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Abstract. We study stateless deterministic two-phase RR-automata of
window size one: stl-det-2-RR(1)-automata. While general deterministic
RR-automata of window size one characterize the regular languages, it
turns out that the class of languages accepted by the stateless two-phase
variants is subregular. Therefore we combine stl-det-2-RR(1)-automata
into computationally stronger cooperating distributed systems, obtain-
ing the stl-det-local-CD-2-RR(1)-systems. By limiting their inherent non-
determinism, two further variants are derived. The relations between the
different classes and some well-known language families are investigated,
and it is shown that the classes defined here form a finite hierarchy whose
levels are incomparable to several well-known language families. Further,
closure properties and decision problems are studied for these classes.

1 Introduction

One of the fundamental concepts of computing models and automata is that
of internal states which evolve at discrete time steps. Accordingly, the number
of these states can be seen as a parameter of such systems. By reducing this
number as much as possible, we obtain types of automata that only have a
single internal state. Thus, the behavior of these automata does not depend on
their internal state at all and, therefore, these devices are called stateless. It is
easily seen that the computational power of stateless finite automata is strictly
weaker than that of general finite automata. On the other hand, it is well known
that already stateless nondeterministic pushdown automata accept all context-
free languages [5]. Thus, for nondeterministic pushdown automata, the resource
‘pushdown store’ can compensate for the absence of states. Generally speaking,
it is a natural and interesting question of how resources given to finite automata
relate to the absence or presence of internal states. Given some computational
model, are states necessary at all?

Inspired by biologically motivated models of computing related studies were
initiated in [6,18], as it is difficult and even unrealistic to maintain a global state
for a massively parallel group of objects appearing in natural phenomena of cell
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evolutions and chemical reactions. The study of stateless multi-head finite au-
tomata and stateless multi-counter systems in [18] and the successor paper [6]
shows that the resource ‘heads’ cannot compensate for the absence of states.
Recently, also stateless two-pushdown automata have been investigated [7], and
it has been shown that for shrinking as well as for length-reducing determin-
istic and nondeterministic two-pushdown automata states are not needed. Fur-
ther, also stateless variants of restarting automata have been studied. In [7]
so-called R-automata with combined rewrite/restart operations are considered,
while in [8] restarting automata which, after executing a rewrite step may con-
tinue to read their tape before performing a restart, so-called RR-automata, are
of main interest. Thus, even after executing a rewrite step an RR-automaton has
still the option to accept or to reject instead of performing a restart. In particu-
lar, in [8] the two-phase RR-automaton has been introduced, which is a stateless
RR-automaton that can distinguish between the two parts of each cycle: the first
part, which ends with an application of a rewrite (that is, delete) operation, and
the second part, which ends with an execution of a restart operation.

Here we study the influence of the size k of the read/write window on the
expressive power of stateless deterministic two-phase RR-automata, abbreviated
as stl-det-2-RR(k)-automata. We will see that based on the size k, we obtain
an infinite strict hierarchy of language classes that, however, are incomparable
to the class REG of regular languages with respect to inclusion. In particular,
it turns out that the class of languages accepted by the stateless two-phase
RR-automata of window size one is subregular, while general deterministic RR-
automata of window size one characterize the regular languages [9].

Then, in analogy to the work presented in [14,15] we introduce cooperating
distributed systems (CD-systems) of stl-det-2-RR(1)-automata, the so-called stl-
det-local-CD-2-RR(1)-systems. These systems are an adaptation of the notion
of cooperating distributed grammar system with external control (see, for ex-
ample, [1,3]) to the setting of stl-det-2-RR(1)-automata. As it turns out these
systems are strictly more expressive than the CD-systems of stateless determin-
istic R(1)-automata (the so-called stl-det-local-CD-R(1)-systems) studied in [14].
On the other hand, the class of languages L=1(stl-det-local-2-RR(1)) accepted
by the stl-det-local-CD-2-RR(1)-systems is incomparable under inclusion to the
classes of (deterministic) context-free languages, linear languages, Church-Rosser
languages and growing context-sensitive languages.

Although all the component automata of a stl-det-local-CD-2-RR(1)-systemare
deterministic, the system itself is not. Therefore, also two types of deterministic
CD-systems of stl-det-2-RR(1)-automata are defined: the strictly deterministic
CD-systems and the globally deterministic CD-systems. We compare the result-
ing classes of languages to each other and to the class of regular languages, and
we establish closure and non-closure properties for them.

The paper is organized as follows. First we describe in short the two-phase
restarting automaton and derive a few fundamental results on them. In Sec-
tion 3, CD-systems of stateless deterministic 2-RR(1)-automata are introduced
and investigated. Then the two variants without nondeterminism are defined and
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studied in Section 4. It turns out that the strictly deterministic CD-systems de-
fine a language class that forms a non-reversal and non-intersection closed anti-
AFL, which is quite surprising for a deterministic automaton model. Although
anti-AFLs are sometimes referred to as “unfortunate families of languages,”
there is linguistical evidence that such language families might be of crucial im-
portance, since in [2] it was shown that the family of natural languages is an
anti-AFL. Decidability problems are the main aspect of Section 5. The results
on the relations between the different language classes are summarized in Fig-
ure 1, and Table 1 summarizes the closure and non-closure properties. Finally,
we conclude and present some open and untouched questions in Section 6.

2 Two-Phase Restarting Automata

A stateless deterministic two-phase RR-automaton, stl-det-2-RR-automaton for
short, is described by a 6-tuple M = (Σ, c, $, k, δ1, δ2), where Σ is a finite in-
put alphabet, c and $ are additional symbols that serve as markers for the left
and right border of the input tape, k ≥ 1 is the size of the read/write window,
and δ1 and δ2 are the transition functions that associate a transition step to
each possible content u of the window. There are four types of transition steps:
A move-right step (MVR) causes M to shift the window one position to the
right. However, the window cannot be shifted beyond the right border marker $.
A rewrite step causes M to delete at least one and at most all symbols of the
content u of the window, thereby replacing u by v and shortening the tape. Sub-
sequently, the window is placed immediately to the right of v. Some additional
restrictions apply in that the border markers c and $ must not disappear from
the tape. Hence, if u ends with the symbol $, then so does v, and in this situation
the window is placed on the $. An accept step causes M to halt and accept, and
a restart step causes M to place the window again over the left end of the tape,
so that the first symbol it contains is the left border marker c. If the transition
step is undefined for the current situation, then M necessarily halts and rejects.

A computation of M consists of cycles followed by a tail computation. A cycle
begins with the window scanning the left border marker. It consists of a sequence
of MVR steps which is followed by a rewrite step that completes the first phase
of the cycle. The behavior of M during the first phase is determined by δ1. After
the rewrite step, the second phase controlled by δ2 starts. It consists of further
MVR steps followed by a restart step that completes the cycle. A computation
of M ends by a tail computation, which is an incomplete cycle ending with an
accept step or a reject. Accept instructions can occur in both δ1 and δ2.

With M we associate two languages – the simple language

S(M) = {w ∈ Σ∗ | M accepts w in a tail computation }

and the language

L(M) = {w ∈ Σ∗ | ∃z ∈ S(M) : w �c∗
M z }
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of words accepted by M . Here �c
M denotes the reduction relation on Σ∗ that is

induced by the cycles of M . In order to clarify our notion we give a first short
example.

Example 1. The non-regular language {w ∈ {a, b}∗ | |w|a = |w|b } is accepted by
the stateless deterministic two-phase RR-automaton M = ({a, b}, c, $, 2, δ1, δ2),
where δ1(c$) = Accept, δ1(u) = ε for all u ∈ {ab, ba}, δ1(u) = MVR for all
u ∈ {ca, cb, aa, bb}, and δ2(u) = Restart for all u ∈ {ab, ba, aa, bb, a$, b$, $}. ��
In the example above, the stl-det-2-RR(2)-automaton restarts after a rewrite
in any case. This particular behavior led to the definition of the so-called R-
automata that cannot continue to read the input after a rewrite, that is, rewrite
and restart steps are combined. Therefore, for these automata the transition
function δ2 can be omitted.

For each k ≥ 1, stl-det-2-RR(k) denotes the class of stateless deterministic
two-phase RR-automata with window of size k, and L (stl-det-2-RR(k)) denotes
the class of languages that are accepted by stl-det-2-RR(k)-automata. Similarly
for R-automata. For devices with states it is evident that RR-automata are at
least as powerful as R-automata. But this cannot be derived from the definition
for stateless variants. Nevertheless, we have the following result.

Lemma 2. For each k ≥ 1 and each stl-det-R(k)-automaton M , there exists
a stl-det-2-RR(k)-automaton M ′ such that the reduction relations �c

M and �c
M ′

coincide, S(M) = S(M ′) and, thus, L(M) = L(M ′).

Proof. Let M = (Σ, c, $, k, δ) be a stl-det-R(k)-automaton. We obtain a stl-det-
2-RR(k)-automaton M ′ = (Σ, c, $, k, δ1, δ2) by taking δ1 = δ and δ2(u) = Restart
for all u that can occur as the contents of the window of M . Then the cycles
of M ′ and of M correspond to each other, and S(M ′) = S(M) holds. ��
Example 3. For k ≥ 1 and Σ = {a, b}, we define the language Lk = b∗ ·(ak ·b+)∗.
Claim. Lk ∈ L (stl-det-2-RR(k)).

