
On Grammars Controlled by Parikh Vectors

Ralf Stiebe

Fakultät für Informatik, Otto-von-Guericke-Universität Magdeburg,
Postfach 4120, 39106 Magdeburg, Germany

stiebe@iws.cs.uni-magdeburg.de

Abstract. We suggest a concept of grammars with controlled deriva-
tions where the Parikh vectors of all intermediate sentential forms have
to be from a given restricting set. For several classes of restricting sets,
we investigate set-theoretic and closure properties of the corresponding
language families.

1 Introduction

Grammars with restricted numbers of nonterminal symbols in the sentential
forms in the course of the derivation process have been investigated for a long
time. Most prominent are the grammars of finite index, introduced by Brain-
erd [2], where every word of the generated language can be generated using
only sentential forms with a bounded number of nonterminal symbols. These
grammars (and regulated grammars of finite index, like matrix grammars, as
well) have been studied in numerous publications. Ginsburg and Spanier [4] dis-
cussed the slightly different concept of a derivation-bounded grammar where
only those derivations are permitted that use sentential forms with a bounded
number of nonterminals. While being of finite index is a combinatorial prop-
erty of the grammar and context-free grammars of finite index can by definition
only generate context-free languages, the latter concept provides a kind of con-
trol for the derivation process and could potentially lead to the generation of
languages not in the original language class. However, it has been shown in [4]
that derivation-bounded context-free grammars can only generate context-free
languages of finite index.

More recently, Stiebe and Turaev [9] introduced capacity-bounded grammars
where a capacity function associates to each nonterminal symbol a bound. A
derivation is valid if in every sentential form the number of appearances of each
symbol is at most its capacity. It could be shown that context-free capacity-
bounded grammars generate non-context-free grammars and are strictly weaker
than matrix grammars of finite index.

To overcome the limitations of capacity-bounded grammars, in particular the
restriction to sentential forms with a bounded number of nonterminal symbols,
we will discuss in this paper some more general conditions for the nontermi-
nals in the sentential forms. Probably the most straightforward extension is to
allow infinite capacities for some nonterminal symbols. More generally, we will

H. Bordihn, M. Kutrib, and B. Truthe (Eds.): Dassow Festschrift 2012, LNCS 7300, pp. 246–264, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Grammars Controlled by Parikh Vectors 247

demand that, for every sentential form in a derivation process, the Parikh vec-
tor (restricted to the nonterminal symbols) has to be in a given restricting set.
Grammars with such conditions will be called Parikh vector controlled grammars
in what follows. Depending on the properties of the restricting sets, several lan-
guage classes can be defined. We will study the relations of these language classes
among each other and to known families of languages as well. When encountering
previously unknown language classes, we will also investigate closure properties.

Beside this introduction, the paper contains two sections. The necessary def-
initions and notations are given in Section 2, in its end introducing the notion
of Parikh vector controlled grammars. Section 3 contains the results.

2 Definitions

Throughout the paper, we assume that the reader is familiar with basic concepts
of formal language theory; for details we refer to [7]. An introduction to regulated
rewriting can be found in [3].

The sets of integers and non-negative integers are denoted by Z and N, re-
spectively. The cardinality of a set S is denoted by |S|, and the power set of a
set S by P(S). We use the symbols ⊆ for inclusion and ⊂ for proper inclusion.
In the vector space Zk, the zero vector is denoted by 0 and the i-th unit vector,
1 ≤ i ≤ k, by ei (a reference to the dimension k will usually not be necessary, as
it is clear from the context). A subset M ⊆ N

k is called linear if it can be written

as M = {c+
n∑

i=1

aipi : ai ∈ N, 1 ≤ i ≤ n}, for appropriate c,p1, . . . ,pn ∈ N
k. A

set is semilinear if it is the union of a finite number of linear sets.
A system of linear inequalities in n variables is a finite set of inequalities

n∑

j=1

ai,jxj ≤ bi, (1 ≤ i ≤ m) with ai,j , bi ∈ Z, for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

A non-negative and integral solution of above the system of linear inequalities
is a vector (x1, x2, . . . , xn) ∈ N

n that satisfies all inequalities. The set of all non-
negative and integral solutions of a system of linear inequalities will, for the sake
of brevity, simply be referred to as the solution set of the given system. In this
paper, a system of linear inequalities as above will be called

– positive if ai,j ≥ 0, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n;

– strictly positive if furthermore
m∑

i=1

ai,j > 0, for all 1 ≤ j ≤ n.

