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Instituto Superior Técnico, TULisbon, Av. Rovisco Pais 1049-001, Lisbon, Portugal

4 The State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100080, China

Abstract. In this paper, we introduce and explore a new model of quan-
tum finite automata (QFA). Namely, one-way finite automata with quan-
tum and classical states (1QCFA), a one way version of two-way finite
automata with quantum and classical states (2QCFA) introduced by Am-
bainis and Watrous in 2002 [3]. First, we prove that coin-tossing one-way
probabilistic finite automata (coin-tossing 1PFA) [23] and one-way quan-
tum finite automata with control language (1QFACL) [6] as well as sev-
eral other models of QFA, can be simulated by 1QCFA. Afterwards, we
explore several closure properties for the family of languages accepted
by 1QCFA. Finally, the state complexity of 1QCFA is explored and the
main succinctness result is derived. Namely, for any prime m and any
ε1 > 0, there exists a language Lm that cannot be recognized by any
measure-many one-way quantum finite automata (MM-1QFA) [12] with
bounded error 7

9
+ ε1, and any 1PFA recognizing it has at last m states,

but Lm can be recognized by a 1QCFA for any error bound ε > 0 with
O(logm) quantum states and 12 classical states.
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1 Introduction

An important way to get a deeper insight into the power of various quantum
resources and features for information processing is to explore power of various
quantum variations of the basic models of classical automata. Of a special inter-
est and importance is to do that for various quantum variations of classical finite
automata because quantum resources are not cheap and quantum operations are
not easy to implement. Attempts to find out how much one can do with very
little of quantum resources and consequently with the most simple quantum
variations of classical finite automata are therefore of particular interest. This
paper is an attempt to contribute to such line of research.

There are two basic approaches how to introduce quantum features to classical
models of finite automata. The first one is to consider quantum variants of the
classical one-way (deterministic) finite automata (1FA or 1DFA) and the sec-
ond one is to consider quantum variants of the classical two-way finite automata
(2FA or 2DFA). Already the very first attempts to introduce such models, by
Moore and Crutchfields [20] and Kondacs and Watrous [12] demonstrated that
in spite of the fact that in the classical case, 1FA and 2FA have the same recog-
nition power, this is not so for their quantum variations. Moreover, already the
first important model of two-way quantum finite automata (2QFA), namely that
introduced by Kondacs and Watrous, demonstrated that very natural quantum
variants of 2FA are much too powerful - they can recognize even some non-
context free languages and are actually not really finite in a strong sense. It
started to be therefore of interest to introduce and explore some “less quantum”
variations of 2FA and their power [1–6, 8, 14–19, 22, 26–30].

A very natural “hybrid” quantum variations of 2FA, namely, two-way quan-
tum automata with quantum and classical states (2QCFA) were introduced by
Ambainis and Watrous [3]. Using this model they were able to show in an ele-
gant way that an addition of a single qubit to a classical model can enormously
increase power of automata. A 2QCFA is essentially a classical 2FA augmented
with a quantum memory of constant size (for states in a fixed Hilbert space) that
does not depend on the size of the (classical) input. In spite of such a restriction,
2QCFA have been shown to be more powerful than two-way probabilistic finite
automata (2PFA) [3].

Because of the simplicity, elegance and interesting properties of the 2QCFA
model, as well as its natural character, it seems to be both useful and interesting
to explore what such a new “hybrid” approach will provide in case of one-way
finite automata and this we will do in this paper by introducing and exploring
1QCFA.

In the first part of the paper, 1QCFA are introduced formally and it is
shown that they can be used to simulate a variety of other models of finite
automata. Namely, 1DFA, coin-tossing 1PFA, measure-once 1QFA (MO-1QFA)
[12], measure-many 1QFA (MM-1QFA) [12] and one-way quantum finite au-
tomata with control language (1QFACL) [6]. Of a special interest is the way
how 1QCFA can simulate 1QFACL - an interesting model the behavior of which
is, however, quite special. Our simulation of 1QFACL by 1QCFA allows to see
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behavior of 1QFACL in a quite transparent way. We also explore several closure
properties of the family of languages accepted by 1QCFA. Finally, we derive a
result concerning the state complexity of 1QCFA that also demonstrates a merit
of this new model. Namely we show that for any prime m and any ε1 > 0,
there exists a language Lm than cannot be recognized by any MM-1QFA with
bounded error 7

9 + ε1, and any 1PFA recognizing it has at last m states, but
Lm can be recognized by a 1QCFA for any error bound ε > 0 with O(logm)
quantum states and 12 classical states.

The rest of the paper is organized as follows. Definitions of all automata
models explored in the paper are presented in Section 2. In Section 3 we show
how several other models of finite automata can be simulated by 1QCFA. We
also explore several closure properties of the family of languages accepted by
1QCFA in Section 4. In Section 5 the above mentioned succinctness result is
proved and the last section contains just few concluding remarks.

