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Abstract. Generalized random context picture grammars (grcpgs) are a
method of syntactic picture generation. The terminals are subsets of the
Euclidean plane and the replacement of variables involves the building
of functions that will eventually be applied to terminals. Context is used
to permit or forbid production rules.

Iterated function systems (IFSs) and their generalization, mutually
recursive function systems (MRFSs), are among the best-known methods
for constructing fractals. In earlier work it was shown that any picture
sequence generated by an IFS or MRFS can be generated by a grcpg.
Moreover, it was shown that grcpgs can generate a wider range of pictures
than IFSs or MRFSs.

In this essay we give a summary of the above mentioned results. We
then consider language-restricted iterated function systems (LRIFSs), a
method of picture generation where a language controls which functions
of an IFS are applied. We first show that LRIFSs are more powerful than
IFSs. Then we show that any picture produced by an LRIFS where the
restricting language is regular, can be approximated by a grcpg.

1 Introduction

A method of syntactic picture generation, using random context picture gram-
mars (rcpgs), was described and studied elsewhere [6–9]. A summary of results
can be found in [5]. In [10], Ewert and van der Walt introduced the notion of
a generalized random context picture grammar (grcpg). These grammars use
production rules to compose functions from some finite set of functions. These
functions are then applied to terminals, which are subsets of the Euclidean plane,
to create a picture. Context is used to permit or forbid production rules.

An iterated function system (IFS) is an iterative method for constructing
fractals from a finite set of contractive maps defined on a complete metric space.
The sequence of pictures generated by an IFS converges to a unique limit. The
method was developed principally by Barnsley and co-workers, who obtained
impressively life-like images both of nature scenes and the human face [1, 2].
Ewert and van der Walt [10] showed that any picture sequence generated by an
IFS can also be generated by a grcpg that uses forbidding context only. Moreover,
since grcpgs use context to control the sequence in which functions are applied,
they can generate a wider range of fractals or, more generally, pictures than
IFSs.
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Mutually recursive function systems (MRFSs), called hierarchical iterated
function systems by Peitgen and co-workers [13], are powerful methods of math-
ematical picture generation. MRFSs are a generalization of IFSs, and consist of
networks or hierarchies of IFSs. Kruger and Ewert [12] generalized the above
mentioned result for IFSs to show that for every MRFS, an equivalent grcpg can
be constructed. They also showed that grcpgs are more general than MRFSs,
in the sense that grcpgs can be constructed that generate sets of pictures that
cannot be generated by any MRFS.

Language-restricted iterated function systems (LRIFSs) [15] are a generaliza-
tion of IFSs, and consist of an IFS and a language that controls which functions
of the IFS are applied. In this essay we first show that LRIFSs are more power-
ful than IFSs. Then we show that any picture produced by an LRIFS where the
restricting language is regular, can be approximated by a grcpg.

The remainder of this paper is structured as follows. In Sect. 2, we review
published results about the relationship between grcpgs and IFSs, and MRFSs,
respectively. In Sect. 3 we focus on LRIFSs and in particular show that any
picture produced by an LRIFS where the restricting language is regular, can be
approximated by a grcpg. Future work is recommended in Sect. 4.

2 Previously Published Results

In this section we give the definitions of grcpgs, IFSs and MRFSs. Then we state
the most important results about the relationship between grcpgs and IFSs, and
grcpgs and MRFSs.

2.1 Generalized Random Context Picture Grammars

We define a generalized random context picture grammar and illustrate the main
concepts with an example, the iteration sequence of the Sierpiński gasket.

Definition 1. Let S be any set. Then ℘ (S) denotes the power set of S.

Definition 2. A generalized random context picture grammar G =
(VN, VT, VF, P, (S, ε)) has a finite alphabet V of labels, consisting of
disjoint subsets VN of variables, VT of terminals and VF of function
identifiers. The productions, finite in number, are of the form A →
{(A1, ρ1) , (A2, ρ2) , . . . , (At, ρt)} (P;F), where A ∈ VN, A1, . . . , At ∈ VN ∪ VT,
ρ1, . . . , ρt ∈ V ∗

F and P,F ⊆ VN. Finally, there is an initial configuration (S, ε),
where S ∈ VN and ε denotes the empty string.

Definition 3. A pictorial form Π is a finite set
{(B1, ϕ1) , (B2, ϕ2) , . . . , (Bs, ϕs)}, where B1, . . . , Bs ∈ VN ∪ VT and
ϕ1, . . . , ϕs ∈ V ∗

F . We denote the set {B1, . . . , Bs} by l (Π).

