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Abstract. Reaction systems are a model for the investigation of pro-
cesses carried out by biochemical reactions in living cells. A reaction
system consists of a set of reactions which transform a current system’s
state (a set of entities) into the successor state. In this paper we in-
vestigate which entities are actually relevant from the point of view of
generating dynamic processes through such state transformations.

Keywords: reaction system, living cell, natural computing.

1 Introduction

The investigation of the computational nature of biochemical reactions is a re-
search theme of Natural Computing. One of the goals of this research is to
contribute to a computational understanding of the functioning of the living
cell.

Reaction systems [1–7] are a formal framework for the investigation of pro-
cesses carried out by biochemical reactions in living cells. The central idea of
this framework is that the functioning of a living cell is based on interactions
between (a large number of) individual reactions, and moreover these interac-
tions are regulated by two main mechanisms: facilitation/acceleration and inhi-
bition/retardation. These interactions determine the dynamic processes taking
place in living cells, and reaction systems are an abstract model of these pro-
cesses. This model is based on principles remarkably different from those under-
lying other models of computation in computer science. This is a consequence of
the fact that on the one hand the model takes into account the basic bioener-
getics of the living cell while on the other hand its (high) degree of abstraction
allows it to be a qualitative rather than quantitative model.

In a nutshell, a reaction system consists of a finite set of reactions which can
be applied to subsets (states) of a given set of entities, determining in this way
the transformations of states. The specific question we address in this paper is
which entities can be considered as relevant in the sense that state changes are
“sensitive” to them.
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We provide a characterisation of relevant elements in terms of resources of
reactions. In our considerations we use a specific “natural” notion of relevance,
but we also discuss its relationship to other possible “natural” definitions of
relevance.

The paper is organised in the following way. After setting up in Section 2 some
mathematical notation used in the paper, we describe basic notions concerning
reactions in Section 3, and basic notions concerning reaction systems in Section 4.
In Section 5, we introduce the central notions of this paper: relevant/irrelevant
sets and entities, and prove their basic properties. In Section 6, we demonstrate
that for a reduced reaction system the set of relevant entities coincides with
the resources used by the system’s reactions. Then, in Section 7, we discuss two
alternative formalisations of the notion of relevance. The last section contains a
brief discussion of our results.

2 Preliminaries

Throughout the paper we use mostly standard mathematical notation. We use
X÷Y to denote the symmetric difference (X \Y )∪(Y \X) of two sets X and Y .

3 Reactions

In this section, we recall some key definitions concerning reactions and sets of
reactions (see, e.g., [1, 5]).

Let Z be a finite nonempty set. A reaction over Z is a triplet of the form
a = (R, I, P ), where R, I, P ⊆ Z are nonempty sets such that R ∩ I = ∅. The
three component sets of reaction a are denoted by Ra, Ia and Pa, respectively,
and called the reactants, inhibitors and products (of a). We denote by rac(Z)
the set of all possible reactions over Z.

Let C ⊆ Z. A reaction a ∈ rac(Z) is enabled by C if Ra ⊆ C and Ia ∩ C = ∅.
We denote this by ena(C). The result of a reaction a ∈ rac(Z) on C is defined by

resa(C) =
{

Pa if a is enabled by C
∅ otherwise .

Moreover, the result of a set of reactions B ⊆ rac(Z) on C, denoted by resB(C),
is the union of the products of all the reactions from B, that is

resB(C) =
⋃
b∈B

resb(C) .

Note that resB(∅) = ∅ as the set of reactants of any reaction is nonempty and
so no reaction is enabled by C = ∅. Also, resB(Z) = ∅ as the set of inhibitors
of any reaction is nonempty and so no reaction is enabled by Z.