2 Basic Models of Classical and Quantum Finite
Automata

In the first part of this section we formally introduce those basic models of finite
automata we will refer to in the rest of the paper and in the second part of this
section, we formally introduce as a new model 1QCFA. Concerning the basics
of quantum computation we refer the reader to [9, 21] and concerning the basic
properties of the automata models introduced in the following we refer the reader
to [9–11, 23, 25].

2.1 Basic Models of Classical and Quantum Finite Automata

In this subsection, we recall the definitions of DFA, 1PFA, MO-1QFA, MM-1QFA
and 1QFACL.

Definition 1. A deterministic finite automaton (DFA) A is specified by a 5-
tuple

A = (S,Σ, δ, s0, Sacc), (1)

where:

1. S is a finite set of classical states;
2. Σ is a finite set of input symbols;
3. s0 ∈ S is the initial state of the machine;
4. Sacc ⊂ S is the set of accepting states;
5. δ is the transition function:

δ : S ×Σ → S. (2)

Let w = σ1σ2 · · ·σn be a string over the alphabet Σ. The automaton A accepts
the string w if a sequence of states, r0, r1, · · · , rn, exists in S with the following
conditions:
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1. r0 = s0;
2. ri+1 = δ(ri, σi+1), for i = 0, · · · , n− 1;
3. rn ∈ Sacc.

DFA recognize exactly the set of regular languages (RL).

Definition 2. A one-way probabilistic finite automata (1PFA) A is specified by
a 5-tuple

A = (S,Σ, δ, s1, Sacc), (3)

where:

1. S = {s1, s2, · · · , sn} is a finite set of classical states;
2. Σ is a finite set of input symbols; Σ is then extended to the tape symbol set

Γ = Σ ∪ { |c, $}, where |c /∈ Σ is called the left end-marker and $ /∈ Σ is
called the right end-marker;

3. s1 ∈ S is the initial state;
4. Sacc ⊂ S is the set of accepting states;
5. δ is the transition function:

δ : S × Γ × S → [0, 1]. (4)

For example, δ(s, σ, t) means that if A is in the state s with the tape head
scanning the symbol σ, then the automaton enters the state t with probability
δ(s, σ, t).
Note: A 1 PFA is a coin-tossing 1PFA if the range of its transition function
δ is {0, 1/2, 1}. For any s ∈ S and any σ ∈ Γ , δ(s, σ, t) is a so-called coin-
tossing distribution1 on S such that

∑
t∈S δ(s, σ, t) = 1. It is not hard to see

that rational transition probabilities can be obtained by repeating coin-flip.

For an input string ω = σ1 . . . σl, the probability distribution on the states of
A during its acceptance process can be traced using n-dimensional vectors. It is
assumed that A starts to process the input word written on the input tape as
w = |c ω$ and let v0 = (1, 0, . . . , 0)Tn×1 denote the initial probability distribution
on states. If, during the acceptance process, the current probability distribution
vector is v and a tape symbol σ is read, then the new state probability distri-
bution vector will be, after the automaton step, u = Aσv, where Aσ is such a
matrix that Aσ(i, j) = δ(sj , σ, si). We then use v|w| = A$Aσl

· · ·Aσ1A |cv0 to
denote the final probability distribution on states in case of the input ω. The
accepting probability of A with input ω is then

Pr[A accepts ω] =
∑

si∈Sacc

v|w|(i), (5)

where v|w|(i) denotes the ith entry of v|w|.

1 A coin-tossing distribution on a finite set Q is a mapping φ from Q to {0, 1/2, 1}
such that

∑
q∈Q φ(q) = 1.
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Definition 3. A measurement-once one-way quantum automaton (MO-1QFA)
A is specified by a 5-tuple

A = (Q,Σ,Θ, |q0〉, Qacc), (6)

where:

1. Q is a finite set of quantum orthogonal states;
2. Σ is a finite set of input symbols; Σ is then extended to the tape symbol set

Γ = Σ ∪ { |c, $}, where |c /∈ Σ is called the left end-marker and $ /∈ Σ is
called the right end-marker;

3. |q0〉 ∈ Q is the initial quantum state;
4. Qacc ⊂ Q is the set of accepting quantum states;
5. For each σ ∈ Γ , a unitary transformation Θσ is defined on the Hilbert space

spanned by the states from Q.

We describe the acceptance process of A for any given input string ω = σ1 · · ·σl
as follows. The automaton A states with the initial state |q0〉, reading the left-
marker |c. Afterwards, the unitary transformation Θ|c is applied on |q0〉. After
that, Θ|c|q0〉 becomes the current state and the automaton reads σ1. The process
continues until A reads $ and ends in the state |ψω〉 = Θ$Θσl

· · ·Θσ1Θ|c|q0〉.
Finally, a measurement is performed on |ψω〉 and the accepting probability of A
on the input ω is equal to

Pr[A accepts ω] = 〈ψω|Pa|ψω〉 = ||Pa|ψω〉||2, (7)

where Pa =
∑

q∈Qacc
|q〉〈q| is the projection onto the subspace spanned by {|q〉 :

|q〉 ∈ Qacc}.
Definition 4. A measurement-many one-way quantum automaton (MM-1QFA)
A is specified by a 6-tuple

A = (Q,Σ,Θ, |q0〉, Qacc, Qrej), (8)

where Q, Σ, Θ, |q0〉, Qacc, and the tape symbol set Γ are the same as those
defined above in an MO-1QFA. Qrej ⊂ Q is the set of rejecting states.