Definition 4. For a grcpg G and pictorial forms Π and Γ we write Π =⇒G Γ
if there is a production A → {(A1, ρ1) , (A2, ρ2) , . . . , (At, ρt)} (P;F) in G, Π
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contains an element (A,ϕ), l (Π \ {(A,ϕ)}) ⊇ P and l (Π \ {(A,ϕ)}) ∩ F = ∅,
and Γ = (Π \ {(A,ϕ)})∪{(A1, ϕρ1) , (A2, ϕρ2) , . . . , (At, ϕρt)}. As usual, =⇒∗

G

denotes the reflexive transitive closure of =⇒G.

Definition 5. A picture is a pictorial form Π with l (Π) ⊆ VT.

Definition 6. The gallery G (G) generated by a grcpg G is the set of pictures Π
such that {(S, ε)} =⇒∗

G Π.

Definition 7. The gallery of a grcpg G is rendered by specifying functions ΨG :
VT → ℘

(
IR2
)
and ΥG : VF → F

(
IR2
)
, where F

(
IR2
)
=
{
g | g : IR2 → IR2

}
.

This yields a representation of a picture Π = {(B1, ϕ1) , (B2, ϕ2) , . . . , (Bs, ϕs)}
in IR2 by

r (Π) =

s⋃

i=1

ΥG (ϕi) (ΨG (Bi)) ,

where ΥG has been extended to V ∗
F in the obvious manner, ΥG (ε) representing

the identity function id.

Definition 8. If every production in G has P = ∅, we call G a generalized
random forbidding context picture grammar (grFcpg).

Note 1. It should be clear that we can also use (S, id) as initial configuration
without that affecting the rendered gallery.

Note 2. For the sake of convenience, we write a production A →
{(A1, ε)} (P;F) as A → A1 (P;F). Moreover, if P = F = ∅ in a pro-
duction A → {(A1, ρ1) , (A2, ρ2) , . . . , (At, ρt)} (P;F), then we write A →
{(A1, ρ1) , (A2, ρ2) , . . . , (At, ρt)}.

We illustrate these concepts with an example.

Example 1. We generate the typical iteration sequence of the Sierpiński gasket
with the grcpg Ggasket = ({S, T, U, F} , {b} , {glb, grb, gt} , P, (S, ε)), where P is
the set:

S → {(T, glb) , (T, grb) , (T, gt)} (∅; {U}) (1)

T → U (∅; {S, F}) | (2)

F (∅; {S,U, F}) | (3)

b ({F} ; ∅) (4)

U → S (∅; {T }) (5)

F → b (∅; {T }) (6)

We give the derivation of a picture Π in G (Ggasket) in detail.
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{(S, ε)}
=⇒G {(T, glb) , (T, grb) , (T, gt)} (rule 1)

=⇒∗
G {(U, glb) , (U, grb) , (U, gt)} (thrice rule 2)

=⇒∗
G {(S, glb) , (S, grb) , (S, gt)} (thrice rule 5)

=⇒∗
G {(T, glbglb) , (T, glbgrb) , (T, glbgt)}∪
{(T, grbglb) , (T, grbgrb) , (T, grbgt)}∪
{(T, gtglb) , (T, gtgrb) , (T, gtgt)} (thrice rule 1)

=⇒G {(T, glbglb) , (T, glbgrb) , (T, glbgt)}∪
{(T, grbglb) , (F, grbgrb) , (T, grbgt)}∪
{(T, gtglb) , (T, gtgrb) , (T, gtgt)} (rule 3)

=⇒∗
G {(b, glbglb) , (b, glbgrb) , (b, glbgt)}∪
{(b, grbglb) , (F, grbgrb) , (b, grbgt)}∪
{(b, gtglb) , (b, gtgrb) , (b, gtgt)} (repeated application of rule 4)

=⇒G {(b, glbglb) , (b, glbgrb) , (b, glbgt)}∪
{(b, grbglb) , (b, grbgrb) , (b, grbgt)}∪
{(b, gtglb) , (b, gtgrb) , (b, gtgt)} (rule 6)

Let ΥG (glb) = (x, y) → (
x
2 ,

y
2

)
, ΥG (grb) = (x, y) → (

x
2 + 1

2 ,
y
2

)
and ΥG (gt) =

(x, y) →
(

x
2 + 1

4 ,
y
2 +

√
3
4

)
.

