
Chapter 1

Open Source Software as Open Innovation:

Experiences from the Medical Domain

Björn Lundell and Frank van der Linden

Abstract In the past decade, we have witnessed an increased interest amongst

commercial and public sector organisations for Open Source Software (OSS).

As any individual and organisation has the right to freely read, use, improve

and redistribute the source code for software that is developed and released under

an OSS licence, it creates new opportunities for Open Innovation. In this chapter,

we report on how companies collaborate on production of software artefacts in an

OSS project, thereby showing how a form of Open Innovation can be utilised by a

large company that goes beyond collaborative development of ideas. In doing so,

we report on company decisions and development practices concerning how

a software project evolved from proprietary to an open collaborative software

development project that is released under an OSS licence (LGPLv2).

1.1 Introduction

Open Source Software (OSS) is software that is licenced and made available under

certain “open” conditions, which inherently stimulates a collaborative development

of ideas and software artefacts. Anyone who has developed, obtained or adopted

such software has the right to freely read, use, improve and redistribute the source

code for such software. Over the years, collaboration based on (or stemming from)

OSS has influenced many individuals and organisations who have adopted new

work practices, and in some cases, even fundamentally changed their way of

working.

This chapter gives an illustration of how development of OSS, as an example of

Open Innovation, has been adopted by a large company in the secondary software

B. Lundell (*)

University of Skövde, Informatics Research Centre, Skövde, Sweden

F. van der Linden

Philips Healthcare, Best, The Netherlands

J.S.Z. Eriksson Lundström et al. (eds.), Managing Open Innovation Technologies,
DOI 10.1007/978-3-642-31650-0_1, # Springer-Verlag Berlin Heidelberg 2013

3



sector. We discuss challenges in software development and present a framework,

the commodification diagram, in order to conceptualise experiences from a case

study of OSS development in the medical domain. By drawing from the case, we

discuss emerging trends and relate these to Open Innovation. The case study was

conducted in a large European company and illustrates how emerging commodifi-

cation trends in the software domain have impacted on company decisions and

development practices.

With the adoption of OSS and development practices in companies, the practice

for development and deployment of software systems is changing. When

companies collaborate on OSS projects, the Open Innovation goes beyond collabo-

rative development of ideas and also includes collaborative production of software

artefacts in Open Source projects outside the traditional organisational boundaries.

This trend of open collaboration can be seen as an implication of the ongoing trend

of contemporary commodification of software which inevitably has consequences

for companies leading to new forms of collaborative development.

In the secondary software sector, we have recently seen an increased interest in

new forms of development practices, such as inner and open source development of

software systems. This form of new development models can be seen as one way by

which companies in this sector can deal with the contemporary commodification of

software. However, for large companies, it may not be so easy to change established

traditions and current work practices. Consequently, adoption of new principles and

practices for software development certainly imposes new challenges. In this

chapter, we comment on these by drawing from a specific case, which we then

relate to the broader picture of Open Innovation. Our case study, stemming from the

medical domain, gives insights into how organisational and development practices

have evolved over time with a resulting increased “openness”. Today, our case

constitutes an interesting exemplar of how a large company can utilise a form of

Open Innovation to collaborate on the production of software systems.

1.2 Open Source Software as an Exemplar of Open Innovation

Since the late 1960s, researchers and practitioners have struggled with how to cope

with an ever increasing complexity in the development of software systems. One

way by which companies have sought to address challenges in various projects has

been to utilise new development models, including OSS and its associated collabo-

rative model for development (Bonaccorsi and Rossi 2006; Fitzgerald 2006;

Lundell et al. 2010).

Open Source is the widely used term for a type of software licence that Richard

Stallman referred to as “Free Software” when he founded the Free Software

4 B. Lundell and F. van der Linden



Foundation (FSF1). The term “Open Source” was coined in 1998 to give the

phenomenon a more “business-friendly” association. The definition is controlled

by the Open Source Initiative (OSI2) and the term “Open Source Software” is today

more widely used in company contexts than “Free Software”. The definition of such

software used by the FSF states that it is “a matter of the users’ freedom to run,

copy, distribute, study, change and improve the software”. More specifically, the

definition refers to “four kinds of freedom, for the users of the software”, namely

the freedom to:

• Run the program, for any purpose

• Study how the program works, and adapt it to need

• Redistribute copies

• Improve the program, and release the improvements

Although there are differences in terms of value between OSI and FSF, both

organisations refer to the essentially same type of software. Today, both

organisations have much in common with collaboration on many practical issues.

