mod-
eling variants of weighted systems in a natural manner: the multiplicity of an
object in a finite multiset may represent its weight in the multiset. In this way,
we may order weights to rules and to objects as well, thus we can build a bridge
between special variants of weighted automata and P automata. This topic of
investigations is a possible new research direction as well.

14 E. Csuhaj-Varjú

5 Accepting Power of P Automata

The resource the P automata can use for computation is provided by the objects
of the already consumed input multisets (and the objects already available at
the beginning). Although this property appears to be a significant bound on
the accepting power, since P automata may input an exponentially growing
number of objects (using the maximally parallel working mode), the obtained
computational power can be rather large.

A characterization of the accepted language classes was obtained in [6,7].
A non-deterministic one-way Turing machine is restricted S(n) space bounded

if for every accepted input of length n, there is an accepting computation where
the number of nonempty cells on the work-tape(s) is bounded by S(d) where
d ≤ n, and d is the number of input tape cells already read, that is, the distance
of the reading head from the left end of the one-way input tape.

Let L(1LOG), L(1LIN), L(restricted−1LOG), and L(restricted−1LIN) be
the class of languages accepted by one-way non-deterministic Turing machines
with logarithmic space bound, linear space bound, restricted logarithmic space
bound, and restricted linear space bound, respectively.

In [6,7] it was shown that if we consider the class of non-erasing linear-space
computable mappings, denoted here by C, and the acceptance is with final state,
then

Theorem 1. 1. Lseq,C(PA) = L(restricted− 1LOG) ⊂ L(1LOG) and
2. Lmaxpar,C(PA) = L(restricted− 1LIN) = L(CS).

The second statement was proved by simulating particular variants of Turing
machines, called counter machines, which are with a one-way read-only input
tape and work-tapes which can be used as counters capable of storing any non-
negative integer as the distance of the reading head from the only non-blank
tape cell marked with the special symbol Z.

The idea of describing language accepting power of P automata in terms
of one-way non-deterministic Turing machines with restricted space complex-
ity above, has its roots in [21] and [22], where so-called symport/antiport P
system acceptors were studied. These are accepting membrane systems similar
to P automata. The main difference in the two models is that the alphabet
of symport/antiport acceptors is divided into a set of terminals and nonter-
minals. During the work of these systems both types of objects may leave or
enter the membrane system but only the objects which are terminal constitute
the part of the input sequence which is accepted in a successful computation.
Thus, the nonterminal objects are used to provide additional workspace for the
computation. This feature motivated the introduction of S(n) space bounded
symport/antiport acceptors, systems where the total number of objects used in
an accepting computation on a sequence of length n is bounded by a function
S(n). Context-sensitive and other language classes were described with these
and similar tools in [23]. Notice that generic P automata do not distinguish be-
tween terminal and nonterminal objects; if we introduce such distinction, then
we consider extended P automata.

P and dP Automata: Unconventional versus Classical Automata 15

Returning to the accepting power of P automata, if we use arbitrary linear
space computable mappings for the input multisets of the P automaton to obtain
the alphabet of the accepted language, and the acceptance is defined by final
states, then we yield the class of recursively enumerable languages.

Corollary 1. For any recursively enumerable language L ⊆ Σ∗ there exists a P
automaton Π = (V, μ, P1, . . . , Pn, c0,F), n ≥ 1, and a linear space computable
mapping f : V (∗) → Σ∗ such that L = Lmaxpar(Π, f) holds.

Notice the dependence of the accepted language family on the choice of mapping
f . Let fperm be defined in such a way that every finite multiset over Σ is mapped
by fperm to the set of strings which consists of all permutations of the elements
of the multiset. This mapping is widely used in the literature, for example,
analyzing P systems also use fperm for defining words of the accepted language.

While fperm composed with a homomorphism, i.e., when nonterminal and
terminal objects are distinguished in the set of objects, adds sufficient power to
P automata to describe any recursively enumerable language in the maximally
parallel working mode, only itself it does not provide the necessary power to
obtain any context-sensitive language [33].

In [16] it is shown that any recursively enumerable language L ⊆ Σ∗ can be
obtained as L = h(Lmaxpar(Π, fperm)), where Π is given over object alphabet
Σ, accepts by halting, and fperm is defined as above. Furthermore, Σ = N ∪ T,
where N and T are disjoint sets of nonterminals and terminals, and h is a
homomorphism which orders to any element of N the empty word and to any
element of T itself.

But, by [14], it holds that for an arbitrary alphabet Σ and any injective
mapping g : Σ∗ → Σ∗, the language Lg = {wg(w) | w ∈ Σ∗} is not in
Lmaxpar(Π, fperm) for any P automaton Π , in the case of accepting by halting.
Furthermore, the authors prove that all families of languages which properly in-
clude the family of regular languages and closed under λ-free morphisms contain
languages which cannot be obtained as the language of a P automaton working
in the maximally parallel mode, accepting by halting, and using mapping fperm
for defining words of the language.

This implies, that there exist context-sensitive languages which cannot be
obtained as languages of a P automaton working in the maximally parallel mode
and using fperm for defining words of the language, although, any language
L ⊆ Σ∗, where L = Lmaxpar(Π, fperm), where Π has object set Σ, is a context-
sensitive language [33].

6 dP Automata

A finite collection of P automata communicating with each other forms a dis-
tributed P automaton, a dP automaton, for short. The notion was introduced
in [31] with the aim of formulating a model for distributed problem solving in
terms of cooperating P automata and also to provide measures and tools for ef-
ficient parallelizability of languages. A dP automaton consists of a finite number

16 E. Csuhaj-Varjú

of P automaton which have their separate inputs and communicate from skin
to skin membranes by means of special antiport-like rules. By [31], the input
accepted by the dP automaton is the concatenation of the inputs accepted by
the component P automata at the halting of the system, namely when no rule
of any component or no inter-component communication rule can be performed.

In the following we present the notion of a dP automaton in a slightly modified
form as it was introduced in [31], in order to make it conform with the notations
used for P automata in the previous sections.

A dP automaton (of degree n ≥ 1) is a construct Δ = (V,Π1, . . . , Πn, R,F),
where V is an alphabet, the alphabet of objects; Πi = (V, μi, Pi,1, . . . , Pi,ki , ci,0,
Fi) is a P automaton of degree ki ≥ 1, 1 ≤ i ≤ n, called the ith component
of the system; R is a finite set of rules of the form (si, u/v, sj), 1 ≤ i, j ≤ n,
i �= j, uv ∈ V (+), called the set of inter-component communication (shortly,
communication) rules of Δ; sk, 1 ≤ k ≤ n denotes the skin membrane of Πk;
F ⊆ F1 × . . .×Fn, is called the set of accepting configurations of Δ.

An inter-component communication rule (si, u/v, sj), 1 ≤ i, j ≤ n, i �= j, is
for direct communication between components Πi and Πj : a multiset u in the
skin region of Πi is exchanged with a multiset v in the skin region of Πj .

A configuration of Δ is ((μ1, u1,1, . . . , u1,k1), . . . , (μn, un,1, . . . , un,kn)), where
ui,j , 1 ≤ i ≤ n, 1 ≤ j ≤ ki, is a multiset over V . The initial configuration of Δ
is the n-tuple ((μ1, w1,1, . . . , w1,k1), . . . , (μn, wn,1, . . . , wn,kn)) = (c1,0, . . . , cn,0)
where ci,0, 1 ≤ i ≤ n, is the initial configuration of component Πi.

Analogously to P automaton, the dP automaton functions by changing its
configurations. The components work synchronously, governed by a global clock,
using the rules from their own rule sets and their inter-component communica-
tion rules R in the non-deterministic maximally parallel mode. Each component
Πi, 1 ≤ i ≤ n, takes an input (may be the empty multiset) from the environment,
works on it by using the rules in sets Pi,1, . . . , Pi,ki and possibly communicates
with the other components by means of rules in R.

A configuration C changes to configuration C′ by taking the n-tuple of mul-
tisets (u1, . . . , un) from the environment, denoted by (u1, . . . , un, C) =⇒ C′, if
C′ can be obtained from C by applying the rule sets of Δ (including R) such
that ui enters the skin region of Πi from the environment, 1 ≤ i ≤ n.

A computation in Δ is a sequence of configurations directly following each
other, starting from the initial configuration; it is accepting if it enters one of the
accepting configurations of F ⊆ F1× . . .×Fn. If the components accept by final
states, then F = F1×. . .×Fn, or ifΔ accepts by halting, then F ⊆ F1×. . .×Fn,
contains the direct product of those halting configurations of the components
which are also halting configurations of Δ.

Δ accepts the n-tuple (α1, . . . , αn), where αi, 1 ≤ i ≤ n, is a sequence of multi-
sets over V , if the component Πi, starting from its initial configuration, perform-
ing computation steps in the non-deterministic maximally parallel mode, takes
from the environment the multiset sequence αi, 1 ≤ i ≤ n, and Δ eventually
enters an accepting configuration.

P and dP Automata: Unconventional versus Classical Automata 17

As in the case of P automata, we may associate languages to the dP automaton
Δ = (V,Π1, . . . , Πn, R,F), n ≥ 1.

The (concatenated) language of Δ over an alphabet Σ with respect to the
mapping f = (f1, . . . , fn) for fi ∈ MAPV,Σ, 1 ≤ i ≤ n, is defined as

Lconcat(Δ, f,Σ) = {w1 . . . wn ∈ Σ∗ | wi = fi(vi,1) . . . fi(vi,si) and

αi = vi,1 . . . vi,si , 1 ≤ i ≤ n, for an n-tuple of

accepted multiset sequences (α1, . . . , αn)}.

The notion was introduced in [31] with mapping fperm, defined above. As for
P automata, the choice of f essentially influences the power of the components,
and thus, the power of the whole dP automaton.

For simplicity, in the following we denote by Ln(dP) the family of all languages
recognized by dP automata with n components, n ≥ 1, where the dP automaton
uses the non-deterministic maximally parallel working mode and its language is
defined by fperm. If the number of components is irrelevant, i.e., if we consider
all dP automata with the previous properties, then we use notation L(dP). To
simplify the notations, we omitted indicating all the fixed parameters (working
mode, mapping fperm).

7 Accepting Power of dP Automata

Since P automata, i.e., dP automata with only one component are rather pow-
erful, due to their ability of working with an exponential amount of workspace
(in polynomial time), thus the large accepting power of dP automata is not
surprising. In [14], [33] it is shown that L(REG) ⊂ L(dP) ⊂ L(CS).

In [14] it is proved that for every recursively enumerable language L ⊆ V ∗,
there is a language L′ ∈ L(dP) and an alphabet U disjoint of V such that
L′ ⊆ LU∗ and for each w ∈ L there is an y ∈ U∗ such that wy ∈ L′.

Furthermore, [33] proves that for every recursively enumerable language L ⊆
V ∗, there is a language L′ ∈ L1(dP) and an alphabet U disjoint of V such that
L′ ⊆ U∗L and for each w ∈ L there is an y ∈ U∗ such that yw ∈ L′.

It is also shown that Ln(dP), n ≥ 1, forms a proper hierarchy according to
inclusion [34].

8 Multi-head Finite Automata versus Finite dP
Automata

Observing the work of a dP automaton, it resembles to that of a multi-tape
(multi-head) automaton: the current configuration of the n-tuple of membranes
(supposed that the system consists of n components) corresponds to the state
of the automaton, the strings (multisets) that already have been processed rep-
resent the part of the input string on the corresponding tape that has already
been read. Obviously, since the number of configurations of a dP automaton

18 E. Csuhaj-Varjú

can be arbitrarily large, to find direct correspondence between different types of
multi-tape (multi-head) automata and dP automata, we need new definitions of
the accepted language of dP automata and need to introduce restrictions for its
configurations.

For this purpose, one reasonable candidate is the so-called finite dP automata:
a dP automaton Δ is called finite, if the number of configurations reachable
from its initial configuration is finite [31]. Notice that in this case the set of
configurations may represent states of a finite state control.

To describe strings scanned/accepted by a multi-tape (multi-head) automa-
ton, two variants of languages based on agreement of the components of a dP
automaton were introduced in [12].

The weak agreement language of a dP automaton Δ over an alphabet Σ with
respect to a mapping f = (f1, . . . , fn) for fi ∈ MAPV,Σ, 1 ≤ i ≤ n, is defined as

Lw,agree(Δ, f,Σ) = {w ∈ Σ∗ | w = fi(vi,1) . . . fi(vi,si) = fj(vj,1) . . . fj(vj,sj)

for all 1 ≤ i, j ≤ n, where αi = vi,1 . . . vi,si , 1 ≤ i ≤ n,

and (α1, . . . , αn) is an n-tuple of accepted multiset

sequences of Δ}.

The strong agreement language of Δ over an alphabet Σ with respect to a map-
ping f = (g, . . . , g) for g ∈ MAPv,Σ , is defined as

Ls,agree(Δ, f,Σ) = {w ∈ Σ∗ | w = g(v1) . . . g(vs) and α = v1 . . . vs, for an

n-tuple of accepted multiset sequences (α, . . . , α) of Δ}.

The strong agreement language consists of all words which can be accepted in
such a way that all components accept the same sequence of multisets and their
languages are defined with the same mapping. In the case of weak agreement
languages, the accepted multiset sequences can be different, only the equality of
their images should hold.

In [12] a direct correspondence between the language family of non-determinis-
tic one-way multi-head finite automata and that of finite dP automata was
demonstrated.

A multi-head finite automaton as a usual finite automaton has a finite state
control and an input tape. But, unlike usual finite automaton, it may have more
than one heads reading the same input word; the heads may scan the input sym-
bol and move when the state of the automaton changes. Acceptance is defined as
in the one-head case: an input string is accepted if starting from the beginning
of the word with all heads (that never leave the input word), the automaton
enters an accepting state. Analogously to the one-head case, deterministic and
non-deterministic, one-way and two-way variants are considered. (If the heads
are allowed to move in both directions, the automaton is called two-way, if only
from left to right, then one-way.) The class of languages accepted by one-way
k-head finite automata is denoted by L(1NFA(k)) and the class of languages
accepted by two-way k-head finite automata with L(2NFA(k)). For a survey of
results on these constructs consult [20].

P and dP Automata: Unconventional versus Classical Automata 19

In [12] it was shown that the weak agreement language of any finite dP au-
tomaton is equal to the language of a non-deterministic one-way multi-head au-
tomaton, and the language of any one-way non-deterministic finite multi-head
automaton can be obtained as the strong or weak agreement language of a finite
dP automaton.

The first statement is based on the observation that any configuration change
of a dP automaton corresponds to a set of sequences of configuration changes in
a corresponding multi-head finite automaton: if the finite dP automaton reads
the input n-tuple (w1, . . . , wn), where wi represents the set of all permutations of
symbols in the corresponding multiset, then the multi-head finite automaton is
able to read (in several steps) all n-tuples (α1, . . . αn), where αi is a permutation
of the elements of ui.

The idea of the proof of the second statement is that the transitions of the
multi-head automaton M are simulated by the finite dP automaton Δ in a cycle,
the work of each reading head of M is executed by a different component. At
any step of the computation at most one component of Δ will have a non-empty
input from the environment consisting of one symbol which corresponds to the
letter read by the corresponding head of M . The information which transition
of M is simulated is coded by symbols which are communicated among the
components (in a circle) via applying inter-component communication rules.

Analyzing the way of establishing correspondence between finite dP automata
and one-way multi-head finite automata, the reader may observe that using so-
called double alphabets, two-way multi-head finite automata can be represented
in terms of dP automata as well. In the following we briefly recall the notions
and statements from [12], using this approach.

An alphabet of the form Σ ∪ Σ̄, where Σ is an alphabet itself and Σ̄ = {ā |
a ∈ Σ} is called a double alphabet [2].

A dP automaton Δ = (V ′, Π1, . . . , Πk, R,F) where V ′ = V ∪ V̄ is a double
alphabet is called a two-way dP automaton if any multiset ui which enters com-
ponent Πi, 1 ≤ i ≤ k, in the course of a computation consists of either objects
of V , or objects of V̄ , or it is the empty multiset.

Obviously, if a two-way dP automaton is a finite dP automaton, then we speak
of a two-way finite dP automaton.

To describe the two-way motion of a head of a two-way multi-head finite
automaton in terms of two-way dP automata, similarly to the approach of [2],
so-called two-way trails and two-way multiset trails, i.e., string and sequences
of multisets over double alphabets were defined in [12]. In these sequences every
non-barred object corresponds to a move of the reading head to the right and
a barred object corresponds to a move of the reading head to the left, and the
substrings describe moves of the reading head of the two-way multi-head finite
automaton. The notion of the strong agreement language and the weak agree-
ment language of two-way dP automaton is obtained from the corresponding
notions of the (one-way) dP automaton with the obvious modifications.

In [12] it is shown that any language which is the weak agreement language of
a two-way finite dP automaton can be accepted by a non-deterministic two-way

20 E. Csuhaj-Varjú

multi-head finite automaton, and any language that can be accepted by a non-
deterministic two-way multi-head finite automaton (with at least two heads) is
equal to the strong or weak agreement language of a two-way finite dP automaton.

Since NSPACE(log n) =
⋃
k≥1 L(2NFA(k)) [19], these statements provide

characterizations of this complexity class in terms of finite dP automata. It is
known that the emptiness, finiteness, infiniteness, universality, inclusion, equiva-
lence, regularity and context-freeness are not semidecidable for L(1NFA(k)) and
L(2NFA(k)), k ≥ 2 (for details, see [20] and the papers cited in the article).
This implies that these properties hold for language classes of certain variants
of finite dP automata as well.

9 Conclusions

Both P automata and dP automata provide various possibilities for extending
the concepts of different types of classical automata to be ”natural” automata.
For example, multi-pushdown automata, or even shrinking multi-pushdown au-
tomata can be interpreted as two-way finite dP automata (by modfiying the
accepted language). Furthermore, the terms determinism, head reversal, sensing
head, stateless automaton, synchronized moving of heads, data-independence
which are known and studied in detail for multi-head finite automata, can be
defined in the theory of finite dP automata as well. We plan investigations in
these directions in the future.

References

1. Bel-Enguix, G., Gramatovici, R.: Parsing with P automata. In: Ciobanu, G., Pérez-
Jiménez, M.J., Păun, G. (eds.) Applications of Membrane Computing. Natural
Computing Series, pp. 389–410. Springer, Berlin (2006)

2. Birget, J.-C.: Two-way automaton computations. RAIRO Informatique Théorique
et Application 24, 44–66 (1990)

3. Cardelli, L.: Brane Calculi. Interactions of Biological Membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer,
Heidelberg (2005)

4. Csuhaj-Varjú, E.: P Automata. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 19–35.
Springer, Heidelberg (2005)

5. Csuhaj-Varjú, E.: P Automata: Concepts, Results, and New Aspects. In: Păun, G.,
Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC
2009. LNCS, vol. 5957, pp. 1–15. Springer, Heidelberg (2010)

6. Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the Computational Complexity of
P Automata. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS,
vol. 3384, pp. 76–89. Springer, Heidelberg (2005)

7. Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the computational complexity of P
automata. Natural Computing 5(2), 109–126 (2006)

8. Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: P automata. In: Păun, G., Rozenberg,
G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing, ch. 6, pp.
144–167. Oxford University Press, Oxford (2010)

P and dP Automata: Unconventional versus Classical Automata 21

9. Csuhaj-Varjú, E., Vaszil, G.: P automata. In: Păun, G., Zandron, C. (eds.) Pre-
Proceedings of the Workshop on Membrane Computing WMC-CdeA 2002, Curtea
de Argeş, Romania, August 19-23, pp. 177–192. Pub. No. 1 of MolCoNet-IST-2001-
32008 (2002)

10. Csuhaj-Varjú, E., Vaszil, G.: P Automata or Purely Communicating Accepting P
Systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002.
LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)

11. Csuhaj-Varjú, E., Vaszil, G.: (Mem)brane automata. Theoretical Computer Sci-
ence 404(1-2), 52–60 (2008)

12. Csuhaj-Varjú, E., Vaszil, G.: Finite dP Automata versus Multi-head Finite Au-
tomata. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.)
CMC 2011. LNCS, vol. 7184, pp. 120–138. Springer, Heidelberg (2012)

13. Dassow, J., Vaszil, G.: P Finite Automata and Regular Languages over Countably
Infinite Alphabets. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A.
(eds.) WMC 2006. LNCS, vol. 4361, pp. 367–381. Springer, Heidelberg (2006)

14. Freund, R., Kogler, M., Păun, G., Pérez-Jiménez, M.J.: On the power of P and dP
automata. Mathematics-Informatics Series, vol. 63, pp. 5–22. Annals of Bucharest
University (2009)

15. Freund, R., Mart́ın-Vide, C., Obtu�lowicz, A., Păun, G.: On Three Classes of
Automata-like P Systems. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710,
pp. 292–303. Springer, Heidelberg (2003)

16. Freund, R., Oswald, M.: A short note on analysing P systems. Bulletin of the
EATCS 78, 231–236 (2002)

17. Freund, R., Oswald, M., Staiger, L.: ω-P Automata with Communication Rules.
In: Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2003. LNCS, vol. 2933, pp. 203–217. Springer, Heidelberg (2004)

18. Freund, R., Verlan, S.: (Tissue) P systems working in the k-restricted minimally
parallel derivation mode. In: Csuhaj-Varjú, E., Freund, R., Oswald, M., Salomaa,
K. (eds.) International Workshop on Computing with Biomolecules, Wien, Austria,
August 27, pp. 43–52. Österreichische Computer Gesellschaft (2008)

19. Hartmanis, J.: On non-determinacy in simple computing devices. Acta Informat-
ica 1, 336–344 (1972)

20. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata:
Origins and directions. Theoretical Computer Science 412, 83–96 (2011)

21. Ibarra, O.H.: The Number of Membranes Matters. In: Alhazov, A., Mart́ın-Vide,
C., Păun, G. (eds.) WMC 2003. LNCS, vol. 2933, pp. 218–231. Springer, Heidelberg
(2004)

22. Ibarra, O.H.: On the Computational Complexity of Membrane Systems. Theoret-
ical Computer Science 320(1), 89–109 (2004)

23. Ibarra, O.H., Păun, G.: Characterization of context-sensitive languages and other
language classes in terms of symport/antiport P systems. Theoretical Computer
Science 358(1), 88–103 (2006)

24. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 134, 329–363 (1994)

25. Mart́ın-Vide, C., Păun, A., Păun, G.: On the power of P systems with symport
rules. Journal of Universal Computer Science 8, 317–331 (2002)

26. Oswald, M.: P Automata. PhD dissertation, Vienna University of Technology, Vi-
enna (2003)

27. Otto, F.: Classes of regular and context-free languages over countably infinite al-
phabets. Discrete Applied Mathematics 12, 41–56 (1985)

22 E. Csuhaj-Varjú

28. Păun, A., Păun, G.: The power of communication: P systems with sym-
port/antiport. New Generation Computing 20(3), 295–305 (2002)

29. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

30. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
31. Păun, G., Pérez-Jiménez, M.J.: Solving Problems in a Distributed Way in Mem-

brane Computing: dP Systems. Int. J. of Computers, Communication & Con-
trol V(2), 238–250 (2010)

32. Păun, G., Pérez-Jiménez, M.J.: P and dP Automata: A Survey. In: Calude, C.S.,
Rozenberg, G., Salomaa, A. (eds.) Rainbow of Computer Science. LNCS, vol. 6570,
pp. 102–115. Springer, Heidelberg (2011)

33. Păun, G., Pérez-Jiménez, M.J.: P automata revisited. Theoretical Computer Sci-
ence (in press, 2012)

34. Păun, G., Pérez-Jiménez, M.J.: An Infinite Hierarchy of Languages Defined by dP
Systems. Theoretical Computer Science (in press, 2012)

35. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

36. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I-III.
Springer, Heidelberg (1997)

37. Vaszil, G.: Automata-like membrane systems - A natural way to describe complex
phenomena. In: Campeanu, C., Pighizzini, G. (eds.) Proceedings of 10th Interna-
tional Workshop on Descriptional Complexity of Formal Systems, Charlottetown,
PE, Canada, July 16-18, pp. 26–37. University of Prince Edwards Island (2008)

Recovering Strings in Oracles:

Quantum and Classic

Kazuo Iwama�

School of Informatics, Kyoto University, Kyoto 606-8501, Japan
iwama@kuis.kyoto-u.ac.jp

For an input of length N , we usually assume that the time complexity of any
algorithm is at least N , since the algorithm needs N steps only to read the
input string. However, especially recently, there have been increasing demands
for studying algorithms that run in significantly less than N steps by sacrificing
the exactness of the computation. In this case, we need some mechanism for
algorithms to obtain the input, since it is no longer possible to read all the input
bits sequentially. ”Oracles” are a popular model for this purpose. The most
standard oracle is so-called an index oracle, that returns the i-th bit of the input
for the query i (an integer between 1 and N). Thus, we obviously need N oracle
calls in order to get all the input bits in this case.

A little surprisingly, this is not always the case. For instance, some Boolean
functions can be computed, with high success probability, using oracle calls much
less than N times. Furthermore, if we are allowed to use a different kind of ora-
cles or ”quantum” oracles, then we can even reconstruct the whole input string
with less than N oracle calls. For instance, the standard index oracle allows us
to recover the input string in some N/2 queries if the whole system is quan-
tum. Also, the balance oracle, modeling a balance scale to be used to find fake
coins, is much more powerful if it is used quantumly. Another interesting model
is the subsequence oracle (that answers yes iff the query string is a substring of
the input); again its quantum version is more powerful than its classic counter-
part. This talk is an introduction to such interesting cases, their basic ideas and
techniques.

� Supported in part by KAKENHI, Ministry of Education, Japan, 16092101, 1920000
and 2224001.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, p. 23, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Determinism vs. Nondeterminism

for Two-Way Automata

Representing the Meaning of States by Logical Formulæ

Juraj Hromkovič1, Rastislav Královič2,
Richard Královič1,3, and Richard Štefanec2

1 Department of Computer Science, ETH Zurich,
Universitätstrasse 6, 8092 Zurich, Switzerland

juraj.hromkovic@inf.ethz.ch
2 Department of Computer Science, Comenius University,

Mlynská dolina, 84248 Bratislava, Slovakia
{kralovic,stefanec}@dcs.fmph.uniba.sk

3 Google Zurich, Switzerland

Abstract. The question whether nondeterminism is more powerful than
determinism for two-way automata is one of the most famous old open
problems on the border between formal language theory and automata
theory. An exponential gap between the number of states of two-way
nondeterministic finite automata (2NFA) and their deterministic coun-
terparts (2DFA) was proved only for some restricted versions of two-way
automata up to now. This problem is also related to the famous DLOG
vs. NLOG problem. A superpolynomial gap between 2NFAs and 2DFAs
on words of polynomial length in the parameter of a complete language
of Sipser and Sakoda for the 2DFA vs. 2NFAs problem would imply that
DLOG is a proper subset of NLOG.

The goal of this paper is first to survey the attempts to solve the 2DFA
vs. 2NFA problem. After that we discus why this problem is so hard in
spite of the fact that one has a very clear intuition why nondeterminism
has to be more powerful than determinism for this computing model. It
seems that the hardness lies in the fact that, when trying to prove lower
bounds on the number of states of 2DFAs, we are not able to force the
states to have a clear meaning. When designing an automaton, we always
assign an unambiguous interpretation to each state. In an attempt to cap-
ture the concept of meaning of states we introduce a new restriction on
the two-way automata: Each state is assigned a logical formula express-
ing some properties of the input word, and transitions of the automaton
must be designed in such a way that the assigned formula is true whenever
the automaton is in the given state. In our approach we use propositional
formulæ with various interpreted atoms. For two such reasonable logics
we prove an exponential gap between 2NFAs and 2DFAs. Moreover, us-
ing our concept of assigning meaning to the states of 2DFAs we show that
there is no exponential gap between general 2NFAs and 2DFAs on inputs
of a polynomial length of the complete language of Sakoda and Sipser.

Keywords: nondeterminism, two-way finite automata, state
complexity.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 24–39, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Determinism vs. Nondeterminism for Two-Way Automata 25

1 Introduction

One of the core problems of theoretical computer science is to understand the rela-
tionship between determinism and nondeterminism. Comparing these two modes
of computation can be, however, very hard. Indeed, doing such a comparison for
polynomial-time Turing machines is probably the most famous open problem in
computer science. Thus, a lot of research was done in examining determinism and
nondeterminism for simpler models of computation, such as finite automata.

The question of the power of nondeterminism for the (one-way) finite au-
tomata was raised in [16] and settled relatively soon thereafter. On one hand,
the usage of nondeterminism does not bring any computational power for this
model [16]. On the other hand, a one-way deterministic finite automaton (1DFA)
might need exponentially more states than an equivalent one-way nondetermin-
istic finite automaton (1NFA)[15]. This explosion of the number of states of
1DFA arises from the fact that, once a letter is read, the information given by
this letter has either to be abandoned or included into a state. As the amount
of possibly useful information grows, the number of states of a deterministic au-
tomaton grows as well in an exponential manner. Nondeterministic automaton
can, however, in some cases avoid this problem by storing only the part of the
information that is actually relevant later.

To overcome this problem, it might be beneficial for the automaton to be able
to move back to get some information, once known it is required. Adding such an
ability leads to the model of two-way finite automata [16,11]. The possibility of
two-way head motion does not add any computational power [11], however, two-
way deterministic finite automata (2DFAs) may be exponentially more succinct
(i. e., having exponentially less states) than equivalent 1DFAs[15]. Similar fact is
true for two-way nondeterministic finite automata – 2NFAs can be exponentially
more succinct than 1NFAs[17].

On the other hand, the relationship between determinism and nondeterminism
for two-way finite automata is much harder to resolve. The question whether
2NFAs can be exponentially more succinct than 2DFAs is still one of the most
prominent open problems in this field.

Adding the two-waymovement to the finite automata changes reasoning about
them closer to the way we reason about the Turing machines. In order to prove
some lower bounds, one has to think about various movement patterns that the
automata use on different words. This is one of the reasons why the 2DFA vs.
2NFA question is so hard. The hardness of this question is also emphasized by
the direct connection to the DLOG vs. NLOG problem. Berman and Lingas
showed [1] that if DLOG equals NLOG, then there exists a polynomial p such
that, for every n-state two-way nondeterministic automaton A, there exists a
p(n)-state two-way deterministic automaton A′ deciding the same problem as
A, when restricted to the inputs with maximal length equal to p(n).

A consequence of this result is that, if we are able to show an exponential gap be-
tween the number of states of two-way deterministic and two-way
nondeterministic automata using only languageswith words of polynomial length,
we would immediately prove DLOG �= NLOG.

26 J. Hromkovič et al.

But it is not only this direct connection what makes the succinctness of finite
automata worth studying. One can define size complexity classes for various
models of finite automata, i. e., complexity classes of problems that can be solved
by these automata with small number of states, and analyze their relationship.
This approach, introduced in [17] and later followed in [9,10], gives rise to a
complexity theory of finite automata, which is in many aspects analogous to the
standard complexity theory of Turing machines. As a lot of problems from this
’minicomplexity’ theory (as this field was proposed to be called) are far from
trivial, it seems to be a reasonably complex model to be studied with a hope
that the ideas behind the results could find some use in the study of standard
complexity theory. Even if we focus our attention in this paper to the problem of
a relationship between determinism and nondeterminism for two-way automata,
there are different areas where interesting connections with complexity theory
emerged, such as the use of randomness, Las Vegas algorithms, and descriptive
complexity theory. A comprehensive introduction into the minicomplexity theory
can be found in [10] and in [9] where also a parallel between various classes of
minicomplexity and Turing Machine complexity theory is shown.

In the standard complexity theory of Turing machines, one often uses the
well-known concept of complete problems to decide equivalence of different com-
plexity classes. This concept can be used in the minicomplexity of finite automata
as well. For example, the problem of one-way liveness was introduced in [17]
as a complete problem for 1NFA: solving this problem with small 2DFA would
imply that, for any 1NFA, there exists a 2DFA with at most polynomially more
states.1 For a similar question concerning the difference in a state complexity
between 2NFA and 2DFA, a complete problem of two-way liveness was also
defined in [17].

Both of these problems are reachability problems on a special class of graphs
with m columns, each of them with n vertices. The edges in these graph are
local, always connecting only vertices in neighboring columns. Each such graph
can be described by an input word of m symbols, where each symbol describes
edges between one pair of neighboring columns. For the one-way liveness,
only oriented edges from i-th to (i+1)-st column are allowed. Formal definition
of these problems can be found in the next section.

As we have indicated, analyzing finite automata with unrestricted two-way
movement seems to be very hard, as it is also closely connected to prominent open
questions in complexity theory of Turing machines. Thus, to understand more
about the problems arising from the unrestricted two-way movement, it might be
worthwhile to study automata with additional restrictions on the movement of
their heads. One of the most basic movement patterns one can think of is to allow
the automaton to change the direction of the movement only on the endmarkers
of the input. This makes reasoning about the movement much easier, as the
computation of the automaton can be seen as a sequence of traverses over the
input word and over its reverse. Each of this phases is similar to the computation

1 While this is still an open problem, it was proven in [17] that there exists 2DFA that
is exponentially more succinct than any equivalent 1NFA.

Determinism vs. Nondeterminism for Two-Way Automata 27

of a one-way automaton and therefore easier to reason about. Automata with
this movement pattern are called deterministic and nondeterministic sweeping
automata (SDFAs, SNFAs).

Sipser showed in [18] that, for some problems, a SDFA needs to have expo-
nentially more states than an equivalent 1NFA. But, as shown in [14], a SDFA
may also need exponentially more states than a 2DFA. When considering the
nondeterministic variant, it is shown in [7] that a SNFA needs exponentially
more states than a 2DFA, with the other direction still open.

The core part of these results are proofs of lower bounds on the size complexity
of sweeping automata, which use the technique of generic strings. These are
strings that force the given sweeping automaton of a bounded size to lose the
advantage of the sweeping movement. Once the sweeping automaton reads the
generic string, it reaches an “exhausted” state, and is not able to gather more
information from the rest of the input than a one-way automaton reading the
same word. To construct a generic string, we need to extend an input as long as
the given automaton is not exhausted. Thus, this construction does not provide
any bounds on the length of the constructed generic string, i. e., it can use
very long input words to prove the lower bound. Therefore even if it would be
possible to tweak the arguments used in these proofs to show the gap between
determinism and nondeterminism in two-way automata, there would not be any
direct consequence for the DLOG vs. NLOG question.

The technique of generic strings was adapted for time-restricted randomized
sweeping automata as well [12,13]. Here it was shown that randomized Las Vegas
sweeping automata with unrestricted running time may be exponentially more
succinct than randomized sweeping automata with two-sided bounded error re-
stricted to linear running time. Hence, the restriction of running time can have
a very significant impact on the succinctness, and it cannot be traded for a more
powerful model of randomization.

The trajectory of the sweeping automata is still too restrictive, therefore one
can think over less restrictive movement patterns. Next step in this direction
might be to fix one or some restricted number of trajectories for inputs with the
same length. This leads to the concept of oblivious automata. For an automaton
to be oblivious, the head movement for any input word of the same length has
to be the same. Computation of such model is still very restricted, as it cannot
make choices of the head movement according to the input word. On the other
hand it makes reasoning about the automaton much easier.

This concept was examined in [3] and [6]. It was shown that even by allow-
ing the two-way deterministic automaton to use a sublinear amount of various
movement patterns (measured in the input length), it still needs exponentially
more states than a 1NFA. Hence, if it were possible to simulate any 1NFA by a
2DFA with at most polynomially more states, the possibility to move according
to the given input would play a vital role.

Instead of restricting the trajectories of the two-way automata, one can put
also other restrictions on its behavior. For example, Kapoutsis formalized in
[8] a one-way liveness graph search model, where the decisions are made

28 J. Hromkovič et al.

only according to the currently examined vertex and its local neighborhood. He
defined a mole as an automaton, where each state has assigned a focus – a vertex
in a symbol upon which it operates. Moreover, it is allowed to move only to the
vertices directly connected to the currently processed vertex. The main result
of this work was that the two-way deterministic moles cannot solve one-way

liveness, no matter how many states they are allowed to use.
Other approaches were based not on the restriction of the automaton itself,

but on the languages that the automaton has to solve. A very natural restriction
is to restrict the alphabet of the languages to a single symbol, i. e., focusing
on unary languages only. The situation for the unary languages differs from
the general case – for any 1NFA, as well as any 2DFA, it is possible to find
an equivalent 1DFA of subexponential size [2,4]. Moreover for any 1NFA with
n states there exists an equivalent 2DFA with O(n2) number of states. The
relationship between 2DFAs and 2NFAs is in this case subexponential, as shown
in [5].

Lower Bounds. Hardness of proving lower bounds for the 2DFA vs. 2NFA
problem is connected to the fact that we have to reason about all possible 2DFAs.
This includes automata without any clear structure and meaning of states. In
the same time not being able to give clear meaning to the states and transitions
makes them impractical for the means of proving their correctness.When proving
that a automaton solves some problem, we usually argue about the meaning of
the states, about possible places in a word where it can be in some states or about
reasons to change the state. So there is a gap between the set of automata we
reason about when trying to solve a problem and a set of all possible automata we
have to consider when proving lower bounds. Therefore a possible step towards
solving the general problem might be to focus on automata with a clear meaning
of states.

One of the advantages of this approach is that we can selectively prove lower
bounds for various kinds of stored information and therefore proving that some
approaches to the 2DFA vs. 2NFA problem will not work. It also allows us to
incrementally study more and more complicated kinds of automata and find a
point where we are no longer able to prove some good lower bounds. We also
believe that understanding of automata with complex structure of information
stored in states will lead to better understanding of the general case.

To achieve this goal, we define a model in which each state is mapped to a
logical formula. Each formula is composed either of some atomic proposition, or
a combination of such propositions. The choice of a different set of atomic propo-
sitions or a different type of allowed composition leads to models with different
succinctness. An atomic proposition might, for example, be an existence of a
path between two vertices or a reachability of a vertex in the two-way liveness

problem. In respect to the composition of these formulæ, two different models are
examined. The first one is to allow only conjunction of the allowed propositions.
This represents an approach where the information in the states can be either
accumulated or forgotten, but there is no more complex structure involved. The
second one is to allow any well-formed formula of the propositional calculus.

Determinism vs. Nondeterminism for Two-Way Automata 29

We build our model as an extension of the random access automaton, so
that we can exclude the movement of head from the computation logic of the
automaton. Naturally, all lower bounds obtained in this model are valid also
for the analogous model based on two-way movement. Moreover, as shown in
Theorem 1, while focusing on the words with bounded length, this choice doesn’t
unreasonably blow up the number of states in comparison to the model with
two-way head movement, so any upper bound can be adjusted for the two-way
movement model.

The main focus of this paper is on comparing the succinctness of 1NFAs
vs. 2DFAs, as well as 2NFAs vs. 2DFAs. We use the one-way liveness and
two-way liveness problems, which are complete with respect to the 1NFA vs.
2DFA and 2NFA vs. 2DFA questions. In this context, a problem is an infinite
language family, and we analyze the number of states necessary to solve the n-th
language of this family as a function of n. Moreover, we restrict the considered
language families such that the n-th language contains only words of length
restricted by some polynomial of n. We also consider even stronger restriction
to words of length 2 only.

We show that, once we restrict ourselves only to automata with atomic pred-
icates based either on a reachability of a vertex or on an existence of a path
between two vertices, connected only by conjunction, we are unable to solve
one-way liveness with less than exponential number of states, even if we re-
strict the inputs to the length of 2. On the other hand, if we allow any well-formed
formula over predicates based on an existence of an edge in the graph, we can
solve even the polynomially bounded version of two-way liveness with subex-
ponential number of states. This means that, for the language families where the
n-th member has the length bounded by an polynomial p(n) and is solvable by
an n state 2NFA, there exist an 2DFA with subexponential number of states.
Therefore the often used corollary of the result by Bergman and Lingas [1] stating
that,

Corollary 1. Assuming that we are able to show an exponential gap between the
size complexity of two-way deterministic and two-way nondeterministic automata
using only languages with polynomially long words, this fact would immediately
imply L �= NL.

is shown to be too weak and the appropriate wording of this corollary should
mention a superpolynomial gap.

2 Liveness Problems

A complete problem for the question of number of states needed to simulate a
2NFA by a 2DFA is called two-way liveness and was defined in [17]. It is an
infinite language family {Cn}n≥1. The words from the n-th language Cn are com-
posed of letters, where each of them is a graph over 2n vertices, without self loops.
The vertices are divided into two columns, each of them of size n. In the Figure
1 (a) are four letters from the alphabet Γ5 belonging to the 5-th language of this

30 J. Hromkovič et al.

family. The input word is understood as a graph, which arises by identifying the
adjacent columns of the input letters. A word belongs to the language if and only
if there exists an oriented path from some vertex in the leftmost column to some
vertex in the rightmost column of this graph (see Fig. 1 (b)).

It is possible to create a 2NFA with O(n) states accepting the n-th language of
two-way liveness by nondeterministically choosing one of the leftmost vertices
and then iteratively guessing the next vertex of the path. But the existence of
a 2DFA accepting this language family with number of states polynomial in n
would imply that the same is true for any language family whose n-th member
can be accepted by a 2NFA with n states.

The problem one-way liveness, complete with respect to the question of
simulation of 1NFAs by 2DFAs is also defined in [17]. This problem is a special
case of the two-way liveness, where in the alphabet Σn only oriented edges
from the left column to the right one are allowed. The n-th language of one-way
liveness is called Bn.

The restriction of this language family where the language Bn contains only
words of length f(n) will be denoted as one-way livenessf(n).

(a) (b)

Fig. 1. (a) Four letters from alphabet Γ5, (b) Word w formed by concatenation of
these 4 letters, and the respective path from the leftmost column to the rightmost

3 Reasonable Automata

Definition 1. The deterministic random access finite automaton A (RAFA)
over the words of fixed length m, an alphabet Σ, with a set of states Q is defined
as A = (qs, QF , QR, δ, τ), where

1. qs ∈ Q is a start state,
2. QF ⊆ Q is a set of final states (called also accepting states),
3. QR ⊆ Q is a set of rejecting states,
4. δ is a transition function which totally maps Q \ (QF ∪QR)×Σ to Q,
5. each state q (apart from the accepting and rejecting states) has defined its

focus τ(q) : Q \ (QF ∪QR) → {1, 2, . . . ,m}

The computation starts at qs on the τ(qs)-th symbol of the input word z. In each
computation step, the next state is set to the value of δ(q, a), where q is the
current state and a is the symbol placed on the τ(q)-th position. The automaton
works on inputs of fixed length m and each computation ends either in accepting
or rejecting state.

Determinism vs. Nondeterminism for Two-Way Automata 31

Theorem 1. For every deterministic RAFA A with p states working on input
words of size m, it is possible to construct an equivalent 2DFA A′ with O(mp)
states.

Proof. 1. For each state q ∈ Q, we will define m states of two types qi; the
counter i is used to store the current position of the head. A′ starts in state
(qs)1. To simulate one step of A, it moves its head to the correct position
in at most m steps: δ′(qi, a) = (qi−1,−1) if i > τ(q), δ′(qi, a) = (qi+1, 1) if
i < τ(q). Afterwards, it simulates the step of A: δ′(qi, a) = ((δ(q, a))i, 0) if
i = τ(q).

2. QR states are removed, for each state in QF we create a transition to a new
accepting state qf

3. Moreover the 2DFA does operate over words of any length, so we need
additional m + 2 states to test whether the length of the input word is
exactly m. �

Definition 2. Let F be a set of propositional expressions over some set of
atoms. Reasonable Automaton over F is a Random Access Finite Automaton
A with an additional mapping κ : Q → F , such that the following holds

1. If A is in a state q while processing z, then the condition κ(q) must be valid
for z (in the given interpretation of the atoms).

2. If the value δ(q, a) = p is defined for a triple p, q ∈ Q and a ∈ Σ, then,
for each z′ ∈ Σm s.t. z′τ(q) = a and the condition κ(q) is valid for z′, the

condition κ(p) is valid as well.
3. For any q ∈ QF , condition κ(q) must not be valid for any w /∈ L(A)
4. For any q ∈ QR, condition κ(q) must not be valid for any w ∈ L(A)

4 Main Results

As discussed before, the choice of reasonable automata with different set of
allowed propositional expressions F leads to classes of automata with different
succinctness. A general way of restricting the logic of reasonable automata is
restricting the set of allowed logical connections and / or a set of allowed atomic
statements. We examine different combinations of allowed atomic statements
(predicates) and logical connections.

We examine two different ways of the choice of logical connections. In the first
case, the stored information is only accumulated, which is represented as a con-
junction of the predicates and it’s negations. In the second case, the information
is having a more complicated form, as we allow all well-formed formulæ over the
atomic predicates.

The chosen predicates represent different kinds of information one can gather
about the input graph in the liveness problem families. While there are more
graph concepts worth studying, we have restricted ourself on information about
the existence of an edge or a path in a graph.

32 J. Hromkovič et al.

In the following text the predicates e(a, b), p(a, b) and p(a, b, c) will be used.
The predicate e(a, b) is true iff there is an edge from a to b in the input graph.
Similarly, the predicate p(a, b) is true iff there is a path from a to b in the given
graph and p(a, b, c) is true iff there is a path from vertex a to b with a vertex c
lying on the path.

For two combinations of the predicates and allowed connections we were able
to show an exponential gap between 2NFAs and 2DFAs. At the same time we
have shown that by extending these logics either by more complex predicates
or a wider sets of allowed connections it is possible to get a pseudopolynomial
upper bound on the gap between the general 2NFAs and 2DFAs in the two-way

liveness problem restricted to the inputs of a polynomial length.

4.1 Lower Bounds

Theorem 2. Allowing the propositional variables to carry only information
about the existence of the path between any two vertices of the graph and al-
lowing only formulæ created by a conjunction of such variables, any reasonable
automaton A solving the n-th language from the one-way liveness2 language
family needs to have at least 2n states.

Proof. Let a be any vertex in the first column, b in the third column and C the
set of all vertices in the second column of the graph defined by words of length
two over the alphabet Σn. We define a subset L = {z1, z2, . . . , z2n−2} of Σ2

n as
follows: for any Ø � D � C there is a word in L, such that it consist of the
edges (a, c′) for every c′ ∈ D and (c′′, b) for every c′′ /∈ D.

Now we will look at the computation of A on this subset of inputs. As each
word zi from L has to be rejected, there is some state q in the computation on zi,
s.t. κ(q) → ¬p(a, b). The first state satisfying this property in the computation
over zi will be denoted as qi. Evidently no qi is equal to qs, therefore for each
qi exist a state ri which precedes qi in the computation over zi. The set of the
states ri will be denoted as R. We show that, for any two words zi, zj ∈ L s.t.
zi �= zj, it holds that ri �= rj .

We can divide the set R on two disjoint subsets R1 and R2, where Ri is a set
of states q with focus on the i-th symbol of the input word. If we take two states
ri ∈ R1 and rj ∈ R2 then they cannot be equal, therefore we have to show that
the previous claim holds for any two states from the same subset. We show this
for ri, rj ∈ R1, the other case is analogous.

As the words zi and zj are different, so are the subsets Di and Dj used in the
construction of these words. Hence there is some vertex c either in Di \ Dj or
in Dj \Di. Suppose c ∈ Di \Dj . As an edge (a, c) is in zi, to be able to deduce
that ¬p(a, b), while reading the first letter, the ¬p(c, b) has to be a part of κ(ri).
But it cannot be also a part of κ(rj), as this is not true for zj and therefore
the first condition from the Definition 2 does not hold. Therefore the states ri
and rj are different and as there are 2n − 2 different words in L, there are also
at least 2n − 2 different states ri. None of these states is accepting or rejecting,
therefore A has at least 2n states. �

Determinism vs. Nondeterminism for Two-Way Automata 33

The previous proof used just a small subset of input words, so the question
is whether the lower bound could not be improved significantly towards the
trivial upper bound of O(2(n

2)), which can be obtained by just remembering
the existence and non-existence of all the edges in the first letter and then, in
a state focusing on the second letter, deciding whether there is some path from
left to the right side or not. But this trivial upper bound can be pushed down
to O(n22n) by doing a similar approach for the edges connected to one of the
leftmost vertices a, then checking whether this leads to a (a, b)-path (for some
rightmost vertex b) and if not, then remembering this information and testing
this for other pairs of leftmost vertices a and rightmost vertices b. If we do this in
some fixed order of a-b pairs, it leads to a O(n22n) state reasonable automaton.

Similar idea as in the previous proof can be used also to show an analogical
result for the case where we allow only predicates about the reachability of a
vertex instead of the predicates about a path between two vertices.

Theorem 3. Allowing the propositional variables to carry only information
about the reachability of a vertex of the graph and allowing only formulæ created
by a conjunction of such variables, any reasonable automaton A solving the n-th
language from the one-way liveness2 language family needs to have at least
2n states.

4.2 Upper Bounds

Theorem 4. Consider propositional variables p(a, b, c) with the interpretation
that there exists a path from a to b going through c, and let F be propositional
formulæ created by conjunctions of such variables and their negations. Then
there exists a family of reasonable automata over F , solving a restriction of the
one-way livenessm to the paths between one dedicated vertex in the leftmost
column and one dedicated vertex in the rightmost column. The number of states
of this automaton is O(mnlog2(m)).

Proof. We shall prove this theorem constructively. The construction is based on
a divide-and-conquer approach, similar to the approach known from Savitch’s
theorem. To solve the problem on words of length m, solutions of this problem
on words of length m/2 are utilized.

We use the following notation: A problem of deciding whether there is a path
between a vertex a (in the k-th column) and a vertex b (in the (l+1)-th column)
will be denoted as PATH(a, b, k, l), with the corresponding automaton Aa,b over
state set Qa,b. These automata will work just on the parts of the input indexed
from k to l. We can either think of them as working on words of length at least
l or, after extending our model to allow the indexing of the word to start at
any position, as working on words of length l − k + 1 indexed from k. In the
rest of the proof we use the second approach. Each of these automata contains
three designated states qs, qr, qf , which will be in ambiguous context denoted by
qa,b,s, qa,b,r, qa,b,f . The definition of the automaton Aa,b follows.

34 J. Hromkovič et al.

To solve the base case, i. e., the problem PATH(a, b, k, k), the automaton Aa,b =
(qs, QF , QR, δa,b, τ) with an additional mapping κa,b works on words of length
1 (starting at the k-th position) and accepts them only in the case that there
exists an edge between the vertices a and b, otherwise it rejects.
1. Qa,b = {qs, qf , qr}, QF = {qf}, QR = {qr}

2. δ(qs, x) =

{
qf if the edge (a,b) is contained in letter x
qr otherwise

3. τ(qs) = τ(qf) = τ(qr) = k
4. κ(qs)a,b = ∅, κ(qf)a,b = p(a, b), κ(qf)a,b = ¬p(a, b)

Consider now the problem PATH(a, b, k, l) of finding a path between any pair of
vertices a and b, and the column in the middle of the distance between these two
vertices, namely the column �k+l2 �+1. For each vertex in this column (ci for i ∈
[1, n]), test whether there exists an (a,ci)-path, and if it does, test whether there
exists a (ci,b)-path. We can solve these problems by the respective automata and
use them as subroutines for the automaton Aa,b.

For clarity reasons, we allow the automaton to use ε transitions. It holds that
κ(q) ⇒ κ(r) for each p, q such that δ(q, ε) = p. Therefore the ε transitions can
be removed by replacing each such state q by the state p, without losing any of
the required properties. The tuple (qs, QF , QR, δa,b, τ) is defined as follows:
1. The state set of the automaton Aa,b is a union of the (disjoint) state sets

of automata Aa,ci , Aci,b responsible for proving the existence of the (a, ci)
and (ci, b) paths where ci is the i-th vertex in the column number �k+l2 �+1.
Formally,

Qa,b =
n⋃
i:=1

Qa,ci ∪
n⋃
i:=1

Qci,b ∪ {qs, qf , qr},

QF = {qf}, QR = {qr}
2. The transition function contains complete transition functions of automata

Aa,ci , and Aci,b, and some new transitions. First, there are transitions that
lead to acceptance of the word by showing that it is possible to find a way
from a to b going trough some vertex ci. These connect the accepting state of
Aa,ci to the start state of Aci,b, and accepting states of Aci,b to the accepting
state of the entire automaton Aa,b. The states from the second group lead
from rejecting states in some level ci to the starting state of the level ci+1

or to the rejecting state of Aa,b. Formally

δa,b =

n⋃
i:=1

δa,ci ∪
n⋃
i:=1

δci,b ∪ δa,b,ε

where the function δa,b,ε is defined as

δa,b,ε(qs, ε) = qa,c0,s (1)

δa,b,ε(qa,ci,f , ε) = qci,b,s for i := [1, n] (2)

δa,b,ε(qci,b,f , ε) = qf for i := [1, n] (3)

δa,b,ε(qa,ci,r, ε) = δa,b,ε(qci,b,r, ε) = qa,ci+1,s for i := [1, n− 1] (4)

δa,b,ε(qa,cn,r, ε) = δa,b,ε(qcn,b,r, ε) = qr (5)

Determinism vs. Nondeterminism for Two-Way Automata 35

3. The value of τ of the previously defined states does not change, for the newly
defined states τ(qs) = τ(qf) = τ(qr) = k.

4. The mapping κa,b contains the whole information from the subproblems and
information already gathered by previous steps of the algorithm.

κa,b(qs) = ∅, κa,b(qf) = p(a, b), κa,b(qr) = ¬p(a, b),

κa,b(q) =

⎧⎪⎪⎨⎪⎪⎩
κa,ci(q) ∧ (

i−1∧
j:=1

¬p(a, b, cj)) q ∈ Qa,ci for i ∈ [1, n]

κa,ci(q) ∧ (
i−1∧
j:=1

¬p(a, b, cj)) ∧ p(a, ci) q ∈ Qci,b for i ∈ [1, n]

We need to show that the previously defined automaton Aa,b is a reasonable
automaton and solves the problem PATH(a, b, k, l). First – the automaton is
deterministic, as the automata for the base cases are deterministic and the only
new transitions added in any step are for the states that were not used before
(the new state qs and the previously final and rejecting states), and for each of
the states in Q\(QF ∪QR) there is exactly one transition defined. Moreover, the
transition graph is a DAG, so the automaton either accepts or rejects the input
word after a finite number of steps. Moreover, we need to show that the condi-
tions from the definition of a reasonable automaton hold. We show this not only
for the automaton from the theorem description (working on the words of length
m starting at index 1), but for any automaton Aa,b solving the PATH(a, b, k, l)
problem. Let us handle the conditions from Definition 2 one by one:

1. If Aa,b is in a state q while processing a word z, then the condition κa,b(q)
must be valid for z.

Let x denote the smallest value of k − l such that there exists an automaton
Aa,b created by the previous construction to solve PATH(a, b, k, l) for which
there exists a word z of length x violating the condition. Let Aa,b be any such
automaton and z be any “bad” word. There is some state q which is the first
state in the computation of Aa,b on the word z, for which the condition κa,b(q)
does not hold. First assume that q ∈ Qa,b \ {qs, qr, qf}. Depending on the state

q, κa,b(q) consist of either two or three parts – κa,ci(q),
i−1∧
j:=1

¬p(a, b, cj) for some

i, and, for some states, also p(a, ci). The first part is valid, as otherwise the
automaton Aa,ci working on words of length �x/2� or �x/2�+1 with some word
z′ would be a smaller counterexample.

The formulæ in the second part are valid, as the state q is reachable only
through the state r for which either ¬p(a, cj) or ¬p(cj , b) holds. Therefore if this
part of the formula is invalid, then it was already invalid for the state r — a
contradiction to the fact that q is the first state for which this condition does
not hold. The same reasoning can be used for the third part of the formula.

κa,b(qs) = ∅ and this is valid for any word z. κa,b(qf) = p(a, b) and this is true
as κa,b(r) in the state r from the previous step encompassed p(a, ci) ∧ p(ci, b)
for some vertex ci, so if this held, then also p(a, b) holds. Analogous reasoning
shows that κa,b(qr) = ¬p(a, b) is valid as well.

36 J. Hromkovič et al.

2. If the value δ(q, x) = p is defined for a triple p, q ∈ Q and x ∈ Σ, then, for
each z ∈ Σm s.t. zτ(q) = x and the condition κ(q) is valid for z, the condition
defined in κ(p) is valid as well.

For an ε transition this means that κ(p) should be a logical consequence of κ(q).
If we look at any transition between two states p and q, this transition must be
defined at the deepest level of the recursion in which both of these states are
defined. Especially, every non-ε transition between two states is defined at the
deepest level. If we divide the parts of the formula κ to those already defined
in this level and the ones added in higher levels, that the values of κ(r) and
κ(q) differ only in the part defined in this level. Hence, for any non-ε transition
this part of the condition depends only on the currently read letter, not on the
input word z. It is easy to check that for the ε transitions δ(q, ε) = p the claim
κ(q) ⇒ κ(r) holds.

3. The condition defined for any q ∈ QF as κ(q) must not be valid for any
w /∈ L(A)

The condition is p(a, b) and this is not true for any word w /∈ L(A).

4. The condition defined for any q ∈ QR as κ(q) must not be valid for any
w ∈ L(A)

The condition is ¬p(a, b) and this is not true for any word w ∈ L(A).
As all of the previously written conditions hold, the defined automaton Aa,b is

a reasonable automaton, and solves PATH(a, b, k, l). Now we have to show that
this automaton has O(mnlog2(m)) states.

As previously mentioned, the ε transitions δ(q, ε) = p can be removed by
recursively replacing each state q by the state p. The number of states of such
automaton can be described by the following recurrence relation.

S(m) = n(S(�m/2�)− 2) + n(S(�m/2�)− 2) + 2

S(1) = 3

Therefore the number of states for the automaton working on words of length
m is O(mnlog2(m)). �

Theorem 5. Consider propositional variables p(a, b, c) with the interpretation
that there exists a path between vertices a and b going through the vertex c, and
let F be propositional formulæ created by conjunctions of such variables. There
exists a family of reasonable automata solving one-way livenessr(n) by using
pseudopolynomial number of states (with respect to n) for any polynomial r(·).

Proof. The automaton solving this problem for a fixed n will consist of n2 state
sets, each of them solving PATH(a, b, 1, r(n)) for a pair of vertices a and b. Sim-
ilarly as in the proof of the previous theorem, the states have to carry only
information that all already tested pairs are not connected. The algorithm ac-
cepts the word when it finds a pair of vertices for which a path exists and rejects

Determinism vs. Nondeterminism for Two-Way Automata 37

in case that there is no path between all possible combination of leftmost and
rightmost vertices of the graph.

Let r(n) ≤ dnc, for some constants c, d. Then we can use the result from
the previous theorem to solve PATH(a, b, 1, r(n)) by using O(dncnlog2(dn

c)) =
O(nc(1+log2(dn))) states, what is pseudopolynomial with respect to n. �

Theorem 6. Consider propositional variables e(a, b) with the interpretation that
there exists an edge between vertices a and b, and let F be all propositional for-
mulæ over variables e(a, b). There exists a family of reasonable automata over
F solving one-way livenessr(n) by using pseudopolynomial number of states
(with respect to n) for any polynomial r(·).

Proof. Every variable p(a, b, c) can be rewritten by a formula
n∨

j:=1

(p(a, c) ∧ p(c, b)).

Then every variable p(a, b) can be rewritten as a disjunction of all possible paths,
where each path is a conjunction of its edges. By rewriting every p(a, b, c) in the
function κ from previous theorem, we get a a function κ′ which uses only well
formed formulæ over variables e(a, b), which are true if and only if there is an
edge a, b in the graph represented by the input word. �

The result from Theorem 6 about the one-way livenessr(n) problem can be
extended also for two-way livenessr(n). We shall not show the complete proof,
but only the parts that differ from the proof of Theorem 4 and Theorem 6.

Theorem 7. Consider propositional variables e(a, b) with the interpretation that
there exists an arc (directed edge) between vertices a and b, and let F be all
propositional formulæ over variables e(a, b). There exists a family of reason-
able automata over F solving two-way livenessr(n) by using pseudopolynomial
number of states (with respect to n) for any polynomial r(·).

Proof. The main difference between the proof of this theorem and Theorem 4 is
that, instead of the predicate p(a, b, c), the predicate p(a, b, c, len) is used which
is true if and only if there is a path between a and b going through c with a
length at most len. Similarly, instead of solving PATH(a, b, k, l), the problem
PATH(a, b, k, l, len) is solved, with the same meaning of the last variable –
PATH(a, b, k, l, len) is true iff there is a path from vertex a in column k to
vertex b in column l of length at most len; the path can pass via any vertex,
not just between columns k and l. Deciding whether there is a path between
some vertex a in the first column and some vertex b in the last (i. e., (m+1)-st)
column is then equivalent to solving PATH(a, b, 1,m,m · n).

To solve PATH(a, b, k, l, len), the PATH(a, c, k, o−1, �len/2�) and PATH(c,
b, o, l, �len/2�) for each vertex c (on each position o) are recursively called, unless
len ≤ 1. The predicate p(a, b, c, len) can again be rewritten as a formula using
only predicates e(a, b).

There are also some other minor differences one has to think of. For example,
the graph created by the concatenation of the graphs in the letters of the input
word is a multigraph, as it can have two edges between each two distinctive

38 J. Hromkovič et al.

vertices in the same column, one in the left letter containing the vertices and
one in the right letter. The direct consequence of this fact is that the trivial case
in general cannot be computed in one step, because to find out whether there is
no path of length 1 between two vertices in the same column one has to check
both its adjacent letters. �

Theorem 7 provides a family of RAFAs working over words of fixed length r(n).
By applying Theorem 1, however, we obtain corresponding 2DFAs with pseu-
dopolynomial number of states. Moreover, using this construction r(n) times
yields corresponding 2DFAs working of all inputs of length at most r(n).

5 Conclusion

In this paper we have expressed the intuition why is proving the size gap between
2DFAs and 2NFAs so hard. When proving upper bounds, one assigns a clear
meaning to the individual states of the constructed automata, and use it in
the proof of correctness. On the other hand, lower bounds must deal with all
automata, without relying on any meaning of the states. We proposed the model
of reasonable automata to bridge this discrepancy between upper and lower
bounds: In this model, we require the meaning of the states to be explicitly
assigned during the construction of the automata in a particular logic.

For some restrictions on the considered logic, we have proven an exponential
gap in the size of 2NFAs and 2DFAs. On the other hand, relaxing these restric-
tions allows us to prove a subexponential upper bound on this gap by adapting
the ideas used in Savitch’s theorem. We hope that further improvements on the
lower bounds will give us more insight into how complex meaning of states it is
necessary to consider to successfully attack the 2NFAs vs. 2DFAs problem, and
thus helping us to better understand the relationship between determinism and
nondeterminism in general.

References

1. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite
automata. Technical report, Institute of Computer Science, Polish Academy of
Sciences, Warsaw (1977)

2. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Sci-
ence 47(2), 149–158 (1986)

3. Durǐs, P., Hromkovič, J., Jukna, S., Sauerhoff, M., Schnitger, G.: On Multiparti-
tion Communication Complexity (Extended Abstract). In: Ferreira, A., Reichel,
H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 206–217. Springer, Heidelberg (2001)

4. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Information
and Computation 205(11), 1652–1670 (2007)

5. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterminis-
tic unary automata into simpler automata. Theoretical Computer Science 295,
189–203 (2003)

6. Hromkovič, J., Sauerhoff, M.: The power of nondeterminism and randomness for
oblivious branching programs. Theory of Computing Systems 36(2), 159–182 (2003)

Determinism vs. Nondeterminism for Two-Way Automata 39

7. Kapoutsis, C.A.: Small Sweeping 2NFAs Are Not Closed Under Complement. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4051, pp. 144–156. Springer, Heidelberg (2006)

8. Kapoutsis, C.A.: Deterministic moles cannot solve liveness. Journal of Automata,
Languages and Combinatorics 12(1-2), 215–235 (2007)

9. Kapoutsis, C.A.: Size Complexity of Two-Way Finite Automata. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg
(2009)

10. Kapoutsis, C.A., Královič, R., Mömke, T.: Size complexity of rotating and sweeping
automata. Journal of Computer and System Sciences 78(2), 537–558 (2012)

11. Kolodin, A.N.: Two-way nondeterministic automata. Cybernetics and Systems
Analysis 10(5), 778–785 (1972)

12. Královič, R.: Infinite vs. finite space-bounded randomized computations. In:
Proc. of the 24th Annual IEEE Conference on Computational Complexity
(CCC 2009), pp. 316–325. IEEE Computer Society, Washington, D.C. (2009)

13. Královič, R.: Complexity classes of finite automata. Doctoral dissertation, ETH
Zurich, No. 18871 (2010)

14. Micali, S.: Two-way deterministic finite automata are exponentially more succinct
than sweeping automata. Information Processing Letters 12(2), 103–105 (1981)

15. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions
on Computers 100(20), 1211–1214 (1971)

16. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development (3) (1959)

17. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite au-
tomata. In: Proc. of the 10th Annual ACM Symposium on Theory of Computing
(STOC 1978), pp. 275–286. ACM Press, New York (1978)

18. Sipser, M.: Halting space-bounded computations. Theoretical Computer Sci-
ence 10(3), 335–338 (1980)

Cellular Automata, the Collatz Conjecture

and Powers of 3/2

Jarkko Kari�

Department of Mathematics, University of Turku, FI-20014 Turku, Finland
jkari@utu.fi

Abstract. We discuss one-dimensional reversible cellular automata F×3

and F×3/2 that multiply numbers by 3 and 3/2, respectively, in base 6.
They have the property that the orbits of all non-uniform 0-finite con-
figurations contain as factors all finite words over the state alphabet
{0, 1, . . . , 5}. Multiplication by 3/2 is conjectured to even have an orbit
of 0-finite configurations that is dense in the usual product topology. An
open problem by K. Mahler about Z-numbers has a natural interpreta-
tion in terms the automaton F×3/2. We also remark that the automaton
F×3 that multiplies by 3 can be slightly modified to simulate the Collatz
function. We state several open problems concerning pattern generation
by cellular automata.

1 Introduction

In 1960 S. Ulam asked whether there exists a cellular automaton that generates
all finite patterns of states starting from some finite seed [1, page 30]: “Do
there exist “universal” systems which are capable of generating arbitrary systems
of states ?” In [2] we gave an affirmative answer by constructing a reversible
one-dimensional cellular automaton with six states in which the forward orbit
of every (non-uniform) finite configuration contains copies of all finite patters
over the state alphabet. The automaton is quite simple: it multiplies by three
numbers in base six. We also pointed out that a variant of the automaton that
multiplies by 3/2 seems to have the stronger property that the orbits of finite
initial configurations are dense in the standard product topology, meaning that
all finite patterns get generated at all positions. However, proving that this is
indeed the case seems difficult as it would require solving some difficult open
problems concerning the denseness of the fractional parts of powers of 3/2.

In this presentation we consider again the automata that multiply by 3 and
3/2, and recall their universal pattern generation properties from [2]. We point
out that these automata are closely related to some well known open problems
in number theory. We show how the question by K. Mahler about the existence
of Z-numbers [3] can be interpreted as a tiling problem or, more precisely, as a
problem concerning space-time diagrams of our CA. We also provide a simple
simulation of the Collatz function [4] in terms of the CA.

� Research supported by the Academy of Finland Grant 131558.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 40–49, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Cellular Automata, the Collatz Conjecture and Powers of 3/2 41

2 Definitions

Let S be a finite state set. Elements of SZ are bi-infinite sequences over S, called
(one-dimensional) configurations. Elements of Z are termed cells, and xi is the
state of cell i in configuration x ∈ SZ. A finite pattern is an element of SD for
some finite domain D ⊆ Z. For any configuration x ∈ SZ and cell i ∈ Z, we
denote by xi+D the pattern with domain D extracted from position i in x. More
precisely, xi+D ∈ SD is such that, for all d ∈ D, we have xi+D(d) = xi+d. We
then say that configuration x contains in position i ∈ Z a copy of pattern xi+D.

A one-dimensional cellular automaton (CA) over S is a function F : SZ −→ SZ

that is defined by a finite neighborhood N ⊆ Z and a local update rule f : SN −→
S as follows: For every x ∈ SZ and cell i ∈ Z,

F (x)i = f(xi+N).

A forward orbit (a two-way orbit) of the cellular automaton is a sequence
c0, c1, . . . (sequence . . . , c−1, c0, c1, . . ., respectively) of configurations satisfying
ct+1 = F (ct). A space-time diagram is a two-dimensional representation of an
orbit where the horizontal and the vertical directions represent the spatial and
temporal directions, respectively. It is thus an array d ∈ SZ×N or d ∈ SZ×Z

obtained from a forward orbit c0, c1, . . . or a two-way orbit . . . , c−1, c0, c1, . . . by
reading di,t = cti. In this paper the diagrams are displayed with time increasing
downwards. Note that space-time diagrams are two-dimensional tilings where
the local update rule of the cellular automaton provides the allowed patterns.

Cellular automata are frequently studied under the product topology on SZ.
This topology is generated by the cylinder sets

[p] = {x ∈ SZ | x0+D = p}

where p ∈ SD is a finite pattern. The Curtis-Hedlund-Lyndon -theorem char-
acterizes cellular automata to be precisely those functions SZ −→ SZ that
are continuous in the product topology and that commute with the left shift
σ : SZ −→ SZ, defined by σ(x)i = xi+1.

A configuration is q-finite, for q ∈ S, if all but a finite number of cells are in
state q, and it is q-uniform if all cells are in state q.

Cellular automata with neighborhood {−r, . . . , r} are called radius-r CA. If
the neighborhood is {0, 1}, we say the CA has radius- 12 neighborhood. We sim-

plify notations by identifying p ∈ S{0,1} with (p(0), p(1)) ∈ S × S so that the
local update rule becomes a function S × S −→ S, and it can be given as a
lookup table.

Cellular automaton F : SZ −→ SZ is called reversible if it is bijective and the
inverse function F−1 is also a cellular automaton. It follows from the Curtis-
Hedlund-Lyndon -theorem and the compactness of SZ that bijectivity implies
the second condition, so reversibility is equivalent to bijectivity of F . Moreover,

42 J. Kari

every injective CA is surjective, so that injectivity of F is also equivalent to
reversibility. See [5] for more details and background on the theory of cellular
automata.

Definition 1. Cellular automaton F : SZ −→ SZ and a q-finite configuration
x are a weak universal pattern generator if, for every finite domain D ⊆ Z and
every pattern p ∈ SD, there is t ≥ 0 such that F t(x) contains a copy of p. They
are a strong universal pattern generator if, for every finite D ⊆ Z and pattern
p ∈ SD, and for every i ∈ Z, there is t ≥ 0 such that F t(x) contains a copy of p
in position i.

In terms of the product topology, strong universal pattern generation means that
the forward orbit {x, F (x), F 2(x), . . .} is dense in SZ. Note that the difficulty of
finding universal pattern generators comes from the fact that the initial config-
uration is required to be q-finite: without this constraint, trivial CA such as the
left shift σ would do the job. Also note that all patterns over the entire state set
S must be generated: the task of producing all words over a proper sub-alphabet
would be indeed very easy.

3 A Universal Pattern Generator

In [2] we presented a simple radius- 12 one-dimensional reversible cellular automa-
ton F×3 with six states that is a universal pattern generator in the weak sense.
The CA multiplies numbers that are represented in base 6 by three. This par-
ticular CA has also been previously studied in other contexts. It is illustrated
in S. Wolfram’s book “A New Kind of Science” [6, page 661]. In [7], the same
local update rule was studied on one-sided configurations (indexed by N instead
of Z), in which case the CA is not reversible. The work [8] relates the one-sided
variant to the Furstenberg conjecture in ergodic theory [9].

We start by recalling the definition and basic properties of F×3 from [2]. The
state set is S = {0, 1, 2, 3, 4, 5}. The automaton uses radius- 12 neighborhood
{0, 1}, and its local rule f : S × S −→ S is given by

f(s, t) = (3s)mod 6 + (3t)div 6.

Here and henceforth, for any integer n, we denote by (n)mod 6 and (n)div 6
the remainder and the quotient of n divided by 6, respectively. The following
equality holds for all integers n:

n = (n)mod 6 + 6((n)div 6). (1)

Note that the result of f(s, t) is in S for any s, t ∈ S, because (3s)mod 6 ∈ {0, 3}
and (3t)div 6 ∈ {0, 1, 2}. The local rule can also be read from the following table
whose element in position s, t is f(s, t):

Cellular Automata, the Collatz Conjecture and Powers of 3/2 43

1

1

3

4

3

3

3

32 1

31 4

32 1

31 4 4

35 2 1

342 3 1

31 1 3 3 2 1

33 4 4 4 4

31 5 2 2 2 1

35 4 1 1 4

32 5 3 3 2 1

31 2 3 1 3 1 4 4

34 1 3 34 5 2 1

32 4 45 51 13

31 12 23 332 5 4

Fig. 1. Evolution from the initial configuration . . . 00100 . . . in the CA that multiplies
by 3. Blank cells are in state 0. Time increases downward.

�
��s
t

0 1 2 3 4 5

0 0 0 1 1 2 2
1 3 3 4 4 5 5
2 0 0 1 1 2 2
3 3 3 4 4 5 5
4 0 0 1 1 2 2
5 3 3 4 4 5 5

See Figure 1 for a space-time diagram of the CA from the initial configuration
. . . 0001000

In the following we only consider 0-finite configurations, which we call simply
finite. Let us associate the rational number

α(x) =

∞∑
i=−∞

xi · 6−i

to each finite configuration x. The sum only has a finite number of non-zero
terms. Configuration x is the base 6 representation of α(x). It follows directly
from (1) and the way we defined F×3 that each application of F×3 on a finite
configuration multiplies the corresponding number by 3:

Lemma 1. For every finite configuration x ∈ SZ,

α(F×3(x)) = 3α(x).

44 J. Kari

Proof

3α(x) =

∞∑
i=−∞

3xi · 6−i

=
∞∑

i=−∞
[(3xi)mod 6 + 6((3xi)div 6)]6−i

=

∞∑
i=−∞

[(3xi)mod 6 + (3xi+1)div 6]6−i

=

∞∑
i=−∞

F×3(x)i · 6−i

= α(F×3(x)) �

The CA F×3 is reversible. In fact, it is a partitioned CA, a particularly simple
class of reversible CA. To see this, we identify the state set S = {0, 1, . . . , 5} bi-
jectively as the cartesian product of two sets Smod = {0, 3} and Sdiv = {0, 1, 2}
by the correspondence s ←→ ((3s)mod 6, (3s)div 6). Then the local rule is
f((s1, s2), (t1, t2)) = s1 + t2 where the addition (x, y) �→ x + y is a bijection
Smod × Sdiv −→ S.

We can also directly construct the inverse automaton F×1/3: it is the analo-

gously defined radius- 12 CA F×2 that multiplies by two in base 6, followed by
the right shift σ−1. Indeed, the right shift divides the represented number by 6,
so the composition F×3 ◦ F×1/3 multiplies numbers by 3× 2/6 = 1. We see that

(F×3 ◦ F×1/3)(x) = x for all finite configurations x ∈ SZ, and therefore also for

non-finite configurations x ∈ SZ.
The following theorem was proved in [2]. The main ingredient is the folklore

result stating, for example, the fact that the representations 1, 2, 4, 8, 16, 32 . . .
of powers of two in base ten contain as prefixes all finite sequences of digits.

Theorem 1. The CA F = F×3 and any finite (excluding the 0-uniform) initial
configuration x are a weak universal pattern generator.

Proof. For n = 0, 1, 2, . . ., let αn = α(Fn(x)) be the positive real number repre-
sented in base 6 by the configuration Fn(x) at time n. Because F multiplies by
3, we have that

αn = 3nα0.

Let w ∈ {0, 1, . . . , 5}∗ be an arbitrary word, and let a and A be the numbers in
the interval [0, 1) whose base 6 representations are 0.w0 and 0.w1, respectively.
In particular, the base 6 representation of any number in the interval (a,A)
begins 0.w0 In the following we prove that word w appears in some αn.

We use the fact that log6 3 is an irrational number, and therefore the set
{ Frac(n log6 3) | n = 1, 2, . . .} is dense in the interval [0, 1]. Here, Frac(r) is the
fractional part of the real number r, that is, 0 ≤ Frac(r) < 1 and r−Frac(r) ∈ Z.
In particular, it follows that there are n,m ∈ N such that

log6(a/α0) < n log6 3−m < log6(A/α0). (2)

Cellular Automata, the Collatz Conjecture and Powers of 3/2 45

Raising 6 to the powers of the different sides of (2) gives

a <
3nα0

6m
< A.

Dividing by 6m corresponds to shifting the base 6 representation by m positions
to the right. Hence the base 6 representation of αn = 3nα0 contains word w, or
more precisely, the configuration at time n is . . . 00w . . ., where the last 0 before
w is in position −m.

4 Strong Pattern Generation

It is clear that the automaton of Section 3 does not generate all patterns in
all positions because the cells on the right remain in state 0. We can try to
change this by shifting the configurations to the right so that the generated
patterns grow both to the right and to the left. With this in mind, let F×3/2 =
F×3 ◦ F×3 ◦ σ−1 be the automaton that applies F×3 twice and then shifts one
cell to the right. Right shift corresponds to division by 6, so F×3/2 multiplies
numbers in their base 6 representation by constant 3× 3/6 = 3/2. See Figure 2
for a space-time diagram of F×3/2.

1

1

3

4

3

32 1

32 1

35 2 1

31 1 3 3 2 1

31 5 2 2 2 1

32 5 3 3 2 1

34 1 3 34 5 2 1

31 12 23 332 5 4

31 13 3 3 5 5 53 2 2

3122 2 2 2 5 5 2 5 3

3123 3 3 4 2 5 1 1 3 5

312

3121 2 3 5 3 2 4 1 5 3 2 2 2

5 2 2 3 1 4 5 1 4 1 3 3

Fig. 2. Evolution from . . . 00100 . . . in the CA that multiplies by 3/2

Lemma 2. Cellular automaton F = F×3/2 and a finite initial configuration x
are a strong universal pattern generator if and only if the sets

Aξ = {Frac(ξ(3/2)n) | n = 0, 1, 2, . . .}

are dense in [0, 1] for all ξ = α(x)/6i, i ∈ Z.

46 J. Kari

Proof. We have α(Fn(x)) = α(x)(3/2)n. Taking the fractional part corresponds
to changing the states of all cells on the left to state 0, so the configuration yn
obtained by erasing in Fn(x) all non-zero states in positions ≤ 0 satisfies

α(yn) = Frac(α(x)(3/2)n).

Every finite pattern appears starting in position 1 if and only if {α(yn) | n =
0, 1, 2, . . .} = Aα(x) is dense, so this gives the condition in the lemma for ξ = α(x).

All patterns appear in all positions if and only if they appear in position 1 for
every initial configuration that is a translation of x, which gives the condition
in the lemma for all ξ = α(σ−i(x)) = α(x)/6i, i ∈ Z.

It is known that Aξ is dense for almost all ξ in the sense that the set of those
numbers ξ ∈ R for which this fails has measure zero [10]. However, it has turned
out to be very difficult to determine the denseness for specific choices of ξ. In
particular, we do not know whether Aξ is dense for any rational numbers ξ.

Open problem 1. Is the orbit of some 0-finite configuration dense under
F×3/2 ? Are the orbits of all non-uniform 0-finite configurations dense ?

5 Relation to Some Open Problems in Number Theory

Automata F×3 and F×3/2 can be related to some well known open problems in
number theory. We discuss the relation to Mahler’s Z-numbers and the Collatz
conjecture.

5.1 Mahler’s Z-Numbers

In [3], a Z-number was defined to be any ξ > 0 with the property that

0 ≤ Frac(ξ(3/2)n) <
1

2
(3)

for all n ≥ 0, and the problem of whether any Z-numbers exist was proposed.
The problem remains still unsolved. If ξ(3/2)n is written in base 6, the condition
(3) simply states that the first digit after the radix point is 0, 1 or 2, with the
exception that the fractional part may not be .2555 Hence the existence of
Z-numbers can be rephrased as a tiling problem, or as a question concerning
space-time diagrams of F×3/2 as follows:

Open problem 2 (Mahler’s problem [3]). Does there exist a space-time di-
agram di,t of F×3/2 with the following properties:

(i) d0,t ∈ {0, 1, 2} for all t ≥ 0,
(ii) di,0 = 0 for all sufficiently large i,
(iii) di,t �= 0 for some i and t.

Cellular Automata, the Collatz Conjecture and Powers of 3/2 47

The condition (ii) simply asserts that the configuration at time t = 0 represents
a finite real number, and the condition (iii) prevents the trivial solution ξ = 0.
Note that we do not need to explicitly forbid the fractional part .2555 . . . as this
can appear at most once in an orbit: (n+ 1

2)(
3
2)
t = m+ 1

2 is not possible for any
integers n,m, t with t > 0.

The condition (ii) is essential as there are space-time diagrams that satisfy (i)
and (iii). Figure 3 shows the periodic orbit of ω(250152113)ω that gets shifted
three positions to the right by each application of F×3/2. Every third column
only contains states 1 and 2.

2

12 5 2 1 35 1 12 5 2 1 35 1

12 5 2 1 35 1 12 5 2 1 35 1

12 5 2 1 35 1 12 5 25 1

1 31

1 2 1 35 1

12 5

2

12 5 2 1 35 1 12 5 2 1 35 1

12 5 2 1 35 1 12 5 2 1 35 1

12 5 2 1 35 1 12 5 25 1

1 31

1 2 1 35 1

12 5

2

12 5 2 1 35 1 12 5 2 1 35 1

12 5 2 1 35 1 12 5 2 1 35 1

12 5 2 1 35 1 12 5 25 1

1 31

1 2 1 35 1

12 5

2

12 5 2 1 35 1 12 5 2 1 35 1

12 5 2 1 35 1 12 5 2 1 35 1

12 5 2 1 35 1 12 5 25 1

1 31

1 2 1 35 1

12 5

Fig. 3. Evolution of the periodic configuration ω(250152113)ω by F×3/2

5.2 Collatz Function

The CA F×3 that multiplies by 3 in base 6 can be easily modified to calculate
the renowned Collatz function [4]

n �→
{
n/2, n even,
3n+ 1, n odd.

Indeed, all we have to do is to add a seventh state “·” that indicates the position
of the floating radix point. Since the left neighbor of the radix point determines
whether the number is even or odd, the point can move to the left on even num-
bers (hence introducing a division by 6, which together with the multiplication
by 3 that is always performed yields n �→ n/2), and the point can increment its
left neighbor on odd numbers (hence giving n �→ 3n + 1). Figure 4 shows the
space-time diagram from the initial configuration that represents in base 6 the
number 7. This automaton FC provides a proper cellular automaton alternative
to the quasi CA simulation of the Collatz function in [11].

The Collatz conjecture states that iterating the Collatz function starting from
any positive integer n will eventually lead to the periodic orbit 1 �→ 4 �→ 2 �→
1 �→ In terms of the CA FC we can state this as follows:

48 J. Kari

11

4

3 4

1

1 5

5 4

2 5

1 2 4

4 2

2 1

1 4

3 2

4

5

2

1 2

4

2

1

Fig. 4. Evolution 7 → 22 → 11 → 34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 →
16 → 8 → 4 → 2 → 1 by the CA that computes the Collatz function

Open problem 3 (Collatz conjecture). Is it true that for every

w ∈ {1, 2, . . .5}{0, 1, . . .5}∗

there exist t, n ≥ 0 such that

F tC(
ω0w.0ω) = σn(ω01.0ω).

6 Concluding Remarks

We have discussed a simple one-dimensional cellular automaton F×3 that can
generate all finite patterns over its state alphabet, starting from any non-trivial
finite initial configuration. We also provided a candidate automaton F×3/2 that
we conjecture to have dense orbits of finite configurations, and discussed the
relation of these automata to two renowned problems in number theory.

It remains an interesting question to determine if F×3/2 indeed is a universal
pattern generator in the strong sense. Of course, it is quite possible that some
other strong universal pattern generator exists for which it is easier to establish
this property.

Open problem 4. Does there exist a strong universal pattern generator ?

Another interesting question is to find universal pattern generators in higher
dimensional cellular spaces. We are not aware of a two-dimensional example
even in the weak sense.

Cellular Automata, the Collatz Conjecture and Powers of 3/2 49

Open problem 5. Does there exist a two-dimensional (weak) universal pattern
generator ?

Our weak universal pattern generator has six states. An analogous construction
can be done for any number of states as long as that number has at least two
distinct prime factors. For example, the CA that multiplies by two in base ten
is a weak universal pattern generator with ten states. However, we do not know
how to construct a universal pattern generator with a number of states that is
a power of a prime number. In particular, it would be nice to solve this problem
in the case of two states.

Open problem 6. Does there exist a weak universal pattern generator over the
binary state set S = {0, 1} ?

Acknowledgements. The author thanks Nicolas Ollinger for introducing
Ulam’s problem in his tutorial lecture at the Unconventional Computation 2011
conference in Turku. The formulations of the strong and weak variants of the
problem are from his lecture.

References

1. Ulam, S.: A Collection of Mathematical Problems. Interscience, New York, NY,
USA (1960)

2. Kari, J.: Universal pattern generation by cellular automata. Theoretical Computer
Science 429, 180–184 (2012)

3. Mahler, K.: An unsolved problem on the powers of 3/2. Journal of The Australian
Mathematical Society 8, 313–321 (1968)

4. Lagarias, J.: The 3x + 1 problem and its generalizations. Amer. Math. Monthly 92,
3–23 (1985)

5. Kari, J.: Theory of cellular automata: A survey. Theor. Comput. Sci. 334, 3–33
(2005)

6. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)
7. Blanchard, F., Maass, A.: Dynamical properties of expansive one-sided cellular

automata. Israel Journal of Mathematics 99, 149–174 (1997)
8. Rudolph, D.J.: ×2 and ×3 invariant measures and entropy. Ergodic Theory and

Dynamical Systems 10, 395–406 (1990)
9. Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in

diophantine approximation. Theory of Computing Systems 1, 1–49 (1967)
10. Wey, H.: Über die gleichverteilung von zahlen modulo eins. Math. Ann. 77, 313–352

(1916)
11. Cloney, T., Goles, E., Vichniac, G.Y.: The 3x+1 problem: A quasi cellular automa-

ton. Complex Systems 1, 349–360 (1987)

Quotient Complexities

of Atoms of Regular Languages�

Janusz Brzozowski1 and Hellis Tamm2

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada N2L 3G1

brzozo@uwaterloo.ca
2 Institute of Cybernetics, Tallinn University of Technology,

Akadeemia tee 21, 12618 Tallinn, Estonia
hellis@cs.ioc.ee

Abstract. An atom of a regular language L with n (left) quotients is a
non-empty intersection of uncomplemented or complemented quotients
of L, where each of the n quotients appears in a term of the intersection.
The quotient complexity of L, which is the same as the state complexity
of L, is the number of quotients of L. We prove that, for any language
L with quotient complexity n, the quotient complexity of any atom of L
with r complemented quotients has an upper bound of 2n − 1 if r = 0
or r = n, and 1 +

∑r
k=1

∑k+n−r
h=k+1 C

n
h · Ch

k otherwise, where Ci
j is the

binomial coefficient. For each n � 1, we exhibit a language whose atoms
meet these bounds.

1 Introduction

Atoms of regular languages were introduced in 2011 by Brzozowski and Tamm [3];
we briefly state their main properties here.

If Σ is a non-empty finite alphabet, then Σ∗ is the free monoid generated by
Σ. A word is any element of Σ∗, and the empty word is ε. A language over Σ is
any subset of Σ∗. The reverse of a language L is denoted by LR and defined as
LR = {wR | w ∈ L}, where wR is w spelled backwards.

The (left) quotient of a regular language L over an alphabet Σ by a word
w ∈ Σ∗ is the language w−1L = {x ∈ Σ∗ | wx ∈ L}. It is well known that a
language L is regular if and only if it has a finite number of distinct quotients,
and that the number of states in the minimal deterministic finite automaton
(DFA) recognizing L is precisely the number of distinct quotients of L. Also, L
is its own quotient by the empty word ε, that is ε−1L = L. Note too that the
quotient by u ∈ Σ∗ of the quotient by w ∈ Σ∗ of L is the quotient by wu of L,
that is, u−1(w−1L) = (wu)−1L.

� This work was supported by the Natural Sciences and Engineering Research Council
of Canada under grant No. OGP0000871, the ERDF funded Estonian Center of
Excellence in Computer Science, EXCS, the Estonian Science Foundation grant 7520,
and the Estonian Ministry of Education and Research target-financed research theme
no. 0140007s12.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 50–61, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Quotient Complexities of Atoms of Regular Languages 51

An atom1 of a regular language L with quotients K0, . . . ,Kn−1 is any non-

empty language of the form K̃0 ∩ · · · ∩ K̃n−1, where K̃i is either Ki or Ki, and
Ki is the complement of Ki with respect to Σ∗. Thus atoms of L are regular
languages uniquely determined by L and they define a partition of Σ∗. They are
pairwise disjoint, every quotient of L (including L itself) is a union of atoms,
and every quotient of an atom is a union of atoms. Thus the atoms of a regular
language are its basic building blocks. Also, L defines the same atoms as L.

The quotient complexity [2] of L is the number of quotients of L, and this is
the same number as the number of states in the minimal DFA recognizing L;
the latter number is known as the state complexity [7] of L. Quotient complexity
allows us to use language-theoretic methods, whereas state complexity is more
amenable to automaton-theoretic techniques. We use one of these two points of
view or the other, depending on convenience.

We study the quotient complexity of atoms of regular languages. Our main
result is the following:

Theorem 1 (Main Result). Let L ⊆ Σ∗ be a non-empty regular language
and let its set of quotients be K = {K0,K1, . . . ,Kn−1}. For n � 1, the quotient
complexity of the atoms with 0 or n complemented quotients is less than or equal
to 2n − 1. For n � 2 and r satisfying 1 � r � n− 1, the quotient complexity of
any atom of L with r complemented quotients is less than or equal to

f(n, r) = 1 +

r∑
k=1

k+n−r∑
h=k+1

Cnh · Chk ,

where Cij is the binomial coefficient “i choose j”. For n = 1, the single atom Σ∗

of the language Σ∗ or ∅ meets the bound 1. Moreover, for n � 2, all the atoms
of the language Ln recognized by the DFA Dn of Figure 1 meet these bounds.

Dn 0 1 2
a a aa, b

n − 2· · ·
a

b

a, c

n − 1

b, c
b

b, ccc

Fig. 1. DFA Dn of language Ln whose atoms meet the bounds

In Section 2 we derive upper bounds on the quotient complexities of atoms. In
Section 3 we define our notation and terminology for automata, and present the
definition of the átomaton [3] of a regular language; this is a nondeterministic
finite automaton (NFA) whose states are the atoms of the language. We also
provide a different characterization of the átomaton. We introduce a class of
DFA’s in Section 4 and study the átomata of their languages. We then prove

1 The definition in [3] does not consider the intersection of all the complemented
quotients to be an atom. Our new definition adds symmetry to the theory.

52 J. Brzozowski and H. Tamm

in Section 5 that the atoms of these languages meet the quotient complexity
bounds. Section 6 concludes the paper. Proofs that are omitted can be found at
http://arxiv.org/abs/1201.0295.

2 Upper Bounds on the Quotient Complexities of Atoms

We first derive upper bounds on the quotient complexity of atoms. We use quo-
tients here, since they are convenient for this task. First we deal with the two
atoms that have only uncomplemented or only complemented quotients.

Let L ⊆ Σ∗ be a non-empty regular language and let its set of quotients be
K = {K0,K1, . . . ,Kn−1}, with n � 1.

Proposition 1 (Atoms with 0 or n Complemented Quotients)
For n � 1, the quotient complexity of the two atoms AK = K0 ∩ · · · ∩Kn−1 and
A∅ = K0 ∩ · · · ∩Kn−1 is less than or equal to 2n − 1.

Proof. Every quotient w−1AK of atom AK is the intersection of languages
w−1Ki, which are quotients of L:

w−1AK = w−1(K0 ∩ · · · ∩Kn−1) = w−1K0 ∩ · · · ∩w−1Kn−1.

Since these quotients of L need not be distinct, w−1AK may be the intersection
of any non-empty subset of quotients of L. Hence AK can have at most 2n − 1
quotients.

The argument for the atom A∅ = K0 ∩ · · · ∩ Kn−1 with n complemented
quotients is similar, since w−1Ki = w−1Ki. �

Next, we present an upper bound on the quotient complexity of any atom with
at least one and fewer than n complemented quotients.

Proposition 2 (Atoms with r Complemented Quotients, 1 � r � n−1).
For n � 2 and 1 � r � n − 1, the quotient complexity of any atom with r
complemented quotients is less than or equal to

f(n, r) = 1 +

r∑
k=1

k+n−r∑
h=k+1

Cnh · Chk . (1)

Proof. Consider an intersection of complemented and uncomplemented quotients
that constitutes an atom. Without loss of generality, we arrange the terms in the
intersection in such a way that all complemented quotients appear on the right.
Thus let Ai = K0 ∩ · · · ∩Kn−r−1 ∩Kn−r ∩ · · · ∩Kn−1 be an atom of L with r
complemented quotients of L, where 1 � r � n− 1. The quotient of Ai by any
word w ∈ Σ∗ is

w−1Ai = w−1(K0 ∩ · · · ∩Kn−r−1 ∩Kn−r ∩ · · · ∩Kn−1)

= w−1K0 ∩ · · · ∩ w−1Kn−r−1 ∩w−1Kn−r ∩ · · · ∩ w−1Kn−1.

Quotient Complexities of Atoms of Regular Languages 53

Since each quotient w−1Kj is a quotient, say Kij , of L, we have

w−1Ai = Ki0 ∩ · · · ∩Kin−r−1 ∩Kin−r ∩ · · · ∩Kin−1 .

The cardinality of a set S is denoted by |S|. Let the set of distinct quotients
of L appearing in w−1Ai uncomplemented (respectively, complemented) be X
(respectively, Y), where 1 � |X | � n − r and 1 � |Y | � r. If X ∩ Y �= ∅,
then w−1Ai = ∅. Therefore assume that X ∩ Y = ∅, and that |X ∪ Y | = h,
where 2 � h � n; there are Cnh such sets X ∪ Y . Suppose further that |Y | = k,
where 1 � k � r. There are Chk ways of choosing Y . Hence there are at most∑k+n−r

h=k+1 C
n
h ·Chk distinct intersections with k complemented quotients. Thus, the

total number of intersections of uncomplemented and complemented quotients
can be at most

∑r
k=1

∑k+n−r
h=k+1 C

n
h · Chk .

Adding 1 for the empty quotient of w−1Ai, we get the required bound. �

We now consider the properties of the function f(n, r).

Proposition 3 (Properties of Bounds). For any n � 2 and 1 � r � n− 1,
the function f(n, r) of Equation (1) satisfies the following properties:

1. f(n, r) = f(n, n− r).
2. For a fixed n, the maximal value of f(n, r) occurs when r = �n/2�.

Some numerical values of f(n, r) are shown in Table 1. The figures in boldface
type are the maxima for a fixed n. The row marked max shows the maximal
quotient complexity of the atoms of L. The row marked ratio shows the value of
f(n, �n/2�)/f(n− 1, �(n− 1)/2�), for n � 2. It appears that this ratio converges
to 3. For example, for n = 100 it is approximately 3.0002.

Table 1. Maximal quotient complexity of atoms

n 1 2 3 4 5 6 7 8 9 10 · · ·
r=0 1 3 7 15 31 63 127 255 511 1, 023 · · ·
r=1 1 3 10 29 76 187 442 1, 017 2, 296 5, 111 · · ·
r=2 ∗ 3 10 43 141 406 1, 086 2, 773 6, 859 16, 576 · · ·
r=3 ∗ ∗ 7 29 141 501 1,548 4, 425 12, 043 31, 681 · · ·
r=4 ∗ ∗ ∗ 15 76 406 1,548 5, 083 15, 361 44, 071 · · ·
r=5 ∗ ∗ ∗ ∗ 31 187 1, 086 4, 425 15, 361 48,733 · · ·
max 1 3 10 43 141 501 1, 548 5, 083 15, 361 48, 733 · · ·
ratio − 3 3.33 4.30 3.28 3.55 3.09 3.28 3.02 3.17 · · ·

3 Automata and Átomata of Regular Languages

A nondeterministic finite automaton (NFA) is a quintuple N = (Q,Σ, η, I, F),
where Q is a finite, non-empty set of states, Σ is a finite non-empty alphabet,
η : Q×Σ → 2Q is the transition function, I ⊆ Q is the set of initial states, and

54 J. Brzozowski and H. Tamm

F ⊆ Q is the set of final states. As usual, we extend the transition function to
functions η′ : Q × Σ∗ → 2Q, and η′′ : 2Q × Σ∗ → 2Q. We do not distinguish
these functions notationally, but use η for all three.

The language accepted by an NFA N is L(N) = {w ∈ Σ∗ | η(I, w) ∩ F �= ∅}.
Two NFA’s are equivalent if they accept the same language. The right language
of a state q of N is Lq,F (N) = {w ∈ Σ∗ | η(q, w) ∩ F �= ∅}. The right language
of a set S of states of N is LS,F (N) =

⋃
q∈S Lq,F (N); hence L(N) = LI,F (N).

A state is empty if its right language is empty. Two states of an NFA are equiv-
alent if their right languages are equal. The left language of a state q of N is
LI,q = {w ∈ Σ∗ | q ∈ η(I, w)}. A state is unreachable if its left language is
empty. An NFA is trim if it has no empty or unreachable states.

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F),
where Q, Σ, and F are as in an NFA, δ : Q×Σ → Q is the transition function,
and q0 is the initial state. We use the following operations on automata:

1. The determinization operation D applied to an NFA N yields a DFA ND

obtained by the subset construction, where only subsets reachable from the
initial subset of ND are used and the empty subset, if present, is included.

2. The reversal operation R applied to an NFA N yields an NFA NR, where
sets of initial and final states of N are interchanged and each transition
between any two states is reversed.

Let L be any non-empty regular language, and let its set of quotients be K =
{K0, . . . ,Kn−1}. One of the quotients of L is L itself; this is called the initial
quotient and is denoted by Kin. A quotient is final if it contains the empty word
ε. The set of final quotients is F = {Ki | ε ∈ Ki}.

In the following definition we use a one-to-one correspondence Ki ↔ Ki

between quotients Ki of a language L and the states Ki of the quotient DFA D
defined below. We refer to the Ki as quotient symbols.

Definition 1. The quotient DFA of L is D = (K, Σ, δ,Kin,F), where K =
{K0, . . . ,Kn−1}, Kin corresponds to Kin, F = {Ki | Ki ∈ F}, and δ(Ki, a) =
Kj if and only if a−1Ki = Kj, for all Ki,Kj ∈ K and a ∈ Σ.

In a quotient DFA the right language of Ki is Ki, and its left language is {w ∈
Σ∗ | w−1L = Ki}. The language L(D) is the right language of Kin, and hence
L(D) = L. Also, DFA D is minimal, since all quotients in K are distinct.

It follows from the definition of an atom, that a regular language L has at
most 2n atoms. An atom is initial if it has L (rather than L) as a term; it is final
if it contains ε. Since L is non-empty, it has at least one quotient containing ε.

Hence it has exactly one final atom, the atom K̂0 ∩ · · · ∩ K̂n−1, where K̂i = Ki

if ε ∈ Ki, and K̂i = Ki otherwise. Let A = {A0, . . . , Am−1} be the set of atoms
of L. By convention, I is the set of initial atoms and Am−1 is the final atom.

As above, we use a one-to-one correspondence Ai ↔ Ai between atoms Ai of
a language L and the states Ai of the NFA A defined below. We refer to the Ai

as atom symbols.

Quotient Complexities of Atoms of Regular Languages 55

Definition 2. The átomaton2 of L is the NFA A = (A, Σ, η, I, {Am−1}), where
A = {Ai | Ai ∈ A}, I = {Ai | Ai ∈ I}, Am−1 corresponds to Am−1, and
Aj ∈ η(Ai, a) if and only if aAj ⊆ Ai, for all Ai,Aj ∈ A and a ∈ Σ.

Example 1. Let L2 ⊆ {a, c}∗ be defined by the quotient equations below (left)
and recognized by the DFA D2 of Fig. 2 (a). The equations for the atoms of
L2 are below (right), and the átomaton A2 is in Fig. 2 (b); here each atom is
denoted by AP , where P is the set of uncomplemented quotients. Thus K0 ∩K1

becomes A{0}, etc., and we represent the sets in the subscripts without brackets

and commas. The reverseDR
2 of D2 is in Fig. 2 (c). The determinized reverseDRD

2

is in Fig. 2 (d); this is the minimal DFA for LR2 , the reverse of L2. The reverse
AR

2 of the átomaton is in Fig. 2 (e). Note that DRD
2 and AR

2 are isomorphic.

K0 = aK1 ∪ cK0, K0 ∩K1 = a(K0 ∩K1) ∪ c[(K0 ∩K1) ∪ (K0 ∩K1)],

K1 = aK0 ∪ cK0 ∪ ε, K0 ∩K1 = a(K0 ∩K1),

K0 ∩K1 = a(K0 ∩K1) ∪ ε,

K0 ∩K1 = a(K0 ∩K1) ∪ c[(K0 ∩K1) ∪ (K0 ∩K1)].

a, c

A∅A01

c

a, ca, c

c
A1A0

a

a

A∅
c

A0

a, ca, c

c

a

a

A1A01

(b) (e)

c

a, ca, c

c
0, 1 ∅K0

a a

a

a

0 1K0 K1K1

(d)(c)(a)

c c

a, c

Fig. 2. (a) DFA D2; (b) Átomaton A2; (c) NFA DR
2 ; (d) DFA DRD

2 ; (e) DFA AR
2

The next theorem from [1], also discussed in [3], will be used several times.

Theorem 2 (Determinization). If an NFA N has no empty states and NR

is deterministic, then ND is minimal.

It was shown in [3] that the átomaton A of L with reachable atoms only is iso-
morphic to the trimmed version of DRDR, where D is the quotient DFA of L.

2 In [3], the intersection A∅ = K0 ∩ · · · ∩ Kn−1 was not considered an atom. It was
shown that the right language of state Ai is the atom Ai, the left language of Ai is
non-empty, the language of the átomaton A is L, and A is trim. If the intersection
A∅ of all the complemented quotients is non-empty, then A∅ is an atom and A is no
longer trim because state A∅ is not reachable from any initial state.

56 J. Brzozowski and H. Tamm

With our new definition, A is isomorphic to DRDR. We now study this isomor-
phism in detail, along with the isomorphism between AR and DRD. We deal with
the following automata:

1. Quotient DFA D = (K, Σ, δ,Kin,F) of L whose states are quotient symbols.
2. The reverseDR = (K, Σ, δR,F, {Kin}) ofD. The states inK are still quotient

symbols, but their right languages are no longer quotients of L.
3. The determinized reverse DRD = (S,Σ, α,F, G), where S ⊆ 2K and G =

{Si ∈ S | Kin ∈ Si}. The states in S are sets of quotient symbols, i.e.,
subsets of K. Since (DR)R = D is deterministic and all of its states are
reachable, DR has no empty states. By Theorem 2, DFA DRD is minimal and
accepts LR; hence it is isomorphic to the quotient DFA of LR.

4. The reverse DRDR = (S,Σ, αR, G, {F}) of DRD; here the states are still sets
of quotient symbols.

5. The átomaton A = (A, Σ, η, I, {Am−1}), whose states are atom symbols.
6. The reverse AR = (A, Σ, ηR,Am−1, I) of A, whose states are still atom

symbols, though their right languages are no longer atoms.

The results from [3] and our new definition of atoms imply that AR is a minimal
DFA that accepts LR. It follows that AR is isomorphic to DRD. Our next result
makes this isomorphism precise.

Proposition 4 (Isomorphism). Let ϕ : A → S be the mapping assigning to
state Aj, given by Aj = Ki0 ∩ · · · ∩Kin−r−1 ∩Kin−r ∩ · · · ∩Kin−1 of AR, the set
{Ki0 , . . . ,Kin−r−1}. Then ϕ is a DFA isomorphism between AR and DRD.

Proof. The initial state Am−1 of AR is mapped to the set of all quotients con-
taining ε, which is precisely the initial state F of DRD. Since the quotient L
appears uncomplemented in every initial atom Ai ∈ I, the image ϕ(Ai) contains
L. Thus the set of final states of AR is mapped to the set of final states of DRD.

It remains to be shown, for all Ai,Aj ∈ A and a ∈ Σ, that ηR(Aj , a) = Ai if
and only if α(ϕ(Aj), a) = ϕ(Ai).

Consider atom Ai with Pi as the set of quotients that appear uncomplemented
in Ai. Also define the corresponding set Pj for Aj . If there is a missing quotient
Kh in the intersection a−1Ai, we use a−1Ai ∩ (Kh ∪ Kh). We do this for all
missing quotients until we obtain a union of atoms. Hence Aj ∈ η(Ai, a) can
hold in A if and only if Pj ⊇ δ(Pi, a) and Pj ∩ δ(Q \Pi, a) = ∅. It follows that in
AR we have ηR(Aj , a) = Ai if and only if Pj ⊇ δ(Pi, a) and Pj ∩δ(Q\Pi, a) = ∅.

Now consider DRD. Let Pi be any subset of Q; then the successor set of Pi in
D is δ(Pi, a). Let δ(Pi, a) = Pk. So in DR, we have Pi ∈ δR(Pk, a). But suppose
that state q is not in δ(Q, a); then δR(q, a) = ∅. Consequently, we also have
Pi ∈ δR(Pk ∪{q}, a). It follows that for any Pj containing δ(Pi, a) and satisfying
Pj ∩ δ(Q \ Pi, a) = ∅, we also have α(Pj , a) = Pi.

We have now shown that ηR(Aj , a) = Ai if and only if α(Pj , a) = Pi, for all
subsets Pi, Pj ∈ S, that is, if and only if α(ϕ(Aj), a) = ϕ(Ai). �

Corollary 1. The mapping ϕ is an NFA isomorphism between A and DRDR.

Quotient Complexities of Atoms of Regular Languages 57

In the remainder of the paper it is more convenient to use the DRDR representa-
tion of átomata, rather than that of Definition 2.

4 The Witness Languages and Automata

We now introduce a class {Ln | n � 2} of regular languages defined by the
quotient DFA’s Dn given below; we shall prove that the atoms of each language
Ln = L(Dn) in this class meet the worst-case quotient complexity bounds.

Definition 3 (Witness). For n � 2, let Dn = (Q,Σ, δ, q0, F), where Q =
{0, . . . , n − 1}, Σ = {a, b, c}, q0 = 0, F = {n − 1}, δ(i, a) = i + 1 mod n,
δ(0, b) = 1, δ(1, b) = 0, δ(i, b) = i for i > 1, δ(i, c) = i for 0 � i � n − 2, and
δ(n− 1, c) = 0. Let Ln be the language accepted by Dn.

For n � 3, the DFA of Definition 3 is illustrated in Fig. 1, and D2 is the DFA of
Example 1 (a and b coincide). The DFA Dn is minimal, since for 0 � i � n− 1,
state i accepts an−1−i, and no other state accepts this word.

A transformation of a set Q is a mapping of Q into itself. If t is a trans-
formation of Q and i ∈ Q, then it is the image of i under t. The set of all
transformations of a finite set Q is a semigroup under composition, in fact, a
monoid TQ of nn elements. A permutation of Q is a mapping of Q onto itself. A
transposition (i, j) interchanges i and j and does not affect any other elements.
A singular transformation, denoted by

(
i
j

)
, has it = j and ht = h for all h �= i.

In 1935 Piccard [5] proved that three transformations of Q are sufficient to
generate TQ. Dénes [4] studied more general generators; we use his formulation:

Theorem 3 (Transformations). The transformation monoid TQ can be gen-
erated by any cyclic permutation of n elements together with any transposition
and any singular transformation.

In any DFA D = (Q,Σ, δ, q0, F), each word w in Σ+ performs a transformation
on Q defined by δ(·, w). The set of all these transformations is the transformation
semigroup of D. By Theorem 3, the transformation semigroup of our witness Dn
has nn elements, since a is a cyclic permutation, b is a transposition and c is a
singular transformation.

The following result of Salomaa, Wood and Yu [6] concerning reversal is re-
stated in our terminology.

Theorem 4 (Transformations and Reversal). Let D be a minimal DFA
with n states accepting a language L. If the transformation semigroup of D has
nn elements, then the quotient complexity of LR is 2n.

Corollary 2 (Reversal). For n � 2, the quotient complexity of LRn is 2n.

Corollary 3 (Number of Atoms of Ln). The language Ln has 2n atoms.

58 J. Brzozowski and H. Tamm

Proof. By Corollary 1, the átomaton of Ln is isomorphic to the reversed quotient
DFA of LRn . By Corollary 2, the quotient DFA of LRn has 2n states, and so the
empty set of states of Ln is reachable in LRn . Hence LRn has the empty quotient,
implying that the intersection of all the complemented quotients of Ln is non-
empty, and so Ln has 2n atoms. �

Proposition 5 (Transitions of the Átomaton). Let Dn = (Q,Σ, δ, q0, F)
be the DFA of Definition 3. The átomaton of Ln = L(Dn) is the NFA An =
(2Q, Σ, η, I, {n− 1}), where

1. If S = {∅}, then η(S, a) = {∅}. Otherwise,
η({s1, . . . , sk}, a) = {s1 + 1, . . . , sk + 1}, where the addition is modulo n.

2. If {0, 1} ∩ S = ∅, then
(a) η(S, b) = S,
(b) η({0} ∪ S, b) = {1} ∪ S,
(c) η({1} ∪ S, b) = {0} ∪ S,
(d) η({0, 1} ∪ S, b) = {0, 1} ∪ S.

3. If {0, n− 1} ∩ S = ∅, then
(a) η(S, c) = {S, {n− 1} ∪ S},
(b) η({0, n− 1} ∪ S, c) = {{0, n− 1} ∪ S, {0} ∪ S},
(c) η({0} ∪ S, c) = ∅,
(d) η({n− 1} ∪ S, c) = ∅.

Proof. The reverse of DFA Dn is the NFA DR
n = (Q,Σ, δR, {n− 1}, {0}), where

δR is defined by δR(i, a) = i − 1 mod n, δR(i, b) = δ(i, b), δR(0, c) = {0, n− 1},
δR(n−1, c) = ∅, and δR(i, c) = i, for 0 < i < n−1. After applying determinization
and reversal to DR

n , the claims follow by Corollary 1. �

5 Tightness of the Upper Bounds

We now show that the upper bounds derived in Section 2 are tight by proving
that the atoms of the languages Ln of Definition 3 meet those bounds.

Since the states of the átomaton An = (A, Σ, η, I, {Am−1}) are atom symbols
Ai, and the right language of each Ai is the atom Ai, the languages Ai are
properly represented by the átomaton. Since, however, the átomaton is an NFA,
to find the quotient complexity of Ai, we need the equivalent minimal DFA.

Let Dn be the n-state quotient DFA of Definition 3 for n � 2, and recall that
L(Dn) = Ln. In the sequel, using Corollary 1, we represent the átomaton An of
Ln by the isomorphic NFA DRDR

n = (S,Σ, αR, G, {F}), and identify the atoms by
their sets of uncomplemented quotients. To simplify the notation, we represent
atoms by the subscripts of the quotients, that is, by subsets of Q = {0, . . . , n−1},
as in Definition 3.

In this framework, to find the quotient complexity of an atomAP , with P ⊆ Q,
we start with the NFA AP = (S,Σ, αR, {P}, {F}), which has the same states,
transitions, and final state as the átomaton, but has only one initial state, P ,
corresponding to the atom symbol AP . Because AR

P is deterministic and AP has
no empty states, AD

P is minimal by Theorem 2. Therefore, AD
P is the quotient

Quotient Complexities of Atoms of Regular Languages 59

DFA of the atom AP . The states of AD
P are certain sets of sets of quotient sym-

bols; to reduce confusion we refer to them as collections of sets. The particular
collections appearing in AD

P will be called “super-algebras”.
Let U be a subset of Q with |U | = u, and let V be a subset of U with |V | = v.

Define 〈V 〉U to be the collection of all 2u−v subsets of U containing V . There are
CnuC

u
v collections of the form 〈V 〉U , because there are Cnu ways of choosing U ,

and for each such choice there are Cuv ways of choosing V . The collection 〈V 〉U is
called the super-algebra of U generated by V . The type of a super-algebra 〈V 〉U
is the ordered pair (|V |, |U |) = (v, u).

The following theorem is a well-known result of Piccard [5] about the group—
known as the symmetric group—of all permutations of a finite set:

Theorem 5 (Permutations). The symmetric group of size n! of all permuta-
tions of a set Q = {0, . . . , n − 1} is generated by any cyclic permutation of Q
together with any transposition.

Lemma 1 (Strong-Connectedness of Super-Algebras). Super-algebras of
the same type are strongly connected by words in {a, b}∗.

Proof. Let 〈V1〉U1 and 〈V2〉U2 be any two super-algebras of the same type. Ar-
range the elements of V1 in increasing order, and do the same for the elements of
the sets V2, U1 \ V1, U2 \ V2, Q \U1, and Q \U2. Let π : Q → Q be the mapping
that assigns the ith element of V2 to the ith element of V1, the ith element of
U2 \ V2 to the ith element of U1 \ V1, and the ith element of Q \ U2 to the ith
element of Q \U1. For any R1 such that V1 ⊆ R1 ⊆ U1, there is a corresponding
subset R2 = π(R1), where V2 ⊆ R2 ⊆ U2. Thus π establishes a one-to-one corre-
spondence between the elements of the super-algebras 〈V1〉U1 and 〈V2〉U2 . Also,
π is a permutation of Q, and so can be performed by a word w ∈ {a, b}∗ in Dn,
in view of Theorem 5. Thus every set R2 defined as above is reachable from R1

by w. So 〈V2〉U2 is reachable from 〈V1〉U1 . �

Lemma 2 (Reachability). Let 〈V 〉U be any super-algebra of type (v, u). If
v � 2, then from 〈V 〉U we can reach a super-algebra of type (v−1, u). If u � n−2,
then from 〈V 〉U we can reach a super-algebra of type (v, u + 1).

Proof. If v � 2, then by Lemma 1, from 〈V 〉U we can reach a super-algebra
〈V ′〉U ′ of type (v, u) such that {0, n−1} ⊆ V ′. By input c we reach 〈V ′\{n−1}〉U ′

of type (v−1, u). For the second claim, if u � n−2, then by Lemma 1, from 〈V 〉U
we can reach a super-algebra 〈V ′〉U ′ of type (v, u) such that {0, n− 1}∩ V ′ = ∅.
By input c we reach 〈V ′〉U ′∪{n−1} of type (v, u + 1). �

The next proposition holds for n � 1 if we let L1 = Σ∗.

Proposition 6 (Atoms with 0 or n Complemented Quotients)
For n � 1, the quotient complexity of the atoms AQ and A∅ of Ln is 2n − 1.

Proof. Let AQ (A∅) be the modified átomaton with only one initial state, Q (∅).
By the considerations above, AD

Q (AD
∅) is the quotient DFA of AQ (A∅); hence

it suffices to prove the reachability of 2n − 1 collections.

60 J. Brzozowski and H. Tamm

For AQ, the initial state ofAD
Q is the collection {Q}, which is the super-algebra

〈Q〉Q of Q generated by Q. Now suppose that we have reached a super-algebra of
type (v, n). By Lemma 1, we can reach every other super-algebra of type (v, n).
If v � 2, then by Lemma 2 we can reach a super-algebra of type (v− 1, n). Thus
we can reach all super-algebras 〈V 〉Q of Q, one for each non-empty subset V
of Q. Since there are at most 2n − 1 collections and that many can be reached,
no other collection can be reached.

For A∅, the initial state of AD
∅ is the empty collection, which is the super-

algebra 〈∅〉∅ of ∅ generated by ∅. Now suppose we have reached a super-algebra
of type (0, u). By Lemma 1, we can reach every other super-algebra of type (0, u).
If u � n− 2, then by Lemma 2 we can reach a super-algebra of type (0, u+ 1).
Thus we can reach all super-algebras 〈∅〉U , one for each non-empty subset U
of Q. Since there are at most 2n − 1 collections and that many can be reached,
no other collection can be reached. Hence the proposition holds. �
Proposition 7 (Tightness). For n � 2 and 1 � r � n − 1, the quotient
complexity of any atom of Ln with r complemented quotients is f(n, r).

Proof. Let AP be an atom of Ln with n−r uncomplemented quotients, where 1 �
r � n−1, that is, let P be the set of subscripts of the uncomplemented quotients.
Let AP be the modified átomaton with the initial state P . As discussed above,
AD
P is minimal; hence it suffices to prove the reachability of f(n, r) collections.
We start with the super-algebra 〈P 〉P with type (n− r, n− r). By Lemmas 1

and 2, we can now reach all super-algebras of types

(n− r, n− r), (n− r − 1, n− r), . . . , (1, n− r),

(n− r, n− r + 1), (n− r − 1, n− r + 1), . . . , (1, n− r + 1),

· · ·
(n− r, n− 1), (n− r − 1, n− 1), . . . , (1, n− 1).

Since the number of super-algebras of type (v, u) is CnuC
u
v , we can reach

g(n, r) =

n−1∑
u=n−r

n−r∑
v=1

Cnu · Cuv

algebras. Changing the first summation index to k = n− u, we get

g(n, r) =

r∑
k=1

n−r∑
v=1

Cnn−k · Cn−kv .

Note that Cnn−kC
n−k
v = Cnk+vC

k+v
k , because Cnn−kC

n−k
v = n!

(n−k)!k! ·
(n−k)!

v!(n−k−v)! =
n!

k!v!(n−k−v)! , and Cnk+vC
k+v
k = n!

(k+v)!(n−k−v)! ·
(k+v)!
k!v! = n!

(n−k−v)!k!v! . Now, we can

write g(n, r) =
∑r

k=1

∑n−r
v=1 C

n
k+v · Ck+vk , and changing the second summation

index to h = k + v, we have

g(n, r) =

r∑
k=1

k+n−r∑
h=k+1

Cnh · Chk .

Quotient Complexities of Atoms of Regular Languages 61

We notice that g(n, r) = f(n, r) − 1. From the super-algebra 〈V 〉V , where V =
{0, 1, . . . , n− r − 1}, we reach the empty quotient by input c, since V contains
0, but not n− 1.

Since we can reach f(n, r) super-algebras, no other collection can be reached,
and the proposition holds. �

6 Conclusions

The atoms of a regular language L are its basic building blocks. We have studied
the quotient complexity of the atoms of L as a function of the quotient complexity
of L. We have computed an upper bound for the quotient complexity of any atom
with r complemented quotients, and exhibited a class {Ln} of languages whose
atoms meet this bound.

Acknowledgments. We are grateful to Baiyu Li for writing a program for
evaluating the quotient complexity of atoms. We thank Eric Rowland and Jeff
Shallit for computing the ratio defined for Table 1 for some large values of n.

References

1. Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite
events. In: Proceedings of the Symposium on Mathematical Theory of Automata.
MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, Polytechnic Institute
of Brooklyn, N.Y. (1963)

2. Brzozowski, J.: Quotient complexity of regular languages. J. Autom. Lang.
Comb. 15(1/2), 71–89 (2010)

3. Brzozowski, J., Tamm, H.: Theory of Átomata. In: Mauri, G., Leporati, A. (eds.)
DLT 2011. LNCS, vol. 6795, pp. 105–116. Springer, Heidelberg (2011)

4. Dénes, J.: On transformations, transformation semigroups and graphs. In: Erdös,
P., Katona, G. (eds.) Theory of Graphs. Proceedings of the Colloquium on Graph
Theory held at Tihany, 1966, pp. 65–75. Akadémiai Kiado (1968)

5. Piccard, S.: Sur les fonctions définies dans les ensembles finis quelconques. Fund.
Math. 24, 298–301 (1935)

6. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theoret. Comput. Sci. 320, 315–329 (2004)

7. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

Decidability of Geometricity

of Regular Languages�

Marie-Pierre Béal1, Jean-Marc Champarnaud2, Jean-Philippe Dubernard2,
Hadrien Jeanne2, and Sylvain Lombardy1

1 Université Paris-Est, Laboratoire d’informatique Gaspard-Monge CNRS UMR
8049, 5 boulevard Descartes, 77454 Marne-la-Vallée, France

2 Université de Rouen, LITIS, Avenue de l’Université - BP 8, 76801
Saint-Étienne-du-Rouvray Cedex, France

Abstract. Geometrical languages generalize languages introduced to
model temporal validation of real-time softwares. We prove that it is
decidable whether a regular language is geometrical. This result was
previously known for binary languages.

1 Introduction

A geometrical figure of dimension d is a connected set of sites in the lattice of
dimension d which is oriented in the following sense: it has an origin O such that
for any site P of the figure, there is a directed path with positive elementary
step from O to P , a positive elementary step incrementing exactly one coordinate
by 1. Finite geometrical figures are called animals [10].

A geometrical language is the set of finite words over a d-ary alphabet whose
corresponding Parikh points are the sites of a geometrical figure. It is called the
geometrical language of the figure. Geometrical languages were introduced by
Blanpain et al. in [2] and have applications to the modeling of real-time task
systems on multiprocessors (see [8], [2]). The definition of geometrical figures
implies that all geometrical languages are prefix-closed (i.e. the prefix of any
word of the language also belongs to the language).

Conversely, for any language of finite words over a d-ary alphabet, one can
associate a set of sites corresponding to the Parikh points of the words of the
language, the i-th coordinate of the Parikh point of a word counting the number
of letters ai contained in the word. If the language is prefix-closed, the figure
that it defines is geometrical. It turns out that a prefix-closed language is al-
ways contained in the language of its geometrical figure but this inclusion may
be strict, the geometrical languages being exactly the languages satisfying this
property.

Studying properties of a geometrical language may help to obtain properties
of its geometrical figure and get information on the task systems that it models.

� This work is supported by the French National Agency (ANR) through ”Programme
d’Investissements d’Avenir” (Project ACRONYME n◦ANR-10-LABX-58).

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 62–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Decidability of Geometricity of Regular Languages 63

It is also interesting from the language theory point of view. A main subclass
of these languages is the one of regular geometrical languages. From this point
of view, geometricity is a strong property which can be weakened. The class of
semi-geometrical languages contains languages such that any two words with the
same Parikh image define the same left residuals.

We consider the class of regular languages and address the algorithmic pro-
blem of checking whether a regular language is geometrical (or semi-geometrical).
It is already known from [5] that it is decidable in polynomial time whether a
regular binary language is geometrical. If n is the number of states of the min-
imal deterministic automaton accepting the language, an O(n3)-time algorithm
is obtained for extensible binary languages in [4], while an O(n4)-time algo-
rithm works for all binary languages in [5]. Two-dimensional geometry is used
to prove the correctness of these algorithms. For alphabets in higher dimension,
a non-polynomial algorithm has been obtained in the case where the minimal
automaton of the language has one strongly connected component [3]. An ex-
ponential algorithm in [2] reduces the decidability of geometricity of a regular
language to solving a system of Diophantine equations. Nevertheless, the system
may be not linear in the general case and solving such a system is known to be
undecidable.

In this paper, we give a decision scheme for all regular languages. The algo-
rithm is nevertheless exponential and the existence of a polynomial algorithm to
decide the geometricity of a ternary regular language for instance is still open.
The problem may be NP-complete but this question is not addressed in the pa-
per. Our solution uses only elementary automata theory and classical semilinear
set theory to reduce the problem to a system of linear Diophantine equations.
For binary alphabet, we show that a polynomial-time algorithm may be derived
from the general solution. The algorithm is simpler that the O(n4)-algorithm
obtained in [5] but it has a worst-case time complexity of O(n6).

The paper is organized as follows. The second section recalls the definitions
and main properties of geometrical languages. Section 3 recalls some semilinear
set theory [12] useful for Section 4, where the decision procedures are exposed.

2 Geometrical Languages

Let d be a positive integer representing a dimension. Let x = (x1, . . , xd), y =
(y1, . . , yd) be two points in Nd, we say that x ≺i y (or simply x ≺ y) if there
is exactly one dimension index 1 ≤ i ≤ d such that xi + 1 = yi and xj = yj for
j �= i.

Let x, y be two points in Nd. We call a directed path from x to y a finite
sequence of points (z(i))0≤i≤k contained in Nd such that z(0) = x, z(k) = y, and
z(i) ≺ z(i+1) for 0 ≤ i ≤ k − 1.

A geometrical figure is either the empty set or a set of points in Nd containing
the null point (0, . . , 0) and such that there is a directed path consisting of points
belonging to the figure from the null point to any point of the set. Equivalently,
for any nonnull point y in a nonempty geometrical figure, there is a point x in
the figure such that x ≺ y.

64 M.-P. Béal et al.

Let A = {a1, . . , ad} be a finite alphabet of cardinal d. The set of words on
the alphabet A is denoted by A∗. The Parikh point associated to a word w of
A∗ is the point (x1, . . , xd) in Nd such that xi is the number of occurrences of
the letter ai in w.

A language L over A is a subset of A∗. We say that a language is prefix-closed
if any prefix of a word of the language belongs to the language.

The geometrical figure associated to a language L, denoted fig(L), is the set
of Parikh points associated to the set of all prefixes of words of L. Conversely,
the language associated to a geometrical figure F , denoted lang(F), is the set of
words whose Parikh points belong to the figure. It is a prefix-closed set.

Let L be a prefix-closed language. We say that L is a geometrical language
if L is the language associated to some geometrical figure. By extension, if L is
not prefix-closed, it is geometrical if the set of its prefixes is geometrical. Hence
we shall only consider prefix-closed languages.

If F is a geometrical figure, we have F = fig(lang(F)). If L is a prefix-closed
language, we have L ⊆ lang(fig(L)) but the converse is not true as is shown in
the example below.

Example 1. Let L1 be the language {aabbb, aabba, bbaaa, bbaab}. The set of pre-
fixes of L1 is a geometrical language in dimension 2 whose geometrical figure F1

is pictured in Figure 1. The figure contains the points (0, 0), (0, 1), (0, 2), (1, 0),
(2, 0), (2, 1), (1, 2), (2, 2), (2, 3) and (3, 2).

Let now L2 be the language {ab, b}. The set of its prefixes is {ε, a, ab, b}. It is
not geometrical. Indeed the geometrical figure F2 associated to L2 contains the
points (0, 0), (0, 1), (1, 0), (1, 1). Thus the language associated to F2 contains
the word ba which is not a prefix of a word in L2.

a

b

a

b

Fig. 1. The geometrical figures F1 (on the left) and F2 (on the right)

Proposition 1. A prefix-closed language L is geometrical if and only if L =
lang(fig(L)).

Proof. If L is prefix-closed and geometrical, then there is a geometrical figure F
such that L = lang(F). We get lang(fig(L)) = lang(fig(lang(F))) = lang(F) = L.
Conversely, if L = lang(fig(L)), it is a geometrical language by definition.

In [4] is introduced the notion of semi-geometricity as follows. If u is a word
and L a language, u−1L denotes the set of words w such that uw belongs to L.

Decidability of Geometricity of Regular Languages 65

A prefix-closed language L is said semi-geometrical if u−1L = v−1L for any
two words u, v of L having the same Parikh point. It is proved in [4] that a
geometrical language is semi-geometrical but the converse is false.

Proposition 2 ([4]). A prefix-closed language which is geometrical is semi-
geometrical.

Proof. Suppose that L = lang(F) for some geometrical figure F . Let u, v ∈ L
having the same Parikh point. Let w be a word such that uw ∈ L. Then the
Parikh point associated to uw belongs to F and the Parikh point associated to
any prefix of vw belongs to F . Since L = lang(F), L contains the word vw.
Hence u−1L ⊆ v−1L and thus u−1L = v−1L.

A characterization of the geometricity of prefix-closed languages was obtained
in [4] as follows.

Proposition 3 ([4]). A prefix-closed language L over A = {a1, . . , ad} is geo-
metrical if and only if (uai)

−1L = (vaj)
−1L for any words u, v in L and letters

ai, aj such that uai and vaj have the same Parikh point.

Proof. Suppose that L = lang(F) is geometrical and w a word such that uaiw ∈
L. Hence the Parikh point associated to any prefix of uaiw belongs to F . Since
the uai and vaj have the same Parikh point and u, v ∈ L, the Parikh point
associated to any prefix of vaj belongs to F . It follows that the Parikh point
associated to any prefix of vajw belongs to F . As L = lang(F), it contains the
word vajw. Hence uaiw ∈ L if and only if vajw ∈ L.

Conversely, let us assume that, for any word w, any words u, v ∈ L, any
indexes i, j, we have uaiw ∈ L if and only if uajw ∈ L. Let F = fig(L). Let
s = s1 · · · sn be a word of length n such that the Parikh point of any prefix of
s belongs to F . Let us show that s belongs to L. Since the Parikh point of s1
belongs to F , we have s1 belongs to L. Let us assume that the prefix s1 · · · sk
of s belongs to L. As the Parikh point x of s1 · · · sksk+1 belongs to F and since
F = fig(L), we get that x is the Parikh point of a word t = t1 · · · tktk+1 in L. Set
u = t1 · · · tk, ai = tk+1, v = s1 · · · sk, aj = sk+1. Since uai ∈ L, we get vaj ∈ L
and thus s1 · · · sksk+1 belongs to L. By recurrence, we obtain that s belongs
to L.

Note that the proof also shows that L is geometrical if uai ∈ L if and only if
vaj ∈ L for any words u, v in L such that uai and vaj have the same Parikh
point.

3 Semilinear Sets

In this section, we present some definitions and known results about semilinear
sets that will be useful in Section 4. We recall some results from [9] and [6]
about rational sets of commutative monoids (see for instance [12, 3.3]) or [13,
7.4], [14]), and also [15], [7], [11] for complexity results).

66 M.-P. Béal et al.

Let (M,+) be a commutative monoid. A linear set of M is a set of the form
u + V ⊕, where u ∈ M , V is a finite subset of M and V ⊕ is the submonoid
generated by V , i.e. the set of linear combinations over N of elements in V .
Hence, if V = {v1, . . , vn}, a linear set is a set of the form

{u+ x1v1 + · · ·+ xnvn | xi ∈ N, vi ∈ V }.

A semilinear set is a finite union of linear sets, hence of the form

r⋃
i=1

(ui + V ⊕
i).

The set of rational subsets of M contains the finite parts and is closed by the
operations union, +, and ⊕. It is known that the rational subsets of M are
exactly its semilinear sets.

Proposition 4. (see [12, Proposition 3.5]) Let M be a commutative monoid. A
subset of M is rational if and only if it is semilinear.

Furthermore, the construction of a semilinear expression from a rational expres-
sion is effective.

We will consider the case where (M,+) is (Zd,+). Checking whether a semi-
linear set of Zd is empty or not is known to be decidable. It can be first reduced
to the problem of checking whether a linear set is empty or not, which is de-
cidable and NP-complete. A proof of the following Proposition can be found for
instance in [12, Lemma 3.10] or in [13, Proposition 7.17].

Proposition 5. It is decidable whether the equation

x1u1 + · · ·+ xkuk = c,

where ui, c ∈ Zd, has a solution in Nk.

In [16] is proved that, if a solution exists, then there is one with coefficients
bounded above by (k + 1)M1, where M1 is the maximum of the absolute values
of all sub-determinants of a d × (k + 1) matrix made of the coefficients of ui
and c.

4 Regular Geometrical Languages

In this section, we address the problem of checking whether a regular language is
geometrical. We do not make any restrictions on the dimension or on properties
of the regular language or on its minimal deterministic automaton.

We consider a regular prefix-closed languageL on the alphabetA = {a1, . . , ad}.
It is accepted by a unique minimal finite complete deterministic automaton A =
(Q,E, q0, T), whereQ is the set of states andE the set of edges. The unique initial
state is q0 and the set of final states is T . IfL is the full language, we haveQ = F =
{q0}. Otherwise,Q has a non final sink state qs and all states but qs are final since

Decidability of Geometricity of Regular Languages 67

L is prefix-closed. We denote by δ(q, u) the state ending the unique path labeled u
starting at q.

By definition of the semi-geometricity, we get from Proposition 2 the following
characterization of semi-geometrical regular prefix-closed languages.

Proposition 6 ([4]). A regular prefix-closed language L is semi-geometrical if
and only if δ(q0, u) = δ(q0, v) for any two words u, v of L having the same Parikh
point.

It also follows directly from Proposition 3 the following characterization of geo-
metrical regular prefix-closed languages.

Proposition 7 ([4]). A regular prefix-closed language L is geometrical if and
only if δ(q0, uai) = δ(q0, vaj) for any words u, v in L such that uai and vaj have
the same Parikh point.

The main result of the paper is the following.

Proposition 8. It is decidable whether a regular prefix-closed language is geo-
metrical (resp. semi-geometrical).

Proof. Let A = (Q,E, q0, T) be the minimal deterministic complete automaton
accepting the language L. We consider the automaton B = (Q×Q,E′, (q0, q0), T×
T) labeled on Zd, where the edges are defined as follows. There is an edge

(p, q)
(0,..,

i
↓
+1,..,

j
↓
−1,..0)−−−−−−−−−−−→ (p′, q′)

with +1 positioned at the index i and −1 at the index j, whenever there are two
edges in A

p
ai−→ p′ and q

aj−→ q′.

There is an edge

(p, q)
(0,..,0)−−−−→ (p′, q′)

whenever there are two edges in A

p
ai−→ p′ and q

ai−→ q′.

The automaton B accepts a regular set of Zd.
By construction, there is a path in B from (q0, q0) to (p, q) labeled by the null

vector of Zd if and only if there are two words u, v with the same Parikh point
such that δ(q0, u) = p and δ(q0, v) = q. Let B(p,q) denote the regular subset of

Zd of labels of paths of B from (q0, q0) to (p, q). Thus checking whether L is
semi-geometrical consists in checking whether there exists no pair of states (p, q)
with p �= q and p, q final, such that B(p,q) contains the null vector.

Similarly, there is a path in B from (q0, q0) to (p, q) labeled by the Zd-vector
x(i,j) = (0, . . , 0,−1, 0, . . , 0,+1, 0, . . , 0) (with −1 positioned at the index i and
+1 at the index j) if and only if there are two words u, v such that δ(q0, u) = p

68 M.-P. Béal et al.

and δ(q0, v) = q, and such that uai and vaj have the same Parikh point. Thus
checking whether L is geometrical consists in checking whether, when B(p,q)

contains x(i,j) for some pair of states (p, q) with p �= q and p, q final, we have
δ(p, ai) = δ(q, aj).

As a consequence both geometricity and semi-geometricity can be reduced to
check whether the regular languageB(p,q) of Zd contains a given point of Zd. If we
find such a language B(p,q) containing x(i,j), we check whether δ(p, ai) = δ(q, aj)
and conclude that L is not geometrical if this condition does not hold.

We know from Section 3 that any set B(p,q) is semilinear, and the effective
construction of Proposition 5 can be performed a finite number of times to
decide whether B(p,q) contains some vector x(i,j). Thus both geometricity and
semi-geometricity are decidable.

The time complexity of the algorithm is exponential. Indeed, the automaton
A being given, the construction of B can be done in polynomial time. Finding
a rational expression of a set B(p,q) is exponential (the size of the expression
itself can be exponential). Finding a semi-linear expression from a rational ex-
pression is a polynomial step. Finally, solving a linear Diophantine equation is
exponential.

Example 2. We consider again the language L2 = {ab, b}. The set of its prefixes
{ε, a, ab, b} is accepted by the minimal deterministic complete finite automaton
A pictured in the left part of Figure 2. The automaton B constructed in the
proof of Proposition 8 is pictured in the right part. We have B(2,3) = {(1,−1)}.
It contains (1,−1) and δ(2, b) �= δ(3, a). As a consequence L2 is not geometrical.
It is semi-geometrical since neither B(2,3) nor B(3,2) contains the null vector.

1 2 3 4
a b a, b

b

a

a, b

1, 1

2, 3

3, 2

2, 2

3, 3

(1,−1)

(−1, 1)

(0, 0)

(0, 0)

Fig. 2. The automaton A (on the left), where the final states are colored, accepting
the set of prefixes of L2, and the automaton B (on the right). Only the final states of
B are represented.

We now come to the particular case of a two-letter alphabet A = {a, b}. It is
proved in [5] that it is decidable in polynomial time whether a regular binary
language is geometrical. An O(n3)-time algorithm is obtained for an extensible
binary language in [4], an O(n4)-time algorithm works for all binary languages
in [5]. We give below another polynomial-time algorithm for deciding the geo-
metricity of binary regular languages which is based on the construction used in

Decidability of Geometricity of Regular Languages 69

the proof of Proposition 8. It also uses an algorithm of [1] for computing the clo-
sure of an automaton under some rewriting rules. This algorithm has an O(n6)
time complexity which is worse than the complexity of the algorithm given in
[5], but it is simpler.

Proposition 9. ([5]) It is decidable in polynomial time whether a regular prefix-
closed language on a two letter alphabet is geometrical (resp. semi-geometrical).

Proof. Let A = (Q,E, q0, T) be the n-state minimal deterministic complete au-
tomaton accepting the language L. We first construct an automaton B′ over Z
which plays the same role as the automaton B in the proof of Proposition 8 but
has its labels in Zd−1. Let B′ = (Q × Q,E′, (q0, q0), T × T) labeled on Z. The
edges of B′ are defined as follows. There is in B′ an edge

(p, q)
+1−−→ (p′, q′) if p

a−→ p′ and q
b−→ q′ are edges of A,

(p, q)
−1−−→ (p′, q′) if p

b−→ p′ and q
a−→ q′ are edges of A,

(p, q)
0−→ (p′, q′) if p

	−→ p′ and q
	−→ q′ are edges of A,

where � = a or � = b.
Let B′

(p,q) denote the regular subset of Z of labels of paths of B′ from (q0, q0)

to (p, q). There is a path in B′ from (q0, q0) to (p, q) labeled by −1 if and only if
there are two words u, v such that δ(q0, u) = p and δ(q0, v) = q and such that uai
and vaj have the same Parikh point. Thus checking whether L is geometrical
consists in checking whether when B′

(p,q) contains −1 for some pair of states

(p, q) with p, q final, we have δ(p, ai) = δ(q, aj). Note that B′
(p,q) contains −1 if

and only if B′
(q,p) contains 1. Adding an extra initial edge labeled 1 reduces the

problem to checking whether B′
(p,q) contains 0.

The automaton B′ is an n2-state non-deterministic automaton labeled in the
subset X = {−1, 0, 1} of the group Z. By definition, the number of transitions
of B′ is at most 4n2. We say that the pair of consecutive edges of B′

s
	−→ t

m−→ u,

is reducible if �+m ∈ X .
We construct an automaton C which is a closure of B′ in the following sense.

Whenever there is a reducible pair of consecutive edges of B′ as above, we add
in C the edge

s
	+m−−−→ u.

This construction is an instance of the algorithm used in [1] for computing the
set of descendants of a regular set for Thue systems of a certain type. The
rewriting rules that we consider are given by pairs of words in X∗ ×X∗ which
are ((−1)1, 0), (1(−1), 0), (00, 0), (01, 1), (10, 1), ((−1)0,−1), (0(−1),−1).

The computation of the automaton C can be done as follows. We keep a queue

of edges of C containing initially the edges of B′. For each edge e = s
	−→ t of this

70 M.-P. Béal et al.

queue, we consider the edges f = t
m−→ u following e and the edges g = u

m−→ s
preceding e, in order to check whether ef of fe is a reducible pair of edges. In

that case, we add a new edge in the queue s
	+m−−−→ u (or u

	+m−−−→ t).
The number of edges of C is at most 3n4 and each edge is added and removed

only once in the queue. Whenever an edge (s, �, t) is removed, the edges going
out of t and coming in s are checked. There are at most 6n2 such edges. Thus
the time complexity the algorithm is O(18n6).

We claim that there is a path in B′ from s to t labeled by 0 if and only if
there is an edge in C from s to t labeled by 0. Indeed, by construction, if there
is an edge in C from s to t labeled by 0, then there is a path in B′ from s to t
labeled by 0. Conversely, let

s
	1−→ s1

	2−→ . .
	r−→ sr = t

be a path in B′ labeled by 0 of minimal length. This path contains no consecutive
reducible pair of edges as factor since otherwise we could get a shorter path
labeled with the same label, origin and end. As a consequence the factors (−1)1,
1(−1), 01, 10, 0(−1), (−1)0, or 00, are forbidden in the sequence �1 . . �r. This
implies that all �i are equal. Since �1 + · · ·+ �r = 0, we get r = 1 and �1 = 0.

The algorithm can be implemented as follows. Let � ∈ X . We set B′
	[s, t] =

true if there is an edge (s, �, t) in B′ and B′
	[s, t] = false otherwise. We define the

matrices C	 similarly.
A pseudocode for computing the matrices C	 from the matrices B′

	 is given
in the procedure Closure below.

Closure (transition matrices B′
�)

1 for all � ∈ X
2 do C� ← B′

�

3 edgeQueue ← the edges of B′

4 while edgeQueue is nonempty

5 do remove an edge s
�−→ t from edgeQueue

6 for all states u, all m such that l +m ∈ X,
7 do if C�+m[s, u] = false
8 then C�+m[s, u] ← true

9 add s
�+m−−−→ u to edgeQueue

10 if C�+m[u, t] = false
11 then C�+m[u, t] ← true

12 add u
�+m−−−→ t to edgeQueue

13
14 return C�

Example 3. We consider the language L3 = {ab, ba}∗. The set of its prefixes is
accepted by the deterministic complete finite automaton A pictured in the left
part of Figure 3. The automaton B′ constructed in the proof of Proposition 9 is
pictured in the right part of the figure. The closure automaton C of B′ is pictured
in Figure 4. Since C has no edge labeled by 0 from (1, 1) to either (2, 3) or (3, 2),
the language L3 is a geometrical language.

Decidability of Geometricity of Regular Languages 71

3 1 2
a

bb

a
1, 1 2, 33, 2

2, 2

3, 3

00

0 0

1

−1−1

1

Fig. 3. The automaton A (on the left) accepting the set of prefixes of L3 = {ab, ba}∗,
and the automaton B′ (on the right). Only the final states are represented.

1, 1 2, 33, 2

2, 2

3, 3

00

0 0

1

−1−1

1

0

0

0

00

1

−1

1

−1

−1

1

−1

1

00

Fig. 4. The automaton C which is the closure of the automaton B′

References

1. Benois, M., Sakarovitch, J.: On the complexity of some extended word problems
defined by cancellation rules. Inform. Process. Lett. 23, 281–287 (1986)

2. Blanpain, B., Champarnaud, J.-M., Dubernard, J.-P.: Geometrical languages. In:
LATA (Languages and Automata Theoretical Aspects), vol. Pre-proceedings, Re-
port 35/07 of GRLMC Universitat Rovira I Virgili, pp. 127–138 (2007)

3. Champarnaud, J.-M., Dubernard, J.-P., Guingne, F., Jeanne, H.: Geometrical Reg-
ular Languages and Linear Diophantine Equations. In: Holzer, M. (ed.) DCFS 2011.
LNCS, vol. 6808, pp. 107–120. Springer, Heidelberg (2011)

4. Champarnaud, J.-M., Dubernard, J.-P., Jeanne, H.: An efficient algorithm to test
whether a binary and prolongeable regular language is geometrical. Int. J. Found.
Comput. Sci. 20, 763–774 (2009)

5. Champarnaud, J.-M., Dubernard, J.-P., Jeanne, H.: Geometricity of Binary Reg-
ular Languages. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010.
LNCS, vol. 6031, pp. 178–189. Springer, Heidelberg (2010)

6. Eilenberg, S., Schützenberger, M.P.: Rational sets in commutative monoids. J.
Algebra 13, 173–191 (1969)

72 M.-P. Béal et al.

7. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of Presburger arith-
metic. In: Complexity of computation (Proc. SIAM-AMS Sympos., New York,
1973). SIAM–AMS Proc., vol. VII, pp. 27–41. Amer. Math. Soc., Providence (1974)

8. Geniet, D., Largeteau, G.: WCET free time analysis of hard real-time systems on
multiprocessors: a regular language-based model. Theoret. Comput. Sci. 388, 26–52
(2007)

9. Ginsburg, S., Spanier, E.H.: Bounded ALGOL-like languages. Trans. Amer. Math.
Soc. 113, 333–368 (1964)

10. Golomb, S.W.: Polyominoes, 2nd edn. Princeton University Press, Princeton
(1994); Puzzles, patterns, problems, and packings, With diagrams by Warren Lush-
baugh, With an appendix by Andy Liu

11. Huynh, T.-D.: The Complexity of Semilinear Sets. In: de Bakker, J.W., van
Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 324–337. Springer, Heidelberg
(1980)

12. Reutenauer, C.: Aspects mathématiques des réseaux de Petri, Collection Études
et Recherches en Informatique, Masson, Paris, ch. 3 (1989)

13. Sakarovitch, J.: Éléments de théorie des automates, Vuibert (2003)
14. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
15. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge

University Press, Cambridge (2003); 1st edn. (1999)
16. von zur Gathen, J., Sieveking, M.: A bound on solutions of linear integer equalities

and inequalities. In: Proceedings of the American Mathematical Society, vol. 72,
pp. 155–158 (1978)

Inside the Class of REGEX Languages

Markus L. Schmid

Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom

M.Schmid@lboro.ac.uk

Abstract. We study different possibilities of combining the concept of
homomorphic replacement with regular expressions in order to investi-
gate the class of languages given by extended regular expressions with
backreferences (REGEX). It is shown in which regard existing and nat-
ural ways to do this fail to reach the expressive power of REGEX. Fur-
thermore, the complexity of the membership problem for REGEX with
a bounded number of backreferences is considered.

Keywords: Extended Regular Expressions, REGEX, Pattern Lan-
guages, Pattern Expressions, Homomorphic Replacement.

1 Introduction

Since their introduction by Kleene in 1956 [13], regular expressions have not only
constantly challenged researchers in formal language theory, they also attracted
pioneers of applied computer science as, e. g., Thompson [17], who developed one
of the first implementations of regular expressions, marking the beginning of a
long and successful tradition of their practical application (see Friedl [10] for
an overview). In order to suit practical requirements, regular expressions have
undergone various modifications and extensions which lead to so-called extended
regular expressions with backreferences (REGEX for short), nowadays a standard
element of most text editors and programming languages (cf. Friedl [10]). The
introduction of these new features of extended regular expressions has frequently
not been guided by theoretically sound analyses and only recent studies have led
to a deeper understanding of their properties (see, e. g., Câmpeanu et al. [5]).

The main difference between REGEX and classical regular expressions is the
concept of backreferences. Intuitively speaking, a backreference points back to an
earlier subexpression, meaning that it has to be matched to the same word the
earlier subexpression has been matched to. For example, r := (1 (a | b)∗)1 ·c · \1
is a REGEX, where \1 is a backreference to the referenced subexpression in
between the parentheses (1 and)1. The language described by r, denoted by
L(r), is the set of all words wcw, w ∈ {a, b}∗; a non-regular language. Two
aspects of REGEX deserve to be discussed in a bit more detail.

For the REGEX ((1 a+)1 | b) · c · \1, if we choose the option b in the
alternation, then \1 points to a subexpression that has not been “initialised”.
Normally, such a backreference is then interpreted as the empty word, which

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 73–84, 2012.
� Springer-Verlag Berlin Heidelberg 2012

74 M.L. Schmid

seems to be the only reasonable way to handle this situation, but, on the other
hand, conflicts with the intended semantics of backreferences, particularly in the
above example, since it actually means that \1 can be the empty word, whereas
the referenced subexpression (1 a

+)1 does not match the empty word.
Another particularity appears whenever a backreference points to a subex-

pression under a star, e. g., s := ((1 a
∗)1 · b · \1)∗ · c · \1. One might expect s to

define the set of all words of form (anban)mcan, n,m ≥ 0, but s really describes
the set {an1ban1 ·an2ban2 ·· · ··anmbanm ·c·anm | m ≥ 1, ni ≥ 0, 1 ≤ i ≤ m}∪{c}.
This is due to the fact that the star operation repeats a subexpression several
times without imposing any dependencies between the single iterations. Conse-
quently, in every iteration of the second star in s, the referenced subexpression
(1 a∗)1 is treated as an individual instance and its scope is restricted to the
current iteration. Only the factor that (1 a

∗)1 matches in the very last iteration
is then referenced by any backreference \1 outside the star. A way to see that
this behaviour, which is called late binding of backreferences, is reasonable, is
to observe that if we require (1 a∗)1 to take exactly the same value in every
iteration of the star, then, for some REGEX r, this may lead to L(r∗) �= (L(r))∗ .

A suitable language theoretical approach to these backreferences is the con-
cept of homomorphic replacement. For example, the REGEX r can also be given
as a string xbx, where the symbol x can be homomorphically replaced by words
from {a, b}∗, i. e., both occurrences of x must be replaced by the same word.
Numerous language generating devices can be found that use various kinds of
homomorphic replacement. The most prominent example are probably the well-
known L systems (see Kari et al. [12] for a survey), but also many types of
grammars as, e. g., Wijngaarden grammars, macro grammars, Indian parallel
grammars or deterministic iteration grammars, use homomorphic replacement
as a central concept (cf. Albert and Wegner [2] and Bordihn et al. [4] and the
references therein). Albert and Wegner [2] and Angluin [3] introduced H-systems
and pattern languages, respectively, which both use homomorphic replacement in
a more puristic way, without any grammar like mechanisms. More recent models
like pattern expressions (Câmpeanu and Yu [7]), synchronized regular expres-
sions (Della Penna et al. [15]) and EH-expressions (Bordihn et al. [4]) are mainly
inspired directly by REGEX. While all these models have been introduced and
analysed in the context of formal language theory, REGEX have mainly been
formed by applications and especially cater for practical requirements. Hence,
there is the need in formal language theory to catch up on these practical de-
velopments concerning REGEX and we can note that recent work is concerned
with exactly that task (see, e. g., [5–9, 14]).

The contribution of this paper is to investigate alternative possibilities to com-
bine the two most elementary components of REGEX, i. e., regular expressions
and homomorphic replacement, with the objective of reaching the expressive
power of REGEX as close as possible, without exceeding it. Particularly chal-
lenging about REGEX is that due to the possible nesting of referenced subex-
pression the concepts of regular expressions and homomorphic replacement seem
to be inherently entangled and there is no easy way to treat them separately.

Inside the Class of REGEX Languages 75

We illustrate this with the example t := (1 a
∗)1 · (2 (b · \1)∗)2 · \2 · \1. The lan-

guage L(t) := {an(ban)m(ban)man | n,m ≥ 0} cannot that easily be described in
terms of a single string with a homomorphic replacement rule, e. g., by the string
xyyx, where x can be replaced by words from {an | n ≥ 0}, and y by words of
form {(ban)m | n,m ≥ 0}, since then we can obtain words an(ban

′
)m(ban

′
)man

with n �= n′. In fact, two steps of homomorphic replacement seem necessary,
i. e., we first replace y by words from {(bz)n | n ≥ 0} and after that we replace
x and z by words from {an | n ≥ 0}, with the additional requirement that x
and z are substituted by the same word. More intuitively speaking, the nesting
of referenced subexpressions require iterated homomorphic replacement, but we
also need to carry on information from one step of replacement to the next one.

The concept of homomorphic replacement is covered best by so-called pattern
languages as introduced by Angluin [3]. A pattern is a string containing variables
and terminal symbols and the corresponding pattern language is the set of all
words that can be obtained from the pattern by homomorphically replacing
the variables by terminal words. We combine Angluin’s patterns with regular
expressions by first adding the alternation and star operator to patterns and,
furthermore, by letting their variables be typed by regular languages, i. e., the
words variables are replaced with are from given regular sets. Then we iterate
this step by using this new class of languages again as types for variables and
so on. We also take a closer look at pattern expressions, which were introduced
by Câmpeanu and Yu [7] as a convenient tool to define REGEX languages.
In [7], many examples are provided that show how to translate a REGEX into
an equivalent pattern expression and vice versa. It is also stated that this is
possible in general, but a formal proof for this statement is not provided. In the
present work we show that pattern expressions are in fact much weaker than
REGEX and they describe a proper subset of the class of REGEX languages
(in fact, they are even weaker than REGEX that do not contain referenced
subexpressions under a star). These limits in expressive power are caused by the
above described difficulties due to the nesting of referenced subexpressions.

On the other hand, pattern expressions still describe an important and natural
subclass of REGEX languages, that has been independently defined in terms of
other models and, as shown in this work, also coincides with the class of languages
resulting from the modification of patterns described above. We then refine the
way of how pattern expressions define languages in order to accommodate the
nesting of referenced subexpressions and we show that the thus obtained class
of languages coincides with the class of languages given by REGEX that do not
contain a referenced subexpression under a star.

Finally, we briefly discuss the membership problem for REGEX with a
restricted number of backreferences, which, in the unrestricted case, is NP-
complete. Although it seems trivial that this problem can be solved in poly-
nomial time, the situation is complicated by subexpressions that occur and are
referenced under a star, which represent arbitrarily many distinct subexpressions
with individual backreferences.

Note that, due to space constraints, all proofs are omitted.

76 M.L. Schmid

2 General Definitions

Let N := {1, 2, 3, . . .} and let N0 := N ∪ {0}. For an arbitrary alphabet A, a
word (over A) is a finite sequence of symbols from A, and ε stands for the
empty word. The notation A+ denotes the set of all nonempty words over A,
and A∗ := A+ ∪{ε}. For the concatenation of two words w1, w2 we write w1 ·w2

or simply w1w2. We say that a word v ∈ A∗ is a factor of a word w ∈ A∗ if there
are u1, u2 ∈ A∗ such that w = u1 · v · u2. The notation |K| stands for the size of
a set K or the length of a word K.

We use regular expression as they are commonly defined (see, e. g., Yu [18]).
For the alternation operations we use the symbol “|” and in an alternation (s | t),
we call the subexpressions s and t options. For any regular expression r, L(r) de-
notes the language described by r and REG denotes the set of regular languages.
Let Σ be a finite alphabet of terminal symbols and let X := {x1, x2, x3, . . .} be a
countably infinite set of variables with Σ ∩X = ∅. For any word w ∈ (Σ ∪X)∗,
var(w) denotes the set of variables that occur in w.

3 Patterns with Regular Operators and Types

In this section, we combine the pattern languages mentioned in Section 1 with
regular languages and regular expressions. more precisely, we first define pattern
languages, the variables of which are typed by regular languages and after that
we add the regular operators of alternation and star.

Let PAT := {α | α ∈ (Σ ∪ X)+} and every α ∈ PAT is called a pattern. We
always assume that, for every i ∈ N, xi ∈ var(α) implies {x1, x2, . . . , xi−1} ⊆
var(α). For any alphabets A,B, a morphism is a function h : A∗ → B∗ that
satisfies h(vw) = h(v)h(w) for all v, w ∈ A∗. A morphism h : (Σ ∪X)

∗ → Σ∗

is called a substitution if h(a) = a for every a ∈ Σ. For an arbitrary class of
languages L and a pattern α with | var(α)| = m, an L-type for α is a tuple
T := (Tx1 , Tx2 , . . . , Txm), where, for every i, 1 ≤ i ≤ m, Txi ∈ L and Txi is
called the type language of (variable) xi. A substitution h satisfies T if and only
if, for every i, 1 ≤ i ≤ m, h(xi) ∈ Txi.

We recall that in Section 1, the mapping that is done by a substitution has
been called a homomorphic replacement. However, here we prefer to use the
terminology that is common in the context of Angluin’s pattern languages.

Definition 1. Let α ∈ PAT, let L be a class of languages and let T be an L-
type for α. The T -typed pattern language of α is defined by LT (α) := {h(α) |
h is a substitution that satisfies T }. For any class of languages L, LL(PAT) :=
{LT (α) | α ∈ PAT, T is an L-type for α} is the class of L-typed pattern
languages.

We note that {Σ∗}-typed and {Σ+}-typed pattern languages correspond to the
classes of E-pattern languages and NE-pattern languages, respectively, as defined
by Angluin [3] and Shinohara [16]. It is easy to see that LREG(PAT) is contained
in the class of REGEX languages. The substantial difference between these two

Inside the Class of REGEX Languages 77

classes is that the backreferences of a REGEX can refer to subexpressions that
are not classical regular expressions, but REGEX. Hence, in order to describe
larger classes of REGEX languages by means of the pattern-based formalism
given in Definition 1, the next step could be to type the variables of patterns with
languages from LREG(PAT) instead of REG and then using the thus obtained
languages again as type languages and so on. However, this approach leads to a
dead end:

Proposition 1. For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Proposition 1 demonstrates that typed pattern languages are invariant with
respect to iteratively typing the variables of the patterns. This suggests that if
we want to extend pattern languages in such a way that they can describe larger
subclasses of the class of REGEX languages, then the regular aspect cannot
completely be limited to the type languages of the variables. This observation
brings us to the definition of PATro := {α | α is a regular expression over (Σ ∪
X ′), where X ′ is a finite subset of X}, the set of patterns with regular operators.
For the sake of convenience, in the remainder of this paper, whenever we use
a regular expression over the alphabet (Σ ∪ X), we actually mean a regular
expression over (Σ ∪X ′), for some finite subset X ′ of X . In order to define the
language given by a pattern with regular operators, we extend the definition of
types to patterns with regular operators in the obvious way.

Definition 2. Let α ∈ PATro and let T be a type for α. The T -typed pattern
language of α is defined by LT (α) :=

⋃
β∈L(α) LT (β). For any class of languages

L, we define LL(PATro) := {LT (α) | α ∈ PATro, T is an L-type for α}.