Then r (Π) =
⋃9

i=1 ΥG (ϕi) (ΨG (b)), where ΥG (ϕ1) = (x, y) →(
1
2 × x

2 ,
1
2 × y

2

)
, ΥG (ϕ2) = (x, y) → (

1
2

(
x
2 + 1

2

)
, 1
2 × y

2

)
, ΥG (ϕ3) = (x, y) →(

1
2

(
x
2 + 1

4

)
, 1
2

(
y
2 +

√
3
4

))
, . . . .

Let ΨG (b) be the dark triangle with vertices
{
(0, 0) , (1, 0) ,

(
1
2 ,

√
3
2

)}
. Then

r (Π) represents the picture in Fig. 1(a). Alternatively, let ΨG (b) be the dark
square determined by the vertices {(0, 0) , (1, 0) , (1, 1)}. Then r (Π) represents
Fig. 1(b).

2.2 Iterated Function Systems

Iterated function systems are among the best-known methods for constructing
fractals. An extensive treatment of IFSs can be found in [11]. In this section we
review results that show that grcpgs are more powerful than IFSs.

Definition 9. An iterated function system {X,F} or {X ; f1, f2, . . . , ft}, t > 0,
is a pair consisting of a complete metric space X together with a finite set of
contractive maps fi : X → X, 1 ≤ i ≤ t.
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(a) ΨG ({b}) is a dark triangle
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(b) ΨG ({b}) is a dark square

Fig. 1. Two pictures in the iteration sequence of the Sierpiński gasket

Let H (X) be the set of all nonempty compact subsets of X . For E ∈ H (X),
let F (E) = f1 (E) ∪ f2 (E) ∪ . . . ∪ ft (E). By repeated application of F to E, we
obtain a sequence in H (X), E0 = E,E1 = F (E0) , E2 = F (E1) , . . . .

The sequence E0, E1, E2, . . . converges to a unique limit E, called the attractor
of the IFS, which is independent of the choice of starting set E0, but completely
determined by the choice of the maps fi.

This sequence can be generated by a grFcpg, as was shown in [10]. We state
the full result here—in Theorem 1—since the proof gives the translation from a
given IFS to a grFcpg.

Theorem 1. Let {X,F} be an IFS. Then there is a grFcpg G such that for
every l ≥ 1, G generates the set

{(
a, ϕl

1

)
,
(
a, ϕl

2

)
, . . . ,

(
a, ϕl

tl

)}
, where the ϕl

i

are all tl possible sequences of length l of the fj ∈ F.

Proof. Let G = ({S, I, T, U, F} , {a} , {f1, f2, . . . , ft} , P, (S, ε)), where P is the
set:

S → {(I, f1) , (I, f2) , . . . , (I, ft)}
I → {(T, f1) , (T, f2) , . . . , (T, ft)} (∅; {F,U}) |

F (∅; {T, U})
T → U (∅; {I})
U → I (∅; {T })
F → a (∅; {I})

�
Example 2. We obtain the iteration sequence of the Sierpiński gasket with the
IFS

{
IR2; glb, grb, gt

}
, where glb : (x, y) → (

x
2 ,

y
2

)
, grb : (x, y) → (

x
2 + 1

2 ,
y
2

)
and

gt : (x, y) →
(

x
2 + 1

4 ,
y
2 +

√
3
4

)
.
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For any E ∈ H
(
IR2
)
, F (E) = glb (E) ∪ grb (E) ∪ gt (E). Let E0 = E. Then

E1 = F (E0) = glb (E0) ∪ grb (E0) ∪ gt (E0), E2 = F (E1) = glbglb (E0) ∪-
glbgrb (E0) ∪ glbgt (E0) ∪ grbglb (E0) ∪ grbgrb (E0) ∪ grbgt (E0) ∪ gtglb (E0) ∪-
gtgrb (E0)∪gtgt (E0) , . . . . When we choose E0 to be a dark triangle, respectively,
a dark square, E2 is represented by Fig. 1(a) and Fig. 1(b), respectively.