Proof (of claim). We define a stl-det-2-RR(k)-automatonMk = (Σ, c, $, k, δ1, δ2)
as follows:

δ1(cb
i$) = Accept, for all 0 ≤ i ≤ k − 2,

δ1(cb
iak−1−i) = MVR, for all 0 ≤ i ≤ k − 1,

δ1(b
iak−i) = MVR, for all 1 ≤ i ≤ k,

δ1(a
k) = ε,

δ1(b
k−1$) = Accept;

δ2(b
iak−i) = Restart, for all 1 ≤ i ≤ k,

δ2(b
i$) = Restart, for all 1 ≤ i ≤ k − 1.

Then S(M) = b∗, and biaku �c
M biu for all i ≥ 0 and all words u such that

u ∈ b+ or u = brasu′ for some r, s ≥ 1 such that r + s ≥ k. Thus, it is easily
seen that L(M) = Lk holds. ��
Claim. Lk 	∈ L (stl-det-R(k)).
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Proof (of claim). Assume to the contrary that M = (Σ, c, $, k, δ) is a stl-det-
R(k)-automaton such that L(M) = Lk holds. The word w1 = akb belongs to Lk,
that is, M accepts on input w1. Now we consider the function δ. Obviously,
δ(cak−1) must be defined. It cannot be an accept instruction, and it cannot be a
rewrite instruction, as the prefix ak−1 of w1 cannot be replaced by any shorter
word without obtaining a word that is not a member of Lk. Thus, it follows that
δ(cak−1) = MVR. If δ(ak) = MVR, then we must consider δ(ak−1b). The suffix
ak−1b of w1 cannot be replaced by a shorter word without obtaining a word that
is not a member of Lk, and so it follows that δ(ak−1b) = MVR. Finally, δ(ak−2b$)
must be an accept instruction. However, then together with w1, M also accepts
the word ak+1b 	∈ Lk. This contradiction shows that δ(ak) = ε must hold. But
then akakb �c

M akb �∗
M Accept, and M accepts akakb 	∈ Lk. ��

Together with Lemma 2, Example 3 yields the following proper inclusions.

Corollary 4. For all k ≥ 1, L (stl-det-R(k)) � L (stl-det-2-RR(k)).

In [14] it is shown that the regular language L′
k = { (abk)i | i ≥ 0 } separates

the language class L (stl-det-R(k)) from the class L (stl-det-R(k + 1)). From
Lemma 2 we see that L′

k is also accepted by a stl-det-2-RR(k+ 1)-automaton.

Lemma 5. The language L′
k is not accepted by any stl-det-2-RR(k)-automaton.

Proof. Assume to the contrary that M = (Σ, c, $, k, δ1, δ2) is a stl-det-2-RR(k)-
automaton that accepts the language L′

k. Then on input abkabk, M will have
to accept. However, as M has a window of size k only, it cannot accept the
word abkabk in a tail computation without accepting some word not belonging
to L′

k. Hence, the accepting computation of M on input abkabk begins with a
cycle abkabk �c

M z. Then |z| < 2k + 2, and as M can delete at most k symbols
in a single cycle, we have |z| ≥ k + 2. This implies, however, that z 	∈ L′

k.
So, M cannot accept abkabk without accepting z as well. It follows that L′

k is
not accepted by any stl-det-2-RR(k)-automaton. ��
Recall from [9] that L (det-RR(1)) coincides with the class of regular languages,
and from Example 1 that L (stl-det-2-RR(2)) includes a non-regular language.
Thus, together with Lemma 5 this yields the following results.

Corollary 6. (a) For all k ≥ 1, L (stl-det-2-RR(k)) � L (stl-det-2-RR(k+ 1)).
(b) The class L (stl-det-2-RR(1)) is properly contained in the class REG of regular
languages. (c) For all k ≥ 2, the class L (stl-det-2-RR(k)) is incomparable under
inclusion to the class REG.

3 CD-Systems of stl-det-2-RR(1)-Automata

Cooperating distributed systems (CD-systems) of restarting automata were in-
troduced and studied in [12]. Here we study CD-systems of stateless deterministic
2-RR(1)-automata, comparing them in particular to the CD-systems of stateless
deterministic R(1)-automata of [14].
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A CD-system of stateless deterministic 2-RR(1)-automata consists of a fi-
nite collection M = ((Mi, σi)i∈I , I0) of stateless deterministic 2-RR(1)-automata

Mi = (Σ, c, $, 1, δ
(i)
1 , δ

(i)
2 ) (i ∈ I), successor relations σi ⊆ I (i ∈ I), and a subset

I0 ⊆ I of initial indices. Here it is required that I0 	= ∅, and that σi 	= ∅ for
all i ∈ I. For the CD-systems of stl-det-R(1)-automata introduced in [14] it was
required in addition that i 	∈ σi for all i ∈ I, but this requirement is easily met
by using two isomorphic copies of each component automaton. Therefore, we
abandon it here in order to simplify the presentation.

Various modes of operation have been introduced and studied for CD-systems
of restarting automata, but here we are only interested in mode = 1 compu-
tations. A computation of M in mode = 1 on an input word w proceeds as
follows. First an index i0 ∈ I0 is chosen nondeterministically. Then the 2-RR-
automaton Mi0 starts the computation with the initial configuration cw$, and
executes a single cycle. Thereafter an index i1 ∈ σi0 is chosen nondetermin-
istically, and Mi1 continues the computation by executing a single cycle. This
continues until, for some l ≥ 0, the automaton Mil accepts. Such a computation
will be denoted as (i0, w) �c

M (i1, w1) �c
M · · · �c

M (il, wl) �∗
Mil

Accept. Should

at some stage the chosen automaton Mil be unable to execute a cycle or to
accept, then the computation fails. By L=1(M) we denote the language that
the system M accepts in mode = 1, and by L=1(stl-det-local-CD-2-RR(1)) we
denote the class of languages that are accepted by mode = 1 computations of stl-
det-local-CD-2-RR(1)-systems, that is, by CD-systems of stateless deterministic
2-RR(1)-automata.

From Lemma 2 we immediately obtain that L=1(stl-det-local-CD-R(1)) is con-
tained in L=1(stl-det-local-CD-2-RR(1)). Below we will see that this inclusion is
actually a proper one.

Recall from [4] or from [14] that a language L ⊆ Σ∗ is called a rational trace
language if there exists a reflexive and transitive binary relation D on Σ (a de-
pendency relation) such that L =

⋃
w∈R [w]D for some regular language R on Σ.

Here [w]D denotes the congruence class of w with respect to the congruence
≡D = { (uabv, ubav) | u, v ∈ Σ∗, a, b ∈ Σ, (a, b) 	∈ D }. In [14] it is shown that
the stl-det-local-CD-R(1)-systems accept all rational trace languages. Thus, we
see that also the stl-det-local-CD-2-RR(1)-systems accept all rational trace lan-
guages. Further, it is shown in [14] that one can extract a finite-state acceptor A
from a stl-det-local-CD-R(1)-system M such that A accepts a sublanguage of
L=1(M) that is letter-equivalent to L=1(M). Below we prove that this result
does not carry over to stl-det-local-CD-2-RR(1)-systems.

Example 7. Let M = ((Mi, σi)i∈{1,2}, {1}) be the CD-system of stl-det-2-RR(1)-
automata on Σ = {a, b} that is specified by σ1 = {2}, σ2 = {1}, and

M1 : δ
(1)
1 : c 
→ MVR, a 
→ ε, $ 
→ Accept; δ

(1)
2 : a 
→ Restart, b 
→ Restart;

M2 : δ
(2)
1 : c 
→ MVR, b 
→ ε, a 
→ MVR; δ

(2)
2 : b 
→ MVR, $ 
→ Restart.

Then M accepts the empty word. If w ∈ Σ+ is accepted, then we see from
the definition of M that w = anbm for some n,m ≥ 1. In fact, as M1
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and M2 alternate in every computation of M, we have n = m and, therefore,
L=1(M) = { anbn | n ≥ 0 }. ��
Actually, the following stronger result can be derived.

Proposition 8. For all m ≥ 1,

Lm = { an1an2 . . . anm | n ≥ 0 } ∈ L=1(stl-det-local-CD-2-RR(1)).

The language Lm (m ≥ 2) does not contain a regular sublanguage that is letter-
equivalent to Lm. It follows that this language is not accepted by any stl-det-
local-CD-R(1)-systems. So we obtain the following proper inclusion.

Corollary 9. L=1(stl-det-local-CD-R(1)) � L=1(stl-det-local-CD-2-RR(1)).

In order to determine the computational capacity of stl-det-local-CD-2-RR(1)-
systems we continue with an example that shows that these systems accept a
language that is not even growing context-sensitive.

Example 10. Let Σ = {a, b, ã, b̃}. For any word w = x1x2 · · ·xn ∈ {a, b}∗, we set
w̃ = x̃1x̃2 · · · x̃n ∈ {ã, b̃}∗, and consider Ltc = { awãw̃ | w ∈ {a, b}∗ } over Σ.

The language Ltc is not growing context-sensitive, as the growing context-
sensitive languages are closed under union and ε-free homomorphisms, and the
copy language is not growing context-sensitive [10]. However, it is accepted by the
stl-det-local-CD-2-RR(1)-system M = ((Mi, σi)i∈{0,1,2,3,4}, {0}) that is specified
by σ0 = {1}, σ1 = {0, 2, 4}, σ2 = {3}, σ3 = {0, 2, 4}, σ4 = {4}, and

δ
(0)
1 : c 
→ MVR, a 
→ ε;

δ
(0)
2 : a 
→ Restart, b 
→ Restart, ã 
→ Restart;

δ
(1)
1 : c 
→ MVR, a 
→ MVR, b 
→ MVR, ã 
→ ε;

δ
(1)
2 : ã 
→ Restart, b̃ 
→ Restart, $ 
→ Restart;

δ
(2)
1 : c 
→ MVR, b 
→ ε;

δ
(2)
2 : a 
→ Restart, b 
→ Restart, b̃ 
→ Restart;

δ
(3)
1 : c 
→ MVR, a 
→ MVR, b 
→ MVR, b̃ 
→ ε;

δ
(3)
2 : ã 
→ Restart, b̃ 
→ Restart, $ 
→ Restart;

δ
(4)
1 : c 
→ MVR, $ 
→ Accept.