Patterns with regular operators are also used in the definition of pattern expres-
sions (see [7] and Section 4) and have been called regular patterns in [4]. As an
example, we define α := (x1ax1 | x2bx2)

∗ ∈ PATro and T := (L(c∗),L(d∗)).
The language LT (α) can be generated in two steps. We first construct L(α) =
{β1 · β2 · · · · · βn | n ∈ N0, βi ∈ {x1ax1, x2bx2}, 1 ≤ i ≤ n} and then LT (α)
is the union of all typed pattern languages LT (β), where β ∈ L(α). Thus,
LT (α) = {w1 ·w2 · · · · ·wn | n ∈ N0, wi ∈ {cmacm, dmbdm | m ∈ N0}, 1 ≤ i ≤ n}.

It seems reasonable to assume that REG-typed patterns with regular op-
erators are strictly more powerful than REG-typed patterns without regular
operators. In the following proposition, we formally prove this intuition.

Proposition 2. L{Σ∗}(PAT) ⊂ LREG(PAT) ⊂ LREG(PATro).

The invariance of typed patterns – represented by Proposition 1 – does not hold
anymore with respect to patterns with regular operators. Before we formally
prove this claim, we shall define an infinite hierarchy of classes of languages
given by typed patterns with regular operators. The bottom of this hierarchy
are the REG-typed pattern languages with regular operators. Each level of the
hierarchy is then given by patterns with regular operators that are typed by
languages from the previous level of the hierarchy and so on.

78 M.L. Schmid

Definition 3. Let Lro,0 := REG and, for every i ∈ N, we define Lro,i :=
LLro,i−1(PATro). Furthermore, we define Lro,∞ =

⋃∞
i=0 Lro,i.

It follows by definition, that the classes Lro,i, i ∈ N0, form a hierarchy and we
strongly conjecture that it is proper. However, here we only separate the first
three levels of that hierarchy.

Theorem 1. Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆

In the following section, we take a closer look at the class Lro,∞. We shall show
that it coincides with the class of languages that are defined by the already
mentioned pattern expressions and we formally prove it to be a proper subset of
the class of REGEX languages.

4 Pattern Expressions

We define pattern expressions as introduced by Câmpeanu and Yu [7], but we
use a slightly different notation.

Definition 4. A pattern expression is a tuple (x1 → r1, x2 → r2, . . . , xn → rn),
where, for every i, 1 ≤ i ≤ n, ri ∈ PATro and var(ri) ⊆ {x1, x2, . . . , xi−1}. The
set of all pattern expressions is denoted by PE.

In [7], the language of a pattern expression p := (x1 → r1, x2 → r2, . . . , xn → rn)
is defined in the following way. Since, by definition, r1 is a classical regular
expression, it describes a regular language L. The language L is then interpreted
as a type for variable x1 in every ri, 2 ≤ i ≤ n. This step is then repeated, i. e.,
L(L)(r2) is the type for x2 in every rj , 3 ≤ j ≤ n, and so on.

Definition 5. Let p := (x1 → r1, x2 → r2, . . . , xn → rn) be a pattern expres-
sion. We define Lp,x1 := L(r1) and, for every i, 2 ≤ i ≤ n, Lp,xi := LTi(ri),
where Ti := (Lp,x1 , Lp,x2, . . . , Lp,xi−1) is a type for ri. The language generated
by p with respect to iterated substitution is defined by Lit(p) := Lp,xn and
Lit(PE) := {Lit(p) | p ∈ PE}.

We illustrate the above definition with an example. Let

q := (x1 → a∗, x2 → x1(c | d)x1, x3 → x1cx2)

be a pattern expression. According to the above definition, Lit(q) = {akcamuam |
k,m ∈ N0, u ∈ {c, d}}. We note that in a word akcamuam ∈ Lit(q), both ak and
am are substitution words for the same variable x1 from the type language Lq,x1 .
However, k �= m is possible, since, intuitively speaking, ak is picked first from
Lq,x1 as the substitution word for x1 in x1cx2 and then am is picked from Lq,x1

as substitution word for x1 in x1(c | d)x1 in order to construct the substitution
word amuam for x2 in x1cx2. Consequently, occurrences of the same variable
in different elements of the pattern expression do not need to be substituted

Inside the Class of REGEX Languages 79

by the same word. We shall later see that this behaviour essentially limits the
expressive power of pattern expressions.

As mentioned before, the class of languages described by pattern expressions
with respect to iterated substitution coincides with the class Lro,∞ of the previ-
ous section.

Theorem 2. Lro,∞ = Lit(PE).

In the following, we define an alternative way of how pattern expressions can
describe languages, i. e., instead of substituting the variables by words in an
iterative way, we substitute them uniformly.

Definition 6. Let p := (x1 → r1, x2 → r2, . . . , xn → rn) ∈ PE. A word w ∈ Σ∗

is in the language generated by p with respect to uniform substitution (Luni(p),
for short) if and only if there exists a substitution h such that h(xn) = w and,
for every i, 1 ≤ i ≤ n, there exists an αi ∈ L(ri) with h(xi) = h(αi).

For the pattern expression q from above, a word w is in Luni(q) if there is a
substitution h with h(x3) = w and there exist α1 ∈ L(a∗), α2 ∈ L(x1(c | d)x1)
and α3 ∈ L(x1cx2), such that h(x1) = h(α1), h(x2) = h(α2) and h(x3) = h(α3).
Since α1 = an, n ∈ N0, α2 = x1ux1, u ∈ {c, d}, and α3 = x1cx2, this implies that
w is in Luni(q) if there is a substitution h and an α := x1cx1ux1, u ∈ {c, d}, such
that w = h(α) and h satisfies the type (L(a∗)). Thus, Luni(q) = {ancanuan |
n ∈ N0, u ∈ {c, d}}, which is a proper subset of Lit(q).

For an arbitrary pattern expression p := (x1 → r1, x2 → r2, . . . , xn → rn), the
language Luni(p) can also be defined in a more constructive way. We first choose
a word u ∈ L(r1) and, for all i, 1 ≤ i ≤ n, if variable x1 occurs in ri, then we
substitute all occurrences of x1 in ri by u. Then we delete the element x1 → r1
from the pattern expression. If we repeat this step with respect to variables
x2, x3, . . . , xn−1, then we obtain a pattern expression of form (xn → r′n), where
r′n is a regular expression over Σ. The language Luni(p) is the union of the
languages given by all these regular expression.

The languageLit(q) can be defined similarly.We first choose a word u1 ∈ L(r1)
and then we substitute all occurrences of x1 in r2 by u1. After that, we choose a
new word u2 ∈ L(r1) and substitute all occurrences of x1 in r3 by u2 and so on
until there are no more occurrences of variable x1 in q and then we delete the
element x1 → r1. Then this step is repeated with respect to x2, x3, . . . , xn−1.

The above considerations yield the following proposition:

Proposition 3. Let p := (x1 → r1, x2 → r2, . . . , xm → rm) be a pattern
expression. Then Luni(p) ⊆ Lit(p) and if, for every i, j, 1 ≤ i < j ≤ m,
var(ri) ∩ var(rj) = ∅, then also Lit(p) ⊆ Luni(p).

The interesting question is whether or not there exists a language L ∈ Luni(PE)
with L /∈ Lit(PE) or vice versa. Intuitively, for any pattern expression p, it seems
obvious that it is not essential for the language Lit(p) that there exist occurrences
of the same variable in different elements of p and it should be possible to
transform p into an equivalent pattern expression p′, the elements of which have

80 M.L. Schmid

disjoint sets of variables and, thus, by Proposition 3, Lit(p) = Luni(p
′). Hence,

for the language generated by a pattern expression with respect to iterated
substitution, the possibility of using the same variables in different elements of a
pattern expression can be considered as mere syntactic sugar that keeps pattern
expressions concise. On the other hand, the question of whether or not, for every
pattern expression p, we can find a pattern expression p′ with Luni(p) = Lit(p

′),
is not that easy to answer. The following lemma states that there are in fact
languages that can be expressed by some pattern expression with respect to
uniform substitution, but not by any pattern expression with respect to iterated
substitution.

Lemma 1. There exists a language L ∈ Luni(PE) with L /∈ Lit(PE).

From Lemma 1 we can conclude the main result of this section, i. e., the class of
languages given by pattern expressions with respect to iterated substitution is a
proper subset of the class of languages given by pattern expressions with respect
to uniform substitution.

Theorem 3. Lit(PE) ⊂ Luni(PE).

We conclude this section by mentioning that in Bordihn et al. [4], it has been
shown that H∗(REG,REG), a class of languages given by an iterated version
of H-systems (see Albert and Wegner [2] and Bordihn et al. [4]), also coincides
with Lit(PE), which implies Lro,∞ = Lit(PE) = H∗(REG,REG) ⊂ Luni(PE).

In the following section, we take a closer look at the larger class Luni(PE) and
compare it to the class of REGEX languages.

5 REGEX

We use a slightly different notation for REGEX compared to the one used in [5].
A REGEX is a regular expression, the subexpressions of which can be num-

bered by adding an integer index to the parentheses delimiting the subexpression
(i. e., (n . . .)n, n ∈ N). This is done in such a way that there are no two differ-
ent subexpressions with the same number. The subexpression that is numbered
by n ∈ N, which is called the nth referenced subexpression, can be followed by
arbitrarily many backreferences to that subexpression, denoted by \n.

For example, (1 a | b)1 · (2 (c | a)∗)2 · (\1)∗ · \2 is a REGEX, whereas r1 :=
(1 a | b)1 · (1 (c | a)∗)1 · (\1)∗ · \2 and r2 := (1 a | b)1 · \2 · (2 (c | a)∗)2 · (\1)∗ · \2
is not a REGEX, since in r1 there are two different subexpressions numbered
by 1 and in r2 there is an occurrence of a backreference \2 before the second
referenced subexpression.

A formal definition of the language described by a REGEX can be found
in [5]. Here, we stick to the more informal definition which has already been
briefly outlined in Section 1 and that we now recall in a bit more detail.

For a REGEX r, the language described by r is denoted by L(r). A word
w is in L(r) if and only if we can obtain it from r in the following way. We

Inside the Class of REGEX Languages 81

move over r from left two right. We treat alternations and stars as it is done
for classical regular expressions and we note down every terminal symbol that
we read. When we encounter the ith referenced subexpression, then we store the
factor ui that is matched to it and from now on we treat every occurrence of
\i as ui. However, there are two special cases we need to take care of. Firstly,
when we encounter the ith referenced subexpression for a second time, which
is possible since the ith referenced subexpression may occur under a star, then
we overwrite ui with the possible new factor that is now matched to the ith

referenced subexpression. This entails the late binding of backreferences, which
has been described in Section 1. Secondly, if a backreference \i occurs and there
is no factor ui stored that has been matched to the ith referenced subexpression,
then \i is interpreted as the empty word.

We also define an alternative way of how a REGEX describes a language, that
shall be useful for our proofs. The language with necessarily initialised subexpres-
sions of a REGEX r, denoted by Lnis(r), is defined in a similar way as L(r) above,
but if a backreference \i occurs and there is currently no factor ui stored that
has been matched to the ith referenced subexpression, then instead of treating
\i as the empty word, we interpret it as the ith referenced subexpression, we
store the factor ui that is matched to it and from now on every occurrence of
\i is treated as ui. For example, let r := ((1 a∗)1 | ε) · b · \1 · b · \1. Then
L(r) := {anbanban | n ∈ N0} and Lnis(r) := L(r) ∪ {banban | n ∈ N0}.

We can note that the late binding of backreferences as well as non-initialised
referenced subexpressions is caused by referenced subexpression under a star or
in an alternation. Next, we define REGEX that are restricted in this regard.

Definition 7. A REGEX r is alternation confined if and only if the existence
of a referenced subexpression in the option of an alternation implies that all the
corresponding backreferences occur in the same option of the same alternation.
A REGEX r is star-free initialised if and only if every referenced subexpression
does not occur under a star. Let REGEXac and REGEXsfi be the sets of REGEX
that are alternation confined and star-free initialised, respectively. Furthermore,
let REGEXsfi,ac := REGEXac ∩REGEXsfi.

We can show that the condition of being alternation confined does not impose a
restriction on the expressive power of a star-free initialised REGEX. The same
holds with respect to their languages with necessarily initialised subexpressions.
Furthermore, for every star-free initialised REGEX r, the language L(r) can also
be given as the language with necessarily initialised subexpressions of a star-free
initialised REGEX and vice versa. This is formally stated in the next lemma,
which shall be useful for proving the main result of this section.

Lemma 2

L(REGEXsfi) = L(REGEXsfi,ac) = Lnis(REGEXsfi) = Lnis(REGEXsfi,ac) .

In the following, we take a closer look at the task of transforming a pattern
expression p into a REGEX r, such that Luni(p) = L(r). Although, this is

82 M.L. Schmid

possible in general, a few difficulties arise, that have already been pointed out
by Câmpeanu and Yu in [7] (with respect to Lit(p)).

The natural way to transform a pattern expression into an equivalent REGEX
is to successively substitute the occurrences of variables by referenced subex-
pressions and appropriate backreferences. However, this is not always possi-
ble. For example, consider the pattern expression q := (x1 → (a | b)∗, x2 →
x∗
1 · c · x1 · d · x1). If we simply transform q into rq := (1 (a | b)∗)∗1 · c · \1 · d · \1,

then we obtain an incorrect REGEX, since Luni(q) �= L(rq). This is due to the
fact that the referenced subexpression is under a star. To avoid this, we can first
rewrite q to q′ := (x1 → (a | b)∗, x2 → (x1 · x∗

1 | ε) · c · x1 · d · x1), which leads
to rq′ := ((1 (a | b)∗)1 · (\1)∗ | ε) · c · \1 · d · \1. Now we encounter a different
problem: Luni(q

′) contains the word cabadaba, but in L(rq′) the only word that
starts with c is cd. This is due to the fact that if we choose the second option
of ((1 (a | b)∗)1 · (\1)∗ | ε), then all \1 are set to the empty word. However, we
note that the language with necessarily initialised subexpressions of rq′ is exactly
what we want, since Lnis(rq′) = Luni(q). Hence, we can transform any pattern
expression p to a REGEX rp that is star-free initialised and Luni(p) = Lnis(rp).

Lemma 3. For every pattern expression p, there exists a star-free initialised
REGEX r with Luni(p) = Lnis(r).

We recall that Lemma 2 states that every star-free initialised REGEX r can be
transformed into a star-free initialised REGEX r′ with Lnis(r) = L(r′). Conse-
quently, Lemmas 2 and 3 imply that every pattern expression p can be trans-
formed into a star-free initialised REGEX r with Luni(p) = L(r). For example,
the pattern expression q introduced on page 82 can be transformed into the
REGEX tq := ((1 (a | b)∗)1 · (\1)∗ · c · \1 · d · \1 | c · (2 (a | b)∗)2 · d · \2), which
finally satisfies Luni(q) = L(tq).

Theorem 4. Luni(PE) ⊆ L(REGEXsfi).

In the remainder of this section, we show the converse of Theorem 4, i. e., every
star-free initialised REGEX r can be transformed into a pattern expression that
describes the language L(r) with respect to uniform substitution. However, this
cannot be done directly if r is not alternation confined. As an example, we
consider r := ((1 (a | b)∗)1 | (2 c∗)2) · (\1)∗ · \2. Now the natural way
to transform r into a pattern expression is to substitute the first and second
referenced subexpression and the corresponding backreferences by variables x1

and x2, respectively, and to introduce elements x1 → (a | b) and x2 → c∗, i. e.,
pr := (x1 → (a | b), x2 → c∗, x3 → (x1 | x2) · (x1)

∗ · x2). Now Luni(pr) contains
the word cccabababccc, whereas every word in L(r) that starts with c does not
contain any occurrence of a or b, thus, Luni(pr) �= L(r). So in order to transform
star-free initialised REGEX into equivalent pattern expressions, again Lemma 2
is very helpful, which states that we can transform every star-free initialised
REGEX into an equivalent one that is also alternation confined.

Inside the Class of REGEX Languages 83

Theorem 5. L(REGEXsfi) ⊆ Luni(PE).

From Theorems 4 and 5, we can conclude that the class of languages described
by pattern expressions with respect to uniform substitution coincides with the
class of languages given by regular expressions that are star-free initialised.

Corollary 1. L(REGEXsfi) = Luni(PE).

In Sections 3 and 4 and in the present section, we have investigated several
proper subclasses of the class of REGEX languages and their mutual relations.
We conclude this section, by summarising these results:

L{Σ∗}(PAT) ⊂ LREG(PAT) ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ . . . ⊆ Lro,∞ =

H∗(REG,REG) = Lit(PE) ⊂ Luni(PE) = L(REGEXsfi) ⊆ L(REGEX) .

6 REGEX with a Bounded Number of Backreferences

It is a well known fact that the membership problem for REGEX languages is
NP-complete (cf. Aho [1] and Angluin [3]). Furthermore, Aho states that it can
be solved in time that is exponential only in the number of backreferences in the
following way. Let k be the number of referenced subexpressions in a REGEX r
and let w be an input word. We first choose k factors u1, u2, . . . , uk of w and then
try to match r to w in such a way that, for every i, 1 ≤ i ≤ k, the ith referenced
subexpression is matched to ui. This is done with respect to all possible k factors
of w. For this procedure we only need to keep track of the k possible factors of
w, thus, time O(|w|2k) is sufficient. However, this approach is incorrect, since it
ignores the possibility that the referenced subexpressions under a star (and their
backreferences) can be matched to a different factor in every individual iteration
of the star. On the other hand, if we first iterate every expression under a star
that contains a referenced subexpression an arbitrary number of times, then,
due to the late binding of backreferences, we introduce arbitrarily many new
referenced subexpressions and backreferences, so there is an arbitrary number
of factors to keep track of.

The question whether the membership problem for REGEX can be solved
in time that is exponential only in the number of backreferences is not a sec-
ondary one, since a positive answer yields the polynomial time solvability of the
membership problem for languages given by REGEX with a bounded number
of backreferences.

We give a positive answer to that question, by showing that for any REGEX
r, a nondeterministic two-way multi-head automaton (see Holzer et al. [11] for
a survey) can be constructed that accepts exactly L(r) with a number of input
heads that is bounded by the number of referenced subexpressions in r and a
number of states that is bounded by the length of r.

Lemma 4. Let r be a REGEX with k referenced subexpressions. There exists a
nondeterministic two-way (3k+2)-head automaton with O(|r|) states that accepts
L(r).

84 M.L. Schmid

Since we can solve the acceptance problem of a given two-way multi-head au-
tomaton M and a given word w in time that is exponential only in the number
of input heads, we can conclude the following result:

Theorem 6. Let k ∈ N. The membership problem for REGEX with at most k
referenced subexpressions can be solved in polynomial time.

References

1. Aho, A.: Algorithms for finding patterns in strings. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science. Algorithms and Complexity, vol. A, pp.
255–300. MIT Press (1990)

2. Albert, J., Wegner, L.: Languages with homomorphic replacements. Theoretical
Computer Science 16, 291–305 (1981)

3. Angluin, D.: Finding patterns common to a set of strings. In: Proc. 11th Annual
ACM Symposium on Theory of Computing, pp. 130–141 (1979)

4. Bordihn, H., Dassow, J., Holzer, M.: Extending regular expressions with homomor-
phic replacement. RAIRO Theoretical Informatics and Applications 44, 229–255
(2010)

5. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.
International Journal of Foundations of Computer Science 14, 1007–1018 (2003)

6. Câmpeanu, C., Santean, N.: On the intersection of regex languages with regular
languages. Theoretical Computer Science 410, 2336–2344 (2009)

7. Câmpeanu, C., Yu, S.: Pattern expressions and pattern automata. Information
Processing Letters 92, 267–274 (2004)

8. Carle, B., Narendran, P.: On Extended Regular Expressions. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 279–289.
Springer, Heidelberg (2009)

9. Freydenberger, D.D.: Extended regular expressions: Succinctness and decidability.
In: 28th International Symposium on Theoretical Aspects of Computer Science,
STACS 2011. LIPIcs, vol. 9, pp. 507–518 (2011)

10. Friedl, J.E.F.: Mastering Regular Expressions, 3rd edn. O’Reilly, Sebastopol (2006)
11. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata:

Origins and directions. Theoretical Computer Science 412, 83–96 (2011)
12. Kari, L., Rozenberg, G., Salomaa, A.: L systems. In: Rozenberg, G., Salomaa, A.

(eds.) Handbook of Formal Languages, vol. 1, ch. 5, pp. 253–328. Springer (1997)
13. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-

non, C.E., McCarthy, J. (eds.) Automata Studies. Annals of Mathematics Studies,
vol. 34, pp. 3–41. Princeton University Press (1956)

14. Larsen, K.S.: Regular expressions with nested levels of back referencing form a
hierarchy. Information Processing Letters 65, 169–172 (1998)

15. Della Penna, G., Intrigila, B., Tronci, E., Venturini Zilli, M.: Synchronized regular
expressions. Acta Informatica 39, 31–70 (2003)

16. Shinohara, T.: Polynomial Time Inference of Extended Regular Pattern Languages.
In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS
1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983)

17. Thompson, K.: Programming techniques: Regular expression search algorithm.
Communications of the ACM 11 (1968)

18. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, ch. 2, pp. 41–110. Springer (1997)

Computing the Edit-Distance between a Regular

Language and a Context-Free Language�

Yo-Sub Han1, Sang-Ki Ko1, and Kai Salomaa2

1 Department of Computer Science, Yonsei University
{emmous,narame7}@cs.yonsei.ac.kr

2 School of Computing, Queen’s University
ksalomaa@cs.queensu.ca

Abstract. The edit-distance between two strings is the smallest num-
ber of operations required to transform one string into the other. The
edit-distance problem for two languages is to find a pair of strings, each
of which is from different language, with the minimum edit-distance. We
consider the edit-distance problem for a regular language and a context-
free language and present an efficient algorithm that finds an optimal
alignment of two strings, each of which is from different language. More-
over, we design a faster algorithm for the edit-distance problem that only
finds the minimum number of operations of the optimal alignment.

Keywords: Edit-distance, Levenshtein distance, Regular language,
Context-free language.

1 Introduction

The edit-distance between two strings is the smallest number of operations re-
quired to transform one string into the other [7]. We can use the edit-distance
as a similarity measure between two strings; the shorter distance implies that
the two strings are more similar. We can compute this by using the bottom-
up dynamic programming algorithm [14]. The edit-distance problem arises in
many areas such as computational biology, text processing and speech recogni-
tion [9,10,12]. This problem can be extended to measure the similarity between
languages [3,6,9].

For instance, the error-correction problem is based on the edit-distance prob-
lem: Given a set S of correct strings and an input string x, we find the most
similar string y ∈ S to x using the edit-distance computation. If y = x ∈ S, we
say that x has no error. We compute the edit-distance between all strings in S
and x. However, we can also use a finite-state automaton (FA) for S, which is
finite, and obtain the most similar string in S with respect to x [13]. Allauzen
and Mohri [1] designed a linear-space algorithm that computes the edit-distance

� Han and Ko were supported by the Basic Science Research Program through NRF
funded by MEST (2010-0009168). Salomaa was supported by the Natural Sciences
and Engineering Research Council of Canada Grant OGP0147224.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 85–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

86 Y.-S. Han, S.-K. Ko, and K. Salomaa

between a string and an FA. Pighizzini [11] considered the case when the lan-
guage is not regular. The error-detection capability problem is related to the
self-distance of a language L [6]. The self-distance or inner distance is the min-
imum edit-distance between any pair of distinct strings in L. We can use the
minimum edit-distance as the maximum number of errors that L (code) can
identify.

We examine the problem of computing the edit-distance between a regular
language and a context-free language. This was an open problem and the edit-
distance problem between two context-free languages is already known as unde-
cidable [9]. We rely on the structural properties of FAs and pushdown automata
for both languages and design an efficient algorithm that finds the edit-distance.

In Section 2, we define some basic notions. We formally define the edit-distance
and the edit-distance problem in Section 3. Then, we present an efficient algo-
rithm for computing the edit-distance and the optimal alignments between a
context-free language and a regular language in Section 4. We also present a
faster algorithm that only computes the optimal cost based on the unary homo-
morphism in Section 5.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ
is any subset of Σ∗. Given a set X , 2X denotes the power set of X .

The symbol ∅ denotes the empty language and the symbol λ denotes the null
string. A finite-state automaton (FA) A is specified by a tuple (Q,Σ, δ, s, F),
where Q is a finite set of states, Σ is an input alphabet, δ : Q × Σ → 2Q is
a multi-valued transition function, s ∈ Q is the start state and F ⊆ Q is a
set of final states. If F consists of a single state f , we use f instead of {f} for
simplicity. For a transition q ∈ δ(p, a) in A, we say that p has an out-transition
and q has an in-transition. Furthermore, p is a source state of q and q is a target
state of p. The transition function δ can be extended to a function Q×Σ∗ → 2Q

that reflects sequences of inputs. A string x over Σ is accepted by A if there is
a labeled path from s to a state in F such that this path spells out the string x.
Namely, δ(s, x) ∩ F �= ∅. The language L(A) of an FA A is the set of all strings
that are spelled out by paths from s to a final state in F .

A pushdown automaton (PDA)P is specified by a 7-tuple (Q,Σ, Γ, δ, q0, Z0, F),
whereQ is a finite set of states,Σ is a finite set of input symbols, Γ is a finite stack
alphabet, δ : Q× (Σ ∪ {λ})×Γ → 2Q×Γ∗

is the transition function, q0 ∈ Q is the
start state, Z0 is the initial stack symbol and F ⊆ Q is a set of final states. We use
|Q| to denote the number of states inQ and |δ| to denote the number of transitions
in δ. Here, we assume that each transition in P has at most two stack symbols;
namely, each transition can push or pop at most one symbol. In other words, when
some symbolX is on the top of the stack, then either λ or a string of the form Y X
for some stack symbol Y can stand on the right side of the production. Then, the
size |P | of P is |Q|+ |δ|.

Computing the Edit-Distance between a RL and a CFL 87

A context-free grammar G is specified by a tuple G = (V,Σ,R, S), where V
is a set of variables, R ⊆ V × (V ∪Σ)∗ is a finite set of productions and S ∈ V
is the start symbol. Let αAβ be a string over V ∪ Σ with A a variable and
A → γ be a production of G. Then, we say that αAβ ⇒ αγβ. The reflexive,
transitive closure of ⇒ is

∗⇒. Then the context-free language defined by G is
L(G) = {w ∈ Σ∗ | S ∗⇒ w}. We say that a variable A ∈ V is nullable if A

∗⇒ λ.
For complete background knowledge in automata theory, the reader may refer

to textbooks [4,15].

3 Edit-Distance

The edit-distance between two strings is the smallest number of operations that
transform a string to the other. People use different edit operations depend-
ing on the applications. We consider three operations, insertion, deletion and
substitution for simplicity. Given an alphabet Σ, let

Ω = {(a → b) | a, b ∈ Σ ∪ {λ}}

be a set of edit operations. Namely, Ω is an alphabet of all edit operations for
deletions (a → λ), insertions (λ → a) and substitutions (a → b). We call a
string w ∈ Ω∗ an edit string [5] or an alignment [9].

Let the morphism h between Ω∗ and Σ∗ ×Σ∗ be

h((a1 → b1) · · · (an → bn)) = (a1 · · ·an, b1 · · · bn).

Example 1. The following is an alignment example w = (a → λ)(b → b)(λ →
c)(c → c) for abc and bcc. Note that h(w) = (abc, bcc).

a b λ c
↓ ↓ ↓ ↓
λ b c c

Definition 1. An edit string w is a sequence of edit-operations transforming
a string x into a string y, also called an alignment for x and y if and only if
h(w) = (x, y).

We associate a non-negative edit cost to each edit operation wi ∈ Ω as a function
C : Ω → R+. We can extend the function to the cost C(w) of an alignment w =
w1 · · ·wn as follows:

C(w) =
n∑
i=1

C(wi).

Definition 2. The edit-distance d(x, y) of two strings x and y over Σ is the
minimal cost of an alignment w between x and y:

d(x, y) = min{C(w) | h(w) = (x, y)}.

We say that w is optimal if d(x, y) = C(w).

88 Y.-S. Han, S.-K. Ko, and K. Salomaa

We can extend the edit-distance definition to languages.

Definition 3. The edit-distance d(L,R) between two languages L,R ⊆ Σ∗ is
the minimum edit-distance of two strings, one is from L and the other is from
R:

d(L,R) = inf{d(x, y) | x ∈ L and y ∈ R}.
Konstantinidis [6] considered the edit-distance within a regular language L and
proposed a polynomial runtime algorithm. Mohri [9] studied the edit-distance of
two string distributions given by two weighted automata. Mohri [9] also proved
that the edit-distance problem is undecidable for two context-free languages.
We consider the case in between: L is regular and R is context-free. In other
words, given an FA A and a PDA P , we develop an algorithm that computes
the edit-distance of two languages L(A) and L(P).

Since we use the Levenshtein distance [7] for edit-distance, we assign one to
all edit operations; namely, C(a, a) = 0 and C(a, λ) = C(λ, a) = C(a, b) = 1 for all
a �= b ∈ Σ.

4 The Edit-Distance between an RL and a CFL

We present algorithms that compute the edit-distance d(R,L) between a regular
language R and a context-free language L and find an optimal alignment w such
that C(w) = d(R,L).

Let A = (QA, Σ, δA, sA, FA) be an FA forR and P = (QP , Σ, Γ, δP , sP , Z0, FP)
be a PDA for L. Let m1 = |QA|,m2 = |QP |, n1 = |δA| and n2 = |δP |. We assume
that A has no λ-transitions. We also assume that each transition in P has at
most two stack symbols; namely, each transition can push or pop at most one
symbol. Note that any context-free language can be recognized by a PDA that
pushes or pops at most one symbol in one transition [4].

We first construct a new PDA A(A,P) (called alignment PDA) whose transi-
tions denote all possible edit operations of all pairs of strings between R and L.
Then, we compute the shortest string accepted by the alignment PDA, which is
the optimal alignment.

4.1 Alignment PDA

Given an FA A = (QA, Σ, δA, sA, FA) and a PDA P = (QP , Σ, Γ, δP , sP , Z0, FP),
we construct the alignment PDA A(A,P) = (QE , Ω, Γ, δE , sE , Z0, FE), where

- QE = QA ×QP is a set of states,
- Ω = {(a → b) | a, b ∈ Σ ∪ {λ}} is an alphabet of edit operations,
- sE = (sA, sP) is the start state,
- FE = FA × FP is a set of final states.

The transition function δE consists of three types of transitions, each of which
performs deletion, insertion and substitution, respectively.

For p′ ∈ δA(p, a) and (q′,M ′) ∈ δP (q, b,M), where p, p′ ∈ QA, q, q
′ ∈ QP ,

a, b ∈ Σ, M ∈ Γ , M ′ ∈ Γ ∗, N ∈ Γ , we define δE to be

Computing the Edit-Distance between a RL and a CFL 89

- ((p′, q), N) ∈ δE((p, q), (a → λ), N), [deletion operation]
- ((p, q′),M ′) ∈ δE((p, q), (λ → b),M), [insertion operation]
- ((p′, q′),M ′) ∈ δE((p, q), (a → b),M), [substitution operation]
- ((p, q′),M ′) ∈ δE((p, q), (λ → λ),M).

The last type of transitions simulate λ-moves of the original PDA P. Note that we
have defined deletion operations for all stack symbols N in Γ . Then, in a deletion
operation, the transition does not change the stack. For the complexity of δE , we
generate n1m2 transitions for deletions and n2m1 transitions for insertions. For
substitutions, we consider all pairs of transitions between A and P and, thus,
add n1n2 transitions. Therefore, the size of δE is

|δE | = n1m2 + n2m1 + n1n2 = O(n1n2).

Theorem 1. The alignment PDA A(A,P) accepts an edit string w if and only
if h(w) = (x, y), where x ∈ L(A) and y ∈ L(P).

It follows from Theorem 1 that the edit-distance problem is now to find an
optimal alignment in L(A(A,P)). In the next section, we discuss how to find an
optimal alignment from an alignment PDA efficiently.

4.2 Computing an Optimal Alignment from A(A, P)

An optimal alignment w between two languages is an alignment with the mini-
mum cost among all possible alignments between any pair of strings from each
language. We tackle the problem of searching for an optimal alignment from
A(A,P). The problem seems similar to the problem of finding the shortest string
in a PDA. However, it is not necessarily true that a shortest string over Ω in
A(A,P) is an optimal alignment even under the Levenshtein distance. See Ex-
ample 2.

Example 2
a b c λ a b c
↓ ↓ ↓ ↓ ↓ ↓ ↓
λ b c d b c d

wX wY

The two edit strings wX and wY are alignments between abc and bcd. Under the
Levenshtein distance, C(wX) = 2 and C(wY) = 3 while the lengths of wX and wY
over Ω are four and three, respectively. Namely, the longer alignment string wX
is a better alignment than the shorter alignment string w. Therefore, the shortest
string from A(A,P) is not necessarily an optimal alignment between L(A) and
L(P).

As shown in Example 2, we should consider the edit cost of each edit operation
to find an optimal alignment. If we regard the zero cost edit operations ((a → a)
for all a ∈ Σ) as λ in w, then w′

X = (a → λ)(λ → d), which is shorter than wY .
This leads us to the following observation.

90 Y.-S. Han, S.-K. Ko, and K. Salomaa

Observation 1. Let s be a substitution of Ω∗ → Ω∗ as follows:

s(a → b) =

{
λ a = b,

(a → b) otherwise.

An optimal alignmentw ∈ Ω∗ in L(A(A,P)) is a shortest string in s(L(A(A,P))).

Observation 1 shows that the problem of finding an optimal alignment inA(A,P)
becomes the problem of identifying a shortest string after the substitution op-
eration s.

For an FA A with m1 states and n1 transitions, we can find the shortest string
that A accepts by computing the shortest path from the start state to a final
state based on the single-source shortest-path algorithm in O((n1 +m1) logm1)
time [8]. However, we cannot obtain the shortest string from a PDA P directly
as we have done for an FA before because of the stack operations. Therefore,
instead of computing a shortest path in P , we convert P into a context-free
grammar and compute a shortest string from the grammar. Recently, Alpoget
et al. [2] solved the emptiness test of a PDA by converting a PDA to an equivalent
CFG using the standard construction in Proposition 1. We also, first, convert
A(A,P) to an equivalent CFG and, then, obtain an optimal alignment from the
grammar. Note that if we apply the substitution function s in Observation 1
directly on transitions of A(A,P), then the problem becomes to find a shortest
string in s(L(A(A,P))). However, since the s function replaces all zero cost edit
operations with λ, we cannot retrieve an optimal alignment between two strings.
Instead, we only have the optimal edit cost. Therefore, the s function is useful
for computing the edit-distance only. We revisit the problem of computing the
edit-distance in Section 5. Here we focus on finding an optimal alignment.

Given an alignment PDA A(A,P), let GA(A,P) be the corresponding CFG
that we compute using the following standard construction [4].

Proposition 1 (Hopcroft and Ullman [4]). Given a PDA P =
(Q,Σ, Γ, δ, s, Z0), the triple construction computes an equivalent CFG G =
(V,Σ,R, S), where the set V of variables consists of

1. The special symbol S, which is the start symbol.

2. All symbols of the form [pXq], where p, q ∈ Q and X ∈ Γ . The productions
of G are as follows:

(a) For all states p, G has the production S → [sZ0p] and

(b) Let δ(q, a,X) contain the pair (r, Y1Y2 · · ·Yk), where
i. a is either a symbol in Σ or a = λ.
ii. k can be any non-negative number, including zero, in which case the

pair is (r, λ).

Then for all lists of states r1, r2, . . . , rk, G has the production

[qXrk] → a[rY1r1][r1Y2r2] · · · [rk−1Ykrk].

Computing the Edit-Distance between a RL and a CFL 91

Note that G has |Q|2 · |Γ | + 1 variables and |Q|2 · |δ| production rules. Now
we study how to compute an optimal alignment in the alignment PDA A(A,P)
= (QE , Ω, Γ, δE , sE , Z0, FE) for an FA A and a PDA P , where |QE | = m1m2 and
|δE | = n1n2. Note that since we assume that each transition in P has at most two
stack symbols, a transition in A(A,P) has also at most two stack symbols. Let
GA(A,P) = (V,Σ,R, S) be the CFG computed by the triple construction. Then,
GA(A,P) has O((m1m2)

2 · |Γ |) variables and O((m1m2)
2 · (n1n2)) production

rules. Moreover, each product rule is in the form of A → σBC, A → σB, A → σ
or A → λ, where σ ∈ Σ and B,C ∈ V . Remark that GA(A,P) is similar to a
Greibach normal form grammar but has λ-productions and each production rule
has at most three symbols starting with a terminal symbol followed by variables
in its right-hand side.

We run a preprocessing step before finding an optimal alignment from
A(A,P), which speeds up the computation in practice by reducing the size
of an input. This step eliminates nullable variables from GA(A,P). The elimi-
nation of nullable variables is similar to the elimination of λ-productions. The
λ-production elimination is to remove all λ-productions from a CFG G and
obtain a new CFG G′ without λ-productions where L(G) \ {λ} = L(G′) [4].
However, this procedure may introduce new productions in G′. We notice that
the new productions generated from removing λ-productions do not help to find
an optimal alignment in A(A,P) and, thus, design a procedure that removes all
nullable variables and their appearances in A(A,P) without adding new pro-
duction rules. Note that the modified grammar is not equivalent to the original
grammar, however, as will be seen in Lemma 1, the modified grammar generates
an optimal alignment between L(A) and L(P).

Procedure 1. Elimination of Nullable Variable (ENV)

Input: GA(A,P) = (V,Σ,R, S)
1: let VN be a set of all nullable variables in GA(A,P)

2: if S ∈ VN then
3: V = {S}
4: R = {S → λ}
5: else
6: for B ∈ VN do
7: remove all occurrences of B in R // replace B with λ
8: remove all productions of B from R
9: remove B from V
10: end for
11: end if

The ENV (Elimination of Nullable Variable) procedure just eliminates nullable
symbols and their occurrences from the grammar. Example 3 gives an example
of ENV.

92 Y.-S. Han, S.-K. Ko, and K. Salomaa

Example 3. Given a grammar G with the following set P1 of production rules,

S → AB|a S → B|a
A → aAA|λ A → aAA|λ
B → bBA|a B → bB|a

P1 P2

we obtain P2 after ENV. Note that we only remove nullable variable A and its
appearances from G and do not increase the size of G.

The following statement guarantees that ENV preserves the optimal alignment of
L(A(A,P)).

Lemma 1. Given a context-free grammar GA(A,P) = (V,Ω,R, S), let G′
A(A,P)

be the resulting CFG from GA(A,P) by ENV. Then, G′
A(A,P) still produces an

optimal alignment between L(A) and L(P).

Algorithm 2. Computing an optimal alignment in L(GA(A,P))

Input: GA(A,P) = (V,Ω,R, S)
1: eliminate all nullable variables by ENV

2: for B → t ∈ R, where t ∈ Ω∗ and C(t) is minimum among all such t in R do
3: if B = S then
4: return t
5: else
6: replace all occurrences of B in R with t
7: remove B from V and its productions from R
8: end if
9: end for

Algorithm 2 describes how to find an optimal alignment in GA(A,P). We first
eliminate nullable variables, which do not derive an optimal alignment, from
GA(A,P) as described in line 1 in Algorithm 2. The ENV procedure generally takes
quadratic time in the size of an input grammar. For GA(A,P), all production rules
in GA(A,P) have at either λ or one terminal symbol over Ω followed by at most
two variables. Therefore, we can identify all nullable variables of GA(A,P) by
scanning R only once. (Only a variable that has a λ-production in its production
rule is nullable variable in GA(A,P).) Thus, the ENV procedure takes linear time
for GA(A,P).

Lemma 2. Let GA(A,P) = (V,Ω,R, S) be a context-free grammar with no λ-
productions. Let B → t be a terminating production where B ∈ V , t ∈ Ω∗ and
C(t) is minimal among all right sides of terminating productions of GA(A,P). Let
G′

A(A,P) be the grammar obtained from GA(A,P) by removing all productions for
B from R and replacing all occurrences of B in right sides of productions by t.
Then the smallest cost terminal string generated by G′ has the same cost as the
smallest cost terminal string generated by GA(A,P).

Computing the Edit-Distance between a RL and a CFL 93

Once we have finished the ENV procedure, in the main part, we pick a variable
that has an edit string with the smallest cost as a production, say v → t, and
replace all occurrences of v with t in R and remove v from V . We repeat this
step until the start symbol S of GA(A,P) has an edit string as its production
rule. We notice that the length of the optimal alignment can be exponential in
the size of an input grammar as shown in Example 4.

Example 4. Given a CFG G = (S,A1, . . . An}, {(a → b)}, R, S), where R is

S → A1A1

A1 → A2A2

...
An−1 → AnAn
An → (a → b)

G generates (a → b)2
n

, where |G| = O(n).

In Example 4, once we eliminate one variable v and update the grammar by the
single for loop in Algorithm 2, the length of an edit string with the smallest
cost can be doubled. Now we consider the cost for replacing the occurrences of
variables. Since there are no λ-productions, the length of an edit string with the
smallest cost starts from one. Note that a production rule can have at most one
terminal followed by two variables. Therefore, we have an edit string of length
at most 2t − 1. Next, we consider the average number of variable occurrences
that are eventually replaced with the edit string. Since there are at most 2|R|
occurrences of variables in the production rules and |V | variables, we replace
2|R|
|V | occurrences on average.

Now, the worst-case time complexity for finding an optimal alignment is

|V |∑
t=1

(|R|+ (2t − 1) · 2|R||V |) = O(
2|R|
|V | 2

|V |),

where |R| is the number of production rules and |V | is the number of variables.
Since |V | = O((m1m2)

2 · |Γ |) and |R| = O((m1m2)
2 · (n1n2)) in GA(A,P), we

establish the time complexity of Algorithm 2 with respect to m1,m2, n1 and n2

as follows:

O((m1m2)
4 · |Γ | · (n1n2) +

n1n2

|Γ | · 2(m1m2)
2·|Γ |) = O(

n1n2

|Γ | · 2(m1m2)
2·|Γ |), (1)

where |Γ | is the number of stack symbols.

Theorem 2. Given a PDA P = (QP , Σ, Γ, δP , sP , Z0, FP) and an FA A =
(QA, Σ, δA, sA, FA), we can compute the edit-distance between L(A) and L(P)

in O((n1n2) · 2(m1m2)
2

) worst-case time, where m1 = |QA|,m2 = |QP |, n1 = |δA|
and n2 = |δP |. Moreover, we can also identity two strings x ∈ L(A) and y ∈ L(P)
and their alignment with each other in the same runtime.

94 Y.-S. Han, S.-K. Ko, and K. Salomaa

5 Edit-Distance and Unary Homomorphism

In the previous section, we have designed an algorithm for computing the edit-
distance and an optimal alignment between a regular language and a context-free
language at the same time. As we have noticed in Theorem 2, the algorithm runs
in exponential time since the length of an optimal alignment may be exponential
in the size of input FA and PDA. Now we examine how to calculate the edit-
distance without computing the corresponding optimal alignment and present a
polynomial runtime algorithm for the edit-distance problem.

Let ΣU be a unary alphabet, say ΣU = {u}. We often use non-negative
integers Z+ for the cost function in the edit-distance problem. For example,
the Levenshtein distance uses one for all operation costs. This motives us to
investigate the edit-distance problem and unary context-free grammars. From
now on, we assume that the cost function is defined over Z+.

We use a unary homomorphism the alignment PDA A(A,P) obtained from an
FA A and a PDA P and convert it into the context-free grammar. Let H : {(a →
b) | a, b ∈ Σ ∪ {λ}} → ΣU

∗ be a homomorphism between the edit operations
and a unary alphabet {u}. Let cI, cD and cS be the costs of insertion, deletion
and substitution, respectively. Then, we define H to be

H(λ → a) = ucI , [insertion]
H(a → λ) = ucD , [deletion]

H(a → b) =
{
ucS , if a �= b;
λ, otherwise.

[substitution]

If follows from the morphism function that given an alignment w

C(w) = |H(w)|.

By Theorem 1, we know that A(A,P) accepts all edit strings (alignments) be-
tween two strings x ∈ L(A) and y ∈ L(P). Note that the cost of an optimal
alignment is the edit-distance between L(A) and L(P). We apply the homomor-
phism H to A(A,P) by replacing all edit strings w with unary strings ui, where
i = C(w). In this step, we can reduce the number of transitions in A(A,P) by
applying the homomorphism. For example, when there are multiple transitions
like δE(qE , (a → b),M) = (q′E ,M

′), where (a → b) ∈ Ω, the unary homomor-
phism results in only one transition in new A(A,P), say, H(A(A,P)). Since
the number of production rules in GH(A(A,P)) is proportional to the number of
transitions in H(A(A,P)) by the triple construction, we can reduce the size of
the grammar GH(A(A,P)), compared to GA(A,P). Then an optimal alignment in
L(GA(A,P)) becomes the shortest string in L(GH(A(A,P))) and its length is the
edit-distance between L(A) and L(P). We establish the following statement.

Corollary 1. The edit-distance d(L(A), L(P)) of an FA A and a PDA P is the
length of the shortest string in L(GH(A(A,P))).

d(A,P) = inf{|L(GH(A(A,P)))|}.

Computing the Edit-Distance between a RL and a CFL 95

Corollary 1 shows that the edit-distance problem is now to find the shortest string
in L(GH(A(A,P))). Before searching for the shortest string in L(GH(A(A,P))),
we run a preprocessing step, which is similar to that in Algorithm 2, to im-
prove the algorithm runtime in practice. The preprocessing step is eliminating
λ-productions from the grammar. We establish a lemma for justifying this step.

Lemma 3. Given a context-free grammar G = (V,Σ,R, S), let G′ be a CFG
constructed from G by eliminating all nullable variables and their occurrences
except for the start symbol. If the start symbol is nullable, V and R become {S}
and {S → λ}, respectively. Then, the shortest string in L(G′) is same as the
shortest string in L(G).

Algorithm 3. Computing the length of the shortest string in L(GH(A(A,P)))

Input: GH(A(A,P)) = (V,ΣU , R, S)
1: eliminate all nullable variables by ENV

2: encode all right-hand productions by the number of u occurrences in binary repre-
sentation followed by the remaining variables in order
// e.g. from A → uuuBCuu to A → 101BC and now ΣU = {0, 1} instead of {u}

3: for A → t ∈ R, where t is the smallest binary number in R do
4: if A = S then
5: return t
6: else
7: for each production rule B → wxAy in R, where w is the binary number part

and x, y ∈ V ∗ do
8: w′ = w + t in binary representation
9: update the production rule as B → w′xy
10: end for
11: remove A from V and all A’s production rules from R
12: end if
13: end for

Algorithm 3 describes how to compute the length of the shortest string in
L(GH(A(A,P))). This algorithm is similar to Algorithm 2. However, the main
difference is that we use a binary encoding to remove the exponential factor in
the running time. The complexity of Algorithm 2 is exponential since the length
of the shortest string can be exponential. Since we only look for the length
(the edit-distance) of the shortest string instead of the string itself (an optimal
alignment), we encode string lengths as binary representation. This helps to keep
an exponential length as a linear length of binary number. For example, we use
100000 to denote u32.

Now we consider the complexity of Algorithm 3. In the worst-case, we need to
eliminate all variables from the grammar, that means we need to repeat at most
|V | = (m1m2)

2 · |Γ | times for finding the variable generating the shortest string.
We scan the whole grammar to find the variable in O(|R|) time. Therefore,

96 Y.-S. Han, S.-K. Ko, and K. Salomaa

to eliminate the variables, we need O((m1m2)
4 · (n1n2) · |Γ |). Then, now we

consider the time for replacing the occurrence of variables with encoded numbers
in binary. We should replace all occurrences of variables in the worst-case. The
number of occurrences will be at most O((m1m2)

2 ·(n1n2)) and the size of binary
numbers will be at mostO((m1m2)

2 ·|Γ |). Then, we need O((m1m2)
4 ·(n1n2)·|Γ |)

again. Thus, the worst-case time complexity of Algorithm 3 is O((m1m2)
4 ·

(n1n2) · |Γ |).

Theorem 3. Given a PDA P = (QP , Σ, Γ, δP , sP , Z0, FP) and an FA A =
(QA, Σ, δA, sA, FA), we can compute the edit-distance between L(A) and L(P)
in O((m1m2)

4 · (n1n2)) worst-case time, where m1 = |QA|,m2 = |QP |, n1 = |δA|
and n2 = |δP |.

References

1. Allauzen, C., Mohri, M.: Linear-space computation of the edit-distance between a
string and a finite automaton. In: London Algorithmics 2008: Theory and Practice.
College Publications (2009)

2. Alpoge, L., Ang, T., Schaeffer, L., Shallit, J.: Decidability and Shortest Strings in
Formal Languages. In: Holzer, M. (ed.) DCFS 2011. LNCS, vol. 6808, pp. 55–67.
Springer, Heidelberg (2011)

3. Bunke, H.: Edit distance of regular languages. In: Proceedings of 5th Annual Sym-
posium on Document Analysis and Information Retrieval, pp. 113–124 (1996)

4. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation, 2nd edn. Addison-Wesley, Reading (1979)

5. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. Journal
of Automata, Languages and Combinatorics 9, 293–309 (2004)

6. Konstantinidis, S.: Computing the edit distance of a regular language. Information
and Computation 205, 1307–1316 (2007)

7. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

8. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Languages and Combinatorics 7, 321–350 (2002)

9. Mohri, M.: Edit-distance of weighted automata: General definitions and algorithms.
International Journal of Foundations of Computer Science 14(6), 957–982 (2003)

10. Pevzner, P.A.: Computational Molecular Biology: An Algorithmic Approach (Com-
putational Molecular Biology). The MIT Press (2000)

11. Pighizzini, G.: How hard is computing the edit distance? Information and Compu-
tation 165(1), 1–13 (2001)

12. Thompson, K.: Programming techniques: Regular expression search algorithm.
Communications of the ACM 11, 419–422 (1968)

13. Wagner, R.A.: Order-n correction for regular languages. Communications of the
ACM 17, 265–268 (1974)

14. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
the ACM 21, 168–173 (1974)

15. Wood, D.: Theory of Computation. Harper & Row (1987)

Semigroups with a Context-Free Word Problem

Michael Hoffmann1, Derek F. Holt2, Matthew D. Owens2,
and Richard M. Thomas1,�

1 Department of Computer Science, University of Leicester, Leicester, England
2 Department of Mathematics, University of Warwick, Coventry, England

Abstract. The word problem is of fundamental interest in group theory
and has been widely studied. One important connection between group
theory and theoretical computer science has been the consideration of the
word problem as a formal language; a pivotal result here is the classifica-
tion by Muller and Schupp of groups with a context-free word problem.
Duncan and Gilman have proposed a natural extension of the notion of
the word problem as a formal language from groups to semigroups and
the question as to which semigroups have a context-free word problem
then arises. Whilst the depth of the Muller-Schupp result and its reliance
on the geometrical structure of Cayley graphs of groups suggests that a
generalization to semigroups could be very hard to obtain we have been
able to prove some results about this intriguing class of semigroups.

1 Introduction

The study of the word problem in group theory has a rich history with many
deep and fascinating results. We take a finite group generating set X for a
group G and let A be the disjoint union of X and X−1; we then have a natural
(monoid) homomorphism ϕ from A∗ onto G (where A∗ represents the set of all
finite words in the symbols A, including the empty word ε). We define the word
problem of G to be 1ϕ−1, i.e. the set of words in A∗ that represent the identity
in G. Considering such words is sufficient to decide whether two words u and v
in A∗ represent the same element of G, since this is the case if and only if uV
represents the identity (where V is the word obtained from v by replacing each
symbol by the corresponding inverse symbol and then reversing the word).

One particular questions has been the following. Given some natural class F
of languages, which groups have their word problem lying in F? It would appear
that this would depend on the choice of X , but it is well known that this is not
the case if F is closed under inverse homomorphism (see [12] for example).

The purpose of this paper is to investigate word problems of semigroups.
In [7] Duncan and Gilman take the following definition for the word problem of
a semigroup S: if A is a set of semigroup generators for S (so that each element

� The first and fourth authors would like to thank Chen-Hui Chiu and Hilary Craig
for all their help and encouragement.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 97–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

98 M. Hoffmann et al.

of S can be represented by a word in A+, the set of all non-empty words over A),
then the word problem of S with respect to A is defined to be

{u#vrev : u, v ∈ A+, u =S v}.

Here # is a symbol not in A, vrev denotes the reversal of the word v, and u =S v
means that the words u and v represent the same element of S. If we want to
stress that u and v are identical as strings, we write u ≡ v. Given this we can
talk about the word problem of a semigroup lying in a class F of languages. The
definition in [7] is a natural extension of the notion of the word problem from
groups to semigroups since the word problem of a group G in the group sense
lies in F if and only if the word problem of G in the semigroup sense lies in F .

It is well known [1] that the groups with a regular word problem are precisely
the finite groups. Duncan and Gilman comment in [7] that this generalizes to
semigroups; see also [14]. Herbst [11] showed that the groups whose word problem
is a one-counter language are precisely the virtually cyclic groups; semigroups
with a one-counter word problem were investigated in [14]. In this paper we will
concentrate on semigroups whose word problem is a context-free language.

As far as groups are concerned, Muller and Schupp [20] showed that the groups
with a context-free word problem are precisely the virtually free groups. This
is a beautiful result and uses many deep theorems from group theory such as
Stallings’ characterization [24] of groups with more than one end. In addition,
the result in [20] requires an extra hypothesis, that of “accessibility”, and the
need for this was only removed by another deep result, namely Dunwoody’s
theorem that any finitely presented group is accessible [8]. As a consequence of
the Muller and Schupp classification, one can see that any context-free language
that is the word problem of a group is accepted by a deterministic pushdown
automaton with the stack empty on acceptance (indeed, by [2], it is even an NTS
language1). We shall see (Proposition 9) that this does not hold for semigroups.
It is also known [1] that a group with a context-free word problem is finitely
presented; this also does not hold for semigroups (Proposition 9).

The fact that the classification of groups with a context-free word problem
requires such results suggests that it will be very hard to classify semigroups
with a context-free word problem as we do not have analogous results in that
more general situation. Notwithstanding this, we will prove some results about
such semigroups and also consider the situation where the word problem of the
semigroup is a linear language.

After describing some background material in Section 2 we establish some
basic properties of semigroups with a context-free word problem in Section 3.
We then consider the notion of finite Rees index in Section 4 and prove:

Theorem 1. Let S be a finitely generated semigroup and T be a subsemigroup
of finite Rees index in S; then T has a context-free word problem if and only if
S has a context-free word problem.

1 NTS languages are those generated by context-free grammars that have the property
that, if A and B are nonterminals, A

∗⇒ β and B
∗⇒ αβγ, then B

∗⇒ αAγ.

Semigroups with a Context-Free Word Problem 99

We then give a complete classification of completely simple semigroups with a
context-free word problem in Section 5 and we prove:

Theorem 2. Let S = M [G; I, Λ;P] be a finitely generated completely simple
semigroup where G is a finitely generated group. Then S has a context-free word
problem if and only if G has a context-free word problem.

The definition of a completely simple semigroup and the explanation of the no-
tation used in Theorem 2 are given in Section 5. There are some natural general-
izations of Theorem 2 that one could consider (such as results about completely
0-simple semigroups or even Rees matrix semigroups over arbitrary semigroups)
but we restrict ourselves to completely simple semigroups in this paper.

We now turn to “rational monoids”. This interesting class of monoids was
introduced by Sakarovitch in [23]; we give a formal definition in Section 6. They
have several nice properties; for example, they are Kleene monoids [23] although
not all Kleene monoids are rational [21]. Since no infinite group is a Kleene
monoid and since all finite monoids are rational, we immediately have that a
group is rational if and only if it is finite. We will extend this result to semigroups
in Section 6 and prove:

Theorem 3. Let S be a semigroup generated by a finite set A; then S is rational
if and only if the word problem

{u#vrev : u, v ∈ A+, u =S v}

of S is accepted by a one-turn PDA that turns on the symbol #.

In particular, we see that a group with a word problem accepted by a one-turn
PDA in this manner is finite; this also follows from the results in [11].

2 Preliminaries

In this section we describe some of the standard definitions and results we are
assuming in this paper. For further information about semigroups, the reader is
referred to [5,6,17,19], and, for formal languages, to [4,9,10,16].

We will take as read the basic properties of the class of regular languages ac-
cepted by (deterministic or nondeterministic) finite automata and generated by
regular grammars, and the class of context-free languages accepted by (nondeter-
ministic) pushdown automata (PDAs) and generated by context-free grammars.
There are two important subclasses of the context-free languages that we will
be considering, the class of deterministic context-free languages, accepted by de-
terministic pushdown automata, and the class of linear languages, accepted by
one-turn PDAs (and generated by linear grammars). In the latter case, the PDA
operates in two phases; in the first phase any stack operation is a push and, in
the second, any stack operation is a pop. We will say that such an automaton
turns on reading a particular input symbol if all the stack operations up to that
point have been pushes and any stack operations from that point on are pops

100 M. Hoffmann et al.

(of course, given that there can be a sequence of inputs where the stack is unal-
tered, this notion does not always specify a unique input symbol).

We will also use the idea of a transducer from A∗ to B∗ (for finite alphabets
A and B) and the rational transductions realized by such machines. These are
equivalent to rational relations (see [4], for example, for more details). We will
also assume some results about the closure properties of the classes of languages
mentioned above under various operations (including rational transductions).

The following result from [22] (see also Theorem V.6.5 of [4]) will be very
useful in what follows:

Proposition 4. A language L ⊆ A∗ is linear if and only if there exists a rational
relation R ⊆ A∗ ×A∗ such that L = {αβrev : (α, β) ∈ R}.

We will actually use the following variation of Proposition 4:

Proposition 5. Let A be a finite alphabet and # �∈ A. If R ⊆ A∗ × A∗ is a
rational relation then the set {α#βrev : (α, β) ∈ R} is linear and is accepted by
a one-turn PDA that turns on #.

Next, we note the following result:

Proposition 6. Let A be a finite set and T be a transducer that computes a
function ϕ : A∗ → A∗; then there exists a transducer T ′ that computes the
function ψ : A∗ → A∗ defined by αψ = ((αrev)ϕ)rev for all u ∈ A∗.

We will also need the following technical result:

Proposition 7. Suppose that A = A1 ∪A2 with A1 and A2 disjoint finite sets.
Suppose that L ⊆ A∗

1 and that a1, a2, . . . , an, b1, b2, . . . , bm ∈ A with b1 ∈ A2.
If the language a1a2 . . . anLb1b2 . . . bm is deterministic context-free, then L is
deterministic context-free.

3 Semigroups with Context-Free Word Problem

In this section we note some general results about semigroups with context-
free word problem. The following result is well known for groups; see [12,15] for
example. As noted in [14] it can be easily generalized to semigroups:

Proposition 8. (a) Let F be a class of languages closed under inverse homo-
morphisms. If a semigroup has a word problem in F with respect to one finite
generating set, then the word problem lies in F with respect to every finite
generating set.

(b) Let F be a class of languages closed under inverse homomorphisms and in-
tersection with regular sets; then the class of semigroups whose word problem
lies in F is closed under taking finitely generated subsemigroups.

Semigroups with a Context-Free Word Problem 101

As the classes of languages we are interested in here (the linear languages, the de-
terministic context free languages and the context-free languages) are all closed
under inverse homomorphism and intersection with regular languages, Proposi-
tion 8 applies to all of them.

We commented in the introduction that, if the word problem of a group is
context-free, then it is deterministic context-free; we now give an example to
show that this no longer holds for semigroups.

Proposition 9. There is a semigroup S whose word problem is context-free but
not deterministic context-free; moreover, S is not finitely presented.

Proof. Let L = {anbnc : n � 0} ∪ {anb2nc : n � 0} which is context-free
but not deterministic context-free. Let G1 = (V1, {a, b, c}, P1, I1) be a context-
free grammar generating L and let G2 = (V2, {a, b, c}, P2, I2) be a context-free
grammar generating Lrev (where V1 ∩ V2 = ∅). Consider the semigroup S given
by the presentation

〈x, y, a, b, c : xαy = xy for all α ∈ L〉.

It is clear that S is not finitely presented. The word problem W of S with respect
to {x, y, a, b, c} is generated by the context-free grammar

(V1 ∪ V2 ∪ {X}, {x, y, a, b, c}, P1 ∪ P2 ∪R,X)

where X �∈ V1 ∪ V2 and R is the set of productions

X → xXx | yXy | aXa | bXb | cXc | xI1yXyI2x | xI1yXyx | xyXyI2x | #.

So W is context-free. However, if W were deterministic context-free, then

U = W ∩ x{a, b, c}∗y#yx = {xαy#yx : α ∈ L}

would be deterministic context-free (since we would have taken the intersection
of W with a regular language), contradicting Proposition 7. �

4 Finite Rees Index

The notion of “Rees index” is a fundamental one in semigroup theory. We are
interested in the situation where T is a subsemigroup of a semigroup S with
|S − T | finite; in this situation we say that T has finite Rees index in S. The
main purpose of this section is to prove Theorem 1.

We will need the following result from [18]:

Theorem 10. If S is a semigroup with a subsemigroup T of finite Rees index,
then S is finitely generated if and only if T is.

Combining this with Proposition 8 immediately gives one direction of Theorem 1:

102 M. Hoffmann et al.

Corollary 11. Let S be a finitely generated semigroup and T be a subsemigroup
of finite Rees index in S; if S has a context-free word problem then T has a
context-free word problem.

We now consider the other direction of Theorem 1. We will need the following
technical result:

Proposition 12. Let T be a finitely generated subsemigroup of finite Rees index
in the semigroup S. Let A = {t1, . . . , tn, s1, . . . , sm} be a generating set for S,
with ti ∈ T for each i and S − T = {s1, . . . , sm}. Then there exists a transducer
such that, for any input ω ∈ A∗, the output α will have the following properties:

(a) ω =S α (or ω = α = ε);
(b) α ∈ {t1, . . . , tn}∗ ∪ {s1, . . . , sm}.
Proof. We first construct a transducer M that computes a function ϕ : A∗ → A∗

with ωϕ =S ω (or ω = ωϕ = ε) and ωϕ ∈ {t1, . . . , tn}∗{s1, . . . , sm, ε}. We will
then use Proposition 6 to construct the required transducer.

Our transducer M will have two modes. In the first mode (which is where we
start), whilst we are only reading ti’s, each symbol that is read will be output.
After reading the first si, s say, no output is produced immediately. If there is
no further input symbol then the last input symbol s is output; otherwise M
outputs nothing, goes to the second mode and reads the next symbol x.

If sx ∈ S − T then there exists s′ ∈ {s1, . . . , sm} with sx = s′; we replace
s with s′ and read the next input. The other possibility is that sx ∈ T so that
sx = β ∈ {t1, . . . , tn}∗; M will output β and return to the first mode.

Formally M is defined as follows. The states are {s1, . . . , sm}∪{ε}∪{E}. The
initial state is ε and the accept states are ε and E. The transitions are:

� (ε, ti)τ = ε, with output ti;
� (ε, si)τ = si, with no output;
� (si, x)τ = sj if six =S sj , with no output;
� (si, x)τ = ε if six =S β ∈ {t1, . . . , tn}∗, with output β;
� (si, ε)τ = E, with output si.

We now construct a transducer M ′ computing a function ϕ′ : A∗ → A∗ such
that, if ω ∈ {t1, . . . , tn}∗{s1, . . . , sm, ε}, then ωϕ′ ∈ {t1, . . . , tn}∗ ∪ {s1, . . . , sm}
and ωϕ′ =S ω. By Proposition 6, it is sufficient to construct a transducer M ′′

computing a function ϕ′′ : A∗ → A∗ such that, if ω ∈ {s1, . . . , sm, ε}{t1, . . . , tn}∗,
then

ωϕ′′ ∈ {t1, . . . , tn}∗ ∪ {s1, . . . , sm}
and ωϕ′′ =Srev ω (so that ωrevϕ′′ =S ωrev).

The construction of M ′′ is similar to that of M above. We are now only
interested in words in {s1, . . . , sm, ε}{t1, . . . , tn}∗; the action of M ′′ on other
words is immaterial. If the input ω is in {t1, . . . , tn}∗ then we simply output ω.
If ω is of the form siβ with β ∈ {t1, . . . , tn}∗, then we set our state initially to si.
For each ti read, if our state is s ∈ {s1, . . . , sm} and sti =Srev s′ ∈ {s1, . . . , sm},
then we update our state to s′. On the other hand, if sti = γ ∈ {t1, . . . , tn}∗,
then we output γ followed by the remaining elements of the input. �

Semigroups with a Context-Free Word Problem 103

We can now prove the other direction of Theorem 1:

Proposition 13. Let S be a finitely generated semigroup and T be a subsemi-
group of finite Rees index in S. If T has a context-free word problem then S has
a context-free word problem.

Proof. Suppose that T is a subsemigroup of finite Rees index in S and that T
has a context-free word problem. Let T be generated by AT = {t1, . . . , tn} and
let AS = S − T = {s1, . . . , sm}, so that A = AT ∪ AS is a generating set for S.

By Proposition 12, there is a transducer M that, for any input ω1 ∈ A+,
outputs α1 with the following properties:

(a) ω1 =S α1; (b) α1 ∈ {t1, . . . , tn}∗ ∪ {s1, . . . , sm}.
Given that T rev has finite index in Srev, we also have a transducer M ′ that, for
any input ω2 ∈ A+, outputs α2 with the following properties:

(c) ω2 =Srev α2; (d) α2 ∈ {t1, . . . , tn}∗ ∪ {s1, . . . , sm}.
We combineM andM ′ together to get a new transducerN that, on input ω1#ω2,
outputs α1#α2 as above; note that ω2 =Srev α2 is equivalent to ωrev2 =S αrev2 .
Now let

C = {α1#α2 : α1, α2 ∈ A+
T , α1 =T αrev2 } ∪ {s#s : s ∈ AS};

Since C is the union of the word problem of T and a finite set, C is context-free.
Let L be the regular language A∗{#}A∗. We have that ω1#ω2 is in the word

problem of S if and only if ω1 =S ωrev2 , i.e. if and only if α1 =S αrev2 . Given that
αi ∈ {t1, . . . , tn}∗ ∪ {s1, . . . , sm}, this happens if and only if α1#α2 ∈ C. So the
word problem of S is context-free by the closure of the context-free languages
under inverse transductions and intersections with regular languages. �

Two particular instances of Theorem 1 are where we take a semigroup S and
either adjoin a zero element to get S0 or an identity element to get S1. These
are of particular interest and so we record these results as a special case:

Corollary 14. Let S be a finitely generated semigroup; then

(a) S is context-free if and only if S0 is;
(b) S is context-free if and only if S1 is.

5 Completely Simple Semigroups

In this section we consider completely simple semigroups and prove Theorem 2.
First we explain what is meant by a Rees matrix semigroup:

Definition 15. Let I and Λ be non-empty sets and P = (pλ,i)λ∈Λ,i∈I be a
matrix with entries in a semigroup U . The Rees matrix semigroup M [U ; I, Λ;P]
has elements the set of triples I × U × Λ with multiplication defined by

(i, a, λ)(j, b, μ) = (i, apλ,jb, μ).

104 M. Hoffmann et al.

A semigroup without 0 is said to be simple if it does not contain any proper
ideals. It is said to be completely simple if it is simple and contains both a minimal
left ideal and a minimal right ideal (there are equivalent formulations; see [17]
for example). By the Rees-Suschkewitsch theorem, a semigroup is completely
simple if and only if it is a Rees matrix semigroup M [G; I, Λ;P] where G is a
group. This explains the statement of Theorem 2.

When dealing with semigroups with a context-free word problem, we only
consider finitely generated semigroups. A general criterion for a Rees matrix
semigroup to be finitely generated was given in [3]:

Proposition 16. Let S = M [U ; I, Λ;P] be a Rees matrix semigroup over a
semigroup U and let V be the ideal of U generated by the entries of P . Then S
is finitely generated if and only if I and Λ are finite sets, U is finitely generated,
and the set U − V is finite.

In the case where U is a group G we automatically have that V = G and we
retrieve the result that a completely simple semigroup M [G; I, Λ;P] is finitely
generated if and only if I and Λ are finite sets and G is finitely generated.

One direction of Theorem 2 (if S = M [G; I, Λ;P] has a context-free word
problem then G has a context-free word problem) follows from Proposition 8.
We now prove the other direction of Theorem 2:

Proposition 17. If G is a group with a context-free word problem and if I
and Λ are finite sets, then the Rees matrix semigroup S = M [G; I, Λ;P] has a
context-free word problem.

Proof. Let G be a group with a context-free word problem so that G is virtu-
ally free by [20]. As we mentioned in the introduction, the word problem of G
is accepted by a deterministic pushdown automaton with the stack empty on
acceptance. Consider a finite set A = {a1, a2, . . . , aN} of semigroup generators
for G, and let S = M [G; I, Λ;P] be a Rees matrix semigroup over G, with I
and Λ finite. We first construct a generating set for S.

Given (l, g, r) ∈ I ×G× Λ we can write

g = ax1ax2 . . . axm ∈ A+ where xi ∈ {1, . . . , N} for 1 � i � m.

Each ak ∈ A is expressible as ak = gkpλkιkg
′
k, for some gk, g

′
k ∈ G, where pλkιk

is the (λk, ιk)’th entry in P . Thus

g = (gx1pλx1 ιx1
g′x1

)(gx2pλx2 ιx2
g′x2

) . . . (gxmpλxm ιxm
g′xm

),

and we have another generating set

X = {gk, pλι, g′k : 1 � k � N, ι ∈ I, λ ∈ Λ}

for G. Note that X contains all the entries in the finite matrix P , not only those
in the expressions for each ak. By the definition of multiplication in S, we have

(l, g, r) = (l, gx1pλx1 ιx1
g′x1

gx2pλx2 ιx2
g′x2

. . . gxmpλxm ιxm
g′xm

, r)

= (l, gx1 , λx1)(ιx1 , g
′
x1
gx2 , λx2) . . . (ιxm , g′xm

, r). (1)

Semigroups with a Context-Free Word Problem 105

We may therefore take as our generators for S the set

B = {ul,i : l ∈ I, 1 � i � N} ∪ {vi,j : 1 � i, j � N} ∪ {wj,r : 1 � j � N, r ∈ Λ}

under the homomorphism ψ : B+ → S given by

ul,i �→ (l, gi, λi), vi,j �→ (ιi, g
′
igj , λj), wj,r �→ (ιj , g

′
j, r).

For, given (l, g, r) ∈ I ×G×Λ, there is a word ax1 · · · axm ∈ A+ representing g,
and so ul,x1vx1,x2vx2,x3 · · · vxm−1,xmwxm,r ∈ B+ represents (l, g, r) by (1) above.
The word problem for S is then

W (S,B) = {α#βrev : α =S β, α, β ∈ B+}.

Consider s1 = (l1, g1, r1), s2 = (l2, g2, r2); we have

s1 =S s2 ⇐⇒ l1 = l2, r1 = r2 and g1 =G g2.

The general idea of the proof is as follows. We will construct our PDA P2 recog-
nizing W (S,B) from a PDA P1 recognizing W (G,X). We input a string v#wrev

into P1. Upon reading our initial letter we push the first component onto the
stack (in order to remember it for checking). We then feed in a string α into
a copy of P1 and, as indicated by equation (1) above, store the corresponding
string of group elements on the stack, and finally the third component of the
final input letter of v. We read the first letter of wrev and make sure the third
component corresponds to the third component of the final letter of v. We then
feed another string into P1, as indicated by (1), and check it corresponds to the
same element in G as α. Finally, we check that the first component of the final
letter of wrev is the same as the (stored) first component of the initial letter of v.

Let P1 = (Q,Γ, τ, q0) be a deterministic pushdown automaton recognizing
W (G,X) by empty stack (where X is the set of generators for G given above).
Here our stack alphabet Γ contains a bottom stack symbol Z0 and a distin-
guished marker symbol #. We have a transition function τ : Q×X×Γ → Q×Γ ∗.
In our transition diagram each edge is labelled by a triple triple (x, z, z′) where
x is the input symbol (a generator in X) and where we pop the topmost letter
z ∈ Γ off the stack and push the word z′ ∈ Γ ∗ onto the stack. We let (q, x, z)δ
denote the state reached upon following an edge labelled x from state q with z
as the topmost stack letter and (q, x, z)ζ denote the word z′ ∈ Γ ∗ pushed onto
the stack upon following an edge labelled x from q with z as the topmost stack
letter.

We construct a PDA P2 from P1, which recognizes W (S,B) where B is the
set of generators constructed above. For ease of expression, we will identify the
generators in B with the elements in S they represent.

The initial state of P2 is sI . The remaining states are pairs (q, j), where
q ∈ Q and j ∈ I ∪ Λ ∪ {#}, an accept state sY and a fail state sF . For each
(ιj , gj, λj) ∈ B there is a transition from (qk, λk) (qk �= q0) to each possible
(((qk, pλkιj , z)δ, gj, (qk, pλkιj , z)ζ)δ, λj), labelled by

((ιj , gj, λj), z, [(qk, pλkιj , z)ζ][((qk, pλkιj , z)δ, gj, (qk, pλkιj , z)ζ)ζ]);

106 M. Hoffmann et al.

i.e. the effect on the top stack letter z is the same as the effect of following a
path in P1 labelled pλkijgj , with top stack letter z on the stack.

Let (q, r) be a state in P2. There is a transition labelled (#, z, r) from (q, r)
to q′ = ((q,#, z)δ,#), and the effect on the stack is to pop z and push r.
Transitions from the state (q′,#) for q′ ∈ Q labelled ((ι, h, λ), r, λ) go to the fail
state sF if r �= λ; otherwise we pop r off the stack and have the edge go to state
((q′, h, z)δ, ι) for each possible z.

To each (ιj , gj , λj) ∈ B, there is a transition labelled by

((ιj , gj, λj), z, [(qk, pλλjιk
, z)ζ][((qk, pλjιk , z)δ, gj, (qk, pλjιk , z)ζ)ζ)]

from (qk, ιk) to (((qk, pλjιk , z)δ, gj, (qk, pλjιk , z)ζ)δ, ιj), where the stack changes
are as for the possible stack changes when following a path in P1 from qk labelled
pλjιkgj .

Finally, for each state (qk, l) (l ∈ I) such that qk is a state of P1, there
is a transition labelled by (ε, l, ε) from (qk, l) to sY , and transitions labelled
by (ε, λ, λ) from (qk, l) to sF for λ �= l. The PDA P2 so constructed accepts
W (S,B). �

6 Rational Semigroups and Linear World Problems

In this section we give a proof of Theorem 3. We first give a definition of the
notion of a rational semigroup:

Definition 18. Let S be a semigroup generated by a finite set A, ϕ : A+ → S
be the natural epimorphism and L be a regular subset of A+. The pair (A,L)
is a rational structure for S if ϕ maps L bijectively onto S and the function
χ : A+ → A+ defined by w =S wχ ∈ L for all w ∈ A+ is a rational relation.

A semigroup S is rational if it has a rational structure.

We prove one direction of Theorem 3:

Proposition 19. If S is a rational semigroup generated by a finite set A then
the word problem

{u#vrev : u, v ∈ A+, u =S v}
of S is accepted by a one-turn PDA that turns on the symbol #.

Proof. Let (A,L) be a rational structure for a semigroup S. So the set

C = {(α, β) ∈ A+ ×A+ : β ∈ L and α =S β}

is a rational relation. By swapping the two tapes we see that

C̄ = {(β, α) ∈ A+ ×A+ : β ∈ L and α =S β}

is also a rational relation. By the composition of rational relations the set

D = {(u, v) : ∃w with (u,w) ∈ C and (w, v) ∈ C̄} = {(u, v) : u =S v}

is also a rational relation. By Proposition 5 the set {u#vrev : u =S v} is accepted
by a one-turn PDA that turns on the symbol # as required. �

Semigroups with a Context-Free Word Problem 107

To prove the other direction of Theorem 3 we need the concept of an asyn-
chronously automatic structure:

Definition 20. Let S be a semigroup. A pair (A,L) is an asynchronously auto-
matic structure for S if A is a finite generating set for S and L a regular subset
of A+ which maps surjectively onto S such that the relations

Lε = {(u, v) ∈ L× L : u =S v} and La = {(u, v) ∈ L× L : ua =S v}

are rational for any a ∈ A. A semigroup is asynchronously automatic if it has
an asynchronously automatic structure.

We need the following result from [13]:

Proposition 21. Let S be a semigroup generated by a finite set A; then S is
rational if and only if (A,A+) is an asynchronously automatic structure for S.

Given this, we can now prove the other direction of Theorem 3:

Proposition 22. If S is a semigroup whose word problem is accepted by a one-
turn PDA that turns on the symbol #, then S is rational.

Proof. Let A be a finite set of generators for S and G = (V,A#, P, I) be a linear
grammar generating the word problem of S with respect to A. As the word
problem is accepted by a one-turn PDA that turns on the symbol #, we can
assume that there no rule in G of the form X → x with X ∈ V and x ∈ A.

We construct an asynchronous 2-tape automaton M as follows.

� the states of M are V ∪ {E}; � the transitions τ of M are:
� the initial state is S; (X, (u, v))τ = Y if (X → uY v) ∈ P ;
� the accept state is E; (X, ε)τ = E if (X → #) ∈ P .

Clearly,
L(M) = {(α, β) : α, β ∈ A+, α#βrev ∈ L(G)}

= {(α, β) : α, β ∈ A+, α =S β}.

This gives that (A,A+) is an asynchronous automatic structure for S. By Propo-
sition 21, S is a rational semigroup. �

References

1. An̄ıs̄ımov, A.V.: Certain algorithmic questions for groups and context-free lan-
guages. Kibernetika (Kiev) (2), 4–11 (1972)

2. Autebert, J.-M., Boasson, L., Sénizergues, G.: Groups and NTS languages. J. Com-
put. System Sci. 35(2), 243–267 (1987)

3. Ayik, H., Rus̆kuc, N.: Generators and relations of Rees matrix semigroups. Proc.
Edinburgh Math. Soc. (2) 42(3), 481–495 (1999)

4. Berstel, J.: Transductions and context-free languages. Leitfäden der Angewandten
Mathematik und Mechanik, vol. 38. B. G. Teubner, Stuttgart (1979)

108 M. Hoffmann et al.

5. Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups.Vol. I. Mathe-
matical Surveys, vol. 7. American Mathematical Society, Providence (1961)

6. Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups. Vol. II. Mathe-
matical Surveys, vol. 7. American Mathematical Society, Providence (1967)

7. Duncan, A., Gilman, R.H.: Word hyperbolic semigroups. Math. Proc. Cambridge
Philos. Soc. 136(3), 513–524 (2004)

8. Dunwoody, M.J.: The accessibility of finitely presented groups. Invent. Math. 81(3),
449–457 (1985)

9. Ginsburg, S.: The mathematical theory of context-free languages. McGraw-Hill
Book Co., New York (1966)

10. Harrison, M.A.: Introduction to formal language theory. Addison-Wesley Publish-
ing Co., Reading (1978)

11. Herbst, T.: On a subclass of context-free groups. RAIRO Inform. Théor.
Appl. 25(3), 255–272 (1991)

12. Herbst, T., Thomas, R.M.: Group presentations, formal languages and characteri-
zations of one-counter groups. Theoret. Comput. Sci. 112(2), 187–213 (1993)

13. Hoffmann, M., Kuske, D., Otto, F., Thomas, R.M.: Some relatives of automatic and
hyperbolic groups. In: Semigroups, Algorithms, Automata and Languages (Coim-
bra, 2001), pp. 379–406. World Sci. Publ., River Edge (2002)

14. Holt, D.F., Owens, M.D., Thomas, R.M.: Groups and semigroups with a one-
counter word problem. J. Aust. Math. Soc. 85(2), 197–209 (2008)

15. Holt, D.F., Rees, S., Röver, C.E., Thomas, R.M.: Groups with context-free co-word
problem. J. London Math. Soc. (2) 71(3), 643–657 (2005)

16. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and
computation. Addison-Wesley Publishing Co., Reading (1979)

17. Howie, J.M.: Fundamentals of semigroup theory. London Mathematical Society
Monographs. New Series, vol. 12. The Clarendon Press, Oxford University Press,
New York (1995)

18. Jura, A.: Determining ideals of a given finite index in a finitely presented semigroup.
Demonstratio Math. 11(3), 813–827 (1978)

19. Lallement, G.: Semigroups and combinatorial applications. John Wiley & Sons,
New York (1979)

20. Muller, D.E., Schupp, P.E.: Groups, the theory of ends, and context-free languages.
J. Comput. System Sci. 26(3), 295–310 (1983)

21. Pelletier, M., Sakarovitch, J.: Easy multiplications. II. Extensions of rational semi-
groups. Inform. and Comput. 88(1), 18–59 (1990)

22. Rosenberg, A.L.: A machine realization of the linear context-free languages. Infor-
mation and Control 10(2), 175–188 (1967)

23. Sakarovitch, J.: Easy multiplications. I. The realm of Kleene’s theorem. Inform.
and Comput. 74(3), 173–197 (1987)

24. Stallings, J.: Group theory and three-dimensional manifolds. Yale University Press,
New Haven (1971)

Generalized Derivations with Synchronized

Context-Free Grammars�

Markus Holzer1, Sebastian Jakobi1, and Ian McQuillan2

1 Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,jakobi}@informatik.uni-giessen.de
2 Department of Computer Science, University of Saskatchewan

Saskatoon, SK S7N 5A9, Canada
mcquillan@cs.usask.ca

Abstract. Synchronized context-free grammars are special context-free
grammars together with a relation which must be satisfied between every
pair of paths from root to leaf in a derivation tree, in order to contribute
towards the generated language. In the past, only the equality relation
and the prefix relation have been studied, with both methods generating
exactly the ET0L languages. In this paper, we study arbitrary relations,
and in particular, those defined by a transducer. We show that if we
use arbitrary a-transducers, we can generate all recursively enumerable
languages, and moreover, there exists a single fixed transducer, even over
a two letter alphabet, which allows to generate all recursively enumerable
languages. We also study the problem over unary transducers. Although
it is left open whether or not we can generate all recursively enumerable
languages with unary transducers, we are able to demonstrate that we
can generate all ET0L languages as well as a language that is not an
indexed language. Only by varying the transducer used to define the
relation, this generalization is natural, and can give each of the following
language families: context-free languages, a family between the E0L and
ET0L languages, ET0L languages, and recursively enumerable languages.

1 Introduction

The study of synchronization in formal language theory was originally initiated
by Hromkovič in order to study communication between parallel computations of
Turing machines and alternating Turing machines [5,6]. Then, in [12], Salomaa in-
troduced synchronized tree automata, which allowed for limited communication
between different paths of the trees. Synchronized context-free (SCF) grammars
were created [7] to study the yields of synchronized tree automata, as string lan-
guages. This model consists of context-free grammars, where the nonterminals are
ordered pairs, and the second component is an optional synchronization symbol

� Research supported, in part, by the Natural Sciences and Engineering Research
Council of Canada.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 109–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

110 M. Holzer, S. Jakobi, and I. McQuillan

used to communicate with other branches of the tree. For every pair of paths be-
tween root and leaf, the sequences of synchronization symbols from the top towards
the bottom of the tree must be related to each other, according to some given re-
lation, in order to contribute towards the generated language. The language gen-
erated by an SCF grammar depends on the relation used. In the past, only two
relations have been studied. The first is the equality relation, where the sequence
of synchronization symbols must be equal for every pair of paths from root to
leaves. The second is the prefix relation, where between every two paths, one
must be a prefix of the other. It has been shown that both language families are
identical [7], and equal to the family of ET0L languages [9]. Moreover, if only
one synchronization symbol is allowed, in a model called counter synchronized
context-free grammars, a language family strictly between E0L and ET0L is ob-
tained [2]. No other relations have been studied, although the definition of SCF
grammars is general enough that any binary relation on words can be used.

In this paper, we use a common computational model, a transducer, to vary
the relation. We can obtain standard equality and prefix synchronization with
specific transducers, as well as the counter SCF languages. We show that one
can in fact generate all recursively enumerable languages by varying the trans-
ducer. Moreover, there is a single fixed transducer, over a two letter alphabet,
which gives all recursively enumerable languages. We also examine transducers
over a one letter alphabet. In contrast to normal SCF languages with equality
synchronization over a one letter alphabet, we are able to generate all ET0L lan-
guages. Therefore, we can simulate equality synchronization over any alphabet
with a transducer over a unary alphabet. Further, we are able to generate a non-
ET0L language, and indeed, non-indexed language, with a one letter transducer.
However, the exact capacity with unary transducers is left open.

The paper is organized as follows. In the next section we introduce the nec-
essary notations on a-transducers and SCF grammars, leading to the notion of
M -synchronized context-free grammars and languages. Then in Section 3 we
first give some examples on M -SCF grammars to become familiar with this
new concept and its basic mechanisms. The main result of this section is the
characterization of the family of recursively enumerable languages by M -SCF
grammars, even by a single fixed transducer. Moreover, this single fixed trans-
ducer can be chosen to be over a two letter alphabet. Finally, in Section 4 we
study the generative capacity of M -SCF for unary a-transducers. Finally, we
state some open problems related to SCF and M -SCF grammars and languages.

2 Preliminaries

In this section, we will define the necessary preliminaries, as well as define syn-
chronized context-free grammars and languages as they have been defined pre-
viously in the literature.

Let N and N+ be the set of non-negative and positive integers, respectively.
An alphabet A is a finite, non-empty set of symbols. The set of all words over A
is denoted by A∗, which contains the empty word λ. A language L over A is any

Generalized Derivations with Synchronized Context-Free Grammars 111

subset of A∗. For a word x ∈ A∗, let |x| denote the length of x. We say x is a
prefix of y, denoted x ≤p y, if y = xu for some word u ∈ A∗. Also, w1!pw2 if
and only if either w1 ≤p w2 or w2 ≤p w1. We also say w1!ew2 if and only if
w1 = w2.

We will next define an a-transducer. Intuitively, it is a nondeterministic gsm
that allows output on a λ input. They are also referred to as rational transducers.
An a-transducer is a 6-tuple M = (Q,A1, A2, δ, q0, F), where Q is the finite state
set, A1 is the input alphabet, A2 is the output alphabet, δ is a finite subset of
Q×A∗

1 ×A∗
2 ×Q, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states.

Let " be the relation on Q × A∗
1 × A∗

2 defined by letting (q, xw, z1) " (p, w, z2)
for each w ∈ A∗

1 if (q, x, y, p) ∈ δ and z2 = z1y. An intermediate stage of a
computation of M , or a configuration of M , is represented by a triple (q, w, z)
where M is in state q, with w the input still to be read, and z the accumulated
output. Let "∗ be the reflexive, transitive closure of ". For such an a-transducer,
and for each word w ∈ A∗

1, let

M(w) = { z | (q0, w, λ) "∗ (q, λ, z) for some q ∈ F }.

For every set L ⊆ Σ∗
1 , let M(L) =

⋃
w∈LM(w). The mapping M is called an

a-transducer mapping or a-transduction.
A context-free grammar is denoted by G = (N, T, P, I), where N and T are

disjoint alphabets of nonterminals and terminals respectively, I ∈ N is the start-
ing nonterminal, and P is a finite set of productions of the form X → w where
X ∈ N and w ∈ (N ∪ T)∗. Derivations of context-free grammars can be repre-
sented as trees. A tree domain D is a nonempty finite subset of N∗

+ such that

1. if μ ∈ D, then every prefix of μ belongs to D and
2. for every μ ∈ D there exists i ≥ 0 such that μj ∈ D if and only if 1 ≤ j ≤ i.

Let A be a set. An A-labelled tree is a mapping t : D → A, where D is a tree
domain. Elements of D are called nodes of t and D is said to be the domain
of t, dom(t). A node μ ∈ dom(t) is labelled by t(μ). A node λ ∈ dom(t), denoted
by root(t), is called the root of t. The set of leaves of t is denoted leaf(t). The
subtree of t at node μ is t/μ. When there is no confusion, we refer to a node
simply by its label.

Nodes of a tree t that are not leaves are called inner nodes of t. The inner
tree of t, inner(t) is the tree obtained from t by cutting off all the leaves. For
element μ ∈ dom(t), let patht(μ) be the sequence of symbols of A occurring on
the path from the root of t to the node μ.

Let G = (N, T, P, I) be a CF grammar. A (N ∪ T ∪ {λ})-labelled tree t is a
derivation tree of G if it satisfies the following conditions:

1. The root of t is labelled by the initial nonterminal, that is, t(λ) = I.
2. The leaves of t are labelled by terminals or by the symbol λ.
3. Let μ ∈ dom(t) have k immediate successors μ1, μ2, . . . , μk, for k ≥ 1. Then

t(μ) → t(μ1)t(μ1) · · · t(μk) ∈ P .

The set of derivation trees of G is denoted T (G). The yield of a derivation
tree t, yd(t), is the word obtained by concatenating the labels of the leaves of t

112 M. Holzer, S. Jakobi, and I. McQuillan

from left to right; the leaves are ordered by the lexicographic ordering of N∗
+.

The derivation trees of G are in one-to-one correspondence with the equivalence
classes of derivations of G producing terminal words, and thus

L(G) = { yd(t) | t ∈ T (G) }.
In the following, for simplicity we also write yd(T (G)) instead.

The family of context-free languages [4,11] is denoted as usual by L(CF), and
with L(E0L) and L(ET0L) we refer to the family of E0L (extended Lindenmayer
systems without interaction) and ET0L (extended tabled Lindenmayer systems
without interaction) languages, respectively—see [10].

Definition 1. A synchronized context-free grammar (SCF) is a five-tuple

G = (V, S, T, P, I)

such that G′ = (V × (S ∪ {λ}), T, P, I) is a context-free grammar and V , S
and T are the alphabets of base nonterminals, situation symbols and terminals,
respectively. The alphabet of nonterminals is V × (S ∪ {λ}), where elements
of V × S are called synchronized nonterminals and elements of V × {λ} are
called non-synchronized nonterminals which are usually denoted by their base
nonterminals only. We define the morphism hG : (V × (S ∪ {λ}))∗ −→ S∗ by
the condition hG((v, x)) = x for all v ∈ V and x ∈ S ∪ {λ}.
This morphism follows the definition of an important concept, namely the syn-
chronizing sequence of a path on the derivation tree.

Definition 2. Let G be a SCF grammar. For a derivation tree t of G, t1 =
inner(t) and a node μ ∈ leaf(t1), the synchronizing sequence (sync-sequence)
corresponding to μ is seqt1(μ) = hG(patht1(μ)).

Next, we will restrict the trees that will be used to generate SCF languages.

Definition 3. Let G = (V, S, T, P, I) be an SCF grammar and z ∈ {p, e}. A
derivation tree t of G is said to be z-acceptable if seqinner(t)(μ) !z seqinner(t)(ν),
for each μ, ν ∈ leaf(inner(t)). The set of z-acceptable derivation trees of G is
denoted by Tz(G).

The z-acceptable SCF language families are defined as follows:

Definition 4. For z ∈ {p, e}, the z-synchronized language of G is Lz(G) =
yd(Tz(G)). The families of z-SCF languages, for z ∈ {p, e}, and SCF languages
are denoted Lz(SCF) and L(SCF) = Le(SCF) ∪ Lp(SCF).

It was proven in [7] that p- and e-synchronization generate the same family of
languages, i.e., Le(SCF) = Lp(SCF) = L(SCF). In [9] it was shown that SCF
grammars generate the family of ET0L languages, i.e., L(SCF) = L(ET0L), and
given an SCF grammar and a derivation mode one can effectively construct an
equivalent ET0L system and vice versa. Furthermore, equality synchronization
with only a single situation symbol or prefix synchronization with a single situa-
tion symbol plus an endmarker generates the counter synchronized-context free
languages, a language family strictly between the L(E0L) and L(ET0L) language
families [2,8].

Generalized Derivations with Synchronized Context-Free Grammars 113

3 Transducer Synchronization

Next, we generalize the equality and prefix relation to arbitrary relations defined
by a transducer.

Definition 5. Let G = (V, S, T, P, I) be an SCF grammar together with an a-
transducer M = (Q,S, S, δ, q0, F). Then, w1 !M w2 if and only if at least one
of w1 ∈ M(w2) or w2 ∈ M(w1) is true.

Now we can define the derivation tree we are interested in, as follows:

Definition 6. A derivation tree t of G is said to be M -acceptable if

seqinner(t)(μ) !M seqinner(t)(ν),

for each μ, ν ∈ leaf(inner(t)). The set of M -acceptable derivation trees of G is
denoted by TM (G).

Finally, we define the accepted language and the notation for the language family
in question.

Definition 7. The M -synchronized language of G is LM (G) = yd(TM (G)).
The families of M -SCF languages are denoted LM (SCF). Moreover, the set of
languages generated by all such transducers is denoted by L∗(SCF).

As an example, consider the fixed transducer Me on a two letter alphabet S
that reads a word w and outputs w. This produces the same relation as the
equality relation on two letters. And because it is known [8] that two situation
symbols are sufficient to generate all languages in Le(SCF), we can conclude that
LMe(SCF) = Le(SCF) = L(ET0L). We can also build a transducer which gives
the prefix relation over a binary alphabet. If we consider Mc that is the same
as Me except over a single letter alphabet, then we get the counter synchronized
context-free languages [2], a family of languages strictly between the L(E0L) and
L(ET0L) languages. And, the transducer that outputs λ for all inputs generates
the context-free languages. However, next we give a fixed transducer whereby
we can generate a non-ET0L language.

Example 8. Consider the language

L = { x#φ(x) | x ∈ {0, 1}∗ with |x| = 2n, for n ≥ 0 },

where φ is a homomorphism defined by mapping 0 to a and 1 to b. In order to
show that L is a non-ET0L language we argue as follows: the family of ET0L
languages is a full-AFL and therefore closed under arbitrary homomorphisms,
and the language h(L), where h : {a, b, 0, 1,#}∗ → {a, b, 0, 1}∗ is the erasing
homomorphism defined by h(x) = x, for x ∈ {a, b, 0, 1}, and h(#) = λ, is not an
ET0L language [10, page 252, Corollary 2.11]. Hence L is not an ET0L language
either.

The grammar is defined as G = (V, S, T, P, I), where the productions are as
follows:

114 M. Holzer, S. Jakobi, and I. McQuillan

I → (X, l)#(Y, l′)
(X, l)→ (X, l)(X, r) | (X, 0) | (X, 1) (Y, l′) → (Y, l′)(Y, r′) | (Y, a) | (Y, b)
(X, r) → (X, l)(X, r) | (X, 0) | (X, 1) (Y, r′) → (Y, l′)(Y, r′) | (Y, a) | (Y, b)
(X, 0) → 0 (Y, a) → a
(X, 1) → 1 (Y, b) → b

Let g be a homomorphism which maps 0 to a, 1 to b, l to l′ and r to r′. The
transducer M is defined, by mapping strings in S∗ as follows:

1) maps strings of the form xα to yβ, where x, y ∈ {l, r}+, |x| = |y|, and
α, β ∈ {0, 1},

2) maps strings of the form xα to yβ, where x, y ∈ {l′, r′}+, |x| = |y|, and
α, β ∈ {a, b},

3) maps strings of the form xα to g(x)g(α), where x ∈ {l, r}+, and α ∈ {0, 1},
4) maps strings of the form xα to yβ, where x ∈ {l, r}+, y ∈ {l′, r′}+, α, β ∈

{0, 1}, y �= g(x), and |x| = |y|, and
5) maps strings of the form xα and yβ, where x ∈ {l, r}+, y ∈ {l′, r′}+, α ∈

{0, 1}, and β ∈ {a, b} to the empty word.

I

(X, l)

(X, l) (X, r)

(X, l) (X, r)

(X, l) (X, r) (X, l) (X, r)

(Y, l′)

(Y, r′)

(X, l) (X, r)

(X, l) (X, r) (X, l) (X, r)

(Y, l′) (Y, r′)

(Y, l′) (Y, r′) (Y, l′) (Y, r′)

(Y, l′) (Y, r′)

(Y, l′) (Y, r′) (Y, l′) (Y, r′)

#

(Y, l′)

0 1 1 1

(X, 0) (X, 1) (X, 1) (X, 1)

0 1 0 0

(X, 0) (X, 1) (X, 0) (X, 0)

a b b b

(Y, a) (Y, b) (Y, b) (Y, b)

a b a a

(Y, a) (Y, b) (Y, a) (Y, a)

Fig. 1. An acceptable tree generating the word 01110100#abbbabaa

Every tree produced that is M -acceptable consists of two subtrees as children
of I, rooted at (X, l), and (Y, l′) as well as a third branch producing only the
marker #, as seen in Figure 1. Derivations of M of the form in 1), are used to
synchronize between every two paths of the left subtree. Indeed, every such path
must be of the same length, and the number of nonterminals in the left subtree
doubles at each height, and each path can generate either 0 or 1. Therefore, the
yield of every such left subtree is of the form x ∈ {0, 1}∗ with |x| = 2n, for n ≥ 0.
Similarly, rules of type 2) are used to synchronize the right subtree, and produce
words of the form y ∈ {a, b}∗ with |y| = 2n, for n ≥ 0. Moreover, each path from
root to leaf of the left subtree has some unique situation sequence xα, where
x ∈ {l, r}+ and α ∈ {0, 1}. For the one unique path in the right subtree with
the situation sequence of g(x)g(α), the leaf of the first subtree must be α, while
it must be g(α) in the second subtree, using rules of type 3). However, for every
other path from root to leaf whereby xα is the situation sequence of the first

Generalized Derivations with Synchronized Context-Free Grammars 115

tree, and yβ is the situation sequence of the second tree, then g(x) �= y, and no
conditions are placed on α and β allowing non-“matching” paths to synchronize
arbitrarily. Rules of type 5) allow to synchronize with the marker #, which has
an empty synchronization sequence. �

Example 9. We will give another example of a non-standard simulation of the
linear languages. Linear languages are context-free languages, where there is at
most one nonterminal on the right hand side of every production (as seen on the
left diagram of Figure 2). It is known that all linear languages can be accepted
by linear grammars where each production is of the form A → bB,A → Bb, or
A → b, where A,B are nonterminals and b is a terminal; instead of having rules
of the form A → b in the grammar, one can require to have rules A → λ instead.
The derivation trees for all such linear grammars consist of a single “path of
nonterminals” with terminals to the right or left at each height. It is obvious
that all such grammars can be generated without any synchronization at all.
However, in the simulation presented here, the terminals generated to the left of
the main “path of nonterminals” in the linear grammar are now generated on a
completely separate branch of the tree, and the synchronization communicates
the information about their proper placement. The intuition behind the sim-
ulation appears in Figure 2. We create labels in bijective correspondence with
the productions of the linear grammar. Then we create three branches. The first
nondeterministically generates a sequence of production symbols as situation
sequence. The second generates all terminals to the left of the main branch of
the linear grammar. The third generates all terminals to the right of the main
branch of the linear grammar. The situation symbols, and the transducer, com-
municate the production symbols between branches. This example is important
in understanding the simulation of arbitrary recursively enumerable languages
by synchronized context-free grammars by varying transducers. �

Next we study some basic closure properties of M -SCF languages, for arbitrary,
but fixed, a-transducers M .

Proposition 10. For every a-transducer M , LM (SCF) is a full semi-AFL.

Proof. Languages families that are full semi-AFLs are closed under homomor-
phism, inverse homomorphism, intersection with regular languages, and union.
The results for homomorphism, inverse homomorphism and intersection with
regular languages follows using exactly the same proofs as those for ET0L [10].
The proof for union can be seen by also using the standard proof for context-
free languages, where we create a new grammar with a new start symbol, that
goes to either of the two original start symbols (using non-synchronizing
nonterminals). �

It is an open question whether or not there exists a transducer which generates
a language family not closed under concatenation, Kleene star, or both. It is
clear however, that there are some transducers that give language families that
are also closed under concatenation and Kleene star, as the ET0L and counter
synchronized-context-free languages are closed under these as well.

116 M. Holzer, S. Jakobi, and I. McQuillan

A1

λ

...

A2

A3

An−1

An

α β

S

λ

...

(L, pL1)

(L, pL2)

(L, pLn−1)

(L, pLn)

α β
(I, pn)

λ

...

(I, p2)

(I, pn−1)

(I, p1)

λ

...

(R, pR1)

(R, pR2)

(R, pRn−1)

(R, pRn)

Fig. 2. The tree on the left is a derivation tree of a linear grammar, using a sequence
of productions p1, p2, . . . , pn. The tree on the right is a simulation with a synchronized
context-free grammar, where the terminals derived to the left of the main branch are
now on a completely separate branch from those derived on the right.

This immediately implies that L∗(SCF) is also a full semi-AFL. In particular,
closure under homomorphism is important, as we prove next that this family can
generate all recursively enumerable languages, by using the well-known charac-
terization that every recursively enumerable language is equal to h(L1∩L2), for a
homomorphism h, and two linear context-free languages. Therefore, we will now
show that we can accept the intersection of two linear context-free languages.
The proof is omitted for reasons of space.

Proposition 11. Let G1 = (N1, T, P, I) and G2 = (N2, T,Q, J) be two linear
context-free grammars. Then L(G1) ∩ L(G2) is an M -SCF language, for some
a-transducer M (that depends on both G1 and G2). �

The simulation is similar in nature to the simulation of linear grammars in Exam-
ple 9. In that example, we created three branches to simulate the single branch
of the linear grammar. The first branch generated the sequence of productions
used in the linear grammar. The second branch generated all terminals to the
left and the third generated all to the right. Here, we adopt a similar technique
for both linear grammars to be simulated. In this case however, we require four
branches for each grammar, giving a total of eight branches.

The first four generate a word from the first linear grammar, and the second
four simulate the second linear grammar, however the second set of four branches
will only verify the same word is generated as the first grammar before outputting
the empty word across the entire second set of four branches.

Both grammarsG1 and G2 can generate the same word, but the first grammar
for example could generate the word with more letters to the right of the main
branch than the second grammar (and therefore the second would generate more
to the left than the first grammar). Therefore, it becomes non-trivial to test
equality as we cannot simply test for equality using synchronization passed from

Generalized Derivations with Synchronized Context-Free Grammars 117

the top towards the bottom in the tree. Then, we use the first and fifth branches
to use sequences of production labels in correspondence with the two grammars.
We use the second and sixth branches to generate those terminals that occur to
the left of both linear grammar trees. We use the fourth and eighth branches to
generate those terminals that occur to the right of both linear grammar trees. And
lastly, we use the third and seventh branch to generate those remaining terminals
which occur to the left of one grammar, and to the right of the other. This final
synchronization, between the third and seventh branch, is more complicated, as
they are generated in the opposite order (the terminals for one will be generated
from the top to the bottom in the tree, while the other will be generated bottom-
up). Then, we use a synchronization argument that uses a length argument on
the remaining sequence of one grammar in comparison to what has already been
generated in the other grammar. This combined with the fact that L∗(SCF) is
closed under homomorphism, and also with the fact that every such language
can be accepted by a Turing machine gives us:

Theorem 12. L∗(SCF) is equal to the family of recursively enumerable
languages. �

Next, we show that there exists a fixed transducer generating all recursively
enumerable languages.

Proposition 13. There exists a fixed transducer M such that LM (SCF) is equal
to the recursively enumerable languages.

Proof. Because every recursively enumerable language can be generated by a
synchronized context-free grammar with some transducer, we can start with
some universal Turing machine, which accepts the language

L = { 〈A,w〉 | w ∈ L(A) },

where A is a Turing machine encoded over some alphabet disjoint from w ∈ Σ∗,
where Σ = {0, 1}. This language can be accepted with some synchronized
context-free grammar G using some transducer M for synchronization, by The-
orem 12. But then, given any Turing machine A over Σ, we can construct
L(A) = h(L ∩ 〈A,Σ∗〉), where h is a homomorphism which erases everything
not in Σ, but maps every letter of Σ to itself. Moreover, by Proposition 10,
every fixed transducer gives a full semi-AFL and is therefore closed under inter-
section with regular languages and homomorphism. Therefore, this language is
in LM (SCF). Therefore, we can generate all recursively enumerable languages
over Σ.

Let Γ = {a1, a2, . . . , ak} be an arbitrary alphabet. Then every recursively
enumerable language L over Γ is equal to g−1(L′), for some recursively enumer-
able L′ ⊆ Σ∗, where g maps each letter ai to 0i1, for 1 ≤ i ≤ k. And since every
full semi-AFL is closed under inverse homomorphism, we can generate every
recursively enumerable language using M for synchronization. Hence, LM (SCF)
is equal to the family of recursively enumerable languages. �

118 M. Holzer, S. Jakobi, and I. McQuillan

To finish off this section, we see that we can use standard encoding techniques
in order to use only a two letter transducer alphabet. The proof is omitted.

Lemma 14. Let M be a transducer on S∗ with |S| > 2. There exists M ′ over
the alphabet {s, r} such that LM (SCF) ⊆ LM ′(SCF). �
Then, starting with the fixed transducer from Proposition 13, we obtain:

Corollary 15. There exists a fixed transducer M over a two letter alphabet such
that LM (SCF) is equal to the recursively enumerable languages. �

4 Unary Transducers

We know that a fixed transducer over a two letter alphabet is enough to generate
all recursively enumerable languages. The question remains as to what languages
we can generate over unary transducers. We mentioned that if we examine the
fixed unary transducer that outputs exactly the input, we generate the counter
synchronized context-free languages, which gives a language family strictly be-
tweenL(E0L) andL(ET0L). It remains to be seen whether or not we can generate
languages that are not in this language family. We show next that we can.

We demonstrate an example of a more complex language that we can generate
with a unary transducer. Consider the transducer M that on input sn, nonde-
terministically outputs either sn or s2n. Consider the synchronized context-free
grammar G defined by the following productions:

(A, s) → (A, s)(A, s) | a(B, s)

(B, s) → (B, s)(B, s) | b

where we use (A, s) as the initial nonterminal. Then, we can see that every tree
in LM (G) is of the form of Figure 3, and this generates the language

L = { (ab2n)2n | n ≥ 0 }.

The key to this example is that for every M -acceptable tree, there exists n > 0,
such that the situation sequence must be either sn or s2n for every path from root
to leaf. But, when using productions of the form (A, s) → a(B, s), the terminal a
is a leaf, but (B, s) is not. Therefore every leaf on the subtree of (B, s) must
have a situation sequence that is strictly longer than the situation sequence of
the leaf a. Therefore, for every tree, every time the letter a is used, the length of
the situation sequence must be n above it, and every time b is used, the situation
sequence must be of length 2n.

The following hierarchy is known

L(E0L) � L(cSCF) � L(ET0L) � L(INDEX).

Here L(INDEX) is the well-known family of indexed languages [1]. However, we
see next that the language L above with M , is not even an indexed language,
and therefore cannot be accepted with the simple unary or non-unary transducer
that outputs exactly the input. The proof is omitted for reasons of space. It uses
the shrinking lemma for indexed grammars from [3].

Generalized Derivations with Synchronized Context-Free Grammars 119

(A, s)

b b b b b b b b

a a

(A, s)

(A, s) (A, s)

(B, s) (B, s)

(B, s) (B, s) (B, s)
(B, s)

(B, s) (B, s) (B, s) (B, s) (B, s) (B, s) (B, s)(B, s)

b b b b b b b

a a

(A, s)

(A, s)

(B, s) (B, s)

(B, s) (B, s) (B, s)
(B, s)

(B, s) (B, s) (B, s) (B, s) (B, s) (B, s) (B, s)(B, s)

b

Fig. 3. A tree generating (ab4)4, where the grammar accepts { (ab2n)2n | n ≥ 0 }

Proposition 16. The language L = { (ab2n)2n | n ≥ 0 } /∈ L(INDEX). �

Then, in particular, language L is not counter synchronized context-free and
could not be generated by using a transducer that outputs exactly the input.
In the next proposition we prove the following lower bound for any transducer,
which utilizes a similar idea as to how to generate the above non-indexed lan-
guage by a SCF grammar and a transducer. Again, the proof is omitted.

Proposition 17. Let G = (V, S, T, P, I) be an SCF grammar. Then Le(G) is
an M -SCF language, for some fixed unary a-transducer M . �

Intuitively, every time the original grammar uses a situation symbol, the new
grammar uses four copies of the only situation symbol, and splits into two
branches at either the second or third position of the four copies depending
upon which situation symbol the original grammar is using. In this way, it is
able to simulate two symbols of the original grammar with a single symbol and a
more complex transducer. Then, since synchronized context-free grammars with
equality synchronization is equal to the family of ET0L languages, we obtain:

Theorem 18. There is a fixed unary transducer M such that LM (SCF) contains
all ET0L languages. �

The exact generative capacity when using fixed unary transducers, or all unary
transducers is left open. A related question, is to determine the power of unit-
productions A → B and λ-productions A → λ, for nonterminals A and B in
SCF and M -SCF grammars. For ordinary SCF grammars unit-productions seem
vital to prove the equivalence between the equality and prefix synchronization.
On the other hand, the equivalence of the family of SCF languages to the family
of ET0L languages [9] can be used to eliminate λ-productions in SCF grammars.
Whether the situation for unit- and λ-productions is similar in the case of M -
SCF grammars (general or unary) must be clarified by further research.

120 M. Holzer, S. Jakobi, and I. McQuillan

References

1. Aho, A.V.: Indexed grammars—an extension of context-free grammars. J.
ACM 15(4), 647–671 (1968)

2. Bordihn, H., Holzer, M.: On the computational complexity of synchronized context-
free languages. J. Univ. Comput. Sci. 8(2), 119–140 (2002)

3. Gilman, R.H.: A shrinking lemma for indexed languages. Theoret. Comput.
Sci. 163(1-2), 277–281 (1996)

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

5. Hromkovič, J., Karhumäki, J., Rovan, B., Slobodová, A.: On the power of synchro-
nization in parallel computations. Discrete Appl. Math. 32, 155–182 (1991)

6. Hromkovič, J., Rovan, B., Slobodová, A.: Deterministic versus nondeterministic
space in terms of synchronized alternating machines. Theoret. Comput. Sci. 132,
319–336 (1994)

7. Jürgensen, H., Salomaa, K.: Block-synchronized context-free grammars. In: Du,
D.Z., Ko, J.I. (eds.) Advances in Algorithms, Languages, and Complexity, pp.
111–137. Kluwer (1997)

8. McQuillan, I.: Descriptional complexity of block-synchronization context-free
grammars. J. Autom. Lang. Comb. 9(2/3), 317–332 (2004)

9. McQuillan, I.: The generative capacity of block-synchronized context-free gram-
mars. Theoret. Comput. Sci. 337(1-3), 119–133 (2005)

10. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems, Pure and
Applied Mathematics, vol. 90. Academic Press (1980)

11. Salomaa, A.: Formal Languages. ACM Monograph Series. Academic Press (1973)
12. Salomaa, K.: Synchronized tree automata. Theoret. Comput. Sci. 127, 25–51 (1994)

Non-erasing Variants

of the Chomsky–Schützenberger Theorem

Alexander Okhotin

Department of Mathematics, University of Turku, Turku FI-20014, Finland
alexander.okhotin@utu.fi

Abstract. The famous theorem by Chomsky and Schützenberger
(“The algebraic theory of context-free languages”, 1963) states that ev-
ery context-free language is representable as h(Dk ∩ R), where Dk is
the Dyck language over k � 1 pairs of brackets, R is a regular language
and h is a homomorphism. This paper demonstrates that one can use a
non-erasing homomorphism in this characterization, as long as the lan-
guage contains no one-symbol strings. If the Dyck language is augmented
with neutral symbols, the characterization holds for every context-free
language using a letter-to-letter homomorphism.

1 Introduction

The famous theorem by Chomsky and Schützenberger [1] states that every
context-free language L over an alphabet Σ can be represented as a homo-
morphic image

L = h(Dk ∩R),

for some k, R and h, where Dk is the Dyck language over k pairs of brackets, R is
a regular language over the alphabet of these brackets, and h is a homomorphism
mapping strings of brackets to strings over Σ. This can be informally stated as
follows: every context-free language is a regular structure of balanced brackets,
mapped to the target alphabet.

The homomorphisms used in the known proofs of this characterization are ac-
tually projections, which map some of the left brackets to symbols of Σ, while the
rest of the left brackets and all right brackets are mapped to the empty string. In
this way, the regular structure of balanced brackets characterizing a context-free
language mostly consists of imaginary brackets that are subsequently erased, and
only a few isolated brackets are renamed to letters of the alphabet. The text-
books by Ginsburg [3, Thm. 3.7.1], Salomaa [7, Thms 7.4, 7.5] and Lallement [5,
Thm. 5.14] present such an argument with almost no variations, while Harri-
son [4, Thm. 10.4.2] expresses essentially the same idea in terms of pushdown
automata.

Would it be possible to use non-erasing homomorphisms in this characteri-
zation? It is easy to present a counterexample: indeed, if h is non-erasing, then
h(Dk ∩R) may not contain any strings of length 1, because no such strings are
in Dk. At the first glance, this settles the question, and nothing more could

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 121–129, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 A. Okhotin

be done. Surprisingly, it turns out that one-symbol strings form the only excep-
tion, and every context-free language L not containing any strings of length 1 is
representable as h(Dk ∩R) for a non-erasing homomorphism h.

The core result of this paper, leading to non-erasing homomorphisms in the
Chomsky–Schützenberger theorem, is the following stronger characterization of
context-free languages with all strings of even length: a language L ⊆ (Σ2)∗ is
context-free if and only if it is representable as

L = h(Dk ∩R),

where Dk is a Dyck language, R is a regular language and h is a letter-to-
letter homomorphism. This result is obtained by first transforming a context-free
grammar generating L \ {ε} ⊆ (Σ2)+ into a normal form, where every rule is
of the form A → bC1 . . . Ckd with k � 0, terminal symbols b, d and nonterminal
symbols C1, . . . , Ck. Such a normal form is obtained in Section 2 by adapting a
known transformation to double Greibach normal form given by Rozenkrantz [6].
The next Section 3 shows how a grammar in this normal form is simulated as
h(Dk ∩R): it describes a suitable Dyck language, a homomorphism, which maps
every pair of brackets to the symbols b and d from some rule A → bC1 . . . Ckd,
as well as a regular set of allowed combinations of brackets.

The last Section 4 infers two characterizations of the context-free languages.
The first of them uses a non-erasing homomorphic image of a Dyck language inter-
sectedwith a regular set, but assumes that the given context-free language contains
no strings of length 1. The other characterization is applicable to any context-free
language, but requires extending the Dyck language with neutral symbols; this re-
sult uses a letter-to-letter homomorphism, and thus the context-free language is
represented by renaming the brackets to the symbols of the target alphabet.

2 Normal Form

This section establishes a normal form for context-free grammars generating
only strings of even length. This normal form will later be useful for exposing
the bracket structure of these languages.

Lemma 1. Every context-free language L ⊆ (Σ2)+ is generated by a context-
free grammar (Σ,N, P, S) with all rules of the form

A → bC1 . . . Ckd (b, d ∈ Σ, k � 0, C1, . . . , Ck ∈ N)

The proof can be inferred from the following known result.

Lemma A (Rozenkrantz [6]; see also Engelfriet [2]). Every context-free
language L ⊆ Σ+ is generated by a context-free grammar (Σ,N, P, S) in double
Greibach normal form, that is, with all rules of the form

A → bC1 . . . Ckd (b, d ∈ Σ, k � 0, C1, . . . , Ck ∈ N)

A → a (a ∈ Σ)

Non-erasing Variants of the Chomsky–Schützenberger Theorem 123

Proof (of Lemma 1). Let G be a grammar generating the given context-free
language L ⊆ (Σ2)+. Consider the alphabet Σ × Σ = { (a, b) | a, b ∈ Σ } and
define the homomorphism h : (Σ × Σ)∗ → Σ∗ by h

(
(a, b)

)
= ab. Then, by the

known closure of the context-free languages under inverse homomorphisms, there
exists a grammar G′ over the alphabet Σ ×Σ generating the language

L(G′) = h−1(L(G)) = { (a1, b1)(a2, b2) . . . (an, bn) | a1b1a2b2 . . . anbn ∈ L(G) }.

By Lemma A, this grammar can be transformed to a grammar G′′ generating
the same language over Σ ×Σ, with all rules of the form

A → (b, b′)C1 . . . Ck(d, d
′) (b, b′, d, d′ ∈ Σ, k � 0, C1, . . . , Ck ∈ N) (1a)

A → (a, a′) (a, a′ ∈ Σ) (1b)

Construct a grammar G′′′ over the alphabet Σ, with the following rules:

A → bb′C1 . . . Ckdd
′, for each “long” rule (1a) in G′′, (2a)

A → aa′, for each “short” rule (1b) in G′′. (2b)

By construction, L(G′′′) = h(L(G′′)), and hence L(G′′′) = h(h−1(L(G))) =
L(G).

Finally, once each “long” rule (2a) in G′′′ is replaced with two rules A → bXd′

and X → b′C1 . . . Ckd, the resulting grammar still generates L(G) and is of the
desired form. �

3 Homomorphic Characterization of Even-Length
Languages

For any finite set X , denote the set of brackets labelled with elements of X by

ΩX = {
(
x
| x ∈ X } ∪ {

)
x
| x ∈ X }.

Define the Dyck language DX ⊆ Ω∗
X over this set of brackets by the following

context-free grammar:

S →
(
x
S
)
x

(x ∈ X)

S → SS

S → ε

Since the elements of X are merely used as labels, each Dyck language DX

is isomorphic to D{1,...,k} with k = |X |. For any integer k � 1, denote Ωk =
Ω{1,...,k} and Dk = D{1,...,k}.

Theorem 1. A language L ⊆ (Σ2)∗ is context-free if and only if there exists
a number k, a regular language R ⊆ Ω∗

k and a letter-to-letter homomorphism
h : Ωk → Σ, such that L = h(Dk ∩R).

124 A. Okhotin

The reverse implication of Theorem 1 can be taken for granted, because the
context-free languages are closed under homomorphisms and under intersection
with regular languages. The task is to prove the forward implication of the
theorem, that is, to construct k, R and h for a given language L.

Consider an arbitrary context-free language L ⊆ (Σ2)∗. By Lemma 1, the
language L \ {ε} is generated by a context-free grammar G = (Σ,N, P, S) with
all rules of the form

A → bC1 . . . Ckd (b, d ∈ Σ, k � 0, C1, . . . , Ck ∈ N).

Assume, without loss of generality, that every such rule has pairwise distinct
symbols C1, . . . , Ck. This requirement can be met by making duplicate copies of
any repeated nonterminal symbols: that is, if a rule refers to two instances of
C, then the second instance can be replaced with a new nonterminal C′, which
has exactly the same rules as C. Once these symbols are pairwise distinct in all
rules, given a rule A → bC1 . . . Ckd and one of the symbols Ci, one can identify
the position i.

Consider the Dyck language D(P∪{−})×P , denoted by DG for the rest of this

argument. Each bracket
(X→ξ

A→bC1...Ckd
or
)X→ξ

A→bC1...Ckd
is labelled with two rules

of the grammar: the current rule A → bC1 . . . Ckd and the previous rule X → ξ,

where ξ contains an instance of A. The brackets
(−
A→bC1...Ckd

and
)−
A→bC1...Ckd

without a previous rule must have A = S and may only be used at the outer
level.

Define the regular language R0
G as the set of all strings w ∈

(
Ω(P∪{−})×P

)∗
that have all 2-symbol substrings of the following form: for some rule A →
bC1 . . . Ckd ∈ P with k � 1 and for Ξ ∈ P ∪ {−} being either a rule referring to
A or “−”,(Ξ
A→bC1...Ckd

(A→bC1...Ckd

C1→γ1
, with C1 → γ1 ∈ P,)A→bC1...Ckd

Ci→γi

(A→bC1...Ckd

Ci+1→γi+1
, with i ∈ {1, . . . , k − 1}, Ci → γi, Ci+1 → γi+1 ∈ P,)A→bC1...Ckd

Ck→γk

)Ξ
A→bC1...Ckd

, with Ck → γk ∈ P,

or, for some rule A → bd ∈ P , and for Ξ ∈ P ∪ {−} as above,(Ξ
A→bd

)Ξ
A→bd

.

Let RG be the subset of R0
G containing the strings that begin with a symbol(−

S→σ
and end with a symbol

)−
S→σ

. Furthermore, if ε ∈ L, then RG contains ε
as well.

Define the homomorphism h : Ω(P∪{−})×P → Σ as follows:

h
((Ξ
A→bC1...Ckd

)
= b h

()Ξ
A→bC1...Ckd

)
= d

Non-erasing Variants of the Chomsky–Schützenberger Theorem 125

Example 1. Consider the grammar

S → aSBb | aa
B → bb

generating the language { an+2b3n | n � 0 }. Then the string w = aaaabbbbbb
is obtained as the homomorphic image of the following sequence of brackets in
Ω(P∪{−})×P ∩RG:

Figure 1 illustrates how this sequence of brackets encodes the parse tree of w.

Fig. 1. The parse tree of a string in Example 1, encoded in a sequence of brackets

126 A. Okhotin

It remains to prove that the constructed Dyck language DG, regular language
RG and homomorphism h satisfy the equality h(DG∩RG) = L. This is achieved
in the below series of statements.

Claim 1. Let x =
(Ξ
A→α

y
)Ξ
A→α

∈ R0
G, where y ∈ DG. Then, h(x) ∈ LG(α).

Proof. Induction on the length of x.
Basis: |x| = 2. Then the rule A → α must have α = bd with b, d ∈ Σ, and

accordingly x =
(Ξ
A→bd

)Ξ
A→bd

. Then h(x) = bd, and the condition h(x) ∈ LG(α)
holds true.

Induction step. Let x =
(Ξ
A→bC1...Ckd

y
)Ξ
A→bC1...Ckd

with |y| > 0. Since y ∈ DG,

it is a concatenation y = y1 . . . y	 of � � 1 non-empty strings from DG, none
of which can be further factored into elements of DG. Because x ∈ R0

G and

its first letter is
(Ξ
A→bC1...Ckd

, its next letter, which is the first letter of y1,

must be
(A→bC1...Ckd

C1→γ1
, for some rule C1 → γ1 ∈ P . Then the last letter of y1

is
)A→bC1...Ckd

C1→γ1
, and the next letter of x must be

(A→bC1...Ckd

C2→γ2
for some rule

C2 → γ2 ∈ P . This letter is accordingly the first letter of y2. Continuing the

same argument leads to yi =
(A→bC1...Ckd

Ci→γi
zi
)A→bC1...Ckd

Ci→γi
for all i ∈ {1, . . . , k};

applying the induction hypothesis to each yi gives that h(yi) ∈ LG(γi).
Finally, the condition x ∈ R0

G ensures that the last letter of yk, which is)A→bC1...Ckd

Ck→γk
, must be followed by a letter

)Ξ′

A→bC1...Ckd
, for some Ξ ′ ∈ P ∪ {−}.

Since this cannot be the first letter of yk+1, it follows that � = k, Ξ ′ = Ξ and

x =
(Ξ
A→bC1...Ckd

y1 . . . yk
)Ξ
A→bC1...Ckd

. Therefore,

h(x) = b · h(y1) · . . . · h(yk) · d ∈ LG(bγ1 . . . γkd) ⊆ LG(bC1 . . . Ckd),

as claimed. �

Claim 2. If w ∈ LG(α) for some rule A → α and Ξ ∈ P ∪ {−}, then w = h(x)

for some string x =
(Ξ
A→α

y
)Ξ
A→α

∈ R0
G with y ∈ DG.

Proof. Induction on the length of w. Let α = bC1 . . . Ckd and accordingly let
w = bu1 . . . ukd with ui ∈ LG(Ci). For each i ∈ {1, . . . , k}, let Ci → γi with
ui ∈ LG(γi) be the rule used to generate ui. By the induction hypothesis, each

ui is representable as h(yi), for yi =
(A→bC1...Ckd

Ci→γi
zi
)A→bC1...Ckd

Ci→γi
∈ R0

G with

zi ∈ DG.
Define y = y1 . . . yk. Then y ∈ DG, because it is a concatenation of k elements

of DG, each enclosed in a pair of matching brackets. To see that x ∈ R0
G, it is suf-

ficient to check all two-symbol substrings at the boundaries of yi. If k � 1, these

are
(Ξ
A→bC1...Ckd

(A→bC1...Ckd

C1→γ1
,
)A→bC1...Ckd

Ci→γi

(A→bC1...Ckd

Ci+1→γi+1
for all i ∈ {1, . . . , k− 1},

and
)A→bC1...Ckd

Ci→γi

)Ξ
A→bC1...Ckd

, and all of them are allowed by the definition of

R0
G. If k = 0, there is a unique substring

(Ξ
A→bd

)Ξ
A→bd

, which is also allowed. �

Now the statement of Theorem 1 is proved as follows.

Non-erasing Variants of the Chomsky–Schützenberger Theorem 127

If a non-empty string w is in in L(G), then there is a rule S → σ with

w ∈ LG(σ), and, by Claim 2, w = h(x) for some x =
(−
S→σ

y
)−
S→σ

∈ DG ∩ R0
G.

By its first and its last symbol, x is in RG. Accordingly, w ∈ h(DG ∩RG).
Conversely, assume that w ∈ h(x) for some x ∈ DG ∩ RG. Then the first

symbol of x is
(−
S→σ

, its last symbol is
)−
S→σ

, and these two symbols have to be

matched to each other, because R0
G does not allow such symbols in the middle

of a string. Then x =
(−
S→σ

y
)−
S→σ

for some y ∈ DG. By Claim 1 for this string,
h(x) ∈ LG(σ) ⊆ L(G).

Finally, by definition, the empty string is in RG if and only if it is in L.
Altogether, h(DG ∩RG) = L, as claimed.

4 Characterizations

The previous section has established the perfect form of the Chomsky–
Schützenberger theorem for context-free languages of even-length strings. Now
the task is to extend the theorem to arbitrary context-free languages. The first
form of this theorem is applicable to all languages without one-symbol strings.

Theorem 2. A language L ⊆ Σ∗ \ Σ is context-free if and only if there ex-
ists a number k, a regular language R ⊆ Ω∗

k and a non-erasing homomorphism
h : Ωk → Σ+, such that L = h(Dk ∩R).

Proof (a sketch). Consider the representation L = Lε ∪
⋃
a∈Σ aLa, where Lε =

L∩ (Σ2)∗ and La = a−1L∩ (Σ2)∗ for all a ∈ Σ. Since the language L is context-
free, so are the languages Lε and La. Furthermore, ε /∈ La, because a /∈ L.

Applying Theorem 1 to the languages Lε and La yields Dyck languages Dε

and Da, regular languages Rε and Ra, and homomorphisms hε and ha, which
satisfy Lu = hu(Du ∩ Ru) for all u ∈ {ε} ∪ Σ. Assume that Dε and Da are
defined over pairwise distinct alphabets of brackets. Also assume that each type
of brackets is allowed either only at the outer level (that is, as the first as the
last symbol of a string in Ru), or only inside (as an inner symbol of a string
in Ru); the languages constructed in Theorem 1 have this property, and if they
didn’t, they could be easily reconstructed.

Let D be the Dyck language over all brackets used in Du with u ∈ {ε} ∪ Σ,
let R =

⋃
u∈{ε}∪Σ Ru and define a homomorphism h by

h(s) =

{
aha(s), if s is a left outer bracket in Ra with a ∈ Σ;

hu(s), for an appropriate u, otherwise.

Then, every string w ∈ L∩ (Σ2)∗ is represented as h(x) for some x ∈ Dε ∩Rε ⊆
D∩R; and every string aw ∈ L∩a(Σ2)∗ is of the form h(x′) = aha(x

′) for some
non-empty x′ ∈ Da ∩Ra ⊆ D ∩R. Therefore,

h(D ∩R) = hε(Dε ∩Rε) ∪
⋃
a∈Σ

aha(Da ∩Ra) = Lε ∪
⋃
a∈Σ

aLa = L,

as desired. �

128 A. Okhotin

Corollary 1 (The original Chomsky–Schützenberger theorem). A lan-
guage L ⊆ Σ∗ is context-free if and only if there exists a number k, a regular
language R ⊆ Ω∗

k and homomorphism h : Ωk → Σ∗, such that L = h(Dk ∩R).

Proof. Consider the language L′ = (L \Σ)∪ {a# | a ∈ L∩Σ}, where # /∈ Σ is
a new symbol. Since L′ ∩Σ = ∅, by Theorem 2, this language is representable
as h0(Dk ∩ R). Consider another homomorphism h# : (Σ ∪ {#})∗ → Σ∗ that
erases the marker #, leaving the symbols from Σ intact, and define h = h# ◦h0.
Then, L = h(Dk ∩R). �
For the last characterization, consider a variant of the Dyck language equipped
with neutral symbols. For any sets X and Y , this language, D̂X,Y , is defined
over the alphabet

ΩX,Y = {
(
x
| x ∈ X } ∪ {

)
x
| x ∈ X } ∪ Y,

by the following context-free grammar:

S →
(
x
S
)
x

(x ∈ X)

S → SS

S → c (c ∈ Y)

S → ε

The language D̂X,Y is isomorphic to D̂{1,...,k}, {1,...,	}. Denote

D̂k,	 = D̂{1,...,k}, {1,...,	} and let Ωk,	 be the alphabet, over which it is defined.

Theorem 3. A language L ⊆ Σ∗ is context-free if and only if there exists num-
bers k, � � 1, a regular language R ⊆ Ω∗

k,	 and a letter-to-letter homomorphism

h : Ωk,	 → Σ, such that L = h(D̂k,	 ∩R).

The proof is by another small correction to the result of Theorem 1, using |Σ|
neutral symbols to generate strings of odd length.

5 Concluding Remarks

Admittedly, there is not much novelty in the new proof of the
Chomsky–Schützenberger theorem presented in this paper: each of its steps only
elaborates upon the corresponding step of the well-known textbook proof of this
theorem. In particular, the transformation to Chomsky normal form used in the
original argument is hereby replaced with a variant of the double Greibach nor-
mal form; and where the original argument encoded fragments of a parse tree
in multiple brackets (which were then erased by the homomorphism), the same
information is now fitted into exactly as many brackets as there are symbols in
the target string. This is essentially the same proof, only done more carefully.

Nevertheless, these small adjustments to the known argument do lead to a
stronger statement of the Chomsky–Schützenberger theorem, which now reaches
its intuitive form: every context-free language is obtained from a regular bracket
structure by renaming each type of brackets to one of the symbols of the alpha-
bet. And this is worth knowing.

Non-erasing Variants of the Chomsky–Schützenberger Theorem 129

References

1. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free lan-
guages. In: Braffort, Hirschberg (eds.) Computer Programming and Formal Systems,
pp. 118–161. North-Holland, Amsterdam (1963)

2. Engelfriet, J.: An elementary proof of double Greibach normal form. Information
Processing Letters 44(6), 291–293 (1992)

3. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill
(1966)

4. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley (1978)
5. Lallement, G.J.: Semigroups and Combinatorial Applications. John Wiley and Sons

(1979)
6. Rozenkrantz, D.J.: Matrix equations and normal forms for context-free grammars.

Journal of the ACM 14(3), 501–507 (1967)
7. Salomaa, A.: Formal Languages. Academic Press (1973)

Regular and Context-Free Pattern Languages

over Small Alphabets

Daniel Reidenbach and Markus L. Schmid�

Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom

{D.Reidenbach,M.Schmid}@lboro.ac.uk

Abstract. Pattern languages are generalisations of the copy language,
which is a standard textbook example of a context-sensitive and non-
context-free language. In this work, we investigate a counter-intuitive
phenomenon: with respect to alphabets of size 2 and 3, pattern languages
can be regular or context-free in an unexpected way. For this regularity
and context-freeness of pattern languages, we give several sufficient and
necessary conditions and improve known results.

Keywords: Pattern Languages, Regular Languages, Context-Free
Languages.

1 Introduction

Within the scope of this paper, a pattern is a finite sequence of terminal sym-
bols and variables, taken from two disjoint alphabets Σ and X . We say that
such a pattern α generates a word w if w can be obtained from α by substi-
tuting arbitrary words of terminal symbols for all variables in α, where, for any
variable, the substitution word must be identical for all of its occurrences in
α. More formally, a substitution is therefore a terminal-preserving morphism,
i. e., a morphism σ : (Σ ∪ X)∗ → Σ∗ that satisfies σ(a) = a for every a ∈ Σ.
The pattern language L(α) is then simply the set of all words that can be ob-
tained from α by arbitrary substitutions. For example, the language generated
by α1 := x1x1abax2 (where Σ := {a, b} and X ⊃ {x1, x2}) is the set of all words
over {a, b} that have any square as a prefix, an arbitrary suffix and the factor
aba in between. Hence, e. g., w1 := abbabbabaaa and w2 := bbaba are included
in L(α1), whereas w3 := abbababb and w4 := bbbabaaa are not.

Pattern languages were introduced by Angluin [1] in 1980 in order to formalise
the process of computing commonalities of words in some given set. Her original
definition disallows the substitution of the empty word for the variables, and
therefore these languages are also referred to as nonerasing pattern languages
(or NE-pattern languages for short). This notion of pattern languages was soon
afterwards complemented by Shinohara [16], who included the empty word as

� Corresponding author.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 130–141, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Regular and Context-Free Pattern Languages 131

an admissible substitution word, leading to the definition of extended or eras-
ing pattern languages (or E-pattern languages for short). Thus, in the above
example, w2 is contained in the E-pattern language, but not in the NE-pattern
language of α1. As revealed by numerous studies, the small difference between
the definitions of NE- and E-pattern languages entails substantial differences
between some of the properties of the resulting (classes of) formal languages
(see, e. g., Mateescu and Salomaa [11] for a survey).

Pattern languages have not only been intensively studied within the scope
of inductive inference (see, e. g., Lange and Wiehagen [9], Rossmanith and
Zeugmann [15], Reidenbach [14] and, for a survey, Ng and Shinohara [12]),
but their properties are closely connected to a variety of fundamental prob-
lems in computer science and discrete mathematics, such as for (un-)avoidable
patterns (cf. Jiang et al. [8]), word equations (cf. Mateescu and Salomaa [10]),
the ambiguity of morphisms (cf. Freydenberger et al. [5]), equality sets (cf. Harju
and Karhumäki [6]) and extended regular expressions (cf. Câmpeanu et al. [3]).
Therefore, quite a number of basic questions for pattern languages are still open
or have been resolved just recently (see, e. g., Freydenberger and Reidenbach [4]).

If a pattern contains each of its variables once, then this pattern can be
interpreted as a regular expression, and therefore its language is regular. In
contrast to this, if a pattern has at least one variable with multiple occurrences,
then its languages is a variant of the well known copy language {xx | x ∈ Σ∗},
which for |Σ| ≥ 2 is a standard textbook example of a context-sensitive and non-
context-free language. Nevertheless, there are some well-known example patterns
of the latter type that generate regular languages. For instance, the NE-pattern
language of α2 := x1x2x2x3 is regular for |Σ| = 2, since squares are unavoidable
for binary alphabets, which means that the language is co-finite. Surprisingly,
for terminal alphabets of size 2 and 3, there are even certain E- and NE-pattern
languages that are context-free but not regular. This recent insight is due to
Jain et al. [7] and solves a longstanding open problem.

It is the purpose of our paper to further investigate this counter-intuitive
existence of languages that appear to be variants of the copy language, but are
nevertheless regular or context-free. Thus, we wish to establish criteria where the
seemingly high complexity of a pattern does not translate into a high complexity
of its language. Since, as demonstrated by Jain et al., this phenomenon does
not occur for E-pattern languages if the pattern does not contain any terminal
symbols or if the size of the terminal alphabet is at least 4, our investigations
focus on patterns with terminal symbols and on small alphabets of sizes 2 or 3.

Note that, due to space constraints, all proofs are omitted from this paper.

2 Definitions and Known Results

Let N := {1, 2, 3, . . .} and let N0 := N ∪ {0}. For an arbitrary alphabet A, a
string (over A) is a finite sequence of symbols from A, and ε stands for the
empty string. The notation A+ denotes the set of all nonempty strings over A,
and A∗ := A+∪{ε}. For the concatenation of two strings w1, w2 we write w1 ·w2

132 D. Reidenbach and M.L. Schmid

or simply w1w2. We say that a string v ∈ A∗ is a factor of a string w ∈ A∗ if
there are u1, u2 ∈ A∗ such that w = u1 · v · u2. If u1 or u2 is the empty string,
then v is a prefix (or a suffix, respectively) of w. The notation |K| stands for the
size of a set K or the length of a string K.

If we wish to refer to the symbol at a certain position j, 1 ≤ j ≤ n, in a
string w = a1 · a2 · · · · · an, ai ∈ A, 1 ≤ i ≤ n, then we use w[j] := aj and if the
length of a string is unknown, then we denote its last symbol by w[−] := w[|w|].
Furthermore, for each j, j′, 1 ≤ j < j′ ≤ |w|, let w[j, j′] := aj ·aj+1 · · · · ·aj′ and
w[j,−] := w[j, |w|].

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗; h is said to be nonerasing if and only
if, for every a ∈ A, h(a) �= ε. Let Σ be a finite alphabet of so-called terminal
symbols and X a countably infinite set of variables with Σ∩X = ∅. We normally
assume X := {x1, x2, x3, . . .}. A pattern is a nonempty string over Σ ∪ X , a
terminal-free pattern is a nonempty string over X and a word is a string over
Σ. For any pattern α, we refer to the set of variables in α as var(α) and for
any x ∈ var(α), |α|x denotes the number of occurrences of x in α. A morphism
h : (Σ ∪X)

∗ → Σ∗ is called a substitution if h(a) = a for every a ∈ Σ.

Definition 1. Let α ∈ (Σ ∪ X)∗ be a pattern. The E-pattern language of α
is defined by LE,Σ(α) := {h(α) | h : (Σ ∪X)

∗ → Σ∗ is a substitution}. The
NE-pattern language of α is defined by LNE,Σ(α) := {h(α) | h : (Σ ∪X)∗ →
Σ∗ is a nonerasing substitution}.

We denote the class of regular languages, context-free languages, E-pattern lan-
guages over Σ and NE-pattern languages over Σ by REG, CF, E-PATΣ and
NE-PATΣ , respectively. We use regular expressions as they are commonly de-
fined (see, e. g., Yu [18]) and for any regular expression r, L(r) denotes the
language described by r.

We recapitulate regular and block-regular patterns as defined by Shinohara [17]
and Jain et al. [7]. A pattern α is a regular pattern if, for every x ∈ var(α),
|α|x = 1. Every factor of variables of α that is delimited by terminal symbols is
called a variable block. More precisely, for every i, j, 1 ≤ i ≤ j ≤ |α|, α[i, j] is
a variable block if and only if α[k] ∈ X , i ≤ k ≤ j, α[i − 1] ∈ Σ or i = 1 and
α[j + 1] ∈ Σ or j = |α|. A pattern α is block-regular if in every variable block
of α there occurs at least one variable x with |α|x = 1. Let Z ∈ {E,NE}. The
class of Z-pattern languages defined by regular patterns and block-regular pat-
terns are denoted by Z-PATΣ,reg and Z-PATΣ,b-reg, respectively. To avoid any
confusion, we explicitly mention that the term regular pattern always refers to
a pattern with the syntactical property of being a regular pattern and a regular
E- or NE-pattern language is a pattern language that is regular, but that is not
necessarily given by a regular pattern.

In order to prove some of the technical claims in this paper, the following two
versions of the pumping lemma for regular languages as stated in Yu [18] can be
used.

Regular and Context-Free Pattern Languages 133

Lemma 1. Let L ⊆ Σ∗ be a regular language. Then there is a constant n,
depending on L, such that for every w ∈ L with |w| ≥ n there exist x, y, z ∈ Σ∗

such that w = xyz and

1. |xy| ≤ n,
2. |y| ≥ 1,
3. xykz ∈ L for every k ∈ N0.

Lemma 2. Let L ⊆ Σ∗ be a regular language. Then there is a constant n,
depending on L, such that for all u, v, w ∈ Σ∗, if |w| ≥ n, then there exist
x, y, z ∈ Σ∗, y �= ε, such that w = xyz and, for every k ∈ N0, uxy

kzv ∈ L if
and only if uwv ∈ L.

For the sake of convenience, we shall refer to Lemmas 1 and 2 by Pumping Lemma
1 and Pumping Lemma 2, respectively. We also need the following generalisation
of Ogden’s Lemma:

Lemma 3 (Bader and Moura [2]). Let L ⊆ Σ∗ be a context-free language.
Then there is a constant n, such that for every z ∈ L, if d positions in z are
“distinguished” and e positions are “excluded”, with d > n(e+1), then there exist
u, v, w, x, y ∈ Σ∗ such that z = uvwxy and

1. vx contains at least one distinguished position and no excluded positions,
2. if r is the number of distinguished positions in vwx and s is the number of

excluded positions in vwx, then r ≤ n(s+1),
3. uviwxiy ∈ L for every i ∈ N0.

Known Characterisations

It can be easily shown that every E- or NE-pattern language over a unary al-
phabet is a regular language (cf. Reidenbach [13] for further details). Hence, the
classes of regular and context-free pattern languages over a unary alphabet are
trivially characterised. In Jain et al. [7] it has been shown that for any alphabet
of cardinality at least 4, the regular and context-free E-pattern languages are
characterised by the class of regular patterns.

Theorem 1 (Jain et al. [7]). Let Σ be an alphabet with |Σ| ≥ 4. Then
(E-PATΣ ∩REG) = (E-PATΣ ∩CF) = E-PATΣ,reg.

Unfortunately, the above mentioned cases are the only complete characterisa-
tions of regular or context-free pattern languages that are known to date. In
particular, characterisations of the regular and context-free E-pattern languages
with respect to alphabets with cardinality 2 and 3, and characterisations of the
regular and context-free NE-pattern languages with respect to alphabets with
cardinality at least 2 are still missing. In the following, we shall briefly summarise
the known results in this regard and the reader is referred to Jain et al. [7] and
Reidenbach [13] for further details.

134 D. Reidenbach and M.L. Schmid

Jain et al. [7] show that there exist regular E-pattern languages with respect
to alphabet sizes 2 and 3 that cannot be described by regular patterns. More-
over, there exist non-regular context-free E-pattern languages with respect to
alphabet sizes 2 and 3. Regarding NE-pattern languages, it is shown that, for
every alphabet Σ with cardinality at least 2, the class (NE-PATΣ ∩REG) is not
characterised by regular patterns and with respect to alphabet sizes 2 and 3 it
is not characterised by block-regular patterns either. Furthermore, for alphabet
sizes 2 and 3, there exist non-regular context-free NE-pattern languages and for
alphabets with cardinality of at least 4 this question is still open.

3 Regularity and Context-Freeness of Pattern Languages:
Sufficient Conditions and Necessary Conditions

Since their introduction by Shinohara [17], it has been known that, for both the E
and NE case and for any terminal alphabet, regular patterns can only describe
regular languages. This is an immediate consequence of the fact that regular
patterns do not use the essential mechanism of patterns, i. e., repeating variables
in order to define sets of words that contain repeated occurrences of variable
factors. In Jain et al. [7], the concept of regular patterns is extended to block-
regular patterns, defined in Section 2. By definition, every regular pattern is a
block-regular pattern. Furthermore, in the E case, every block-regular pattern
α is equivalent to the regular pattern obtained from α by substituting every
variable block by a single occurrence of a variable.

Proposition 1. Let Σ be some terminal alphabet and let α ∈ (Σ ∪ X)∗ be
a pattern. If α is regular, then LNE,Σ(α) ∈ REG. If α is block-regular, then
LE,Σ(α) ∈ REG.

As mentioned in Section 2, for alphabets of size at least 4, both the class of
regular patterns and the class of block-regular patterns characterise the set of
regular and context-free E-pattern languages. However, in the NE case as well as
in the E case with respect to alphabets of size 2 or 3, Jain et al. [7] demonstrate
that block-regular patterns do not characterise the set of regular or context-free
pattern languages.

Obviously, the regularity of languages given by regular patterns or block-
regular patterns follows from the fact that there are variables that occur only
once in the pattern. Hence, it is the next logical step to ask whether or not the
existence of variables with only one occurrence is also necessary for the regularity
or the context-freeness of a pattern language. Jain et al. [7] answer that question
with respect to terminal-free patterns.

Theorem 2 (Jain et al. [7]). Let Σ be a terminal alphabet with |Σ| ≥ 2
and let α be a terminal-free pattern with |α|x ≥ 2, for every x ∈ var(α). Then
LE,Σ(α) /∈ CF and LNE,Σ(α) /∈ REG.

We can note that Proposition 1 and Theorem 2 characterise the regular and
context-free E-pattern languages given by terminal-free patterns with respect to

Regular and Context-Free Pattern Languages 135

alphabets of size at least 2. More precisely, for every alphabet Σ with |Σ| ≥ 2
and for every terminal-free pattern α, if α is block-regular, then LE,Σ(α) is
regular (and, thus, also context-free) and if α is not block-regular, then every
variable of α occurs at least twice, which implies that LE,Σ(α) is neither regular
nor context-free.

However, for the NE case, we cannot hope for such a simple characterisation.
This is due to the close relationship between the regularity of NE-pattern lan-
guages and the combinatorial phenomenon of unavoidable patterns, as already
mentioned in Section 1.

In the following, we concentrate on E-pattern languages over alphabets of size
2 and 3 (since for all other alphabet sizes complete characterisations are known)
that are given by patterns that are not terminal-free (since, as described above,
the characterisation of regular and context-free E-pattern languages given by
terminal-free patterns has been settled). Nevertheless, some of our results also
hold for the NE case and we shall always explicitly mention if this is the case.

The next two results present a sufficient condition for the non-regularity and a
sufficient condition for the non-context-freeness of pattern languages over small
alphabets. More precisely, we generalise Theorem 2 to patterns that are not
necessarily terminal-free. The first result states that for a pattern α (that may
contain terminal symbols), if every variable in α occurs at least twice, then both
the E- and NE-pattern language of α, with respect to alphabets of size at least
two, is not regular.

Theorem 3. Let Σ be a terminal alphabet with |Σ| ≥ 2, let α ∈ (Σ ∪X)∗, and
let Z ∈ {E,NE}. If, for every x ∈ var(α), |α|x ≥ 2, then LZ,Σ(α) /∈ REG.

For alphabets of size at least 3 we can strengthen Theorem 3, i. e., if every
variable in a pattern α occurs at least twice, then the E- and NE-pattern language
of α is not context-free.

Theorem 4. Let Σ be a terminal alphabet with |Σ| ≥ 3, let α ∈ (Σ ∪X)+, and
let Z ∈ {E,NE}. If, for every x ∈ var(α), |α|x ≥ 2, then LZ,Σ(α) /∈ CF.

At this point, we recall that patterns, provided that they contain repeated vari-
ables, describe languages that are generalisations of the copy language, which
strongly suggests that these languages are context-sensitive, but not context-free
or regular. However, as stated in Section 1, for small alphabets this is not neces-
sarily the case and the above results provide a strong indication of where to find
this phenomenon of regular and context-free copy languages. More precisely, by
Theorems 3 and 4, the existence of variables with only one occurrence is crucial.
Furthermore, since, in the terminal-free case, regular and context-free E-pattern
languages are characterised in a compact and simple manner, we should also
focus on patterns containing terminal symbols.

Consequently, we concentrate on the question of how the occurrences of ter-
minal symbols in conjunction with non-repeated variables can cause E-pattern
languages to become regular. To this end, we shall now consider some simply
structured examples of such patterns for which we can formally prove whether

136 D. Reidenbach and M.L. Schmid

or not they describe a regular language with respect to terminal alphabets
Σ2 := {a, b} and Σ≥3, where {a, b, c} ⊆ Σ≥3. Most parts of the following
propositions require individual proofs, some of which, in contrast to the sim-
plicity of the example patterns, are surprisingly involved. If, for some pattern
α and Z ∈ {E,NE}, LZ,Σ2(α) /∈ REG, then LZ,Σ≥3

(α) /∈ REG. This follows di-
rectly from the fact that regular languages are closed under intersection. Hence,
in the following examples, we consider LZ,Σ≥3

(α) only if LZ,Σ2(α) is regular.
Firstly, we consider the pattern x1 · d · x2x2 · d′ · x3, which, for all choices of

d, d′ ∈ {a, b}, describes a regular E-pattern language with respect to Σ2, but a
non-regular E-pattern language with respect to Σ≥3.

Proposition 2

LE,Σ2(x1 a x2 x2 a x3) ∈ REG ,

LE,Σ≥3
(x1 a x2 x2 a x3) /∈ REG ,

LE,Σ2(x1 a x2 x2 b x3) ∈ REG ,

LE,Σ≥3
(x1 a x2 x2 b x3) /∈ REG .

Next, we insert another occurrence of a terminal symbol in between the two
occurrences of x2, i. e., we consider β := x1 · d · x2 · d′ · x2 · d′′ · x3, where
d, d′, d′′ ∈ {a, b}. Here, we find that LZ,Σ(β) ∈ REG if and only if Z = E,
Σ = Σ2 and d = d′′, d �= d′ �= d′′.

Proposition 3. For every Z ∈ {E,NE},
LZ,Σ2(x1 a x2 a x2 a x3) /∈ REG ,

LZ,Σ2(x1 a x2 a x2 b x3) /∈ REG ,

LE,Σ2(x1 a x2 b x2 a x3) ∈ REG ,

LNE,Σ2(x1 a x2 b x2 a x3) /∈ REG ,

LZ,Σ≥3
(x1 a x2 b x2 a x3) /∈ REG .

The next type of pattern that we investigate is similar to the first one, but it
contains two factors of the form xx instead of only one, i. e., β′ := x1 · d · x2x2 ·
d′ · x3x3 · d′′ · x4, where d, d′, d′′ ∈ {a, b}. Surprisingly, LE,Σ2(β

′) is not regular
if d = d′ = d′′, but regular in all other cases. However, if we consider the NE
case or alphabet Σ≥3, then β′ describes a non-regular language with respect to
all choices of d, d′, d′′ ∈ {a, b}.
Proposition 4. For every Z ∈ {E,NE},

LZ,Σ2(x1 a x2 x2 a x3 x3 a x4) /∈ REG ,

LE,Σ2(x1 a x2 x2 b x3 x3 a x4) ∈ REG ,

LNE,Σ2(x1 a x2 x2 b x3 x3 a x4) /∈ REG ,

LE,Σ≥3
(x1 a x2 x2 b x3 x3 a x4) /∈ REG ,

LE,Σ2(x1 a x2 x2 a x3 x3 b x4) ∈ REG ,

LNE,Σ2(x1 a x2 x2 a x3 x3 b x4) /∈ REG ,

LE,Σ≥3
(x1 a x2 x2 a x3 x3 b x4) /∈ REG .

Regular and Context-Free Pattern Languages 137

We call two patterns α, β ∈ (Σ2 ∪ X)∗ almost identical if and only if |α| = |β|
and, for every i, 1 ≤ i ≤ |α|, α[i] �= β[i] implies α[i], β[i] ∈ Σ2. The above
examples show that even for almost identical patterns α and β, we can have
the situation that α describes a regular and β a non-regular language. Even if α
and β are almost identical and further satisfy |α|a = |β|a and |α|b = |β|b, then
it is still possible that α describes a regular and β a non-regular language (cf.
Proposition 3 above). This implies that the regular E-pattern languages over an
alphabet with size 2 require a characterisation that caters for the exact order of
terminal symbols in the patterns.

The examples considered in Propositions 2 and 4 mainly consist of factors of
the form d ·xx ·d′, d, d′ ∈ Σ2, where x does not have any other occurrence in the
pattern. Hence, it might be worthwhile to investigate the question of whether
or not patterns can also describe regular languages if we allow them to contain
factors of the form d · xk · d′, where k ≥ 3 and there is no other occurrence of x
in the pattern. In the next result, we state that if a pattern α contains a factor
d · xk · d′ with d = d′, k ≥ 3 and |α|x = k, then, for every Z ∈ {E,NE}, its
Z-pattern language with respect to any alphabet of size at least 2 is not regular
and, furthermore, for alphabets of size at least 3, we can show that this also
holds for d �= d′.

Theorem 5. Let Σ and Σ′ be terminal alphabets with {a, b} ⊆ Σ and {a, b, c} ⊆
Σ′. Let α := α1 · a · zl · a · α2, let β := β1 · a · zl · c · β2, where z ∈ X,
α1, α2 ∈ ((Σ ∪ X) \ {z})∗, β1, β2 ∈ ((Σ′ ∪ X) \ {z})∗ and l ≥ 3. Then, for
every Z ∈ {E,NE}, LZ,Σ(α) /∈ REG and LZ,Σ′(β) /∈ REG.

In the examples of Propositions 2, 3 and 4 as well as in the above theorem,
we did not consider the situation that two occurrences of the same variable are
separated by a terminal symbol. In the next result, we state that, in certain
cases, this situation implies non-regularity of pattern languages.

Proposition 5. Let Σ and Σ′ be terminal alphabets with |Σ| ≥ 2 and |Σ′| ≥ 3
and let Z ∈ {E,NE}. Furthermore, let α1 ∈ (Σ ∪ X)∗ and α2 ∈ (Σ′ ∪ X)∗ be
patterns.

1. If there exists a γ ∈ (Σ ∪X)∗ with | var(γ)| ≥ 1 such that, for some d ∈ Σ,
– α1 = γ · d · δ and var(γ) ⊆ var(δ),
– α1 = γ · d · δ and var(δ) ⊆ var(γ) or
– α1 = β · d · γ · d · δ and var(γ) ⊆ (var(β) ∪ var(δ)),

then LZ,Σ(α1) /∈ REG.
2. If in α2 there exists a non-empty variable block, all the variables of which

also occur outside this block, then LZ,Σ′(α2) /∈ REG.

We conclude this section by referring to the examples presented in Proposi-
tions 2, 3 and 4, which, as described above, suggest that complete characterisa-
tions of the regular E-pattern languages over small alphabets might be extremely
complex. In the next section, we wish to find out about the fundamental mech-
anisms of the above example patterns that are responsible for the regularity of

138 D. Reidenbach and M.L. Schmid

their pattern languages. Intuitively speaking, some of the above example patterns
describe regular languages, because they contain a factor that is less complex
than it seems to be, e. g., for the pattern β := x1 · a · x2x2 · a · x3x3 · b · x4 it can
be shown that the factor a · x2x2 · a · x3x3 · b could be replaced by a · x(bb)∗ · a · b
(where x(bb)∗ is a special variable that can only be substituted by a unary string
over b of even length) without changing its E-pattern language with respect to
Σ2. This directly implies that LE,Σ2(β) = L(Σ∗

2 · a(bb)∗ab · Σ∗
2), which shows

that LE,Σ2(β) ∈ REG. In the next section, we generalise this observation.

4 Regularity of E-Pattern Languages: A Sufficient
Condition Taking Terminal Symbols into Account

In this section we investigate the phenomenon that a whole factor in a pattern
can be substituted by a less complex one, without changing the corresponding
pattern language. This technique can be used in order to show that a complicated
pattern is equivalent to one that can be easily seen to describe a regular language.

For the sake of a better presentation of our results, we slightly redefine the
concept of patterns. A pattern with regular expressions is a pattern that may
contain regular expressions. Such a regular expressions is then interpreted as
a variable with only one occurrence that can only be substituted by words de-
scribed by the corresponding regular expression. For example LE,Σ2(x1b

∗x1a
∗) =

{h(x1x2x1x3) | h is a substitution with h(x2) ∈ L(b∗), h(x3) ∈ L(a∗)}. Obvi-
ously, patterns with regular expressions exceed the expressive power of classical
patterns. However, we shall use this concept exclusively in the case where a clas-
sical pattern is equivalent to a pattern with regular expressions. For example,
the pattern x1 · a · x2x3x3x2 · a · x4 is equivalent to the pattern x1 · a(bb)∗a · x2

(see Lemma 6).
Next, we present a lemma that states that in special cases whole factors of a

pattern can be removed without changing the corresponding pattern language.

Lemma 4. Let α := β ·y ·β′ ·a·γ ·b·δ′ ·z ·δ, where β, δ ∈ (Σ2∪X)∗, β′, γ, δ′ ∈ X∗,
y, z ∈ X and |α|y = |α|z = 1. Then LE,Σ2(α) ⊆ LE,Σ2(β · y · ab · z · δ). If,
furthermore, var(β′·γ·δ′)∩var(β·δ) = ∅, then also LE,Σ2(β·y·ab·z·δ) ⊆ LE,Σ2(α).

The fact that LE,Σ2(x1 · a · x2x2 · b · x3) ∈ REG, which has already been stated
in Proposition 2, is a simple application of Lemma 4, which implies LE,Σ2(x1 ·a ·
x2x2 ·b ·x3) = LE,Σ2(x1 ·ab ·x3). It is straightforward to construct more complex
applications of Lemma 4 and it is also possible to apply it in an iterative way.
For example, by applying Lemma 4 twice, we can show that

LE,Σ2(x1x2x3 · a · x2x4 · b · x3x4x5x6 · b · x6x7 · a · x7x8 · b · x9 · a · x10) =

LE,Σ2(x1 · ab · x5x6 · b · x6x7 · a · x7x8 · b · x9 · a · x10) =

LE,Σ2(x1 · ab · x5 · ba · x8 · b · x9 · a · x10) ∈ REG .

In the previous lemma, it is required that the factor γ is delimited by different
terminal symbols and, in the following, we shall see that an extension of the

Regular and Context-Free Pattern Languages 139

statement of Lemma 4 for the case that γ is delimited by the same terminal
symbols, is much more difficult to prove.