For any given input string ω = σ1 · · ·σl, the acceptance process is similar to that
of MO-1QFA except that after every transition, MM-1QFA A measures its state
with respect to the three subspaces that are spanned by the three subsets Qacc,
Qrej and Qnon, respectively, where Qnon = Q \ (Qacc ∪ Qrej). In other words,
the projective measurement consists of {Pa, Pr, Pn}, where Pa =

∑
q∈Qacc

|q〉〈q|,
Pr =

∑
q∈Qrej

|q〉〈q| and Pn =
∑

q∈Qnon
|q〉〈q|. The accepting and rejecting

probability are given as follows (for convenience, we denote σ0 = |c and σl+1 = $):

Pr[A accepts ω] =

l+1∑

k=0

||PaΘσk

k−1∏

i=0

(PnΘσi )|q0〉||2, (9)
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Pr[A reject ω] =

l+1∑

k=0

||PrΘσk

k−1∏

i=0

(PnΘσi)|q0〉||2. (10)

An important convention: In this paper we define
∏n

i=1 Ai = AnAn−1 · · ·A1,
instead of the usual one A1A2 · · ·An.

Definition 5. A one-way quantum finite automata with control language
(1QFACL) A is specified by as a 6-tuple

A = (Q,Σ,Θ, |q0〉,O,L), (11)

where:

1. Q, Σ, Θ, |q0〉 and the tape symbol set Γ = Σ ∪ { |c, $} are the same as those
defined above in an MO-1QFA;

2. O is an observable with the set of possible eigenvalues C = {c1, · · · , cs} and
the projector set {P (ci) : i = 1, · · · , s} where P (ci) denotes the projector
onto the eigenspace corresponding to ci;

3. L ⊂ C∗ is a regular language (called here a control language).

The input word ω = σ1 · · ·σl to 1QFACL A is in the form: w = |cω$ (for
convenience, we denote σ0 = |c and σl+1 = $). Now, we define the behavior
of A on the word w. The computation starts in the state |q0〉, and then the
transformations associated with symbols in the word w are applied in succession.
The transformation associated with any symbol σ ∈ Γ consists of two steps:

1. Firstly, Θσ is applied to the current state |φ〉 of A, yielding the new state
|φ′〉 = Θσ|φ〉.

2. Secondly, the observable O is measured on |φ′〉. According to quantum me-
chanics principle, this measurement yields result ck with probability pk =
||P (ck)|φ′〉||2, and the state of A collapses to P (ck)|φ′〉/√pk.

Thus, the computation on the word w leads to a string y0y1 . . . yl+1 ∈ C∗ with
probability p(y0y1 . . . yl+1|σ0σ1 . . . σl+1) given by

p(y0y1 . . . yl+1|σ0σ1 . . . σl+1) = ||
l+1∏

i=0

(P (yi)Θσi)|q0〉||2. (12)

A computation leading to a word y ∈ C∗ is said to be accepted if y ∈ L. Oth-
erwise, it is rejected. Hence, the accepting probability of 1QFACL A is defined
as:

Pr[A accepts ω] =
∑

y0y1...yl+1∈L
p(y0y1 . . . yl+1|σ0σ1 . . . σl+1) (13)
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2.2 Definition of 1QCFA

In this subsection we introduce 1QCFA and its acceptance process formally and
in details.

2QCFA were first introduced by Ambainis and Watrous [3], and then studied
by Qiu, Yakaryilmaz and etc. [24, 28, 32–34]. 1QCFA are the one-way version of
2QCFA. Informally, we describe a 1QCFA as a DFA which has access to a quan-
tum memory of a constant size (dimension), upon which it performs quantum
transformations and measurements. Given a finite set of quantum states Q, we
denote by H(Q) the Hilbert space spanned by Q. Let U(H(Q)) and O(H(Q))
denote the sets of unitary operators and projective measurements over H(Q),
respectively.