The solution sets of systems of linear inequalities have some useful properties
utilized in this paper. The simple proofs are left to the reader.

1. The solution set of a system of linear equations is semilinear.
2. If S1 and S2 are solution sets of systems of linear inequalities with disjoint

sets of variables then S1 × S2 is the solution set of the system containing
all inequalities of both systems. Moreover, if both S1 and S2 are (strictly)
positive, the resulting system is (strictly) positive, too.

248 R. Stiebe

3. The solution set of a strictly positive system of linear inequalities is finite.
4. After an appropriate renaming of the variables, the solution set of a positive

system of linear inequalities can be written as S1×N
k where S1 is the solution

set of a strictly positive system of linear inequalities.
5. If x ∈ N

n is a solution of a positive system of linear inequalities then every
y ∈ N

n with y ≤ x is a solution of the same system.

The set of finite strings over an alphabet X is denoted by X∗, the length of a
string w ∈ X∗ by |w|, the number of occurrences of a symbol a in w by |w|a and
the number of occurrences of symbols from Y ⊆ X in w by |w|Y . The empty
string is denoted by λ. Given an ordered alphabet X = {a1, a2, . . . , an}, the
Parikh mapping is the homomorphism Ψ : X∗ → N

n sending ai, 1 ≤ i ≤ n, to
the i-th unit vector. For a string w ∈ X∗, Ψ(w) is referred to as the Parikh vector
of w; for a language L ⊆ X∗, the Parikh set of L is Ψ(L) = {Ψ(w) : w ∈ L}.
For a subset Y of X with Y = {ai1 , ai2 , . . . , aim}, i1 < i2 < . . . < im, let
ΨY : X∗ → N

m be the homomorphism sending aij to the i-th unit vector (of Nm)
and x ∈ X \ Y to the zero vector (of Nm). In what follows, for any alphabet, an
order will be tacitly assumed so that Parikh mappings are used without explicitly
mentioning the order.

Besides the AFL operations (union, concatenation, homomorphisms, inverse
homomorphisms, intersection with regular sets, Kleene closure) we will consider
nested iterated substitutions which were extensively investigated by Greibach
[5,6]. A substitution is a homomorphism τ : X∗ → P(Y ∗) where X and Y are
alphabets. We extend τ to (X ∪ Y)∗, where X ∩ Y = ∅, by defining τ(a) = {a}
for all a ∈ Y . For n ≥ 0, τn is the substitution defined by τ0(a) = {a} and
τn+1(a) = τ(τn(a)), for a ∈ X ∪ Y . The iterated substitution defined by τ is the
substitution τ∞ defined by τ∞(a) =

⋃∞
n=0 τ

n(a), for a ∈ X ∪ Y . Moreover, τ∞

is called a nested iterated substitution if a ∈ τ(a), for all a ∈ X ∪ Y . A family of
languages L is closed under nested iterated substitutions if L ∈ L and τ(a) ∈ L
for every a ∈ X imply τ∞(L) ∈ L. It has been shown in [6] that the family of
semilinear languages is closed under nested iterated substitutions.

A finite automaton is a tuple A = (Z,X, z0, F, δ) where Z is a finite set of
states, X is a finite input alphabet, z0 ∈ Z is the initial state, F ⊆ Z is the set
of accepting states, and δ ⊆ Z ×X ×Z is the transition relation. The successor
relation � over Z ×X∗ is defined as (z, v) � (z′, v′) iff v = av′ and (z, a, z′) ∈ δ.
The reflexive and transitive closure of � is denoted by �∗. The language accepted
by A is L(A) = {w ∈ X∗ : (z0, w) �∗ (zf , λ), for some zf ∈ F}.

A grammar is a quadruple G = (V,Σ, S,R) where V and Σ are two finite
disjoint alphabets of nonterminal and terminal symbols, respectively, S ∈ V
is the start symbol and R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ is a finite set of
rules. G is called a GS grammar1 if R ⊆ V + × (V ∪ Σ)∗ and a context-free
grammar if R ⊆ V × (V ∪ Σ)∗. A string x ∈ (V ∪ Σ)∗ directly derives a string
y ∈ (V ∪ Σ)∗ in G, written as x ⇒G y, if and only if there is a rule α → β ∈ R
such that x = x1αx2 and y = x1βx2 for some x1, x2 ∈ (V ∪ Σ)∗. The reflexive

1 This kind of grammar was introduced by Ginsburg and Spanier and for this reason
named GS grammar here.

On Grammars Controlled by Parikh Vectors 249

and transitive closure of the relation ⇒G is denoted by ⇒∗
G. A derivation using

the sequence of rules π = r1r2 · · · rk, ri ∈ R, 1 ≤ i ≤ k, is denoted by
π
=⇒G

or
r1r2···rk=====⇒G. The language generated by G, denoted by L(G), is defined by

L(G) = {w ∈ Σ∗ : S ⇒∗
G w}. If G is clear from the context, the subscript G will

be omitted in the notation. The family of languages generated by context-free
grammars is denoted CF.