Roughly speaking, Lemma 4 holds due to the following reasons. Let α :=
y · β′ · a · γ · b · δ′ · z be a pattern that satisfies the conditions of Lemma 4, then,
for any substitution h (with respect to Σ2), h(α) necessarily contains the factor
ab. Conversely, since y and z are variables with only one occurrence and there
are no terminals in β′ · γ · δ′, α can be mapped to every word that contains the
factor ab. On the other hand, for α′ := y · β′ · a · γ · a · δ′ · z, h(α′) does not
necessarily contain the factor aa and it is not obvious if the factor β′ · a · γ · a · δ′
collapses to some simpler structure, as it is the case for α. In fact, Theorem 5
states that if β′ = δ′ = ε and γ = x3, then LE,Σ2(α

′) /∈ REG.
However, by imposing a further restriction with respect to the factor γ, we can

extend Lemma 4 to the case where γ is delimited by the same terminal symbol.
In order to prove this result, the next lemma is crucial, which states that for
any terminal-free pattern that is delimited by two occurrences of symbols a

and that has an even number of occurrences for every variable, if we apply any
substitution to this pattern, we will necessarily obtain a word that contains a
unary factor over b of even length that is delimited by two occurrences of a.

Lemma 5. Let α ∈ X∗ such that, for every x ∈ var(α), |α|x is even. Then
every w ∈ LE,Σ2(a · α · a) contains a factor ab2na, n ∈ N0.

By applying Lemma 5, we can show that if a pattern α := β ·y ·β′ ·a ·γ ·a ·δ′ ·z ·δ
satisfies the conditions of Lemma 4, all variables in γ have an even number of
occurrences and there is at least one variable in γ that occurs only twice, then
the factor y · β′ · a · γ · a · δ′ · z can be substituted by a regular expression.

Lemma 6. Let α := β · y · β′ · a · γ · a · δ′ · z · δ, where β, δ ∈ (Σ2 ∪ X)∗,
β′, γ, δ′ ∈ X∗, y, z ∈ X, |α|y = |α|z = 1 and, for every x ∈ var(γ), |γ|x is
even. Then LE,Σ2(α) ⊆ LE,Σ2(β · y · a(bb)∗a · z · δ). If, furthermore, var(β′ ·
γ · δ′) ∩ var(β · δ) = ∅ and there exists a z′ ∈ var(γ) with |α|z′ = 2, then also
LE,Σ2(β · y · a(bb)∗a · z · δ) ⊆ LE,Σ2(α).

Obviously, Lemmas 4 and 6 can also be applied in any order in the iterative way
pointed out above with respect to Lemma 4. We shall illustrate this now in a
more general way. Let α be an arbitrary pattern such that

α := β · y1 · β′
1 · a · γ1 · a · δ′1 · z1 · π · y2 · β′

2 · b · γ2 · a · δ′2 · z2 · δ ,

with β, π, δ ∈ (Σ2 ∪ X)∗, β′
1, β

′
2, γ1, γ2, δ

′
1, δ

′
2 ∈ X∗ and y1, y2, z1, z2 ∈ X . If the

factors y1 ·β′
1 ·a · γ1 ·a · δ′1 · z1 and y2 ·β′

2 ·b · γ2 ·a · δ′2 · z2 satisfy the conditions of
Lemma 6 and Lemma 4, respectively, then we can conclude that α is equivalent
to α′ := β · y1 · a(bb)∗a · z1 · π · y2 · ba · z2 · δ. This particularly means that the
rather strong conditions

1. var(β′
1 · γ1 · δ′1) ∩ var(β · π · β′

2 · γ2 · δ′2 · δ) = ∅,
2. var(β′

2 · γ2 · δ′2) ∩ var(β · β′
1 · γ1 · δ′1 · π · δ) = ∅

140 D. Reidenbach and M.L. Schmid

must be satisfied. However, we can state that LE,Σ2(α) = LE,Σ2(α
′) still holds

if instead of conditions 1 and 2 from above the weaker condition var(β′
1 · γ1 · δ′1 ·

β′
2 · γ2 · δ′2) ∩ var(β · π · δ) = ∅ is satisfied. This claim can be easily proved by

applying the same argumentations as in the proofs of Lemmas 4 and 6, and we
can extend this result to arbitrarily many factors of the form yi ·β′

i ·c1 ·γi ·c2 ·δ′i ·zi,
c1, c2 ∈ Σ2. Next, by the following definition, we formalise this observation in
terms of a relation on patterns with regular expressions.

Definition 2. For any two patterns with regular expressions α and α′, we write
α � α′ if and only if the following conditions are satisfied.

– α contains factors αi ∈ (Σ2 ∪X)∗, 1 ≤ i ≤ k, where, for every i, 1 ≤ i ≤ k,
αi := yi · β′

i · di · γi · d′i · δ′i · zi, with β′
i, γi, δ

′
i ∈ X+, yi, zi ∈ X, |α|yi = |α|zi =

1, di, d
′
i ∈ Σ2 and, if di = d′i, then, for every x ∈ var(γi), |γi|x is even

and there exists an x′ ∈ var(γi) with |α|x′ = 2. Furthermore, the factors
α1, α2, . . . , αk can overlap by at most one symbol and the variables in the
factors α1, α2, . . . , αk occur exclusively in these factors.

– α′ is obtained from α by substituting every αi, 1 ≤ i ≤ k, by yi · did′i · zi, if
di �= d′i and by yi · di(d′′i d′′i)∗d′i · zi, d′′i ∈ Σ2, d

′′
i �= di, if di = d′i.

By generalising Lemmas 4 and 6, we can prove that α � α′ implies that α and
α′ describe the same E-pattern language with respect to alphabet Σ2.

Theorem 6. Let α and α′ be patterns with regular expressions. If α � α′, then
LE,Σ2(α) = LE,Σ2(α

′).

We conclude this section by discussing a more complex example that illustrates
how Definition 2 and Theorem 6 constitute a sufficient condition for the regu-
larity of the E-pattern language of a pattern with respect to Σ2. Let α be the
following pattern.

x1ax2x
2
3bx4x3x5x6︸ ︷︷ ︸

α1:=y1·β′
1·a·γ1·b·δ′1·z1

x2
7 x8x9x5x3ax4x5x4x9x10bx11︸ ︷︷ ︸

α2:=y2·β′
2·a·γ2·b·δ′2·z2

ax12bx13a x14x15bx
2
15x

2
16bx17︸ ︷︷ ︸

α3:=y3·β′
3·a·γ3·b·δ′3·z3

.

By Definition 2, α � β holds, where β is obtained from α by substituting the
above defined factors α1, α2 and α3 by factors x1 · ab · x6, x8 · ab · x11 and
x14 · b(aa)∗b · x17, respectively, i. e.,

β := x1abx6x7x7x8abx11ax12bx13ax14b(aa)
∗bx17 .

Furthermore, by Theorem 6, we can conclude that LE,Σ2(α) = LE,Σ2(β). How-
ever, we can also apply the same argumentation to different factors of α, as
pointed out below:

x1a x2x
2
3bx4x3x5x6x

2
7x8x9x5x3ax4x5x4x9x10︸ ︷︷ ︸

α1:=y1·β′
1·a·γ1·b·δ′1·z1

bx11ax12bx13a x14x15bx
2
15x

2
16bx17︸ ︷︷ ︸

α2:=y2·β′
2·a·γ2·b·δ′2·z2

.

Regular and Context-Free Pattern Languages 141

Now, again by Definition 2, α � β′ is satisfied, where

β′ := x1ax2bax10bx11ax12bx13ax14b(aa)
∗bx17 .

Since every variable of β′ has only one occurrence, it can be easily seen that
LE,Σ2(β

′) ∈ REG and, by Theorem 6, LE,Σ2(α) ∈ REG follows.

References

1. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer
and System Sciences 21, 46–62 (1980)

2. Bader, C., Moura, A.: A generalization of Ogden’s Lemma. Journal of the Associ-
ation for Computing Machinery 29, 404–407 (1982)

3. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.
International Journal of Foundations of Computer Science 14, 1007–1018 (2003)

4. Freydenberger, D.D., Reidenbach, D.: Bad news on decision problems for patterns.
Information and Computation 208, 83–96 (2010)

5. Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic im-
ages of strings. International Journal of Foundations of Computer Science 17,
601–628 (2006)

6. Harju, T., Karhumäki, J.: Morphisms. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages, vol. 1, ch. 7, pp. 439–510. Springer (1997)

7. Jain, S., Ong, Y.S., Stephan, F.: Regular patterns, regular languages and context-
free languages. Information Processing Letters 110, 1114–1119 (2010)

8. Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with
and without erasing. International Journal of Computer Mathematics 50, 147–163
(1994)

9. Lange, S., Wiehagen, R.: Polynomial-time inference of arbitrary pattern languages.
New Generation Computing 8, 361–370 (1991)

10. Mateescu, A., Salomaa, A.: Finite degrees of ambiguity in pattern languages.
RAIRO Informatique théoretique et Applications 28, 233–253 (1994)

11. Mateescu, A., Salomaa, A.: Patterns. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages, vol. 1, pp. 230–242. Springer (1997)

12. Ng, Y.K., Shinohara, T.: Developments from enquiries into the learnability of the
pattern languages from positive data. Theoretical Computer Science 397, 150–165
(2008)

13. Reidenbach, D.: The Ambiguity of Morphisms in Free Monoids and its Impact on
Algorithmic Properties of Pattern Languages. PhD thesis, Fachbereich Informatik,
Technische Universität Kaiserslautern. Logos Verlag, Berlin (2006)

14. Reidenbach, D.: Discontinuities in pattern inference. Theoretical Computer Sci-
ence 397, 166–193 (2008)

15. Rossmanith, P., Zeugmann, T.: Stochastic finite learning of the pattern languages.
Machine Learning 44, 67–91 (2001)

16. Shinohara, T.: Polynomial Time Inference of Extended Regular Pattern Languages.
In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS
1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983)

17. Shinohara, T.: Polynomial time inference of pattern languages and its application.
In: Proc. 7th IBM MFCS, pp. 191–209 (1982)

18. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, ch. 2, pp. 41–110. Springer (1997)

On Context-Free Languages of Scattered Words�

Zoltan Ésik and Satoshi Okawa

Dept. of Computer Science, University of Szeged, Hungary
School of Computer Science and Engineering, University of Aizu, Japan

Abstract. It is known that if a Büchi context-free language (BCFL)
consists of scattered words, then there is an integer n, depending only on
the language, such that the Hausdorff rank of each word in the language
is bounded by n. Every BCFL is a Muller context-free language (MCFL).
In the first part of the paper, we prove that an MCFL of scattered words
is a BCFL iff the rank of every word in the language is bounded by an
integer depending only on the language. Then we establish operational
characterizations of the BCFLs of well-ordered and scattered or well-
ordered words.

1 Introduction

A word over an alphabet A is an isomorphism type of a labeled linear order. In
this paper, in addition to finite and ω-words, we also consider words whose under-
lying linear order is any countable linear ordering, cf. [38]. Countable words and
in particular regular words were first investigated in [17], where they were called
“arrangements”. Regular words were later studied in [5,7,8,30,39] and more re-
cently in [33]. Context-free words were introduced in [9] and their underlying
linear orderings were investigated in [10,11,19,20,21].

Finite automata on ω-words have by now a vast literature, see [37] for a
comprehensive treatment. Also, finite automata acting on well-ordered words
longer than ω have been investigated by many authors, a small sampling is
[2,14,15,41,42]. In the last decade, the theory of automata on well-ordered words
has been extended to automata on all countable words, including scattered and
dense words. In [3,4,13], both operational and logical characterizations of the
class of languages of countable words recognized by finite automata have been
obtained.

Context-free grammars generating ω-words were introduced in [16] and sub-
sequently studied in [12,36]. Context-free grammars generating arbitrary count-
able words were defined in [23,24]. Actually, two types of grammars were defined,
context-free grammarswith Büchi acceptance condition (BCFG), and context-free

� The first author was partially supported by the project TÁMOP-4.2.1/B-
09/1/KONV-2010-0005 “Creating the Center of Excellence at the University of
Szeged”, supported by the European Union and co-financed by the European Re-
gional Fund, and by the grant no. K 75249 from the National Foundation of Hungary
for Scientific Research.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 142–153, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Context-Free Languages of Scattered Words 143

grammars with Muller acceptance condition (MCFG). These grammars generate
the Büchi and the Muller context-free languages of countable words, abbreviated
as BCFLs and MCFLs. It is clear from the definitions in [23,24] that every BCFL
is an MCFL. On the other hand, there exist MCFLs of well-ordered words that
are not BCFLs, for example the set of all countable well-ordered words over some
alphabet. This is due to the fact that the order-type of every word in a BCFL of
well-ordered words is bounded by the ordinal ωn, for some integer n depending on
the language, cf. [23]. More generally, it was shown in [23] that for every BCFL L
of scattered words there is an integer n such that the Hausdorff rank of every word
in L is bounded by n. On the other hand, regarding MCFLs L of scattered words,
two cases arise, cf. [24]. Either there exists an integer n such that the rank of every
word in L is bounded by n, or for every countable ordinal α there is a word in L
whose Hausdorff rank exceeds α. It is then natural to ask whether every MCFL
of scattered words of the first type is a BCFL. In this paper, we answer this ques-
tion: all such MCFLs are in fact BCFLs. Thus, the BCFLs of scattered words are
exactly the “bounded” MCFLs of scattered words. Then we establish operational
characterizations of the BCFLs of well-orderedand scatteredwords.We prove that
a language is a BCFL consisting of well-ordered words iff it can be generated from
the singleton languages containing the letters of the alphabet by substitution into
ordinary context-free languages and the ω-power operation. We also establish a
corresponding result for BCFLs of scattered words and define expressions denot-
ing BCFLs of well-ordered and scattered words. In the final part of the paper, we
give an application of the main results. Proofs may be found in [26].

2 Basic Notions

2.1 Linear Orderings

A linear ordering (I,<) consists of a set I and a strict linear order relation < on
I. When the set I is finite or countable, we call (I,<) finite or countable as well.
In the rest of the paper, by a linear ordering we will always mean a countable
ordering. A good reference for linear orderings is [38].

A morphism of linear orderings (I,<) → (J,<′) is a function h : I → J that
preserves the order relation, so that for all x, y ∈ I, if x < y then h(x) <′ h(y).
Since every morphism is an injective function, we sometimes call a morphism
an order embedding, or just an embedding. If I ⊆ J and the inclusion I ↪→ J
is an order embedding, then we say that I is sub-ordering of J . When (I,<)
is a sub-ordering of (J,<′), the relation < is the restriction of <′ onto I. An
isomorphism is a bijective morphism. Isomorphic linear orderings have the same
order type. The order type of a well-ordering is a (countable) ordinal. We identify
the finite ordinals with the nonnegative integers.

Some examples of linear orderings are the usual orderings of the nonnegative
integers (N+, <), the ordering of the negative integers (N−, <), and the ordering
(Q, <) of the rationals. Their respective order types are denoted ω, −ω and η.

Let (I,<) be a linear ordering. We say that (I,<) is a well-ordering if each
nonempty subset of I has a least element. This condition is equivalent under

144 Z. Ésik and S. Okawa

the axiom of choice to requiring that (I,<) has no sub-ordering of order type
−ω. Moreover, we say that (I,<) is dense if it has at least two elements and
for all x, y ∈ I with x < y there is some z ∈ I with x < z < y. Finally, we say
that (I,<) is scattered if it has no dense sub-ordering, and quasi-dense if it is
not scattered. It is well-known that every sub-ordering of a well-ordering is well-
ordered, and every sub-ordering of a scattered ordering is scattered. Moreover,
up to isomorphism there are four (countable) dense linear orderings, the ordering
of the rationals possibly endowed with a least or a greatest element, or both. The
respective order types of these linear orderings are η, 1 + η, η+1 and 1+ η+1.
(See below for the sum operation on order types.)

When (I1, <1) and (I2, <2) are linear orderings, their sum (I1, <1) + (I2, <2)
is the linear ordering (I,<), where I = (I1 × {1}) ∪ (I2 × {2}), moreover, for
all (x, i), (y, j) ∈ I, (x, i) < (y, j) iff i = 1 and j = 2, or i = j and x <i y.
The sum operation may be generalized. Suppose that (J,<) is a linear ordering,
and for each j ∈ J , (Ij , <j) is a linear ordering. Then the generalized sum∑

j∈J(Ij , <j) is the disjoint union
⊎
j∈J Ij = {(x, j) : j ∈ J, x ∈ Ij} equipped

with the order relation (x, j) < (y, k) iff j < k, or j = k and x <j y. We call a
generalized sum a well-ordered, a scattered, or a dense sum, when (J,<) has the
appropriate property. It is known that every well-ordered sum of well-orderings
is a well-ordering, and similarly, every scattered sum of scattered orderings is
scattered and every dense sum of dense orderings is dense. When each (Ij , <j) is
the linear ordering (I,<′), then the generalized sum

∑
j∈J (Ij , <j) is called the

product of (I,<′) and (J,<), denoted (I,<′)×(J,<). When (I,<) and (J,<) are
both well-ordered, scattered or dense, then so is their sum or product. Since the
above operations preserve isomorphism, they can be extended to order types.

Hausdorff classified scattered linear orderings into an infinite hierarchy. Fol-
lowing [32], we present a variant of this hierarchy. Let V D0 be the collection
of all finite linear orderings, and for a countable ordinal α > 0, let V Dα be
the collection of all finite sums of linear orderings of the sort

∑
n∈N+

(In, <n)

or
∑

n∈N−(In, <n), where each (In, <n) is in V Dβn for some βn < α. By Haus-

dorff’s theorem [Theorem 3.12.3 36[38]], a linear ordering (I,<) is scattered iff it
belongs to V Dα for some (countable) ordinal α. The least such ordinal is called
the rank of I, denoted r(I). Hausdorff also proved that every linear ordering is
either scattered, or a dense sum of scattered linear orderings.

A useful fact is that a well-ordering has rank α iff its order type γ satisfies ωα ≤
γ < ωα+1, so that its Cantor normal form is ωα×n0+ωα1 ×n1+ . . .+ωαk ×nk,
where k ≥ 0, α > α1 > . . . > αk and n0, . . . , nk are positive integers.

2.2 Words and Languages

A word (or arrangement [17]) u over a possibly infinite alphabet A is a linear
ordering I = (I,<) labeled in A. Thus a word u is of the form (I,<, λ), where λ :
I → A. A morphism between words preserves the order relation and the labeling.
An isomorphism is a bijective morphism. We usually identify isomorphic words.
The order type of a word is the order type of its underlying linear order.

On Context-Free Languages of Scattered Words 145

Examples of words include the finite words whose underlying linear order is
finite, including the empty word ε whose order type is 0, the one-letter words
aω and a−ω, labeled a, whose underlying linear orders are the orderings of the
nonegative and the negative integers, and the one-letter word aη whose under-
lying linear order is the ordering of the rationals.

We call a word well-ordered, scattered, dense, or quasi-dense if its underlying
linear order has the appropriate property. The rank r(u) of a scattered word u is
the rank of its underlying linear ordering. For example, aω is well-ordered, a−ω

is scattered but not well-ordered, and aη is dense. Also, r(a−ω) = r(aω) = 1.
More generally, when I is a linear ordering, aI is the word labeled over {a} whose
underlying linear order is I. The word aωaη obtained by “concatenating” aω and
aη is quasi-dense, but not dense. (A formal definition of concatenation is given
below).

Let A� denote the set of all words over A. As usual, we denote by A∗ and Aω

the sets of all finite and all ω-words over A, whose order type is ω. We define
A≤ω = A∗ ∪Aω .

A language over A is any subset of A�. In particular, every subset of A∗ is
a language (of finite words). Languages over A are equipped with the usual set
theoretic operations. We now define the operation of substitution.

Suppose that L ⊆ A�, and for each a ∈ A, La ⊆ B�. Then L[a �→ La]a∈A,
or simply L[a �→ La] is the language over B consisting of all words obtained
from the words u in L by replacing each occurrence of a letter a ∈ A in u by
a word v ∈ La. Different occurrences of the same letter may be replaced by
different words. Formally, suppose that u = (I,<, λ) ∈ L, and for each i ∈ I,
let vi = (Ii, <i, λi) be a word in Lλ(i). Then we construct the word u′ whose
underlying linear order is the ordered sum

∑
i∈I(Ii, <i) which is equipped with

the labeling function λ′((x, i)) = λi(x) for all i ∈ I and x ∈ Ii. The language
L[a �→ La]a∈A consists of all such words u′. If L and the La contain only well-
ordered, scattered or only dense words, then the same holds for L[a �→ La]a∈A.
Below we will often follow the convention of writing L[a �→ La]a∈A0 where a
ranges over a subset A0 of A to denote the substitution where each letter a ∈ A0

is replaced by La and each letter a not in A0 remains unchanged, i.e., is replaced
by {a}. When L and the La contain a single word, say L = {u} and La = {va},
then L[a �→ La] is also a singleton, and we denote its single element by u[a �→ va].
When u and the va are well-ordered (resp. scattered, dense), then so is u[a �→ va].

Using the generic operation of substitution, we now define further operations
on languages. Let x0, x1, . . . be letters. Suppose that L,L1, L2 ⊆ A�. Then we
define L1L2 = {x1x2}[xi �→ Li], L

ω = {x0x1 . . .}[xi �→ L} = {u0u1 . . . : ui ∈ L}
and L−ω = {. . . x1x0}[xi �→ L] = {. . . u1u0 : ui ∈ L}. When L = {u}, L1 =
{u1} and L2 = {u2} are singleton languages, we obtain the word operations of
concatenation u1u2 and the unary ω-power and (−ω)-power operations uω =
uu . . . and u−ω = . . . uu.

Context-Free Languages. When G = (N,A,R, S) is an ordinary context-
free grammar (CFG), where N is the finite set of nonterminals, A is the finite
alphabet of terminals, R is the finite set of rules and S ∈ N is the start symbol,

146 Z. Ésik and S. Okawa

we may consider possibly infinite derivation trees over G. Such a tree is a finitely
branching rooted, ordered directed tree labeled inN∪A∪{ε} such that whenever
a vertex x is labeled X ∈ N and has n(> 0) successors, ordered as x1, . . . , xn and
labeled X1, . . . , Xn ∈ N ∪ A, then X → X1 . . .Xn ∈ R. When n = 1, it is also
allowed that x1 is labeled ε and then X → ε ∈ R. The label of the root is called
the root symbol. A vertex with no successors is called a leaf. In particular, every
vertex labeled in A∪{ε} is a leaf. The leaves of a derivation tree t form a linearly
ordered set with respect to the usual left-to-right ordering, and considering only
the leaves labeled in N ∪ A, we obtain a word in (N ∪ A)�. This word is called
the frontier of t. When the root symbol of a finite derivation tree is X ∈ N ∪A
and its frontier is p ∈ (N ∪A)∗, then we write X ⇒∗ p. As usual, we extend ⇒∗

to a binary relation over (N ∪ A)∗. The context-free language (CFL) generated
by G is L(G) = {u ∈ A∗ : S ⇒∗ u}.

Suppose that A is a finite alphabet. A Büchi context-free grammar (BCFG)
over A is a CFG (N,A,R, S) equipped with a designated subset N∞ of the
nonterminals N . When G = (N,A,R, S,N∞) is a BCFG, call a derivation tree
proper if along each infinite path (originating in the root) there are infinitely
many vertices labeled in N∞. When the root of such a tree is labeled X and
its frontier is the word p ∈ (N ∪ A)�, we write X ⇒∞ p (or X ⇒∗ p when the
tree is finite) and say that p is derivable from X . The language L(G) generated
by G = (N,A,R, S,N∞) is the set of all words u ∈ A� such that S ⇒∞ u. We
say that L ⊆ A� is a Büchi context-free language (BCFL), if L = L(G) for some
BCFG G.

We also define Muller context-free grammars (MCFG) G = (N,A,R, S,F)
where (N,A, P, S) is an ordinary CFG and F ⊆ P+(N) is a set of nonempty
subsets of N . We say that a derivation tree is proper if for each infinite path,
the set of nonterminals that label an infinite number of vertices along the path
belongs to F . When X is the root label of a proper derivation tree having frontier
p, then we write X ⇒∞ p, or X ⇒∗ p when the tree is finite. The language
L(G) generated by such a grammar G = (N,A,R, S,F) consists of those words
u ∈ A� such that there is a proper derivation tree t whose root is labeled S
having frontier u, in notation, S ⇒∞ u. We say that a language L ⊆ A� is a
Muller context-free language (MCFL) if L = L(G) for some MCFG G. We say
that two BCFGs or MCFGs are equivalent if they generate the same language.

It is clear that every BCFL is an MCFL, a BCFG equivalent to an MCFG
(N,A,R, S,N∞) has F = {N ′ ⊆ N : N ′ ∩ N∞ �= ∅} as its designated set of
subsets of nonterminals. It is not difficult to see that a language L ⊆ A∗ is
a BCFL iff it is an MCFL iff it is an ordinary context-free language (CFL),
cf. [23,24]. On the other hand, there exists an MCFL that is not a BCFL, for
example the set of all well-ordered words over a one-letter alphabet, cf. [23].

BCFLs and MCFLs are closely related to Büchi and Muller tree automata
[37,40], since a language is a BCFL (MCFL, resp.) iff it is the frontier language of
a tree language recognized by a Büchi tree automaton (Muller tree automaton).

We say that a BCFG or an MCFG has no useless symbols if either it has a
single nonterminal, the start symbol S, and no rules, or for each nonterminal X

On Context-Free Languages of Scattered Words 147

there are finite words p, q and a possibly infinite terminal word u with S ⇒∗ pXq
and X ⇒∞ u. It then follows that there exist also terminal words v, w ∈ A�

with S ⇒∞ vXw. It is known that for each BCFG (MCFG, resp.) there is an
equivalent BCFG (MCFG, resp.) having no useless nonterminals.

3 Linear Context-Free Languages

In this section, we define linear BCFLs and MCFLs and prove their equivalence.
We will later use these linear languages as building blocks to construct more
general BCFLs and MCFLs of scattered words.

Recall that a CFG G = (N,A,R, S) is called linear if the right-hand side of
each rule in R contains at most one occurrence of a nonterminal. A linear lan-
guage in A∗ is a language generated by a linear grammar G = (N,A,R, S). We
call a BCFG (MCFG, respectively) linear if its underlying context-free grammar
is linear. A linear BCFL (MCFL, respectively) is a BCFL (MCFL) that is gen-
erated by a linear BCFG (MCFG). Since every BCFL is an MCFL, every linear
BCFL is a linear MCFL.

Note that when G is a linear, then every derivation tree has a single maximal
path that contains all the nonterminal labeled vertices. We call this path the
principal path of the derivation tree. Every vertex that does not belong to the
principal path is a leaf labeled in A∪{ε}. It follows from this fact that the order
type of each word of a linear BCFL or MCFL is either a finite ordinal n, or of
the form ω + n, n + (−ω) or ω + (−ω). Thus, every word of a linear BCFL or
MCFL is scattered of rank at most 1.

Linear BCFLs and MCFLs are closely related to Büchi automata and Muller
automata, cf. [37,34]. A Büchi-automaton is a system A = (Q,A, δ, q0, F,Q∞),
where Q is the finite nonempty set of states, A is the finite input alphabet,
δ ⊆ Q × A × Q is the transition relation, q0 ∈ Q is the initial state, F ⊆ Q is
the set of final states and Q∞ is a designated subset of Q. A run of A on a word
u ∈ A≤ω is defined as usual. A run on a finite word is successful if it starts in
the initial state and ends in a state in F . A run on an ω-word is successful if
it visits at least one state in Q∞ infinitely often. The language accepted by A
consists of all words u ∈ A≤ω such that A has a successful run on u. A Muller
automaton A = (Q,A, δ, q0, F,F) is defined similarly, but instead of a subset
of Q, the last component F is a designated subset of P+(Q). An infinite run
is called successful if it starts in the initial state and the set of states visited
infinitely often belongs to F . The language accepted by a Muller automaton A
is the set of all words in u ∈ A≤ω on which A has a successful run. It is well-
known that a language is accepted by a Büchi automaton iff it is accepted by a
Muller automaton. The notion of Büchi automata and Muller automata may be
generalized without altering the computation power by allowing a finite number
of transitions of the form (q, u, q′) where q, q′ ∈ Q and u ∈ A∗.

Lemma 1. Every linear MCFL is a BCFL.

An operational characterization of linear BCFLs was given in [22]. In order to
recall this result, we extend the ω-power operation to sets of pairs of words.

148 Z. Ésik and S. Okawa

When A is a finite alphabet, we may consider ordered pairs (u, v) ∈ A� ×
A� that form a monoid with respect to the product operation (u, v)(u′, v′) =
(uu′, v′v) with the pair (ε, ε) acting as identity. Then we may consider the power
set of this monoid, P (A� × A�), and equip this set with the operations of set
union and complex product : U · V = {(u, v)(u′, v′) : (u, u′) ∈ U, (v, v′) ∈ V } =
{(uu′, v′v) : (u, u′) ∈ U, (v, v′) ∈ V }. With these operations and the constants
∅ and {(ε, ε)}, P (A� ×A�) is an idempotent semiring [28]. We may also define a
star operation by U∗ =

⋃
n≥0 U

n.

The set P (A�) of all subsets of A� is a commutative idempotent monoid with
respect to the operation of set union and the constant ∅. We define an action
of the semiring P (A� × A�) on P (A�) by U ◦ L = {uwv : (u, v) ∈ U, w ∈ L}.
Moreover, we define an ω-power operation P (A� ×A�) → P (A�),

U �→ {(u0u1 . . .) · (. . . v1v0) : (ui, vi) ∈ U}.

Note that the ω-power operation defined earlier on languages L ⊆ A� can now
be expressed as Lω = (L × {ε})ω, and the (−ω)-power operation by L−ω =
({ε}×L)ω. (The semiring-semimodule pair ((P (A�×A�), P (A�)) equipped with
the star and ω-power operations is in fact an iteration semiring-semimodule pair,
cf. [6,25].)

Using algebraic tools, the following Kleene theorem for linear BCFLs was
proved in [22] as a special case of a more general theorem. It is also possible to
derive this result from the classical Kleene theorem for regular ω-languages, cf.
[37].

Theorem 1. A language L ⊆ A� is a linear BCFL iff it is a finite union of
languages of the sort U ◦ V ω, where U and V can be generated from the finite
subsets of A∗ ×A∗ by the operations ∪, · and ∗.

Corollary 1. A language L ⊆ A� is a linear BCFL iff it is a union of an
ordinary linear CFL L0 ⊆ A∗ with a finite union of languages of the sort U ◦V ω,
where U and V can be generated from the finite subsets of A∗ × A∗ by the
operations ∪, · and ∗, moreover, U is nonempty and V contains at least one
pair one of whose components is not ε.

Corollary 2. A language L ⊆ A� of well-ordered words is a linear BCFL iff it
is a union of an ordinary linear CFL L0 ⊆ A∗ with a finite union of languages
of the sort K0K

ω
1 , where K0,K1 ⊆ A∗ are ordinary nonempty regular languages

and K1 contains at least one nonempty word.

Note that the order type of every word of a linear BCFL of well-ordered words
is at most ω.

Corollary 3. A language L ⊆ A� of well-ordered words is a linear BCFL iff it is
a language L ⊆ A≤ω that can be accepted by a Büchi automaton
(that is regular).

On Context-Free Languages of Scattered Words 149

4 Context-Free Languages of Scattered Words of
Bounded Rank

Call a language L of scattered words bounded1 if the rank of the words of L
is bounded by an integer. It was proved in [23] that every BCFL of scattered
words is bounded. In this section our aim is to prove that when L is a bounded
language of scattered words, then L is an MCFL iff L is a BCFL. We derive
this result from the fact that every language generated by a “non-reproductive
MCFG” is a BCFL.

When G = (N,A,R, S) is a CFG, the graph ΓG has N as its vertex set and
edges X → Y if there is a rule of the form X → pY q. We say that a nonterminal
Y is accessible from X if there is a path from X to Y in ΓG. A subset N ′ ⊆ N
is strongly connected if for all X,Y ∈ N ′, Y is accessible from X . A strong
component is a maximal strongly connected subset. The height of a nonterminal
X is the length n of the longest sequence Y0, Y1, . . . , Yn of nonterminals belonging
to different strong components such that Yn = X and Yi−1 is accessible from Yi
for each 1 ≤ i ≤ n. The above notions all extend to BCFGs and MCFGs.

We recall from [24] that a nonterminal X of an MCFG G = (N,A,R, S,F)
is reproductive if there is a word p ∈ (N ∪ A)� containing an infinite number
of occurrences of X with X ⇒∞ p. We call G non-reproductive if it has no
reproductive nonterminal. Corollary 5 answers a question in [24].

Theorem 2. Suppose that G = (N,A,R, S,F) is a non-reproductive MCFG.
Then there is a BCFG equivalent to G.

Corollary 4. A language of scattered words is a BCFL iff it can be generated
by an MCFG having no reproductive nonterminals.

Corollary 5. An MCFL L of scattered words is a BCFL iff L is bounded. A
bounded language of scattered words is a BCFL iff it is an MCFL.

5 Operational Characterization of BCFLs of Scattered
Words

In this section, we provide a Kleene-type characterization of the class of BCFLs
consisting of well-ordered, or scattered words. We show how these languages may
be constructed using ordinary context-free languages and the ω-power operation
defined earlier. We will also define expressions denoting BCFLs of well-ordered
and scattered words.

Lemma 2. A language L ⊆ A� is a BCFL of scattered words iff it can be con-
structed from the singleton languages {a} for a ∈ A by substitution into ordinary
CFLs and linear BCFLs: suppose that B is a finite alphabet and L0 is a CFL or
a linear BCFL over B, and suppose that for each b ∈ B, Lb ⊆ A� has already
been constructed, then construct the language L0[b �→ Lb] ⊆ A�.

1 This notion has nothing to do with the classical notion of a bounded language
L ⊆ A∗.

150 Z. Ésik and S. Okawa

Lemma 3. A language L ⊆ A� is a BCFL of well-ordered words iff it can be
constructed from the singleton languages {a} for a ∈ A by substitution into
ordinary CFLs and linear BCFLs consisting of well-ordered words.

Theorem 3. A language L ⊆ A� is a BCFL of well-ordered words iff it can be
generated from the languages {a}, a ∈ A by substitution into ordinary CFLs and
the operation of ω-power.

Expressions denoting ordinary CFLs, similar to the regular expressions denoting
regular tree languages [27], were introduced in [29]. A variant of these expressions
are the well-known μ-expressions used in several branches of computer science
including process algebra and programming logics. By adding the operation of ω-
power to μ-expressions in an appropriate way, we now define expressions denoting
BCFLs of scattered words.

Let us fix a countably infinite set of variables. For a finite alphabet A, let
μωT denote the set of all expressions generated by the grammar

T ::= a | ε |x |T + T |T · T |μx.T |Tω0
where a is any letter in A, x ranges over the variables, and the ω-power operation
is restricted to closed terms T0. (A term is closed if each occurrence of a variable
x is in the scope of a prefix μx.) The semantics of expressions is defined by
induction in the expected way. When the free variables of an expression t form
the set V , then t denotes a language |t| ⊆ (A ∪ V)�. (We assume that A is
disjoint from the variables.) The prefix μ corresponds to taking least fixed-points:
for an expression t with free variables in V and a variable x, μx.t denotes the
least language with respect to set inclusion L ⊆ (A ∪ (V \ {x}))� such that
|t|[x �→ L] = L. This language exists by the well-known Knaster-Tarski theorem,
since the function mapping a language L′ ⊆ (A ∪ (V \ {x}))� to |t|[x �→ L′]
is monotone. (Here, we understand that when x does not occur free in t, then
|t|[x �→ L′] is just |t|. We do not need a symbol denoting the empty language
since it is denoted by the expression μx.x, where x is a variable. Also, note that
when |t| = L and x is a variable that does not appear in t, then |μx.(tx+ε)| = L∗,
the union of all finite powers of L.)

Let μT denote the fragment of μωT obtained by removing the ω-power op-
eration. Clearly, every expression t ∈ μT denotes a language of finite words. It
is well-known that a language L ⊆ A∗ is a CFL iff there is some closed t ∈ μT
over A with |t| = L (see [29] for a closely related result). Using this fact together
with Theorem 3, we immediately have:

Corollary 6. A language L ⊆ A� is a BCFL of well-ordered words iff there is
a closed expression t ∈ μωT over A with |t| = L.

We give some examples to illustrate Corollary 6. Suppose that the alphabet con-
tains the letters a, b, c. Consider the following expressions: t0 = μx.(aωxbω + ε),
t1 = (μx.(aωxbω+ε))ω, t2 = μy.(μx.(aωxbω+ε)yc+ε). They denote the languages
L0 = {(aω)n(bω)n : n ≥ 0}, L1 = Lω0 = {(aω)n0(bω)n0(aω)n1(bω)n1 . . . : ni ≥ 0}
and L2 =

⋃
(Ln0 c

n : n ≥ 0}, respectively.
We now turn to BCFLs of scattered words.

On Context-Free Languages of Scattered Words 151

Theorem 4. Suppose that L ⊆ A�. Then L is a BCFL of scattered words iff L
can be generated from the languages {a}, for a ∈ A by the following operations:

1. substitution into ordinary context-free languages,
2. the operation L× L′ = {(u, v) : u ∈ L, v ∈ L′}, where L,L′ ⊆ A�,
3. the operations U ∪ V , U · V and U∗, where U, V ⊆ A� × A�,
4. the operation Uω, where U ⊆ A� ×A�,

where it is assumed that L,L′ and U,U ′ have already been constructed.

We may now introduce expressions denoting BCFLs of scattered words. In our
definition, we also use expressions denoting sets of pairs of words. The expressions
in μωT ′ over the alphabet A are defined by the following grammar:

T ′ ::= a | ε |x |T ′ + T ′ |T ′ · T ′ |μx.T ′ |Pω

P ::= T ′
0 × T ′

0 |P + P |P · P |P ∗

Here, T ′
0 stands for an expression of syntactic category T ′ without free variables.

Expressions corresponding to the syntactic category P denote sets of pairs of
words. The semantics of the expressions should be clear. When t ∈ μωT ′, we
write |t| for the language denoted by t.

Corollary 7. A language L ⊆ A� is a BCFL of scattered words iff there is a
closed expression t ∈ μωT ′ (of syntactic category T ′) over A with |t| = L.

We again give some examples. But first, let us introduce some abbreviations.
When t is an expression of syntactic category T ′, then let us define tω and t−ω

as the expressions (t × ε)ω and (ε × t′)ω. Now let t0 = (aω × b−ω)ω , t1 = ((a ×
b)∗(b× a))ω, t2 = μx.(aωxb−ω + ε). The languages denoted by these expressions
are: L0 = {(aω)ω(b−ω)−ω}, L1 = {(an0ban1b . . .) · (. . . abn1abn0) : ni ≥ 0},
L2 = {(aω)n(b−ω)n : n ≥ 0}.

6 An Application

Suppose that L ⊆ A� is a language of scattered words. Then let rmax(L) =
sup{r(u) : u ∈ L}, so that rmax(L) is an ordinal at most ω1, the first uncountable
ordinal. When L = ∅, we define rmax(L) = −∞. (We understand that −∞ < α
and −∞ + α = −∞ for all ordinals α.) In [23], it was shown that rmax(L) is
finite for every nonempty BCFL of scattered words. For a scattered language
L ⊆ A�, let us define rrange(L) = {r(u) : u ∈ L}.

Theorem 5. Suppose that L ⊆ A� is a scattered BCFL. Then rrange(L) is a
finite set of integers that can be computed from a BCFG generating L.

Suppose that L ⊆ A� is a scattered language. Then let rmin(L) = min{r(u) : u ∈
L}, so that rmin(L) is a countable ordinal. When L = ∅, we define rmin(L) = ∞.
As a corollary to the previous result, it is clear that for a BCFL L generated by
a BCFG G, rmin(L) is either finite or ∞, and that rmin(L) can be effectively
computed.

152 Z. Ésik and S. Okawa

7 Future Research

Expressions denoting tree languages recognized by Büchi tree automata are given
in [40], Theorem 9.1. Since BCFLs are frontier languages of tree languages rec-
ognized by Büchi tree automata, one can define similar expressions denoting
BCFLs. However, these expressions can probably be simplified (as is the case
with BCFLs of well-ordered or scattered words by our results). Expressions in-
volving least and greatest fixed points denoting languages recognized by Muller
tree automata were given in [35], see also [1]. Again, it would be interesting to
know whether these expressions can be essentially simplified for MCFLs.

References

1. Arnold, A., Niwinski, D.: Rudiments of the μ-Calculus. Elsevier (2011)
2. Bedon, N.: Finite automata and ordinals. Theoretical Computer Science 156, 119–

144 (1996)
3. Bedon,N.,Bès,A.,Carton,O.,Rispal,C.: Logic andRational Languages ofWords In-

dexed byLinearOrderings. In:Hirsch, E.A., Razborov,A.A., Semenov,A., Slissenko,
A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 76–85. Springer, Heidelberg (2008)

4. Bès, A., Carton, O.: A Kleene Theorem for Languages of Words Indexed by Linear
Orderings. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp.
158–167. Springer, Heidelberg (2005)

5. Bloom, S.L., Choffrut, C.: Long words: the theory of concatenation and ω-power.
Theoretical Computer Science 259, 533–548 (2001)

6. Bloom, S.L., Ésik, Z.: Iteration Theories. EATCS Monograph Series in Theoretical
Computer Science. Springer (1993)

7. Bloom, S.L., Ésik, Z.: Axiomating omega and omega-op powers of words. Theoret-
ical Informatics and Applications 38, 3–17 (2004)

8. Bloom, S.L., Ésik, Z.: The equational theory of regular words. Information and
Computation 197, 55–89 (2005)

9. Bloom, S.L., Ésik, Z.: Regular and Algebraic Words and Ordinals. In: Mossakowski,
T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 1–15.
Springer, Heidelberg (2007)

10. Bloom, S.L., Ésik, Z.: Algebraic ordinals. Fundamenta Informaticae 99, 383–407
(2010)

11. Bloom, S.L., Ésik, Z.: Algebraic linear orderings. Int. J. Foundations of Computer
Science 22, 491–515 (2011)

12. Boasson, L.: Context-free Sets of Infinite Words. In: Weihrauch, K. (ed.) GI-TCS
1979. LNCS, vol. 67, pp. 1–9. Springer, Heidelberg (1979)

13. Bruyère, V., Carton, O.: Automata on linear orderings. J. Computer and System
Sciences 73, 1–24 (2007)

14. Büchi, J.R.: The monadic second order theory of ω1. In: Decidable Theories, II.
Lecture Notes in Math., vol. 328, pp. 1–127. Springer (1973)

15. Choueka, Y.: Finite automata, definable sets, and regular expressions over ωn-
tapes. J. Computer and System Sciences 17(1), 81–97 (1978)

16. Cohen, R.S., Gold, A.Y.: Theory of ω-languages, parts one and two. J. Computer
and System Sciences 15, 169–208 (1977)

17. Courcelle, B.: Frontiers of infinite trees. Theoretical Informatics and Applica-
tions 12, 319–337 (1978)

On Context-Free Languages of Scattered Words 153

18. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press (1974)
19. Ésik, Z.: An undecidable property of context-free linear orders. Information Pro-

cessing Letters 111, 107–109 (2011)
20. Ésik, Z.: Scattered Context-Free Linear Orderings. In: Mauri, G., Leporati, A.

(eds.) DLT 2011. LNCS, vol. 6795, pp. 216–227. Springer, Heidelberg (2011)
21. Ésik, Z., Iván, S.: Context-free ordinals, arXiv:1103.5421v1 (2011)
22. Ésik, Z., Ito, M., Kuich, W.: Linear languages of finite and infinite words. In: Proc.

Automata, Formal Languages, and Algebraic Systems, pp. 33–46. World Scientific
(2010)

23. Ésik, Z., Iván, S.: Büchi context-free languages. Theoretical Computer Science 412,
805–821 (2011); Extended Abstract in Proc. ICTAC 2009, (Kuala Lumpur), LNCS,
vol. 5684, pp. 185–199. Springer (2009)

24. Ésik, Z., Iván, S.: On Muller context-free grammars. Theoretical Computer Sci-
ence (to appear); Extended Abstract in Proc. Developments in Language Theory,
(London, ON, 2010), LNCS, vol. 6224, pp. 173–184. Springer (2010)

25. Ésik, Z., Kuich, W.: On iteration semiring-semimodule pairs. Semigroup Forum 75,
129–159 (2007)

26. Ésik, Z., Okawa, S.: On context-free languages of scattered words, arxiv: 1111.3439
(2011)

27. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
28. Golan, J.S.: The Theory of Semirings with Applications in Computer Science.

Longman Scientific and Technical (1993)
29. Gruska, J.: A characterization of context-free languages. J. Computer and System

Sciences 5, 353–364 (1971)
30. Heilbrunner, S.: An algorithm for the solution of fixed-point equations for infinite

words. Theoretical Informatics and Applications 14, 131–141 (1980)
31. Iván, S., Mészáros, Á.: On Muller context-free grammars generating well-ordered

words. In: Proc. Automata and Formal Languages, AFL 2011, Debrecen (2011)
32. Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM

Transactions on Computational Logic (TOCL) 6, 675–700 (2005)
33. Lohrey, M., Mathissen, C.: Isomorphism of Regular Trees and Words. In: Aceto, L.,

Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 210–221.
Springer, Heidelberg (2011)

34. Muller, R.: Infinite sequences and finite machines. In: 4th Annual Symposium on
Switching Circuit Theory and Logical Design, pp. 3–16. IEEE Computer Society
(1963)

35. Niwinski, D.: Fixed points vs. infinite generation. In: 3rd Ann. IEEE Symp. Logic
in Comp. Sci., pp. 402–409. IEEE Press (1988)

36. Nivat, M.: Sur les ensembles de mots infinis engendrés par une grammaire
algébrique. Theoretical Informatics and Applications 12, 259–278 (1978) (French)

37. Perrin, D., Pin, J.-E.: Infinite Words. Elsevier (2004)
38. Rosenstein, J.G.: Linear Orderings. Academic Press (1982)
39. Thomas, W.: On frontiers of regular sets. Theoretical Informatics and Applica-

tions 20, 371–381 (1986)
40. Thomas, W.: Automata on infinite objects. In: van Leuwen, J. (ed.) Handbook of

Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 133–192.
Elsevier Science Publishers, Amsterdam (1990)

41. Wojciechowski, J.: Classes of transfinite sequences accepted by finite automata.
Fundamenta Informaticae 7, 191–223 (1984)

42. Wojciechowski, J.: Finite automata on transfinite sequences and regular expres-
sions. Fundamenta Informaticae 8, 379–396 (1985)

Homomorphisms Preserving Deterministic

Context-Free Languages

Tommi Lehtinen1,2 and Alexander Okhotin1

1 Department of Mathematics, University of Turku, Turku FI-20014, Finland
{tommi.lehtinen,alexander.okhotin}@utu.fi

2 Turku Centre for Computer Science

Abstract. The paper characterizes the family of homomorphisms, un-
der which the deterministic context-free languages, the LL context-free
languages and the unambiguous context-free languages are closed. The
family of deterministic context-free languages is closed under a homomor-
phism h if and only if h is either a code of bounded deciphering delay,
or the images of all symbols under h are powers of the same string. The
same characterization holds for LL context-free languages. The unam-
biguous context-free languages are closed under h if and only if either h
is a code, or the images of all symbols under h are powers of the same
string.

1 Introduction

It is well-known that the context-free languages are closed under homomor-
phisms, while the deterministic context-free languages are not. To be precise,
the latter fact means that there exists some homomorphism that leads out of the
class of deterministic context-free languages [5, p. 632]. On the other hand, there
exist some other homomorphisms, under which this family is trivially closed,
such as the identity mapping or a homomorphism that maps every symbol to
the empty string. The question is: what is the exact set of homomorphisms,
under which the deterministic context-free languages are closed?

Such a characterization is known for linear conjunctive languages [9], which
are closed under a homomorphism h if and only if it is either a code, or a trivial
homomorphism that erases every symbol [10]. As to the authors’ knowledge,
no similar results have been established for any other notable family of formal
languages. For instance, unambiguous context-free languages and LL context-free
languages are not closed under some homomorphisms [12, Thm. 10], and it would
be interesting to know, under which homomorphisms they are closed, and under
which they are not.

The starting point of investigating this question for determinstic context-
free and LL context-free languages is the following example of a code, un-
der which both families are not closed. Let Σ = {1, 2, 3} and Ω = {a, b}
be two alphabets and define a homomorphism h : Σ∗ → Ω∗ by h(1) = a,
h(2) = ab and h(3) = bb: this is a suffix code. Consider the language L =

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 154–165, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Homomorphisms Preserving Deterministic Context-Free Languages 155

{ 1n3n | n � 0 } ∪ { 1n−1232n | n � 1 }, which is clearly deterministic context-
free. However, its image under h is h(L) = { anb2n | n � 0 } ∪ { anb4n+1 |
n � 1 }, and this language is not deterministic context-free. Similarly, the lan-
guage L′ = { 13n1n | n � 0 } ∪ { 23n12n | n � 0 } is LL(1) context-free, but its
image h(L′) = { ab2nan | n � 0 }∪{ ab2n+1a2n | n � 0 } is not LL(k) context-free
for any k. Both examples of non-closure use the property of unbounded decipher-
ing delay of h: even though it is a code, in order to decode the first symbol of
a given encoded word, one has to read an unbounded number of symbols of the
codeword.

Codes of bounded deciphering delay are one of the important classes of codes
investigated in the literature [2,3], and this paper determines that, in fact, both
the deterministic context-free languages and the LL context-free languages are
closed under a code h if and only if this code has bounded deciphering delay.
In preparation to the proof, some necessary combinatorial properties of codes of
unbounded deciphering delay are established in Section 3: it is shown that for
every such code h : Σ∗ → Ω∗ one can always find some strings from Σ∗, which
can be used for constructing languages similar to the above L and L′. These
properties are used in the next Section 4 to determine the class of codes pre-
serving the deterministic context-free languages, as well as the LL context-free
languages. Non-codes are handled in Section 5, which establishes that determin-
istic context-free languages are closed under a homomorphism h : Σ∗ → Ω∗ that
is not injective if and only if the images of all symbols in Σ are powers of the
same string x ∈ Ω∗; every such homomorphism maps each context-free language
to a regular subset of x∗. The class of non-codes preserving the LL context-free
languages is the same.

Finally, for the family of unambiguous context-free languages, it is shown that
they are closed under all codes, and under exactly the same non-codes as the
deterministic context-free languages.

2 Context-Free Languages and Their Special Cases

This paper is concerned with subfamilies of the context-free languages. A context-
free grammar is a quadruple G = (Σ,N, P, S), where Σ is the alphabet of the
language being defined, N is a finite set of syntactic notions defined in the
grammar (known as nonterminal symbols or variables), P is a finite set of rules,
each of the form A → α with A ∈ N and α ∈ (Σ ∪ N)∗, and S ∈ N is the
initial symbol. The language generated by the grammar, L(G) ⊆ Σ∗, is most
easily defined by rewriting of strings over Σ ∪ N , so that μAν =⇒ μαν for all
μ, ν ∈ (Σ ∪N)∗, A ∈ N and A → α ∈ P . Then LG(η) = {w ∈ Σ∗ | η =⇒∗ w }
for each η ∈ (Σ ∪N)∗, and L(G) = LG(S).

A context-free grammar is called unambiguous, if for every A ∈ N and for
every string w ∈ L(A), there exists a unique rule A → s1 . . . s	 with � � 0 and
si ∈ Σ ∪ N satisfying w ∈ LG(s1 . . . s), and a unique partition w = u1 . . . u	
with ui ∈ LG(si).

156 T. Lehtinen and A. Okhotin

Example 1. The language { aibncn | i, n � 0 } ∪ { ambmcj | m, j � 0 } is an in-
herently ambiguous context-free language, that is, every context-free grammar
generating this language is ambiguous.

Deterministic context-free languages are a subfamily of the unambiguous context-
free languages defined by deterministic pushdown automata (DPDA). A push-
down automaton (PDA) is a septuple B = (Σ,Γ,Q, q0, δ, F, γ0), in which Q is a
finite set of states, with the initial state q0 ∈ Q and the set of final states F ⊆ Q,
Γ is the pushdown alphabet, γ0 ∈ Γ is the bottom pushdown symbol, and the
transition function δ maps Q×(Σ∪{ε})×(Γ ∪{ε}) to the set of finite subsets of
Q× Γ ∗. The configurations of the automaton are triples (q, w, x), where q ∈ Q,
w ∈ Σ∗ and x ∈ Γ ∗. The relation " of one-step transition on the set of these
configurations is defined as (q, uw, γz) " (q′, w, yz), for all (q′, y) ∈ δ(q, u, γ).
The language recognized by the PDA is

L(B) = {w ∈ Σ∗ | (q0, w, γ0) "∗ (qF , ε, ε) for some qF ∈ F }.

A PDA is deterministic (DPDA), if, for each state q ∈ Q and for each push-
down symbol γ ∈ Γ , either δ(q, ε, γ) = ∅ and |δ(q, a, γ)| � 1 for all a ∈ Σ, or
|δ(q, ε, γ)| = 1 and δ(q, a, γ) = ∅ for each a ∈ Σ.

Example 2 ([5, Thm. 4.1]). The language { anbn | n � 0 } ∪ { anb2n | n � 0 } is
unambiguous context-free, but not deterministic context-free.

Consider a further subfamily of deterministic context-free languages defined by
LL(k) grammars. A context-free grammar G = (Σ,N, P, S) is called LL(k),
if S =⇒∗ xAβ, A → α1, A → α2 ∈ P , w1 ∈ LG(α1β), w2 ∈ LG(α2β) and
Firstk(w1) = Firstk(w2) implies α1 = α2.

Example 3 ([1, Sect. 6.8]). The language { ancbn | n � 0 } ∪ { andb2n | n � 0 }
is deterministic context-free, but not LL(k) context-free for any k.

The below arguments use several well-known closure properties of determin-
istic context-free languages and unambiguous context-free languages. Deter-
ministic context-free languages are closed under right-quotient with a regular
language and intersection with a regular language [5]. Furthermore, both fami-
lies are closed under the inverses of mappings computed by generalized sequential
machines [5,6,7].

A (deterministic) generalized sequential machine (gsm) is a septuple
M = (Σ,Ω,Q, q0, δ, λ, F), where Σ is a finite nonempty input alphabet, Ω is
a finite nonempty output alphabet,Q is a finite nonempty set of states, q0 ∈ Q is
the start state, δ : Q×Σ → Q is the transition function, λ : Q×Σ → Ω∗ is the
output function, and F ⊆ Q is the set of final states. The functions δ and λ are
extended to Q×Σ∗ in the usual way, as δ(q, ε) = q, δ(q, aw) = δ(δ(q, a), w) and
as λ(q, ε) = ε, λ(q, aw) = λ(q, a)λ(δ(q, a), w). A gsm M computes a partial func-
tion M : Σ∗ → Ω∗, where M(w) = λ(q0, w) and δ(q0, w) ∈ F . In some literature,
gsms are defined not to reject any input, and hence compute complete functions

Homomorphisms Preserving Deterministic Context-Free Languages 157

from Σ∗ to Ω∗; this paper consistently uses partial mappings computed by gsms
with accepting states.

Most of the closure properties of LL context-free languages were determined
by Rosenkrantz and Stearns [12] and by Wood [15]: they are not closed under
any of the basic language-theoretic operations. The status of their closure under
inverse gsm mappings and inverse homomorphisms was not known up to date,
and since it is relevant for this paper, the authors have constructed the following
counterexample.

Lemma 1. Let Σ = {1, 2, 3, 4, 5, 6} and Ω = {a, b, c, d}, and define a homo-
morphism h : Σ∗ → Ω∗ by h(1) = a, h(2) = bc, h(3) = cb, h(4) = ab, h(5) = d,
h(6) = cd. Then the language L = { an(bc)nd | n � 0 } is LL(1) context-free,
while its inverse homomorphic image

h−1(L) = { 1n2n5 | n � 0 } ∪ { 1n−143n−16 | n � 1 }

is not LL(k) for any k.

The non-existence of an LL context-free grammar for h−1(L) can be proved
using the method of Rosenkrantz and Stearns [12, p. 246].

Later in the paper, the closure of the deterministic context-free languages
under inverse gsms would allow short proofs of certain assertions, while proving
similar properties of LL context-free languages, would require a more direct and
technical approach, in view of Lemma 1.

3 Codes and Their Deciphering Delay

This paper deals with the closure of language families under homomorphisms.
Most work is centered around injective homomorphisms (or codes), and their
special case: codes with finite deciphering delay. This section gives the corre-
sponding definitions and establishes some combinatorial properties of codes with
finite deciphering delay.

A homomorphism between strings over alphabets Σ and Ω is a mapping
h : Σ∗ → Ω∗ that satisfies h(u · v) = h(u) · h(v) for all u, v ∈ Σ∗. An injective
homomorphism (for which h(u) = h(v) implies u = v) is called a code. Images
of strings under a code are called codewords. The image of a language L ⊆ Σ∗

is defined as h(L) = { h(w) | w ∈ L }. An alternative definition of a code can be
given in terms of the set of images of letters, L = h(Σ) = { h(a) | a ∈ Σ }: every
string w ∈ L+ should have a unique factorization as w = w1 . . . w	 with wi ∈ L.
This definition can be applied to any language L, which is also called a code.

This paper shall frequently employ the following combinatorial characteriza-
tion of two-element codes:

Lemma 2 (Lothaire [8, Cor 1.2.6]). Let Σ be an alphabet, let h : {1, 2} → Σ∗

be a homomorphism with h(1) = x and h(2) = y. Then, h is a code if and only
if x and y are not powers of the same word.

158 T. Lehtinen and A. Okhotin

In particular, if two words commute—that is, if xy = yx—then x and y are
powers of the same word.

A code h : Σ∗ → Ω∗ is of bounded deciphering delay [2,3,13], if there is such
an integer d � 1, that if h(u) and h(v) have a common prefix of d symbols,
then the first symbols of u and v are equal. Otherwise, a code is said to have
unbounded deciphering delay. These codes have the following characterization:

Lemma 3 (folklore [14]). a code is of unbounded deciphering delay if and only
if there is a pair of different right-infinite words with the same image.

Intuitively, bounded deciphering delay means that the symbols in the beginning
of a coded word can be concluded after some fixed number of symbols from the
beginning of the codeword are known. This enables the decoding of codes of
bounded deciphering delay by a finite machine, a deterministic gsm. In other
words, the inverse mapping to a code with bounded deciphering delay can be
computed by a gsm:

Lemma 4 ([2, Prop. 5.1.6]). For every code of bounded deciphering delay
h : Σ∗ → Ω∗, there exists a deterministic gsm that implements a mapping
M : h(Σ∗) → Σ∗, such that M ◦ h is an identity mapping on Σ∗ (that is, M is
the inverse mapping to h).

It is easy to see by induction that the first k symbols of a coded word can be
concluded after reading a bounded number of symbols of the codeword as well,
for any fixed k.

Lemma 5. If h : Σ∗ → Ω∗ is a code with deciphering delay bounded by d � 1,
then, for every k � 1, Firstk′(h(u)) = Firstk′(h(v)) (where k′ = d + (k −
1)maxa∈Σ |h(a)|) implies Firstk(u) = Firstk(v).

Proof. Induction on k. If k = 1, then the first d letters of h(u) and h(v) are the
same, and thus the first letters of u and v must also be the same.

For k > 1, assume the condition holds for smaller values of k. By the same
argument as above, the first letters of u and v are the same, and so the words can
be written as u = bu′ and v = bv′ for some b ∈ Σ and u′, v′ ∈ Σ+. Now h(u′) and
h(v′) are equal on the first d+(k−1)maxa |h(a)|−|h(b)| � d+(k−2)maxa |h(a)|
letters. Thus, by the induction assumption, u′ and v′ have the same k − 1 first
letters. It follows that u = bu′ and v = bv′ are equal on the k first letters, as
claimed. �
Example 4. The homomorphism h : {1, 2, 3}∗ → {a, b}∗ defined by h(1) = a,
h(2) = ab and h(3) = bb is an example of a code that is not of bounded de-
ciphering delay. Here 13ω and 23ω are two infinite words with the same image
h(13ω) = h(23ω) = abω. In practice, this means that for codewords abn, the
whole word has to be read, before the first letter of the pre-image can be deter-
mined. �
In the next section, some families of languages are shown not to be closed under
any codes of unbounded deciphering delay. The following characterization of
these codes will be used to construct examples of languages witnessing the non-
closure.

Homomorphisms Preserving Deterministic Context-Free Languages 159

Lemma 6. Let h : Σ∗ → Ω∗ be a code. Then it is of unbounded deciphering
delay if and only if there exist x, y, z ∈ Ω+ with x, xy, yz, zy ∈ h(Σ∗) and
y, z /∈ h(Σ∗).

A similar result for codes with bounded synchronization delay was proved by
Restivo [11].

Proof. Assume h is a code, but not of bounded deciphering delay. Then, by
Lemma 3, there exist two infinite words a0a1a2 . . . and b0b1b2 . . ., such that
a0 �= b0, but that the images h(a0)h(a1)h(a2) . . . = h(b0)h(b1)h(b2) . . . are the
same. Since h is a code, for every prefix a0a1 · · ·ak of a0a1a2 . . . there exists
a unique prefix b0b1 · · · b	 of b0b1b2 . . ., such that h(b0b1 · · · b) is shorter and
h(b0b1 · · · b	+1) is longer than h(a0a1 · · ·ak). Therefore one can define a mapping
f : N → N, so that

|h(b0b1 · · · bf(k)−1)| < |h(a0a1 · · ·ak)| < |h(b0b1 · · · bf(k))|

holds for all k.
Since h(a0a1 · · · ak) is a strict prefix of h(b0b1 · · · bf(k)), there exists a non-

empty word yk ∈ Ω+ satisfying h(a0a1 · · · ak)yk = h(b0b1 · · · bf(k)). As h(b0b1
· · · bf(k)−1) is a strict prefix of h(a0a1 · · ·ak), it follows that |yk| < |h(bf(k))|.
Consequently |yk| < maxa∈Σ(|h(a)|) for any k, so there are two indices � < �′

such that y	 = y	′ by the pigeon hole principle.
Now |h(a0a1 · · ·a)y	| < |h(a0a1 · · · a	′)|, since otherwise

|h(b0b1 · · · bf()−1)| < |h(a0a1 · · · a)| < |h(a0a1 · · · a	′)| � |h(b0b1 · · · bf())|,

and thus f(�′) = f(�). This would mean that h(a0a1 · · · a)y	 = h(a0a1 · · · a	′)y	′
and furthermore that h(a0a1 · · · a) = h(a0a1 · · ·a	′), which is a contradiction.

Denote y = y	 = y	′ and define x, z ∈ Ω+ by

x = h(a0a1 · · ·a)
yz = h(a	+1a	+2 · · · a	′).

Now x = h(a0a1 · · · a) ∈ h(Σ∗), xy = h(b0b1 · · · bf()) ∈ h(Σ∗), yz = h(a	+1a	+2

· · · a	′) ∈ h(Σ∗) and zy = h(bf()+1bf()+2 · · · bf(′)) ∈ h(Σ∗). At the same
time y /∈ h(Σ∗), since otherwise there would be two different factorizations
for h(a0a1 · · · a)y	 = h(b0b1 · · · bf()) by the words in h(Σ) contradicting the
assumption that h is a code. Furthermore, if z ∈ h(Σ∗), then also zyz ∈ h(Σ∗).
In this case it could be factorized in two ways, z · yz and zy · z, into words in
h(Σ+). This contradiction proves that also z /∈ h(Σ∗).

Conversely assume that there exist such words. Now x · yz · yz · yz · · · and
xy · zy · zy · zy · · · are two different factorizations of the same infinite word, so
h is not of bounded deciphering delay. �

The next lemma sharpens the characterization in Lemma 6 by presenting some
conditions on the strings x, y and z obtained in the latter lemma. It basically
asserts that as long as h is a code, these three strings must be to a certain extent
different from each other.

160 T. Lehtinen and A. Okhotin

Lemma 7. If h : Σ∗ → Ω∗ is a code and x, xy, yz, zy ∈ h(Σ∗) for some x, y, z ∈
Ω+ with y, z /∈ h(Σ∗), then the following conditions hold:

i. x and y are not powers of the same word, and
ii. x and xy (or x and yx) are not powers of the same word, and
iii. x and yz are not powers of the same word, and
iv. xy and zy are not powers of the same word, and
v. xy and yz are not powers of the same word, or yz �= zy.

Proof. If x and y are powers of the same word, then xy = yx. Since x, xy ∈
h(Σ∗), the word xyx ∈ h(Σ∗) could be factorized into code words as x · yx or as
xy · x implying y ∈ h(Σ∗). This is a contradiction.

The words x and xy (x and yx) are powers of the same word if and only if
xk = (xy)	 (xk = (yx)) for some k, � > 0. Then, by Lemma 2, the words x and
y would be powers of the same word, contradicting the above.

The rest of the cases are proved similarly. �

Although the strings x and yz (or xy and zy) cannot be powers of the same
word, the strings xy and yz can, as shown in the following example.

Example 5. The code h : {1, 2, 3}∗ → {a, b}∗ defined by h(1) = ababa, h(2) =
baaba and h(3) = ababaab is of unbounded deciphering delay. One can choose
x = ababaab, y = aba and z = ba. They satisfy the conditions x, xy, yz, zy ∈
h({1, 2, 3}∗) and y, z /∈ h({1, 2, 3}∗), while xy = yzyz. In this case yz = ababa is
different from zy = baaba.

The next result gives further conditions on the form of the strings x, y and
z in Lemma 6. It shows that their pre-images with respect to h also must be
distinguishable from each other in certain occasions.

Lemma 8. Let h : Σ∗ → Ω∗ be a code, and let the words w,w′, u, v ∈ Σ+

be encoded as h(w) = x, h(w′) = xy, h(u) = yz and h(v) = zy, for some
x, y, z ∈ Ω+ with y, z /∈ h(Σ∗). Then:

i. Neither of the words w and w′ is a prefix of the other, and, in particular,
their longest common prefix is of length less than min(|w|, |w′|);

ii. The longest common prefix of the infinite words wω and uω is of length less
than |w|+ |u|;

iii. The longest common prefix of (w′)ω and vω is of length less than |w′|+ |v|;
iv. The longest common prefix of w′vω and uω is of length at most |w′|+ |v|.

Proof. Firstly w′ cannot be a prefix ofw, as the image of w is a prefix of the image
of w′. Secondly if w would be a prefix of w′, that is w′ = wŵ for some ŵ ∈ Σ∗,
then xy = h(w)h(ŵ) and x = h(w) imply y = h(ŵ) ∈ h(Σ∗), contradicting the
assumption that y /∈ h(Σ∗). Thus the length of the common prefix of wω and
w′vω must be less than min(|w|, |w′|).

If wω and uω have a common prefix of length |w|+ |u|, then uwω and uω have
a common prefix of length |w|+ 2|u| and wω and wuω have a common prefix of

Homomorphisms Preserving Deterministic Context-Free Languages 161

length 2|w| + |u|. Consequently, uwω and wuω have a common prefix of length
|w|+ |u|, so uw = wu, and thus {u,w} is not a code. By Lemma 2, the words w
and u are then powers of the same word, and therefore h(w) = x and h(u) = yz
would also be powers of the same word, contradicting Lemma 7(iii).

The similar proofs for the rest of the cases are omitted. �

The bounds in Lemma 8 are not optimal. However, the given bounds are sufficient
for the purposes of this paper. They will be used to identify the border between
different periodic structures in words, e.g., the border between w’s and u’s in
the words wnun, which would not be possible in the case w and u were powers
of the same word.

4 Codes Preserving Deterministic and LL Context-Free
Languages

This section contains the first half of characterization of homomorphisms pre-
serving deterministic and LL context-free languages. The case of codes is consid-
ered and the characterizing property is shown to be that of bounded deciphering
delay. First it is proved that these families are closed under these codes. For
deterministic context-free languages the closure follows from the closure of this
family under inverse gsm mappings.

Lemma 9. Let h : Σ∗ → Ω∗ be a code of bounded deciphering delay. Then,
for every deterministic context-free language L ⊆ Σ∗, the language h(L) is a
deterministic context-free language as well.

Proof. Let L be a deterministic context-free language. By Lemma 4, the inverse
mapping of h is computed by a gsmM : h(Σ∗) → Σ∗. The family of deterministic
context-free languages is closed under inverse gsm mappings [5, Thm. 3.2], and
thus h(L) = M−1(L) is deterministic context-free, as was claimed. �

However, if a code is of unbounded deciphering delay there always exists a de-
terministic context-free language with a non-deterministic image.

Lemma 10. For every code h : Σ∗ → Ω∗ of unbounded deciphering delay there
exists a deterministic context-free language L ⊆ Σ∗, such that h(L) is not a
deterministic context-free language.

Proof. By Lemma 6, there exist x, y, z ∈ Ω∗ with x, xy, yz, zy ∈ h(Σ∗) and
y, z /∈ h(Σ∗). Let w,w′, u, v ∈ Σ∗ be the strings with h(w) = x, h(w′) = xy,
h(u) = yz and h(v) = zy and consider the language

L = {wnun | n � 1 } ∪ {wn−1w′v2n | n � 1 },

which is generated by the grammar

S → A | B
A → wAu | wu
B → wBvv | w′vv

162 T. Lehtinen and A. Okhotin

A deterministic pushdown automaton simulating this grammar shall push ws
into the stack, until it sees either u or w′. For that, it should be able to notice
the border between w and u in wnun and the border between w and w′ in
wnw′v2n, and be able to distinguish these cases from each other. This can be
done, as the lengths of the common prefices of wω, uω and w′vω are bounded by
max(|w| + |u|, |w′|+ |u|), which follows from Lemma 8.

So the border and the type of the words can be distinquished deterministically
after reading the max(|w| + |u|, |w′| + |u|) letters after the border has been
passed, and afterwards a deterministic pushdown automaton may start popping
the stack, reading words u or vv depending on the case.

The image of L under h is

h(L) = { xn(yz)n | n � 1 } ∪ { xn(yz)2ny | n � 1 }.

Let M : a+b+(ε ∪ c) → Ω∗ be a gsm mapping with M(akb	cm) = xk(yz)	ym,
for k, � � 1 and m ∈ {0, 1}. The pre-image M−1

(
h(L)

)
is easy to determine, as

long as M is injective. To prove its injectivity, assume that two distinct words
in a+b+(ε ∪ c) are mapped to the same word. It turns out that in this case x
and yz would be powers of the same word, contradicting Lemma 7(iii). There
are three possible cases:

If xk1(yz)	1 = xk2(yz)	2 for different exponents, then x and yz are powers of
the same word by Lemma 2.

The case xk1(yz)	1y = xk2 (yz)	2y can be handled by the same argument by
removing y from the end.

In the third possible case xk1 (yz)	1 = xk2 (yz)	2y, consider the suffixes of
length |yz|. Since �1, �2 > 0, the suffix on the left-hand side is yz, and zy on
the right-hand side. They are equal, so yz = zy, and then, by Lemma 2, y and
z are powers of the same word z′. Substituting y and z by powers of z′ in the
equation gives an equation xk1(z′)	

′
1 = xk2(z′)	

′
2 , which implies that x and z′,

and therefore x and yz, are powers of the same word.
So M is injective, and thus M−1

(
h(L)

)
= { anbn | n � 1 }∪{ anb2nc | n � 1 }.

This is clearly not a deterministic context-free language. �

Turning to the LL context-free languages, this family is not closed under inverse
gsm mappings, so different arguments are needed. Here the bounded deciphering
delay guarantees that k symbols of the original string can be known after reading
a bounded number of symbols (depending on the delay bound and k) of the image
string.

Lemma 11. Let h : Σ∗ → Ω∗ be a code of deciphering delay bounded by d.
Then, for every LL(k) context-free language L ⊆ Σ∗, the language h(L) is an
LL(k′) context-free language, where k′ = d+ (k − 1)maxa∈Σ |h(a)|.

A similar non-closure result as for deterministic context-free languages holds for
LL context-free languages as well. However, due to the limited closure properties
of this language family (particularly their non-closure under inverse homomor-
phisms established in Lemma 1), the proof involves a lengthy low-level analysis
of a parser’s computation.

Homomorphisms Preserving Deterministic Context-Free Languages 163

Lemma 12. For every code h : Σ∗ → Ω∗ of unbounded deciphering delay there
exists an LL(1) context-free language L ⊆ Σ∗, such that h(L) is not an LL(k)
context-free language, for any k.

Proof (a sketch). The strings x, y, z ∈ Ω∗ with x, xy, yz, zy ∈ h(Σ∗) and y, z /∈
h(Σ∗) exist by Lemma 6. Consider w,w′, u, v ∈ Σ∗ with h(w) = x, h(w′) = xy,
h(u) = yz and h(v) = zy. The language

L = {wunwn | n � 0 } ∪ {w′vn(w′)n | n � 0 }

is generated by the following context-free grammar

S → wA | w′B

A → uAw | ε
B → vBw′ | ε

This grammar is LL(k) for k = |u|+ |w|, which can be proved using Lemma 8.
The image of L is the following language:

h(L) = { x(yz)nxn | n � 0 } ∪ { x(yz)ny(xy)n | n � 0 }.

This is a variant of the language in Example 3. The proof of the non-existence
of an LL(k) grammar for this language is omitted due to space constraints. �

5 Non-codes Preserving Deterministic and LL
Context-Free Languages

The previous section established the condition on codes preserving deterministic
and LL context-free languages were characterized. This section handles the case
of non-codes. It turns out that these families are closed under a non-injective
homomorphism h if and only if the images of all letters under h are powers of
the same word.

Lemma 13. Let h : Σ∗ → Ω∗ be a homomorphism satisfying h(Σ) ⊆ z∗ for
some z ∈ Ω∗. Then, for every context-free language L, the language h(L) is
regular.

Proof. By Parikh’s theorem, there exists a regular language L′ letter equivalent
to L. Since regular languages are closed under homomorphisms and h(L) =
h(L′), it follows that h(L) is regular. �

Since the image language in the case of the previous lemma is regular, it is LL
context-free, and hence the deterministic context-free languages, the LL context-
free languages and the unambiguous context-free languages are all closed under
such homomorphisms. It remains to show that every non-injective homomor-
phism of any different form does not preserve these subclasses, which is proved
by the following single construction.

164 T. Lehtinen and A. Okhotin

Lemma 14. For every homomorphism h : Σ∗ → Ω∗ that is not a code, and for
which h(a) and h(b) are not powers of the same word for some a, b ∈ Σ, there
exists a language L ⊆ Σ∗ generated by an LL(1) grammar, such that h(L) is an
inherently ambiguous context-free language.

Proof. Since h is not a code, there exist two distinct strings u, v ∈ Σ∗ with
h(u) = h(v). It can be assumed, that u and v differ on the first letter. Or in the
case one of them, say u, is empty, that v is of length one and v �= a. Define

L = { uanbian | i, n � 1 } ∪ { vaibnan | i, n � 1 }.

It is generated by the grammar

S → uaS1a | vaS2

S1 → aS1a | bA
S2 → aS2 | bBa

A → bA | ε
B → bBa | ε

For each non-terminal symbol, the words generated by different rules differ on
the first symbol. Therefore, the grammar is LL(1).

The image of L is

h(L) = { xh(a)nh(b)ih(a)n | i, n � 1 } ∪ { xh(a)ih(b)nh(a)n | i, n � 1 },

where x = h(u) = h(v).
It remains to be proven that h(L) is inherently ambiguous.
For this, define a gsm mapping M : a+b+a+ → Ω∗, such that M(akb	am) =

xh(a)kh(b)	h(a)m).
If M(ak1b	1am1) = M(ak2b	2am2) for some exponents, then

h(a)k1h(b)	1h(a)m1 = h(a)k2h(b)	2h(a)m2 . By assumption h(a) and h(b) are not
powers of the same word, so k1 = k2, �1 = �2 and m1 = m2 by Lemma 2. It
follows that M is injective and M−1

(
h(L)

)
= { anbian | i, n � 1 } ∪ { aibnan |

i, n � 1 }, which is an inherently ambiguous language [4, p. 153]. As unambigu-
ous context-free languages are closed under inverse gsm mappings [6], it follows
that h(L) is inherently ambiguous as well. �

This allows stating the final result:

Theorem 1. A homomorphism h : Σ∗ → Ω∗ preserves deterministic context-
free languages (LL context-free languages) if and only if

– either h is a code of bounded deciphering delay,
– or there exists such an x ∈ Ω∗, that h(a) ∈ x∗ for all a ∈ Σ.

The proof for the case of codes is given in Lemmata 9–12, and for non-codes, in
Lemmata 13–14.

A simpler characterization for the unambiguous context-free languages also
follows from the above constructions.

Homomorphisms Preserving Deterministic Context-Free Languages 165

Theorem 2. A homomorphism h : Σ∗ → Ω∗ preserves unambiguous context-
free languages if and only if

– either h is a code,
– or there exists such an x ∈ Ω∗, that h(a) ∈ x∗ for all a ∈ Σ.

Proof. The unambiguous context-free languages are closed under all injective
gsm mappings [6], and hence under codes. For non-codes, the closure and the
matching non-closure results are given in Lemmata 13–14. �

References

1. Autebert, J., Berstel, J., Boasson, L.: Context-free languages and pushdown au-
tomata. In: Rozenberg, Salomaa (eds.) Handbook of Formal Languages, vol. 1,
pp. 111–174. Springer (1997)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press (2010)

3. Bruyère, V.: Maximal codes with bounded deciphering delay. Theoretical Com-
puter Science 84(1), 53–76 (1991)

4. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages.
In: Braffort, Hirschberg (eds.) Computer Programming and Formal Systems, pp.
118–161. North-Holland, Amsterdam (1963)

5. Ginsburg, S., Greibach, S.A.: Deterministic context-free languages. Information
and Control 9(6), 620–648 (1966)

6. Ginsburg, S., Ullian, J.: Preservation of unambiguity and inherent ambiguity in
context-free languages. Journal of the ACM 13(3), 364–368 (1966)

7. Lehtinen, T., Okhotin, A.: Boolean grammars and gsm mappings. International
Journal of Foundations of Computer Science 21(5), 799–815 (2010)

8. Lothaire, M.: Combinatorics on Words. Addison-Wesley (1983)
9. Okhotin, A.: On the equivalence of linear conjunctive grammars to trellis automata.

RAIRO Informatique Théorique et Applications 38(1), 69–88 (2004)
10. Okhotin, A.: Homomorphisms preserving linear conjunctive languages. Journal of

Automata, Languages and Combinatorics 13(3-4), 299–305 (2008)
11. Restivo, A.: A combinatorial property of codes having finite synchronization delay.

Theoretical Computer Science 1(2), 95–101 (1975)
12. Rosenkrantz, D.J., Stearns, R.E.: Properties of deterministic top-down grammars.

Information and Control 17, 226–256 (1970)
13. Schützenberger, M.P.: On a question concerning certain free submonoids. Journal

of Combinatorial Theory 1(4), 437–442 (1966)
14. Staiger, L.: On infinitary finite length codes. RAIRO Informatique Théorique et

Applications 20(4), 483–494 (1986)
15. Wood, D.: A further note on top-down deterministic languages. Computer Jour-

nal 14(4), 396–403 (1971)

Unary Coded NP-Complete Languages

in ASPACE (log log n)

Viliam Geffert1,� and Dana Pardubská2,��

1 Department of Computer Science, P. J. Šafárik University, Košice, Slovakia
2 Department of Computer Science, Comenius University, Bratislava, Slovakia

viliam.geffert@upjs.sk, pardubska@dcs.fmph.uniba.sk

Abstract. (i) There exists an NP-complete language L such that its
unary coded version un-L is in ASpace(log log n). (ii) If P
= NP,
there exists a binary language L such that its unary version un-L is in
ASpace(log log n), while the language L itself is not in ASpace(log n).
As a consequence, under assumption that P
= NP, the standard space
translation between unary and binary languages does not work for al-
ternating machines with small space, the equivalence L ∈ ASpace(s(n))
≡ un-L ∈ ASpace(s(log n)) is valid only if s(n) ∈ Ω(n). This is quite
different from deterministic and nondeterministic machines, for which
the corresponding equivalence holds for each s(n) ∈ Ω(log n), and hence
for s(logn) ∈ Ω(log log n).

Keywords: binary and unary languages, sublogarithmic space, com-
plexity theory.

1 Introduction

The early motivation for this paper dates back to our previous result [1], where
we showed that the language un-Primes = {1n |n is a prime} can be accepted
by an alternating machine using space O(log logn). One of the reviewers pointed
out that if this result implied that Primes, the corresponding binary version of
the language, were in ALog = ASpace(logn), we could obtain an alternative
proof for Primes ∈ P, shown in [2], since ALog = P [3]. Unfortunately, this was
not the case, since there was no proof in the literature indicating that un-L ∈
ALogLog = ASpace(log log n) implies L ∈ ALog.

This brings our attention to a more general question, namely, if a machine
accepting a unary language un-L with space O(s(log n)) can be converted into
a machine accepting L, the corresponding language with inputs given binary,
using space O(s(n)), even if s(log n) is below log n. (Such translations were found
already by Savitch [4]. However, most of the standard simulations do not work

� Supported by the Slovak Grant Agency for Science under contract VEGA 1/0479/12
and the Slovak Research and Development Agency under contract APVV-0035-10.

�� Partially supported by the Slovak Grant Agency for Science under contract
VEGA 1/0979/12.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 166–177, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Unary Coded NP-Complete Languages in ASPACE (log log n) 167

with sublogarithmic space bounds. For more details about sublogarithmic space,
see e.g. [5–8].) The same question arises also other way round, i.e., if a machine
designed for binary inputs can be converted into a corresponding machine for
unary inputs, with a logarithmic reduction in space. Let us summarize the known
relations for deterministic, nondeterministic, and alternating machines.1

Theorem 1 (Translation between binary and unary languages)

(i) Let X ∈ {D,N,A}, and let s(n) ∈ Ω(n) be monotone. Then
L ∈ XSpace(s(n)) iff un-L ∈ XSpace(s(log n)).

(ii) Let X ∈ {D,N,A}, and let s(n) ∈ Ω(log n) be monotone. Then
L ∈ XSpace(s(n)) implies un-L ∈ dm-XSpace(s(logn)).

(iii) Let X ∈ {D,N}, and let s(n) ∈ Ω(logn) be monotone and fully space con-
structible. Then un-L ∈ dm-XSpace(s(log n)) implies L ∈ XSpace(s(n)).

Consider first a “downward” translation, from L to un-L. If L is accepted in
space O(s(n)) by some machine A, we could try to accept un-L as follows. On
input 1n, compute first bin(n) ∈ {0, 1}∗, the number n written in binary. This
string takes space Θ(log n). Now simulate A on bin(n), using space O(s(log n)).
This completes the argument if s(n) ≥ Ω(n), since then Θ(log n) ≤ O(s(log n)).
However, we cannot store the binary string bin(n), if s(logn) is below logn. In
this case, the argument is based on nontrivial results in [11, 12].

Conversely, if un-L is accepted by some A in space O(s(log n)), we accept L as
follows. Since the given binary input of length n encodes a number N ≤ O(2n),
simulate A on 1N, using space O(s(logN)) ≤ O(s(n)). The only problem is
that 1N itself could require space Ω(2n). However, this string is “contentless”
and hence it suffices to keep track of h, the current position of the input head
of A on the virtual input 1N. Such value can be stored in space Θ(logN) ≤ O(n).
This completes the argument for s(n) ≥ Ω(n), since then Θ(logN) ≤ O(s(n)).
However, we cannot store the input head position h, if s(n) is below n. In this
case, the proof is based on results in [5]. These results cannot be extended to
alternating machines.

Thus, the only unknown implication is un-L ∈ dm-ASpace(s(logn))
?⇒

L ∈ ASpace(s(n)) for s(n) ∈ o(n). After simplifying, the space translations
of Thm. 1 can be formulated as follows:

1 By DSpace(s(n)), NSpace(s(n)), and ASpace(s(n)), we denote the respective
classes of languages accepted by machines with O(s(n)) space, working in the so-
called strong mode: apart from a two-way read-only input, such machine starts with
blank working tapes and no computation path—even if the given path is rejecting—
uses more than s(n) cells on any working tape, for no input of length n. The prefix
“dm-” denotes the space classes based on a more powerful machine model, having
delimited �s(n) working tape cells in between two special endmarkers automati-
cally, at the very beginning. (The notation “dm-” derives from “Demon” Turing
Machines, mentioned in [9, 10].) Clearly, XSpace(s(n)) ⊆ dm-XSpace(s(n)), for
X ∈ {D,N,A}. The difference disappears for fully space constructible bounds [8].

168 V. Geffert and D. Pardubská

un-L ∈ XLog ≡ L ∈ XSpace(n) , for X∈{D,N,A},
un-L ∈ dm-DLogLog ≡ L ∈ DLog ,
un-L ∈ dm-NLogLog ≡ L ∈ NLog ,
un-L ∈ dm-ALogLog ⇐ L ∈ ALog ,

with

un-L ∈ dm-ALogLog
?⇒ L ∈ ALog (1)

left open. The problem is open also for the standard computational model, not
having delimited �log logn� space at the beginning, but starting with blank
working tapes:

un-L ∈ ALogLog
?⇒ L ∈ ALog . (2)

In this paper, instead of attempts to prove (1) or (2), we show that there ex-
ists a binary NP-complete language L such that its unary version un-L is in
ALogLog. This language, later denoted by Enc3Sat, is actually the classical
NP-complete problem of 3-Satisfiability, but encoded in a special way, so that
its unary version can be easily handled with small space. Using this language,
under assumption that P �= NP, we disprove both (1) and (2). Assume that (1)
does hold. In this situation, there exists a binary NP-complete language L such
that un-L ∈ ALogLog ⊆ dm-ALogLog, and hence, using (1), we get that
L ∈ ALog = P, by [3]. Thus, we have an NP-complete language L in P, which
contradicts P �= NP. The argument disproving (2) is similar. In other words, by
proving either (1) or (2), we must obtain P = NP, which is very unlikely.

As a consequence, we see that the alternating machines with sublogarithmic
space are quite powerful.

2 Preliminaries

We start by giving some technical notation and elementary facts used through-
out the paper. We assume the reader is familiar with the basics of computational
complexity, among others, with a standard deterministic, nondeterministic, and
alternating Turing machine, equipped with a finite-state control, a two-way read-
only input tape, with input enclosed between two endmarkers, and a fixed num-
ber of separate semi-infinite two-way read-write working tapes, initially empty,
containing blank symbols. (See, e.g., [13, 3, 14, 6, 15, 8].)

For a positive integer N , let bin(N) denote its binary representation. More
precisely, to obtain a one-to-one mapping between positive integers and bi-
nary strings, we do not write down the most significant bit, always equal to 1.
Thus, for N = 1, 2, 3, 4, 5, 6, 7, 8, 9, . . . , the corresponding binary representation
is bin(N) = ε, 0, 1, 00, 01, 10, 11, 000, 001, . . . (We cannot express N=0 this way,
and hence bin(0) is undefined.) The unary representation of N is introduced as
usual, giving us 1N = 1, 11, 111, . . .

For any given binary language L ⊆ {0, 1}∗, its unary encoded version is the
unary language un-L = {1N | bin(N) ∈ L}.

Unary Coded NP-Complete Languages in ASPACE (log log n) 169

By pj we denote the jth prime, starting with p1=2, p2=3, . . . The following
facts will be required later.

Lemma 2. (i) pj ≤ O(j ·log j), and p1 ·p2 · . . . ·pj ≤ jO(j).
(ii) Let d(N) be the smallest prime not dividing N . Then d(N) ≤ O(logN).

For proofs, see e.g. [5, Lemma 4.14] and [8, Lemma 4.1.2]. For a more detailed
exposition concerning the Number Theory, the reader is referred to [16, 17].

Lemma 3. (i) Given two numbers a and b, written in binary, their product can
be computed deterministically in time O(log a·log b) and space O(log a+log b).

(ii) The same computational resources are sufficient for testing whether the
number a is divisible by b.

(iii) Given a number j, the list of the first j primes p1, p2, . . . , pj can be created
in time O(p2j · log2 pj) ≤ O(j2 · log4 j). The jth prime pj alone can be computed
with O(log pj) ≤ O(log j) space.

3 Encoding Boolean Formulas

To achieve our goal we utilize the NP-completeness of the 3Sat problem, using
a suitable coding of Boolean formulas by natural numbers.

A Boolean formula F = F (x1, . . . , xm) over Boolean variables x1, . . . , xm is
satisfiable, if F (v1, . . . , vm) = 1, for some values v1, . . . , vm ∈ {0, 1}. As is usual,
0 and 1 represent the respective Boolean values false and true.

A formula F = F (x1, . . . , xm) is in a 3-conjunctive normal form (3CNF,
for short), if it is expressed as a conjunction of some t clauses, that is, F =
F1∧· · ·∧Ft, for some t≥0, such that each clause Fi is expressed as a union of at

most 3 literals, i.e., Fi = (x
(σi1)

i1
∨ x

(σi2)

i2
∨ x

(σi3)

i3
), for some i1, i2, i3 ∈ {1, . . . ,m}

and σi1 , σi2 , σi3 ∈ {0, 1}. (For a variable x, we denote by x(1) the literal x and
by x(0) its negation ¬x.) A clause with a smaller number of literals is expressed

in a similar way, as (x
(σi1)

i1
∨ x

(σi2)

i2
), (x

(σi1)

i1
), or (). An empty clause () is always

evaluated to 0, which gives F (v1, . . . , vm) = 0 for all values v1, . . . , vm ∈ {0, 1}.
On the other hand, for an empty list of clauses, with t = 0, we get always
F (v1, . . . , vm) = 1. The empty list of clauses will be denoted by ε.

One of the first NP-complete problems is the problem of deciding whether
the given formula F in 3-conjunctive normal form is satisfiable (see e.g. [13]).
The set of all satisfiable 3CNF formulas will be denoted here by 3Sat. A clas-
sical encoding of the given formula F on the input uses the alphabet ΣBF =
{∧,∨,¬, (,), 0, 1}, with Boolean variables represented by the corresponding bi-
nary written indices. A length of the formula F refers to the length of a string
describing the structure of F in this encoding. As an example, the string

F = (¬1) ∧ (111 ∨ ¬10 ∨ ¬101) ∧ (10011010∨ 10 ∨ ¬111) , (3)

representing F (x1, . . . , x154) = (x
(0)
1) ∧ (x

(1)
7 ∨ x

(0)
2 ∨ x

(0)
5) ∧ (x

(1)
154 ∨ x

(1)
2 ∨ x

(0)
7),

is of length 38. It can be easily verified that F ∈ 3Sat, using x1 := 0, x2 := 0,

170 V. Geffert and D. Pardubská

and x154 := 1. This example also illustrates that the number of variables in
F (x1, . . . , xm) can formally be much larger than its length on the input. To
avoid such anomalies, we need the following more restricted normal form.

Definition 4. A formula F = F (x1, . . . , xm) of length n is 3CNF-reduced, if it
is in the 3-conjunctive normal form, expressed as a conjunction of some clauses
F1 ∧ F2 ∧ · · · ∧ Ft and, moreover, the following holds:

(i) Each clause is in the form (x
(σi1)

i1
∨ x

(σi2)

i2
∨ x

(σi3)

i3
), with i1 < i2 < i3. That

is, the clause contains exactly 3 literals, using 3 different variables.

(ii) Each of the variables x1, . . . , xm appears in at least one clause. This gives
m ≤ n, i.e., the number of variables is bounded by the length of the input.

(iii) All clauses in the list F1 ∧ · · · ∧ Ft are sorted, and there are no replicated
copies of the same clause. For the purposes of this sorting, the relative order

of two clauses is defined as follows: (x
(σi1)

i1
∨ x

(σi2)

i2
∨ x

(σi3)

i3
) is smaller than

(x
(σj1)
j1

∨x(σj2)
j2

∨x(σj3)
j3

), if the sextuplet (i1, i2, i3, σi1 , σi2 , σi3) lexicographically
precedes (j1, j2, j3, σj1 , σj2 , σj3).

The last condition ensures that the total number of possible clauses is k(m) =(
m
3

)
·8 = 4/3 · m3 − 4 · m2 + 8/3 · m ≤ O(m3). If m < 3, we have k(m) = 0.

Note also that the only 3CNF-reduced formula with m < 3 is F () = ε, which
represents a constant function always returning 1: by (i) in the above definition,
the list of clauses must be empty, with t=0, and hence, by (ii), F must be built
over a zero number of variables, which gives m=0. The formula F ()=ε will be
called a trivial tautology. The next lemma says that the 3Sat problem remains
NP-complete even if we restrict the inputs to 3CNF-reduced formulas.

Lemma 5. Each Boolean 3CNF formula F of total length n can be converted
into a 3CNF-reduced formula F ′ = R(F) over m ≤ O(n) variables with t ≤
O(n) clauses, such that F ′ is satisfiable if and only if F is satisfiable. Moreover,
this conversion can be performed deterministically in polynomial time.

Basically, we first modify the formula so that each clause contains exactly 3
literals (not less), using 3 different variables. After that, we create a sorted list
of all variables that really appear in some clauses. This gives xi1 , xi2 , . . . , xim ,
with i1 < i2 < · · · < im. Using this list, the variables in F can be renamed:
throughout the entire formula, rename xij to xj , for each j ∈ {1, . . . ,m}.

A 3CNF-reduced formula could be represented in the same way as illustrated
by (3) above, using the classical alphabetΣBF = {∧,∨,¬, (,), 0, 1} which, in turn,
could be encoded by a binary alphabet. However, we need a more sophisticated
binary encoding. To this aim, let Wm denote the set of all possible clauses over
m variables, in the form presented by (i) in Def. 4. That is,

Wm = {(x(σi1)

i1
∨ x

(σi2)

i2
∨ x

(σi3)

i3
) | 1 ≤ i1 < i2 < i3 ≤ m, σi1 , σi2 , σi3 ∈ {0, 1}}

= {wm,1, . . . , wm,k(m)} .

Unary Coded NP-Complete Languages in ASPACE (log log n) 171

(For m< 3, we have k(m)= 0 with Wm= ∅.) Here wm,j denotes the jth clause
in Wm, using the relative order of clauses brought into existence in Def. 4. This

gives that (x
(σi1)

i1
∨ x

(σi2)

i2
∨ x

(σi3)

i3
) = wm,πm(i1,i2,i3,σi1 ,σi2 ,σi3)

, where

πm(i1, i2, i3, σi1 , σi2 , σi3) = 1+
∑i1−1

i′1=1

(
m−i′1

2

)
·8 +

∑i2−1
i′2=i1+1

(
m−i′2

1

)
·8 +∑i3−1

i′3=i2+18 + 4·σi1 + 2·σi2 + σi3 .
(4)

This follows from the fact that there are
∑i1−1
i′1=1

(
m−i′1

2

)
·8 clauses (x

(σi′
1
)

i′1
∨x

(σi′
2
)

i′2
∨

x
(σi′

3
)

i′3
) with i′1 < i1, plus

∑i2−1
i′2=i1+1

(
m−i′2

1

)
·8 clauses satisfying i′1 = i1 and i′2 < i2,

together with
∑i3−1

i′3=i2+18 clauses satisfying i′1 = i1, i
′
2 = i2, and i′3 < i3, and

also 4σi1 +2σi2 +σi3 clauses satisfying i′1 = i1, i
′
2 = i2, and i′3 = i3, but with

lexicographically smaller values σi′1 , σi′2 , σi′3 . The following expression can be
derived for the mapping function πm:

πm(i1, i2, i3, σi1 , σi2 , σi3) = 4
3 ·i31 + 4(1−m)·i21 + 4(m2−2m+ 2

3)·i1 −
4·i22 + 4(2m−1)·i2 + 8·i3 + 4·σi1 + 2·σi2 + σi3 − (4m2+4m+7) .

(5)

This is obtained by simplifying the equation (4), applying equalities of the
following types:

(
n
h

)
= n!

(n−h)!·h! ,
∑n

h=11 = n,
∑n
h=1h = (n2 + n)/2, and∑n

h=1h
2 = (2n3+3n2+n)/6. We leave such details to an interested reader, the

important point is that πm(i1, i2, i3, σi1 , σi2 , σi3) can be expressed as a “simple”
expression the values of which can be computed by a deterministic procedure
working in O(log2 m) time and O(logm) space.

A 3CNF-reduced formula F (x1, . . . , xm) is completely determined by the set
of its clauses, and hence it can be unambiguously represented by the correspond-
ing subset of Wm. We shall encode this subset into a natural number, using the
ordering of clauses in Wm introduced in Def. 4:

Definition 6. (i) Let F = F1 ∧ · · · ∧ Ft be a 3CNF-reduced formula over m
variables. A canonical encoding of F is a positive integer N = N (F), defined by

N (F) = p1+α1
1 ·p1+α2

2 · . . . ·p1+αk(m)

k(m) , where αj =

{
1 , if wm,j ∈ {F1, . . . , Ft} ,
0 , if wm,j /∈ {F1, . . . , Ft} .

Here pj denotes the jth prime, and the value αj is set to 1 or 0 depending on
whether the formula F contains the jth clause from Wm, i.e., on whether, for

some clause Fi = (x
(σi1)

i1
∨x

(σi2)

i2
∨x

(σi3)

i3
), we have πm(i1, i2, i3, σi1 , σi2 , σi3) = j.

For the trivial tautology, with m=0, t=0, and k(m)=0, we get N (F)=1.

(ii) Conversely, let N be a positive integer. Then a canonical decoding of N
is a Boolean 3CNF formula F = F(N), obtained as follows.

First, let p	+1 be the smallest prime not dividing N . Then N can be expressed
in the form N = p1+β1

1 ·p1+β2

2 · . . . ·p1+β�

	 ·ξ, for some natural numbers β1, . . . , β	
and ξ, with ξ not divisible by any of the primes p1, . . . , p	, p	+1, not excluding
the possibilities that ξ=1 or �=0 (for p	+1=2).

172 V. Geffert and D. Pardubská

Second, let m be the largest integer satisfying k(m) ≤ �. If � < 8, we take

m=0. Thus, N = p1+β1

1 ·p1+β2

2 · . . . ·p1+βk(m)

k(m) ·ξ′ ·ξ, where ξ′ =
∏	
h=k(m)+1 p

1+βh

h ,

not excluding ξ′=1 or k(m)=0.
Finally, let F(N) be a 3CNF formula consisting of all clauses wm,j ∈ Wm

for which βj > 0: F(N) =
∧
{wm,j | 1 ≤ j ≤ k(m), βj > 0}. For a set of clauses

{F1, . . . , Ft}, we denote by
∧
{F1, . . . , Ft} their conjunction F1∧· · ·∧Ft. For the

empty set we have, by definition,
∧
∅ = ε.

It can be easily verified that, for each 3CNF-reduced formula F , we have

F(N (F)) = F . (6)

Thus, after encoding F into an integer, the original formula can be recalled back.
This is all we need to keep our encoding unambiguous, despite of the following
observations. First, F(N) always returns a valid 3CNF formula. However, this
formula F (x1, . . . , xm) is not necessarily 3CNF-reduced: there may exist a vari-
able xi not used in any of the clauses, which violates (ii) in Def. 4. Second,
N (F(N)) is not necessarily equal to N . In fact, for each 3CNF formula F ,
we can find infinitely many numbers satisfying F(N) = F . Actually, N (F(N))
returns the unique smallest N̂ coding the same formula F as does N .

4 Encoded 3-Satisfiability

We are now ready to introduce encoded versions of 3Sat:

Enc3Sat = {bin(N) | F(N) ∈ 3Sat} ,
un-Enc3Sat = {1N | bin(N) ∈ Enc3Sat} = {1N | F(N) ∈ 3Sat} .

Lemma 7. The language Enc3Sat is NP-hard.

Sketch of proof. The NP-hardness is shown by a polynomial-time many-to-one
reduction from 3Sat to Enc3Sat. First, for any given formula F in 3-conjunctive
normal form, we compute a 3CNF-reduced formula R(F), as shown in Lem. 5.
After that, we encode this formula into a numberN (R(F)), introduced by Def. 6,
and print its binary representation bin(N (R(F))) on the output.

Thus, a 3CNF formula F ∈ Σ∗
BF

is mapped into bin(N (R(F))) ∈ {0, 1}∗. By
definition of Enc3Sat, bin(N (R(F))) ∈ Enc3Sat if and only if F(N (R(F))) ∈
3Sat. Using (6), this holds if and only if R(F) ∈ 3Sat which, in turn, holds
if and only if F ∈ 3Sat, by Lem. 5. Summing up, F ∈ 3Sat if and only if
bin(N (R(F))) ∈ Enc3Sat. It remains to show how this reduction is computed.

(i) F ′ := R(F): If the given 3CNF formula F is of total length n, then the
3CNF-reduced formula F ′ = R(F) uses m ≤ O(n) variables and t ≤ O(n)
clauses F ′

1 ∧ · · · ∧ F ′
t . The time bound for this conversion is nO(1), by Lem. 5.

Before passing to subsequent steps, let us present upper bounds for some
“important” values that will be used by the algorithm.

First, using (iii) of Def. 4, we now have k(m) =
(
m
3

)
·8 ≤ O(m3) ≤ O(n3).

Unary Coded NP-Complete Languages in ASPACE (log log n) 173

Second, the size of jth prime pj , used in the course of the computation, is
pj ≤ pk(m) ≤ O(k(m)·log k(m)) ≤ O(n3 ·log n), using Def. 6 and Lem. 2. Hence,
m, t, k′ = k(m), and pj can be stored as binary integers of length O(log n).

Finally, the largest possible value of N = N (R(F)) is

N = p1+α1
1 · . . . ·p1+αk(m)

k(m) ≤ (p1 · . . . ·pk(m))
2 ≤ k(m)O(k(m))×2 ≤ nO(n3),

since αj ∈ {0, 1}, by Def. 6 and Lem. 2. Thus, the length of a binary represen-
tation of N is at most O(n3 ·logn). The next steps proceed as follows.

(ii) N := p1 ·p2 · . . . ·pk(m): Here we create p1, p2, . . . , pk(m), the first k(m)
primes. Each time we find a new prime pj, we execute also N := N ·pj, starting
from N := 1. This can be computed in time O(n6 ·log4 n).

(iii) N := N ·pj, for each clause wm,j ∈ {F ′
1, F

′
2, . . . , F

′
t}: First, for each clause

F ′
i = (x

(σi1)
i1

∨x(σi2)
i2

∨x(σi3)
i3

) in the list F ′
1∧F ′

2∧· · ·∧F ′
t , we need to find the unique

value j satisfying wm,j = F ′
i , that is, to map F ′

i into Wm = {wm,1, . . . , wm,k(m)},
the set of all possible clauses over m variables. This is achieved by computing
j := πm(i1, i2, i3, σi1 , σi2 , σi3), utilizing the expression presented by (5). Next,
the jth prime pj is found in the list p1, p2, . . . , pk(m), created already in Step (ii).

Finally, we execute N := N ·pj. The overall contribution is O(n4·log2 n) time. �

Theorem 8. The binary language Enc3Sat is NP-complete.

Proof. The NP-hardness has already been shown by Lem. 7. It only remains to
describe a nondeterministic Turing machine N recognizing Enc3Sat in polyno-
mial time. Let bin(N) ∈ {0, 1}∗ be any binary input of length n, representing
some positive integer N ≤ O(2n). By Def. 6, N encodes some Boolean formula
F = F(N) in 3-conjunctive normal form (not necessarily 3CNF-reduced).

To decide if bin(N) ∈ Enc3Sat, i.e., if F = F(N) ∈ 3Sat, the machine N
works in three phases: partial decoding, guessing, and verifying. First, N deter-
ministically recovers only m, the number of variables in F . Second, N nondeter-
ministically chooses some values v1, . . . , vm ∈ {0, 1}. Third, N deterministically
verifies whether F (v1, . . . , vm) = 1, without trying to construct the formula F
itself. Instead, N verifies that F does not contain any clause contradicting the
given choice for v1, . . . , vm. More precisely, N proceeds as follows:

(i) Decode m, the number of variables in F(N): First, N generates a list of
primes p1, p2, p3, . . . Each time N generates a new prime pj , it tests divisibility
of N by pj . The cycle continues until we find the first prime p	+1 that does not
divide N . By Lem. 2, we get that p	+1 ≤ O(logN) ≤ O(n).

Thus, the list p1, . . . , p	, p	+1 is created in O(p2	+1 ·log
2 p	+1) ≤ O(n2 ·log2 n)

time, by Lem. 3. However, during this process, we also test divisibility of N by
p1, . . . , p	, p	+1. The respective lengths of these binary written integers are O(n)
and O(log n), which gives “additional” time O((�+1)× n·logn) ≤ O(n2 ·logn).

Next, for m := 0, 1, 2, . . . , the machine N computes k(m) = 4/3·m3− 4·m2 +
8/3·m (see Def. 4), until it finds the first number m+1 with k(m+1) > �. This
gives m, the largest integer satisfying k(m) ≤ �, which is, by Def. 6, the number

174 V. Geffert and D. Pardubská

of variables in the formula F(N). If �< 8, we take m=0. It is easy to see that

m ≤ O(k(m)1/3) ≤ O(�1/3) ≤ O(p
1/3
	+1) ≤ O(n1/3).

Thus, both m and k′ := k(m) are stored in O(log n) bits. The time bound for
computing k(0), . . . , k(m), k(m+1) is O((m+2)× log2 n) ≤ O(n1/3 ·log2 n).

(ii) Guess some v1, . . . , vm ∈ {0, 1}: This is the only task in which nondeter-
minism is used, done in time O(m) ≤ O(n1/3).

(iii) Verify if F = F(N) satisfies F (v1, . . . , vm) = 1: This can be verified by
proving that the formula does not contain any clause contradicting the given
choice for v1, . . . , vm. Thus, N runs three nested loops, iterating over all possible
triples i1, i2, i3 satisfying 1 ≤ i1 < i2 < i3 ≤ m, and verifies that F(N) does

not contain the clause (x
(1−vi1)
i1

∨ x
(1−vi2)
i2

∨ x
(1−vi3)
i3

). To this aim, N computes
j := πm(i1, i2, i3, 1−vi1, 1−vi2 , 1−vi3), using the expression presented by (5), and
then it verifies that N is not divisible by p2j , i.e., that F(N) does not contain
the clause wm,j . If N finds a contradicting clause, it rejects immediately. After
exhausting all triples without finding a contradiction, N accepts. (For the trivial
tautology, with m<3, there are no such triples i1, i2, i3, and hence N enters its
accepting state without trying to execute the body of the loop at all.)

The value j is computed in time O(log2 n). The jth prime pj ≤ pk(m) ≤ p	+1

is found in time O(p	+1·log p	+1) ≤ O(n·log n), using the list p1, . . . , p	+1, created
already in Step (i), and p2j is computed in time O(log2 p	+1) ≤ O(log2 n). Finally,

we test divisibility of N by p2j , which are binary written integers of respective
lengths O(n) and O(log n), and hence this task is done in time O(n · log n).
Taking into account that this process is iterated for O(m3) ≤ O(n) possible
triples i1, i2, i3, the overall contribution is O(n2 ·logn).

It should be clear that, if F = F(N) is satisfiable, then, for the “right”
sequence of nondeterministic guesses, N does not find a clause contradicting the
given choice for v1, . . . , vm, and hence it accepts. Conversely, if F = F(N) is not
satisfiable, then N must find a contradicting clause for any choice for v1, . . . , vm,
and hence it rejects along each computation path. The time bound is polynomial,
using a nondeterministic multitape Turing machine. �

Thus, unless P = NP, the language Enc3Sat is not in ALog = P. Consider
now the unary version of this language:

Theorem 9. The unary language un-Enc3Sat is in ALogLog.

Proof. We give a construction of an alternating Turing machine A recogniz-
ing, in space O(log logn), the unary version of Enc3Sat, i.e., un-Enc3Sat =
{1N | F(N) ∈ 3Sat}. Let 1N be a unary input, encoding some 3CNF formula
F = F(N). Now the unary coded input is of length n = N ≥ 1. (If N = 0,
A rejects at the very beginning.) The machine A works in the same three phases
as does N in Thm. 8, namely, partial decoding, guessing, and verifying:

(i) Decodem, the number of variables in F(N): Also A generates p1, p2, . . . , in
order to find the first prime p	+1 not dividing N . However, A does not remember

Unary Coded NP-Complete Languages in ASPACE (log log n) 175

the list p1, p2, . . . , the primes are generated separately, on demand. For each pj ,
A verifies divisibility of N by pj simply by moving its head along the input tape
and counting modulo pj. Using Lems. 2 and 3, forN = n (instead ofN ≤ O(2n)),
we get this time that p	+1 ≤ O(logN) ≤ O(log n).

Also here we compute k(0), k(1), . . . until we find the largest m satisfying
k(m) ≤ �, which gives the number of variables in the formula F(N).

Clearly, each of the primes p1 < p2 < · · · < p	+1 can be stored in O(log logn)
space. The same holds for m and k(m), since m ≤ O(k(m)) ≤ O(�).

(ii) Guess some v1, . . . , vm ∈ {0, 1}: We do not have enough space to store
m bits on the working tape, but we can encode them by an input head position.
Thus, branching existentially, A picks some position V ∈ {1, . . . , N} along the
input. This value encodes v1, . . . , vm as follows: vi = 1, if V modpi = 0, but
vi = 0, if V modpi �= 0. It is easy to see that each combination of bits v1, . . . , vm
can be encoded into a number V ≤ N (hence, represented by a valid input head
position), namely, into V = pv11 · . . . ·pvmm ≤ p1 · . . . ·pm ≤ N . This follows from
the fact that m ≤ k(m) ≤ �, if m≥3, and N is divisible by p1, . . . , p	. If m<3,
F(N) is the trivial tautology, and hence A accepts immediately, without any
existential branching. From now on, assume that m≥3.

(iii) Verify if F = F(N) satisfies F (v1, . . . , vm) = 1: Again, this is veri-
fied by proving that the formula does not contain any clause contradicting the
given choice for v1, . . . , vm. To this aim, branching universally, A writes i1, i2, i3
satisfying 1 ≤ i1 < i2 < i3 ≤ m on the working tape. This splits A to

(
m
3

)
par-

allel processes, denoted here by A1,2,3, . . . ,Am−2,m−1,m, corresponding to
(
m
3

)
possible triples i1, i2, i3, and hence to this many possibilities of obtaining a con-
tradicting clause. Each process Ai1,i2,i3 “knows” its triple i1, i2, i3 stored on the
working tape and inherits the same value m together with the same assignment
of variables v1, . . . , vm, represented by the same input head position V .

First, the process Ai1,i2,i3 computes the values vi1 , vi2 , vi3 , ignoring the re-
maining variables. This requires to compute pi1 , pi2 , pi3 and check divisibility
of V by these three primes. Thus, Ai1,i2,i3 moves its input head from the po-
sition V back to the left endmarker and, in one traversal, counts the length
of V modulo pi1 , pi2 , pi3 , using simultaneously three separate counters. After

that, Ai1,i2,i3 verifies that F(N) does not contain the clause wm,j = (x
(1−vi1)
i1

∨
x
(1−vi2)
i2

∨x(1−vi3)
i3

). Thus, Ai1,i2,i3 computes j := πm(i1, i2, i3, 1−vi1 , 1−vi2, 1−vi3),
and then it verifies that N is not divisible by p2j , traversing the entire input and

counting modulo p2j . Depending on whether F(N) does not contain or does con-
tain the clause wm,j , Ai1,i2,i3 accepts or rejects, respectively.

Since pi1 < pi2 < pi3 ≤ pm ≤ pk(m) and pj ≤ pk(m) < p	+1 ≤ O(log n), all
these values, as well as counters for testing V modulo these primes, can be stored
in O(log logn) space. The same space is sufficient for counting N modulo p2j .

By an argument similar to that in Thm. 8, one can show that A accepts 1N if
and only if F = F(N) is satisfiable. �

The space bound in the above theorem cannot be improved: below log logn, even
alternating machines recognize regular languages only [6]. By an easy modifica-

176 V. Geffert and D. Pardubská

tion of Thm. 8, testing all possible combinations v1, . . . , vm ∈ {0, 1} determinis-
tically, one after another, and generating each prime pj separately on demand,
we get a deterministic machine using O(log n) + 3

√
n bits on a binary working

tape. Hence, Enc3Sat is in DSpace(3
√
n) and in DTime(nO(1)·2 3

√
n). By Thm. 1,

un-Enc3Sat ∈ DLog.

5 Conclusion

By combining Thms. 8 and 9 with P = ALog = ASpace(logn), we get the
main results of the paper:

Theorem 10. There exists a binary NP-complete language L such that its
unary version un-L is in ALogLog = ASpace(log logn).

Theorem 11. If P �= NP, then there exists a binary language L such that
un-L ∈ ALogLog, but L /∈ ALog = ASpace(log n).

This disproves the implications (1) and (2) from Sect. 1, under assumption that
P �= NP. The following corollary is a counterpart of Thm. 10:

Corollary 12. There exists a binary co-NP-complete language L such that its
unary version un-L is in ALogLog.

Proof. Consider the following alternating Turing machine Ac. First, Ac rejects
the given input 1N, if N=0. For N≥1, it simulates A from the proof of Thm. 9,
but all existential decisions are replaced by universal ones and vice versa, swap-
ping also the roles of accepting and rejecting states. Since A never gets into an
infinite cycle, the new alternating machine Ac obviously accepts2 the language
{1N | F(N) /∈ 3Sat} = un-Enc3Sat

c, the unary version for the complement of
Enc3Sat, using the same amount of space as does A. �

This indicates that unary alternating machines with sublogarithmic space are
quite powerful. As a consequence, the class

un
−1
-ALogLog = {L |un-L ∈ ALogLog}

containing binary versions of unary languages from ALogLog is quite rich, but
the exact position of this class among other complexity classes is not known. On
the other hand, un−1

-DLogLog and un
−1
-NLogLog, the corresponding classes

for deterministic and nondeterministic machines, coincide exactly with binary
languages in DLog and NLog, respectively, by Thm. 1.

2 This trick could not be used, if the machine rejected some inputs by getting into
infinite cycles along some computation paths. For these reasons, it is not known
whether ALogLog is closed under complement.

Unary Coded NP-Complete Languages in ASPACE (log log n) 177

References

1. Geffert, V., Pardubská, D.: Factoring and Testing Primes in Small Space. In:
Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F.
(eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 291–302. Springer, Heidelberg (2009)

2. Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Ann. of Math. 160, 781–793
(2004)

3. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. Assoc. Comput. Mach. 28,
114–133 (1981)

4. Savitch, W.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. System Sci. 4, 177–192 (1970)

5. Geffert, V.: Bridging across the log(n) space frontier. Inform. & Comput. 142,
127–158 (1998)

6. Iwama, K.: ASPACE(o(log log n)) is regular. SIAM J. Comput. 22, 136–146 (1993)
7. Lískiewicz, M., Reischuk, R.: The sublogarithmic alternating space world. SIAM

J. Comput. 25, 828–861 (1996)
8. Szepietowski, A.: Turing Machines with Sublogarithmic Space. LNCS, vol. 843.

Springer, Heidelberg (1994)
9. Hartmanis, J., Ranjan, D.: Space Bounded Computations: Review and New Sepa-

ration Results. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379,
pp. 49–66. Springer, Heidelberg (1989)

10. Chang, R., Hartmanis, J., Ranjan, D.: Space bounded computations: Review and
new separation results. Theoret. Comput. Sci. 80, 289–302 (1991)

11. Chiu, A., Davida, G., Litow, B.: Division in logspace-uniform NC1. RAIRO Inform.
Théor. Appl. 35, 259–275 (2001)

12. Dietz, P., Macarie, I., Seiferas, J.: Bits and relative order from residues, space
efficiently. Inform. Process. Lett. 50, 123–127 (1994)

13. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley (1976)

14. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation, 3rd edn. Prentice Hall (2007)

15. Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Thomson Course
Technology (2006)

16. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers. Clarendon
Press, Oxford (1995); (Reprint of 5th edn. 1979)

17. Yan, S.: Number Theory for Computing. Springer (2002)

Dense Completeness

Andreas Krebs and Klaus-Jörn Lange

University of Tübingen, Germany
{krebs,lange}@informatik.uni-tuebingen.de

Abstract. We introduce dense completeness, which gives tighter con-
nection between formal language classes and complexity classes than the
usual notion of completeness. A family of formal languages F is densely
complete in a complexity class C iff F ⊆ C and for each C ∈ C there is
an F ∈ F such that F is many-one equivalent to C.

For AC0-reductions we show the following results: the family CFL of
context-free languages is densely complete in the complexity class SAC1.
Moreover, we show that the indexed languages are densely complete in
NP and the nondeterministic one-counter languages are densely complete
in NL. On the other hand, we prove that the regular languages are not
densely complete in NC1.

1 Introduction

In this work we observe differences and similarities between complexity classes
(like NP or NL) and classes of formal languages (like the regular or the context-
free languages).

Despite the difference between the two areas there are surprisingly close
connections between them. A common behavior is that for a family of formal
languages F and a complexity class C we have on the one hand F ⊂ C and on
the other hand that for every C ∈ C there is an F ∈ F such that C ≤m F .

For the following complexity classes we have multiple complete formal lan-
guage classes ([Lan93]):

complexity class formal language classes
NC1 REG, visibly push-down languages
NL linear context-free languages, one-counter languages

SAC1 context-free languages, IO
NP indexed languages = OI

In this article we will show that some of these relations are in fact much closer
than thought before. To this end we introduce the notion of dense completeness
which requires that for every C ∈ C there is an F ∈ F such that not only L ≤m F
but F ≤m L holds as well.

In this paper when we talk about many-one reductions we think about
DLOGTIME-uniform AC0 reductions. This type of reducibility is finer than
the more usual logspace or polynomial time reducibilities. It adequately demon-
strates the closeness of the relationship between complexity classes and families

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 178–189, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Dense Completeness 179

of formal languages exhibited in this work. We write L1 ≤AC0

m L2 if there is a

many-one DLOGTIME-uniform AC0 reduction from L1 to L2, and L1 ≈AC0

m L2

if L1 ≤AC0

m L2 and L2 ≤AC0

m L1.

Definition 1 (Dense Completeness). Let C, D be classes of languages. We
say C is densely complete in D if

– C ⊆ D and
– ∀D ∈ D ∃C ∈ C : D ≈AC0

m C.

This notion is transitive in the sense that if both C is densely complete for D
and D is densely complete for E then C is densely complete for E .

The main difference between the two areas lies in the combinatorial intractabil-
ity of complexity classes, in contrast to the setting of formal languages, which
are more amenable to combinatorial analysis via pumping lemmata, and where
properties such as emptiness and finiteness are decidable. This difference is ex-
pressed by the abundance of notoriously open questions in complexity theory
while in the area of formal languages many of the basic questions like the rela-
tion between determinism and nondeterminism are settled.

We observe some typical differences between these two areas:

typical properties formal language class complexity class

closure under reducibilities No Yes
closure under intersection No Yes
closure under morphism Yes No
emptiness decidable Yes No

In this paper we understand a class of formal languages as the following:

Definition 2. A family F of formal languages is a class of languages finitely
presented by some grammar or automata model such that the emptiness prob-
lem is decidable and which is closed under morphism, inverse morphisms, and
intersection with regular sets, i.e. F is a full trio.

Well established members of this kind are the regular languages, the linear
context-free languages, the one-counter languages, the context-free languages,
the indexed languages and the macro language families IO and OI
([Fis68, Aho68, Aho69]).

First, it might seem impossible to find a formal language class that is densely
complete in a complexity class, since by by Ladner ([Lad75]) we know that in
between any pair of languages L1 and L2 such that L1 ≤ L2 but not L1 ≥ L2

there is an L3 such that L1 ≤ L3 ≤ L2 and neither L1 ≥ L3 nor L3 ≥ L2. The
proof is done by merging the languages L1 and L2 according to the length of
words. In case L1 is the empty set this means “punching large holes” into the
language L2. This idea seems to contradict the concept of any pumping lemma.
Thus a language like L3 appears to lack any relation to a typical formal language
with a semilinear Parikh-image, since languages with a semilinear Parikh image
can only have linear sized holes in their set of lengths of words.

180 A. Krebs and K.-J. Lange

Despite this fact, we will show that in some cases there are in fact densely
complete subfamilies of formal languages. In particular we show that the com-
plexity classes NL, SAC1, and NP indeed possess dense subfamilies of formal
languages.

The paper is structured as follows: After listing the notions used in this paper
we treat the nondeterministic classes SAC1, NL, and NP and show that they
indeed contain dense subfamilies of formal languages. We then show that the
regular languages, which contain NC1-complete problems, are not densely com-
plete in NC1. In a closing discussion we look at perspectives to generalize our
approach.

2 Preliminaries

We assume the reader to be acquainted with some basic families of formal lan-
guages like the regular languages or the context-free languages and their sub-
families, the linear context-free languages and the one-counter languages.

In this paper we use the following notations for one-way and two-way k-
head nondeterministic finite automata with and without a stack. We denote by
1-NFA(k) (resp. 2-NFA(k)) the one-way (resp. two-way) finite automata. By
1-NPDA(k) (resp. 2-NPDA(k)) we denote the one-way (resp. two way) non-
deterministic pushdown automaton, where the 2-way pushdown automata are
restricted to work in polynomial time. Finally by 1-NOCA we denote the one-way
one nondeterministic counter automata.

Aho introduced the family INDEX of indexed languages and characterized
them by nondeterministic nested stack automata ([Aho68, Aho69]). The common
idea in both characterizations is to equip the nonterminals of a context-free
grammar or the stack symbols of a pushdown automaton by a stack of index
flags which are manipulated appropriately. This results in working with a stack
of stacks as memory structure.

We will refer to a variety of standard complexity classes such as NP, P, SAC1,
NC1, ACC0, ACC0

q, AC
0, CC0 (see e.g. [Joh90, Str94]). For a variety of different

versions of auxiliary push-down-automata and for the class LOG(CFL) we refer
to [Coo71, Sud78]. This class coincides with SAC1 [Ven91].

Throughout the paper we will use AC0-many-one-reducibilities, i.e. mappings
between free monoids computed by polynomial sized DLOGTIME-uniform cir-
cuits of constant depth using both and- and or-gates (see e.g. [BIS90]).

We will use the notion of a syntactic monoid as it is dealt with for the finite
case by Eilenberg ([Eil76]) or Pin ([Pin86]).

3 The Context-Free Languages and the Class SAC1

Sudborough showed that the context-free languages are complete for SAC1

([Sud78]). For this he used the equivalent characterization of SAC1 by poly-
nomial time bounded pushdown automata with a two-way input tape and an
auxiliary logspace tape. We will extend this result and show that the context-
free languages are densely complete in SAC1.

Dense Completeness 181

Theorem 1. The context-free languages are densely complete in SAC1.

Before we start with the proof we will review the proof in [Sud78]. He applied
the well known technique of replacing a logspace tape by a multitude of two-
way input heads. He then reduced the number of input heads down to one by
reductions which intensively repeated the input word. It is quite easy to see
that these steps preserve denseness since we reduce the word problem of an
automaton A working on input w to the word problem of an automaton B on a
transformed input word w′ = T (w) and B with its two-way input head together
with its stack can check w′ to be of the right format first before simulating A
and reject otherwise.

In a next essential step Sudborough reduced the word problem of a one-head
two-way pushdown automaton A on an input w working in polynomial time
p(|w|) to the word problem of a usual one-way pushdown automaton B working
on the input T (w) := (w$←−w $)p(|w|). When A reverses the direction of its input
head at the i-th position of a subword w of T (w), B reads the remaining |w| − i
symbols of w against the first |w| − i symbols of the following subword ←−w .

This seems to need an additional counter which while in use freezes the stack
(and does not use it). But this freezing counter can be simulated within the
stack of the PDA by simply pushing an intermediate bottom of stack symbol
separating the frozen stack from the active counter. After successfully counting
the remaining |w|−i symbols of w against the first |w|−i symbols of the following
subword←−w the intermediate bottom of stack symbol is popped and the unfrozen
stack below continues its work - now on the reversed word.

It is now tempting to speculate that this reduction preserves denseness. But
this should not be the case: consider the case of undirected graph reachability. By
Reingold’s ([Rei08]) celebrated result this problem is in deterministic logspace
and thus in SAC1. It is possible to code it as a SAC1-language in a way that
after the last step of Sudborough’s proof going from a two-way automaton A to
a one-way automaton B we can cheat by giving B inputs which are only nearly
of the form T (w) but are too short and thus with the help of B can solve the
shortest path problem for undirected graphs which is NL-complete ([Tan07]).

This problem is caused by the inability of one-way automaton B to check
its input being of the correct form, i.e. being a member of T (Σ∗). To avoid
this problem we make use of the simple observation that the complement LBAD

of T (Σ∗) is both a context-free language (in fact it is even a linear context-
free language) and is in AC0. We now reduce L(A) via T (·) to the context-
free language L′ := L(B) ∪ LBAD. But since L′ = T (L) ∪ LBAD (observe that
T (L) = L(B) ∩ T (Σ∗)) we can reduce L(A) via a AC0-many-one reduction to
L′.

With this trick in mind we change the route from 2-NPDA(k) to 1-NPDA(1)
by not going via 2-NPDA(1) but instead via 1-NPDA(k) which seems to give
easier proofs and thus these constructions can be easier transferred to the classes
NP and NL.

But first we need some additional definitions. Given a word w ∈ Σ∗ of length
n, and an integer 0 ≤ k < nc, for some natural number c, define a mapping

182 A. Krebs and K.-J. Lange

γc that maps w, k injectively to a word of length n over a new alphabet. We
extend the alphabet by c markers, i.e. Σ′ = Σ × 21,...,c. The position of the
markers will allow us to encode the number k. In order to represent the number
k by c numbers in the range 1, . . . , n we pick 1 ≤ k1, . . . , kc ≤ n such that
k =

∑c−1
i=0 (ki+1 − 1) · ni. Finally, we define γc : Σ

∗ × N → (Σ × 2{1,...,c})∗ by

γc(w, k) = (w1, X1) . . . (wn, Xn),

where mi ∈ Xl iff ki = l.
Given a word �w� with start and end markers we can repeat the word a

polynomial number of times and add increasing numbers to the repeated words.
In this way we can later check that the repetition is bounded by a polynomial.

Definition 3. Define Γc : Σ
∗ → (Σ × 2{1,...,c} ∪ {�, �})∗ as

w �→ �γc(w, 0) � �γc(w, 1) � . . . � γc(w, |w|c − 1) � .

Lemma 1. The languages accepted by
⋃
k 1-NPDA(k) are densely complete for

the languages accepted by
⋃
k 2-NPDA(k).

Proof. Pick an automaton A from 2-NPDA(k) that recognizes a language L ⊆
(Σ∗). Choose c such that the runtime of A is bounded by nc.

We will show that there is a 1-NPDA(k + 1) automaton B that recognizes
L′ = Γc(L) ∪ LBAD, where LBAD = (Σ × 2{1,...,c} ∪ {�, �})∗ \ Γc(Σ∗).

This will suffice for the proof since the mapping Γc can be computed by a
DLOGTIME-uniform AC0 reduction and since L′ ≤AC0

m L (see discussion at the

beginning of this section) we get L ≈AC0

m L′.
First we show that we can find a 1-NPDA(2), that accepts all words in LBAD.

This automaton will not even use the stack. For this we choose two heads and
place them randomly at two neighboring symbols �. Then we move them simul-
taneously right till they reach �. If they do not reach � in the same step, we
accept, since in the image of Γc the distance between � and � is always the same.
During the movement we can check that the sequences scanned encode γc(w, i)
and γc(w, i + 1) for a value i, if this is not the case we accept.

We now show how we can simulate A working on �w� by a 1-NPDA(k + 1)
B working on w′ := Γc(�w�). For each of the k heads in the automaton A
automaton B has a corresponding head and in additionB has one auxiliary head.
Observe that w′ when projected to the Σ-components losing all information
concerning numbers consists in |w|c repetitions of the word �w�. Let n = |�w� |,
we want to show that during the simulation of A by B the following invariant
holds: When B completed the simulation of a single step of A the position of each
of the k heads of A within �w� coincides with the position of the corresponding
head of B on w′ modulo n. This is clear for the initial configuration.

Since the positions are the same modulo n, the corresponding heads of B see
which symbols are seen by the simulated automaton A. We can assume that
in the automaton A only one of the heads moves during one step. If the head
makes a move to the right or stays at the same position, we do the same with

Dense Completeness 183

the corresponding head of B. If the head of A moves to the left, we want to move
the corresponding head of B n− 1 steps to the right. This position always exists
since the runtime of A is bounded by nc. In order to move the head n−1 steps to
the right, we move the auxiliary head right until we encounter a � symbol, and
then move the auxiliary head of B and the corresponding head simultaneously
to the right, until the auxiliary head sees a � symbol. Hence we can always keep
our condition about the positions of the heads.

We mention that we choose in our construction to use in the one-way automa-
ton an additional head and avoided to do the counting by the push-down store
in order to use this proof for other automata than push-down automata. �

We define another mapping to encode the position of two heads by a single head.
Let x, y ∈ Σn then we write (x, y) for the word (x1, y1)(x2, y2) . . . (xn, yn) ∈
(Σ2)n also we let π1((xi, yi)) = xi and π2((xi, yi)) = yi.

Given a word w1 . . . wn ∈ Σ∗, we define a word over Σ × Σ ∪ {$}. We let
vi = (w,wni)$

n for i ∈ {1, . . . , n}. Also we let w′ = v1v2 . . . vn, so the length
of w′ is 2n2 We let μ : Σ∗ → Σ′′∗ be the mapping of w to w′. Also we let
νn : {1, . . . , n}2 → {1, . . . , 2n2} be the map

νn(i, j) = i+ 2n · (j − 1).

Thus, given two heads at the positions i and j on a word w, the construction
guarantees that w′

νn(i,j) = (wi, wj). In the following lemma we show that we can
simulate the movement of multiple heads on the word w by only one head on
the word w′.

Lemma 2. 1-NPDA(1) are densely complete for 1-NPDA(k).

Proof. Pick an automaton A from 1-NPDA(2) that recognizes a language L ⊆
(Σ∗). We will show that there is a 1-NPDA(1) B that recognizes L′ = μ(L) ∪
LBAD, where LBAD = Σ∗\μ(Σ∗). This will suffice for the proof since the mapping

μ can be computed by a DLOGTIME-uniform AC0 reduction and since L′ ≤AC0

m

L (see discussion at the beginning of this section) we get L ≈AC0

m L′.
First, we show that we can recognize LBAD. Let w′ be the input of B and

let n′ = |w′|. We can use the stack of B as a counter to accept if it is not
the case that each block of $’s, and each block between the $-blocks has the
same length. Also we can check that the number of $-blocks is the same as
the number $’s in the first $-block. If one of these conditions is not fulfilled we
accept the word, since we want to accept LBAD. We continue to check if there are
mistakes in the repetition of the word w, i.e. that π1(w

′
νn(i,j)

) �= π1(w
′
νn(i,j+1))

or π1(w
′
νn(i,1)) �= π2(w

′
νn(j,i)

) for i, j ∈ {1, . . . , n′}. (See appendix for details.)

Second, we show how we can simulate A working on w by a 1-NPDA(1)
working on w′ = μ(Σ∗). For the two heads of A at positions i, j we have one
corresponding head in B at position νn(i, j), where n = |w|. This is clear for the
initial configuration.

Since w′
νn(i,j)

= (wi, wj), the corresponding heads sees which symbols are seen
by the simulated automaton. We can assume that in the automaton we simulate

184 A. Krebs and K.-J. Lange

only one of the head’s moves during one step. If the first head makes a move to
the right, we do the same. If the second head moves to the right, we want the
head to move 2n steps to the right.

If had an additional freezing counter, we would move the head to right in-
creasing the counter, till we see a $ symbol. While we see $ symbols we move the
head further to the right and decrease the counter for each step. After the last
$ symbol we move further right increasing the counter with each step till the
counter equals zero. Since there are n $ symbols in a block, we move the head
2n positions to the right. Also a counter can be simulated with the stack and
two additional stack symbols. Hence we can always keep our invariant condition
about the positions of the heads.

Since we can use this reduction also in the presence of additional heads, by
induction we get our result. �

Proof (Proof of Theorem 1). Since the languages accepted by 2-NPDA(k) equal
the the languages in SAC1, by the transitivily of dense completeness and the
previous two lemmas the result follows. �

4 The One-Counter Languages and the Class NL

In our other proofs in the previous section we use the ability of push-down au-
tomata to simulate an additional freezing counter. For One-Counter Languages
we face the problem that they cannot simulate an additional freezing counter,
otherwise they would be able to recognize, for example, {anbmcmdn} which is
not a one-counter language. Nevertheless, we can show that the one-counter
languages are dense in NL.

The general idea is two show that 1-NFA(2) are densely complete in NL.
This is similar to the previous section. Then we use a 1-NOCA to simulate a
1-NFA(2), where we can make use of the counter since 1-NFA(2) do not posses
a counter.

Lemma 3. The languages accepted by
⋃
k 1-NFA(k) are densely complete for

the languages accepted by
⋃
k 2-NFA(k).

Proof. This is the same as in the proof of Lemma 1, where we used an automaton
with an additional head from 1-NPDA(k + 1). �

For the following reduction we will need a new mapping. The new mapping
should help us to encode the position of three heads by a two heads. This is
similar to the context free case, but here we need one additional head.

Let x, y ∈ Σn then we write (x, y) for the word (x1, y1)(x2, y2) . . . (xn, yn) ∈
(Σ2)n Given a word w1 . . . wn ∈ Σ∗, we define words over Σ × Σ ∪ {$u}. We
let ui = (w,wni)$

n for i ∈ {0, . . . , n − 1}. Further, we define words over Σ′′ =

Σ′ ×Σ ∪ {$v}. We let vi = (u,w2n2

i)$2n
2

v and w′ = v1v2 . . . vnv1v2 . . . vn, so the
length of w′ is 8n3. Please note that we repeated v1 . . . vn twice, this is a rather
technical reason, which we explain in the following lemma.

Dense Completeness 185

We let μ′ : Σ∗ → Σ′′∗ be the mapping of w to w′. Also we let ν′n : {1, . . . , n}3 →
{1, . . . , 4n3} be the map

ν′n(i, j, k) = i+ 2n · (j − 1) + 4n2 · (k − 1).

So given three heads at the positions i, j, k on a word w by the construction
w′
νn(i,j,k)

= (wi, wj , wk). In the following lemma we show that we can simulate

the movement of three heads on the word w by only two heads on the word w′.

Lemma 4. The languages accepted by 1-NFA(2) are densely complete for the
languages accepted by

⋃
k 1-NFA(k).

Proof. Pick an 1-NFA(3) A that recognizes a languages L ⊆ (Σ∗). We will
show that there is a 1-NFA(2) B that recognizes L′ = μ′(L) ∪ LBAD, where
LBAD = Σ∗ \ μ′(Σ∗).

Similar to Lemma 1 we can show that we can accept all words in LBAD; since
we have two heads this is straight forward. (Note that Lemma 2 is different,
since we have only one head there.)

Second, we show how we can simulate A working on w by a 1-NFA(2) work-
ing on w′ = μ′(Σ∗). For the three heads of A at positions i, j, k we have one
corresponding head in B at position ν′n(i, j, k), where n = |w|, and one auxiliary
head. This is clear for the initial configuration.

Since w′
νn(i,j,k)

= (wi, wj , wk), the head corresponding heads sees which sym-
bols are seen by the simulated automaton. We can assume that in the automaton
we simulate only one of the heads moves during one step. If the first head makes
a move to the right, we do the same. If the second (resp. third) head moves to
the right, we want the head of B 2n (resp. 4n2) steps to the right.

The auxiliary head will be at the beginning of one of the vi. We now move
both heads right till the auxiliary head is at the first letter beyond of the next
$u (resp. $v) block. If we just simulated a move of the second head of A, we
will continue to move the auxiliary head, just one character beyond the next
$v-block. So with every more of the second and third head of A, the auxiliary
head of B move 4n2 symbols to the right. This is the reason we doubled the
length of w′ in the definition of μ′.

Using induction on the number of heads we get our result. �

Since in Lemma 2 we use the stack only to simulate a freezing counter, we can
use the (otherwise unused) counter here to get the lemma:

Lemma 5. The languages accepted by 1-NOCA are densely complete for the
languages accepted by 1-NFA(2).

Since the languages accepted by 2-NFA(k) are equal to the languages in NL(see
e.g. [Sud77]), by the transitively of dense completeness and the previous lemmas
the result follows.

Theorem 2. The one-counter languages are densely complete for NL.

186 A. Krebs and K.-J. Lange

5 The Indexed Languages and the Class NP

Aho introduced the family INDEX of indexed languages and characterized them
by nondeterministic nested stack automata ([Aho68, Aho69]). The indexed lan-
guages coincide with Fisher’s class OI of outside-in macro-languages ([Fis68]).
The indexed languages are contained in NP and there are NP-complete indexed
languages ([Rou73]).

Theorem 3. The indexed languages are densely complete for NP.

Proof sketch. (For details see appendix.) The starting point is that polynomial
time bounded nondeterministic two-way nested stack multihead automata accept
exactly the languages in NP. Again, we first reduce densely the polynomial
time bounded nondeterministic two-way nested stack multihead automata to
the corresponding one-way model.

In the second step, we decrease the number of heads to one preserving density
by the use of a freezing counter. Pushdown automata can simulate a freezing
counter by pushing an intermediate designated stack symbol as described in the
previous section. The same observation holds for nested stack automata which
gives us the dense NP-completeness of the languages accepted by nondetermin-
istic nested stack automata (with one-way input head), which are the indexed
languages. �

Observe that the simulation of a freezing counter within the nested stack automa-
ton does not go through for stack automata and their variants like non-erasing
stack automata.

6 The Regular Languages and the Class NC1

The regular languages are complete for NC1, since every regular language with a
non-solvable monoid is complete for NC1 ([Bar89]). In this section we will prove
unconditionally that the regular languages are not densely complete in NC1. For
regular languages we have the fact that a language is either in AC0, or its syn-
tactic monoids is non-aperiodic ([Sch65]). While this is a rather sharp boundary
on the formal language side, on the complexity side we can find languages very
close to AC0 but still outside. Similar to Ladner’s theorem [Lad75] that shows if
P �= NP we can find languages that are neither in P nor NP -complete, we con-
struct a language that is neither in AC0 nor any non-aperiodic regular language
can be reduced to it.

Theorem 4. The regular languages are not densely complete in NC1.

Proof. Assume by contradiction that the regular languages are densely complete
in NC1. Then for every language L ∈ NC1 there is a regular language R such
that there are DLOGTIME-uniform AC0 reductions from L to R and conversely.

The idea is to find a language in NC1 that is not many-one equivalent to any
regular language. We apply Ladner’s result as generalized by Vollmer in [Vol90]

Dense Completeness 187

to the parity-language, yielding a language L ⊆ Lparity, such that L is reducible
to Lparity but not vice versa.

Essentially L = {w ∈ Lparity | |w| ∈ F} where F is a set of positive integers
such that both F and its complement consist in intervals of rapidly growing size.
Observe that L is not in AC0 by H̊astad’s result ([H̊as86]), but clearly in ACC0

2

since it is AC0-reducible to Lparity.
By assumption there is a regular set R which is many-one equivalent to L.

Let M be the (finite) syntactic monoid of R. There are three cases to consider.

Case 1: M contains no group. Then R is aperiodic and hence R ∈ AC0 and
L ∈ AC0 ([Str94],[Sch65]) - a contradiction.
Case 2: M contains a group of even order, then M also contains Z2. But then
Lparity is recognizable by M , and thus is many-one reducible to R and hence to
L - a contradiction.
Case 3: M contains a group of some odd order. Then for some odd n the cyclic
group Zn divides M , thus we could reduce a language whose syntactic monoid
is Zn to the language R. And hence also to Lparity in contradiction to [Smo87],
who proved that ACC0

2 cannot count modulo any odd number. �

We can apply the exact same proof to any complexity class between NC1 and
ACC0

2 and its corresponding class within the regular languages. For example
the regular languages with solvable syntactic monoid are complete for ACC0

([BCST92]) , but the proof of the previous theorem shows:

Theorem 5. The regular languages with solvable syntactic monoid are not
densely complete in ACC0.

We are left with class AC0 and the aperiodic or star-free regular languages.
In order to treat this question it would be necessary to use a finer notion of
reducibility since with respect to AC0-reducibility every nonempty subset of
AC0 is densely complete in AC0.

7 Discussion

The principal construction used in this paper to establish the dense completeness
of a language family F in a complexity class C was transforming a language
L ∈ C by padding-like repetitions into some L′ ∈ F such that L′ was the union
of the transformation of L and the set LBAD of ill-formed words which are not in
the image of the transformation. This construction needs F to be closed under
union and to contain LBAD. This could force F both to be of a non-deterministic
nature and to be able to simulate a counter which would induce the NL-hardness
of F .

This may explain the fact that the regular languages are not dense in their
complexity class NC1. Considering the similarities between the regular, con-
textfree, and indexed languages (the contextfree languages are the yields of the
regular tree languages and the indexed languages are the yields of the contextfree
tree languages) this is a bit surprising.

188 A. Krebs and K.-J. Lange

This still leaves open the question whether there exists a dense subfamily of
formal languages in NC1. A natural candidate are the visibly pushdown lan-
guages VPL studied in [AM04], which are contained in NC1 and contain NC1-
hard languages since all regular languages are in VPL. They were characterized
in [AKMV05] by the finiteness of a certain congruence relation. We conjecture
that the visibly push-down languages are not dense in NC1. It might be possible
to show along the lines of the proof of Theorem 4 a conditional result like “If
TC0 �= NC1 then VPL is not dense in NC1”. If it were possible to exhibit a dense
subfamily of formal languages in NC1 one should not expect this to be a trio,
since the trio generated by the mirror language, i.e. the set of all palindromes
(as a simple example of a nonregular language) already contains NL-complete
languages.

We left open the following question: what is a class of formal languages? Our
decision to require the class to form a trio might be too restrictive since it seems
to exclude deterministic classes. Another try would for instance be closure under
intersection with regular sets only. But the following construction (which is only
indicated and needs more details for a real proof) then provides us an arbitrary
finitely presented class C with a dense subfamily F : Set T (w) := w1$w2 where
w = w1w2 and |w1| = |w2| if |w| is even resp. |w1| + 1 = |w2| otherwise. Then
the class F := {T (L) ∪ LBAD | L ∈ C} ∪ {∅} is dense in C, has a decidable
emptiness problem, and is closed under intersection with regular sets. In this
case, LBAD is the set of words containing more than one $-symbol, no $-symbol,
or one $-symbol not in the middle of a word. But this class F is just a complexity
class in disguise without any well-behavior of a typical formal language class.

Our results should not be regarded as an approach to separate complexity
classes: If you could prove that NC1 does not contain a dense subfamily of formal
languages, you would have separated NC1 from NL. This only shows how hard it
will be to show that certain complexity classes do not have dense subfamilies of
formal languages. But this motivates the question for the converse, i.e.: can we
show under some standard assumptions from complexity theory non-denseness
results for certain complexity classes? Can we for example show that NC1 �= NL
implies that NC1 does not contain a dense subfamily of formal languages?

References

[Aho68] Aho, A.V.: Indexed grammars - an extension of context-free grammars.
J. ACM 15(4), 647–671 (1968)

[Aho69] Aho, A.V.: Nested stack automata. J. ACM 16(3), 383–406 (1969)
[AKMV05] Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences

for Visibly Pushdown Languages. In: Caires, L., Italiano, G.F., Monteiro,
L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
1102–1114. Springer, Heidelberg (2005)

[AM04] Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L.
(ed.) STOC, pp. 202–211. ACM (2004)

[Bar89] Mix Barrington, D.A.: Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1. J. Comput. Syst.
Sci. 38(1), 150–164 (1989)

Dense Completeness 189

[BCST92] Mix Barrington, D.A., Compton, K.J., Straubing, H., Thérien, D.: Reg-
ular languages in NC1. J. Comput. Syst. Sci. 44(3), 478–499 (1992)

[BIS90] Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity
within NC1. J. Comput. Syst. Sci. 41(3), 274–306 (1990)

[Coo71] Cook, S.A.: Characterizations of pushdown machines in terms of time-
bounded computers. J. ACM 18(1), 4–18 (1971)

[Eil76] Eilenberg, S.: Automata, Languages and Machines, vol. A+B. Academic
Press (1976)

[Fis68] Fischer, M.J.: Grammars with macro-like productions. In: SWAT
(FOCS), pp. 131–142. IEEE Computer Society (1968)

[H̊as86] H̊astad, J.: Almost optimal lower bounds for small depth circuits. In:
STOC, pp. 6–20. ACM (1986)

[Joh90] Johnson, D.S.: A catalog of complexity classes. In: Handbook of Theo-
retical Computer Science. Algorithms and Complexity (A), vol. A, pp.
67–161. The MIT Press (1990)

[Lad75] Ladner, R.E.: On the structure of polynomial time reducibility. J.
ACM 22(1), 155–171 (1975)

[Lan93] Lange, K.-J.: Complexity and structure in formal language theory. In:
Structure in Complexity Theory Conference, pp. 224–238 (1993)

[Pin86] Pin, J.-E.: Varieties of formal languages. Plenum, London (1986)
[Rei08] Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)
[Rou73] Rounds, W.C.: Complexity of recognition in intermediate-level lan-

guages. In: SWAT (FOCS), pp. 145–158. IEEE Computer Society (1973)
[Sch65] Schützenberger, M.P.: On finite monoids having only trivial subgroups.

Information and Control 8(2), 190–194 (1965)
[Smo87] Smolensky, R.: Algebraic methods in the theory of lower bounds for

boolean circuit complexity. In: STOC, pp. 77–82 (1987)
[Str94] Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity.

Birkhäuser, Boston (1994)
[Sud77] Sudborough, I.H.: Some remarks on multihead automata. ITA 11(3),

181–195 (1977)
[Sud78] Sudborough, I.H.: On the tape complexity of deterministic context-free

languages. J. ACM 25(3), 405–414 (1978)
[Tan07] Tantau, T.: Logspace optimization problems and their approximability

properties. Theory Comput. Syst. 41(2), 327–350 (2007)
[Ven91] Venkateswaran, H.: Properties that characterize logcfl. J. Comput. Syst.

Sci. 43(2), 380–404 (1991)
[Vol90] Vollmer, H.: The Gap-Language-Technique Revisited. In: Schönfeld, W.,

Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1990. LNCS,
vol. 533, pp. 389–399. Springer, Heidelberg (1991)

From Equivalence to Almost-Equivalence,

and Beyond—Minimizing Automata with Errors

(Extended Abstract)

Markus Holzer and Sebastian Jakobi

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,jakobi}@informatik.uni-giessen.de

Abstract. We introduce E-equivalence, which is a straightforward gen-
eralization of almost-equivalence. While almost-equivalence asks for or-
dinary equivalence up to a finite number of exceptions, in E-equivalence
these exceptions or errors must belong to a (regular) set E. The compu-
tational complexity of minimization problems and their variants w.r.t.
almost- and E-equivalence are studied. Roughly speaking, whenever non-
deterministic finite automata (NFAs) are involved, most minimization
problems, and their equivalence problems they are based on, become
PSPACE-complete, while for deterministic finite automata (DFAs) the
situation is more subtle. For instance, hyper-minimizing DFAs is NL-
complete, but E-minimizing DFAs is NP-complete, even for finite E.
The obtained results nicely fit to the known ones on ordinary minimiza-
tion for finite automata. Moreover, since hyper-minimal and E-minimal
automata are not necessarily unique (up to isomorphism as for mini-
mal DFAs), we consider the problem of counting the number of these
minimal automata. It turns out that counting hyper-minimal DFAs can
be done in FP, while counting E-minimal DFAs is #P-hard, and belongs
to the counting class # · coNP.

1 Introduction

The study of the minimization problem for finite automata dates back to the
early beginnings of automata theory. This problem is also of practical relevance,
because regular languages are used in many applications, and one may like to
represent the languages succinctly. It is well known that for a given n-state de-
terministic finite automaton (DFA) one can efficiently compute an equivalent
minimal automaton in O(n logn) time [14]. More precisely, the DFA-to-DFA
minimization problem is complete for NL, even for DFAs without inaccessible
states [5]. This is contrary to the nondeterministic case since the nondeterminis-
tic finite automaton (NFA) minimization problem is known to be computation-
ally hard [17]. Minimization remains intractable even if either the input or the
output automaton is deterministic [17,21].

Recently another form of minimization for DFAs, namely hyper-minimization,
was considered in the literature [2,3,7,13]. While minimization aims to find an

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 190–201, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

From Equivalence to Almost-Equivalence 191

equivalent automaton that is as small as possible, hyper-minimization intends
to find an almost-equivalent automaton that is as small as possible. Here two
languages are considered to be almost-equivalent, if they are equivalent up to a
finite number of exceptions. Thus, an automaton is hyper-minimal if every other
automaton with fewer states disagrees on acceptance for an infinite number of
inputs. Hence, equivalence or almost-equivalence can be interpreted as an “er-
ror profile:” minimization becomes exact compression and hyper-minimization
is a sort of lossy compression. Minimal and hyper-minimal automata, share a
lot of similar traits, e.g., minimal and hyper-minimal DFAs have a nice struc-
tural description [3,15] and computing a minimal representation from a given
n-state DFA can be done efficiently in O(n log n) time [7,13,14]. Nevertheless,
there are subtle differences. The most important one is that ordinary minimal
DFAs are unique up to isomorphism, but this property doesn’t hold anymore for
hyper-minimal DFAs [7]. Novel investigations on hyper-minimization performed
in [8] and [20] show that hyper-minimization that returns a DFA that commits
the smallest number of errors can be efficiently computed, while simultaneously
bounding the size and the errors of the output DFA results in an NP-complete
decision problem. This is the starting point of our investigation.

We provide a general framework for error profiles of automata. To this end
we introduce the concept of E-equivalence. Two languages L1 and L2 are E-
equivalent1 if their symmetric difference lies in E, i.e., L1)L2 ⊆ E. Here E
is called the error language. Although E-equivalence (∼E) is a generalization
of equivalence (≡) and almost-equivalence (∼), the problems to decide whether
two languages given by finite automata are equivalent, almost-equivalent, or
E-equivalent, respectively, are all of same complexity. To be more precise, when-
ever NFAs are involved in the language specification the decision problem is
PSPACE-complete, while for DFAs it is NL-complete. When turning to minimiza-
tion w.r.t. the above mentioned relations ∼ and ∼E , the results mirror those for
ordinary DFA and NFA minimization, with some notable exceptions. For in-
stance, hyper-minimizing deterministic machines, that is the DFA-to-DFA min-
imization problem w.r.t. almost-equivalence, is shown to be NL-complete while
E-minimization of DFAs in general turns out to be NP-complete, even for some
finite E. Note, that the finiteness of E does not contradict the NL-completeness
of hyper-minimizing DFAs. We also study some problems related to minimiza-
tion such as canonicity, minimality, and variants thereof; a precise definition of
these problems is given in the sections to come. For all these problems we obtain
precise complexity bounds depending on whether NFAs or DFAs are given as
inputs—see, e.g., Table 2. Moreover, since hyper-minimal and E-minimal au-
tomata are not necessarily unique (up to isomorphism as for minimal DFAs),

1 A close inspection shows that E-equivalence allows us to cover a lot of prominent
“equivalence” concepts from the literature such as, e.g., (i) equivalence—E = ∅,
(ii) almost-equivalence and k-equivalence—E is finite and E = Σ≤k, respectively,
(iii) equivalence modulo the empty word—E = {λ}, (iv) closeness—E is a sparse
set, and (v) cover automata—E = Σ≥k. A detailed discussion on this subject is
given in the full version of the paper.

192 M. Holzer and S. Jakobi

we consider the problem of counting the number of these minimal automata. It
turns out that counting hyper-minimal DFAs can be done in FP, while counting
E-minimal DFAs is #P-hard, and belongs to the counting class # · coNP. The
upper bound for counting minimal NFAs is #PSPACE. Due to space constraints
almost all proofs are omitted.

2 Preliminaries

We assume familiarity with the basic concepts of complexity theory [22] such
as the inclusion chain L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE. Here L (NL, respec-
tively) is the set of problems accepted by deterministic (nondeterministic, re-
spectively) logarithmic space bounded Turing machines. Moreover, let P (NP,
respectively) denote the set of problems accepted by deterministic (nondetermin-
istic, respectively) polynomial time bounded Turing machines and let PSPACE
be the set of problems accepted by deterministic or nondeterministic polyno-
mial space bounded Turing machines. We are also interested in counting the
number of solutions to particular problems. Let FP be the class of polyno-
mial time computable functions. Higher counting complexity classes are in-
troduced via a predicate based approach—see, e.g., [11]. If C is a complexity
class of decision problems, let # · C be the class of all functions f such that
f(x) = |{ y | R(x, y) and |y| = p(|x|) }|, for some C-computable two-argument
predicate R and some polynomial p. Observe, that # ·P coincides with Valiant’s
counting class #P, i.e., #P = # ·P, introduced in his seminal paper on comput-
ing the permanent of a matrix [26]. Moreover, in particular we have the inclusion
chain #P = # · P ⊆ # · NP ⊆ # · PNP = # · coNP, by Toda’s result [25].

Next we need some notations on finite automata as contained in [15]. A nonde-
terministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F), where Q
is the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q is the
initial state, F ⊆ Q is the set of accepting states, and δ : Q × Σ → 2Q is the
transition function. The language accepted by the finite automaton A is defined
as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ }, where the transition function is recur-
sively extended to δ : Q×Σ∗ → 2Q. A finite automaton is deterministic (DFA)
if and only if |δ(q, a)| = 1, for all states q ∈ Q and letters a ∈ Σ. In this case we
simply write δ(q, a) = p for δ(q, a) = {p}, assuming that the transition function
is a mapping δ : Q×Σ → Q. So any DFA is complete, i.e., the transition function
is total, whereas for NFAs it is possible that δ maps to the empty set.

Two finite automata A and B are equivalent, A ≡ B, if and only if they ac-
cept the same language, i.e., L(A) = L(B). Recently, hyper-minimal automata
were studied in the literature [2,3]. Two finite automata A and B are almost-
equivalent, A ∼ B, if and only if the symmetric difference L(A))L(B) is finite,
i.e., |L(A))L(B)| < ∞. A finite automaton is minimal (hyper-minimal, re-
spectively) if it admits no smaller equivalent (almost-equivalent, respectively)
automaton. While minimal DFAs are unique up to isomorphism, this is not
necessarily true for hyper-minimal DFAs anymore—see Figure 1. Nevertheless,
hyper-minimal DFAs obey a nice structural characterization [3]. In this paper we

From Equivalence to Almost-Equivalence 193

0 1

a

b

b

a
0 1

a

b

b

a

Fig. 1. Two hyper-minimal DFAs for the language (a∗ + bb∗a)∗ which are not isomor-
phic to each other; the symmetric difference of the languages accepted by these two
DFAs is equal to the finite set {λ}

consider another form of equivalence, by explicitly parameterizing the difference
that is allowed between related languages. Let E be any subset of Σ∗, called the
error language. Then we say that two languages L1 and L2 over the alphabet Σ
are E-equivalent, L1 ∼E L2, if and only if their symmetric difference lies in E,
i.e., if L1)L2 ⊆ E—alternatively, the equivalent condition L1∪E = L2∪E can
be used. Moreover, this naturally carries over to finite automata; namely two
finite automata A and B are E-equivalent, A ∼E B, for some error language E,
if and only if L(A) ∼E L(B). A finite automaton is E-minimal if it admits
no smaller E-equivalent automaton. It is easy to see that that ∼E is an equiv-
alence relation. These equivalence relations defined on languages or automata
naturally carry over to relations on states. For instance, let A = (Q,Σ, δ, q0, F).
Then p ∼E q, for p, q ∈ Q, if and only if Ap ∼E Aq. Here Ap (Aq , respectively)
is the automaton A, where the initial state is p (q, respectively) instead of q0.

3 Finite Automata Equivalence, Minimization, and
Related Problems

This section is four folded. First we consider the problem of testing equivalence
of automata w.r.t almost- and E-equivalence. Then we consider the canonicity
and the E-canonicity problem. Finally, in the last two subsections, we deal with
the hyper-minimization and E-minimization problem. The precise definitions of
these problems will be given in the appropriate subsections.

3.1 Equivalence Problems

The easiest problem for automata is that of ordinary equivalence. This is the
problem of deciding for two given automata A and B, whether A ≡ B holds.
The complexity of this classical problem is well known. For DFAs the problem
is NL-complete [5], and it is PSPACE-complete for NFAs [21]. This situation is
resembled for the almost-equivalence and the E-equivalence problem, where for
the latter problem, besides the automataA and B, a DFA AE specifying the error
language E is given as input. One can show that when the error language E is
given by an NFA instead of a DFA, the E-equivalence problem instantly becomes
PSPACE-complete, which is why we only consider DFAs for the description of
the error language.

194 M. Holzer and S. Jakobi

Theorem 1 (Almost- and E-Equivalence). The problem of deciding for
two given finite automata A and B, whether A ∼ B, is NL-complete for DFAs
and PSPACE-complete for NFAs. The statement also holds for the relation ∼E
instead of ∼, where for ∼E, a third input DFA AE is given, that specifies the
error language E = L(AE). �

Hence, for all three error profiles the complexity of the equivalence problem is the
same. For the next problems to come, in particular for the minimization prob-
lems, this will be not the case anymore. In most cases there will be a significant
difference in complexity between problems on DFAs based on almost-equivalence
and E-equivalence.