For example, OSI accepts almost all of the licences defined by FSF, and vice versa.

For OSI, the “openness” of source code for any piece of software is primarily

a practical issue that allows an open form of collaborative development, whereas

for FSF the “freedom” is primarily an ethical issue.

Sometimes, the term “FOSS” is used to stress the similarities rather than the

differences between the two. Further, the term “Libre Software” is also used for this

type of software, especially in the Latin speaking countries. The term “Libre”

avoids the ambiguity of the word “free” in the English language (i.e. “free” as in

no-cost vs. “free” as in freedom) and sometimes the term “FLOSS” (Free, Libre and

Open Source Software) is used when referring to the collective phenomenon whilst

trying to avoid an ideological debate. However, when referring to such software for

the purpose of this chapter, we adhere to the term Open Source Software (OSS),

which is commonly used in industry.

Irrespective of which term is used for denoting software systems that have been

developed using this open form of collaboration, it is essential to recognise that

a number of industrial strength software systems have been developed as a result of

this form of collaborative development over the years. For example, the operating

system kernel Linux (Moon and Sproull 2000), the web server Apache (Mockus

et al. 2002) and the web browser Mozilla/Firefox (Mockus et al. 2002) are all being

developed, maintained and made available by their respective communities as OSS.

Such communities, typically, involve a variety of different stakeholder groups that

collectively contribute to OSS projects. It should be noted that there are a range of

different motivations, including pure self-interest, that encourage stakeholders to

contribute to an OSS project (e.g. Bonaccorsi and Rossi 2006). For many years

now, it is clear that a “significant amount of software developed by commercial

1 http://www.fsf.org/
2 http://www.opensource.org/

1 Open Source Software as Open Innovation: Experiences from the Medical Domain 5

http://www.fsf.org/
http://www.opensource.org/


firms is also being released under open source licences” (von Hippel 2005, p. 99).

In fact, many companies have experienced that open collaboration in OSS projects,

which involve a number of different active users and developers representing

a variety of different organisations, can together bring the software to high value

and quality.

Today, all the above-mentioned examples of OSS projects are being used in a

range of different usage contexts, including mission critical applications in many

different organisations. In doing so, it is clear that OSS development shares some

fundamental ideas with Open Innovation, such as “greater external sources of

information to create value” (Chesbrough 2006). It is therefore, perhaps, not

surprising that embedded Linux has been ascribed as a prominent success story

of Open Innovation (Henkel 2006).

Collaboration in OSS projects represents a novel way for open collaboration on

both ideas and production of software artefacts. As stated by von Hippel (2005),

“open source software communities do not allow contributing innovators to use

their intellectual property rights to control the use of their code. Instead,

contributors use their authors’ copyright to assign their code to a common pool to

which all—contributors and non-contributors alike—are granted equal access.

Despite this regime, innovation seems to be flourishing” (p. 113).

Practical Tip

Collaboration is beneficial for you, especially if you do not break your own

added value. Collaboration with the competition may be useful, as you both

improve without harming each other. A healthy competition is good for your

market, as being the monopolist implies that you have to do any innovation on

your own.

In fact, many of the successful OSS projects attract interest and contributions

from a range of different individual contributors and commercial organisations.

According to von Hippel (2005), “Open source software projects are object lessons

that teach us that users can create, produce, diffuse, provide user field support for,

update, and use complex products by and for themselves in the context of user

innovation communities” (p. 14). Further, it has been noted that there are also

similarities between communities related to physical products and OSS

communities, in that “complex communities devoted to the development of physical

products often look similar to open source software development communities in

terms of tools and infrastructure” (von Hippel 2005, p. 103).

It should be noted that adoption of Open Source and Open Innovation principles

in company contexts is not always without problems, as experienced by Wallin and

von Krogh (2010). They identified tensions in a company between top- and middle-

level management concerning its adoption of an Open Source strategy, and report

that “While top management embraced an open source policy, middle-level

6 B. Lundell and F. van der Linden



managers who supervised the internal developers were negative toward it. Perhaps

the use of external developers undermined their power or prestige, or created

concerns about the quality of the products in other ways. Political forces may

make it difficult to open up the innovation process to outsiders” (p. 419).