To this IFS corresponds the grFcpg G =
({S, I, T, U, F} , {a} , {glb, grb, gt} , P, (S, ε)), where P is the set:

S → {(I, glb) , (I, grb) , (I, gt)}
I → {(T, glb) , (T, grb) , (T, gt)} (∅; {F,U}) |

F (∅; {T, U})
T → U (∅; {I})
U → I (∅; {T })
F → a (∅; {I})

G generates the pictorial forms {(a, glb) , (a, grb) , (a, gt)},
{(a, glbglb) , (a, glbgrb) , (a, glbgt)} ∪ {(a, grbglb) , (a, grbgrb) , (a, grbgt)} ∪-
{(a, gtglb) , (a, gtgrb) , (a, gtgt)} , . . ..

In [10] it was also shown that there exists a set of pictures that can be gen-
erated by a grcpg, but that is not the sequence converging to the attractor of
any IFS. Since grcpgs use context to control the sequence in which functions are
applied, they can generate a wider range of pictures than IFSs. An example of
such a picture set is Gtrail, which is described below. Gtrail cannot be generated
by a grFcpg, as becomes clear when inspecting the proof in [8], and therefore
also not by an IFS.

Gtrail = {Θ1, Θ2, . . .}, where Θ1, Θ2 and Θ3 are shown in Fig. 2(a), Fig. 2(b)
and Fig. 2(c), respectively. For the sake of clarity, an enlargement of the lower
lefthand ninth of Θ3 is given in Fig. 2(d).

For i = 2, 3, . . ., Θi is obtained by dividing each dark square in Θi−1 into four
and placing a copy of Θ1, modified so that it has exactly i+ 2 dark squares, all
on the diagonal, into each quarter.

The modification of Θ1 is effected in its middle dark square only and pro-
ceeds in detail as follows: The square is divided into four and the newly-created
lower lefthand quarter coloured dark. The newly-created upper righthand quar-
ter is again divided into four and its lower lefthand quarter coloured dark. This
successive quartering of the upper righthand square is repeated until a total of
i − 1 dark squares have been created, then the upper righthand square is also
coloured dark. The new dark squares thus get successively smaller, except for
the last two, which are of equal size.

2.3 Mutually Recursive Function Systems

Mutually recursive function systems, called hierarchical iterated function sys-
tems by Peitgen and co-workers [13], are a generalization of IFSs, and consist of
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(a) Θ1 of Gtrail (b) Θ2 of Gtrail

(c) Θ3 of Gtrail (d) Bottom lefthand ninth of Θ3 en-
larged

Fig. 2. Pictures of Gtrail

networks or hierarchies of IFSs. Mutually recursive function systems were devel-
oped to study wider ranges of fractal-like images that do not exhibit such high
degrees of self-similarity as IFSs [13]. In this section we review results that show
that grcpgs are more powerful than MRFSs.

There are a number of slight variations in the definitions of MRFSs that can
be found in the literature. Here we use the definition used by Drewes [4].

Definition 10. Let n ∈ IN+. Then I = (M, c) is an MRFS of rank n such that

– M is an n× n matrix (mi,j) with
• mi,j = f1

i,j , . . . , f
ti,j
i,j , ti,j ∈ IN, and

• ∀i, j ∈ [n] and k ∈ [ti,j ], f
k
i,j : IR

2 → R
2.

– c = (c1, . . . , cn) is a vector where each ci is a possibly empty compact subset
of IR2. These sets are called condensation sets.

– For each i such that ci is empty, ∃j such that ti,j > 0.

Mutually recursive function systems generate pictures through application of the
extended Hutchinson operator.

Definition 11. Given an MRFS I = (M, c), the Hutchinson operator HI :(
℘
(
R

2
))n → (

℘
(
R

2
))n

is defined as follows: for v = (v1, . . . , vn) ∈(
℘
(
R

2
))n

, HI(v) = (v′1, . . . , v
′
n), where v′i = ci ∪

⋃
j∈[n] Hmi,j (vj) for i ∈ [n].
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Now, given an MRFS I = (M, c) and a vector of initial pictures u = (u1, . . . , un),
with ui a compact, possibly empty subset of R2, the sequence of pictures gener-
ated by I is SI(u, 1), SI(u, 2), . . ., where SI(u, i) = Hi

I(u) [1] (the first component
of the ith iteration of the Hutchinson operator). The picture language obtained
from I is the set L(I, u) = {SI(u, i)|i ∈ N+}.
Example 3. The MRFS IS of rank 3 generates pictures which consist of a
Sierpiński triangle with a “shadow” consisting of an inverse Sierpiński triangle.
Figure 3 shows the first four pictures in L(IS , a) where a = (a1, a2, a3), a1 is the
empty set, a2 is the filled-in triangle with vertices (0, 0), (5,

√
75) and(−5,

√
75)

and a3 is the filled-in triangle with vertices (−5, 0), (5, 0) and (0,
√
75).