3.2 Canonical Languages

In general a hyper-minimal or E-minimal DFA for a language L can be smaller
than the minimal DFA that accepts L. But this is not always the case, which leads
to the notion of a language L being canonical, which means that the minimal
DFA accepting L is also hyper-minimal [3]. When using E-minimality instead
of hyper-minimality we speak of an E-canonical language. Recently canonical
languages were studied in [24] from a descriptional complexity perspective. We
start our investigations on the canonicity problem.

Theorem 2 (Canonicity). The problem of deciding for a given finite automa-
ton A, whether the language L(A) is canonical, is NL-complete for DFAs, and
PSPACE-complete for NFAs.

Proof (Sketch). We only discuss the statement for DFAs, where we consider the
complement of our problem. Then the result follows by the complementation
closure of NL [16,23]. For NL-hardness we reduce the directed graph reachability
problem 2GAP for acyclic graphs [18] to the non-canonicity problem. Given an
acyclic graph G = (V,E) and two vertices s and t, we construct in a natural way
a DFA A with initial state s and final state t, whose transitions correspond to
the edges of the graph. Undefined transitions lead to a sink state. If there is no
path from s to t in G, then L(A) = ∅ is canonical, and otherwise L(A) is finite
(since G is acyclic) but not empty, and thus, not canonical.

The containment within NL boils down to the following property: a mini-
mal DFA A is not hyper-minimal [3] if and only if the automaton contains a
preamble state2 that is almost-equivalent to some other state, by the structural
characterization of hyper-minimal DFAs [3]. We can decide this property on a
not necessarily minimal input DFA A in NL by checking whether there exists a
pair of states p and r in A, satisfying the following properties: (i) p is a preamble
state, (ii) p �≡ r, (iii) p ∼ r, and (iv) p �≡ q, for all kernel states q. This proves
the NL upper bound, and shows the stated NL-completeness of the canonicity
problem for DFAs. �
2 A state p in the finite automaton A is a preamble state if it is reachable from the
start state of A by a finite number of inputs, only; otherwise the state is called a
kernel state.

From Equivalence to Almost-Equivalence 195

Table 1. Results on the computational complexity of deciding canonicity and E-
canonicity of regular languages

Finite automata
Canonicity problem DFA NFA

∼ NL PSPACE

∼E, for DFA AE with E = L(AE) coNP
PSPACE ≤ ·
· ∈ coNEXP

Now we turn to the problem of deciding, whether the language accepted by
some given finite automaton is E-canonical. For NFAs, this problem is PSPACE-
hard, and contained in coNEXP. Here we could not conclude a PSPACE upper
bound from an NL upper bound for the DFA problem as before, because the E-
canonicity problem for DFAs is significantly harder than the canonicity problem.
In contrast to the NL-completeness result for canonical languages, it turns out
that the problem of deciding E-canonicity for a language L(A) for some given
DFA A and a given error language E is coNP-complete.

Theorem 3 (E-Canonicity). The problem of deciding for two given DFAs A
and AE, whether the language L(A) is E-canonical, for E = L(AE), is coNP-
complete, even if E is finite. If the automaton A is an NFA, then the problem
becomes PSPACE-hard, and is contained in coNEXP. �

We summarize our results on canonical and E-canonical languages in Table 1.
Note that ordinary equivalence is not included, since the corresponding decision
problem—is the minimal DFA for the given language minimal?—is trivial.

3.3 Minimization Problems

Mostly, the decision version of the minimization problem is studied. For instance
the DFA-to-DFA problem is defined as follows: given a DFA A and an integer3 n,
does there exist an equivalent n-state DFA B? This notation naturally general-
izes to other types of finite automata. The DFA-to-DFA minimization problem is
complete for NL, even for DFAs without inaccessible states [5]. This is contrary
to the nondeterministic case since the NFA minimization problem is known to
be PSPACE-complete [17], even if the input is given as a DFA.

Now the question arises, whether the complexity of the minimization problem
changes, when equivalence is replaced by almost- or E-equivalence, respectively.
Note, that by the results on equivalence, almost-equivalence, and E-equivalence
in Subsection 3.1, one deduces upper bounds on the minimization since the prob-
lem description gives rise to simple guess-and-check algorithms. For instance, the
DFA-to-DFA E-minimization belongs to NP, because for a DFA A one can guess

3 When considering NFA-to-DFA minimization problems, we assume n to be given in
unary notation. In all other cases, n may as well be given in binary notation.

196 M. Holzer and S. Jakobi

an n-state DFA B and verify whether A ∼E B on a nondeterministic polyno-
mial time bounded Turing machine by Theorem 1. In fact, this problem will be
classified to be NP-complete.

Let us turn our attention to hyper-minimization. For the DFA-to-NFA hyper-
minimization result, we use nearly the same automaton as constructed in [17]
for the classical DFA-to-NFA minimization problem, together with an extended
fooling set [4] for this automaton, which was presented in [10]. Then the fol-
lowing result on the descriptional complexity of hyper-minimal NFAs, which
is interesting on its own, leads to a classification of the hyper-minimization
problem.

Lemma 4. Let L ⊆ Σ∗ be a regular language, and let F be an extended fooling
set for L, i.e., F = { (xi, yi) | 1 ≤ i ≤ n }, such that for 1 ≤ i ≤ n it is xiyi ∈ L,
and for 1 ≤ i, j ≤ n with i �= j, it is xiyj /∈ L or xjyi /∈ L. Further let L0 ⊆ Σ∗ be
an infinite language satisfying vw ∈ L ⇐⇒ w ∈ L for every v ∈ L0 and w ∈ Σ∗.
Then any NFA A with L(A) ∼ L needs at least |F | states. �

Then the result on the hyper-minimization problem reads as follows.

Theorem 5 (Hyper-Minimization). The problem of deciding for a given
DFA A and an integer n, whether there exists a DFA B with n states, such
that A ∼ B, is NL-complete. The problem becomes PSPACE-complete for NFAs,
even if the input is given as a DFA. �

For the E-minimization problems, the situation is a bit different, since the
DFA-to-DFA E-minimization is NP-complete—even if E is finite. To prove NP-
hardness, it is tempting to use the NP-complete problem MINIMUM INFERRED
FINITE STATE AUTOMATON which is defined in [6], and where [9] is given
as reference. Unfortunately, in [9] this problem is defined for Mealey machines
instead of DFAs as studied here. This makes a direct application complicated
due to subtle differences between these machines—a detailed discussion on this
subject is given in the full version of this paper. Nevertheless, we are able to
succeed proving the following complexity result on E-minimization.

Theorem 6 (E-Minimization). The problem of deciding for two given
DFAs A and AE, and an integer n, whether there exists a DFA B with n states,
such that A ∼E B, for E = L(AE), is NP-complete. This even holds, if the
language E is finite. The problem becomes PSPACE-complete for NFAs, even if
the input is given as a DFA.

Proof (Sketch). We only sketch the proof for NP-completeness of the DFA-to-
DFA E-minimization. Since A ∼E B can be verified for DFAs in determin-
istic polynomial time by Theorem 1, the problem description gives rise to a
straightforward guess-and-check algorithm on a nondeterministic polynomial
time bounded Turing machine. Hence the problem belongs to NP.

For NP-hardness we use a reduction from MONOTONE 3SAT [6]. Given a
Boolean formula ϕ = c0 ∧ c1 ∧ · · · ∧ ck−1 with variables X = {x0, x1, . . . , xn−1},
where each ci is either a positive clause of the form ci = (xi1 ∨ xi2 ∨ xi3) or

From Equivalence to Almost-Equivalence 197

a negative clause of the form ci = (¬xi1 ∨ ¬xi2 ∨ ¬xi3), we construct a DFA
A = (Q ∪ P ∪ {r, f, s}, {a, b, c}, δ, q0, {f}), where Q = {q0, q1, . . . , qk−1}, and
P = {p0, p1, . . . , pn−1}. Its transition function δ is depicted in Figure 2. The
integer for the E-minimization instance is set to n+ k+ 2, which is exactly one
less than the number of states in A. Finally, the finite error language is

E = { aiban−j | 0 ≤ i ≤ k − 1, ci contains xj or ¬xj } ∪
{ aibajb, aibajc | 0 ≤ i ≤ k − 1, 1 ≤ j ≤ n− 1 } ∪

{ an+jb | 0 ≤ j ≤ n− 1 }.

A DFA AE accepting this language can easily be constructed in polynomial time.

q0 . . . qi . . . qk−1

p0. . .pi1. . .pn−1f

r

a a a a

a

aaaaa, c

b, c

b, if ci negativeb, if ci positive b

b

c

c

Fig. 2. The DFA A constructed from the Boolean formula ϕ. The b-transitions from
states q0, q1, . . . , qk−1 are only sketched—it is δ(qi, b) = pi1 , if ci = (¬xi1 ∨¬xi2 ∨¬xi3),
and δ(qi, b) = r otherwise. All undefined transitions go to the sink state s, which is not
shown.

One can then show that ϕ is satisfiable if and only if there exists a DFA B,
with A ∼E B, that has n + k + 2 states—in this case, only state r is missing.
The overall idea is the following. Since every word in E contains at least one b
symbol, the error set does not allow E-equivalent automata to differ on inputs a
or c. Further, since words aibb and aibc with 0 ≤ i ≤ k − 1 do not belong
to E, the b-transitions from states qi must end in states pj , and the b-transitions
from pj must end in state f or the sink state s. The connection to ϕ is the
following: a state pi, corresponding to variable xi, goes to state f on input b
if and only if the variable xi should be assigned the Boolean value 1. And a
state qi, corresponding to a clause ci, goes to state pj on input b if and only
if the clause ci gets satisfied by the variable xj . In this way, any E-minimal
DFA B, with A ∼E B, corresponds to a satisfying truth assignment for ϕ, and
vice versa. �

A slight variant of these minimization problems is the following problem, where
also the number of errors is taken into account:

198 M. Holzer and S. Jakobi

Table 2. Results on the computational complexity of minimizing finite automata
with respect to different equivalence relations. The input to all problems is a finite
automaton A and an integer n, and the question is, whether there exists an n-state
finite automaton B, that is in the corresponding relation to A. For the problems on
E-minimization, a DFA AE specifying the error language E is given as additional input.

Minimization problem
DFA-to-. . . NFA-to-. . .

Equivalence relation DFA NFA DFA NFA

≡
NL

PSPACE PSPACE∼
∼E, for DFA AE with E = L(AE) NP

INSTANCE: An NFA A and integers e and n.
QUESTION: Is there an NFA B with n states, such that |L(A))L(B)| ≤ e?

By adapting the proof on the PSPACE-hardness of the E-canonicity problem for
NFAs, we can show that this problem is PSPACE-hard, and belongs to NEXP,
even if the automaton B in the problem description is restricted to be determin-
istic. This is a generalization of a recently obtained result [8] on simultaneously
restricting the size of the automata and the number of errors in DFA-to-DFA
minimization w.r.t almost-equivalence. This problem was classified to be NP-
complete. Thus, for the simultaneously restricted minimization problems, only
DFA-to-NFA minimization for almost equivalence lacks a characterization. Since
ordinary DFA-to-NFAminimization is PSPACE-complete, the lower bound trans-
fers to the simultaneously restricted problem instance by setting e = 0, and the
upper bound follows from the more general NFA-to-NFA result from above. In
conclusion we obtain:

Corollary 7. The problem of deciding for a given NFA A and given integers e
and n, whether there is an NFA B with n states, such that |L(A))L(B)| ≤ e, is
PSPACE-hard and belongs to NEXP. This statement also holds if at most one of
the automata A and B is restricted to be deterministic, and the problem becomes
NP-complete, if both automata A and B are restricted to be deterministic. �

We summarize our results on the decision versions of minimization problems in
Table 2.

3.4 Deciding Minimality

Here we consider the computational complexity of minimality problems. The
minimality problem is to decide for a given (deterministic or nondetermin-
istic) finite automaton, whether it is minimal w.r.t. some error profile. For
ordinary equivalence, deciding minimality is NL-complete for DFAs [5] and
PSPACE-complete for NFAs [17]. For deciding hyper-minimality, we obtain a
similar result.

From Equivalence to Almost-Equivalence 199

Theorem 8 (Deciding Hyper-Minimality). The problem of deciding for a
given finite automaton A, whether A is hyper-minimal, is NL-complete for DFAs,
and PSPACE-complete for NFAs. �

When deciding E-minimality, the complexity changes dramatically for DFAs,
but remains the same for NFAs.

Theorem 9 (Deciding E-Minimality). The problem of deciding for two giv-
en DFAs A and AE , whether A is E-minimal, for E = L(AE), is coNP-complete.
The problem is PSPACE-complete, if A is given as an NFA. �

4 Counting Minimal Automata

It is well known that for each regular language there is a unique minimal DFA (up
to isomorphism) accepting this language. Since hyper-minimal and E-minimal
DFAs are not necessarily unique anymore, we are led with the following count-
ing problem: given a DFA A, what is the number of hyper-minimal DFAs B,
with A ∼ B? Naturally, this generalizes to determine the number of E-minimal
DFAs, and further to NFAs as input. Counting problems for finite automata were
previously investigated in, e.g., [1,12,19]. We show that there is again a signifi-
cant difference between the computational complexities of questions concerning
almost- and E-equivalence. Our first goal is to prove that the counting problem
for hyper-minimal DFAs lies in FP. For this we first derive the following lemma.

Lemma 10. Let A be a hyper-minimal DFA with p states in its preamble,
let K1,K2, . . . ,Km be the almost-equivalence classes in the kernel, and let pi,
for 1 ≤ i ≤ m, be the number of transitions that lead from preamble states to
some state in Ki. Then the number of hyper-minimal DFAs that are almost-
equivalent to A is 2p ·

∏m
i=1 |Ki|pi , if p > 0, and |Ks|, if p = 0 and the initial

state lies in Ks. �

Applying this lemma to one of the DFAs in Figure 1 gives p = 0, and |Ks| = 2,
with s = m = 1, which means that besides the two depicted automata, there are
no other hyper-minimal DFAs, that are almost-equivalent to the depicted ones.
Since the values p, |Ki|, and pi, for 1 ≤ i ≤ m, from Lemma 10 can be derived
from a given DFA in polynomial time, we obtain the following result.

Theorem 11 (Counting Hyper-Minimal DFAs). Given a DFA A, then
the number of hyper-minimal DFAs B satisfying A ∼ B can be computed in
polynomial time, i.e., it belongs to FP. �

Our next goal is to show that the counting problem for E-minimal DFAs is at
least #P-hard, where we use a result from [27], that allows us to compute the
coefficients σi of a formal power series

∑
σix

i under certain conditions.

Theorem 12 (Counting E-Minimal DFAs). Given two DFAs A and AE,
the problem of computing the number of E-minimal DFAs B, with A ∼E B
and E = L(AE), is #P-hard and can be computed in # · coNP.

200 M. Holzer and S. Jakobi

Proof (Sketch). We only sketch the proof of #P-hardness by a reduction from the
MONOTONE 2SAT counting problem, which is shown to be #P-complete in [27],
and which is defined as follows. Given a Boolean formula ϕ = c0 ∧ c1 ∧ · · ·∧ ck−1

in conjunctive normal form over a set of variables X = {x0, x1, . . . , xn−1},
where each clause ci contains exactly two positive literals, i.e., ci = (xi1 ∨ xi2),
with xi1 , xi2 ∈ X , for all i ∈ {0, 1, . . . , k − 1}, compute the number of satisfying
truth assignments. Given an instance ϕ of this problem, we use the same tech-
nique as in the NP-completeness proof of Theorem 6, to construct the DFAs A
and AE . Due to the special structure of these automata, whenever for some
truth assignment α exactly t clauses of ϕ are satisfied by both of their literals,
and all other clauses only by one literal, then exactly 2t different E-minimal
DFAs B with A ∼E B can be derived from α, and any E-minimal DFA that
is E-equivalent to A corresponds to a specific assignment. Then the number of
E-minimal DFAs B with A ∼E B is

∑k
t=0 σt2

t, where σt is the number of as-
signments, that satisfy exactly t clauses of ϕ twice, and the others once. Using a
technique from [27], we can compute the number of satisfying truth assignments
for ϕ from this value in polynomial time. �

Instead of counting the number of hyper-minimal or E-minimal DFAs, one could
also count minimal NFAs. It is easy to see, using a similar strategy as in the proof
of Theorem 12, that these three NFA counting problems belong to #PSPACE,
which is equal to FPSPACE, the class of functions computable in polynomial
space [19]. What can be said about the lower bound on these NFA counting
problems? We have to leave open this question for counting minimal and hyper-
minimal NFAs. For counting the number of E-minimal NFAs, we can prove
#P-hardness with nearly the same proof as for Theorem 12. We summarize our
result as follows:

Theorem 13 (Counting E-Minimal NFAs). Given an NFA A and an ad-
ditional DFA AE, the problem of computing the number of E-minimal NFAs B,
with A ∼E B and E = L(AE), is #P-hard and contained in #PSPACE. �

References

1. Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theoret. Comput.
Sci. 107(1), 3–30 (1993)

2. Badr, A.: Hyper-minimization in O(n2). Internat. J. Found. Comput. Sci. 20(4),
735–746 (2009)

3. Badr, A., Geffert, V., Shipman, I.: Hyper-minimizing minimized deterministic finite
state automata. RAIRO–Inform. Théori. Appl./Theoret. Inform. Appl. 43(1), 69–94
(2009)

4. Birget, J.C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

5. Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems.
Inform. Comput. 97, 1–22 (1992)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. Freeman (1979)

From Equivalence to Almost-Equivalence 201

7. Gawrychowski, P., Jeż, A.: Hyper-minimisation Made Efficient. In: Královič, R.,
Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 356–368. Springer, Heidelberg
(2009)

8. Gawrychowski, P., Jeż, A., Maletti, A.: On Minimising Automata with Errors.
In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 327–338.
Springer, Heidelberg (2011)

9. Gold, E.M.: Complexity of automaton identification from given data. Inform. Con-
trol 37(3), 302–320 (1978)

10. Gruber, H., Holzer, M.: Finding Lower Bounds for Nondeterministic State Com-
plexity Is Hard (Extended Abstract). In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006.
LNCS, vol. 4036, pp. 363–374. Springer, Heidelberg (2006)

11. Hemaspaandra, L.A., Vollmer, H.: The satanic notations: Counting classes beyond
#P and other definitional adventures. SIGACT News 26(1), 2–13 (1995)

12. Holzer, M.: On emptiness and counting for alternating finite automata. In: Develop-
ments in Language Theory II (DLT); at the Crossroads of Mathematics, Computer
Science and Biology, pp. 88–97. World Scientific (1996)

13. Holzer, M., Maletti, A.: An n log n algorithm for hyper-minimizing a (minimized)
deterministic automaton. Theoret. Comput. Sci. 411(38-39), 3404–3413 (2010)

14. Hopcroft, J.: An n log n algorithm for minimizing the state in a finite automaton. In:
The Theory of Machines and Computations, pp. 189–196. Academic Press (1971)

15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

16. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17(5), 935–938 (1988)

17. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Com-
put. 22(6), 1117–1141 (1993)

18. Jones, N.D., Lien, Y.E., Laaser, W.T.: New problems complete for nondeterministic
log space. Math. Systems Theory 10, 1–17 (1976)

19. Ladner, R.E.: Polynomial space counting problems. SIAM J. Comput. 18(6),
1087–1097 (1989)

20. Maletti, A., Quernheim, D.: Optimal hyper-minimization. Internat. J. Found. Com-
put. Sci. 22(8), 1877–1891 (2011)

21. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential time. In: Switching and Automata Theory
(SWAT), pp. 125–129. IEEE Society Press (1972)

22. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
23. Szelepcsényi, R.: The method of forced enumeration for nondeterministic au-

tomata. Acta Inform. 26(3), 279–284 (1988)
24. Szepietowski, A.: Closure properties of hyper-minimized automata. RAIRO–

Inform. Théori. Appl./Theoret. Inform. Appl. 45(4), 459–466 (2011)
25. Toda, S.: Computational Complexity of Counting Complexity Classes. PhD thesis,

Tokyo Institute of Technology, Department of Computer Science, Tokyo, Japan
(1991)

26. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput.
Sci. 8(2), 189–201 (1979)

27. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

Analogs of Fagin’s Theorem

for Small Nondeterministic Finite Automata

Christos A. Kapoutsis� and Nans Lefebvre

LIAFA, Université Paris VII, France

Abstract. Let 1N and SN be the classes of families of problems solvable
by families of polynomial-size one-way and sweeping nondeterministic
finite automata, respectively. We characterize 1N in terms of families of
polynomial-length formulas of monadic second-order logic with successor.
These formulas existentially quantify two local conditions in disjunctive
normal form: one on cells polynomially away from the two ends of the
input, and one more on the cells of a fixed-width window sliding along it.
We then repeat the same for SN and for slightly more complex formulas.

1 Introduction

The ‘Sakoda-Sipser analogy’ suggests that, parallel to the standard complexity
theory that measures time onTuring machines, one can build a robust complexity
theory measuring size in two-way finite automata [10]. An updated suggested
outline of such a theory was given in [6], and the name ‘minicomplexity theory’
was proposed soon later. One premise behind such research is that many phe-
nomena of standard complexity theory emerge already in much weaker devices,
and that their study at such early level may deepen our understanding.

Here we test this premise relative to descriptive complexity theory, the logical
parallel of complexity theory where, instead of the Turing machines that solve a
problem, we study the logical formulas that specify it [5]. Does minicomplexity
theory have such a parallel? For example, consider Fagin’s Theorem, the logical
characterization of NP which inaugurated descriptive complexity [4]: Is there
an analogous theorem for the minicomplexity counterpart of NP, the class 2N of
problems solvable by polynomial-size two-way nondeterministic finite automata?

We answer this question for the one-way and sweeping restrictions of 2N, the
subclasses 1N and SN corresponding to automata whose heads move only forward
(1nfas) or reverse only on end-markers (snfas). We start at Büchi’s Theorem,
which translates between 1nfas and formulas of monadic second-order logic with
successor (mso[S]) [3]. There, the tempting guess that polynomial-size 1nfas
correspond to polynomial-length mso[S] formulas is valid only from automata
to formulas; in contrast, polynomial-size formulas may translate to 1nfas of
non-elementary size [9]. We thus refine Büchi’s proof, to find suitably restricted
formulas where polynomial length indeed corresponds to polynomial 1nfa size.

� Supported by a Marie Curie Intra-European Fellowship (pief-ga-2009-253368) within
the European Union Seventh Framework Programme (fp7/2007-2013).

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 202–213, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Analogs of Fagin’s Theorem for Small NFA 203

We arrive at ‘existential anchor-slide dnfs’ (eas/dnfs), formulas which quantify
existentially two ‘local’ conditions in disjunctive normal form: an ‘anchor ’, which
describes cells that are ‘anchored’ relative to the two ends of the input; and a
‘slide’, which describes the cells of a window that ‘slides’ along the input. Our
Theorem 1 is that the desired correspondence indeed holds when the anchored
cells lie polynomially near the two ends and the width of the sliding window is
constant. Then, our Theorem 2 generalizes this correspondence to snfas and to
eas/dnfs of a ‘multi-core’ variant of many anchors/slides with limited variable
access; our argument naturally involves rotating automata (snfas with only
forward passes) and the corresponding class RN, actually reproving RN = SN [7].

2 Preparation

2.1 Nondeterministic Finite Automata

A sweeping nondeterministic finite automaton (snfa) is a tuple N = (S,Σ, δ, q0)
of a set of states S, an alphabet Σ, a special state q0 ∈ S, and a set of transitions
δ ⊆ S× (Σ ∪{",+})×S, where ",+ /∈ Σ are two end-markers. A word w∈Σ∗ is
presented to N between the end-markers (Fig. 1a). The computation starts at q0
on ". At every step, the next state may be any of those derived from δ and the
current state and symbol. The next tape cell is always the adjacent one in the
direction of motion; except if the current symbol is + and the next state is not q0
or if the current symbol is ", in which two cases the next cell is the adjacent
one towards the other end-marker. So, each branch of the resulting computation
performs a number of alternating forward and backward passes over "w+, and
eventually loops, hangs, or falls off + into q0. In the last case, we say N accepts w.

We say N is layered if S can be split into ρ layers S1, . . . , Sρ such that all
accepting computations perform exactly ρ passes and every r-th pass (1 ≤ r ≤ ρ)
uses only transitions departing from states in Sr. Pictorially, the state diagram
consists of ρ sub-diagrams, each visited exactly once and only through transitions
on " or + (Fig. 1c). With a small increase in size, every snfa can be made layered.

Lemma 1. Every s-state snfa has a O(s2)-state equivalent with < 2s layers.

A rotating nondeterministic finite automaton (rnfa) is a snfa that performs
only forward passes (Fig. 1b). Formally, we just change how we pick the next

wnw1 w2wnw1 w2

�
�

�q0

	
	

	
	
	 �

S2S1

�

�

	

�

�

Sρ

(c)(b)

· · ·

(a)

· · ·

· · ·

Fig. 1. Schematic of (a) a snfa, (b) a rnfa, (c) the state diagram of a layered snfa

204 C.A. Kapoutsis and N. Lefebvre

0
=q0

1

0

a

1

⊥
x1

x2

X1

X2

X3

(a)

1

1

0

0

0

1

a

2

a

0

0

0

1

0

3

b

1

0

1

0

1

4

a

0

0

0

1

0

b

0

0

1

0

1

5

⊥
x1

x2

X1

X2

X3

0

1

a

0

1

0

0

1

a

0

0

0

1

0

1

2

b

1

0

1

0

0

1

3

a

0

0

0

1

0

0

4

b

0

0

1

0

1

0

5

⊥
x1

x2

X1

X2

X3

x5

(c)

0

0

1

0

0

1

a

2

2

0

0

0

1

1

1

b

3

3

0

0

1

0

0

1

a

1

4

0

0

0

1

0

1

b

1

5

(b)

a

1 5 6 7

p

32

a

4

0

0

0

1

1

1

a

3

1

20 0

(d)

(e)

X0:
X1:
X2:
X3:

X1:
X2:

pp q

8

a

0

X1:
X2:

0

1

X3: 0

0

0

0

0

0

1

0

1

0 1

1

0

0

1

0

1

1

1

1

1

1

(f)

(g)

pqq

0

Fig. 2. (a) A column of Σ|V1|V2, if Σ = {a,b}, V1 = {x1,x2}, V2 = {X1,X2,X3}. (b) A
well-formed ŵ over Σ|V1|V2; here ŵ(⊥) = aabab, ŵ(x2) = 3, ŵ(X2) = {1,3,5}. (c) The
word ŵ[x5/2]. (d,e) Encoding a computation of a 4-state 1nfa, with 1 variable per
state (d), or per bit in the codes of states (e). (f) Defining α�

pq, αpq , α
	
p , and α	

pq.
(g) Checking that a word has length 8, by implementing a 3-bit counter.

cell: it is always the adjacent one to the right; except if the current symbol is +
and the next state is not q0, in which case the next cell is that of ". Layered
rnfas are defined similarly, and satisfy Lemma 1 with ‘rnfa’ and ‘≤ s’ instead
of ‘snfa’ and ‘< 2s’. A one-way nondeterministic finite automaton (1nfa) is a
rnfa that performs only 1 pass. Formally, we just insist that every (. ,+, .) ∈ δ
is of the form (. ,+, q0). Deterministic 1nfas (1dfas) obey the usual restriction.

A (promise) problem over Σ is a pair L = (L, L̃) of disjoint subsets of Σ∗. A
machine solves L if it accepts all w ∈ L but no w ∈ L̃. A family of machines
M = (Mh)h≥1 solves a family of problems (Lh)h≥1 if every Mh solves Lh. The
machines of M are small if every Mh has ≤ p(h) states, for some polynomial p.

2.2 Monadic Second-Order Logic with Successor

In monadic second-order logic with successor over Σ (msoΣ[S]), formulas are
built from a list of first-order variables x1, x2, . . . , a list of monadic second-order
variables X1, X2, . . . , one predicate a(.) for each a ∈ Σ, the successor predicate
S(. , .), the connectives ∧,∨,¬, and the quantifiers ∃,∀.1 Each formula ϕ is either
an atom, of the form a(x), X(x), or S(x, y); or compound, of the form ¬φ, φ∧ψ,
φ ∨ ψ, ∃xφ, ∀xφ, ∃Xφ, or ∀Xφ, where x,y two f.o. variables, X a s.o. variable,
a ∈ Σ, and φ,ψ two simpler formulas. The length |ϕ| of ϕ is the number of
occurences of symbols in it, ignoring punctuation and counting each xi,Xi, and a
as 1 symbol. An atom or negation of an atom is called literal ; a conjunction (resp.,
disjunction) of literals is called ∧-clause (∨-clause); a disjunction (conjunction)
of ≤m such clauses is called an m-dnf (m-cnf).2

Formulas of msoΣ [S] are interpreted on words over alphabets that extend Σ,
as follows. For V1,V2 two sets of f.o. and s.o. variables respectively, let Σ|V1|V2 be
the alphabet of all functions u : {⊥}∪V1∪V2 → Σ∪{0,1} that map ⊥ into Σ and
variables into {0,1}: u(⊥) ∈ Σ and u[V1∪V2] ⊆ {0,1}. Intuitively, every such u is
a column of 1+|V1|+|V2| cells, labelled by the elements of {⊥}∪V1∪V2 and filled

1 The equality predicate .= . may also be used, but we will not need it.
2 Note that in standard complexity the meaning of “2-cnf”, “3-cnf”, etc. is different.

Analogs of Fagin’s Theorem for Small NFA 205

by the respective u-values (Fig. 2a). Likewise, every ŵ = ŵ1 · · · ŵn ∈ (Σ|V1|V2)
∗

is a table of n columns, and 1+|V1|+|V2| rows: one labelled ⊥, hosting an n-long
word over Σ; the rest labelled by variables, hosting n-long bitstrings (Fig. 2b).
We say ŵ is well-formed if n �= 0 and each f.o. variable row hosts exactly one 1.
Then ŵ(⊥) is the ⊥-row word ŵ1(⊥) · · · ŵn(⊥) ∈ Σ∗; ŵ(x) is the index i of the
unique ŵi hosting 1 in the row of x ∈ V1; and ŵ(X) is the set {i | ŵi(X)=1}
of indices of columns hosting 1 in the row of X ∈ V2 (Fig. 2b). If y /∈ V1 and
1 ≤ i ≤ n, then ŵ[y/i] is the well-formed ŵ′ over Σ|V1∪{y}|V2 derived from ŵ
by adding a row with label y and bits such that ŵ′(y) = i (Fig. 2c); similarly for
ŵ[Y/I], when Y /∈ V2 and I ⊆ {1, . . . , n}.

Given a well-formed n-long ŵ over Σ|V1|V2 and a formula ϕ(x,X) with its
free variables x and X in V1 ∪ V2, we say ŵ satisfies ϕ, in symbols ŵ |= ϕ, if:

for ϕ ≡ a(x) : ŵŵ(x)(⊥) = a (1)

for ϕ ≡ X(x) : ŵ(x) ∈ ŵ(X) (2)

for ϕ ≡ S(x, y) : ŵ(x) + 1 = ŵ(y) (3)

for ϕ ≡ ∃xφ : there exists i ∈ {1, . . . , n} such that ŵ[x/i] |= φ

for ϕ ≡ ∃Xφ : there exists I ⊆ {1, . . . , n} such that ŵ[X/I] |= φ ,

and similarly or in obvious ways for ϕ ≡ ¬φ, φ ∧ ψ, φ ∨ ψ, ∀xφ, or ∀Xφ.
We introduce an extension of msoΣ[S], called mso

+
Σ [S,Z∗]. The ‘+’ means that,

instead of predicates a(.) for a ∈ Σ, we use predicates α(.) for α ⊆ Σ. The ‘Z∗’
means that we now use constants from Z∗ := {±1,± 2, . . . } to refer to specific
columns. So, now a term is any f.o. variable x or constant c ∈ Z∗, and an atom
has the form α(t), X(t), or S(t, t′), where α ⊆ Σ and t,t′ are terms. The length
of a formula ϕ is extended so that each α and c count as 1 symbol, too. The
margin of ϕ is max{|c| | c ∈ Z∗ occurs in ϕ}; or 0, if ϕ uses no constants.

On a well-formed n-long ŵ over Σ|V1|V2, the meaning ŵ(c) of a constant c is
just c, if 1 ≤ c ≤ n; or n+c+1, if −n ≤ c ≤ −1; or undefined, otherwise. So,
positive (resp., negative) constants refer to a column by its offset from the left
(right) end of ŵ. Then, the definition of ŵ |= ϕ is modified in cases (1)-(3):

for ϕ ≡ α(t) : ŵŵ(t)(⊥) ∈ α (1′)

for ϕ ≡ X(t) : ŵ(t) ∈ ŵ(X) (2′)

for ϕ ≡ S(t, t′) : ŵ(t) + 1 = ŵ(t′) ; (3′)

in addition, we declare ŵ |= ϕ automatically false if ϕ uses any constant >n.
The next lemma says that mso+

Σ
[S,Z∗] is as expressive as msoΣ [S], but more

concise. Still, the savings in formula length are negligible, if we ignore polynomial
differences and if alphabet size, margin, and length are polynomially related.

Lemma 2. Every msoΣ [S] formula of length l has an equivalent in mso
+
Σ [S,Z∗]

of margin 0 and length ≤ l. Conversely, every mso
+
Σ
[S,Z∗] formula of margin τ

and length l has an equivalent in msoΣ[S] of length O(τ+σl), where σ := |Σ|.

A formula ϕ(x,X) solves a problem L = (L, L̃) over Σ|x|X if ŵ |= ϕ for all
well-formed ŵ ∈ L but no well-formed ŵ ∈ L̃. A family of formulas F = (ϕh)h≥1

206 C.A. Kapoutsis and N. Lefebvre

solves a family of problems (Lh)h≥1 if every ϕh solves Lh. The formulas of F
are small if every ϕh has length ≤ p(h), for some polynomial p.

3 Existential Anchor-Slide Sentences

A formula is local if it is free of S(. , .) and quantifiers; so, it is built just by
applying ∧,∨,¬ to atoms of the form α(t) and X(t). E.g., if ã := {a} then

ψ∗(X) := ã(+1) ∧X(+1)

and φ∗(x, y,X) := [ã(x) ∧X(x) ∧ ¬X(y)] ∨ [¬X(x) ∧X(y)]
(4)

are two local formulas. A local formula is anchored if all its terms are constants
(e.g., as in ψ∗); it is floating if all its terms are f.o. variables (e.g., as in φ∗).

Now let φ(x1, . . . , xk, X) be a floating local, for some k ≥ 1. Then the formula

∀x1 · · · ∀xk[S(x1, x2) ∧ · · · ∧ S(xk−1, xk) → φ(x1, . . . , xk, X)]

claims that φ is true on every k successive cells; or, more intuitively, that φ holds
at every stop of a window of width k which slides along the word. We call this
a sliding formula, we represent it more succinctly with the shorthand notation

∀�x1· · ·xk φ(x1, . . . , xk, X) ,

and refer to k and φ as its width and float. (For k = 1, this is just ∀x1φ(x1, X).)
We are interested in sentences that are existentially quantified conjunctions

of an anchored local and a sliding formula; that is, sentences of the form

∃X1 . . .∃Xd[ψ(X) ∧ ∀�x1· · ·xk φ(x,X)] , (5)

where ψ is anchored local of some margin τ ; φ is floating local; and X, x are short
for X1, . . . , Xd, x1, . . . , xk. We call (5) an existential anchor-slide sentence (eas)
of depth d, margin τ , and width k, having anchor ψ, float φ, slide ∀�x φ, and core
ψ ∧ ∀�x φ. We say it is in m-dnf (resp., m-cnf), an eas/dnf (eas/cnf), if both
ψ and φ are m-dnfs (m-cnfs). E.g., for the ψ∗,φ∗ of (4), here is an eas in 2-dnf

∃X [ψ∗(X) ∧ ∀�xy φ∗(x, y,X)]

of depth 1, margin 1, and width 2 (satisfied iff all odd-indexed cells host an a).
Our first theorem says that polynomial-size 1nfas are equivalent to eas/dnfs

of polynomial length, polynomial margin, and constant width; and that this
holds already when the depth is logarithmic, the margin is 1, and the width is 2.

Theorem 1. The following are equivalent, for every family of problems L:
1. L has small 1nfas.
2. L has small eas/dnfs of logarithmic depth, margin 1, and width 2.
3. L has small eas/dnfs of small margin and fixed width.

Proof. [(1)⇒(2)] By Lemma 3. [(2)⇒(3)] Trivial. [(3)⇒(1)] By Lemma 10. �

Analogs of Fagin’s Theorem for Small NFA 207

Our next theorem generalizes Theorem 1 to snfas and sentences of the form

∃X1 . . . ∃Xρ

�ρ
r=1[ψr(Xr, Xr+1) ∧ ∀�x1· · ·xk φr(x,Xr)] , (6)

where each ψr is anchored local of some margin τ ; each φr is floating local; each
Xr is short for Xr,1, . . . , Xr,d for some d; and x is short for x1, . . . , xk.

3 Note how
the Xr,j are split into ρ groups so that the r-th core uses only groups r and r+1
in its anchor and only group r in its float. We call (6) an existential multicore
anchor-slide sentence (emas) of multiplicity ρ, depth d, margin τ , and width k.
We say it is in m-dnf, an emas/dnf, if all anchors and floats are m-dnfs.

Theorem 2. The following are equivalent, for every family of problems L:
1. L has small rnfas.
2. L has small snfas.
3. L has small emas/dnfs of logarithmic depth, margin 1, and width 2.
4. L has small emas/dnfs of small margin and fixed width.

Proof. [(1)⇒(2),(3)⇒(4)] Trivial. [(2)⇒(3),(4)⇒(1)] By Lemmas 4 and 13. �

4 From Automata to Formulas

The standard construction of an mso[S] sentence for an s-state 1nfa uses, for
each state p, a variable Xp for the set of cells where p is used along an accepting
computation (Fig. 2d) [3]. The result can be cast into an eas/dnf of depth s
and length O(s3). A trick of [11] reduces the depth to 1 but increases the length
to quasi-polynomial. The next lemma finds a eas/dnf of logarithmic depth and
polynomial length. Then Lemma 4 generalizes this to snfas and emas/dnfs.

Lemma 3. Every s-state 1nfa has an eas in s2-dnf, of depth �log s�, margin 1,
width 2, and length O(s2 log s).

Proof. Pick any s-state 1nfa N . Without loss of generality, sayN = ([s], Σ, δ, 0),
where [s] := {0, . . . , s−1}. Let d := �log s�. For j = 1, . . . , d, let variable Xj be
the set of cells where an accepting computation uses a state p whose binary code
has 1 as its j-th most significant bit. Pictorially, a cell’s ‘bits of membership’ to
X1, . . . , Xd encode the state used on it (Fig. 2e). Under this representation, the
claim “the state used on cell z is p” is expressed by the floating local ∧-clause:

ξp(z,X) :=
�d
j=1

p,j� Xj(z) , (7)

where “
p,j� ” means either “¬” or nothing, depending on whether the j-th most

significant bit of the code of p is respectively 0 or 1. We also introduce, for each
p, q ∈ [s], the set of symbols of Σ that allow a transition from p to q, and the
set of symbols that allow together with + a transition from p to 0 (Fig. 2f):

αpq := {a ∈ Σ | (p, a, q) ∈ δ} ,
α�
p := {a ∈ Σ | (∃p′)[(p, a, p′), (p′,+, 0) ∈ δ]} .

(8)

3 When 1 ≤ r ≤ ρ, we assume “r+1” for r = ρ means 1; and “r−1” for r = 1 means ρ.

208 C.A. Kapoutsis and N. Lefebvre

Then, our slide says that “on every two successive cells, two states p, q are used
such that the symbol of the first cell allows a transition from p to q”:

∀�xy φ(x, y,X) := ∀�xy�p,q∈[s][ξp(x,X) ∧ αpq(x) ∧ ξq(y,X)] . (9)

Our anchor says that “on the two outer cells, two states p, q are used such that
(i) 0 can reach p on " and (ii) the last symbol and + allow q to reach 0”:

ψ(X) :=
�

(0,�,p)∈δ, q∈[s][ξp(+1,X) ∧ ξq(−1,X) ∧ α�
q (−1)] . (10)

Easily, the resulting mso
+
Σ
[S,Z∗] sentence ϕ := ∃X [ψ(X) ∧ ∀�xy φ(x,y,X)] is an

eas in s2-dnf, of depth d, margin 1, width 2, and length O(s2d). Moreover, one
easily verifies that N accepts w iff w |= ϕ, for all non-empty w ∈ Σ∗. �
Lemma 4. Every s-state snfa has an emas in O(s4)-dnf, of multiplicity < 2s,
depth O(log s), margin 1, width 2, and length O(s5 log s).

Proof. Pick any s-state snfa N . Without loss of generality, sayN = ([s], Σ, δ, 0).
By Lemma 1, there is an equivalent ρ-layer snfa Ñ = ([s̃], Σ, δ̃, 0), for ρ < 2s and
s̃ = O(s2). Generalizing Lemma 3, we build a sentence for Ñ . Let d := �log s̃�.

For each r = 1, . . . , ρ, we use the variables Xr := Xr,1, . . . , Xr,d to describe
(the binary codes of) the states along the r-th pass of an accepting computation
of Ñ . (So, Xr,j is the set of cells where the r-th pass uses a state whose binary
code has 1 as its j-th bit.) The claim “the state used by the r-th pass on cell z
is p” is now expressed by ξp(z,Xr), the floating local ∧-clause of (7) with eachXj

replaced by Xr,j . Generalizing (8), we also define for each p, q ∈ [s̃] the sets of
symbols that allow (alone, with ", or with +) a transition from p to q (Fig. 2f):

αpq := {a ∈ Σ | (p, a, q) ∈ δ̃} ,
α�
pq := {a ∈ Σ | (∃p′)[(p, a, p′), (p′,", q) ∈ δ̃]} ,

α�
pq := {a ∈ Σ | (∃p′)[(p, a, p′), (p′,+, q) ∈ δ̃]} .

(8s)

Then, the r-th float generalizes that of (9) to describe a step of the r-th pass:

φr(x, y,Xr) :=

��
p,q∈[s̃][ξp(x,Xr) ∧ αpq(x) ∧ ξq(y,Xr)] if r odd,�
p,q∈[s̃][ξq(x,Xr) ∧ αpq(y) ∧ ξp(y,Xr)] if r even.

(9s)

The r-th anchor describes either the last two steps of the r-th pass, if r < ρ:

ψr(Xr, Xr+1) :=

��
	
�
p,q∈[s̃]
q �=0

[ξp(−1,Xr) ∧ α�
pq(−1) ∧ ξq(−1,Xr+1)] if r odd,�

p,q∈[s̃][ξp(+1,Xr) ∧ α�
pq(+1) ∧ ξq(+1,Xr+1)] if r even;

or the first and the last step of the entire computation, if r = ρ:

ψρ(Xρ, X1) :=
�

(0,�,p)∈δ̃, q∈[s̃][ξp(+1,X1) ∧ ξq(−1,Xρ) ∧ α�
q0(−1)] . (10s)

The final sentence ∃X1 · · · ∃Xρ

�
r[ψr(Xr,Xr+1)∧∀�xy φr(x,y,Xr)] is an emas in

s̃2-dnf, of multiplicity ρ, depth d, margin 1, width 2, and length O(ρs̃2d). �
The next lemma says that small eas/cnfs can be more powerful than small
eas/dnfs: indeed, even small snfas can be simulated by them (with just 1 core).

Analogs of Fagin’s Theorem for Small NFA 209

Lemma 5. (i)Every s-state 1nfa has an eas in O(s2)-cnf, of depth �log s�,
margin 1, width 2, and length O(s2 log s). (ii)Every s-state snfa has an eas in
O(s5)-cnf, of depth O(s log s), margin 1, width 2, and length O(s5 log s).

5 From Formulas to Automata

Fix an alphabet Σ and two sets of f.o. and s.o. variables V1 and V2. We assume
all formulas in this section are over Σ and draw their variables from V1 ∪ V2.

Lemma 6. Every floating local ∧-clause has a 1-state 1dfa.

Proof. Pick any floating local ∧-clause κ(x,X) =
�
j λj . Note that each λj is of

the form α(x), X(x), ¬α(x), or ¬X(x), for some x ∈ V1, α ⊆ Σ, X ∈ V2. Say a
column u ∈ Σ|V1|V2 passes (the test of) λj if either u(x)=0 or u(x)=1∧u |= λj ,
for x the one f.o. variable of λj . Say u passes κ(x,X) if it passes all λj .

Claim. For every well-formed ŵ ∈ (Σ|V1|V2)
∗: ŵ |= κ iff every ŵi passes κ.

Proof. [⇒] Suppose ŵ |= κ. Pick any column ŵi. Pick any λj , and let x be its
one f.o. variable. If ŵi(x) = 0 then ŵi passes λj , by definition. If ŵi(x) = 1 then
ŵi passes λj , since ŵ |= λj and so ŵi |= λj . So, ŵi passes all λj , and thus also κ.

[⇐] Suppose every ŵi passes κ. Pick any λj , and let x be its one f.o. variable.
Let i∗ := ŵ(x) be the unique i with ŵi(x) = 1. Since ŵi∗ passes κ (as all ŵi do),
it passes λj . Since ŵi∗(x) = 1, this means ŵi∗ |= λj ; that is, ŵŵ(x) |= λj . Hence
ŵ |= λj . Since λj was arbitrary, we conclude ŵ |= κ. �

Therefore, a 1dfa M = ([1], Σ|V1|V2, . , 0) simply scans its input ŵ checking that
every column ŵi passes κ. If any of them does not, then M just hangs. �

Lemma 7. Every local ∧-clause of margin τ has a (τ+1)2-state 1nfa.

Proof. Pick any local ∧-clause κ(x,X) of margin τ . Note that each literal of κ is
of the form α(t), X(t), ¬α(t), or ¬X(t), for some t ∈ V1 ∪{±1, . . . ,±τ}, α ⊆ Σ,
X ∈ V2. Hence, κ is the conjunction of three smaller ∧-clauses,

κ(x,X) = κl(X) ∧ κf(x,X) ∧ κr(X) ,

whose terms are all in {+1, . . . ,+τ}, in V1, and in {−1, . . . ,−τ}, respectively.
We know (Lemma 6) that κf has a 1-state 1dfa Mf, and we show (below) that
κl has a (τ+1)-state 1dfa Ml and κr has a (τ+1)-state 1nfa Nr. Hence, the
standard cartesian product of Ml, Mf, Nr is a (τ+1)2-state 1nfa for κ.

To build Ml, we first assume that κl contains at least one occurence of every
c ∈ {+1, . . . ,+τ} (if some c is missing, just replace κl with κl ∧ Σ(c)). Then
κl is a conjunction of exactly τ smaller ∧-clauses,

κl(X) = κ1(X) ∧ κ2(X) ∧ · · · ∧ κτ (X) ,

where the only term in κc is c. Easily then, Ml := ([τ+1], Σ|V1|V2, . , 0) simply
checks that the first τ input columns “satisfy” respectively κ1, . . . , κτ .

210 C.A. Kapoutsis and N. Lefebvre

To build Nr, we similarly write κr as a conjunction of τ smaller ∧-clauses,

κr(X) = κ−τ (X) ∧ · · · ∧ κ−2(X) ∧ κ−1(X) ,

where again the only term in κc is c. Easily then, Nr := ([τ+1], Σ|V1|V2, . , τ)
starts by consuming input columns until it nondeterministically guesses when
it has reached the τ -th rightmost one. Then it checks that the next τ columns
“satisfy” respectively κ−τ , . . . , κ−1, and are indeed followed by +. �

Lemma 8. Every local m-dnf of margin τ has an m(τ+1)2-state 1nfa.

Proof. On ", a 1nfa N = ([m]×[τ+1]×[1]×[τ+1], Σ|V1|V2, . , (0, 0, 0, 0)) guesses
which of the m ∧-clauses will be satisfied, and goes on to verify it by simulating
the corresponding (τ+1)2-state cartesian 1nfa given by Lemma 7. �

Lemma 9. Every sliding m-dnf of width k has an (m+1)k−1-state 1nfa.

Proof. Pick any floating local m-dnf φ(x,X) =
�m
j=1 κj , where x = x1, . . . , xk

and each κj is a floating local ∧-clause. We may assume each κj contains at least
one occurence of every xr (if some xr is missing, just replace κj with κj∧Σ(xr))
and is thus the conjunction of exactly k smaller ∧-clauses,

κj(x,X) = κj,1(x1, X) ∧ κj,2(x2, X) ∧ · · · ∧ κj,k(xk, X) ,

where xr is the only term in κj,r. Hence, an n-long well-formed word ŵ satisfies

∀
x1 · · ·xk φ(x,X) = ∀
x1 · · ·xk
�m
j=1

�k
r=1 κj,r(xr, X)

if at every stop i = 1, . . . , n−k+1 of a sliding k-wide window there is a clause κj
such that each individual column ŵi+r−1 in the window “satisfies” the respective
sub-clause κj,r (in the formal sense that ŵi+r−1[xr/1] |= κj,r(xr, X)). In other
words, we ask for a sequence j1, j2, . . . , jn−k+1 of choices of clauses such that each

ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7 ŵ8

5

4

3

2

1 j1, 1 j1, 2 j1, 3 j1, 4

j2, 1 j2, 2 j2, 3

j3, 2

j4, 1

j3, 1

j2, 4

j3, 3

j4, 2

j5, 1

j3, 4

j4, 3

j5, 2

j4, 4

j5, 3 j5, 4

j1 j2 j3 j4 j5

�
e.g., when
n=8, k=4

�

column ŵi (now i = 1, . . . , n) “satisfies” every relevant sub-clause κjt,r that we
get by ranging r = 1, . . . , k and keeping t+(r−1) = i (as well as 1 ≤ t ≤ n−k+1,
if ŵi is among the first k−1 or last k−1 columns).

To check this condition, a 1nfa N = ([m+1]k−1, Σ|V1|V2, . , (0, . . . ,0)) guesses
the choices ji one by one, remebering only the last k−1 of them at every step.
Specifically, N reads ŵi in state (ji−k+1, . . . , ji−2, ji−1); it then guesses ji and
checks that wi[xr/1] |= κjt,r for every r = 1, . . . , k and t = i−r+1; if any check
fails, N hangs; otherwise, it moves to ŵi+1 in state (ji−k+2, . . . , ji−1, ji). Special

Analogs of Fagin’s Theorem for Small NFA 211

care is needed on the first k−1 columns: there, N uses states with 0s in ≥ 1 of
the leftmost components to denote that there is no corresponding sub-clause to
check. Likewise, during the last k−1 columns, N uses states with 0s in ≥ 1 of the
rightmost components. Of course, N cannot know when the k−1-st rightmost
column has been reached; so, at every step it spawns an extra branch, which
guesses that the time is right and expects to read + after exactly k−1 steps. �
Lemma 10. Every eas m-dnf of margin τ and width k has an equivalent 1nfa
with O(mkτ2) states.

Proof. Take the cartesian product N of the two 1nfas for the anchor (Lemma 8)
and the slide (Lemma 9). Then, for the existential quantification, just drop all
s.o. variable information from the transitions of N (see also Lemma 11). �
For emas, we need a restriction of rnfas which interact well with existential
quantifiers. We first define this restriction and prove the associated interaction.

Let N = (S,Σ|X, δ, .) be a rnfa. A transition (p, u, q) ∈ δ ignores Xj if “it
does not read it”: either u ∈ {",+}; or u ∈ Σ|X and also (p, ũ, q) ∈ δ, where ũ
the column derived from u by complementing u(Xj). We say N is stratified if
“each Xj is read in at most one pass”: (i) N is layered, and (ii) for ρ the number
of layers, there is a partition X1, . . . , Xρ of X such that every transition between
states of layer r ignores all Xt with t �= r, for all r = 1, . . . , ρ.

Lemma 11. If ϕ(X) has a stratified s-state rnfa, then ∃Xϕ(X) has a layered
s-state rnfa.

We now continune our build-up towards multicore existential anchor-slides.

Lemma 12. If every ψr(Xr, Xr+1) is an anchored local m-dnf of margin τ ,
then
�ρ
r=1 ψr(Xr,Xr+1) has a ρm3(τ+1)2-state rnfa stratified by X1, . . . , Xρ.

Proof. Let ϕ(X) :=
�ρ
r=1 ψr(Xr, Xr+1). To check ŵ |= ϕ, a ρ-layer rnfa may

use its r-th pass to check ŵ |= ψr by simulating the m(τ+1)2-state 1nfa given
for ψr by Lemma 8. But this easy rnfa is not stratified, so we must work more.

We know ψr =
�m
j=1 κr,j(Xr, Xr+1), where each κr,j is an anchored local

∧-clause of margin τ . Since every literal uses ≤ 1 s.o. variable, we can split κr,j

κr,j(Xr, Xr+1) = μr,j(Xr) ∧ νr,j(Xr+1)

into two sub-clauses which use only one group of variables each. Therefore,

ϕ(X) =
�ρ
r=1

�m
j=1[μr,j(Xr) ∧ νr,j(Xr+1)] .

So, ŵ |= ϕ iff for each r there is a choice j such that ŵ |= μr,j ∧ νr,j . Viewed
differently, ŵ |= ϕ iff there exists a sequence of choices j1, . . . , jρ such that the
following conjunction on the left becomes true:

ŵ |= μ1,j1(X1) ∧ ν1,j1(X2) ŵ |= μ1,j1(X1) ∧ νρ,jρ(X1)& &
ŵ |= μ2,j2(X2) ∧ ν2,j2(X3) ŵ |= μ2,j2(X2) ∧ ν1,j1(X2)& ⇐⇒ &...

...
...

...
...

...
& &

ŵ |= μρ,jρ(Xρ) ∧ νρ,jρ(X1) ŵ |= μρ,jρ(Xρ) ∧ νρ−1,jρ−1(Xρ)

212 C.A. Kapoutsis and N. Lefebvre

Now, this conjunction is equivalent to the one on the right, which just “cyclically
shifts down” the column of the νr,jr to align the groups of s.o. variables. Hence,
ŵ |= ϕ iff there exist j1, . . . , jρ such that ŵ |= (νr−1,jr−1∧ μr,jr)(Xr) for all r.

Our stratified rnfa N uses this last condition. Also, for each r = 1, . . . , ρ
and j, j′ = 1, . . . ,m, it uses the (τ+1)2-state 1nfa N [r, j, j′] over Σ|Xr given
by Lemma 7 for the margin-τ anchored local ∧-clause (νr−1,j ∧ μr,j′)(Xr). The
machine starts by guessing and storing jρ. It then performs ρ passes. The r-th
pass starts by recalling jr−1 from the previous pass (or jρ from the starting guess,
if r = 1) and guessing jr (or recalling jρ from the starting guess, if r = ρ). Then,
N simulates N [r, jr−1, jr] to check ŵ |= (νr−1,jr−1 ∧ μr,jr)(Xr). If at the end of
the last pass all simulations have accepted, then N accepts. This algorithm can
be implemented with states of the form (j∗; r, j, j′; p) where 1 ≤ j∗, j, j′ ≤ m,
1 ≤ r ≤ ρ, and p ∈ [τ+1]2, meaning that: the starting guess for jρ was j∗; the
guesses for jr−1,jr were j,j

′; and the current r-th pass is at state p in simulating
N [r, jr−1, jr]. This is indeed a stratified rnfa, with ρ·m3·(τ+1)2 states. �

Lemma 13. Every emas m-dnf of multiplicity ρ, margin τ and width k has a
ρ-layer rnfa with O(ρ·mk+2τ2) states.

Proof. Let ∃X1 · · · ∃Xρ

�ρ
r=1[ψr(Xr, Xr+1)∧∀
x1 · · ·xkφr(Xr)] be the given eas.

Easily, this is equivalent to ∃Xϕ(X), where ϕ := [
�ρ
r=1ψr]∧

�ρ
r=1[∀�xφr]. Let Na

be the stratified rnfa with ρm3(τ+1)2 states given by Lemma 12 for
�ρ
r=1ψr.

For each r = 1, . . . , ρ, let Nr be the 1nfa of (m+1)k−1 states given by Lemma 9
for ∀�xφr. Now, a rnfa N for ϕ can just simulate all of Na, N1, . . . , Nρ and accept
if they all do. The simulation is possible because Na is stratified by X1, . . . , Xρ

and each Nr is defined over Σ|Xr; so, each Nr can be simulated during the r-th
pass of the simulation of Na. Essentially, we build N by replacing each layer
of Na by its cartesian product with the corresponding Nr: each state is of the
form (j∗; r, j, j′; p; q), meaning that the current r-th pass is at state (j∗; r, j, j′; p)
in simulating Na (cf. proof of Lemma 12) and at state q in simulating Nr. Easily,
N is also stratified by X1, . . . , Xρ and uses ρm3(τ+1)2·(m+1)k−1 states. �

6 Conclusion

Refining Büchi’s Theorem, we established analogs of Fagin’s Theorem for small
one-way, rotating, and sweeping nondeterministic finite automata. We thus took
a first step towards what one could call a ‘descriptive minicomplexity theory ’.

We are still missing a descriptive chracterization of 2N. Similarly, one can ask
for such characterizations for all other major minicomplexity classes (cf. [6]).

More broadly, one can ask for other tests of the premise of minicomplexity,
that many phenomena of standard complexity theory emerge already at this
level. E.g., complexity theory has parallels studying function problems [8, §10.3]
and real computation [2]: are there such parallels for minicomplexity as well?

Finally, we suggest some notation that may facilitate discussions like ours. For
three classes of functions D,T ,K, let the class EAS/DNF[D, T ,K] consist of every
family of problems solvable by a family (ϕh)h≥1 of small eas/dnfs of depth d(h),

Analogs of Fagin’s Theorem for Small NFA 213

margin τ(h), and width k(h), for some d ∈ D, τ ∈ T , k ∈ K. Define similarly
the classes EAS/CNF, EMAS/DNF, EMAS/CNF. Then Theorems 1 and 2 are:

1N = EAS/DNF[log, 1, 2] = EAS/DNF[*, poly, const]

RN = SN = EMAS/DNF[log, 1, 2] = EMAS/DNF[*, poly, const] ,

for the obvious meaning of 1, 2, const, log, poly, and for ‘*’ denoting ‘maximum
possible’ (here: poly). Moreover, for 21N the class for exponential-size 1nfas [6]
and for the obvious meaning of exp, we can prove the relationships

1N

��
	

� EAS/CNF[log, 1, 2] ⊆
(a)
(b) (c)

� RN = SN �

��
EAS/CNF[*, 1, 2] ⊆ EAS/CNF[*, exp, *]

(d)

⊆ 21N

where (d) uses easy variants of Lemmas 6–10; (b) is known [7]; and (a), (c) use
Lemma 5. The strictness of (a) uses the problem “Given two sets α, β ⊆ [h],
check that α ⊆ β”, which is in EAS/CNF[0, 1, 0] (easy) but not in 1N (a ‘fooling
set’ argument). The strictness of (c) uses the problem “Given w ∈ {a}∗, check
that |w| = 2h”, which is in EAS/CNF[*, 1, 2] (just use s.o. variables as in Fig. 2g,
to increment an h-bit counter from 0 to 2h−1) but not in 2N [1, Fact 5.2].

Acknowledgment. Many thanks to Thomas Colcombet and Achim Blumen-
sath for several very helpful discussions during the preparation of this work.

References

1. Birget, J.-C.: Two-way automata and length-preserving homomorphisms. Mathe-
matical Systems Theory 29, 191–226 (1996)

2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation.
Springer (1997)

3. Büchi, R.J.: Weak second-order arithmetic and finite automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 6(1-6), 66–92 (1960)

4. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R.M. (ed.) Complexity of Computation. AMS-SIAM Symposia in Applied
Mathematics, vol. VII, pp. 43–73 (1974)

5. Immerman, N.: Descriptive complexity. Springer (1998)
6. Kapoutsis, C.A.: Size Complexity of Two-Way Finite Automata. In: Diekert, V.,

Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg
(2009)

7. Kapoutsis, C., Královič, R., Mömke, T.: Size complexity of rotating and sweeping
automata. Journal of Computer and System Sciences 78(2), 537–558 (2012)

8. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
9. Reinhardt, K.: The Complexity of Translating Logic to Finite Automata. In:

Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games.
LNCS, vol. 2500, pp. 231–238. Springer, Heidelberg (2002)

10. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.
In: Proceedings of STOC, pp. 275–286 (1978)

11. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and
System Sciences 25(3), 360–376 (1982)

States and Heads Do Count

for Unary Multi-head Finite Automata

Martin Kutrib, Andreas Malcher, and Matthias Wendlandt

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. Unary deterministic one-way multi-head finite automata
characterize the unary regular languages. Here they are studied with
respect to the existence of head and state hierarchies. It turns out that
for any fixed number of states, there is an infinite proper head hierar-
chy. In particular, the head hierarchy for stateless deterministic one-way
multi-head finite automata is obtained using unary languages. On the
other hand, it is shown that for a fixed number of heads, m + 1 states
are more powerful than m states. Finally, the open question of whether
emptiness is undecidable for stateless one-way two-head finite automata
is addressed and, as a partial answer, undecidability can be shown if at
least four states are provided.

1 Introduction

Finite automata enhanced with multiple one-way reading heads, so-called one-
way multi-head finite automata, can be considered as one of the oldest models for
parallel computation. The idea behind is to have a common finite state control
which processes in parallel several parts of the input that are read by different
heads. First investigations on the computational capacity of such devices date
back to [8,9]. Since that time many extensions of the model including, for ex-
ample, two-way head motion and nondeterministic behavior have been studied,
and many results on the computational and descriptional complexity have been
obtained. This documents the importance of such devices. A recent survey on
these topics can be found in [3].

An important question raised already in [9] asks for the power of the heads,
that is, whether additional heads can strengthen the computational capacity of
multi-head finite automata. For one-way devices the question has been answered
in the affirmative in [12], where the witness languages are defined over a ternary
alphabet and are not bounded. A reduction of the size of the underlying alphabet
has been obtained in [1,7], where languages of the form a∗b∗ are used.

Recently, stateless multi-head finite automata have been introduced as an in-
teresting subclass with a biological motivation [11]. For stateless automata the
finite state control is restricted to have one state only. Although this seems to
be a strong restriction, stateless multi-head finite automata are still quite pow-
erful. For example, it is shown in [11] that the emptiness problem is undecidable

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 214–225, 2012.
� Springer-Verlag Berlin Heidelberg 2012

States and Heads Do Count for Unary Multi-head Finite Automata 215

for deterministic stateless one-way three-head finite automata. In [6] this unde-
cidability result is extended to stateless deterministic two-way two-head finite
automata. It is an open question whether emptiness remains undecidable for
deterministic stateless one-way two-head finite automata. Also in [6], a proper
head hierarchy for deterministic stateless one-way multi-head finite automata is
shown by a suitable translation of the languages used in [12]. However, the lan-
guages used are not bounded and require a growing alphabet whose size depends
on the number of heads.

An obvious generalization of the concept of stateless automata is to consider
whether in some automata model m+1 states are more powerful than m states.
Such state hierarchies exist, for example, for deterministic and nondeterministic
finite automata and for deterministic pushdown automata [2]. On the other
hand, for nondeterministic pushdown automata a state hierarchy does not exist,
since every context-free language can be accepted by a stateless nondeterministic
pushdown automaton (see [4]).

It is known that every unary language accepted by a one-way multi-head finite
automaton is semilinear and hence regular [5,10]. Thus, disregarding the number
of states, one head will always suffice to accept these languages. But it turns out
that this situation changes drastically if the number of states is fixed. In this
paper, we study these deterministic unary one-way multi-head finite automata
with respect to the number of heads and states. In Section 3, as a main result a
double hierarchy concerning states and heads is established. On the one hand,
we obtain for every number m ≥ 2 of states that k′ heads are more powerful

than k heads, where k′ ≥ k
(
1 + 1

log2(m)

)
. On the other hand, we show for every

number k ≥ 1 of heads that m+1 states are more powerful than m states. Thus,
we have state hierarchies for a fixed number of heads and head hierarchies for
a fixed number of states. In Section 4, we prove a proper head hierarchy for
deterministic stateless one-way multi-head finite automata using unary witness
languages. This improves the result in [6] with respect to the alphabet size
best possible. Finally, we address the open question of whether emptiness is
undecidable for deterministic stateless one-way two-head finite automata and
show that emptiness is undecidable for deterministic one-way two-head finite
automata having four states.

2 Preliminaries and Definitions

We write A∗ for the set of all words over the finite alphabet A. The empty word
is denoted by λ, and A+ = A∗ \ {λ}. The reversal of a word w is denoted by wR

and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for strict
inclusions.

Let k ≥ 1 be a natural number. A one-way k-head finite automaton is a fi-
nite automaton having a single read-only input tape whose inscription is the
input word in between two endmarkers (we provide two endmarkers in order
to have a definition consistent with two-way finite automata). The k heads of
the automaton can move to the right or stay on the current tape square but

216 M. Kutrib, A. Malcher, and M. Wendlandt

not beyond the endmarkers. Formally, a deterministic one-way k-head finite au-
tomaton (1DFA(k)) is a system M = 〈S,A, k, δ,�,�, s0〉, where S is the finite
set of internal states, A is the finite set of input symbols, k ≥ 1 is the number of
heads, � /∈ A is the left and � /∈ A is the right endmarker, s0 ∈ S is the initial
state, δ : S × (A ∪ {�,�})k → S × {0, 1}k is the partial transition function,
where 1 means to move the head one square to the right, and 0 means to keep
the head on the current square. Whenever (s′, d1d2 · · · dk) = δ(s, a1a2 · · · ak) is
defined, then di = 0 if ai = �, for 1 ≤ i ≤ k.

A 1DFA(k) starts with all of its heads on the left endmarker. Since we are
going to limit the number of states of the automata, for convenience m-state
1DFA(k) are denoted by 1DFAm(k), for k,m ≥ 1. The most restricted version are
stateless 1DFA(k), that is, automata having exactly one state. Therefore, non-
trivial acceptance cannot be defined by accepting states. Instead, we follow the
definition in [6] and say that an input is accepted if and only if the computation
ends in an infinite state loop in which the heads are necessarily stationary, since
they are one-way. A 1DFAm(k) blocks and rejects when the transition function
is not defined for the current situation.

A configuration of a 1DFA(k) M = 〈S,A, k, δ,�,�, s0〉 at some time t ≥ 0 is
a triple ct = (w, s, p), where w ∈ A∗ is the input, s ∈ S is the current state, and
p = (p1, p2, . . . , pk) ∈ {0, 1, . . . , |w| + 1}k gives the current head positions. If a
position pi is 0, then head i is scanning the symbol �, if it satisfies 1 ≤ pi ≤ |w|,
then the head is scanning the pith letter of w, and if it is |w| + 1, then the
head is scanning the symbol �. The initial configuration for input w is set to
(w, s0, (0, . . . , 0)). During its course of computation, M runs through a sequence
of configurations. One step from a configuration to its successor configuration is
denoted by ". Let w = a1a2 . . . an be the input, a0 = �, and an+1 = �, then we
set (w, s, (p1, p2, . . . , pk)) " (w, s′, (p1 + d1, p2 + d2, . . . , pk + dk)) if and only if
(s′, d1d2 · · · dk) = δ(s, ap1ap2 · · · apk). As usual we define the reflexive, transitive
closure of " by "∗, and its transitive closure by "+. Note, that due to the
restriction of the transition function, the heads cannot move beyond the right
endmarker. Whenever we consider an accepting computation it is understood
that we mean the finite initial part of the computation up to but not including
the first state loop at the end. The language accepted by a 1DFA(k) M is

L(M) = {w ∈ A∗ | there are s ∈ S, 0 ≤ pi ≤ |w|+ 1, 1 ≤ i ≤ k such that

(w, s0, (0, . . . , 0)) "∗ (w, s, (p1, p2, . . . , pk)) "+ (w, s, (p1, p2, . . . , pk)) }.
The family of all languages accepted by a device of some type X is denoted
by L (X).

Example 1. For each k,m ≥ 2, the unary singleton language Lk,m = { a(k−1)mk }
is accepted by some 1DFAm(k). �

3 State and Head Double Hierarchy

In this section we are going to show the double hierarchy on the number of states
and heads. We start with the head hierarchy. The approach is to consider a fixed

States and Heads Do Count for Unary Multi-head Finite Automata 217

accepting computation of some unary 1DFAm(k), and to show that either there
are infinitely many different accepting computations or the length of the longest
word accepted is at most 2k−1kmk. So, to some extent the result can be seen as
a pumping argument for unary one-way multi-head finite automata.

In the following, we say that a computation contains a cycle if it contains
at least two configurations that coincide with the state and the input symbols
scanned, that is, the actual head positions do not matter. The length of every
cycle is at most m. Considering only the state and input symbols scanned, we
divide a computation into at most (2k + 1)m phases. A new phase is entered
when the automaton changes its state, or moves one or more heads from the left
endmarker, or moves one or more heads onto the right endmarker.

Lemma 2. Let k,m ≥ 1 and M be a unary 1DFAm(k) accepting a nonempty
language. Then L(M) is either infinite or contains only words strictly shorter
than 2k−1kmk.

Proof. Let M = 〈S, {a}, k, δ,�,�, s0〉 be a 1DFAm(k), and assume that a	 is
some input accepted by M in a computation C.

For a moment we assume that M accepts with all its heads on the right
endmarker. Therefore, we can number the heads in the order of their arrival at
the right endmarker (in the computation C). Next we analyze the movement of
the heads while they cross the input a	. If M runs into a cycle in which some
heads are moved, then the only possibility to get out of the cycle is when one of
the moving heads reaches the right endmarker.

So, the first head arriving at the right end may have been moved in at most
one cycle. We denote its number of moving steps in this first cycle by c1,1 and
recall c1,1 ≤ m. In addition, head 1 may have been moved in some transitions not
belonging to any cycle, as well as in an incomplete cycle at the end of its travel.
The sum of these numbers of steps is denoted by k1. Since as mentioned above,
the computation consists of at most (2k + 1)m phases and the 2m phases where
all heads either scan the left or the right endmarker can be excluded, we obtain
k1 ≤ (2k − 1)m+ (m− 1) < 2km. So, for the length � of the input accepted we
obtain � = k1 + x1c1,1, where x1 is a non-negative integer denoting how many
times M runs completely through the first cycle.

The second head also may move in the first cycle, where we denote the number
of its moving steps by c2,1. In addition, head 2 may move in at most one further
cycle, say c2,2 times. As for the first head, there may appear moves in transitions
not belonging to any cycle and in an incomplete cycle at the end of the travel.
The sum of these moves is denoted by k2, which is again less than 2km. We
obtain � = k2 + x1c2,1 + x2c2,2, where x2 is a non-negative integer denoting
how many times M runs completely through the second cycle. Generalizing this
observation, for head i ≤ k we obtain

� = ki + x1ci,1 + x2ci,2 + · · ·+ xici,i. (1)

Since we started with the accepting computation C, we know that there are
non-negative integers �, x1, . . . , xk satisfying these k equations. Our next intent

218 M. Kutrib, A. Malcher, and M. Wendlandt

is to analyze the system of equations with particular reference to other solutions
in the non-negative integers. To this end, first we transform it into an equiv-
alent system having at most one unknown xi in each equation. The method
we use is to substitute variables as usual and to derive properties of the terms
of the equations.

Solving the first equation � = k1 + x1c1,1 for x1 gives x1 = (� − k1)
1
c1,1

. By

substitution of x1 into the second equation we obtain

� = k2 + (�− k1)
1

c1,1
c2,1 + x2c2,2 ⇐⇒ � =

k2c1,1 − k1c2,1
c1,1 − c2,1

+ x2
c1,1c2,2

c1,1 − c2,1
.

In order to continue, we set P2 = k2c1,1 − k1c2,1 to be the numerator of the left
fraction and Q2 = c1,1 − c2,1 to be the common denominator. For the sake of
completeness, in the first equation we set P1 = k1 andQ1 = 1. So far, for i = 2 we
see that Qi is a sum having 2i−2 positive and 2i−2 negative summands, and each
summand is a product of i−1 cycle lengths from { cp,q | 1 ≤ p ≤ i, 1 ≤ q ≤ i−1 }.
Basically, Pi is a sum of the same summands as of Qi, but each summand
is additionally multiplied by some number from {k1, k2, . . . , ki}. Solving this
equation for x2 gives x2 = (� − P2

Q2
) Q2

c1,1c2,2
. Continuing inductively we assume

that by substitution of x1, x2, . . . , xi−1 into the ith equation we obtain

� =
Pi
Qi

+ xi
c1,1c2,2 · · · ci,i

Qi
(2)

and, therefore, xi = (�− Pi

Qi
) Qi

c1,1c2,2···ci,i , where, Qi is a sum having 2i−2 positive

and 2i−2 negative summands, and each summand is a product of i − 1 cycle
lengths from { cp,q | 1 ≤ p ≤ i, 1 ≤ q ≤ i − 1 }. Moreover, Pi is a sum of the
same summands as of Qi, but each summand is additionally multiplied by some
number from {k1, k2, . . . , ki}. Next, substitution of x1, x2, . . . , xi into the (i+1)st
equation results in

� = ki+1 +

(
�− P1

Q1

)
Q1

c1,1
ci+1,1 + · · ·+

(
�− Pi

Qi

)
Qi

c1,1c2,2 · · · ci,i
ci+1,i

+ xi+1ci+1,i+1

which is equivalent to

� =
ki+1c1,1c2,2 · · · ci,i − P1ci+1,1c2,2c3,3 · · · ci,i − · · · − Pici+1,i

c1,1c2,2 · · · ci,i −Q1ci+1,1c2,2c3,3 · · · ci,i − · · · −Qici+1,i

+ xi+1
c1,1c2,2 · · · ci+1,i+1

c1,1c2,2 · · · ci,i −Q1ci+1,1c2,2c3,3 · · · ci,i − · · · −Qici+1,i

As before, let Pi+1 denote the numerator and Qi+1 the denominator of this frac-
tion. Since for all 1 ≤ j ≤ i, Pi is a sum of the same summands as of Qi, but each
summand is additionally multiplied by some number from {k1, k2, . . . , ki}, we de-
rive immediately from the equation that this is true also for i+1. Furthermore,

States and Heads Do Count for Unary Multi-head Finite Automata 219

for all 2 ≤ j ≤ i we know that Qj is a sum having 2j−2 positive and 2j−2 negative
summands. So, Qi+1 is a sum having 20+21+ · · ·+2i−2+1 = 2i−1 positive and
the same number of negative summands. Since, for 1 ≤ j ≤ i, each summand
in Qj is a product of j − 1 cycle lengths from { cp,q | 1 ≤ p ≤ j, 1 ≤ q ≤ j − 1 },
we derive immediately from the equation that this is true also for i+1. This con-
cludes the induction and, hence, the transformation of the system of equations
we started with.

So far, we started with a computation of M , derived a system of equations,
where each equation represents a ‘condition’ of accepted inputs, and transformed
the system mathematically into an equivalent one. Next we are interested in ob-
taining properties of accepted words by inspecting the new system of equations.
But to this end, we may only consider values for the coefficients and unknowns
that actually may appear in a computation. One basic requirement is that all
numbers xi, ki, and cp,q have to be non-negative. Moreover, we may assume
xi ≥ 1, for 1 ≤ i ≤ k. If some xi would be zero, then we could set it to some
positive integer and instead set cj,i = 0, for all i ≤ j ≤ k.

Now we turn to derive properties of the language accepted by M . The first
case we consider is where all Qi are non-null and ci,i ≥ 1, for 1 ≤ i ≤ k. We claim
that in this case L(M) is either infinite or finite where the length of the longest
word is less than 2k−1kmk. To prove the claim we consider the computation ofM
on the input of length �+ c1,1c2,2 · · · ck,k. Clearly, for all 1 ≤ i ≤ k, equation i is
satisfied when xi is increased by Qici+1,i+1ci+2,i+2 · · · ck,k:

Pi
Qi

+ (xi +Qici+1,i+1ci+2,i+2 · · · ck,k)
c1,1c2,2 · · · ci,i

Qi

=
Pi
Qi

+ xi
c1,1c2,2 · · · ci,i

Qi
+ c1,1c2,2 · · · ck,k = �+ c1,1c2,2 · · · ck,k.

This system of equations corresponds to an accepting computation of M if all Qi

are positive. In this case M runs into all the cycles as before and is in the
same state as before whenever a head arrives at the right endmarker. The only
difference is that the cycles are passed through more often which cannot be
detected by M . So, increasing � by arbitrary multiples of c1,1c2,2 · · · ck,k shows
that L(M) is infinite. If a Qi is negative we have to argue differently, because the
system of equations not necessarily corresponds to a computation ofM . However,
looking closely at Equation (2) reveals the following. Since � and xic1,1c2,2 · · · ci,i
are positive, and Qi is negative, Pi cannot be positive. So, Pi

Qi
is positive and

xi
c1,1c2,2···ci,i

Qi
is negative. This implies that � is at most Pi

Qi
which in turn is

at most |Pi|. From above we know that Pi is a sum having 2i−2 positive and
the same number of negative summands, where each summand is a product of
i − 1 cycle lengths from { cp,q | 1 ≤ p ≤ i, 1 ≤ q ≤ i − 1 } multiplied by a
number from {k1, k2, . . . , ki}. Any cycle length is bounded by m. The maximum
of {k1, k2, . . . , ki} is less than 2km. By omitting the negative summands we
derive that � is less than 2i−22kmmi−1. This bound is maximal for i = k and,
therefore, � < 2k−1kmk. This concludes the proof of the claim.

220 M. Kutrib, A. Malcher, and M. Wendlandt

Up to now, we proved the lemma under the assumption that M accepts with
all of its heads on the right endmarker, all Qi are non-null, and ci,i ≥ 1, for
1 ≤ i ≤ k. Next, let Qi = 0 for some 2 ≤ i ≤ k. Then Equation (2) can be
written as �Qi = Pi + xic1,1c2,2 · · · ci,i which implies Pi + xic1,1c2,2 · · · ci,i = 0.
So, the set of equations is not independent, which means that the ith equation
is satisfied by all solutions that satisfy the equations 1 to i − 1. In particular,
equation i is satisfied when xi is increased as before by Qici+1,i+1ci+2,i+2 · · · ck,k,
that is, by 0. Therefore, the argumentation above applies also in this case.

Now let us assume ci,i = 0 for some smallest 1 ≤ i ≤ k. In this case, Equa-
tion (2) reads as � = Pi

Qi
, and from above we already know � < 2k−1kmk. So, the

lemma follows also in this case.
The case where M accepts with some heads not on the right endmarker re-

mains to be considered. Since these heads do not reach the right endmarker,
they cannot affect the behavior of M when the length of the input is increased.
However, these heads are not useless, they still may control the movements of
other heads. Let head i be of such type. Then equation i does not exist in the
initial system of Equations (1). In particular, the ith cycle and, thus, the ith un-
known xi does not exist. So, we start with an initial system having less than k
equations but still as many equations as unknowns. Now the reasoning is sim-
ilarly as above, where the number k has still to be used for the estimation of
upper bounds since the heads not reaching the right endmarker may be not use-
less. This concludes the proof of the lemma. �

Now we are prepared to show the head hierarchy. To this end, we use the unary

singleton language Lk,m = {a(k−1)mk} of Example 1 as witness.

Theorem 3. Let m ≥ 2 and k ≥ 1. For all k′ ≥ k(1 + 1
log2(m)), the family

L (1DFAm(k)) is properly included in L (1DFAm(k′)).

Proof. For k = 1 andm = 2 it is not hard to see that the singleton language {aa}
is accepted by a 1DFA2(2) but not by any 1DFA2(1). For k = 1 and m ≥ 3,
we construct a 1DFAm(2) that tests whether its unary input is a multiple of
m(m− 1) by testing whether it is divisible by m and by m− 1. This task can be
done by the two heads. Since any two consecutive natural numbers greater than
two are relatively prime, there is no 1DFAm(1) that accepts these inputs.

Next, we consider k ≥ 2. Example 1 shows that the unary singleton language

Lk′,m = {a(k′−1)mk′
} is accepted by some 1DFAm(k′). Since(

k

(
1 +

1

log2(m)

)
− 1

)
m
k
(
1+ 1

log2(m)

)
=

(
k +

k

log2(m)
− 1

)
mkm

k
log2(m)

=

(
k +

k

log2(m)
− 1

)
mk2

log2(m) k
log2(m) =

(
k +

k

log2(m)
− 1

)
mk2k

> 2k−1kmk,

we derive from Lemma 2 that Lk′,m is not accepted by any 1DFAm(k)). �

States and Heads Do Count for Unary Multi-head Finite Automata 221

In particular, the head hierarchy is strict and tight when the number of states
is at least 2k−1.

Theorem 4. Let k ≥ 1. For all m ≥ 2k−1, the family L (1DFAm(k)) is properly
included in L (1DFAm(k + 1)).

Proof. Similarly as in the proof of Theorem 3 we use Lk+1,m ∈ L (1DFAm(k+1))
as witness. Since kmk+1 = kmmk ≥ k2k−1mk, we derive from Lemma 2 that
Lk+1,m is not accepted by any 1DFAm(k)). �

The proof of Lemma 2 reveals an interesting property of unary languages ac-
cepted by stateless 1DFA(k).

Theorem 5. Every unary language accepted by some stateless 1DFA1(k) is ei-
ther finite or cofinite.

Proof. Lemma 2 says that every unary language accepted by some stateless
1DFA1(k) M is either infinite or contains only words strictly shorter than 2k−1k.
Trivially, in the latter case L(M) is finite. If, otherwise, L(M) includes a word a	

whose length is at least 2k−1k, then the set of Equations (1) derived from the
accepting computation on a	 is considered. In the proof of Lemma 2 it is shown
that in this case all words a	+	

′
also do belong to L(M), where �′ is an arbitrary

multiple of c1,1c2,2 · · · ck,k. All ci,i are (positive) cycle lengths of M which are
bounded by the number of states. For stateless automata they are bounded by 1.
So, c1,1c2,2 · · · ck,k = 1, and all words longer than � are accepted by M as well.
Thus, M is cofinite. �

Now we turn to the state hierarchy. It is strict and tight for any number of heads.

Theorem 6. Let k ≥ 1. For all m ≥ 1, there is a finite unary language belonging
to the family L (1DFAm+1(k)) but not to L (1DFAm(k)). Therefore, the family
L (1DFAm(k)) is properly included in L (1DFAm+1(k)).

Proof. For any k,m ≥ 1 there are only finitely many unary 1DFAm(k) and, thus,
only finitely many unary 1DFAm(k) accepting a finite language. From these we
choose one automaton M = 〈S, {a}, k, δ,�,�, s0〉, so that all the others accept
only words that are not longer than the longest word in L(M). Automaton M
needs not to be unique, but it exists. We denote the longest word in L(M) by w.

Next, a 1DFAm+1(k) M ′ = 〈S′, {a}, k, δ′,�,�, s0〉 is constructed from M
that accepts the word wa and possibly a finite number of other words. We set
S′ = S ∪ {ŝ}, where ŝ is a new state. In order to construct δ′ we modify δ as
follows. First, all transitions not occurring in the accepting computation on w
are undefined. In this way the order in which heads leave the left endmarker
is made unique. Moreover, the remaining transitions in which a head is moved
from the left endmarker are unique with respect to the heads.

The idea is that, basically, M ′ simulates M on input w. The difference is
that all transitions of M moving one or more heads from the left endmarker to
the right, are simulated by M ′ in two steps. First, M ′ moves the same heads

222 M. Kutrib, A. Malcher, and M. Wendlandt

from the endmarker to the right leaving the other heads stationary, whereby it
changes to the new state. Second, it moves all heads according to the original
transition of M . The effect of the construction is that whenever a head leaves
the left endmarker it is moved twice. So, M ′ accepts wa and, L(M ′) is finite
as L(M) is. Since w has been chosen maximal, the language L(M ′) cannot be
accepted by any 1DFAm(k). �

The previous theorem can be strengthened in the sense that there is a unary
language accepted by some one-head (m+1)-state automaton that cannot be ac-
cepted by any m-state automaton having an arbitrary number of heads. Clearly,
this language cannot be finite.

Theorem 7. Let m be a prime number. There is a unary language belonging to
the family L (1DFAm(1)) but not to any family L (1DFAm−1(k)), k ≥ 1.

4 Head Hierarchy for Stateless Finite Automata

In this section we show an infinite strict and tight head hierarchy for stateless
automata using unary languages. The head hierarchy obtained in [6] is based on
languages over a growing alphabet, that is, the number of symbols increases with
the number of heads. We continue with an example that gives an almost trivial
lower bound for the lengths of longest words in finite unary languages accepted by
stateless 1DFA(k). However it is best possible for very few heads and we need it
in the following. It is worth mentioning that there are also examples showing that
the lower bound grows exponentially with k. In order to increase the readability,
we use the following short notation. A transition δ(si, a

k) = (si+1, 1
k) means

that the automaton is in state si and each of the k heads reads an a. Then the
automaton changes its state to si+1 and all k heads move one step to the right.

Example 8. For each k ≥ 1, the unary singleton language { ak−1 } is accepted
by the 1DFA1(k) M = 〈{s0}, {a}, k, δ,�,�, s0〉, where the transition function δ
is specified as δ(s0,�k−jaj) = (s0, 0

k−(j+1)1(j+1)) and δ(s0, a
k−1�) = (s0, 0

k),
for 0 ≤ j ≤ k − 1. �

Theorem 9. For all k ≥ 1, there is a finite unary language belonging to the
family L (1DFA1(k + 1)) but not to the family L (1DFA1(k)). Therefore, the
family L (1DFA1(k)) is properly included in L (1DFA1(k + 1)).

Proof. For any k ≥ 1 there are only finitely many unary 1DFA1(k) and, thus,
only finitely many unary 1DFA1(k) accepting a finite language. From these we
choose one automaton M so that all the others accept only words that are not
longer than the longest word in L(M). AutomatonM needs not to be unique, but
it exists. We denote the longest word in L(M) by w. Clearly, we have the inclusion
L (1DFA1(k)) ⊆ L (1DFA1(k + 1)). Let |w| ≤ k − 1. Then by Example 8 there
is an 1DFA1(k + 1) that accepts {ak} and, thus, the inclusion is proper. So, we
only need to consider the cases where |w| ≥ k. Next we try to transform M into

States and Heads Do Count for Unary Multi-head Finite Automata 223

a (not necessarily equivalent) 1DFA1(k) M ′ that accepts w in such a way that
all heads leave the left endmarker before any head reaches the right endmarker.

We consider the accepting computation C of M on w. The first step is to
remove all transitions which do not appear in C. Next, let the heads be numbered
in the chronological order they leave the left endmarker, and denote by ti the
step at which head i leaves the left endmarker. If two or more heads leave it at the
same time, their order is arbitrary but fixed. Clearly, in the first transition of M
the first head moves from the left endmarker to the right before any head reaches
the right endmarker. In the next transition either another head leaves the left
endmarker or M gets into a cycle. If another head leaves, we continue with the
next transition and so on, until either the first head reaches the right endmarker
or the first cycle, say c1, appears. If some head reaches the right endmarker before
the first cycle appears, the length of the input is at most k−1, and the inclusion
L (1DFA1(k)) ⊂ L (1DFA1(k + 1)) is proper. Otherwise, automaton M gets
out of cycle c1 only when some head reaches the right endmarker. Subsequently,
either a further head leaves the left endmarker, or M has driven a further head
in a further cycle on the right endmarker, and so on. Now let head i be the first
one that leaves the left endmarker after one or more cycles, where the last of
these cycles drives head j, j < i, to the right endmarker. In computation C there
are only transitions where head i scans � or head j scans �. Moreover, there is
exactly one transition where head i scans � and head j scans �.

The basic idea is to construct δ′ from δ so that w is still accepted by M ′ and
the step in which head i leaves the left endmarker appears at ti−1 + 1 in the
computation C. The details are omitted due to space constraints, but it is worth
mentioning that only transitions that appear in C and where head i is on the left
endmarker, are affected by the construction. Now the heads 1 to i leave the left
endmarker successively at the beginning of the computation. Since |w| ≥ k no
head arrives at the right endmarker in this phase. We denote the computation
of M ′ on w by C′.

In order to give evidence that the language accepted by M ′ is still finite, we
consider the set of Equations (1) derived from the new accepting computation
on w. By the modifications none of the constants ki and ci,j are affected. So,
the set of equations is the same as before. Since L(M) is finite, the new accept-
ing computation on w cannot induce an infinite language. Moreover, since all
transitions not occurring in C′ have been undefined, M ′ is deterministic and all
cycles and constants ki are as before, any input longer than |w| is either rejected
or implies the same chronological order of heads leaving the left endmarker or
arriving at the right endmarker as before. Therefore, any input longer than |w|
is either rejected or induces the same set of equations as for w, which does not
induce an infinite language.

Finally, repeatedly application of these transformations either shows that the
length of the word accepted is at most k− 1 which induces the proper inclusion
desired, or yields a 1DFA1(k) M

′′ which accepts a finite language including w in
such a way that all heads leave the left endmarker before the first head reaches

224 M. Kutrib, A. Malcher, and M. Wendlandt

the right endmarker. In addition, no input is accepted before all heads have left
the left endmarker.

To conclude the proof we now sketch the behavior of a 1DFA1(k + 1) M̃ that
accepts a finite language including a|w|+1. Since w has been chosen maximal, the
language L(M̃) cannot be accepted by any 1DFA1(k). Basically, automaton M̃
simulates M ′′ in three phases. The first first phase is a direct simulation until
the kth head of M ′′ has left the left endmarker. By the constructions above, this
is the first transition where all heads of M ′′ scan the input symbol a. Now, M̃
moves its (k + 1)st head from the left endmarker whereby all the other heads
move as well. In order to reject when one of the first k heads arrives at the right
endmarker in this step, next, M̃ drives its (k + 1)st head in a cycle to the right
endmarker whereby all the other heads stay stationary. The second phase ends
when the (k+1)st head arrives. If in this situation the first k heads still scan an
input symbol a, the third phase starts. Otherwise the input is rejected. During
the third phase the direct simulation of M ′′ continues. We conclude that M̃
accepts an input a	+1 if and only if M ′′ accepts a	. �

5 Four States Are Too Much for Two-Head Automata

In this section, we investigate the emptiness problem for 1DFA(2). It has been
shown in [11] that the emptiness problem is undecidable for stateless 1DFA(k)
where k is at least three. In [6], the emptiness problem is again studied for
stateless multi-head automata. It turned out that the problem is undecidable
for stateless two-way DFA(2). The problem has been left open for 1DFA(2).
Here, we obtain a first result in this direction and show the undecidability of the
problem for 1DFA4(2) having at least four states. The problem remains open for
stateless 1DFA1(2) and 1DFA(2) with two or three states.

The undecidability of the problem is shown by reduction of the emptiness
problem for deterministic linearly space bounded one-tape, one-head Turing ma-
chines, so-called linear bounded automata (LBA). Basically, histories of LBA
computations are encoded in single words that are called valid computations
(see, for example, [4]). We may assume that LBAs get their input in between
two endmarkers, make no stationary moves, accept by halting in some unique
state f on the leftmost input symbol, and are sweeping, that is, the read-write
head changes its direction at endmarkers only. Let Q be the state set of some
LBA M , where q0 is the initial state, T ∩Q = ∅ is the tape alphabet containing
the endmarkers � and �, and Σ ⊂ T is the input alphabet. Since M is sweeping,
the set of states can be partitioned into QR and QL of states appearing in right-
to-left and in left-to-right moves. A configuration of M can be written as a string
of the form �T ∗QT ∗� such that, �t1t2 · · · tisti+1 · · · tn� is used to express that
�t1t2 · · · tn� is the tape inscription, M is in state s, for s ∈ QR scans tape
symbol ti+1, and for s ∈ QL scans tape symbol ti. Now we consider words of the
form �w0�w1� · · · �wm, where � /∈ T ∪ Q, wi ∈ T ∗QT ∗ are configurations of M
with endmarkers chopped off, w0 is an initial configuration of the form q0Σ

∗,
wm ∈ {f}T ∗ is a halting, that is, accepting configuration, and wi+1 is the suc-
cessor configuration of wi. These words are encoded so that every state symbol

States and Heads Do Count for Unary Multi-head Finite Automata 225

is merged together with its both adjacent symbols into a metasymbol. To this
end, we assume that the LBA input is nonempty, and rewrite every substring of
�w0� · · ·�wm having the form tqt′ to [t, q, t′], where q ∈ Q, t, t′ ∈ T ∪ {�}. The
set of these encodings is defined to be the set of valid computations of M . We
denote it by VALC(M).

Lemma 10. Let M be an LBA. Then a 1DFA4(2) accepting VALC(M) can
effectively be constructed.

Theorem 11. Emptiness is undecidable for 1DFAn(2) with n ≥ 4.

Proof. Let M be an LBA. According to Lemma 10 we can effectively construct
a 1DFA4(2) M ′ accepting VALC(M). Clearly, L(M ′) = VALC(M) is empty if
and only if L(M) is either {λ} or empty. Since the word problem is decidable
and emptiness is undecidable for LBAs, the theorem follows. �

References

1. Chrobak, M.: Hierarchies of one-way multihead automata languages. Theoret.
Comput. Sci. 48, 153–181 (1986)

2. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

3. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata:
Origins and directions. Theoret. Comput. Sci. 412, 83–96 (2011)

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

5. Ibarra, O.H.: A note on semilinear sets and bounded-reversal multihead pushdown
automata. Inform. Process. Lett. 3, 25–28 (1974)

6. Ibarra, O.H., Karhumäki, J., Okhotin, A.: On stateless multihead automata: Hier-
archies and the emptiness problem. Theoret. Comput. Sci. 411, 581–593 (2010)

7. Kuty�lowski, M.: One-way multihead finite automata and 2-bounded languages.
Math. Systems Theory 23, 107–139 (1990)

8. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

9. Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Dev. 10, 388–394
(1966)

10. Sudborough, I.H.: Bounded-reversal multihead finite automata languages. Inform.
Control 25, 317–328 (1974)

11. Yang, L., Dang, Z., Ibarra, O.H.: On stateless automata and P systems. Int. J.
Found. Comput. Sci. 19, 1259–1276 (2008)

12. Yao, A.C., Rivest, R.L.: k+1 heads are better than k. J. ACM 25, 337–340 (1978)

Visibly Pushdown Automata with Multiplicities:
Finiteness and K-Boundedness�

Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbot

Laboratoire d’Informatique Fondamentale de Marseille, AMU & CNRS, UMR 7279

Abstract. We propose an extension of visibly pushdown automata by means of
weights (represented as positive integers) associated with transitions, called visi-
bly pushdown automata with multiplicities. The multiplicity of a computation is
the product of the multiplicities of the transitions used along this computation.
The multiplicity of an input is the sum of the ones of all its successful compu-
tations. Finally, the multiplicity of such an automaton is the supremum of multi-
plicities over all possible inputs.

We prove the problem of deciding whether the multiplicity of an automaton is
finite to be in PTIME. We also consider the K-boundedness problem, i.e. deciding
whether the multiplicity is bounded by K: we prove this problem to be EXPTIME-
complete when K is part of the input and in PTIME when K is fixed.

As visibly pushdown automata are closely related to tree automata, we discuss
deeply the relationship of our extension with weighted tree automata.

1 Introduction

Visibly pushdown automata (VPA for short) have been proposed in [1] as an interesting
subclass of pushdown automata, strictly more expressive that finite state automata, but
still enjoying good closure and decidability properties. They are pushdown automata
such that the behavior of the stack, i.e. whether it pushes or pops, is visible in the
input word. Technically, the input alphabet is partitioned into call, return and internal
symbols. When reading a call the automaton must push a symbol onto the stack, when
reading a return it must pop and when reading an internal it cannot touch the stack.
The partitioning of the alphabet induces a nesting structure of the input word. Calls and
returns can be viewed as opening/closing brackets, and well-nested words are words
where every call symbol (resp. return symbol) has a matching return (resp. call).

The original motivation for their introduction was for verification purposes, the stack
being used for the modelization of call/returns of functions. Another application domain
is the processing of XML documents. Indeed, unranked trees in their linear form can
be viewed as well-nested words. Actually, the model of visibly pushdown automata is
expressively equivalent to that of finite tree automata, see [1].

It is quite standard to extend a class of automata with weights, by adding a labeling
function assigning a weight to each transition. In this work, we consider VPA with
multiplicities (N-VPA for short) where weights are positive integers (multiplicities).
The multiplicity of a run is the product of the multiplicities of the transitions used along
it. The multiplicity of a word is the sum of the ones of all its accepting runs. Finally,

� Partially supported by the ANR Project ECSPER (ANR-09-JCJC-0069).

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 226–238, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Visibly Pushdown Automata with Multiplicities 227

the multiplicity of the automaton is the supremum of the multiplicities of the words it
accepts. This model extends the model of finite state automata with multiplicities [11].

A special case of multiplicity is the degree of ambiguity of a word, i.e. the num-
ber of accepting runs (obtained when every transition has weight 1). The class of
finitely ambiguous automata has been investigated for both automata on words and
on trees [6,16,13,14]. The interest in this class arised from the fact that it allows an
efficient (polynomial) equivalence check. An analogy can be drawn with the context
of transducers where the equivalence problem is decidable for finite-valued transducers
(and undecidable in general). In [12], the characterization of automata whose multiplic-
ity is finite is used to build a characterization of finite-valued word transducers. The
present work is thus a first step towards the characterization of finite-valued visibly
pushdown transducers, which is a relevant issue as this model is incomparable with
bottom-up tree transducers (see [9]).

The first problem we consider is the finiteness of the multiplicity of an automaton,
i.e. does there exist K ∈ N such that the multiplicity is bounded by K . To solve this
problem, we extend a characterization of finite state automata based on patterns to vis-
ibly pushdown automata. We also provide an algorithm to decide the presence of these
patterns in polynomial time. The second class of problems asks whether the multiplicity
of an automaton is bounded by K , where K is given. This problem can be considered
under the hypothesis that K is part of the input, or is fixed. We show that the prob-
lem is EXPTIME-complete in the first case, and can be solved in polynomial time in
the second one. Finally, we make a comparison of our results with existing results for
the equivalent model of tree automata with weights on the semiring (N,+, ·). As this
equivalence is effective, we discuss the consequences of our results in this context.

Definitions are given in Section 2. Comparisons with existing results for tree au-
tomata with multiplicities are drawn in Section 3. In Section 4, we give the character-
ization of N-VPA with infinite multiplicity based on original patterns and the decision
procedure associated. We study K-boundedness problems in Section 5, and conclude
with an application of our results to tree automata in Section 6. Due to lack of space,
details of proofs and definitions about tree automata can be found in [5].

2 Definitions

2.1 Preliminaries

All over this paper, Σ denotes a finite alphabet partitioned into three disjoint sets Σc,
Σr and Σι, denoting respectively the call, return and internal alphabets. We denote by
Σ∗ the set of (finite) words over Σ and by ε the empty word. The length of a word u is
denoted by |u|. The set of well-nested wordsΣ∗

wn is the smallest subset of Σ∗ such that
Σ∗

ι ⊆ Σ∗
wn and for all c ∈ Σc, all r ∈ Σr, all u, v ∈ Σ∗

wn, cur ∈ Σ∗
wn and uv ∈ Σ∗

wn.
Let u = α0α1 · · ·αk−1 ∈ Σ∗ be a word with αi ∈ Σ, for 0 ≤ i ≤ k − 1. Let

0 ≤ i ≤ j ≤ |u|, then ui,j denotes the word αi · · ·αj−1 if i < j, and the empty word
if i = j. A position i < |u| is a pending call if αi ∈ Σc and for all i < j ≤ |u|, ui,j �∈
Σ∗

wn. The height of u at position i, denoted by hu(i), is the number of pending calls
of u0,i, i.e. hu(i) = |{j | 0 ≤ j < i and αj is a pending call of u0,i}|. The height of u

228 M. Caralp, P.-A. Reynier, and J.-M. Talbot

is the maximal height of all the positions of u: hu = max0≤i≤|u| hu(i). For instance,
h(crcrcc) = h(ccrcrr) = 2.

2.2 Visibly Pushdown Automata with Multiplicities

Visibly pushdown automata [1] are a restriction of pushdown automata in which the
stack behavior is imposed by the input word. On a call symbol, the VPA pushes a
symbol onto the stack, on a return symbol, it must pop the top symbol of the stack and
on an internal symbol, the stack remains unchanged.

Definition 1 (Visibly pushdown automata [1]). A visibly pushdown automaton (VPA)
over Σ is a tuple A = (Q,Γ, δ,Qin, Qf) where Q is a finite set of states, Qin ⊆ Q is
the set of initial states, Qf ⊆ Q is the set of final states, Γ is a finite stack alphabet,
δ = δc�δr�δι is the set of transitions, with δc ⊆ Q×Σc×Γ×Q, δr ⊆ Q×Σr×Γ×Q,
and δι ⊆ Q×Σι ×Q.

Configuration - Run - Degree of ambiguity. A configuration of a VPA is a pair (q, σ) ∈
Q× Γ ∗ (where Γ ∗ denotes the set of finite words over Γ). We denote by ⊥ the empty
word on Γ . Initial (resp. final) configurations are configurations of the form (q,⊥), with
q ∈ Qin (resp. q ∈ Qf).

A run of A on a sequence of transitions η = {ti}1≤i≤k from a configuration (q, σ)
to a configuration (q′, σ′) over a word u = α0 . . . αk−1 ∈ Σ∗ is a finite non-empty
sequence ρ = {(qi, σi)}0≤i≤k such that q0 = q, σ0 = σ, qk = q′, σk = σ′ and for each
1 ≤ i ≤ k, ti = (qi−1, αi−1, γi, qi) ∈ δc and σi = σi−1γi or ti = (qi−1, αi, γi, qi) ∈
δr and σi−1 = σiγi, or ti = (qi−1, αi, qi) ∈ δι and σi = σi−1. We say that the run
is labeled by the word u and denote this run by (q, σ) u−→ (q′, σ′). A run is accepting
if it starts in an initial configuration and ends in a final configuration. The degree of
ambiguity of A, denoted by da(A), is the maximal number of accepting runs for any
possible input word.

Language. A word u is accepted by A if there exists an accepting run of A on u. The
language of A, denoted by L(A), is the set of words accepted by A. Note that we
consider acceptance on empty stack, which implies that all accepted words are well-
nested. Unlike [1], we do not consider returns on empty stack and unmatched calls. This
assumption is done to avoid technical details but the general case could be handled 1.

Trimmed. A configuration (q, σ) is reachable (resp. co-reachable) if there exists u ∈ Σ∗

and q0 ∈ Qin (resp. qf ∈ Qf) such that (q0,⊥) u−→ (q, σ) (resp. such that (q, σ) u−→
(qf ,⊥)). A VPA A is trimmed if every reachable configuration is co-reachable, every
co-reachable configuration is reachable and if every state of A belongs to a reachable
configuration. In [4], we present a procedure which allows to trim a VPA and which
preserves the set of accepting runs. We also prove that this procedure can be applied to
the model of N-VPA (see below).

1 More precisely, given a general VPA A, one can build a VPA A′ according to Definition 1
such that accepting runs of A′ are in bijection with those of A. This can be achieved by adding
self-loops on initial states that allow to push a special symbol (for the returns on empty stack)
and self-loops on final states that allow to pop any symbols.

Visibly Pushdown Automata with Multiplicities 229

Path. A path over a word u ∈ Σ∗ is a sequence of transitions η = {ti}1≤i≤k such
that there exists a run on η labeled by the word u. Note that there may be different
runs on the same path, differing in their initial configurations. The empty path (on the
empty word ε) is denoted by ηε. A path is said to be accepting whenever there exists an
accepting run over it. Let η be a path over a word u �= ε, then there exist states p and q
such that any run over η goes from a configuration (p, σ) to a configuration (q, σ′) for
some σ, σ′ ∈ Γ ∗. We then say that η goes from p to q, and write η : p u−→ q.

Lemma 1

a. Let ui ∈ Σ∗ \ {ε} and ηi : pi
ui−→ qi a path over ui for i ∈ {1, 2, 3} such that

u1u3, u2 ∈ Σ∗
wn, and η1η2η3 is a path. Then:

– for all η′2 : p2
u′
2−→ q2 such that u′2 ∈ Σ∗

wn \ {ε}, η1η′2η3 is a path,
– if p1 = q1 and p3 = q3, then η2

1η2η
2
3 is a path.

b. Assume A is trimmed. For any family (ηi)i∈I of paths going from p to q on some
well-nested word u �= ε, there exist two paths η′, η′′ such that for any i ∈ I , η′ηiη

′′

is an accepting path.

We introduce the model of VPA with multiplicities in N (N-VPA for short), where
transitions are labeled by positive integers:

Definition 2 (N-VPA). An N-VPA is a pair T = (A, λ) composed of a VPA A =
(Q,Γ, δ,Qin, Qf) and a labeling function λ : δ → N>0.

The notions of configurations, runs and paths are lifted from VPA to N-VPA. We define
the language of an N-VPA T = (A, λ) as the language of A.

Multiplicity. For each transition t ∈ δ, λ(t) is called the multiplicity of t. Let η =
{ti}1≤i≤k be a path of A over the word u and let mi = λ(ti) for 1 ≤ i ≤ k. The

multiplicity of η denoted by 〈η〉 is
∏

1≤i≤k mi. Let a word u �= ε, we write p
u|m−−→ q

when there exists a path over u from p to q with multiplicity m. The multiplicity of the
empty path ηε is 1.

We define the multiplicity of a run ρ, denoted by 〈ρ〉, as the one of its underlying
path η. Let u ∈ L(T) be a word. The multiplicity of u, denoted by 〈u〉 is the sum of
the multiplicities of the accepting runs for the word u. The multiplicity of an N-VPA T ,
denoted by 〈T 〉, is defined as 〈T 〉 = sup{〈u〉 | u ∈ L(T)}. Let K ∈ N. We say that T
is bounded byK if 〈T 〉 ≤ K . We say that T is finite if we have 〈T 〉 < +∞, and infinite
otherwise. Note that the degree of ambiguity of a VPA is equal to the multiplicity of the
corresponding N-VPA where all the multiplicities of transitions are set to 1.

3 Relating Tree Automata and VPA

There is a strong relationship between words written over a partitioned alphabet and
(un)ranked trees. This relationship extends to recognizers with VPA on one side and
tree automata on the other side. A polynomial time construction from VPA to tree au-
tomata is presented in [1]. This latter construction preserves the language but not the

230 M. Caralp, P.-A. Reynier, and J.-M. Talbot

computations; however, the construction can be slightly modified to guarantee the iso-
morphism of accepting computations [3]. Conversely, it is easy to encode ranked trees
as well-nested visible words, and to build from a tree automaton a VPA accepting the
encodings and preserving the accepting computations as well.

Note that preserving (accepting) computations implies that the degree of ambiguity
of the encoded VPA and of the target tree automaton are the same.

Hence, one may now wonder whether this relationship extends to models with
weights and what are the results known for weighted tree automata that carry over
N-VPA: this question is crucial as in one direction, it may be the case that problems
we want to address could be solved thanks to this relationship and on the other direc-
tion, new results for N-VPA may carry over weighted tree automata almost for free.
Weighted tree automata [10] over the semiring (N,+, .) allow to encode N-VPA: the
weight of a node in a run is the product of the weight of its children multiplied by
the one associated with the transition rule applied at this node, the weight of a tree be-
ing the sum of the weights of its accepting runs. Thanks to one-to-one isomorphism
between the transitions of the N-VPA and the ones of the tree automaton recognizing
stack trees, weights are preserved by this translation. Conversely, when a (ranked) tree
automaton is translated into a VPA, a transition rule for some symbol a of the tree au-
tomaton is encoded as two rules in the VPA (one for a call symbol 〈a, one for a return
symbol a〉), the weight of the rule in the tree automaton being associated with one of
the twos, the other one having multiplicity 1 (see [5]).

Let us briefly recap some known results for tree automata with weights/costs. In [15],
(ranked) tree automata with polynomial costs are considered over several semirings.
The main ingredient of these automata is that a polynomial over a semiring is attached
to transitions : computing the cost of a node amounts to apply the polynomial with
each variable xi instanciated with the cost of the ith child. However, the result of the
computation is the set of costs computed for each accepted run (no combination is
made with the accepting computations over the same input tree). Finiteness and K-
boundedness problems whose decidability issues are addressed relate to the finiteness
and to theK-boundedness of this set of costs (shown to be in PTIME for many semirings
and in particular, (N,+, .)) and is thus different from the problems we consider here.
These results are extended in [2] by considering more general semirings but without
addressing complexity issues.

As already mentioned, the degree of ambiguity and the multiplicity of automata are
related. In particular, finiteness orK-boundedness problems of the degree of ambiguity
of tree automata provide lower bounds for the corresponding problems for N-VPA.

However, the algorithms for finiteness of the degree of ambiguity [13] (deciding
DA = da(A) < +∞) in PTIME and of the cost of some tree automaton with costs [15]
(deciding MM = sup{〈ρ〉 | ρ an accepting computation} < +∞) in PTIME can be
combined to get a PTIME algorithm for finiteness of weighted tree automata, thanks to
the following statement : max(DA,MM) ≤ 〈A〉 ≤ DA∗MM. Thanks to the PTIME en-
coding of N-VPA into weighted tree automata preserving the degree of ambiguity and
the multiplicities of encoded computations, we obtain a PTIME algorithm for finite-
ness of N-VPA. However, our approach provides a direct method based on VPA and
a rather intuitive algorithm compared to [13,15]. Moreover, we will see in Section 6

Visibly Pushdown Automata with Multiplicities 231

that conversely, our approach leads to a new vision and a new and rather simple PTIME

algorithm for finiteness of weighted tree automata over (N,+, .).
[15] also relates the degree of ambiguity and costs provided the use of multi di-

mensional cost automata. We believe that this may be extended to the computation of
multiplicities. As pointed out in [15], this would yield an exponential time-complexity
method to testK-boundedness, the algorithm being exponential in the dimension which
is in this case the number of states of the tree automaton (we will show that this problem
with the binary encoding of K being part of the input, for VPA and for tree automata
is EXPTIME-hard). However, we will present a much simpler approach based on [6] to
tackle this problem.

4 Characterization and Decision of Infinite N-VPA

In this section, we give a characterization on N-VPA ensuring their infiniteness by
means of patterns. Then, based on this characterization, we devise a PTIME algorithm
to solve the finiteness problem. All over this section, we assume a trimmed N-VPA
T = (A, λ), with A = (Q,Γ, δ,Qin, Qf). We denote by n the cardinality of Q, and by
L the value max{λ(t) | t ∈ δ}.

4.1 Characterization

We introduce the criteria depicted on Figures 1(a) and 1(b) which characterize infinite
N-VPA. Pattern of Figure 1(a) coincides with patterns for finite-state automata with
multiplicities (see [16,8]). Pattern of Figure 1(b) is specific to the model of VPA. Intu-
itively, the loop over a well-nested word is splitted into two loops on words u1 and u2,
such that the concatenation u1u2 is a well-nested word but u1 is not well-nested. We
say that T contains a pattern whenever there exist words in Σ∗, states of T and paths
in T that fulfill all the conditions of the pattern. For instance, if we consider the pattern
(S1), we should find a word u ∈ Σ∗

wn, two states p, q ∈ Q (which may be equal), three

paths η1 : p
u|m1−−−→ p, η2 : p

u|m2−−−→ q, η3 : q
u|m3−−−→ q such that η1η2η3 is a path, and

m1 > 1 or η1 �= η2. In these patterns, all words except w are necessarily non-empty.
Note that these patterns also yield a characterization of infinite ambiguity by removing
the disjunctions on multiplicities (conditionsm > 1).

We will show in this section that these criteria characterize infinite N-VPA:

Theorem 1. Let T be an N-VPA. T is infinite if and only if T complies with one of the
criteria (S1) and (S2).

To prove this result, we first show that if we have one of the criteria then the multiplicity
is infinite. In a second part we show that if the multiplicity is infinite, then the N-VPA
complies with one of the criteria.

Lemma 2. Let T be an N-VPA. If T complies with (S1) or (S2), then T is infinite.

Proof (Sketch). We sketch the proof for criterion (S1), the case of (S2) being similar.
Let u ∈ Σ∗

wn and η1, η2, η3 be paths selected according to pattern (S1). We first suppose
that conditionm1 > 1 holds. As η1 is a path going from p to p and u ∈ Σ∗

wn, η2
1 is also

232 M. Caralp, P.-A. Reynier, and J.-M. Talbot

p q
η2 : u | m2

η1 : u | m1 η3 : u | m3

(a) (S1) Well-nested case: u ∈ Σ∗
wn. η1η2η3 is a path and m1 > 1 or η1 �= η2.

p q q′ p′η2 : u1|m2 η : w|m η′
2 : u2|m′

2

η1 : u1|m1 η3 : u1|m3 η′
3 : u2|m′

2 η′
1 : u2|m′

1

(b) (S2) Matched loops case: w ∈ Σ∗
wn, u1u2 ∈ Σ∗

wn, and u1 �∈ Σ∗
wn. η1η2η3ηη′

3η
′
2η

′
1 is a path,

and either (m1 > 1 or m′
1 > 1), or (η1 �= η2 or η′

1 �= η′
2).

Fig. 1. Patterns characterizing infinite multiplicity

a path from p to p. By applying iteratively Lemma 1.a, we can consider path ηi
1 whose

multiplicity 〈ηi
1〉 = mi

1 grows to infinity when i tends to +∞. As T is trimmed, by
Lemma 1.b, this gives accepting paths with multiplicity growing to infinity. Consider
now the case where the condition η1 �= η2 holds. Let k ∈ N>0, and i, j ∈ N such that
i + j = k − 1. As η1η2η3 is a path and u ∈ Σ∗

wn, by Lemma 1.a, the path ηi
1η2η

j
3 is

a path over the word uk. Moreover, as η1 �= η2, all these paths are different when i, j
range over the set of integers such that i + j = k − 1. When k tends to infinity, we
obtain an arbitrarily large number of paths over uk going from p to q. As T is trimmed,
by Lemma 1.b, this gives arbitrarily many accepting paths over a same word. �
The proof of the converse (an infinite multiplicity implies the presence of one of the
criteria) relies on the two technical Lemmas 4 and 5 which we present intuitively. To
state these lemmas, we define the constantN = (n2L)2|Γ | and the functionψ : N → N
as ψ(z) = n(Nz)2

n

. Pattern (S1) allows to increase the multiplicity along a well-nested
word. Lemma 4 states that if T does not comply with (S1), then a well-nested word u
whose multiplicity is greater than ψ(l) has a well-nested subword v whose multiplicity
is greater than l, and such that hu > hv. Then, Lemma 5 applies iteratively Lemma 4
to prove that a word with large multiplicity has a large height, and hence allows to find
pattern (S2), using a vertical pumping.

Let u ∈ Σ∗
wn. Given two positions i, j such that 0 ≤ i ≤ j ≤ |u| and ui,j ∈ Σ∗

wn, we
define a matrix, denoted by inducedu

i,j , representing intuitively how the multiplicities
of runs are modified by the subword ui,j . Formally, inducedu

i,j is an element of NQ×Q,
and for p, q ∈ Q, we let inducedu

i,j(p, q) be the sum of the multiplicities of the paths

η : p
ui,j−−→ q of T for which there exist η1 a path on u0,i, η2 a path on uj,|u| such that

η1ηη2 is an accepting path on u.
Finally, we also define su

i,j ∈ N as su
i,j =

∑
p,q∈Q inducedu

i,j(p, q). We have:

Lemma 3. Let u ∈ Σ∗
wn and three positions i, j, k such that 0 ≤ i ≤ j ≤ k ≤ |u| and

ui,j , uj,k, ui,k ∈ Σ∗
wn. Then we have inducedu

i,k = inducedu
i,j × inducedu

j,k, su
i,j ≤ su

i,k,
and su

i,k ≤ su
i,j .s

u
j,k.

Visibly Pushdown Automata with Multiplicities 233

Lemma 4. We suppose that T is infinite but T does not comply with (S1). Let u ∈
L(T), l ∈ N>0 and x, y be two positions such that 0 ≤ x ≤ y ≤ |u|, ux,y ∈ Σ∗

wn and
su

x,y ≥ ψ(l). Then there exist two positions x < x′ ≤ y′ < y such that ux′,y′ ∈ Σ∗
wn,

hu(x′) = hu(x) + 1 and su
x′,y′ ≥ l.

Proof (Sketch). The proof is based on a pumping argument on positions in the set
P = {i ∈ N>0 | x ≤ i ≤ y ∧ ux,i ∈ Σ∗

wn}. This approach is similar to that used
in [8] for automata on words. For each i ∈ P , we define ri = su

x,i and Xi = {q ∈ Q |
inducedu

x,i(p, q) > 0 for some p}. Intuitively, ri corresponds to the multiplicity associ-
ated with the well-nested subword ux,i and Xi is the set of states that can be reached
after this subword (along an accepting path over u). For any i, jin P such that i < j,
we have thanks to Lemma 3, ri ≤ rj and rj ≤ ri × su

i,j .
Suppose, for the sake of contradiction, that for any two consecutive indices i < j in

P , we have su
i,j < Nl. Using the hypothesis ry = su

x,y ≥ ψ(l) and the definition of ψ,
we can prove that this entails that there exist two positions i < j in the set P such that
ri < rj and Xi = Xj . We define a multigraph X = (Xi, E) where E ⊆ Xi ×Xi × N

is defined as follows: ∀p, q ∈ Xi,m ∈ N, for each path η : p
ui,j |m−−−−→ q such that η′ηη′′

is an accepting path on u for some paths η′ on word u0,i and η′′ on word uj,|u|, we

construct an edge p
m−→ q ∈ E. Thanks to property ri < rj , we show that either there

is a vertex with two outgoing edges, or X is composed of disjoint loops and contains
an edge with label m > 1. In the former case, we prove that T contains the pattern (S1)
with property η1 �= η2 while in the latter case, we prove it contains (S1) with property
m1 > 1. This contradicts our hypothesis on T .

Hence, we have proven that there exist two indices i < j in P such that su
i,j ≥ Nl.

Then, we can extract from i and j the two expected indices x′ and y′. �
Lemma 5. Let T be an N-VPA. If T is infinite, then T complies with one of the two
criteria (S1) and (S2).

Proof (Sketch). Suppose that T is infinite but does not comply with (S1), and prove it
complies with (S2). Let u ∈ L(T) be a word such that 〈u〉 ≥ ψH(1) where H = 2n2

and ψh+1 = ψ ◦ψh, for h ∈ N. By applying Lemma 4 iteratively, we define a sequence
of length greater than H of couples of positions χi = (xi, yi) of u. These couples
represent well-nested subwords of u, which are recursively embedded. In addition, their
multiplicities su

χi
are strictly decreasing. We then proceed with a pumping argument

similar to the one done in the proof of Lemma 4, and exhibit the pattern (S2). �

4.2 Decidability of Finiteness

We show in this part how to decide in PTIME the presence of one of the patterns.
The algorithm (Figure 2) uses four bunches of inference rules applied as a saturation

procedure: the first bunch builds a set S0 of pairs (p, q) such that there exists a path over
a well-nested word from p to q. The second bunch builds a set S1 of tuples composed
of 6 states and a Boolean, which allows to decide the presence of the pattern (S1). The
6 states represent the source and the target of 3 paths over the same well-nested word
and the Boolean retains an information about a multiplicity greater than 1 or the fact

234 M. Caralp, P.-A. Reynier, and J.-M. Talbot

that different paths are considered. The third bunch builds a set S2 of tuples composed
of 12 states and a Boolean which allows to decide the presence of pattern (S2). This
construction is based on S1: the states aim to identify two sets of 3 paths over two words
u1 and u2, such that the second set pops the stack pushed by the first set, ensuring that
u1u2 ∈ Σ∗

wn. The information stored in the Boolean depends on one of the sets. Finally,
the last bunch builds a set S3 which ensures that some tuple built in S1 forms the pattern
(S1) in the rule 4.1, or that some tuple built in S2 represents the pattern (S2), which in
addition are connected through a well-nested word (condition over S0) in the rule 4.2.

Proposition 1. For any N-VPA T , (�) ∈ S3 iff T is infinite.

Theorem 2. Finiteness for N-VPA is in PTIME.

p ∈ Q
(1.1)

(p, p) ∈ S0

(p, a, q) ∈ δι
(1.2)

(p, q) ∈ S0

(p, q) ∈ S0, (q, q
′) ∈ S0

(1.3)
(p, q′) ∈ S0

(p, q) ∈ S0, (p
′, c, γ, p) ∈ δc, (q, r, γ, q′) ∈ δr

(1.4)
(p′, q′) ∈ S0

pi ∈ Q for all i ∈ {1, 2, 3}
(2.1)

(p1, p1, p2, p2, p3, p3,⊥) ∈ S1

ti = (pi, a, p′
i) ∈ δι for all i ∈ {1, 2, 3}

(2.2)
(p1, p

′
1, p2, p

′
2, p3, p

′
3, (t1 �= t2 ∨ ϕ1)) ∈ S1

(p1, q1, p2, q2, p3, q3, B) ∈ S1, (q1, q
′
1, q2, q

′
2, q3, q

′
3, B

′) ∈ S1
(2.3)

(p1, q
′
1, p2, q

′
2, p3, q

′
3, B ∨ B′) ∈ S1

(p1, q1, p2, q2, p3, q3, B) ∈ S1,
ti = (p′

i, c, γi, pi) ∈ δc, t
′
i = (qi, r, γi, q

′
i) ∈ δr for all i ∈ {1, 2, 3}

(2.4)
(p′

1, q
′
1, p

′
2, q

′
2, p

′
3, q

′
3, B ∨ (t1 �= t2 ∨ t′1 �= t′2 ∨ ϕ′

1 ∨ ϕ1)) ∈ S1

(p1, q1, p2, q2, p3, q3, B) ∈ S1, (q
′
3, p

′
3, q

′
2, p

′
2, q

′
1, p

′
1, B

′) ∈ S1
(3.1)

(p1, q1, p2, q2, p3, q3, q
′
3, p

′
3, q

′
2, p

′
2, q

′
1, p

′
1, B ∨B′) ∈ S2

ti = (p′
i, c, γi, pi) ∈ δc, t′i = (qi, r, γi, q

′
i) ∈ δr, for all i ∈ {1, 2, 3}

(3.2)
(p′

1, p1, p
′
2, p2, p

′
3, p3, q3, q

′
3, q2, q

′
2, q1, q

′
1, t1 �= t2 ∨ t′1 �= t′2 ∨ ϕ1 ∨ ϕ′

1) ∈ S2

(p1, p
′
1, p2, p

′
2, p3, p

′
3, q

′
3, q3, q

′
2, q2, q

′
1, q1, B) ∈ S2,

(p′′
1 , p1, p

′′
2 , p2, p

′′
3 , p3, q3, q

′′
3 , q2, q

′′
2 , q1, q

′′
1 , B′) ∈ S2

(3.3)
(p′′

1 , p′
1, p

′′
2 , p′

2, p
′′
3 , p′

3, q
′
3, q

′′
3 , q′2, q

′′
2 , q′1, q

′′
1 , B ∨B′) ∈ S2

(p, p, p, q, q, q,�) ∈ S1
(4.1)

(�) ∈ S3

(q, q′) ∈ S0,
(p, p, p, q, q, q, q′, q′, q′, p′, p′, p′,�) ∈ S2

(4.2)
(�) ∈ S3

with ϕ1 = λ(t1) > 1 and ϕ′
1 = λ(t′1) > 1

Fig. 2. Inference rules for deciding finiteness

Visibly Pushdown Automata with Multiplicities 235

5 Finite Bounds for N-VPA

5.1 Deciding K-Bounded Multiplicity

We consider a trimmed N-VPA T = (A, λ), withA = (Q,Γ, δ,Qin, Qf) and an integer
K ∈ N>0 represented in binary and describe an algorithm to decide whether 〈T 〉 < K .

The procedure we describe builds a set M of n × n integer matrices by saturation,
where rows and columns of matrices are indexed by states of A. The semantics of a
matrix M ∈ M can be understood as follows: there exists a word u ∈ Σ∗

wn such that,
for any p, q ∈ Q, the entry M(p, q) is equal to the sum of the multiplicities of paths
p

u−→ q. We have then 〈u〉 =
∑

qi∈Qin,qf∈Qf
M(qi, qf). For an n × n integer matrix

M , we denote by 〈M〉 the value
∑

qi∈Qin,qf∈Qf
M(qi, qf).

The algorithm proceeds by building such matrices for well-nested words of increas-
ing lengths. It starts with internal words of length 1, and then extends words either by
concatenation, or by adding a matching pair of call/return symbols.

We introduce the following notations: let Mε be the identity matrix. Let a ∈ Σι,
then Ma is the matrix defined by Ma(p, q) = λ(t) if there exists t = (p, a, q) ∈ δι, and
Ma(p, q) = 0 otherwise. Let γ ∈ Γ and let c ∈ Σc (resp. r ∈ Σr), then Mc,γ (resp.
Mr,γ) is the matrix defined by Mc,γ(p, q) = λ(t) if there exists t = (p, c, γ, q) ∈ δc,
and Mc,γ(p, q) = 0 otherwise (and similarly for matrix Mr,γ).

Finally, we introduce the operator ExtraK : N → N defined by ExtraK(z) = z if
z ≤ K , and ExtraK(z) = K otherwise. This operator is naturally extended to integer
matrices. Our algorithm is presented as Algorithm 1.

Algorithm 1. Decision of the K-boundedness of an N-VPA

Require: An N-VPA T and K ∈ N>0

1: M← {ExtraK(Ma) | a ∈ Σι} ∪ {Mε}
2: M′ ← ∅
3: repeat
4: M←M∪M′

5: if ∃M ∈ M such that 〈M〉 ≥ K then
6: return false
7: end if

8:
M′ ← {ExtraK(M1.M2) |M1, M2 ∈ M} ∪

{ExtraK(
∑

γ∈Γ Mc,γ .M.Mr,γ) |M ∈M, c ∈ Σc, r ∈ Σr}
9: untilM′ ∪M =M

10: return true

Theorem 3. Given an N-VPA T and K ∈ N>0, the problem of determining whether
〈T 〉 < K is EXPTIME-complete.

This complexity should be compared with that of determining whether the ambiguity
of a finite state automaton is less than K which is known to be PSPACE-complete [6].

Proof (Sketch). The EXPTIME membership follows from the fact that all the matrices
built are n × n matrices whose entries are bounded by K . For the hardness, we can
proceed to a reduction from the emptiness of the intersection ofK deterministic bottom-
up tree automata [7]. One can first consider the tree automaton obtained as the disjoint

236 M. Caralp, P.-A. Reynier, and J.-M. Talbot

union of theseK automata. Then one can turn this tree automaton into a VPA accepting
the encodings of the trees as well-nested words, and with an isomorphic set of accepting
runs. Considering this VPA as an N-VPA T (each multiplicity is set to 1), one can show
that the intersection of the K deterministic tree automata is empty iff 〈T 〉 < K . �
Computing the multiplicity of a finite N-VPA. Consider now, given a finite N-VPA, the
problem consisting in computing its multiplicity. We derive from the previous algorithm
a procedure solving this problem. The procedure simply explores as before the set of
matrices, without using the operator ExtraK , until saturation of the set of matrices. The
termination of the algorithm relies on the fact that T is finite and trimmed. Indeed, this
entails that coefficients computed are all bounded by 〈T 〉. In particular, this proves that
the number of matrices built is bounded by 〈T 〉n2

, and:

Theorem 4. For all finite N-VPA T , 〈T 〉 can be computed in time 〈T 〉O(n2).

5.2 Deciding K-Bounded Multiplicity (for a Fixed K)

As a final result in this section, we investigate the K-bounded multiplicity problem for
which the input is only an N-VPA T and we ask whether 〈T 〉 < K . The algorithm from
Section 5.1 shows that this problem for a fixed K can be solved in exponential time;
however, by adapting the approach used in [14] for ambiguity of tree automata,

Theorem 5. Fix K ∈ N>0. For an N-VPA T , deciding whether 〈T 〉 < K is in PTIME.

Proof. We consider the family of VPA’s (Ai)1≤i≤K such that Ai accepts words from
L(T) having a multiplicity greater than K . More precisely, Ai is a VPA that accepts
words u such that there are i different accepting runs ρ1, . . . , ρi of T over u verifying∑

1≤j≤i〈ρj〉 ≥ K . Therefore, Ai simulates in parallel i runs of T over the same word,
and for each of them keeps track of the current multiplicity in its states by computing
up to K . More precisely, for T = (A, λ), with A = (Q,Γ, δ,Qin, Qf), we define
Ai as (Qi, Γi, δi, Q

i
in, Q

i
f) where Qi = (Q × [1..K])i × Bi×i, Γi = (Γ)i, Qi

in =
(Qin × {1})i × {0Bi×i}, Qi

f = {((q1,m1), . . . , (qi,mi)) × {IdBi×i} | (q1, . . . , qi) ∈
(Qf)i, (

∑
1≤j≤i mj) ≥ K}. The element of Bi×i, which is the set of the i × i square

matrices of Booleans, is used to store whether the runs are distinct. 0Bi×i (resp. IdBi×i)
is the matrix containing only false values (resp. only true values except on the diagonal
which is set to false), i.e. all runs are equal (resp. distinct). Let δi = δc

i � δι
i � δr

i where

δc
i =

⎧⎪⎪⎨⎪⎪⎩
(((q1,m1), . . . , (qi,mi),M),

c, (γ1, . . . , γi),
((q′1,m

′
1), . . . , (q

′
i,m

′
i),M

′))

c ∈ Σc, for all 1 ≤ j, l ≤ i,
tj = (qj , c, γj , q

′
j), tl = (ql, c, γl, q

′
l) ∈ δc

m′
j = ExtraK(λ((qj , c, γj, q

′
j)) ∗mj) and

M ′(j, l) = M(j, l) ∨ (tj �= tl)

⎫⎪⎪⎬⎪⎪⎭
δι
i and δr

i are defined similarly. It is obvious that eachAi can be built in polynomial time
in |T |. Finally, we test in polynomial time for emptiness each of the K VPA Ai. �

Visibly Pushdown Automata with Multiplicities 237

6 Back to Trees

Considering the polynomial encoding of (weighted) tree automata into VPA (with mul-
tiplicities), we can deduce the two following results:

1. Determining whether the ambiguity of a tree automaton A is less than K , when A
and the binary encoding of K are part of the input, is EXPTIME-complete

2. We exhibit a simple pattern characterizing infinite weighted tree automata over N,
which can be decided in PTIME. Moreover, it turns out to be the disjunction of a
pattern for infinite ambiguity, and one for infinite cost (in the sense of [15]).

Point 1 should be compared with the PTIME complexity of this problem when K is
fixed (see [14]). Regarding point 2, we claim (see Figure 3) that a weighted tree au-
tomaton T over N is infinite iff there exists a one-hole context C and computations ϕi

for i ∈ {1, 2, 3} of T over C such that ϕ1 : p C−→ p, ϕ2 : p C−→ q, ϕ3 : q C−→ q for some
p, q ∈ Q verifying 〈ϕ1〉 > 1 or ϕ1 �= ϕ2.

p

p

C

ϕ1 : p

q

C

ϕ2 : q

q

C

ϕ3 :

Fig. 3. Patterns for infinite weighted tree automata

We can then derive a PTIME algorithm for weighted tree automata rather similar to
the one we proposed for N-VPA (see [5]).

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. STOC 2004, pp. 202–211
(2004)

2. Borchardt, B., Fülöp, Z., Gazdag, Z., Maletti, A.: Bounds for tree automata with polynomial
costs. Journal of Automata, Languages and Combinatorics 10(2/3), 107–157 (2005)

3. Caralp, M.: Automates à pile visible: ambiguité et valuation. Master’s thesis, Aix-Marseille
Université (2011)

4. Caralp, M., Reynier, P.-A., Talbot, J.-M.: A polynomial procedure for trimming visibly push-
down automata. Technical Report hal-00606778, HAL, CNRS, France (2011)

5. Caralp, M., Reynier, P.-A., Talbot, J.-M.: VPA with Multiplicities: Finiteness and K-
Boundedness. Technical Report hal-00697091, HAL, CNRS, France (2012)

6. Chan, T.-H., Ibarra, O.H.: On the finite-valuedness problem for sequential machines. Theo-
retical Computer Science 23, 95–101 (1983)

7. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applications (2008)

8. De Souza, R.: Étude structurelle des transducteurs de norme bornée. PhD thesis, ENST,
France (2008)

9. Filiot, E., Raskin, J.-F., Reynier, P.-A., Servais, F., Talbot, J.-M.: Properties of Visibly Push-
down Transducers. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
355–367. Springer, Heidelberg (2010)

238 M. Caralp, P.-A. Reynier, and J.-M. Talbot

10. Fülöp, Z., Vogler, H.: Weighted Tree Automata and Tree Transducers. In: Handbook of
Weighted Automata. Springer (2009)

11. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
12. Sakarovitch, J., de Souza, R.: On the Decidability of Bounded Valuedness for Transduc-

ers. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 588–600.
Springer, Heidelberg (2008)

13. Seidl, H.: On the finite degree of ambiguity of finite tree automata. Acta Inf. 26(6), 527–542
(1989)

14. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3), 424–437
(1990)

15. Seidl, H.: Finite tree automata with cost functions. Theor. Comput. Sci. 126(1), 113–142
(1994)

16. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Comput.
Sci. 88(2), 325–349 (1991)

Unambiguous Constrained Automata

Michaël Cadilhac1, Alain Finkel2,�, and Pierre McKenzie1,��

1 DIRO, Université de Montréal
C.P. 6128 succ. Centre-Ville, Montréal (Québec), H3C 3J7 Canada

{cadilhac,mckenzie}@iro.umontreal.ca
2 LSV, ENS Cachan, CNRS

61 avenue du Président Wilson, 94235 Cachan Cedex, France
finkel@lsv.ens-cachan.fr

Abstract. The class of languages captured by Constrained Automata
(CA) that are unambiguous is shown to possess more closure properties
than the provably weaker class captured by deterministic CA. Problems
decidable for deterministic CA are nonetheless shown to remain decidable
for unambiguous CA, and testing for regularity is added to this set of
decidable problems. Unambiguous CA are then shown incomparable with
deterministic reversal-bounded machines in terms of expressivity, and a
deterministic model equivalent to unambiguous CA is identified.

Keywords: unambiguity, constrained automata, regularity test.

1 Introduction

A recent trend in automata theory is to study flavors of nondeterminism, which
are introduced to provide a scale of expressiveness in different models (see [4]
for a survey). The usual goal is to strike a balance between the expressiveness of
nondeterministic models and the undecidability properties that often come with
nondeterminism. A natural restriction to nondeterminism is unambiguity, i.e.,
the property that despite the underlying nondeterminism, there be at most one
way to accept an input word. Within the context of finite automata, unambiguity
and nondeterminism are equally expressive, but many open problems concerning
the state complexity of unambiguity remain. Within more general contexts, the
first question is often whether unambiguity offers more expressiveness than de-
terminism; if so, then the examination of the closure and decidability properties
of the new class often reveals that it inherits good properties. Another line of
attack is to find a deterministic model equivalent to an unambiguous model, so
as to understand how unambiguity affects a given model.

In [9], Klaedtke and Rueß studied Constrained Automata (CA),1 a model
whose expressive power lies between regular languages and context-sensitive
� Ce travail a bénéficié d’une aide de l’Agence Nationale de la Recherche portant la

référence “REACHARD-ANR-11-BS02-001”.
�� Supported by the Natural Sciences and Engineering Research Council of Canada.
1 In [9], the model under study is called Parikh automata. CA are but an effectively

equivalent model with an arguably simpler definition.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 239–250, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

240 M. Cadilhac, A. Finkel, and P. McKenzie

languages [3]. Klaedtke and Rueß successfully used the CA in the model check-
ing of hardware circuits, suggesting that CA is a model of interest for real-life
applications. The deterministic variant (DetCA) of the CA enjoys more closure
properties (e.g., complement) and decidability properties (e.g., universality) than
the CA, but is unable to express languages as simple as {a, b}∗·{anbn | n ≥ 1} [3].
Buoyed by Colcombet’s recent systematic examination of unambiguity [4], here
we initiate the study of unambiguous CA (UnCA).

We show that UnCA enjoy more closure properties than DetCA, while being
more expressive. The class of languages UnCA defines is indeed closed under
Boolean operations, reversal, and right and left quotient. We show that the
problems known to be decidable for DetCA (emptiness, universality, finiteness,
inclusion) remain decidable for UnCA. As the main technical result of this paper,
we show that regularity is decidable for UnCA; by contrast, regularity is known
to be undecidable for CA [3], while its status was unknown for DetCA. Finally,
although DetCA are less powerful than UnCA, we present a natural deterministic
model equivalent to UnCA; as a result of independent interest, we show that the
nondeterministic variant of this model has the same expressive power as CA.

Section 2 contains preliminaries, settles notation, and defines the models in
play. Section 3 investigates the closure and expressiveness properties of UnCA
and compares it to deterministic reversal-bounded counter machines. Section 4
proceeds with the decidability properties of UnCA and proves regularity decid-
able. Section 5 shows that there is a natural deterministic model equivalent to
UnCA. Section 6 concludes with a brief discussion.

2 Preliminaries

Integers, Vectors, Monoids. We write N for the nonnegative integers. Let d ≥ 1.
Vectors in Nd are noted in bold, e.g., v whose elements are v1, v2, . . . , vd. We write
ei ∈ {0, 1}d for the vector having a 1 only in position i and 0 for the all-zero
vector. We view Nd as the additive monoid (Nd,+), with + the component-
wise addition and 0 the identity element. Given an order on some set Σ =
{a1, a2, . . . , an} we often refer to the components of a vector v ∈ N|Σ| by xai

instead of xi. In particular, for a ∈ Σ, xa refers to the i-th component of x
where i is such that ai = a. Let s ≥ 0 and p ≥ 1, we define the congruence ≡s,p,
by x ≡s,p y iff (x = y < s) ∨ (x, y ≥ s ∧ x = y (mod p)), for x, y ∈ N; we write
[x]s,p for the equivalence class of x under ≡s,p. We extend ≡s,p component-wise
to vectors x,y ∈ Nd by letting x ≡s,p y iff xi ≡s,p yi for all 1 ≤ i ≤ d; similarly,
[x]s,p is the equivalence class of x under this relation.

For a monoid (M, ·) and S ⊆M , we write S∗ for the monoid generated by S,
i.e., the smallest submonoid of (M, ·) containing S. A (monoid) morphism from
(M, ·) to (N, ◦) is a function h : M → N such that h(m1 ·m2) = h(m1) ◦ h(m2),
and, with eM (resp. eN) the identity element of M (resp. N), h(eM) = eN .
Moreover, if M = S∗ for some finite set of symbols S (and this will always be
the case), then h need only be defined on the elements of S. In this case, h is
said to be erasing if there is an s ∈ S such that h(s) = eN . If in addition N = T ∗

Unambiguous Constrained Automata 241

for some finite set of symbols T , h is said to be length-preserving if for all s ∈ S,
h(s) ∈ T .

Semilinear Sets, Parikh Image. A subset C of Nd is linear if there exist c ∈ Nd

and a finite P ⊆ Nd such that C = c+P ∗. The subset C is said to be semilinear
if it is equal to a finite union of linear sets: {4n + 56 | n > 0} is semilinear
while {2n | n > 0} is not. We will often use the fact that the semilinear sets
are those sets of natural numbers definable in first-order logic with addition [5].
A semilinear set is said to be effectively semilinear if its description as a set of
c’s and P ’s, or equivalently as a formula, can be computed from the data at
hand. Let Σ = {a1, a2, . . . , an} be an (ordered) alphabet with ε the empty word.
The Parikh image is the morphism Φ : Σ∗ → Nn defined by Φ(ai) = ei, for
1 ≤ i ≤ n — in particular, we have that Φ(ε) = 0. For w ∈ Σ∗, with Φ(w) = x
and a ∈ Σ, we write |w|a for xa. The Parikh image of a language L is defined
as Φ(L) = {Φ(w) | w ∈ L}. The name of this morphism stems from Parikh’s
theorem [11], stating that for L context-free, Φ(L) is semilinear. For L ⊆ Σ∗ and
C ⊆ Nn, define L�C = {w ∈ L | Φ(w) ∈ C}.
Languages, Operations. For u = u1u2 · · ·un ∈ Σ∗, define uR = un · · ·u2u1 as
the reversal of u. For L1, L2 ⊆ Σ∗, define LR

1 as the set of the reversals of each
word in L1; (L1)−1L2 = {v | (∃u ∈ L1)[u · v ∈ L2]} as the left quotient of
L2 by L1; and L1(L2)−1 = {u | (∃v ∈ L2)[u · v ∈ L1]} as the right quotient
of L1 by L2. A language L ⊆ Σ∗ is bounded [6] if there exist n > 0 and a
sequence of words w1, w2, . . . , wn ∈ Σ+, which we call a socle of L, such that
L ⊆ w∗

1w
∗
2 · · ·w∗

n. The iteration set of L w.r.t. this socle is (uniquely) defined as
Iter(w1,w2,...,wn)(L) = {(i1, i2, . . . , in) ∈ Nn | wi1

1 w
i2
2 · · ·win

n ∈ L}.
Automata. An automaton is a quintuple A = (Q,Σ, δ, q0, F) where Q is a finite
set of states, Σ is an alphabet, δ ⊆ Q×Σ×Q is a set of transitions, q0 ∈ Q is the
initial state, and F ⊆ Q is a set of final states. For a transition t = (q, a, q′) ∈ δ,
we write t = q a q′ and define From(t) = q and To(t) = q′. We define μA : δ∗ →
Σ∗ as the length-preserving morphism given by μA(t) = a, with, in particular,
μA(ε) = ε, and write μ when A is clear from the context. A path π on A is
a word π = t1t2 · · · tn ∈ δ∗ such that To(ti) = From(ti+1) for 1 ≤ i < n; we
extend From and To to paths, letting From(π) = From(t1) and To(π) = To(tn).
We say that μ(π) is the label of π. A path π is initial if From(π) = q0, final
if To(π) ∈ F , and accepting if it is both initial and final; we write Run(A)
for the language over δ of accepting paths (or runs) on A. We write L(A) for
the language of A, i.e., the labels of the accepting paths. The automaton A is
deterministic if (p a q ∈ δ ∧ p a q′ ∈ δ) implies q = q′. An ε-automaton is
an automaton A = (Q,Σ, δ, q0, F) as above, except with δ ⊆ Q× (Σ ∪ {ε})×Q
so that in particular μA becomes an erasing morphism. An (ε-)automaton A is
unambiguous if each word in L(A) is the label of only one path in Run(A).

Affine Functions. A function f : Nd → Nd is a (total and positive) affine function
of dimension d if there exist a matrix M ∈ Nd×d and v ∈ Nd such that for
any x ∈ Nd, f(x) = M.x + v. We abusively write f = (M,v). We let Fd

be the monoid of such functions under the operation � defined by (f � g)(x)

242 M. Cadilhac, A. Finkel, and P. McKenzie

= g(f(x)), where the identity element is the identity function, i.e., (Id ,0) with
Id the identity matrix of dimension d. Let U be a monoid morphism from Σ∗

to Fd. For w ∈ Σ∗, we write Uw for U(w), so that the application of U(w) to a
vector v is written Uw(v), and Uε is the identity function. We define M(U) as
the multiplicative matrix monoid generated by the matrices used to define U ,
i.e., M(U) = {M | (∃a ∈ Σ)(∃v)[Ua = (M,v)]}∗.
Definition 1 (Constrained automaton [3]). A constrained automaton (CA)
is a pair (A,C) where A is an ε-automaton with d transitions and C ⊆ Nd is
semilinear. Its language is L(A,C) = μA(Run(A)�C). The CA is said to be:
– Deterministic (DetCA) if A is a deterministic automaton;
– Unambiguous (UnCA) if A is an unambiguous ε-automaton.

We write LCA, LDetCA,2 and LUnCA for the classes of languages recognized by
CA, DetCA, and UnCA, respectively.

3 Closure Properties and Expressiveness of UnCA

We show closure and nonclosure properties, and we give languages witnessing
the strictness of LDetCA � LUnCA � LCA. Lemma 1 is a tool that will prove
useful when combining UnCA. It is shown by applying the standard procedure of
backward-closure (e.g., [12]) and keeping track of the closure in the constraint set:

Lemma 1. For any UnCA (A,C), there is an UnCA (A′, C′) where A′ has no
ε-transition, L(A) = L(A′), and L(A,C) = L(A′, C′).

Proposition 1. LUnCA is closed under union.

Proof (sketch). First, we note that for an UnCA (A,C) over the alphabet Σ,
there is an UnCA (A′, C′) with L(A′) = Σ∗ and L(A′, C′) = L(A,C). The
ε-automaton A′ is defined as A A where A is a deterministic au-
tomaton for L(A) and the two new transitions are labeled by ε. Then C′ is
defined to reject if the transition to A is taken, and to accept if the run is in A
and its Parikh image is in C. Clearly, A′ is unambiguous.

Now let (A,C) and (B,D) be two UnCA over the same alphabet Σ (w.l.o.g.),
and with L(A) = L(B) = Σ∗, as per the previous discussion. We design an
automaton that runs A and B in parallel. We rely on Lemma 1 to synchronize
the two automata. For any word w, there will be exactly one way to read w over
A and B, thus only one way to read w over both at the same time. Finally, we
constrain this automaton by extracting the paths in A and B and checking that
at least one of them is in its respective constraint set. �
As L(A,C) = L(A) ∪ L(A,C), we have:

Proposition 2. LUnCA is closed under complement and intersection.

Note that LDetCA is not closed under reversal, as {a, b}∗ · {anbn | n ≥ 1} is not
in LDetCA while its reversal is [3]. Thus it is a curiosity, especially for a class
described by a deterministic model (forthcoming Theorem 4), that we have:
2 In [3], LCA and LDetCA are written LPA and LDetPA, in reference to Parikh

automata [9], which are equivalent to CA.

Unambiguous Constrained Automata 243

Proposition 3. LUnCA is closed under reversal.

Proof. Let (A,C) be an UnCA. Let B be the ε-automaton A in which a fresh
state qf is set to be the only final state, and with a transition from each for-
mer final state to qf labeled ε. Clearly, B is unambiguous. Adjust C into C′

so that the added transitions in B do not affect the acceptance of a word, i.e.,
L(B,C′) = L(A,C). Then define D as the ε-automaton B in which every transi-
tion is reversed, i.e., (q, a, q′) is a transition of B iff (q′, a, q) is a transition of D;
the order on the transition set of D is the same as that of B. Additionally, set qf
as the initial state and the former initial state of B as the only final state. Then
D is unambiguous: clearly, Run(B) = {πR | π ∈ Run(D)}, thus the accepting
paths in D labeled w are the reversal of the accepting paths in B labeled wR.
As B is unambiguous, only one such path may exist, thus D is unambiguous.
Hence L(D,C′) = (L(B,C′))R = (L(A,C))R. �
Proposition 4. Let L1 ∈ LCA and L2 ∈ LUnCA. Then L−1

1 L2 ∈ LUnCA.

Proof. Let (A,C) be a CA, (B,D) be an UnCA, with A = (QA, Σ, δA, q0,A, FA)
and B = (QB, Σ, δB, q0,B, FB). We suppose, thanks to Lemma 1, that no transi-
tion of B is labeled by ε, and that each state of B is reachable from q0,B and can
reach a final state. For q ∈ QB, define B q (resp. Bq) to be the ε-automaton
B where the initial state (resp. the only final state) is q, and note that B q is
unambiguous, as any path from q to a final state can be prefixed with a path
from q0,B to q to make an accepting path in B. First note that:

Claim 1. For any qB ∈ QB, the set EqB = {(Φ(π), Φ(ρ)) | π ∈ Run(A) ∧ ρ ∈
Run(BqB) ∧ μA(π) = μB(ρ)} is effectively semilinear.

A word w is in (L(A,C))−1L(B,D) iff there is a state qB ∈ QB and a word
u ∈ L(A,C) such that u ∈ L(BqB), w ∈ L(B qB), and the Parikh image of one
(in fact, the only) path for u in BqB concatenated with the path for w in B qB

is in D. This is the case iff there is a state qB ∈ QB and a pair (x,y) ∈ EqB

such that x ∈ C and the Parikh image z of the only path in B qB labeled
w plus y is in D. In symbols, a word w is in (L(A,C))−1L(B,D) iff it is in⋃

qB∈QB
L(B qB , {z | (∃(x,y) ∈ EqB)[x ∈ C ∧ y + z ∈ D]}). �

Remark 1. We note that a similar proof shows that LUnCA is closed under right
quotient. Also, similar proofs show that LDetCA is closed under both right and
left quotient, settling those two closure properties that were left open in [9].

Let P1 = {w = w1w2 · · ·wk ∈ {�,�}∗ | (∀i)[|w1w2 · · ·wi|� ≥ |w1w2 · · ·wi|�]}
be the prefixes of the semi-Dyck language with one set of parentheses. Then:

Proposition 5. P1 /∈ LCA and P1 ∈ LCA \ LUnCA.

Proof. (Sketch: P1 /∈ LCA and P1 ∈ LCA.) An expressiveness lemma for CA
similar to [3, Lemma 1] shows that P1 /∈ LCA. Moreover, we can design a simple
CA for P1 which guesses a position in the input word at which the number of
�’s read so far is less than the number of �’s.

(P1 /∈ LUnCA.) If P1 ∈ LUnCA, then P1 ∈ LUnCA (Proposition 2), but as
LUnCA ⊆ LCA, this contradicts P1 /∈ LCA. �

244 M. Cadilhac, A. Finkel, and P. McKenzie

Theorem 1. LDetCA � LUnCA � LCA.

Proof. The chain of inclusion is immediate. The strictness of LDetCA � LUnCA is
witnessed by {a, b}∗ · {anbn | n ≥ 1}, as previously mentioned, and the strictness
of LUnCA � LCA is witnessed by P1 (Proposition 5). �
Proposition 6. LUnCA is neither closed under concatenation with a regular
language, nor under length-preserving morphisms, nor under starring.

Proof. (Concatenation.) Let Σ = {�,�}. The language L< = {w ∈ Σ∗ |
|w|� < |w|�} is in LDetCA and such that P1 = L< ·Σ∗ /∈ LUnCA.

(Length-preserving morphisms and starring.) Let T = {�,�}, then L< ·T ∗ ∈
LUnCA. The length-preserving morphism h : (Σ ∪ T)∗ → Σ∗ defined by h(�) =
h(�) = �, h(�) = h(�) = � is such that h(L< · T ∗) = L< · Σ∗ /∈ LUnCA. For
starring, it is shown in [3, Proposition 10] that with L = {anbn | n ∈ N} ∈
LDetCA, L∗ /∈ LCA � LUnCA. �

UnCA and RBCM. It is known that one-way reversal-bounded counter ma-
chines (RBCM) [8] are as powerful as CA [9], while deterministic such machines
(DetRBCM) are more powerful than DetCA [3].

Definition 2 (RBCM [8]). A one-way counter machine is a finite-state read-
only device that decides at each point whether to move its input head one step
to the right and uses a finite number of counters holding natural numbers,
which can be incremented, decremented, and tested for 0. It is reversal-bounded
(RBCM) if there is a constant r such that each accepting run changes between
increment and decrement at most r times for each counter. It is deterministic
(DetRBCM) if at any point the next values of the counters and the device’s state
are uniquely determined by the symbol currently read, the counter values, and
the device’s state. We write LDetRBCM for the class of languages recognized by
DetRBCM.

Proposition 7. LDetRBCM and LUnCA are incomparable.

Proof (sketch). A DetRBCM can deterministically use extra information pro-
vided in the input word to check for a certain property later in the input; this
is illustrated by L = {anw | w ∈ {�,�}∗ ∧ |w1w2 · · ·wn|� < |w1w2 · · ·wn|�} ∈
LDetRBCM.

Suppose L ∈ LUnCA. Proposition 4 then asserts that ({a}∗)−1L∩{�,�}∗ is in
LUnCA. But this latter language is P1 /∈ LUnCA (Proposition 5), a contradiction.

In the other direction, {a, b}∗ · {anbn | n ≥ 1} ∈ LUnCA \ LDetRBCM [3,2]. �

4 Decision Problems for UnCA

We recall the following decidability results, that hold equally well for UnCA:

Proposition 8 ([9,3]). Given a CA, it is decidable whether its language is
empty, and whether its language is finite.

With the closure properties of LUnCA of Proposition 2, this implies:

Unambiguous Constrained Automata 245

Proposition 9. Given an UnCA, it is decidable whether its language is Σ∗.
Given two UnCA, it is decidable whether the language of the first is included in
the language of the second.

The rest of this section is devoted to the main technical result of our paper,
namely that it is decidable whether the language of an UnCA is regular. Our
technique is mainly in two steps: we first show that it is decidable whether a
bounded CA language (given additionally a socle of the language) is regular
(Lemma 3) then reduce the decision in the general case to the decision with
bounded CA languages.

Definition 3 ([7]). A set C is unary if it is equal to a finite union of linear
sets, each period of each linear set having at most one nonzero coordinate.

Lemma 2 ([7, Theorem 1.3]). Let L ⊆ w∗
1w

∗
2 · · ·w∗

n. The language L is reg-
ular iff Iter(w1,w2,...,wn)(L) is unary.

Lemma 3. Given a CA (A,C) and words w1, w2, . . . , wn such that L(A,C) ⊆
w∗

1w
∗
2 · · ·w∗

n, it is decidable whether L(A,C) is regular.

Proof. Let (A,C) be a CA with L(A,C) ⊆ w∗
1w

∗
2 · · ·w∗

n. Let T = {a1, a2, . . . , an}
be a set of fresh symbols and define the morphism h : T ∗ → Σ∗ by h(ai) = wi

for all i. Now let (A′, C′) be the CA with language h−1(L(A,C)) ∩ a∗1a∗2 · · · a∗n
obtained by the (effective) closures of CA. Then for i ∈ Nn, ai1

1 a
i2
2 · · · ain

n ∈
L(A′, C′) iff wi1

1 w
i2
2 · · ·win

n ∈ L(A,C); hence the Parikh image of L(A′, C′) is
Iter(w1,w2,...,wn)(L(A,C)). Now Φ(L(A′, C′)) is an effectively semilinear set [9,
Lemma 5], hence we can decide whether it is a unary set (see [7, Section 3]).
This amounts to deciding, by Lemma 2, whether L(A,C) is regular. �
Lemma 4. The language of an UnCA (A,C) is regular iff Run(A)�C is regular.

Proof. First, suppose Run(A) �C is regular, for a CA (A,C). As L(A,C)
= μ(Run(A) �C) and regular languages are closed under morphisms, L(A,C)
is regular. This part does not rely on unambiguity.

Second, consider an UnCA (A,C). We remark that if an accepting path of A is
labeled by a word in L(A,C), then it is in Run(A)�C (the converse is true of any
CA). Indeed, since a path labeled by a word w in L(A,C) is, by unambiguity,
the only path labeled w in Run(A), it has its Parikh image in C. In other words,
Run(A) �C = μ−1(L(A,C)) ∩ Run(A). Now, as the class of regular languages
is closed under inverse morphisms and intersection, if L(A,C) is regular then
Run(A)�C is regular. �
Remark 2. The inclusion Run(A)�C ⊇ μ−1(L(A,C)) ∩ Run(A) is crucial to the
proof of Lemma 4 and to the decidability of regularity for UnCA. Indeed, both
this inclusion and Lemma 4 fail for CA — in fact, regularity is undecidable for
CA [3]. For example, let A be the automaton: r sa a a with r
initial. Define C to constrain the two loops on r and s to occur the same number
of times. Then L(A,C) = {a2n+1 | n ∈ N}, a regular language. But with t1, t2, t3
the three transitions of A, from left to right, Run(A)�C = {tn1 t2tn3 | n ∈ N}, a
nonregular language.

246 M. Cadilhac, A. Finkel, and P. McKenzie

As Run(A) is effectively obtainable from A, we need only focus on the decidability
of the regularity of Run(A)�C . Note that “moving a cycle” within a run affects
neither its being an accepting path, nor its Parikh image. Repeatedly moving
the cycles to the leftmost position in the run at which they can occur will be a
key ingredient in the following proof. This operation, in particular, will allow to
convert the language of runs in an ε-automaton to a set of bounded languages,
with the property that a path is in Run(A)�C iff the repeated moving of cycles
leads to a path in one of the bounded languages.

Theorem 2. It is decidable whether the language of an UnCA is regular.

Proof. Let (A,C) be a UnCA with A = (Q,Σ, δ, q0, F). Thanks to Lemma 4, we
need only show the decidability of the regularity of R = Run(A)�C .

We first formalize the discussion made before this theorem. In the following,
we use Latin letters b, u, v, w to denote paths, and more generally words over δ,
as we no longer consider words over Σ. We use the term cycle for nonempty
paths starting and ending in the same state and with no other state appearing
twice, i.e., an elementary cycle in the underlying multigraph. Fix an ordering
on the cycles of A: {b1, b2, . . . , b	} ⊆ δ∗. Let S be the set of initial paths in A,
including the empty path. For w ∈ S, define States(w) as the set of states visited
by w. We see the empty path as from and to q0, so that States(ε) = {q0} and
From(ε) = To(ε) = q0. Define α : S → (S×N) by α(ε) = (ε,0) and, for u · t ∈ S
where t ∈ δ and α(u) = (v,x):

α(u · t) =

{
(v′,x + ei) if v · t = v′bi ∧ States(bi) ⊆ States(v′) ,
(v · t,x) otherwise .

Note that α is well-defined and that, for any u ∈ S, α(u) = (w,x) is such that
w is indeed in S.