Let a, b ∈ rac(Z). Then b covers a if resb(C) = res{a,b}(C), for all C ⊆ Z. We
denote this by b ≥ a; thus what a does (produces) is already covered (produced)
by b. We also say that b strictly covers a if b ≥ a and a �= b. Note that ≥ is a
partial order.
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As a matter of fact (see [5]), b ≥ a iff Rb ⊆ Ra, Ib ⊆ Ia and Pb ⊇ Pa. Thus
b ≥ a if b requires a subset of reactants of a and a subset of inhibitors of a but
still produces at least all the products of a. Note that if b ≥ a then, for each
C ⊆ Z, ena(C) implies enb(C).

4 Reaction Systems

A reaction system is a pair A = (S, A), where S is a finite nonempty background
set comprising the entities of A, and A is the set of reactions over S. To capture
the dynamic behaviour of A, we now describe all possible transitions between
its states, where a state of A is any set C of its entities. Thus a reaction system
with a background set S has exactly 2|S| states.

Let C ⊆ S be a state of a reaction system A = (S, A). Then resA(C) =
resA(C) is the result of all the reactions of A enabled by C.

The state transformations captured by the above definition are deterministic.
Thus, indeed, a reaction system A = (S, A) defines (specifies, implements) a
function resA : 2S → 2S, called the result function of A. In the general model
of reaction systems, processes of A are also influenced by the “environment”
which reflects the fact that the living cell is an open system; it communicates
and interacts with its environment. However, for the notions that we study in
this paper it suffices to consider context-independent processes, i.e., processes
determined by the system A only (without influence of its environment). In
this way the successor state for a given state is determined solely by the result
function resA.

Note that in this case, the successor resA(C) of a current state C consists
only of entities from the product sets of reactions of A enabled by C. This means
that there is no permanency for entities A: an entity from a current state will be
present in (will carry over to) the successor state only if it is produced by at least
one reaction enabled by the current state. This way of defining state transitions
in reaction systems is motivated by the basic bioenergetics of the living cell, and
it constitutes a fundamental difference with models of computations considered
in computer science.

Since in this paper we are interested in state transitions in reaction systems, it
is convenient to convey the subsequent discussion in terms of functions specified
by reaction systems.

Proposition 1. Let A = (S, A) be a reaction system. Then
⋃

C∈2S

resA(C) =
⋃
a∈A

Pa .

Proof. Follows from the fact that each reaction a ∈ A is enabled by the
state Ra. 
�
In other words, the entities occurring in the sets of the codomain of the result
function of a reaction system are all the entities which occur in the products of
the reactions of the system.
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Let A = (S, A) be a reaction system and b ∈ rac(S). Then b is consistent
with A if resb(C) ⊆ resA(C), for all C ⊆ S; thus adding b to A yields a reaction
system with the same result function.

A reaction system A = (S, A) is reduced if, for all a ∈ A,

(i) resA �= resA\{a}.
(ii) there is no b ∈ rac(S) which is consistent with A and strictly covers a.

Intuitively, (i) excludes reactions which do not add anything new to the results
produced by other reactions in A. As to the second condition, note that if b is
consistent with A and b strictly covers a then b is (from the point of view of
A) a more ‘efficient’ version of a. Therefore, condition (ii) requires that all the
reactions in A are in their most efficient version.

The two conditions in the definition of a reduced reaction system are inde-
pendent. Consider, for example, the reaction system A1 = (S, {a, b}), where

S = {1, 2} a = ({1}, {2}, {1}) b = ({1}, {2}, {2}) .

Then both reactions are necessary to specify resA1 . On the other hand, a and b
are covered by c = ({1}, {2}, {1, 2}) which is consistent with resA1 and can be
used to define a more efficient A′

1 = (S, {c}) specifying the same function as A1.
Conversely, let us consider the reaction system A2 = (S, {a, b, c}), where

S = {1, 2, 3} a = ({1, 2}, {3}, {1, 2}) b = ({1}, {3}, {1}) c = ({2}, {3}, {2}) .