We next give some prerequisites concerning grammars with controlled deriva-
tions. Unless stated otherwise, extensive explanations, proofs and reference to
the original literature can be found in [3]. A matrix grammar is a quadruple
G = (V,Σ, S,M) where V,Σ, S are defined as for a context-free grammar, M is
a finite set of matrices which are finite strings (or finite sequences) over a set R
of context-free rules. The language generated by a matrix grammar G consists of
all strings w ∈ Σ∗ such that there is a derivation S

r1r2···rn=====⇒ w where r1r2 · · · rn
is a concatenation of some matrices mi1 ,mi2 , . . . ,mik ∈ M , k ≥ 1. The family
of languages generated by matrix grammars is denoted by MAT.

A grammar with regular control is a quintuple G = (V,Σ, S,R, L) where
G′ = (V,Σ, S,R) is a context-free grammar and L ⊆ R∗ is a regular language.

The language of G is defined by L(G) = {w ∈ Σ∗ : S
π
=⇒ w, for some π ∈ L}.

It is known that the family of languages generated by grammars with regular
control is MAT.

A valence grammar over Z
k is a quintuple G = (V,Σ, S,R,Zk) where V,Σ, S

are defined as in a context-free grammar, and R is a finite set of valence rules
(A → β, r), where A → β is a rule and r ∈ Z

k. The direct derivation relation ⇒
over (V ∪Σ)∗ × Z

k is defined by:

(γ, z) ⇒ (γ′, z′) iff
γ = γ1Aγ2, γ

′ = γ1βγ2 and z′ = z + r for some (A → β, r) ∈ P.

The language generated by G is L(G) = {w ∈ T ∗ : (S,0) ⇒∗ (w,0)}.
A positive valence grammar over Z

k [8] is defined like a valence grammar
with the additional condition z ≥ 0 in the definition of the derivation relation
(γ, z) ⇒ (γ′, z′).2 It has be shown in [8] that the family of languages generated
by positive valence grammars is MAT.

A programmed grammar with appearance checking is defined as a sextuple
G = (V,Σ, S,R, σ, φ) where (V,Σ, S,R) is a context-free grammar, and σ and φ
are mappings from R into P(R). For a rule r ∈ R, σ(r) and φ(r) are called the
success field and the failure field of r, respectively. The derivation relation over
(V ×Σ)∗×R is defined as follows. If r : A → α is a rule in R then (β, r) ⇒ (β′, r′)
iff either β = β1Aβ2, β

′ = β1αβ2 and r′ ∈ σ(r) or |β|A = 0 and r′ ∈ φ(r). The
language generated by G is L(G) = {w ∈ T ∗ : (S, r) ⇒∗ (w, r′), r, r′ ∈ R}. It
is known that programmed grammars with appearance checking generate the
family of recursively enumerable languages [3].

2 Actually, z ≥ 0 and z′ ≥ 0 were required in [8]. The definition given here is equiva-
lent to the previous one, since the zero vector has to be reached in the final step. It
will be technically useful later.

250 R. Stiebe

A context-free grammar G is of index k ∈ N if every word w ∈ L(G) has a
derivation with at most k nonterminal symbols in every sentential form. G is
of finite index if such a k exists. The family of languages generated by context-
free grammars of finite index is denoted by CFfi. For grammars with regulated
rewriting, the concept of finite index is defined analogously. It is known that ma-
trix grammars of finite index and programmed grammars of finite index generate
the same family of languages MATfi.

A capacity-bounded grammar [9] is a quintuple G = (V,Σ, S,R, κ) where
G′ = (V,Σ, S,R) is a grammar and κ : V → N is a capacity function assigning
to each nonterminal a bound. The direct derivation relation⇒ over (V ∪Σ)∗×Z

k

is defined by α ⇒G β iff α ⇒G′ β and |α|A ≤ κ(A) and |β|A ≤ κ(A), for all
A ∈ V . It has been shown that capacity-bounded GS grammars are equivalent to
matrix grammars of finite index while capacity-bounded context-free grammars
generate a proper subset of MATfi.