In words, applying α removes most of the cycles in a path, and counts them.
Hence, if we see α(u) = (w,x) as the path w in which bi is placed xi times on the
first occurrence of From(bi) in w, we may interpret the action of α as “moving to
the left” each cycle read, while “removing their nesting.” Additionally, this path
is in R iff u is in R.

In order to make the preceding intuition formal, we define the different bounded
languages that represent Run(A) when the cycles are moved to the leftmost po-
sition where they fit. First, for q ∈ Q, fix a compatible ordering on the cycles
with q as their origin: {b(q,1), b(q,2), . . . , b(q,	q)}, i.e., if bi = b(q,i′), bj = b(q,j′),
and i < j then i′ < j′. We write, as usual, bq for (b(q,1), b(q,2), . . . , b(q,	q)). De-
fine, for q ∈ Q, the regular language Bq = b∗(q,1)b

∗
(q,2) · · · b∗(q,	q). Now for w ∈ S,

let (q0, q1, . . . , qn) be an ordering of States(w) such that if qi is first met before
qj in w, then i < j — that is, the qi’s are ordered in their order of first ap-
pearance in w. Further, let 1 = i0, i1, . . . , in be the positions in w of the first
appearance of q0, q1, . . . , qn, respectively. Then we define the bounded regular
language Ew ⊆ S by Ew = Bq0 ·w[i0,i1−1] ·Bq1 ·w[i1,i2−1] · · ·Bqn ·w[in,|w|], where
w = w1w2 · · ·w|w|, w[a,b] = wawa+1 · · ·wb. In particular, Eε = Bq0 . Let Cw

Unambiguous Constrained Automata 247

be the set Iter(bq0 ,w[i0,i1−1],...,bqn ,w[in,|w|])(Ew ∩ R) and define Iw using Cw and
focusing on the cycles, i.e., for x ∈ N	, x ∈ Iw iff:

(xq0 , 1,xq1 , 1, . . . ,xqn , 1) ∈ Cw ∧ (∀q ∈ Q \ {q0, q1, . . . , qn})[xq = 0] ,

where xq ∈ N	q , and x(q,i) is understood as the variable xj for which bj = b(q,i).
Note that if Iw �= ∅, then w ∈ Run(A). We are now ready to clarify the informal
discussion made before the theorem:

Claim 2. For all u ∈ S, u ∈ R iff α(u) ∈ {(w,x) | x ∈ Iw}.
If R is regular, then any Ew ∩ R is regular. We will show, using the previous
claim as a decision procedure for R, that if all the Ew ∩ R are regular, then
R is regular. The function α gives a hint of an automaton for R; however, the
“accepting set” of Claim 2 clearly establishes that the state set is infinite. To
circumvent this problem, we show that we can consider only finite objects with
the two following claims, the second being a consequence of Lemma 2.

Claim 3. There is a computable finite set Sfin such that any word w appearing
as α(u) = (w, ·) is in Sfin.

Claim 4. Suppose that for all w ∈ Sfin, Ew ∩ R is regular. There exist s ≥ 0,
p ≥ 1 such that for any x ∈ N	, x ∈ Iw iff [x]s,p ⊆ Iw .

Suppose that for all w ∈ Sfin, Ew ∩R is regular, and let s, p be given by Claim 4.
We define a deterministic automaton B for R by:

B = (Sfin × (N|δ|/≡s,p), δ, Δ, (ε, [0]s,p), T) ,
Δ = {(u, [x]s,p) t (u′, [x + e]s,p) | u · t ∈ S ∧ α(u · t) = (u′, e)} ,

T = {(w, [x]s,p) | [x]s,p ⊆ Iw} .

The set Δ is well-defined as x ≡s,p x′ implies x + e ≡s,p x′ + e. Also, for any
word u ∈ S (and only for them) there is a path from the initial state labeled u.

Claim 5. Suppose that for all w ∈ Sfin, Ew ∩ R is regular. Let u ∈ S, α(u) =
(w,x), and Π be the initial path on B labeled u. Then To(Π) = (w, [x]s,p).

Let u ∈ S and α(u) = (w,x). Then u ∈ L(B) iff, by the Claim 5, (w, [x]s,p) ∈ T ,
that is, iff [x]s,p ⊆ Iw. By Claim 4, this is the case iff x ∈ Iw. By Claim 2, this
is the case iff u ∈ R ∩ S, i.e., iff u ∈ R. Thus L(B) = R and R is regular.

We now conclude the proof of Theorem 2. As R is regular iff all the Ew ∩ R
are regular, for w ∈ Sfin, it is sufficient to check whether the latter part is true.
Now, for w ∈ Sfin, we can construct a CA for Ew ∩ R and we know a socle of
Ew ∩ R (as we know a socle for Ew); hence Lemma 3 allows to check whether
Ew ∩R is regular. �
A DetCA is an UnCA; moreover, DetCA are effectively equivalent [9] to deter-
ministic extended finite automata over (Zk,+,0) (defined in [10]). Thus:

Corollary 1. Given a DetCA or an extended finite automaton over (Zk,+,0),
it is decidable whether its language is regular.

248 M. Cadilhac, A. Finkel, and P. McKenzie

5 A Deterministic Form of UnCA

We present a deterministic model equivalent to UnCA. This model is a restriction
of the affine Parikh automaton [3] and can be seen as a simple register automaton.
As a result of independent interest, we show that CA are equivalent to the
nondeterministic variant of this model, and that a seemingly more powerful
model (so-called finite-monoid affine Parikh automata [2]) is in fact equivalent
to CA (resp. UnCA) in its nondeterministic (resp. deterministic) form.

Definition 4 (Affine Parikh automaton [3]). An affine Parikh automaton
(APA) of dimension d is a triple (A,U,C) where A is an automaton with tran-
sition set δ, U : δ∗ → Fd is a morphism, and C ⊆ Nd is semilinear. Its language
is L(A,U,C) = μA({π ∈ Run(A) | Uπ(0) ∈ C}). The APA is said to be:
– Deterministic (DetAPA) if A is deterministic;
– Finite-monoid (FM-APA, FM-DetAPA) [2] if M(U) is finite;
– Moving (M-APA, M-DetAPA) if for all t ∈ δ, Ut = (M,v) is such that M

is a 0-1-matrix with exactly one 1 per row.
We consider only FM- and M-(Det)APA in the present work. We write LFM-APA,
LFM-DetAPA, LM-APA, and LM-DetAPA for the classes of languages recognized by
FM-APA, FM-DetAPA, M-APA, and M-DetAPA respectively.

Remark 3. An M-(Det)APA of dimension d can be seen as a finite-state
(deterministic) register automaton with d registers r1, r2, . . . , rd: each transi-
tion performs actions of the type ri ← rji + ki, with ki ∈ N, 1 ≤ ji ≤ d, for
1 ≤ i ≤ d, and the device accepts iff the underlying automaton accepts and
the values of the registers at the end of the computation belong to a prescribed
semilinear set.

Theorem 3. LCA = LM-APA = LFM-APA.

Proof. We only show LFM-APA ⊆ LCA. Let (A,U,C) be an FM-APA, where
A = (Q,Σ, δ, q0, F). For t ∈ δ, we write Ut = (Mt,vt), and for t1t2 · · · tn ∈ δ+,
we let Mt1t2···tn = Mtn · · ·Mt2 ·Mt1 . As it is consistent to do, we set Mε = Id ,
the identity matrix. We show that L(A,U,C) can be expressed as the union of
the languages of a finite number of CA, and that those CA are unambiguous if
A is deterministic. We work in 3 steps. (1.) We devise a finite set of automata
and show that they recognize the runs π on A while “knowing” Mπ (Claim 6).
(2.) We show that this extra knowledge allows for the extraction of Uπ(0) when
π is read (Claim 7). We design a semilinear set to constrain this extracted value
by C. (3.) We conclude that replacing the labels t of those CA by μA(t) gives a
finite set of CA recognizing L(A,U,C).

Step 1: Automata for the Paths of A. The simplest way to construct an au-
tomaton for Run(A) is by replacing the label of each transition t of A by t
itself, i.e., we obtain the automaton (Q, δ,Δ, q0, F) where t = q a q′ ∈ δ ⇔
q t q′ ∈ Δ. This is the first idea of the present construction. The second idea
is that we want, when in a state q, all the possible Mπ’s for π accepted from
q to be the same. Write M = M(U). We define, for q ∈ Q and M ∈ M,

Unambiguous Constrained Automata 249

B (q,M) = (Q×M, δ, Δ, (q,M), F × {Mε}), where Δ = {(q,M) t (q′,M ′) |
t = q μ(t) q′ ∈ δ ∧M ′.Mt = M}.

It is important to note that even if A is deterministic, B (q,M) may not be
deterministic. Indeed, let Z be the all-zero matrix, and suppose that, for some
t ∈ δ, Mt = Z. Then any matrix M ′ verifies M ′.Mt = Z, thus from the state
(From(t), Z) there is a transition labeled t to any state (To(t),M ′) for M ′ ∈ M.
We now show that these automata indeed recognize the paths π in A, while
“knowing” Mπ. In order to produce a simple statement, write A q for A where
the initial state is set to q, then:

Claim 6. For any q ∈ Q and M ∈ M, L(B (q,M)) = {π ∈ Run(A q) |Mπ = M}.
In particular, Run(A) =

⋃
M∈M L(B (q0,M)).

Step 2: Retrieving Uπ(0). In this step, we argue that our previous construction
helps in retrieving the value of Uπ(0) when π is read over some B (q,M). The
main ingredient is the following simple property: for t ∈ δ and ρ ∈ δ∗, Utρ(0) =
Mρ.vt + Uρ(0). We now show a property on paths over B (q,M). First, identify
Δ with {T1, T2, . . . , Tn}, and each Ti with (qi,Mi) ti (q′i,M

′
i); next, write μB

for the μ function of one of the B (q,M)’s — this morphism does not depend on
the choice of (q,M). Then:

Claim 7. For any q ∈ Q, M ∈ M, and Π ∈ Run(B (q,M)), we have UμB(Π)(0)
=

∑n
i=1 |Π |Ti × (M ′

i .vti).

Now define C′ ⊆ Nn by (x1, x2, . . . , xn) ∈ C′ ⇔ (
∑n

i=1 xi × (M ′
i .vti)) ∈ C.

Claim 6 and Claim 7 imply that, for q ∈ Q and M ∈ M, L(B (q,M), C′) = {π ∈
Run(A q) |Mπ = M ∧ Uπ(0) ∈ C}.
Step 3: from Paths to their Labels. For q ∈ Q and M ∈ M, define D (q,M) to
be the automaton B (q,M) where a transition labeled t in B (q,M) is relabeled
μA(t) in D (q,M). Then L(D (q,M), C′) = μA(L(B (q,M), C′)). Since Run(A) =⋃

M∈MB (q0,M), this implies that L(A,U,C) =
⋃

M∈M L(D (q0,M), C′). As M
is finite by hypothesis, L(A,U,C) is the finite union of CA languages. The closure
of LCA under union [9] implies that L(A,U,C) ∈ LCA. �
Theorem 4. LUnCA = LM-DetAPA = LFM-DetAPA.

Proof (sketch). LUnCA ⊆ LM-DetAPA is shown in [2, Lemma 5]; LM-DetAPA ⊆
LFM-DetAPA is immediate.

For LFM-DetAPA ⊆ LUnCA, we simply add a step to the proof of the inclusion
LFM-APA ⊆ LCA of Theorem 3. We note, using the same notations, that if A is
deterministic, then for any q ∈ Q and M ∈ M, D (q,M) is unambiguous. LUnCA
being closed under union (Proposition 1) this proves the inclusion. �
Remark 4. Theorems 3 and 4 are effective, in the sense that one can go from
one model to another following an algorithm. This implies in particular, from
Theorem 2 that regularity is decidable for FM-DetAPA; we note that it is not
decidable for DetAPA [2], which describes a class of languages strictly larger
than that of UnCA though expected to be incomparable with that of CA.

250 M. Cadilhac, A. Finkel, and P. McKenzie

6 Conclusion

We showed that LUnCA is a class of languages that is closed under the Boolean
operations, reversal, and right and left quotient, and that provably fails to
be closed under concatenation with a regular language, length-preserving mor-
phisms, and starring. Further, the following problems are decidable for LUnCA:
emptiness, universality, finiteness, inclusion, and regularity. Deciding regularity
for UnCA and DetCA is our main result.

We propose three future research avenues. First, the properties of UnCA in-
dicate its suitability for model-checking, and we could envisage real-world appli-
cations of verification using UnCA. Second, we translated unambiguous CA to
a natural model of deterministic register automata; the close inspection of this
translation can lead to further advances in our understanding of unambiguity, in
particular in the open problems dealing with unambiguous finite automata [4].
Third, we note that the closure properties of LUnCA imply that this class can
be described by a natural algebraic object (see [1]). This will certainly help in
linking UnCA to a first-order logic framework, and thus to some Boolean circuit
classes. Hence we hope that UnCA can shed a new light on the classes of circuit
complexity.

Acknowledgement. We thank Andreas Krebs for stimulating discussions and
comments concerning this work and the anonymous referees their careful reading.
The first author thanks Benno Salwey and Dave Touchette for comments on early
versions of this paper.

References
1. Behle, C., Krebs, A., Reifferscheid, S.: Typed Monoids – An Eilenberg-Like Theo-

rem for Non Regular Languages. In: Winkler, F. (ed.) CAI 2011. LNCS, vol. 6742,
pp. 97–114. Springer, Heidelberg (2011)

2. Cadilhac, M., Finkel, A., McKenzie, P.: Bounded Parikh automata. In: WORDS,
pp. 93–102 (2011)

3. Cadilhac, M., Finkel, A., McKenzie, P.: On the expressiveness of Parikh automata
and related models. In: NCMA, pp. 103–119 (2011)

4. Colcombet, T.: Forms of determinism for automata. In: STACS, pp. 1–23 (2012)
5. Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas and languages. Pacific

Journal of Mathematics 16(2), 285–296 (1966)
6. Ginsburg, S., Spanier, E.: Bounded ALGOL-like languages (1964)
7. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proceedings of the American

Mathematical Society 17(5), 1043–1049 (1966)
8. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-

lems. J. ACM 25(1), 116–133 (1978)
9. Klaedtke, F., Rueß, H.: Monadic Second-Order Logics with Cardinalities. In:

Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 681–696. Springer, Heidelberg (2003)

10. Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Appl.
Math. 108(3), 287–300 (2001)

11. Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)
12. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)

Two-Dimensional Sgraffito Automata�

Daniel Pr̊uša1 and Frantǐsek Mráz2

1 Czech Technical University, Faculty of Electrical Engineering
Karlovo náměst́ı 13, 121 35 Prague 2, Czech Republic

prusapa1@cmp.felk.cvut.cz
2 Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 25 Prague 1, Czech Republic

frantisek.mraz@mff.cuni.cz

Abstract. We present a new model of a two-dimensional computing
device called sgraffito automaton and demonstrate its significance. In
general, the model is simple, allows a clear design of important compu-
tations and defines families exhibiting good properties. It does not exceed
the power of finite-state automata when working over one-dimensional
inputs. On the other hand, it induces a family of picture languages that
strictly includes REC and the deterministic variant recognizes languages
in DREC as well as those accepted by four-way automata.

Keywords: two-dimensional languages, sgraffito automaton, bounded
Turing machine, REC.

1 Introduction

The theory of two-dimensional languages generalizes concepts and techniques
from the theory of formal languages. The basic element, which is a string, is
extended to a two-dimensional array, usually called a picture. Various classes of
picture languages can be formed, especially by generalizing one-dimensional com-
putational or generative models, which possibly leads to some two-dimensional
variant of the Chomsky hierarchy. Naturally we can ask, whether the induced
families inherit properties of their one-dimensional counterparts. The answer is
typically negative. A more complex topology of pictures causes that families of
picture languages are of a different founding.

A four-way finite automaton (4FA) [2] is a good example. It is a finite-state
device composed of a control unit equipped with a head moving over an input
picture in four directions: left, right, up and down. Even if the automaton is a
simple extension of the two-way finite automaton, the formed family of languages
shows properties different from those of regular languages [4].

In 1991, Giammaresi and Restivo proposed the family of recognizable lan-
guages (REC) [3]. The languages in REC are defined using tiling systems. They

� The authors were supported by the Grant Agency of the Czech Republic: the first
author under the project P103/10/0783 and the second author under the projects
P103/10/0783 and P202/10/1333.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 251–262, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

252 D. Pr̊uša and F. Mráz

also coincide with the languages recognizable by the two-dimensional on-line tes-
sellation automata [7] or definable using existential monadic second order logic.
The family is well established. It has many remarkable properties and the defined
recognizability is a very robust notion. It is even presented as the ground-level
class among the families of two-dimensional languages.

The non-determinism exhibited by REC makes it quite powerful. Even some
NP-complete problems belong to REC [10]. It somehow contradicts the vision of
a ground level class, taking into account the simplicity of resources sufficient to
recognize (one-dimensional) regular languages. This fact has inspired the further
proposal of DREC [1] – the family of deterministically recognizable languages.

We introduce a new two-dimensional computing device called sgraffito au-
tomaton (2SA).

Sgraffito (Italian: “scratched”), in the visual arts, a technique used in
painting, pottery, and glass, which consists of putting down a prelimi-
nary surface, covering it with another, and then scratching the superficial
layer in such a way that the pattern or shape that emerges is of the lower
colour. (Encyclopædia Britannica Online. Retrieved 20 March, 2012,
from http://www.britannica.com/EBchecked/topic/537397/sgraffito)

The automaton has a finite state control and works on a picture consisting of
symbols with different weights (as if they were put on its background in order
from the lightest to the heaviest). 2SA can move its head over the picture in four
directions. It must rewrite scanned symbol in each step and the symbol can be
rewritten by a lighter symbol only (this corresponds to scratching some of the
top layers). The automaton accepts by entering an accepting state.

The power of 2SAs collapses to finite-state automata when working over one-
row pictures, while the induced two-dimensional family strictly includes REC
and exhibits the same closure properties. A significant advantage of the model is
its simplicity. The design of many important computations is simple and clear.
An interesting family is settled by the deterministic variant of the automaton.
It covers DREC as well as L(4FA). Thus deterministic sgraffito automata are a
new stronger deterministic alternative to DREC. This complements the result
given by Jirička and Král who showed how to simulate 4FAs using deterministic
forgetting automata [8].

Section 2 recalls basic notions and properties of picture languages. Sgraffito
automata are introduced in Section 3 and we show there that one-dimensional
sgraffito automata recognize exactly the class of regular languages. Sections 4
and 5 show several closure properties for languages accepted by nondeterministic
and deterministic 2SAs. Concluding remarks are presented in Section 6.

2 Preliminaries

A picture P over a finite alphabet Σ is a two-dimensional matrix of elements
from Σ. We denote the number of rows and columns of P by rows(P)
and cols(P), respectively. The pair (rows(P), cols(P)) is called the size of P .

Two-Dimensional Sgraffito Automata 253

The empty picture Λ is defined as the only picture of size (0, 0). The set of
all pictures over Σ is denoted by Σ∗,∗, while Σm,n denotes the subset of pic-
tures of size (m,n). A picture language over Σ is a subset of Σ∗,∗. Assuming
1 ≤ i ≤ rows(P) and 1 ≤ j ≤ cols(P), P (i, j) (or shortly Pi,j) identifies the
symbol located in the i-th row and the j-th column in P .

Two (partial) binary operations are used to concatenate pictures. Let P and
Q be pictures over Σ of sizes (k, l) and (m,n), respectively. The column con-
catenation P �Q is defined iff k = m, the row concatenation P �Q is defined iff
l = n. The corresponding products are depicted below:

P �Q =

P1,1 . . . P1,l Q1,1 . . . Q1,n

...
. . .

...
...

. . .
...

Pk,1 . . . Pk,l Qm,1 . . . Qm,n

P �Q =

P1,1 . . . P1,l

...
. . .

...
Pk,1 . . . Pk,l
Q1,1 . . . Q1,n

...
. . .

...
Qm,1 . . . Qm,n

We also define Λ �P = P �Λ = Λ �P = P �Λ = P for any picture P .
In addition, we introduce the clockwise rotation PR, vertical mirroring PVM

and horizontal mirroring PHM.

PR =

Pm,1 . . . P1,1

...
. . .

...
Pm,n . . . P1,n

PVM =

P1,n . . . P1,1

...
. . .

...
Pm,n . . . Pm,1

PHM =

Pm,1 . . . Pm,n
...

. . .
...

P1,1 . . . P1,n

Let π : Σ → Γ be a mapping between two alphabets. The projection by π of
P ∈ Σm,n is P ′ ∈ Γm,n such that P ′(i, j) = π (P (i, j)) for each admissible i, j.
Note that each introduced operation can be naturally extended to languages.

Let S = {",+,-,⊥,#} be a set of special markers (sentinels). In the text we
always implicitly assume that Σ ∩S = ∅ for any alphabet Σ. For P ∈ Σm,n, we
define a boundary picture P̂ over Σ ∪ S of size (m + 2, n + 2). Its symbols are
given by Figure 1(a).

Usually, only # is used to mark the border. Our version simplifies the defini-
tion of bounded computations, keeping the recognition abilities unchanged.

The two-dimensional on-line tessellation automaton (2OTA), depicted in Fig-
ure 1(b), is a restricted type of a cellular automaton. For an input P ∈ Σ∗,∗,
a computation is performed in rows(P) + cols(P)− 1 parallel steps. During the
k-th step, each cell at coordinates (i, j), where i + j − 1 = k, performs a state-
transition depending on P (i, j) and the final states of the left and top neighbor
cells. If the neighbor lies at the border of P , it is a fictive cell whose final state
is defined as the corresponding symbol in P̂ . The result of the computation is
determined by the final state of the bottom-right cell.

Tiling systems (TS) [4] specify tiling recognizable languages. Since it holds
L(TS) = L(2OTA), the related languages are referred simply as recognizable
languages and the family is denoted by REC. The deterministic variant DREC

254 D. Pr̊uša and F. Mráz

P

#

#

#

#

�

�
...

�

�
...

⊥ ⊥ ⊥ ⊥. . .

� � � �. . .

(a) Boundary picture.

#

�

...

�
� . . . �

(b) 2OTA.

Fig. 1. (a) A scheme for the boundary picture. (b) 2OTA example. The 3-rd diagonal
and the direction of spreading computation are depicted.

[1] coincides with the closure under rotation of L(2DOTA). It holds L(4DFA) �⊆
DREC, where 4DFA abbreviates a deterministic 4FA.

3 Sgraffito Automata

We give a definition of bounded 2D Turing machines first, since sgraffito au-
tomata are their special instances. Let H = {R,L,D,U,Z} be the set of the head
movements, where the first four elements denote directions (right, left, down, up)
and Z stands for zero (none) movement. Furthermore, let us define a mapping
ν : S → H such that

ν(") = R, ν(+) = L, ν(-) = D, ν(⊥) = U and ν(#) = Z.

Definition 1. A (nondeterministic) two-dimensional bounded Turing machine
(2BTM) is a tuple M = (Q,Σ, Γ, δ, q0, QF) where

– Σ is an input alphabet,
– Γ is a working alphabet such that Σ ⊆ Γ ,
– Q is a finite, nonempty set of states,
– q0 ∈ Q is the initial state,
– QF ⊆ Q is the set of final states, and
– δ : (Q \QF)× (Γ ∪ S) → 2Q×(Γ∪S)×H is a transition relation.

Moreover, for any pair (q, a) ∈ Q× (Γ ∪ S), every (q′, a′, d) ∈ δ (q, a) fulfils

– a ∈ S implies d = ν(a) ∧ a′ = a, and
– a /∈ S implies a′ /∈ S.

If ∀q ∈ Q, ∀a ∈ Γ ∪ S : |δ(q, a)| ≤ 1, we say M is a deterministic 2BTM.

The notions like configuration and computation of the machine M are easily
defined as usual. Let P ∈ Σ∗,∗ be an input. In the initial configuration of M
on P , its working tape contains P̂ , its control unit is in state q0 and the head
scans the top-left corner of P . When P = Λ, the head scans the bottom-right
corner of P̂ containing #. The machine accepts P iff there is a computation of
M starting in the initial configuration on P and finishing in a state from QF .

Two-Dimensional Sgraffito Automata 255

Definition 2. A two-dimensional sgraffito automaton (2SA) is a tuple A =
(Q,Σ, Γ, δ, q0, QF , μ) where

– (Q,Σ, Γ, δ, q0, QF) is a 2BTM,

– μ : Γ → N is a weight function and the transition relation satisfies

(q′, a′, d)∈δ(q, a) ⇒ μ(a′)<μ(a) for all q, q′∈ Q, d ∈ H, a, a′∈ Γ.

A is a deterministic 2SA (2DSA) if the underlying 2BTM is deterministic.

Lemma 1. Let M = (Q,Σ, Γ, δ, q0, QF) be a 2BTM. Let k ∈ N be an inte-
ger such that during each computation of M over any picture from Σ∗,∗, each
tape field is scanned by the head of M in at most k configurations. Then, there
is a 2SA A such that L(A) = L(M). Moreover, if M is deterministic, A is
deterministic too.

Proof. LetA = (Q,Σ, Γ2, δ2, q0, QF , μ) be a 2SA, where Γ2 = Σ∪(Γ × {1, . . . , k})
and each instruction (q, a) → (q′, a′, d) from δ is represented in δ2 by the follow-
ing set of instructions:

(q, a) → (q′, (a′, 1) , d) ,
(q, (a, i)) → (q′, (a′, i+ 1) , d) ∀i ∈ {1, . . . , k − 1}.

Finally, we define

μ(a) = k + 1 ∀a ∈ Σ,
μ ((a, i)) = k + 1− i ∀(a, i) ∈ Γ × {1, . . . , k} .

It is easy to see that L(A) = L(M) and if δ is deterministic, then it produces
deterministic δ2. �

Lemma 1 says that, instead of designing a 2SA, it is sufficient to describe a
2BTM for which the number of transitions over each tape field is bounded by a
constant. This will be utilized in the constructive proofs we present. Note that
one-dimensional constant-visit machines were already studied by Hennie [5].

Definition 3. Let M = (Q,Σ, Γ, δ, q0, QF) be a 2BTM, P an input picture, j
an integer such that 1 ≤ j ≤ cols(P), and let C be a finite computation of M
over P . The horizontal crossing sequence for C between columns j and j + 1,
denoted Kj , is constructed by the following procedure:

1. Initialize Kj := ∅.
2. Iterate through all configurations in C = (c0, c1, . . . , cm) except the last one.

Let ck be the current one. Consider the computation step of M that changes
ck to ck+1. If the head is moved from the j-th to j+1-st column or vice versa
and it occurs in the r-th row of P , append (q, r) to Kj where q is the state
entered by the control unit in ck+1. Continue by the next iteration.

256 D. Pr̊uša and F. Mráz

The definition is a two-dimensional generalization of the crossing sequence de-
fined in [6]. It records all activities performed between two columns and thus
allows to combine computations done over different pictures as it is given by the
proposition which follows. Note also that the vertical crossing sequence could be
defined analogously for crossings between two neighboring rows.

Proposition 1. Let M be a 2BTM accepting pictures P = P1
�P2 and R =

R1
�R2 where rows(P) = rows(R). Let CP and CR be accepting computations of

M over P and R, respectively. If the horizontal crossing sequence for CP between
columns cols(P1) and cols(P1)+1 is identical to the horizontal crossing sequence
for CR between columns cols(R1) and cols(R1) + 1, then M accepts P1

�R2.

Next we show that 2SAs accepting one-row pictures only accept exactly the
class of regular (one-dimensional) languages. Actually, the result is only a slight
generalization of a theorem by Hennie [5].

Theorem 1. Let A1 = (Q,Σ, Γ, δ, q0, QF , μ) be a 2SA accepting a one-
dimensional picture language (L(A1) ⊆ Σ1,∗ = Σ∗). There is a finite-state
automaton A2 such that L(A2) = L(A1).

Proof. When A1 works over a one-row picture, it is possible to eliminate its
vertical moves without changing the result of the computation. E.g. if δ(q, a)
contains an instruction moving up (q′, a′,U) (for some q, q′ ∈ Q, a, a′ ∈ Γ),
we can replace it by the set of all instructions of the form (q′′, a′,Z) such that
(q′′,-,D) is in δ(q′,-). Hence, we can assume A1 makes no vertical moves.
Further, we modify A1 in such a way that it can enter a final state only when
returning from + to the rightmost input symbol (for a nonempty input).

We show how to construct a nondeterministic finite state automaton A2 ac-
cepting {"} · L(A1) · {+}. On input " w +, the automaton A2 guesses a com-
putation of A1 on w by guessing all the horizontal crossing sequences between
columns of ŵ and checking if the crossing sequences correspond to an accepting
computation. If the guessed and verified computation is accepting, A2 accepts,
otherwise it rejects. The length of any horizontal crossing sequence of A1 on any
one-dimensional input picture is limited by the constant 2 ·maxa∈Σ μ(a). Hence
we can include all such possible crossing sequences into the set of states of A2.

A2 starts by reading ", guessing a crossing sequence between the first two
columns of ŵ and entering the state corresponding to this crossing sequence. The
sequence must have an even number length (possibly zero). A2 also distinguishes
in states, whether it scans the first symbol of w or not. It continues as follows. Let
s be the crossing sequence corresponding to its current state. A2 reads the next
input symbol a (in a column j) and enters a state corresponding to a nonempty
crossing sequence s′ representing crossings between the columns j and j + 1.
The sequence s′ has to be consistent with s and a. To check that, A2 guesses
a sequence of instructions performed by A1 while visiting the j-th column and
verifies that the induced head movements match the sequences s, s′. If j = 1, A1

knows that the first instruction must start in the state q0, otherwise the state
before applying an instruction is determined by s or s′.

Two-Dimensional Sgraffito Automata 257

A2 will enter an accepting state after reading a =+ if s is consistent with
crossings between two last columns of ŵ and if it ends by (qf , 1), where qf ∈ QF .

It is easy to verify that L(A2) = {"} · L(A1) · {+}. Hence, L(A2) is a regular
language. As the class of regular languages is closed under the left and the right
quotient [6], L(A1) is regular too. �

4 Closure Properties

Theorem 2. Both L(2SA) and L(2DSA) are closed under union, intersection,
rotation and mirroring.

Proof. Let A1, A2 be two 2SAs and let L1 = L(A1), L2 = L(A2). We can con-
struct a 2SA that starts to compute as A1 and when A1 finishes, it computes as
A2. The recognition of L1∩L2 or L1∪L2 requires to accept iff both simulations
accept or at least one of the simulations accepts, respectively. For recognizing
LR1 , a 2SA moves its head to the top-right corner of the input and simulates A1,
treating columns as rows and vice versa. Similarly, in order to recognize LVM

1 or
LHM
1 , a 2SA moves its head to the top-right or the bottom-left corner, respec-

tively, and simulates A1, taking rows or columns, respectively, in the reversed
order.

If A1, A2 are deterministic, the designed automata are deterministic too. �

Theorem 3. L(2SA) is closed under row and column concatenations and
projection.

Proof. Let A1, A2 be two 2SAs and let L1 = L(A1), L2 = L(A2). To recognize
e.g. L1

�L2, a 2SA nondeterministically chooses a column in the input and marks
it. Then it simulates A1 over the left part (including the marked column) and,
after that, A2 over the right part (excluding the marked column).

Let π be a projection. For an input P , a 2SA accepting π(L1) guesses and
writes down P ′ such that π(P ′) = P . Then it simulates A1 over P ′. �

Theorem 4. L(2DSA) is closed under complement.

Proof. A 2DSA A rejects an input iff it reaches a state q and scans some a such
that δ(q, a) is empty. Since it is a deterministic automaton, it can be modified
to accept the complement of L = L(A), i.e. the language L = Σ∗,∗ � L. �

We use two languages over Σ = {0, 1} to demonstrate additional properties
of sgraffito automata. Their variants were already introduced in [4] and [9].
The language of “duplicates” Ldup consists of all pictures Q �Q, where Q is a
nonempty square over Σ. The language of “permutations” Lperm is a subset of
Ldup and consists of those pictures Q �Q, where each row and each column of Q
contains symbol 1 exactly once. Examples are shown in Figure 2.

Proposition 2 ([4,9]). Ldup and Lperm are not in REC, while their
complements are in REC.

258 D. Pr̊uša and F. Mráz

0 1 0 1 0 1 0 1

1 0 1 1 1 0 1 1

1 1 1 0 1 1 1 0

1 0 0 0 1 0 0 0

(a)

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0

(b)

Fig. 2. Sample pictures from (a) Ldup and (b) Lperm

Lemma 2. Ldup is not accepted by any 2SA.

Proof. By contradiction, let A = (Q,Σ, Γ, δ, q0, QF , μ) be a 2SA accepting Ldup.
Let c = maxa∈Σ μ(a) and let Ldup(n) be the subset of Ldup consisting of pictures
whose size is (n, 2n). Moreover, for P ∈ Ldup, let seq(P) be the crossing sequence
of A on P between columns cols(P)/2 and cols(P)/2 + 1 for some (arbitrarily
chosen) accepting computation.

For a fixed n, we estimate the size of the set {seq(P) |P ∈ Ldup(n)}. The
head can move horizontally in n different rows. Each crossing sequence contains
at most 2c elements with an identical row index, thus the length of each sequence
is not greater than 2cn. Hence, there are at most

2cn∑
i=0

(|Q| · n)i = 2O(n logn)

different crossing sequences. Since |Ldup(n)| = 2n
2

, for a sufficiently large n
there are two different pictures P1 = Q1

�Q1, P2 = Q2
�Q2 in Ldup(n) such that

seq(P1) = seq(P2). By Proposition 1, A accepts P3 = Q1
�Q2, but P3 /∈ Ldup. �

Since L(2DSA) is closed under complement, we obtain the following corollary.

Corollary 1. Ldup is not accepted by any 2DSA.

Theorem 5. L(2SA) is not closed under complement. L(2DSA) is not closed
under row, neither column concatenation.

Proof. We will prove that Ldup ∈ L(2SA). To do it, we use the decomposition of
Ldup given in [4]. Let Σ = {0, 1}. We have Ldup = L1 ∪ L2, where

L1 = {P ∈ Σ∗,∗ | cols(P) �= 2 · rows(P)} ,

L2 = {Q1
�Q2 |Q1, Q2 ∈ Σ∗,∗ ∧ cols(Q1) = cols(Q2) = rows(Q1) ∧ Q1 �= Q2} .

L2 can be further expressed as

L2 = L3 ∩ (Σ∗,∗ �(L4 ∩ (Σ∗,∗ �L5
�Σ∗,∗)) �Σ∗,∗)

where
L3 = {P ∈ Σ∗,∗ | cols(P) = 2 · rows(P)} ,

Two-Dimensional Sgraffito Automata 259

L4 = {P ∈ Σ∗,∗ | cols(P) = rows(P) + 1} ,

L5 = {P ∈ Σ∗,∗ | rows(P) = 1 ∧ P (1, 1) �= P (1, cols(P))} .

L5 contains one-row pictures only and is regular.Σ∗,∗ is trivially in L(4DFA). The
languages L1, L3, L4 are recognizable by a 4DFA which checks the condition on
size by passing the input diagonally. Thus, the already proved closure properties
of L(2SA) guarantee Ldup is in L(2SA).

By Corollary 1, Ldup /∈ L(2DSA), hence L(2DSA) is not closed under (w.l.o.g.)
the row concatenation. It holds

P1
�P2 =

(((
PR
2

�PR
1

)R)R)R

,

thus L(2DSA) is not closed under the column concatenation as well. �

Theorem 6. L(2DSA) is not closed under projection.

Proof. Let Σ1 = {0, 1}, Σ2 = {0, 1}, Σ = Σ1 ∪ Σ2 and let π : Σ → Σ1 be a
mapping such that π(0) = π(0) = 0, π(1) = π(1) = 1. Define a language L1

over Σ consisting of all pictures of the form Q1
�Q2, where Q1 is a square over

Σ containing exactly one symbol from Σ2 (at some position (i, j)), and Q2 is a
square over Σ such that π(Q2(i, j)) �= π(Q1(i, j)). Next, define

L2 = {P ∈ Σ∗,∗ | cols(P) �= 2 · rows(P)} and L = L1 ∪ L2.

It is should be clear that π(L) = Ldup. To finish the proof we will construct a
2DSA A accepting L. Given some input P , A checks the size of P . When it is
(n, 2n), it marks the last column of the left half of P and verifies that this half
contains just one symbol from Σ2 (at a position (i, j)). A marks the whole i-th
row as working and moves the head back to position (i, j). Then it locates the
corresponding tape field in the right half of P , at position (i, n+ j). To do it, a
bouncing traversal style shown in Figure 3 is performed until the working row
is reached during the final phase of the movement. Finally, A checks whether
π(P (i, j)) �= π(P (i, n+ j)). �

(a) Case one. (b) Case two.

Fig. 3. Locating the corresponding field in the opposite half using a bouncing style.
Dashed lines denote the marked working row. Oblique directions make an angle of 45◦.

260 D. Pr̊uša and F. Mráz

5 A Taxonomy of Picture Languages

Theorem 7. L(4FA) is included in L(2DSA).

Proof. Let A = (Q,Σ, δ, q0, QF) be a 4FA and P an input over Σ. Define a
directed graph G = (V,E) as follows.

– vertices are all triples of the form (q, i, j), where 1 ≤ i ≤ rows(P̂), 1 ≤ j ≤
cols(P̂) and q ∈ Q,

– ((q1, i1, j1), (q2, i2, j2)) is an edge iff δ contains (q1, P̂ (i1, j1)) → (q2, d) and
(i2, j2) is the coordinate next to (i1, j1) in the direction given by d.

A accepts P iff, for some qf ∈ QF , there is a vertex (qf , i, j) reachable from
(q0, 2, 2). To decide this, it suffices to perform a depth first search in G. We give a
related procedure that labels visited nodes and edges. Vertices are in two states –
unexplored and explored, edges in three states – unexplored, tree edge, cross edge.
All elements are initially in the unexplored state.

1: v := (q0, 2, 2)
2: label v as explored
3: if v represents an accepting configuration then
4: ACCEPT
5: end if
6: if there is an unexplored edge e = (v, w) then
7: if w is unexplored then
8: label e as tree edge, move to w, set v := w
9: goto 2

10: else
11: label e as cross edge
12: goto 6
13: end if
14: else if there is an incoming tree edge (u, v) then
15: move to u, set v := u
16: goto 6
17: end if
18: REJECT

Labels of a vertex (q, i, j) and of its outgoing edges are recorded in the tape

field storing P̂ (i, j). The exception are vertices on the border, their labels are

represented in the nearest tape field storing an inner part of P̂ . Since each vertex
has the number of outgoing edges limited by | H | · |Q|, the proposed algorithm
can be performed by a 2DSA, a constant memory usage as well as a constant
number of traversals are guaranteed for each tape field. �

Theorem 8. REC is included in L(2SA), DREC is included in L(2DSA).

Proof. Let L be a language in REC. It is accepted by a 2OTA A1. We can easily
construct a 2SA A2 simulating A1. It goes trough the input e.g. row by row,

Two-Dimensional Sgraffito Automata 261

retrieves info needed to simulate a transition at each cell and represents the final
state in the corresponding tape field. It nondeterministically branches when A1

does so. If A1 is a 2DOTA, then A2 is a 2DSA, thus L(2DOTA) ⊆ L(2DSA).
Since L(2DSA) is closed under rotation, it includes the closure by rotation of
L(2DOTA) which equals DREC (shown in [1]). �

Lemma 3. Lperm is accepted by a 2DSA.

Proof. We construct a 2DSA A recognizing Lperm. It starts by checking if an
input P is of size (n, 2n) and marks the n-th column. After that, it verifies if
the both halves Q1, Q2 represent permutations, i.e. if each their row and column
contains exactly one occurrence of symbol 1. This is done traversing P row by
row first, followed column by column.

The second stage compares the content of Q1 and Q2 row by row. Consider
processing an i-th row. The whole row is marked as working. The leftmost symbol
1 is located in the row. Let it be in a j-th column. Now, A moves the head to the
top of this column (coordinate (1, j)). Next, the field at the coordinate (1, n+ j)
is located using the bouncing style given by Figure 3(a). Finally, the position
(i, n+ j) is reached by moving the head down and stopping at the working row.
If there is symbol 1, the iteration finishes by clearing the used markers in the
i-th row and the process is ready to be started on the next row.

It remains to show thatA visits each field of the working tape constantly many
times and thus it is correctly defined (Lemma 1). Constantly many traversals
trough P are performed during the first stage. In the second stage, each iteration
works in a unique row and column. Especially the column uniqueness ensures
that different paths are always used to locate the tape field in the right half.
Thus, a constant number of visits is achieved on each field again. �

Theorem 9. Families L(2DSA) and REC are incomparable.

Proof. After summarizing Proposition 2, Corollary 1 and Lemma 3, we get

Ldup ∈ (REC� L(2DSA)) and Lperm ∈ (L(2DSA)� REC) .

�

DREC L(4FA)

REC L(2DSA)

L(2SA)

(a) Families hierarchy.

∪ ∩ \ �, � π R,VM,HM

REC yes yes no yes yes yes

L(2SA) yes yes no yes yes yes

DREC yes yes yes no no yes

L(2DSA) yes yes yes no no yes

(b) Closure properties.

Fig. 4. (a) Relationships between REC, DREC, L(4FA) and the families recognizable by
sgraffito automata. Proper inclusions are denoted by arrows, the dashed lines connect
incomparable classes. (b) A summary of closure properties.

262 D. Pr̊uša and F. Mráz

6 Conclusions

We have introduced a new computational model called sgraffito automaton and
investigated its properties. The hierarchy formed by the induced classes of picture
languages, REC and DREC is shown in Figure 4(a), which is based on new as
well as already known theorems. If the automaton is restricted to work over one-
row pictures only, the recognition power degenerates to the power of finite-state
automaton. Such results give the families a great importance and entitle us to
see them as alternative ground levels in the two-dimensional hierarchy. This is
also well justified by the results on closure properties. The table in Figure 4(b)
demonstrates how they coincide with the properties of REC and DREC.

In our opinion, sgraffito automata deserve to be the subject of further research.
A special attention should be paid to 2DSAs, since they simulate 4FAs and define
thus an interesting deterministic family. The study of the automata can provide
additional insight on the fundamental differences between one-dimensional and
two-dimensional languages.

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: From Determinism to Non-
determinism in Recognizable Two-Dimensional Languages. In: Harju, T.,
Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer,
Heidelberg (2007)

2. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Proceedings of the
8th Annual Symposium on Switching and Automata Theory (SWAT 1967), FOCS
1967, pp. 155–160. IEEE Computer Society, Washington, DC (1967)

3. Giammarresi, D., Restivo, A.: Recognizable picture languages. International Jour-
nal of Pattern Recognition and Artificial Intelligence 6(2-3), 32–45 (1992)

4. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer-Verlag
New York, Inc., New York (1997)

5. Hennie, F.: One-tape, off-line Turing machine computations. Information and Con-
trol 8(6), 553–578 (1965)

6. Hopcroft, J., Ullman, J.: Formal languages and their relation to automata.
Addison-Wesley (1969)

7. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation
acceptors. Information Sciences 13, 95–121 (1977)

8. Jǐrička, P., Král, J.: Deterministic forgetting planar automata are more powerful
than non-deterministic finite-state planar automata. In: Rozenberg, G., Thomas,
W. (eds.) Developments in Language Theory, pp. 71–80. World Scientific (1999)

9. Kari, J., Moore, C.: New Results on Alternating and Non-deterministic Two-
Dimensional Finite-State Automata. In: Ferreira, A., Reichel, H. (eds.) STACS
2001. LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001)

10. Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns.
Journal of Statistical Physics 91(5-6), 909–951 (1998)

Two-Way Transducers

with a Two-Way Output Tape

Olivier Carton

LIAFA, Université Paris Diderot & CNRS
http://www.liafa.univ-paris-diderot.fr/~carton

Abstract. In this paper, we consider two-way transducers with a two-
way output tape. To each cell of the input tape corresponds a cell of
the output tape where the transducer can write a finite word. At each
transition, the transducer reads one cell of the input tape and either leave
unchanged the corresponding cell of the output tape or write a new word
into it, overwriting the previous content. We show that each relation
realized by such a two-way transducer is rational. It can be realized by
a one-way transducer. We also show that any rational function can be
realized by a deterministic two-way transducer.

1 Introduction

A classical question in automata theory is whether two-way devices are more
powerful that one-way devices. It is well known, for instance that two-way au-
tomata accept the same languages as one-way automata although they can be
exponentially more succinct [10]. In this paper, we introduce a variant of two-way
transducers where the output tape is used with a two-way policy and we address
the question of their expressive power. More precisely, we compare this expres-
sive power with the one of one-way transducers. Two-way transducers that have
been considered so far only use a one-way output tape [4,7,6]. There has been
recently a new interest in these two-way transducers since they are equivalent
to non-deterministic streaming string transducers used in verification [1].

Two-way transducers considered in the literature have a two-way input tape
and one-way output tape. This means that they have two independent heads:
one over the input tape and one over the output tape. The head reading on
the input tape is two-way: it can move back and forth. The head writing on
the output tape is one-way. It can only move forwards. On the contrary, the
transducers that we consider have only one head that reads on the input and
writes on the output tape. The two tapes are divided into cells that are in one-
to-one correspondence. To each cell of the input tape corresponds a cell of the
output tape. Each cell of the input tape contains a letter of the input word but
each cell of the output tape can contain a word written by the transducer. At
each transition, the transducer reads one cell of the input tape and either leaves
unchanged the content of the corresponding cell of the output tape or replaces it
by a new word. The content of the output tape cannot be read by the transducer.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 263–272, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

264 O. Carton

We study the expressive power of both deterministic and non-deterministic
transducers with a two-way output tape. Our paper contains two main results:
one about non-deterministic two-way transducers and one about deterministic
two-way transducers. Our transducers are less powerful than classical two-way
transducers with a one-way output tape. Their expressive power matches the one
of classical one-way transducers and they can be considered, for that reason, as a
more natural extension of one-way transducers. In fact, already our deterministic
transducers are, surprisingly, able to realize any rational function.

More precisely, we prove that our non-deterministic transducers are exactly
as expressive as the classical non-deterministic one-way transducers. In other
words, each relation realized by a two-way transducer is rational. The fact that
each rational relation can be realized by a two-way transducer is obvious since
these transducers are a natural extension of one-way transducers. This result
shows that our transducers are strictly less expressive than two-way transducers
with a one-way output tape. Both the function which maps each word w to its
reversal w̃ or the function which maps each word w to its square ww can be easily
realized by two-way transducers with a one-way output tape. These functions
are, however, not rational and cannot be realized by our transducers.

We also prove that any rational function is realized by a deterministic two-way
transducer with a two-way output tape. This result is rather surprising because
it contrasts with deterministic one-way transducers, called (sub-)sequential in
the literature [9]. These transducers are less expressive than non-deterministic
one-way transducers. Functions realized by these (sub-)sequential transducers
have been characterized by Choffrut [3]. Division by 3 in base 2 can be, for
instance, realized by a left (that is from left to right) sequential transducer
whereas multiplication by 3 in base 2 cannot. This latter function can, however,
be realized by a right (that is from right to left) sequential transducer [8].

A classical result, due to Elgot and Mezei [5], on rational functions of finite
words states that any such function can be described as the composition of a
left-sequential function and a right-sequential one. This result does not allow us
to get directly a two-way transducer since the second function takes as input the
output of the first one whereas the two-way transducer cannot read its output
tape. Therefore, it cannot simulate the first function and then the second one.
The two results are however related. Our construction of the two-way transducer
makes use of bimachines that can also be used to prove the result of Elgot and
Mezei [2].

The paper is organized as follows. Our variant of two-way transducers is de-
fined in Sect. 2. It is proved in Sect. 3 that any relation realized by such trans-
ducers is rational. It is finally proved in Sect. 4 that each rational function can
be realized by a deterministic two-way transducer.

2 Two-Way Transducers

In the sequel, A and B denote finite alphabets. The set of all finite words over A
is denoted by A∗. The empty word is denoted by ε. We denote by Rat(B∗) the
family of rational subsets of B∗.

Two-Way Transducers with a Two-Way Output Tape 265

A two-way transducer has an input tape which is read-only and an output tape
which is write-only. These two tapes have the same number of cells. The transducer
has only one head that reads on the input tape and writes on the output tape (see
Fig. 1). If the input word w has length n, both tapes of the transducer have n+ 2
cells. Each cell of the input tape contains a symbol. Its first cell contains the left end-
marker " and its last cell contains the right end-marker +. The other n remaining
cells contain the n letters of the input word w. Each cell of the output tape may
contain a finite word over B. Each transition of the transducer reads one symbol
on the input tape andmaywrite ormaynotwrite a finiteword on the corresponding
cell of the output tape.

Q

� �a1 a2 a3 a4 a5 a6 a7

u0 u1 u2 u3 u4 u5 u6 u7 u8

Fig. 1. Working principle of a two-way transducer

More formally, a two-way transducer T is a tuple (Q,E, I, F) where Q is the
finite set of states, I and F are the set of initial and final states and E is the set
of transitions. Each transition τ is a tuple (p, a, q,K, d) ∈ Q×A×Q×Rat(B∗)×
{−1, 1} which is written p a|K,d−−−→ q. The states p and q are called the start state
and end state of τ . The letter a is the input letter of the transition and K is
its output set. This output set K is a rational set of words over B. This set
might be empty and, in that case, the transition does not output anything. This
is different from outputting the empty word ε. When K is a singleton {v}, the
braces are omitted and the transition is written p a|v,d−−−→ q. The integer d is called
the direction of the transition. It indicates whether the head moves to the right
(d = 1) or to the left (d = −1). A transition such that d = −1 (respectively
d = 1) is called a left (respectively right) transition. The integer −1 is often
written 1̄ to save space in figures and formulas.

A configuration C of the transducer is a tuple (q, k, u0, . . . , un+1) where q ∈ Q
is the state, k ∈ [0;n+1] is the position of the head on the tapes and the words
u0, . . . , un+1 ∈ B∗ are the contents of the n+ 2 cells of the output tape. When
the configuration is (q, k, u0, . . . , un+1), we say that the transducer is in state q at
position k. The global content of the output tape is the concatenation u0 · · ·un+1

of all the contents of its cells. Suppose that the input word w is a1 · · · an. There is
a run step of the transducer from a configuration (q, k, u0, . . . , un+1) to a config-
uration (q′, k′, u′

0, . . . , u
′
n+1) if there exists a transition τ of the form q ak|K,d−−−−→ q′

such that k′ = k+d and such that the new contents u′
i is a word from K if i = k

and K �= ∅ and is equal to ui otherwise.

266 O. Carton

Note that only the cell at position k of the output tape is modified by the
run step. Its previous content is overwritten by some word v from the output
set K unless K is empty. In that latter case, nothing is written and all cells of
the output tape are left unchanged. A computation step is called a step to the
right (respectively to the left) if the direction d is equal to 1 (respectively −1).

A configuration is initial if it has the form (i0, 0, ε, · · · , ε) where its state i0
is an initial state, that is i0 ∈ I. The head is over the end-marker " of the input
tape and all cells of the output tape are filled with the empty word. The global
content of the output tape of an initial configuration is thus empty. A configura-
tion (q, k, u0, . . . , un+1) is final if its state q is final, that is, q ∈ F . A run of the
transducer is a sequence C0, . . . , Cm of consecutive configurations. Consecutive
means here that for each 0 ≤ i ≤ m− 1, there is a run step from the configura-
tion Ci to the configuration Ci+1. The run is valid if its first configuration C0 is
initial and its last configuration Cm is final. Note that some intermediate con-
figurations might be final. This means that the run can visit a final state and
continue afterwards. Note also that there is no condition on the position of the
head in the last configuration Cm. This means that a valid run can stop at any
position. The output word of the run is the global content of the output tape in
the last configuration Cm.

The relation realized by a transducer is the set of pairs (w, v) where v is the
output of a valid run over the input word w. Note that this relation might be
non-functional. First, each run step using a transition q ak|K,d−−−−→ q′ writes one
of the words w ∈ K. Second, the transducer is not supposed to be determinis-
tic, there may exist several runs over the same input w with different outputs.
Deterministic transducers are studied in Sect. 4.

0

1

2

3

� |∅, 1
a|∅, 1

a|a, 1

� |∅, 1̄

a|b, 1

� |∅, 1̄� |∅, 1

a|∅, 1

a|∅, 1̄
Fig. 2. A two-way transducer

Example 1. The transducer pictured in Fig. 2 works as follows. Its input must
be a word of the form an for some integer n ≥ 0. It scans the input from left
to right and can non-deterministically overwrite two consecutive a by a and b
(transitions 0 a|a,1−−−→ 1 a|b,1−−−→ 2). When it reaches the right end marker +, it can
come back to the left end marker " and start again. If the input is an, one of
the outputs is an−1b but the transducer must perform 2n− 1 scans of the input
to write this word. At the first scan, it writes a and b in the cells 1 and 2. At
the second scan, it writes a and b in cells 2 and 3, thus overwriting the b written

Two-Way Transducers with a Two-Way Output Tape 267

0
� �a a a

ε ε ε ε ε

0
� �a a a

ε ε ε ε ε

1
� �a a a

ε a ε ε ε

2
� �a a a

ε a b ε ε 2
� �a a a

ε a b ε ε3
� �a a a

ε a b ε ε

3
� �a a a

ε a b ε ε

3
� �a a a

ε a b ε ε3
� �a a a

ε a b ε ε 0
� �a a a

ε a b ε ε

0
� �a a a

ε a b ε ε

1
� �a a a

ε a a ε ε

2
� �a a a

ε a a b ε

Fig. 3. A run of the previous two-way transducer

at the first scan and it continues like this over and over. An example of such a
run over the input word aaa is given in Fig. 3.

The output set K of a transition p a|K,d−−−→ q can be empty. In that case, the
transition does not output anything and leaves the content of the output cell
unchanged. It turns out that this feature does not increase the expressive power
of both deterministic and non-deterministic tranducers. It just makes more diffi-
cult the proof that any non-deterministic two-way transducer realizes a rational
relation. By this result, each two-way transducer is equivalent to a one-way tran-
ducer for which this feature is clearly useless since the output tape is one-way.
For deterministic two-way transducers, the transducer that we construct in the
proof of Theorem 2 does use this feature.

3 Rational Relations and One-Way Transducers

The purpose of this section is to show that the relations realized by our two-way
transducers are always rational.

A transducer T is one-way if the direction of each of its transitions is equal
to 1. Each transition is therefore written p a|K−−→ q. Note that this does not match
exactly the classical definition of a one-way transducer. In such a transducer,
the output of a transition is always a single word v but the input might be the
empty word. It is however not difficult to see that the two notions coincide. A
transition p a|K−−→ q where K is rational can be simulated by a first transition
p a|ε−−→ p0 followed by a bunch of transitions of the form pi

ε|b−−→ pj that non-
deterministically outputs some word in K. The converse is as easy. We have
chosen the first definition since it is easier to adapt to our setting.

A relation R ⊆ A∗ × B∗ is called rational if it is realized by some one-way
transducer. We prove here the following theorem.

Theorem 1. Any two-way transducer with a two-way output tape is equivalent
to a one-way transducer.

268 O. Carton

The proof is made difficult by the fact that some transitions of the transducer
may output nothing. We first consider the case where the output of each transi-
tion is a non-empty rational subset K of words. In that case, each run step from
position k to position k− 1 or k+1 overwrites the content of the k-th cell of the
output tape by a new word. When the run stops, the content of any cell of the
output tape has been written at the last visit of that cell. When some transition
may output nothing, this is no longer true. The proof in the general case is in
the appendix.

3.1 Special Case

We give here the proof of Theorem 1 with two additional hypotheses which make
the proof much easier. Let T = (Q,E, I, F) be a two-way transducer. We suppose
that for each transition p a|K,d−−−→ q of T , the output set K is nonempty. This
implies that each run step writes some word on the output tape. We also suppose
that each accepting run ends on the right end marker +. We construct a one-way
transducer S realizing the same relation as T . To simplify, we assume that the
transducer S takes as input a word "w with the left end marker but without the
right end marker. This can be assumed without loss of generality since a relation
R ⊆ A∗×B∗ is rational if and only if the relation (", ε)R = {("w, v) | (w, v) ∈ R}
is rational.

� a1 a2 a3 �

i0

q0
q′0

q1
q′1

q2
q′2

Fig. 4. Decomposition of the run ρ

The transducer S guesses a special decomposition of each valid run ρ of T . Let
ρ be a valid run over the input word a1 · · · an. Let q0, q1, . . . , qn+1 be the states
of ρ in the last visit of the positions 0, . . . , n+1 (see Fig. 4). These states always
exist since it is assumed that ρ ends on the right end marker. The transition
used to leave each position k after this last visit is of course a right transition
qi

ai|Ki,1−−−−−→ q′i.

Two-Way Transducers with a Two-Way Output Tape 269

The transducer S works as follows. It successively guesses the states
q0, . . . , qn+1 of the last visits. From qi to qi+1 it outputs some word u from Ki. It
also checks that for each k, there is path from q′k to qk+1 in the suffix ak · · · an+.

Let p and q two states of T . It is well-known that the set of words v such that
there exists a run of T starting in the state p at the first letter of v and ending in
state q at the first letter of v is rational [10]. LetAp,q = (Qp,q, A,Ep,q, {ip,q}, Fp,q)
be a deterministic automaton accepting this set of words for each pair (p, q). We
assume that the state sets of these automata Ap,q are pair-wise disjoint. As
usual, for any state r of some Ap,q and any word w, we denote by r ·w the state
reached by reading w from state r. This notation is extended to each subset P
of
⊎
p,q∈QQp,q by setting P · w = {r · w | r ∈ P}.

The states of S are the pairs (q, P) where q is a state of T and P is a subset
of the set

⊎
p,r∈QQp,r. The initial states of S are the pairs of the form (q, {ii0,q})

where ip,q is the initial state of the automaton Ap,q and i0 is the initial state of T .
The final states are the pairs (q, P) where q is final in T and P only contains
final states. The transitions of the transducer S are finally given as follows.

{
(q, P)

a|K−−→ (q′, P ′) | q a|K,1−−−→ p and P ′ = P · a ∪ {ip,q′}
}

It is straightforward to check that S realizes the same relation as T .
Let us recall that a transducer is unambiguous if for each input word, there

is, at most, one valid run of the transducer. It is well known that each rational
function is realized by an unambiguous transducer [2]. If the two-way transducer
is deterministic, the transducer that is constructed in the proof of the general
case is unambiguous.

4 Deterministic Two-Way Transducers

As usual, a two-way transducer is deterministic if it has only one initial state,
if for any pair (p, a) ∈ Q × A, there is at most one transition of the form
p a|K,x−−−−→ q andK contains at most one word. It is also required, for a deterministic
transducer, that there is no transition leaving a final state. This condition makes
the transducer stop at the first visit of a final state. Without this condition, there
could be several valid runs which are an extension of one another. These valid
runs could yield several outputs and this is not desirable. This restriction for
deterministic transducers is needed since our definition allows a valid run to
continue after a final state. Another approach could have been to forbid such a
behavior for all transducers.

The transducer pictured in Fig. 2 is not deterministic since it has the two
transitions 0 a|∅,1−−−→ 0 and 0 a|a,1−−−→ 1. A deterministic two-way transducer has
at most one valid run over any input word w. The relation it realizes is thus a
function. The following theorem states that the converse also holds.

Theorem 2. Any rational function can be realized by a deterministic two-way
transducer with a two-way output tape.

270 O. Carton

0

1

2

3 4 5

6

7 8

9

10

11

12

�|�, 1
0|0, 1
1|1, 1�|�, 1̄

0|0, 1̄

1|ε, 1̄

�|�, 1

1|ε, 1̄

�|ε, 1
0|ε, 1

1|ε, 1

�|�, 1̄
0|0, 1̄

1|ε, 1

�|�, 1̄
0|0, 1̄

1|1, 1̄

0|0, 1̄
1|0, 1̄

�|�, 1

1|0, 1̄

1|1, 1̄
0|ε, 1̄

�|�1, 1

1|ε, 1̄

� |ε, 1
0|ε, 1

1|ε, 1

0|1, 1̄

1|ε, 1

0|0, 1̄

Fig. 5. Normalization in Fibonacci base

Example 2. The deterministic transducer pictured in Fig. 5 realizes the normal-
ization in the Fibonacci base [8]. Let A be the alphabet {0, 1}. The value ν(w) in
the Fibonacci base of a word w = bn · · · b1 over A is given by ν(w) =

∑n
k=1 bkFk

where Fk is the k-th Fibonacci number (with F1 = 1 and F2 = 2). The nor-
malization of a word w ∈ A∗ is the unique word w′ ∈ A∗ (up to leading 0s)
with no consecutive 1 such that ν(w′) = ν(w). The normalization of 10111 is,
for instance, 100001.

The proof of the previous theorem is carried out by constructing, for a given
rational function, a deterministic two-way transducer that realizes it. This trans-
ducer is obtained from a bimachine realizing the function. Bimachines are special
devices that combine a deterministic automaton with a co-deterministic one. Let
us recall that an automaton is called co-deterministic if it becomes deterministic
when all the transitions are reversed. Another tool used in the proof are monoids
but no deep result about these algebraic objects is really needed.

On each input word, the run of the constructed two-way transducer has a
special shape which is pictured in Fig. 6. This run is made of a first scan of the
input from left to right. Then all cells are visited in reversed order (the bullets
on the figure). Between the visits of cells k + 1 and k, the transducer makes a
tour on the left. This tour is made of a trip from cell k + 1 to some cell �k for
�k < k and of the return trip from cell �k to cell k.

The output of the transducer during each tour on the left from cell k + 1 to
cell k is irrelevant because it will be overwritten by a later visit of the cells. The
transducer which is constructed has no transition of the form p a|∅,d−−−→ q. At each
run step, something is output by the transition. It follows that the possibility of
having transitions that leave the content of the output cell unchanged does not
increase the expressive power of the transducers.

Two-Way Transducers with a Two-Way Output Tape 271

a1 a2 a3 an

Fig. 6. Shape of a run

The transducer constructed in the proof of Theorem 2 has a huge number of
states. Since the construction makes use of the transition monoid of the bima-
chine, it is of order 2O(n2) where n is the number of states of the bimachine.

5 Conclusion

We have introduced a variant of two-way transducers that have a two-way out-
put tape. We have shown that these non-deterministic transducers are not more
powerful that classical one-way transducers. We have also shown that these de-
terministic transducers can realize all rational functions.

As a conclusion, we would like to mention a few open questions raised by
this work. The construction of a deterministic two-way transducer for a given
rational function gives a transducer with a huge number of states. A natural
question is to ask whether this blow-up can be avoided or not.

In our model, each transition can either leave unchanged the content of a cell
of the output tape or replace it by a new word. There are several variants that
could be considered. A transition could also append a new word to the left or to
the right of the previous content. It can be shown that when the relation realized
by such a transducer is functional, it is still rational. It is not true anymore when
non-functional transducers are considered. The relation {(a1 · · · an, ak1 · · · akn) |
a1 · · · an ∈ A∗ and k ≥ 0} can, for instance, be realized by these transducers.
However, it cannot be realized, even by classical two-way transducers with a
one-way output tape. The exact expressive power of these transducers has to be
clarified.

References

1. Alur, R., Deshmukh, J.V.: Nondeterministic Streaming String Transducers. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756,
pp. 1–20. Springer, Heidelberg (2011)

272 O. Carton

2. Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner (1979)
3. Choffrut, C.: Une caractérisation des fonctions séquentielles et des fonctions sous-

séquentielles en tant que relations rationnelles. Theor. Comput. Sci. 5, 325–337
(1977)

4. Ehrich, R.W., Yau, S.S.: Two-way sequential transductions and stack automata.
Information and Control 18(5), 404–446 (1971)

5. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
J. of Res. and Dev. 9, 47–68 (1965)

6. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254 (2001)

7. Gurari, E.M.: The equivalence problem for deterministic two-way sequential trans-
ducers is decidable. SIAM J. Comput. 11(3), 448–452 (1982)

8. Lothaire, M.: Algebraic Combinatorics on Words, ch. 7, pp. 230–268. Cambridge
University Press (2002)

9. Schützenberger, M.-P.: Sur les relations rationnelles entre monöıdes libres. Theor.
Comput. Sci. 4, 47–57 (1976)

10. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development 3, 198–200 (1959)

Learning Rational Functions

Adrien Boiret1,3, Aurélien Lemay2,3, and Joachim Niehren1,3

1 Inria, Lille
2 University of Lille

3 Mostrare project of Inria & Lifl (Cnrs Umr 8022)

Abstract. Rational functions are transformations from words to words
that can be defined by string transducers. Rational functions are also
captured by deterministic string transducers with lookahead. We show
for the first time that the class of rational functions can be learned in
the limit with polynomial time and data, when represented by string
transducers with lookahead in the diagonal-minimal normal form that
we introduce.

1 Introduction

Learning algorithms for regular languages of words or trees are usually based on
the Myhill-Nerode theorem, that is on an algebraic characterization of the unique
minimal automaton recognizing the target language [14,2,6,13]. The learning
problem is then to identify this unique automaton in the limit from finite sam-
ples of positive and negative examples that characterize the language. For various
classes of automata, this can be done in polynomial time in the size of the sam-
ple, while there exist characteristic samples of polynomial cardinality in the size
of the target automaton. This approach has been established for finite deter-
ministic automata (Dfas) [12,16], for deterministic tree automata [17], and for
deterministic stepwise tree automata for unranked trees [3].

Learning algorithms for classes of transformation on words or trees can be ob-
tained in an analoguous manner, if they can be defined by an appropriate class
of deterministic transducers that enjoys a Myhill-Nerode type theorem. The
classical example is the class of deterministic (subsequential) string transducers
(Dts) [5,18]. It characterizes the unique minimal Dt for the target transfor-
mation, that is compatible with the domain and earliest in output production.
Such transducers can be learned by the Ostia algorithm from finite samples
of input-output pairs, under the assumption that a Dfa defining the domain is
given [19]. More recently, this result could be extended to the class of determin-
istic top-down tree transducers with domain inspection [10,15]. Furthermore, a
unique minimization result – that can be based on a Myhill-Nerode theorem –
was obtained for deterministic bottom-up tree transducers [11].

The motivation of the present article is to extend these results to classes of
transducers with look-ahead. The natural starting point is the class of determin-
istic string transducers with lookahead (Dt), which capture the class of rational
functions (see e.g. [1]), i.e. they have the same expressiveness as functional string

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 273–283, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

274 A. Boiret, A. Lemay, and J. Niehren

transducers [8]. Based on another Myhill-Nerode type theorem, Reutenaurer and
Schützenberger showed in [20] that there exists a unique minimal look-ahead au-
tomaton compatible with the domain that can be used to define some Dt	. The
underlying Dt itself can be made earliest and minimal. This yields a unique
two-phase minimal normal form for rational functions.

The learning problem – that remained open for many years – is whether
one can learn rational functions from finite samples of input-output examples
and a Dfa for the domain. In this paper, we contribute a positive answer in
Gold’s learning model from polynomial time and data, under the assumption
that rational functions are represented by diagonal-minimal normal form. This
is a new class of normal forms that we introduce concommitantly with a new
learning algorithm based on diagonalization. The main problem was to overcome
the difficulty to identify a two-phase minimal normal form from examples.

Outline. We first recall traditional results on rational and subsequential func-
tions (Section 2) and then the result of Reutenauer and Schützenberger on two-
phase Dt	 normalization (Section 3). In section 4, we indicate how to build a
look-ahead from a basic test over suffixes. In Section 6, we indicate how this test
can be done from a finite sample which leads to section 5 where we present the
complete learning algorithm.

2 Rational Functions

We assume an input alphabet Σ and an output alphabet Δ, both of which are
finite sets. Input words in Σ∗ are ranged over by u and v and output words in
Δ∗ by w. We are interested in partial functions τ ⊆ Σ∗ × Δ∗. We denote the
domain of a partial function by dom(τ) and freely write τ(u) = w instead of
(u,w) ∈ τ .

A string transducer is a tuple M = 〈Σ,Δ,Q, init, rul,fin〉 where Σ and Δ are
finite alphabet for input and output words, Q is a finite set of states, init ⊆ Q is
a set of initial states, fin ⊆ Q×Δ∗ the set of final states equipped with output
words, and rul ⊆ (Q×Σ) × (Δ∗ ×Q) is a finite set of transitions. We say that

q
a/w−−→ q′ is a rule of M if (q, a, w, q′) ∈ rul, and that q w−→ is a final output if

(q, w) ∈ fin. This arrow notion is also used in graphical representations of string
transducers.

We denote by [[M]] ⊆ Σ∗×Δ∗ the set of pairs (u,w) such that w is an output
word that can be produced from input word u by M . More formally, a pair (u,w)
belongs to [[M]] if there exists an index n, decompositions u = a1 · . . . · an and
w = w1 · . . . · wn · wf , and a sequence of states q0 · . . . · qn such that q0 ∈ init,

qi−1
ai/wi−−−−→ qi is a rule of M for all 1 ≤ i ≤ n, and qn

wf−−→ is a final output. A
partial function is called rational if it is equal to [[M]] for some string transducer
M , which is then called a functional transducer.

A string transducer is called deterministic or a Dt (or subsequential) if it has
at most one initial state and if rul and fin are partial functions. Clearly, every
Dt defines a rational function. Such functions are called subsequential, a notion
going back to Schützenberger.

Learning Rational Functions 275

q0 qa

a/ε

b/b

a/ab/b

a

ε

q0 qa

q′0 qb

a/a

a/a, b/b

b/b

a/ε, b/b

ε

ε

q0 qb

b/b

a/ε

a/ε

b/b

ε

Fig. 1. (a) A Dt for τ1. (b) A string transducer for τ2. (c) A Dt for τ3.

Example 1. The total function τ1 on words with alphabet {a, b} that erases all
a’s immediately followed by b is subsequential. See Fig. 1 for a Dt defining it.
Notice that the final output is needed, for instance for transducing the word aa
correctly to itself.

The function τ2 that deletes all a’s in words whose last letter is b while per-
forming the identity otherwise is rational, but not subsequential since the last
letter cannot be predicted deterministically.

But if one restricts the domain of τ2 to words ending by b, we obtain a partial
function τ3 which is subsequential, as illustrated in Fig. 1.

We denote byMq the transducer equal toM except that q is the only initial state.
A word u ∈ Σ∗ reaches a state q if there is a sequence of letters a1 . . . an = u

and of states q0 . . . qn such that q0 ∈ init, qn = q and qi−1
ai/wi−−−−→ qi is a rule of

M for all 1 ≤ i ≤ n for some wi. We call a Dt M earliest if for all states q of M
except the initial one, either the domain of [[Mq]] is the empty set or the least
common prefix of all words in the range of [[Mq]] is the empty word.

Theorem 1 (Choffrut (1979) [4,5]). Any subsequential function can be de-
fined by some earliest Dt. The earliest Dt with a minimal number of states for
a subsequential function is unique modulo state renaming.

The Dts in Fig. 1 (a) and (c) are both earliest and minimal. Note that a smaller
single state Dt would be sufficient for defining τ3 if the domain could be checked
externally, which is not the case in this model.

Oncina and Varo [19] used the Myhill-Nerode behind Theorem 1 as a theoret-
ical ground for a learning algorithm for subsequential functions τ from a finite
sample S ⊆ τ and a Dfa D recognizing the domain of τ .

Theorem 2 (Oncina and Varo (1996)). For any Dfa D there exists a learn-
ing algorithm OstiaD that identifies subsequential functions whose domain is
recognized by D from polynomial time and data.

That is: for any Dt M defining a subsequential function τ whose domain is
recognized by D there exists a finite sample S ⊆ τ called characteristic for τ ,
whose size is polynomial in the size of M , such that from any sample S′ ⊆ τ

276 A. Boiret, A. Lemay, and J. Niehren

that contains S, OstiaD(S′) computes a Dt defining τ in polynomial time in
the size of S′.

3 Transducers with Look-Ahead

As stated before, rational functions are captured by deterministic transducers
with look-ahead. The look-ahead can be performed by some Dfa that annotates
the letters of the input word by states from right to left in a preprocessing step.
The string transducer then processes the annotated word from left to right. More
formally, we can identify a Dfa A with alphabet Σ and state set P with a string
transducer that reads the word right to left, while always outputing the pair
of the current letter and the current state: an automaton rule q a−→ q′ of A is

considered as a transducer rule q
a/(a,q′)−−−−−→ q′. This way, the rational function

[[A]] maps a word u ∈ Σ∗ to the identical word but annotated with look-ahead
states [[A]](u) ∈ (Σ × P)∗. Furthermore, the Dfa used as a lookahead must be
complete, so that it defines a total function.

A deterministic string transducer with look-ahead (Dt) is a pair N = 〈A,M〉
such that A is a Dfa with alphabet Σ and state set P called the look-ahead, and
M is a Dt with signature Σ×P with state set Q. A Dt	 N = 〈A,M〉 defines the
rational function [[N]] = [[M]]◦ [[A]]: an input word u ∈ Σ∗ is first annotated with
states of the look-ahead A from right to left, and then transformed by Dt M
from left to right. The following theorem is known as the decomposition theorem
of Elgot and Mezei [8].

Theorem 3 (Elgot and Mezei (1965)). A partial function τ is rational if
and only if it is defined by some Dt	.

Given a string transducer M that defines a partial function, the idea is to use
a look-ahead automaton to annotate positions by the set P of those states of
M by which a final state can be reached at the end of the word. One can then
define a Dt	 N which simulates M except that it always selects an arbitrary
transition leading to some state of P . Which of these transition is selected does
not matter since M is functional

Example 2. A Dt	 for τ2 is given in Fig. 2. Note that 3 look-ahead states are
needed in order to distinguish suffixes ending with b or not.

We next study the question of whether there exists a unique minimal lookahead
automaton for any rational function. We obtain a positive result by reformulating
a Myhill-Nerode style theorem for bi-machines from Reutenauer and Schüten-
berger [20].

A relation ∼ over Σ∗ × Σ∗ is called a left-congruence if v1 ∼ v2 implies
u · v1 ∼ u · v2 for all input words v1, v2, u. Every look-ahead automaton A
defines a left-congruence ∼A such that v1 ∼A v2 if and only if v1 and v2 are
evaluated to the same state by A (from the right to the left). Conversely, for
any left-congruence ∼ with a finite number of equivalence classes, we can define

Learning Rational Functions 277

pε

pa

pb

q0

a

b

a, b

a, b

(a, pa)/a; (b, pa)/b

(a, pb)/ε; (b, pb)/b

ε

Fig. 2. The look-ahead for τ2 and a matching Dt

pε

pa

pb

q0 qb

a

b

a, b

a, b

(b, pb)/b
(a, pb)/ε

(a, pb)/ε

(b, pb)/b

ε

Fig. 3. A look-ahead for τ3, and a matching Dt, both compatible with their domains

a look-ahead automaton A(∼) such that ∼ is equal to ∼A. The states of A
are the equivalence classes [u]∼ of input words u, the unique initial state is
the equivalence class of the empty word, and the transition rules have the form
[a·u]∼

a←− [u]∼ for all u ∈ Σ∗ and a ∈ Σ. Final states are irrelevant for look-ahead
automata.

Domains of partial functions τ need to be treated carefully for look-ahead
minimization. Let the left residual of its domain be dom(τ)v−1 = {u | u ·
v ∈ dom(τ)}. The domain induces a left-congruence on suffixes that we call
compatibility with the domain: v1 and v2 are compatible with the dom(τ) if
dom(τ)v−1

1 = dom(τ)v−1
2 . A relation ∼ is said compatible with dom(τ) if it is

a refinement of the compatibility relation, i.e., if v1 ∼ v2 implies that v1 and v2
are compatible with dom(τ). Similarly, a look-ahead automaton A is compatible
with a domain if ∼A is.

Let τ be a rational function. The difference between two output words is
diff (w·w1, w·w2) = (w1, w2) such that the common prefix of w1 and w2 is empty.
The difference between two input words modulo τ is defined by diff τ (v1, v2) =
{diff (τ(u · v1), τ(u · v2)) | u · v1, u · v2 ∈ dom(τ)}. This allows to define a
left-congruence ∼τ that is compatible with dom(τ):

Definition 1. v1∼τv2 if and only if v1 and v2 are compatible with dom(τ) and
#diff τ (v1, v2) <∞.

Example 3. The equivalence τ1 has a single class since diff τ (v1, v2) is finite for
every v1, v2 ∈ Σ∗. Function τ2 has two equivalence classes, since v1 ∼τ2 v2 if
either both end with b or none. Indeed, A(∼τ2) is the look-ahead automaton in
Fig. 2. Let un = an · bn. Then we have τ2(un · v1) = un · v1 while τ2(un · v2) =
bn · τ2(v2). So diff τ2

(v1, v2) contains the pairs (an · bn · v1, bn · τ1(v2)) for all
n, which as an infinite cardinality. Subsequential function τ3 has 3 equivalence
classes: a single state look-ahead automaton for τ3 would not be compatible with

278 A. Boiret, A. Lemay, and J. Niehren

the domain as for instance dom(τ3)a−1 �= dom(τ3)b−1. The Dt	 with minimal
look-ahead for τ3 that is compatible with the domain has three states and is
also the look-ahead given in Fig. 3. Note that neither the look-ahead nor the Dt
are size minimal. Fig. 1 shows that there is no need for a look-ahead and Fig. 2
shows that for this look-ahead, τ3 only needs a one-state Dt. �

We say that a left congruence ∼ partitions ∼τ if ∼ is a subset of ∼τ . For every
partial function τ and an equivalence relation ∼ on Σ∗, we can define a unique
partial function σ with minimal domain such that τ = σ ◦ [[A(∼)]]. This function
σ, that we denote by σ(τ,∼), can be applied only to annotated words in the
image of [[A(∼)]]; it ignores annotations and applies τ . The following result was
originally stated for bimachines.

Theorem 4 (Reutenauer & Schützenberger [20]). For any rational func-
tion τ the left-congruence ∼τ has a finite number of equivalence classes. Fur-
thermore, for any other left-congruence ∼ partitionning ∼τ into finitely many
classes, the function σ(τ,∼) is subsequential.

As a result, any look-ahead for τ compatible with the domain of τ has the
form A(∼) for some left-congruence ∼ that partitions ∼τ . Also, σ(τ,∼) being
subsequential, Theorem 1 shows that it can be defined by a unique minimal Dt,
that we denote by Mτ (∼). The unique ’right-minimal’ Dt	 of τ then is the Dt	

Nτ (∼) equal to 〈A(∼),Mτ (∼)〉.

4 Building the Look-Ahead Automaton

Our next objective is to find a suitable look-ahead automaton for the unknown
target function τ , of which we only know the domain and a finite sample of input-
output pairs. One might want to identify the minimal look-ahead automaton
A(∼τ), but we cannot hope to decide whether v1∼τv2 for any two words v1 and
v2, since we would have to check whether diff τ (v1, v2) is finite or infinite. This
is difficult to archieve from a finite set of examples. We will work around this
problem based on the following lemma which provides a bound on the cardinality
of diff τ (v1, v2).

Lemma 1. Let τ ⊆ Σ∗ × Δ∗ be a rational function, ∼ a left congruence
that partitions ∼τ and m be the number of states of Mτ (∼). If v1 ∼ v2 then
#diff τ (v1, v2) ≤ m.

Proof. With N = Nτ (∼), v1 ∼ v2 implies v1∼τv2, so that dom(τ)v−1
1 =

dom(τ)v−1
2 . We denote by [[N]]u(v) (resp. [[N]]v(u)) the output of v (resp. u) when

reading u ·v. Then for any prefix u ∈ dom(τ)v−1
1 , τ(u ·vi) = [[N]]vi(u) · [[N]]u(vi).

By construction, [[N]]v1(u) = [[N]]v2 (u), so diff (τ(u·v1), τ(u·v2)) = diff ([[N]]u(v1),
[[N]]u(v2)). As [[N]]u(vi) only depends on the state reached by u in A(∼), the num-
ber of values of ([[N]]u(v1), [[N]]u(v2)) for varying u is bounded by the number of
states of Mτ (∼), i.e. #diff τ (v1, v2) ≤ m. �

Learning Rational Functions 279

fun La(R, l) % where R ⊆ Σ∗ ×Σ∗, l ∈ N in
1:let Q = Set.new({ε}), Agenda = Queue.new([ε])
2:while Agenda.isnonempty() do
3: v := Agenda.pop()
4: for a ∈ Σ such that a · v increases do
5: if � ∃v′ ∈ Q such that (a · v, v′) ∈R
6: then Agenda.push(a · v), Q.add(a · v) else skip
7: if Q.card() > l then exception “too many states” else skip
8:let rul = {v a−→ v′ | v, v′ ∈ Q, (a · v, v′) ∈R} in
9:return 〈Σ, Q, {ε}, ∅, rul〉

Fig. 4. Construction of look-ahead automata

Given a natural number m we define the binary relation Cm
τ on input words such

that (v1, v2) ∈ Cm
τ if #diff τ (v1, v2) ≤ m. In this case, we say that v1 is m-close

to v2. As we will show in Section 6 for any m, we can characterize relation Cm
τ

by finite samples of input-output pairs for τ .
Let mτ be the number of states in Mτ (∼τ). By Lemma 1 we know that

∼τ = Cmτ
τ . So if we knew this bound mτ and if we could construct a look-ahead

automaton from Cmτ
τ , then we were done. We first consider how to construct a

look-ahead automaton from Cm
τ under the assumption that m ≥ mτ .

Our algorithm La given in Fig. 4 receives as inputs a binary relation R on
input words and a natural number l, and returns as output a minimal determin-
istic finite automata, or raises an exception. Algorithm La is motivated by the
Myhill-Nerode theorem for deterministic finite automata, in that for l greater
than the index of ∼τ and R = Cmτ

τ = ∼τ it constructs the minimal deterministic
automaton A(∼τ). We will also apply it, however, in cases where R is even not
an equivalence relation. In particular, relation R = Cm

τ may fail to be transitive
for m < mτ . In this case we may have to force our algorithm to terminate. We
do so by bounding the number of states that is to be generated by l.

Algorithm La proceeds as follows. It fixes some total ordering on words, such
that shorter words preceed on longer words. It then behaves as if R were a left
congruences while searching for the least word in each equivalence class of R.
These least words will be the states of the output automaton that La constructs.
The algorithm raises an exception if the number of such states is greater then l.
It adds the transitions v a−→ v′ for any two states v, v′ that it discovered under the
condition that (a · v, v′) ∈ R (if several v′ fits, we pick the first in our order). We
observe the following: if R is a left congruence of finite index smaller than l then
La(R, l) terminates without exception and returns the minimal deterministic
automata whose left-congruence is R. In particular for m ≥ mτ and R = Cm

τ

(so that R = ∼τ), the algorithm returns A(∼τ). However, if m < mτ , the only
property that we can assume about relation Cm

τ is that it is contained in ∼τ .
The following lemma shows a little surprisingly that successful result are always
appropriate nevertheless.

Lemma 2. Let τ be a rational function and R a relation contained in ∼τ . Either
La(R, l) raises an exception or it returns a look-ahead valid for τ .

280 A. Boiret, A. Lemay, and J. Niehren

fun LearnD(S)
1:(m, l) := (1, 1)
2:repeat
3: try let A = La(Cm

S,D, l) in
4: let S′ = {([[A]](u), v) | (u, v) ∈ S)} in
5: let D′ be a Dfa that represents words of D annotated by A in
6: return 〈A,OstiaD′(S′)〉 and exit
7: catch “too many states” then
8: (m, l) := successor of (m, l) in diagonal order

Fig. 5. Learning algorithm for rational functions with domain L(D)

If v1 and v2 are actually tested by the algorithm, then for v1 and v2 to be in
the same state, we need v1 R v2, and thus v1∼τv2. Then, given that ∼τ is a
left-congruence, we can prove by recursion that if two words v1 and v2 reach the
same state of La(R, l), then v1∼τv2. Hence, R partitions ∼τ so this La(R, l) is
a valid look-ahead for τ by Theorem 4.

5 The Learning Algorithm

We next present an algorithm for learning a rational function τ from a domain
automata D with L(D) = dom(τ) and a finite sample S ⊆ τ of input-output
pairs. Furthermore, our learning algorithm assumes that there exists an oracle
Cm

S,D that can decide whether a pair of input words belongs to Cm
τ . Given such

an oracle, the learning algorithm can simulate calls of algorithm La(Cm
τ , l). How

such an oracle can be obtained for sufficiently rich samples S is shown in the
next section.

Nb of states l

Bound m

1

1

2

2

3

3

4

4

•

Two unknowns remain to be fixed: a bound m
for which La eventually finds a valid look-ahead
and the number l of states of this valid look-
ahead. The idea of learning algorithm LearnD

in Fig. 5 is that to try out all pairs (m, l) in
diagonally increasing order (1, 1) < (1, 2) <
(2, 1) < (1, 3) < For any such pair (m, l) it
then calls La(Cm

S,D, l), until this algorithm suc-
ceeds to return an automaton. By Lemma 1, any
such automaton is a valid look-ahead for τ . By
Proposition 1, this procedure must be successful
no later than for (mτ , lτ). Finally, the algorithm
decorates the examples of S by applying the newly
obtained look-ahead automaton, and learns the corresponding subsequential
transducer by using the Ostia algorithm.

It should be noticed that the target of this algorithm is not the Dt	 for τ
with minimal look-ahead A(∼τ). The look-ahead obtained is simply the first
automaton obtained in the diagonal order such that La(Cm

S,D, l) terminates suc-
cessfully. We call the Dt	 obtained in this way the ’diagonal’ Dt	 of τ . Note

Learning Rational Functions 281

fun Cm
S,D(v1, v2)

1:if L(D)v−1
1 �= L(D)v−1

2 then return false
2:else if #{diff (w1, w2) | (u · v1, w1), (u · v2, w2) ∈ S} ≤ m
3: then return true else return false

Fig. 6. Implemention of the oracle

that the diagonal Dt	 of τ may be smaller that the corresponding right-minimal
Dt	 with minimal look-ahead. In any case, it may not be much bigger as stated
by the following lemma.

Lemma 3. Let τ be a partial rational function with right-minimal Dt	

〈A(∼τ),M(∼τ)〉, let m be the number of states of M(∼τ), and ∼ be a finite
left-congruence that partitions ∼τ of index n. The number of states of the look-
ahead of 〈A(∼),M(∼)〉 has then at most mn states and is of global size O(mn2).

Indeed, to obtain the Dt M(∼), one can pick M(∼τ) and change its transition
to take into account states of A(∼) instead of those of A(∼τ). This transducer
has m states and at worse mn transitions. However, it does not have the right
domain (words annotated by states of M(∼)): this requires a product with the
Dfa of the correct domain, which has m states. The actual Dt M(∼) being
minimal, it has at most this size.

6 Characteristic Samples

It remains to show that there exists an oracle Cm
S,D that decides membership

to Cm
τ for all suffuciently rich finite samples S ⊆ τ , and that the size of such

samples is polynomial in the size of the target diagonal transducer with look-
ahead. We use the function defined in Fig. 6 which when applied to a pair
of words (v1, v2) verifies that they have equal residuals for the domain, and
computes their difference on S instead of τ . In order to see that the former can
be done in polynomial time, we only need to check that there are deterministic
automata recognizing L(D)v−1

1 and L(D)v−1
2 of polynomial size.

The next question is what examples a sample S needs to contain so that
this test becomes truly equivalent to m-closeness. In order to be usable in
La, note that Cm

S,D(v1, v2) has to behave like Cm
τ (v1, v2) only on pairs of suf-

fixes considered there. We define sm,l(τ) as the words creating new states in
La(Cm

τ (v1, v2), l) (there is at most l of them). As the algorithm La also ob-
serves successors of sm,l, we need to define the set km,l(τ) = sm,l(τ)∪{a · v | v ∈
sm,l(τ), a ∈ Σ}. We call a sample S �-characteristic for τ with respect to m and
l if every element of km,l appears as the suffix of an input word in S and if S
allows the correct evaluation of Cm

τ on those elements, i.e.:

– for every v ∈ sm,l(τ), ∃u ∈ Σ∗, w ∈ Δ∗ such that (u · v, w) ∈ S,
– for v1 ∈ sm,l, v2 ∈ km,l with (v1, v2) �∈ Cm

τ and dom(τ)v−1
1 = dom(τ)v−1

2 ,
#{diff (w1, w2) | (u · v1, w1), (u · v2, w2) ∈ S} > m.

282 A. Boiret, A. Lemay, and J. Niehren

Lemma 4. For a partial rational function τ , a Dfa D recognizing dom(τ),
and two positive integers m and l, let v1 ∈ sm,l(τ), v2 ∈ km,l(τ), if S is a �-
characteristic sample for τ with respect to m and l, then the test Cm

S,D(v1, v2)
returns true if and only if (v1, v2) ∈ Cm

τ .

One thing that has to be checked is that there exists an �-characteristic samples
of reasonable size for any m, l. This is obvious for the cardinality. In order to
show that the length of words can also be guaranteed to be short, one can use the
following method: for any non-equivalent suffixes v1 and v2 of different domain,
one pick any set of words that allow to obtain enough element in diff τ (v1, v2), and
reduce them to a reasonable length (of size O(|N |2)) where N is any transducer
recognizing τ) using pumping arguments.

Lemma 5. For a partial rational function τ , a Dfa D recognizing dom(τ), two
integers m and l, and a sample S �-characteristic for τ with respect to m and l:
La(Cm

S,D, l) = La(Cm
τ , l).

In particular, if La(Cm
S,D, l) raises an exception if and only if La(Cm

τ , l) does.
Note that we need a sample that is (globally) �-characteristic, for all pairs 〈m, l〉
encountered during the run, i.e. all the 〈m, l〉 smaller than the values for the
diagonal Dt	. Once the look-ahead is learned, we can apply the Ostia algorithm,
which requires a sample labelled by the look-ahead, and not on Σ∗ × Δ∗. We
deal with this by labelling all the input words in S when the look-ahead A(∼)
is found. For S to be enough to learn the subsequential transducer Mτ (∼), its
labelling must contain a characteristic sample for the Ostia algorithm as defined
in [19]. In other words, S is called Dt-characteristic for τ and ∼ if it contains a
characteristic sample for Mτ (∼) in Ostia, minus the labelling by ∼.

Finally, for the algorithm LearnD to produce the diagonal Dt	, the input
sample needs to be �-characteristic. Also, it has to be Dt-characteristic for τ
and the look-ahead ∼ it found. A sample S is then said to be characteristic for
a rational function τ if it fulfils all those conditions. This gives the following
result:

Theorem 5. For any Dfa D the learning algorithm LearnD identifies rational
functions with domain L(D) represented by their diagonal Dt	 from polynomial
time and data.

That is: for any Dt	 N in diagonal form defining a rational function τ whose
domain L(D), there exists a finite sample S ⊆ τ called characteristic for τ
whose size is polynomial in the size of N , such that from any sample S′ ⊆ τ
that contains S, LearnD(S′) computes a Dt	 in diagonal-minimal normal form
defining τ in polynomial time in the size of S′.

Conclusion and Future Work. Our learning algorithm for Dt	s answers the
long standing open learning question for rational functions, for the case where
diagonal-minimal Dt	 normal forms are used for their representation. Whether
other representations lead to negative results is left open. More importantly, we

Learning Rational Functions 283

would like to extend our result to deterministic top-down tree transducers with
look-ahead, which have the same expressiveness than functional top-down tree
transducers [9].

References

1. Berstel, J.: Transductions and Context-Free Languages. Teubner (1979)
2. Berstel, J., Boasson, L., Carton, O., Fagnot, I.: Minimization of automata. Com-

puting Research Repository, abs/1010.5318 (2010)
3. Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive learning of node select-

ing tree transducers. Machine Learning 66(1), 33–67 (2007)
4. Choffrut, C.: A Generalization of Ginsburg and Rose’s Characterisation of g-s-

m Mappings. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 88–103.
Springer, Heidelberg (1979)

5. Choffrut, C.: Minimizing subsequential transducers: a survey. TCS 292(1), 131–143
(2003)

6. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2007)

7. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning 27, 125–137 (1997)

8. Elgot, C.C., Mezei, G.: On relations defined by generalized finite automata. IBM
Journ. of Research and Development 9, 88–101 (1965)

9. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Syst.
Theory 10, 198–231 (1977)

10. Engelfriet, J., Maneth, S., Seidl, H.: Deciding equivalence of top-down XML trans-
formations in polynomial time. JCSS 75(5), 271–286 (2009)

11. Friese, S., Seidl, H., Maneth, S.: Minimization of Deterministic Bottom-Up Tree
Transducers. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224,
pp. 185–196. Springer, Heidelberg (2010)

12. Gold, E.M.: Complexity of automaton identification from given data. Infor. and
Cont. 37, 302–320 (1978)

13. Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimization
of tree automata. TCS 410(37), 3539–3552 (2009)

14. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In:
TMC, pp. 189–196 (1971)

15. Lemay, A., Maneth, S., Niehren, J.: A learning algorithm for Top-Down XML
transf. In: PODS, pp. 285–296 (2010)

16. Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time. In:
Patt. Recog. and Image Anal., pp. 49–61 (1992)

17. Oncina, J., García, P.: Inference of recognizable tree sets. Tech. report, Univ. de
Alicante (1993)

18. Oncina, J., Garcia, P., Vidal, E.: Learning subsequential transducers for pattern
recognition and interpretation tasks. Patt. Anal. & Mach. Intell. 15, 448–458 (1993)

19. Oncina, J., Varo, M.A.: Using Domain Information during the Learning of a Sub-
sequential Transducer. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS,
vol. 1147, pp. 313–325. Springer, Heidelberg (1996)

20. Reutenauer, C., Schützenberger, M.P.: Minimalization of rational word functions.
SIAM Journal on Computing 20, 669–685 (1991)

Converting Nondeterministic Automata

and Context-Free Grammars
into Parikh Equivalent Deterministic Automata

Giovanna J. Lavado1, Giovanni Pighizzini1, and Shinnosuke Seki2

1 Dipartimento di Informatica, Università degli Studi di Milano
via Comelico 39, I-20135, Milano, Italy

{giovanna.lavado,giovanni.pighizzini}@unimi.it
2 Department of Information and Computer Science, Aalto University,

P.O. Box 15400, FI-00076, Aalto, Finland
shinnosuke.seki@aalto.fi

Abstract. We investigate the conversion of nondeterministic finite au-
tomata and context-free grammars into Parikh equivalent deterministic
finite automata, from a descriptional complexity point of view.

We prove that for each nondeterministic automaton with n states

there exists a Parikh equivalent deterministic automaton with eO(
√
n·lnn)

states. Furthermore, this cost is tight. In contrast, if all the strings ac-
cepted by the given automaton contain at least two different letters, then
a Parikh equivalent deterministic automaton with a polynomial number
of states can be found.

Concerning context-free grammars, we prove that for each grammar in
Chomsky normal form with n variables there exists a Parikh equivalent

deterministic automaton with 2O(n2) states. Even this bound is tight.

Keywords: Finite automaton, context-free grammar, Parikh’s theorem,
descriptional complexity, semilinear set, Parikh equivalence.

1 Introduction

It is well-known that the state cost of the conversion of nondeterministic finite
automata (NFAs) into equivalent deterministic finite automata (DFAs) is expo-
nential: using the classical subset construction [13], from each n-state NFA we
can build an equivalent DFA with 2n states. Furthermore, this cost cannot be
reduced.

In all examples witnessing such a state gap (e.g., [8–10]), input alphabets
with at least two letters and proof arguments strongly relying on the structure
of strings are used. As a matter of fact, for the unary case, namely the case

of the one letter input alphabet, the cost reduces to eΘ(
√
n·lnn), as shown by

Chrobak [1].
What happens if we do not care of the order of symbols in the strings, i.e., if

we are interested only in obtaining a DFA accepting a set of strings which are
equal, after permuting the symbols, to the strings accepted by the given NFA?

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 284–295, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Converting Nondeterministic Automata and Context-Free Grammars 285

This question is related to the well-known notions of Parikh image and Parikh
equivalence [11]. Two strings over a same alphabet Σ are Parikh equivalent if
and only if they are equal up to a permutation of their symbols or, equivalently,
for each letter a ∈ Σ the number of occurrences of a in the two strings is the
same. This notion extends in a natural way to languages (two languages L1 and
L2 are Parikh equivalent when for each string in L1 there is a Parikh equivalent
string in L2 and vice versa) and to formal systems which are used to specify
languages as, for instance, grammars and automata. Notice that in the unary
case Parikh equivalence is just the standard equivalence. So, in the unary case,
the answer to our previous question is given by the above mentioned result by
Chrobak.

Our first contribution in this paper is an answer to that question in the general
case. In particular, we prove that the state cost of the conversion of n-state
NFAs into Parikh equivalent DFAs is the same as in the unary case, i.e., it

is eΘ(
√
n·lnn). More surprisingly, we prove that this is due to the unary parts

of languages. In fact, we show that if the given NFA accepts only nonunary
strings, i.e., each accepted string contains at least two different letters, then we
can obtain a Parikh equivalent DFA with a polynomial number of states in n.
Hence, while in standard determinization the most difficult part (with respect
to the state complexity) is the nonunary one, in the “Parikh determinization”
this part becomes easy and the most complex part is the unary one.

In the second part of the paper we consider context-free grammars (CFGs).
Parikh Theorem [11] states that each context-free language is Parikh equivalent
to a regular language. We study this equivalence from a descriptional complexity
point of view. Recently, Esparza, Ganty, Kiefer, and Luttenberger proved that
each CFG in Chomsky normal form with h variables can be converted into a
Parikh equivalent NFA with O(4h) states [2]. In [7] it was proven that if G

generates a bounded language then we can obtain a DFA with 2h
O(1)

states,
i.e., a number exponential in a polynomial of the number of variables. In this
paper, we are able to extend such a result by removing the restriction to bounded
languages. We also reduce the upper bound to 2O(h2). A milestone for obtaining
such a result is the conversion of NFAs to Parikh equivalent DFAs presented
in the first part of the paper. By suitably combining that result (in particular
the polynomial conversion in the case of NFAs accepting nonunary strings) with
the above mentioned result from [2] and with a result by Pighizzini, Shallit, and
Wang [12] concerning the unary case, we prove that each context-free grammar in
Chomsky normal form with h variables can be converted into a Parikh equivalent
DFA with 2O(h2) states. From the results concerning the unary case, it follows
that this bound is tight.

Even for this simulation, as for that of NFAs by Parikh equivalent DFAs, the
main contribution to the state complexity of the resulting automaton is given
by the unary part.

286 G.J. Lavado, G. Pighizzini, and S. Seki

2 Preliminaries

Let Σ = {a1, a2, . . . , am} be an alphabet of m letters. Let us denote by Σ∗ the
set of all words over Σ including the empty word ε. Given a word w ∈ Σ∗, |w|
denotes its length and, for a letter a ∈ Σ, |w|a denotes the number of occurrences
of a in w. For a word u ∈ Σ∗, w is a prefix of u if u = wx for some word x ∈ Σ∗.
We denote by Pref(u) the set of all prefixes of u, and for a language L ⊆ Σ∗, let
Pref(L) =

⋃
u∈L Pref(u).

A language L has the prefix property or, equivalently, is said to be prefix-free
if and only if for each string x ∈ L, each proper prefix of x does not belong to L.
Given two sets A,B and a function f : A → Σ∗, we say that f has the prefix
property on B if and only if the language f(A ∩B) has the prefix property.

We denote the set of integers by Z and the set of nonnegative integers by N.
Then Zm and Nm denote the corresponding sets ofm-dimensional integer vectors
including the null vector 0 = (0, 0, . . . , 0). For 1 ≤ i ≤ m, we denote the i-th
component of a vector v by v[i].

Given k vectors v1, . . . ,vk ∈ Zm, we say that they are linearly independent if
and only if for all n1, . . . nk ∈ Z, n1v1+· · ·+nkvk = 0 implies n1 = . . . = nk = 0.
It is well-know that, in this case, k cannot exceed m. The following result will
be used in the paper.

Lemma 1. Given k linearly independent vectors v1, . . . ,vk ∈ Zm there are k
pairwise different integers t1, . . . , tk ∈ {1, . . . ,m} such that vj [tj] �= 0, for j =
1, . . . , k.

Proof. Let W be the m × k matrix which has v1, . . . ,vk as columns. Since the
given vectors are linearly independent, k ≤ m. Furthermore, by suitably deleting
m− k rows from W , we can obtain a k × k matrix V whose determinant d(V)
is nonnull.

If k = 1 then the result is trivial. Otherwise, we can compute d(V) along the

last column as d(V) =
∑k

i=1(−1)i+kvk[i]di,k, where di,k is the determinant of
the matrix Vi,k obtained by removing from V the row i and the column k. Since
d(V) �= 0, there is at least one index i such that vk[i] and di,k �= 0. Hence, as tk
we take such i. Using an induction on the matrix Vtk,k, we can finally obtain the
sequence t1, . . . , tk satisfying the statement of the theorem. �

A vector v ∈ Zm is unary if it contains at most one nonzero component, i.e.,
v[i],v[j] �= 0 for some 1 ≤ i, j ≤ m implies i = j; otherwise, it is nonunary. By
definition, the null vector is unary.

In the sequel, we reserve . for the componentwise partial order on Nm, i.e.,
u . v if and only if u[k] ≤ v[k] for all 1 ≤ k ≤ m. For a vector v ∈ Nm, let
Pred(v) = {u | u . v}. For u,v ∈ Nm, v − u is defined to be a vector w with
w[k] = v[k]− u[k] for all 1 ≤ k ≤ m. Note that v − u is a vector in Nm if and
only if u . v.

A semilinear set in Nm is a finite union of linear sets of the form {v0 +∑k
i=1 nivi | n1, . . . , nk ∈ N}, where k ≥ 0 and v0,v1, . . . ,vk ∈ Nm. The vector

v0 is called offset, while the vectors v1, . . . ,vk are called generators.

Converting Nondeterministic Automata and Context-Free Grammars 287

The Parikh map ψ : Σ∗ → Nm associates with a word w ∈ Σ∗ the vector
(|w|a1 , |w|a2 , . . . , |w|am). Then a word w ∈ Σ∗ is unary if and only if its Parikh
image ψ(w) is a unary vector; otherwise, w is nonunary. One can naturally
generalize this map for a language L ⊆ Σ∗ as ψ(L) = {ψ(w) | w ∈ L}. ψ(L)
is called the Parikh image of L. Languages L,L′ ⊆ Σ∗ are said to be Parikh
equivalent to each other if ψ(L) = ψ(L′).

We assume the readers to be familiar with the notions of deterministic and
nondeterministic finite automata (abbreviated as DFA and NFA), context-free
grammar (CFG), and context-free language (CFL) as well as their basic proper-
ties (see [5] for them). A CFG G is denoted by a quadruple (V,Σ, P, S), where
V is the set of variables, P the set of productions, and S ∈ V the start variable.
By L(G), we denote the set of all words in Σ∗ that have at least one derivation
from S. G is said to be in Chomsky normal form if all of its productions are in
one of the three simple forms, either B → CD, B → a, or S → ε, where a ∈ Σ,
B ∈ V , and C,D ∈ V \ {S}. CFGs in Chomsky normal form are called Chomsky
normal form grammars (CNFGs). According to the discussion in [4], we employ
the number of variables of CNFGs as a “reasonable” measure of descriptional
complexity for CFLs.

Parikh equivalence can be defined not only between languages but among
languages, grammars, and finite automata. A CFG G is Parikh equivalent to a
language L if ψ(L(G)) = ψ(L). Likewise, for a finite automaton A, we can say
that A is Parikh equivalent to L if ψ(L(A)) = ψ(L), where L(A) is the set of
words accepted by A.

Parikh’s theorem [11] states that the Parikh image of any context-free lan-
guage is a semilinear set. Thus, it has the following immediate consequence.

Theorem 1 ([11]). Every context-free language is Parikh equivalent to a regu-
lar language.

It is immediate to observe that in the case of unary languages, i.e., languages
defined over a one letter alphabet, two languages are Parikh equivalent if and
only if they are equal. Hence, as a consequence of Theorem 1, each unary context-
free language is regular. This result was firstly proved, without using Parikh’s
Theorem, by Ginsburg and Rice [3]. The equivalence between unary context-free
and regular languages has been studied from the descriptional complexity point
of view in [12], where the following result was proved:

Theorem 2 ([12]). For any CNFG G with h variables that generates a unary

language, there exists an equivalent DFA M with less than 2h
2

states.

In the paper we will also make use of the transformation of unary NFAs into
DFAs.

Theorem 3 ([1]). The state cost of the conversion of n-state unary NFAs into

equivalent DFAs is eΘ(
√
n·lnn).

288 G.J. Lavado, G. Pighizzini, and S. Seki

3 From NFAs to Parikh Equivalent DFAs

In this section we present our first main contribution. From each n-state NFA A

we derive a Parikh equivalent DFA A′ with eO(
√
n·lnn) states. Furthermore, we

prove that this cost is tight.
Actually, as a preliminary step we obtain a result which is interesting per

se: if each string accepted by the given NFA A contains at least two different
symbols, i.e., it is nonunary, then the Parikh equivalent DFA A′ can be obtained
with polynomially many states. Hence, the superpolynomial blowup is due to
the unary part of the accepted language.

A fundamental tool which will be used in this section is the following normal
form for the Parikh image of NFAs, which is based on a result from [6, 14].

Lemma 2. Given an alphabet Σ = {a1, a2, . . . , am}, there exists a polynomial p
such that for each n-state NFA A over Σ, if all the words in L(A) are nonunary
then ψ(L(A)) = Y ∪

⋃
i∈I Zi where:

– Y ⊆ Nm is a finite set of vectors whose components are bounded by p(n);
– I is a set of at most p(n) indices;
– for each i ∈ I, Zi ⊆ Nm is a linear set of the form:

Zi = {vi,0 + n1vi,1 + · · ·+ nkvi,k | n1, . . . , nk ∈ N} (1)

where 0 ≤ k ≤ m, the components of vi,0 are bounded by p(n), vi,1, . . . ,vi,k

are linearly independent vectors from {0, 1, . . . , n}m.

Futhermore, for each i ∈ I we can choose a nonunary vector xi ∈ Pred(vi,0)
such that all those vectors are pairwise distinct.

Proof. In [6, 14] it was proved that ψ(L(A)) can be written as claimed in the first

part of the statement of the lemma, with Y = ∅, I of size O(nm
2+3m+5m4m+6),

and the components of each offset vi,0 bounded by O(n3m+5m4m+6) (the result
holds also if unary words are accepted). We notice that, since the language
accepted by A does not contain any unary word, all the offsets vi,0 are nonunary.

If for each i ∈ I we can choose xi ∈ Pred(vi,0) such that all xi’s are pairwise
different, then the proof is completed.

Otherwise, we proceed as follows. For a vector v, let us denote by ‖v‖ its
infinite norm, i.e., the value of its maximum component. Let us suppose I ⊆ N
and we denote as NI the maximum element of I.

By proceeding in increasing order, for i ∈ I we choose a nonunary vector
xi ∈ Pred(vi,0) such that ‖xi‖ ≤ i and xi is different from all already chosen
xj , i.e., xi �= xj for all j ∈ I with j < i. The extra condition ‖xi‖ ≤ i will turn
out to be useful later.

When for an i ∈ I it is not possible to find such xi, we replace Zi by some
suitable sets. Essentially, those sets are obtained by enlarging the offsets using
sufficiently long “unrollings” of the periods. In particular, for j = 1, . . . , k, we
consider the set

ZNI+j = {(vi,0 + hjvi,j) + n1vi,1 + · · ·+ nkvi,k | n1, . . . , nk ∈ N} (2)

Converting Nondeterministic Automata and Context-Free Grammars 289

where hj is an integer satisfying the inequalities

NI + j ≤ ‖vi,0 + hjvi,j‖ < NI + j + n (3)

Due to the fact that vi,j ∈ {0, . . . , n}m, we can always find such hj . Furthermore,
we consider the following set

Yi = {vi,0 + n1vi,1 + · · ·+ nkvi,k | 0 ≤ n1 < h1, . . . , 0 ≤ nk < hk} (4)

It can be easily verified that Zi = Yi ∪
⋃k
j=1 ZNI+j .

Now we replace the set of indices I by the set Î = I−{i}∪{NI+1, . . . , NI+k}
and the set Y by Ŷ = Y ∪ Yi. We continue the same process by considering the
next index i.

We notice that, since we are choosing each vector xi ∈ Pred(vi,0) in such
a way that ‖xi‖ ≤ i, when we will have to choose the vector xNI+j for a set
ZNI+j introduced at this stage, by the condition (3) we will have at least one
possibility (a vector with one component equal to NI+j and another component
equal to 1; we remind the reader that, since the given automaton accepts only
nonunary strings, all offsets are nonunary). This implies that after examining all
sets Zi corresponding to the original set I, we do not need to further modify the
sets introduced during this process.

We finally observe that for each Zi in the initial representation, we introduced
at most m sets. Hence, the cardinality Ñ of the set of indices resulting at the
end of this process is O(nm

2+3m+5m4m+7).
By (3) the components of the offsets which have been added in this process

cannot exceed Ñ + n. Hence, it turns out that m · (Ñ + n) is an upper bound to
the components of vectors in Yi.

This permit us to conclude that p(n) = O(nm
2+3m+5m4m+8) is upper bound

for all these amounts. �

Now we are able to consider the case of automata accepting only words that are
nonunary.

Theorem 4. For each n-state NFA accepting a language none of whose words
are unary, there exists a Parikh equivalent DFA with a number of states
polynomial in n.

Proof. Let A be the given n-state NFA. We can express ψ(L(A)) as Y ∪
⋃
i∈I Zi

according to Lemma 2. Starting from this representation, we will build a DFA
Anon Parikh equivalent to A. To this end, we first build for each Zi a DFA Ai
that accepts a language whose Parikh image is equal to Zi, and then, from the
automata Ai’s so obtained, we derive the DFA A′ Parikh equivalent to

⋃
i∈I Zi.

We will also give a DFA A′′ accepting a language Parikh equivalent to Y . Hence,
by the standard construction for the union, we will finally get a DFA Anon Parikh
equivalent to A.

First, we handle the generators of Zi. Let us introduce a function g : Nm →
Σ∗ as: for a vector v = (i1, . . . , im), g(v) = ai11 a

i2
2 · · · aimm . Using this func-

tion, we map the generators vi,1, . . . ,vi,k into the words si,1, . . . , si,k; that is,

290 G.J. Lavado, G. Pighizzini, and S. Seki

Fig. 1. (Left) A construction of DFA AW , where the state qu is simply denoted by
u for clarity. (Right) A construction of DFA Ai that accepts {wi,1, wi,2, . . . , wi,k}∗ for
k = 3. In the construction of the final DFA Anon, if wi,0 = acb, then the initial state
of Ai is merged with the state qacb of AW .

si,j = g(vi,j). It is easy to define a finite automaton accepting the language
{si,1, si,2, . . . , si,k}∗, which consists of a start state q with k loops labeled with
si,1, si,2, . . . , si,k, respectively. The state q is the only accepting state. However,
this automaton is nondeterministic. To avoid this problem, we modify the lan-
guage by replacing each si,j , for j = 1, . . . , k, with a Parikh equivalent word
wi,j in such a way that for all pairwise different j, j′ the corresponding words
wi,j and wi,j′ begin with different letters. This is possible due to the fact, being
vi,1, . . . ,vi,k linearly independent, according to Lemma 1 we can find k dif-
ferent letters at1 , at2 , . . . , atk ∈ Σ such that vi,j [tj] > 0 for j = 1, . . . , k. For
j = 1, . . . , k, we “rotate” each si,j by a cyclic shift so that the resulting word,
wi,j , begins with an occurrence of the letter atj . Then wi,j is Parikh equivalent
to si,j . For example, if si,j = a31a

4
2a3 and tj = 2, then wi,j should be chosen as

a42a3a
3
1. The construction of a DFA Ai with one unique accepting state q that

accepts {wi,1, wi,2, . . . , wi,k}∗ must be now clear; q with k loops labeled with
these respective k words (see Fig. 1 (Right)). Furthermore, due to the limita-
tions deriving from Lemma 2, the length of these loops is at most mn so that
this DFA contains at most 1 +m(mn− 1) states.

Next, we handle all the offsets vi,0 for i ∈ I. For that, we use the function
f : Nm → Σ∗ defined as: for v ∈ Nm, f(v) = ←↩(g(v)), where ←↩ denotes the
1-step left circular shift. For example, f(4, 1, 2, 0, . . . , 0) = a31a2a

2
3a1. It can be

verified that the 1-step left circular shift endows f with the prefix property over
the nonunary vectors, that is, for any u,v ∈ Nm that are nonunary, if f(u) is a
prefix of f(v), then u = v. Let wi,0 = f(xi)g(vi,0 − xi), where xi is given by
Lemma 2. We now consider the finite languageW = {wi,0 | i ∈ I}. Because both
xi and xj are nonunary and f has the prefix property over nonunary words, the
language W is prefix-free. We build a (partial) DFA that accepts W , which is
denoted by AW = (QW , Σ, qε, δW , FW), where QW = {qu | u ∈ Pref(W)} and
FW = {qu | u ∈ W}. Its transition function δW is defined as: for u ∈ Pref(W)
and a ∈ Σ, if ua ∈ Pref(W), then δ(qu, a) = qua, while δ(qu, a) is undefined

Converting Nondeterministic Automata and Context-Free Grammars 291

otherwise. See Fig. 1 (Left). Clearly, this accepts W . Since the longest word(s)
in W is of length m ·p(n), this DFA contains at most 1+ |I| ·m ·p(n)≤ O(p2(n)).

It goes without saying that each accepting state of this DFA is only for one
word in W . In other words, it accepts two distinct words in W at distinct two
states. Now, based on AW and the DFAs Ai with i ∈ I, we can build a finite
automaton that accepts the language

⋃
i∈I wi,0L(Ai) without introducing any

new state. This is simply done by merging qwi,0 with the start state of Ai. Given
an input u, the resulting automaton A′ simulates the DFA AW , looking for a
prefix w of u such that w ∈ W . When such a prefix is found, A′ starts simulating
Ai on the remaining suffix z, where i is the index such that w = wi. Since W is
prefix-free, we need only to consider one decomposition of the input as u = wz.
This implies that A′ is deterministic. Finally, we observe that A′ contains at
most O(p2(n)) + |I|(1 +m(mn− 1)) = O(p2(n)) states, i.e., a number which is
polynomial in n.

We now sketch the construction of a DFA A′′ accepting a language LY whose
Parikh image is Y . We just take LY = {g(v) | v ∈ Y }. Let M be the maximum
of the components of vectors in Y . With each v ∈ {0, . . . ,M}m, we associate a
state qv which is reachable from the initial state by reading the string g(v). Final
states are those corresponding to vectors in Y . The automaton A′′ so obtained
has Mm = pm(n) states, a number polynomial in n.

Finally, by applying the standard construction for the union, from automata
A′ and A′′ we obtain the DFA Anon Parikh equivalent to the given NFA A. �

We now switch to the general case. We prove that for each input alphabet the
state cost of the conversion of NFAs into Parikh equivalent DFAs is the same as
for the unary alphabet.

Theorem 5. For each n-state NFA, there exists a Parikh equivalent DFA with

eO(
√
n·lnn) states. Furthermore, this cost is tight.

Proof. From a given n-state NFA A with input alphabet Σ = {a1, a2, . . . , am},
for each i = 1, . . . ,m, we first build an n-state NFA Ai accepting the unary
language L(A) ∩ a∗i . Using Theorem 3, we convert Ai into an equivalent DFA

A′
i with eO(

√
n·lnn) states. We can assume that the state sets of the resulting

automata are pairwise disjoint.
We define Au that accepts {w ∈ L(A) | w is unary} consisting of one copy

of each of these DFAs and a new state qs, which is its start state. In reading
the first letter ai of an input, Au transits from qs to the state q in the copy of
A′
i if A

′
i transits from its start state to q on ai (such q is unique because A′

i is
deterministic). These transitions from qs do not introduce any nondeterminism
because A′

1, . . . , A
′
m are defined over pairwise distinct letters. After thus entering

the copy, Au merely simulates A′
i. The start state qs should be also an accepting

state if and only if ε ∈ L(A′
i) for some 1 ≤ i ≤ m. Being thus built, Au accepts

{w ∈ L(A) | w is unary} and contains at most m · eO(
√
n·lnn) + 1 states.

On the other hand, the language {w ∈ L(A) | w is not unary} can be accepted
by an O(n)-state NFA A0, and Theorem 4 converts this NFA into a Parikh

292 G.J. Lavado, G. Pighizzini, and S. Seki

equivalent DFA An with a number of states r(n), polynomial in n. The standard
product construction is applied to Au and An in order to build a DFA accepting
L(Au) ∪ L(An). The number of states of the DFA thus obtained is bounded by

the product eO(
√
n·lnn) · r(n) = eO(

√
n·lnn) · eO(lnn) = eO(

√
n·lnn+lnn), which is

still bounded by eO(
√
n·lnn).

Finally, we observe that by Theorem 3, in the unary case eΘ(
√
n·lnn) is the

tight cost of the conversion from n-state NFAs to DFAs. This implies that the
upper bound we obtained here cannot be reduced. �

4 From CFGs to Parikh Equivalent DFAs

In this section we extend the results of Section 3 to the conversion of CFGs in
Chomsky normal form to Parikh equivalent DFAs. Actually, Theorem 4 will play
an important role in order to obtain the main result of this section. The other
important ingredient is the following result proved by Esparza et al. [2], which
gives the cost of the conversion of CNFGs into Parikh equivalent NFAs.

Theorem 6 ([2]). For a CNFG with h variables, there exists a Parikh equiva-
lent NFA with O(4h) states.

By combining Theorem 6 with the main result of the previous section, i.e.,
Theorem 5, we can immediately obtain a double exponential upper bound in h
for the size of DFAs Parikh equivalent to CNFGs with h variables. However, in
the next theorem we show how to do better. In fact, we are able to reduce the
upper bound to a single exponential in a polynomial of h.

Theorem 7. For any CNFG with h variables, there exists a Parikh equivalent
DFA with at most 2O(h2) states.

Proof. Let us denote the given CNFG by G = (V,Σ, P, S), where |V | = h and
Σ = {a1, a2, . . . , am} for some m ≥ 1.

In the case m = 1 (unary alphabet), one can employ Theorem 2 (note that,
over a unary alphabet, two languages L1, L2 are Parikh equivalent if and only if
they are equivalent). Hence, from now on we assume m ≥ 2.

Let us give an outline of our construction first:

1. From G, we first create CNFGs G1, G2, . . . , Gm with at most h variables
each, and Gnon with mh − m + 1 variables such that, for 1 ≤ i ≤ m, Gi
generates L(G) ∩ a∗i and Gnon generates the rest, i.e., L(Gnon) = {w ∈
L(G) | w is not unary}.

2. The grammars G1, G2, . . . , Gm are converted into respectively equivalent
unary DFAs A1, A2, . . . , Am. From these DFAs, a DFA Aunary accepting the
set of all unary words in L(G) is constructed.

3. The grammar Gnon is converted into a Parikh equivalent NFA.
4. From the NFA so obtained, a Parikh equivalent DFA Anon is built.
5. Finally, from Aunary and Anon, a DFA that accepts the union of L(Aunary)

and L(Anon) is obtained.

Converting Nondeterministic Automata and Context-Free Grammars 293

Observe that L(Aunary) = {w ∈ L(G) | w is unary} and L(Anon) is Parikh
equivalent to L(Gnon) = {w ∈ L(G) | w is not unary}. Thus, the DFA which is
constructed in this way is Parikh equivalent to the given grammar G.

We already have all the tools we need to implement Steps 2-5. (Step 1 will be
discussed later.) In particular:

2. According to Theorem 2, for i = 1, . . . ,m, grammar Gi is converted into
a DFA Ai with less than 2h

2

states. Using the same strategy presented in
the proof of Theorem 5, from A1, . . . , Am, we define Aunary consisting of one
copy of each of these DFAs and a new state qs, which is its start state. Hence,
the number of states of Aunary does not exceed m2h

2

.
3. This step is done using Theorem 6. The number of the states of the resulting

NFA is exponential in the number of the variables of the grammar Gnon and,
hence, exponential in h.

4. This step is done using Theorem 4. The number of states of the resulting
DFA Anon is polynomial in the number of states of the NFA obtained in
Step 3 and, hence, exponential in h.

5 The final DFA can be obtained as the product of two automata Aunary and
Anon. Considering the bounds obtained in Step 2 and 4 we conclude that the
number of states in exponential in h2.

To complete the proof, we have to discuss Step 1, where we design from G with
h variables the CNFGs G1, G2, . . . , Gm and Gnon with only linear blowup in the
number of their variables. The design of Gi is simply done by deleting from P all
productions of the form B → aj with i �= j. Built in this manner, it is impossible
for Gi to contain more than h variables.

Giving such a linear upper bound on the number of variables for Gnon is
slightly more involved. It is clear that any production of one letter or ε directly
from S is contrary to the purpose of Gnon. This observation enables us to focus
on the derivations by G that begins with replacing S by two variables. Consider
a derivation S ⇒G BC ⇒+

G uC ⇒+
G uv for some non-empty words u, v ∈ Σ+

and S → BC ∈ P . Gnon simulates G, but also requires extra feature to test
whether u and v contain respectively letters ai and aj for some i �= j and make
only derivations that pass this test valid. To this end, we let the start variable
S′ of Gnon make guess which of the two distinct letters in Σ have to derive from
B and C, respectively. We encode this guess into the variables in V \ {S} as
a subscript like Bi (this means that, for w ∈ Σ∗, Bi ⇒+

Gnon
w if and only if

B ⇒+
G w and w contains at least one ai).

Now, we give a formal definition of Gnon as a quadruple (V ′, Σ, P ′, S′), where
V ′ = {S′} ∪ {Bi | B ∈ V \ {S}, 1 ≤ i ≤ m} and P ′ consists of the following
production rules:

1. {S′ → BiCj | S → BC ∈ P and 1 ≤ i, j ≤ m with i �= j};
2. {Bi → CiDj , Bi → CjDi | B → CD ∈ P with B �= S and 1 ≤ i, j ≤ m};
3. {Bi → ai | B → ai ∈ P and 1 ≤ i ≤ m}.
We conclude the proof by checking that L(Gnon) = {w ∈ L(G) | w is not unary}.
It must be obvious for trained readers, and hence, they can skip the check and
directly go after the end of the proof.

294 G.J. Lavado, G. Pighizzini, and S. Seki

Lemma 3. Let Bi be a variable of Gnon that is different from the start variable.
For w ∈ Σ∗, Bi ⇒+

Gnon
w if and only if B ⇒+

G w and w contains at least one
occurrence of ai ∈ Σ.

Proof. Both inclusions will be proved using induction on the length of deriva-
tions.

(⇒): If Bi ⇒Gnon w (single-step derivation), then w must be ai and B →
ai ∈ P according to the type-3 production in P ′. Hence, the base case is correct.
The longer derivations must begin with either Bi → CiDj or Bi → CjDi for
some B → CD ∈ P and some 1 ≤ j ≤ m. It is enough to investigate the former
case. Then we have Bi ⇒Gnon CiDj ⇒+

Gnon
w1Dj ⇒+

Gnon
w1w2 = w for some

w1, w2 ∈ Σ+. By induction hypothesis, C ⇒+
G w1, w1 contains ai, andD ⇒+

G w2.
Hence, B ⇒G CD ⇒+

G w1D ⇒+
G w1w2 = w is a valid derivation by G.

(⇐): The base case is proved as for the direct implication. If B ⇒+
G w is not

a single-step derivation, then it must start with applying to B some production
B → CD ∈ P . Namely, B ⇒G CD ⇒+

G w′
1D ⇒+

G w′
1w

′
2 = w for some non-

empty words w′
1, w

′
2 ∈ Σ+. Thus, either w′

1 or w′
2 contains ai; let us say w

′
1 does.

By induction hypothesis, Ci ⇒+
Gnon

w′
1. A letter aj occurring in w′

2 is chosen,

and the hypothesis gives Dj ⇒+
Gnon

w′
2. As a result, the derivation Bi ⇒Gnon

CiDj ⇒+
Gnon

w1Dj ⇒+
Gnon

w′
1w

′
2 = w is valid. �

Let us check that L(Gnon) = {w ∈ L(G) | w is not unary} holds. For the di-
rect implication, assume that u ∈ L(Gnon). Its derivation should be S′ ⇒Gnon

BiCj ⇒+
Gnon

u1Cj ⇒+
Gnon

u1u2 = u for some S′ → BiCj ∈ P ′ and u1, u2 ∈ Σ+.
Ignoring the subscripts i, j in this derivation brings us with S ⇒∗

G u. Moreover,
Lemma 3 implies that u1 and u2 contain ai and aj , respectively. Thus, u is a
nonunary word in L(G).

Conversely, consider a nonunary word w ∈ L(G). Being nonunary, |w| ≥ 2,
and this means that its derivation by G must begin with a production S → BC.
Since B,C �= S, they cannot produce ε, and hence, we have S ⇒G BC ⇒+

G

w1C ⇒+
G w1w2 = w for some nonempty words w1, w2 ∈ Σ+. Then we can

find a letter ai in w1 and a letter aj in w2 such that i �= j. Now, Lemma 3
implies Bi ⇒+

Gnon
w1 and Cj ⇒+

Gnon
w2. Since S

′ → BiCj ∈ P ′, the derivation

S′ ⇒Gnon BiCj ⇒+
Gnon

w1Cj ⇒+
Gnon

w1w2 = w is a valid one by Gnon.
Note that, being thus designed, Gnon contains mh−m+1 variables. �

We finally observe that in [12] it was proven that there is a constant c > 0 such
that for infinitely many h > 0 there exists a CNFG with h variables generating
a unary language such that each equivalent DFA requires at least 2ch

2

states.
This implies that the upper bound given in Theorem 7 cannot be improved.

5 Conclusion

We proved that the state cost of the conversion of n-state NFAs into Parikh

equivalent DFAs is eΘ(
√
n·lnn). This is the same cost of the conversion of unary

Converting Nondeterministic Automata and Context-Free Grammars 295

NFAs into equivalent DFAs. Since in the unary case Parikh equivalence is just
equivalence, this result can be seen as a generalization of the Chrobak conver-
sion [1] to the nonunary case. More surprisingly, such a cost is due to the unary
parts of the languages. In fact, as shown in Theorem 4, for each n-state unary
NFA accepting a language which does not contain any unary word there exists
a Parikh equivalent DFA with polynomially many states. Hence, while for the
transformation from NFAs to equivalent DFAs we need at least two different
symbols to prove the exponential gap from n to 2n states and we have a smaller
gap in the unary case, for Parikh equivalence the worst case is due only to unary
strings.

Even in the proof of our result for CFGs (Theorem 7), the separation between
the unary and nonunary parts was crucial. Also in this case, it turns out that
the most expensive part is the unary one.

References

1. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Sci-
ence 47, 149–158 (1986); Corrigendum, ibid. 302, 497–498 (2003)

2. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: A simple and
direct automaton construction. Information Processing Letters 111(12), 614–619
(2011)

3. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM 9,
350–371 (1962)

4. Gruska, J.: Descriptional complexity of context-free languages. In: Proceedings of
2nd Mathematical Foundations of Computer Science, pp. 71–83 (1973)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

6. Kopczyński, E., To, A.W.: Parikh images of grammars: Complexity and applica-
tions. In: Symposium on Login in Computer Science, pp. 80–89 (2010)

7. Lavado, G.J., Pighizzini, G.: Parikh’s Theorem and Descriptional Complexity.
In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.)
SOFSEM 2012. LNCS, vol. 7147, pp. 361–372. Springer, Heidelberg (2012)

8. Lupanov, O.: A comparison of two types of finite automata. Problemy Kibernet. 9,
321–326 (1963) (in Russian); German translation: Über den Vergleich zweier Typen
endlicher Quellen. Probleme der Kybernetik 6, 329–335 (1966)

9. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: FOCS, pp. 188–191. IEEE (1971)

10. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions
on Computers C-20(10), 1211–1214 (1971)

11. Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)
12. Pighizzini, G., Shallit, J., Wang, M.: Unary context-free grammars and pushdown

automata, descriptional complexity and auxiliary space lower bounds. Journal of
Computer and System Sciences 65(2), 393–414 (2002)

13. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3, 114–125 (1959)

14. To, A.W.: Parikh images of regular languages: Complexity and applications,
arXiv:1002.1464v2 (February 2010)

Fine and Wilf’s Theorem for k-Abelian Periods�

Juhani Karhumäki, Svetlana Puzynina, and Aleksi Saarela

Turku Centre for Computer Science TUCS and Department of Mathematics
University of Turku, FI-20014 Turku, Finland

{karhumak,svepuz,amsaar}@utu.fi

Abstract. Two words u and v are k-abelian equivalent if they contain
the same number of occurrences of each factor of length k and, moreover,
start and end with a same factor of length k− 1, respectively. This leads
to a hierarchy of equivalence relations on words which lie properly in
between the equality and abelian equality.

The goal of this paper is to analyze Fine and Wilf’s periodicity theo-
rem with respect to these equivalence relations. A crucial question here is
to ask how far two “periodic” processes must coincide in order to guar-
antee a common “period”. Fine and Wilf’s theorem characterizes this
for words. Recently, the same was done for abelian words. We show here
that for k-abelian periods the situation resembles that of abelian words:
In general, there are no bounds, but the cases when such bounds exist
can be characterized. Moreover, in the cases when such bounds exist we
give nontrivial upper bounds for these, as well as lower bounds for some
cases. Only in quite rare cases (in particular for k = 2) we can show that
our upper and lower bounds match.

1 Introduction

In 1965, Fine and Wilf proved their famous periodicity theorem [1]. It tells ex-
actly how long a word with two periods p and q can be without having the
greatest common divisor of p and q as a period. Many variations of the theorem
have been considered. For example, there are several articles on generalizations
for more than two periods, see e.g. [2] and [3]. Periods of partial words were stud-
ied in e.g. [4], [5] and [6]. Periodicity with respect to an involution was considered
in [7]. Particularly interesting in the context of this article is the variation related
to abelian equivalence. This was first considered by Constantinescu and Ilie in
2006 [8]. They proved an upper bound in the case of relatively prime periods
and stated that otherwise there are no upper bounds. Blanchet-Sadri, Tebbe and
Veprauskas [9] gave an algorithm showing the optimality of the above bound,
although they only proved the correctness of the algorithm in some cases.

In this paper the k-abelian versions of periodicity are studied. Two words are
called k-abelian equivalent if they contain the same number of occurrences of
each factor of length k, if their prefixes of length k− 1 are the same and if their

� Supported by the Academy of Finland under grants 137991 (FiDiPro) and 251371
and by Russian Foundation of Basic Research (grants 10-01-00424, 12-01-00448).

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 296–307, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fine and Wilf’s Theorem for k-Abelian Periods 297

suffixes of length k − 1 are the same. For k-abelian equivalence the problem is
similar but more complicated than for abelian equivalence. Again, there does
not always exist a bound: If gcd(p, q) > k, then there are infinite words having
k-abelian periods p and q but not gcd(p, q). In all other cases a finite upper
bound for the length of such words is obtained. In the case k = 2 and in some
other special cases an exact variant of Fine and Wilf’s theorem can be given. In
the general case, however, the problem seems to be rather intricate. Nontrivial
upper bounds in the general case and lower bounds in some special cases are
proved but many open questions about the behavior of the problem remain.

2 Preliminaries

We study words over a non-unary alphabet Σ. For a general reference on com-
binatorics on words, see e.g. [10].

The length of a word w ∈ Σ∗ is denoted by |w| and the product of n copies of
w by wn. If w = tuv, then u is a factor of w. If |t| = 0, then u is a prefix of w, and
if |v| = 0, then u is a suffix of w. The notation u ≤ w is used to mean that u is a
prefix of w. The prefix and suffix of length m ≤ |w| are denoted by prefm(w) and
suffm(w). The number of occurrences of a factor u in w is denoted by |w|u and
the reversal of w by wR. Occasionally we will also consider right-infinite words.
Then tuω = tuuu . . . means the word consisting of t followed by infinitely many
copies of u.

Let w = a1 . . . an, where a1, . . . , an ∈ Σ∗. A positive integer p is a period of
w if ai+p = ai for every i ∈ {1, . . . , n− p}. Equivalently, p is a period if there is
a word u of length p, a prefix u′ of u and a number m such that w = umu′.

Now we state Fine and Wilf’s periodicity theorem, which was proved in [1].

Theorem 2.1 (Fine and Wilf). Let p, q > gcd(p, q) = d. Let w have periods
p and q. If |w| ≥ p + q − d, then w has period d. There are words of length
p+ q − d− 1 that have periods p and q but not period d.

Two words u and v are abelian equivalent if |u|a = |v|a for every letter a.
If there are abelian equivalent words u0, . . . , un+1 of length p and a non-

negative integer r ≤ p− 1 such that

w = suffr(u0)u1 . . . unpref|w|−np−r(un+1),

then w has k-abelian period p. If r = 0, then w has initial abelian period p.
In [8] it is proved that a word of length 2pq−1 having relatively prime abelian

periods p and q has also period 1. The authors also conjectured that this bound
is optimal.

Theorem 2.2 (Constantinescu and Ilie). Let p, q > gcd(p, q) = 1. Let w
have abelian periods p and q. If

|w| ≥ 2pq − 1,

then w is unary.

298 J. Karhumäki, S. Puzynina, and A. Saarela

In [9] an algorithm constructing optimal words was described, and a proof of
correctness was provided for some pairs (p, q).

Initial abelian periods were not considered in [8] and [9] but from the proofs
it is quite easy to see that that the value 2pq − 1 could be replaced with pq if
the periods are assumed to be initial.

Let k be a positive integer. Two words u and v are k-abelian equivalent if the
following conditions hold:

– |u|t = |v|t for every word t of length k,
– prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v) (or u = v, if |u| < k−1

or |v| < k − 1).

We can replace the conditions with a single one and get an equivalent definition:

– |u|t = |v|t for every word t of length at most k.

It is easy to see that k-abelian equivalence implies k′-abelian equivalence for
every k′ < k. In particular, it implies abelian equivalence, which is the same as
1-abelian equivalence. For more on k-abelian equivalence, see [11] and [12].

We define k-abelian periodicity similarly to abelian periodicity: If there are
k-abelian equivalent words u0, . . . , un+1 of length p and a non-negative integer
r ≤ p− 1 such that

w = suffr(u0)u1 . . . unpref|w|−np−r(un+1),

then w has k-abelian period p with offset r. If r = 0, then w has initial k-abelian
period p. Notice that if w has a k-abelian period p, then so has every factor of
w and wR. If w has initial k-abelian period p, then so has every prefix of w.

In this article we are mostly interested in initial k-abelian periods. Many of
our results could be generalized for noninitial periods, but these generalizations
are more complicated and the bounds are worse.

Example 2.3. The initial abelian periods of w = babaaabaabb are 5, 7, 8, 9, 10,
In addition, w has abelian periods 3 and 6.

If k is large compared to p, then k-abelian period p is also an ordinary period.

Lemma 2.4. If w has a k-abelian period p ≤ 2k − 1, then it has period p.

Proof. Words of length ≤ 2k − 1 are k-abelian equivalent iff they are equal. �

Let k ≥ 1 and let p, q ≥ 2 be such that neither of p and q divides the other. Let
d = gcd(p, q). We define Lk(p, q) to be the length of the longest word that has
initial k-abelian periods p and q but does not have initial k-abelian period d. If
there are arbitrarily long such words, then Lk(p, q) = ∞.

The following two questions can be asked:

– For which values of k, p and q is Lk(p, q) finite?
– If Lk(p, q) is finite, how large is it?

Fine and Wilf’s Theorem for k-Abelian Periods 299

If w is a word of length pq/d that has initial k-abelian periods p and q but does
not have initial k-abelian period d, then also the infinite word wω has initial
k-abelian periods p and q but does not have initial k-abelian period d. So either
Lk(p, q) < pq/d or Lk(p, q) = ∞.

The first question is answered exactly in Sect. 3: Lk(p, q) is finite if and only
if d ≤ k. The second question is answered exactly if k = 2. This is done in Sect.
4. In Sect. 5, nontrivial upper bounds are proved for Lk(p, q) in the case d ≤ k.

The same questions can be asked also for non-initial k-abelian periods. Again,
infinite words exist if and only if d > k, but the proof is omitted here.

The following lemma, stated here without proof, shows that the size of the
alphabet is not important in our considerations (if there are at least two letters).

Lemma 2.5. If there is a word w that has k-abelian periods p and q but that
does not have k-abelian period d = gcd(p, q), then there is a binary word of length
|w| that has k-abelian periods p and q but that does not have k-abelian period d.

3 Existence of Bounds

In this section we characterize when Lk(p, q) is finite: If gcd(p, q) > k, then
Lk(p, q) = ∞ by Theorem 3.1, otherwise Lk(p, q) < pq/d by Theorem 3.4.

Theorem 3.1. Let p, q > gcd(p, q) = d > k. There is an infinite word that has
initial k-abelian periods p and q but that does not have k-abelian period d.

Proof. If k = 1, then adbbad−2(bad−1)ω is such a word, and if k > 1, then
a2d−k−1bak−1b(ad−1b)ω is such a word. These words have initial k-abelian peri-
ods id for all i > 1 and hence initial k-abelian periods p and q. �

Assume that a word has k-abelian periods p, q. If p, q ≤ 2k − 1, then they are
ordinary periods, so Theorem 2.1 can be used. If p ≤ 2k−1 but q > 2k−1, then
we get the following result that is similar to Theorem 2.1 but slightly worse.

Theorem 3.2. Let p < 2k and p ≤ q. Let w have k-abelian periods p and q. If

|w| ≥ 2p+ 2q − 2k − 1 and |w| ≥ 2q − 1,

then w has period gcd(p, q).

Proof. If q ≤ 2k − 1, then the claim follows from Lemma 2.4 and Theorem 2.1,
so let q ≥ 2k. By Lemma 2.4, p is a period. Let q be k-abelian period with offset
r. Because |w| ≥ 2q − 1, there is an integer j such that

0 ≤ r + jq ≤ |w|
2

≤ r + (j + 1)q ≤ |w|.

Then there are words t, u, s such that |t| = r+ jq, |u| = q and w = tus. Because

|st| = |w| − q ≥ 2p+ q − 2k − 1 ≥ 2p− 1,

300 J. Karhumäki, S. Puzynina, and A. Saarela

one of t and s has length at least p. The other has length at least �|w|/2� − q ≥
p−k. It follows that w has a factor v = t′us′, where |t′s′| = p−1, s′ is a prefix of
s and of prefk−1(u) and t′ is a suffix of t and of suffk−1(u). Then v has periods
p and q. By Theorem 2.1, v has period gcd(p, q). Because w has period p and its
factor of length p has period gcd(p, q), w has period gcd(p, q). �

Lemma 3.3. If w has a k-abelian period p and some factor of w of length 2p−1
has at most k factors of length k, then w has a period d ≤ k that divides p.

Proof. If p ≤ k, then we can set d = p by Lemma 2.4, so let p > k. There are
k-abelian equivalent words u0, . . . , un of length p such that w = tu1 . . . un−1s,
where t is a suffix of u0 and s is a prefix of un. Every factor v of w of length
2p− 1 has a factor of the form v′ = t′ums

′, where t′ is a suffix of every ui, s
′ is a

prefix of every ui and |t′s′| = k−1. Every factor of w of length k is a factor of v′.
Because v can be selected so that it has at most k factors of length k, it follows
that also w has at most k factors of length k. Thus w has a period d1 ≤ k. By
Theorem 3.2, w has period gcd(d1, p). �

Theorem 3.4. Let w have initial k-abelian periods p and q, d = gcd(p, q) < p, q
and d ≤ k. If

|w| ≥ lcm(p, q),

then w has period d.

Proof. If p ≤ k or q ≤ k, then the claim follows from Theorem 3.2, so let p, q > k.
Let p = dp′ and q = dq′ and let w′ be the prefix of w of length pq/d = p′q′d.
There is a word u of length p and a word v of length q such that w′ is k-abelian
equivalent with uq

′
and vp

′
. Let s be the common prefix of u and v of length

k − 1. If x ∈ Σk, then

|w′s|x = |uq
′
s|x = q′|us|x and |w′s|x = |vp

′
s|x = p′|vs|x.

Thus |w′s|x is divisible by both p′ and q′, so it is divisible by p′q′. In particular,
it is either 0 or at least p′q′. Because∑

x∈Σk

|w′s|x = |w′s| − k + 1 = |w′| = p′q′d,

there can be at most d factors x ∈ Σk such that |w′s|x ≥ p′q′. This means that
w′s can have at most d different factors of length k. By Lemma 3.3, w has a
period d1 ≤ k that divides p. By Theorem 3.2, w has period gcd(d1, q). This
divides d, so w has period d. �

4 Initial 2-Abelian Periods

In this section the exact value of L2(p, q) is determined. We start with upper
bounds and then give matching lower bounds. First we state the following lemma
that is very useful also later in the general k-abelian case.

Fine and Wilf’s Theorem for k-Abelian Periods 301

Lemma 4.1. Let p = dp′, q = dq′, gcd(p′, q′) = 1 and p′, q′ ≥ 2. For every
i satisfying 0 < |i| < min{p′, q′} there are numbers mi ∈ {1, . . . , q′ − 1} and
ni ∈ {1, . . . , p′ − 1} such that

niq −mip = id. (1)

The notation of Lemma 4.1 is used in this section and in the later sections, that is,
mi and ni are always numbers such that (1) holds. The equalities n1q = m1p+d
and m−1p = n−1q + d are particularly important.

Upper Bounds. The following lemma gives an upper bound in the 2-abelian case.

Lemma 4.2. Let p, q ≥ 2 and gcd(p, q) = 1. Let w have initial 2-abelian periods
p and q. If

|w| ≥ max{n1q,m−1p},
then w is unary.

Proof. The word w has prefixes

u1 . . . um1a = v1 . . . vn1 and u1 . . . um−1 = v1 . . . vn−1a
′, (2)

where the ui are 2-abelian equivalent words of length p, the vi are 2-abelian
equivalent words of length q and a, a′ are letters. Both a and a′ are first letters
of every ui and vi, so they are equal.

For any letter b �= a, it follows from (2) that

m1|u1|b = n1|v1|b and m−1|u1|b = n−1|v1|b

and thus
m1n−1|u1|b|v1|b = n1m−1|u1|b|v1|b. (3)

By (1), m1p < n1q and m−1p > n−1q and thus

m1n−1 < n1m−1. (4)

Both (3) and (4) can hold only if |u1|b|v1|b = 0. It follows that w ∈ a∗. �

Lower Bounds. The following lemma gives a lower bound in the 2-abelian case.

Lemma 4.3. Let q > p ≥ 2, gcd(p, q) = 1, x, y be the smallest positive integers
such that xq−yp = ±1. Then there exists a non-unary word w of length (p−x)q
in the case xq−yp = +1 (or (q−y)p in the case xq−yp = −1) which has initial
2-abelian periods p and q.

Proof. The pair (x, y) is either (n1,m1) or (n−1,m−1) (the one with smaller
numbers), and the pair (p− x, q − y) is the other one.

First we describe the construction (actually, the algorithm producing the word
w), then give an example, and finally we prove that the algorithmworks correctly,
i.e. it indeed produces a word with initial 2-abelian periods p and q.

We need the following notion. Letm ≥ l ≥ 0, c, d ∈ {a, b}. DefineK2(m, l, c, d)
to be the set of binary words satisfying the following conditions:

302 J. Karhumäki, S. Puzynina, and A. Saarela

– words of length m
– containing l letters b (and hence m− l letters a)
– b’s in them are isolated (i.e., with no occurrence of factor bb)
– the first letter being c ∈ {a, b}, the last letter being d ∈ {a, b}

The following properties are easy to conclude.

1. The set K2(m, l, a, a) is non-empty for l < m/2, and the set K2(m, l, a, b) is
non-empty for 0 < l ≤ m/2.

2. K2(m, l, c, d) is a 2-abelian class of words. For c = d = a it contains l
occurrences of ab, l occurrences of ba, m− 2l − 1 occurrences of aa and no
occurrences of bb. For c = a, d = b it contains l occurrences of ab, l − 1
occurrences of ba, m− 2l occurrences of aa and no occurrences of bb.

3. If u ∈ K2(m, l, c, d), u
′ ∈ K2(m

′, l′, c′, d′), and at least one of the letters d
and c′ is a, then uu′ ∈ K2(m+m′, l + l′, c, d′).

Now, our construction is done as follows:

1. Find the smallest integers x, y satisfying xq − yp = ±1. In the case xq −
yp = −1 we construct a word w with 2-abelian periods K2(p, x, a, a) and
K2(q, y, a, b). Note that in this case x < p/2, y ≤ q/2. If xq − yp = 1, we
take the periods to be K2(p, x, a, b) and K2(q, y, a, a). In this case x ≤ p/2,
y < q/2. To be definite, assume that xq − yp = −1, in the other case the
construction is symmetric.

2. Now we start building our word based on 2-abelian periods indicated in 1.
We mark the positions ip and jq for i = 0, . . . , q − y, j = 0, . . . , p − x, and
denote these positions by tm in increasing order, m = 0, . . . , q − y + p− x.
Now we will fill in the factors vm = w[tm−1, tm − 1] one after another.
2.1. Put v1 equal to any word from the 2-abelian class K2(p, x, a, a) of p-

period.
2.2. If in vm we have that tm−1 = (i − 1)p and tm = ip for some i, then

simply put any word from the 2-abelian class K2(p, x, a, a) of p-period.
2.3. If in vm we have that tm−1 = ip and tm = jq for some i and j, then

fill it with any word from K2(jq − ip, jy − ix, a, b). Then the word
wtm−q . . . wtm−1 is from the 2-abelian classK2(q, y, a, b) of the q-period.

2.4. If in vm we have that tm−1 = jq and tm = ip for some i and j, then
fill it with any word from K2(ip − jq, ix − jy, a, a). Then the word
wtm−p . . . wtm−1 is from the 2-abelian classK2(p, x, a, a) of the p-period.

Example 4.4. p = 7, q = 10. We find x = 2, y = 3, so we take the 2-abelian
class of the word aaababa as p-period and the 2-abelian class of aaaaababab as
q-period, and the length of word is p(q− y) = 49. One of the words given by the
construction is

aaababa.aab.aaba.aaabab.a.aaababa.ab.aaaba.aabab.aa.aaababa.

Here the lower dots are placed at positions 7i, and the upper dots at positions
10j. This word has initial 2-abelian periods 7 and 10. In the example each time
we chose the lexicographically biggest word vi, though we actually have some
flexibility. E.g., one might take v1 = abaaaba, so the word is not unique.

Fine and Wilf’s Theorem for k-Abelian Periods 303

To prove the correctness of the algorithm, we will prove that on each step 2.3 and
2.4 the corresponding 2-abelian classes are non-empty, so that one can indeed
choose such a word. This would mean that on each step m we obtain a word
v1 . . . vm such that all its prefixes of lengths divisible by p and q are 2-abelian p-
and q-periodic, respectively (in other words, we have periodicity in full periods
up to length tm), and the last incomplete period (either p- or q-period) starts
with a.

Correctness of step 2.3. At step 2.3, we should add a word vm ∈ K2(jq−ip, jy−
ix, a, b) = K2(tm − tm−1, l, a, b), where the length tm − tm−1 = jq − ip < p and
the number l of b’s is as large as required so that wtm−q . . . wtm−1 be 2-abelian
equivalent to the 2-abelian q-periodK2(q, y, a, b). In view of properties 1–3, these
conditions are sufficient to guarantee that wtm−q . . . wtm−1 is 2-abelian equivalent
to the 2-abelian q-period K2(q, y, a, b). The only thing we should care about is
that we can indeed choose such a word, i.e., that the set K2(jq− ip, jy− ix, a, b)
is non-empty. So, we should check the required number l = jy − ix of b’s: it
should not be larger than |vm/2| and it should not be less than 1.

Suppose l = jy−ix ≤ 0 (negative values mean that we already have too many
b’s). The density of the letter b is ρqb = y/q in the q-period, and ρpb = x/p, in
the p-period. Since xq − yp = −1, we have ρqb = y/q > ρpb = x/p. On the other
hand, since jy < ix by assumption and ip < jq, we have a contradiction:

ρqb =
jy

jq
≤ ix

jq
<
ix

ip
= ρpb .

Suppose |vm| > l > |vm|/2. By induction hypothesis, we have that the word
v1 . . . vm−1 of length ip contains xi letters b, hence v1 . . . vm of length jq should
contain more than xi + |vm|/2 letters b.

Consider a word u of length (p − x)q with density ρqb = y/q having
y(p − x) letters b in it. Removing one letter b from it, we obtain a word of
length (p− x)q − 1 = (q − y)p with density

y(p− x)− 1

(p− x)q − 1
=

(q − y)x

(q − y)p
=
x

p
= ρpb

and with x(q − y) letters b in it.
Now consider a word v = v1 . . . vm−1v

′, where v′ is of length jq − ip and
contains jy− ix letters b (i.e., it is of the same length and with the same number
of b’s as vm is supposed to be for 2-abelian q-periodicity). So, |v| = qj, |v|b = yj.
Now remove one letter b from the suffix v′ of v. Compare v with the word u. Since
v is shorter than u, after removing one letter b from v and from u the density of
b’s in the remaining part of v is smaller than in the remaining part of u, which is
ρpb = x/p. The remaining part of v consists of v1 . . . vm−1 with density ρpb = x/p
and v′ without one b and with density at least 1/2. Since ρpb = x/p < 1/2, we
have that the density of b’s in the remaining part of v is bigger than ρpb = x/p.
A contradiction.

The case l ≥ |vm| leads to a contradiction in a similar way.
Correctness of step 2.4 is proved similarly to correctness of step 2.3.

304 J. Karhumäki, S. Puzynina, and A. Saarela

So, we built a word w of length (q − y)p having initial 2-abelian p-period
and initial 2-abelian q-period till length (q − y)p − q + 1 (within full periods).
It remains to check that suffq−1(w) can be extended till a word of the 2-abelian
class K2(q, y, a, b) of the q-period. It is easy to see that it can be extended in
this way by adding letter b. �

By a similar construction we find optimal words for the abelian case. Actually,
in the abelian case the proof is simpler, since one has less restrictions than in the
2-abelian case; the only thing one should take care of is frequencies of letters.
We construct such words satisfying additional condition, which we use later for
k-abelian case. The construction is similar to the construction from Lemma 4.3,
we omit the details due to space limit.

Lemma 4.5. Let q > p ≥ 2, gcd(p, q) = 1. Then there exists a non-unary
word w of length pq − 1 which has initial abelian periods p and q, and moreover
wip = wip+p and wjq = wjq+q for all i, j for which the indices are defined.

Lemma 4.6. Let q > p > gcd(p, q) = d = k. Then there exists a non-unary
word w of length pq/d − 1 which has initial k-abelian periods p and q and no
k-abelian period d.

Proof. The word w is constructed from the word w′ given by construction from
Lemma 4.5 for p/d and q/d: w = ϕ(w′)ak−1, where the morphism ϕ is given by
ϕ(a) = ak, ϕ(b) = ak−1b. �

Optimal Values. Combining the previous results gives two exact theorems.

Theorem 4.7. Let p, q > gcd(p, q) = k. Then

Lk(p, q) =
pq

k
− 1.

Proof. Follows from Theorem 3.4 and Lemmas 4.5 and 4.6. �
Now we get a version of Fine and Wilf’s theorem for initial 2-abelian periods.

Theorem 4.8. Let p, q > gcd(p, q) = d. Then

L2(p, q) =

⎧⎪⎨⎪⎩
max{m1p, n−1q} if d = 1,

pq/2− 1 if d = 2,

∞ if d ≥ 3.

Proof. After some calculations the case d = 1 follows from Lemmas 4.2 and 4.3,
the case d = 2 from Theorem 4.7, and the case d ≥ 3 from Theorem 3.1. �

The size of max{m1p, n−1q} depends a lot on the particular values of p and q.
The extreme cases are p = 2, which gives n−1q = q, and q = p+ 1, which gives
n−1q = pq − q. In general we get the following corollary.

Corollary 4.9. Let q > p > gcd(p, q) = 1. Then

pq

2
+
p

2
− 1 ≤ L2(p, q) ≤ pq − q.

Fine and Wilf’s Theorem for k-Abelian Periods 305

5 General Upper Bounds

In this section Lk(p, q) is studied for k ≥ 3. We are not able to give the exact
value in all cases, but we will prove an upper bound that is optimal for an infinite
family of pairs (p, q). We start with an example.

Example 5.1. Let k ≥ 2, p ≥ 2k − 1 and q = p+ 1. The word

(ap−k+1bak−2)q−2k+2ap−k+1

of length (q − 2k+ 2)p+ p− k + 1 = pq − 2kq+ 3q + k − 2 has initial k-abelian
periods p and q but does not have period gcd(p, q) = 1.

Recall the notation of Lemma 4.1: mi ∈ {1, . . . , q′ − 1} and ni ∈ {1, . . . , p′ − 1}
are numbers such that niq−mip = id. This is used in the following lemmas and
theorems. The proofs of Lemmas 5.2 and 5.3 are in some sense more complicated
and technical versions of the proof of Lemma 4.2 and they are omitted because
of space constraints.

Lemma 5.2. Let p = dp′, q = dq′, gcd(p′, q′) = 1 and 2 ≤ p′ < q′. Let k −
1 = dk′ and 1 ≤ k′ < p′/2. Let w have initial k-abelian periods p and q. Let
u = prefp(w), v = prefq(w) and s = prefd(w). If there are indices

i ∈ {−1, 1}, j ∈ {−k′, k′}, l ∈ {−2k′ + 1, . . . ,−1} ∪ {1, . . . , 2k′ − 1}

such that i, j, l do not all have the same sign and

mip, niq ≤ |w| − k + 1+ d, (5)

mjp, njq ≤ |w|, (6)

mlp, nlq ≤ |w|+ k − 1− d, (7)

then

prefk−1(u) = prefk−1(v) = sk
′

and suffk−1(u) = suffk−1(v) = sk
′
.

Lemma 5.3. Let p = dp′, q = dq′, gcd(p′, q′) = 1 and 2 ≤ p′ < q′. Let k −
1 = dk′ and 1 ≤ k′ < p′/2. Let w have initial k-abelian periods p and q. Let
u = prefp(w), v = prefq(w) and s = prefd(w). Let

prefk−1(u) = prefk−1(v) = sk
′

and suffk−1(u) = suffk−1(v) = sk
′
.

If there are indices

i, j ∈ {−2k′, . . . ,−1} ∪ {1, . . . , 2k′}

such that minj �= mjni and

mip, niq,mjp, njq ≤ |w|+ k − 1, (8)

then w has period d.

306 J. Karhumäki, S. Puzynina, and A. Saarela

Theorem 5.4. Let p = dp′, q = dq′, gcd(p′, q′) = 1 and 2 ≤ p′ < q′. Let
k − 1 = dk′ and 1 ≤ k′ ≤ p′/4. Let w have initial k-abelian periods p and q. If

|w| ≥ pq

d
− 2(k − 1)q

d
+ q + k − 1

then w has period d.

Proof. If niq −mip = id, then (p′ − ni)q − (q′ −mi)p = −id. It follows that for
every i, eithermip, niq ≤ pq/(2d) orm−ip, n−iq ≤ pq/(2d). Because p ≥ 4(k−1),
|w| ≥ pq/(2d). Thus the indices i, j in Lemma 5.2 exist.

If the above indices i and j have a different sign, then l exists (for example,
l = i will do). If i and j have the same sign, then there are 2k′−1 candidates for
l. All of these have the same sign, so for these l, the numbers nl are different. If
we select l so that nl is as small as possible, then nl ≤ p′ − 2k′ + 1. Now

mlp, nlq ≤ nlq + |l|d ≤ (p′ − 2k′ + 1)q + (2k′ − 1)d,

so in order for (7) to be satisfied, it is sufficient that

|w| ≥ (p′ − 2k′ + 1)q + (2k′ − 1)d− k + 1 + d.

This is the bound of the theorem, so l exists and Lemma 5.2 can be used.
We need to prove the existence of the indices i and j in Lemma 5.3; the

other assumptions are satisfied by Lemma 5.2. By the argument that was used
for the existence of the index l above, there exists i ∈ {1, . . . , 2k′} such that
mip, niq ≤ |w|+ k− 1 and j ∈ {−1, . . . ,−2k′} such that mjp, njq ≤ |w|+ k− 1.
Because mip < niq and njq < mjp, it follows that minj < nimj and Lemma
5.3 can be used to complete the proof. �

If d = 1, then Theorem 5.4 tells that Lk(p, q) ≤ pq−2kq+3q+k−2. By Example
5.1, there is an equality if q = p + 1. The next example shows that for some p
and q the exact value is much smaller.

Example 5.5. Let k ≥ 2, r ≥ 2, p = rk+1 and q = rk+k+1. Then gcd(p, q) = 1.
The word w = ((ak−1b)ra)r+2ak−2 has initial k-abelian periods p and q. Because
n−1 = r, m−1 = r+ 1, mk−1 = r+ 2 and nk−1 = r+ 1, it follows from Lemmas
5.2 and 5.3 and the above word w that

Lk(p, q) = (r + 2)p+ k − 2 =
pq

k
+ q − q

k
− 1.

6 Conclusion

We conclude with a summary of the results related to initial k-abelian periods.
Let d = gcd(p, q) < p < q and d ≤ k.

– By Theorem 4.7, if d = k, then

Lk(p, q) =
pq

d
− 1.

Fine and Wilf’s Theorem for k-Abelian Periods 307

– By Theorem 4.8, if d = 1, then

L2(p, q) = max{m1p, n−1q}.