Definition 6. A one-way finite automata with quantum and classical states
(1QCFA) A is specified by a 10-tuple

A = (Q,S,Σ,Θ,Δ, δ, |q0〉, s0, Sacc, Srej) (14)

where:

1. Q is a finite set of quantum states;
2. S, Σ and the tape symbol set Γ = Σ ∪ { |c, $} are the same as those defined

above in a 1PFA;
3. |q0〉 ∈ Q is the initial quantum state;
4. s0 ∈ S is the initial classical state;
5. Sacc ⊂ S and Srej ⊂ S are the sets of classical accepting and rejecting states,

respectively;
6. Θ is the mapping:

Θ : S × Γ → U(H(Q)), (15)

assigning to each pair (s, γ) a unitary transformation;
7. Δ is the mapping:

Δ : S × Γ → O(H(Q)), (16)

where each Δ(s, γ) corresponds to a projective measurement (a projective
measurement will be taken each time a unitary transformation is applied; if
we do not need a measurement, we denote that Δ(s, γ) = I, and we assume
the result of the measurement to be ε with certainty);

8. δ is a special transition function of classical states. Let the results set of the
measurement be C = {c1, c2, . . ., cs}, then

δ : S × Γ × C → S, (17)

where δ(s, γ)(ci) = s′ means that if a tape symbol γ ∈ Γ is being scanned
and the projective measurement result is ci, then the state s is changed to s′.

Given an input ω = σ1 · · ·σl, the word on the tape will be w = |c ω$ (for
convenience, we denote σ0 = |c and σl+1 = $). Now, we define the behavior of
1QCFA A on the word w. The computation starts in the classical state s0 and
the quantum state |q0〉, then the transformations associated with symbols in
the word σ0σ1 · · · , σl+1 are applied in succession. The transformation associated
with a state s ∈ S and a symbol σ ∈ Γ consists of three steps:
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1. Firstly, Θ(s, σ) is applied to the current quantum state |φ〉, yielding the new
state |φ′〉 = Θ(s, σ)|φ〉.

2. Secondly, the observableΔ(s, σ) = O is measured on |φ′〉. The set of possible
results is C = {c1, · · · , cs}. According to such a quantum mechanics principle,
such a measurement yields the classical outcome ck with probability pk =
||P (ck)|φ′〉||2, and the quantum state of A collapses to P (ck)|φ′〉/√pk.

3. Thirdly, the current classical state s will be changed to δ(s, σ)(ck) = s′.

An input word ω is assumed to be accepted (rejected) if and only if the classical
state after scanning σl+1 is an accepting (rejecting) state. We assume that δ
is well defined so that 1QCFA A always accepts or rejects at the end of the
computation.

Let L ⊂ Σ∗ and 0 ≤ ε < 1/2, then 1QCFA A recognizes L with bounded
error ε if

1. For any ω ∈ L, Pr[A accepts ω] ≥ 1− ε, and
2. For any ω /∈ L, Pr[A rejects ω] ≥ 1− ε.

3 Simulation of Other Models by 1QCFA

In this section, we prove that the following automata models can be simulated
by 1QCFA: DFA, coin-tossing 1PFA, MO-1QFA, MM-1QFA and 1QFACL.

Theorem 1. Any n states DFA A = (S,Σ, δ, s0, Sacc) can be simulated by a
1QCFA A′ = (Q′, S′, Σ′, Θ′, Δ′, δ′, |q0〉′, s′0, S′

acc, S
′
rej) with 1 quantum state and

n+ 1 classical states.

Proof. Actually, if we do not use the quantum component of 1QCFA, the au-
tomaton is reduced to a DFA. Let Q′ = {|q0〉′}, S′ = S ∪ {sr}, Σ′ = Σ, s′0 = s0,
S′
acc = Sacc and S′

rej = {sr}. For any s ∈ S and any σ ∈ Σ, let Θ(s, σ) = I,
Δ′(s, σ) = I, and the classical transition function δ′ is defined as follows:

δ′(s, σ)(c) =

⎧
⎪⎪⎨

⎪⎪⎩

s, σ = |c;
δ(s, σ), σ ∈ Σ,
s, σ = $, s ∈ S′

acc;
sr, σ = $, s /∈ S′

acc.

(18)

where c is the measurement result.

Theorem 2. Any n states coin-tossing 1PFA A1 = (S1, Σ1, δ1, s11, S
1
acc) can be

simulated by a 1QCFA A2 = (Q2, S2, Σ2, Θ2, Δ2, δ2, |q0〉2, s20, S2
acc, S

2
rej) with 2

quantum states and n+ 1 classical states.

Proof. A coin-tossing 1PFA is essentially a DFA augmented with a fair coin-flip
component. In every transition, coin-tossing 1PFA can use a fair coin-flip or not
freely. Using the quantum component, a 1QCFA can simulate the fair coin-flip
perfectly.
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Lemma 1. A fair coin-flip can be simulate by 1QCFA A with two quantum
states, a unitary operation and a projective measurement.

Proof. The automaton A simulates a coin-flip according to the following transi-
tion functions, with |p0〉 as the starting quantum state. We use two orthogonal
basis states |p0〉 and |p1〉. Let a projective measurementM = {P0, P1} be defined
by

P0 = |p0〉〈p0|, P1 = |p1〉〈p1|. (19)

The results 0 and 1 represent the results of coin-flip “head” and “tail”, respec-
tively. The corresponding unitary operation will be

U =

(
1√
2

1√
2

1√
2
− 1√

2

)

. (20)

This operator changes the state |p0〉 or |p1〉 to a superposition state |ψ〉 or |φ〉,
respectively, as follows:

|ψ〉 = 1√
2
(|p0〉+ |p1〉), |φ〉 = 1√

2
(|p0〉 − |p1〉). (21)

When measuring |ψ〉 or |φ〉 withM , we will get the result 0 or 1 with probability
1
2 , respectively. This is similar to a coin-flip process. If the result is 0, we simulate
“head” result of the coin-flip; if the result is 1, we simulate “tail” result of the
coin-flip. So the Lemma is proved.