Finally, we give the definition of the generative device to be investigated.

Definition 1. A Parikh vector controlled grammar is defined as a quintuple
G = (V,Σ, S,R,C) where G′ = (V,Σ, S,R) is a grammar and C ⊆ N

n, n = |V |
is a set of admitted nonterminal Parikh vectors, referred to as the restricting
set of G. The derivation relation ⇒G is defined as α ⇒G β iff α ⇒G′ β and
ΨV (α) ∈ C. The language of G is defined as L(G) = {w ∈ Σ∗ : S ⇒∗

G w}.
Note that by this definition only the Parikh vectors of the nonterminal sentential
forms have to be within the restricting set.

The main objective of this paper is to study the generative power of Parikh
vector controlled grammars with respect to properties of the restricting sets.
To avoid complicated notations, we just enumerate the types of restricting sets
and the respective language families. Let G = (V,Σ, S,R,C) be a Parikh vector
controlled grammar with |V | = n. G is of

– type 1 if C = [0, k1]× [0, k2]× · · · × [0, kn], k1, k2, . . . , kn ∈ N;
– type 2 if C is the solution set of a strictly positive system of linear inequali-

ties;
– type 3 if C is finite;
– type 4 if C = C1 × N

n−j where j ∈ {0, 1, . . . n} and
C1 = [0, k1]× [0, k2]× · · · × [0, kj], k1, k2, . . . , kj ∈ N;

– type 5 if C is the solution set of a positive system of linear inequalities;
(equivalently, if C = C1 × N

n−j where j ∈ {0, 1, . . . n} and C1 ⊆ N
j is the

solution set of a strictly positive system of linear inequalities;)
– type 6 if C = C1 × N

n−j where j ∈ {0, 1, . . . n} and C1 is a finite subset of
N

j ;
– type 7 if C is the solution set of a system of linear inequalities;
– type 8 if C is semilinear.

The restricting sets are usually given by defining conditions. Instead of explicitly
giving a nonterminal Parikh vector ΨV (β) we will often refer to its components
|β|A. In particular, a system of inequalities for a nonterminal alphabet V will
sometimes be written as

∑
A∈V ai,A|β|A ≤ bi (1 ≤ i ≤ m).

On Grammars Controlled by Parikh Vectors 251

Note that Parikh vector controlled grammars of type 1 are simply the capacity-
bounded context-free grammars and that the types 4,5,6 are extensions of the
types 1,2,3, respectively, by adjoining nonterminals that are no subject to any
restrictions. In what follows, let Li, 1 ≤ i ≤ 8, denote the family of languages
generated by Parikh vector controlled grammars of type i.

3 Results

We will mainly investigate the generative power of Parikh vector controlled gram-
mars of the different types. In cases where the language families do not coincide
with previously known families we will also study closure properties with respect
to the AFL operations.

Lemma 1. The following inclusions hold for the language families CFfi, CF
and L1, . . . ,L8 (a dotted arrow represents a not necessarily proper inclusion;
disconnected families need not to be incomparable).

CFfi ��

��

L1
��

��

L2
��

��

L3

��
CF �� L4

�� L5
��

��

L6

��
L7

�� L8

Proof. All inclusions follow easily from the definitions and some elementary prop-
erties. More specifically,

– CFfi ⊆ CF,L1 ⊆ L4,L2 ⊆ L5,L3 ⊆ L6, CF ⊆ L4 and L5 ⊆ L7 hold
directly by definition;

– CFfi ⊆ L1holds as a grammar (V,Σ,R, S) of finite index k generates the
same language as the Parikh vector controlled grammar (V,Σ,R, S, C) where
C = [0, k]|V |, see [9];

– L1 ⊆ L2 and L4 ⊆ L5 are valid because a set [0, k1]× [0, k2]× · · · × [0, kn] is
the solution set of the system of linear inequalities xi ≤ ki (i = 1, 2, . . . , k);

– L2 ⊆ L3 and L5 ⊆ L6 are valid because the solution set of a strictly positive
system of linear inequalities is finite;

– L6 ⊆ L8 and L7 ⊆ L8 are true as the restricting sets of grammars of type 6
and 7 are semilinear.