In this case, the first condition is not satisfied because reaction a is redundant
(its enabledness implies enabledness of both b and c which together also produce
{1, 2}). However, the second condition is satisfied as all reactions over {1, 2, 3}
strictly covering a or b or c are inconsistent with resA2 .

We close this section by demonstrating that considering only reduced reaction
systems is not a restriction as far as result functions of reaction systems are
concerned.

Theorem 1. For every reaction system A there exists an equivalent reduced
reaction system A′, i.e., the two systems have the same background sets and the
same result function.

Proof. Let A = (S, A). Consider the set con(A) of all the reactions from rac(S)
consistent with A. Note that (S, con(A)) is equivalent with A — as a matter of
fact, it is the largest implementation of resA.

Let D be the set of all reactions in con(A) which are ≥-maximal in con(A).
Now we replace, in any order, each a ∈ A which is not maximal in con(A)

by a reaction b ∈ D such that b ≥ a, Let A′′ be the resulting set of reactions.
Clearly, A′′ = (S, A′′) is equivalent with A, and A′′ satisfies condition (ii) from
the definition of a reduced system.

Next, in order to ensure that also (i) is satisfied, we inspect one by one all
reactions, in any order, beginning with A′′ and remove those reactions from
the current set of reactions which can be removed without changing the result
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function. Let A′ be the final outcome of this procedure. Clearly, A′ = (S, A′)
still satisfies (ii), but it also satisfies (i). Thus A′ is reduced, and moreover A′ is
equivalent to A. Hence the theorem holds. 
�

5 Relevance in Reaction Systems

A central problem in the investigation of result functions of reaction systems
is to understand when and why (for a given reaction system A) resA does not
distinguish between two different states T and U , i.e., resA(T ) = resA(U). In-
tuitively, this means that the difference between T and U is irrelevant from the
point of view of resA. In this paper, we define irrelevant sets of entities as the
sets such that whenever two sets differ by an irrelevant set, then they will not be
distinguishable by resA. Since the operation of symmetric difference is a math-
ematically natural way to define the difference between two sets, we use this
operation in our definition of relevance. With this idea in mind, we say that:

– X ⊆ S is relevant in A if

(∃T, U ⊆ S) [ T ÷ U = X and resA(T ) �= resA(U) ] . (i)

– x ∈ S is relevant in A if {x} is relevant in A, i.e.,

(∃T ⊆ S) [ resA(T \ {x}) �= resA(T ∪ {x}) ] . (ii)

Intuitively, a set of entities X is irrelevant if any two sets of entities which ‘differ’
exactly by X are transformed to the same state, hence X is irrelevant from the
resA point of view. Thus, as expressed by (i), X is relevant if we can find two sets
of entities which ‘differ’ exactly by X and for which resA yields different results.
What we are really interested in is whether entities are relevant or irrelevant, as
expressed by part (ii) of the above definition. However, defining the relevance of
sets through the relevance of their elements does not work, as shown in Section 6
(see the comments after Proposition 3). Thus we had to define (i) first.

Now, for a reaction system A = (S, A), we define:

– the relevant domain of A as rdom(A) = {x ∈ S : x is relevant in A}.
– the irrelevant domain of A as irdom(A) = {x ∈ S : x is irrelevant in A}.

Intuitively, rdom(A) comprises those entities to which resA is ‘sensitive’, and
irdom(A) those to which resA is ‘insensitive’.

It turns out that by combining irrelevant entities we never obtain a relevant
set of entities. In other words, irrelevance is persistent, as shown next.

Proposition 2. Let A be a reaction system. Then each X ⊆ irdom(A) is irrel-
evant in A.