If the current state of coin-tossing 1PFA A1 is s and the scanning symbol is
σ ∈ Σ, A1 makes a coin-flip. The current state of A1 will change to t1 or t2,
in both cases with probability 1

2 . We use a 1QCFA A2 to simulate this step as
follows:

1. Use the quantum component of 1QCFA A2 to simulate a fair coin-flip. We
assume the outcome to be 0 or 1.

2. We define δ2(s, σ)(0) = t1 and δ2(s, σ)(1) = t2.

The other parts of the simulation are similar to the one described in the proof
of Theorem 1.

Theorem 3. Any n quantum states MO-1QFA A1 = (Q1, Σ1, Θ1, |q0〉1, Q1
acc)

can be simulated by a 1QCFA A2 = (Q2, S2, Σ2, Θ2, Δ2, δ2, |q0〉2, s20, S2
acc, S

2
rej)

with n quantum states and 3 classical states.

Proof. We use the quantum component of 1QCFA to simulate the evolution of
quantum states of MO-1QFA and use the classical states of 1QCFA to calculate
the accepting probability. Let Q2 = Q1, S2 = {s20, s2a, s2r}, Σ2 = Σ1, |q0〉2 =
|q0〉1, S2

acc = {s2a} and S2
rej = {s2r}. For any current classical state s and scanning

symbol σ, the quantum transition function is defined to be

Θ2(s, σ) = Θ1(σ). (22)
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The measurement function is defined to be

Δ2(s, σ) =

{
I, σ �= $;
{Pa, Pr}, σ = $.

(23)

where Pa =
∑

q∈Qacc
|q〉〈q|, Pr = I − Pa. If we assume the outcome to be ca or

cr, then the classical transition function will be defined to be

δ2(s, σ)(c) =

⎧
⎨

⎩

s, σ �= $;
s2a, σ = $, c = ca;
s2r, σ = $, c = cr.

(24)

Theorem 4. Any n quantum states MM-1QFA A1 = (Q1, Σ1, Θ1, |q0〉1, Q1
acc,

Q1
rej) can be simulated by a 1QCFA A2 = (Q2, S2, Σ2, Θ2, Δ2, δ2, |q0〉2, s20, S2

acc,

S2
rej) with n quantum states and 3 classical states.

Proof. We use the quantum component of 1QCFA to simulate both the evolution
of quantum states of MM-1QFA and its projective measurements. We use the
classical states of 1QCFA to calculate the accepting and rejecting probability.
Let Q2 = Q1, S2 = {s20, s2a, s2r}, Σ2 = Σ1, |q0〉2 = |q0〉1, S2

acc = {s2a} and
S2
rej = {s2r}. For any current classical state s and any scanning symbol σ, the

quantum transition function is defined to be

Θ2(s, σ) = Θ1(σ). (25)

The measurement function is defined to be

Δ2(s, σ) = {Pa, Pr, Pn}, (26)

where Pa =
∑

q∈Qacc
|q〉〈q|, Pr =

∑
q∈Qrej

|q〉〈q| and Pn =
∑

q∈Qnon
|q〉〈q|. If we

assume the classical outcomes to be ca, cr or cn, then the classical transition
function will be defined to be

δ2(s, σ)(c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s2a, s = s2a;
s2r, s = s2r;
s2a, s = s20, c = ca;
s2r, s = s20, c = cr;
s20, s = s20, c = cn, σ �= $;
s2r, s = s20, c = cn, σ = $.

(27)

Although 1QFACL can accept all regular languages, their behavior seems to be
rather complicated. We prove that any 1QFACL can be simulated by a 1QCFA
with an easy to understand behavior.

Theorem 5. Any n quantum states 1QFACL A1 = (Q1, Σ1, Θ1, |q0〉1,O1,L1),
whose control language L1 can be recognized by an m states DFA A = (S,Σ, δ,
s0, Sacc), can be simulated by a 1QCFA A2 = (Q2, S2, Σ2, Θ2, Δ2, δ2, |q0〉2, s20,
S2
acc, S

2
rej) with n quantum states and m+ 1 classical states.
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Proof. We use the quantum component of 1QCFA to simulate the evolution of
quantum states of 1QFACL and also its projective measurements. We use the
classical states of 1QCFA to simulate DFA L1. Let Q2 = Q1, S2 = S ∪ {sr},
Σ2 = Σ1, s20 = s0, |q0〉2 = |q0〉1, S2

acc = Sacc and S2
rej = {sr}. For any current

classical state s and any scanning symbol σ, the quantum transition function
will be defined to be

Θ2(s, σ) = Θ1(σ). (28)

The measurement function is defined to be

Δ2(s, σ) = {P (ci) : i = 1, · · · , t}, (29)

where P (ci) denotes the projector onto the eigenspace corresponding to ci. We
assume that the set of possible classical outcomes is C = {c1, · · · , ct}, where
C = Σ, then the classical transition function will be defined to be

δ2(s, σ)(c) =

⎧
⎨

⎩

δ(s, c), σ �= $;
δ(s, c), σ = $, δ(s, c) ∈ Sacc;
sr, σ = $, δ(s, c) /∈ Sacc.