Initially, component 0 deletes the first input symbol if it is an a, otherwise the
input is rejected. Then component 1 searches for the first occurrence of an in-
put letter from {ã, b̃}. It is deleted if it is ã, otherwise the input is rejected.
In subsequent cycles corresponding symbols a and ã or b and b̃ are deleted by
the components 0 and 1 or 2 and 3. After deleting an a, component 0 rejects
if the next input symbol is b̃ or $. In all other cases it restarts. The follow-
ing component 1 deletes the first occurrence of an input letter from {ã, b̃} if it
is ã, otherwise the input is rejected. Moreover, component 1 restarts only if the
deleted symbol is followed by another symbol from {ã, b̃} or by $. Similarly, for
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the components 2 and 3, and b and b̃. Whenever a pair of corresponding symbols
has been deleted, system M guesses of which type the next pair is, or whether
all pairs have been deleted. In the first case either component 0 or 2 is chosen
to continue the computation. In the latter case, component 4 is used to verify
that in fact all symbols have been deleted. Only in this situation it accepts. It
follows that L=1(M) = Ltc. ��

The power of stl-det-local-CD-2-RR(1)-systems is only deployed for languages
over an alphabet with at least two symbols. For unary languages we have the
following characterization.

Theorem 11. A language L ⊆ {a}∗ is accepted by a stl-det-local-CD-2-RR(1)-
system if and only if it is regular.

Proof. As already stl-det-local-CD-R(1)-systems accept all regular languages [14],
we see from Corollary 9 that the implication from right to left holds. To prove
the reverse implication let M = ((Mi, σi)i∈I , I0) be a CD-system of stateless

deterministic 2-RR(1)-automata on Σ = {a}. For all i ∈ I, if δ
(i)
1 (c) is undefined,

then each computation ofM that activates Mi fails, and if δ
(i)
1 (c) = Accept, then

each computation of M that activates Mi accepts. Thus, in the former case Mi

can be seen as a trap “state,” while in the latter case it can be seen as an

accepting “state” that keeps on digesting a’s. Now assume that δ
(i)
1 (c) = MVR.

If also δ
(i)
1 (a) = MVR, then Mi can only execute tail computations. In fact,

either Mi accepts all words from Σ∗ in tail computations, and this is the case if

δ
(i)
1 ($) = Accept, or it rejects all words from Σ∗ in tail computations, and this

is the case if δ
(i)
1 ($) is undefined. Also if δ

(i)
1 (a) = ε and δ

(i)
2 (a) 	= Restart and

δ
(i)
2 ($) 	= Restart, then Mi can only execute tail computations. Hence, again Mi

can be seen as a trap “state” or as an accepting “state.”
Now we can construct a finite-state acceptor A = (Q,Σ, S, F, δA) fromM that

accepts the language L = L=1(M). Essentially the states of A correspond to the
component automata Mi of M, with certain component automata becoming
trap states and others becoming accepting states. For each i ∈ I, if Mi can

execute a cycle (that is, δ
(i)
1 (c) = MVR, δ

(i)
1 (a) = ε, and δ

(i)
2 (a) = Restart or

δ
(i)
2 (a) = MVR and δ

(i)
2 ($) = Restart), then A has an a-transition from the state

corresponding to Mi to all states that correspond to component automata Mj

with j ∈ σi. It is now easy to set up the transition relation δA in such a way
that L(A) = L=1(M) holds. ��

Since, for example, the unary language { a2n | n ≥ 0 } belongs to the class of
Church-Rosser languages [11], which in turn is a proper subset of the growing
context-sensitive languages, we obtain the following incomparability results.

Corollary 12. The language class L=1(stl-det-local-CD-2-RR(1)) is incompara-
ble under inclusion to the classes CRL of Church-Rosser languages and GCSL of
growing context-sensitive languages.
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Now we turn to consider the closure properties of the language class
L=1(stl-det-local-CD-2-RR(1)). Closure under certain operations indicates a cer-
tain robustness of the language families considered, while non-closure properties
may serve, for example, as a valuable basis for extensions. We start to explore
the closure properties under the Boolean operations union, intersection, and
complementation. The first result is immediate.

Lemma 13. The class L=1(stl-det-local-CD-2-RR(1)) is closed under union.

Proof. Given two stl-det-local-CD-2-RR(1)-systems M = ((Mi, σi)i∈I , I0) and
M′ = ((M ′

i , σ
′
i)i∈I′ , I ′0), we can assume without loss of generality that I and I ′

are disjoint. So, it suffices to construct a new stl-det-local-CD-2-RR(1)-system
M′′ = ((Mi, σi)i∈I∪I′ , I0 ∪ I ′0) that consists of the components of M and M′.
Initially, M′′ guesses a starting component from the union I0 ∪ I ′0, that is,
whether to simulate M or M′. ��
In order to show non-closure under intersection with regular sets we give the
following example.

Example 14. Let D1 denote the Dyck language on Σ = {a, b}, ϕ : Σ∗ → Σ∗ be
the homomorphism that is induced by a 
→ a and b 
→ ba, and Dϕ = ϕ(D1).
Then w ∈ Σ+ belongs to Dϕ if and only if w ∈ {a, ba}+ and there exists an
n ≥ 1 such that (w = anbaz) ∧ (an−1z ∈ Dϕ).

The stl-det-local-CD-2-RR(1)-system M = ((Mi, σi)i∈{1,2,3}, {1}) is specified
by σ1 = {2}, σ2 = {3}, σ3 = {1}, and

M1 : δ
(1)
1 (c) = MVR, M2 : δ

(2)
1 (c) = MVR, M3 : δ

(3)
1 (c) = MVR,

δ
(1)
1 (a) = ε, δ

(2)
1 (a) = MVR, δ

(3)
1 (a) = ε;

δ
(1)
1 ($) = Accept; δ

(2)
1 (b) = ε; δ

(3)
2 (a) = Restart,

δ
(1)
2 (a) = Restart, δ

(2)
2 (a) = Restart; δ

(3)
2 (b) = Restart,

δ
(1)
2 (b) = Restart; δ

(3)
2 ($) = Restart.

Obviously, M accepts on input ε. Now let w = anbaz such that an−1z ∈ Dϕ.
Then on input w, M proceeds as follows:

(1, w) = (1, anbaz) �c
M1

(2, an−1baz) �c
M2

(3, an−1az) �c
M3

(1, an−1z).

By induction it follows that M accepts input an−1z, which shows w ∈ L=1(M).
Thus, Dϕ ⊆ L=1(M).

Conversely, assume that w ∈ L=1(M). If w = ε, then w ∈ Dϕ. Otherwise, the
accepting computation of M on input w looks as follows:

(1, w) �c
M1

(2, w1) �c
M2

(3, w2) �c
M3

(1, w3) �∗
M Accept,

where w = aw1 for w1 	= ε, w1 = ambaz for some z ∈ Σ∗, w2 = amaz, and
w3 = amz ∈ L=1(M). By induction it follows that amz ∈ Dϕ, which implies
that w = aw1 = am+1baz belongs to Dϕ. Thus, L=1(M) = Dϕ holds. ��
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Theorem 15. The class L=1(stl-det-local-CD-2-RR(1)) is not closed under in-
tersection (with regular sets), complementation, and ε-free homomorphisms.

Proof. By Example 14, the language Dϕ is accepted by a stl-det-local-CD-2-
RR(1)-system. We take R = a∗ · (ba)∗ and show that the intersection Dϕ ∩ R
does not belong to the class L=1(stl-det-local-CD-2-RR(1)).

Claim. Dϕ ∩R /∈ L=1(stl-det-local-CD-2-RR(1)).

Proof (of claim). Assume that M = ((Mi, σi)i∈I , I0) is a stl-det-local-CD-2-
RR(1)-system such that L=1(M) = Dϕ ∩ R. Then, for each n ≥ 1, M has
an accepting computation on input wn+1 = an+1(ba)n+1. Let n > |I|, and let

(i0, wn+1) �c
Mi0

(i1, z1) �c
Mi1

· · · �c
Mim−1

(im, zm) �∗
Mim

Accept

be an accepting computation of M on input wn+1. We now analyze this com-
putation. Assume that there exists an index k < n such that

(i0, wn+1) �ck

M (ik, a
n+1−k(ba)n+1) �c

Mik
(ik+1, a

n+1−ka(ba)n) �∗
M Accept

holds, that is, in each of the first k < n cycles, an occurrence of the letter a is
deleted, while in the (k+1)-st cycle the first occurrence of the letter b is deleted.
Then M would also perform the following computation:

(i0, a
nbaa(ba)n) �ck

M (ik, a
n−kbaa(ba)n) �c

Mik
(ik+1, a

n−kaa(ba)n) �∗
M Accept,

which shows that M accepts on input anbaa(ba)n as well. However, since
anbaa(ba)n 	∈ Dϕ ∩R, this contradicts our assumption on M.

Thus, during the first k cycles, in the accepting computation above the pre-
fix ak is deleted, for a k ≥ n. As n > |I|, this means that there exist integers j
and � > 0 such that j + � ≤ n and ij = ij+�. Hence, the accepting computation
above has the following form:

(i0, wn+1) �cj

M (ij , a
n+1−j(ba)n+1) �c�

M (ij, a
n+1−j−�(ba)n+1) �∗

M Accept.