�
It is of course known that the proper inclusion CFfi ⊂ CF holds. Moreover, in
[9] the proper inclusions CFfi ⊂ L1 ⊂ MATfi have been shown. We will now
investigate the properness of the remaining inclusions and try to relate the Li

to known families of languages.

252 R. Stiebe

3.1 The Families L1, L2 and L3

We will first study the grammars with a finite restricting set. While L1 is known
to be a proper subfamily of MATfi, it turns out that L2 and L3 coincide with
MATfi. To this end, we will prove the inclusions L3 ⊆ MATfi and MATfi ⊆
L2.

Lemma 2. L3 ⊆ MATfi.

Proof. Let G = (V,Σ, S,R,C) be a Parikh vector controlled grammar with
V = {A1, A2, . . . , An}, S = A1 and C a finite subset of N

n. The idea is to
construct a grammar with regular control, where the control language is given
by a finite automaton whose state keeps track of the nonterminal Parikh vector
of the derived sentential form. More specifically, let A = (C ∪ {0}, R, e1, {0}, δ)
be the deterministic finite automaton with the transition function δ defined as
follows. If r : Ai → α is a rule in R, x = (x1, . . . , xn) is in C and y is defined by
y = x− ei + ΨV (α) then

δ(x, r) =

{
y, if xi > 0 and y ∈ C ∪ {0}
undefined, otherwise.

It is easy to prove by induction that a sequence ρ = r1r2 · · · rm reaches a state
z ∈ C∪{0} iff ρ is a possible derivation sequence in G and leading to a sentential
form with nonterminal Parikh vector z. Hence, L(A) is the set of all correct
terminal derivation sequences in G and the grammar with regular control G′ =
(V,Σ, S,R, L(A)) generates the same language as G.
�
Lemma 3. MATfi ⊆ L2.

Proof. In [9] it has been shown that matrix grammars of finite index are equiv-
alent to capacity-bounded GS grammars. We will therefore show how to sim-
ulate a capacity-bounded GS grammar by a Parikh vector controlled grammar
with a restricting set defined by a strictly positive system of linear inequalities.
Let G = (V,Σ, S,R, κ) be a capacity-bounded GS grammar. As proved in [9,
Lemma 3], we can assume that any word from L(G) can be derived replacing
in each derivation step a maximal nonterminal block. (A maximal nonterminal
block is a substring over V which cannot be extended to a longer substring over
V . As G is capacity-bounded there is only a finite number of maximal nontermi-
nal blocks.) Then we construct the equivalent Parikh vector controlled grammar
G′ = (V ′, Σ, [S], R′, C) where we devise the nonterminal alphabet V ′ and the
set of rules R′ like in [9] as

V ′ = {[α] : α ∈ V + is a maximal nonterminal block in G},
R′ = {[α] → w0[β1]w1[β2] · · ·wk−1[βk]wk : α → w0β1w1β2 · · ·wk−1[βk]wk ∈ R,

where β1, . . . , βk ∈ V +, w0, wk ∈ Σ∗, w1, . . . , wk−1 ∈ Σ+}.

On Grammars Controlled by Parikh Vectors 253

With V ′ = {[α1], [α2] . . . , [αn]}, the restricting set C is defined as the solution
set of the system of linear inequalities

n∑

i=1

|αi|A · xi ≤ κ(A), A ∈ V.

For a word β ∈ (V ∪Σ)∗ with all maximal blocks in V ′, let [β] ∈ (V ′∪Σ)∗ be the
word obtained by replacing every maximal block α in β by [α]. It is now easily
checked by induction on the derivation steps that a sentential form β ∈ (V ∪Σ)∗

can be derived in G iff all its maximal blocks are in V ′ and [β] can be derived
in G′.
�

Corollary 1. L1 ⊂ L2 = L3 = MATfi.

3.2 The Families L4, L5 and L6

The Parikh vector controlled grammars of types 4,5,6 can be seen as Parikh
vector controlled grammars of types 1,2,3, respectively, extended by sets of non-
restricted nonterminal symbols. In other words, the nonterminal set V of a Parikh
vector controlled grammar of type 4,5 or 6 can be decomposed as V = V1 ∪ V2

where V1 is subject to the restrictions as in Parikh vector controlled grammars
of types 1,2,3, respectively, and V2 is not at all restricted.