(30)

4 Closure Properties of Languages Accepted by 1QCFA

For convenience, we denote by 1QCFA(ε) the classes of languages recognized
by 1QCFA with bounded error ε. Moreover, let QS(A) and CS(A) denote the
numbers of quantum states and classical states of a 1QCFA A. We start to
consider the operation of complement.

Theorem 6. If L ∈ 1QCFA(ε), then also Lc ∈ 1QCFA(ε), where Lc is the
complement of L.

Proof. Let a 1QCFA(ε) A = (Q,S,Σ,Θ,Δ, δ, |q0〉, s0, Sacc, Srej) accept L with a
bounded error ε. We can construct the 1QCFA Ac only by exchanging the clas-
sical accepting and rejecting states in A. That is, Ac = (Q,S,Σ,Θ,Δ, δ, |q0〉, s0,
Sc
acc, S

c
rej), where S

c
acc = Srej , S

c
rej = Sacc and the other components remain

the same as those defined in A. Afterwards we have:

1. If ω ∈ Lc, then ω /∈ L. Indeed, for an input ω, A will enter a rejecting state
with probability at least 1− ε at the end of the computation. With the same
input ω, Ac will enter an accepting state with probability at least 1 − ε at
the end of the computation. Hence, Ac accepts ω with the probability at
least 1− ε;

2. The case ω /∈ Lc is treated in a symmetric way.

Remark 1. According to the construction given above, if QS(A) = n, CS(A) =
m, then QS(Ac) = n, CS(Ac) = m.

Theorem 7. If L1 ∈ 1QCFA(ε1) and L2 ∈ 1QCFA(ε2), then L1 ∩ L2 ∈
1QCFA(ε), where ε = ε1 + ε2 − ε1ε2.
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Proof. Let Ai = (Qi, Si, Σi, Θi, Δi, δi, |q0〉i, si0, Si
acc, S

i
rej) be 1QCFA to recog-

nize Li with bounded error εi (i = 1, 2). We construct a 1QCFA A = (Q,S,Σ,Θ,
Δ, δ, |q0〉, s0, Sacc, Srej) where:

1. Q = Q1 ⊗Q2,
2. S = S1 × S2,
3. Σ = Σ1 ∩Σ2,
4. s0 = 〈s10, s20〉,
5. |q0〉 = |q0〉1 ⊗ |q0〉2,
6. Sacc = S1

acc × S2
acc,

7. Srej = (S1
acc × S2

rej) ∪ (S1
rej × S2

acc) ∪ (S1
rej × S2

rej)

8. For any classical state s = 〈s1, s2〉 ∈ S and any σ ∈ Σ, the quantum transi-
tion function of A is defined to be

Θ(s, σ) = Θ(〈s1, s2〉, σ) = Θ1(s1, σ)⊗Θ2(s2, σ). (31)

9. For any classical state s = 〈s1, s2〉 ∈ S and any σ ∈ Σ, the measurement
function of A is defined to be

Δ(s, σ) = Δ(〈s1, s2〉, σ) = Δ1(s1, σ)⊗Δ2(s2, σ). (32)

As classical measurements outcomes are then tuples cij = 〈ci, cj〉.
10. For any classical state s = 〈s1, s2〉 ∈ S and any σ ∈ Σ, the classical transition

function of A is defined to be

δ(s, σ)(cij) = δ(〈s1, s2〉, σ)(〈ci, cj〉) = 〈δ1(s1, σ)(ci), δ2(s2, σ)(cj)〉. (33)

In terms of the 1QCFA A constructed above, for any ω ∈ Σ∗, we have:

1. If ω ∈ L1 ∩ L2, then A will enter a state 〈t1, t2〉 ∈ S1
acc × S2

acc at the end of
the computation with probability at least (1− ε1)(1− ε2). A accepts ω with
the probability at least (1− ε1)(1 − ε2) = 1− (ε1 + ε2 − ε1ε2).

2. If ω ∈ L1 but ω /∈ L2, then A will enter a state 〈t1, t2〉 ∈ S1
acc × S2

rej at the
end of the computation with probability at least (1− ε1)(1 − ε2). A rejects
ω with the probability at least 1− (ε1 + ε2 − ε1ε2).