Proof. Let A = (S, A), and let X be a nonempty subset of irdom(A). Let T, U ⊆
S be such that T ÷ U = X . Let T \ U = Y and U \ T = Z; thus X = Y ∪ Z.
Since X �= ∅, at least one of Y, Z is nonempty.
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Without loss of generality, assume that Y �= ∅, thus Y = {y1, y2, . . . , yn} for
some n ≥ 1. Let T0 = T , T1 = T0 \ {y1}, T2 = T1 \ {y2}, . . . , Tn = Tn−1 \ {yn} =
T ∩ U . Since, for each i ∈ {1, . . . , n}, yi ∈ Y is irrelevant, we get

resA(T ) = resA(T0) = . . . = resA(Tn) = resA(T ∩ U) . (∗)
Similarly, one proves that

resA(T ∩ U) = resA(U) . (∗∗)
It follows from (∗) and (∗∗) that

resA(T ) = resA(T ∩ U) = resA(U) .

This implies that, for all T, U ⊆ S with T ÷U = X , we have resA(T ) = resA(U).
Therefore X is irrelevant. 
�
As a corollary of Proposition 2 we get the following property of the sets of
reactants of reactions in a reaction system.

Lemma 1. Let A be a reaction system. For each reaction a ∈ A, Ra �⊆ irdom(A).

Proof. Let a ∈ A. Assume to the contrary that Ra ⊆ irdom(A). Then, by
Proposition 2, Ra is irrelevant. Since Ra÷∅ = Ra and resA(∅) = ∅, this means
that

resA(Ra) = ∅ . (∗)
On the other hand, ena(Ra) and therefore

resA(Ra) = Pa . (∗∗)
But (∗) and (∗∗) imply that Pa = ∅, a contradiction with the definition of a
reaction. Therefore Ra �⊆ irdom(A). 
�

6 Characterising Relevant Domains

When it comes to sets of relevant entities, one should expect a relationship with
resources used by the reaction system. Here by the resources of a single reaction
a we mean Ma = Ra ∪ Ia. The essence of the next result is that relevant entities
must be resources.

Theorem 2. Let A = (S, A) be a reaction system. Then

rdom(A) ⊆
⋃
a∈A

Ma .

Proof. Let x ∈ S. If x /∈ ⋃
a∈A Ma, then it follows directly from the definition of

resA that, for each T ⊆ S, resA(T \ {x}) = resA(T ∪ {x}). Hence x is irrelevant
and so x /∈ rdom(A). 
�
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The inclusion in the formulation of the above theorem can be replaced by equality
in case of a reaction system with a single reaction.

Proposition 3. Let A = (S, {a}) be a reaction system. Then

rdom(A) = Ma .

Moreover, every nonempty set X ⊆ Ra ∪ Ia is relevant.

Proof. To show the second part of the statement of the theorem, let X ⊆ Ra∪Ia

be such that X �= ∅. Let X ′ = X ∩ Ra and X ′′ = X ∩ Ia. To observe that
X is relevant it then suffices (see (i) in Section 5) to take T = Ra and U =
(Ra \ X ′) ∪ X ′′. We have then T ÷ U = X , but resa(T ) �= resa(U). Hence
all resources are relevant, and so from Theorem 2 it follows immediately that
rdom(A) = Ma. 
�
Thus we also obtained a counterpart of Proposition 2 for sets of relevant entities
in case of a system with a single reaction. However, any attempt to extend this
to reaction systems with more reactions is bound to fail, as illustrated by the
following example. Consider the reaction system A3 = (S, {a, b}), where

S = {1, 2} a = ({1}, {2}, {1}) b = ({2}, {1}, {1}) .

Then 1 is relevant because {1, 2} ÷ {2} = {1} and resA3({1, 2}) = ∅ �= {1} =
resA3({2}), and 2 is relevant because {1, 2}÷{1} = {2} and resA3({1, 2}) = ∅ �=
{1} = resA3({1}). However, X = {1, 2} is not a relevant set of entities which
is seen as follows. If T, U ⊆ S are such that T ÷ U = X , then either {T, U} =
{{1}, {2}} or {T, U} = {∅, S}. In the former case we obtain resA3(T ) = {1} =
resA3(U), and in the latter resA3(T ) = ∅ = resA3(U).