But then M will also execute the following accepting computation:

(i0, a
n+1−�(ba)n+1) �cj

M (ij, a
n+1−j−�(ba)n+1) �∗

M Accept,

which shows that it accepts on input an+1−�(ba)n+1 	∈ Dϕ ∩ R. Again this
contradicts our assumption on M. It follows that Dϕ∩R is not accepted by any
stl-det-local-CD-2-RR(1)-system working in mode = 1. ��
So the class L=1(stl-det-local-CD-2-RR(1)) is not closed under intersection even
with regular sets. By Lemma 13 it is closed under union. Since closure under com-
plementation and union implies closure under intersection, it cannot be closed
under complementation, either.

By Example 7, the language L2 = { anbn | n ≥ 0 } is accepted by a stl-det-
local-CD-2-RR(1)-system. Let h : {a, b}∗ → {a, b}∗ be the ε-free homomorphism
defined by h(a) = a and h(b) = ba. Then h(L2) = Dϕ ∩ R does not belong to
L=1(stl-det-local-CD-2-RR(1)), which shows the non-closure under ε-free homo-
morphisms. ��
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The proof of Theorem 15 together with Example 10 reveal further incompara-
bilities. Since the language Dϕ ∩ R belongs to the intersection of deterministic
and linear context-free languages, we have the following corollary.

Corollary 16. The language class L=1(stl-det-local-CD-2-RR(1)) is incompara-
ble under inclusion to the classes CFL of context-free languages, LIN of linear,
and DCFL of deterministic context-free languages.

We continue with further (non-)closure properties.

Example 17. Let Σ = {a, b, c, d} and define the language

Ldc = {wcmdcn | w ∈ {a, b}∗,m = |w|a, n = |w|b }.
The language Ldc is accepted by the stl-det-local-CD-2-RR(1)-system M =
((Mi, σi)i∈{0,1,2,3,4,5}, {0, 2}) that is specified by σ0 = {1}, σ1 = {0, 2}, σ2 =
{3, 5}, σ3 = {4}, σ4 = {3, 5}, σ5 = {5}, and

δ
(0)
1 : c 
→ MVR, b 
→ MVR, a 
→ ε;

δ
(0)
2 : a 
→ Restart, b 
→ Restart, c 
→ Restart;

δ
(1)
1 : c 
→ MVR, a 
→ MVR, b 
→ MVR, c 
→ ε;

δ
(1)
2 : c 
→ Restart, d 
→ Restart;

δ
(2)
1 : c 
→ MVR, b 
→ MVR, d 
→ ε;

δ
(2)
2 : c 
→ Restart, $ 
→ Restart;

δ
(3)
1 : c 
→ MVR, b 
→ ε;

δ
(3)
2 : b 
→ Restart, c 
→ Restart;

δ
(4)
1 : c 
→ MVR, b 
→ MVR, c 
→ ε;

δ
(4)
2 : c 
→ Restart, $ 
→ Restart;

δ
(5)
1 : c 
→ MVR, $ 
→ Accept.

Basically, the idea of the construction is that components 0 and 1 are used to
delete one a from the prefix w and, subsequently, one c from the first block of c’s.
When all a’s and c’s have been deleted, component 2 is used to delete the sole
symbol d. The input is rejected if component 2 sees an a or a c before reaching
the d. Next, components 3 and 4 are used to delete successively the remaining b’s
from the prefix and the c’s from the second block. Finally, component 5 checks
that all symbols have been deleted. Only in this situation it accepts. ��
Theorem 18. The class L=1(stl-det-local-CD-2-RR(1)) is not closed under in-
verse homomorphisms.

Proof. By Example 17, the language Ldc is accepted by a stl-det-local-CD-2-
RR(1)-system. Let h : {a, c, d}∗ → {a, b, c, d}∗ be the homomorphism that is de-
fined by h(a) = ab, h(c) = c, and h(d) = d. Then h−1(Ldc) = { ancndcn | n ≥ 0 }.

Assume that M = ((Mi, σi)i∈I , I0) is a stl-det-local-CD-2-RR(1)-system such
that L=1(M) = h−1(Ldc).
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First we note that in any accepting computation none of the c’s following the
sole d can be deleted as long as there is at least one c left before the d.

Let n > |I|. Clearly, M cannot accept the input wn = ancndcn in a tail
computation. So, there exist integers j and � > 0 with j + � ≤ n and ij = ij+�,
and integers k1, k2, �1, �2 with k1+ �1+k2+ �2 = j+ � such that, assuming that
the sole d is not deleted during the first j + � cycles, the accepting computation
on wn has the following form:

(i0, wn) �cj

M (ij , a
n−k1cn−k2dcn) �c�

M (ij , a
n−k1−�1cn−k2−�2dcn) �∗

M Accept.

But then M will also execute the following accepting computation:

(i0, a
n−�1cn−�2dcn) �cj

M (ij , a
n−k1−�1cn−k2−�2dcn) �∗

M Accept,

which shows that it accepts the input an−�1cn−�2dcn not belonging to h−1(Ldc).
Now assume that the sole d is deleted during the first j + � cycles.

Then we obtain immediately a contradiction since the input ancn+1dcn−1 /∈
h−1(Ldc) is accepted as well. It follows that h−1(Ldc) is not accepted by any
stl-det-local-CD-2-RR(1))-system, which proves the non-closure under inverse
homomorphisms. ��

Theorem 19. L=1(stl-det-local-CD-2-RR(1)) is not closed under reversal.

Proof. By Example 14, the language Dϕ is accepted by a stl-det-local-CD-2-
RR(1)-system. We show the theorem by proving that the reversal DR

ϕ does not
belong to L=1(stl-det-local-CD-2-RR(1)).

In contrast to the assertion assume that M = ((Mi, σi)i∈I , I0) is a stl-det-
local-CD-2-RR(1)-system such that L=1(M) = DR

ϕ . We consider accepting com-
putations on inputs of the form wn = (ab)nan, for n large enough.

First we note that each component that deletes a symbol has to delete the
leftmost occurrence of that symbol. Therefore, none of the components can delete
an a from the suffix an as long as there is at least one a left in the prefix (ab)n.
Moreover, it is not hard to see that M cannot accept without deleting some a’s
from the suffix. Consider the tape inscription before the cycle in which the
first symbol a from the suffix is deleted. It must be of the form bkan, and k is
determined by the prefix (ab)n. Furthermore, for a fixed k, there are less than |I|
different values n such that bkan is the tape inscription in that situation. This
implies that k is not bounded, that is, for any k ≥ 0 we can find an n such that
(ab)nan is transformed into bk

′
an, where k′ ≥ k. We choose an n large enough

such that k is large enough as well. Therefore, during the computation on the
prefix there must occur two cycles in which the same component deletes an a
such that the number of b’s preceding the a is larger in the second cycle. More
precisely, there exist integers j and � > 0 with j + � ≤ n and ij = ij+�, and
integers k1 ≥ 0, k2, m1, m2 with m2 −m1 ≥ 1, k2 −m2 − 1 ≥ 0 such that the
accepting computation on wn = (ab)nan has the following form:
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(i0, wn) �cj

M (ij , b
k1(ab)k2an)

�c
M (ij+1, b

k1b(ab)k2−1an) �c�−1

M (ij , b
k1−m1+m2(ab)k2−m2an)

�c
M (i′j+1, b

k1−m1+m2b(ab)k2−m2−1an) �∗
M Accept.

But then M will also execute the following accepting computation:

(i0, (ab)
n−k2abbm2−m1(ab)k2−m2−1an) �cj

M (ij , b
k1abbm2−m1(ab)k2−m2−1an)

�c
M (i′j+1, b

k1bbm2−m1(ab)k2−m2−1an) �∗
M Accept,

which shows that it accepts the input (ab)n−k2+1bm2−m1(ab)k2−m2−1an 	∈ DR
ϕ .

It follows that DR
ϕ is not accepted by any stl-det-local-CD-2-RR(1)-system. ��

4 Deterministic CD-Systems of stl-det-2-RR(1)-
Automata

Although all the component automata of a stl-det-local-CD-2-RR(1)-system are
deterministic, the system itself is not. Indeed, the initial component with which
to begin a particular computation is chosen nondeterministically from the set I0
of all initial components, and after each cycle the component for executing the
next cycle is chosen nondeterministically from among all the successors of the
previously active component. Here we define two types of deterministic CD-
systems of stl-det-2-RR(1)-automata: the strictly deterministic CD-systems and
the globally deterministic CD-systems.

4.1 Strictly Deterministic CD-Systems of stl-det-2-RR(1)-Automata

Here we introduce and study a first type of CD-system of stateless deterministic
2-RR(1)-automata that is completely deterministic. The idea and the notation
is taken from [13], where a corresponding notion was introduced for CD-systems
of general restarting automata.

A CD-system M = ((Mi, σi)i∈I , I0) of stateless deterministic 2-RR(1)-
automata is called strictly deterministic if |I0| = 1 and |σi| = 1 for all i ∈ I.
Then, for each word w ∈ Σ∗, M has a unique computation that begins with the
initial configuration corresponding to input w. By L=1(stl-det-strict-CD-2-RR(1))
we denote the class of languages that are accepted by strictly deterministic
stateless CD-2-RR(1)-systems. Note that the CD-systems in Examples 7, 14,
and Proposition 8 are strictly deterministic. On the other hand, we have the
following simple but useful observation on the weakness of stl-det-strict-CD-2-
RR(1)-systems.