IS = (M, c)
where :

M =

⎛

⎝
ε f7 f4, f5, f6
ε id, f1, f2, f3 ε
ε ε f4, f5, f6

⎞

⎠

and for i ∈ [3], ci = ∅,
with the functions defined as follows :

id(x, y) = (x, y)

f1(x, y) =
(x
2
+ 5,

y

2

)

f2(x, y) =
(x
2
− 5,

y

2

)

f3(x, y) =
(x
2
,
y

2
+
√
75
)

f4(x, y) =

(
x

2
,
y

2
+

√
75

2

)

f5(x, y) =
(x
2
− 2.5,

y

2

)

f6(x, y) =
(x
2
+ 2.5,

y

2

)

f7(x, y) =

(
x

2
+ y tan

Π

8
,−y

4

)

Kruger and Ewert [12] showed that for every MRFS, an equivalent grcpg can
be constructed. We state the result here in full—in Theorem 2—since the proof
gives the translation from a given MRFS to a grFcpg.

Theorem 2. An MRFS I = (M, c), of degree n with a vector of initial pictures
a = (a1, . . . , an), can be translated into a grcpg GI .
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2)

3) 4)

1)

Fig. 3. Four pictures generated by the MRFS IS

Proof.

GI = (VN , VT , VF , P, (S, ε)) where

VN = {S, I1, . . . , In, T1, . . . , Tn, U1, . . . , Un, F1, . . . , Fn}
VT = {a1, . . . , an, c1, . . . , cn}
VF =

⋃

i,j∈[n]

{f1
i,j, . . . , f

ti,j
i,j }

and P is the set of productions :

S → {(I1, f1
1,1), . . . , (I1, f

t1,1
1,1 ), . . . , (In, f

1
1,n), . . . , (In, f

t1,n
1,n ), c1}

Ii → {(T1, f
1
i,1), . . . , (T1, f

ti,1
i,1 ), . . . , (Tn, f

1
i,n), . . . , (Tn, f

ti,n
i,n ), ci}

(∅; {I1, . . . , Ii−1, F1, . . . , Fn, U1, . . . , Un})
Ii → Fi(∅; {I1, . . . , Ii−1, T1, . . . , Tn, U1, . . . , Un})
Ti → Ui(∅; {I1, . . . , In, T1, . . . , Ti−1})
Ui → Ii(∅; {T1, . . . , Tn, U1, . . . , Ui−1})
Fi → ai(∅; {I1, . . . , In, F1, . . . , Fi−1}) �
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The language of GI can be rendered in such a way that it is equal to the set of
all approximations generated by I.

Example 4. The grcpg Gshadow was obtained by translating the MRFS IS into a
grcpg. With the terminals and functions defined as for IS above, this grammar
will generate exactly the same set of pictures as IS .

Gshadow = (VN , VT , VF , P, (S, ε)) where

VN = {S, I1, I2, I3, T1, T2, T3, U1, U2, U3, F1, F2, F3}
VT = {a1, a2, a3}
VF = {id, f1, f2, f3, f4, f5, f6, f7}

and P is the set of productions :

S → {(I2, f7), (I3, f4), (I3, f5), (I3, f6)}
I1 → {(T2, f7), (T3, f4), (T3, f5), (T3, f6)}(∅; {F1, F2, F3, U1, U2, U3})
I1 → F1(∅; {T1, T2, T3, U1, U2, U3})
I2 → {(T2, id), (T2, f1), (T2, f2), (T2, f3)}(∅; {I1, F1, F2, F3, U1, U2, U3})
I2 → F2(∅; {I1, T1, T2, T3, U1, U2, U3})
I3 → {(T3, f4), (T3, f5), (T3, f6)}(∅; {I1, I2, F1, F2, F3, U1, U2, U3})
I3 → F3(∅; {I1, I2, T1, T2, T3, U1, U2, U3})
T1 → U1(∅; {I1, I2, I3})
T2 → U2(∅; {I1, I2, I3, T1})
T3 → U3(∅; {I1, I2, I3, T1, T2})
U1 → I1(∅; {T1, T2, T3})
U2 → I2(∅; {T1, T2, T3, U1})
U3 → I3(∅; {T1, T2, T3, U1, U2})
F1 → a1(∅; {I1, I2, I3})
F2 → a2(∅; {I1, I2, I3, F1})
F3 → a3(∅; {I1, I2, I3, F1, F2})

In [12], Kruger and Ewert also showed that grcpgs can be constructed that
generate sets of pictures that cannot be generated by any MRFS. Such a grcpg is
easily obtained by simply modifying the context rules in a grcpg translated from
some MRFS, to remove some (or all) of the restrictions that guarantee uniform
refinement in the resulting pictures. Another easy way of obtaining such a grcpg
is to simply add production rules to a grcpg translation of an MRFS.