However, a recent study conducted in 13 companies in the secondary software

sector, involving senior decision makers with experience of assessing OSS adop-

tion, found that “open innovation practices are already in operation in all of the

companies studied” (Morgan and Finnegan 2010, p. 91). Further, the study revealed

“the need to increase innovativeness by opening up internal software innovation

processes” (p. 91).

1.3 Software Commodification and Its Implications

for Software Development

In the past decade, there has been an increasing trend towards changing established

software development processes in many organisations. Many companies in the

secondary software sector have experienced an increasing amount of complex

software systems which are no longer providing a competitive advantage to the

company, and it is clear that organisations need to adapt to a new situation which

involves an increasing amount of commoditised software systems. With a broader

recognition of this commodification trend amongst different stakeholder groups

within companies, and with the availability of an increasing amount of complex

commodity software, it is clear that organisations need to strategically consider

their own development practices in light of their own business goals.

Many companies in the secondary software sector need to deal with how to

obtain best leverage from the changing conditions which affects their own

established practices. In fact, “only a small part (5–10 %) of the software is

differentiating” (van der Linden et al. 2009), and it is this part of the software

(which constitutes only parts of a product in this market) that “provides added value

over the competitors” (van der Linden et al. 2009). This implies that it is only this

small part of the software that helps distinguish a company’s own developed

product “from competitors’ products” (van der Linden et al. 2009). Hence, there

is potential for collaboration amongst competitors over large (non-differentiating)

parts of the software, and many companies have realised that new development

models, including different Open Source development models, may be beneficial

for addressing challenges in developing and maintaining complex software systems

in many situations in this sector.

When utilising such, network-enabled collaboration in developing the software

is jointly developed by stakeholders representing different concerns, both within a

single company and beyond its organisational borders. Typically, the software

may be produced by a group of designated developers that share a common vision

for the Open Source development project. However, for individual companies in

1 Open Source Software as Open Innovation: Experiences from the Medical Domain 7



this domain, it is important to strategically consider how a company’s business and

development strategies are congruent and reinforce each other. Obviously, business

goals must be in line with development practices, and it is critical for any company

to strategically consider what (and when) to initiate and engage in Open Source

development related to any specific software systems. In general, the advantages

and drawbacks of utilising OSS and its methodology in software intensive systems

are not by and large completely understood. However, there are many companies in

this sector which engage in Open Source development and “utilise commodity

software in order to free resources for innovation” (Lundell et al. 2011).

A significant amount of all software being developed in the secondary software

domain does not provide any added value for an individual company over its

competitors, as it is more or less common to the product domain. It may even be

the case that specific software is a commodity across different domains. Hence, for

achieving efficiency and effectiveness in software development, it makes sense for

any company to only focus on producing the differentiating parts, i.e. those with the

highest added value, in the in-house development. For the remainder, collaboration

between different companies and individuals in Open Source development projects

is a viable option.

Figure 1.1 shows the commodification diagram for software development (see

also van der Linden et al. 2009). It illustrates the landscape of technology versus

business decisions on how to develop (or acquire) software. There are two corner

areas to be avoided in producing technology. The upper right-hand (red coloured)

corner should be avoided, since it would mean exposing (and passing) added value

to competitors. For example, a company has reasons to diversify before opening up

a unique software system for which they have to spend considerable resources on

development in a highly specialised niche market, and as it therefore can be

envisaged that the pool of potential contributors from external organisations will

Fig. 1.1 The commodification diagram

8 B. Lundell and F. van der Linden



be very limited. The lower left-hand (yellow coloured) corner should also be

avoided in order to minimise development costs, since commodity technology

can be obtained cheaper by adopting (buying) existing technology instead of

making it. Hence, healthy software development is characterised by the middle

(green coloured) area, from top left to bottom right. Differentiating software, with

high added value, is developed within the organisation (top left corner). Commod-

ity software, with low added value, is bought at the market or even available at low

(or no) costs (OSS).