Lemma 20. Let M = ((Mi, σi)i∈I , {i0}) be a stl-det-strict-CD-2-RR(1)-system

that accepts a language over the alphabet Σ, where δ
(i0)
1 (c) = MVR. For all

w ∈ Σ∗ and all x, y ∈ Σ, if δ
(i0)
1 (x) = δ

(i0)
1 (y) = ε, then xw ∈ L=1(M) if and

only if yw ∈ L=1(M).
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Lemma 21. The finite language L0 = {aaa, bb} is not accepted by any strictly
deterministic stateless CD-2-RR(1)-system.

Proof. Assume that M = ((Mi, σi)i∈I , I0) is a strictly deterministic stateless
CD-2-RR(1)-system such that L=1(M) = L0, and let I0 = {i0}. Since L0 is

neither {a, b}∗ nor empty, we have δ
(i0)
1 (c) = MVR. Similarly, L0 ∩ a+ is nei-

ther a+ nor empty and, thus, we see that δ
(i0)
1 (a) = ε. Analogously it follows

that δ
(i0)
1 (b) = ε. So we see from Lemma 20 that aaa ∈ L=1(M) if and only if

baa ∈ L=1(M), a contradiction. ��
We obtain the following consequences.

Corollary 22. L=1(stl-det-strict-CD-2-RR(1)) is incomparable under inclusion
to the language classes FIN of finite languages, REG of regular languages,
and CFL of context-free languages. In particular, it follows that the inclusion
L=1(stl-det-strict-CD-2-RR(1)) ⊆ L=1(stl-det-local-CD-2-RR(1)) is proper.

Further, we see that L=1(stl-det-strict-CD-2-RR(1)) is incomparable under in-
clusion to the language class L=1(stl-det-local-CD-R(1)). For future reference we
consider another finite example language.

Lemma 23. The finite language L′
0 = {aaaa, abb} is not accepted by any strictly

deterministic stateless CD-2-RR(1)-system.

Proof. Assume that M = ((Mi, σi)i∈I , I0) is a strictly deterministic state-
less CD-2-RR(1)-system such that L=1(M) = L′

0, let I0 = {i0}, and let

σi0 = {i1} and σi1 = {i2}. Obviously, we have δ
(i0)
1 (c) = MVR, and

δ
(i0)
1 (a) = ε. Further, it holds that δ

(i1)
1 (c) = MVR, and δ

(i1)
1 (a) = δ

(i1)
1 (b) = ε.

Now (i0, aaaa) �c
M (i1, aaa) �c

M (i2, aa), which leads to acceptance, while
(i0, abaa) �c

M (i1, baa) �c
M (i2, aa) should lead to rejection, which is a con-

tradiction. Thus, L′
0 is not accepted by any strictly deterministic stateless CD-

2-RR(1)-system working in mode = 1. ��
From Lemma 21 we immediately obtain several non-closure properties for the
class L=1(stl-det-strict-CD-2-RR(1)). In fact, we can derive the following result.

Theorem 24. The language class L=1(stl-det-strict-CD-2-RR(1)) is not closed
under union, intersection with regular sets, ε-free homomorphisms, and inverse
homomorphisms.

Proof. The languages {aaa}, {bb}, and {a, b}∗ are all accepted by stl-det-
strict-CD-2-RR(1)-systems. As {aaa} ∪ {bb} = {aaa, bb} = {aaa, bb} ∩ {a, b}∗,
Lemma 21 shows that this language class is neither closed under union nor un-
der intersection with regular sets.

The languages {c, d} and {c6} are accepted by stl-det-strict-CD-2-RR(1)-
systems. Let h1 : {c, d}∗ → {a, b}∗ be the homomorphism defined by c 
→ aaa
and d 
→ bb, and let h2 : {a, b}∗ → {c}∗ be the homomorphism defined by a 
→ c2

and b 
→ c3. Then h1({c, d}) = {aaa, bb} = h−1
2 ({c6}), and hence, Lemma 21

shows that this language class is neither closed under ε-free homomorphisms nor
under inverse homomorphisms. ��
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Proposition 25. The class L=1(stl-det-strict-CD-2-RR(1)) is (a) closed under
complementation and (b) not closed under intersection.

Proof. (a) Let M = ((Mi, σi)i∈I , {i0}) be a stl-det-strict-CD-2-RR(1)-system
on Σ such that L=1(M) = L. By interchanging accept transitions and unde-

fined transitions within each function δ
(i)
1 and δ

(i)
2 , we obtain a stl-det-strict-CD-

2-RR(1)-system M′ = ((M ′
i , σi)i∈I , {i0}) that executes exactly the same cycles

as M, but for each index i ∈ I, the accepting tail computations of M ′
i corre-

spond to rejecting tail computations of Mi, and vice versa. Hence, it follows that
L=1(M′) = Σ∗ � L = L.
(b) Closure under complementation and non-closure under union yield immedi-
ately that L=1(stl-det-strict-CD-2-RR(1)) is not closed under intersection. ��

Proposition 26. The class L=1(stl-det-strict-CD-2-RR(1)) is (a) not closed un-
der commutative closure and (b) not closed under reversal.

Proof. (a) From Example 7 we know that the language L2 = { anbn | n ≥ 0 } is
accepted by a stl-det-strict-CD-2-RR(1)-system. Its commutative closure is the
language L= = {w ∈ {a, b}∗ | |w|a = |w|b ≥ 0 }.

Assume that M = ((Mi, σi)i∈I , I0) is a stl-det-strict-CD-2-RR(1)-system ac-

cepting the language L=, and assume that I0 = {i0}. Then δ
(i0)
1 (c) = MVR, and

as ε ∈ L=, we also have δ
(i0)
1 ($) = Accept. As a 	∈ L=, we see that δ

(i0)
1 (a) = ε,

and as b 	∈ L=, we also have δ
(i0)
1 (b) = ε. Further, it holds that δ

(i0)
2 (b) = Restart,

or δ
(i0)
2 (b) = MVR and δ

(i0)
2 ($) = Restart, as ab ∈ L=, while abb 	∈ L=. Hence,

M performs the following computations, where σi0 = {i1}:

(i0, ab) �c
M (i1, b) �∗

M Accept and (i0, bb) �c
M (i1, b) �∗

M Accept.

As bb does not belong to L=, this contradicts our assumption on M. Hence, L=

is not accepted by any stl-det-strict-CD-2-RR(1)-system, which means that
L=1(stl-det-strict-CD-2-RR(1)) is not closed under the operation of commuta-
tive closure.
(b) Let L = { aaw | w ∈ {a, b}∗ }. Then L is accepted by the following stl-det-
strict-CD-2-RR(1)-system M = ((M0, {1}), (M1, {1}), {0}), where M0 and M1

are defined as follows:

M0 : δ
(0)
1 : c 
→ MVR, a 
→ ε; δ

(0)
2 : a 
→ Restart;

M1 : δ
(1)
1 : c 
→ MVR, a 
→ ε; δ

(1)
2 : a 
→ MVR, b 
→ MVR, $ 
→ Accept.

Assume that M = ((Mi, σi)i∈I , I0) is a stl-det-strict-CD-2-RR(1)-system such
that L=1(M) = LR. Without loss of generality we can assume that I =

{0, 1, . . . ,m}, that I0 = {0} and that σ0 = {1}. Obviously, δ
(0)
1 (c) = MVR,

and δ
(0)
1 (a) = ε, as a 	∈ LR, while a2 ∈ LR. If δ

(0)
1 (b) = ε as well, then with

aa ∈ LR, M would also accept ba 	∈ LR. Hence, δ
(0)
1 (b) = MVR. It remains to

consider the function δ
(0)
2 .



126 M. Kutrib and F. Otto

If δ
(0)
2 (a) = Accept, then M would accept the word aab 	∈ LR. Also if δ

(0)
2 ($) =

Accept, then M would accept the word a 	∈ LR. Hence, δ
(0)
2 (a) = Restart, or

δ
(0)
2 (a) = MVR and δ

(0)
2 ($) = Restart. Further, as abaa ∈ LR, while abab 	∈ LR,

it follows that δ
(0)
2 (b) ∈ {MVR,Restart} holds, too. But then M executes the

following computations:

(0, baa) �c
M (1, ba) �∗

M Accept and (0, aba) �c
M (1, ba) �∗

M Accept.

As aba 	∈ LR, this again contradicts our assumption on M. Thus, LR

is not accepted by any stl-det-strict-CD-2-RR(1)-system, and it follows that
L=1(stl-det-strict-CD-2-RR(1)) is not closed under reversal. ��
For showing that the class L=1(stl-det-strict-CD-2-RR(1)) is an anti-AFL, it re-
mains to be proven that this class is not closed under concatenation and Kleene
star, either. Let Lp be the language Lp = a+ · b · a+ on Σ2 = {a, b}.
Lemma 27. Lp ∈ L=1(stl-det-strict-CD-2-RR(1)).

Proof. The language Lp is accepted by the stl-det-strict-CD-2-RR(1)-system
Mp = ((Mi, σi)i∈{0,1,2}, {0}), where σ0 = {1}, σ1 = {2}, σ2 = {0}, and the
stl-det-2-RR(1)-automata M0, M1 and M2 are defined as follows:

M0 : δ
(0)
1 : c 
→ MVR, a 
→ ε; δ

(0)
2 : a 
→ Restart, b 
→ Restart;

M1 : δ
(1)
1 : c 
→ MVR, a 
→ MVR, b 
→ ε; δ

(1)
2 : a 
→ Restart;

M2 : δ
(2)
1 : c 
→ MVR, a 
→ MVR, $ 
→ Accept. ��

Non-closure under concatenation for L=1(stl-det-strict-CD-2-RR(1)) will follow
from the following negative result.

Lemma 28. Lp · Lp 	∈ L=1(stl-det-strict-CD-2-RR(1)).