– By Theorem 5.4, if 2 ≤ k ≤ p/4 + 1 and k − 1 is divisible by d, then

Lk(p, q) ≤
pq

d
− 2(k − 1)q

d
+ q + k − 2.

This is optimal if q = p+ 1.
– By Theorem 3.2, if k ≥ (p+ 1)/2, then

Lk(p, q) ≤ max{2p+ 2q − 2k − 2, 2q − 2}.

– By Lemma 2.4 and Theorem 2.1, if k ≥ (q + 1)/2, then

Lk(p, q) = p+ q − d− 1.

References

1. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Amer.
Math. Soc. 16, 109–114 (1965)

2. Castelli, M.G., Mignosi, F., Restivo, A.: Fine and Wilf’s theorem for three periods
and a generalization of Sturmian words. Theoret. Comput. Sci. 218(1), 83–94 (1999)

3. Tijdeman, R., Zamboni, L.Q.: Fine and Wilf words for any periods II. Theoret.
Comput. Sci. 410(30-32), 3027–3034 (2009)

4. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoret.
Comput. Sci. 218(1), 135–141 (1999)

5. Blanchet-Sadri, F.: Periodicity on partial words. Comput. Math. Appl. 47(1), 71–82
(2004)

6. Shur, A.M., Gamzova, Y.V.: Partial words and the period interaction property.
Izv. Ross. Akad. Nauk Ser. Mat. 68(2), 191–214 (2004)

7. Kari, L., Seki, S.: An improved bound for an extension of Fine and Wilf’s theorem
and its optimality. Fund. Inform. 101(3), 215–236 (2010)

8. Constantinescu, S., Ilie, L.: Fine and Wilf’s theorem for abelian periods. Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS 89, 167–170 (2006)

9. Blanchet-Sadri, F., Tebbe, A., Veprauskas, A.: Fine and Wilf’s theorem for abelian
periods in partial words. In: Proceedings of the 13th Mons Theoretical Computer
Science Days (2010)

10. Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, vol. 1, pp. 329–438. Springer (1997)

11. Huova, M., Karhumäki, J., Saarela, A.: Problems in between words and abelian
words: k-abelian avoidability. Theoret. Comput. Sci. (to appear)

12. Karhumäki, J., Saarela, A., Zamboni, L.: On a generalization of Abelian equiva-
lence (in preparation)

Pseudoperiodic Words

Alexandre Blondin Massé, Sébastien Gaboury, and Sylvain Hallé�

Département d’informatique et de mathématique
Université du Québec à Chicoutimi

555, boulevard de l’Université
Chicoutimi (QC), Canada G7H 2B1

{ablondin,s1gabour,shalle}@uqac.ca

Abstract. We consider words over an arbitrary alphabet admitting two
pseudoperiods: a σ1-period and a σ2-period, where σ1 and σ2 are per-
mutations. We describe the conditions under which such a word exists.
Moreover, a natural generalization of Fine and Wilf’s Theorem is proved.
Finally, we introduce and describe a new family of words sharing prop-
erties with the so-called central words. In particular, under some simple
conditions, we prove that these words are pseudopalindromes, a result
consistent with the fact that central words are palindromes.

Keywords: Pseudoperiods, Fine and Wilf’s Theorem, Permutations.

1 Introduction

The study of periodic functions, in particular trigonometric functions, goes back
to medieval times. It is widely known that the understanding of periodic func-
tions is fundamental in many areas of physics that range from signal processing
to economics and mechanics. Particular cases of periodic functions are their dis-
crete counterpart, the so-called periodic sequences or periodic words. They are
of great interest in bio-informatics since repetitions in DNA sequences reveal
critical structural information [1].

In 1965, Fine and Wilf published their article “Uniqueness theorems for peri-
odic functions” [2], which answered the following question: What is the minimum
length a finite sequence admitting two periods p and q must have so that it also
admits gcd(p, q) as a period? They proved that p + q − gcd(p, q) is sufficient
and that this bound is tight. In the next five decades, Fine and Wilf’s result
has been extensively studied and its applications are numerous. For instance,
it turns out that the worst cases of the well-known Knuth-Morris-Pratt string
search algorithm are exactly the maximal counter-examples (also called central
words) of Fine and Wilf’s Theorem [3].

An exhaustive survey of the consequences and applications of Fine and Wilf’s
Theorem may be found in [4]. It has been generalized to more than two periods
[5–8], to multi-dimensional words [9, 10] and to pseudoperiods [11–13]. Words of

� S. Hallé is funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 308–319, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Pseudoperiodic Words 309

maximum length admitting periods p and q but not gcd(p, q) have been studied
as well. In a sequence of two articles [11, 14], Tijdeman and Zamboni provide an
algorithm to generate and prove that these words are palindromes. An alternate
proof of this latter fact can be found in [7] as well.

In 1994, De Luca and Mignosi considered the palindromes occurring in stan-
dard Sturmian words and introduced the so-called family of central words. They
proved that those words are exactly the maximum ones admitting two periods
p and q, with gcd(p, q) = 1, but not with period 1 [15]. In [16], De Luca studied
words generated by iterated palindromic closure — an operator that allows one
to generate infinite words having infinitely many palindromic prefixes — and
proved that central words are obtained by iterated palindromic closure. More
recently, de Luca and De Luca defined a family of words called generalized pseu-
dostandard words that are generated by iterated pseudopalindromic closure. In
[13], the authors have shown that generalized pseudostandard words present
pseudoperiodic properties. The main purpose of this paper is to further study
this concept of pseudoperiod.

2 Definitions and Notation

In this section, we introduce the definitions and notation used in the following
sections.

2.1 Words

All the basic terminology about words is taken from M. Lothaire [17, 18]. In the
following, Σ is a finite alphabet whose elements are called letters. By word we
mean a finite sequence of letters w : [0..n− 1] → Σ, where n ∈ N. The length of
w is |w| = n and w[i] denotes its i-th letter. The set of words of length n over
Σ is denoted Σn. The empty word is denoted by ε and its length is 0.

The free monoid generated by Σ is defined by Σ∗ =
⋃
n≥0Σ

n. The k-th

power of w is defined recursively by w0 = ε and wk = wk−1w. Given a word
w ∈ Σ∗, a factor u of w is a word u ∈ Σ∗ such that w = xuy, with x ∈ Σ∗

and y ∈ Σ∗. If x = ε (resp. y = ε) then u is called a prefix (resp. suffix). The
set of all factors of w is denoted by Fact(w), and Pref(w) is the set of all its
prefixes. An antimorphism is a map ϕ : Σ∗ → Σ∗ such that ϕ(uv) = ϕ(v)ϕ(u)
for any word u, v ∈ Σ∗. A useful example is the reversal of w ∈ Σn defined by
w̃ = wn−1wn−2 · · ·w0. It is also convenient to denote the reversal operator by R.
A palindrome is a word that reads the same forward and backward, i.e. a word
w such that w = w̃.

2.2 Permutations

A function σ : Σ → Σ is called a permutation if it is a bijection. We recall
that permutations can be decomposed as a product of cycles. As usual, we shall
use the cycle notation. For instance, σ = (021)(3) means that 0 �→ 2, 2 �→ 1,

310 A. Blondin Massé, S. Gaboury, and S. Hallé

1 �→ 0 and 3 �→ 3. The identity permutation is denoted by I. The inverse of a
permutation σ is denoted by σ−1 while σn stands for σ · σ · . . . · σ (n times),
where the product corresponds to the composition of functions. The order of a
permutation σ, denoted by ord(σ) is the least integer n such that σn = I. When
the order is 2, the permutation is called an involution.

2.3 Pseudopalindromes

Recently, several works have been devoted to the study of pseudopalindromes
[19], a natural generalization of palindromes. Given an involutory antimorphism
ϑ, the word w is called ϑ-palindrome if ϑ(w) = w. When ϑ = R, the definition
coincides with that of usual palindromes. It is easy to see that ϑ = R ◦ σ for
some involutory permutation σ.

In [19], the authors introduce an operator called pseudopalindromic closure,
which generalize the so-called palindromic closure [19]. Let ϑ be an involutory
antimorphism, w be a word, with w = up where p is the longest ϑ-palindromic
suffix of w (it exists since ε is an ϑ-palindrome). Then the ϑ-palindromic clo-
sure of w is defined by w⊕ϑ = upϑ(u). In other words, w⊕ϑ is the shortest
ϑ-palindrome having w as a prefix.

2.4 Generalized Pseudostandard Words

Also in [19], the authors introduce a family of words called generalized pseu-
dostandard words generated by pseudopalindromic closure. More precisely, let
Θ = ϑ1ϑ2ϑ3 · · ·ϑn be a finite sequence of involutory antimorphisms and w be a
word of length n. Let ⊕i be the ϑi-palindromic closure operator, for 1 ≤ i ≤ n.
The operator ψΘ is defined as follows:

ψϑ1ϑ2···ϑn(w) =

{
ε if n = 0;(
ψϑ1ϑ2···ϑn−1(w1w2 · · ·wn−1)wn

)⊕n
otherwise.

This definition extends naturally to infinite words.

Example 1. [19] Let Σ = {0, 1}, R be the reversal operator and E be the anti-
morphism that swaps the letters 0 and 1. Then the Thue-Morse word is exactly
ψ(ER)ω (01

ω).

ψE(0) = 01

ψER(01) = 0110

ψERE(011) = 01101001

ψERER(0111) = 0110100110010110

...

Pseudoperiodic Words 311

2.5 Pseudoperiodicity

Not much is known about generalized pseudostandard words. In [13], the authors
provide an efficient and nontrivial algorithm to generate all such words in the
binary case. The key idea of their approach is to use the pseudoperiods induced
by the overlapping of the successive pseudopalindromic prefixes corresponding
to the iterated pseudopalindromic closure. For example, the fourth Thue-Morse
prefix in the previous example is pseudoperiodic since 01101001 is followed by
10010110, which is the same word with the 0’s and 1’s swapped.

A period of a word w is an integer k such that w[i] = w[i+k], for all i < |w|−k.
In particular, every k ≥ |w| is a period of w. An important result about periods
is due to Fine and Wilf.

Theorem 1 (Fine and Wilf [2]). Let w be a word having p and q for periods.
If |w| ≥ p+ q − gcd(p, q), then gcd(p, q) is also a period of w.

A natural generalization of period is the following:

Definition 1. [13] Let Σ be an alphabet, w some word over Σ, σ some involu-
tory permutation over Σ and p some positive integer. Then p is called a σ-period
of w if w[i + p] = σ(w[i]). for i = 1, 2, . . . , n− p.

It is well-known that overlapping palindromes yield periodicity [16, 20]. One
can ask what is the result of overlapping pseudopalindromes. This question is
answered in [13] as follows:

Proposition 1. [13] Let u be a finite word, v be a ϑ1-palindrome and w be a
ϑ2-palindrome for some involutory antimorphisms ϑ1 and ϑ2 such that uv =
w. Then q has the (σ1 ◦ σ2)-period |u|, where σ1 and σ2 are the permutations
associated with ϑ1 and ϑ2.

It shall be noted that an alternate, non equivalent definition of pseudoperiods
have already been introduced in [12] as follows: Let w be some word over an
alphabet Σ and ϑ be an involutory antimorphism. Then the positive integer
p is called a ϑ-period of the word w if w = u1u2 · · ·un, where |ui| = p and
ui ∈ {w, ϑ(w)} for i = 1, 2, . . . , n.

Example 2. Let Σ = {A,C,G, T } and ϑ be the antimorphism such that ϑ(A) =
T and ϑ(C) = G. Then 4 is a ϑ-period of the word

ACAGCTGTCTGTACAGACAG = u · ϑ(u) · ϑ(u) · u · u,

where u = ACAG.

In this paper, we only consider pseudoperiods as in Definition 1.

2.6 Graphs

A graph is a couple G = (V,E), where E ⊆ P2(V) is the set of unordered pairs of
elements in V . The elements of the sets V and E are called respectively vertices

312 A. Blondin Massé, S. Gaboury, and S. Hallé

and edges. We say that the edge e ∈ E is incident to the vertex v ∈ V if e = {u, v}
for some vertex u. The degree of a vertex v is its number of incident edges, i.e.
deg(v) = Card{u ∈ V | {u, v} ∈ E}. A path of G is a sequence of vertices
(v1, v2, . . . , vk), where k is a nonnegative integer, and such that {vi, vi+1} ∈ E
for i = 1, 2, . . . , k − 1. Let ∼ be the relation on V defined by u ∼ v if and only
if there exists a path between u and v. Clearly, ∼ is an equivalence relation.
The equivalence classes of the relation ∼ are called connected components of G.
Given a graph G = (V,E) and U ⊆ V , the subgraph induced by U is the graph
G = (U,E ∩ P2(U)). The subgraphs induced by the connected components are
often simply called connected components.

3 Fine and Wilf’s Theorem

In [13], the authors state the following theorem:

Theorem 2. [13] Let w be a finite word over a binary alphabet Σ. Let p be a
σ1-period of w and q be a σ2-period of w, where (σ1, σ2) �= (I, I) is a pair of
permutations of Σ. If |w| ≥ p+ q, then gcd(p, q) is a e-period of w, where e is
the swap of letters of Σ.

As a first step, we generalize Theorem 2 for arbitrary alphabet and arbitrary
permutations:

Theorem 3. Let p, q be two positive integers and σ1, σ2 two permutations such
that σ1 and σ−1

2 commute. Then any word w of length at least p + q admitting
p as a σ1-period and q as a σ2-period also admits gcd(p, q) as a σ-period, where
σ = σx1σ

−y
2 and x, y are any integers such that gcd(p, q) = xp− yq.

Proof. Some part of the proof is similar to the one found in [13]. However, since
it generalizes it and for the sake of completeness, we include the whole proof
below.

Let g = gcd(p, q). The solutions of the Diophantine equation

g = xp− yq (1)

are well-known and the integers x and y are also called Bezout coefficients. It is
easy to show that x and y have the same sign. Without loss of generality, assume
that x, y > 0. Let I = {1, 2, . . . , |w|} be the set of indices of the word w. Let i
be an integer such that 1 ≤ i ≤ |w| − g. We show that w[i + g] = σ(w[i]). For
this purpose, let J ⊆ I be some subset of consecutive integers containing both i
and i+ g and satisfying |J | = p+ q. Finally, let k = x+ y. We define two finite
sequences d1, d2, . . ., dk and i0, i1, . . ., ik as follows:

(i) i0 = i;

(ii) dj+1 =

{
p if ij + p ∈ J ,

−q if ij − q ∈ J ;

(iii) ij+1 = ij + dj+1.

Pseudoperiodic Words 313

1 2 3 4 5 6 7 8 9 10 11 12 13I

J

i = 9 i+ g = 11

−q

+p +p

p+ q = 10

Fig. 1. Illustration of the proof of Theorem 3, when |w| = 13, p = 4, q = 6, g = 2 and
i = 9. The sets I and J denote respectively the whole set of positions and an arbitrary
window containing i and i+ g. The traveled positions i0, i1, . . ., ik are represented as
well as the type of moves, which is coded by the sequence d1, d2, . . . , dk. This illustrates
the fact that the position i + g can always be reached from position i by steps of +p
and −q.

Figure 1 illustrates this idea on a word w of length 13, with p = 4, q = 6 and
i = 9.

We prove the following four claims:

(1) The sequence d1, d2, . . ., dk is well-defined;

(2) For j = 0, 1, . . . , k, we have ij ∈ J ;

(3) The sequence d1, d2, . . ., dk contains exactly x occurrences of p and y oc-
currences of q;

(4) g is a σ-period of w;

(1) To prove that the sequence d1, d2, . . ., dk is well-defined, it suffices to
prove that exactly one of the conditions ij + p ∈ J and ij − q ∈ J is verified.
First, assume that both conditions hold, i.e. ij + p ∈ J and ij − q ∈ J . Since J
contains consecutive integers, then |J | ≥ (ij +p)− (ij− q)+1 = p+ q+1, which
is impossible. Next, assume that none of the conditions hold, i.e. ij + p /∈ J and
ij − q /∈ J . Then |J | ≤ (ij + p− 1)− (ij− q+1)+ 1 = p+ q− 1, since J contains
consecutive integers, another contradiction.

(2) This follows directly from the fact that the sequence d1, d2, . . ., dk is
well-defined.

(3) To prove that ik = i + g, we need to prove that the word d = d1d2 · · · dk
has exactly x occurrences of p and y occurrences of −q. We argue once again
by contradiction. Without loss of generality, assume that d contains more than
x occurrences of p and let d1d2 · · · djdj+1 be the shortest prefix of d containing
exactly x+1 occurrences of p. In particular, dj+1 = p, so that ij+1 = ij+dj+1 =
ij + p. Moreover, since d1d2 · · · dj contains exactly x occurrences of p, we have
ij = i+ xp− y′q for some integer y′ < y. On the other hand, i+ g = i+ xp− yq.
But ij − q = i + xp − (y′ + 1)q and, since y′ < y′ + 1 ≤ y, we conclude that

314 A. Blondin Massé, S. Gaboury, and S. Hallé

i + g ≤ ij − q ≤ ij. Consequently, ij − q ∈ J , and we already know that
ij+1 = ij + p ∈ J , contradicting the fact that d1d2 · · · dk is uniquely determined.

(4) Let s = s1s2 · · · sk be the sequence of permutations defined by sj = σ1 if
dj = p and sj = σ−1

2 if dj = (−q). Since the sequence i0, i1, . . ., ik is contained
in I, starts with i and ends with i+ g, it follows that

w[i + g] = (sk ◦ sk−1 ◦ . . . ◦ s2 ◦ s1)(w[i]).

But σ1 and σ
−1
2 commute and |s|σ1 = x while |s|σ−1

2
= y, which implies w[i+g] =

(σx1 ◦ σ
−y
2)(w[i]) = σ(w[i]). �

Example 3. Let w = 012012012012, σ1 = (021), and σ2 = (012). One can see
that p = 5 is a σ1-period of w and q = 7 is a σ2-period of w. We can observe
that σ1 and σ−1

2 commute, and that g = gcd(5, 7) = 1 is a σ-period of w, for
σ = (012).

One notices that the bound |w| ≥ p + q is tight, as illustrated by the following
example:

Example 4. Let Σ = {0, 1}, e = (01) and w = 000111. Then 3 and 4 are both
e-periods of w, but 1 = gcd(3, 4) is not an e-period of w, although |w| ≥ 6 =
3 + 4− gcd(3, 4).

On the other hand, in Theorem 3, it is assumed that the word w admits two
σ-periods, but there is no guarantee that such a word exists:

Example 5. Let Σ = {0, 1, 2}, σ1 = (012) and σ2 = (01)(2). Let p = 4 and
q = 3. We prove that there does not exist any word of length 7 admitting p as
a σ1-period and q as a σ2-period. Indeed, assume that such a word w exists.
First, we suppose that w[1] = 0. Then using the two pseudoperiods, one gets
w[4] = 1, w[7] = 0, w[3] = 2, w[6] = 2, w[2] = 1, w[5] = 0, so that w = 0121020,
which is absurd, since w[1] = 0 and w[5] = 0 contradicts the fact that p = 4
is a σ1-period. One obtains similar contradictions by assuming w[1] = 1 and
w[1] = 2. Hence, there is no word w of length 7 such that 4 is a σ1-period of w
and 3 is a σ2-period of w.

However, under some conditions, we are guaranteed that two σ-periods coexist
in words of any length:

Proposition 2. Let p, q be to positive integers and σ1, σ2 two permutations
such that σ2 = σn1 and ord(σ1) divides q − pn. Then for any positive integer
m, there exists a word w of length m admitting p as a σ1-period and q as a
σ2-period.

Proof. It suffices to show that the permutation σ of Theorem 3 is independent of
the Bezout coefficients x and y. Let x′, y′ be two integers such that gcd(p, q) =
xp− yq = x′p− y′q, i.e. the couple (x′, y′) is also a solution of Equation (1). It
is known that (x′, y′) can be expressed with respect to the particular solution

Pseudoperiodic Words 315

(x, y). More precisely, there exists some integer t such that x′ = x + qt and
y′ = y + pt. Since σ1 and σ−1

2 commute, it follows from the proof of Theorem 3
that

σx
′

1 σ
−y′
2 = σx+qt1 σ−y−pt

2

= (σx1σ
−y
2)σqt1 σ

−pt
2

= (σx1σ
−y
2)σqt1 σ

−npt
1

= (σx1σ
−y
2)σ

(q−pn)t
1

= (σx1σ
−y
2),

since ord(σ1) divides q − pn. �

The proof of Proposition 2 reveals that the condition σqt1 σ
−pt
2 = I is enough for

constructing a word of length m having p as a σ1-period and q as a σ2-period.
Clearly, σ2 = σn1 and ord(σ1) | q − pn implies σqt1 σ

pt
2 , but it is not simple to

verify if the converse is true, since solving equations on permutations is a hard
problem. Empirical results for alphabets of size 4 and 5 suggest that these two
conditions are necessary.

4 Pseudocentral Words

In this last section, we consider words of length p+ q− 2 admitting a σ1-period
and a σ2-period, where gcd(p, q) = 1, a natural generalization of central words,
that we shall call accordingly pseudocentral words. First, it is worth mentioning
that the permutations needs not be involutory, as shown by the next example:

Example 6. Let w = 01213102131012, σ1 = (032)(1) and σ2 = (023)(1). Then
p = 9 is a σ1-period of w and q = 7 is a σ2-period of w. Moreover, w is a
σ-palindrome, where σ = (02)(1)(3).

On the other hand, in some cases, for fixed values of p, q, σ1 and σ2, one has
two different words, one of which is a pseudopalindrome while the other is not:

Example 7. Let σ1 = (023)(1), σ2 = (03)(1)(2), p = 4 and q = 7. Moreover, let
w = 001222133 and w′ = 321303102. Then p is a σ1-period of both w and w′ and
q is a σ2-period of both w and w′. But w is a ϑ-palindrome, for ϑ = R◦(03)(1)(2)
and w′ is not a pseudopalindrome.

Under some conditions, however, we are guaranteed that the resulting word is
indeed a pseudopalindrome.

Theorem 4. Let p and q be positive integers such that gcd(p, q) = 1. Let w be a
word of such that p is a σ1-period and q is a σ2-period of w, with |w| = p+ q−2,
where σ1 and σ2 are involutions.

(i) If p and q are both odd and σ = σ1 = σ2, then w is a σ-palindrome;

316 A. Blondin Massé, S. Gaboury, and S. Hallé

1 2 3 4 5 6 7 8 9 10 11 12 13 14

p

q

11

6

112

7

2

13

8

3 14

9

4

p

p
q

p

p

q

p

p
q

p

p

5 10
p

Fig. 2. The graph obtained for n = 14, p = 5 and q = 11. Each connected component
present palindromic properties. For instance, 11 + 4 = 6 + 9 = . . . = 2 + 13 = 5 + 10,
as stated in Lemma 2. Also, since the numbers p and q are both odd and p+ q − 2 is
even, each connected component has a central edge, namely (2, 13) and (5, 10), which
induces the palindromicity on the vertices as well as on the edge labels.

(ii) If p is even and σ1 is the identity or q is even and σ2 is the identity, then
w is a palindrome.

In order to prove Theorem 4, we need to introduce a convenient representation.
Let p and q be two positive integers, with p < q. We construct a graph G =
(V,E), where V = {1, 2, . . . , p+q−2} and {u, v} ∈ E if and only if |u−v| ∈ {p, q}.
Let n = |V |. Roughly speaking, V is the set of positions in some word w of length
p+q−2 and there is an edge between two vertices if one of the periods propagates
between two positions. Figure 2 illustrates this concept for p = 5 and q = 11.

It should be noted that this construction has already been suggested in [7],
where the author worked with equivalence classes that are exactly the connected
components of the graph G. The graph G has a very specific structure that we
describe in the following lemmas.

Lemma 1. The graph G has exactly two connected components C1 and C2.
Moreover, C1 and C2 are chains.

Proof. It suffices to notice that exactly four vertices have degree one, namely
p− 1, p, q − 1 and q, while all remaining vertices have degree 2. �

Pseudoperiodic Words 317

The vertices in the connected components have a palindromic structure. More
precisely:

Lemma 2. Let (v1, v2, v3, . . . , vk) be the chain described by one connected com-
ponent of G. Then vi = n+ 1− vk+1−i for i = 1, 2, . . . , k, where n = |V |.

Proof. First, there exists an integer u such that there is an edge between vertices
u and n+1−u. Let u0 = u and u′0 = n+1−u. We show that the edge between u0
and u′0 is central in the connected component. Indeed, there is a path u0 → u1 →
. . .→ uk and a path u′0 → u′1 → . . .→ u′k such that uk, u

′
k ∈ {p− 1, p, q − 1, q}.

Moreover, the vertices ui and u′i in the path must satisfy ui = n + 1 − u′i, for
i = 1, 2, . . . , k, which shows that the connected component containing u0 and u′0
verifies the lemma. In particular, uk = n + 1 − u′k. Let x0 and x′0 be the two
elements of the set {p − 1, p, q − 1, q} − {u0, u′0}. Starting from x0 and x′0 and
following a similar reasoning, one shows that all vertices in the other connected
components are palindromic as well and the result follows. �

Lemma 3. Let w be a word of length p+ q− 2 admitting p as a σ1-period and q
as a σ2-period, where σ1 and σ2 are involutory permutations that commute. Let
C be one connected component of G.

(i) If |C| is odd, then w[i] = w[n+ 1− i] for all i ∈ C;
(ii) If |C| is even, then w[i] = σ(w[n + 1 − i]) for all i ∈ C and some σ ∈

{σ1, σ2}.

Proof. (i) If |C| is odd, then the central vertex v of C corresponds to the central
position of the word w. By induction, every pair of vertex at the same distance
from v in C are the same letters since the same permutations are applied.

(ii) If |C| is even, then the connected component has a central edge, which
corresponds to either σ1 or σ2. Since symmetric vertices are the result of the
same compositions of permutations, they all verify w[i] = σ(w[n+1− i]), where
σ is the permutation on the central edge. �

Proof (of Theorem 4). Let C1 and C2 be the two connected components of G.
(i) If p and q are both odd, then |C1| and |C2| are both even. The result

follows from Lemma 3(ii) since σ = σ1 = σ2.
(ii) Assume first that p is even and q is odd. Then, without loss of generality,

|C1| is even and |C2| is odd. Therefore, the central edge of C1 is labelled σ1 = I,
so that all symmetrical vertices of C1 are palindromic by Lemma 3(ii). Finally,
since |C2| is odd, it follows from Lemma 3(i) that the symmetrical vertices of C2

are palindromic as well. �

5 Concluding Remarks and Future Work

The enumeration of all solutions for alphabet of size up to 5 was obtained by
computer exploration using the open-source software MiniSat [21].

Fine and Wilf’s Theorem is known for having many applications and gen-
eralizations. The results in this paper are unique in the sense that they also

318 A. Blondin Massé, S. Gaboury, and S. Hallé

deal with permutations. Moreover, we show that many results hold even if the
permutations are not involutory.

The next step would be to consider the multipseudoperiodicity property to
describe generalized pseudostandard words as sketched in Subsection 2.4. An-
other interesting area of study would also consist in generalizing the results
presented here for more than two pseudoperiods. For that purpose, the graph
representation seems a convenient starting point.

References

1. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York (1997)

2. Fine, N., Wilf, H.: Uniqueness theorems for periodic functions. Proceeding of Amer-
ican Mathematical Society 16, 109–114 (1965)

3. Knuth, D.E., Morris, J., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal of Computing 6(2), 323–350 (1977)

4. Shallit, J.: 50 years of Fine andWilf, Talk given in Waterloo Workshop in Computer
Algebra, Canada (2011),
http://www.cs.uwaterloo.ca/~shallit/Talks/wilf3.pdf

5. Castelli, M., Mignosi, F., Restivo, A.: Fine and Wilf’s theorem for three periods
and a generalization of Sturmian words. Theoretical Computer Science 218(1),
83–94 (1999)

6. Justin, J.: On a paper by Castelli, Mignosi, Restivo. RAIRO - Theoretical Infor-
matics and Applications 34, 373–377 (2000)

7. Holub, S.: On multiperiodic words. RAIRO - Theoretical Informatics and Appli-
cations 40, 583–591 (2006)

8. Constantinescu, S., Ilie, L.: Generalised Fine and Wilf’s theorem for arbitrary
number of periods. Theoretical Computer Science 339(1), 49–60 (2005)

9. Simpson, R.J., Tijdeman, R.: Multi-dimensional versions of a theorem of Fine
and Wilf and a formula of Sylvester. Proceedings of the American Mathematical
Society 131(6), 1661–1671 (2003)

10. Mignosi, F., Restivo, A., Silva, P.V.: On Fine and Wilf’s theorem for bidimensional
words. Theor. Comput. Sci. 292, 245–262 (2003)

11. Tijdeman, R., Zamboni, L.Q.: Fine and Wilf words for any periods II. Theoretical
Computer Science 410(30-32), 3027–3034 (2009)

12. Czeizler, E., Czeizler, E., Kari, L., Seki, S.: An Extension of the Lyndon
Schützenberger Result to Pseudoperiodic Words. In: Diekert, V., Nowotka, D.
(eds.) DLT 2009. LNCS, vol. 5583, pp. 183–194. Springer, Heidelberg (2009)

13. Blondin Massé, A., Paquin, G., Vuillon, L.: A Fine and Wilf’s theorem for pseu-
doperiods and Justin’s formula for generalized pseudostandard words. 8e Journées
Montoises d’informatique Théorique (September 2010)

14. Tijdeman, R., Zamboni, L.Q.: Fine and Wilf words for any periods. Indag.
Math. 14, 200–203 (2003)

15. de Luca, A., Mignosi, F.: Some combinatorial properties of sturmian words. The-
oretical Computer Science 136(2), 361–385 (1994)

16. de Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics. The-
oretical Computer Science 183, 45–82 (1997)

17. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

http://www.cs.uwaterloo.ca/~shallit/Talks/wilf3.pdf

Pseudoperiodic Words 319

18. Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press, Cam-
bridge (2005)

19. de Luca, A., De Luca, A.: Pseudopalindrome closure operators in free monoids.
Theoretical Computer Science 362(1-3), 282–300 (2006)

20. Blondin Massé, A., Brlek, S., Garon, A., Labbé, S.: Palindromes and local period-
icity. In: Words 2009, 7th Int. Conf. on Words (2009), electronic proceedings

21. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

Acceptance Conditions for ω-Languages�

Alberto Dennunzio2, Enrico Formenti1,��, and Julien Provillard1

1 Université Nice-Sophia Antipolis, Laboratoire I3S,
2000 Route des Colles, 06903 Sophia Antipolis, France
{enrico.formenti,julien.provillard}@unice.fr

2 Università degli Studi di Milano–Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione,

Viale Sarca 336, 20126 Milano, Italy
dennunzio@disco.unimib.it

Abstract. This paper investigates acceptance conditions for finite au-
tomata recognizing ω-regular languages. Their expressive power and their
position w.r.t. the Borel hierarchy is also studied. The full characteriza-
tion for the conditions (ninf,�), (ninf,⊆) and (ninf, =) is given. The
final section provides a partial characterization of (fin, =).

Keywords: finite automata, acceptance conditions, ω-regular languages.

1 Introduction

Infinite words are widely used in formal specification and verification of non-
terminating processes (e.g. web-servers, OS daemons, etc.) [4,3,13]. The overall
state of the system is represented by an element of some finite alphabet. Hence
runs of the systems can be conveniently represented as ω-words. Finite automata
are often used to model the transitions of the system and their accepted language
represents the set of admissible runs of the system under observation. Acceptance
conditions on finite automata are therefore selectors of admissible runs. Main
results and overall exposition about ω-languages can be found in [12,11,9].

Seminal studies about acceptance of infinite words by finite automata (FA)
have been performed by Büchi while studying monadic second order theories [1].
According to Büchi an infinite word is accepted by an FA A if there exists a run
of A which passes infinitely often through a set of accepting states. Later, Muller
studied runs that pass through all elements of a given set of accepting states and
visit them infinitely often [8]. Afterwards, several acceptance conditions appeared
in a series of papers [2,5,7,10,6].

Clearly, the selection on runs operated by accepting conditions is also influ-
enced by the structural properties of the FA under consideration: deterministic
vs. non-deterministic, complete vs. non complete (see for instance [6]).
� This work has been partially supported by the French National Research Agency

project EMC (ANR-09-BLAN-0164) and by PRIN/MIUR project “Mathematical
aspects and forthcoming applications of automata and formal languages”.

�� Corresponding author.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 320–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Acceptance Conditions for ω-Languages 321

In this work, we review the main acceptance conditions and we couple them
with structural properties like determinism or completeness in the purpose of
characterizing the relationships between the class of languages they induce. The
Borel hierarchy is another important characterization of ω-rational languages
and it is the basic skeleton of our study which helped to argue the placement
of the other classes. Figure 1 illustrates the current state of art whilst Figure 2
summarizes the results provided by the present paper.

For lack of space, several proofs of lemmata will appear only in a journal
version of this paper.

2 Notations and Background

For any set A, Card (A) denotes the cardinality of A. Given a finite alphabet Σ,
Σ∗ and Σω denote the set of all finite words and the set of all (mono) infinite
words on Σ, respectively. As usual, ε ∈ Σ∗ is the empty word. For any pair
u, v ∈ Σ∗, uv is the concatenation of u with v.

A language is any set L ⊆ Σ∗. For any pair of languages L1, L2, L1L2 =
{uv ∈ Σ∗ : u ∈ L1, v ∈ L2} is the concatenation of L1 and L2. For a language
L, denote L0 = {ε}, Ln+1 = LnL and L∗ =

⋃
n∈N L

n the Kleene star of L. The
collection of rational languages is the smallest class of languages containing ∅,
all sets {a} (for a ∈ Σ) and which is closed by union, concatenation and Kleene
star.

An ω-language is any subset L of Σω. For a language L, the infinite extension
of L is the ω-language

Lω =
{
x ∈ Σω : ∃(ui)i∈N ∈ (L� {ε})N, x = u0u1u2 . . .

}
.

An ω-language L is ω-rational if there exist two families {Li} and {L′
i} of

rational languages such that L =
⋃n

i=0 L
′
iLi

ω . Denote by RAT the set of all
ω-rational languages.

A finite state automaton (FA) is a tuple (Σ,Q, T, q0,F) where Σ is a fi-
nite alphabet, Q a finite set of states, T ⊂ Q × Σ × Q is the set of transi-
tions, q0 ∈ Q is the initial state and F ⊆ P (Q) collects the accepting sets
of (accepting) states. A FA is a deterministic finite state automaton (DFA)
if Card ({q ∈ Q : (p, a, q) ∈ T }) ≤ 1 for all p ∈ Q, a ∈ Σ. It is a complete fi-
nite state automaton (CFA) if Card ({q ∈ Q : (p, a, q) ∈ T }) ≥ 1 for all p ∈ Q,
a ∈ Σ. We write CDFA for a FA which is both deterministic and complete. An
(infinite) path in A = (Σ,Q, T, q0,F) is a sequence (pi, xi, pi+1)i∈N such that
(pi, xi, pi+1) ∈ T for all i ∈ N. The (infinite) word (xi)i∈N is the label of the path
p. A path is said to be initial if p0 = q0.

Definition 1. Let A = (Σ,Q, T, q0,F) and p = (pi, xi, qi)i∈N be an automaton
and an infinite path in A. The sets

– runA(p) := {q ∈ Q : ∃i > 0, pi = q}
– infA(p) := {q ∈ Q : ∀i > 0, ∃j ≥ i, pj = q}

322 A. Dennunzio, E. Formenti, and J. Provillard

– finA(p) := run(p) � inf(p)
– ninfA(p) := Q� inf(p)

contain the states appearing at least one time, infinitely many times, finitely
many times but at least once, and finitely many times or never in p, respectively.

An acceptance condition is a subset of all the initial infinite paths. The paths
inside such a subset are called accepting paths. Let A and condA be a FA and
an acceptance condition for A, respectively. A word w is accepted by A if and
only if it is the label of some accepting path. We denote by LcondA

A the language
accepted by A under the acceptance condition condA, i.e., the set of all words
accepted by A under the acceptance condition condA.

Let
 be the relation such that for all sets A and B, A
 B if and only if
A ∩B �= ∅.

In the sequel, we will consider acceptance conditions derived by pairs (c,R) ∈
{run, inf, fin, ninf} × {
,⊆,=}. A pair cond = (c,R) defines an acceptance
condition condA = (cA,R) on an automaton A = (Σ,Q, T, i,F) as follows: an
initial path p = (pi, ai, pi+1)i∈N is accepting if and only if there exists a set F ∈ F
such that cA(p) R F . Moreover, when not explicitly indicated, all automata will
be defined over the same finite alphabet Σ.

Definition 2. For any pair cond = (c,R) ∈ {run, inf, fin, ninf} × {
,⊆,=},
the following sets

– FA(cond) =
{
LcondA
A , A is a FA

}
– DFA(cond) =

{
LcondA
A , A is a DFA

}
– CFA(cond) =

{
LcondA
A , A is a CFA

}
– CDFA(cond) =

{
LcondA
A , A is a CDFA

}
are the classes of languages accepted by FA, DFA, CFA, and CDFA, respec-
tively, under the acceptance condition derived by cond.

Some of the acceptance conditions derived by pairs (c,R) have been studied in
the literature as summarized in the following table.

� ⊆ =

run Landweber [5] Hartmanis and Stearns [2] Staiger and Wagner [10]
inf Büchi [1] Landweber [5] Muller [8]
fin Litovski and Staiger [6] this paper∗∗

ninf this paper∗ this paper∗ this paper

∗ These conditions have been already investigated in [7] but only in the case of com-
plete automata with a unique set of accepting states.
∗∗ Only FA and CFA are considered here. For DFA and CDFA the question is still
open.

Acceptance Conditions for ω-Languages 323

For Σ equipped with discrete topology and Σω with the induced product
topology, let F , G, Fσ and Gδ be the collections of all closed sets, open sets,
countable unions of closed set and countable intersections of open sets, respec-
tively. For any pair A,B of collections of sets, denote by B (A), A Δ B, and AR

the boolean closure of A, the set {U ∩ V : U ∈ A, V ∈ B} and the set A∩RAT ,
respectively. These, indeed, are the lower classes of the Borel hierarchy, for more
on this subject we refer the reader to [14] or [9], for instance.

Figure 1 illustrates the known hierarchy of languages classes (arrows repre-
sents strict inclusions).

Let X and Y be two sets, pr1 : (X × Y)ω → Xω denotes the projection of
words in (X × Y)ω on the first set, i.e. pr1((xi, yi)i∈N) = (xi)i∈N.

Lemma 3 (Staiger [11, Projection lemma])
Let cond ∈ {run, inf, fin, ninf}× {
,⊆,=}.
1. Let X, Y be two finite alphabets and L ⊆ (X × Y)ω. L ∈ FA(cond) implies

pr1(L) ∈ FA(cond)1.
2. Let X be a finite alphabet and L ⊆ Xω. L ∈ FA(cond)§ implies there exist a

finite alphabet Y and a language L′ ⊆ (X×Y)ω such that L′ ∈ DFA(cond)§

and pr1(L′) = L.

3 The Accepting Conditions A and A′ and the Borel
Hierarchy

In [7], Moriya and Yamasaki introduced two more acceptance conditions, namely
A and A′, and they compared them to the Borel hierarchy for the case of CFA
and CDFA having a unique set of accepting states. In this section, those results
are generalized to FA and DFA and to any set of sets of accepting states.

Definition 4. Given an FA A = (Σ,Q, T, q0,F), the acceptance condition A
(resp., A′) on A is defined as follows: an initial path p is accepting under A
(resp., A′) if and only if there exists a set F ∈ F such that F ⊆ runA(p) (resp.,
F �⊆ runA(p)).

Lemma 5
1. FA(A) ⊆ FA(run,
) ,
2. DFA(A) ⊆ DFA(run,
) ,
3. CFA(A) ⊆ CFA(run,
) ,
4. CDFA(A) ⊆ CDFA(run,
) .

1 Remark that in the case 1. the languages belonging to FA(cond) are defined over
the alphabet X and not X × Y . Similarly, in the case 2. the languages belonging to
FA(cond) are defined over X and those belonging to DFA(cond) are defined over
X × Y .

324 A. Dennunzio, E. Formenti, and J. Provillard

RAT
F A(inf, �) CF A(inf, �)

F A(inf, =) DF A(inf, =) CF A(inf, =) CDF A(inf, =)

F R
σ

F A(run, �)
F A(run, =) CF A(run, =)

F A(inf, ⊆) DF A(inf, ⊆) CF A(inf, ⊆) CDF A(inf, ⊆)
F A(fin, �)

GR
δ

DF A(inf, �) CDF A(inf, �)

F R
σ ∩ GR

δ
DF A(run, =) CDF A(run, =)

F R

F A(run, ⊆) DF A(run, ⊆) CF A(run, ⊆) CDF A(run, ⊆)
GR

CF A(run, �) CDF A(run, �)

F R ∩ GR

F R
σ Δ GR

δ
DF A(run, �)

CDF A(fin, �)

DF A(fin, �) CNF A(fin, �)

Fig. 1. Currently known relations between classes of ω-languages recognized by FA
according to the considered acceptance conditions and structural properties like de-
terminism or completeness. Classes of the Borel hierarchy are typeset in bold. Arrows
mean strict inclusion. Classes in the same box coincide.

Lemma 6
1. FA(run,
) ⊆ FA(A) ,
2. DFA(run,
) ⊆ DFA(A) ,
3. CFA(run,
) ⊆ CFA(A) ,
4. CDFA(run,
) ⊆ CDFA(A).

Lemma 7
1. FA(A′) ⊆ FA(run,⊆) ,
2. DFA(A′) ⊆ DFA(run,⊆) ,
3. CFA(A′) ⊆ CFA(run,⊆) ,
4. CDFA(A′) ⊆ CDFA(run,⊆) .

Lemma 8
1. FA(run,⊆) ⊆ FA(A′) ,
2. DFA(run,⊆) ⊆ DFA(A′) ,
3. CFA(run,⊆) ⊆ CFA(A′) ,
4. CDFA(run,⊆) ⊆ CDFA(A′) .

Acceptance Conditions for ω-Languages 325

Proof. Let cond = (run,⊆). We are going to show that for any FA A =
(Σ,Q, T, q0,F) there exists an automaton A′ under the accepting condition A′

such that LA′
A′ = LcondA

A and A′ is deterministic (resp. complete) if A is de-
terministic (resp. complete). Define the automaton A′ = (Σ,Q′, T ′, (q0, ∅),F ′)
where Q′ = (Q× P (Q)) ∪ {⊥}, F ′ = {{⊥}}, and

T ′ = {((p, S), a, (q, S ∪ {q})) : (p, a, q) ∈ T, S ∈ P (Q) , ∃F ∈ F , S ∪ {q} ⊆ F}⋃
{((p, S), a,⊥) : S ∈ P (Q) , ∃q ∈ Q, (p, a, q) ∈ T, ∀F ∈ F , S ∪ {q} �⊆ F}⋃
{(⊥, a,⊥) : a ∈ Σ}

Then, A′ is deterministic (resp. complete) if A is deterministic (resp. complete).
Moreover, x ∈ LcondA

A if and only if there exists an initial path p in A with label
x and a set F ∈ F such that runA(p) ⊆ F iff there exists an initial path p′ in
A′ with label x such that p′n �= ⊥ for all n ∈ N, i.e., iff x ∈ LA′

A′ .
�
The following result places the classes of langages characterized by A and A′

w.r.t. the Borel hierarchy.

Theorem 9
1. CDFA(A) = CFA(A) = GR

2. DFA(A) = FR
σ Δ GR

δ
3. FA(A) = FR

σ

4. CDFA(A′) = DFA(A′) = CFA(A′) = FA(A′) = FR

Proof. It is a consequence of Lemmata 5, 6, 7 and 8, and the known results (see
Figure 1) on the classes of languages accepted by FA, DFA, CFA, and CDFA
under the acceptance conditions derived by (run,
) and (run,⊆).
�
Remark 10. Languages in CDFA(A) (resp. CDFA(A′) are unions of languages
in the class A (resp. A′) of [7]. This class equals GR (resp. FR) and is closed
under union operation. These facts already prove CDFA(A) = GR

(resp. CDFA(A′) = FR).

4 The Accepting Conditions (ninf, �) and (ninf, ⊆)

In [6], Litovsky and Staiger studied the class of languages accepted by FA under
the acceptance condition (fin,
) w.r.t. which a path is successful if it visits an
accepting state finitely many times but at least once. It is natural to study the
expressivity of the similar accepting condition for which a path is successful if it
visits an accepting state finitely many times or never: (ninf,
). The expressivity
of (ninf,⊆) is also analized and compared with the previous ones to complete the
picture in Figure 1. As a first step, we analyze two more acceptance conditions
proposed by Moriya and Yamasaki [7]: L which represents the situation of a non-
terminating process forced to pass through a finite set of “safe” states infinitely
often and L′ which is the negation of L. Lemma 12 proves that L is equivalent
to (ninf,
) and L′ to (ninf,⊆). Moreover, the results of [7] are extended to any
type of FA with any number of sets of accepting states.

326 A. Dennunzio, E. Formenti, and J. Provillard

Definition 11. Given an FA A = (Σ,Q, T, q0,F), the acceptance condition L
(resp., L′) on A is defined as follows: an initial path p is accepting under L
(resp., L′) if and only if there exists a set F ∈ F such that F ⊆ infA(p) (resp.,
F �⊆ infA(p)).

Lemma 12. L and (ninf,⊆) (resp., L′ and (ninf,
)) define the same classes
of languages.

Remark that any FA can be completed with a sink state without changing the
language accepted under L. Therefore, the following claim is true.

Lemma 13. FA(L) = CFA(L) and DFA(L) = CDFA(L).

Proposition 14. CDFA(inf,
) ⊆ CDFA(L) and CFA(inf,
) ⊆ CFA(L).

Proof. For any CDFA (resp., CFA) A = (Σ,Q, T, q0,F), define the CDFA
(resp., CFA) A′ = (Σ,Q, T, q0,F ′) where F ′ = {{q} : ∃F ∈ F , q ∈ F}. Then, it
follows that L(inf,�)A

A = LL
A′ and this concludes the proof.
�

Proposition 15. CDFA(L) ⊆ CDFA(inf,
)

Proof. For any CDFA A = (Σ,Q, T, q0,F) and any q ∈ Q, define the CDFA
Aq = (Σ,Q, T, q0, {{q}}). By determinism of A, it holds that

LL
A =

⋃
F∈F

⋂
q∈F

L(inf,�)Aq

Aq
.

Since CDFA(inf,
) is stable by finite union and finite intersection [1],
there exists a CDFA A′ such that LL

A = L(inf,�)A′
A′ . Hence, CDFA(L) ⊆

CDFA(inf,
).
�
Proposition 16. CFA(L) ⊆ CFA(inf,=).

Proof. For any CFA A = (Σ,Q, T, q0,F) define A′ = (Σ,Q, T, q0,F ′), where
F ′ = {S ∈ P (Q) : ∃F ∈ F , F ⊆ S} . Then, A′ is complete and LL

A = L(inf,=)A′
A′ .

Hence, the thesis is true.
�
Theorem 17. The following equalities hold.

(1) CDFA(ninf,⊆) = DFA(ninf,⊆) = GR
δ

(2) CFA(ninf,⊆) = FA(ninf,⊆) = RAT

Proof. Equality (1) follows from Lemmata 12 and 13, Proposition 15 and 14
and the known fact that DFA(inf,
) = CDFA(inf,
) = GR

δ , while equality
(2) from Lemmata 12 and 13, Proposition 14 and 16 and the known fact that
CFA(inf,
) = CFA(inf,=) = RAT .
�

Acceptance Conditions for ω-Languages 327

Lemma 18. For any automaton A = (Σ,Q, T, q0,F) there exists an automaton
A′ = (Σ′, Q′, T ′, q′0,F ′) such that F ′ = {{q′}} for some q′ ∈ Q′, LL′

A = LL′
A′ , and

A′ is deterministic (resp. complete) if A is deterministic (resp. complete).

Proof. If either F = {} or F = {∅} then the automaton A′ defined by Σ′ = Σ,
Q′ = {⊥}, T ′ = {(⊥, a,⊥) : a ∈ Σ}, q′0 = q0, and F ′ = {{⊥}}) verifies the
statement of the Lemma. Otherwise, set F =

⋃
X∈F X , choose any f ∈ F ,

and define the automaton A′ by Σ′ = Σ, Q′ = Q × P (F), q′0 = (q0, ∅), F ′ =
{{(f, F)}}, and

T ′ = {((p, S), a, (q, (S ∪ {q}) ∩ F)) : (p, a, q) ∈ T, (p, S) �= (f, F)}⋃
{((f, F), a, (q, ∅)) : (f, a, q) ∈ T }

Then, A′ is deterministic (resp., complete) if A is deterministic (resp., com-
plete). Moreover, LL′

A ⊆ LL′
A′ . Indeed, if x ∈ LL′

A , there exist an initial path
p = (pi, xi, pi+1)i∈N in A with label x, a set X ∈ F , and a state s ∈ X such that
s �∈ inf(p). Consider the path p′ = ((pi, Si), xi, (pi+1, Si+1))i∈N where S0 = ∅
and Si+1 = (Si ∪ {qi})∩F if (pi, Si) �= (f, F), ∅ otherwise. Then, p′ is an initial
path in A′ with label x in which the state (f, F) appears finitely often in p′ since
s appears finitely often in p. Hence, x ∈ LL′

A′ . Finally, the implication LL′
A′ ⊆ LL′

A
is also true.

The following series of Lemmata is useful to prove strict inclusions between the
the considered language classes.

Lemma 19 (Moriya and Yamasaki [7]). L = (a+ b)∗aω ∈ CDFA(L′).

Lemma 20. ab∗a(a+ b)ω ∈ DFA(L′) � CFA(L′).

Lemma 21. b∗ab∗a(a+ b)ω �∈ FA(L′).

Lemma 22. (a+ b)∗baω ∈ CFA(L′) �DFA(L′).

Proposition 23. FA(L′) � FR
σ

Proof. For any FA A = (Σ,Q, T, q0,F), by Lemma 18 we can assume that F =
{{f}}. Define the FA A′ = (Σ,Q, T, q0, {Q� {f}}). Then, LL′

A = L(inf,⊆)A′
A′

and, so, FA(L′) ⊆ FA(inf,⊆). Moreover, by the know fact FA(inf,⊆) = FR
σ ,

we obtain that L(inf,⊆)A′
A′ ∈ FR

σ . Lemma 21 gives the strict inclusion.
�
Proposition 24. DFA(L′) and CFA(L′) are incomparable.

Proof. It is an immediate consequence of Lemmata 20 and 22.

Proposition 25. The following statements are true.

(1) FA(L′) and GR
δ are incomparable.

(2) FA(L′) and GR are incomparable.

328 A. Dennunzio, E. Formenti, and J. Provillard

Proof. By Lemma 19, (a + b)∗aω ∈ CDFA(L′) � GR
δ and, by Lemma 21,

b∗ab∗a(a+ b)ω ∈ GR � FA(L′). To conclude, recall that GR ⊆ GR
δ .
�

Proposition 26. CDFA(L′) and DFA(fin,
) are incomparable.

Proof. By Proposition 25 and by the known fact GR ⊆ DFA(fin,
), it follows
that DFA(fin,
) �⊆ CDFA(L′). Furthermore, it has been shown in [6] that
CDFA(L′) �⊆ DFA(fin,
).
�

RAT
F A(inf, �) CF A(inf, �)

F A(inf, =) DF A(inf, =) CF A(inf, =) CDF A(inf, =)
F A(ninf, ⊆) CF A(ninf, ⊆)

F A(ninf, =) DF A(ninf, =) CF A(ninf, =) CDF A(ninf, =)
F A(fin, =) CF A(fin, =)

F R
σ

F A(run, �)
F A(run, =) CF A(run, =)

F A(inf, ⊆) DF A(inf, ⊆) CF A(inf, ⊆) CDF A(inf, ⊆)
F A(fin, �)

F A(A)

GR
δ

DF A(inf, �) CDF A(inf, �)
DF A(ninf, ⊆) CDF A(ninf, ⊆)

F R
σ ∩ GR

δ
DF A(run, =) CDF A(run, =)

F R

F A(run, ⊆) DF A(run, ⊆) CF A(run, ⊆) CDF A(run, ⊆)
F A(A

′) DF A(A
′) CF A(A

′) CDF A(A
′)

GR

CF A(run, �) CDF A(run, �)
CF A(A) CDF A(A)

F R ∩ GR

F R
σ Δ GR

δ
DF A(run, �)

DF A(A)
CDF A(fin, �)

DF A(fin, �) CF A(fin, �)

CDF A(ninf, �)

CF A(ninf, �)DF A(ninf, �)

F A(ninf, �)

Fig. 2. The completion of Figure 1 with the results in the paper. Classes of the Borel
hierarchy are typeset in bold. Arrows mean strict inclusion. Classes in the same box
coincide.

5 Towards a Characterization of (fin, =) and (fin, ⊆)

In this section we start studying the conditions (fin,=) and (fin,⊆). Concerning
(fin,=), Theorem 34 tells us that, in the non-deterministic case, the class of
recognized languages coincides with RAT . In the deterministic case, either it
again coincides with RAT or it defines a completely new class (Proposition 35).

Acceptance Conditions for ω-Languages 329

Intuitively, any class of ω-languages defined using a MSO definable accept-
ing condition should be included in RAT . A formal proof for this statement is
still unknown. Anyway, we now prove this statement for the particular cases
investigated so far.

Proposition 27. The following equality holds for (ninf,=):

CDFA(ninf,=) = DFA(ninf,=) = CFA(ninf,=) = FA(ninf,=) = RAT

Proof. For any FA A = (Σ,Q, T, q0,F), let A′ = (Σ,Q, T, q0, {Q�F : F ∈ F}).
Clearly, A′ is deterministic (resp. complete) if A is deterministic (resp. complete).
It is not difficult to see that L(ninf,=)A

A = L(inf,=)A′
A′ and L(inf,=)A

A = L(ninf,=)A′
A′ .

Hence, it holds that FA(ninf,=) = FA(inf,=), DFA(ninf,=) = DFA(inf,=
), CFA(ninf,=) = CFA(inf,=), and CDFA(ninf,=) = CDFA(inf,=). The
known results on the language classes regarding (inf,=) conclude the proofs.
�
Proposition 28. The following equalities hold for (fin,⊆) and (fin,=):

DFA(fin,⊆) = CDFA(fin,⊆) and FA(fin,⊆) = CFA(fin,⊆),
DFA(fin,=) = CDFA(fin,=) and FA(fin,=) = CFA(fin,=).

Proof. For any FA A = (Σ,Q, T, q0,F), let A′ = (Σ,Q ∪ {⊥,⊥′} , T ′, q0,F)
where

T ′ = T ∪ {(p, a,⊥) : p ∈ Q, a ∈ Σ, ∀q ∈ Q, (p, a, q) �∈ T } ∪ {(⊥, a,⊥′) : a ∈ Σ}
∪ {(⊥′, a,⊥′) : a ∈ Σ}

The FA A′ is complete. Moreover, A′ is a DFA if and only if A is a DFA.
Furthermore, under both the conditions (fin,⊆) and (fin,=), every accepting
path in A is still an accepting path in A′, and if p is an initial path in A′ which
is not a path in A, then ⊥ ∈ fin(p). Since ∀F ∈ F ,⊥ �∈ F , the path p is non
accepting in A′. Therefore, L(fin,⊆)A

A = L(fin,⊆)A′
A′ and L(fin,=)A

A = L(fin,=)A′
A′

and this concludes the proof.

Proposition 29 (Staiger [11])
CDFA(fin,⊆) ⊆ CDFA(fin,=) and CFA(fin,⊆) ⊆ CFA(fin,=).

Proposition 30 (Staiger [11])
FA(fin,
) ⊆ FA(fin,=) and DFA(fin,
) ⊆ DFA(fin,=).

Lemma 31. RAT ⊆ FA(fin,=).

Proof. We are going to show that FA(inf,
) ⊆ FA(fin,=), i.e., for any FA

A = (Σ,Q, T, q0,F) there exists a FA A′ such that L(inf,�)A
A = L(fin,=)A′

A′ . The
known fact that RAT = FA(inf,
) concludes the proof.

Let A′ = (Σ,Q ∪Q×Q, T ′, q0,F ′) where

T ′ = T ∪ {(p, a, (q, p)) : (p, a, q) ∈ T } ∪ {((p1, p2), a, q) : (p1, a, q) ∈ T, p2 ∈ Q}
and F ′ = {F � {p2} ∪ {(p1, p2)} : p1 ∈ Q,F ∈ P (Q) , ∃X ∈ F , p2 ∈ X}.

330 A. Dennunzio, E. Formenti, and J. Provillard

We prove that L(inf,�)A
A ⊆ L(fin,=)A′

A′ . Let x ∈ L(inf,�)A
A . There exists a path

p = (pi, xi, pi+1)i∈N in A, a state q ∈ Q and a set F ∈ F such that q ∈ F
and q = pi for infinitely many i ∈ N. Let n > 0 be such that pn = q and let
p′ = (p′i, xi, p

′
i+1)i∈N be the initial path in A′ defined by ∀i �= n+ 1, p′i = pi and

p′n+1 = (pn+1, q). As q �∈ fin(p′), fin(p′) = (fin(p′)∩Q)�{q}∪{(pn+1, q)} ∈ F ′.
Hence, x ∈ L(fin,=)A′

A′ .
We now show that L(fin,=)A′

A′ ⊆ L(inf,�)A
A . Let x ∈ L(fin,=)A′

A′ . There exists
a path p = (pi, xi, pi+1)i∈N in A′, two states q1, q2 ∈ Q and a set F ∈ P (Q)
such that ∃X ∈ F with q2 ∈ X and fin(p) = F � {q2} ∪ {(q1, q2)}. Let p′ =
(p′i, xi, p

′
i+1)i∈N be the initial path in A defined by ∀i ∈ N, p′i = pi if pi ∈ Q,

p′i = ai with pi = (ai, bi) ∈ Q×Q, otherwise. As (q1, q2) ∈ fin(p), q2 ∈ run(p)
but q2 �∈ fin(p), then q2 ∈ inf(p) ⊆ inf(p′). Hence, x ∈ L(inf,�)A

A .
�
Lemma 32. DFA(fin,=) ⊆ RAT .

Proof. For any DFA A = (Σ,Q, T, q0,F), let AS = (Σ,Q, T, q0, {S}) for any set
S ⊆ Q. Then,

L(fin,=)
A =

⋃
S⊆Q,S′⊆Q,S�S′∈F

L(run,=)
AS

� L(inf,=)
AS′ ∈ RAT .

�
Corollary 33. FA(fin,=) ⊆ RAT .

Proof. Combine Lemmata 3 and 32.
�
Theorem 34. FA(fin,=) = RAT .

Proof. Combine Lemmata 31 and Corollary 33.
�
Proposition 35. a(a∗b)ω + b(a+ b)∗aω ∈ CDFA(fin,=) � (FR

σ ∪GR
δ).

6 Conclusions

In this paper we have studied the expressivity power of acceptance condition for
finite automata. Three new classes have been fully characterized. For a fourth
one, partial results are given. In particular, (ninf,
) provides four distinct new
classes of languages (see the diamond in the left part of Figure 2), all other
acceptance conditions considered tend to give (classes of) languages populating
known classes.

Remark that some well-known acceptance conditions like Rabin, Strett or
Parity conditions have not been taken in consideration in this work since it is
known that they are equivalent to Muller’s condition.

A first research direction, of course, consists in completing the characterisation
of (fin,=). The characterization of (fin,⊆) is still open.

A further interesting research direction consists in studying the closure prop-
erties of the above new classes of languages and see if they cram the known
classes or if they add new elements to Figure 2.

Acceptance Conditions for ω-Languages 331

Acknowledgments. The authors warmly thank the anonymous referees for
many suggestions that helped to improve the paper and considerably simplify
the proof of Corollary 33.

References

1. Büchi, J.R.: Symposium on decision problems: On a decision method in restricted
second order arithmetic. In: Suppes, P., Nagel, E., Tarski, A. (eds.) Logic, Method-
ology and Philosophy of Science Proceeding of the 1960 International Congress.
Studies in Logic and the Foundations of Mathematics, vol. 44, pp. 1–11. Elsevier
(1960)

2. Hartmanis, J., Stearns, R.E.: Sets of numbers defined by finite automata. American
Mathematical Monthly 74, 539–542 (1967)

3. Kupferman, O., Vardi, M.Y.: From Complementation to Certification. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 591–606. Springer,
Heidelberg (2004)

4. Kurshan, R.P.: Computer aided verification of coodinating process. Princeton Univ.
Press (1994)

5. Landweber, L.H.: Decision problems for omega-automata. Mathematical Systems
Theory 3(4), 376–384 (1969)

6. Litovsky, I., Staiger, L.: Finite acceptance of infinite words. Theor. Comput.
Sci. 174(1-2), 1–21 (1997)

7. Moriya, T., Yamasaki, H.: Accepting conditions for automata on ω-languages.
Theor. Comput. Sci. 61, 137–147 (1988)

8. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the 1963
Proceedings of the Fourth Annual Symposium on Switching Circuit Theory and
Logical Design, SWCT 1963, pp. 3–16. IEEE Computer Society, Washington, DC
(1963)

9. Perrin, D., Pin, J.-E.: Infinite words, automata, semigroups, logic and games. Pure
and Applied Mathematics, vol. 141. Elsevier (2004)

10. Staiger, L., Wagner, K.W.: Automatentheoretische und automatenfreie charakter-
isierungen topologischer klassen regulärer folgenmengen. Elektronische Informa-
tionsverarbeitung und Kybernetik 10(7), 379–392 (1974)

11. Staiger, L.: ω-languages. In: Handbook of Formal Languages, vol. 3, pp. 339–387
(1997)

12. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 135–191.
Elsevier (1990)

13. Vardi, M.Y.: The Büchi Complementation Saga. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)

14. Wagner, K.W.: On ω-regular sets. Information and Control 43(2), 123–177 (1979)

Checking Determinism of Regular Expressions

with Counting�

Haiming Chen and Ping Lu

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

Beijing 100190, China
{chm,luping}@ios.ac.cn

Abstract. We give characterizations of strong determinism for regular
expressions with counting, based on which we present an O(|ΣE ||E|) time
algorithm to check whether an expression E with counting is strongly
deterministic where ΣE is the set of distinct symbols in E. It improves
the previous upper bound of O(|E|3) time on the same decision prob-
lems for both standard regular expressions and regular expressions with
counting. As a natural result of our work we derive a characterization
of weak determinism for regular expressions with counting, which leads
to a new O(|ΣE ||E|) time algorithm for deciding weak determinism of
regular expressions with counting.

1 Introduction

Regular expressions have been widely used in many applications. Different appli-
cations may require regular expressions with various extensions or restrictions,
among them are deterministic regular expressions. For example, Document Type
Definition (DTD) and XML Schema, which are the XML schema languages rec-
ommended by W3C, require that the content models should be weakly deter-
ministic regular expressions. As another example, strongly deterministic regular
expressions are used in query languages for XML streams [11]. Informally, weak
determinism means that, when matching a word against an expression, a symbol
can be matched to only one position in the expression without looking ahead.
Meanwhile, strong determinism makes additional restriction that the use of op-
erators should also be unique in the matching with the word. Weakly determin-
istic regular expressions have been studied in the literature, also under the name
of one-unambiguous regular expressions [1,3,2,5,14,13,6,12]. On the other hand,
strong determinism (or strong one-unambiguity) of regular expressions has also
attracted attentions recently [5,14,11,7].

One basic problem is deciding weak or strong determinism of regular expres-
sions. While deciding weak determinism of a standard regular expression E can
be solved in O(|ΣE ||E|) time [1] where ΣE is the set of distinct symbols in E, de-
ciding strong determinism of standard regular expressions is more involved and

� Work supported by the National Natural Science Foundation of China under Grant
No. 61070038.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 332–343, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Checking Determinism of Regular Expressions with Counting 333

the up to date algorithm runs in O(|E|3) time [11]. Furthermore, it is known that
deciding weak or strong determinism is nontrivial for regular expressions with
counting (RE(#)) [5]1. The latter is extended from standard regular expressions
with iterative expressions (i. e., expressions of the form E[m,n]), and is used
for instance in XML Schema. For deciding weak determinism of regular expres-
sions in RE(#) an O(|ΣE ||E|) time method was given [8]. For deciding strong
determinism of regular expressions in RE(#) an O(|E|3) time algorithm was
presented [5]. In this paper we study properties of RE(#) and present character-
izations of strong determinism for RE(#), based on which we give an O(|ΣE ||E|)
time algorithm to check whether an expression in RE(#) is strongly determin-
istic. Moreover our result can easily adapt to deciding weak determinism for
RE(#) and trivially apply to deciding strong determinism for standard regular
expressions, thus both gives a new O(|ΣE ||E|) time algorithm for the former
and improves the complexity bound from O(|E|3) time into O(|ΣE ||E|) time for
the latter.

Contributions. We give a structural characterization of strong determinism
for RE(#). This characterization can lead to an O(|ΣE ||E|) time algorithm. We
give a further characterization of strong determinism for iterative expressions
to achieve additional benefits. The new characterization elaborately distributes
specific conditions for strong determinism of an iterative expression to some
particular subexpressions of the expression. The benefits of the new character-
ization are that, it not only allows checking strong determinism in O(|ΣE ||E|)
time, but also enables deciding strong determinism of an iterative expression by
particular subexpressions of the expression. Thus it is possible for instance that
nondeterminism of the expression can be located locally and more precisely in a
lower level subexpression.

Then we present an algorithm to check strong determinism for regular expres-
sions in RE(#). The algorithm tests strong determinism directly on the original
regular expressions and runs in time O(|ΣE ||E|). As a natural result of our work
we derive a characterization of weak determinism for RE(#), which gives rise to
a new O(|ΣE ||E|) time algorithm possessing similar features as above.

Related Work. A majority of work considered determinism of standard regular
expressions. Brüggemann-Klein [1] presented an algorithm for standard regular
expressions to check if an expression is weakly deterministic based on Glushkov
automata. By converting expressions into star normal form, the algorithm can
check determinism in O(|ΣE ||E|) time. In [4] a preliminary diagnosing algorithm
was proposed for weak determinism of standard regular expressions which is
based on testing expressions and runs in O(|E|2) time. The present work is
inspired by that work, but here we deal with the different and more challenging
problem of checking strong determinism for RE(#) and our algorithm takes
O(|ΣE ||E|) time. On the other hand, by applying techniques in this paper it
is easy to improve the complexity of the algorithm in [4] into O(|ΣE ||E|) time.

1 The nontrivialness is illustrated by an example in [5]: (b?a[2,3])[2,2]b is weakly deter-
ministic, but (b?a[2,3])[3,3]b is not.

334 H. Chen and P. Lu

In [11] an O(|E|3) time algorithm was given to check strong determinism of
standard regular expressions.

For expressions in RE(#), extensions of the Glushkov construction have been
studied [5,14,9]. Relation between strong deterministic expressions and the corre-
sponding Glushkov automata was set up [5], and a strong determinism checking
algorithm was given, which runs in O(|E|3) time. Kilpeläinen [8] presented an
O(|ΣE ||E|) time algorithm to check weak determinism for RE(#).

The rest of the paper is organized as follows. Section 2 introduces definitions.
In Section 3 the computation of some sets is discussed, which is prerequisite for
the following algorithms. In Section 4 properties of regular expressions in RE(#)
are studied. In Section 5 the characterizations of strong determinism for regular
expressions in RE(#) are given, and an algorithm to check strong determinism
of regular expressions in RE(#) is presented. In Section 6 the characterization
of weak determinism for regular expressions in RE(#) derived from our work
is presented. In Section 7 we show the local nondeterminism-locating feature of
our characterizations by an example.

2 Preliminaries

Let Σ be an alphabet of symbols. The set of all finite words over Σ is denoted by
Σ∗. The empty word is denoted by ε. The class of (standard) regular expressions
over Σ, denoted by RE, is defined in the standard way: ∅, ε or a ∈ Σ is a regular
expression, the union E1+E2, the concatenation E1E2, or the star E

∗
1 is a regular

expression for regular expressions E1 and E2. Let N denote the set {0, 1, 2, . . .}.
The class of regular expressions with counting, denoted by RE(#), is extended
from RE by further using the numerical iteration operator : E[m,n] is a regular
expression for a regular expression E. The bounds m and n satisfy the following
conditions: m ∈ N, n ∈ N\{0}∪ {∞}, and m ≤ n. Notice E∗ = E[0,∞]. Thus we
do not need to separately consider the star operator in RE(#). Notice E? is also
used in content models, which is just an abbreviation of E + ε, and is therefore
not separately considered in the paper.

For a regular expression E, the language specified by E is denoted by L(E).
The language of E[m,n] is defined as L(E[m,n]) =

⋃n
i=m L(E)i. Define λ(E) =

true if ε ∈ L(E) and false otherwise. An expression E is nullable if λ(E) = true.
The size of a regular expression E in RE(#), denoted by |E|, is the number of
symbols and operators occurring in E plus the sizes of the binary representa-
tions of the integers [5]. The symbols that occur in E, which form the smallest
alphabet of E, will be denoted by ΣE . An expression is in normal form if for

its every nullable subexpressions E
[m,n]
1 we have m = 0 [5]. Expressions can

be transformed into normal form in linear time [5]. Therefore, following [5], we
assume expressions are in normal form in this paper.

For a regular expression we can mark symbols with subscripts so that in the
marked expression each marked symbol occurs only once. For example (a1 +
b2)

[6,7]a3b4(a5 + b6) is a marking of the expression (a + b)[6,7]ab(a + b). The
marking of E is denoted by E. The same notation will also be used for dropping

Checking Determinism of Regular Expressions with Counting 335

subscripts from the marked symbols: E = E. We extend the notation for words
and sets of symbols in the obvious way. It will be clear from the context whether
· adds or drops subscripts.
Definition 1 ([3]). An expression E is weakly deterministic if and only if, for
all words uxv, uyw ∈ L(E) where |x| = |y| = 1, if x �= y then x �= y.

The expression a[0,2]a is not weakly deterministic, since a2, a1a2 ∈ L(a
[0,2]
1 a2).

It is known that weakly deterministic regular expressions denote a proper
subclass of regular languages [3].

A bracketing of a regular expression E is a labeling of the iteration nodes
of the syntax tree by distinct indices [5]. The bracketing Ẽ of E is obtained by

replacing each subexpression E
[m,n]
1 of E with a unique index i with ([iE1]i)

[m,n].
Therefore, a bracketed regular expression is a regular expression over alphabet
Σ ∪ ΓE , where ΓE = {[i,]i | 1 ≤ i ≤ |E|Σ}, |E|Σ is the number of symbol
occurrences in E. A string w in Σ ∪ ΓE is correctly bracketed if w has no
substring of the form [i]i.

Definition 2 ([5]). A regular expression E is strongly deterministic if E is
weakly deterministic and there do not exist strings u, v, w over Σ ∪ ΓE, strings
α �= β over ΓE, and a symbol a ∈ Σ such that uαav and uβaw are both correctly
bracketed and in L(Ẽ).

The expression (a[1,2])[1,2] is weakly deterministic but not strongly deterministic.
Both [2[1a]1]2[2[1a]1]2 and [2[1a]1[1a]1]2 are in L(([2([1a]1)

[1,2]]2)
[1,2]).

For an expression E over Σ, we define the following sets:

first(E) = {a | aw ∈ L(E), a ∈ Σ,w ∈ Σ∗},
followlast(E) = {b | vbw, v ∈ L(E), v �= ε, b ∈ Σ,w ∈ Σ∗}.

We assume expressions are reduced by the following rules: E + ∅ = ∅ + E =
E,E∅ = ∅E = ∅, and Eε = εE = E. For a reduced expression, it either does not
contain ∅ or is ∅. Since we are not interested in the trivial case of an expression
of ∅, in the following we assume an expression is not ∅.

3 Computing followlast Sets

To determine the conditions given in the next sections, we will need to calculate
the first and followlast sets and the λ function. The inductive definition of the
λ function on expressions in RE is standard and can be found in, e. g., [1], which
can be trivially extended to expressions in RE(#).

For any regular expression E, it is easy to see that first can be computed as
follows.

first(ε) = ∅, f irst(a) = {a}, a ∈ ΣE ;
first(G+H) = first(G) ∪ first(H);

first(GH) =

{
first(G) ∪ first(H) if ε ∈ L(G),
f irst(G) otherwise;

first(G[m,n]) = first(G).

(1)

336 H. Chen and P. Lu

The calculation of followlast is however more involved. The following notion
has been given in [10].

Definition 3 ([10]). An iterative subexpression F = G
[m,n]

of E is flexible
in E, denoted flexible(G[m,n]), if there is some word uws ∈ L(E) with w ∈
L(F)l ∩ L(G)k for some l ∈ N and k < l × n. We call such a word w a witness
to the flexibility of F in E.

The flexibility of an iterative expression can be computed in linear time [8].
For a marked expression E, it is known that the following holds [8].

followlast(ε) = followlast(a) = ∅, a ∈ ΣE ;
followlast(G+H) = followlast(G) ∪ followlast(H);

followlast(GH) =

{
followlast(G) ∪ first(H) ∪ followlast(H) if ε ∈ L(H),

followlast(H) otherwise;

followlast(G
[m,n]

) =

{
followlast(G) ∪ first(G) if flexible(G[m,n]) = true,

followlast(G) otherwise.

However, the above formula is incorrect for general expressions. For example,
let E = a+ ab. By definition, we have followlast(E) = {b}, since a, ab ∈ L(E).
But followlast(a) = ∅ and followlast(ab) = ∅, which means followlast(E) �=
followlast(a) ∪ followlast(ab). The remaining of this section deals with this
issue.

The following lemma shows the relation between the considered sets on general
and marked expressions.

Lemma 1. Let E be a regular expression.

(1) followlast(E) ⊆ followlast(E).

(2) first(E) = first(E).

(3) E is weakly deterministic ⇒ followlast(E) = followlast(E).

Then from Lemma 1 we have

Corollary 1. For a weakly deterministic expression E, followlast can be com-
puted as follows.

followlast(ε) = followlast(a) = ∅, a ∈ ΣE;
followlast(G +H) = followlast(G) ∪ followlast(H);

followlast(GH) =

{
followlast(G) ∪ first(H) ∪ followlast(H) if ε ∈ L(H),
followlast(H) otherwise;

followlast(G[m,n]) =

{
followlast(G) ∪ first(G) if flexible(G[m,n]) = true,
followlast(G) otherwise.

(2)

This gives computation of followlast for weakly deterministic expressions.
Fortunately we will see later that in the algorithms only when E is weakly

or strongly deterministic is followlast(E) needed. Thus Equation (2) works for
our purpose.

Checking Determinism of Regular Expressions with Counting 337

4 Properties of Expressions in RE(#)

In this section we will develop further necessary properties. Fix an arbitrary
coding on the syntax tree of an expression E in some ordering, such that each
node in the syntax tree has a unique index. The subexpression corresponding
to a node with index n is denoted by E|n. Inside the syntax tree of E, the
replacement of the subtree of a subexpression E|n with the syntax tree of an
expression G is denoted by E[E|n ← G], which yields a new expression. For a
subexpression E|n of E, let E�E|n = E[E|n ← �E|n�], where � /∈ ΣE .

Definition 4. Let � /∈ ΣE. For a subexpression E|n of E, we say E|n is contin-
uing, if for any words w1, w2 ∈ L(E|n), there are u, v ∈ (ΣE ∪ {�})∗, such that
u�w1��w2�v ∈ L(E�E|n).

If a subexpression E|n is continuing, we denote ct(E|n, E) = true, otherwise
ct(E|n, E) = false. When there is no confusion, ct(E|n, E) is also written as
ct(E|n). For the expression E = (t(x + ε))[0,∞]l, ct(t) = true, since �t��t�l ∈
L(E�t). Similarly, we can get ct(x) = false, ct(x+ε) = false, ct(t(x+ε)) = true,
ct((t(x + ε))[0,∞]) = false, ct(l) = false and ct((t(x + ε))[0,∞]l) = false.

Intuitively if a subexpression F of E is continuing then F is inside an iterative
subexpression ofE. We use � in the definition to exclude the cases like E = a[m,∞]

where ct(E) = false but ∀x, y ∈ L(E), xy ∈ L(E), and E = (a + b)(b + a)
where ct(b + a) = false but ∀x, y ∈ L(b + a), xy ∈ L(E). Formally we offer a
characterization of continuing in Proposition 1.

Let E1 . E denote that E1 is a subexpression of E. By E1 ≺ E we denote
E1 . E and E1 �= E.

If F . G for some G[m,n] . E (n > 1), and there is no G
[m1,n1]
1 . E (n1 > 1)

such that F . G1 ≺ G, we call G[m,n] the lowest upper nontrivial iterative
expression (LUN) of F . Let E = a[0,1]b[1,2], then E does not have a LUN, a does
not have a LUN, and b has a LUN, that is b[1,2]. It is easy to see if a subexpression
is inside any iterative expression G[m,n] (n > 1), then it has a LUN. Obviously
a subexpression may not have a LUN, and if it has, its LUN is unique.

Proposition 1. A subexpression F of E is continuing iff there exists the LUN
G[m,n] . E (n > 1) of F , such that L(�F �) ⊆ L(G�F).

It is obvious that the continuing property of F is locally decided in the LUN of
F . If F does not have the LUN, then F cannot be continuing. A related concept
is the factor of an expression [10]. A continuing subexpression is a proper factor
of its LUN.

Indeed if F is continuing, then F can affect the determinism of its LUN, which
will be clear later. That is the reason why we study the continuing property. Be-
low we first consider the calculation of the continuing property for subexpressions
of an expression.

Clearly an expression E itself is not continuing, since there is not a LUN of
E. That is,

338 H. Chen and P. Lu

+

[2,3]

.
.

.
. c

ba

t +
t

ct=0

ct=1

ct=1

ct=1 ct=0

ct=0 ct=0

ct=0 ct=0

ct=0ct=0

ct=0ct=0

ct=0

Fig. 1. The continuing property values
in ((t(t+ε))(ε+(abc)))[2,3] (0 for false
and 1 for true)

+

[2,3]

.
.

.
. c

ba

t +
t

14

13

5

1 4

2 3

7 8

9 10

116

12

Fig. 2. Node processing sequences in
((t(t+ ε))(ε+ (abc)))[2,3]

Proposition 2. ct(E) = false for any expression E.

We also have the following properties.

Proposition 3. For a subexpression F = H + I of E, ct(H) = ct(I) = ct(F).

Proposition 4. For a subexpression F = HI of E, ct(H) = true (resp. ct(I) =
true) iff ct(F) = true and λ(I) = true (resp. λ(H) = true).

Proposition 5. For a subexpression F = G[m,n] of E, if n = 1, then ct(G) =
ct(F), if n > 1, then ct(G) = true.

Propositions 2–5 have given an algorithm to compute continuing. The contin-
uing property of subexpressions of E is actually an attribute that is inherited
from upper level subexpressions to lower level subexpressions. This means the
continuing property can be computed in a top-down order on the structure of E.

From the above we can also have the following fact.

Fact. In the downward propagation of the continuing property on the nodes of
the syntax tree of a regular expression E, only two kinds of nodes may change
the value of continuing property, i. e., the node corresponding to a concatenation,
called concat node, and the node corresponding to a iteration, called iteration
node. Moreover, the concat nodes may change the continuing value from true to
false, while the iteration nodes may change the continuing value from false to
true.

The computation of the continuing value is showed by an example E = ((t(t+
ε))(ε+ (abc)))[2,3] from Figure 1.

5 Strong Determinism

A characterization of strong determinism is presented in the following.

Lemma 2. Let E be a regular expression.
(1) E = ε, or a ∈ Σ: E is strongly deterministic.

Checking Determinism of Regular Expressions with Counting 339

(2) E = E1 + E2: E is strongly deterministic iff E1 and E2 are strongly deter-
ministic and first(E1) ∩ first(E2) = ∅.
(3) E = E1E2: If ε ∈ L(E1), then E is strongly deterministic iff E1 and E2

are strongly deterministic, first(E1) ∩ first(E2) = ∅, and followlast(E1) ∩
first(E2) = ∅.
If ε /∈ L(E1), then E is strongly deterministic iff E1 and E2 are strongly deter-
ministic, and followlast(E1) ∩ first(E2) = ∅.
(4) E = E

[m,n]
1 : (a) If n = 1, E is strongly deterministic iff E1 is strongly de-

terministic.
(b) If n > 1, E is strongly deterministic iff E1 is strongly deterministic and
followlast(E1) ∩ first(E1) = ∅.

Lemma 2 can lead to an O(|ΣE ||E|) time algorithm to check strong determin-
ism by using similar techniques as introduced later. Furthermore, based on the
continuing property, we give a new characterization of strong determinism of
iterative expressions in the following, which not only allows checking strong
determinism in O(|ΣE ||E|) time, but also has additional benefits that will be
presented in Section 7.

The boolean-valued function S on RE(#), introduced in the following, will
be used to check strong determinism of expressions by using the continuing
property.

Definition 5. The boolean-valued function S(E) is defined as

S(ε) = S(a) = true a ∈ Σ
S(E1 + E2) = S(E1) ∧ S(E2) ∧ (ct(E1 + E2) = false

∨ (followlast(E1 + E2) ∩ first(E1 + E2) = ∅))
S(E1E2) = S(E1) ∧ S(E2) ∧ (ct(E1E2) = false

∨ (first(E1E2) ∩ followlast(E1E2) = ∅))
S(E[m,n]

1) = S(E1) ∧ (ct(E
[m,n]
1) = false

∨ (first(E
[m,n]
1) ∩ followlast(E[m,n]

1) = ∅))

In fact, and somewhat surprisingly, the function S gives exactly the specific
conditions that E1 should satisfy besides the condition of E1 being strongly de-

terministic, to ensure an iterative expression E
[m,n]
1 to be strongly deterministic.

This is shown in Propositions 6 and 7.

Proposition 6. Let a subexpression E of an expression be strongly determinis-
tic. We have (first(E) ∩ followlast(E) = ∅ ∨ ct(E) = false) ⇔ S(E) = true.

Proposition 7. For E = E
[m,n]
1 (n > 1), E is strongly deterministic iff E1 is

strongly deterministic and S(E1) = true.

The function S allows for one-pass computation on the syntax tree of the ex-
pression. This is a good property from at least the algorithmic point of view.

We can then derive an algorithm from the characterization given in Proposi-
tion 7 and Lemma 2, as follows.

340 H. Chen and P. Lu

Algorithm 1. Is Strong Det

Input: a regular expression in RE(#), E
Output: true if E is strongly deterministic or false otherwise
1. return Strong DET(E, false)

Procedure 1. Strong DET(E, continuing)

Input: a regular expression in RE(#), E, and a Boolean value continuing = ct(E)
Output: true if E is strongly deterministic or false otherwise
1. if E = ε then
2. first(E) ← ∅; followlast(E) ← ∅; return true
3. if E = a for a ∈ Σ then
4. first(E) ← {a}; followlast(E) ← ∅; return true
5. if E = E1 + E2 then
6. d1 ← continuing; d2 ← continuing
7. if Strong DET(E1,d1) ∧ Strong DET(E2,d2) then
8. if first(E1) ∩ first(E2)
= ∅ then
9. return false
10. Calculate first(E), followlast(E) (Equations (1), (2))
11. if continuing ∧ (first(E) ∩ followlast(E)
= ∅) then
12. return false
13. return true
14. else return false
15. if E = E1E2 then
16. Calculate d1, d2 by Proposition 4
17. if Strong DET(E1,d1) ∧ Strong DET(E2,d2) then
18. if followlast(E1) ∩ first(E2)
= ∅ then
19. return false
20. if λ(E1) ∧ first(E1) ∩ first(E2)
= ∅ then
21. return false
22. Calculate first(E), followlast(E) (Equations (1), (2))
23. if continuing ∧ (first(E) ∩ followlast(E)
= ∅) then
24. return false
25. return true
26. else return false
27. if E = E

[m,n]
1 then

28. if n = 1 then d1 ← continuing else d1 ← true
29. if Strong DET(E1,d1) then
30. Calculate first(E), followlast(E) (Equations (1), (2))
31. if continuing ∧ (first(E) ∩ followlast(E)
= ∅) then
32. return false
33. return true
34. else return false

Checking Determinism of Regular Expressions with Counting 341

First the syntax tree of a regular expression can be constructed and the λ
function can be evaluated during the construction in linear time [1]. Then by
carefully arranging the computation, all of the other computation can be done
in one run on the syntax tree.

There are mainly the following kinds of work that should be completed by
the algorithm: (1). Compute the continuing property. (2). Examine mixed test
conditions. As mentioned before S represents specific conditions for subexpres-
sions of iterative subexpressions. The algorithm should combine S with other
conditions in Lemma 2. (3). Compute first, followlast sets.

Work (1) can be done in a top-down manner on the syntax tree of the ex-
pression. Work (2) and (3) can be done at the same time in a bottom-up and
incremental manner on the syntax tree. In this way, according to the conditions
in Lemma 2, when current subexpressionE1 is tested to be nondeterministic then
the expression is nondeterministic and the computation of first and followlast
sets for E1 is not necessary. Putting the above together, all the computation can
be completed in one pass on the syntax tree, by a top-down then bottom-up
traversal.

Actually, from the point of view of attribute grammars, the continuing prop-
erty is precisely an inherited attribute, while the first, followlast sets, and the
determinism of subexpressions are all synthesized attributes. All the computa-
tion can be completed by attribute evaluation in one pass.

The algorithm Is Strong Det(E) takes as input a regular expression, and out-
puts a Boolean value indicating if the expression is strongly deterministic.

Theorem 1. Is Strong Det(E) returns true iff E is strongly deterministic.

There are at most O(|E|) nodes in the syntax tree of E. In the algorithm, the
calculation of first and followlast sets is done at the same time with determin-
ism test in a bottom-up and incremental manner, and can be computed on the
syntax tree of E in O(2|ΣE ||E|) time. Emptiness test of first(E1) ∩ first(E2)
or followlast(E1) ∩ first(E2) for subexpressions E1, E2 can be completed in
O(2|ΣE |) time with an auxiliary array indexed by every symbols in the alphabet
of E. The algorithm may conduct the test at every inner node on a bottom-
up traversal of the syntax tree of E, which totally takes O(2|ΣE ||E|) time. So
the time complexity of the algorithm is O(|ΣE ||E|). For a fixed alphabet, the
algorithm has linear running time. Hence

Theorem 2. Is Strong Det(E) runs in time O(|ΣE ||E|).

6 Adaption to Weak Determinism

First consider the following relatively easy fact which still relies on marked ex-
pressions.

Lemma 3 ([3,8]). Let E be a regular expression.
(a) E = ε or a ∈ Σ: then E is weakly deterministic.

342 H. Chen and P. Lu

(b) E = E1+E2: E is weakly deterministic iff E1 and E2 are weakly deterministic
and first(E1) ∩ first(E2) = ∅.
(c) E = E1E2: (1) If ε ∈ L(E1), then E is weakly deterministic iff E1 and
E2 are weakly deterministic, first(E1) ∩ first(E2) = ∅, and followlast(E1) ∩
first(E2) = ∅.
(2) If ε /∈ L(E1), then E is weakly deterministic iff E1 and E2 are weakly
deterministic and followlast(E1) ∩ first(E2) = ∅.
(d) E = E

[m,n]
1 : (1) If n = 1, then E is weakly deterministic iff E1 is weakly

deterministic; (2) If n > 1, then E is weakly deterministic iff E1 is weakly
deterministic and ∀x ∈ followlast(E1), ∀y ∈ first(E1), if x = y then x = y.

We can use the continuing property to improve the characterization of weak de-
terminism of iterative expressions as before. Let ϕ(E) = ∀x∀y(x ∈ followlast(E)
∧ y ∈ first(E) ∧ x = y → x = y).

Definition 6. The boolean-valued function W(E) is defined as

W(ε) = W(a) = true a ∈ Σ
W(E1 + E2) = W(E1) ∧W(E2) ∧ (ct(E1 + E2) = false∨

(followlast(E1) ∩ first(E2) = ∅∧
followlast(E2) ∩ first(E1) = ∅))

W(E1E2) = W(E1) ∧W(E2) ∧ (ct(E1E2) = false ∨
(first(E1) ∩ followlast(E2) = ∅ ∧

(λ(E1) ∨ ¬λ(E2) ∨ first(E1) ∩ first(E2) = ∅)))
W(E

[m,n]
1) = W(E1)

Proposition 8. Let a subexpression E of an expression be weakly deterministic.
We have (ϕ(E) = true ∨ ct(E) = false)⇔W(E) = true.

Proposition 9. For E = E
[m,n]
1 (n > 1), E is weakly deterministic iff E1 is

weakly deterministic and W(E1) = true.

From the above analysis and using similar techniques for Is Strong Det(E), we
get an algorithm DCITER to check weak determinism of regular expressions,
which runs in time O(|ΣE ||E|). For the limited space the concrete algorithm is
not presented in the paper.

7 The Local Nondeterminism-Locating Feature and
Discussion

Below we show the local nondeterminism-locating feature of our methods by an
example. We use the method DCITER here to compare with the existing algo-
rithm linear UPA [8] for deciding weak determinism. We use the same expression
E = ((t(t+ ε))(ε+ (abc)))[2,3] as in the previous example. The syntax tree of E
is showed in Figure 2.

In linear UPA, the sequence of the processed nodes is 1 → 2 → . . . → 14. At
node 14, the algorithm will find that E is not deterministic, and then terminate.

Checking Determinism of Regular Expressions with Counting 343

In DCITER, the sequence of the processed nodes is 1 → 2 → 3 → 4 → 5. At
node 5, because the continuing value at the node is true and t ∈ first(t) and
t ∈ first(t+ ε), the algorithm will report an error immediately and terminate.

The example clearly shows that an iterative expression E can be nondeter-
ministic while all its subexpressions are deterministic, and, moreover, in this
situation DCITER may find the nondeterminism locally by checking subexpres-
sions of E, in this case t(t + ε). On the contrary linear UPA can only find this
nondeterminism after examining the whole expression. So we can see that our
methods can locate errors more precisely. This suggests our methods are also
more advantageous for diagnosing purpose.

Acknowledgments. The authors thank the anonymous reviewers for their
valuable comments that helped us to improve the presentation of the paper.

References

1. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoretical Com-
puter Science 120(2), 197–213 (1993)

2. Brüggemann-Klein, A., Wood, D.: Deterministic Regular Languages. In: Finkel, A.,
Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 173–184. Springer, Heidelberg
(1992)

3. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion and Computation 142(2), 182–206 (1998)

4. Chen, H., Lu, P.: Assisting the Design of XML Schema: Diagnosing Nondetermin-
istic Content Models. In: Du, X., Fan, W., Wang, J., Peng, Z., Sharaf, M.A. (eds.)
APWeb 2011. LNCS, vol. 6612, pp. 301–312. Springer, Heidelberg (2011)

5. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: weak
versus strong determinism. SIAM J. Comput. 41(1), 160–190 (2012)

6. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular
expressions. In: STACS 2008, pp. 325–336 (2008)

7. Hovland, D.: The Membership Problem for Regular Expressions with Unordered
Concatenation and Numerical Constraints. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.)
LATA 2012. LNCS, vol. 7183, pp. 313–324. Springer, Heidelberg (2012)

8. Kilpeläinen, P.: Checking determinism of XML Schema content models in optimal
time. Informat. Systems 36(3), 596–617 (2011)

9. Kilpeläinen, P., Tuhkanen, R.: Towards efficient implementation of XML Schema
content models. In: DocEng 2004, pp. 239–241. ACM, New York (2004)

10. Kilpeläinen, P., Tuhkanen, R.: One-unambiguity of regular expressions with nu-
meric occurrence indicators. Information and Computation 205(6), 890–916 (2007)

11. Koch, C., Scherzinger, S.: Attribute grammars for scalable query processing on
XML streams. The VLDB Journal 16(3), 317–342 (2007)

12. Martens, W., Neven, F., Schwentick, T.: Complexity of Decision Problems for Sim-
ple Regular Expressions. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004.
LNCS, vol. 3153, pp. 889–900. Springer, Heidelberg (2004)

13. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity
of XML Schema. ACM Transactions on Database Systems 31(3), 770–813 (2006)

14. Sperberg-McQueen, C.M.: Notes on finite state automata with counters (2004),
http://www.w3.org/XML/2004/05/msm-cfa.html

http://www.w3.org/XML/2004/05/msm-cfa.html

Biautomata for k-Piecewise Testable Languages

Ondřej Kĺıma and Libor Polák�

Department of Mathematics and Statistics, Masaryk University
Kotlářská 2, 611 37 Brno, Czech Republic

{klima,polak}@math.muni.cz
http://www.math.muni.cz

Abstract. An effective characterization of piecewise testable languages
was given by Simon in 1972. A difficult part of the proof is to show
that if L has a J -trivial syntactic monoid M(L) then L is k-piecewise
testable for a suitable k. By Simon’s original proof, an appropriate k
could be taken as two times the maximal length of a chain of ideals in
M(L). In this paper we improve this estimate of k using the concept
of biautomaton: a kind of finite automaton which arbitrarily alternates
between reading the input word from the left and from the right. We
prove that an appropriate k could be taken as the length of the longest
simple path in the canonical biautomaton of L. We also show that this
bound is better than the known bounds which use the syntactic monoid
of L.

Keywords: biautomata, k-piecewise testable languages, J -trivial
monoids.

1 Introduction

A language L over a non-empty finite alphabet A is called piecewise testable if
it is a Boolean combination of languages of the form

A∗a1A
∗a2A

∗ . . . A∗a	A
∗, where a1, . . . , a	 ∈ A, � ≥ 0 . (∗)

Simon’s celebrated theorem [12] states that a regular language L is piecewise
testable if and only if the syntactic monoid M(L) of L is J -trivial. Here we are
interested in a finer question, namely to decide, for a given non-negative integer
k, the k-piecewise testability, i.e. whether L can be written as a Boolean com-
bination of languages of the form (∗) with � ≤ k. Although there exist several
proofs of Simon’s result based on various methods from algebraic and combina-
torial theory of regular languages (e.g. proofs due to Almeida [1], Straubing and
Thérien [13], Higgins [4], Kĺıma [5]; see the survey paper by Pin [9] for more
information), little attention has been paid to this problem.

The least k such that a given piecewise testable language L is k-piecewise
testable, can be found by brute-force algorithms. The first one uses the fact

� The authors were supported by the Institute for Theoretical Computer Science
(GAP202/12/G061), Czech Science Foundation.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 344–355, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.math.muni.cz

Biautomata for k-Piecewise Testable Languages 345

that for each fixed k and a fixed alphabet A, there are only finitely many k-
piecewise testable languages over A. A more sophisticated algorithm can apply
Eilenberg’s correspondence; it tests whether the syntactic monoid of L belongs
to the pseudovariety Jk of finite monoids corresponding to the variety of all
k-piecewise testable languages. But both methods are unrealistic in practice.

A natural question, considering Jk, is the existence of a finite basis of identities
for this class of monoids; in the positive case one can test those identities in the
syntactic monoids. Such a finite basis exists for k = 1 since J1 is formed by
semilattices. Furthermore, Simon [11] and Blanchet-Sadri [2,3] found finite sets
of identities for J2 and J3. Unfortunately, it was proved in [2,3] that a finite basis
of identities for Jk does not exist for k ≥ 4.

Our ambition, in this paper, is not to decide the k-piecewise testability in a
reasonable computational time. Instead of that, for a given piecewise testable
language L, we would like to find a good estimate, i.e. a (possibly small) number
k, such that L is k-piecewise testable. Such a bound is implicitly contained in the
original Simon’s proof [12]. Namely, it is shown that k could be taken to be equal
to 2n− 1 where n is the maximal length of a J -chain, i.e. the maximal length
of a chain of ideals, in the syntactic monoid of L (see the proof of Corollary 1.7
in [10]). Note that a similar estimate was also established in the first author’s
combinatorial proof of Simon’s result [5]: k could be taken as � + r − 2 where �
and r are the maximal lengths of chains for the orderings ≤L and ≤R.

In this paper we consider a different proof of Simon’s result using a new notion
of biautomaton introduced recently by the authors in [7]. The biautomaton is,
simply speaking, a finite automaton which arbitrarily alternates between reading
the input word from the left and from the right. In the formal definition of a
biautomaton there are some compatibility assumptions which ensure that the
acceptance of an input does not depend on the way how the input is read. One
application of biautomata in [7] gives a characterization of prefix-suffix testable
languages. Other result in [7] was an alternative characterization of piecewise
testable languages: L is piecewise testable if and only if its canonical biautomaton
C(L) is acyclic. The core of the proof was to show that if C(L) has m states then
L is 2m-piecewise testable. Here we improve this result in two directions, namely,
we eliminate the coefficient 2 and we replace the size of C(L) by the length of
the longest simple path in this acyclic biautomaton, which is called the depth of
the biautomaton. The main result of this paper can be phrased as follows.

Theorem 1. Let L be a piecewise testable language with an (acyclic) canonical
biautomaton of depth k. Then L is k-piecewise testable.

A quite delicate and technical proof of this result is not fully presented here
(see appendix in [8]), Section 3 contains only a sketch of this proof. Instead of
presenting a complete proof we prefer to add some examples and some additional
results. First of all, for each k, we present an easy example of a piecewise testable
language which has the canonical biautomaton of depth k and which is not (k−
1)-piecewise testable. This shows that the estimate given by Theorem 1 cannot
be improved in terms of the depth of the biautomaton. Furthermore, in Section 4
we compare our new estimate with those using the syntactic monoid. We show

346 O. Kĺıma and L. Polák

that the depth of the canonical biautomaton is never larger than the mentioned
characteristics 2n − 1 and � + r − 2 for the syntactic monoid of the language.
Moreover, we show that there are languages for which these characteristics are
arbitrarily larger than the depth of the canonical biautomaton. In the last section
of the paper we also establish a lower bound on k using another characteristic
of C(L), namely the length of the shortest simple path from the initial state to
an absorbing state.

2 Preliminaries

2.1 Piecewise Testable Languages and Syntactic Monoids

Let A∗ be the free monoid over a non-empty finite alphabet A with the neu-
tral element λ; its elements are called words. For u, v ∈ A∗, we write u � v
if u is a subword of v, i.e. u = a1 . . . a	, a1, . . . , a	 ∈ A and there are words
v0, v1, . . . , v	 ∈ A∗ such that v = v0a1v1 . . . a	v	. Furthermore, for a given word
u ∈ A∗, we denote by Lu the language of all words which contain u as a sub-
word, i.e. Lu = { v ∈ A∗ | u � v }. Alternatively, for u = a1 . . . an, we can write
Lu = A∗a1A

∗ . . . A∗anA
∗. For such u we call n the length of the word u, in no-

tation |u|, and {a1, . . . , an} the content of u, in notation c(u). The complement
of a language L ⊆ A∗ is denoted by Lc.

Definition 1. A regular language is k-piecewise testable if it is a Boolean com-
bination of languages of the form Lu where all u’s satisfy |u| ≤ k. A regular
language is piecewise testable if it is k-piecewise testable for some k.

We will use further notation. For v ∈ A∗, we let Subk(v) = { u ∈ A+ | u�v, |u| ≤
k }. We define the equivalence relation ∼k on A∗ by the rule: u ∼k v if and only
if Subk(u) = Subk(v). Note that Sub1(u) = c(u). An easy consequence of the
definition of piecewise testable languages is the following lemma. A proof can be
found e.g. in [11], [6]. Note that the usual formulation concerns the class of all
piecewise testable languages.

Lemma 1. A language L is k-piecewise testable if and only if L is a union of
classes in the partition A∗/∼k.

Example 1. Let A = {a, b}. Then Laba∪Lbab = Lab∩Lba is a 2-piecewise testable
language. The language Laba is not 2-piecewise testable because Sub2(abab) =
Sub2(baab) = A2, i.e. abab ∼2 baab but abab ∈ Laba and baab �∈ Laba.

Example 2. For each k, we can consider the word u = ak over an arbitrary
alphabet containing the letter a. Then the language Lu is k-piecewise testable
but it is not (k − 1)-piecewise testable. Indeed, u = ak ∼k−1 ak−1, u ∈ Lu
and ak−1 �∈ Lu. Among others, this easy example shows that the classes of
k-piecewise testable languages are different for different k’s.

Biautomata for k-Piecewise Testable Languages 347

In an arbitrary monoidM , we define Green’s relationsR, L and J as follows: for
a, b ∈M , we have aRb if and only if aM = bM , aLb if and only ifMa =Mb, aJ b
if and only if MaM = MbM . Furthermore, a ≤R b if and only if aM ⊆ bM ,
a <R b if and only if aM ⊂ bM . Similarly for L and J . The monoid M is
J -trivial if, for each a, b ∈ M , aJ b implies a = b. If, for a ∈ M , we have
MaM = {a}, then a is called a zero and it is denoted by 0.

An R-chain is a sequence a0 <R a1 <R · · · <R ar. Its length is the number
r+1. The monoidM is of R-height r if r+1 is the maximal length of an R-chain
in M ; we write R-height(M) = r. Similarly for L and J .

For a language L ⊆ A∗, we define the relation ≡L on A∗ as follows: for
u, v ∈ A∗ we have

u ≡L v if and only if (∀ p, r ∈ A∗) (pur ∈ L ⇐⇒ pvr ∈ L) .

The relation ≡L is a congruence on A∗; it is called the syntactic congruence
of L and the quotient structure M(L) = A∗/≡L = { [u]≡L | u ∈ A∗ } is the
syntactic monoid of L. Moreover, the monoid M(L) is finite whenever L is a
regular language. The natural mapping ηL : A∗ → M(L) given by ηL(u) = [u]≡L ,
for u ∈ A∗, is called the syntactic homomorphism. The language L is a union of
certain classes of the partition A∗/≡L. If we denote F = ηL(L) the set of these
classes, then L = { u ∈ A∗ | ηL(u) ∈ F }. When L is fixed, we will write simply
M , [u] and η instead of M(L), [u]≡L and ηL.

The result by Simon follows.

Theorem 2 (Simon [11,12]). A regular language L is piecewise testable if and
only if its syntactic monoid M(L) is J -trivial.

We also mention two results which are proved in Corollary 1.7 in [10] and in the
second author’s paper [5] respectively.

Proposition 1 ([10],[5]). Let L be a piecewise testable language with syntactic
monoid M(L). Then L is k-piecewise testable for k = 2 · J -height(M(L))+1 and
also for k = R-height(M(L)) + L-height(M(L)).

Note that the relation R-height(M(L)) + L-height(M(L)) ≤ 2 · J -height(M(L))
is obvious.

2.2 Biautomata for Piecewise Testable Languages

The authors’ paper [7] initialized the study of biautomata. We recall now the
basic notions and results which we will need here.

Definition 2. A biautomaton over a non-empty finite alphabet A is a six-tuple
B = (Q,A, ·, ◦, i, T) where

– Q is a non-empty set of states,
– · : Q×A→ Q, extended to · : Q×A∗ → Q by q · λ = q, q · (ua) = (q · u) · a,

where q ∈ Q, u ∈ A∗, a ∈ A,

348 O. Kĺıma and L. Polák

– ◦ : Q×A→ Q, extended to ◦ : Q×A∗ → Q by q◦λ = q, q◦(av) = (q◦v)◦a,
where q ∈ Q, v ∈ A∗, a ∈ A (such actions are marked by dotted lines in
diagrams),

– i ∈ Q is the initial state,
– T ⊆ Q is the set of terminal states,
– for each q ∈ Q, a, b ∈ A, we have (q · a) ◦ b = (q ◦ b) · a,
– for each q ∈ Q, a ∈ A, we have q · a ∈ T if and only if q ◦ a ∈ T .

The language recognized by B is the regular language LB = { u ∈ A∗ | i ·u ∈ T }.

The following two properties, which generalize the last conditions in the defini-
tion, follow immediately (see [7], Lemma 2.2).

– For each q ∈ Q, u, v ∈ A∗, we have (q · u) ◦ v = (q ◦ v) · u.
– For each q ∈ Q, u ∈ A∗, we have q · u ∈ T if and only if q ◦ u ∈ T .

A crucial property is the following lemma which says that to decide whether
u ∈ LB it is possible to consider an arbitrary reading of u in B.

Lemma 2 ([7], Lemma 2.3). Having a biautomaton B = (Q,A, ·, ◦, i, T), p ∈
Q and u ∈ A+, dividing u = u1 . . . ukvk . . . v1 arbitrarily, u1, . . . , uk, vk, . . . , v1 ∈
A∗, when reading from p, the words u1 first, then v1, then u2, and so on, i.e. we
move from p to the state q = ((. . . ((((p · u1) ◦ v1) · u2) ◦ v2) . . .) · uk) ◦ vk , then
q ∈ T if and only if p · u ∈ T .

For our propose, we recall the basic construction from [7].

Definition 3. For a regular language L ⊆ A∗ and u, v ∈ A∗, we put u−1Lv−1 =
{w ∈ A∗ | uwv ∈ L } and C = { u−1Lv−1 | u, v ∈ A∗ } . We define C(L) =
(C,A, ·, ◦, L, T), where q · a = a−1q, q ◦ a = qa−1 and T = { u−1Lv−1 | λ ∈
u−1Lv−1 }.

The structure C(L) is a biautomaton recognizing L and it is called the canonical
biautomaton of the language L. A useful property of C(L) is that all states are
reachable (from the initial state). More formally, we say that a state q ∈ Q
of a biautomaton B = (Q,A, ·, ◦, i, T) is reachable if there is a pair of words
u, v ∈ A∗ such that (i · u) ◦ v = q. For an arbitrary state p ∈ Q, we denote
Qp = { (p · u) ◦ v | u, v ∈ A∗} and we put Bp = (Qp, A, ·, ◦, p, T). This definition
is correct because, for u, v ∈ A∗ and a ∈ A, we have ((p·u)◦v)◦a = (p·u)◦av ∈ Qp
and ((p ·u)◦ v) ·a = ((p ·u) ·a)◦ v = (p ·ua)◦ v ∈ Qp. Hence Bp is a biautomaton
with all states reachable.

Example 3. [Continuation of Example 1] The canonical biautomaton of Laba ∪
Lbab is depicted in Figure 1 and the canonical biautomaton of Laba is depicted
in Figure 2. We are using the construction described in Definition 3. Note that
both biautomata are very similar; in fact, the only difference is how the letters
act on the initial state. But as we saw in Example 1, the first is 2-piecewise
testable and the second one is not.

Biautomata for k-Piecewise Testable Languages 349

L

Lba La

Lab Lb

A∗

a

b

b
a

a

b
a

b

b

a

a

b

ab b b

ba a a

a, b

a, b

Fig. 1. The canonical biautomaton of the language L = Laba ∪ Lbab

Let B = (Q,A, ·, ◦, i, T) be a biautomaton. A sequence (q0, q1, . . . , qn) of states is
called a path in B if for each j ∈ {1, . . . , n} there is aj ∈ A such that qj = qj−1∗jaj
where ∗j is · or ◦. A path (q0, q1, . . . , qn) is simple if the states q0, . . . , qn are
pairwise different and it is a cycle if n ≥ 2 and qn = q0 �= q1. The biautomaton
B is called acyclic if there is no cycle in B. Note that “loops” are not cycles and
for the acyclic biautomaton B, each biautomaton Bp is also acyclic.

The first major application of biautomata was the following statement.

Theorem 3 ([7]). Let L ⊆ A∗ be a regular language. Then L is piecewise
testable if and only if the canonical biautomaton of L is acyclic.

We say that the state q of a biautomaton B = (Q,A, ·, ◦, i, T) is absorbing if, for
every a ∈ A, we have q ·a = q◦a = q. It is clear that in each acyclic biautomaton
there is some absorbing state and every simple path can be prolonged to such a
state. Furthermore, each simple path in a biautomaton with all states reachable
can be prolonged in such a way that it starts in i. We define the following two
characteristics of an acyclic biautomaton B = (Q,A, ·, ◦, i, T) with all states
reachable. The depth of B, depth(B) in notation, is the maximal number n such
that there is a simple path (i, q1, . . . , qn) in B where qn is an absorbing state.
Similarly, diam(B) is the minimal number n for which such simple path exists.
We call this characteristic the diameter of B.
Example 4 (Continuation of Examples 1 and 3). For both biautomata in Fig-
ure 1 and 2 we have depth(B) = diam(B) = 3.

Example 5 (Continuation of Example 2). If u = ak, then it is not hard to see
that states in C(Lu) are exactly La� where � ≤ k. In particular, there is the
unique terminal state La0 = Lλ = A∗ which is also the unique absorbing state.
For each 0 < � ≤ k, we have La� · a = La� ◦ a = La�−1 and La� · b = La� ◦ b = La�
for each letter b �= a. Hence depth(C(Lu)) = k.

The previous example shows that the estimate given by Theorem 1 is in some
sense optimal (at least in terms of the depth of the biautomaton).

350 O. Kĺıma and L. Polák

L

Lba La

Lab Lb

A∗

a

b
a

a

a

b

b
a

a

b

ab b b

ba a a

a, b

a, b

b

b

Fig. 2. The canonical biautomaton of the language L = Laba

3 Proof of the Theorem

Due to the space limitation, a complete proof is situated in Appendix. Here
we just try to explain the main idea and techniques of the proof, which are,
in fact, the same as in the original proof of Theorem 3. But the proof is more
delicate here since it is built from weaker assumptions. Basically, the statement
of Theorem 1 is a consequence of the following proposition and Lemma 1.

Proposition 2. Let B = (Q,A, ·, ◦, i, T) be an acyclic biautomaton with all
states reachable and with depth(B) = �. Then, for every u, v ∈ A∗, such that
Sub	(u) = Sub	(v), we have

u ∈ LB if and only if v ∈ LB .

Proof (Sketch.). We prove the statement by induction with respect to � in such
a way that the induction assumption will be applied on subbiautomata Bp’s of
the biautomaton B which have smaller depth whenever p �= i. One can find a
complete discussion of cases � = 0 and � = 1 in Appendix.

Assume that � ≥ 2 and that the statement holds for all �′ < �, and assume
that it is not true for �. Then there is a pair of words u, v ∈ A∗ such that

Sub	(u) = Sub	(v) and i · u ∈ T and i · v �∈ T . (1)

We will show that these assumptions lead to a contradiction.
Our complete proof consists of numerous steps. At each stage we have certain

set of assumptions and we are adding a new one to them. After a detailed
analysis we show that this new additional assumption leads to a contradiction.
This means we could add the negation of the last assumption to our actual
family of assumptions and consider this new family in the next stage. At the
end of the process we will have enough strong assumptions which will lead to a
final contradiction. This process is demonstrated here by the beginning of the
detailed proof together with one (quite significant and typical) step.

Biautomata for k-Piecewise Testable Languages 351

In the state i, we read from the left both words u and v, and we are interested
in the positions in the words u and v where we leave the initial state i. First
assume that i · u = i, i.e. we do not leave the state i. Recall that the assump-
tion Sub	(u) = Sub	(v) implies c(u) = c(v). Thus we have i · v = i ∈ T – a
contradiction. From this moment we may assume that

i · u �= i and also i · v �= i, and moreover dually, i ◦ u �= i and i ◦ v �= i . (2)

So we really leave the state i and there are u′, u′′ ∈ A∗, a ∈ A such that

u = u′au′′, for each x ∈ c(u′) we have i · x = i, and i · a �= i, a �∈ c(u′) . (3)

Similarly, let v′, v′′ ∈ A∗, b ∈ A be such that

v = v′bv′′, for each x ∈ c(v′) we have i · x = i, and i · b �= i, b �∈ c(v′) . (4)

The assumption a = b leads to a contradiction (see the full version for the
argument) and therefore we may assume that

a �= b . (5)

Let us assume, for a moment, that i · a = i · b = p. We will consider the first
occurrence of b in u. Since in the biautomaton B, when we read u from the
left we move from the initial state by a, it is clear that the first occurrence of
b in u is behind the first occurrence of a in u. More formally, u = u′au′′0bu

′′
1

where a �∈ c(u′) and b �∈ c(u′au′′0). Similarly, v = v′bv′′0av
′′
1 where b �∈ c(v′) and

a �∈ c(v′bv′′0).
Now from the assumption (1), i.e. Sub	(u) = Sub	(v), and since mentioned

occurrences of a and b are the first occurrences of these letters in u and v we
get Sub	−1(u

′′
0bu

′′
1) = Sub	−1(v

′′
1). Indeed, if w ∈ Sub	−1(u

′′
0bu

′′
1) then aw ∈

Sub	(u) = Sub	(v) from which we obtain w ∈ Sub	−1(v
′′
1). One proves the oppo-

site inclusion similarly. Thus we can deduce that Sub	−1(u
′′
0bu

′′
1) = Sub	−1(v

′′
1) ⊆

Sub	−1(v
′′
0av

′′
1) = Sub	−1(u

′′
1) ⊆ Sub	−1(u

′′
0bu

′′
1). Therefore Sub	−1(u

′′
0bu

′′
1) =

Sub	−1(v
′′
0av

′′
1). We have i · u = p · u′′0bu′′1 ∈ T and i · v = p · v′′0av′′1 �∈ T . This is a

contradiction to the induction assumption applying to the biautomaton Bp and
the pair of words u′′0bu

′
1 and v′′0av

′′
1 . Altogether we have that i · a �= i · b and we

can add this formula to the actual set of assumptions.
Then we continue in the way described above. Note that in other steps we

need to discuss more complicated situations. For example, we consider also the
positions in the words, where we leave the initial state i when we read both words
u and v from the right. This leads (in one case) to factorizations of words u and
v of the form u = u1au2bu3du4cu5 and v = v1bv2av3cv4dv5, where mentioned
occurrences of a and b are the first occurrences of these letters and the mentioned
occurrences of c and d are the last occurrences of these letters. Then one uses
the real power of the notion of biautomata because we read u in such a way
that we read u1a from the left first and then cu5 from the right. This means we
move to a certain state p for which Bp has depth at most �− 2 (which is ensured
by certain additional assumptions added during the proof). Then the induction
assumption is applied on this p (and, in fact, to certain other states which must
be considered in this case). �

352 O. Kĺıma and L. Polák

4 Estimates Using J -Trivial Monoids

We compare the estimates form Theorem 1 with those from Proposition 1.

Proposition 3. Let L be a piecewise testable language and let M(L) be its (J -
trivial) syntactic monoid and C(L) be its (acyclic) canonical biautomaton. Then

depth(C(L)) ≤ R-height(M(L)) + L-height(M(L)) ≤ 2 · J -height(M(L)) .

Proof. The second inequality is trivially satisfied in every monoid. We use the
construction of a biautomaton from a monoid described in Remark 2.10 in [7].
LetM = M(L) be a syntactic (J -trivial) monoid of a piecewise testable language
L and η : A∗ → M, u �→ [u] be the syntactic homomorphism and let F = η(L).
Then the biautomaton Bη = (Bη, A, ·, ◦, i, T), where

– Bη = M ×M ,
– for every a ∈ A and p, r ∈M , we set (p, r) · a = (p[a], r),
– for every a ∈ A and p, r ∈M , we set (p, r) ◦ a = (p, [a]r),
– i = ([λ], [λ]) = (1, 1),
– T = { (p, r) | pr ∈ F },

recognizes L. SinceM is J -trivial the biautomaton Bη is acyclic. Moreover, C(L)
has minimum depth among all biautomata recognizing L (see [7], Section 2.4),
so it is enough to prove that depth(Bη) ≤ R-height(M) + L-height(M). Now,
assume that depth(Bη) = k. Thus there is a simple path (q0 = i, q1, q2, . . . , qk) in
Bη. In particular, for each j ∈ {1, . . . , n} we have qj−1 �= qj and there is aj ∈ A
such that qj−1 ∗j aj = qj , where ∗j is · or ◦. Let qj = (mj , nj) for j = 0, . . . , k.

Now we have 1 ≥R m1 ≥R m2 ≥R · · · ≥R mk and 1 ≥L n1 ≥L n2 ≥L · · · ≥L
nk. For each j, there are two possibilities: 1) mj−1 = mj and nj−1 �= nj , i.e.
nj−1 >L ni or 2) nj−1 = nj and mj−1 �= mj . So, if we omit repeated occurrences
of elements of M in the sequences (1,m1, . . . ,mk) (and (1, n1, . . . , nk) respec-
tively) we obtain the chains of >R (and >L respectively) related elements. Thus
k ≤ R-height(M) + L-height(M) and the statement follows. �

In the following example we demonstrate that the described inequalities are
strict for some languages. Namely, for each integer n, we find a language L (over
the alphabet having 3n letters) such that its canonical biautomaton has depth
4 but J -height(M(L)) is at least n.

Example 6. For an arbitrary n, we denote A = {a1, . . . , an}, B = {b1, . . . , bn}
and C = {c1, . . . , cn} (altogether 3n pairwise different letters). Let K be the
language of all words which does not contain neither two letters from the sub-
alphabet A nor two letters from the subalphabet C. More formally, K is a
2-piecewise testable language given by the following expression

K =
n⋂

i,j=1

Lc
aiaj ∩

n⋂
i,j=1

Lc
cicj .

Biautomata for k-Piecewise Testable Languages 353

For each i = 1, . . . , n, we put Li = Laibici ∩K and we define L =
⋃n
i=1 Li.

Deciding, for a given u ∈ A∗, whether u ∈ L using biautomaton C(L), we
can ignore b’s from the left and from the right (i.e. no non-trivial moves in
C(L), in fact we are staying in the initial state L) until we read some ai form
the left or some ci from the right. Then the index i is fixed and u ∈ L if and
only if u ∈ Li. The last condition is checked in C(Li). To illustrate further
computation, we assume that i = 1 and we describe the biautomaton C(L1). Its
part is depicted in Figure 3. First, all letters from B act identically on all states,
with the exception of the states pa, pc and pac where only letters from B different
from b1 act identically, and b1 acts as depicted. Secondly, all actions by letters
from A∪C which are not shown in the figure move from a state to the unique non-
terminal absorbing state ∅ which is not on the image. We get a decision whether
u ∈ L1 using at most three non-trivial moves. The canonical biautomaton of the
language L can be seen as the union of n copies of the biautomata for Li’s where
the initial states are merged to the initial state L and all non-terminal absorbing
states are also merged. We see that depth(C(L)) = depth(C(Li)) = 4.

L1 pa pab

pc pac

pbc pabc

c1 c1

c1 c1

b1 b1

b1

a1

a1

a1

a1

b1

Fig. 3. A part of C(L1) where L1 = La1b1c1 ∩
⋂

i,j L
c
aiaj

∩
⋂

i,j L
c
cicj

On the other hand, in the syntactic monoid of L, there is a J -chain:

1 >R [b1] >R · · · >R [b1 . . . bn] >R [b1 . . . bnc1] >L [a1b1 . . . bnc1] >R 0.

Indeed, let vi = b1 . . . bi for i = 0, . . . , n. Then ai+1 · vi · ci+1 �∈ L and ai+1 · vi+1 ·
ci+1 ∈ L. Therefore [vi] �= [vi+1] and [vi] >R [vi+1] follows from the J -triviality
of M(L). The last three relations are obtained similarly.

Hence J -height(M(L)) ≥ n+3. In fact, one can show that J -height(M(L)) =
n+ 3.

354 O. Kĺıma and L. Polák

5 Concluding Remarks

The goal of this paper was to give, for a piecewise testable language L, a good
estimate of the minimum number k such that L is k-piecewise testable. The
estimate from Theorem 1 is a tight upper bound in terms of the depth of the
canonical biautomaton of the language L as we saw in Examples 2 and 5. We
also saw in Section 4 that the estimate from Theorem 1 is better than those from
Proposition 1. But we should say that we are still far from the optimal value of
k because there are languages for which depth of the canonical biautomaton is
larger then the optimal k as we demonstrate in the following example.

Example 7. Let A = {a1, a2, . . . , an} and let � be an integer. We consider L =
{a	1a	2 . . . a	n} consisting of a single word. One can easily check that this language
is given by the expression

L =

n⋂
i=1

La�i ∩
n⋂
i=1

Lc
a�+1
i

∩
⋂
i<j

Lc
ajai .

In particular, L is a (�+ 1)-piecewise testable language. It is clear that L is not
�-piecewise testable, because u = a	1a

	
2 . . . a

	
n ∈ L, v = a	+1

1 a	2 . . . a
	
n �∈ L and

u ∼	 v.
If we consider the canonical biautomaton of L, then each state, as a language,

is u−1Lv−1, where u, v ∈ A∗, and it consists of at most one word. Thus one can
see that depth(B(L)) = � · n+ 1.

The existence of languages like in the previous example requests the need of
some lower bounds for k-piecewise testability. The first attempt is the content
of the following result.

Proposition 4. Let L be a piecewise testable language over the n-element al-
phabet. If kn < diam(C(L)), then L is not k-piecewise testable.

Proof. Let A = {a1, . . . , an}. We prove the statement by induction with respect
to diam(C(L)). For diam(C(L)) = 0 there is nothing to prove and therefore assume
that 1 ≤ diam(C(L)) ≤ n and kn < diam(C(L)). Then k = 0 and it is clear that
0-piecewise testable languages over the alphabet A are just A∗ and ∅ which both
have trivial canonical biautomata, i.e. diam(C(L)) = 0 – a contradiction. Thus
we have proved the statement for each L such that diam(C(L)) ≤ n.

Let s = diam(C(L)) > n and let k be an arbitrary number such that kn < s.
We can look at q = i·a1a2 . . . an. Let Bq be the subbiautomaton of C(L) consisting
from all states reachable from the state q. Then diam(Bq) ≥ s − n and by the
induction assumption the language L′ recognized by the biautomaton Bq is not
(k−1)-piecewise testable language. This means that there is a pair of words u′, v′

such that u′ ∈ L′, v′ �∈ L′ and u′ ∼k−1 v
′. Now we consider u = a1a2 . . . anu

′ and
v = a1a2 . . . anv

′ for which we claim that u ∼k v. Indeed, since the prefix a1 . . . an
of u contains all letters, we see that each word w, satisfying w ∈ Subk(u), can
be factorized in two parts w = w0w1 in such a way that w0 ∈ Subk(a1 . . . an)

Biautomata for k-Piecewise Testable Languages 355

and w1 ∈ Subk−1(u
′). Thus w1 ∈ Subk−1(v

′) and we can conclude w ∈ Subk(v).
Hence we have a pair of words u, v such that u ∼k v, u ∈ L and v �∈ L, which
implies that L is not k-piecewise testable by Lemma 1. �

References

1. Almeida, J.: Implicit operations on finite J -trivial semigroups and a conjecture of
I. Simon. J. Pure Appl. Algebra 69, 205–218 (1990)

2. Blanchet-Sadri, F.: Games, equations and the dot-depth hierarchy. Comput. Math.
Appl. 18, 809–822 (1989)

3. Blanchet-Sadri, F.: Equations and monoids varieties of dot-depth one and two.
Theoret. Comput. Sci. 123, 239–258 (1994)

4. Higgins, P.: A proof of Simon’s Theorem on piecewise testable languages. Theoret.
Comput. Sci. 178, 257–264 (1997)

5. Kĺıma, O.: Piecewise testable languages via combinatorics on words. Discrete
Mathematics 311, 2124–2127 (2011)

6. Kĺıma, O., Polák, L.: Hierarchies of piecewise testable languages. International
Journal of Foundations of Computer Science 21, 517–533 (2010)

7. Kĺıma, O., Polák, L.: On biautomata. To appear in RAIRO,
http://math.muni.cz/~klima/Math/publications.html (previous version:
Non-Classical Models for Automata and Applications, NCMA 2011, pp. 153–164
(2011)

8. Kĺıma, O., Polák, L.: Present paper with appendix,
http://math.muni.cz/~klima/Math/publications.html

9. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, ch. 10. Springer (1997)

10. Pin, J.-E.: Varieties of Formal Languages. North Oxford Academic, Plenum (1986)
11. Simon, I.: Hierarchies of events of dot-depth one. Ph.D. thesis. U. Waterloo (1972)
12. Simon, I.: Piecewise Testable Events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.

LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)
13. Straubing, H., Thérien, D.: Partially ordered finite monoids and a theorem of

I. Simon. J. Algebra 119, 393–399 (1988)

http://math.muni.cz/~klima/Math/publications.html
http://math.muni.cz/~klima/Math/publications.html

On Centralized PC Grammar Systems

with Context-Sensitive Components

Friedrich Otto

Fachbereich Elektrotechnik/Informatik, Universität Kassel
34109 Kassel, Germany

otto@theory.informatik.uni-kassel.de

Abstract. It is known that in returning mode centralized PC gram-
mar systems with context-sensitive components only generate context-
sensitive languages. Here we show that the class of languages that
are generated by centralized PC grammar systems with context-
sensitive components working in nonreturning mode coincides with the
complexity class NEXT =

⋃
c≥1 NTIME(2c·n).

Keywords: PC grammar system, centralized PC grammar system,
context-sensitive grammar, nondeterministic time complexity.

1 Introduction

Parallel communicating grammar systems, or PC grammar systems for short,
have been invented to model a certain type of cooperation: the so-called class
room model [2]. Here a group of experts, modelled by grammars, work together
in order to produce a document, that is, an output word. These experts work
on their own, but synchronously, and they are able to exchange information on
request.

In the literature many different types and variants of PC grammar systems
have been studied (see [2,3]). Here we are interested in centralized PC grammar
systems, that is, in systems in which only the master (that is, component one)
can initiate an exchange of information. At some point during its derivation
the master may generate a query symbol Qi (i > 1), and then in the next step
component i sends its actual sentential form to the master. The system works in
returning mode if, after sending its sentential form, component i is reset to its
start symbol Si, and it works in nonreturning mode if, after sending its sentential
form, component i just continues from the sentential form derived so far.

It is known that centralized PC grammar systems with context-sensitive com-
ponents only generate context-sensitive languages ([2] Theorem 7.3), but the
proof given in [2] only applies to the case of centralized PC grammar systems
that work in returning mode. Thus, to the best of our knowledge it is currently
still open whether this result also holds for the nonreturning mode, despite what
is stated in [2] and [3]. In fact, we will show here that the class of languages
that are generated by centralized PC grammar systems with context-sensitive

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 356–367, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Centralized PC-Grammar Systems 357

components working in nonreturning mode coincides with the complexity class
NEXT =

⋃
c≥1 NTIME(2c·n). As the class CSL of context-sensitive languages co-

incides with the nondeterministic space complexity class NSPACE(n), which is
contained in the time complexity class NEXT, it thus follows that the centralized
PC grammar systems with context-sensitive components working in nonreturn-
ing mode can only generate context-sensitive languages if and only if the space
complexity class NSPACE(n) equals the time complexity class NEXT.

This paper is structured as follows. In the next section we restate the def-
initions of the above-mentioned complexity classes in short, describing them
in terms of nondeterministic single-tape Turing machines. Then in Section 3
we prove that centralized PC grammar systems with context-sensitive compo-
nents working in nonreturning mode can only generate languages that belong
to the complexity class NEXT. Next we describe a simulation of single-tape
nondeterministic Turing machines by monotone string-rewriting systems, and
we present length-preserving string-rewriting systems with derivations of ex-
ponential length. In Section 5 we combine these two types of string-rewriting
systems into a centralized PC grammar system of degree two. Based on this
construction we will then prove the characterization theorem stated above. This
characterization does neither prove that centralized PC grammar systems with
context-sensitive components that work in nonreturning mode can only generate
context-sensitive languages, nor does it prove that these systems can generate
some languages that are not context-sensitive, as it is an open problem whether
or not the complexity classes NSPACE(n) and NEXT coincide. But at least our
characterization establishes a very close correspondence between the problem on
centralized PC grammar systems considered and some well-known open com-
plexity theoretical problems.

2 The Complexity Classes NSPACE(n) and NEXT

As our basic computational model we use nondeterministic multi-tape Turing
machines. In this paper we only consider languages on the binary alphabet B =
{0, 1}, but our constructions can easily be carried over to finite alphabets of any
size. Concerning nondeterministic Turing machines and complexity classes, we
follow the presentation in [1].

Definition 1. A nondeterministic Turing machine, NTM for short, with k ≥ 1
tapes is given through a 5-tuple M = (Q,Σ, q0, F, δ), where

– Q is a finite set of internal states,
– Σ is a finite tape alphabet that includes the input alphabet B = {0, 1} and

the blank symbol �,
– q0 ∈ Q is the initial state,
– F ⊆ Q is the set of accepting states, and
– δ ⊆ Q×Σk ×Q× (Σ ∪ {L,R})k is a transition relation.

By Σp we denote the set Σ � {�} of non-blank symbols of M .

358 F. Otto

A configuration of M is a k-tuple of the form (x1qy1, x2qy2, . . . , xkqyk), where
q ∈ Q, x1, . . . , xk ∈ Σ∗

p , and y1, . . . , yk ∈ (Σ+
p ∪ {�}). This configuration de-

scribes the situation thatM is in state q, that its i-th tape contains the inscription
xiyi, which is preceded and followed only by �-symbols, and that the head of tape
i is currently on the first symbol of yi. For an input w ∈ B+, the corresponding
initial configuration is (q0w, q0�, . . . , q0�), and a configuration is accepting if
the state occurring in it belongs to the set F . The transition relation δ induces
a binary relation "M on the set of configurations of M , which is the single-
step computation relation of M . Its reflexive and transitive closure "∗

M is the
computation relation of M .

A word w ∈ B∗ is accepted by M if there is an accepting configuration Cacc =
(x1qy1, x2qy2, . . . , xkqyk) such that (q0w, q0�, . . . , q0�) "∗

M Cacc holds. By L(M)
we denote the set of all words w ∈ B∗ that are accepted by M . This is the
language accepted by M .

In general an NTM has many different computations for a given input. The
following complexity measures concentrate on the best possible computations.

Definition 2. Let M = (Q,Σ, q0, F, δ) be a k-tape NTM.

(a) The computation time tM : B∗ → N is defined as follows: for w ∈ L(M),
tM (w) is the number of steps in a shortest accepting computation of M on
input w, and for w �∈ L(M), tM (w) = 1.

(b) The time complexity of M is the function TM : N → N that is defined as

TM (n) = max{ tM (w) | w ∈ Bn }.

(c) For a word w ∈ L(M), the space required by a given accepting computation
of M on input w is the number of tape cells that M scans during this com-
putation. The computation space sM : B∗ → N is defined as follows: for
w ∈ L(M), sM (w) is the minimum space required by an accepting computa-
tion of M on input w, and for w �∈ L(M), sM (w) = 1.

(d) The space complexity of M is the function SM : N → N that is defined as

SM (n) = max{ sM (w) | w ∈ Bn }.

Now we can define the complexity classes we are interested in.

Definition 3. (a) The space complexity class NSPACE(n) consists of all lan-
guages L ⊆ B∗ for which there exists an NTM M such that L(M) = L and
SM (n) ≤ n for all n ∈ N.

(b) The time complexity class NEXT consists of all languages L ⊆ B∗ for which
there exist an NTM M and a constant c ≥ 1 such that L(M) = L and
TM (n) ≤ 2c·n for all n ∈ N.

On these complexity classes the following basic results have been established,
where NEXT1 denotes the class of languages that are accepted by single-tape
NTMs with time bound 2c·n for some constant c ≥ 1.

On Centralized PC-Grammar Systems 359

Proposition 4. CSL = NSPACE(n) ⊆ NEXT = NEXT1.

For an NTM M , the time complexity TM only bounds the shortest accepting
computations. Thus, in general there may be other accepting computations and
there may be non-accepting computations ofM on input w that are much longer
than the number TM (|w|) suggests. If, however, the function TM is time con-
structible, that is, there exists a deterministic Turing machine that, on every
input of length n, halts after executing exactly TM (n) many steps, then we can
get rid of these longer computations. Luckily each function f(n) = 2c·n (n ∈ N)
is time constructible [1]. Thus, using a deterministic TM that halts on any input
of length n after exactly 2c·n many steps, we can derive the following result.

Proposition 5. For each language L ∈ NEXT, there exist a single-tape NTMM
and a constant c ≥ 1 such that L(M) = L and, for all n ≥ 1 and all w ∈ Bn,
each computation of M on input w halts within at most 2c·n many steps.

3 Centralized PC Grammar Systems

Here we restate in short the definitions and notions on centralized PC grammar
systems that we need in this paper. More details can be found in the literature,
where [2] and [3] serve as our main references on this topic.

Definition 6. A centralized PC grammar system, CPC for short, is defined by
a tuple Γ = (N,K, T,G1, . . . , Gk), where k ≥ 1 is called the degree of Γ , and

– N is a finite set of nonterminals,
– K = {Q2, . . . , Qk} is a set of query symbols with Qi corresponding to com-

ponent i, 2 ≤ i ≤ k,
– T is a finite set of terminals, where we assume that the sets N , K, and T

are pairwise disjoint,
– G1 = (N ∪ K,T, S1, P1), the master of Γ , is a phrase-structure grammar,

and
– Gi = (N, T, Si, Pi), 2 ≤ i ≤ k, are also phrase-structure grammars.

If all components G1, . . . , Gk are context-sensitive (or monotone), then Γ is a
CPC with context-sensitive components. By CPCk(CSG) we denote the class of
all centralized PC grammar systems of degree k with context-sensitive compo-
nents, and CPC(CSG) =

⋃
k≥1 CPCk(CSG).

The PC grammar system above is called centralized, since it is only the master
that can generate query symbols.

Definition 7. Let Γ = (N,K, T,G1, . . . , Gk) be a CPC of degree k. A configura-
tion of Γ is a k-tuple (α1, . . . , αk) such that α1 ∈ (N ∪K ∪T)∗ and α2, . . . , αk ∈
(N ∪ T)∗. The initial configuration of Γ is the k-tuple (S1, S2, . . . , Sk). The sys-
tem Γ induces a derivation relation ⇒∗ on its set of configurations, which is the
reflexive and transitive closure of the single-step derivation relation ⇒ that is
defined as follows.

For two configurations (α1, . . . , αk) and (β1, . . . , βk) of Γ , (α1, . . . , αk) ⇒
(β1, . . . , βk), if one of the following two cases holds:

360 F. Otto

(1) If |α1|K = 0, then Γ performs a local derivation step, that is, for each
1 ≤ i ≤ k, either αi ⇒Gi βi or αi ∈ T ∗ and βi = αi; thus, each component Gi
performs a single derivation step, unless αi is already a terminal word.

(2) If |α1|K ≥ 1, then α1 can be written as α1 = γ1Qj1γ2Qj2 . . . γrQjrγr+1 for
some r ≥ 1, γ1, . . . , γr+1 ∈ (N ∪T)∗, and Qj1 , . . . , Qjr ∈ K. In this situation
Γ performs a communication step, that is, β1 = γ1αj1γ2αj2 . . . γrαjrγr+1,
and βi = αi for all 2 ≤ i ≤ k; thus, for each s = 1, . . . , r, component Gjs
sends its current sentential form αjs to the master, where it replaces the
query symbol Qjs , while the sentential forms of all other components remain
unchanged.

In the definition above each component that sends its current sentential form
to the master during a communication step just keeps a copy of its sentential
form. Therefore this mode of operation of Γ is called nonreturning. In contrast
to this mode, if each component Gjs that sends its current sentential form to the
master during a communication step is reset to its start symbol Sjs , then Γ is
said to work in returning mode. The corresponding derivation relation is denoted
by ⇒∗

r .

Definition 8. Let Γ = (N,K, T,G1, . . . , Gk) be a CPC of degree k. The lan-
guage L(Γ) that is generated by Γ in nonreturning mode is defined as follows:

L(Γ) = {w ∈ T ∗ | ∃α2, . . . , αk : (S1, S2, . . . , Sk) ⇒∗ (w,α2, . . . , αk) },

and the language Lr(Γ) that is generated by Γ in returning mode is defined as
follows:

Lr(Γ) = {w ∈ T ∗ | ∃α2, . . . , αk : (S1, S2, . . . , Sk) ⇒∗
r (w,α2, . . . , αk) }.

Thus, a derivation of Γ starting from (S1, . . . , Sk) terminates successfully as
soon as the master G1 has generated a terminal word. A derivation terminates
unsuccessfully if it is blocked, that is, if a configuration (α1, . . . , αk) is obtained
such that α1 is not a terminal word, α1 does not contain any query symbols,
so that a local derivation step is called for, but there exists a component i,
1 ≤ i ≤ k, such that αi is not a terminal word, but no production of Gi is
applicable to αi. Thus, the components G2, . . . , Gk influence the behaviour of
the master G1 in two different ways:

– directly through communication steps in which they are asked to send their
current sentential forms to G1,

– but also indirectly, as the whole derivation is blocked, as soon as a compo-
nent Gi cannot take part in a local computation step, although it has not
yet derived a terminal word.

By L(CPCk(CSG)) we denote the class of languages that are generated by
CPC(CSG)-systems of degree k in nonreturning mode, and by Lr(CPCk(CSG))
we denote the class of languages that are generated by CPC(CSG)-systems of
degree k in returning mode. Finally, L(CPC(CSG)) =

⋃
k≥1 L(CPCk(CSG)) and

Lr(CPC(CSG)) =
⋃
k≥1 Lr(CPCk(CSG)).

On Centralized PC-Grammar Systems 361

Concerning the expressive power of CPC(CSG)-systems the following result is
known.

Theorem 9. [2] Lr(CPC(CSG)) = CSL.

In [2] it is claimed that also L(CPC(CSG)) = CSL holds, but the given proof,
which is identical to the proof for the returning mode, does not work. Because
of this we have only been able to derive the following weaker result so far.

Theorem 10. CSL ⊆ L(CPC(CSG)) ⊆ NEXT.

Proof. As a CPC(CSG)-system of degree 1 is just a context-sensitive grammar,
CSL = L(CPC1(CSG)) ⊆ L(CPC(CSG)) follows. By Proposition 4, CSL ⊆ NEXT,
and so it remains to show that

⋃
k≥2 L(CPCk(CSG)) ⊆ NEXT holds.

We only present the proof for k = 2, as it generalizes to larger values of k
by an inductive argument. So let Γ be a CPC(CSG)-system of degree 2, that is,
Γ = (N,K, T,G1, G2), where G1 and G2 are context-sensitive grammars. We
need to show that L(Γ) ∈ NEXT, that is, L(Γ) is accepted by an NTM M with
time complexity TM (n) ≤ 2c·n for some constant c ≥ 1.

Let w ∈ L(Γ), |w| = n. Then there exists a derivation of the form (S1, S2) ⇒∗

(w, γ) in Γ , where γ ∈ (N ∪ T)∗. This derivation can be factored as

(S1, S2) ⇒∗ (α1, α2) ⇒ (β1, α2) ⇒∗ (w, γ),

where (α1, α2) ⇒ (β1, α2) is the last communication step in this derivation.
The part (β1, α2) ⇒∗ (w, γ) of this derivation after the last communication
step is called the tail of the derivation. If the derivation does not contain any
communication steps, then the derivation just consists of its tail.

As G1 and G2 are context-sensitive, they are monotone. Hence, for each con-
figuration (δ1, δ2) occurring in the subderivation (S1, S2) ⇒∗ (α1, α2), we have
|δ1| ≤ |α1| and |δ2| ≤ |α2|. Further, as α2 is communicated to G1 in the commu-
nication step (α1, α2) ⇒ (β1, α2), we have |α2| ≤ n, and finally, for each config-
uration (η1, η2) occurring in the tail of the above derivation, we have |η1| ≤ n.
Thus, the first part of the above derivation can be computed by an LBA. Hence,
by Proposition 4 there is an NTM M1 that simulates this LBA with time com-
plexity TM1(n) ≤ 2c1·n for some constant c1 ≥ 1.

For simulating the tail of the above derivation, observe the following. The first
component, G1, has to derive w from β1 by performing local steps only. Thus, if
this is possible, then the shortest G1-derivation β1 ⇒∗

G1
w is of length at most

2c2·n for some constant c2 ≥ 1 that only depends on G1. The only effect that
G2 may have on this tail derivation is that it may block the derivation. This
means that there is a successful tail derivation (β1, α2) ⇒∗ (w, γ) if and only if
there is such a derivation of length at most 2c2·n. Now an NTM M2 can be used
that guesses a derivation of Γ without communication steps that starts with
(β1, α2) and derives a pair of the form (w, γ) for some γ ∈ (N ∪ T)∗. Observe
that |γ| ≤ n+ ρ2 · 2c2·n, where ρ2 = max{ |r| − |�| | (� → r) ∈ P2 }, as |α2| ≤ n,
and in each step G2 can increase the length of its sentential form by at most ρ2
letters. Hence, the NTM M2 has time complexity

362 F. Otto

TM2(n) ≤ 2 · (n+ ρ2 · 2c2·n) · 2c2·n ≤ 2(2c2+2)·n.

By combining M1 and M2 we obtain an NTM M such that L(M) = L(Γ), and
TM (n) ≤ 2c1·n + 2(2c2+2)·n ≤ 2(c1+2c2+2)·n. It follows that L(Γ) ∈ NEXT, which
completes the proof of L(CPC2(CSG)) ⊆ NEXT. �

Below we will also establish the converse inclusion NEXT ⊆ L(CPC2(CSG)).
However, for doing so we need some preparations.

4 String-Rewriting Systems

We begin this section with the presentation of a simulation of a single-tape
NTM by a monotone string-rewriting system that is a slight modification of
the classical simulation of single-tape Turing machines by finite string-rewriting
systems (see, e.g., [4]).

Let M = (Q,Σ, q0, F, δ) be a single-tape NTM such that, for each w ∈ Bn,
each computation of M on input w terminates after at most 2c·n many steps.
We modify the NTM M by adding the following transitions: δacc = { (q, a, q, a) |
q ∈ F, a ∈ Σ }. Thus, on reaching an accepting state q ∈ F , the NTM M
now idles, that is, it keeps on running indefinitely without changing the actual
configuration. Then, for w ∈ Bn, each computation of M on input w terminates
after at most 2c·n many steps, if w �∈ L(M), but there exists a nonterminating
computation of M on input w, if w ∈ L(M).

We now define a finite monotone string-rewriting system PM on some finite
alphabet NM for simulating M . This string-rewriting system will be used below
as part of a monotone grammar that will be combined with another monotone
grammar into a centralized PC grammar system of degree 2. To simplify this
process, we replace the input letters 0 and 1 of M by the letters Z and E,
respectively. Let ϕ : Σ∗ → ((Σ � B) ∪ {E,Z})∗ be the isomorphism that is
induced by the map 0 �→ Z, 1 �→ E, and a �→ a for all a ∈ Σ �B. The string-
rewriting system PM is defined on the alphabet

– NM = (Q ∪ Σ ∪ {A′, H,E, Z}) � B, where we assume that Q and Σ are
disjoint, and that A′, H,E, Z are additional letters;

– and it contains the following rules, where qi, qj ∈ Q and sp, s	, sr ∈ Σ:

PM = {A′ → Hq0} ∪ { qiϕ(sp) → qjϕ(s) | (qi, sp, qj , s) ∈ δ }
∪ { qiH → qjϕ(s)H | (qi,�, qj , s) ∈ δ }
∪ { qiϕ(sp) → ϕ(sp)qj | (qi, sp, qj , R) ∈ δ }
∪ { qiH → �qjH | (qi,�, qj , R) ∈ δ }
∪ {ϕ(sr)qiϕ(sp) → qjϕ(srsp) | (qi, sp, qj , L) ∈ δ }
∪ {Hqiϕ(sp) → Hqj�ϕ(sp) | (qi, sp, qj , L) ∈ δ }
∪ {HqiH → Hqj�H | (qi,�, qj , L) ∈ δ }.

Then it is easily seen that, for any w ∈ B∗, A′ϕ(w)H ⇒PM Hq0ϕ(w)H ⇒m
PM

Hϕ(um)qmϕ(vm)H , if and only if q0w "mM umqmvm holds, that is, after rewriting

On Centralized PC-Grammar Systems 363

the symbol A′ into the word Hq0, the reductions of PM starting from the word
Hq0ϕ(w)H just provide a step-by-step simulation of the computations ofM that
start from the initial configuration on input w.

We can summarize the properties of the above construction as follows.

Proposition 11. Let M be a single-tape NTM with input alphabet B such that,
for each word w ∈ Bn, all computations of M on input w terminate after at most
2c·n many steps. Then one can effectively construct a finite monotone string-
rewriting system PM such that, for each input word w ∈ Bn,

(a) if w �∈ L(M), then each sequence of reductions of PM that starts from the
word A′ϕ(w)H terminates within at most 2c·n + 1 many steps;

(b) if w ∈ L(M), then there exists an infinite sequence of reductions of PM
starting from the word A′ϕ(w)H.

Next we describe finite string-rewriting systems that contain only length-
preserving rules, but that generate reduction sequences of exponential length.

Definition 12. Let Δ = {A,B,C,D, T, 0, 1} ∪ { ∗xy,#x, Ex, Zx | x, y ∈ B } be
an alphabet, and let R2 be the finite string-rewriting system on Δ that is defined
as follows:

R2 = {AE0 → E0B, AE1 → E1B, AZ0 → Z0A, AZ1 → Z1A, A#x → Tx,
BZ0 → Z0B, BZ1 → Z1B, BE0 → E0B, BE1 → E1B, B#x → C#x,
Z0C → CE0, Z1C → CE1, E0C → DZ0, E1C → DZ1,
E0D → DE0, E1D → DE1, Z0D → DZ0, Z1D → DZ1, ∗xyD → ∗xyA,
Z0T → T 0, Z1T → T 1, ∗xyT → xy}.

Let ϕ2 :
(⋃

m≥1(B
m ×Bm)

)
→ {E0, E1, Z0, Z1}∗ be the morphism that is

induced by (0, 0) �→ Z0, (0, 1) �→ Z1, (1, 0) �→ E0, and (1, 1) �→ E1. Thus,
for two binary sequences u = i1 . . . im and v = j1 . . . jm, we obtain ϕ2(u, v) =
ϕ(i1)j1 . . . ϕ(im)jm , that is, the first sequence is encoded by the letters E and Z,
and the second sequence is encoded by the indices of these letters. Further,
for all m ≥ 1 and all n ∈ {0, 1, . . . , 2m − 1}, let binm(n) denote the binary
representation of n of length m, that is, binm(n) = 0m−|bin(n)|bin(n). It follows
that, if binm(n) = d1 . . . dm, then ϕ2(1

m, binm(n)) = Ed1 . . . Edm .

Lemma 13. For all m ≥ 1, all n1, n2 ∈ {0, 1, . . . , 2m − 1}, and all x, y, z ∈ B,
if n1 ≥ 1, then

∗xyAϕ2(binm(n1), binm(n2))#z ⇒2m+2
R2

∗xyAϕ2(binm(n1 − 1), binm(n2))#z .

Proof. Let m ≥ 1, let n1, n2 ∈ {0, 1, . . . , 2m − 1} such that n1 ≥ 1, and let
x, y, z ∈ B. Then binm(n1) can be written as β10r for some β ∈ Bm−r−1 and
some r ≥ 0, and binm(n2) = jm . . . j1 ∈ Bm. Hence, ϕ2(binm(n1), binm(n2)) =
β′Ejr+1Zjr . . . Zj1 ∈ {E0, E1, Z0, Z1}m, where β′ = ϕ2(β, jm . . . jr+2). Now

364 F. Otto

∗xyAϕ2(binm(n1), binm(n2))#z = ∗xyAβ′Ejr+1Zjr . . . Zj1#z ⇒|β′|+1
R2

∗xyβ′Ejr+1BZjr . . . Zj1#z ⇒r
R2

∗xyβ′Ejr+1Zjr . . . Zj1B#z ⇒R2

∗xyβ′Ejr+1Zjr . . . Zj1C#z ⇒r
R2

∗xyβ′Ejr+1CEjr . . . Ej1#z ⇒R2

∗xyβ′DZjr+1Ejr . . . Ej1#z ⇒|β′|
R2

∗xyDβ′Zjr+1Ejr . . . Ej1#z ⇒R2

∗xyAβ′Zjr+1Ejr . . . Ej1#z = ∗xyAϕ2(β01
r, binm(n2))#z =

∗xyAϕ2(binm(n1 − 1), binm(n2))#z ,

and this reduction sequence consists of 2 · |β′|+ 2r + 4 = 2m+ 2 steps. �

Analogously, the following result can be shown.

Lemma 14. For all m ≥ 1, all n ∈ {0, 1, . . . , 2m − 1}, and all x, y, z ∈ B,
∗xyAϕ2(0

m, binm(n))#z ⇒2m+2
R2

xybinm(n)z.

The reduction sequences considered in the two lemmas above are in fact deter-
ministic, that is, no other rule could have been applied to any of the intermediate
words. Combining the two lemmas we obtain the following.

Lemma 15. For all m ≥ 1, all n ∈ {0, 1, . . . , 2m − 1}, and all x, y, z ∈ B,

∗xyAϕ2(1
m, binm(n))#z ⇒2m·(2m+2)

R2
xybinm(n)z.

Instead of using the binary encoding and the two letters Z and E, we could
also use a base k encoding and k letters Z0, Z1, . . . , Zk−1 for any k ≥ 3. This
would result in a finite string-rewriting system Rk with length-preserving rules
such that, for all m ≥ 1, all n ∈ {0, 1, . . . , 2m − 1}, and all x, y, z ∈ B,

∗xyAϕk(Zmk−1, binm(n))#z ⇒km·(2m+2)
Rk

xybinm(n)z.

5 The Main Result

Let L ⊆ B∗ be a language from the complexity class NEXT. From Propositions 5
and 11, we see that there exists a finite monotone string-rewriting system PM
on the alphabet NM = (Q∪Σ ∪ {A′, H,E, Z})�B such that, for each w ∈ Bn,
if w �∈ L, then each sequence of reductions of PM that starts from the word
A′ϕ(w)H terminates within at most 2c·n + 1 many steps, and if w ∈ L, then
there exists an infinite sequence of reductions of PM that starts from the word
A′ϕ(w)H .

For k = 2c, we obtain a finite length-preserving string-rewriting system Rk
from Section 4 such that, for all m ≥ 1, all n ∈ {0, 1, . . . , 2m − 1}, and all

x, y, z ∈ B, ∗xyAϕk(Zmk−1, binm(n))#z ⇒km·(2m+2)
Rk

xybinm(n)z. To simplify the
presentation we assume that c = 1 and k = 2.

Now we present a CPC(CSG)-system Γ of degree 2 that is obtained by com-
bining the string-rewriting systems PM and R2 in an appropriate manner.

On Centralized PC-Grammar Systems 365

Definition 16. The CPC(CSG)-system Γ = (N,K, T,G1, G2) of degree 2 is de-
fined as follows:

– N = NM ∪ {S1, S
′
1, S2, S

′
2, Ŝ2, A,B,C,D, F,G, T }

∪ {Sxy, ∗xy, Hx,#x, Ex, Zx | x, y ∈ B },
– K = {Q2}, T = B,
– G1 has start symbol S1 and the following set of productions, where d ≥ 5 is

a constant to be chosen later:

P1 = R2 ∪ { S1 → w | w ∈ B≤d ∩ L }
∪ { S1 → S′

1, S
′
1 → S′

1, S
′
1 → Q2F,H0F → G#0,

H1F → G#1, ZG→ GE0, EG→ GE1}
∪ { SxyG→ ∗xyA | x, y ∈ B },

– and G2 has start symbol S2 and the following set of productions:

P2 = { S2 → S′
2H0, S2 → S′

2H1} ∪ {S′
2 → Ŝ2W |W ∈ {Z,E}d−2 }

∪ {Ŝ2 → Ŝ2E, Ŝ2 → Ŝ2Z} ∪ { Ŝ2 → Sxy | x, y ∈ B }
∪ {S00 → A′ZZ, S01 → A′ZE, S10 → A′EZ, S11 → A′EE}
∪ {H0 → ZH, H1 → EH} ∪ PM .

Obviously, the grammars G1 and G2 are monotone, thus, Γ is indeed a
CPC(CSG)-system of degree 2. Further, the terminal symbols 0 and 1 do not
occur in the productions of G2, which means that all sentential forms derived
by G2 will solely consist of nonterminal symbols.

Proposition 17. L(Γ) = L, that is, the CPC(CSG)-system Γ generates the
language L ∈ NEXT chosen above.

Proof. For w ∈ B≤d, we see that (S1, S2) ⇒ (w, S′
2H0) holds, if w ∈ L. All

other derivations of Γ start as follows, where x, y, z ∈ B, j ≥ 0, ω1 ∈ {E,Z}j,
and ω2 ∈ {E,Z}d−2:

(S1, S2) ⇒ (S′
1, S

′
2Hz) ⇒ (S′

1, Ŝ2ω2Hz) ⇒j (S′
1, Ŝ2ω1ω2Hz)

⇒ (Q2F, Sxyω1ω2Hz) ⇒ (Sxyω1ω2HzF, Sxyω1ω2Hz).

Observe that if the communication step were to take place before component G2

has converted S′
2 into Sxy or after it has converted Sxy into A′ϕ(xy), then the

derivation would be blocked, as G1 has no production that can rewrite the non-
terminal S′

2, Ŝ2, A
′ or q for q ∈ Q. Also the symbol Hz must not have been

converted to ϕ(z)H , as G1 has no production that can rewrite the nontermi-
nal H . Thus, in order for the derivation to succeed, it is absolutely necessary
that G1 applies the production S′

1 → Q2F at the very moment that G2 applies
the production Ŝ2 → Sxy.

If (Sxyω1ω2HzF, Sxyω1ω2Hz) ⇒∗ (w,α) is a successful derivation in Γ , then
|w| ≥ |Sxyω1ω2HzF | = j + d + 1 ≥ d + 1, as G1 is monotone. This shows that
on all words of length at most d, L(Γ) and L coincide.

From the set P1 we see that there will be no further communication steps
in any derivation starting from the configuration (Sxyω1ω2HzF, Sxyω1ω2Hz).

366 F. Otto

Thus, starting from this configuration the two grammars G1 and G2 perform
local derivation steps in a synchronous way. This continues until either G1 has
derived a terminal word, which is then the result of this successful derivation, or
until one of the components derives a nonterminal sentential form to which no
further production can be applied. In the latter case the derivation is blocked
and therewith fails. Accordingly, we now study the derivation of G1 starting
with the sentential form Sxyω1ω2HzF and the derivation of G2 starting with
the sentential form Sxyω1ω2Hz separately.

Claim 1. For all n ≥ d + 1 and all w ∈ Bn−3, Sxyϕ(w)HzF ⇒∗
G1

xywz in
2n−3 · (2n− 4) + n− 1 derivation steps.

Proof. Starting with the sentential form Sxyϕ(w)HzF , the component G1 exe-
cutes the following derivation:

Sxyϕ(w)HzF ⇒ Sxyϕ(w)G#z ⇒n−3 SxyGϕ2(1
n−3, w)#z

⇒ ∗xyAϕ2(1
n−3, w)#z ⇒m xywz,

where the last part takes m = 2n−3 · (2n− 4) many steps by Lemma 15. Hence,
this derivation takes m+ n− 1 = 2n−3 · (2n− 4) + n− 1 steps. �

Claim 2. For all n ≥ d+ 1 and all w ∈ Bn−3, starting with the sentential form
Sxyϕ(w)Hz , G2 simulates a computation of the NTM M on input xywz.

Proof. Starting with the sentential form Sxyϕ(w)Hz , the component G2 pro-
ceeds as follows:

Sxyϕ(w)Hz ⇒ A′ϕ(xy)ϕ(w)Hz ⇒ A′ϕ(xy)ϕ(w)ϕ(z)H

⇒ Hq0ϕ(xy)ϕ(w)ϕ(z)H = Hq0ϕ(xywz)H,

and then, using the rules of the subsystem PM , G2 performs a step-by-step
simulation of a computation of the NTM M on input xywz. �

Thus, for each word w ∈ Bn, the following properties follow from the corre-
sponding properties of the system PM stated above:

– If n ≤ d, then w ∈ L(Γ) if and only if w ∈ L.
– Assume that n ≥ d+1, and that w = xyw′z with x, y, z ∈ B and |w′| = n−3.

If w �∈ L, then each derivation of G2 that starts from the sentential form
Sxyϕ(w

′)Hz terminates with a nonterminal sentential form within at most
2n + 3 many steps.

– If w ∈ L, then there exists an infinite derivation of G2 that starts from the
sentential form Sxyϕ(w

′)Hz .

As 2n−3 · (2n− 4) + n− 1 > 2n+3 for all n ≥ d+1 (if d is chosen accordingly),
we see from Claim 2 and the properties above that the derivation of Γ that
starts from the configuration (Sxyϕ(w

′)HzF, Sxyϕ(w
′)Hz) will fail, whenever

w = xyw′z �∈ L, and that it can succeed in deriving the terminal word w =
xyw′z, if w = xyw′z ∈ L. It follows that L(Γ) = L, which completes the proof
of Proposition 17. �

Proposition 17 gives the following result.

On Centralized PC-Grammar Systems 367

Theorem 18. NEXT ⊆ L(CPC2(CSG)).

From Theorems 10 and 18 we obtain the following characterization.

Corollary 19. L(CPC2(CSG)) = L(CPC(CSG)) = NEXT.

6 Concluding Remarks

As shown in [2] centralized PC grammar systems with context-sensitive compo-
nents working in returning mode can only generate context-sensitive languages.
Here we have shown that this result extends to the nonreturning mode only
if the time complexity class NEXT is contained in the space complexity class
NSPACE(n). In fact, this result would have very interesting consequences.

Corollary 20. If L(CPC(CSG)) ⊆ CSL, then the following statements hold:

(a) the complexity classes NSPACE(n) and NEXT coincide;
(b) P ⊆ NP ⊆ NEXT ⊆ DSPACE(n2) � PSPACE.