3. The case ω /∈ L1 but ω ∈ L2 is symmetric to the previous one and therefore
the same is the outcome.

4. If ω /∈ L1 and ω /∈ L2, then A will enter a state 〈t1, t2〉 ∈ S1
rej × S2

rej at the
end of the computation with probability at least (1− ε1)(1 − ε2). A rejects
ω with the probability at least 1− (ε1 + ε2 − ε1ε2).

So L1 ∩ L2 ∈ 1QCFA(ε).

Remark 2. According to the construction given above, letQS(A1) = n1, CS(A1)
= m1, QS(A2) = n2 and CS(A2) = m2, then QS(A) = n1n2, CS(A) = m1m2.

A similar outcome holds for the union operation.

Theorem 8. If L1 ∈ 1QCFA(ε1) and L2 ∈ 1QCFA(ε2), then L1 ∪ L2 ∈
1QCFA(ε), where ε = ε1 + ε2 − ε1ε2.
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Proof. Let Ai = (Qi, Si, Σi, Θi, Δi, δi, |q0〉i, si0, Si
acc, S

i
rej) be 1QCFA to rec-

ognize Li with bounded error εi (i = 1, 2). The construction of the 1QCFA
A = (Q,S,Σ,Θ,Δ, δ, |q0〉, s0, Sacc, Srej) is the same as in the proof of Theo-
rem 7 except for Sacc and Srej . We define Sacc = (S1

acc × S2
rej)∪ (S1

rej × S2
acc)∪

(S1
acc×S2

acc) and Srej = S1
rej×S2

rej. The rest of the proof is similar to the proof in
Theorem 7.

Remark 3. In the last proof the set of input symbols was defined asΣ = Σ1∩Σ2.
Actually, if we take Σ = Σ1 ∪ Σ2, the theorem still holds. In that case, we
extend Σi to Σ by adding a rejecting classical state sir to Ai. For any classical
state si ∈ Si and σi /∈ Σi, the quantum transition function is defined to be
Θi(si, σi) = I, the measurement function is defined to be Δi(si, σi) = I. We
assume the measurement result to be c, then the classical transition function
will be defined to be δi(si, σi)(c) = sir. For the new adding state sir, we define
the transition functions as follow: for any σ ∈ Σ, Θi(sir, σ) = I, Δi(sir, σ) = I,
δi(sir, σ)(c) = sir, where c is the the measurement result.

5 Succinctness Results

State complexity and succinctness results are an important research area of
classical automata theory, see [31], with a variety of applications. Once quantum
versions of classical automata were introduced and explored, it started to be
of large interest to find out through succinctness results a relation between the
power of classical and quantum automata model. This has turned out to be an
area of surprising outcomes that again indicated that relations between classical
and corresponding quantum automata models is intriguing. For example, it has
been shown, see [2, 4, 5, 13], that for some languages 1QFA require exponentially
less states that classical 1FA, but for some other languages it can be in an
opposite way.

Since 1QCFA can simulate both 1FA and 1QFA, and in this way they combine
the advantages of both of these models, it is of interest to explore the relation
between the state complexity of languages for the case that they are accepted
by 1QCFA and MM-1QFA and this we will do in this section.

The main result we obtain when considering languages Lm = {a∗b∗ | |a∗b∗| =
km, k = 1, 2, · · ·}, where m is a prime. For survey on the famous language {a∗ |
|a∗| = km, k = 1, 2, · · ·}, the reader may refer to [7].

Obviously, there exist a 2m+2 states DFA, depicted in Figure 1 that accepts
Lm.

Lemma 2. DFA A depicted in Figure 1 is minimal.

Proof. We show that any two different state s and t are distinguishable (i.e.,

there exists a string z such that exactly one of the following states δ̂(p, z)2 or

δ̂(q, z) is an accepting state [31]).

2 For any string x ∈ Σ∗ and any σ ∈ Σ, δ̂(s, σx) = δ̂(δ(s, σ), x); if |x| = 0, δ̂(s, x) = s
[11].
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Fig. 1. DFA A recognizing Lm

1. For 0 ≤ i ≤ m, 0 ≤ j ≤ m and i �= j, we have δ̂(pi, a
m−i) = pm and

δ̂(pj , a
m−i) = pk, where k �= m. Hence, pi and pj are distinguishable.

2. For 1 ≤ i ≤ m, 1 ≤ j ≤ m and i �= j, we have δ̂(qi, b
m−i) = qm and

δ̂(qj , b
m−i) = qk, where k �= m. Hence, qi and qj are distinguishable.

3. For 0 ≤ i ≤ m and 1 ≤ j ≤ m, we have δ̂(pi, a
m−i) = pm and δ̂(qj , a

m−i) = r.
Hence, pi and qj are distinguishable.

4. Obviously, the state r is distinguishable from any other state s.

Therefore, the Lemma has been proved.

Lemma 3 ([2, 18]). For any prime m, any 1PFA recognizing Lm with proba-
bility 1/2 + ε, for a fixed ε > 0, has at least m states.

Remark 4. The proof can be obtained by an easy modification of the
proof from the paper [2] where the state complexity of the language Lp =
{ai | i is divisible by p} is considered.