Proof. Obviously,

L2
p = Lp · Lp = a+ · b · a · a+ · b · a+ = { ambanbap | m, p ≥ 1, n ≥ 2 }.

We claim that the language L2
p is not accepted by any stl-det-strict-CD-2-RR(1)-

system.
Assume to the contrary that M = ((Mi, σi)i∈I , I0) is a stl-det-strict-CD-2-

RR(1)-system such that L=1(M) = L2
p. Without loss of generality we may as-

sume that I = {0, 1, . . . , r}, and that I0 = {0}.
We first analyze the transition functions of M0. Obviously, δ

(0)
1 (c) = MVR. If

δ
(0)
1 (a) = MVR, then δ

(0)
1 (b) = ε, as L=1(M) is neither empty nor the set Σ∗

2 .
But then M cannot distinguish between the input abaaba ∈ L2

p and the input
aababa 	∈ L2

p, contradicting our assumption above. Hence, we conclude that

δ
(0)
1 (a) = ε.

If δ
(0)
1 (b) = Accept, then M would accept all words beginning with the letter b.

If δ
(0)
1 (b) = MVR, then M cannot distinguish between the input abaaba ∈ L2

p
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and the input baaaba 	∈ L2
p. It follows that δ

(0)
1 (b) = ∅. Further, as in the second

phase of the first cycle, M0 cannot possibly ensure that the remaining tape
contents is of the form a∗ · b · a · a+ · b · a+, we see that M0 executes a restart
operation after deleting the first a.

Let σ0 = {1}. We continue by analyzing the transition functions of M1. Ob-

viously, δ
(1)
1 (c) = MVR.

Assume first that δ
(1)
1 (a) = ε. If also δ

(1)
1 (b) = ε, then M cannot distinguish

between the input aabaaba ∈ L2
p and the input abbaaba 	∈ L2

p, which contradicts

our assumption above. If δ
(1)
1 (b) = MVR, then we have the following partial

computations of M, where σ1 = {2} is taken:

(0, abaaba) �c
M (1, baaba) �c

M (2, baba),

and
(0, aababa) �c

M (1, ababa) �c
M (2, baba).

Hence, M cannot distinguish between the input abaaba ∈ L2
p and the input

aababa 	∈ L2
p. It follows that δ

(1)
1 (a) = MVR. But then δ

(1)
1 (b) = ε follows, which

in turn means that M executes the following partial computations:

(0, abaaba) �c
M (1, baaba) �c

M (2, aaba)

and
(0, aababa) �c

M (1, ababa) �c
M (2, aaba).

This again shows that M cannot distinguish between the input abaaba ∈ L2
p

and the input aababa 	∈ L2
p. In conclusion we see that L2

p is not accepted by any
stl-det-strict-CD-2-RR(1)-system. ��
In fact, it can be shown that each stl-det-strict-CD-2-RR(1)-system that accepts
all words from L2

p also accepts some words from (a∗ · b · a∗)∗ that do not belong
to the language L∗

p. Hence, it follows that L∗
p (and also L+

p ) is not accepted
by any stl-det-strict-CD-2-RR(1)-system. Thus, we have the following additional
non-closure results.

Corollary 29. The language class L=1(stl-det-strict-CD-2-RR(1)) is not closed
under concatenation, Kleene plus and Kleene star.

Thus, we see that L=1(stl-det-strict-CD-2-RR(1)) is an anti-AFL.

4.2 Globally Deterministic CD-Systems of stl-det-2-RR(1)-
Automata

In a globally deterministic CD-system of stateless deterministic R(1)-automata,
each rewrite operation of each component automaton is associated with a par-
ticular successor index. Thus, if Mi1 is the active component, and if it executes
a cycle involving the deletion of the letter a ∈ Σ, then the component i2 ∈ σi1
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that is associated with the delete operation δi1(a) = ε is activated. Hence, the
choice of the successor component is based on the symbol deleted.

In a computation of a CD-system of stateless deterministic 2-RR(1)-automa-
ta, a successor component is chosen whenever the active component executes a
restart operation. Accordingly, for these CD-systems we associate a particular
successor index with each restart operation.

Let ((Mi, σi)i∈I , I0) be a CD-system of stateless deterministic 2-RR(1)-

automata over Σ such that |I0| = 1. For each i ∈ I, let Σ
(i)
rs be the set of symbols

that cause the component automaton Mi to perform a restart operation, that
is,

Σ(i)
rs = { a ∈ Σ | δ(i)2 (a) = Restart } ∪ { $ | δ(i)2 ($) = Restart }.

Further, let δ :
⋃

i∈I({i} × Σ
(i)
rs ) → I be a mapping that assigns to each pair

(i, a) ∈ {i}×Σ
(i)
rs an element j ∈ σi. Then δ is called a global successor function. It

assigns a successor component j ∈ σi to the active component i based on the sym-

bol a ∈ Σ
(i)
rs that causesMi to perform a restart operation in the current cycle. It

follows that, for each input word w ∈ Σ∗, the systemM = ((Mi, σi)i∈I , I0, δ) has
a unique computation that starts from the initial configuration corresponding to
input w. Accordingly we call M a globally deterministic stateless CD-2-RR(1)-
system, and by L=1(stl-det-global-CD-2-RR(1)) we denote the class of languages
that are accepted by these systems.

Obviously, each strictly deterministic stateless CD-2-RR(1)-system is globally
deterministic. However, the globally deterministic stateless CD-2-RR(1)-systems
are more expressive than the strictly deterministic ones.

Example 30. Let M = ((Mi, σi)i∈I , I0, δ) be the globally deterministic CD-
system of stateless deterministic 2-RR(1)-automata over Σ = {a, b} that is de-
fined as follows:
I = {0, 1, 2, 3, 4, 5}, I0 = {0}, σ0 = {1, 4}, σ1 = {2}, σ2 = {3}, σ3 = {5} = σ4,
σ5 = {1}, and M0 to M5 are the stateless deterministic 2-RR(1)-automata that
are given by the following transition functions:

M0 : δ
(0)
1 : c 
→ MVR, a 
→ ε; δ

(0)
2 : a 
→ Restart, b 
→ Restart;

M1 : δ
(1)
1 : c 
→ MVR, a 
→ ε; δ

(1)
2 : a 
→ Restart;

M2 : δ
(2)
1 : c 
→ MVR, a 
→ ε; δ

(2)
2 : a 
→ Restart;

M3 : δ
(3)
1 : c 
→ MVR, a 
→ ε; δ

(3)
2 : $ 
→ Accept;

M4 : δ
(4)
1 : c 
→ MVR, b 
→ ε; δ

(4)
2 : b 
→ Restart;

M5 : δ
(5)
1 : c 
→ MVR, b 
→ ε; δ

(5)
2 : $ 
→ Accept.

and δ is defined by δ(0, a) = 1, δ(0, b) = 4, δ(1, a) = 2, δ(2, a) = 3, δ(4, b) = 5.
Then it is easily seen that L=1(M) = {aaaa, abb}, which is not accepted by any
strictly deterministic stateless CD-2-RR(1)-system by Lemma 23. ��
Thus, we have the following proper inclusion.
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Corollary 31

L=1(stl-det-strict-CD-2-RR(1)) � L=1(stl-det-global-CD-2-RR(1)).

Further, we relate the stl-det-global-CD-2-RR(1)-systems to the stl-det-local-CD-
2-RR(1)-systems.

Proposition 32

L=1(stl-det-global-CD-2-RR(1)) ⊆ L=1(stl-det-local-CD-2-RR(1)).

Proof Let M = ((Mi, σi)i∈I , {i0}, δ) be a stl-det-global-CD-2-RR(1)-system on

alphabet Σ and, for each i ∈ I, Σ
(i)
rs as defined above. From M we now

construct a stl-det-local-CD-2-RR(1)-system M′ = ((M ′
j , σ

′
j)j∈J , J0) satisfying

L=1(M′) = L=1(M). For all i ∈ I, let S(i) = Σ
(i)
rs , if Σ

(i)
rs 	= ∅, and S(i) = {+},

otherwise. Now let J = { (i, a) | i ∈ I, a ∈ S(i) }, let J0 = { (i0, a) | a ∈ S(i0) },
and for all i ∈ I, take

σ′
(i,a) = { (j, b) | j = δ(i, a), b ∈ S(j) } for all a ∈ Σ

(i)
rs ,

σ′
(i,+) = J0, if Σ

(i)
rs = ∅.

Finally, we define the stateless deterministic 2-RR(1)-automataM ′
(i,a) as follows,

where i ∈ I, a ∈ S(i), and b ∈ Σ:

M ′
(i,a) : δ

(i,a)
1 (x) = δ

(i)
1 (x) for all x ∈ Σ ∪ {c, $};

δ
(i,a)
2 (x) = δ

(i)
2 (x) for all x ∈ (Σ ∪ {$})�Σrs,

δ
(i,a)
2 (a) = Restart, if a ∈ Σrs,

δ
(i,a)
2 (b) = ∅, for all b ∈ Σrs � {a}.

Let w = a1a2 · · · an ∈ Σ∗, where n ≥ 0 and a1, . . . , an ∈ Σ. Assume that the
computation of M on input w has the following form:

(i0, w) = (i0, u0b0v0) �c
M (i1, u0v0) = (i1, u1b1v1) �c

M · · ·
�c
M (ir, ur−1vr−1) = (ir, wr),

and that starting with the configuration (ir, wr), the component automaton Mir

performs a tail computation. Then M′ can simulate this sequence of cycles by
guessing, in each step, on which letter the next restart operation of M will be
executed. Thus, we conclude that L=1(M) ⊆ L=1(M′) holds.