Proof. The statement in (a) is an immediate consequence of Proposition 4 and
Theorem 18. Further, NP, the class of languages that are accepted by NTMs in
polynomial time, is obviously contained in NEXT, NSPACE(n) ⊆ DSPACE(n2) by
Savitch’s theorem (see, e.g., [1]), and DSPACE(n2) is a proper subclass of PSPACE
by the space hierarchy theorem (see, e.g., [1]). Thus, if L(CPC(CSG)) ⊆ CSL, then
P ⊆ NP ⊆ NEXT = NSPACE(n) ⊆ DSPACE(n2) � PSPACE would follow. �

Thus, the result that centralized PC grammar systems with context-sensitive
components working in nonreturning mode can only generate context-sensitive
languages would induce a separation of the time complexity class NP (and there-
with also P) from the space complexity class PSPACE.

Acknowledgement. The author thanks Peter Černo from Charles University
in Prague and Norbert Hundeshagen and Marcel Vollweiler from the University
of Kassel for many stimulating discussions on the results of this paper.

References

1. Balcázar, J., Diaz, J., Gabarró, J.: Structural Complexity I. EATCS Monographs
on Theoretical Computer Science, vol. 11. Springer, Berlin (1988)

2. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems - A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach, Lon-
don (1994)

3. Dassow, J., Păun, G., Rozenberg, G.: Grammar Systems. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages. Linear Modelling: Background
and Applications, vol. 2, pp. 101–154. Springer, Heidelberg (1997)

4. Davis, M.: Computability and Unsolvability. McGraw-Hill, New York (1958)

Unidirectional Derivation Semantics

for Synchronous Tree-Adjoining Grammars�

Matthias Büchse1,��, Andreas Maletti2,��, and Heiko Vogler1

1 Department of Computer Science, Technische Universität Dresden
01062 Dresden, Germany

{matthias.buechse,heiko.vogler}@tu-dresden.de
2 Institute for Natural Language Processing, Universität Stuttgart

Pfaffenwaldring 5b, 70569 Stuttgart, Germany

andreas.maletti@ims.uni-stuttgart.de

Abstract. Synchronous tree-adjoining grammars have been given two
types of semantics: one based on bimorphisms and one based on syn-
chronous derivations, in both of which the input and output trees are
constructed synchronously. We introduce a third type of semantics that
is based on unidirectional derivations. It derives output trees based on a
given input tree and thus marks a first step towards conditional proba-
bility distributions. We prove that the unidirectional semantics coincides
with the bimorphism-based semantics with the help of a strong corre-
spondence to linear and nondeleting extended top-down tree transducers
with explicit substitution. In addition, we show that stateful synchronous
tree-adjoining grammars admit a normal form in which only adjunction
is used. This contrasts the situation encountered in the stateless case.

1 Introduction

A major task in natural-language processing is machine translation [17]; i.e., the
automatic translation from one language into another. For this task engineers
use a multitude of formal translation models such as synchronous context-free
grammars [1,4] and extended top-down tree transducers [22,29,16,14]. Shieber
claims [27] that these formalisms are too weak to capture naturally occurring
translation. Instead he suggests synchronous tree-adjoining grammars [28,27],
which are already used in some machine translation systems [30,21,6].

Here we consider synchronous tree-adjoining grammars with states (STAGs)
as defined by Büchse et al. [2], who added states to traditional synchronous tree-
adjoining grammars in the spirit of [11]. Product constructions and normal forms
require states to maintain appropriate pieces of information along a derivation.

� This is an extended and revised version of: [A. Maletti: A tree transducer model for
synchronous tree-adjoining grammars. In Proc. 48th Annual Meeting Association for
Computational Linguistics, pages 1067–1076, 2010].

�� The first and second author were supported by the German Research Founda-
tion (DFG) grants VO 1011/6-1 and MA 4959/1-1, respectively.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 368–379, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Unidirectional Derivation Semantics 369

rules ρ1 : q →
〈 σ

x1 x2

α

σ

� x1

x2

, qp
〉

ρ2 : q →
〈
α�, ε

〉

derivation
(
q,

σ

α γ

α

)
ρ1⇒

σ

� (q, α)

(
p,

γ

�

) ρ2⇒

σ

�
(
p,

γ

�

)

Fig. 1. State q has input rank 0 and output rank 1. In the first step of the derivation,
the variables x1 and x2 are bound to α and γ(�), respectively.

In addition, states permit equivalence results without resorting to relabelings,
which appear frequently in the literature on stateless synchronous tree-adjoining
grammars [25,26].

Roughly speaking, a STAG is a linear nondeleting extended top-down tree
transducer that additionally can use adjunction [15] (monadic second-order sub-
stitution). Two example rules of a STAG are illustrated in Fig. 1. In general,
a STAG rule is of the form q → 〈ζζ′, q1 · · · qm〉, in which the input tree ζ and
the output tree ζ′ are trees over the terminal symbols, the nullary substitution
symbol �, and the variables x1, . . . , xm. Each variable establishes a (one-to-one)
synchronization link between ζ and ζ′, and the states q1, . . . , qm govern the
links x1, . . . , xm. Every state has an input rank i and an output rank j where
i, j ∈ {0, 1}. If state q has input rank i, then the input tree of every rule with
left-hand side q contains � exactly i times. The same interpretation applies to
the output rank and the output tree. For example, the state q in Fig. 1 has
rank (0, 1). In this sense, we allow heterogeneous states with input rank 0 and
output rank 1 (or vice versa).

We introduce a STAG semantics based on unidirectional derivations (see
Fig. 1). This semantics processes the input tree and produces output trees
in the same manner as the classical derivation semantics for tree transduc-
ers [22,29,8,10] and thus marks a first step towards conditional probability distri-
butions; i.e., the probability of an output tree given an input tree. More precisely,
given an input tree, the unidirectional derivation semantics precisely determines
the decision tree containing all leftmost derivations, which corresponds to a
Markov process. It remains a challenge to find a proper probability assignment
for the rules because the input trees of different rules may overlap.

As usual in a derivation-based semantics, the application of a rule consists of
a matching and a replacement phase. In the matching phase, we select a rule
with left-hand side q and a pair consisting of state q and an input tree fragment
in the sentential form (shaded in Fig. 1). Then we match the input tree fragment
to the input tree of the rule by matching variables governed by states with input

370 M. Büchse, A. Maletti, and H. Vogler

rank 0 using first-order substitution, and second-order substitution otherwise.
This yields a binding of the variables in the rule. In the replacement phase, the
pair is replaced in the sentential form by the output tree of the rule, in which
the variables are substituted appropriately and paired with the governing state.
The derivation process is started with the pair consisting of the initial state and
the input tree, and we apply derivation steps as long as possible. In the end,
we obtain a sentential form of exclusively terminal symbols, which represents an
output tree. In this way, every STAG computes a tree transformation, which is
a binary relation on unranked trees.

To relate our semantics to the literature, we adapt the conventional
bimorphism-based semantics for STAG [2], which develops the input and output
tree synchronously. It coincides with the bimorphism semantics of [26], which in
turn coincides with the conventional synchronous derivation semantics [7]. Our
goal is to show that the unidirectional semantics coincides with the bimorphism
semantics. We achieve this in three steps.

First we define (linear and nondeleting) extended top-down tree transducers
(XTOPs) as particular STAGs, and we establish the equivalence of STAGs and
certain XTOPs using explicit substitution under the unidirectional semantics.
Second, it is known that every XTOP computes the same tree transformation
using the bimorphism and the unidirectional derivation semantics [18]. This re-
mains true for our particular unidirectional derivation semantics, which uses a
leftmost derivation strategy. Third, we establish the equivalence corresponding
to the first step under the bimorphism semantics. This last result was already
announced in [19]. In contrast to [19], we present a full proof of it, and we make
the restrictions on the XTOP obvious by avoiding partial evaluations of explicit
substitutions.

All our results are contained in Corollaries 15 and 16. In particular, they
show that stateful STAGs allow a normal form that uses only adjunction. Con-
sequently, our STAGs with potentially heterogeneous states have the same ex-
pressive power as the STAGs of [2], which only have homogeneous states.

2 Preliminaries

The set of all nonnegative integers is IN. An alphabet is any finite nonempty set Σ
of symbols. A (monadic) doubly ranked alphabet (Q, rk) is a finite set Q together
with a rank mapping rk: Q → {0, 1}2. We also write Q(m,n) = rk−1(m,n) for
all m,n ∈ {0, 1}. We just write Q for the doubly ranked alphabet, if the ranking
is obvious. We set Q(m,∗) = Q(m,0) ∪Q(m,1) and Q(∗,n) = Q(0,n) ∪Q(1,n).

The set UΣ of all (unranked) trees over Σ is inductively defined to be the small-
est set U such that σ(t1, . . . , tk) ∈ U for every k ∈ IN, σ ∈ Σ, and t1, . . . , tk ∈ U .
To avoid excessive quantification, we often drop expressions like “for all k ∈ IN”
if they are obvious from the context. Sometimes we assign a rank k ∈ IN to a
symbol σ ∈ Σ and then require that every occurrence of σ in a tree has ex-
actly k successors. The set CΣ contains all trees t ∈ UΣ∪{�} in which the nullary
symbol � occurs exactly once.

Unidirectional Derivation Semantics 371

σ

x1 x2

α

σ

α x2

α

σ

x1 γ

α β

t t�α�01 = t�x1/α�0 t�γ(�, β)�12 = t�x2/γ(�, β)�1

Fig. 2. Illustration of the two forms of substitution

For a tree t ∈ UΣ, we denote the set of its positions by pos(t), where each
position is encoded in the usual way as a sequence of positive integers; i.e.,
pos(t) ⊆ IN∗ (Gorn’s notation). The label of t at v ∈ pos(t) is t(v). Given
Δ ⊆ Σ, we let posΔ(t) = {v ∈ pos(t) | t(v) ∈ Δ}. If v ∈ pos(t) has no successors,
then t�u�0v denotes the tree that is obtained from t by replacing the leaf at v by
the tree u ∈ UΣ (first-order substitution). If v has exactly one successor namely
the subtree t′, then t�u�1v denotes the tree that is obtained from t by replacing
the subtree at v by u�t′�0v′ where u ∈ CΣ and v′ = pos{�}(u) (monadic second-
order substitution). If the symbol t(v) occurs exactly once in t, then we also write
t�t(v)/u�i instead of t�u�iv. Figure 2 illustrates the two forms of substitution.

A regular tree grammar (in normal form) [12,13] is a tuple H = (P,Σ, p0, R)
where P is a finite set (states), Σ is an alphabet with P ∩Σ = ∅, p0 ∈ P (initial
state), and R is a finite set of rules ; every rule has the form p → σ(p1, . . . , pk)
where p, p1, . . . , pk ∈ P and σ ∈ Σ (note that σ(p1, . . . , pk) is a tree over Σ∪P).
The derivation relation induced by H is the binary relation ⇒H over UΣ∪P
such that s ⇒H t if and only if there are a rule p → σ(p1, . . . , pk) in R and
a position v ∈ pos{p}(s) such that t = s�σ(p1, . . . , pk)�

0
v. The tree language

generated by H is L(H) = {t ∈ UΣ | p0 ⇒∗
H t}.

3 Synchronous Tree-Adjoining Grammars

We extend the STAG syntax of [2] to allow heterogeneous states. Recall that occur-
rences of xj can have different rank in different trees.We denote states by variants
of q.

Definition 1. A synchronous tree-adjoining grammar with states (STAG) is a
tuple G = (Q,Σ, q0, R) where

– Q is a monadic doubly-ranked alphabet (of states),
– Σ is an alphabet (terminal alphabet),
– q0 ∈ Q(0,0) (initial state),
– R is a finite set of rules of the form q → 〈ζζ′, q1 · · · qm〉 where the following

holds for ζ (and the same holds for ζ′ with Q(∗,i) instead of Q(i,∗)):
• ζ is a tree over Σ ∪ {x1, . . . , xm} ∪ {�},
• � occurs exactly i times in ζ if q ∈ Q(i,∗),
• every xj occurs exactly once in ζ, and it has rank i in ζ if qj ∈ Q(i,∗). 2

372 M. Büchse, A. Maletti, and H. Vogler

ρ1 : q0 →
〈 x1

S

x2

x1

S

x2

, qq0

〉
ρ3 : q →

〈
S

a x1

S

b � c

d

S

a d x1

S

b c �

, q

〉

ρ2 : q0 →
〈

, ε

〉
ρ4 : q →

〈
� � , ε

〉

Fig. 3. Rules of the STAG Gex with q0 ∈ Q(0,0) and q ∈ Q(1,1)

(
q0,

S

a S

b S

#

c

d
)

ρ1⇒

(
q,

S

a S

b � c

d

)

S

(q0,#)

ρ3⇒

S

a d (q,�)

S

b c S

(q0,#)

ρ4ρ2=⇒

S

a d S

b c S

#

Fig. 4. Example derivation of the STAG Gex of Fig. 3

The STAG G = (Q,Σ, q0, R) is a (linear and nondeleting) extended top-down
tree transducer (XTOP) if Q = Q(0,0). Figure 3 shows the rules of the example
STAG Gex, which is taken from [3, Fig. 2(a)]. It is not an XTOP. Next, we
introduce the unidirectional derivation semantics for STAG. To this end, let
G = (Q,Σ, q0, R) be a STAG and Δ = Q× UΣ∪{�}.

Definition 2. Let ρ be the rule q → 〈ζζ′, q1 · · · qm〉 in R. We define the binary

relation
ρ⇒ over UΣ∪{�}∪Δ as follows: ξ1

ρ⇒ ξ2 (or: ξ1 ⇒ ξ2 via ρ) if and only
if there is a minimal element v ∈ posΔ(ξ1) with respect to the lexicographic
ordering and there are t1, . . . , tm ∈ UΣ ∪ CΣ such that

1. � occurs exactly i times in tj if qj ∈ Q(i,∗),
2. ξ1(v) = (q, ζθ1 · · · θm) with θj = �xj/tj�

i for qj ∈ Q(i,∗), and
3. ξ2 = ξ1�ζ

′θ′1 · · · θ′m�iv for q ∈ Q(∗,i), where θ′j = �xj/(qj , tj)�
0 if qj ∈ Q(∗,0)

and θ′j = �xj/(qj , tj)(�)�1 otherwise.

For every ρ1, . . . , ρn ∈ R, we let
d⇒ =

ρ1⇒;· · ·;ρn⇒ where d = ρ1 · · · ρn and semicolon
denotes the composition of binary relations. For every p ∈ Q(0,0) we define the
tree transformation

κpG = {(s, t) ∈ UΣ × UΣ | ∃d ∈ R∗ : (p, s)
d⇒ t} .

The STAG G derivation-induces the tree transformation κG = κq0G . 2
An example derivation is demonstrated in Fig. 4. In the second step, we have ρ = ρ3
with input tree ζ and output tree ζ′,m = 1, ξ1 and ξ2 as in the figure, and t1 = �.
Consequently, θ1 = �x1/��1 and θ′1 = �x1/(q,�)(�)�1.

Unidirectional Derivation Semantics 373

q0 →
〈 ·[·]

x1 S

x2

·[·]

x1 S

x2

, qq0

〉
q →

〈
S

a ·[·]

x1 S

b © c

d

S

a d ·[·]

x1 S

b c ©

, q

〉

q0 →
〈

, ε

〉
q →

〈
© © , ε

〉

Fig. 5. XTOP Mex using explicit substitution

4 Relating STAG and XTOP

In this section, we show that STAGs are essentially as powerful as XTOPs using
explicit substitution (both with respect to the unidirectional derivation seman-
tics). Our construction builds on the ideas of [9, Thm. 3] and [5, Prop. 4.19].

We begin by defining explicit substitution [19]. Let ·[·] be a special binary
symbol, which indicates the substitution replacing all © in its first child by its
second child. For every alphabet Σ with ·[·],© /∈ Σ, let Σ = Σ ∪ {·[·],©} where
© is nullary. The evaluation ·E : UΣ → UΣ∪{�} is inductively defined by ©E = �,
σ(t1, . . . , tk)

E = σ(tE1 , . . . , t
E
k) for every σ ∈ Σ and t1, . . . , tk ∈ UΣ, and for every

t, u ∈ UΣ the tree ·[·](t, u)E is obtained by replacing all occurrences of © in tE

by uE. We lift ·E to a tree transformation τ by τE = {(sE, tE) | (s, t) ∈ τ}.
Figure 5 shows the rules of the XTOP Mex using explicit substitution. We

claim that (κMex)
E = κGex , and we will provide a proof of this claim in this

section. In the following, let M = (P,Σ, p0, R
′) be an XTOP using explicit

substitution. The next definition essentially captures the appropriate use of the
substitution symbol.

Definition 3. A tree t ∈ UΣ is well-behaved (under ·E) if tE ∈ UΣ and tE1 ∈ CΣ
for every subtree of the form ·[·](t1, t2) in t. A tree transformation τ ⊆ UΣ ×UΣ
is well-behaved if it only contains pairs of well-behaved trees. Finally, M is well-
behaved if κM is well-behaved. 2

We observe that tE ∈ UΣ if and only if each occurrence of © in t is inside the
first subtree of some occurrence of ·[·], which is clearly a regular (or, equivalently,
recognizable) property. Similarly, tE ∈ CΣ if and only if all but exactly one
occurrence of © fulfill the previous condition. This is again a regular property.

Next, we distinguish four types of states to establish a normal form for well-
behaved XTOPs.

Definition 4. A state q ∈ Q is an input i-state with i ∈ {0, 1} if tE contains �
exactly i times for every (t, u) ∈ κqM . The same notions are defined for the output
side. 2

Recall that both the domain and the range of κM are effectively regular (by a
combination of [8, Cor. 3.11] and [18, Thm. 4]). By the remarks below Def. 3

374 M. Büchse, A. Maletti, and H. Vogler

and the decidability of inclusion for regular tree languages [12, Thm. II.10.3], we
can decide whether a state is an input 0-state or an input 1-state (or neither).
Thus, we can effectively compute the following subsets of P :

Pi,j = {p ∈ P | p is an input i-state and an output j-state} .

Definition 5. The XTOP M is substitution normalized if p0 ∈ P0,0, the sets
Pi,j form a partition of P , and for every rule p → 〈ζζ′, p1 · · · pm〉 in R′ and
position v ∈ pos(ζ):

– if ζ(v) = ·[·], then ζ(v1) = xj with input 1-state pj , and
– if ζ(v) = xj with input 1-state pj , then v = v′1 for some v′ and ζ(v′) = ·[·].

The same conditions are required for the output side. 2

Lemma 6. For every well-behaved XTOP M there is a substitution normalized
XTOP M ′ with κM = κM ′ and vice versa.

Proof. Here we only show how to rearrange the input trees in the rules to ob-
tain the form required in a substitution normalized XTOP. In essence, we push
each occurrence of the substitution symbol ·[·] down towards a © or a variable
corresponding to an input 1-state. This is achieved by replacing

– ·[·](·[·](t1, ti), t2) by ·[·](t1, ·[·](ti, t2))
– ·[·](σ(t1, . . . , tk), t′) by σ(t1, . . . , ti−1, ·[·](ti, t′), ti+1, . . . , tk)
– ·[·](©, t′) by t′

if © or a variable corresponding to an input 1-state occurs in ti. These replace-
ments are iterated. Finally, if xj with an input 1-state qj occurs outside the first
subtrees of all occurrences of ·[·] (which may happen in rules for input 1-states),
then we replace xj by ·[·](xj ,©). Clearly, these transformations preserve the
semantics. �

Now we can make our claim more precise. We want to show that for every
STAG G there is a well-behaved XTOPM such that κG = (κM)E and vice versa.
To this end, we first relate the STAG G = (Q,Σ, q0, R) and the substitution
normalized XTOP M = (P,Σ, p0, R

′).

Definition 7. The STAG G and the substitution normalized XTOP M are
related if Q(i,j) = Pi,j , q0 = p0, and

R = {p→ 〈tr(ζ) tr(ζ′), p1 · · · pm〉 | p→ 〈ζζ′, p1 · · · pm〉 ∈ R′} ,

where the partial mapping tr : UΣ∪Xm → UΣ∪Xm∪{�}, with Xm = {x1, . . . , xm},
is given by (note that variables may occur with different rank in tr(t) and t)

tr(©) = � tr(σ(t1, . . . , tk)) = σ(tr(t1), . . . , tr(tk))

tr(xj) = xj tr(·[·](xj , t)) = xj(tr(t)) . 2

Unidirectional Derivation Semantics 375

(
q0,

·[·]

S

a ·[·]

© S

b © c

d

S

#

)
ρ′1⇒

·[·]

(
q,

S

a ·[·]

© S

b © c

d
)

S

(q0,#)

ρ′3ρ
′
4ρ

′
2=⇒

·[·]

S

a d ·[·]

© S

b c ©

S

#

Fig. 6. Derivation of the XTOP Mex of Fig. 5, where tr(ρ′j) = ρj . It corresponds to
the derivation of Fig. 4 via ‘eval’.

It is simple to check that Def. 7 is constructive. The STAG Gex of Fig. 3 and
the XTOP Mex of Fig. 5 are related. We note that the mapping ‘tr’ is similar
to the mappings ‘ateb’ in [5, Prop. 4.10] and YIELDf in [10, Lm. 5.8]. Next, we
show that the second-order substitution (adjunction) of a STAG can be delayed
in the same manner as for macro tree transducers [10, Lm. 5.5].

Lemma 8. If the STAG G and the XTOP M are related, then κG = (κM)E.

Proof. First we lift the evaluation ·E to sentential forms. Let Δ = Q× UΣ∪{�}.
We define the mapping eval : UΣ∪Δ → UΣ∪{�}∪Δ as follows:

eval(©) = � eval(σ(t1, . . . , tk)) = σ(eval(t1), . . . , eval(tk))

eval((q, t)) = (q, eval(t)) eval(·[·](t, t′)) =
{
eval(t)(eval(t′)) if t ∈ Δ

eval(t)��/ eval(t′)�0 if t �∈ Δ

The derivations of Figs. 4 and 6 are related via ‘eval’.
Second we prove the equation κG = (κM)E in five steps (using ⇒G and ⇒M

to denote the derivation relations of G and M , respectively).

1. We can uniquely reconstruct from any (successful) derivation of G or M the
pair of input and output tree.

2. Since the state behavior is preserved, any derivation d is successful for M
if and only if tr(d) is successful for G, where we lift ‘tr’ from trees to rule
sequences in the obvious manner.

3. ξ1 ⇒M ξ2 via ρ implies eval(ξ1) ⇒G eval(ξ2) via tr(ρ) (by construction).
4. We prove κG ⊆ (κM)E. For this let (s, t) ∈ κG. By definition, there is a

sequence d ∈ (R′)∗ of rules such that (q0, s) ⇒G t via tr(d). By Statement 2,
there are s′ and t′ such that (p0, s

′) ⇒M t′ via d. The inductive extension
of Statement 3 yields that (q0, eval(s

′)) ⇒G eval(t′) via tr(d). Finally, we
obtain eval(s′) = s and eval(t′) = t from Statement 1.

5. The statement (κM)E ⊆ κG follows directly from the inductive extension of
Statement 3. �

Theorem 9. For every STAG G there is a well-behaved XTOP M such that
κG = (κM)E, and vice versa.

376 M. Büchse, A. Maletti, and H. Vogler

Proof. The statement follows directly from Def. 7 and Lemmas 6 and 8. �

5 Bimorphism Semantics

ρ1

ρ2 ρ3

ρ4

Fig. 7. Derivation tree

Now we define a semantics for STAGs in terms of bi-
morphisms [26], which we adapt from [2]. As before,
let G = (Q,Σ, q0, R) be a STAG. First, we define the
regular tree grammar DG, which generates the deriva-

tion trees of G. Second, we define two mappings h
(0)
1

and h
(0)
2 , which retrieve from a derivation tree the de-

rived input tree and output tree, respectively.

Definition 10. For every p ∈ Q the p-derivation grammar of G is the regular
tree grammar Dp

G = (Q,R, p,R′′) where

R′′ = {q → ρ(q1, . . . , qm) | ρ = q → 〈ζζ′, q1 · · · qm〉 ∈ R} .

For the input side, we define the embedded tree homomorphisms

h
(0)
1 :

⋃
q∈Q(0,∗) L(D

q
G) → UΣ and h

(1)
1 :

⋃
q∈Q(1,∗) L(D

q
G) → CΣ ,

simultaneously as follows. Let ρ be a rule q → 〈ζζ′, q1 · · · qm〉 in R with q ∈ Q(i,∗).

Then h
(i)
1 (ρ(d1, . . . , dm)) = ζθ1 · · · θm with θj = �xj/h

(k)
1 (dj)�

k for qj ∈ Q(k,∗).

For the output side, the embedded tree homomorphisms h
(0)
2 and h

(1)
2 are

defined in the same way, but using the output tree ζ′ of ρ and Q(∗,i) instead
of Q(i,∗). For every p ∈ Q(0,0) we define the tree transformation

τpG = {(h(0)1 (d), h
(0)
2 (d)) ∈ UΣ × UΣ | d ∈ L(Dp

G)} .

The STAG G bimorphism-induces the tree transformation τG = τq0G . 2

Figure 7 shows the derivation tree corresponding to the derivation of Fig. 4.

We note that if G is an XTOP, then h
(0)
1 and h

(0)
2 are linear nondeleting tree

homomorphisms in the sense of [12]. For XTOPs we recall the following theorem.

Theorem 11. We have that τM = κM for every XTOP M .

Proof. The proof of [18, Thm. 4] also applies to our (leftmost) unidirectional
derivation semantics. �

6 Relating STAG and XTOP, Again

In this section, we compare STAG and XTOP with explicit substitution, this
time with respect to the bimorphism semantics.

Unidirectional Derivation Semantics 377

Lemma 12. If the STAG G and the XTOP M are related, then τG = (τM)E.

Proof. Since ‘tr’ is bijective between R and R′, it is also bijective between
L(DG) and tr(L(DM)), where ‘tr’ is extended in the natural fashion to a de-
terministic relabeling. Hence, we can restrict our attention to the embedded tree
homomorphisms. For reasons of symmetry we only consider the input side. To
avoid confusion, we augment the subscript of the embedded tree homomorphisms
by the respective grammar.

We prove the following statement by structural induction on d: for every

d ∈
⋃
p∈P L(D

p
M) we have that hG,1(tr(d)) = (h

(0)
M,1(d))

E with hG,1 = h
(0)
G,1∪h

(1)
G,1.

To this end, let d = ρ(d1, . . . , dm) with ρ = p→ 〈ζζ′, p1 · · · pm〉 in R′. Then

hG,1(tr(d)) = tr(ζ)θ′1 · · · θ′m
(�)
= (ζθ1 · · · θm)E = (h

(0)
M,1(d))

E ,

where θ′j = �xj/h
(k)
G,1(tr(dj))�

k for qj ∈ Q(k,∗). For (�), we prove the following
statement: for every ζ ∈ UΣ∪Xm such that each element of Xm = {x1, . . . , xm}
occurs at most once, we have that tr(ζ)〈θ′j〉xj∈var(ζ) = (ζ〈θj〉xj∈var(ζ))

E where
var(ζ) is the set of all variables that occur in ζ. �

Theorem 13. For every STAG G there is a well-behaved XTOP M such that
τG = (τM)E, and vice versa.

Proof. The statement follows from Def. 7, Lm. 12, Lm. 6, and Thm. 11. �

7 Results

In this section, we summarize our results. First we prove a normal form theorem.
Its construction is inspired by the lexicalization of tree substitution grammars
via tree-adjoining grammars [24,15,20]. As before, let G = (Q,Σ, q0, R) be a
STAG. It is uniform if Q = Q(1,1) ∪ {q0} and the initial state does not occur in
the right-hand side of any rule.

Theorem 14. For every STAG G there is a uniform STAG G′ with τG = τG′ .

Proof. Without loss of generality, let G be such that q0 does not occur in the
right-hand side of any rule of R. As an intermediate step, we construct an input-
uniform STAG G′ with states P = P (1,∗) ∪ {q0} such that τG = τG′ .

We set G′ = (P,Σ, q0, R
′) with P (0,0) = {q0}, P (1,i) = Q(1,i) ∪

(
Σ × Q(0,i)

)
,

and the rules are defined as follows. Let ρ be a rule q → 〈ζζ′, q1 · · · qm〉 in R,
and α1, . . . , αm ∈ Σ. We distinguish three cases.

– Case 1 (initial): Let q ∈ Q(1,∗) or q = q0. Then q → 〈ζ̄ζ′, q̄1 · · · q̄m〉 is
in R′ where for every j we set q̄j = (αj , qj) if qj ∈ Q(0,∗) and q̄j = qj if
qj ∈ Q(1,∗), and ζ̄ is obtained from ζ by replacing every nullary occurrence
of xj by xj(αj).

378 M. Büchse, A. Maletti, and H. Vogler

– Case 2 (transport): Let q ∈ Q(0,∗), q �= q0, and i such that xi occurs nullary
in ζ. Then (αi, q) → 〈ζ̄ζ′, q̄1 · · · q̄m〉 is in R′ where q̄j is as in Case 1 and
ζ̄ is obtained from ζ by replacing xi by xi(�) and replacing every nullary
occurrence of xj by xj(αj) for j �= i.

– Case 3 (check): Let q ∈ Q(0,∗), q �= q0, and xj occurs unary in ζ for every j.
For every leaf v ∈ posΣ(ζ), the rule (ζ(v), q) → 〈ζ���0v ζ

′, q1 · · · qm〉 is in R′.
– No further rules are in R′.

We omit the proof that τG′ = τG. For reasons of symmetry, a version of the
construction can be defined that produces an output-uniform STAG. Note that
both constructions preserve input- and output-uniformity. We obtain the desired
uniform STAG by applying both constructions in sequence. �

Corollary 15. For every STAG G we have τG = κG.

Proof. The construction in Def. 7 is bijective between substitution normalized
XTOPs and STAGs. We obtain the result by Lemmas 8 and 12 and Thm. 11. �

Corollary 16. Let τ ⊆ UΣ × UΣ. The following are equivalent:

1. There is a STAG G with τ = κG.
2. There is a well-behaved XTOP M with τ = (κM)E.
3. There is a well-behaved XTOP M with τ = (τM)E.
4. There is a STAG G with τ = τG.
5. There is a uniform STAG G with τ = τG.

Proof. The equivalences (1 ⇔ 2), (2 ⇔ 3), (3 ⇔ 4), and (4 ⇔ 5) are Theorems 9,
11, 13, and 14, respectively. �

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling.
Prentice Hall (1972)

2. Büchse, M., Nederhof, M.J., Vogler, H.: Tree parsing with synchronous tree-
adjoining grammars. In: Proc. Parsing Technologies, pp. 14–25. ACL (2011)

3. Büchse, M., Nederhof, M.J., Vogler, H.: Tree parsing for tree-adjoining machine
translation (submitted, 2012), www.inf.tu-dresden.de/index.php?node_id=1571

4. Chiang, D.: Hierarchical phrase-based translation. Comput. Linguist. 33(2),
201–228 (2007)

5. Courcelle, B., Franchi-Zannettacci, P.: Attribute grammars and recursive program
schemes I. Theoret. Comput. Sci. 17(2), 163–191 (1982)

6. DeNeefe, S.: Tree-Adjoining Machine Translation. Ph.D. thesis, University of
Southern California (2011)

7. DeNeefe, S., Knight, K., Vogler, H.: A decoder for probabilistic synchronous tree
insertion grammars. In: Proc. Applications of Tree Automata in Natural Language
Processing, pp. 10–18. ACL (2010)

8. Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison.
Math. Systems Theory 9(3), 198–231 (1975)

 www.inf.tu-dresden.de/index.php?node_id=1571

Unidirectional Derivation Semantics 379

9. Engelfriet, J.: Some open questions and recent results on tree transducers and tree
languages. In: Book, R.V. (ed.) Formal Language Theory—Perspectives and Open
Problems, pp. 241–286. Academic Press (1980)

10. Engelfriet, J., Vogler, H.: Macro tree transducers. J. Comput. System Sci. 31(1),
71–146 (1985)

11. Fülöp, Z., Maletti, A., Vogler, H.: Preservation of recognizability for synchronous
tree substitution grammars. In: Proc. Applications of Tree Automata in Natural
Language Processing, pp. 1–9. ACL (2010)

12. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
13. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg and Salomaa [23], ch. 1,

pp. 1–68
14. Graehl, J., Knight, K., May, J.: Training tree transducers. Comput. Linguist. 34(3),

391–427 (2008)
15. Joshi, A., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg and Salomaa [23],

ch. 2, pp. 69–123
16. Knight, K., Graehl, J.: An Overview of Probabilistic Tree Transducers for Natural

Language Processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp.
1–24. Springer, Heidelberg (2005)

17. Koehn, P.: Statistical Machine Translation. Cambridge University Press (2010)
18. Maletti, A.: Compositions of extended top-down tree transducers. Inform. and

Comput. 206(9-10), 1187–1196 (2008)
19. Maletti, A.: A tree transducer model for synchronous tree-adjoining grammars. In:

Proc. Association for Computational Linguistics, pp. 1067–1076. ACL (2010)
20. Maletti, A., Engelfriet, J.: Strong lexicalization of tree adjoining grammars. In:

Proc. Association for Computational Linguistics. ACL (to appear, 2012)
21. Nesson, R., Shieber, S.M., Rush, A.: Induction of probabilistic synchronous tree-

insertion grammars for machine translation. In: Proc. Association for Machine
Translation in the Americas (2006)

22. Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3),
257–287 (1970)

23. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer
(1997)

24. Schabes, Y.: Mathematical and Computational Aspects of Lexicalized Grammars.
Ph.D. thesis, University of Pennsylvania, Philadelphia (1990)

25. Shieber, S.M.: Synchronous grammars as tree transducers. In: Proc. Tree Adjoining
Grammar and Related Formalisms, pp. 88–95 (2004)

26. Shieber, S.M.: Unifying synchronous tree adjoining grammars and tree transducers
via bimorphisms. In: Proc. European Chapter of the Association for Computational
Linguistics, pp. 377–384. ACL (2006)

27. Shieber, S.M.: Probabilistic synchronous tree-adjoining grammars for machine
translation: The argument from bilingual dictionaries. In: Proc. Syntax and Struc-
ture in Statistical Translation, pp. 88–95. ACL (2007)

28. Shieber, S.M., Schabes, Y.: Synchronous tree-adjoining grammars. In: Proc.
Computational Linguistics, pp. 253–258. University of Helsinki (1990)

29. Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System
Sci. 4(4), 339–367 (1970)

30. The XTAG Project, www.cis.upenn.edu/~xtag/

www.cis.upenn.edu/~xtag/

The State Complexity of Star-Complement-Star

Galina Jirásková1,� and Jeffrey Shallit2

1 Mathematical Institute, Slovak Academy of Sciences
Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk
2 School of Computer Science, University of Waterloo

Waterloo, ON N2L 3G1 Canada
shallit@cs.uwaterloo.ca

Abstract. We resolve an open question by determining matching
(asymptotic) upper and lower bounds on the state complexity of the
operation that sends a language L to

(
L∗)∗.

1 Introduction

Let Σ be a finite nonempty alphabet, let L ⊆ Σ∗ be a language, let L = Σ∗−L
denote the complement of L, and let L∗ (resp., L+) denote the Kleene closure
(resp., positive closure) of the language L. If L is a regular language, its state
complexity is defined to be the number of states in the minimal deterministic
finite automaton accepting L [9]. In this paper we resolve an open question by
determining matching (asymptotic) upper and lower bounds on the deterministic
state complexity of the operations

L→
(
L∗
)∗

L→
(
L+
)+

.

The motivation for studying these operations comes from two papers in the
literature: first, the exhortation of our friend and colleague, the late Sheng Yu,
to resolve the state complexity of combined operations on formal languages [5],
and second, the fact that there is only a finite number of distinct languages that
arise from the operations of star (or +) and complement performed in any order,
any number of times [1]. The operations above were the last two in the set whose
state complexity was unresolved.

To simplify the exposition, we will write everything using an exponent nota-
tion, using c to represent complement, as follows:

L+c := L+

L+c+ := (L+)+,

and similarly for L∗c and L∗c∗.

� Research supported by VEGA grant 2/0183/11 and grant APVV-0035-10.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 380–391, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The State Complexity of Star-Complement-Star 381

Note that

L∗c∗ =

{
L+c+, if ε �∈ L;

L+c+ ∪ {ε}, if ε ∈ L.

It follows that the state complexity of L+c+ and L∗c∗ differ by at most 1. In
what follows, we will work only with L+c+.

2 Upper Bound

Consider a deterministic finite automaton (DFA) D = (Qn, Σ, δ, 0, F) accepting
a language L, where Qn := {0, 1, . . . , n− 1}. As an example, consider the three-
state DFA over {a, b, c, d} shown in Fig. 1 (left).

To get a nondeterministic finite automaton (NFA) N1 for the language L+

from the DFA D, we add an ε-transition from every non-initial final state to the
state 0. In our example, we add an ε-transition from state 1 to state 0 as shown
in Fig. 1 (right).

After applying the subset construction to the NFA N1 we get a DFA D1 for
the language L+. The state set of D1 consists of subsets of Qn; see Fig. 2 (left).
Here the sets in the labels of states are written without commas and brackets;
thus, for example 012 stands for the set {0, 1, 2}.

Next, we interchange the roles of the final and non-final states of the DFA
D1, and get a DFA D2 for the language L+c; see Fig. 2 (right).

0
a a,b,c,d

b b,cc,d
ε

a,d
1 2

N1b

a,b,c,d
210

a,d

b,cc,d

a

D

Fig. 1. DFA D for a language L and NFA N1 for the language L+

D1 D2

a a
012010

b a

c,d

a,d
c,d b,d

a

b

c

c

2

b,c b,d

02

a a
012010

b a

c,d

a,d
c,d

02

b,d
a

b

c

c

2

b,c b,d

Fig. 2. DFA D1 for language L+ and DFA D2 for the language L+c

382 G. Jirásková and J. Shallit

To get an NFA N3 for L+c+ from the DFA D2, we add an ε-transition from
each non-initial final state of D2 to the state {0}, see Fig. 3 (top). Applying the
subset construction to the NFA N3 results in a DFA D3 for the language L+c+

with its state set consisting of some sets of subsets of Qn; see Fig. 3 (middle).
Here, for example, the label 0, 2 corresponds to the set {{0}, {2}}. This gives
the weak upper bound of 22

n

on the state complexity of the operation plus-
complement-plus.

a,d, ε

N3

0,10

01,012

b

d

a

b

c,d

0,02,2

0,02

c

b

d

c

b,d a

0 01

0,2

012

02

b a

a a

b,d b,d
a

b

c

a
c

a
a

b,c,d
cc,dc,d

D3

D3
min

a a
012010

b a

c,d
c,d b,d

a

b

c

c

b,d

02

b,c,d

a

0,2

a a
012010

b a

c,d
c,d

02

b,d
a

b

c

c

2

b,c b,d

Fig. 3. NFA N3, DFA D3, and the minimal DFA Dmin
3 for the language L+c+

Our first result shows that in the minimal DFA for L+c+ we do not have any
state {S1, S2, . . . , Sk}, in which a set Si is a subset of some other set Sj ; see
Fig. 3 (bottom). This reduces the upper bound to the number of antichains of
subsets of an n-element set, known as the Dedekind number M(n), satisfying(

n

�n/2�

)
≤ logM(n) ≤

(
n

�n/2�

)(
1 +O

(
logn

n

))
.

See, for example, [3].

The State Complexity of Star-Complement-Star 383

Lemma 1. If S and T are subsets of Qn such that S ⊆ T , then the states {S, T }
and {S} of the DFA D3 for the language L+c+ are equivalent.

Proof. Let S and T be subsets of Qn such that S ⊆ T . We only need to show
that if a string w is accepted by the NFA N3 starting from the state T , then it
also is accepted by N3 from the state S.

Assume w is accepted by N3 from T . Then in the NFA N3, an accepting
computation on w from state T looks like

T
u→ T1

ε→ {0} v→ T2,

where w = uv, and state T goes to an accepting state T1 on u without using any
ε-transitions, then T1 goes to {0} on ε, and then {0} goes to an accepting state
T2 on v. The computation on v may use ε-transitions. It also may happen that
w = u, in which case the computation ends in T1. Let us show that S goes to
an accepting state of the NFA N3 on u.

Since T goes to an accepting state T1 on u in the NFA N3 without using
any ε-transitions, state T goes to the accepting state T1 in the DFA D2, and
therefore to the rejecting state T1 of the DFA D1. Thus, every state q in T goes
to rejecting states in the NFA N1. Since S ⊆ T , every state in S goes to rejecting
states in the NFA N1, and therefore S goes to a rejecting state S1 in the DFA
D1, thus to the accepting state S1 in the DFA D2. Hence w = uv is accepted
from S in the NFA N3 by the computation

S
u→ S1

ε→ {0} v→ T2.

This concludes the proof. �
Hence whenever a state S =

{
S1, S2, . . . , Sk} of the DFAD3 contains two subsets

Si and Sj with i �= j and Si ⊆ Sj , then S is equivalent to the state S \ {Sj}.
Using this property, we get the following result.

Lemma 2. Let D be a DFA for a language L with state set Qn, and Dmin
3 be

the minimal DFA for L+c+ as described above.
Then every state of Dmin

3 can be expressed in the form

S = {X1, X2, . . . , Xk} (1)

where

– 1 ≤ k ≤ n;
– there exist subsets S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ Qn; and
– there exist q1, . . . , qk, pairwise distinct states of D not in Sk; such that
– Xi = {qi} ∪ Si for i = 1, 2, . . . , k.

Proof. Let D = (Qn, Σ, δ, 0, F).
For a state q in Qn and a symbol a in Σ, let q.a denote the state in Qn,

to which q goes on a, that is, q.a = δ(q, a). For a subset X of Qn let X.a denote
the set of states to which states in X go on a, that is,

X.a =
⋃
q∈X

{δ(q, a)}.

384 G. Jirásková and J. Shallit

Consider transitions on a symbol a in automata D,N1, D1, D2, N3; Fig. 4
illustrates these transitions. In the NFA N1, each state q goes to a state in
{0, q.a} if q.a is a final state of D, and to the state q.a if q.a is non-final. It
follows that in the DFA D1 for L+, each state X (a subset of Qn) goes on a to
the final state {0} ∪X.a if X.a contains a final state of D, and to the non-final
state X.a if all states in X.a are non-final in D. Hence in the DFA D2 for L+c,
each state X goes on a to the non-final state {0} ∪ X.a if X.a contains a final
state of D, and to the final state X.a if all states in X.a are non-final in D.

Therefore, in the NFA N3 for L+c+, each state X goes on a to a state in
{{0}, X.a} if all states in X.a are non-final in D, and to the state {0} ∪ X.a if
X.a contains a final state of D.

To prove the lemma for each state, we use induction on the length of the
shortest path from the initial state to the state of Dmin

3 in question. The base
case is a path of length 0. In this case, the initial state is {{0}}, which is in the
required form (1) with k = 1, q1 = 0, and S1 = ∅.

q q.a

p p.a

0

a

a

D N1

D1 D2

3N

q q.a

p p.a

0

a

a

ε

a

a

{0}

Y.aY

X

{0}

Y.aY

X {0} U X.a
a

a

ε

{0} U X.a

X final {0} U X.a if X.a contains a final state

Y non−final Y.a if all states in Y.a are non−final Y final Y.a if all the states in Y.a are non−final

X non−final {0} U X.a if X.a contains a final state

Fig. 4. Transitions on a symbol a in automata D,N1, D1, D2, N3

The State Complexity of Star-Complement-Star 385

For the induction step, let

S = {X1, X2, . . . , Xk},

where 1 ≤ k ≤ n, and

• S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ Qn,
• q1, . . . , qk are pairwise distinct states of D that are not in Sk; and
• Xi = {qi} ∪ Si for i = 1, 2, . . . , k.

We now prove the result for all states reachable from S on a symbol a.
First, consider the case that each Xi goes on a to a non-final state X ′

i in the
NFA N3. It follows that S goes on a to S ′ = {X ′

1, X
′
2, . . . , X

′
k}, where

X ′
i = {qi.a} ∪ Si.a ∪ {0}.

Write pi = qi.a and Pi = Si.a ∪ {0}. Then we have P1 ⊆ P2 ⊆ · · · ⊆ Pk ⊆ Qn.
If pi = pj for some i, j with i < j, then X ′

i ⊆ X ′
j , and therefore X ′

j can be

removed from state S ′ in the minimal DFA Dmin
3 . We continue the process of

comparing two elements in {p1, . . . , pk} and removing the corresponding Xi’s
from S ′. After several such removals, we arrive at an equivalent state

S ′′ = {X ′′
1 , X

′′
2 , . . . , X

′′
	 }

where � ≤ k, X ′′
i = {ri} ∪Ri and Ri are those of P1, . . . , Pk that have not been

removed, and the states r1, r2, . . . , r	 are pairwise distinct.
If ri ∈ R	 for some i with i < �, then X ′′

i ⊆ X ′′
	 ; thus X

′′
	 can be removed. We

continue the process of checking whether or not ri is in R	′ for a currently largest
�′, and removing the corresponding X ′′

i ’s from S′′. After all such removals, we
get an equivalent set

S ′′′ = {X ′′′
1 , X

′′′
2 , . . . , X

′′′
m}

where m ≤ �, X ′′′
i = {ti} ∪ Ti and the states t1, t2, . . . , tm are pairwise distinct

and t1, t2, . . . , tm−1 are not in Tm. If tm /∈ Tm, then the state S ′′′ is in the
required form (1). Otherwise, if Tm−1 is a proper subset of Tm, then there is a
state t in Tm − Tm−1. Set Z = Tm − {t}. Then X ′′′

m = {t} ∪ Z and S ′′′ is in the
required form since t1, . . . , tm−1 are not in Tm, so they are distinct from t, and
moreover Tm−1 ⊆ Z.

If Tm−1 = Tm, then X ′′′
m−1 ⊇ X ′′′

m , and therefore X ′′′
m−1 can be removed from

S ′′′. We continue the process of checking whether or not Ti = Tm and removing
X ′′′
i while the equality holds. After all these removals we either reach some Ti

that is a proper subset of Tm, and then pick a state t in Tm − Ti in the same
way as above, or we only get a single set Tm, which is in the required form
{rm} ∪ (Tm − {rm}).

This proves that if each Xi in S goes on a to a non-final state X ′
i in the

NFA N3, then in the DFA Dmin
3 , the state S goes on a to a set that is in the

required form (1).
Now consider the case that at least one Xj in S goes to a final state X ′

j in
the NFA N3. It follows that S goes to a final state

S ′ = {{0}, X ′
1, X

′
2, . . . , X

′
k},

386 G. Jirásková and J. Shallit

where X ′
j = {qj.a} ∪ Sj .a and if i �= j, then X ′

i = {qi.a} ∪ Si.a or X ′
i =

{0}∪ {qi.a}∪Si.a We now can remove all Xi that contain state 0, and arrive at
an equivalent state

S ′′ = {{0}, X ′′
1 , X

′′
2 , . . . , X

′′
	 },

where � ≤ k, and X ′′
i = {pi} ∪ Pi, and P1 ⊆ P2 ⊆ · · · ⊆ P	 ⊆ Qn, and each pi is

distinct from 0.
Now in the same way as above we arrive at an equivalent state

{{0}, {t1} ∪ T1, . . . , {tm} ∪ Tm}
where m ≤ �, all the ti are pairwise distinct and different from 0, and moreover,
the states t1, . . . , tm−1 are not in Tm. If tm is not in Tm, then we are done.
Otherwise, we remove all sets with Ti = Tm. We either arrive at a proper subset
Tj of Tm, and may pick a state t in Tm − Tj to play the role of new tm, or we
arrive at {{0}, Tm}, which is in the required form {{0} ∪ ∅, tm ∪ Tm − {tm}}.
This completes the proof of the lemma. �
Corollary 1 (Star-complement-star: Upper bound). If a language L is
accepted by a DFA of n states, then the language L∗c∗ is accepted by a DFA of
2O(n logn) states.

Proof. Lemma 2 gives the upper bound
∑n

k=1

(
n
k

)
k!(k + 1)n−k since we first

choose any permutation of k distinct elements q1, . . . , qk, and then represent
each set Si as disjoint union of sets S′

1, S
′
2, . . . , S

′
i given by a function f from

Qn − {q1, . . . , qk} to {1, 2, . . . , k + 1} as follows:

S′
i = {q | f(q) = i}, Si = S′

1 ∪̇ S′
2 ∪̇ · · · ∪̇ S′

i,

while states with f(q) = k + 1 will be outside each S′
i; here ∪̇ denotes a disjoint

union. Notice that we need the factor k! in the upper bound since in case Si
is a proper subset of Si+1 for every i, different permutations of q1, . . . , qk give
different states. Next, we have

n∑
k=1

(
n

k

)
k!(k + 1)n−k ≤ n!

n∑
k=1

(
n

k

)
(n+ 1)n−k ≤ n!(n+ 2)n = 2O(n logn),

and the upper bound follows. �
Remark 1. The summation

∑n
k=1

(
n
k

)
k!(k + 1)n−k differs by one from Sloane’s

sequence A072597 [7]. These numbers are the coefficients of the exponential
generating function of 1/(e−x−x). It follows, by standard techniques, that these
numbers are asymptotically given by C1W (1)−nn!, where

W (1)
.
= .5671432904097838729999686622103555497538

is the Lambert W-function (see [2]) evaluated at 1, and equal to the positive real
solution of the equation ex = 1/x, and C1 is a constant, approximately

1.12511909098678593170279439143182676599.

The convergence is quite fast; this gives a somewhat more explicit version of the
upper bound.

The State Complexity of Star-Complement-Star 387

3 Lower Bound

We now turn to the matching lower bound on the state complexity of plus-
complement-plus. The basic idea is to create one DFA where the DFA for L+c+

has many reachable states, and another where the DFA for L+c+ has many
distinguishable states. Then we “join” them together in Corollary 2.

The following lemma uses a four-letter alphabet to prove the reachability of
some specific states of the DFA D3 for plus-complement-plus.

Lemma 3. There exists an n-state DFA D = (Qn, {a, b, c, d}, δ, 0, {0, 1}) such
that in the DFA D3 for the language L(D)+c+ every state of the form{

{0, q1} ∪ S1, {0, q2} ∪ S2, . . . , {0, qk} ∪ Sk

}
is reachable, where 1 ≤ k ≤ n− 2, S1, S2, . . . , Sk are subsets of {2, 3, . . . , n− 2}
with S1 ⊆ S2 ⊆ · · · ⊆ Sk, and the q1, . . . , qk are pairwise distinct states in
{2, 3, . . . , n− 2} that are not in Sk.

Proof. Consider the DFA D over {a, b, c, d} shown in Fig. 5. Let L be the lan-
guage accepted by the DFA D.

Construct the NFA N1 for the language L+ from the DFA D by adding loops
on a and d in the initial state 0. In the subset automaton corresponding to the
NFA N1, every subset of {0, 1, . . . , n−2} containing state 0 is reachable from the
initial state {0} on a string over {a, b} since each subset {0, i1, i2, . . . , ik} of size
k + 1, where 1 ≤ k ≤ n− 1 and 1 ≤ i1 < i2 < · · · < ik ≤ n− 2, is reached from
the set {0, i2− i1, . . . , ik − i1} of size k on the string abi1−1. Thus, in the subset
automaton, every subset {0, i1, i2, . . . , ik} is reached from the initial state 0 by
a string w over {a, b}. Moreover, after reading every symbol of this string w, the
subset automaton is always in a set that contains state 0. All such states are
rejecting in the DFA D2 for the language L+c, and therefore, in the NFA N3

for L+c+, the initial state {0} only goes to the rejecting state {0, i1, i2, . . . , ik}
on w.

Hence in the DFA D3, for every subset S of {0, 1, . . . , n− 2} containing 0, the
initial state {{0}} goes to the state {S} on a string w over {a, b}.

0 1 2 3 4 n−2 n−1...a,b a,b a,ba,b a,b a,ba,d

d

c c a,b

d c,d c,d c,d c,d a,b,cb

Fig. 5. DFA D over {a, b, c, d} with many reachable states in DFA D3 for L+c+

388 G. Jirásková and J. Shallit

Now notice that transitions on symbols a and b perform the cyclic permutation
of states in {2, 3, . . . , n− 2}. For every state q in {2, 3, . . . , n− 2} and an integer
i, let

q 3 i = ((q − i− 2) mod n− 3) + 2

denote the state in {2, 3, . . . , n − 2} that goes to the state q on the string ai,
and, in fact, on every string over {a, b} of length i. Next, for a subset S of
{2, 3, . . . , n − 2} let S 3 i = {q 3 i | q ∈ S}. Thus S 3 i is a shift of S, and if
q /∈ S, then q 3 i /∈ S 3 i.

The proof of the lemma now proceeds by induction on k. To prove the base
case, let S1 be a subset of {2, 3, . . . , n− 2} and q1 be a state in {2, 3, . . . , n− 2}
with q1 /∈ S1. In the NFA N3, the initial state {0} goes to the state {0}∪S1 on a
string w over {a, b}. Next, state q1 3 |w| is in {2, 3, . . . , n− 2}, and it is reached
from state 1 on the string b	 for an integer �, while state 0 goes to itself on b.
In the DFA D3 we thus have{

{0}
} a→

{
{0, 1}

} b�→
{
{0, q1 3 |w|}

} w→
{
{0, q1} ∪ S1

}
,

which proves the base case.
Now assume that every set of size k − 1 satisfying the lemma is reachable in

the DFA D3. Let

S =
{
{0, q1} ∪ S1, {0, q2} ∪ S2, . . . , {0, qk} ∪ Sk

}
be a set of size k satisfying the lemma. Let w be a string, on which

{
{0}
}
goes

to
{
{0} ∪ S1

}
, and let � be an integer such that 1 goes to q1 3 |w| on b	. Let

S ′ =
{
{0, q2 3 |w| 3 �} ∪ S2 3 |w| 3 �, . . . , {0, qk 3 |w| 3 �} ∪ Sk 3 |w| 3 �

}
,

where the operation 3 is understood to have left-associativity. Then S′ is reach-
able by induction. On c, every set {0, qi 3 |w| 3 �} ∪ Si 3 |w| 3 � goes to the
accepting state {n−1, qi3|w|3�}∪Si3|w|3� in the NFA N3, and therefore also
to the initial state {0}. Then, on d, every state {n− 1, qi3 |w|3 �}∪Si3 |w|3 �
goes to the rejecting state {0, qi3|w|3 �}∪Si3|w|3 �, while {0} goes to {0, 1}.
Hence, in the DFA D3 we have

S ′ c→
{
{0}, {n−1, q23|w|3�}∪S2 3 |w| 3 �,. . . ,{n−1, qk3|w|3�}∪Sk3|w|3�

}
d→
{
{0, 1}, {0, q23|w|3�}∪S2 3 |w| 3 �, . . . , {0, qk 3 |w| 3 �} ∪ Sk 3 |w| 3 �

}
b�→
{
{0, q1 3 |w|}, {0, q2 3 |w|} ∪ S2 3 |w|, . . . , {0, qk 3 |w|} ∪ Sk 3 |w|

}
w→ S.

It follows that S is reachable in the DFA D3. This concludes the proof. �

The next lemma shows that some rejecting states of the DFA D3, in which no
set is a subset of some other set, may be pairwise distinguishable. To prove the
result, we use an alphabet of four symbols, one of which is the symbol b from
the proof of the previous lemma.

The State Complexity of Star-Complement-Star 389

0 1 2 3 4 n−2 n−1...b b b

b

b,e

e,f
f,gb,e,f

g

g
e,f,g e,f,g b,e,f,ge,f,g

b

Fig. 6. DFA D over {b, e, f, g} with many distinguishable states in DFA D3

Lemma 4. Let n ≥ 5. There exists an n-state DFA D = (Qn, Σ, δ, 0, {0, 1})
over a four-letter alphabet Σ such that all the states of the DFA D3 for the
language L(D)+c+ of the form{

{0} ∪ T1, {0} ∪ T2, . . . , {0} ∪ Tk

}
,

in which no set is a subset of some other set and each Ti ⊆ {2, 3, . . . , n − 2},
are pairwise distinguishable.

Proof. To prove the lemma, we reuse the symbol b from the proof of Lemma 3,
and define three new symbols e, f, g as shown in Fig. 6.

Notice that on states 2, 3, . . . , n−2, the symbol b performs a large permutation,
while e performs a transposition, and f a contraction. It follows that every
transformation of states 2, 3, . . . , n−2 can be performed by strings over {b, e, f}.
In particular, for each subset T of {2, 3, . . . , n − 2}, there is a string wT over
{b, e, f} such that in D, each state in T goes to state 2 on wT , while each state
in {2, 3, . . . , n− 2} \ T goes to state 3 on wT . Moreover, state 0 remains in itself
while reading the string wT . Next, the symbol g sends state 0 to state 2, state 3
to state 0, and state 2 to itself.

It follows that in the NFA N3, the state {0}∪T , as well as each state {0}∪T ′

with T ′ ⊆ T , goes to the accepting state {2} on wT · g. However, every other
state {0} ∪ T ′′ with T ′′ ⊆ {2, 3, . . . , n− 2} is in a state containing 0, (thus in a
rejecting state of N3) while reading wT · g, and it is in the rejecting state {0, 3}
after reading wT . Then {0, 3} goes to the rejecting state {0, 2} on reading g.

Hence the string wT ·g is accepted by the NFA N3 from each state {0}∪T ′ with
T ′ ⊆ T , but rejected from any other state {0} ∪ T ′′ with T ′′ ⊆ {2, 3, . . . , n− 2}.

Now consider two different states of the DFA D3

T =
{
{0} ∪ T1, . . . , {0} ∪ Tk

}
,

R =
{
{0} ∪R1, . . . , {0} ∪R	

}
,

in which no set is a subset of some other set and where each Ti and each Rj is a
subset of {2, 3, . . . , n−2}. Then, without loss of generality, there is a set {0}∪Ti
in T that is not in R. If no set {0} ∪ T ′ with T ′ ⊆ Ti is in R, then the string
wTi · g is accepted from T but not from R. If there is a subset T ′ of Ti such that
{0}∪ T ′ is in R, then for each subset T ′′ of T ′ the set {0}∪ T ′′ cannot be in T ,
and then the string wT ′ · g is accepted from R but not from T . �

390 G. Jirásková and J. Shallit

Corollary 2 (Star-complement-star: Lower bound). There exists a lan-
guage L accepted by an n-state DFA over a seven-letter input alphabet, such that
any DFA for the language L∗c∗ has 2Ω(n logn) states.

Proof. Let Σ = {a, b, c, d, e, f, g} and L be the language accepted by n-state
DFA D = ({0, 1, . . . , n−1}, Σ, δ, 0, {0, 1}), where transitions on symbols a, b, c, d
are defined as in the proof of Lemma 3, and on symbols d, e, f as in the proof of
Lemma 4.

Let m = �n/2�. By Lemma 3, the following states are reachable in the DFA
D3 for L+c+:

{{0, 2} ∪ S1, {0, 3} ∪ S2, . . . , {0,m− 2} ∪ Sm−1},

where S1 ⊆ S2 ⊆ · · · ⊆ Sm−1 ⊆ {m − 1,m, . . . , n − 2}. The number of such
subsets Si is given by mn−m, and we have

mn−m ≥
(n
2

)n
2 −1

= 2Ω(n log n).

By Lemma 4, all these states are pairwise distinguishable, and the lower bound
follows. �

Hence we have an asymptotically tight bound on the state complexity of star-
complement-star operation that is significantly smaller than 22

n

.

Theorem 1. The state complexity of star-complement-star is 2Θ(n logn). �

4 Applications

We conclude with an application.

Corollary 3. Let L be a regular language, accepted by a DFA with n states.
Then any language that can be expressed in terms of L and the operations of
positive closure, Kleene closure, and complement has state complexity bounded
by 2Θ(n logn).

Proof. As shown in [1], every such language can be expressed, up to inclusion
of ε, as one of the following 5 languages and their complements:

L,L+, Lc+, L+c+, Lc+c+.

If the state complexity of L is n, then clearly the state complexity of Lc is also n.
Furthermore, we know that the state complexity of L+ is bounded by 2n (a more
exact bound can be found in [9]); this also handles Lc+. The remaining languages
can be handled with Theorem 1. �

The State Complexity of Star-Complement-Star 391

References

1. Brzozowski, J., Grant, E., Shallit, J.: Closures in formal languages and Kuratowski’s
theorem. Int. J. Found. Comput. Sci. 22, 301–321 (2011)

2. Corless, R., Gonnet, G., Hare, D., Jeffrey, D., Knuth, D.: On the Lambert W func-
tion. Adv. Comput. Math. 5, 329–359 (1996)

3. Kleitman, D., Markowsky, G.: On Dedekind’s problem: the number of isotone
Boolean functions. II. Trans. Amer. Math. Soc. 213, 373–390 (1975)

4. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res.
Develop. 3, 114–129 (1959)

5. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theoret.
Comput. Sci. 383, 140–152 (2007)

6. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

7. Sloane, N.J.A.: Online Encyclopedia of Integer Sequences, http://oeis.org
8. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of

Formal Languages, vol. I, ch. 2, pp. 41–110. Springer, Heidelberg (1997)
9. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on

regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

http://oeis.org

On State Complexity of Finite Word

and Tree Languages

Aniruddh Gandhi1, Bakhadyr Khoussainov1, and Jiamou Liu2

Department of Computer Science, University of Auckland, New Zealand
School of Computing and Mathematical Sciences
Auckland University of Technology, New Zealand

agan014@aucklanduni.ac.nz, bmk@cs.auckland.ac.nz

jiamou.liu@aut.ac.nz

Abstract. We investigate the state complexity of finite word and tree
languages. In particular, (1) we establish the state complexity of word
languages whose words have bounded length; (2) we improve the upper
bound given in [6] for union and intersection of finite word languages;
and (3) we present an upper bound for union and intersection of finite
tree languages.

1 Introduction

The state complexity of a language refers to the number of states required to
recognize the language in a given model of computation, such as deterministic
finite automata (DFA) or nondeterministic finite automata (NFA). This notion
is important for example in investigating state explosion when one transforms
nondeterministic automata into equivalent deterministic automata [5, 11]. The
study of state complexity is also important in the investigation of ω-automata.
A good example is the determinization problem for non-deterministic Büchi
automata and its solution [16]. Birget [1] and Yu, Zhuang and Salomaa [18]
initiated a systematic study of state complexity of regular languages. In recent
years various researchers have been quite active in the study of state complexity
of regular languages; see for instance [6–10, 12, 17]. Regular tree languages,
which are classes of finite trees that are recognizable by tree automata, are
natural extensions of regular word languages. Piao and Salomaa [14, 15] have
recently investigated state complexity for tree languages.

This paper adopts the definition from [17] to investigate the state complexity
of languages with respect to deterministic finite automata. We focus on the state
complexity for both finite languages in general and classes of finite languages.
Finite languages are important in many practical applications. A good example
is natural language processing where finite automata are used to represent very
large (but finite) dictionaries of words [4, 13]. Another example comes from
relational databases. Each database is a collection of tables, where tables can
be viewed as finite languages. In many of these applications, the union and
intersection operations are frequently required [13]. Câmpeanu, Culik, Salomaa,

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 392–403, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On State Complexity of Finite Word and Tree Languages 393

and Yu [3, 6, 17] investigated the state complexity for finite word languages. Han
and Salomaa [6] proved that the upper bounds for the state complexity of union
and intersection of finite word languages aremn−(m+n) andmn−3(m+n)+12
respectively. They show that these bounds are tight if the alphabet size can be
varied depending on m and n. The authors also provide examples of finite word
languages (with fixed alphabet size) for which union and intersection have a state
complexity of c ·mn for some constant c. This shows that one cannot hope to
prove that the state complexity for union and intersection of finite languages is
asymptotically better than O(mn). The results of [6] give rise to two questions:

1. What is the state complexity in natural classes of finite languages when the
alphabet size is fixed?

2. In [6], a lower bound of O(m+n) was shown for the difference between m ·n
and the state complexity of union and intersection of finite languages. Since
the asymptotic bound for state complexity of union and intersection cannot
be improved beyond O(m ·n), can we improve on the difference betweenm ·n
and the actual state complexity of union and intersection?

In this paper we provide answers to these questions. For question (1), we in-
vestigate the state complexity of finite word languages such that the length of
the words in the language is bounded by a parameter h (Section 3). When the
alphabet has size 2, we prove that the state complexity of the class of finite word
languages whose words have length bounded by h is Θ(2h/h) (see Theorem 9).

For question (2), we provide positive answers by improving the lower bound of
the difference between m · n and the state complexity of union and intersection.
For this, we prove that the state complexity of union and intersection of finite
word languages is at most m · n − logk(m)(m + n) + 3m + n + 2 where m,n
are the state complexities of the input languages and k is the alphabet size (see
Theorem 15). This improves the upper bound given in [6]. However, a lower
bound to the state complexity (for fixed alphabet size) is still missing.

Analogous to the case of word languages, we consider the state complexity of
finite tree languages (Section 5). Similar to the word case, the state complexity
of a regular tree language L is the number of states in the minimal determinis-
tic tree automaton recognizing L. Since many variants of tree automata exist,
the analysis of state complexity would depend on the particular model of tree
automata being considered. In this paper we use deterministic bottom-up tree
automata (with a fixed rank) as our model of computation for tree languages. In
particular, we show that the state complexity of union and intersection of finite
tree languages is at most m · n− c(logk+1 log2(m))(m + n), where m,n are the
state complexities of the input languages, k is the rank of the trees, and c > 0
is a constant (see Theorem 23).

2 Preliminaries

We use Σ to denote a finite alphabet, and Σ∗ to denote the set of all finite words
over Σ. The empty word is ε. A language is a subset of Σ∗.

394 A. Gandhi, B. Khoussainov, and J. Liu

Definition 1. A deterministic finite automaton (DFA) M over Σ is (S, s0, Δ, F)
where S is a finite set of states and F ⊆ S are the accepting states. The state
s0 ∈ S is the initial state and Δ : S ×Σ → S is the transition function of M.

All automata here are deterministic. We assume the reader has basic knowledge
about automata and regular languages. In particular, we use L(M) to denote
the language recognized by the DFA M. Since M is deterministic, the size of M
is the number of states in M. The minimal automaton for a language L is the
DFA that recognizes L with the smallest size.

Let M1 = (S1, s0, Δ1, F1) and M2 = (S2, q0, Δ2, F2) be two DFA’s with
|S1| = n and |S2| = m. We define the automata M1 ⊕M2 and M1 ⊗M2 that
recognize the languages L(M1) ∪ L(M2) and L(M1) ∩ L(M2) respectively:

M1 ⊕M2 = (S1 × S2, (s0, q0), Δ, (F1 × S2) ∪ (S1 × F2))

M1 ⊗M2 = (S1 × S2, (s0, q0), Δ, F1 × F2)

where Δ((s, q), σ) = (Δ1(s, σ), Δ2(q, σ)) for any s ∈ S1, q ∈ S2, σ ∈ Σ. We call
both M1 ⊕M2, M1 ⊗M2 product automata of M1 and M2. In the following
R denotes the class of all regular languages.

Definition 2. The state complexity SC(L) of a regular language L is the size of
the minimal automaton for L. The state complexity SC(C) of a class C of regular
languages is the supremum among state complexities of languages in the class.
Consider an operation Op : Rr → R (k ≥ 0). The state complexity of Op is a
function f : Nr → N such that f(SC(L1), . . . , SC(Lr)) = SC(Op(L1, . . . , Lr)) for
any L1, . . . , Lr ∈ R.

If L is a finite language, the minimal automaton M recognizing L contains
exactly one self-loop. We single out such automata in the next definition.

Definition 3. An acyclic DFA (ADFA) is a DFA M = (S, q0, Δ, F) that has
the following properties:

1. There is a state s ∈ S, called the reject state, such that Δ(s, σ) = s for all
σ ∈ Σ, and

2. The graph (S \ {s}, E	(S \ {s})) is a directed acyclic graph, where s1Es2 if
and only if Δ(s1, σ) = s2 for some σ ∈ Σ.

We are going to use the following notion of trees throughout the paper. Let
≺pref denote the prefix order on N∗. A language is prefix-free if no two distinct
words w1, w2 in the language are comparable with respect to ≺pref . Let Nk =
{0, . . . , k − 1} for k ≥ 0. A k-ary tree (or simply a tree when the arity k is clear
from the context) is a (finite) prefix-closed subset of N∗

k. The ≺pref -maximal
elements in a tree t are the leaves, denoted by leaves(t). All other elements are
internal nodes. The empty word ε is the root. The height of the tree is the
maximal distance from the root to a leaf. A prefix-free language L ⊆ Σ∗ may be
naturally identified with a |Σ|-ary tree tree(L) as follows: words in L are leaves
of tree(L) and prefixes of all words in L are the internal nodes of tree(L).

On State Complexity of Finite Word and Tree Languages 395

3 Finite Language with Bounded Word Length

This section is motivated by the following question: Given h ∈ N, how many
states are required by a DFA to recognize a finite language whose words have
length bounded by h? In other words, we would like to measure the state com-
plexity of the class of finite languages with bounded word length.

Definition 4. A uniform-length language with length h is L ⊆ Σ∗ where all
words in L have the same length h.

A level automaton is an ADFA where for each state s (apart from the reject
state), all words that take the automaton from the initial state to s have the
same length. We call this length the level of s. The height of a level automaton
is the maximum level of a state in the automaton. Note that any finite language
can be recognized by a level automaton.

Lemma 5. The minimal automaton for any uniform-length language L with
length h is a level automaton with height h.

Our first goal is to investigate the state complexity of uniform-length languages of
length h. In the rest of section we focus on the case when the alphabetΣ = {0, 1}.
The technique used in the proofs can then be generalized to the case when
|Σ| > 2. Since each uniform-length language is prefix-free, we can define Λi as
the class of trees of the form tree(L) where L is a uniform-length language of
length i, i ≥ 0. One may prove the following lemma using the formula

|Λi| = |Λi−1|2 + 2|Λi−1| for i ≥ 1, and |Λ0| = 1.

Lemma 6. The class Λi contains exactly 22
i − 1 trees, where i ≥ 0.

The following is the main result of this section.

Theorem 7. Let h > 0. The state complexity for the class Λh of uniform-length
languages of length h is Θ(2h/h).

Proof. For simplicity, we only prove the simpler case when h = 2i + i where
i ∈ N.

Fix i ≥ 0. By Lemma 6, there exists a mapping Ti : Σ2i → Λi such that
Ti(0

2i) = Ti(1
2i) and for all w1, w2 ∈ Σ2i \ {02i, 12i},

w1 �= w2 ⇒ Ti(w1) �= Ti(w2) and Ti(w1) �= Ti(0
2i) ∧ Ti(w2) �= Ti(0

2i).

We define the uniform-length language Lmax as : Lmax = {wy | |w| = 2i, y ∈
leaves(Ti(w))}.

Our goal is to show that Lmax has maximal state complexity in the class of all
uniform-length languages of length 2i+ i. An automaton M recognizing Lmax is
defined as follows. For every word w ∈ {0, 1}j where j < 2i, M contains a state
sw at level j. For every tree t ∈ Λj where 0 ≤ j ≤ i, M contains a state qt at
level 2i + i− j. The initial state of M is the state sε. The accepting state of M
is qt where t is the level-0 tree {ε}. The transition function Δ of M is defined
as follows:

396 A. Gandhi, B. Khoussainov, and J. Liu

– For each w ∈ {0, 1}j where 0 ≤ j < 2i − 1, set Δ(w, σ) = swσ where
σ ∈ {0, 1}.

– For each w ∈ {0, 1}2i−1, set Δ(w, σ) = qTi(wσ).

– For each t ∈ Λj where 0 < j ≤ i, by definition t is of the form {ε}∪{0x | x ∈
t0} ∪ {1x | x ∈ t1} for some t0, t1 ∈ Λj−1 ∪ {∅}. For σ ∈ {0, 1}, if tσ ∈ Λj−1,
set Δ(qt, σ) = qtσ ; if tσ = ∅, set Δ(qt, σ) as the reject state.

Figure 1 illustrates the tree tree(Lmax) and the automaton M. It is clear that
M recognizes the language Lmax.

Fig. 1. Illustration of the tree tree(Lmax) and automaton M

For any w ∈ {0, 1}∗, let Lmax(w) be the set {y | wy ∈ Lmax}. Myhill-
Nerode theorem states that the minimal automaton for Lmax contains exactly
|{Lmax(w) | w ∈ {0, 1}∗}| number of states. Furthermore, the minimal au-
tomaton reaches the same state upon reading two words w1, w2 if and only
if Lmax(w1) = Lmax(w2). Note that:

(i) For every w1, w2 ∈ {0, 1}j where 0 ≤ j < 2i, w1 �= w2 implies Lmax(w1) �=
Lmax(w2) and both tree(Lmax(w1)), tree(Lmax(w2)) have height 2i + i− j.

(ii) For every t ∈ Λj where 0 ≤ j ≤ i, there exists a word w with |w| = 2i+ i− j
such that tree(Lmax(w)) = t.

By Myhill-Nerode theorem, the automaton M is the minimal automaton for
Lmax. Now let M′ be the minimal automaton for a uniform-length language of
length 2i + i. Lemma 5 implies that M′ is a level automaton of height 2i + i.

On State Complexity of Finite Word and Tree Languages 397

Note that

(a) For any j ≥ 0, M′ has at most 2j states at level j.

(b) For any j ≤ 2i+i,M′ has at most 22
2i+i−j−1 states. This is due to Lemma 6

and Myhill-Nerode theorem.

Hence the maximal number of states at every level j, where 0 ≤ j ≤ 2i + i is

min{2j, 222
i+i−j}, which matches the number of states in M at level j. Therefore

the language Lmax has maximal state complexity in all uniform-length languages
of length h = 2i + i. Furthermore, the size of the minimal automaton for Lmax

(including the rejecting state) is exactly

1 + 2 + 22 + . . .+ 22
i−1 + 22

i − 1 + 22
i−1 − 1 + . . .+ 22

0 − 1 + 1

= 22
i+1 + 22

i−1

+ 22
i−2

+ . . .+ 22
0 − i− 1. (1)

We use SC(h) to denote the expression (1). Note that 22
i−1

+22
i−2

+ . . .+22
0

<∑2i

j=1 2
j = 22

i+1 − 2.

Hence we have

SC(h) < 22
i+1 + 22

i−1

< 3 · 22i ≤ 3 · 22i · 2
i × 2

2i + i
=

6× 22
i+i

2i + i
= 6 · 2

h

h
.

This shows that SC(h) ∈ O(2h/h). On the other hand, we have

SC(h) > 22
i+1 = 2× 22

i

> 22
i

· 2i

2i + i
=

22
i+i

2i + i
=

2h

h
.

This shows that SC(h) ∈ Ω(2h/h) and hence SC(h) ∈ Θ(2h/h). �

Let Fh denote the class of all finite languages whose words have length bounded
by h, where h ≥ 0. Theorem 7 shows that the state complexity for the class Fh is
Ω(2h/h). We want to show that the state complexity for Fh is also Θ(2h/h). Let
L be a finite language in Fh. Fix a fresh symbol σ /∈ Σ. We define the uniform-
length language LU of length h as follows: LU = {w ∈ Σ∗ | w = xσh−|x|, x ∈ L}.

The proof of the next lemma uses Myhill-Nerode theorem.

Lemma 8. For a finite language L whose words have length ≤ h, we have
SC(L) ≤ SC(LU).

Note that LU is a uniform-length language of height h over an alphabet with
three symbols. However the new symbol σ is only used to “pad” the words of L
and therefore at most h− 1 states in the minimal automaton recognizing LU are
used to achieve this “padding”. Since at most h− 1 states are used to recognize
the suffix of the form σ∗, we conclude that the state complexity of the class of
languages of the type LU is still Θ(2h/h). Hence we have the following theorem.

Theorem 9. The state complexity of the class of finite word languages over
a binary alphabet whose words have length bounded by h for some h > 0, is
Θ(2h/h).

398 A. Gandhi, B. Khoussainov, and J. Liu

Comments: The technique used in the proof of Theorem 7 can be adapted to
the cases when |Σ| > 2. In this case let k = |Σ|. Using a very similar argument,
we could show that the state complexity of the class of finite languages whose
words have length bounded by h is Θ(kh/h).

4 Union and Intersection of Finite Languages

We do not assume here the alphabet Σ has size 2 and let k = |Σ|. Let M1

(m states) and M2 (n states) be the minimal (level) automata recognizing two
uniform-length languages L1 and L2 respectively. Let h1, h2 be the heights of
M1 and M2 respectively. Without loss of generality, we assume h1 ≤ h2. Let mi

(resp ni) be the number of states in M1 (resp. M2) at level i where 0 ≤ i ≤ h1.

Lemma 10. There exist level automata M∪ and M∩ that recognize L1 ∪ L2

and L1 ∩ L2 respectively whose size is at most
∑h1

i=0mi · ni +m + n − 2 where
mi, ni are the number of states at level i of M1,M2 respectively.

Proof. Let Si be the set of states in Mi, and let Si,j be the set of all states
in Mi that are on level j where i ∈ {1, 2}, 0 ≤ j ≤ hi. The set of states S of
automaton M∪ is(

h1⋃
i=0

S1,i × S2,i

)
∪
((
S1 \ {s10}

)
× {s2}

)
∪
(
{s1} × (S2 \ {s20})

)
where s1 and s2 are the reject state of M1 and M2 respectively.

The state (s10, s
2
0) is the initial state and the only state at level 0 of M∪. The

transition function Δ of M∪ is defined as Δ((q1, q2), σ) = (Δ(q1, σ), Δ(q2, σ))
for q1 ∈ S1 and q2 ∈ S2. The accepting states of M∪ are all states in S ∩ ((F1 ×
S2) ∪ (S1 × F2)). It is easy to see that the automaton M∪ recognizes L1 ∪ L2

and has the desired number of states. The automatonM∩ is defined in the same
way except the accepting states are S ∩ (F1 × F2). �

Note that

h1∑
i=0

mi · ni = m1n1 + . . .+mh1nh1 ≤ m ·max{ni | 0 ≤ i ≤ h1}. (2)

Let i be a level where ni is maximal. Note that nj+1 ≤ knj for every 0 ≤ j < h2.
Hence at level j of the automaton M2 where j < i, there are at least

⌈
ni

ki−j

⌉
states. Therefore the number of states in M2 is at least

ni +
⌈ni
k

⌉
+
⌈ni
k2

⌉
+ . . .+ 1 ≥ ni +

ni
k

+
ni
k2

+ . . .+ 1 =
kni − 1

k − 1
.

Adding in the reject state, we get n ≥ kni−1
k−1 + 1 ≥ kni

k−1 . Therefore ni ≤
k−1
k n.

Combining this with Lemma 10 and (2), we get the following theorem.

On State Complexity of Finite Word and Tree Languages 399

Theorem 11. The state complexity of union and intersection for two uniform-
length languages is at most k−1

k mn+m+ n− 2 where k is the alphabet size and
m,n are the number of states in the input minimal automata.

We now focus on the state complexity of union and intersection for finite word
languages in general. Let M = (S, s0, Δ, F) be an ADFA. The low-level of a
state s ∈ S is the length of the shortest path from s0 to s. The high-level of
a state s ∈ S is the length of the longest path from s0 to s. The height h of
M is the maximal high-level of any state. A witness path is a transition path
s0, s1, . . . , sh of length h.

For the rest of the section we fix two ADFA M1 = (S1, s
1
0, Δ1, F1), M2 =

(S2, s
2
0, Δ2, F2) recognizing finite languages L1 and L2 respectively. We say a

state (s1, s2) in the product automata is unreachable if no run can reach this state
in the product automata upon processing any input word. In analyzing the state
complexity of L1∪L2 and L1∩L2, we first take the product automata M1⊕M2

and M1⊗M2 and compute a lower bound on the number of unreachable states.
Using this bound we will compute upper bounds for the minimal automata of
L1 ∪ L2 and L1 ∩ L2.

Lemma 12. In the product automaton, any state (s1, s2), where s1 ∈ S1, s2 ∈
S2 and the high-level of s1 (resp. s2) is less than the low-level of s2 (resp. s1),
is unreachable.

Proof. Suppose the high-level of s1 ∈ S1 is less than the low-level of s2 ∈ S2, and
the state (s1, s2) is reachable in the product automaton via a path q0, q1, . . . , q	
where q	 = (s10, s

2
0). Then the sequence of the first components of q0, q1, . . . , q	 is a

path inM1 from s10 to s1, and the sequence of second components of q0, q1, . . . , q	
is a path in M2 from s20. Note that by definition of low-level, the length � of this
path must be no less than the low-level of s2. However, this is impossible as �
would be bigger than the high-level of s1. Hence (s1, s2) is unreachable in the
product automaton. The case when the high-level of s2 is less than the low-level
of s1 is proved in the same way. �

Lemma 13. For each state s1 ∈ S1 (resp. s2 ∈ S2) with high-level i ≥ 1, the
number of s2 ∈ S2 (resp. s1 ∈ S1) such that (s1, s2) is unreachable is at least

n−
∑i

j=0 k
j − 1 (resp. m−

∑i
j=0 k

j − 1).

Proof. Fix a state s1 ∈ S1 with high-level i ≥ 1. By Lemma 12, for any state
s2 ∈ S2 with low-level smaller than i, the state (s1, s2) is unreachable. There are
at most kj states with low-level j. This means there are at most k0 + k1 + k2 +
. . .+ ki + 1 =

∑i
j=0 k

j + 1 states s2 ∈ Q2 (including the reject state) such that
(s1, s2) is reachable. The other part of the lemma can be proved similarly. �

Lemma 14. The number of unreachable states in the product automaton of M1

and M2 is at least (logk(m+ 1))(m+ n− 2)− 3m− n− 2.

Proof. Let P1 = s0, s1, . . . , sh1 and P2 = q0, q1, . . . , qh2 be witness paths in M1

and M2 respectively. Note that each si and qi has high-level i, as otherwise

400 A. Gandhi, B. Khoussainov, and J. Liu

there would be longer paths in M1 or M2. By Lemma 13 and the fact that
logk(m + 1) − 1 ≤ h1 ≤ h2, for each i ≤ logk(m + 1) − 1, there are at least

m−
∑i
j=0 k

j unreachable states of the form (s, qi) and n−
∑i
j=0 k

j unreachable
states of the form (si, q). Hence the total number of unreachable states is at least

logk(m+1)−1∑
i=1

⎛⎝m−
i∑

j=0

kj − 1

⎞⎠+

logk(m+1)−1∑
i=1

⎛⎝n− i∑
j=0

kj − 1

⎞⎠ .

The above expression is at least (logk(m+ 1)) (m+ n− 2)− 3m− n− 2. �

The lemma above directly implies the following.

Theorem 15. Let M1,M2 be two ADFA over an alphabet of k symbols with
sizes m,n and heights h1, h2 respectively. Assuming h1 ≤ h2, the number of states
in the minimal automata recognizing L(M1) ∪ L(M2) and L(M1) ∩ L(M2) is
at most m · n− (logkm)(m+ n− 2) + 3m+ n+ 2.

5 Tree Automata and Tree Languages

We denote the set of all k-ary trees by Tk. A Σ-labeled k-ary tree is of the form
(t, λ) where t is a k-ary tree and λ : t→ Σ is a labeling function. We use Tk(Σ)
to denote the set of all finite Σ-labeled k-ary trees. In this paper we focus on
the class of regular trees. These are finite trees that are recognized by some finite
tree automata, which we formally define below 1.

Definition 16. A deterministic (bottom-up) tree automaton (DTA) over Σ
with rank k is a tupleM = (S,Δ, q0, F), where S is the finite set of states, q0 /∈ S
is the initial state, F ⊆ S are the accepting states, and Δ : ((S∪{q0})k×Σ → S
is the transition relation.

For a Σ-labeled k-ary tree (t, λ) ∈ Tk(Σ), let t̂ denote the tree t ∪ {wa | w ∈
t, a ∈ Nk}. Note that in the tree t̂ every node that is not a leaf has exactly k
children. Given any k-ary tree T = (t, λ) ∈ Tk, a run of M on T is a mapping
ρ : t̂ → S such that (i) for every w ∈ leaves(t̂), ρ(w) = q0, and (ii) for every
w ∈ t, ρ(w) = Δ(ρ(wa1), . . . , ρ(wak), λ(w)). The run ρ is accepting if ρ(ε) ∈ F .

The tree language recognized by M, denoted by L(M), is the set of all t ∈
Tk(Σ) on which the DTA M has an accepting run. A set L ⊆ Tk(Σ) is called
regular if there exists a DTA M over Σ with L = L(M). The size of a DTA is
the number |S|. The minimal automaton for a regular tree language L ⊆ Tk(Σ)
is the size of the smallest DTA that recognizes L. The class of regular tree
languages is closed under union and intersection. Let M1 = (S1, Δ1, q0, F1) and
M2 = (S2, Δ2, q0, F2) be two DTA of rank k over Σ. The product automata

1 The tree automata here are essentially the same with those defined in [2]. Note that
we do not require in a k-ary tree every internal node to have exactly k children.
Instead a “dummy” state q0 is introduced which is not counted towards the state
complexity.

On State Complexity of Finite Word and Tree Languages 401

M1 ⊕M2 and M1 ⊗ M2 recognizing L(M1) ∪ L(M2) and L(M1) ∩ L(M2)
resp. are defined below:

M1 ⊕M2 = (S1 × S2 ∪ {q0}, Δ, (q0, q0), S1 × F2 ∪ F1 × S2),

M1 ⊗M2 = (S1 × S2 ∪ {q0}, Δ, (q0, q0), F1 × F2),

where for all p1, . . . , pk ∈ S1 ∪ {q0}, p1, . . . , pk ∈ S2 ∪ {q0}, σ ∈ Σ,

Δ((p1, q1), . . . , (pk, qk), σ) = (Δ1(p1, . . . , pk, σ), Δ2(q1, . . . , qk, σ)).

Let Rk denote the class of regular k-ary tree languages.

Definition 17. The state complexity SC(L) of a regular tree language L ⊆
Tk(Σ) is the size of the minimal tree automaton recognizing L. Consider an
operation Op : Rr

k → Rk (r > 0). The state complexity of Op is a function
f : Nr → N such that f(SC(L1), . . . , SC(Lr)) = SC(Op(L1, . . . , Lr)) for any
L1, . . . , Lr ∈ Rk.

The state complexity of union and intersection on tree regular languages L1, L2

is bounded above bym·n and this upper bound is tight. We show that this upper
bound can be improved for the class of finite tree languages. We do this through
an analysis of unary tree languages. A unary tree language is a set of {1}-labeled
trees. The corresponding tree automata are called unary tree automata. Since
on a {1}-labeled tree (t, λ) all elements have the same label, we simplify the
transition function to Δ : (Q ∪ {q0})k → Q and identify (t, λ) with the tree
t. The next lemma states that any tree language can be coded, without too
much sacrifice in state complexity, by a unary tree language while preserving
regularity.

Lemma 18. For any T = (t, λ) ∈ Tk(Σ), there is a (k + 1)-ary tree f(T) such
that for any tree language L ⊆ Tk(Σ), L is a regular tree language if and only
if the set f(L) = {f(T) | T ∈ L} is a regular unary tree language. Furthermore,
we have SC(L) ≤ SC(f(L)) ≤ SC(L) + |Σ|.

We first focus on the state complexity of finite unary tree languages. A state q
in a unary DTA M is reachable if there is a tree t such that the run ρ of M
on t labels the root of t by q. In this case, the run ρ is called the witness run
of q. Suppose the DTA M recognizes a finite tree language. The low-level (resp.
high-level) of a state q ∈ S is the minimal (resp. maximal) height of any tree
t such that the run of M on t labels the root ε by q. The height of M is the
maximal high-level of any accepting state q ∈ F .

Let M1 = (S1, Δ1, q0, F1) and M2 = (S2, Δ2, q0, F2) be two unary DTA
recognizing finite tree languages L1 and L2 respectively. Similar to the word
automata case, we compute a lower bound on the number of states that are not
reachable by the product tree automata. The following lemma can be proved in
a similar way as Lemma 12.

Lemma 19. In the product automaton, any state (q1, q2) ∈ S1 × S2 where
the high-level of q1 (resp. q2) is less than the low-level of q2 (resp. q1), is not
reachable.

402 A. Gandhi, B. Khoussainov, and J. Liu

Proof. Suppose that the high-level of q1 is less than the low-level of q2, and
(q1, q2) is reachable in the product automaton via a tree t. Let ρ : t̂ → (Q1 ∪
{q0}) × (Q2 ∪ {q0}) be the witness run of (q1, q2). Let ρ1 : t̂ → Q1 ∪ {q0} and
ρ2 : t̂ → Q2 ∪ {q0} be such that for each w ∈ t̂, we have ρ(w) = (ρ1(w), ρ2(w)).
Then the functions ρ1 and ρ2 are witness runs of q1 in M1 and q2 in M2

respectively. By definition of low-level and high-level, the height of the tree t
must be no less than the low-level of q2, and no more than the high-level of q1.
However, this contradicts our assumption. The case when the high-level of q2 is
less than the low-level of q1 can be proved in the same way. �
We establish the state complexity of unary finite tree languages using the next
two lemmas. The proofs use a similar counting argument as for finite word
languages. Let m,n denote the sizes, h1, h2 denote the heights of M1 and M2

respectively and assume h1 ≤ h2.

Lemma 20. For each state s1 ∈ S1 (resp. s2 ∈ S2) with high-level i ≥ 1, the
number of s2 ∈ S2 (resp. s1 ∈ S1) such that (s1, s2) is not reachable is at least

n−
∑i

j=0 2
kj+1

(resp. m−
∑i

j=0 2
kj+1

) .

Lemma 21. The number of unreachable states in the product automaton M1

and M2 is at least (logk log2(m)− 1))(m+ n)− 9m− n+ 8.

Using the two lemmas above, we immediately obtain the next theorem.

Theorem 22. Let M1 and M2 be two unary DTAs of rank k, with m,n states
and heights h1, h2 respectively, that recognizes finite tree languages. Assuming
h1 ≤ h2, the number of states in the minimal automaton recognizing L(M1) ∪
L(M2) (and the minimal automaton recognizing L(M1) ∩ L(M2)) is at most
m · n− (logk(log2(m)− 1))(m+ n) + 9m+ n.

Lemma 18 implies that the above upper bound also holds for tree languages
where |Σ| > 1. This shows, in particular, that the state complexity of union and
intersection of finite tree languages is not more than m·n−c(logk+1 log2(m)(m+
n) for some constant c > 0 when m,n are sufficiently large.

Theorem 23. Let M1 and M2 be two DTAs of rank k, with m,n states and
heights h1, h2 respectively, that recognizes finite tree languages. Assuming h1 ≤
h2, the number of states in the minimal automata recognizing L(M1) ∪ L(M2)
(and L(M1) ∩ L(M2)) is at most m · n − c(logk+1 log2(m)(m + n) for some
constant c > 0 when m,n are sufficiently large.

Proof. Let M1 and M2 be minimal DTAs with rank k recognizing finite tree
languages L1, L2 respectively. By Lemma 18, the finite unary tree languages
f(L1) and f(L2) have rank k+1 and the minimal automaton recognizing f(L1)
(resp. f(L2)) is at most m + k (resp. n + k). By Theorem 22, the minimal
automaton recognizing f(L1) ∪ f(L2) (and the one recognizing f(L1) ∩ f(L2))
has at most

(m+ k) · (n+ k)− (logk+1(log2(m+ k)− 1))(m+ n+ 2k) + 9m+ n+ 10k

≤ mn− (logk+1(log2(m+ k)− 1))(m+ n+ 2k) + k(m+ n)

+ 9m+ n+ 10k + k2

On State Complexity of Finite Word and Tree Languages 403

states. When m,n are sufficiently large, the above expression is bounded from
above by mn− c(logk+1 log2m)(m+ n) for some constant c > 0. �

References

1. Birget, J.-C.: Intersection of regular languages and state complexity. ACM
SIGACT News 22(2), 49 (1991)

2. Bojanczyk, M.: Decidable properties of tree languages. PhD Thesis. Warsaw Uni-
versity (2004)

3. Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State Complexity of Basic Oper-
ations on Finite Languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

4. Dacuik, J., Watson, B.W., Watson, R.E.: Incremental Construction of Minimal
Acyclic Finite State Automata and Transducers. In: Proc. of Finite State Methods
in Natural Language Processing (FSMNLP 1998), pp. 48–56 (1998)

5. Gandhi, A., Ke, N.R., Khoussainov, B.: State complexity of determinization and
complementation for finite automata. In: Proc. of CATS 2011, CRPIT, vol. 119,
pp. 105–110 (2011)

6. Han, Y., Salomaa, K.: State complexity of union and intersection of finite lan-
guages. Intl. J. Found. Comput. Sci. 19(3), 581–595 (2008)

7. Han, Y., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theor. Comput. Sci. 410(27-29), 2537–2548 (2009)

8. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Internat. J. Found. Comput. Sci. 14, 1087–1102 (2003)

9. Holzer, M., Kutrib, M.: Nondeterministic finite automata - recent results on the
descriptional and computational complexity. Intl. J. Found. Comput. Sci. 20(4),
563–580 (2009)

10. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata – A survey. Inf. and Computation 209, 456–470 (2011)

11. Jirásek, J., Jirásková, G., Szabari, A.: Deterministic Blow-Ups of Minimal Nonde-
terministic Finite Automata over a Fixed Alphabet. In: Harju, T., Karhumäki, J.,
Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 254–265. Springer, Heidelberg
(2007)

12. Jirásková, G.: State complexity of some operations on binary regular languages.
Theor. Comput. Sci. 330(2), 287–298 (2005)

13. Mohri, M.: On some applications of finite-state automata theory to natural lan-
guage processing. Natural Lang. Engg. 2 (1996)

14. Piao, X., Salomaa, K.: Transformations between different models of unranked
bottom-up tree automata. Fund. Inf. 109(4), 405–424 (2011)

15. Piao, X., Salomaa, K.: State Complexity of Kleene-Star Operations on Trees. In:
Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012. LNCS, vol. 7160, pp.
388–402. Springer, Heidelberg (2012)

16. Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE Symp. on Foun-
dations of Computer Science (FOCS 1988), White Plains, pp. 319–327 (1988)

17. Yu, S.: State complexity of regular languages. Journal of Automata, Language and
Combinatorics 6(2), 221–234 (2001)

18. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)

Squares in Binary Partial Words�

Francine Blanchet-Sadri1, Yang Jiao2, and John M. Machacek3

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

2 Department of Mathematics, University of Pennsylvania,
David Rittenhouse Lab, 209 South 33rd Street, Philadelphia, PA 19104-6395

3 School of Mathematics, University of Minnesota - Twin Cites,
127 Vincent Hall, 206 Church St. SE, Minneapolis, MN 55455

Abstract. In this paper, we investigate the number of positions that do
not start a square, the number of square occurrences, and the number of
distinct squares in binary partial words. Letting σh(n) be the maximum
number of positions not starting a square for binary partial words with
h holes of length n, we show that limσh(n)/n = 15/31 provided the
limit of h/n is zero. Letting γh(n) be the minimum number of square
occurrences in a binary partial word of length n with h holes, we show,
under some condition on h, that lim γh(n)/n = 103/187. Both limits
turn out to match with the known limits for binary full words. We also
bound the difference between the maximum number of distinct squares
in a binary partial word and that of a binary full word by (2h−1)(n+2),
where n is the length and h is the number of holes. This allows us to
find a simple proof of the known 3n upper bound in a one-hole binary
partial word using the completions of such a partial word.

1 Introduction

A square in a word consists of two adjacent occurrences of a subword. We refer
to the following example to illustrate the concepts we will be talking about:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
w1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1

Sqi(w1) 0 1 1 1 1 2 1 0 0 1 1 1 0 0 0 0 1 0 0

Here, 010010 = (010)2 is an instance of a square that occurs twice in the word w1

of length 19. We have w1[3..8] = w1[10..15] = 010010, which yields two square
occurrences positioned at 3 and 10 (we also say that positions 3 and 10 are
square positions since they start squares). The sequence Sq0(w1) · · · Sq18(w1) is
such that each Sqi(w1) represents the number of distinct squares whose rightmost
occurrence begins at position i in w1 (there are 11 distinct squares in w1).

A question that has been investigated is “How many distinct squares are there
in a word of length n?” Here each square is counted only once. The answer is

� This material is based upon work supported by the National Science Foundation
under Grant No. DMS–1060775.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 404–415, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Squares in Binary Partial Words 405

O(n), and Fraenkel and Simpson [5] showed in 1998 that this number, Sq(n), is at
most 2n since at most two distinct squares can have their rightmost occurrence
starting at the same position. The bound 2n has a simpler proof by Ilie in
2005 [8] and improved to 2n−Θ(log n) in 2007 [9]. A conjecture, supported by
computations, states that Sq(n) ≤ n. The upper bound n is optimal since there
is a construction with asymptotically n distinct squares of which the example
word w1 is the second iteration [5], and the conjecture is believed to be very
difficult to prove. Upper bounds on the maximum number of consecutive 2’s in
Sq0(w) · · · Sqn−1(w) were used to improve the bound of 2n to 2n−Θ(log n).

Another question that has been investigated is “How many square occurrences
are there in a word of length n?”. In [10], Kucherov, Ochem, and Rao studied the
number of square occurrences in a binary word. More specifically, they studied
a question that was left open in [4,5]: “What is the minimal limit proportion
of square occurrences in an infinite binary word?”. Kucherov et al. showed that
this number is, in the limit, a constant fraction of the word length, and gave a
very good estimation of this constant. Later on, in [12], Ochem and Rao proved
that the limit of the ratio of the minimal number of square occurrences in a
binary word over its length is 103

187 = 0.5508021 · · · . Furthermore in [7], Harju,
Kärki, and Nowotka considered the number σ(w) of positions that do not start
a square in a binary word w. Letting σ(n) denote the maximum of the σ(w)’s,
where |w| = n, they showed that limσ(n)/n = 15/31.

Blanchet-Sadri, Mercaş, and Scott [3] started investigating the problem of
counting distinct squares in partial words of length n over a k-letter alphabet,
a problem that revealed surprising results. In this context, a square has the
form uv with u and v compatible, and consequently, such square is compati-
ble with a number of full words (those without holes) over the alphabet that
are squares. For example, w = 01201201 contains 9 squares over {0, 1} since
02, 12, (10)2, (001)2, (010)2, (011)2, (100)2, (101)2, and (110)2 are the 9 full words
that are squares compatible with factors of w. It was shown that, unlike for full
words, the number of distinct squares in partial words can grow polynomially
with respect to k, and bounds, dependent on k, were given in a few cases.

The one-hole case behaves very differently from the zero-hole case. It was
proved in [3] that for partial words with one hole, there may be more than two
squares that have their rightmost occurrence at the same position, and that if
such is the case, then the hole is in the shortest square. This is the case with
0200101001 that has three squares with rightmost occurrences at position 0,
i.e., (00)2, (010)2, and (01001)2. In [6], Halava, Harju, and Kärki showed that
the maximum number of the rightmost occurrences of squares per position in a
partial word with one hole is 2k. Furthermore, Blanchet-Sadri and Mercaş [2]
proved that the number of distinct squares in a one-hole partial word of length
n is bounded by 3.5n, and Halava et al. [6] reduced the bound to 3n in the case
of a binary alphabet (the 3.5n and 3n bounds are independent of k).

The contents of our paper is as follows: In Section 2, letting σh(n) be the
maximum number of positions not starting a square for binary partial words
with h holes of length n, we show that lim σh(n)/n = 15/31 provided the limit

406 F. Blanchet-Sadri, Y. Jiao, and J.M. Machacek

of h/n is zero. In Section 3, letting γh(n) be the minimum number of square oc-
currences in a binary partial word of length n with h holes, we show, under some
condition on h, that lim γh(n)/n = 103/187. To do this, we modify Kucherov
et al.’s construction for the upper bound, which is based on a certain pattern
of length 187 that they discovered while computing long words that achieve the
minimum number of square occurrences for their length. In Section 4, we bound
the difference between the maximum number of distinct squares in a binary par-
tial word of length n with h holes and that of a binary full word of same length
by (2h − 1)(n+ 2). This allows us to find a simple proof of the 3n upper bound
in a one-hole binary partial word using the completions of such a partial word.
In Section 5, we conclude with some open problems.

We end this section with some basic preliminaries (for more background on
partial words, see [1]). We let B = {0, 1} denote the binary alphabet and B�
denote the binary alphabet along with the hole symbol 2. The set of all words
over B is denoted by B∗ and the set of all words of length n over B by Bn.
A full word is any v ∈ B∗ and a partial word is any v ∈ B∗

� (note that every
full word is also a partial word that does not have any 2). We denote the empty
word consisting of no symbols by ε. We use |v| to denote the length of partial
word v or the number of symbols in v. The set of positions of v which are holes
is denoted by H(v) and the set of the remaining positions by D(v). Two partial
words u and v of same length are compatible, denoted by u ↑ v, if they are equal
at all positions in D(u) ∩ D(v); u is contained in v, denoted by u ⊂ v, if u is
equal to v at all positions in D(u). The least upper bound u∨v of two compatible
partial words u and v satisfies u ⊂ u∨v, v ⊂ u∨v, and D(u∨v) = D(u)∪D(v).
Given v = a0 · · · an−1, where ai ∈ B�, the reverse of v is rev(v) = an−1 · · · a0
and the complement of v is v = a0 · · · an−1, where 0 = 1, 1 = 0, and 2 = 2.

2 Square Positions

Given w = a0a1 · · ·an−1, where each ai ∈ B�, position i starts a square if
aiai+1 · · · ai+j−1 ↑ ai+jai+j+1 · · · ai+2j−1 for some j. If position i does not start
a square, then i is called square-free. Given an occurrence of a factor u of w, let
σw(u) be the number of positions in u that are square-free in w (when referring
to σw(u), the occurrence of u in w is implicitly assumed without any risk of

confusion). Consistent with [7], w is strong if σw(u) ≥ |u|
2 for every nonempty

prefix u of w. In the case u = w, we let σ(w) = σw(w). A simple observation
of a necessary condition for a partial word to be strong is that every nonempty
prefix of a strong partial word must be strong. We also let

σh(n) = max{σ(w) : w ∈ B∗
� , |w| = n, ‖H(w)‖ = h}.

We will characterize all strong binary partial words and look at the asymptotic

behavior of the ratio σh(n)
n .

Lemma 1. Given binary partial word w = u2v ∈ B∗
� , with u a full word of odd

length and v �= ε, σw(u2) ≤ |u|+1
2 − 1.

Squares in Binary Partial Words 407

Proof. The proof is by induction on |u|. If |u| ∈ {1, 3, 5, 7, 9}, then the result
holds. For instance, let |u| = 9 and let a0 = 0. Positions 8 and 9 both start
squares. In each pair of positions (2, 3), (4, 5), and (6, 7) at least one position
must start a square. The result holds if any aforementioned pair has both posi-
tions starting a square. The result also holds if position 0 or 1 starts a square.
Assuming that positions 0 and 1 are square-free and no pair of positions (i, i+1)
both start a square for i ∈ {2, 4, 6}, we find w = 01001100a82v with positions 0,
1, 3, and 5 square-free. If a8 = 0, then both positions 6 and 7 start squares. If
a8 = 1, then position 1 starts the square (1001)2. In any case, σw(u2) ≤ 4.

Assume for all w = u2v ∈ B∗
� with |u| = 2j + 1 for j < l and v �= ε that

σw(u2) ≤ |u|+1
2 − 1. Now consider w = u2v with |u| = 2l + 1 and v �= ε. Let

u = a0a1 · · ·a2l and let a0 = 0. If position 0 or position 1 starts a square, then
the result follows by induction with u′ = a2a3 · · · a2l. Assume positions 0 and 1
are square-free. Then u = 0100a4 · · · a2l. If position 3 starts a square then take
u′ = a4a5 · · · a2l and the result follows by induction. Thus a4 = 1 which forces
a5 = 1 in order to ensure that position 0 is square-free. Now u = 010011a6 · · ·a2l.
If a6 = 1, then position 5 starts a square and taking u′ = a6a7 · · · a2l we have
our result by induction. So, a6 = 0 and now u = 0100110a7 · · · a2l. If a7 = 0 then
a8 = 1 or else positions 6 and 7 both start squares and by taking u′ = a8a9 · · ·a2l
the result follows. But taking a8 = 1, we start a square at position 1, which
cannot be. Otherwise consider a7 = 1. If a8 = 0, then position 5 starts a square,
which we have already seen gives the desired result. If a8 = 1 we have a square
starting at position 3 and again the result follows. �

Lemma 2. Given binary partial word w = u2v ∈ B∗
� , with u a full word and

v �= ε, σw(u2) < |u|+1
2 .

Proof. We induct on |u|. First consider |u| = 0. Thus w = 2v with v �= ε, so the
2 in position 0 certainly starts a square. So σw(u2) = 0 < 1

2 . Now assume that

σw(u2) < |u|+1
2 for any w = u2v where v �= ε and |u| < m. Consider now some

binary partial word w = u2v where v �= ε and |u| = m. Since any binary word
of length at least four must have a square, the first square in w must occur at
position 0, 1, or 2. Let u = a0a1 · · ·am−1 with ai ∈ B.

Assume the first square in w begins at position 2, i.e., positions 0 and 1 are
square-free, but position 2 is not (the other cases are similar). Consider the
partial word w′′′ = u′′′2v with u′′′ = a3a4 · · · am−1. Noting |u′′′| = m − 3 < m,

we have σw(u2) = 2 + σw′′′ (u′′′2) < 2 + |u′′′|+1
2 = |u|+2

2 . Now we observe that

our function σw takes only integer values, so if |u| is even σw(u2) < |u|+1
2 and if

|u| is odd the result follows from the stronger bound in Lemma 1. �

In [7], it was shown that there are 382 strong binary full words with the longest
having length 37.

Theorem 1. There are 95 strong binary partial words with one hole the longest
of which has length 37, and each is of the form w = u2 for a strong full word u.
Furthermore, there are no strong binary partial words with more than one hole.

408 F. Blanchet-Sadri, Y. Jiao, and J.M. Machacek

Proof. From Lemma 2, we can see for a binary partial word to be strong and
have a hole that the hole must be the last character. This also rules out the
possibility of any strong binary partial word with more than one hole. Thus any
such partial word must be of the form w = u2 for a full word u, and certainly u
must be a strong full word. A computer check can verify that there are only 95
such partial words and that the longest has length 37. �

As long as the number of holes in a partial word grows asymptotically slower
than its length, we can realize the same limit as for full words.

Theorem 2. Let {hn} be a sequence such that hn ≤ n for all n. If lim
n→∞

hn
n

= 0,

then lim
n→∞

σhn(n)

n
=

15

31
.

Proof. From [7], the limit is 15
31 in the zero-hole case, and clearly σh(n) ≤ σ0(n)

for all 0 ≤ h ≤ n. Also if we consider w = 2hu for a full word u where |u| = n−h
and σ(u) = σ0(n− h), we can see that σh(n) ≥ σ0(n− h). So

lim
n→∞

σ0(n− hn)

n
≤ lim
n→∞

σhn(n)

n
≤ lim

n→∞

σ0(n)

n
.

Noting that σ0(n−hn)
n =

(
n−hn

n

)(σ0(n−hn)
n−hn

)
, we can see our result holds. �

3 Square Occurrences

We use s(w) to denote the number of square occurrences in a partial word w,
and we let

γh(n) = min{s(w) : w ∈ B∗
� , |w| = n, ‖H(w)‖ = h}.

We find the limit of the ratio γh(n)
n . A square occurrence in a full word is any

occurrence of a factor x2. In partial words, for each factor xy with x ↑ y, we count
every full word z2 such that xy ⊂ z2 as a square occurrence. Given such factor
xy, the number of square occurrences that xy contributes to is 2‖H(x∨y)‖. Note
that square occurrences can potentially overlap and they need not be distinct.

Borrowing from [10], we construct a partial word that achieves the minimal
number of square occurrences in the limit for a given number of holes. Let

wX,Y =0100110100011001011000110100110001011001010011010001100101110

01101001110010110011101001101011001011100110100X1100101100Y 1

1010011000101100101001101000110010110001101001100010110011101

00110.

The word wX,Y has length 187. Let wa = w0,0w0,0, wb = w0,0w1,0, and wc =
w1,0w1,1. Let w� be the partial word with one hole in position 0 of wa and the
rest of the letters the same as wa. Define the morphism g : {a, b, c}∗ → {0, 1}∗

Squares in Binary Partial Words 409

by g(a) = wa, g(b) = wb, and g(c) = wc. Let t be a word over the alphabet
{a, b, c} and denote g(t) by t′. Let t′� be g(t) with the first h occurrences of wa
replaced by w�. If x is a factor of t, we call x′ the corresponding factor of t′ and
x′� the corresponding factor of t′�.

Lemma 3. For a ternary square-free word t, each square occurrence of t′� be-
longs to exactly one of the following three categories:

1. It is completely inside wa, w�, wb, or wc;
2. It is one of the squares crossing the boundary of adjacent blocks of the form

wαw� where α ∈ {a, 2, b, c}: 11, 1010, 0101, 1001110011, and 1100111001
compatible with 12, 1210, 0121, 1001210011, and 1100121001, respectively;

3. It is either 0101 or 1010 crossing the boundary of adjacent blocks of the form
wαwβ where α ∈ {a, 2, b, c}, β ∈ {a, b, c}.

Thus

s(t′�) =

⎧⎪⎨⎪⎩
206|t| − 2, h = 0;

206|t|+ 4h− 5, h > 0 and a is the first letter of t;

206|t|+ 4h− 2, otherwise.

Proof. We modify the proof from [10] for partial words. Consider a ternary
square-free word t. Suppose there exists a factor of t′� compatible with a full
square q2, i.e., not one of the above. Assume |q2| < 4× 374. Then there exists a
subword z of t with |z| ≤ 5 such that q2 is compatible with a factor of z′�. By a
computer check, for each ternary square-free word z of length at most 5, z′� has
only the aforementioned square occurrences.

Now assume |q2| ≥ 4×374. Say q2 is compatible with the factor uv of t′� where
u ↑ v. Since |u| ≥ 2 × 374, u has at least one of wa, w�, wb, or wc as a factor.
Say that u has the factor wα where α ∈ {a, 2, b, c}. Then there exists wβ , where
β ∈ {a, 2, b, c}, such that wβ is compatible with wα and wβ is |u| positions after
wα. A computer check shows that for x, y ∈ {a, 2, b, c}, wxwy does not have any
of wa, w�, wb, or wc as a proper factor. If |u| is not a multiple of 374, then wβ
would be a proper factor of wxwy for some x, y ∈ {a, 2, b, c}. So |u| = 374l for
some integer l. If uv is centered at the boundary of two adjacent letters of t,
then t would have a square. So uv cannot be centered between adjacent letters.

Let x be the largest subword of t such that x′� is entirely inside u and y be
the subword of t with y′� entirely inside v and y′� is compatible with x′�. Observe
that wa, w�, wb, and wc are incompatible in exactly positions 108, 295, and 306.
In those positions, wa and w� has 0, 1, and 1; wb has 0, 0, and 1; and wc has 1,
0, and 0. Since the hole can only occur in the first position of w�, x = y. Since
t is square-free, the smallest subword of t that allows t′� to have a square must
have at least a letter of t between the occurrences of x. So the minimal subword
r of t such that r′ has the factor q2 is of the form αxβxγ with |x| = l − 1 and
α, β, γ ∈ {a, b, c}.

If the center of q2 occurs before position 295 of β′
�, then the letters in positions

295 and 306 of α′
� are the same as those in β′

�. But α
′
� cannot match β′

� in those

410 F. Blanchet-Sadri, Y. Jiao, and J.M. Machacek

positions unless α = β. This produces the square (αx)2 in t, which contradicts
the assumption that t is square-free. If the center of q2 is after position 295,
then positions 108 and 295 of β′

� should match those in γ′�, which would produce
the square (xβ)2 in t, contradicting that t is square-free. Hence t′� has only the
squares mentioned in the lemma.

By a computer check, there are 204 square occurrences in wa, wb, and wc
while w� has 205 square occurrences. Across the boundary of wαwβ for α ∈
{a, 2, b, c} and β ∈ {a, b, c}, there are 2 square occurrences, namely 0101 and
1010. For α ∈ {a, 2, b, c}, the boundary of wαw� has 5 square occurrences, namely
11, 1010, 0101, 1001110011, and 1100111001 compatible with 12, 1210, 0121,
1001210011, and 1100121001 respectively. If h = 0, then there are 204 square
occurrences inside each of the |t| images and 2 square occurrences crossing the
|t| − 1 boundaries of adjacent letters. If h > 0 and the first letter of t is a,
then there are 204 square occurrences inside the |t| − h images that do not have
holes, 205 square occurrences in the h appearances of w�, 5 square occurrences
across the h − 1 boundaries of pairs of images that end with w�, and 2 square
occurrences in the remaining |t| − h boundaries. If h > 0 and the first letter of
t is not a, then there is one more boundary with 5 squares crossing it and one
less boundary with 2 squares crossing it. �

Theorem 3. For all 0 ≤ h <∞, lim
n→∞

γh(n)

n
=

103

187
.

Proof. From [11], there exists a ternary square-free word, which has infinitely
many occurrences of a (take, for instance, the fixed point of the morphism μ :
a �→ abc, b �→ ac, c �→ b). Using a ternary square-free word t, the length of t′�
is 374|t|. By Lemma 3, 206|t| − 2 ≤ s(t′�) ≤ 206|t| + 4h − 2. So for all 0 ≤
h < ∞, letting |t| → ∞, our limit holds for the ratio γh(374n)

374n . Currently t′�
can be a binary partial word with length a multiple of 374. We slightly modify
t′� to construct binary partial words of any length. For α ∈ {a, b, c}, consider
t′�wα[0..l − 1] a partial word of length 374|t|+ l with h holes. From Lemma 3,
206|t| − 2 ≤ s(t′�wα[0..l − 1]) ≤ 206|t| + 4h + 204. So for all 0 ≤ h < ∞ and

0 ≤ l < 374, our limit now holds when looking at the ratio γh(374n+l)
374n+l . �

4 Distinct Squares

We consider the number Sq(w) of distinct squares in a binary partial word w.
In doing this, we count the number of distinct full squares compatible with
factors of our partial word, i.e., for each square yz with y ↑ z, we count each
full word x2 such that yz ⊂ x2. Let Sqi(w) be the number of distinct squares in
w with their rightmost occurrence beginning at position i for 0 ≤ i < |w|. For
example if w = 01210, then Sq0(w) = 1 since (0121) ⊂ (01)2, Sq1(w) = 1 since
(1210) ⊂ (10)2, Sq2(w) = 1 since (21) ⊂ 12, Sq3(w) = 0, and Sq4(w) = 0. Let

Δ Sq(w) = max{Sq(w)− Sq(ẇ) : w ⊂ ẇ, ‖H(ẇ)‖ = ‖H(w)‖ − 1}.

Squares in Binary Partial Words 411

Here ẇ is a strengthening of w, which is a partial word that comes from filling
in any hole in w with a letter of our alphabet. For example, let w = 0010201,
ẇ0 = 0010001, and ẇ1 = 0010101. Then w has 3 distinct squares 02, (01)2, (10)2;
ẇ0 has 1 square 02; ẇ1 has the same 3 squares as w. So Δ Sq(w) = 2.

We let Sq(n) be the maximum number of distinct squares in a binary full
word of length n. We also let

Δh Sq(n) = max{Δ Sq(w) : w ∈ B∗
� , |w| = n, ‖H(w)‖ = h},

Δn,h = max{Sq(w) − Sq(ŵ) : w ⊂ ŵ, ŵ ∈ Bn, ‖H(w)‖ = h}.
Here ŵ is what we call a completion of w, which is a partial word that comes
from filling in all holes of w with letters from our alphabet. Our goal is to bound
the number of distinct squares in binary partial words with any number of holes.
The following theorem follows immediately from the definition of Δn,h.

Theorem 4. The number of distinct squares in a binary partial word of length
n with h holes is bounded by Sq(n) +Δn,h.

First, let us give some lower bounds on Δh Sq(n) and Δn,h.

Proposition 1. For n ≥ 8, Δn,1 = Δ1 Sq(n) ≥
⌊
n−1
2

⌋
.

Proof. We construct a class of binary partial words {u0, u1, u2, u3}, each of which
has exactly one hole, and |ur| = 4q + r for 0 ≤ r < 4 and q ≥ 2. We enumerate
the distinct squares in each ur, and for each square we account for the effect of
the hole in ur. This allows us to compute both Sq(ur) and Δ Sq(ur).

For u0 = 0q−110q−2210q10q−1, we have the following squares:
⌊
q
2

⌋
squares of

the form (0s)2 for 1 ≤ s ≤
⌊
q
2

⌋
, none of which are dependent on the hole; q

squares of the form (0s10t)2 for s+ t = q−1 with s, t ≥ 0, each of which requires
the hole acting as a 0; q − 1 squares of the form (0s10t)2 for s + t = q with
s, t ≥ 1, each of which requires the hole acting as a 0; 2 squares 12 and (0q−21)2,
each of which requires the hole acting as a 1.

For the partial words u1 = 0q−110q−120q10q,u2 = 0q−110q−120q10q+1, and
u3 = 010q10q−2210q10q−1, we can similarly argue on the occurrences of squares.

We obtain that Δ Sq(ur) =
⌊
|ur |−1

2

⌋
for 0 ≤ r < 4. �

Next, using the lower bound construction from [5], let q(i) = 0i+110i10i+11 for

i ≥ 1. Letting Q = q(1) · · · q(m), Q has length 3m2+13m
2 and Sq(Q) = 3m2+7m

2 +⌊
m+1
2

⌋
− 3.

Proposition 2. For n = 3m2+13m
2 with m ≥ 1, there exists a partial word with

one hole of length n with 3m2+9m
2 distinct squares.

Proof. We modify the construction from [5] for partial words with one hole. De-
fine Q� = q(1) · · · q(m− 2)0m10m−120m1q(m). We count the additional squares
in Q� that do not occur in Q:

⌈
m−1
2

⌉
squares of the form (0p)2 with p =⌊

m+3
2

⌋
, . . . ,m and 3 squares (0m+11)2, (0m10m)2, (0m−110m+1)2. So Sq(Q�) =

Sq(Q) +
⌈
m−1
2

⌉
+ 3 = 3m2+9m

2 . �

412 F. Blanchet-Sadri, Y. Jiao, and J.M. Machacek

Proposition 3. For 1 ≤ h ≤ 2
⌊
n
4

⌋
− 1, we have Δh Sq(n) ≥ 2

⌊
n
4

⌋
− 1.

Proof. We generalize the class of binary partial words {u0, u1, u2, u3} used in
the proof of Proposition 1. Given some n = 4q + r and h ≤ q where 0 ≤ r < 4,
we can construct binary partial words ur,h and ur,h+1 both of length n with h
and h+ 1 holes, respectively, such that Sq(ur,h+1)− Sq(ur,h) ≥ 2q − 1. Define

u0,h = 2
⌊
h
2

⌋
0
q−

⌊
h
2

⌋
−1

10q−2110q10
q−

⌈
h
2

⌉
−1
2
⌈
h
2

⌉
,

u0,h+1 = 2
⌊
h
2

⌋
0
q−

⌊
h
2

⌋
−1

10q−2210q10
q−

⌈
h
2

⌉
−1
2
⌈
h
2

⌉
.

The following are additional squares present in u0,h+1 but not in u0,h: q − 1
squares of the form (0s10t)2 for s+t = q with s = 1, 2, . . . , q−1 requiring the new
hole to be 0; q squares of the form (0s10t)2 for s+t = q−1 with s = 0, 1, . . . , q−1
requiring the new hole to be 0. Hence Sq(u0,h+1)− Sq(u0,h) = 2q − 1. �

Proposition 4. The inequality Δn,2 ≥ n+ �n−6
8 � − 7 holds.

Proof. For n = 1, . . . , 9, a computer check confirms the inequality. Let n ≥ 10
and let wi be the partial word of length n defined as below, where l = n−i

4 for
each i ∈ {0, 1, 2, 3}. For w0 = 0l−210l−2220l10l, we have the following distinct
squares: � l2� squares of the form (0p)2 with p = 1, . . . , � l2� independent of the
holes; l − 1 squares of the form (0p10q)2 for p+ q = l and p = 1, . . . , l − 1 each
requiring the holes to be 0 and 1 in order 1 square (10l)2 requiring only the
second hole to be 1; l − � l2� squares of the form (0p)2 with p = � l2� + 1, . . . , l

each requiring both holes to be 0, except that (0

⌊
l
2

⌋
+1

)2 requires only the second
hole to be 0 if l is odd; l − 2 squares of the form (0p10q)2 for p+ q = l + 1 and
p = 1, . . . , l − 2 each requiring the holes to be 1 and 0 in order; l − 1 squares of
the form (0p10q)2 for p+ q = l − 1 and p = 0, . . . , l− 2 each requiring the holes
to be 0 and 1 in order; l − 2 squares of the form (0p10q)2 for p+ q = l − 2 and
p = 0, . . . , l− 3 each requiring the holes to be 1 and 0 in order; 1 square (0l−21)2

requiring only the first hole to be 1; 1 square 12 requiring both holes to be 1. So
we have a difference of (5l− 3)− (

⌊
l
2

⌋
+ 3) = n+ �n8 � − 6.

We similarly argue for w1 = 0l−210l−2220l10l+1, w2 = 0l−110l−2220l10l+1,
and w3 = 0l−110l−12020l10l. �

Next, let us give some upper bounds on Δh Sq(n) and Δn,h.

Lemma 4. If w is a partial word with h holes over a k-letter alphabet, then
Sqi(w) ≤ 2kh for all 0 ≤ i < |w|.

Proof. From [5], for any full word w, Sqi(w) ≤ 2 for all 0 ≤ i < |w|. Use this as
a base case and induct on h. Assume our result holds for words with less than h
holes. Now assume for the sake of contradiction that there exists a partial word
w with h holes such that Sqi(w) > 2kh for some 0 ≤ i < |w|. By the pigeonhole
principle, there exists some letter a in our alphabet so that, when replacing one
of the holes by a to obtain the strengthening ẇ, we have Sqi(ẇ) > 2kh−1. Since
‖H(ẇ)‖ = h− 1, this contradicts the inductive hypothesis. �

Squares in Binary Partial Words 413

The proof of Lemma 4 is similar to that of Theorem 2.1 in [6], which only deals
with the case h = 1.

Lemma 5. If a partial word w with h holes is such that Sqi(w) = 2kh, then
j ∈ D(w) for all 0 ≤ j < i.

Proof. Assume there is a word w with h holes such that Sqi(w) = 2kh, and
j ∈ H(w) yet j < i. If we strengthen w at j, we obtain ẇ with h− 1 holes, but
since j < i, we have Sqi(ẇ) = Sqi(w) = 2kh, a contradiction with Lemma 4. �

Lemma 6. If a partial word w with h holes is such that Sqi(w) = 2kh for all
0 ≤ i < m, then |w| > 2m.

Proof. By [9], if a full word w is such that Sqi(w) = 2 for all 0 ≤ i < m,
then |w| > 2m. Use this as a base case and induct on h. If Sqi(w) = 2kh, then
Sqi(ẇ) = 2kh−1 for any strengthening ẇ of w, and so |w| = |ẇ| > 2m. �

Using the above lemmas, we prove a bound for Δh Sq(n). The idea of our proof
is outlined in the following example:

w = 01210010

ẇ = 01010010

ẅ = 01110010

We have |w| = 8 and ‖H(w)‖ = 1. The position of the hole, where strengthening
occurs, is j = 2. The fact the Δ1 Sq(8) = 3 can be verified by direct computa-
tion, and Δ Sq(w) = 3 from the listing of the words above. We denote by ẇ the
strengthening of w with the greatest number of distinct squares whose rightmost
occurrences include position j. The rightmost occurrence of each distinct square
is shown in brackets. The set of squares in ẇ whose rightmost occurrences in-
clude position j is S = {0101, 1010, 010010}. Let N = |S| = 3. The only other
strengthening, denoted by ẅ, is missing exactly the squares in S when compared
to w. In particular Δ Sq(w) = max{Sq(w)− Sq(ẇ), Sq(w) − Sq(ẅ)} = 3 ≤ N .

In general we can see, by following the process in the example, thatΔ Sq(w) ≤
N where N = |S| since any other strengthening ẅ can be missing no more than
those squares in S when compared to w. It is worth noting that in general ẅ is
not missing all squares in S, but N serves as an upper bound for Δ Sq(w).

Theorem 5. The inequality Δh Sq(n) < 2h−1(n+ 2) holds.

Proof. Fix n, h > 0 and take a binary partial word w of length n with h holes
such that Δ Sq(w) = Δh Sq(n). For all i ∈ H(w) and a ∈ B, look at the set
Si,a of distinct squares in the strengthening of w which fills position i with a.
Let ẇ be the strengthening of w with the largest such set, which we denote S =
{x21, x22, . . . , x2N}. Denote the position at which the strengthening occurs by j and
the letter in position j of ẇ by a. The strengthening ẅ, which fills position j with

414 F. Blanchet-Sadri, Y. Jiao, and J.M. Machacek

a, has at most N fewer squares than w. Also since we have chosen the greatest
possible N , we can conclude Δh Sq(n) ≤ N . Since Δ Sq(w) = Δ Sq(rev(w))
we can assume 0 ≤ j ≤

⌊
n
2

⌋
without loss of generality. From Lemma 4, by

setting k = 2, Sqi(ẇ) ≤ 2h for all 0 ≤ i ≤ j. Also from Lemma 6, there exists
0 ≤ i ≤

⌊
n
2

⌋
such that Sqi(ẇ) < 2h. Thus N < 2h

(⌊
n
2

⌋
+ 1
)
≤ 2h−1(n+ 2). �

Corollary 1. The inequality Δn,h < (2h − 1)(n + 2) holds. Consequently, the
number of distinct squares in a binary partial word of length n with h holes is
bounded by 2n−Θ(log n) + (2h − 1)(n+ 2).

Proof. From Theorem 5, Δn,h ≤
∑h

l=1Δl Sq(n) < (2h − 1)(n + 2). Using the
2n−Θ(log n) bound for the number of distinct squares in a binary full word of
length n as well as Theorem 4, the result follows. �

Corollary 1 gives the known bound of 3n− Θ(log n) for the number of distinct
squares in a binary partial word of length n with one hole.

Finally, we prove the following fact about the behavior of Δn,h.

Proposition 5. The sequence {Δn,h}1≤h≤n for fixed n is monotone increasing.

Proof. For any 1 ≤ h < n, find a partial word w of length n with h holes and
a completion ŵ such that Sq(w) − Sq(ŵ) = Δn,h. For some position i ∈ D(w),
obtain w′ from w by replacing the letter in position i with 2, D(w) is nonempty
since h < n. Clearly Sq(w′) ≥ Sq(w) and w′ ⊂ ŵ. Thus we have Sq(w′)−Sq(ŵ) ≥
Sq(w)− Sq(ŵ) = Δn,h. Therefore Δn,h+1 ≥ Δn,h, whenever h < n. �

The sequence {Δn,h}n≥1 for fixed h is not monotone increasing in general.
For example Δ8,2 = 7 and Δ9,2 = 6, which can be verified through direct
computation.

5 Conclusion

For future work, we list some conjectures. Conjecture 1 has been verified up to
n = 38. Note that it is not always true that placing a hole in position 0 of a
witness for γ0(n) gives a witness for γ1(n). For n = 16, s(0101100101110010) =
γ0(16) but s(2101100101110010) > γ1(16). For all 8 ≤ n ≤ 25, Δ1 Sq(n) =⌊
n−1
2

⌋
, but Δ1 Sq(26) = 13. The only witness (up to reversal and complement)

of length 26 which exhibits a difference of 13 is 00101010010121010010101001.
Conjecture 3 has been verified up to n = 21.

Conjecture 1. The equality γ1(n) = γ0(n) + 1 holds for all n ≥ 2.

Conjecture 2. For all n ≥ 0, Δ1 Sq(n) ≈ n
2 .

Conjecture 3. For all n ≥ 8, Δ2 Sq(n) =
⌊
7(n−1)

10

⌋
.

Conjecture 4. The sequences {Δh Sq(n)}1≤h≤n for fixed n and {Δh Sq(n)}n≥1

for fixed h are both monotone increasing.

Squares in Binary Partial Words 415

We also suggest a number of open problems. Is the 2kh bound in Lemma 4
optimal for h ≥ 2? This bound was shown to be optimal for h = 1 by Halava
et al. [6] who constructed a partial word w with one hole over k letters which
achieves Sq0(w) = 2k. Referring to Lemma 5, which positions and how many
positions can achieve 2kh? We know Sqi(w) < 2kh if there exists j ∈ H(w) for
some 0 ≤ j < i. How does this affect the maximum number of distinct squares
in partial words? Ilie [9] limited the number of positions i for which Sqi(w) = 2
in full words by looking at maximum runs of consecutive 2′s. This allowed for
the Θ(log n) improvement. Can similar approaches be used with partial words?

In addition, a World Wide Web server interface has been established at

www.uncg.edu/cmp/research/squares3

for automated use of a program that given as input a binary partial word over
the alphabet {0, 1}, outputs the number of positions that start squares and the
number of square occurrences. It also outputs the positions that start each square
occurrence and the corresponding squares for each position.

References

1. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press, Boca Raton, FL (2008)

2. Blanchet-Sadri, F., Mercaş, R.: A note on the number of squares in a partial word
with one hole. RAIRO-Theoretical Informatics and Applications 43, 767–774 (2009)

3. Blanchet-Sadri, F., Mercaş, R., Scott, G.: Counting distinct squares in partial
words. Acta Cybernetica 19, 465–477 (2009)

4. Fraenkel, A.S., Simpson, R.J.: How many squares must a binary sequence contain?
Electronic Journal of Combinatorics 2, R2 (1995)

5. Fraenkel, A.S., Simpson, R.J.: How many squares can a string contain? Journal of
Combinatorial Theory, Series A 82, 112–120 (1998)

6. Halava, V., Harju, T., Kärki, T.: On the number of squares in partial words.
RAIRO-Theoretical Informatics and Applications 44, 125–138 (2010)

7. Harju, T., Kärki, T., Nowotka, D.: The number of positions starting a square in
binary words. Electronic Journal of Combinatorics 18, P6 (2011)

8. Ilie, L.: A simple proof that a word of length n has at most 2n distinct squares.
Journal of Combinatorial Theory, Series A 112, 163–164 (2005)

9. Ilie, L.: A note on the number of squares in a word. Theoretical Computer
Science 380, 373–376 (2007)

10. Kucherov, G., Ochem, P., Rao, M.: How many square occurrences must a binary
sequence contain? Electronic Journal of Combinatorics 10, R12 (2003)

11. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

12. Ochem, P., Rao, M.: Minimum frequencies of occurrences of squares and letters in
infinite words. In: JM 2008, 12ièmes Journées Montoises d’Informatique Théorique,
Mons, Belgium (2008)

The Avoidability of Cubes under Permutations

Florin Manea, Mike Müller, and Dirk Nowotka

Institut für Informatik�, Christian-Albrechts-Universität zu Kiel
D-24098 Kiel, Germany

{flm,mimu,dn}@informatik.uni-kiel.de

Abstract. In this paper we consider the avoidance of patterns in in-
finite words. Generalising the traditional problem setting, functional
dependencies between pattern variables are allowed here, in particular,
patterns involving permutations. One of the remarkable facts is that in
this setting the notion of avoidability index (the smallest alphabet size
for which a pattern is avoidable) is meaningless since a pattern with
permutations that is avoidable in one alphabet can be unavoidable in a
larger alphabet. We characterise the (un-)avoidability of all patterns of
the form πi(x)πj(x)πk(x), called cubes under permutations here, for all
alphabet sizes in both the morphic and antimorphic case.

1 Introduction

The avoidability of patterns in infinite words is an old area of interest with
a first systematic study going back to Thue [8,9]. This field includes discoveries
and studies by many authors over the last one hundred years; see for example [2]
and [4] for surveys. In this article, we are concerned with a generalisation of the
theme by considering patterns with functional dependencies between variables,
in particular, we investigate permutations. More precisely, we do allow function
variables in the pattern that are either morphic or antimorphic extensions of
permutations on the alphabet. Consider the following pattern for example:

xπ(x)x

where an instance of the pattern is a word uvu that consists of three parts
of equal length, that is, |u| = |v|, and v is the image of (the reversal of) u
under any permutation on the alphabet. For example, aab|bba|aab (aab|abb|aab)
is an instance of xπ(x)x for the morphic (respectively, antimorphic) extension
of permutation a �→ b and b �→ a.

Recently, there has been some initial work on avoidance of patterns with
involutions which is a special case of the permutation setting considered in this
paper (as involutions are permutations of order at most two); see [1,3,5]. The
original interest of investigating patterns under involution was motivated by
possible applications in biology where the Watson-Crick complement corresponds

� The work of Florin Manea and Mike Müller is supported by the DFG grant 582014.
The work of Dirk Nowotka is supported by the DFG Heisenberg grant 590179.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 416–427, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Avoidability of Cubes under Permutations 417

to an antimorphic involution over four letters. Our considerations here are much
more general, however, and the relation to direct applications in microbiology
are admittedly scant.

Since these are the very first considerations on this kind of pattern avoidance
at all, we restrict ourselves to cube-like patterns. The cube xxx is the most
basic and well-investigated pattern that lends itself to nontrivial considerations
on patterns with functional dependencies (a square would hardly be interesting
in that context). So, we have one variable, occurring three times, and only one
function variable, that is, we investigate patterns of the form:

πi(x)πj(x)πk(x)

where i, j, k ≥ 0.
It is worth noting that the notion of avoidability index plays no role in the

setting of patterns involving permutations. Contrary to the traditional setting,
where once a pattern is avoidable for some alphabet size it remains avoidable
in larger alphabets, a pattern with permutations may become unavoidable in a
larger alphabet. This is a new and somewhat unexpected phenomenon in the field
of pattern avoidance. It does not occur, for example, in the involution setting
but requires permutations of higher order.

2 Preliminaries

We define Σk = {0, . . . , k − 1} to be an alphabet with k letters. For words u and
w, we say that u is a prefix (resp. suffix) of w, if there exists a word v such that
w = uv (resp. w = vu). We denote that by u ≤p w (resp. u ≤s w).

For a word w and an integer i with 1 ≤ i ≤ |w| we denote the i-th letter of w
by w[i]. We also denote the factor that starts with the i-th letter and ends with
the j-th letter in w by w[i..j]. If w is a word of length n then wR, the reversal
of w, is defined as the word w[n]w[n− 1] . . . w[1].

If f : Σk → Σk is a permutation, we say that the order of f , denoted ord(f),
is the minimum value m > 0 such that fm is the identity. If a ∈ Σk is a letter,
the order of a with respect to f , denoted ordf (a), is the minimum number m
such that fm(a) = a.

A pattern which involves functional dependencies is a term over (word) vari-
ables and function variables (where concatenation is an implicit functional con-
stant). For example, xπ(y)π(π(x))y is a pattern involving the variables x and y
and the function variable π. An instance of a pattern p in Σk is the result of
substituting every variable by a word in Σ+

k and every function variable by a
function over Σ∗

k . A pattern is avoidable in Σk if there is an infinite word over
Σk that does not contain any instance of the pattern.

In this paper, we consider patterns with morphic and antimorphic permuta-
tions, that is, all function variables are unary and are substituted by morphic or
antimorphic permutations only.

The infinite Thue-Morse word t is defined as

t = lim
n→∞

φnt (0),

418 F. Manea, M. Müller, and D. Nowotka

for φt : Σ∗
2 → Σ∗

2 where φt(0) = 01 and φt(1) = 10. It is well-known (see,
for instance, [7]) that the word t avoids the patterns xxx (cubes) and xyxyx
(overlaps).

Let h be the infinite word defined as

h = lim
n→∞

φnh(0),

where φh : Σ∗
3 → Σ∗

3 is a morphism due to Hall [6], defined by φh(0) = 012,
φh(1) = 02 and φh(2) = 1. The infinite word h avoids the pattern xx (squares).

The reader is referred to [7] for further details on the concepts discussed in
this paper.

3 The Morphic Case

In this section, the function variable π is always substituted by a morphic per-
mutation.

We begin this section by showing the avoidability of a series of basic patterns.
These results are then used to show the avoidability of more general patterns.
Our first result uses the morphism α : Σ∗

2 → Σ∗
3 that is defined by

0 �→ 02110, 1 �→ 02210.

Lemma 1. The infinite word tα = α(t) avoids the pattern xπ(x)x in Σm, for
all m ≥ 3. This pattern cannot be avoided by words over smaller alphabets. �

The following lemma is the main tool that we use to analyse the avoidability of
cubes under morphic permutations. To obtain this result we apply the morphism
β : Σ∗

2 → Σ∗
4 defined by

0 �→ 012013213, 1 �→ 012031023.

Lemma 2. Let tβ = β(t) for the morphism β defined above and let i, j ∈ IN and
f, g be morphic permutations of Σm with m ≥ 4. The word tβ does not contain
any factor of the form uf(u)g(u) for any u ∈ Σ+

m with |u| ≥ 7. Furthermore, tβ
does not contain any factor uf i(u)f j(u) with∣∣{u[�], f i(u)[�], f j(u)[�]}∣∣ ≤ 2,

for all � ≤ |u| and |u| ≤ 6.

Proof. We begin with addressing the first claim. One can easily show that tβ
contains no cube. For |u| ∈ {7, 8}, the length of uf(u)g(u) is 21 or 24 and so
it is completely contained in β(v) for some factor v of the Thue-Morse word
with |v| = 4. Thus, it is sufficient to check that there is no factor of the form
uf(u)g(u) in the image of the set of factors of length 4 of the Thue-Morse word.
We did this using a computer program1.

1 All programs are available at: http://www.informatik.uni-kiel.de/zs/taocup

http://www.informatik.uni-kiel.de/zs/taocup

The Avoidability of Cubes under Permutations 419

For |u| ≥ 9 we have that at least one of the factors u, f(u), g(u) has three
occurrences of the letter 1. Indeed, any factor uf(u)g(u) of tβ , having length
greater than or equal to 27, has a factor xβ(s1s2)y where s1, s2 ∈ {0, 1} and
|xy| = 9. Clearly, x is a suffix of β(s3) and y is a prefix of β(s4) for some
letters s3 and s4 from {0, 1}. Now, regardless of the way we choose the letters
s1, s2, s3 and s4 from {0, 1}, such that s1s2s3s4 is a factor of t, we obtain that
any factor of length 27 of β(s1s2s3s4) contains at least 7 occurrences of the
letter 1. By the pigeonhole principle, it follows that at least one of the factors
u, f(u), g(u) has 3 occurrences of the letter 1. In fact, this factor contains one
of the words w1 = 1201321, w2 = 1321301, w3 = 1301201, or w4 = 13012031.
Also, denote y1 = 0120310, y2 = 0310230, and y3 = 0230120. Let us assume
first that u contains three occurrences of the letter 1, and assume that u[i..i+ �],
with � ∈ {6, 7}, is the leftmost subfactor of u that contains three 1-letters and
begins with 1. But this means that also f(u)[i..i + �] and g(u)[i..i + �] contain
three identical letters. It is rather easy to note that, whenever wj ≤p u[i..i+ �]
for j ∈ {2, 3, 4}, then the only possibility is that also wj ≤p f(u)[i..i + �] and
wj ≤p g(u)[i..i+�]; otherwise, f and g would map the same letter in two different
ways, a contradiction. However, in that case, f and g would be the identical
mappings, which means that tβ would contain a cube, again a contradiction.

So, the only possibility that remains is to have u[i..i + 6] = 1201321. In this
case, we obtain that either f(u)[i..i+6] = w1 or f(u)[i..i+6] is one of the words
y1, y2, or y3. When f(u)[i..i+ 6] = w1 we obtain easily that |u| is divisible by 9,
so g(u)[i..i + 6] = w1, as well. Again, this shows that f and g are identical, so
tβ contains a cube, a contradiction. Now, if f(u)[i..i + 6] = y1 we get that the
length of u is of the form 9k + 8 for some k ∈ IN. This means that g(u)[i] = 3,
a contradiction. If f(u)[i..i + 6] = y2 we get that the length of u is of the form
9k + 2 for some k ∈ IN. This would mean that g(u)[i..i + 3] = 1023, again a
contradiction. Finally, when f(u)[i..i+ 6] = y3 we get that the length of u is of
the form 9k+5 for some k ∈ IN and we get that g(u)[i] = 2, which is once more
a contradiction. As we have reached a contradiction in every case, we conclude
that the assumption we made was false. Similar arguments work for the cases
of when f(u) and g(u) contain a factor with three occurrences of the letter 1.
Thus, tβ has no factor of the form uf(u)g(u) for any u ∈ Σ+

m with |u| ≥ 7.
To show the second statement, we have that every possible occurrence of

such a factor is included in the image under β of a factor of length 4 of t
(by the same reasoning as above). Computer calculations show that there are
only 12 different factors of the form ug1(u)g2(u) for some u ∈ Σ+

m with |u| ≤
6 and permutations g1, g2 such that there is no position 1 ≤ � ≤ |u| with
u[l] �= g1(u)[�] �= g2(u)[�] �= u[�]. These factors are: 012|013|213, 013|213|012,
023|012|013, 120|132|130, 130|120|132, 132|130|120, 201|321|301, 213|012|013,
230|120|132, 301|201|321, 321|301|201, 321|301|203, where the vertical lines mark
the borders between u, g1(u) and g2(u). For every factor we can check that there
are no i, j ∈ IN and no permutation f such that g1 = f i and g2 = f j . For
instance, let us assume that there are i, j and f such that 012|013|213 is a factor
of the form uf i(u)f j(u) (i.e., u = 012, f i(u) = 013 and f j(u) = 213). Since

420 F. Manea, M. Müller, and D. Nowotka

u[1] = f i(u)[1] = f i(u[1]) = 0, it follows that ordf (0) | i and since f j(u)[1] = 2,
we conclude that the letter 2 is in the same orbit of f as 0, i.e., ordf (2) = ordf (0)
and ordf (2) | i. This is a contradiction with u[3] = 2 �= 3 = f i(u)[3] = f i(u[3]).
The analysis of the other factors leads to similar contradictions. �

The next result highlights sets of patterns that cannot be simultaneously avoided.

Lemma 3. There is no w ∈ Σω
3 that avoids the patterns xxπ(x), and xπ(x)x

simultaneously. There is no w ∈ Σω
3 that avoids the patterns xπ(x)π(x), and

xπ(x)x simultaneously.

Proof. It can be easily seen (for instance, by checking with a computer program
that explores all the possibilities by backtracking) that any word of length at
least 9 over Σ3 contains a word of the form uuu, uuf(u), or uf(u)u, for some
u ∈ Σ+

3 and some morphic permutation f of Σ3.
Similarly, any word of length at least 10 over Σ3 contains a word of the form

uuu, uf(u)f(u), or uf(u)u, for u ∈ Σ+
3 and a morphic permutation f of Σ3. �

The following result shows the equivalence between the avoidability of several
pairs of patterns.

Lemma 4. Let m ∈ IN. A word w ∈ Σω
m avoids the pattern xxπ(x) if and only

if w avoids the pattern π(x)π(x)x. A word w ∈ Σω
m avoids the pattern xπ(x)π(x)

if and only if w avoids the pattern π(x)xx. A word w ∈ Σω
m avoids the pattern

xπ(x)x if and only if w avoids the pattern π(x)xπ(x).

Proof. If an infinite word w has no factor uuf(u), with u ∈ Σ+
m and a morphic

permutation f ofΣm, then w does not contain any factor g(u)g(u)u, with u ∈ Σ+
m

and a morphic permutation g ofΣm for which there exists a morphic permutation
f of Σm such that g(f(a)) = a, for all a ∈ Σm. This clearly means that w avoids
π(x)π(x)x in Σm. The other conclusions follow by the same argument. �

The following two remarks are immediate.

– The pattern πi(x)πi(x)πi(x) is avoidable in Σm for m ≥ 2 by the word t.
– The patterns πi(x)πi(x)πj(x) and πi(x)πj(x)πj(x), i �= j, are avoidable in
Σm for m ≥ 3 by the word h.

Another easy case of avoidable patterns is highlighted in the next lemma.

Lemma 5. The pattern πi(x)πj(x)πi(x), i �= j, is avoidable in Σm, for m ≥ 3.

Proof. Assume i < j. In this case, setting y = πi(x) we get that the pattern
πi(x)πj(x)πi(x) is actually yπj−i(y)y. We can avoid the last pattern in Σm if
we can avoid the pattern yπ(y)y in Σm. This pattern is avoidable in alphabets
with three or more letters, by Lemma 1. Also, yπj−i(y)y is avoidable in Σ2 if
and only if j − i is even.

If i > j, we take y = πj(x) and we obtain that πi(x)πj(x)πi(x) is actually
πi−j(y)yπi−j(y), which is avoidable if π(y)yπ(y) is avoidable. This latter pattern
is avoidable over alphabets with three or more letters, by Lemmas 1 and 4. The
pattern is also avoidable in Σ2 if and only if i− j is even. �

The Avoidability of Cubes under Permutations 421

In the next lemma we present the case of the patterns xπi(x)πj(x), with i �= j.
For this we need to define the following values:

k1 = inf {t : t � |i− j|, t � i, t � j} (1)

k2 = inf {t : t | |i− j|, t � i, t � j} (2)

k3 = inf {t : t | i, t � j} (3)

k4 = inf {t : t � i, t | j} . (4)

Remember that inf ∅ = +∞. However, note that {t : t � |i− j|, t � i, t � j} is al-
ways non-empty, and that k1 ≥ 3 (as either |i − j| is even or one of i and j
is even, so k1 > 2). Also, as i �= j at least one of the sets {t : t | i, t � j} and
{t : t � i, t | j} is also non-empty. Further, we define

k = min {max {k1, k2} ,max {k1, k3} ,max {k1, k4}} (5)

According to the remarks above, k is always defined (that is k �= +∞).

Lemma 6. The pattern xπi(x)πj(x), i �= j, is unavoidable in Σm, for m ≥ k.

Proof. First, let us note that the fact that m ≥ k1 means that for every word
u ∈ Σ+

m there exists a morphic permutation f such that u �= f i(u) �= f j(u) �= u;
indeed, we take f to be a permutation such that the orbit of u[1] is a cycle of
length k1, which means that the first letters of u, f i(u) and f j(u) are pairwise
different. Similarly, the fact that m ≥ k2 (when k2 �= +∞) means that for
every word u ∈ Σ+

m there exists a morphism f such that u �= f i(u) = f j(u).
In this case, we take f to be a permutation such that ordf (u[1]) = k2, and
f only changes the letters from the orbit of u[1] (thus, ord(f) | k2). Clearly,
the first letters of f i(u) and f j(u) are not equal to u[1], but f i(u) = f j(u)
as ord(f) divides |i − j|. We get that u �= f i(u) = f j(u), for this choice of f .
Finally, one can show by an analogous reasoning that the fact thatm ≥ k3 (when
k3 �= +∞) means that for every word u ∈ Σ+

m there exists a morphism f such
that u = f i(u) �= f j(u) and the fact that m ≥ k4 (when k4 �= +∞) means that
for every word u ∈ Σ+

m there exists a morphism f such that f i(u) �= u = f j(u).
Further, we show that if m ≥ max{k1, k2} (in the case when k2 �= +∞) there

is no infinite word over Σm that avoids xπi(x)πj(x). As k1 ≥ 3 it follows that
m ≥ 3. One can quickly check that the longest word that does not contain an
instance of this pattern has length six and is 001010 by trying to construct such
a word letter by letter. This means that there is no infinite word over Σm that
avoids this pattern in this case.

By similar arguments, we can show that if m ≥ max{k1, k3} (in the case when
k3 �= +∞) there is no infinite word over Σm that avoids xπi(x)πj(x). In this
case, the longest word that avoids those patterns is 01010.

If m ≥ max{k1, k4} (in the case when k4 �= +∞) we also get that there is no
infinite word over Σm that avoids xπi(x)πj(x). The construction ends at length
six, the longest words without an instance of the pattern are 011001, 011002,
011221, 011223 and 011220.

These last remarks show that the pattern xπi(x)πj(x) is unavoidable by
infinite words over Σm, for all m ≥ k. �

422 F. Manea, M. Müller, and D. Nowotka

The next result represents the main step we take towards characterising the
avoidability of cubes under morphic permutations.

Proposition 1. Given the pattern xπi(x)πj(x) we can determine effectively the
values m, such that the pattern is avoidable in Σm.

Proof. Since we already examined the case m ≥ k in Lemma 6, it only remains
to be seen which is the situation for Σm with m < k.

The cases for m = 2 and m = 3 are depicted in Table 1. Note that in the table
an entry “
” (respectively, “×”) at the intersection of line (i) and column (j, Σm)
means that the pattern xf i(x)f j(x) is avoidable (respectively, unavoidable) in
Σm. In building the table we used the results from Lemmas 3 to 5 and the fact
that the pattern xπi(x)πj(x) is avoidable in Σ2 if and only if i ≡ j ≡ 0(mod 2),
and in that case it is avoided by the Thue-Morse word. Also, for Σ3, when
j �= 0, the avoidability of the pattern follows from the fact that an instance of
the pattern contains cubes or squares, so it can be avoided by the infinite words
t (seen as a word over three letters, that just does not contain one of the letters)
or h, respectively. In the case when j = 0, we use the word defined in Lemma 2
to show the avoidability of the respective patterns.

We move on to the case m ≥ 4. In this case, we split the discussion in several
further cases, depending on the minimum of k1, k2, k3, and k4.

Case 1: k1 = min {k1, k2, k3, k4}. This means that k > k1. If m < k1 it must
be the case that m | i and m | j (since k3, k4 > k1). For every letter a ∈ Σm and
every morphic permutation f of Σm, since ordf (a) ≤ m we get that ordf (a) | i
and ordf (a) | j. So in this case an instance of the pattern xπi(x)πj(x) is actually
a cube, which can be avoided by the Thue-Morse word. If k1 ≤ m < k, then
for every a ∈ Σm and every morphic permutation f of Σm we either have that
ordf (a) divides both i and j or that ordf (a) divides neither i nor j nor |i− j|.
If we have a letter a occurring in a word u such that the latter holds, it means
that we must have at least 3 different letters in the word uf i(u)f j(u). If there is
no such letter in u, then uf i(u)f j(u) is a cube. In both cases, the Thue-Morse
word avoids the pattern xπi(x)πj(x).

Case 2: k2 = min {k1, k2, k3, k4}. In this case, it can easily be seen that k = k1.
If 4 ≤ m < k2 we get for every a ∈ Σm and every morphic permutation f of

Table 1. Avoidability of xπi(x)πj(x) in Σ2 and Σ3 for morphic permutations π

j(mod 6)
0 1 2 3 4 5

0

 ×

 ×

 ×

1 ×
 ×
 × × × × × × × ×

i(mod 6) 2

 × ×

 × ×

 ×

3 ×
 ×
 × × ×
 × × ×

4

 ×

 × ×

 × ×
5 ×
 × × × × × × × × ×

Σ2 Σ3 Σ2 Σ3 Σ2 Σ3 Σ2 Σ3 Σ2 Σ3 Σ2 Σ3

The Avoidability of Cubes under Permutations 423

Σm that ordf (a) | i and ordf (a) | j (since k3, k4 > k2). This means that in this
case every instance of the pattern xπi(x)πj(x) is a cube, which can be avoided
by the Thue-Morse word. If k2 ≤ m < k, we have for each letter a ∈ Σm and
every morphic permutation f of Σm that either ordf (a) divides at least one of
i and j or ordf (a) | |i − j|. In all cases, this means that for each position l of
a word u, we have that at least two of the letters u[�], f i(u)[�] and f j(u)[�] are
equal, and the word defined in Lemma 2 avoids such patterns.

Case 3: k3 = min {k1, k2, k3, k4}. As in the previous case we get that k = k1. If
4 ≤ m < k3 we have that for every letter a ∈ Σm and every morphic permutation
f it must be the case that ordf (a) | i and ordf (a) | j. Again, every instance
of xπi(x)πj(x) is in fact a cube, and so this pattern is avoided by the Thue-
Morse word. If k3 ≤ m < k = k1 we can easily see that for every letter a ∈ Σm
and every morphic permutation f we have that ordf (a) divides i or j or both
of them. This means that for every factor of the form uf i(u)f j(u) and every
position � in u we have that u[�] = f i(u)[�] or u[�] = f j(u)[�]. The word of
Lemma 2 avoids such patterns.

Case 4: k4 = min {k1, k2, k3, k4}. This is symmetric to the previous case, so
the pattern xπi(x)πj(x) is avoided by the Thue-Morse word for 4 ≤ m < k4 and
by the word of Lemma 2 for k4 ≤ m < k.

Now we can conclude the characterisation of patterns xπi(x)πj(x). Such a
pattern is always avoidable in Σm for all 4 ≤ m < k. Moreover, it might also
be avoidable in Σ2 and Σ3, or only Σ3 but not in Σ2, or neither in Σ2 nor in
Σ3 (according to Table 1). Therefore, for each pair (i, j) of natural numbers,
defining a pattern xπi(x)πj(x), we can effectively compute the values of m such
that this pattern is avoidable in Σm. �

Further we show the following result, as a completion of the previous one.

Proposition 2. Given the pattern πi(x)πj(x)x we can determine effectively the
values m, such that the pattern is avoidable in Σm.

Proof. Let m be a natural number. We want to check whether πi(x)πj(x)x is
avoidable in Σm or not. Take M = max{i + 1, j + 1,m}. It is not hard to see
that fM ! equals the identity for all morphic permutations f of the alphabet Σm.
Let us take y = πi(x). By the fact that the functions that can substitute π
are permutations, we obtain that πi(x)πj(x)x is avoidable in Σm if and only if
yπM !−i+j(y)πM !−i(y) is avoidable in Σm. Moreover, note that:

inf{t : t � j, t � M !− i, t � M !− i+ j} = inf{t : t � |i− j|, t � i, t � j}
inf{t : t | j, t � M !− i, t � M !− i+ j} = inf{t : t � i, t | j}

inf{t : t |M !− i, t � M !− i+ j} = inf{t : t | i, t � j}
inf{t : t � M !− i, t | M !− i+ j} = inf{t : t | |i− j|, t � i, t � j}

Therefore, yπM !−i+j(y)πM !−i(y) is avoidable in Σm if 4 ≤ m < k, where k is
defined using (5) for i and j. �

In the exact same manner we get the following proposition.

424 F. Manea, M. Müller, and D. Nowotka

Proposition 3. Given the pattern πi(x)xπj(x) we can determine effectively the
values m, such that the pattern is avoidable in Σm. �

We can now summarise the results of this section in the following theorem:

Theorem 1. Given the pattern πi(x)πj(x)πk(x) where π is substituted by mor-
phic permutations, we can determine effectively the values m such that the pat-
tern is avoidable in Σm.

Proof. Let us assume that i is the minimum between i, j, and k. Let us take y =
πi(x). The pattern becomes yπ	(y)πt(y), and we can identify all the alphabets
where this pattern is avoidable by Proposition 1.

If j is the minimum between i, j, and k we use Proposition 3 to identify all the
alphabets where this pattern is avoidable. Finally, if k is the minimum between
i, j, and k we use Proposition 2 to identify all the alphabets where this pattern
is avoidable. �

4 The Antimorphic Case

In this section, the function variable π is always replaced by an antimorphic
permutation.

As in the morphic case, we first establish a series of results regarding basic
patterns. To begin with, we introduce the morphism γ : Σ∗

2 → Σ∗
3 defined by

0 �→ 0011022, 1 �→ 1100122.

Lemma 7. The word tγ = γ(t) avoids the pattern xπ(x)x in Σm for m ≥ 3. �

The following lemma shows the avoidability of a particular type of patterns
where the function variable is a morphism; this result becomes useful in the
sequel. For this, we define the morphism δ : Σ∗

3 → Σ∗
4 by

0 �→ 012031, 1 �→ 032132, 2 �→ 032102130132.

Lemma 8. The word hδ = δ(h) contains no factor uu and uf(u)uR where
u ∈ Σ+

m and f is a morphic permutation of Σm, for all m ≥ 4. �

The previous lemma has a corollary that is important in the context of avoid-
ability of cubes under antimorphic permutations.

Corollary 1. There exists an infinite word that avoids the patterns xx and
xπ(x)xR in Σm, for all m ≥ 4.

Proof. By the previous lemma we obtain that there exist infinitely many finite
words that contain no factors uu and uf(u)uR for u ∈ Σ+

m and morphic permu-
tations f over alphabets Σm with m ≥ 4. By reversing these words, we obtain
that there exist infinitely many finite non-empty words over Σm that contain
neither squares nor factors uf(u)uR for u ∈ Σ+

m and antimorphic permutations
f on Σm, with m ≥ 4. Therefore, there exists an infinite word that contains no
such factors, and the statement of the corollary holds. �

The Avoidability of Cubes under Permutations 425

As in the case of the morphic permutations, we first study the avoidability of
the pattern xπi(x)πj(x). However, a finer analysis must be performed here.

In the next lemma we look at case when the exponent i is even and j is odd.
For this purpose let the morphism ζ : Σ∗

2 → Σ∗
5 be defined by

0 �→ 012034, 1 �→ 120324.