Over time, all software is moving from top to bottom in Fig. 1.1. Most (innova-

tive) software development starts out as being differentiating software for some

party. At a certain moment, the specific software will not provide a competitive

advantage for the company that initiated its development. In such a situation, it can

be considered as basic for the business. Further, at a later stage, the software even

moves towards commodity. Healthy software development is characterised by

combining this vertical movement with the move, for any software, from left to

right, from in-house to (open) collaborations. In order to avoid the top right-hand

and the lower left-hand corners, companies need to consider strategically when

to change their existing development model for any specific software, in order to

change the development model at the right pace.

In essence, any company needs to analyse carefully its software with respect to

Fig. 1.1 in order to know when to change their development model and approach for

collaboration. Further, it is essential to realise that different companies have

different business objectives, which affects the interpretation of the status of their

software. It is clear that a specific software, which may be a commodity software

for company A, may at the same time, for example, be a software which is “basic

for the business” for company B. For example, where an integration platform may

be seen as commodity for a company offering specific hardware which uses this

platform, it may not be for a vendor offering integration platforms as part of

its proprietary products. Implications of the commodification of software (i.e. the

move from top to bottom in Fig. 1.1) mean that an increasing amount of the

software stack in a company is commoditised over time. Hence, it is essential

to realise that each company needs to understand these shifts and consider its

own software in light of its own business objectives in order to make the

right decisions concerning choice of collaboration. In summary, each individual

company needs to stay on the “green” in Fig. 1.1 in order for them to stay

competitive.

Practical Tip

All organisations must continuously consider technology shifts and assess

their own development and adoption of software systems in light of the

commodification diagram. In order to obtain leverage from opportunities

with open collaboration, an organisation must fully understand technology

shifts and how prerequisites for open collaboration evolve over time in

different business scenarios and contexts.

1 Open Source Software as Open Innovation: Experiences from the Medical Domain 9



In addition to “pure” Open Source software development, some companies also

utilise the development model from Open Source. This has been referred to as inner

source development, and it involves a set of teams which collaborate in a coopera-

tive ecosystem (Stellman and Greene 2009). Its scope is more restricted compared

to “pure” Open Source software development and relates only to the first two

vertical columns of Fig. 1.1. Similar to open source development, inner source

development applies an open, concurrent, model of collaboration. However, for the

rest of this chapter we will focus on Open Source software development.

Currently, a number of companies are utilising open and inner source develop-

ment to address the commodification of industrial software. In the next section, we

draw from a case study in order to illustrate how a large European company has

addressed the software shift towards open collaborations, using Open Source

software development. In particular, we comment on the evolution through the

landscape of Fig. 1.1 and show how the case has moved from a closed to an Open

Source software development model which is freely provided on an open platform.

1.4 Open Source Software Development in the Medical Domain

This section gives an example of an endeavour originating from Philips Healthcare3

in increasing the amount of open innovation of parts of its software, by opening up

software in an open source community (Engelfriet 2007). This endeavour was

partly based on business reasons—the software was becoming commodity—and

partly it was a test case to discover the consequences of starting an open source

community. The company should spend most effort on the most business-relevant

technology. For the rest, it should cooperate with others. In cases when software

becomes a commodity, this means that one should consider opening up software. It

will be successful if it attracts enough external collaboration that relieves the

company from part of its development costs. It becomes even better when

contributors from a large community that are affiliated to other external

organisations provide fresh new ideas to innovate the software for the benefit of

all involved. Several measures were taken to improve the motivation of participants

in the community. The company found that this endeavour of utilising an Open

Source community as a strategy for Open Innovation can be profitable, and the

conclusion from this experience was that it is profitable. This example is further

discussed in van der Linden et al. (2009).

Exchange of medical information has been subject to standardisation and

standards since the end of the 1980s, and we have seen an increasing number

of standards in this area over the last decades. One such standard is the DICOM

standard (Digital Imaging and Communications in Medicine), which is used as a

basis for the exchange of medical images. Over the years, different companies have

3 Formerly called Philips Medical Systems

10 B. Lundell and F. van der Linden



developed various implementations of the standard. Therefore, conformance to the

standard has become important, leading to a need for having a validation tool that

can check conformance to the standard. This, in turn, leads to less field problems in

interoperability and reduced field support costs.

Since 2000, Philips Healthcare and AGFA Healthcare have been distributing a

free binary DICOM validation tool. To make this tool independent of the

companies and to improve an open collaboration on the topic, it was decided in

2005 to release the tool as an Open Source software project. The Open Source

software DVTk4 is made available under the GNU Lesser General Public Licence

(LGPL v25) and the Open Source project is hosted on the SourceForge.net platform.