In general, not all resources are relevant. Consider, for example, the reaction
system A4 = (S, {a, b}), where

S = {1, 2, 3} a = ({1}, {2}, {1}) b = ({1, 3}, {2}, {1}) .

Then entity 3 is not relevant since 3 is a resource only in the presence of entity
1 and then it has no additional influence on the result.

To strengthen the general results obtained so far, we turn our attention to
reduced reaction systems which, intuitively, contain neither redundant nor inef-
ficient reactions. Moreover, by Theorem 1, any reaction system is equivalent to
a reduced reaction system, and so we still deal with all possible result functions
of reaction systems.

It is easy to see that every reaction system with a single reaction is reduced.
In the following main result of this paper which strengthens Theorem 2 we show
that in the case of any reduced reaction system the relevant entities are precisely
the resources used by the system.

Theorem 3. Let A = (S, A) be a reduced reaction system. Then

rdom(A) =
⋃
a∈A

Ma .
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Proof (Theorem 3). By Theorem 2 it suffices to prove that
⋃

a∈A Ma ⊆ rdom(A).
We do this by showing that:

(∀x ∈ S) [ x /∈ rdom(A) =⇒ x /∈ ⋃
a∈A Ma ] . ($)

To this aim we will now present two lemmas: the first demonstrates that all the
reactants are relevant, and the second one demonstrates the same for inhibitors.

Lemma 2. For each reaction a ∈ A, Ra ∩ irdom(A) = ∅.

Proof (Lemma 2). Assume to the contrary that there exists a ∈ A such that

Ra ∩ irdom(A) �= ∅ .

Let b = (Ra \ irdom(A), Ia, Pa). By Lemma 1, Rb = Ra \ irdom(A) �= ∅, and
so b ∈ rac(S). Clearly, b strictly covers a, and so, because A is reduced, b is
not consistent with resA. Hence, there exists T ⊆ S such that enb(T ) and
resb(T ) = Pb �⊆ resA(T ). Since Pb = Pa, we get

Pa �⊆ resA(T ) . (∗)
Let U = T ∪ (Ra ∩ irdom(A)). Since enb(T ), we have (1) Rb ⊆ T and (2)
Ib ∩ T = ∅. Since Ra \ Rb = Ra ∩ irdom(A), (1) implies that Ra ⊆ U . Since
Ib = Ia (and Ia ∩ Ra = ∅), Ia ∩ U = ∅. Therefore ena(U) and, consequently,

Pa ⊆ resA(U) . (∗∗)
Thus by (∗) and (∗∗) we get that

Pa �⊆ resA(T ) and Pa ⊆ resA(T ∪ (Ra ∩ irdom(A))) .

This implies that the set U ÷ T is relevant, which contradicts Proposition 2 (as
U ÷ T ⊆ Ra ∩ irdom(A) and so, by Proposition 2, U ÷ T must be irrelevant).
Therefore Lemma 2 holds. (Lemma 2) 
�
Lemma 3. For each reaction a ∈ A, Ia ∩ irdom(A) = ∅.

Proof (Lemma 3). Assume to the contrary that there exists a ∈ A such that
Ia ∩ irdom(A) �= ∅. Clearly, for each T ⊆ S, resA\{a}(T ) ⊆ resA(T ). Moreover,
because A is reduced, there exists Ta ⊆ S such that resA\{a}(Ta) �= resA(Ta).
Thus

resA\{a}(Ta) ⊂ resA(Ta) . (∗)
Clearly, ena(Ta), as otherwise resA\{a}(Ta) = resA(Ta) which contradicts (∗).