Consider the set of all pictures that consist of a Sierpiński triangle with uni-
form refinement and a “shadow” made of an inverted Sierpiński triangle, also
with uniform refinement, but the triangle and the “shadow” need not have the
same level of refinement. Thus, this set contains all the pictures in G(Gshadow) as
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well as pictures such as shown in Fig. 4. This set can be generated by a grFcpg,
called Gext1 in [12]. It should be clear that no MRFS can be constructed to
generate all the pictures in this set.

Fig. 4. Two pictures from G(Gext1) that are not in G(Gshadow)

3 Language-Restricted Iterated Function Systems

We can modify the picture produced by an IFS by using a language restriction,
where a language controls which functions of the IFS are applied at different
stages. This method of picture generation, introduced in [14], allows us to create
pictures which are self-similar but not self-identical. For example, we can take
an IFS which generates a picture of leaves on a stalk—Fig. 5(a)—and restrict
it to get leaves on alternating sides—Fig. 5(b)—without changing the leaves
themselves.

In this section we prove that the LRIFSs are strictly more powerful than
the IFSs, and therefore investigate the relationship between LRIFSs and grcpgs.
Although we do not investigate the relationship between LRIFSs and MRFSs, we
use different types of approximation sequences for the two systems, so LRIFSs
are of independent interest,

Definition 12. A language-restricted iterated function system (LRIFS) is a tu-
ple IL = {X,F, L} where I = {X,F} is an IFS, called the underlying IFS of
IL, and L ⊆ F∗.

Following [15], we interpret the words of F∗ as functions by reverse composition;
that is, if f = f1f2 . . . fn−1fn, where f1, f2, . . . , fn−1, fn ∈ F, then f(π) =
fn(fn−1(. . . f2(f1(π)) . . .)). Unlike [15], however, we give the symbol ◦ its usual
meaning.

The definition of the attractor of an LRIFS is based on the fact that if
{X,F} is an IFS and π is a point in its attractor, then the attractor is equal to
{f(π) | f ∈ F∗}, where · denotes the topological closure.
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(a) (b)

Fig. 5. An IFS and a language-restricted variation

Definition 13. If IL = (X,F, L) is an LRIFS and π ∈ X then the attractor of
IL at π is

Aπ(IL) = {f(π) | f ∈ L} .

Thus, every word of L contributes a single point to the picture. In [15], π is
required to be in the attractor of the underlying IFS, but Lemma 1 shows that
that is unnecessary.

In all examples in this work and in [15], L is a regular language and F a
set of affine functions (an affine function is a translation composed with linear
function). We call such LRIFSs regular and affine, respectively. Affine regular
LRIFSs can generate a wide variety of pictures, even with a single underlying
IFS. For example, see Fig. 5, already mentioned, and Fig. 6, which shows two
fractals described in [15] and a version of the Sierpiński triangle (restricted with
the language (F1+F3+F4)

∗ in the notation of that paper). The functions which
generate Fig. 5 are

f1 = t

(
0,

1

8

)
◦ s
(
7

8

)
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f2 = t

(
0,

1

8

)
◦ r (60) ◦ s

(
1

3

)

f3 = t

(
0,

1

8

)
◦ r (−60) ◦ s

(
1

3

)

f4 = projy ◦ s
(
1

4

)

where t denotes translation, s scaling, r rotation (in degrees) and projy projection
onto the y axis. Fig. 5(b) is restricted with the language (f1+f2+f3+f4)

∗(f2+
f3f1)(f1f1)

∗(f4f∗
1 + ε).

Fig. 6. Attractors of a single IFS restricted by three different languages

Every attractor of an IFS is also an attractor of a regular LRIFS, which can
be seen by using the language L = F∗. On the other hand, there are pictures
which are the attractor of an LRIFS but not of any IFS (at least when we restrict
ourselves to the affine functions). To prove this, we will need some basic facts
about the closure properties of LRIFS attractors.