Conversely, if M′ has an accepting computation on input w ∈ Σ∗, then it
follows easily from the above construction of M′ that M will also accept on
input w. Thus, we see that L=1(M′) = L=1(M), which completes the proof. ��
Since all rational trace languages are accepted by stl-det-local-CD-2-RR(1)-
systems, the inclusion result above raises the question of whether all rational
trace languages are accepted by stl-det-global-CD-2-RR(1)-systems as well. The
following result answers this question in the negative.
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Proposition 33. The rational trace language

L∨ = {w ∈ {a, b}∗ | ∃n ≥ 0 : |w|a = n and |w|b ∈ {n, 2n} }
is not accepted by any globally deterministic stateless CD-2-RR(1)-system.

Proof. As L∨ is the commutative closure of the regular language (ab)∗ ∪ (abb)∗,
it is obviously a rational trace language.

It remains to be proven that L∨ 	∈ L=1(stl-det-global-CD-2-RR(1)). Assume to
the contrary that M = ((Mi, σi)i∈I , I0, δ) is a stl-det-global-CD-2-RR(1)-system
such that L=1(M) = L∨. Without loss of generality we can assume that I =
{0, 1, . . . ,m− 1} and that I0 = {0}.

Let n > 2m, and let w = anbn ∈ L∨. Then the computation of M on input w
is accepting, that is, it is of the form

(0, anbn) �c
M (i1, w1) �c

M · · · �c
M (ir, wr) �∗

Mir
Accept,

where Mir accepts the tape contents cwr$ in a tail computation. Let i = |wr |a
and j = |wr|b.

If j > 1, then Mir would also accept the tape contents wrb
k = aibj+k for any

k > 0, and therewith M would accept the input wb2n = anb3n. As this word
is not contained in L∨, this contradicts our assumption that L=1(M) = L∨.
Hence, we conclude that j = |wr|b ≤ 1.

Analogously, if i > 1, then Mir would also accept the tape contents ai+kbj for
any k > 0, and therewith M would accept the input anw = a2nbn 	∈ L∨. Hence,
we conclude that i = |wr|a ≤ 1. Thus, |wr| = i+ j ≤ 2, which shows that in the
above computation at least the first n − 1 occurrences of the letter a and the
first n− 1 occurrences of the letter b are deleted letter by letter, and then Mir

accepts the word wr of length at most two.
As n > m, there exists an index i ∈ I such that the component automa-

ton Mi is used twice within the above sequence of cycles. Thus, there are integers
s, t, k, � ≥ 0, m ≥ s+ t ≥ 0 and m ≥ k+ � > 0, such that the above computation
can be written as follows:

(0, anbn) �c∗
M (i, an−sbn−t) �c+

M (i, an−s−kbn−t−�) �c∗
M (ir, wr) �∗

Mir
Accept.

Obviously, M will also execute the following shortened computation:

(0, an−kbn−�) �c∗
M (i, an−s−kbn−t−�) �c∗

M (ir, wr) �∗
Mir

Accept,

that is, M accepts on input an−kbn−�. From our assumption that L=1(M) = L∨
we can therefore conclude that k = �, as n > 2m.

Now consider the computation of M on input anb2n. As anb2n ∈ L∨, this
computation is accepting, that is, it has the following form:

(0, anb2n) �c∗
M (i, an−sb2n−t) �c+

M (i, an−s−kb2n−t−k) �c∗
M (i′, z′) �∗

Mi′ Accept

for some i′ ∈ I and some word z′ ∈ Σ∗. But then M will also execute the
following computation:

(0, an−kb2n−k) �c∗
M (i, an−s−kb2n−t−k) �c∗

M (i′, z′) �∗
Mi′ Accept,
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that is, it accepts on input an−kb2n−k 	∈ L∨. It follows that L=1(M) 	= L∨, that
is, L∨ is not accepted by any globally deterministic stateless CD-2-RR(1)-system
working in mode = 1. ��
This yields the following consequence.

Corollary 34.

L=1(stl-det-global-CD-2-RR(1)) � L=1(stl-det-local-CD-2-RR(1)).

The Dyck language D1 is not a rational trace language, but it is accepted by
a strictly deterministic stateless CD-2-RR(1)-system as can be shown easily (see
Example 14). Thus, we have the following consequence.

Corollary 35. The two language classes L=1(stl-det-strict-CD-2-RR(1)) and
L=1(stl-det-global-CD-2-RR(1)) are incomparable under inclusion to the class of
rational trace languages.

In a stl-det-global-CD-R(1)-system, the choice of the successor component is
based on the letter removed in the current cycle, while in a stl-det-global-CD-2-
RR(1)-system, this choice is based on the letter on which the currently active
component automaton executes the restart that completes the current cycle. This
raises the question of whether each stl-det-global-CD-R(1)-system can be simu-
lated by a stl-det-global-CD-2-RR(1)-system. In order to answer this question
we first note that Lemma 20 applies also to stl-det-global-CD-2-RR(1)-systems.
Hence, from Lemma 21 we adapt the following negative result.

Corollary 36. The finite language L0 = {aaa, bb} is not accepted by any glob-
ally deterministic stateless CD-2-RR(1)-system.

Since all regular languages are accepted by stl-det-global-CD-R(1)-systems, the
corollary implies that the class L=1(stl-det-global-CD-R(1)) is not contained
in L=1(stl-det-global-CD-2-RR(1)). On the other hand, Example 7 shows that
already stl-det-strict-CD-2-RR(1)-systems accept some languages that are not
accepted by stl-det-local-CD-R(1)-systems. Hence, we have the following incom-
parability results.

Corollary 37. The language classes

L=1(stl-det-strict-CD-2-RR(1)) and L=1(stl-det-global-CD-2-RR(1))

are incomparable under inclusion to the classes

L=1(stl-det-global-CD-R(1)) and L=1(stl-det-local-CD-R(1)).

Even though stl-det-global-CD-2-RR(1)-systems cannot accept all finite lan-
guages, they seem to be powerful devices. In particular, the language of Ex-
ample 10, which is not even growing context-sensitive, can be shown to belong
to the class L=1(stl-det-global-CD-2-RR(1)) by adding a corresponding global
successor function to the stl-det-local-CD-2-RR(1))-system of Example 10.
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Fig. 1. Hierarchy of language classes accepted by various types of CD-R(1)- and CD-
2-RR(1)-systems. Here SLIN denotes the class of semi-linear languages, LRAT is the
class of rational trace languages, and FIN is the class of all finite languages. Each arrow
represents a proper inclusion, the dotted arrow represents an inclusion that is still open,
and all other classes that are not connected by a sequence of arrows are incomparable
under inclusion.

Theorem 38. The language class L=1(stl-det-global-CD-2-RR(1)) is incompa-
rable under inclusion to the classes GCSL of growing context-sensitive languages,
CRL of Church-Rosser languages, CFL of context-free languages, LIN of linear
languages, DCFL of deterministic context-free languages, REG of regular lan-
guages as well as to the class FIN of finite languages.

The diagram in Figure 1 summarizes our inclusion results. We have the fol-
lowing results on closure and non-closure properties for the language class
L=1(stl-det-global-CD-2-RR(1)).

Proposition 39. The class L=1(stl-det-global-CD-2-RR(1)) is (a) closed under
complementation, (b) not closed under union or intersection, (c) not closed un-
der intersection with regular languages, concatenation, ε-free homomorphisms,
and inverse homomorphisms, and (d) not closed under commutative closure and
reversal.

Proof. (a) Let M = ((Mi, σi)i∈I , {i0}, δ) be a stl-det-global-CD-2-RR(1)-system
on Σ such that L=1(M) = L. By interchanging accept transitions and unde-

fined transitions within each function δ
(i)
1 and δ

(i)
2 , we obtain a stl-det-global-

CD-2-RR(1)-system M′ = ((M ′
i , σi)i∈I , {i0}, δ) that executes exactly the same

cycles as M, but for each index i ∈ I, the accepting tail computations of M ′
i

correspond to rejecting tail computations of Mi, and vice versa. Hence, it follows
that L=1(M′) = Σ∗ � L = L.

(b) By Corollary 36 the finite language L0 = {aaa, bb} is not accepted
by any stl-det-global-CD-2-RR(1)-system. It is easily seen that the languages
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L0,1 = {aaa} and L0,2 = {bb} are accepted by such systems and, thus, the class
L=1(stl-det-global-CD-2-RR(1)) is not closed under union. Together with closure
under complementation this also yields non-closure under intersection.

(c) As {a, b}∗ is accepted by a stl-det-global-CD-2-RR(1)-system, and as L0 is
regular, we see from the claim above and the fact that L0 = {a, b}∗ ∩ L0 that
the class L=1(stl-det-global-CD-2-RR(1)) is not closed under intersection with
regular languages.

It is not hard to see that the languages {ε, aa} and {ε, bb} are accepted by
stl-det-global-CD-2-RR(1)-systems. By an application of Lemma 20 their concate-
nation {ε, aa} · {ε, bb} = {ε, aa, bb, aabb} is not.

The languages {c, d} and {c6} are accepted by stl-det-global-CD-2-RR(1)-
systems. Let h1 : {c, d}∗ → {a, b}∗ be the homomorphism defined by c 
→ aaa
and d 
→ bb, and let h2 : {a, b}∗ → {c}∗ be the homomorphism defined by a 
→ c2

and b 
→ c3. Then h1({c, d}) = {aaa, bb} = h−1
2 ({c6}), and hence, Corollary 36

shows that the language class L=1(stl-det-global-CD-2-RR(1)) is neither closed
under ε-free homomorphisms nor under inverse homomorphisms.
(d) Since the regular language (ab)∗ ∪ (abb)∗ can be accepted by some stl-
det-global-CD-2-RR(1)-system, Proposition 33 implies that the language class
L=1(stl-det-global-CD-2-RR(1)) is not closed under commutative closure.