Let U = Ta∪irdom(A). By Lemma 2, for each b ∈ A, if Rb ⊆ U then Rb ⊆ Ta.
Consequently, if b ∈ A is enabled by U , then it is also enabled by Ta, implying
that

(∀B ⊆ A) [resB(U) ⊆ resB(Ta)] . (∗∗)
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Since we assumed that Ia∩ irdom(A) �= ∅, reaction a is not enabled by U and so
resA(U) ⊆ resA\{a}(U). Since, by (∗∗), resA\{a}(U) ⊆ resA\{a}(Ta), we get that
resA(U) ⊆ resA\{a}(Ta). Consequently, by (∗), we obtain resA(U) ⊂ resA(Ta).
Since U = Ta ∪ irdom(A), this implies that the set U ÷ Ta is relevant, which
contradicts Proposition 2 (as U÷Ta ⊆ irdom(A) and so, by Proposition 2, U÷Ta

must be irrelevant).
Hence it must be that Ia ∩ irdom(A) = ∅, and consequently Lemma 3 holds.

(Lemma 3) 
�
By Lemma 2 and Lemma 3, irdom(A) ∩ ⋃

a∈A Ma = ∅, which implies that ($)
holds and, consequently, the theorem holds. (Theorem 3) 
�
Our definition of a reduced reaction system A requires that A does not have
redundant reactions, and moreover each reaction is in its most “efficient” form
(as far as A is concerned). A redundant reaction is a reaction that can be removed
without influencing the result function resA. Another sort of redundancy is the
presence of resources which are not relevant: such entities influence the enabling
of (some) reactions but do not influence state transitions! Theorem 3 says that
also this kind of redundancy cannot happen in reduced reaction systems.

7 Alternative Notions of Relevance

In defining irrelevant/relevant sets of entities we relied on the operation of sym-
metric difference. In our view, this is just one of three natural choices to capture
the notion of irrelevance/relevance. In this section, we analyse the relationships
between them.

Let X ⊆ S be a set of entities of a reaction system A = (S, A).

– X is 1-irrelevant in A if:

(∀T, U ⊆ S) [ T ÷ U = X =⇒ resA(T ) = resA(U) ] .

– X is 2-irrelevant in A if:

(∀T, U ⊆ S) [ U ⊆ T and T \ U = X =⇒ resA(T ) = resA(U) ] .

– X is 3-irrelevant in A if:

(∀T ⊆ S) [ resA(T \ X) = resA(T ∪ X) ] .

We will use the notations irr1A(X), irr2A(X) and irr3A(X), respectively.
The first of the above three notions of irrelevance is the one investigated until

now in this paper. The second considers X irrelevant if removing its elements
from any set of entities does not change the result. The third notion of irrelevance
considers X irrelevant if, as far as the result function is concerned, removing X
from any set of entities has the same effect as adding X to this set of entities.

We now demonstrate relationships between these three notions of relevance.



Relevance of Entities in Reaction Systems 53

Lemma 4. For every X ⊆ S, irr1A(X) implies irr2A(X).

Proof. Let X ⊆ S and assume irr1A(X). Let T, U ⊆ S with U ⊆ T be such
that T \ U = X . Then T ÷ U = T \ U = X , and since irr1A(X), we get
resA(T ) = resA(U). Hence irr2A(X) and consequently the result holds. 
�

Lemma 5. For every X ⊆ S, irr2A(X) implies irr3A(X).

Proof. Let X ⊆ S and assume irr2A(X), hence

(∀T, U ⊆ S) [ U ⊆ T and T \ U = X =⇒ resA(T ) = resA(U) ] .

Consider arbitrary T ′ ⊆ S. Let T ′ \ X = U and T ′ ∪ X = T . Thus T \ U = X
and U ⊆ T . Hence, by irr2A(X), we get

resA(T ) = resA(U) . (∗)

We note that

resA(T ′ ∪ X) = resA(T ) and resA(T ′ \ X) = resA(U) . (∗∗)

By (∗) and (∗∗) we get resA(T ′ ∪ X) = resA(T ′ \ X). Therefore irr3A(X) and
so the result holds. 
�

Lemma 6. For every X ⊆ S, irr3A(X) implies irr2A(X).