Lemma 1. If A is the attractor of an (affine, regular) LRIFS at a point π, then
there is another (affine, regular) LRIFS whose attractor is A at every point.

Proof. Suppose IL = {X,F, L} and A = Aπ(IL). Let g be the function which is
constantly π, and JgL = {X,F ∪ {g}, gL}. Then

A = Aπ(IL)

= {f(π) | f ∈ L}
= {(f ◦ g)(ρ) | f ∈ L}
= {f(ρ) | f ∈ gL}
= Aρ(JgL)

for any ρ. Thus JgL is the desired LRIFS; furthermore it is regular (resp. affine)
if IL is. �
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Thus the starting point π is essentially arbitrary: if we want to generate a single
picture, we can find an LRIFS which generates it from any starting point.

Lemma 2. If A is the attractor of an (affine, regular) LRIFS at a point π and
0 < a < 1, then there is another (affine, regular) LRIFS whose attractor at π is
s(a)(A).

Proof. Suppose IL = {X,F, L} and A = Aπ(IL). Let g = s(a). Then JLg =
{X,F ∪ {g}, Lg} has the desired attractor. �
Thus the class of LRIFS attractors is closed under downscaling. Furthermore,
we will now show that they are closed under union.

Lemma 3. If A and A′ are attractors of (affine, regular) LRIFSs, then so is
A ∪A′.

Proof. Let IL = {X,F, L} and I′L′ = {X,F′, L′} be LRIFSs whose attractors are
A and A′ respectively. By Lemma 1 we can assume, without loss of generality,
that they can be generated from the same starting point, π. Then

A ∪A′ = Aπ(IL) ∪Aπ(I
′
L′)

= {f(π) | f ∈ L} ∪ {f(π) | f ∈ L′}
= {f(π) | f ∈ L} ∪ {f(π) | f ∈ L′}
= {f(π) | f ∈ (L ∪ L′)}
= Aπ(JL∪L′)

where J = {X,F ∪ F′}. �
The previous three lemmas allow us to generate an LRIFS attractor by overlaying
the (possibly downscaled) attractors of other LRIFSs (with all three operations
preserving affineness and regularity). This contrasts with IFSs, as the following
theorem shows by an example.

Theorem 3. There is an LRIFS IL = {X,F, L} with F a set of affine functions
X → X whose attractor is not the attractor of any IFS J = {X,F′} with F′ a
set of affine functions.

Proof. Let A be the Cantor square, suitably scaled down, surrounded by a
square, as depicted in Fig. 7. Since the Cantor square and the square are both
attractors of IFSs, A is the attractor of an LRIFS by the above theorems.

Suppose A is the attractor of an IFS {X,F} where F is a set of affine functions.
Let S ⊆ A be the square, and C = A \ S be the Cantor square. Let f ∈ F.

Since S is connected, either f(S) ⊆ S or f(S) ⊆ C.
If f(S) ⊆ S, then f(S) must be a point or a line segment, since the image

of S under an affine map is either a quadrilateral (but f(S) �= S since f is a
contraction), a triangle (but no triangle is a subset of S), a line segment or a
point.
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Fig. 7. A square, S, and the Cantor square, C, which are attractors of IFSs, and their
union, A

On the other hand, if f(S) ⊆ C then f(S) is a singleton, because C is totally
disconnected.

Thus each f ∈ F maps S to either a line segment or a singleton. Since C is
inside S and each f is affine, f(A) is either a line segment or a singleton for
each f . However, A = f1(A) ∪ . . . ∪ fn(A) but A is not a finite union of line
segments and singletons, which is a contradiction. Thus A is not the attractor
of any IFS. �
Since we have proven the LRIFSs are strictly more powerful than IFSs, we wish
to extend our main result for IFSs—that they can be generated by a grFcpg—to
LRIFSs. We use a different notion of approximation than for IFSs, because we
wish to retain the information provided by all the strings in the language, rather
than discarding them in better approximations.

Definition 14. If L is a language, let L≤n = {x ∈ L : |x| ≤ n}.
We use the concept of L≤n to generate approximations to the attractors of an
LRIFS which are uniform, in that they are not closer approximations in one part
than another. This is illustrated by Fig. 8, which shows three approximations
based on L≤n for different n, and one based on an arbitrary subset of L.

Theorem 4. Let IL = {X,F, L} be a regular LRIFS, and π a point in X. Then
there is a grFcpg G that can be rendered as

{
Aπ(IL≤n

) : n ∈ IN
}
,

and the functions used in rendering G are exactly those in F along with the
identity.