Lemma 9. Let tζ = ζ(t) for the morphism ζ defined above. Also, let i ∈ IN be
even and j ∈ IN be odd, and f and g be morphic and, respectively, antimorphic
permutations of Σm, with m ≥ 5. The word tζ does not contain any factor of
the form uf(u)g(u) for u ∈ Σ+

m with |u| ≥ 6. Furthermore, tζ does not contain
any factor of the form uf i(u)f j(u) such that∣∣{u[�], f i(u)[�], f j(u)R[�]}∣∣ ≤ 2,

for all � ≤ |u| and |u| ≤ 5. �

In the case when the exponent i is odd and j is even, we examine the morphism
η : Σ∗

2 → Σ∗
5 defined by

0 �→ 012340124310243012340124310234102430124310234,

1 �→ 012340124310243012341023401243012341024310234.

Note that this morphism is equivalent to θ ◦ β, where β is the morphism defined
in Lemma 2 and θ : Σ∗

4 → Σ∗
5 is defined by

0 �→ 01234, 1 �→ 01243,

2 �→ 10243, 3 �→ 10234.

Lemma 10. Let tη = η(t) for the morphism η defined above. Also, let i ∈ IN be
odd and j ∈ IN be even and f and g be antimorphic and, respectively, morphic
permutations of Σm, with m ≥ 5 The word tη does not contain any factor of the
form uf(u)g(u) for u ∈ Σ+

m with |u| ≥ 11. Furthermore, tη does not contain any
factor of the form uf i(u)f j(u) such that∣∣{u[�], f i(u)R[�], f j(u)[�]}∣∣ ≤ 2,

for all � ≤ |u| and |u| ≤ 10. �

We now move further to the main results regarding the avoidability of cubes
under antimorphic permutations.

It is not hard to see that the results on the avoidability of the patterns
πi(x)πi(x)πi(x) with i ∈ IN and πi(x)πi(x)πj(x) with i, j ∈ IN for morphic
permutations also hold in the case of antimorphic permutations. An equivalent
of Lemma 5 also holds in the antimorphic case.

Lemma 11. The pattern πi(x)πj(x)πi(x), i �= j, is avoidable in Σm for
m ≥ 3. �

426 F. Manea, M. Müller, and D. Nowotka

We now look at patterns of the form xπi(x)πj(x) with i �= j and antimorphic f .
Let k1, k2, k3, k4 and k be defined as in (1) to (5).

Lemma 12. The pattern xπi(x)πj(x), i �= j, is unavoidable in Σm for
m ≥ k. �
Proposition 4. Given the pattern xπi(x)πj(x), i �= j, we can determine effec-
tively the values m, such that the pattern is avoidable in Σm.

Proof. The cases when m = 2 and m = 3 are exactly like those depicted in
Table 1 for the morphic case.

The case when m = 4 is based on the remark that it is sufficient to know how
to decide the avoidability of the pattern xπi(x)πj(x) for i, j < 12. Indeed, it is
not hard to see that if i and j are arbitrary natural numbers, then xπi(x)πj(x)
is avoidable in Σ4 if and only if xπi

′
(x)πj

′
(x) is avoidable, for i′ (resp. j′) being

the remainder of i (resp. j) divided by 12. With this in mind, one can analyse
every pair (i, j) with 1 ≤ i, j ≤ 12, and decide in each case the avoidability of
the pattern xπi(x)πj(x). The pattern is clearly unavoidable whenever the value
k computed for i and j in (5) is less than or equal to 4. When i = 0 the pattern
xπi(x)πj(x) is avoided by the word h as any instance of the pattern contains
squares, and when j = 0 the pattern is avoided by the word from Lemma 7. Also,
in the case when i and j are both even we can decide the avoidability of the
pattern using the results obtained for morphisms in the previous sections, as, in
this case, f can be seen as a morphism instead of an antimorphism. Moreover,
when i = j we can avoid the pattern xπi(x)πi(x) by the word h that contains
no squares. The same word h avoids the pattern in the cases when (i, j) ∈
{(4, 1), (9, 1), (8, 5), (9, 5), (3, 7), (4, 7), (3, 11), (8, 11)}. To complete the picture,
we note that a word avoids the pattern xπ(xR)xR if and only if it avoids the
pattern xπ′(x)xR where π′ is mapped to a morphic permutation. Therefore, by
Lemma 8 we obtain that the pattern xπi(x)πj(x) is avoided by the infinite word
hδ for (i, j) ∈ {(4, 3), (8, 3), (4, 9), (8, 9)} and by Corollary 1 we obtain that it is
avoidable for (i, j) ∈ {(7, 3), (11, 3), (1, 9), (5, 9)}.

Further, the discussion is split in four cases. If both i and j are even, we can
decide the avoidability of the pattern just as in the case of morphisms (as the
instance of π can be seen, in fact, as a morphism). If both i and j are odd, we
compute the value k defined in (5) and define M = max{k, j + 1, i + 1}. Now,
xπi(x)πj(x) is avoidable in Σm if and only if (xπi(x)πj(x))R = πj(xR)πi(xR)xR

is avoidable in Σm. The last condition is equivalent to the avoidability of the
pattern πj(y)f i(y)y in Σm. Taking z = πj(y), we obtain that πj(y)πi(y)y is
avoidable in Σm if and only if zπM !−j+i(z)πM !−j(z) is avoidable in Σm. Now we
only have to notice that M !− j + i is even and M !− j is odd, as M ! is always
even. Therefore, the case when i and j are odd can be reduced to the case when
i is even and j is odd.

So there remain only two cases to be analysed: the case when i is even and j
is odd as well as the case when i is odd and j is even. In this cases the proofs
follow similar to the morphic case. �
As in the morphic case we can easily derive the following two results.

The Avoidability of Cubes under Permutations 427

Proposition 5. Given the pattern πi(x)πj(x)x, we can determine effectively
the values m such that the pattern is avoidable in Σm. �

Proposition 6. Given the pattern πi(x)xπj(x), we can determine effectively
the values m such that the pattern is avoidable in Σm. �

Finally, as a consequence of the last three propositions, we state the main result
of this section in the following theorem:

Theorem 2. Given the pattern πi(x)πj(x)πk(x) where π is substituted by anti-
morphic permutations, we can determine effectively the values m such that the
pattern is avoidable in Σm. �

5 Conclusions

In this paper, we have extended the concept of avoidability of patterns to avoid-
ability of patterns with permutations. We have characterised for all m whether
a cube, that is, a pattern of the form πi(x)πj(x)πk(x), is avoidable in Σm for
all i, j, k ≥ 0. We have given these characterisations for both the morphic and
antimorphic case.

The next natural question is of course concerning the avoidance of longer
patterns. Note that a first step towards answering that question follows from
Lemmas 2 (morphic case) and 9 (antimorphic case). They each give a word over
four letters or five letters, respectively, that avoids sequences of permutations of
length 3 or more for all factors of length 7 or more.

References

1. Bischoff, B., Nowotka, D.: Pattern avoidability with involution. In: Words 2011,
Prague. Electron. Proc. in Theoret. Comput. Sci, vol. 63, pp. 65–70 (2011)

2. Cassaigne, J.: Unavoidable Patterns. In: Algebraic Combinatorics on Words,
pp. 111–134. Cambridge University Press, Cambridge (2002)

3. Chiniforooshan, E., Kari, L., Xu, Z.: Pseudopower avoidance. Fundamenta Infor-
maticae 114, 1–18 (2012)

4. Currie, J.: Pattern avoidance: themes and variations. Theoret. Comput. Sci. 339(1),
7–18 (2005)

5. Currie, J.: Pattern avoidance with involution. CoRR abs/1105.2849 (2011)
6. Hall, M.: Generators and relations in groups – The Burnside problem. Lectures on

Modern Mathematics, vol. 2, pp. 42–92. Wiley, New York (1964)
7. Lothaire, M.: Combinatorics on Words. Cambridge University Press (1997)
8. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Skrifter I.Mat.-Nat. Kl.,

Christiania 7, 1–22 (1906)
9. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske

Vid. Skrifter I.Mat.-Nat. Kl., Christiania 1, 1–67 (1912)

Hairpin Completion with Bounded Stem-Loop

Szilárd Zsolt Fazekas1,�, Robert Mercaş2,��, and Kayoko Shikishima-Tsuji3

1 Department of Mathematics, Kyoto Sangyo University,
Motoyama, Kamigamo, Kita-Ku Kyoto 603-8555, Japan

szilard.fazekas@gmail.com
2 Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik,

PSF 4120,D-39016 Magdeburg, Germany
robertmercas@gmail.com

3 Tenri University, 1050 Somanouchi Tenri 632-8510, Japan
tsuji@sta.tenri-u.ac.jp

Abstract. Pseudopalindromes are words that are fixed points for some
antimorphic involution. In this paper we discuss a newer word operation,
that of pseudopalindromic completion, in which symbols are added to ei-
ther side of the word such that the new obtained words are pseudopalin-
dromes. This notion represents a particular type of hairpin completion,
where the length of the hairpin is at most one. We give precise descrip-
tions of regular languages that are closed under this operation and show
that the regularity of the closure under the operation is decidable.

1 Introduction and Preliminaries

Palindromes are sequences which read the same starting from either end. Besides
their importance in combinatorial studies of strings, mirrored complementary
sequences occur frequently in DNA and are often found at functionally inter-
esting locations such as replication origins or operator sites. Several operations
on words were introduced which are either directly motivated by the biological
phenomenon called stem-loop completion, or are very similar in nature to it. The
mathematical hairpin concept introduced in [17] is a word in which some suffix
is the mirrored complement of a middle factor of the word. The hairpin com-
pletion operation, which extends such a word into a pseudopalindrome with a
non-matching part in the middle was thoroughly investigated in [1, 4, 8, 14–16].
Most basic algorithmic questions about hairpin completion have been answered
([1, 4]) with a noteworthy exception: given a word, can we decide whether the
iterated application of the operation leads to a regular language? For the so
called bounded hairpin completion [7], even the latter problem is settled [10].

Another operation related to our topic is iterated palindromic closure, which
was first introduced in the study of the Sturmian words [2], and later generalized
to pseudopalindromes [3]. This operator allows one to construct words with
infinitely many pseudopalindromic prefixes, called pseudostandard words.

� Work supported by Japanese Society for the Promotion of Science under no. P10827.
�� Work supported by Alexander von Humboldt Foundation.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 428–439, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Hairpin completion with Bounded Stem-Loop 429

In [12] the authors propose the study of palindromic completion of a word,
which considers all possible ways of extending the word into a palindrome. This
operation, of course, produces an infinite set from any starting word.

The operation studied here, is (pseudo)palindromic completion. It differs from
palindromic completion ([12]) in that we require the word to have a pseudopalin-
dromic prefix or suffix in order to be completed. The (iterated) palindromic
closure ([2]) considers the unique shortest word which completes the starting
word into a (pseudo)palindrome, whereas we take all possible extensions. The
subject of this work is closest in nature to the first operation, in fact it is a
rather restricted form of it (we do not allow for non-matching middles), and the
questions asked are also a subset of problems considered for hairpin completion;
since in the biological phenomenon serving as inspiration, the hairpin’s length
in the case of stable bindings is limited (approx. 4-8 base-pairs) it is natural to
consider completions with bounded middle part. Furthermore, as we will see, this
restriction allows us to state decidability results, which remain open for hairpin
completion as mentioned above.

After presenting the notions and results needed for our treatise, in Section 2
we state some simple one-step completion results. In Section 3 we gradually build
the characterization of regular languages which stay regular under the iterated
application of completion. Section 4 is a collection of algorithmic results on this
operation: membership problem for the iterated completion of a word, decision
methods telling whether the regularity of the iterated completion is preserved.

We assume the reader to be familiar with basic concepts as alphabet, word,
language and regular expression (for more details see [5]) and end this Section
with some definitions regarding combinatorics on words and formal languages.

The length of a finite word w is the number of not necessarily distinct symbols
it consists of and is written |w|. The ith symbol we denote by w[i] and by w[i . . . j]
we refer to the part of the word starting at ith and ending at jth position.

Words together with the operation of concatenation form a free monoid, which
is usually denoted by Σ∗ for an alphabet Σ. Repeated concatenation of a word
w with itself is denoted by wi for natural numbers i.

A word u is a prefix of w if there exists an i ≤ |w| such that u = w[1 . . . i].
We denote this by u ≤p w. If i < |w|, then the prefix is called proper. Suffixes
are the corresponding concept reading from the back of the word to the front. A
word w has a positive integer k as a period if for all i, j such that i ≡ j(modk)
we have w[i] = w[j], whenever both w[i] and w[j] are defined.

The central concept to this work is palindromicity in the general sense. First
off, for a word w ∈ Σ∗ by wR we denote its reversal, that is w[|w| . . . 1]. If
w = wR, the word is called a palindrome. Let Pal(L) = Pal∩L be the set of all
palindromes of a language L ⊆ Σ∗, where Pal is the language of all palindromes
over Σ.

We can generalise this definition by allowing the “two” sides of the words to
be “complementary” to each other’s reverse. In formulae, let θ be an antimorphic
involution, i.e. θ : Σ∗ → Σ∗ is a function, such that θ(θ(a)) = a for all a ∈ Σ,
and θ(uv) = θ(v)θ(u) for all u, v ∈ Σ+. Then, w is a (θ-)pseudopalindrome if

430 S.Z. Fazekas, R. Mercaş, and K. Shikishima-Tsuji

w = θ(w). To make notation cleaner, we write u for θ(u), when θ is understood.
The language of all pseudopalindromes, when the alphabet and θ are fixed, is
Psepal. Note that this is a linear context-free language, just like Pal.

It is worth noting that the primitive root of every palindrome is a palindrome.
Trivially, palindromes p = aqaR with q palindrome have palindromic prefixes

λ, a and aqaR. Hence when we say a palindrome has a non-trivial palindromic
prefix (suffix), we mean it has a proper prefix (suffix) of length at least two which
is a palindrome. This notion is extended to pseudopalindromes as well.

Definition 1. Let θ be an antimorphic involution. For a factorization uv of some
word w, where v /∈ Σ∪{λ} (respectively, u /∈ Σ∪{λ}) is a (θ-)pseudopalindrome,
uvu (respectively, vuv) is in the right(left) (θ)-completion (completion, when θ is
clear from context) of w. We say that w′ is in the completion of w if it is either in
the right or left completion of w. We denote this relation by w	w′. The reflexive,
transitive closure of 	 is the iterated completion, in notation 	∗, where for two
words w and w′ we say w 	∗ w′ if w = w′ or there exist words v1, . . . , vn with
v1 = w, vn = w′ and vi 	 vi+1 for 1 ≤ i ≤ n− 1.

Definition 2. For a language L, we let L = L�0 and for n > 0 we let L�n be
the completion of L�n−1, i.e., L�n = {w | ∃u ∈ L�n−1 : u 	 w}. Also, we say
L�∗ is the iterated pseudopalindromic completion of L, i.e., L�∗ =

⋃
n≥0 L

�n .

For a singleton language L = {w}, let w�n denote L�n , i.e., the nth comple-
tion of the word w. Moreover, in what follows we fix some literal antimorphic
involution θ, hence do not explicitly mention it in the notation.

The following lemma and theorem will appear frequently in our proofs:

Lemma 1. [Regular pumping lemma] For every regular language L there exists
an integer kL such that every word w ∈ L longer than kL, has a factorization
w = w1w2w3 such that w2 �= λ, |w1w2| ≤ kL and w1w

∗
2w3 ⊆ L.

Theorem 1. [Fine and Wilf] If two non-empty words pi and qj share a prefix
of length |p|+ |q|, then there exists a word r such that p, q ∈ r+.

2 Pseudopalindromic Regular Languages

A first observation we make is that a word’s pseudopalindromic completion is a
finite set, since it always has finitely many pseudopalindromic prefixes or suffixes.

In order to see that the class of regular languages is not closed under pseu-
dopalindromic completion, consider the language L = aa+a. After one pseu-
dopalindromic completion step we get L�1 = {anan | n ≥ 2}, which is a
non-regular context-free language. This actually settles (negatively) the ques-
tion whether whenever the iterated completion of a language is non-regular it is
also non-context-free.

Lemma 2. The language w�∗ is infinite iff the word w has both non-trivial
pseudopalindromic prefixes and suffixes. Then w�i � w�i+1 for all i ≥ 1.

Hairpin completion with Bounded Stem-Loop 431

Proof. The first part of the result is a case analysis result, while the second
comes from the fact that the length increases with each iteration. �
Lemma 3. For pseudopalindromes, the right and left completion steps are equal.

Proof. For a word to have a right completion, it needs to have a decomposition
uvwv, where w ∈ Σ ∪ {λ} and v �= λ. Then, uvwv 	 uvwv u. Since the starting
word is a pseudopalindrome, uvwv = uvwv = vw v u, and a left completion gives
us uvw v u. Since when |w| = 1 we have w = w, the conclusion follows. �
Hence, whenever considering several completion steps for some pseudopalin-
dromic language L, it is enough to consider either the right or the left completion.
Similar to the palindromic languages characterization in [6]:

Theorem 2. A regular language L ⊆ Σ∗ is pseudopalindromic, iff it is a union
of finitely many languages of the form Lp = {p} or Lr,s,q = qr(sr)∗qR where p,
r and s are pseudopalindromes, and q is an arbitrary word.

Proof. For any suitably long word w ∈ L, according to Lemma 1, we have a
factorization w = uvz with 0 < |uv| ≤ n and v �= λ, such that uviz ∈ L for any
i ≥ 0 and some language-specific constant n. W.l.o.g., we assume |u| ≤ |z|, i.e.,
for big enough i, the fact uviz ∈ L means z = xu for some x ∈ Σ∗ with vix
being a pseudopalindrome. This gives us x = v1v

j , where v = v2v1 and j ≥ 0.
Again, if i was great enough, we instantly get v = v1v2 and thus v = v2 v1. From
v2v1 = v2 v1 we get that v1 and v2 are pseudopalindromes and, hence, w can be
written as uv1(v2v1)

j+1u. According to Lemma 1 a similar decomposition exists
for all words longer than n. Since all parts of the decomposition, u, v1 and v2
are shorter than n, finitely many such triplets exist. �

3 Iterated Pseudopalindromic Completion

W.l.o.g, we assume that all languages investigated in the case of iterated comple-
tion have only words longer than two. The case of pseudopalindromic completion
on unary alphabets is not difficult to prove; even for arbitrary unary languages
the iterated pseudopalindromic completion is regular:

Proposition 1. The class of unary regular languages is closed under pseu-
dopalindromic completion. Furthermore, the iterated pseudopalindromic comple-
tion of any unary language is regular.

Proof. We know that all unary regular languages are expressed as a finite union
of languages of the form {ak(an)∗ | k, n are some non-negative integers}. Since
for unary words to be pseudopalindromes we have a = a, a one step pseudopalin-
dromic completion of each word am gives the language {a	 | � < 2m} and the
first part of our result. For arbitrary unary language, after the iterated comple-
tion we get the language {aja∗ | j is the minimum integer among all m’s }. �
Next let us investigate what happens in the singleton languages case.

Proposition 2. The class of iterated pseudopalindromic completion of single-
tons is incomparable with the class of regular languages.

432 S.Z. Fazekas, R. Mercaş, and K. Shikishima-Tsuji

Proof. To show that regular languages are obtained take the word aaa. It is not
difficult to check that the language obtained is {aaa} ∪ {(aa)n, (aa)n | n ≥ 2}.
Since all languages are regular, so is their union.

To see we not always get regular, nay, non-context-free, consider the word
u = a3ba3 and θ just the reverse function. A one step completion gives us
{a3ba3ba3, a3ba4ba3}. From {a3b(a4b)na3 | n ≥ 1} we get {a3b(a4b)ma3 | 1 <
n+1 ≤ m ≤ 2n−1} and {a3b(a4b)na3b(a4b)na3 | n ≥ 1}. The latter’s completion
includes L = {a3b(a4b)na3b(a4b)ma3b(a4b)na3 | 1 ≤ n ≤ m ≤ 2n+ 1}. Actually,
L = u�∗ ∩ a3(b(a4b)+a3)3 and is easily shown to be non-context-free. �

Lemma 4. If v is a non-trivial pseudopalindromic prefix or suffix of some other
pseudopalindrome u, there always exist pseudopalindromes x �= λ and y, such
that v, w ∈ x(yx)∗. Moreover, for two pseudopalindromes v = p1(q1p1)

i1 and
u = p2(q2p2)

i2 , where i1, i2 > 2, |p1|, |p2| > 1 and 2|v| > |u|, and v ≤p u, there
exist pseudopalindromes p, q, such that pj(qjpj)

+ ⊆ p(qp)+, j ∈ {1, 2}.

Proof. The first statement follows from [9, Proposition 5 (2) and Lemma 5 (2)].
Now let us see the second statement. By our assumptions, we have p2(q2p2)

i2 >
|p1(q1p1)i1 |

2 . If |p2q2| ≥ |p1q1|, then we can apply Theorem 1 and get that p1q1
and p2q2 have the same primitive root r. If |p2q2| < |p1q1|, then we have two
cases. If |p2(q2p2)i2 | ≥ |(p1q1)2|, then Fine and Wilf applies directly giving that
p1q1 and p2q2 have the same primitive root r. From |(p1q1)2| > |p2(q2p2)i2 | >
|p1q1p1| + |q1|

2 , either |p2q2| ≤ |p1| + |q1|
2 , or |(q2p2)2| > |p1q1p1|, and hence,

|p2(q2p2)i2 | = |(q2p2)2|+ |p2q2p2| > |p1q1p1|+ |p2q2p2| > |p1q1|+ |p2q2|. In both
cases, we apply Theorem 1 to the same end.

Then, there exist pseudopalindromes p, q such that r = pq is primitive and
p1 = p(qp)m1 , q1 = q(pq)n1 , for some m1, n1 ≥ 0, so p1(q1p1)

+ ∈ p(qp)+. Since
v ≤p u and both are pseudopalindromes, v ≤s u and u ends in p((qp)m1+n1+1)i1 .
But u also ends in p2(q2p2)

2, so by the above argument, p2(q2p2)
+ ⊆ p(qp)+. �

Proposition 3. For all words of the form w = up(qp)nu, where p and q are
pseudopalindromes and u is a suffix of pq, there exist pseudopalindromes p′, q′

such that w = p′(q′p′)m with n ≤ m ≤ n+ 2.

Proof. Depending on the lengths of u and q we distinguish the following cases:

1. |u| ≤ |q|
2 - in this case q = uxu, for some (possibly empty) pseudopalin-

drome x. Thus, w can be written as up(uxup)nu = upu(x.upu)n.

2. |q|
2 < |u| ≤ |q| - in this case the prefix u and the suffix u overlap in q,

i.e., q = xyxyx for some pseudopalindromes x and y, where u = xyx. Thus,
w = xyxp(xyxyxp)nxyx = x(yxpxy.x)n+1 so we can set p′ = x and q′ = yxpxy.
3. |q| < |u| - in this case u = xq for some suffix x of p. Thus, w = xqp(qp)nqx =
xq(pq)n+1x with x a suffix of p, which brings us back to cases 1 or 2 (if the
latter, the exponent increases by one yet again). �

Proposition 4. Let uipi(qipi)
kiui with 1 ≤ i ≤ n be a sequence of pseudo-

palindromes with uipi(qipi)
kiui 	 ui+1pi+1(qi+1pi+1)

ki+1ui+1, where pi, qi are

Hairpin completion with Bounded Stem-Loop 433

pseudopalindromes and u1 = un, p1 = pn and q1 = qn. There exist pseudopalin-
dromes p, q and positive integers ti with 1 ≤ i ≤ n, such that uipi(qipi)

kiui =
p(qp)ti .

Proof. Since w 	∗ w′ implies w ≤p w′, we get u1 ≤p (q1p1)
kn−k1 . Then, there

exist words u and v with uv = q1p1 and some t ≥ 0, such that we can write
u1 = (q1p1)

tu, hence u1 = u(p1q1)
t. But, p1q1 = p1 q1 = q1p1 = uv = v u,

therefore u1p1(q1p1)
k1u1 = u(v u)t(v u)k1p1(q1p1)

tu = u(p1q1)
2t+k1p1u and also

u1p1(q1p1)
knu1 = u(p1q1)

2t+knp1u. Taking this further gives us that for ev-
ery i with 1 ≤ i ≤ n there exists a ti > 0 and a suffix xi of piqi such that
xipi(qipi)

kixi	∗ xipi(qipi)
ki+tixi. Now we can apply Proposition 3, which gives

us that these are all words of the form p(qp)+ and Lemma 4 makes sure that
one can find a unique pair p, q to express all of the words. �

Theorem 3. The iterated pseudopalindromic completion of a word w is regular
iff w has at most one pseudopalindromic prefix or one suffix, or for all words
w′ ∈ w�1 there exist unique pseudopalindromes p and q with |p| ≥ 2, such that:

– w′ ∈ p(qp)+

– w′ has no pseudopalindromic prefixes except for the words in p(qp)∗.

Proof. Due to Lemma 3, for w�∗ we need only consider the finite union of all
one sided iterated pseudopalindromic completion of words w′ ∈ w�1 .

(IF) For this direction the result is easily obtained, since, at each completion step,
from some word of form p(qp)n with n ≥ 1 we get all words p(qp)n, . . . , p(qp)2n,
for n ≥ 1. Thus, the final result is a finite union of regular languages.
(ONLY IF) Now assume that w�∗ , the iterated pseudopalindromic completion
of some word w, is regular. The first case is trivial. For the second, following
Theorem 2, w�∗ is the union of some finite language {p | p pseudopalindrome}
and some finite union of languages {qr(sr)∗q | r, s ∈ Σ∗ pseudopalindromes}.

We neglect the case of the finite language {p | p pseudopalindrome}, since
this, according to Proposition 2 would contain just elements of w�1 that cannot
be extended further on, and consider from w�∗ only the finite union of languages
of form {qr(sr)∗q | q, r, s ∈ Σ∗ and r, s pseudopalindromes}.

Following Dirichlet’s principle for the finiteness of variables q with the help
of the pigeon hole principle, we get that for some big enough integer k1 and
some i1, we have that qr(sr)k1q 	∗ qr(sr)k1+i1q. We can apply Proposition 4
and get some pseudopalindromes u, v, such that qr(sr)∗q ⊂ u(vu)∗. Moreover,
from the same Proposition we have that all the intermediate pseudopalindromic
completion steps are in the language qr(sr)∗q, hence, in u(vu)+. Now we know
there exist at most finitely many pairs of pseudopalindromes u, v, such that
w′ ∈ u(vu)+. Suppose that exist n pairs of pseudopalindromes (ui, vi) such
that w′ ∈ ui(viui)

+ with ui �= uj and |ui| ≥ 2, for 1 ≤ i, j ≤ n, i �= j.
If |u1v1| = |u2v2|, then |u1| = |u2| and since they are suffixes of the same
word, u1 = u2 and, hence, v1 = v2, which is a contradiction. Therefore, w.l.o.g,
we may assume |u1v1| > |u2v2|. In this case, u2v2u2 is a pseudopalindromic
prefix of u1v1u1, and Lemma 4 gives us u1v1u1, u2v2u2 ∈ x1(y1x1)

+ for some

434 S.Z. Fazekas, R. Mercaş, and K. Shikishima-Tsuji

pseudopalindromes x1 and y1. Repeating the argument for all the pairs (xi, yi)
and (ui+2, vi+2), we can conclude the proof. �

What happens in the case of regular languages? We already know that the one
step pseudopalindromic completion is not closed to regularity.

Proposition 5. Iterated pseudopalindromic completion of a regular language is
not necessarily context-free.

Proof. Indeed, for this consider the language L = {aanba | n ≥ 1} and take θ
to be just the reverse function. A closer look at the iterated pseudopalindromic
completion of L, shows that the language obtained is L�∗ ⊂ L ∪ L′, where
L′ ⊂ {(

∏
i≥1 a

nib)an1 | n1 ≤ ni ≤ 2n1 − 2 for all i}. Employing the context-free

languages pumping lemma we get that L�∗ ∩a+ba+ba+ is non-context-free. The
closure under intersection with regular languages gives us the result. �

Proposition 6. Let p, q, u ∈ Σ∗ with p, q pseudopalindromes. If all pseudopalin-
dromic prefixes of upqpu are trivial, then for any i ≥ 0 so are those of up(qp)iu.

Proof. Suppose p′ is the shortest non-trivial pseudopalindromic prefix of any
word up(qp)ku, k ≥ 0. Since p′ is not a prefix of upqpu, the length of up is
less than the length of p′, hence, we have p′ = up(qp)ix, for some i ≤ k and
word x which is a prefix of q, qp or u. If x is a prefix of q, then xpx is a
suffix of p′, hence, a non-trivial pseudopalindromic prefix of p′, and, therefore,
p′ is not the shortest. If x is a prefix of qp, but not of q, then x = qx′ and
x′(qp)iqx′ is a pseudopalindromic suffix, hence, prefix of p′, contradicting our
assumption. Similarly, if x is a prefix of u, then xp(qp)ix is a shorter non-trivial
pseudopalindromic prefix than p′ itself. �

By [2, Lemma 3] the following is straightforward:

Lemma 5. A pseudopalindrome w has period p < |w| iff it has a pseudopalin-
dromic prefix of length |w| − p.

Theorem 4. For a regular language L, its iterated pseudopalindromic comple-
tion L�∗ is regular iff L can be written as the union of disjoint regular languages
L′, L′′, and L′′′, where

– L′ = L′�1 = {w ∈ L | w�∗ ⊆ L};
– L′′ = {w ∈ L | w�1 = w�∗
 L} and all words of L′′ are prefixes1 (suffixes)

of words in the finite union of languages of the form up(qp)∗u, where upqpu
has only trivial pseudopalindromic prefixes and p, q are pseudopalindromes;

– L′′′ = {w ∈ L | {w} ∪ w�1 �= w�∗
 L} and all words of L′′′ are prefixes1

(suffixes) of words in
⋃m
i=1 pi(qipi)

+, where m ≥ 0 is an integer depending on
L and pi, qi are pseudopalindromes such that piqi have only one non-trivial
pseudopalindromic prefix.

1 Note, that the prefixes have to be at least |up|+ � |q|
2
�+ 1 and |pi|+ � |qi|

2
�+ 1 long,

respectively, because the shorter ones do not extend beyond one step completion
when pq (and piqi, respectively) is primitive. This does not make a difference for the
characterization, only for the decision process.

Hairpin completion with Bounded Stem-Loop 435

Proof. (IF) This direction is immediate since L is a union of regular languages.
(ONLY IF) Clearly, any language L ⊂ Σ∗ can be written as a union of three
disjoint languages where one of them (L′) contains the words which have neither
non-trivial pseudopalindromic prefixes nor suffixes or their iterated pseudopalin-
dromic completion is included in L, another (L′′) has all the words which have
either non-trivial prefixes or suffixes, and the third one (L′′′) contains the words
which can be extended in both directions by pseudopalindromic completion. If
L�∗ and two of the other languages are regular, then the third one is, as well.

Here, we assume that L�∗ is regular, hence L�∗ \L is regular, too. Moreover,
L�∗ \ L is a pseudopalindromic language, since all of its words are the result
of pseudopalindromic completion. From Theorem 2 it follows that there exists a
finite set of words xi, ri, si, where i ∈ {1, . . . , n} and ri, si are pseudopalindromes,
such that the words in L�∗ \ L are elements of xiri(siri)

∗xi with 1 ≤ i ≤ n.
First we identify L′′′. For each j, using once more the pigeon hole principle,

it must that there exist big enough integers k1 and k2 with xjrj(sjrj)
k1xj 	∗

xjrj(sjrj)
k2xj , or we have xjrj(sjrj)

kjxj 	∗ xiri(siri)
k1xi 	∗ xiri(siri)

k2xi for
some i �= j and kj . In the first case we apply Proposition 4 and get that there
exist pseudopalindromes p �= λ and q such that xjrj(sjrj)

kixj ∈ p(qp)+, for
i ∈ {1, 2}, and all intermediary words xjrj(sjrj)

kjxj are also in p(qp)+. In the
second case we apply Proposition 4 to the second relation. Then by Lemma 4 and
Proposition 4 we get that all three words are in p(qp)+, for suitable p, q. Also, pq
has no non-trivial pseudopalindromic prefixes except for p, otherwise by Theo-
rem 3 its iterated completion leads to non-regular languages. After finding these
finitely many (say,m) pairs pk, qk, the language of all prefixes of

⋃m
k=1 pk(qkpk)

+

is a regular language, hence, its intersection with L is also regular.
We know that L�∗ \ L′′′�∗ = L′�∗ ∪ L′′�∗ is regular, therefore Ldiff =

(L′�∗ ∪L′′�∗) \L ⊂ L′′�∗ is a pseudopalindromic regular language. Again, from
Theorem 2 we know that Ldiff can be written as the finite union of languages
of the form up(qp)∗u. Clearly then, all words in L′′ are prefixes of some word
in up(qp)∗u. Since by definition L′′�1 = L′′�∗ , the words in up(qp)∗u ∩ Ldiff

have no non-trivial pseudopalindromic prefixes, hence, by Proposition 6 we
have that upqpu does not either. Let L′′ be the finite union of the languages
Pref(up(qp)+) ∩ L, where Pref(A) is the language of all prefixes of A. This
way, L′′ is regular and since from it we obtain Ldiff by pseudopalindromic com-
pletion, it meets the requirements. All that is left is to assign L′ = (L\L′′′)\L′′,
which is regular and all its words either have only trivial pseudopalindromic
prefixes or suffixes, or their pseudopalindromic completion is already in L. �

As a consequence of Theorems 2 and 4, the following result is obtained:

Corollary 1. If for some regular language L we have that L�∗ is regular, then
for any integer n ≥ 1 we have that L�n is regular.

4 Decidability Questions

We conclude this paper with some complexity results, which build on the previ-
ously obtained characterizations.

436 S.Z. Fazekas, R. Mercaş, and K. Shikishima-Tsuji

While in the classical hairpin completion case the extension of a word is
both to the right and the left of the word, here, due to the pseudopalindromic-
ity property the two extensions are identical making the problem simpler. The
membership problem for the one step pseudopalindromic completion of a word
is trivial as one has to check for the shorter word if it is a prefix while its θ image
is a suffix of the longer one, or vice-versa, and these two occurrences overlap.
Obviously, the time needed for this is linear. A more interesting problem is that
of membership for the iterated pseudopalindromic completion; in this setting the
problem is decidable, and solvable in quadratic time.

Lemma 6. If u, v are pseudopalindromes with u prefix of v and |u| > �|v|/2�,
then u	 v.

Proof. The result is an immediate consequence of Lemma 4. �

Proposition 7. For two pseudopalindromes u, v, we have u	∗ v iff u is a prefix
of v and for every prefix w of v with length greater than u, w has as prefix a
non-trivial pseudopalindrome of length greater than �|w|/2�.

Proof. In other words for pseudopalindromes u and v, we say that v can be ob-
tained from u iff u is a prefix of v and for any pseudopalindromic prefixes of v
they all have as prefix some pseudopalindrome of length greater than half theirs.
(ONLY IF) Since starting with the pseudopalindrome u we have after some
completions steps u as prefix and suffix. Moreover, after each step the pseudo-
palindrome we do the completion on is both prefix and suffix of the new word.
(IF) In order for v to be part of the iterated pseudopalindromic completion of a
word it must be the case that second of the properties holds. Since v starts with
u and the second property holds, with the help of Lemma 6 we get that v is in
the language given by the iterated pseudopalindromic completion of u. �

Theorem 5. One can decide in linear time if for two words u and v, where v
is a pseudopalindrome of length n greater than |u|, we have u	∗ v.

Proof. By Proposition 7, it suffices to check two things: if the pseudopalindromic
completion of u contains some prefix of v, which is done in linear time, and then
whether all pseudopalindromic prefixes of v have as prefix a pseudopalindrome
of length more than half of theirs. Identifying all pseudopalindromic prefixes of v
of length greater than that of w is easily done in O(n) using a slight modification
of the algorithm from [13]. Next, looking at the lengths of all elements in this
set, we check that the difference between no two consecutive ones is double the
smallest of them; again linear time is enough to do this and we conclude. �

As previously mentioned, one can identify in time O(n) all pseudopalindromic
prefixes of some word v of length n. From those, one can efficiently compute
the pseudopalindromic completion distance between two given words u and v.
We start with the longest element of u�1 , and in each step choose v’s longest
pseudopalindromic prefix which is shorter than twice the length of the current
one. The greedy technique ensures optimality with the help of Proposition 7,
while Lemma 6 proves the correctness of each step, therefore:

Hairpin completion with Bounded Stem-Loop 437

Theorem 6. Given a word u and a pseudopalindrome v of length n > |u|, one
can compute in linear time the minimum number of pseudopalindromic comple-
tion iterations needed in order to get from u to v, when possible.

Let us now look at the regular closure property related to this operation.

Theorem 7. For some word w of length n, it is decidable in O(n2) whether its
iterated pseudopalindromic completion w�∗ is regular.

Proof. For each of the finitely many w′ (the number is, of course, linear in |w|),
with w 	 w′, consider the following procedure. In linear time one can find all
periods of w′. Let n = piqi+ri, where pi are all periods of w

′, with ri < pi. Taking
r′ to be the smallest of ri, according to Lemma 5, it is left to check if there exists
a unique pseudopalindrome v, such that for all rj > r′, we have w′[1 . . . rj] ∈
w′[1 . . . r′](vw′[1 . . . r′])∗. Since deciding whether a word is pseudopalindrome is
done in O(n), the result is concluded. �

In what follows, a deterministic finite automaton (DFA) is defined by a quintuple
〈Q,Σ, q0, σ, F 〉, where Q is the set of states, q0 the initial state, Σ the input
alphabet, σ the transition function and F the set of final states. For details on
finite automata and closure properties, see [5]. For the next results we suppose
- w.l.o.g, as the algorithm given here is intractable even for DFAs - that L is
presented to us as a DFA as above, with |Q| = n.

Theorem 8. Given a regular language L, it is decidable whether L = L�∗.

Proof. If L �= L�∗ , then there exist some non-empty word u and pseudopalin-
drome p of length at least two, such that up ∈ L, but upu /∈ L. Let us suppose
that u is the shortest such word. We show that, should u exist we can find it
after finitely many steps. Let Lul denote the language {w | σ(q0, w) = σ(q0, u)}.
Define the set of final states reachable by a pseudopalindrome after first reading
u, as Fu = {q ∈ F | ∃w pseudopalindrome with σ(q0, uw) = q}, and the language
accepted starting from such a state Lur = {w | ∃p ∈ Fu, q ∈ F : σ(p, w) = q}.

Then, u is the shortest word in Lul \ Lθur = Lul ∩ (Σ∗ \ Lθur), where Lθ =
{θ(w)|w ∈ L} is the θ image of L. Note that the languages Lul and Lur depend
only on the state to which our supposed u takes the automaton, therefore all
possibilities can be accounted for by considering all states of the automaton.
The number of states of the automaton Lul \ Lθur is unfortunately quite high,
hence so is the length up to which we have to check all words whether they are u:

– the automaton accepting Lul has at most n states;
– for Lur we get a NFA of at most n states, so at most 2n states for the DFA;
– reversal and determinisation of the Lur automaton takes it up to 22

n

states;
– Lul ∩ (Σ \ Lθur) results in an automaton with at most n22

n

states and the
shortest word accepted by it being at most as long as the number of states.

Thus, for all words u with |u| ≤ n22
n

, we have to check ((u·Psepal)∩L)u\L = ∅.
If for at least one the set is not empty, we answer NO, otherwise YES. �

438 S.Z. Fazekas, R. Mercaş, and K. Shikishima-Tsuji

Theorem 9. Given a regular language L, it is decidable whether L�∗ is regular.
If the answer is YES, we can construct an automaton accepting L�∗.

Proof. The outline of the decision procedure, based on the description of L�∗

given in Theorem 4, is as follows: first we identify the words pi, qi forming L′′′,
if any exist. Then we construct a DFA which accepts L′ ∪ L′′ = L \ L′′′. In the
resulting automaton we check for the words uk, pk and qk - if any - which form
L′′ and construct the automaton for L′ = (L \L′′′) \L′′. Last, we check whether
L′ = L′�∗ , that is L′ = L′�1 , with the help of Theorem 8. If yes, then L�∗ is
regular, otherwise it is not.

The automata for the intermediary steps are computable using well-known
algorithms (see [5]). What we have to show, is that the words uk, pk, qk can be
found, given an automaton. First, we check every cycle of length at most NL
in the automaton, where NL is a constant computable from the representation
of L (for the argument on NL see the last part of the proof). This can be
easily done by a depth-first search. If the label of the cycle can be written as
pq for some pseudopalindromes p �= λ and q, then we check all paths w of
length at most NL, which lead to the cycle from the initial state and all paths
v of length at most NL, going from the cycle to a final state. If there exist
pseudopalindromes x �= λ and y such that xy is a cyclic shift of pq and wpqv
is a prefix or suffix of a word in x(yx)+, then we identified a pair pi, qi for L

′′′.
If there exist pseudopalindromes x �= λ and y, and some word u, such that xy
is a cyclic shift of pq and wpqv = ux(yx)i for some i ≥ 1, then we identified a
triple uk, pk, qk for L′′. After finding all pairs p, q for L′′′, we construct for each of
them the automaton accepting L\Lpq, where Lpq is the set of prefixes of p(qp)+
longer than |p|+ � |q|2 �+1. The language we get finally is L′ ∪L′′. Afterwards we
subtract, for each triple u, p, q forming L′′, the language of prefixes of up(qp)+uR

which are longer that |up| + � |q|2 � + 1. The resulting language is our candidate
for L′. As mentioned above, if L′ = L′�1 , output YES, otherwise NO.

We end the proof by showing that NL is computable from the presentation of
L, as it is the number of states of a newly constructed automaton.

If L�∗ is regular, then so is L�1 , by Corollary 1. If L�1 is regular, then
Theorem 2 applies to L�∗ \ L and gives us that it can be written as the finite
union of languages of the form xr(sr)∗x, with r, s pseudopalindromes.

For every state p ∈ Q, let us define the languages LEFTp = {u | σ(q0, u) = p}
and RIGHTp = {u | ∃q ∈ F : σ(p, u) = q}. For every pair of states p ∈ Q, q ∈ F ,
let Lpq denote the language LEFTp \ θ(RIGHTq), when σ(p, w) = q for some
pseudopalindrome w /∈ Σ ∪ {λ}, and Lpq = ∅, otherwise. Now, the language

Lc =
⋃

p,q∈Q
Lpq

is regular, as it is the finite union of regular languages. Also, every word in Lc
is the prefix of a word in one of the finitely many languages xr(sr)∗x mentioned
above. If Lc is infinite, then by Lemma 1 and Theorem 1 we get that the label of
every cycle in the automaton accepting Lc is of the form wk, where w is a cyclic

Hairpin completion with Bounded Stem-Loop 439

shift of pq and k ≥ 1. Hence, the same holds for cycles of length at most m,
where m is the number of states of the automaton accepting Lc. On the other
hand, suppose there is a pair r1, s1, such that all cycles which are cyclic shifts
of (r1s1)

k for some k ≥ 1 are longer than m. Then, again by pumping lemma
and pigeon hole principle, we get that r1s1 is the cyclic shift of some other pair
r2, s2, where |r2s2| ≤ m. Hence, we conclude that by checking all cycles of length
at most m of the automaton accepting Lc we discover the pairs r, s from the
characterization in Theorem 2. The automaton accepting Lc can be constructed,
given L, and m is computed by counting the states, hence take NL to be m. �

References

1. Cheptea, D., Mart́ın-Vide, C., Mitrana, V.: A new operation on words suggested
by DNA biochemistry: Hairpin completion. Trans. Comput., 216–228 (2006)

2. de Luca, A.: Sturmian words: Structure, combinatorics, and their arithmetics.
Theor. Comput. Sci. 183(1), 45–82 (1997)

3. de Luca, A., De Luca, A.: Pseudopalindrome closure operators in free monoids.
Theor. Comput. Sci. 362(1-3), 282–300 (2006)

4. Diekert, V., Kopecki, S., Mitrana, V.: On the Hairpin Completion of Regular Lan-
guages. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp.
170–184. Springer, Heidelberg (2009)

5. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

6. Horváth, S., Karhumäki, J., Kleijn, J.: Results concerning palindromicity. J. Inf.
Process. Cybern. 23, 441–451 (1987)

7. Ito, M., Leupold, P., Manea, F., Mitrana, V.: Bounded hairpin completion. Inf.
Comput. 209(3), 471–485 (2011)

8. Kari, L., Kopecki, S., Seki, S.: Iterated Hairpin Completions of Non-crossing Words.
In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.)
SOFSEM 2012. LNCS, vol. 7147, pp. 337–348. Springer, Heidelberg (2012)

9. Kari, L., Mahalingam, K.: Watson–Crick palindromes in DNA computing. Nat.
Comput. 9(2), 297–316 (2010)

10. Kopecki, S.: On iterated hairpin completion. Theor. Comput. Sci. 412(29), 3629–
3638 (2011)

11. Lothaire, M.: Combinatorics on Words. Cambridge University Press (1962/1997)
12. Mahalingam, K., Subramanian, K.G.: Palindromic completion of a word. In: BIC-

TA, pp. 1459–1465. IEEE (2010)
13. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial

palindrome of a string. Journal of the ACM 22(3), 346–351 (1975)
14. Manea, F., Mart́ın-Vide, C., Mitrana, V.: On some algorithmic problems regarding

the hairpin completion. Discrete Appl. Math. 157(9), 2143–2152 (2009)
15. Manea, F., Mitrana, V.: Hairpin Completion Versus Hairpin Reduction. In: Cooper,

S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 532–541. Springer,
Heidelberg (2007)

16. Manea, F., Mitrana, V., Yokomori, T.: Some remarks on the hairpin completion.
Int. J. Found. Comput. Sci. 21(5), 859–872 (2010)

17. Paun, G., Rozenberg, G., Yokomori, T.: Hairpin languages. Int. J. Found. Comput.
Sci., 837–847 (2001)

Morphic Primitivity and Alphabet Reductions

Hossein Nevisi� and Daniel Reidenbach

Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, UK

{H.Nevisi,D.Reidenbach}@lboro.ac.uk

Abstract. An alphabet reduction is a 1-uniform morphism that maps
a word to an image that contains a smaller number of different letters.
In the present paper we investigate the effect of alphabet reductions on
morphically primitive words, i. e., words that are not a fixed point of
a nontrivial morphism. Our first main result answers a question on the
existence of unambiguous alphabet reductions for such words, and our
second main result establishes whether alphabet reductions can be given
that preserve morphic primitivity. In addition to this, we study Billaud’s
Conjecture – which features a different type of alphabet reduction, but
is otherwise closely related to the main subject of our paper – and prove
its correctness for a special case.

Keywords: Combinatorics on words, Morphisms, Ambiguity, Morphic
primitivity, Fixed points, Billaud’s Conjecture.

1 Introduction

In this paper, we study some fundamental combinatorial questions for a special
type of morphisms which we call an alphabet reduction. Such morphisms are
characterised by the fact that they map a word over some alphabet Δ1 to a word
over an alphabet Δ2 that is a proper subset of Δ1, and they are 1-uniform, i. e.,
they map every letter in Δ1 to a word of length 1. Among all these morphisms,
we are particularly interested in those that are the identity for every letter in Δ2

and, in order to obtain unrestricted results, we assume Δ1 to be a set of natural
numbers, i. e., we consider morphisms φ : Δ∗

1 → Δ∗
2, where Δ2 ⊂ Δ1 ⊆ N. For

example, the morphism φ : {1, 2, 3, 4}∗ → {1, 2, 3}∗ with φ(1) = 1, φ(2) = 2,
φ(3) = 3 and φ(4) = 3, is of the type we wish to investigate.

Due to reasons to be further explained below, we apply such morphisms to
morphically primitive words over N, i. e., words α for which there are no word β
with |β| < |α| and morphisms φ, ψ : N∗ → N∗ satisfying φ(α) = β and ψ(β) = α.
Morphically primitive words have not only been studied by Reidenbach and
Schneider [8], but they are also equivalent to those words α that are not a
fixed point of a nontrivial morphism, which means that there is no morphism
φ : N∗ → N∗ such that φ(α) = α and for a letter x in α, φ(x) �= x. Since a word

� Corresponding author.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 440–451, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Morphic Primitivity and Alphabet Reductions 441

is a fixed point if and only if it is not morphically primitive (see [8] for additional
explanations), we use these concepts interchangeably.

Our first question on alphabet reductions is concerned with their ambiguity.
A morphism φ : N∗ → N∗ is called ambiguous with respect to a word α if there
exists another morphism ψ mapping α to φ(α); if such a ψ does not exist, then
φ is unambiguous. For example, the morphism φ0 : {1, 2, 3}∗ → {1, 2}∗ – given
by φ0(1) := 1, φ0(2) := 2, φ0(3) := 2 – is ambiguous with respect to the word
α0 := 1 ·2 ·3 ·3 ·2 ·1 (where we separate the letters in a word by a dot), since the
morphism ψ0 – defined by ψ0(1) := 1, ψ0(2) := ε (i. e., ψ0 maps 2 to the empty
word), ψ0(3) := 2 · 2 – satisfies ψ0(α0) = φ0(α0) and, for a letter x occurring in
α, ψ0(x) �= φ0(x):

φ0(α0) =

φ0(1)︷ ︸︸ ︷
1

φ0(2)︷ ︸︸ ︷
2

φ0(3)︷ ︸︸ ︷
2

φ0(3)︷ ︸︸ ︷
2

φ0(2)︷ ︸︸ ︷
2

φ0(1)︷ ︸︸ ︷
1 = ψ0(α0) .︸ ︷︷ ︸

ψ0(1)

︸ ︷︷ ︸
ψ0(3)

︸ ︷︷ ︸
ψ0(3)

︸ ︷︷ ︸
ψ0(1)

It can be verified with moderate effort that, e. g., the morphism φ1 : {1, 2, 3}∗ →
{1, 2}∗ – given by φ1(1) := 1, φ1(2) := 1 · 2, φ1(3) := 2 – is unambiguous with
respect to α0.

The research on the ambiguity of morphisms was initiated by Freydenberger,
Reidenbach and Schneider [3], and previous papers on this subject mainly focus
on the question of whether unambiguous morphisms exist for a given word (see
Schneider [10], Reidenbach and Schneider [9], Freydenberger, Nevisi and Reiden-
bach [2] and Nevisi and Reidenbach [7]). In [7] we have investigated this problem
for 1-uniform morphisms, providing some first insights into it. In the first tech-
nical part of present paper we wish to continue this research, thus studying the
following question:

Problem 1. Is it possible, for every morphically primitive word, to give an un-
ambiguous alphabet reduction?

Note that this problem is restricted to morphically primitive patterns and alpha-
bet reductions (instead of 1-uniform morphisms that may map a word α to an
image that contains as many different letters as α), since it can be easily under-
stood that every nonerasing morphism is ambiguous with respect to a word that
is a fixed point of a nontrivial morphism, and that an unambiguous 1-uniform
morphism with an arbitrary large target alphabet exists for a word α if and only
if α is not a fixed point of a nontrivial morphism (see [3] for details).

The set of those words that have an unambiguous morphism has so far been
characterised for general nonerasing morphisms (see [3] and, in a more restricted
setting, [2]), and these characterisations show that the existence of such unam-
biguous morphisms is largely independent from the size of the target alphabet
Δ2 of the morphisms, In contrast to this, Schneider [10] shows that the set of
words that have an unambiguous erasing morphism is different for every size of
the target alphabet Δ2, which implies that a characterisation of these sets needs
to incorporate the size of Δ2 and suggests that such a characterisation might be
very difficult.

442 H. Nevisi and D. Reidenbach

In [7] we have provided some results indicating that an equivalent phenomenon
might hold with regard to Problem 1. Our first main result in the present paper
shows that this indeed is true.

The second question we wish to study is more directly concerned with mor-
phically primitive words. Since these words are equivalent to those that are not
a fixed point of any nontrivial morphism, and since the latter words are known
to have a number of important properties (see Reidenbach and Schneider [8]),
they have been studied in a number of papers. Although these studies have pro-
vided, e.g., a characterisation (see Head [4]) and even a polynomial-time decision
procedure (see Holub [5]), many fundamental properties and the actual fabric
of morphically primitive words are not fully understood. This is epitomised by
the fact that Billaud’s Conjecture (see [1]), to be discussed in Section 4, is still
largely unresolved.

In the present paper we shall investigate whether, for a given morphically
primitive word α, there is an alphabet reduction φ such that φ(α) is again
morphically primitive:

Problem 2. Is it possible, for every morphically primitive word, to give an al-
phabet reduction that preserves morphic primitivity?

For example, let α := 1 · 2 · 3 · 4 · 1 · 3 · 2 · 4; if φ : {1, 2, 3, 4}∗ → {1, 2, 4}∗ is a
morphism with φ(1) := 1, φ(2) := 2, φ(3) := 2 and φ(4) := 4, then φ(α) is not
morphically primitive (i. e., it is morphically imprimitive). On the other hand,
ψ(α), where ψ : {1, 2, 3, 4}∗ → {1, 3, 4}∗ is a morphism given by ψ(1) := 1,
ψ(2) := 1, ψ(3) := 3 and ψ(4) := 4, is morphically primitive.

Problem 2 appears to be very similar to Billaud’s Conjecture, but the latter
features a different type of morphism (which, intuitively, still can be seen as
an alphabet reduction). In Section 4, we solve Problem 2, and we prove the
correctness of Billaud’s Conjecture for a special case not studied in the literature
so far.

Note that, due to space constraints, some proofs and some related examples
are omitted from this paper.

2 Definitions

An alphabet A is a nonempty set of symbols and we call these symbols letters. A
word (over A) is a finite sequence of letters taken from A. We denote the empty
word by ε. The notation A∗ refers to the set of all (empty and non-empty) words
over A, and A+ := A∗ \{ε}. For the concatenation of two words α1, α2, we write
α1 · α2 or simply α1α2. The word that results from n-fold concatenation of a
word α is denoted by αn. The notation |x| stands for the size of a set x or the
length of a word x. With regard to an arbitrary word α, symb(α) denotes the set
of all letters occurring in α. We call a word β ∈ A∗ a factor of a word α ∈ A∗ if,
for some γ1, γ2 ∈ A∗, α = γ1βγ2; moreover, if β is a factor of α then we say that
α contains β and denote this by β 6 α. If β �= α, then we say that β is a proper
factor of α and denote this by β � α. If γ1 = ε, then β is a prefix of α, and

Morphic Primitivity and Alphabet Reductions 443

if γ2 = ε, then β is a suffix of α. For any words α, β ∈ A∗, |α|β stands for the
number of (possibly overlapping) occurrences of β in α. The symbol [. . .] is used
to omit some canonically defined parts of a given word, e. g., α = 1 · 2 · [. . .] · 5
stands for α = 1 · 2 · 3 · 4 · 5.

A morphism is a mapping that is compatible with concatenation, i. e., for any
alphabets A,B, φ : A∗ → B∗ is a morphism if it satisfies φ(α ·β) = φ(α) ·φ(β) for
all words α, β ∈ A∗. We call B the target alphabet of φ. A morphism φ : A∗ → B∗

is called nonerasing provided that, for every i ∈ A, φ(i) �= ε. If φ is nonerasing,
then we often indicate this by writing φ : A+ → B+. A morphism φ is 1-uniform
if, for every i ∈ A, |φ(i)| = 1.

3 Unambiguous Alphabet Reductions

In the present section, we investigate Problem 1. Our main result in this section
strengthens our results in [7] regarding the existence of unambiguous alphabet
reductions φ : N∗ → Δ∗, Δ ⊂ N, for a fixed target alphabet (i. e., the size of Δ
does not depend on the number of letters in the preimage). The overall goal of
most of the papers on unambiguous morphisms is to characterise the set of words
that have an unambiguous morphism, and this goal has so far been accomplished
for general nonerasing morphisms in two different settings (see Section 1). These
results benefit from the fact that, regarding such types of morphisms, the size of
Δ does not have a major impact on the sets of words to be characterised. Before
we explain whether the same phenomenon is true for 1-uniform morphisms, we
give a definition of a morphism that is not only vital for the proof of Theorem 4
below, but also for our considerations in Section 4.

Definition 3. Let α ∈ N∗. For any i, j ∈ N with i �= j and, for every x ∈ N, let
the morphism φi,j : symb(α)∗ → symb(α)∗ be given by

φi,j(x) :=

{
i, if x = j ,

x, if x �= j

and let αi,j := φi,j(α).

Using the above concepts of φi,j and αi,j , we can now prove that, unfortunately,
it is impossible to give a characteristic condition on those words that have an
unambiguous alphabet reduction if this condition does not incorporate the size
of the target alphabet Δ of the alphabet reduction:

Theorem 4. For every k ∈ N and for every alphabet Δ ⊂ N with |Δ| ≤ k, there
exist an αk ∈ N+ and an alphabet Δ′ ⊂ N with k < |Δ′| < |symb(αk)| such that

– there is no 1-uniform morphism ψ : N∗ → Δ∗ that is unambiguous with
respect to αk and

– there is a 1-uniform morphism ψ : N∗ → Δ′∗ that is unambiguous with
respect to αk.

444 H. Nevisi and D. Reidenbach

Proof. In order to support the understanding of the elements of the proof, Ex-
ample 5 can be consulted.

Let
α1 := 1 · 22 · 32 · 1 · 22 · 32 · 22 ,

and, for every k ≥ 2,

αk := xk · (xk + 1)2 · (xk + 2)2 · [. . .] · (xk + k)2 · αk−1 ·
xk · (xk + 1)2 · (xk + 2)2 · [. . .] · (xk + k)2 · αk−1 · (xk + 1)2 ,

where xk = max(symb(αk−1))+1, and all superscripts refer to the concatenation.
We now show that every 1-uniform morphism ψ : N∗ → Δ∗ is ambiguous

with respect to αk. For the sake of a convenient reasoning, we define x0 = 2 and
x1 := 1. The ambiguity of all such ψ almost directly results from the following
fact:

Claim 1. Let k ∈ N, letΔ be an alphabet, and let ψ : N∗ → Δ∗ be a morphism. If
there exist distinct letters y, z ∈ {x0+1, x1+1, . . . , xk+1} satisfying ψ(y) = ψ(z),
then ψ is ambiguous with respect to αk.

Let now ψ : N∗ → Δ∗ be any 1-uniform morphism. As stated by the Theorem, Δ
consists of at most k letters. On the other hand, the set {x0+1, x1+1, . . . , xk+1}
consists of k+1 distinct letters. Hence, ψ must map at least two of these letters
to the same image. According to Claim 1, this means that ψ is ambiguous with
respect to αk.

We now give the proof of the second statement of Theorem 4. Hence we need
to find an alphabet Δ′ with k < |Δ′| < |symb(αk)| and a 1-uniform morphism
ψk : N∗ → Δ′∗ that is unambiguous with respect to αk.

Our reasoning is based on the following observation:

Claim 2. For any k ≥ 1, αk is not a fixed point of a nontrivial morphism.

We now consider the morphism ψk : N∗ → N∗ that is given by ψk := φxk,xk+1

(see Definition 3), i. e., ψk(xk + 1) := xk, and ψk is the identity otherwise.
Consequently ψk(αk) = x3k β1 x

3
k β2 x

2
k with β1, β2 ∈ (N \ {xk})+. We note that

ψk maps the word αk to a word over an alphabet Δ′ satisfying k < |Δ′| =
|symb(αk)| − 1 < |symb(αk)|, and we shall demonstrate that ψk is unambiguous
with respect to αk.

We begin with an observation that imposes some restrictions on any morphism
ψ that maps αk to the same image as ψk:

Claim 3. Let ψ be a morphism that satisfies ψ(αk) = ψk(αk). Then ψ(xk) =
xk = ψ(xk + 1).

We now assume to the contrary that there exists a morphism ψ : N∗ → Δ′∗

satisfying ψ(αk) = ψk(αk) and, for an x ∈ symb(αk), ψ(x) �= ψk(x). From
Claim 3, we know that x /∈ {xk, xk + 1}. If k = 1, then we immediately obtain
a contradiction, since

Morphic Primitivity and Alphabet Reductions 445

– α1 contains just three different letters,
– xk and xk + 1 satisfy ψ(xk) = ψk(xk) and ψ(xk + 1) = ψk(xk + 1), and
– if there is an x with ψ(x) �= ψk(x), then obviously there must also be an x′

with x′ �= x and ψ(x′) �= ψk(x
′).

For k ≥ 2, we define a morphism φ : N∗ → N∗ by

φ(x) :=

{
ψ(x) , x ∈ symb(αk) \ {xk, xk + 1} ,
x else.

Due to Claim 3 and due to ψ(αk) = ψk(αk), we can conclude that

φ((xk + 2)2 · [. . .] · (xk + k)2 · αk−1) = (xk + 2)2 · [. . .] · (xk + k)2 · αk−1 . (1)

Because of ψ(x) �= ψk(x) for an x ∈ symb(αk) \ {xk, xk + 1}, and since ψk for
all these letters is the identity, we know that φ is nontrivial. Furthermore, (1)
implies that φ(αk) = αk. Consequently, if ψk is ambiguous with respect to αk,
then αk is a fixed point of a nontrivial morphism, and this contradicts Claim 2.
Therefore, the second statement of Theorem 4 is correct. �

The following example shows the structure of αk in the above theorem:

Example 5. The words αk, 2 ≤ k, look as follows:

α2 := 4 · 52 · 62 ·

α1︷ ︸︸ ︷
1 · 22 · 32 · 1 · 22 · 32 · 22 ·

4 · 52 · 62 ·

α1︷ ︸︸ ︷
1 · 22 · 32 · 1 · 22 · 32 · 22 ·52 ,

α3 := 7 · 82 · 92 · 102 ·

prefix of α2︷ ︸︸ ︷
4 · 52 · 62 · 1 · 22 · 32 · 1 · 22 · 32 · 22 ·

suffix of α2︷ ︸︸ ︷
4 · 52 · 62 · 1 · 22 · 32 · 1 · 22 · 32 · 22 · 52 ·

7 · 82 · 92 · 102 ·

prefix of α2︷ ︸︸ ︷
4 · 52 · 62 · 1 · 22 · 32 · 1 · 22 · 32 · 22 ·

suffix of α2︷ ︸︸ ︷
4 · 52 · 62 · 1 · 22 · 32 · 1 · 22 · 32 · 22 · 52 ·82 ,

and so on. The symbols x0, x1, x2, x3, and x4 stand for the letters 2, 1, 4, 7,
and 11, respectively. ♦

Let 1-UNAMBk be the set of all words that have an unambiguous 1-uniform
morphism ψ : N∗ → Δ∗

k with |Δk| = k. Using this concept, we now describe the
above mentioned consequence of Theorem 4 that needs to be accounted for when
studying a characterisation of those words that have an unambiguous 1-uniform
morphism:

446 H. Nevisi and D. Reidenbach

Corollary 6. For every k ∈ N there exists a k′ ∈ N with k′ > k such that
1-UNAMBk ⊂ 1-UNAMBk′ .

Hence, similarly to Schneider’s [10] insight into the existence of unambiguous
erasing morphisms, any characteristic condition on those words that have un-
ambiguous 1-uniform morphisms needs to distinguish between infinitely many
different sizes of the target alphabetΔk. In this regard, the condition must there-
fore be more complex than the said main results by Freydenberger et al. [3,2].

Still, Theorem 4 is somewhat weaker than the result by Schneider [10], who
shows that for any k ∈ N, the set of words that have an unambiguous erasing
morphism with a target alphabet of size k is a proper subset of those words
that have an unambiguous erasing morphism with a target alphabet of size
k + 1. If Theorem 4 is meant to be strengthened (hence stating 1-UNAMBk ⊂
1-UNAMBk+1), then a number of possibly complex technical challenges arise.
For example, the morphic images of the letters xk + 1, xk + 2, . . . , xk + k must
be carefully chosen in order to avoid squares, and this choice, in turn, might
facilitate more complex types of unambiguity.

As mentioned before, Theorem 4 and Corollary 6 suggest that, for fixed target
alphabets, Problem 1 might be extremely hard. In contrast to this, for variable
target alphabets (i. e., the size of the target alphabet depends on the number
of letters in the given word), [7] conjectures that the problem has a nice and
compact solution:

Conjecture 7 (Nevisi and Reidenbach [7]). Let α be a word with |symb(α)| ≥ 4.
There exist i, j ∈ symb(α), i �= j, such that φi,j (see Definition 3) is unambiguous
with respect to α if and only if α is morphically primitive.

While we are unable to prove or refute this conjecture, we can point out that
it shows some connections to Problem 2. These shall be discussed in the next
section.

4 Alphabet Reductions Preserving Morphic Primitivity

We now turn our attention to Problem 2, i. e., we study whether there exists
an alphabet reduction that maps a morphically primitive word to a morphically
primitive word.

We start with a general observation, that links the research on ambiguity
morphism to the question of whether a morphic image is morphically primitive:

Proposition 8. Let α ∈ N+. If φ : N∗ → N∗ is unambiguous with respect to α
then φ(α) is morphically primitive.

In general, the converse of the above proposition does not hold true. For example,
let α := 1 · 2 · 3 · 4 · 4 · 3 · 1 · 2. Thus, φ1,2(α) = 1 · 1 · 3 · 4 · 4 · 3 · 1 · 1 which is
morphically primitive. However, φ1,2 is ambiguous with respect to α, because we
can define a morphism ϕ satisfying ϕ(α) = φ1,2(α) by ϕ(1) := φ1,2(1) · φ1,2(1),
ϕ(2) := ε, ϕ(3) := φi,j(3) and ϕ(4) := φi,j(4).

Morphic Primitivity and Alphabet Reductions 447

If Conjecture 7 is correct, then Problem 2 can be answered in the affirmative.
This is a direct consequence of the following application of Proposition 8:

Corollary 9. Let α ∈ N+ and assume that there exist i, j ∈ symb(α), i �=
j, such that φi,j is unambiguous with respect to α. Then, αi,j is morphically
primitive.

Hence, if Conjecture 7 is correct, then it is stronger than Proposition 8.
The above approach does not only facilitate a direct application of our results

in [7] on the existence of unambiguous 1-uniform morphisms to Problem 2, but
it also has the advantage of providing a chance of a constructive method that
might reveal which letters to map to the same image in an alphabet reduction
that preserves morphic primitivity. However, since we are unable to prove Con-
jecture 7, we now present in Theorem 12 below a non-constructive answer to
Problem 2. This is based on two lemmata, the first of which is a basic insight
into fixed points of nontrivial morphisms:

Lemma 10. Let α be a fixed point of a nontrivial morphism. Then there exists
a nontrivial morphism φ : symb(α)∗ → symb(α)∗ such that φ(α) = α and, for
every x ∈ symb(α), if φ(x) �= ε, then x 6 φ(x).

Using Lemma 10, we can now prove the following technical observation on the
pattern αi,j as introduced in Definition 3, which is required in the proof of
Theorem 12:

Lemma 11. Let α be a word that is not a fixed point of a nontrivial morphism.
For any i, j ∈ symb(α), i �= j, if αi,j is a fixed point of a nontrivial morphism
φ : symb(α)∗ → symb(α)∗, then φ(i) = ε.

We now provide a comprehensive and affirmative answer to Problem 2 for all
alphabets that have at least six distinct letters. As mentioned above, our cor-
responding proof is non-constructive, which means that it does not provide any
direct insights into the character of alphabet reductions that preserve morphic
primitivity. On the other hand, the applicability of our technique to Billaud’s
Conjecture (see below) can therefore easily be examined, and the fact that it is
not applicable allows some conclusions to be drawn on the complexity of that
Conjecture.

Theorem 12. Let α be a word with |symb(α)| > 5. If α is morphically primitive,
then there exist i, j ∈ symb(α), i �= j, such that αi,j is morphically primitive.

Proof. Assume to the contrary that, for every i, j ∈ symb(α), αi,j is morphically
imprimitive, or in other words, αi,j is a fixed point of a nontrivial morphism.
Therefore, due to Lemma 10, for every i, j, there exists a nontrivial morphism
ψ〈i,j〉 : symb(α)∗ → symb(α)∗ satisfying ψ〈i,j〉(αi,j) = αi,j and, for every x ∈
symb(αi,j), if ψ〈i,j〉(x) �= ε, then x 6 ψ〈i,j〉(x). On the other hand, it results from
Lemma 11 that ψ〈i,j〉(i) = ε. Consequently, for every occurrence of i in αi,j , there
exists a letter x ∈ symb(αi,j)\{i}with i 6 ψ〈i,j〉(x) and x 6 ψ〈i,j〉(x). We assume
that there existm different letters x in αi,j and we denote them by x1, x2, [...], xm.

448 H. Nevisi and D. Reidenbach

Since α is not a fixed point of a nontrivial morphism, for every k, 1 ≤ k ≤ m,
|αi,j |xk

≥ 2. As a result, for every k, 1 ≤ k ≤ m, |ψ〈i,j〉(αi,j)|ψ〈i,j〉(xk) ≥ 2.

Claim. There exists an xk, 1 ≤ k ≤ m, with at least two occurrences of ψ〈i,j〉(xk)
in ψ〈i,j〉(αi,j) such that

– one of them contains an occurrence of i as nth letter, 1 ≤ n ≤ |ψ〈i,j〉(xk)|,
which is at the same position in αi,j as an occurrence of i in α, and

– the other one contains an occurrence of i as nth letter, which is at the same
position in αi,j as an occurrence of j in α.

We illustrate the Claim in the following diagram, where β is a prefix of ψ〈i,j〉(xk)
with length (n− 1).

ψ〈i,j〉(αi,j) = αi,j =

α =

...

...

...

...

xk

xk

xk

xk

i

i

i

j

︸ ︷︷ ︸
ψ〈i,j〉(xk)

︸ ︷︷ ︸
ψ〈i,j〉(xk)

β︷ ︸︸ ︷ β︷ ︸︸ ︷

Proof(Claim). We denote those occurrences of i in αi,j that are at the same
positions as j in α with ij . We assume to the contrary that there does not exist
any xk, 1 ≤ k ≤ m, with at least two occurrences of ψ〈i,j〉(xk) in ψ〈i,j〉(αi,j)
satisfying the following conditions:

– one of them contains an occurrence of i as nth letter, 1 ≤ n ≤ |ψ〈i,j〉(xk)|,
and

– the other one contains an occurrence of ij as nth letter.

Let Xj be a set of those letters q ∈ symb(αi,j) \ {i} satisfying |ψ〈i,j〉(q)| ≥ 2 and
ij � ψ〈i,j〉(q). Due to the above conditions, there does not exist any q′ ∈ Xj with
at least two occurrences of ψ〈i,j〉(q

′) in ψ〈i,j〉(αi,j) such that one of them contains
an occurrence of i at the same position as an occurrence of ij in the other one.
Therefore, we can define a nontrivial morphism φ : symb(α)∗ → symb(α)∗ over
α by, for every y ∈ symb(α),

φ(y) :=

⎧⎪⎨⎪⎩
ε, y = j,

ϕ〈i,j〉(ψ〈i,j〉(y)), y ∈ Xj ,

ψ〈i,j〉(y), else,

where ϕ〈i,j〉 : N∗ → N∗ is a morphism with, for every y′ ∈ symb(αi,j),

ϕ〈i,j〉(y
′) =

{
j, y′ = ij,

y′, else.

Morphic Primitivity and Alphabet Reductions 449

Due to ψ〈i,j〉(i) = ε, because of the definition of ϕ〈i,j〉, and since there does not
exist any xk, 1 ≤ k ≤ m, satisfying the above mentioned conditions, it can be
verified that φ(α) = α, which contradicts the fact that α is not a fixed point of
a nontrivial morphism. Therefore, the Claim holds true. q.e.d.(Claim)

Henceforth, we denote those occurrences of i in ψ〈i,j〉(xk) satisfying the condi-
tions of the Claim by i′. Consequently, according to the Claim, there exists an
xk, 1 ≤ k ≤ m, with i′ 6 ψ〈i,j〉(xk). Furthermore, if we wish to refer to the
relation between xk on the one hand and the letters i, j on the other hand as
described by the Claim, we say that xk is responsible for the pair 〈i, j〉.

We now study the following question: Is xk responsible for any pair of letters
of α except 〈i, j〉 (we do not distinguish between the pairs 〈i, j〉 and 〈j, i〉, in
other words, 〈i, j〉 and 〈j, i〉 are the same pairs)? If the answer is yes, for how
many pairs can this happen?

In order to answer this question, we consider the following cases:

1. The letter i′ occurs to the right of xk in ψ〈i,j〉(xk). So, we can assume that
α = ... ·α1 ·xk ·α2 ·i ·α3 · ... ·α4 ·xk ·α5 ·j ·α6 · ..., where, for every k′, 1 ≤ k′ ≤ 6,
αk′ ∈ symb(α)∗, and ψ〈i,j〉(xk) := β1 ·xk ·β2 · i′ ·β3, β1, β2, β3 ∈ symb(αi,j)

∗.

ψ〈i,j〉(αi,j) = αi,j =

αi,j =

α =

...

...

...

...

...

...

β1

α1

xk

xk

xk

β1

α4

xk

xk

xk

β2

α2

i′

i

i

β3

α3

β2

α5

i′

i

j

β3

α6

︸ ︷︷ ︸
ψ〈i,j〉(xk)

︸ ︷︷ ︸
ψ〈i,j〉(xk)

We now examine the mentioned question for the pair 〈l, r〉, l, r ∈ symb(α)
and 〈l, r〉 �= 〈i, j〉, by assuming that αl,r is a fixed point of a nontrivial
morphism ψ〈l,r〉. According to our discussion for 〈i, j〉, if xk is responsible
for 〈l, r〉, we need to have l′ (defined analogously to i′) in ψ〈l,r〉(xk).

We assume that l′ occurs to the right of xk in ψ〈l,r〉(xk). Therefore, one of
the following cases needs to be satisfied:

– l′ occurs to the right of i′. As a result, due to 〈l, r〉 �= 〈i, j〉, in one
occurrence of ψ〈l,r〉(xk) in ψ〈l,r〉(αl,r), we have an occurrence of i, and
in the other occurrence of ψ〈l,r〉(xk) at the same position as i, we have
j, which is a contradiction.

– l′ occurs in β2. Then, because of 〈l, r〉 �= 〈i, j〉, there exists an occurrence
of ψ〈i,j〉(xk) in ψ〈i,j〉(αi,j) such that its β2 factor is different from the
factor β2 of the other occurrences of ψ〈i,j〉(xk) in ψ〈i,j〉(αi,j), which is
again a contradiction.

– l′ occurs at the same position as i′. However, this contradicts the fact
that 〈l, r〉 �= 〈i, j〉.

450 H. Nevisi and D. Reidenbach

Consequently, xk can be responsible for 〈l, r〉 iff l′ occurs to the left of xk
in ψ〈l,r〉(xk). By investigating the responsibility of xk for any other pair
of letters 〈q, z〉, q, z ∈ symb(α), 〈q, z〉 �= 〈i, j〉 and 〈q, z〉 �= 〈l, r〉, we can
conclude with the same reasoning as above that q′ cannot occur to the right
of xk in ψ〈q,z〉(xk). Also, by assuming that l′ occurs to the left of xk in
ψ〈l,r〉(xk), an analogous reasoning as above leads to the fact that q′ cannot
occur to the left of xk in ψ〈q,z〉(xk). Consequently, xk cannot be responsible
for any other pairs 〈q, z〉, q, z ∈ symb(α), 〈q, z〉 �= 〈i, j〉 and 〈q, z〉 �= 〈l, r〉.

2. The letter i′ occurs to the left of xk in ψ〈i,j〉(xk). An analogous reasoning
to that in the previous case implies that, firstly, xk can be responsible for
another pair of letters 〈l, r〉, 〈l, r〉 �= 〈i, j〉, iff l′ occurs to the right of xk in
ψ〈l,r〉(xk). Secondly, xk is not responsible for any other pairs 〈q, z〉, q, z ∈
symb(α), 〈q, z〉 �= 〈i, j〉 and 〈q, z〉 �= 〈l, r〉.

Consequently, due to the above cases, we can conclude that every letter x ∈ α can
at most be responsible for two pairs of letters. On the other hand, if |symb(α)| =
n, the number of pairs of letters of α is

(
n
2

)
. Referring to the assumption of the

theorem, n > 5. Therefore, (
n

2

)
> 2 ∗ n.

This implies that there is a word αi,j , i, j ∈ symb(α) such that there does not
exist any letter x ∈ symb(αi,j) \ {i} that is responsible for the pair 〈i, j〉, which
is a contradiction to the Claim. Thus, there exist letters i, j ∈ symb(α) such
that αi,j is morphically primitive. �

Since morphically primitive words are equivalent to those words that are not
a fixed point of a nontrivial morphism, Theorem 12 shows that the structural
property of a word α that eliminates the existence of a nontrivial morphism ψ
satisfying ψ(α) = α is strong enough to also eliminate the existence of a non-
trivial morphism ψ′ satisfying ψ′(φi,j(α)) = φi,j(α) for an appropriate choice of
the alphabet reduction φi,j (see Definition 3). However, if we consider a different
notion of an alphabet reduction, namely a morphism δi : N∗ → N∗ defined by
δi(i) := ε and δi(x) := x for x ∈ N \ {i}, then Theorem 12 and its proof are not
sufficient to establish a result that is equivalent to Theorem 12. Hence, we have
to study Billaud’s Conjecture separately:

Conjecture 13 (Billaud [1]). Let α be a word with |symb(α)| ≥ 3. If α is not a
fixed point of a nontrivial morphism, then there exists an i ∈ symb(α) such that
δi(α) is not a fixed point of a nontrivial morphism.

Levé and Richomme [6] provide a confirmation of the contraposition of Con-
jecture 13 for a special case, but, apart from that, little is known about this
problem. The final result of our paper shall demonstrate that Conjecture 13 is
correct if words are considered that contain each of their letters exactly twice:

Theorem 14. Let α be a word with |symb(α)| ≥ 3 that is not a fixed point of
a nontrivial morphism. If, for every x ∈ symb(α), |α|x = 2, then there exists an
i ∈ symb(α) such that δi(α) is not a fixed point of a nontrivial morphism.

Morphic Primitivity and Alphabet Reductions 451

We expect that even a moderate extension of Theorem 14 would require a sub-
stantially more involved reasoning. We therefore conclude that the actual nature
of morphically primitive words, despite our almost comprehensive result in The-
orem 12 and the strong insights that are due to Head [4] and Holub [5], is not
really understood. This view is further substantiated by the fact that another
property of morphically primitive words, namely their frequency, is largely un-
resolved as well (see Reidenbach and Schneider [8]).

Acknowledgments. The authors wish to thank the anonymous referees for
their helpful remarks and suggestions.

References

1. Billaud, M.: A problem with words. Letter in Newsgroup Comp. Theory (1993),
https://groups.google.com/d/topic/comp.theory/V_xDDtoR9a4/discussion

2. Freydenberger, D.D., Nevisi, H., Reidenbach, D.: Weakly unambiguous morphisms.
Theoretical Computer Science (to appear)

3. Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic im-
ages of strings. International Journal of Foundations of Computer Science 17, 601–
628 (2006)

4. Head, T.: Fixed languages and the adult languages of 0L schemes. International
Journal of Computer Mathematics 10, 103–107 (1981)

5. Holub, S.: Polynomial-time algorithm for fixed points of nontrivial morphisms.
Discrete Mathematics 309, 5069–5076 (2009)

6. Levé, F., Richomme, G.: On a conjecture about finite fixed points of morphisms.
Theoretical Computer Science 339, 103–128 (2005)

7. Nevisi, H., Reidenbach, D.: Unambiguous 1-uniform morphisms. In: Proc. 8th In-
ternational Conference on Words, WORDS 2011. EPTCS, vol. 63, pp. 158–167
(2011)

8. Reidenbach, D., Schneider, J.C.: Morphically primitive words. Theoretical Com-
puter Science 410, 2148–2161 (2009)

9. Reidenbach, D., Schneider, J.C.: Restricted ambiguity of erasing morphisms. The-
oretical Computer Science 412, 3510–3523 (2011)

10. Schneider, J.C.: Unambiguous erasing morphisms in free monoids. RAIRO – The-
oretical Informatics and Applications 44, 193–208 (2010)

https://groups.google.com/d/topic/comp.theory/V_xDDtoR9a4/discussion

On a Hierarchy of Languages

with Catenation and Shuffle

Nils Erik Flick and Manfred Kudlek

Fachbereich Informatik, MIN-Fakultät, Universität Hamburg, DE
{flick,kudlek}@informatik.uni-hamburg.de

Abstract. We present basic structures, normal forms, and a hierarchy
of languages based on catenation, shuffle and their iterations, defined by
algebraic closure or least fix point solution of equation systems.

1 Introduction

In this paper, we establish a hierarchy of languages expressing possibilities of
iterated sequential and parallel compositions of basic events, based on extending
the construction principles behind the well-known regular and context-free lan-
guages with another operation known as the shuffle [8,9]. Related investigations,
in particular on shuffle languages, are given in [1,6,7]. There only certain com-
binations of catenation, shuffle and their iterations have been considered. Such
combinations of both operators are especially useful for modelling some areas
of concurrency, and in particular the behaviour of client/server systems [2], and
also for semantics of Petri nets, such as interleaving semantics.

In section 2 we introduce or recall the basic definitions and structures needed
for further investigation, such asmonoids, semirings, bi-monoids and bi-semirings,
furthermore systems of equations and their least fix point solutions, and normal
forms for them, as well as algebraic closure of finite sets under certain language op-
erators. In section 3 we investigate the complete hierarchy of language classes de-
fined as algebraic closures of union, catenation, shuffle and their iterations applied
on the class of finite languages, as well as classes defined by least fix point solutions
of systems of equations, and their relation to the Chomsky hierarchy. Section 4 of-
fers an outlook for further research in the area such as closure of language classes
under certain operators, or decidability problems.

Due to place constraints, most proofs have been abridged, and many have
been omitted altogether in this version. Details can be found in the report [3].

2 Definitions and Basic Structures

Formal language theory normally deals with subsets of Σ∗, all words over a finite
alphabet, using as basic binary operator catenation, denoted by 7 in the sequel.
This defines a basic monoid with 7 and {λ}. Other binary operators have also
been considered, as e.g. shuffle, denoted by . In contrast to catenation is also

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 452–458, 2012.
© Springer-Verlag Berlin Heidelberg 2012

On a Hierarchy of Languages with Catenation and Shuffle 453

commutative. Another possibility is to combine both operators, giving rise to a
basic bi-monoid, with operators 7, , {λ} as common neutral element, and the
class of finite subsets as domain.

2.1 Basic Structures

Languages are over a finite alphabet Σ. ||w|| denotes the length of w ∈ Σ∗,
||λ|| = 0. |A| denotes the cardinality of A ⊆ Σ∗, which also can be infinite.
||A|| = max{||w|| | w ∈ A} is the norm of A. ||w||a denotes the number of times
a occurs in w.

FIN = 2Σ
∗

f = {α ∈ 2Σ
∗ | |α| < ∞} denotes the class of finite sets of words,

7 catenation. S� = (2Σ
∗
; ∅, {λ},∪,7) is an ω-complete semiring based on the

monoid M� = (2Σ
∗
; {λ},7). Elements (words) w ∈ Σ∗ or singletons {w} can

be seen as basic elements (atoms). At a somehow higher level also finite sets
can serve as such. For the shuffle operator , S = (2Σ

∗
; ∅, {λ},∪,) is an

ω-complete semiring as well.

For a general treatment of semirings and related structures see [12].

M� = (2Σ
∗

f ; {λ},7,) is the basic bi-monoid for formal languages using

both operations, 7 and . S� = (2Σ
∗
; ∅, {λ},∪,7,) is a bi-semiring since ∪

distributes with 7 and . This bi-semiring is also ω-complete.

2.2 Systems of Equations

One way of characterizing languages is by least fix point solutions of a system
of equations using structures based on 7 and/or .

Let V = be a finite set of variables, standing for subsetsX ⊆ Σ∗, and C a finite
set of constants α ∈ 2Σ

∗
1 or α ∈ 2Σ

∗
f , thus elements of the basic structure. Thus

V = {X1, · · · , Xm} and C = {α1, · · · , αn}. A monomial is a finite expression
m(X̄) on V ∪ C using binary operations 7, or , or both 7 and , where X̄
denotes the tuple of (ordered) variables, e.g. (X17α1) (X27X3). A polynomial
p(X̄) is a finite union of monomials. A system of equations is a systemXi = pi(X̄)
(1 ≤ i ≤ m), or in compact form X̄ = p̄(X̄).

A system of equations is called algebraic if the monomials occurring in the
system of equations are arbitrary, linear if all monomials have one of the forms
(A◦X)◦B, A◦(X◦B), or A with X ∈ V , A,B expressions of constants only,
and ◦ ∈ {7, }, rational if all monomials have the form X◦A or A.

If the underlying semiring or bi-semiring is ω-complete such a system has a
solution as least fix point. This can be constructed by iteration, starting with
X̄(0) = ∅̄, and iterating X̄(j+1) = p̄(X̄(j)).

One obtains the classes ALG(7) = CF , LIN (7) = LIN , RAT (7) = REG,
ALG() = LIN () = RAT () = SHUF , ALG(7,), LIN (7,), and
RAT (7,), according to the (bi-)semiring. In case of one single commutative
operator the classes of algebraic, linear, and rational languages coincide [12].

Whereas in a system of equations one gets least fix points solutions for all
variables, grammars just produce the solution of a distinguished variable.

454 N.E. Flick and M. Kudlek

2.3 Algebraic Closures

Another characterization of languages is achieved by the (least) algebraic closure
of a basic language class under some language operators. Here we consider the
operators ∪,7, and their iterations � and applied on FIN .

Note that (A)
	
= (A

	
) = (A) = A , A

	 ⊆ A , and (A
	
)
	
= A

	
.

Important classes are (∪, ,)(FIN) = SHUF , (∪,7, 	 ,)(FIN) = ER,
(∪, ,

	
,)(FIN) = ES, and (∪,7, ,

	
,)(FIN) = SE [5] where ES stands

for extended shuffle expression, analogous to ER for extended regular expression.

2.4 Normal Forms

For any system of equations one can show

Lemma 1. To any system of equations there exists an equivalent one with re-
spect to least fixpoint, with following normal forms of the monomials:

algebraic: Y 7 Z, Y Z, α linear: Y 7 α, Y α, α7 Y , α Y , α
rational: Y 7 α, Y α, α where Y, Z ∈ V, α ∈ 2Σ

∗
f .

3 Hierarchies

In this section we present two language hierarchies, a lower and an upper one.

3.1 The Lower Hierarchy

The first hierarchy we will establish is one of families of languages (in the sense
of [8]) which are obtained as the closure of the family of finite languages under
some of the operations ∪, 7, , �, , extended in the obvious way to families
of languages. It is shown in Figure 1 (with (FIN) understood). By Lemma 11,
all of these are subsets of RAT (7,). Two classes coincide since REG is closed
under which we recall here [4]:

Theorem 1. (∪,7, ,
	
)(FIN) ⊆ (∪,7,)(FIN), i.e. REG is closed under

, hence (∪,7, ,
	
)(FIN) = (∪,7,)(FIN) = REG.

All of the inclusions in the diagram of Figure 1 are proper; to show this, it is
sufficient to prove the following lemmata (by counterexamples):

– (7,)(FIN) ∩ (7,)(FIN) �⊆ ES (Lemma 2)
– (∪,)(FIN) ∩ (∪,)(FIN) �⊆ (7, ,

	
,)(FIN) (Lemma 4)

– (,)(FIN) �⊆ ER (Lemma 8)
– (,

	
)(FIN) �⊆ (∪, 	 ,)(FIN) (Lemma 6)

– (,
	
)(FIN) �⊆ (7, 	 ,)(FIN) (Lemma 5)

– ()(FIN) �⊆ (∪,7, ,
	
)(FIN) (Lemma 10)

– (
	
)(FIN) �⊆ (∪,7, ,)(FIN) (Lemma 9)

On a Hierarchy of Languages with Catenation and Shuffle 455

()

(
	
) ()

(
	

)(�	
)(∪	

) (
	
) (�) () (∪)

(∪ � 	
)=(∪� 	

)

(∪)(∪ 	
) (� 	

) (�	
) (∪	

) (
	

) (�) (∪ �)

(∪ � 	
) (∪ 	

)(� 	
) (∪ �)

(∪ � 	
)

����������

����������

����������

�

�
�

��� �

	
	

		

�
�

��� �

	
	

		

�����������

�����������

	
	

		

�

�
�

���

�
�

�
�

�
�

�
���

�

�
�
�

�
�

�
�

���

�
�

�
�

�
�

�
���

	
	

		

�
�

��� �

	
	

		
�

�

	
	

		

�
�

���

�
�

���

	
	

		

	
	

		
 �

�
�

���

�
�

���

	
	

		
�

��������������

��������

��������

��������������

��������

��������

�

�
�

�
�

�
�

�
���

�
�
�

�
�

�
�

���

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
���

�
�
�
�
�
�
�
��

!
!

!
!

!
!

!
!!"

Fig. 1.

Lemma 2. {a} 7 {b} = {a}	 7 {b}	 �∈ ES.

Proof. ∀L ∈ ES ∃m ∈ N : ((k > 1, � > 1, k + � > m, akb	 ∈ L) ⇒ ∃ubav ∈ L).
But this is not true for {a}	 7 {b}	

. Proof by structural induction, see report.

Lemma 3. Let ψ : L → NΣ be the Parikh mapping that takes a word w to
the vector ψ(w) ∈ NΣ with components identical to the multiplicities of symbols
from Σ, extended to languages. For any language L ∈ (7, ,

	
,)(FIN), we

have that (∃w ∈ L ∃ξ ∈ NΣ ∀k ∈ N : ψ(w) + k · ξ ∈ ψ(L))
⇒ (∀w ∈ L ∃ξ′ ≥ ξ ∀k ∈ N : ψ(w) + k · ξ′ ∈ ψ(L)) .

Proof. By structural induction over an (7, ,
	
,)-term for L.

Lemma 4. {a} ∪ {b} = {a}	 ∪ {b}	 �∈ (7, ,
	
,)(FIN).

Proof. Applying Lemma 3 to w = {a} and ξ = {(b, 1)}.

456 N.E. Flick and M. Kudlek

Lemma 5. (,
	
)(FIN) �⊆ (7, 	 ,)(FIN).

Proof. Consider L = {ab}	 {cd, ef} ∈ (,
	
)(FIN).

Lemma 6. (,
	
)(FIN) �⊆ (∪, 	 ,)(FIN).

Proof. L = {a} {b}	 ∈ (,
	
)(FIN) cannot be in (∪, 	 ,)(FIN), as L is a

finite union of languages Li such that a ∈ Li ⇒ aa ∈ Li.

Lemma 7. Every language L ∈ ER can be written as a union as follows, with
I a finite set and all K(i) ∈ N, for a finite number of sets Aik ∈ ER which are

all either finite or C�
ik or Cik for some Cik ∈ ER. L =

⋃
i∈I
⊙K(i)

k=0 Aik
This follows from the distributivity of 7 over ∪: A7(B∪C) = A7B∪A7C.

Such a representation is of course not unique. Note that below any or �, the
term Cik might be arbitrarily complex.

Proof. Proceed by structural induction.

Lemma 8. (,)(FIN) �⊆ ER.

Proof. Consider L = {abc} {bc} �∈ ER. The following property holds:
∀w ∈ L : ||w||a + 1 = ||w||b = ||w||c.
Using a representation from lemma 7, a contradiction can be reached.

Lemma 9. ()(FIN) �⊆ (7,∪, ,
	
)(FIN) = REG.

Proof. {ab} is not regular because {ab} ∩ ({a}� 7 {b}�) is not.

Lemma 10. (
	
)(FIN) �⊆ (7,∪, ,)(FIN).

Proof. Consider L = {ab}	 ∈ (
	
)(FIN). L �∈ (∪,7, ,)(FIN).

3.2 The Upper Hierarchy

In this part we investigate higher important language classes, in particular those
defined by fix point solutions of systems of equations, and their relations to well
known classes. This is illustrated in Figure 2.

Lemma 11. SE ⊆ RAT (7,)

Proof. Construction of a system of equations by structural induction. It suffices
to start with singletons.

Lemma 12. RAT (7,) �⊆ SE.

Proof. X = Y 7 {a} ∪ {λ}, Y = Z {b}, Z = U 7 {c}, U = X {d} can be
shown not to be in SE .

Lemma 13. (also in [5]) SHUF �⊆ CF

On a Hierarchy of Languages with Catenation and Shuffle 457

(∪,�,
	
)(FIN)

RAT (�) =

REG = SHUF =

RAT () =

(∪, ,)(FIN)

ER =

(∪,�,
	
,)(FIN) (∪, ,

	
,)(FIN)

ES =

SE =

RAT (�,)

(∪,�, ,
	
,)(FIN)

LIN (�,)

ALG(�,)

CS

LIN (�)

LIN =

CF =

ALG(�)

�

�

�

�
�

�

������������

������������

�����

�
�

�
�

�
�

���

	
	

	
	

Fig. 2.

Proof. Consider L = {abc} ∈ ()(FIN). But since CF is closed under inter-
section with regular sets, L ∩ ({a}	 7 {b}	 7 {c}	

) = {anbncn | n ≥ 0} �∈ CF .

To prove the following lemma iteration lemmata for the classes RAT (7,),
LIN (7,) and ALG(7,), similar to such for REG, LIN and CF are applied.
For lack of space they and the following counterxexamples will be presented in
another article. For general iteration lemmata see [10].

Lemma 14. L1 = {anbn | n ≥ 0} ∈ LIN , L1 �∈ RAT (7,),
L2 = {ambmcndn | m,n ≥ 0} ∈ CF , L2 �∈ LIN (7,),
L3 = {anbncn | n ≥ 0} ∈ CS , L3 �∈ ALG(7,).

Putting together the last lemmata as well as such known for the Chomsky hier-
archy and from Figure 1, we get the complete diagram shown in Figure 2.

4 Outlook

We shall investigate structural, closure and decidability properties and iteration
lemmata. Also complexity of the language classes should be considered.

458 N.E. Flick and M. Kudlek

References

1. Câmpeanu, C., Salomaa, K., Vágvölgyi, S.: Shuffle Quotient and Decompositions.
In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp.
186–196. Springer, Heidelberg (2002)

2. Czaja, L., Kudlek, M.: Language Theoretic Properties of Client/Server Systems.
In: Proceedings of CS&P 2011, pp. 79–84 (2011)

3. Flick, N.E., Kudlek, M.: Formal Languages with Catenation and Shuffle. Technical
Report, Fachbereich Informatik, Universität Hamburg, FBI-HH-B 299/12 (2012)

4. Ginsburg, S.: The Mathematical Theory of Context-free Languages. McGraw-Hill
(1966)

5. Gischer, J.: Shuffle Languages, Petri Nets, and Context-sensitive Grammars.
CACM 24(9), 597–605 (1981)

6. Ito, M.: Shuffle Decomposition of Regular Languages. Journal of Universal Com-
puter Science 8(2), 257–259 (2002)

7. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific (2004)
8. Jantzen, M.: Extending Regular Expressions with Iterated Shuffle. Technical Re-

port, FB Informatik, Univ. Hamburg, IfI-HH-B-99/84 (1984)
9. Jantzen, M.: Extending Regular Expressions with Iterated Shuffle. TCS 38, 223–

247 (1985)
10. Kudlek, M.: On General Iteration Lemmata for Certain Classes of Word, Trace

and Graph Languages. FI 37(4), 413–422 (1999)
11. Kudlek, M.: On Semilinear Sets over Commutative Semirings. FI 79(3-4), 447–452

(2007)
12. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Springer (1986)

Characterizing Languages by Normalization

and Termination in String Rewriting�

(Extended Abstract)

Jeroen Ketema1 and Jakob Grue Simonsen2

1 Faculty EEMCS, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

j.ketema@ewi.utwente.nl
2 Department of Computer Science, University of Copenhagen (DIKU)
Njalsgade 126–128, Building 24.5.46, 2300 Copenhagen S, Denmark

simonsen@diku.dk

Abstract. We characterize sets of strings using two central properties
from rewriting: normalization and termination. We recall the well-known
result that any recursively enumerable set of strings can occur as the set
of normalizing strings over a “small” alphabet if the rewriting system
is allowed access to a “larger” alphabet (and extend the result to ter-
mination). We then show that these results do not hold when alphabet
extension is disallowed. Finally, we prove that for every reasonably well-
behaved deterministic time complexity class, there is a set of strings
complete for the class that also occurs as the set of normalizing or ter-
minating strings, without alphabet extension.

1 Motivation

This paper considers the following fundamental question: If R is a string rewrit-
ing system, what must the set of normalizing (alternatively, terminating) strings
of R look like?

Rewriting systems are commonly used to characterize sets of objects, for ex-
ample the sets of strings generated by formal grammars [7], the sets of construc-
tor terms that, when embedded in certain “basic” terms, give rise to reductions to
a normal form [8,1], and so forth. However, all of these approaches either assume
the entire rewriting system to be terminating, or extend the signature that ob-
jects can be built from, for example using a larger alphabet to construct strings.
As an alternative, we would like to see if any insight can be gained by appealing
to notions and methods particular to (string) rewriting: normalization and ter-
mination of arbitrary strings, and investigate the sets of strings that normalize
or terminate. This paper is a first step in this direction; for non-empty alphabets
Σ and Γ with Σ ⊆ Γ , we write NORMR(Γ)(Σ) (resp. TERMINR(Γ)(Σ)) for the
set of strings over Σ that are normalizing (resp. terminating) wrt. the (finite)

� Jakob Grue Simonsen is partially supported by the Sapere Aude grant “Complexity
through Logic and Algebra” (COLA).

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 459–464, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

460 J. Ketema and J.G. Simonsen

rewriting system R(Γ) whose rules may use symbols from Γ . The main focus of
the paper is to characterize the set of languages L that arise as NORMR(Γ)(Σ)
or TERMINR(Γ)(Σ), in particular in the case Γ = Σ. We loosely call such
languages L characterizable by normalization (resp. termination).

Related Work. McNaughton et al. considered languages accepted by finite,
length-reducing and confluent string rewriting systems using extra non-terminal
symbols [12], and this work was later heavily generalized by Beaudry et al. [4]. In
the setting of [12,4], a language L ⊆ Σ∗ is accepted (a “McNaughton language”
in the terminology of [4]) if there is a Γ � Σ and a finite string rewriting systemR
over Γ , two strings t1, t2 ∈ (Γ \Σ)∗∩IRR(R), and a symbol ◦ ∈ (Γ \Σ)∩IRR(R)
such that for all w ∈ Σ∗ we have w ∈ L iff t1wt2 →∗

R ◦. This construction is very
similar to ours in the case where ◦ is the only string v ∈ IRR(R) such that there
is a w ∈ Σ∗ with t1wt2 →∗

R v. However, there are two crucial differences: [12,4]
allow for other normal forms (however, this is a fairly superficial difference for
decidable languages), and they do not treat the case where alphabet extensions
are not allowed, i.e., where Γ = Σ.

The idea of disallowing alphabet extensions has cropped up occasionally in
the literature, but has apparently not been treated systematically: Minsky has
a short discussion of the problem in his classic book [13, Section 12.7], but oth-
erwise the literature is scant. We believe the reason for this is that the foremost
applications of string rewriting, proof systems for semi-groups and monoids, at-
tach no special importance to normalizing strings: Indeed, there the interesting
property is not reduction →∗ (to normal form or otherwise), but conversion ↔∗

where rules are also allowed to be used “in reverse”, hence, rendering normal
forms much less important.

There is a wealth of work on length-decreasing string rewriting systems, par-
ticularly confluent such systems, where a language L over alphabet Σ is typically
characterized by v ∈ L iff v →∗ ε where ε is the empty string; the impetus was
Nivat’s fundamental work on languages akin to the Dyck language [14] and de-
veloped by later researchers, see [5]. Contrary to our work, the rewriting systems
considered in the above work are almost invariably terminating (i.e., all strings
terminate) and confluent.

2 Preliminaries

We refer to the classic textbook [6] for basics on string rewriting, to [16] for
general background on rewriting, and to [9,15] for basics of computability. To
fix notation, we repeat a few basic definitions below.

Definition 2.1. An abstract reduction system is a pair (A,→) with A is a
non-empty set of objects and → a binary relation on A, called the reduction
relation. We denote by →+ the transitive closure of → and by →∗ the reflexive,
transitive closure. An object a ∈ A is a (→-)normal form if there do not exist
b ∈ A with a→ b. We denote by IRR(→) the set of normal forms of A. An object

Characterizing Languages 461

a ∈ A is normalizing (wrt. →) if there are b ∈ IRR(→) such that a →∗ b; a is
terminating (wrt. →) if there is no infinite sequence a = b1 → b2 → b2 → · · · .

Let Σ = {a1, . . . , an} be a finite set of symbols, called the alphabet; we denote
by Σ+ the set of non-empty finite strings over Σ and by Σ∗ the set of finite
strings over Σ. A string rewrite rule over Σ is a pair (l, r) of strings, invariably
written l → r; throughout the paper, it is assumed that l, r ∈ Σ+. A string
rewriting system (or semi-Thue system), abbreviated SRS, over alphabet Σ is a
set of string rewrite rules over Σ. The reduction relation →R⊆ Σ∗×Σ∗ induced
by a string rewriting system R is defined by v → w if there are x, y ∈ Σ∗ and
l → r ∈ R such that v = xly and w = xry. If R is clear from the context, we
write → instead of →R.

One important difference from ordinary string rewriting: All rules l → r will
have both l �= ε and r �= ε to avoid a host of special cases. Unless explicitly
stated otherwise, R is a finite set of rules throughout the paper. Additionally, Σ
and Γ will denote finite alphabets (usually with Σ ⊆ Γ) throughout the paper.
If R is an SRS over alphabet Σ, we will usually write R(Σ) to avoid confusion.

The following definition fixes our two main objects of study:

Definition 2.2. Let Σ be an alphabet and R(Γ) a string rewriting system (over
an alphabet Γ ⊇ Σ). By NORMR(Γ)(Σ) we denote the set of non-empty strings
over Σ that are normalizing wrt. →R. By TERMINR(Γ)(Σ) we denote the set
of non-empty, terminating strings over Σ wrt. →R.

Example 2.3. Let Σ = {0, 1}. We define GOLDEN as the set of non-empty
strings over Σ that do not contain 00 as a substring, and SPRIME as the set
of non-empty strings over Σ that contain no substring of the form 10p1 with p
a prime number. Moreover, we define PALINDROME as the set of non-empty,
even-length palindromes over Σ, and PARITY as the set of non-empty, even-
length strings over Σ containing exactly the same number of 0s and 1s.

The following definition is standard (see e.g. [3,2]):

Definition 2.4. A language L ⊆ Σ+ is factorial if s ∈ L and s = uvw (for
u,w ∈ Σ∗ and v ∈ Σ+) implies that v ∈ L.

Note that GOLDEN and SPRIME are factorial, while PALINDROME and
PARITY are not.

3 Sets of Strings with Alphabet Extension

We start by considering which sets of strings over Σ can be characterized if we
allow the rewrite system to be defined over an extended alphabet Γ ⊇ Σ. For
normalization, the following theorem is well-known in different guises, e.g. as a
statement about Post Normal Systems [9, Ch. 6.5].

Theorem 3.1. Let L ⊆ Σ+. There exists a string rewriting system R(Γ) (with
Γ ⊇ Σ), resp. R′(Γ ′) (with Γ ′ ⊇ Σ) such that L = NORMR(Γ)(Σ) iff L is recur-
sively enumerable, resp. L = TERMINR′(Γ ′)(Σ) iff L is recursively enumerable
and factorial.

462 J. Ketema and J.G. Simonsen

Factoriality is essential in the case of termination:

Lemma 3.2. If R is a string rewriting system, then TERMINR(Σ) is factorial.

4 Reducing the Alphabet to Σ

A fundamental question is what happens when Γ = Σ, i.e., when we restrict the
building blocks of our rewriting systems to the alphabet of the language we wish
to characterize. In general, this is impossible:

Example 4.1. Let Σ = {0, 1} and consider the set PARITY. Clearly, L is re-
cursively enumerable. We claim that there is no R(Σ) such that PARITY =
NORMR(Γ)(Σ). To see this, suppose there is an R and note that 0 /∈ L and
1 /∈ L. Hence, there must be rules 0 → r, 1 → r′ ∈ R; but then there are no
R-normal forms in Σ+, a contradiction. Note that the same argument can be
repeated for any language that contains neither 0 nor 1.

The reader may well ponder what we have gained by the characterization
NORMR(Γ)(Σ) = L when the rewriting system R employs symbols from a
“large” alphabet Γ—surely we generally have NORMR(Γ)(Σ) � NORMR(Γ)(Γ)
and, hence, L � NORMR(Γ)(Γ). In fact, a stronger result holds: If the set of
normalizing strings over Γ are built solely with symbols from Σ, then we could
have built all rules of R solely with symbols from Σ.

Lemma 4.2. Let L ⊆ Σ+ and let R(Γ) satisfy L = NORMR(Γ). Then there
exists R′(Σ) satisfying L = NORMR′(Σ)(Σ).

Lemma 4.2 makes clear that when characterizing a set of strings L by devising
an SRS R having L as exactly its set of normalizing strings, then R can only
use the symbols of Σ. This observation naturally leads to the question “can
all recursively enumerable sets be characterized this way?”—but Example 4.1
has answered this question in the negative. The next natural question is “which
recursively enumerable sets cannot be characterized this way?”

We have no full characterization of the languages that are not characterizable
as NORMR(Σ)(Σ) or TERMINR(Σ)(Σ). However, criteria can be given that rule
out certain languages. In particular, neither PALINDROME, nor PARITY is
characterizable (indeed, PALINDROME must always have infinite symmetric
difference with any characterizable language). GOLDEN is characterizable; the
status of SPRIME is not known to the authors.

5 Complexity of Languages Characterizable in Σ

A näıve—and wrong—conjecture is that NORMR(Σ)(Σ) and TERMINR(Σ)(Σ)
must be very simple. We shall prove that this is not the case by showing that
NORMR(Σ)(Σ) and TERMINR(Σ)(Σ) can be hard and complete for arbitrarily
hard complexity classes.

We start with a few preliminaries on computational complexity (see [10,15]
for examples and further explanation).

Characterizing Languages 463

Definition 5.1. Let F be a class of functions f : Γ+ −→ Γ+. We say that a
set A ⊆ Γ+ is F-hard for a class of subsets C ⊆ P(Γ+) if for every set B in C
there exists f ∈ F such that x ∈ B iff f(x) ∈ A for all x ∈ Γ+. A is complete
for C under F-reduction (usually just abbreviated C-complete) if A ∈ C and A is
F-hard for C.

For a function f and a set G of functions N −→ N, we say that f is globally
bounded by a function in G (written f ≤ G) if there exists a function g ∈ G
such that for all n ∈ N, we have f(n) ≤ g(n). If F is a class of functions of
type Γ+ −→ Γ+, we say that F is time-defined (resp. space-defined) by G if
F is exactly the class of functions of type Γ+ −→ Γ+ that are computed by a
multi-tape deterministic Turing Machine running in time (resp. space) bounded
above by a function in G. If C ⊆ P(Γ+) is a class of languages, we say that C is
time-defined (resp. space-defined) by G if C is the set of languages L such that
L = f−1(1) for some f ∈ F where F is a class of functions of type Γ+ −→ {0, 1}
time-defined (resp. space-defined) by G.

The set G is closed under polynomial slowdown if, for any g ∈ G and any
polynomial P with coefficients from N, we have f ≤ G for f(x) = P (g(x)). If F
(resp. C) are classes of functions (resp. sets) that are time- or space-defined by
G we say that F (resp. C) is closed under polynomial slowdown if G is.

G is O-closed if, for each f ≤ G and each positive integer a, we have a · f ≤ G
(note that if f(n) > 0 for all n, then O-closure implies that (n �→ f(n) + c) ≤ G
for all integers c, i.e., additive constants “don’t matter”). If a class of functions
F or sets C are time- or space-defined by G, then F or C is O-closed if G is.

We now have the following result about the normalizing, resp. terminating,
strings over an alphabet Σ:

Theorem 5.2. Let F be an O-closed class of functions and let C ⊆ P(Σ+) be
a class of languages time-defined by G and closed under polynomial slowdown.
If there exists a C-complete set under F-reduction, then there is an S(Σ), resp.
S′(Σ), such that NORMS(Σ)(Σ), resp. TERMINS′(Σ)(Σ), is C-complete.

Thus, there are complete sets L,L′ for PTIME and EXPTIME under logspace-
reductions such that L = NORMS(Σ)(Σ), resp. L′ = TERMINS′(Σ)(Σ) for
appropriate SRS S(σ), resp. S′(Σ).

6 Conclusion and Future Work

We have considered the problem of characterizing sets of strings as the sets of
normalizing, resp. terminating, strings over a finite string rewriting system. A
number of open questions remain, the most important of which is to give precise
necessary and sufficient conditions for a set of strings to be characterizable in
this way. Other interesting problems include: (a) Which sets can be characterized
by non-overlapping rewriting systems? (b) Which sets can be characterized by
confluent rewriting systems? (c) How large is the class of characterizable sets?
(The exact notion of largeness is debatable, one suggestion is to use a suitable

464 J. Ketema and J.G. Simonsen

form of constructive measure [11]). (d) The authors of [4] identify an extensive
hierarchy of classes of McNaughton languages; can a similar hierarchy be ob-
tained in our case when Γ = Σ? (e) What are the exact closure properties under
standard operations of the class of languages characterized by normalization,
resp. termination?

References

1. Avanzini, M., Moser, G.: Closing the gap between runtime complexity and polytime
computability. In: Proceedings of the 21st International Conference on Rewriting
Techniques and Applications (RTA 2010). Leibniz International Proceedings in
Informatics, vol. 6, pp. 33–48 (2010)

2. Béal, M.-P., Crochemore, M., Mignosi, F., Restivo, A., Sciortino, M.: Computing
forbidden words of regular languages. Fundamenta Informaticae 56(1-2), 121–135
(2003)

3. Béal, M.-P., Mignosi, F., Restivo, A., Sciortino, M.: Forbidden words in symbolic
dynamics. Advances in Applied Mathematics 25, 163–193 (2000)

4. Beaudry, M., Holzer, M., Niemann, G., Otto, F.: McNaughton families of languages.
Theoretical Computer Science 290(3), 1581–1628 (2003)

5. Book, R.: Thue systems as rewriting systems. Journal of Symbolic Computa-
tion 3(1-2), 39–68 (1987)

6. Book, R., Otto, F.: String Rewriting. Texts and Monographs in Computer Science.
Springer (1993)

7. Chomsky, N.: Syntactic Structures. Mouton & Co. (1957)
8. Choppy, C., Kaplan, S., Soria, M.: Complexity analysis of term-rewriting systems.

Theoretical Computer Science 67(2&3), 261–282 (1989)
9. Davis, M.: Computability and Unsolvability. Dover Publications Inc. (1982) (Orig-

inally published in 1958 by McGraw-Hill Book Company)
10. Jones, N.D.: Computability and Complexity from a Programming Perspective. The

MIT Press (1997)
11. Lutz, J.H.: The dimensions of individual strings and sequences. Information and

Computation 187(1), 49–79 (2003)
12. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal

languages. Journal of the Association for Computing Machinery 35(2), 324–344
(1988)

13. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall Series in
Automatic Computation. Prentice-Hall (1967)

14. Nivat, M.: On some families of languages related to the Dyck language. In: Pro-
ceedings of the 2nd Annual ACM Symposium on Theory of Computing (STOC
1970), pp. 221–225 (1970)

15. Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Thomson Course
Technology (2006)

16. Terese (ed.): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

Geometry and Dynamics of the Besicovitch

and Weyl Spaces�

Ville Salo1 and Ilkka Törmä2

1 TUCS – Turku Centre for Computer Science, Finland,
University of Turku, Finland

vosalo@utu.fi
2 University of Turku, Finland

iatorm@utu.fi

Abstract. We study the geometric properties of Cantor subshifts in the
Besicovitch space, proving that sofic shifts occupy exactly the homotopy
classes of simplicial complexes. In addition, we study continuous func-
tions that locally look like cellular automata and present a new proof for
the nonexistence of transitive cellular automata in the Besicovitch space.

Keywords: symbolic dynamics, subshifts, cellular automata, Besicov-
itch pseudometric, Weyl pseudometric.

1 Introduction

In the field of symbolic dynamics and cellular automata, the Besicovitch and
Weyl topologies (called global topologies in this article) have become objects
of profound interest. The Besicovitch space was introduced in [4] to study the
chaoticity of cellular automata, and thus, research has mainly concentrated in the
dynamical properties of CA on the global spaces. However, not much is known
about the geometry of Cantor subshifts in these spaces. This is an interesting
direction of research, since in the zero-dimensional Cantor topology, we cannot
really talk about the ‘shape’ of objects.

In Section 3 we prove some basic topological results about subshifts with the
Besicovitch topology. The proofs for these results are extensions of the techniques
used in [3] and [5] to prove the path-connectedness of the full shift. We then
refine these results, proving that sofic shifts exhibit exactly the same homotopy
equivalence classes as simplicial complexes.

In Section 4, we present the unrelated result that on the full shift, cellular
automata are exactly those continuous functions that locally look like cellular
automata. The main interest of our proof is the use of a topology on the space of
all cellular automata. We also give a new proof for the nonexistence of transitive
cellular automata on the Besicovitch space. This result was first proved in [2]
using Kolmogorov complexity and later in [1] with dimension theory. We present
a measure theoretical argument, and to the best of our knowledge, this is a first
application of ‘pure’ measure theory in the study of the global spaces.

� Research supported by the Academy of Finland Grant 131558

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 465–470, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

466 V. Salo and I. Törmä

2 Definitions

Let Σ be a finite state set, and denote by H(u, v) the Hamming distance between
two words u, v ∈ Σ∗ of equal length. We define three different pseudometrics on
the full shift ΣZ. The Cantor topology is given by the metric dC(x, y) = 2−δ

where δ = min{|i| | xi �= yi}, the Besicovitch topology by the pseudometric

dB(x, y) = lim sup
n∈N

H(x[−n,n], y[−n,n])

2n+ 1
,

and the Weyl topology by the pseudometric

dW (x, y) = lim sup
n∈N

max
m∈Z

H(x[m−n,m+n], y[m−n,m+n])

2n+ 1
.

The latter two are referred to as the global topologies. For two configurations
x, y ∈ ΣZ, we denote x ∼B y if dB(x, y) = 0, and x ∼W y if dW (x, y) = 0.
In general, for each topological concept (when the meaning is obvious) we use
the terms concept, B-concept and W-concept when the Cantor, Besicovitch or
Weyl topology, respectively, is used on ΣZ. The term G-concept is used, when
the discussion applies to both of the global topologies. If X ⊂ ΣZ, we define the
G-projection of X as X̃ = {y ∈ ΣZ| ∃x ∈ X : x ∼G y}.

A subshift X ⊂ ΣZ is defined by a set of words F ⊂ Σ∗ as the set of con-
figurations in which no word from F occurs. If F is a regular language, we say
X is sofic. Alternatively, a sofic shift is the set of labels of bi-infinite paths on
a labeled graph [6]. We define Ln(X) to be the set of words of length n occur-
ring in X , and L(X) =

⋃
n Ln(X). We say X is transitive, if for all u, v ∈ L(X)

there exists w ∈ L(X) with uwv ∈ L(X), and mixing, if |w| can be chosen as any
number greater than a universal constant (the mixing distance of X). A strongly
connected component of the minimal defining graph is a transitive component
of a sofic shift. A cellular automaton is a function f from ΣZ to itself defined by
a local rule F : Σ2r+1 → Σ by f(x)i = F (x[i−r,i+r]).

Let X and Y be topological spaces. Two continuous functions f, g : X → Y
are said to be homotopic, if there exists a continuous function h : [0, 1]×X → Y
such that h(0, x) = f(x) and h(1, x) = g(x) for all x ∈ X , and h is then a
homotopy between f and g. We say two spaces X , Y are homotopy equivalent if
there exist two continuous functions f : X → Y and g : Y → X such that g ◦ f
is homotopic to idX and f ◦ g to idY .

An n-simplex is an n-dimensional polytope which is the convex hull of its
n+ 1 vertices. A simplicial complex is a collection K of simplices such that any
face of an element of K is in K, and any intersection of two simplices of K is
their common face. An abstract simplicial complex with vertices in a finite set V
is a collection K ⊂ 2V closed under subsets. The corresponding complex can be
realized in R|V | by mapping V via f to a set of linearly independent points, and
for all T ∈ K, including the convex hull of f(T). A complex (abstract or not) is
frequently identified with the corresponding subset of some Euclidean space.

Geometry and Dynamics of the Besicovitch and Weyl Spaces 467

3 Sofic Shifts and Simplicial Complexes

We will only work with one-way subshifts (subsets of ΣN) and assume that all
transitive components are mixing in this section. Generalizing our results to
arbitrary two-way subshifts is straightforward. We note that if X is a one-way
sofic shift and x ∈ X , then x ∈ Ỹ for a mixing component Y ⊂ X .

Definition 1. We define the function U : [0, 1] → {0, 1}N in the following
way: Partition N into the intervals [2n−1 − 1, 2n − 1) for n > 0. The result-
ing partition is called N . Then, define U(x) by filling each [a, b) ∈ N with
0�x(b−a)�1�(1−x)(b−a)�.

It is not hard to verify that U is B-continuous (but not W-continuous). In Def-
inition 2, we modify the paths obtained in Definition 1 to find paths between
points of a sofic shift.

Lemmas 1 and 2 are the basis of our main results, Theorem 2 and Theorem 3.

Lemma 1 (Theorem 2.2.3 in [7]). Let X be a topological space, Y ⊂ Rn, and
f, g : X → Y continuous functions. If for each point x ∈ X and all r ∈ [0, 1] we
have that rf(x) + (1 − r)g(x) ∈ Y , then f and g are homotopic.

Definition 2. For a mixing sofic shift X with mixing distance m, two points
x, y ∈ X and r ∈ [0, 1], define the point AX(r, x, y) ∈ X as follows. For all i ∈ N
such that i ∈ [a+m, b−m) for some [a, b) ∈ N , we define

AX(r, x, y)i =

{
xi, if U(r)[i,i+m) = 0m

yi, if U(r)(i−m,i] = 1m
.

The part left undefined has zero density, and can be filled to obtain a point of
X. It is clear that the resulting average function AX : [0, 1] × X2 → X is B-
continuous, and we extend it to X̃ in a continuous way.

Using the average function AX , the following version of Lemma 1 for the Besi-
covitch space is easy to prove:

Lemma 2. Let X be a topological space, Y a sofic shift and f, g : X → Y
B-continuous functions. If for all x ∈ X, there exists a transitive component
Zx of Y such that f(x) ∈ Z̃x and g(x) ∈ Z̃x, then the functions f and g are
B-homotopic. In particular, a mixing sofic shift is B-contractible.

The following result follows by constructing, for a configuration x ∈ ΣZ with
dG(x,X) = 0, a specific point y ∈ X by greedily selecting maximally long words
from x that appear in X , and mixing them together. If dG(x, y) > 0, we can
derive a contradiction by choosing a point z ∈ X much closer to x than y, and
comparing it to y, showing that the greedy process must have made a wrong
choice.

Theorem 1. Let X be a sofic shift. Then X̃ is G-closed.

468 V. Salo and I. Törmä

Using the concept of homotopy equivalence, we are able to prove a strong connec-
tion between simplicial complexes and B-sofic shifts, namely that they occupy
the exact same homotopy equivalence classes. We only sketch the proofs. We
believe that analogous results hold also in the Weyl topology.

Theorem 2. Let K be an abstract simplicial complex. Then there exists a sofic
shift X such that X̃ is B-homotopy equivalent to K.

Proof. Let K have n vertices, and choose a realization for K in some Euclidean
space. We label the vertices of K with the numbers [1, n], and for all S ∈ K, we
let XS be the full shift over the alphabet S ⊂ [1, n]. Denote also X =

⋃
S∈K XS ,

so that X is a union of full shifts, each corresponding to a simplex of K.
We skip the construction of the functions inducing the homotopy equivalence.

It is enough to continuously map every simplex of K to the corresponding full
shift and vice versa, and the lemmas 1 and 2 finish the proof. �

The converse for Theorem 2 is slightly more complicated.

Theorem 3. Let X be a sofic shift. Then there exists a simplicial complex K
which is B-homotopy equivalent to X̃.

Proof. The complex K is constructed as follows. Let T be the set of transitive
components of X . For all R ⊂ T , we define the B-intersection set YR =

⋂
Y ∈R Ỹ .

The vertices of K are the minimal nonempty YR with respect to inclusion, and
the simplices of K are those collections S = {YR1 , . . . YRk

} for which the union⋃
i YRi is a subset of a unique minimal YR (minimal among those that contain

the union as a subset).
We again skip the (now more technical) construction of the homotopy equiv-

alence. We again continuously map each simplex S to the corresponding unique
YR and vice versa, using the averaging functions AT for T ∈ T , and projec-
tions and suitably weighted averages of points on the complex K. Lemma 1 and
Lemma 2 then imply the homotopy equivalence. �

4 CA-Like Functions and B-Nontransitivity of CA

Cellular automata are exactly the shift-commuting continuous self-maps of ΣZ,
but form a proper subclass of shift-commuting B-continuous functions [3]. We
now prove that the functions that locally look like CA have to be CA themselves.

Definition 3. We say a B-continuous B-shift-commuting map f on a subshift
X is CA-like if for each x ∈ X, there exists a CA gx such that f(x) ∼B gx(x).

Theorem 4. A CA-like function f on ΣZ is a CA.

Proof. We show that f behaves as the same cellular automaton on all x ∈ ΣZ.
For this, let z ∈ ΣZ be a random configuration drawn from the uniform Bernoulli
measure. Let p : [0, 1] → SZ be a path from x to z defined by p(r) = AΣZ(r, x, z).

Geometry and Dynamics of the Besicovitch and Weyl Spaces 469

For all r ∈ (0, 1], the cellular automaton gp(r) is uniquely defined, since with
probability 1, every word over Σ occurs in p(r) with positive density. We define
a topology for cellular automata by the pseudometrics

dw(a, b) =

{
0, if a(∞0w0∞)0 = b(∞0w0∞)0
1, otherwise

for bidirectional finite words w, where 0 ∈ Σ is fixed. Denote the space of all
CA on ΣZ with this topology by CA.

It can be directly shown that the function h = g◦p : (0, 1] → CA is continuous
with probability 1. If h is not a constant function, we have obtained a nontrivial
path in a countable T1 space CA. This, however, is impossible, since then the
preimages of singletons give a partition of an interval into a countable number of
closed sets, which is a contradiction by a straightforward compactness argument.
Thus h is a constant map whose image is the automaton gz, and then it is easy
to see that f(x) ∼B gz(x). �

Question 1. Is this also true in the Weyl topology?

We give a new proof for the B-nontransitivity of CA using basic measure theory
and a pigeonhole argument. Recall that a CA f is B-transitive if for all x, y ∈ ΣZ

and ε > 0 there exists n ∈ N with fn(Bε(x)) ∩Bε(y) �= ∅.

Lemma 3. For all k > 1 there exists an ε > 0 such that
(
n

�nε�
)
≤ kn holds for

all n large enough.

Proof. Choose ε so that
(
e
ε

)ε
< k. For large enough n we have that(

n

�nε�

)
≤
(

nε

�nε�

)nε (ne
nε

)nε
≤ kn,

using the approximations
(
n
m

)
≤
(
ne
m

)m
and

(
x

�x�

)x
≤
(
1− 1

x

)−x −→ e. �

For a word w ∈ Ln(X), we denote [w] = {x ∈ X | x[−�n/2�,�n/2�] = w}. If
W ⊂ Ln(X), we denote [W] =

⋃
w∈W [w]. For all X ⊂ ΣZ we define L0

n(X) =
{w ∈ Σn | [w] ∩X �= ∅}. We also denote

dn(x, y) = sup
m≥n

{
H
(
x[−m,m], y[−m,m]

)
2m+ 1

}

and note that d(x, y) = lim dn(x, y). For all ε > 0 and x ∈ X , denote Bnε (x) =
{y ∈ X | dn(x, y) < ε}, and note that Bnε (x) ⊂ Bmε (x) ⊂ Bε(x) whenever n ≤ m.

Theorem 5. No cellular automaton is B-transitive on the full shift ΣZ.

Proof. Assume on the contrary that f : ΣZ → ΣZ is a B-transitive CA, and
let μ be the uniform Bernoulli measure on ΣZ. Then for all w ∈ Σ∗ we have
μ([w]) = |Σ|−|w|. Note also that f must be surjective.

470 V. Salo and I. Törmä

Now let ε and ε′ be such that ε + ε′ < 1
4 , and ε is given by Lemma 3 for

k = |Σ|ε′ . Let 0 ∈ Σ, and denote Bn = Bnε (
∞0∞). For all n, l ∈ N, define

X(n, l) = Bnε (f
l(Bn)). From the definitions of transitivity and dn, it follows

that
⋃
n,lX(n, l) = ΣZ. Since X(n, l) is clearly measurable for all n, l ∈ N,

some X = X(n0, l0) must have positive μ-measure. Define g = f l0 and B =
Bn0 ∩ g−1(Bn0

ε (X)), and let r be the radius of g.
Since μ(X) > 0, we must have |L0

n(X)| ≥ |Σ|n/2 for all large enough n. If
not, we have for arbitrarily large n that

μ(X) ≤ μ([L0
n(X)]) ≤ |Σ|n/2|Σ|−n = |Σ|−n/2,

which is a contradiction, since the rightmost term is then arbitrarily small.
We define Dn = {v ∈ Σn | H(v, 0n) ≤ nε}. Then for all n ≥ n0 we have

L0
n(B) ⊂ Dn, which implies that |L0

n(g(B))| ≤ |Σ|2r|Dn|. Since we also have
|Dn| ≤

(
n

�nε�
)
|Σ|nε and X ⊂ Bnε (g(B)), this implies that

|L0
n(X)| ≤

(
n

�nε�

)
|Σ|nε|L0

n(g(B))| ≤
(

n

�nε�

)2

|Σ|2r+2nε,

which is at most |Σ|2r+2nε+2nε′ by Lemma 3. But if n is large enough, we have
|L0
n(X)| ≥ |Σ|n/2, and thus

1 = |L0
n(X)|/|L0

n(X)| ≤ |Σ|2r+n(2ε+2ε′− 1
2),

which converges to 0 as n grows. We have reached a contradiction. �

References

1. Bienvenu, L., Sablik, M.: The Dynamics of Cellular Automata in Shift-Invariant
Topologies. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS,
vol. 4588, pp. 84–95. Springer, Heidelberg (2007)

2. Blanchard, F., Cervelle, J., Formenti, E.: Periodicity and Transitivity for Cellular
Automata in Besicovitch Topologies. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003.
LNCS, vol. 2747, pp. 228–238. Springer, Heidelberg (2003)

3. Blanchard, F., Formenti, E., Kůrka, P.: Cellular automata in the Cantor, Besicov-
itch, and Weyl topological spaces. Complex Systems 11(2), 107–123 (1997)

4. Cattaneo, G., Formenti, E., Margara, L., Mazoyer, J.: A Shift-Invariant Metric on
SZ Inducing a Non-Trivial Topology. In: Privara, I., Ružička, P. (eds.) MFCS 1997.
LNCS, vol. 1295, pp. 179–188. Springer, Heidelberg (1997)

5. Downarowicz, T., Iwanik, A.: Quasi-uniform convergence in compact dynamical
systems. Studia Math. 89(1), 11–25 (1988)

6. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge
University Press, Cambridge (1995)

7. Maunder, C.R.F.: Algebraic topology. Dover Publications Inc., Mineola (1996);
Reprint of the 1980 edition

A Generalization of Girod’s Bidirectional

Decoding Method to Codes
with a Finite Deciphering Delay

Laura Giambruno1, Sabrina Mantaci2, Jean Néraud3, and Carla Selmi3

1 LIPN UMR CNRS 7030, Université Paris-Nord, 93430 Villetaneuse, France
2 Dipartimento di Matematica e Informatica, Universitá di Palermo, 90133, Italy

3 LITIS, Université de Rouen, 76801 Saint Etienne du Rouvray, France
giambruno@lipn.univ-paris13.fr, sabrina@math.unipa.it,

{Jean.Neraud,Carla.Selmi}@univ-rouen.fr

Abstract. In this paper we generalize an encoding method due to Girod
(cf. [6]) using prefix codes, that allows a bidirectional decoding of the en-
coded messages. In particular we generalize it to any finite alphabet A, to
any operation defined on A, to any code with finite deciphering delay and
to any key x ∈ A+, on a length depending on the deciphering delay. We
moreover define, as in [4], a deterministic transducer for such generalized
method. We prove that, fixed a code X ∈ A∗ with finite deciphering de-
lay and a key x ∈ A∗, the transducers associated to different operations
are isomorphic as unlabelled graphs. We also prove that, for a fixed code
X with finite deciphering delay, transducers associated to different keys
have an isomorphic non trivial strongly connected component.

Introduction

Coding methods that allow bidirectional decoding of messages are used in order
to guarantee data integrity. When we use a variable length code for source com-
pression (cf. [9], Chapter 3), a single bit error in the transmission of the coded
word may cause catastrophic consequences during decoding, since the wrongly
decoded symbol generate loose of synchronization and the error is propagated
till the end of the file. In order to limit this error propagation, the compressed
file is usually divided into records. If just one error occurred in the coding of the
record and we are able to decode in both directions, it is possible to check the
error position, isolate it and then avoid the error propagation. For this purpose,
bifix codes, that allows instantaneous bidirectional decoding, are generally used
but they are usually too big (so do not guarantee compression), and they are
difficult to construct (cf. [3]). Prefix codes are usually very small instead, but in
spite they allow an instantaneous left-to-right decoding, the right-to-left decod-
ing requires some deciphering delay. Due to a Schützenberger famous result (cf.
[2], Chapter 3) such a delay is even infinite for maximal finite prefix codes that
are not suffix. In 1999 B. Girod (cf. [6]) introduced a encoding/decoding method,
that, even if it makes use of prefix codes, it allows an instantaneous decoding

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 471–476, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

472 L. Giambruno et al.

also from right to left by paying just few additional memory bits. In previous
papers (cf. [4], [5]) a bideterministic transducer is defined for the bidirectional
deciphering of words by the method introduced by Girod [6]. A generalization
of this method and the corresponding transducer are also introduced.

In this paper we consider two different generalizations of the Girod’s method.
The first one concerns the cardinality of the code alphabet, realized by replacing
the bitwise sum with a reversible operation defined by a latin square map. The
second one concerns codes with finite deciphering delay (f.d.d.). The prominent
part played by these codes is largely illustrated by deep combinatorial results,
such as the two famous theorems of Schützenberger concerning their minimality
[cf. [2], Chapter 5]. For this reason, it is natural to wonder what happens when, in
a Girod’s encoding/decoding suitable generalization, the prefix code is replaced
by a code with some f.d.d. Our results allow to get a bidirectional f.d.d. equal
to the minimal f.d.d. between the code and its reverse. We also show that the
transducers for the same code associated to different keys have an isomorphic
non trivial strongly connected component. This property emphasizes the deep
connections between variable lengths codes and irreducible shifts (cf. [8]).

In Section 1 we introduce some preliminary notions on codes and transduc-
ers. In Section 2 we define latin square maps and we describe the generaliza-
tion of Girod’s method to f.d.d. codes. In Section 3 we give the algorithm for
constructing the deterministic transducer that realizes the left-to-right and the
right-to-left decoding by the generalized method. We show that the transducers
realizing left-to-right and right-to-left decoding of the same inputs are isomor-
phic as graphs. We moreover show that the transducers over a given f.d.d. code
X ⊂ A+ and key x ∈ A∗, are isomorphic as unlabeled graphs, independently
from the latin square maps used for encoding. In Section 4 we show that, for
a given f.d.d. code X over a fixed alphabet A, the transducers associated to
different keys have an isomorphic non trivial strongly connected component.

1 Preliminaries: Codes and Transducers

Let B and A be two alphabets, that we call respectively source alphabet and
channel alphabet. Let γ : B → A∗ be a map that associates to each element
b in B a nonempty word over A. We extend this map to words over B by
γ(b1 . . . bn) = γ(b1) . . . γ(bn). We say that γ is an encoding if γ(w) = γ(w′)
implies that w = w′. For each b in B, γ(b) is said a codeword and the set of all
codewords is said a variable length code, or simply a code. In what follows we
denote by xi = γ(bi) and by X = {x1, . . . , xm} the code defined by γ. A decoding
is the inverse operation than encoding i.e. the decoding of γ is the function γ−1

restricted to γ(B∗). A set Y over A∗ is said a prefix set (resp. suffix set) if no
element of Y is a prefix (resp. a suffix) of another element of Y . Since one can
prove that any prefix and any suffix set different from {ε} is a code, we call them
prefix and suffix codes, respectively. Words obtained by encoding a word in the
source alphabet by a prefix code, can be decoded without delay in a left-to-right
parsing.

A Generalization of Girod’s Bidirectional Decoding Method 473

Let X ⊂ A∗ be a code and let d be a nonnegative integer. X is a code with
finite deciphering delay (f.d.d. in short) d if for any x, x′ ∈ X, x �= x′, we have

xXdA∗
⋂

x′X∗ = ∅.

The delay of X is the smallest integer d for which this property is verified. If
such an integer does not exist we say that X has infinite deciphering delay.

For instance any prefix code is a code with a f.d.d. d = 0. As another example,
the code Xd = {01, (01)d1} ⊂ A∗, A = {0, 1} is a code with f.d.d. d for any d ≥ 0.
In fact, (01)XdA∗⋂(01)d1X∗ = ∅. The code X = {0, 01, 11} ⊂ A∗ is a code with
infinite deciphering delay. In fact, 0(11)d1 ∈ 0XdA∗⋂ 01X∗ for all d ≥ 1. For u
in A∗ we denote by ũ the reverse of u. For X = {x1, x2, . . . , xn}, we define the

set X̃ = {x̃1, x̃2, . . . , x̃n}. We denote by Pref (X) (Suff (X)) the set of prefixes
(suffixes) of words in X . For u ∈ A∗, for k ≤ |u|, we denote by prefk(u) (suffk(u))
the prefix (suffix) of u of length k and by suff−k(u) the suffix of u of length |u|−k.

A finite sequential transducer T (cf. [10], [7] Chapter 1) is defined over an input
alphabet A and an output alphabet B. It consists of a quadruple T = (Q, i, F, δ),
where Q is a finite set of states, i is the unique initial state, δ is a partial function
Q×A −→ B∗ ×Q which breaks up into a next state function Q×A −→ Q and
an output function Q×A −→ B∗. The elements (p, a, δ(p, a)) = (p, a, v, q), with
p, q ∈ Q, a ∈ A and v ∈ B∗, are called edges. In this case we call a the input label
and v the output label. F is a partial function F : Q −→ B∗ called the terminal
function.

2 Generalization of Girod’s Method to f.d.d. Codes

It is well known that a prefix code can be decoded without delay in a left-to-right
parsing while it can not be as easily decoded from right to left. In 1999 B. Girod
(cf. [6]) introduced a very interesting alternative coding method using finite
prefix codes on binary alphabets. It applies a transformation to a concatenation
of codewords in a prefix code X that allows the deciphering of the coded word
in both directions, by adding to the messages just as many bits as the length
the longest word in X . We generalize this method to codes over alphabets with
cardinality greater than two and with a f.d.d.

Let A = {0, . . . , n} and f be a map from A × A into A. For all a ∈ A, we
denote by f(a,·) (resp. f(·,a)) the map from A into A defined by f(a,·)(x) = f(a, x)
(resp. f(·,a)(x) = f(x, a)), ∀x ∈ A. They are called the components of f . A map
f : A×A −→ A is said a latin square map on A if, for each a ∈ A, its components
f(a,·) and f(·,a) are bijective. A latin square map on A is defined by a square array
of size n+1 where each line and each column contain one and only one occurrence
of i, for all 0 ≤ i ≤ n.

Example 1. If A = {0, 1, 2}, the following matrix defines a latin square map:

g 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

474 L. Giambruno et al.

We remark that the bijectivity of the components of a latin square map f implies
that there exists only one solution to the equation f(a, b) = c, when one element
among a, b or c is unknown. We can define two different “inverse” latin square
maps associated to a given map f . For a, b, c ∈ A such that f(a, b) = c, we define
the inverse maps f−1

1 , f−1
2 as f−1

1 (c, b) = a and f−1
2 (a, c) = b. The corresponding

square arrays can be easily computed in this way:

– for each c, b ∈ A, we define a = f−1
1 (c, b) as the index of the row in the b-th

column that contains the element c;

– for each c, a ∈ A, we define b = f−1
2 (a, c) as the index of the column in the

a-th row that contains the element c;

Let X = {x1, . . . , xm} be a code with f.d.d. d on an alphabet A, encoding the
alphabet B = {b1, . . . , bm} by γ(bi) = xi. The words of X are named codewords.
Let f be a latin square map on A. We extend f to the elements of Ak × Ak,
k ≥ 1, by f(a1 . . . ak, a

′
1 . . . a

′
k) = f(a1, a

′
1) . . . f(ak, a

′
k). Let l be the length of

the longest word in X and let xL be a word in A+ of length L = (d + 1)l. Let
b = bi1 . . . bit ∈ B∗ and let y = γ(b) = xi1 . . . xit , with xij ∈ X , its encoding.
Consider y′ = x̃i1 . . . x̃it where x̃ij represents the reverse of xij . Consider the
word z = f(yxL, x̃Ly

′). We define an encoding δ from B∗ to A∗ by δ(b) = z. We
can realize a left-to-right decoding of z by proceeding in the following way:

1. We first consider the words v := x̃L and t := z, t′ := prefL(t).

2. The word u = f−1
1 (t′, v) is a prefix of y with length L, then has a prefix which

is product of at least (d+1) codewords of X , that is u = xi1 . . . xid+1
u′, with

xij ∈ X , u ∈ A∗. Since X is a code with a f.d.d. d, we can state that the
factorization of u begins with xi1 . Then the decoding of z begins with bi1 .

3. Let v :=suffL(vx̃i1) and let t :=suff−|xi1 |(t) and t
′ =prefL(t). Back to step 2

we compute u = f−1
1 (t′, v), and since u has length L, we are able to recognize

the first codeword of u, xi2 . Then the decoding of z begins with bi1bi2 .

4. The algorithm stops when |t| = L.

For instance consider the code X = {01, 012} with f.d.d. d = 1 encoding
B = {b1, b2}. We use the latin square map g of Example 1 and its inverse
g−1
1 and we choose as key xL = 011011. Let y = (012)(01)(01)(012)(012) and
y′ = (210)(10)(10)(210)(210). The encoding, performed by applying g to the
pair (yxL, x̃Ly

′), gives the sequence z = 2022002211002101101.
In order to decode z from left to right, we first consider u =

g−1
1 (202200, 110110) = 012010. Since u has length 6, we are able to recognize
the first codeword 012: the decoding of z begins with b2. After, we consider
v = 110210 and t′ = 200221 and u = g−1

1 (110210, 200221) = 010101 = (01)0101:
the decoding of z begins with b2b1. By proceeding this way we get the entire
decoding of the message.

We remark that, by reversing the roles of yxL and x̃Ly
′, we can decode the

word form right to left, just by using the information that the first word ends
with xL and that the inverse latin square map g−1

2 allows to get b from c and a.

A Generalization of Girod’s Bidirectional Decoding Method 475

3 Transducers for Decoding

Let X = {x1, . . . , xm} ∈ A+ be a code with f.d.d. d encoding the alphabet
B = {b1, . . . , bm}. Let xL ∈ A∗ with |xL| = L = (l+1)d, where l is the length of
the longest word in X , and let f be a latin square map on A. For any sequence z
of codewords in X , consider the encoding δ given by the generalization of Girod’s
method. The left-to-right decoding method given in the previous section can be
described by the transducer, T (X)f,xL = (Q, i, δ, F) defined as follows:

1. Q contains pairs of words (u, v) such that: a) u ∈ Pref (Xd+1) \Xd+1; b) v

is a a word in Suff(x̃L)Suff(X̃
d+1) of length L− |u|.

2. The initial state i = (ε, x̃L).
3. δ is defined as: a) δ((u, av), c) = (ε, (ub, v)) if b = f−1

1 (c, a), ub ∈Pref (Xd+1)
and ub /∈ Xd+1; b) δ((u, av), c) = (bi1 , (xi2 . . . xid+1

, vx̃i1)) if b = f−1
1 (c, a)

and ub = xi1xi2 . . . xid+1
∈ Xd+1. In all remaining cases the transitions are

undefined.
4. F is defined only for the accessible states of the form (u, v), u = x1 . . . xd ∈

Xd, as the word b1 . . . bd ∈ Bd.

For instance, if X = {0, 01} is a code with d = 1, encoding B = {b1, b2} and we
use for decoding the map g of Example 1 and the key xL = 0101, we obtain the
left-to-right decoding Girod’s transducer associated to X in Figure 1:

(ε, 1010 0, 010 0, 100 0, 000

01, 0001, 10

2|ε 0|b1 2|b1

0|ε
1|ε

0|b1

0|b2
1|ε2|b2

Fig. 1. Transducer T for the left-to-right decoding of X = {0, 01} for xL = 0101 over
B = {b1, b2}

Analogously can define the transducer T̃ (X)f,xL for the right-to-left decoding.

Proposition 3.1. Let T (X)f,xL (resp. T̃ (X)f,xL) be the transducers defined as
above. The following results hold:

1. T (X)f,xL (resp. T̃ (X)f,xL) realizes the left-to-right (resp. right-to-left) de-
coding δ−1 on the encoded word z, by reading the prefix (resp. the suffix) of
length |z| − L of z. Moreover this transducer is deterministic.

2. T (X)f,xL and T̃ (X)f,xL are isomorphic as unlabelled graphs. If f is a com-
mutative latin square map then they are also isomorphic as transducers.

476 L. Giambruno et al.

3. T (X)f,xL and T (X)g,xL are isomorphic as unlabelled graphs, for all pair of
latin square maps f and g on A.

4 A Remarkable Strongly Connected Component

In this section we examine from the graph theory point of view the transducer
T (X)f,xL = (Q, i, F, δ) defined in the previous sections. According to the re-
sults of Section 3, given two edges ((u, v), i, c, (u′, v′)), ((u, v), j, d, (u”, v”)) in
T (X)f,xL , if i �= j, then (u′, v′) �= (u”, v”). Then the graph G(X)xL , obtained
by removing the labels from the transitions of T (X)f,xL is well defined, i.e. there
do not exist two different arrows connecting two fixed nodes.

We define C(G(X)xL) as the subgraph of G(X)xL whose vertices are elements

of Xd (Pref (X) \X)× (Suff (X̃+)\{ε}), and whose edges are those in G(X)xL

connecting vertices in the subgraph. It can be proved that given a vertex (u, v)
of C(G(X)xL), any vertex accessible from (u, v) is a vertex of C(G(X)xL).

Proposition 4.2. The following facts hold:

1. C(G(X)xL) is a strongly connected component of G(X)xL .
2. Given a code with a f.d.d. X, and a key xL, C(G(X)xL) is the unique non

trivial strongly connected component of G(X)xL which is accessible from any
vertex of G(X)xL .

Theorem 4.3. Given a code X with a f.d.d., a unique graph C(X) exists such
that C(X) = C(G(X)xL), for any key xL.

References

1. Béal, M.-P., Berstel, J., Marcus, B.H., Perrin, D., Reutenauer, C., Siegel, P.H.:
Variable-length codes and finite automata. In: Woungang, I. (ed.) Selected Topics
in Information and Coding Theory. World Scientific (to appear)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press (2010)

3. Fraenkel, A.S., Klein, S.T.: Bidirectional Huffman Coding. The Computer Jour-
nal 33, 296–307 (1990)

4. Giambruno, L., Mantaci, S.: Transducers for the bidirectional decoding of prefix
codes. Theoretical Computer Science 411, 1785–1792 (2010)

5. Giambruno, L., Mantaci, S.: On the size of transducers for bidirectional de-
coding of prefix codes. Rairo-Theoretical Informatics and Applications (2012),
doi:10.1051/ita/2012006

6. Girod, B.: Bidirectionally decodable streams of prefix code words. IEEE Commu-
nications Letters 3(8), 245–247 (1999)

7. Lothaire, M.: Applied combinatorics on words. Encyclopedia of mathematics and
its applications, vol. 104. Cambridge University Press (2005)

8. Lind, D., Marcus, B.: An introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press (1995)

9. Salomon, D.: Variable-Length Codes for Data Compression. Springer (2007)
10. Sakarovitch, J.: Éléments de théorie des automates. Vuibert Informatique (2003)

Author Index

Béal, Marie-Pierre 62
Blanchet-Sadri, Francine 404
Blondin Massé, Alexandre 308
Boiret, Adrien 273
Brzozowski, Janusz 50
Büchse, Matthias 368

Cadilhac, Michaël 239
Caralp, Mathieu 226
Carton, Olivier 263
Champarnaud, Jean-Marc 62
Chen, Haiming 332
Csuhaj-Varjú, Erzsébet 7

Dennunzio, Alberto 320
Dubernard, Jean-Philippe 62

Ésik, Zoltan 142

Fazekas, Szilárd Zsolt 428
Finkel, Alain 239
Flick, Nils Erik 452
Formenti, Enrico 320

Gaboury, Sébastien 308
Gandhi, Aniruddh 392
Geffert, Viliam 166
Giambruno, Laura 471

Hallé, Sylvain 308
Han, Yo-Sub 85
Hoffmann, Michael 97
Holt, Derek F. 97
Holzer, Markus 109, 190
Hromkovič, Juraj 24

Iwama, Kazuo 23

Jakobi, Sebastian 109, 190
Jeanne, Hadrien 62
Jiao, Yang 404
Jirásková, Galina 380

Kapoutsis, Christos A. 202
Karhumäki, Juhani 296

Kari, Jarkko 40
Ketema, Jeroen 459
Khoussainov, Bakhadyr 392
Kĺıma, Ondřej 344
Ko, Sang-Ki 85
Královič, Rastislav 24
Královič, Richard 24
Krebs, Andreas 178
Kudlek, Manfred 452
Kutrib, Martin 214

Lange, Klaus-Jörn 178
Lavado, Giovanna J. 284
Lefebvre, Nans 202
Lehtinen, Tommi 154
Lemay, Aurélien 273
Liu, Jiamou 392
Lombardy, Sylvain 62
Lu, Ping 332

Machacek, John M. 404
Malcher, Andreas 214
Maletti, Andreas 368
Manea, Florin 416
Mantaci, Sabrina 471
McKenzie, Pierre 239
McQuillan, Ian 109
Mercaş, Robert 428
Mráz, Frantǐsek 251
Müller, Mike 416

Néraud, Jean 471
Nevisi, Hossein 440
Niehren, Joachim 273
Nowotka, Dirk 416

Okawa, Satoshi 142
Okhotin, Alexander 121, 154
Otto, Friedrich 356
Owens, Matthew D. 97

Pardubská, Dana 166
Pighizzini, Giovanni 284
Polák, Libor 344
Provillard, Julien 320

478 Author Index

Pr̊uša, Daniel 251
Puzynina, Svetlana 296

Reidenbach, Daniel 130, 440
Reynier, Pierre-Alain 226

Saarela, Aleksi 296
Salo, Ville 465
Salomaa, Kai 85
Schmid, Markus L. 73, 130
Seki, Shinnosuke 284
Selmi, Carla 471
Shallit, Jeffrey 380

Shikishima-Tsuji, Kayoko 428
Simonsen, Jakob Grue 459
Štefanec, Richard 24
Szilard, Andrew L. 1

Talbot, Jean-Marc 226
Tamm, Hellis 50
Thomas, Richard M. 97
Törmä, Ilkka 465

Vogler, Heiko 368

Wendlandt, Matthias 214

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	The Kind Hearted DragonProf. Sheng Yu, 1950-2012
	References

	P and dP Automata:Unconventional versus Classical Automata
	Introduction
	Preliminaries
	P Automata
	Discussion of Features of P Automata
	Accepting Power of P Automata
	dP Automata
	Accepting Power of dP Automata
	Multi-head Finite Automata versus Finite dP Automata
	Conclusions
	References

	Recovering Strings in Oracles:Quantum and Classic
	Determinism vs. Nondeterminismfor Two-Way Automata
	Introduction
	Liveness Problems
	Reasonable Automata
	Main Results
	Lower Bounds
	Upper Bounds

	Conclusion
	References

	Cellular Automata, the Collatz Conjectureand Powers of 3/2
	Introduction
	Definitions
	A Universal Pattern Generator
	Strong Pattern Generation
	Relation to Some Open Problems in Number Theory
	Mahler's Z-Numbers
	Collatz Function

	Concluding Remarks
	References

	Regular Papers
	Quotient Complexitiesof Atoms of Regular Languages
	Introduction
	Upper Bounds on the Quotient Complexities of Atoms
	Automata and Átomata of Regular Languages
	The Witness Languages and Automata
	Tightness of the Upper Bounds
	Conclusions
	References

	Decidability of Geometricityof Regular Languages
	Introduction
	Geometrical Languages
	Semilinear Sets
	Regular Geometrical Languages
	References

	Inside the Class of REGEX Languages
	Introduction
	General Definitions
	Patterns with Regular Operators and Types
	Pattern Expressions
	REGEX
	REGEX with a Bounded Number of Backreferences
	References

	Computing the Edit-Distance between a Regular Language and a Context-Free Language
	Introduction
	Preliminaries
	Edit-Distance
	The Edit-Distance between an RL and a CFL
	Alignment PDA
	Computing an Optimal Alignment from A(A,P)

	Edit-Distance and Unary Homomorphism
	References

	Semigroups with a Context-Free Word Problem
	Introduction
	Preliminaries
	Semigroups with Context-Free Word Problem
	Finite Rees Index
	Completely Simple Semigroups
	Rational Semigroups and Linear World Problems
	References

	Generalized Derivations with Synchronized Context-Free Grammars
	Introduction
	Preliminaries
	Transducer Synchronization
	Unary Transducers
	References

	Non-erasing Variants of the Chomsky–Sch¨utzenberger Theorem
	Introduction
	Normal Form
	Homomorphic Characterization of Even-Length Languages
	Characterizations
	Concluding Remarks
	References

	Regular and Context-Free Pattern Languages over Small Alphabets
	Introduction
	Definitions and Known Results
	Regularity and Context-Freeness of Pattern Languages: Sufficient Conditions and Necessary Conditions
	Regularity of E-Pattern Languages: A Sufficient Condition Taking Terminal Symbols into Account
	References

	On Context-Free Languages of Scattered Words
	Introduction
	Basic Notions
	Linear Orderings
	Words and Languages

	Linear Context-Free Languages
	Context-Free Languages of Scattered Words of Bounded Rank
	Operational Characterization of BCFLs of Scattered Words
	An Application
	Future Research
	References

	Homomorphisms Preserving Deterministic Context-Free Languages
	Introduction
	Context-Free Languages and Their Special Cases
	Codes and Their Deciphering Delay
	Codes Preserving Deterministic and LL Context-Free Languages
	Non-codes Preserving Deterministic and LL Context-Free Languages
	References

	Unary Coded NP-Complete Languages in ASPACE (log log n)
	Introduction
	Preliminaries
	Encoding Boolean Formulas
	Encoded 3-Satisfiability
	Conclusion
	References

	Dense Completeness
	Introduction
	Preliminaries
	The Context-Free Languages and the Class SAC1
	The One-Counter Languages and the Class NL
	The Indexed Languages and the Class NP
	The Regular Languages and the Class NC1
	Discussion
	References

	From Equivalence to Almost-Equivalence, and Beyond—Minimizing Automata with Errors
	Introduction
	Preliminaries
	Finite Automata Equivalence, Minimization, and Related Problems
	Equivalence Problems
	Canonical Languages
	Minimization Problems
	Deciding Minimality

	Counting Minimal Automata
	References

	Analogs of Fagin’s Theoremfor Small Nondeterministic Finite Automata
	Introduction
	Preparation
	Nondeterministic Finite Automata
	Monadic Second-Order Logic with Successor

	Existential Anchor-Slide Sentences
	From Automata to Formulas
	From Formulas to Automata
	Conclusion
	References

	States and Heads Do Countfor Unary Multi-head Finite Automata
	Introduction
	Preliminaries and Definitions
	State and Head Double Hierarchy
	Head Hierarchy for Stateless Finite Automata
	Four States Are Too Much for Two-Head Automata
	References

	Visibly Pushdown Automata with Multiplicities: Finiteness and K-Boundedness
	Introduction
	Definitions
	Preliminaries
	Visibly Pushdown Automata with Multiplicities

	Relating Tree Automata and VPA
	Characterization and Decision of Infinite N-VPA
	Characterization
	Decidability of Finiteness

	Finite Bounds for N-VPA
	Deciding K-Bounded Multiplicity
	Deciding K-Bounded Multiplicity (for a Fixed K)

	Back to Trees
	References

	Unambiguous Constrained Automata
	Introduction
	Preliminaries
	Closure Properties and Expressiveness of UnCA
	Decision Problems for UnCA
	A Deterministic Form of UnCA
	Conclusion
	References

	Two-Dimensional Sgraffito Automata
	Introduction
	Preliminaries
	Sgraffito Automata
	Closure Properties
	A Taxonomy of Picture Languages
	Conclusions
	References

	Two-Way Transducers with a Two-Way Output Tape
	Introduction
	Two-Way Transducers
	Rational Relations and One-Way Transducers
	Special Case

	Deterministic Two-Way Transducers
	Conclusion
	References

	Learning Rational Functions
	Introduction
	Rational Functions
	Transducers with Look-Ahead
	Building the Look-Ahead Automaton
	The Learning Algorithm
	Characteristic Samples
	References

	Converting Nondeterministic Automata and Context-Free Grammars into Parikh Equivalent Deterministic Automata
	Introduction
	Preliminaries
	From NFAs to Parikh Equivalent DFAs
	From CFGs to Parikh Equivalent DFAs
	Conclusion
	References

	Fine and Wilf ’s Theorem for k-Abelian Periods
	Introduction
	Preliminaries
	Existence of Bounds
	Initial 2-Abelian Periods
	General Upper Bounds
	Conclusion
	References

	Pseudoperiodic Words
	Introduction
	Definitions and Notation
	Words
	Permutations
	Pseudopalindromes
	Generalized Pseudostandard Words
	Pseudoperiodicity
	Graphs

	Fine and Wilf's Theorem
	Pseudocentral Words
	Concluding Remarks and Future Work
	References

	Acceptance Conditions for ω-Languages
	Introduction
	Notations and Background
	The Accepting Conditions A and A� and the Borel Hierarchy
	The Accepting Conditions (ninf,) and (ninf,)
	Towards a Characterization of (fin, =) and (fin,)
	Conclusions
	References

	Checking Determinism of Regular Expressions with Counting
	Introduction
	Preliminaries
	Computing followlast Sets
	Properties of Expressions in RE(#)
	Strong Determinism
	Adaption to Weak Determinism
	The Local Nondeterminism-Locating Feature and Discussion
	References

	Biautomata for k-Piecewise Testable Languages
	Introduction
	Preliminaries
	Piecewise Testable Languages and Syntactic Monoids
	Biautomata for Piecewise Testable Languages

	Proof of the Theorem
	Estimates Using J-Trivial Monoids
	Concluding Remarks
	References

	On Centralized PC Grammar Systems with Context-Sensitive Components
	Introduction
	The Complexity Classes NSPACE(n) and NEXT
	Centralized PC Grammar Systems
	String-Rewriting Systems
	The Main Result
	Concluding Remarks
	References

	Unidirectional Derivation Semantics for Synchronous Tree-Adjoining Grammars
	Introduction
	Preliminaries
	Synchronous Tree-Adjoining Grammars
	Relating STAG and XTOP
	Bimorphism Semantics
	Relating STAG and XTOP, Again
	Results
	References

	The State Complexity of Star-Complement-Star
	Introduction
	Upper Bound
	Lower Bound
	Applications
	References

	On State Complexity of Finite Word and Tree Languages
	Introduction
	Preliminaries
	Finite Language with Bounded Word Length
	Union and Intersection of Finite Languages
	Tree Automata and Tree Languages
	References

	Squares in Binary Partial Words
	Introduction
	Square Positions
	Square Occurrences
	Distinct Squares
	Conclusion
	References

	The Avoidability of Cubes under Permutations
	Introduction
	Preliminaries
	The Morphic Case
	The Antimorphic Case
	Conclusions
	References

	Hairpin Completion with Bounded Stem-Loop
	Introduction and Preliminaries
	Pseudopalindromic Regular Languages
	Iterated Pseudopalindromic Completion
	Decidability Questions
	References

	Morphic Primitivity and Alphabet Reductions
	Introduction
	Definitions
	Unambiguous Alphabet Reductions
	Alphabet Reductions Preserving Morphic Primitivity
	References

	Short Papers
	On a Hierarchy of Languages with Catenation and Shuffle
	Introduction
	Definitions and Basic Structures
	Basic Structures
	Systems of Equations
	Algebraic Closures
	Normal Forms

	Hierarchies
	The Lower Hierarchy
	The Upper Hierarchy

	Outlook
	References

	Characterizing Languages by Normalization and Termination in String Rewriting
	Motivation
	Preliminaries
	Sets of Strings with Alphabet Extension
	Reducing the Alphabet to
	Complexity of Languages Characterizable in
	Conclusion and Future Work
	References

	Geometry and Dynamics of the Besicovitch and Weyl Spaces
	Introduction
	Definitions
	Sofic Shifts and Simplicial Complexes
	CA-Like Functions and B-Nontransitivity of CA
	References

	A Generalization of Girod’s Bidirectional Decoding Method to Codes with a Finite Deciphering Delay
	Preliminaries: Codes and Transducers
	Generalization of Girod's Method to f.d.d. Codes
	Transducers for Decoding
	A Remarkable Strongly Connected Component
	References

	Author Index