Essentially, we will show that L4 and L5 are obtained from L1 and L2 by
nested iterated substitutions, while L6 is equal to the family of matrix languages
MAT. In particular, L4 and L5 are proper subfamilies of MAT.

We start with the following “replacement lemma” for languages from L4,
which is virtually the same result as for capacity-bounded grammars given
in [9].

Lemma 4. For any infinite language L ∈ L4, there are a constant n and a finite
set M of infinite languages from L4 such that, for every word z ∈ L with |z| ≥ n,
there are a decomposition z = uvw, |v| ≤ n, and a language L′ ∈ M such that
uv′w ∈ L, for all v′ ∈ L′.

Proof. As the claim of the lemma, the proof is virtually the same as that
for capacity-bounded grammars in [9]. Consider some Parikh vector controlled
grammar G = (V,Σ, S,R,C) of type 4 such that L = L(G). For A ∈ V , let
GA = (V,Σ,R,A,C) and LA = L(GA); clearly, LA = {w ∈ Σ∗ : A ⇒∗

G w}. The
following assertions hold for any derivation in G involving A:

– If αAβ ⇒∗
G uvw, where α, β ∈ (V ∪Σ)∗, u, v, w ∈ Σ∗ and v is the yield of A,

then v ∈ LA. (Given a derivation αAβ ⇒∗
G uvw, construct a derivation of v

from A by keeping the derivation steps arising from A. The Parikh vectors of
the sentential forms in the second derivation are less or equal to those of the
corresponding sentential forms in the first derivation, hence the derivation
A ⇒∗

G v is valid.)

254 R. Stiebe

– On the other hand, for all u, v, w ∈ Σ∗ such that v ∈ LA, the relation
uAw ⇒∗

G uvw holds. (Given a derivation A ⇒∗
G v, do the same derivation

steps starting from uAw. The nonterminal Parikh vectors of the sentential
forms in the second derivation are equal to those of the corresponding sen-
tential forms in the first derivation, hence the derivation uAw ⇒∗

G uvw is
valid.)

The nonterminal set V can be decomposed as V = Vinf ∪ Vfin , where

Vinf = {A ∈ V : LA is infinite},
Vfin = {A ∈ V : LA is finite}.

We choose M = {LA : A ∈ Vinf } and n = r ·max{|w| : w ∈ ⋃
A∈Vfin

LA}, where
r is the longest length of a right side in a rule of R. For a derivation of z ∈ L
with |z| > n, consider the last sentential form α with a symbol from Vinf . Let
this symbol be A. All other nonterminals in α are from Vfin , and none of them
generates a subword containing A in the further derivation process. We get thus
another derivation of z in G by postponing the rewriting of A until all other
nonterminals have vanished by applying on them the derivation sequence of the
original derivation. This new derivation has the form

S ⇒∗ α ⇒∗ uAw ⇒∗ uvw = z.

The length of v can be estimated by |v| ≤ n, as A is in the first step replaced by
a word over (Σ ∪ Vfin) of length at most r. By the remarks in the beginning of
the proof, any word uv′w with v′ ∈ LA can be derived in G.
�

The replacement lemma can be used to show that certain languages are not in
L4. This implies some limitations for L4, similar to those of L1 shown in [9].

Corollary 2. L4 and MATfi are incomparable, while L4 is a proper subset
of L5.

Proof. Using the same arguments as in [9], it can be shown that the language L =
{anbncn : n ≥ 1} does not satisfy the consequence of the replacement lemma,
hence it is not in L4. On the other hand, L is a language from MATfi = L2

and thus in L5. Together with the inclusions CF ⊆ L4 ⊆ L5, this proves the
claims.
�

Next we prove a useful result concerning derivations in Parikh vector controlled
grammars of type 4 or 5.

Lemma 5. Let G = (V,Σ, S,R,C) be a Parikh vector controlled grammar of
type 4 or 5, and let V = V1 ∪ V2 be a partition of V such that the appearance of
symbols from V2 is unrestricted. Then every word in L(G) can be derived such
that whenever the current sentential form contains a symbol from V1, a symbol
from V1 will be replaced.

On Grammars Controlled by Parikh Vectors 255

Proof. Consider a derivation S ⇒∗ γ ⇒∗ w of a word w ∈ L(G) where the first
derivation step replacing a symbol from V2 although a symbol from V1 is present,
is after generating γ. We will construct a derivation of w with the same number
of derivation steps such that a symbol from V1 is replaced in γ. The claim of the
lemma then follows by induction.