The success for the two initiating companies of this transition was based on the

community that uses and contributes to the tool. The scope of the open source tool is

extended towards the creation of state-of-the-art standard tools to prevent and solve

integration problems of systems in the medical imaging domain.

By opening up the software, the initiating parties aimed to create worldwide

acceptance of DVTk as an independent (de facto standard) and trustworthy tool,

involving a large base of users. By initiating an open collaborative development of

the tool, the initiators expected to get the best value out of the development cost.

Further, it was also expected that a large user and developer group would result in

higher quality and fewer overhead costs. To support these goals, the initiators have

remained active in providing community mechanisms that address different

motivations for participation in the open collaboration amongst individuals and

companies.

A number of initiatives to stimulate collaboration with (and within) the project

have been undertaken by the initiators of the project, including:

• Creating DVTk website with forum and registration

• Organising and executing timely User Events

• Implementing the concept of “trainee project”

• Participating in IHE Gazelle Open Source project

• Responding to tenders for Test SW development

The latter two initiatives illustrate the extension of the scope towards other

interoperability standards in healthcare. To measure the achievement of the goals,

the company has monitored the Open Source project since its start, and in doing so

continuously measured a number of aspects which indicate project activity:

• The number of downloads of the tool per year; indicating whether the tool,

which is updated regularly, is still useful for a wide community

• The number of comments on the tool received per year; indicating the active

interest of the users in improving the tool

4 http://www.dvtk.org/; http://en.wikipedia.org/wiki/DVTk
5 http://www.opensource.org/licenses/LGPL-2.1

1 Open Source Software as Open Innovation: Experiences from the Medical Domain 11

http://www.dvtk.org/
http://en.wikipedia.org/wiki/DVTk
http://www.opensource.org/licenses/LGPL-2.1


• The number of companies participating in the development of the tools;

indicating whether there is enough sharing of development

Figure 1.2 shows an overview of four important stages in the history of the

DVTk project, clearly illustrating how different company decisions have resulted in

an evolution of the project through the commodification diagram (additional details

of the project can be found in van der Linden et al. (2009)). Figure 1.2 shows how

the project has evolved, via four stages, into a “commodity” project for which there

is open collaboration.

Briefly, the four stages in the evolution of the project can be characterised as

follows:

1. In 1995, DICOM was a quality interface, only available as a system option for

those that really needed interoperability on medical images. Several vendors

provided their own solutions, and this was part of the competition. DICOM

support was an added value for medical equipment companies.

2. In 1999, DICOM was no longer differentiating. The clients all needed interopera-

bility and they just expected DICOM support and Philips Healthcare decided to

provide the DVTk application binary freely downloadable via their own website.

3. In 2001, to share development costs and increase adoption of DVTk, a joint

development started with another company (AGFA). The development of DVTk

was still developed and provided under a proprietary licence. The functionality

is necessary for each company that supports DICOM interoperability.

4. In 2005, it was decided to create an open platform to ensure uniformity. The

software is still domain specific, but for the companies involved it is regarded as

commodity.

Fig. 1.2 The DVTk project and DICOM in the commodification diagram

12 B. Lundell and F. van der Linden



The DVTk project is very ambitious in its objective and strives for global

acceptance and more co-developing partners. The project has several different

types of participants and users, which can be characterised as: the common user,

the interested collaborator and the dedicated developer (O’Reilly 1999). Over time,

some users eventually migrate and become more involved, so a common user could

become a future dedicated developer. The DVTk project decided to implement

some mechanisms which address the motivational factors of developers to promote

contributions. These are to:

• Implement User Registration on the website to address the “reputation among

peers” motivation. The idea is that when people can have a virtual face when

communicating with the community they are more likely to communicate more

actively.

• Implement the concept of “trainee project” in the DVTk project to address the

“learning” motivation. Co-developing on DVTk is positioned as a way to learn

the standard. By having a set of trainee projects, people can select a work item

which helps them in understanding the standard.

• Organise and execute timely User Events to motivate the “sense of belonging to

the community”. If you can meet your co-developers face to face in timely

events people tend to feel more committed to the co-developers and thus to the

project.