Lemma 4 ([2]). (Forbidden construction) Let L be a regular language, and let
A be its minimal DFA. Assume that there is a word w such that A contains
states s, t (a forbidden construction) satisfying:

1. s �= t,
2. δ̂(s, x) = t,

3. δ̂(t, x) = t and
4. t is neither “all-accepting” state, nor “all-rejecting” state (i.e., there exist

strings u and v such that δ̂(t, u) is an accepting state and δ̂(t, v) is not an
accepting state).
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Then L cannot be recognized by an MM-1QFA with bounded error 7
9 + ε for any

fixed ε > 0.

Theorem 9. For any fixed ε > 0, Lm cannot be recognized by an MM-1QFA
with bounded error 7

9 + ε.

Proof. According to Lemma 4, we know that Lm cannot be accepted by any MM-
1QFA with bounded error 7

9 + ε since its minimal DFA (see Figure 1) contains
the “Forbidden construction” of Lemma 4. For example, we can take s = p0,
t = pm, x = am, then we have δ̂(p0, a

m) = pm, δ̂(pm, a
m) = pm, δ̂(pm, b

m) = qm
and δ̂(pm, ba) = r.

Let L1 = {a∗b∗} and L2 = {w | w ∈ {a, b}∗, |w| = km, k = 1, 2, · · ·} where m is
a prime. So we have Lm = L1 ∩ L2. We will show L1 and L2 can be recognized
by 1QCFA.

Lemma 5. The language L1 can be recognized by a 1QCFA A1 with certainty
with 1 quantum state and 4 classical states.

Proof. L1 can be accepted by a DFA A with 3 classical states (see Figure 2).
According to Theorem 1, A can be simulated by a 1QCFA A1 with 1 quantum
state and 4 classical states.
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Fig. 2. A DFA recognizing the language L1

Lemma 6 ([2]). For any ε > 0, there is an MM-1QFA A with O(logm) quan-
tum states recognizing L2 with a bounded error ε.

Lemma 7. For any ε > 0, there is a 1QCFA A2 with O(logm) quantum states
and 3 classical states recognizing L2 with a bounded error ε.

Proof. According to Lemma 6, there is an MM-1QFA A with O(logm) quantum
states recognizingL2 with bounded error ε. According to Theorem 4, anO(logm)
quantum states MM-1QFA A can be simulated by a 1QCFA with O(logm)
quantum states and 3 classical states.
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Theorem 10. For any ε > 0, Lm can be recognized by a 1QCFA with O(logm)
quantum states and 12 classical states with a bounded error ε.

Proof. Lm = L1 ∩ L2. According to Lemma 5, the language L1 can be recog-
nized by 1QCFA A1 with 1 quantum state and 4 classical states with certainty
(i.e., ε1 = 0). According to Lemma 7, for any ε > 0, the language L2 can be
recognized by 1QCFA A2 with O(logm) quantum states and 3 classical states
with a bounded error ε. According to Theorem 7, 1QCFA is closed under in-
tersection. Hence, there is a 1QCFA A recognize Lm with a bounded error ε.
Therefore QS(A1) = 1, CS(A1) = 4, QS(A2) = O(logm) and CS(A2) = 3, so
QS(A) = QS(A1)×QS(A2) = O(logm), CS(A) = CS(A1)× CS(A2) = 12.

6 Conclusions

2QCFA were introduced by Ambainis and Watrous [3]. In this paper, we investi-
gated the one-way version of 2QCFA, namely 1QCFA. Firstly, we gave a formal
definition of 1QCFA. Secondly, we showed that DFA, coin-tossing 1PFA, MO-
1QFA, MM-1QFA and 1QFACL can be simulated by 1QCFA. As we know, the
behavior of 1QFACL seems to be rather complicated. However, when we used
a 1QCFA to simulate a 1QFACL, the behavior of 1QCFA started to be seen
as quite natural. Thirdly, we studied closure properties of languages accepted
by 1QCFA, and we proved that the family of languages accepted by 1QCFA is
closed under intersection, union, and complement. Fourthly, for any fixed ε1 > 0
and any prime m we have showed that the language Lm = {a∗b∗ | |a∗b∗| =
km, k = 1, 2, · · ·}, cannot be recognized by any MM-1QFA with bounded error
7
9 + ε1, and any 1PFA recognizing it has at last m states, but Lm can be rec-
ognized by a 1QCFA for any error bound ε > 0 with O(logm) quantum states
and 12 classical states. Thus, 1QCFA can make use of merits of both 1FA and
1QFA.

To conclude, we would like to propose some problems for further consideration.

1. How about the state complexity of 1QCFA compared with other 1QFA for
recognizing the same languages, such as one-way quantum finite automata
together with classical states in [26]?

2. Are 1QCFA closed under catenation and reversal?

Acknowledgment. The authors are thankful to the anonymous referees and
editor for their comments and suggestions that greatly help to improve the qual-
ity of the manuscript.
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