We can decompose γ and w as

γ = α0A1α1A2 · · ·αm−1Amαm,

w = u0v1u1v2 · · ·um−1vmum,

where A1, A2, . . . , Am are the symbols from V2 in γ, u0, u1, . . . , um are the sub-
words of w derived from α0, α1, . . . , αm, v1, v2, . . . , vm are the subwords of w
derived from A1, A2, . . . , Am.

Consider the derivation S ⇒∗ γ ⇒∗ γ′ ⇒∗ w with

γ′ = u0A1u1A2 · · ·um−1Amum,

where the derivation steps replacing the Ai and their derivatives are first omit-
ted, thus yielding γ′, and then executed in the same sequence, yielding w. This
derivation is valid as u0, u1, . . . , um and A1, A2, . . . , Am do not contain symbols
from V1.
�
Lemma 6. Every language L ∈ L5 over the alphabet Σ can be represented as
L = L′ ∩Σ∗ where L′ is the nested iterated substitution of languages from L2.

Proof. Let G = (V,Σ, S,R,C1 × N
n−l) be a Parikh vector controlled grammar

where V = {A1, A2, . . . , An} and C1 ⊆ N
l is the solution set of a strictly positive

system of linear inequalities. The nonterminal set V is partitioned as V = V1∪V2,
where V1 = {A1, . . . , Al} is the set of restricted symbols and V2 = {Al+1, . . . , An}
is the set of non-restricted symbols. Without loss of generality, we assume that
S does not appear on the right-hand side of any rule and belongs to V2. For
every A ∈ V2, let LA be the language generated by the Parikh vector controlled
grammar GA = (V1 ∪ {A′}, V2 ∪Σ,A′, RA, C1 × [0, 1]) where

RA = {A′ → α : A → α ∈ R} ∪ {B → α : B → α ∈ R,B ∈ V1}.

GA is of type 2 as C1×[0, 1] ⊆ N
l+1 is the solution set of the system of inequalities

for C1 (in the variables x1, . . . , xn) with the additional inequality xl+1 ≤ 1.
Obviously, LA is the set of all sentential forms that can be derived in G from
A by replacing, except for the first step, only symbols from V1. We claim that
L(G) = Σ∗ ∩ τ∞(S) where τ(A) = LA ∪ {A} for A ∈ V2 and τ(a) = {a} for
a ∈ Σ.

To prove the inclusion L(G) ⊇ Σ∗ ∩ τ∞(S) we show by induction that every
word from τ∞(S) is derivable inG. The induction basis is correct, as τ0(S) = {S}
and S is derivable. Now assume that every word in τn(S) is derivable. By defini-
tion, a word w ∈ τn+1(S) can be written as w = w1w2 · · ·wm where wi ∈ τ(Xi),
Xi ∈ Σ∪V2, and w′ = X1X2 · · ·Xm ∈ τn(S). Now w can be derived in G by first

256 R. Stiebe

generating w′ ∈ τn(S) and then deriving sequentially from each Xi the subword
wi. The subderivations w1 · · ·wi−1XiXi+1 · · ·Xm ⇒∗ w1 · · ·wi−1wiXi+1 · · ·Xm

are valid as w1, . . . , wi−1, Xi+1, . . . , Xm contain no symbols from V2.
To prove L(G) ⊆ Σ∗ ∩ τ∞(S) we can restrict to derivations where a symbol

from V1 is replaced when present. We will show by induction that every sentential
form over (V2 ∪ Σ) obtained in such a derivation is from τ∞(S). The claim is
true for S. Now consider some sentential form α ∈ (V2 ∪Σ)∗ with α ∈ τ∞(S). It
is decomposed as α = α1Aα2 where A ∈ V2 is the next symbol to be replaced.
The next sentential form α′ over (V2 ∪ Σ) is reached when all symbols from V1

that originate from the A replaced in the first step are rewritten. Hence, it has
the shape α′ = α1βα2 where β ∈ LA ⊆ τ(A). By α1 ∈ τ(α1), α2 ∈ τ(α2) and
the induction hypothesis α ∈ τ∞(S) we conclude α′ ∈ τ∞(S).
�
If the grammar G in the proof is of type 4 then all grammars constructed in the
further course are of type 1. This implies:

Corollary 3. Every language L ∈ L4 over the alphabet Σ can be written as
L = L′ ∩Σ∗ where L′ is the nested iterated substitution of languages from L1.