Proof. Let X ⊆ S and assume irr3A(X), hence

(∀T ⊆ S) [ resA(T \ X) = resA(T ∪ X) ] .

Consider then arbitrary T, U ⊆ S such that U ⊆ T and T \ U = X . We note
that, by X ⊆ T , we have

T ∪ X = T . (†)

Moreover, by irr3A(X), we have

resA(T ∪ X) = resA(T \ X) . (‡)

Hence, by (†) and (‡), resA(T ) = resA(T \X). Since U = T \X , we get resA(T ) =
resA(U). Therefore irr2A(X) and so the result holds. 
�

We can therefore conclude that

Theorem 4. 1-irrelevance implies 2-irrelevance which in turn is equivalent to
3-irrelevance.

Proof. The theorem follows directly from Lemma 4, Lemma 5 and Lemma 6. 
�
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Hence the notion of relevant sets of entities as defined in Section 5 turns out to be
the strongest among those discussed in this section, and therefore a reasonable
choice for formalising the intuitive notion of relevance (from the point of view
of result functions of reaction systems).

Finally, note that for singleton sets X the three notions of irrelevance coincide.
This is no longer the case if X has two or more elements. Consider, for example,
the reaction system A5 = (S, {a}), where

S = {1, 2, 3} a = ({1, 2}, {3}, {1}) .

Then the set X = {1, 3} is not 1-irrelevant but it is 3-irrelevant. Hence the
implication in the above theorem cannot be reversed.

8 Conclusions

In this paper, we presented an investigation of sets of entities of reaction systems
which are relevant from the point of view of result functions. In particular,
we proved that for the reduced reaction systems relevant entities are precisely
those which are used as resources by the reactions. We have also discussed the
relationship between the notion of relevance investigated in this paper and two
alternative notions of relevance.

In our future work we intend to investigate derived notions of relevance where
one is interested in establishing which entities become irrelevant ‘sooner or later’.
For example, one might say that a set of entities X ⊆ S is eventually irrelevant
in a reaction system A if

(∀T, U ⊆ S)(∃n ≥ 1) [ T ÷ U = X =⇒ resn
A(T ) = resn

A(U) ] ,

where resn
A is the n-fold iteration of resA. In other words, eventual irrelevance

implies that the initial distinction between states T and U will eventually dis-
appear with the iteration of resA whenever the two states differ by the set of
entities X .

Acknowledgement. This research was supported by the Pascal Chair award
from the Leiden Institute of Advanced Computer Science (LIACS) of Leiden
University. The authors are indebted to the referees for useful comments; in
particular, the detailed comments by one of the referees were very valuable in
the production of the current version of this paper.

References

1. Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction systems.
Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)

2. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction Systems with Duration. In:
Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS,
vol. 6610, pp. 191–202. Springer, Heidelberg (2011)



Relevance of Entities in Reaction Systems 55

3. Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Combinatorics of life and death for
reaction systems. Int. J. Found. Comput. Sci. 21(3), 345–356 (2010)

4. Ehrenfeucht, A., Rozenberg, G.: Events and modules in reaction systems. Theor.
Comput. Sci. 376(1-2), 3–16 (2007)

5. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inform. 75(1-4), 263–
280 (2007)

6. Ehrenfeucht, A., Rozenberg, G.: Introducing time in reaction systems. Theor. Com-
put. Sci. 410(4-5), 310–322 (2009)

7. Kleijn, J., Koutny, M., Rozenberg, G.: Modelling reaction systems with Petri nets.
In: BioPPN-2011, International Workshop on Biological Processes & Petri Nets.
CEUR-WS Workshop Proceedings, vol. 724, pp. 36–52 (2011)


	Relevance of Entities in Reaction Systems
	Introduction
	Preliminaries
	Reactions
	Reaction Systems
	Relevance in Reaction Systems
	Characterising Relevant Domains
	Alternative Notions of Relevance
	Conclusions
	References