From Example 30 we know that the language L′
0 = {aaaa, abb} is accepted

by a stl-det-global-CD-2-RR(1)-system. In analogy it can be shown that also the
language L′

1 = {caaa, cbb} is accepted by a stl-det-global-CD-2-RR(1)-system.

Here we claim that the language L′
1
R

= {aaac, bbc} is not accepted by any
stl-det-global-CD-2-RR(1)-system.

Assume that M = ((Mi, σi)i∈I , I0, δ) is a stl-det-global-CD-2-RR(1)-system

accepting the language L′
1
R
. Without loss of generality we can assume that

I = {0, 1, . . . , n}, and that I0 = {0}. Obviously, δ
(0)
1 (c) = MVR. We now consider

various cases.
(i) If δ

(0)
1 (a) = δ

(0)
1 (b) = MVR, then necessarily δ

(0)
1 (c) = ε and δ

(0)
2 ($) = Restart

follow. Let δ(0, $) = 1. Then the system M′ = ((Mi, σi)i∈I , {1}, δ) accepts the
language L0 = {aaa, bb}. This, however, contradicts Corollary 36.

(ii) If δ
(0)
1 (a) = δ

(0)
1 (b) = ε, Lemma 20 shows that L′

1
R
is not accepted by M.

(iii) If δ
(0)
1 (a) = MVR and δ

(0)
1 (b) = ε, then δ

(0)
1 (c) = ε and δ

(0)
2 ($) = Restart.

Then M executes the following accepting computation:

(0, aaac) �c
M (1, aaa) �∗

M Accept,

where δ(0, $) = 1. But then M also executes the following computation:

(0, aaab) �c
M (1, aaa) �∗

M Accept,

which again contradicts our assumption on M, as aaab 	∈ L′
1
R
.

(iv) If δ
(0)
1 (a) = ε and δ

(0)
1 (b) = MVR, then δ

(0)
1 (c) = ε and δ

(0)
2 ($) = Restart.

Then M executes the following accepting computation:

(0, bbc) �c
M (1, bb) �∗

M Accept,
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where δ(0, $) = 1. But then M also executes the following computation:

(0, bba) �c
M (1, bb) �∗

M Accept,

which again contradicts our assumption on M, as bba 	∈ L′
1
R
.

As this covers all cases, we see that indeed L′
1
R

is not accepted by any stl-
det-global-CD-2-RR(1)-system. ��

5 Decidability Problems

In this section we turn to investigate decidability problems for the classes
L=1(stl-det-local-CD-R(1)) and L=1(stl-det-local-CD-2-RR(1)). Basically it turns
out that all undecidable problems are not even semidecidable. For these prob-
lems, it suffices to show the results for L=1(stl-det-local-CD-R(1)). We will use
a reduction of Post’s Correspondence Problem (PCP) (see, for example, [17]).

Let Σ be an alphabet. An instance of the PCP is given by two lists α =
α1, α2, . . . , αn and β = β1, β2, . . . , βn of words from Σ+. It is well known that
it is undecidable whether a PCP has a solution [16], that is, whether there
is a nonempty finite sequence of indices i1, i2, . . . , ik such that αi1αi2 · · ·αik =
βi1βi2 · · ·βik . In particular, it is semidecidable whether a PCP has a solution, but
is not semidecidable whether it has no solution. In the sequel we call i1, i2, . . . , ik
as well as αi1αi2 · · ·αik a solution of the PCP.

Theorem 40. Regularity, context-freeness, equivalence, and inclusion are not
semidecidable for L=1(stl-det-local-CD-R(1)) and L=1(stl-det-local-CD-2-RR(1)).

Proof. Let an instance of the PCP be given by the lists α = α1, α2, . . . , αn and
β = β1, β2, . . . , βn of nonempty words over some alphabet Σ = {a1, a2, . . . , am}.
Further, let H = {1, 2, . . . , n}, αj = αj,1αj,2 · · ·αj,|αj |, βj = βj,1βj,2 · · ·βj,|βj|,
define Σ̃ = { ã | a ∈ Σ } to be a disjoint copy ofΣ, and set β̃j = β̃j,1β̃j,2 · · · β̃j,|βj|,
for 1 ≤ j ≤ n.

In order to construct a language that meets our purposes we start with the
set E = { x1x

′
1x2x

′
2 · · ·x�x

′
� | � ≥ 0, xi ∈ Σ, x′

i ∈ Σ̃, 1 ≤ i ≤ �, and x′
i = x̃i },

that is, the set of words in which symbols from Σ and Σ̃ occur alternatingly (!)
so that each symbol from Σ̃ is the copy of its left neighbor from Σ. Now define

L1 = ((Σ ∪ Σ̃)∗ � E) X H∗,

that is, the complement of E with respect to Σ∪Σ̃ shuffled with indices from H ,
and

L2 = (E X H∗) ∩ { (w X w̃)X v | v = v1v2 · · · vk ∈ H+

such that w = αv1αv2 · · ·αvk , w̃ = β̃v1 β̃v2 · · · β̃vk }.
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To conclude the construction of the language set LP = L1∪L2. It can be shown
that LP is accepted by a stl-det-local-CD-R(1)-system M. Essentially M is the
union of two subsystems, the one of which accepts the language L1, while the
other accepts a superset of the language L2.

Now assume that the PCP has no solution. Then L2 is empty and LP = L1

is regular and, thus, context-free. Conversely, if LP is context-free, then
LP ∩ (E X H∗) = L2 is context free. A straightforward application of the pump-
ing lemma on words of the form (Σ∪ Σ̃)∗ ·H∗ that belong to L2 shows a contra-
diction. Therefore, the non-semidecidability of regularity and context-freeness
follows by the non-semidecidability of the unsolvability of the PCP.

As mentioned above, M includes a subsystem for accepting L1. Therefore,
the semidecidability of equivalence implies the semidecidability of whether M
accepts L1, that is, whether L2 is empty and, thus, the semidecidability of the
unsolvability of the PCP. Finally, if inclusion is semidecidable then so is equiv-
alence. ��

Theorem 41. Universality and cofiniteness are not semidecidable for the
classes L=1(stl-det-local-CD-R(1)) and L=1(stl-det-local-CD-2-RR(1)).

Proof. Given an instance of the PCP, a stl-det-local-CD-2-RR(1)-system can be
constructed for the language L2 (which includes L1). Since L2 is empty if and
only if the PCP has no solution, L2 = (Σ ∪ Σ̃ ∪H)∗ if and only if the PCP has
no solution. Therefore, universality is non-semidecidable.

A PCP has either no solution or infinitely many solutions. So L2 is cofinite if
and only if the PCP has no solution, which completes the proof. ��

6 Conclusions

We have investigated cooperating distributed systems of stateless determinis-
tic two-phase RR-automata of window size one. The main interest was on the
computational power and the closure properties of the language classes in-
duced by the systems considered. The proven inclusion relations are depicted
in Figure 1, while Table 1 summarizes the closure and non-closure proper-
ties obtained. Moreover, we considered decidability problems for the classes
L=1(stl-det-local-CD-R(1)) and L=1(stl-det-local-CD-2-RR(1)). However, several
questions remain unanswered: (1) Do the systems in question only accept semi-
linear languages? (2) Is the class L=1(stl-det-local-CD-2-RR(1)) not closed under
concatenation or Kleene plus? Similarly, is L=1(stl-det-global-CD-2-RR(1)) not
closed under Kleene plus? (3) What are the remaining algorithmic properties of
the language class L=1(stl-det-local-CD-2-RR(1))? Is emptiness or finiteness de-
cidable? How about the decidability problems for L=1(stl-det-strict-CD-2-RR(1))
and L=1(stl-det-global-CD-2-RR(1))?
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Table 1. “+” denotes the fact that the corresponding class is closed under the given
operation, “−” denotes the fact that it is not closed, and “?” indicates that the status
of this property is still open. ∪ denotes union, complementation, ∩ intersection,
∩REG intersection with regular languages, · concatenation, + Kleene plus, hε ε-free
homomorphism, h−1 inverse homomorphism, com commutative closure, and R denotes
reversal.

Types of CD-Systems Operations

∪ ∩ ∩REG · + hε h−1 com R

stl-det-local-CD-2-RR(1) + − − − ? ? − − ? −
stl-det-global-CD-2-RR(1) − + − − − ? − − − −
stl-det-strict-CD-2-RR(1) − + − − − − − − − −
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6. Ibarra, O., Karhumäki, J., Okhotin, A.: On stateless multihead automata: Hierar-

chies and the emptiness problem. Theoret. Comput. Sci. 411, 581–593 (2009)
7. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata and

restarting automata. Int. J. Found. Comput. Sci. 21, 781–798 (2010)
8. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless deterministic restarting au-

tomata. Acta Inform. 47, 391–412 (2010)
9. Kutrib, M., Reimann, J.: Succinct description of regular languages by weak restart-

ing automata. Inform. Comput. 206, 1152–1160 (2008)
10. Lautemann, C.: One pushdown and a small tape. In: Dirk Siefkes zum 50. Geburt-

stag, pp. 42–47. TU Berlin and Universität Augsburg (1988)
11. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal

languages. J. ACM 35, 324–344 (1988)
12. Messerschmidt, H., Otto, F.: Cooperating distributed systems of restarting auto-

mata. Int. J. Found. Comput. Sci. 18, 1333–1342 (2007)
13. Messerschmidt, H., Otto, F.: Strictly Deterministic CD-Systems of Restarting
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