Proof. Let M = (Q,F, q0, A, δ) be a deterministic finite automaton which recog-
nizes Lr, the reverse language of L. The use of Lr is due to the fact that reverse
composition is used in LRIFSs. We simulate all the paths of M by a grcpg G,
and control G so that all paths are truncated at the same length.

Let G = ((Q× {0, 1}) ∪ {S,C0, C1, C2}, {e, p},F ∪ {id}, P, (S, id)), where S,
C0, C1, C2, e and p are fresh symbols, id is the identity function on X , and P
is constructed from N as follows:
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Fig. 8. Three uniform approximations of an LRIFS and a non-uniform approximation

1. S → (C0, id) ((q0, 0), id)
2. For each accepting state q ∈ A, with edges to q′1, . . . , q

′
k ∈ Q labelled with

f1, . . . , fk ∈ F respectively, add a production

(q, 0) → ((q′1, 1), f1) . . . ((q′k, 1), fk) (p, id) (∅; {C1})

3. For each non-accepting state q ∈ Q\A, with edges to q′1, . . . , q
′
k ∈ Q labelled

with f1, . . . , fk ∈ F respectively, add a production

(q, 0) → ((q′1, 1), f1) . . . ((q′k, 1), fk) (∅; {C1})

4. C0 → (C1, id) (∅;Q× {0})
5. For each state q ∈ Q, add a production (q, 1) → ((q, 0), id) (∅; {C0, C2})
6. C1 → (C0, id) (∅;Q× {1})
7. C0 → (C2, id) (∅;Q× {0})
8. For each state q ∈ Q, add a production (q, 1) → (e, id) (∅; {C0, C1})
9. C2 → (e, id) (∅;Q× {1})

Any derivation in this grammar proceeds in phases. First the start symbol is
rewritten by production 1. At any point where C0 and (q, 0) appear in the
string, we can only apply productions from 2 and 3, since all other productions
are forbidden or cannot be applied, and therefore these productions will be
applied to all non-terminals of the form (q, 0). When this is done, there is a
single C0 and all other non-terminals are of the form (q, 1), and there is a choice
of productions: 4 or 7.
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If we apply production 4, we rewrite every (q, 1) into (q, 0) by production 5.
When this is done we rewrite C1 into C0 by production 6 so that another iteration
can be applied.

If, instead, we apply production 7, we proceed to delete the (q, 1) non-terminals
by rewriting them to a symbol (production 8) which will be rendered as the
empty set. Once they are all deleted, we delete C2 by production 9.

Thus all branches are extended in tandem until they terminate. The branches,
besides those containing the control symbols C0, C1 and C2, correspond to paths
through M up to a certain length, and are labelled by a composition of the
symbols along the paths (interspersed with id). Thus if we render the generated
gallery by interpreting each function in F∪{id} as itself and rendering p by {π}
and e by ∅, then we obtain Aπ(IL≤n

) for each n ∈ IN (since L≤n is finite, the
closure operation in the definition of the attractor makes no difference). �
An example illustrating the method used in this proof is given in Fig. 9.

(a) (b)

Fig. 9. (a) An automaton for a language L and (b) the derivation tree corresponding
to L≤1, with the highlighted path corresponding to the word a ∈ L≤1

4 Future Work

Culik and Dube [3] showed that any uniformly growing, deterministic, context-
free Lindenmayer system (D0L-system) can be simulated by an MRFS. As men-
tioned above, Kruger and Ewert [12] showed that for any MRFS, an equivalent
grcpg can be constructed, and that the grcpg can be modified to generate se-
quences of pictures that cannot be generated by the basis MRFS. Therefore it
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would be interesting to simulate uniformly growing D0L-systems by grcpgs and
then modify the grcpg to generate pictures that cannot be generated by the basis
D0L-system, as we have done in this paper for IFSs and MRFS.

Our notion of a uniform approximation to an LRIFS is based exclusively on the
length of the strings in the language; it would be interesting to formulate a notion
which depends on the area, to obtain an approximation which looks uniform
rather than having uniform depth, and determine whether this approximation
can also be generated by a grcpg.

We showed that LRIFSs are more powerful than IFSs, but did not investigate
their relationship to other extensions of IFSs (in particular MRFSs), and this
topic is worthy of investigation.

Acknowledgements. We would like to thank the referees for their helpful
comments.
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