After User Registration was implemented, the number of posts on the discussion

forum increased, indicating growing activity and involvement. About ten trainee

projects were defined in December 2006. Several of these project assignments

led to new developers in the project. In February 2007, the user event attracted 40

participants from 30 companies. After the workshop, five parties were considering

participation, of which three eventually became involved. The event resulted in

a new collaboration with the IHE organisation which is a leading organisation in the

healthcare domain.

The user registration has a positive impact on motivating users to post questions

and provide problem reports. It is not a burden for people to register, since it

provides the ability for people to gain reputation. For DVTk it seems as it is better

to have a smaller group providing a lot of feedback than having a large group of

users only posting a small set of comments. The User Event is an effective

mechanism to meet potential new parties. Having the training projects is a con-

trolled and effective mechanism to get the potential parties really involved.

The number of downloads has increased enormously since the project was

provided as Open Source software. In the first two years, the number of downloads

increased from 1,000 to 14,000 per year and the number of comments increased

from 5 to 80 per year. The number of users increased by 1,200 % within the same

time period. The number of companies and initiatives that work together with the

project has grown from 2 to 9. This means that sharing the maintenance and

1 Open Source Software as Open Innovation: Experiences from the Medical Domain 13



development of the DVTk tool is of value for a large community. It suggests that the

project is becoming the de facto standard. More recently, since July 2009, the

number of downloads for the software per month has exceeded 3,000 downloads

per month (which may be considered significant, given the specific nature of the

software). Figure 1.3 shows an overview of the evolution for the number of

downloads for the software (until the end of June 2011). From this, it is evident

that the overarching trend has been an increased number of downloads of the

software each month, ranging from around 500 downloads each month (for the

last 6 months during 2005), whereas there have been more than 4,000 downloads

each month (for the first 6 months during 2011).

In order to extend the community and the funding base of the project, it

successfully applied to a commercial software tool development tender for the

IHE-Radiation Oncology Test software and the IHE Gazelle Open Source tooling

project. This extends the scope of the community, but stays within the healthcare

interoperability domain.

It should be noted that the results reported in this example are not restricted to

the medical domain. Instead, the experiences should be useful to the entire second-

ary software domain. Further, an additional important aspect of this example is that

there is a standard that can be used by many companies in the domain. At first the

provision of support for the standard gives a significant added value for the provider

of an implementation which supports the standard. However, over time, as several

competitors will implement the standard, the associated added value stemming

from support for the standard becomes reduced as it becomes expected by the

clients. Therefore, despite competition on the market, it is wise to open up the

supporting software as a strategy for sharing development costs between

companies. However, an important prerequisite for success is that the knowledge

of the standard is not restricted to one (or a few) companies. In addition, when it

becomes successful, it might be attractive for both the company and other external

contributors to extend the scope of the open collaboration in the OSS project.

Fig. 1.3 Number of downloads of the software per month

14 B. Lundell and F. van der Linden



1.5 Discussion and Conclusions

In this chapter, we have presented an illustration of how the development of Open

Source Software, as an example of Open Innovation, has been adopted by a large

company in the secondary software sector. We have discussed challenges in

software development and presented a framework, the commodification diagram,

as a means for conceptualisation. We have used this framework as a basis for our

presentation of experiences from a case study of Open Source Software develop-

ment in the medical domain. In doing so, we have elaborated on company decisions

and development practices in a software development project that is central for the

company and openly provided under the LGPL software licence.

By drawing from the case study conducted in a large international company,

we have discussed emerging trends and thereby presented how software

development—when conducted as Open Source Software development—

constitutes a novel exemplar of how Open Innovation can be conducted. Open

Source Software development goes beyond collaborating on ideas, as it also

includes collaboration on software artefacts, therefore it can potentially constitute

an inspiration for how other areas can adopt an open development beyond the

established form of open development as we have seen in the software domain in

the form of Open Source Software.

It is envisaged by many that new forms of more open collaborations between

different types of communities, as well as large and small companies, will emerge.

It remains to be seen which of these collaboration models will be sustainable in the

long term.

References

Bonaccorsi, A., & Rossi, C. (2006). Comparing motivations of individual programmers and firms

to take part in the open source movement: from community to business knowledge, technology

& policy. Winter, 18(4), 40–64.
Chesbrough, H. W. (2006). Open innovation: A new paradigm for understanding Industrial

Innovation, Chapter 1 in open innovation: Researching a new paradigm. Oxford: Oxford
University Press.

Engelfriet, A. (2007) Open Source and Open Innovation, Koninklijke Philips Electronics NV,

handout: LinuxWorld Open Summit 2007, Stockholm, at http://www.idc.com/nordic/

downloads/events/linuxworld07/9%20-Arnoud%20Engelfriet.pdf, accessed 7 July 2011.

Fitzgerald, B. (2006a). The Transformation of open source software. MIS Quarterly, 30(3),
587–598.

Henkel, J. (2006). Selective revealing in open innovation processes: The case of embedded Linux.

Research Policy, 35(7), 953–969.
Lundell, B., Lings, B., & Lindqvist, E. (2010). Open source in Swedish companies: where are we?

Information Systems Journal, 20(6), 519–535.
Lundell, B., Lings, B., & Syberfeldt, A. (2011). Practitioner perceptions of open source software in

the embedded systems area. Journal of Systems and Software, 84(9), 1540–1549.

1 Open Source Software as Open Innovation: Experiences from the Medical Domain 15

http://www.idc.com/nordic/downloads/events/linuxworld07/9%20-Arnoud%20Engelfriet.pdf
http://www.idc.com/nordic/downloads/events/linuxworld07/9%20-Arnoud%20Engelfriet.pdf


Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open source software

development: Apache and Mozilla. ACM Transactions on Software Engineering and Method-
ology, 11(3), 309–346.

Moon, Y. J. & Sproull, L. (2000) Essence of distributed work: The case of the Linux kernel, First
Monday, 5(11) http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1479

Morgan, L., & Finnegan, P. (2010). Open innovation in secondary software firms: an exploration

of managers’ perceptions of open source software. SIGMIS Database, 41(1), 76–95.
O’Reilly, T. (1999) Ten Myths about Open Source Software, http://www.oreillynet.com/pub/a/

oreilly/opensource/news/myths_1199.html, accessed 7 July 2011.

Stellman, A. & Greene, J., 2009. Inner source ‘An interview with Auke Jilderda’, Chapter 8 in.

O’Reilly, T. (2009) Beautiful Teams, 103–111.
von Hippel, E. (2005). Democratizing Innovation. Cambridge, MA: MIT Press (April).

van der Linden, F., Lundell, B., & Marttiin, P. (2009). Commodification of industrial software:

a case for open source. IEEE Software, 26(4), 77–83.
Wallin, M. W., & von Krogh, G. (2010). Organizing for open innovation: focus on the integration

of knowledge. Organisational Dynamics, 39(2), 145–154.

Further Reading

Dedrick, J. & West, J. (2003) Why firms adopt open source platforms: A Grounded Theory

of Innovation and Standards Adoption, Proceedings of MISQ Special Issue Workshop on

Standard Making: A Critical Frontier for Information Systems. Minneapolis: MIS Quarterly,
pp. 236–257.

Fitzgerald, B. (2006b). The transformation of open source software. MIS Quarterly, 30(3),
587–598.

Jaaksi, A. (2007) Experiences on Product Development with Open Source Software, in: Feller, J.

Fitzgerald, B. Scacchi, W., Sillitti, A. (Eds.), IFIP International Federation for Information
Processing, Vol. 234, Open Source Development, Adoption and Innovation, Boston: Springer,

85-96.

Jilderda, A. A. (2004) Inner Source Software Engineering at MIP Fostering a Meritocracy
of Peers, Research report, Philips Research.

Wesselius, J. (2008). The bazaar inside the Cathedral: Business models for internal markets. IEEE
Software, 25(3), 60–66.

16 B. Lundell and F. van der Linden

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1479
http://www.oreillynet.com/pub/a/oreilly/opensource/news/myths_1199.html
http://www.oreillynet.com/pub/a/oreilly/opensource/news/myths_1199.html

	Chapter 1: Open Source Software as Open Innovation: Experiences from the Medical Domain
	1.1 Introduction
	1.2 Open Source Software as an Exemplar of Open Innovation
	1.3 Software Commodification and Its Implications for Software Development
	1.4 Open Source Software Development in the Medical Domain
	1.5 Discussion and Conclusions
	References
	Further Reading