Since all languages in L2 = MATfi are semilinear and by the closure of the
semilinear languages under nested iterated substitution, we can furthermore con-
clude:

Corollary 4. Any language in L5 is semilinear.

Let us now study the closure properties of L4 and L5. As regards L5, the well-
known constructions to show the closure of the context-free languages under the
AFL operations can be adapted.

Theorem 1. The family L5 is a full AFL.

Proof. We need to show closure under union, concatenation, Kleene closure, ho-
momorphisms, inverse homomorphisms and intersection with regular languages.
Let G1 = (V1, Σ, S1, R1, C1) and G2 = (V2, Σ, S2, R2, C2) be Parikh vector con-
trolled grammars of type 5. Without loss of generality, suppose that V1∩V2 = ∅.
For the mentioned operations, we give now the respective constructions.

Union. Let G′ = (V ′, Σ, S′, R′, C′) where V ′ = V1 ∪ V2 ∪ {S′}, R′ = {S′ →
S1, S

′ → S2} ∪R1 ∪R2 and C′ = C1 × C2 × N.
The first derivation step produces either S1 or S2. In the first case, only rules
from R1 are used in the rest of the derivation. Since 0 ∈ C2, the derivation is
valid iff every encountered Parikh vector is from C1×{0}×{0}, i.e., iff from the
second step on it is valid in G1. Analogously, if S2 is produced, the derivation is
valid iff from the second step on it is valid in G2. Hence, L(G

′) = L(G1)∪L(G2).

Concatenation. Set G′ = (V ′, Σ, S′, R′, C′) where V ′ = V1 ∪ V2 ∪ {S′}, R′ =
{S′ → S1S2}∪R1∪R2 and C′ = C1×C2×N. The first derivation step produces
S1S2. Since S1 and S2 derive only sentential forms over Σ ∪ V1 and Σ ∪ V2,
respectively, and since 0 ∈ C1, we can restrict to derivations where symbols

On Grammars Controlled by Parikh Vectors 257

from V1 are replaced as long as they are present. Such a derivation is of the
form S′ ⇒ S1S2 ⇒∗

G1
w1S2 ⇒∗

R2
w1w2 with w1w2 ∈ Σ∗. The subderivation

S1S2 ⇒∗
G1

w1S2 is valid iff every Parikh vector is in C1 × {e1} × {0}, i.e., iff
w1 ∈ L(G1) and e1 ∈ C2. The subderivation wS2 ⇒∗

R2
w1w2 is valid iff every

Parikh vector is in 0× C2 × {0}, i.e., iff w2 ∈ L(G2). Since w2 ∈ L(G2) implies
e1 ∈ C2, the complete derivation is valid iff w1 ∈ L(G1) and w2 ∈ L(G2).

Kleene Closure. Let G′ = (V ′, Σ, S′, R′, C′) where V ′ = V1∪{S′}, R′ = {S′ →
S1S

′, S′ → λ} ∪ R1 and C′ = C1 × N. We can restrict to derivations where a
symbol from V1 is replaced if present. Such a derivation has the form

S′ ⇒ S1S
′ ⇒∗

G1
w1S

′ ⇒ w1S1S
′ ⇒∗

G1
w1w2S

′ ⇒∗ w1w2 · · ·wnS
′ ⇒ w1w2 · · ·wn

with w1, w2, . . . , wn ∈ Σ∗. A subderivation

w1 · · ·wi−1S
′ ⇒ w1 · · ·wi−1S1S

′ ⇒∗
G1

w1 · · ·wi−1wiS
′

is valid iff every encountered sentential form is in C1 ×{1}, i.e., iff wi ∈ L(G1).

Homomorphisms. Let h : Σ∗ → Δ∗ be a homomorphism. We extend h to a
mapping from (Σ ∪ V1)

∗ to (Δ ∪ V1)
∗ by setting h(A) = A, for all A ∈ V1. Now

set G′ = (V1, Δ, S1, R
′, C) where R′ = {A → h(α) : A → α ∈ R1}. A sentential

form β can be derived in the context-free grammar associated with G1 iff h(β)
can be derived in the context-free grammar associated with G′. Moreover, the
nonterminal Parikh vectors of β and h(β) are equal. Hence, β is derivable in G1

iff h(β) is so in G′ and thus L(G′) = h(L(G1)).

Inverse Homomorphisms. It suffices to show closure under inverse alphabetic
homomorphisms (see, e.g., [1]). Let h : Δ∗ → Σ∗ be an alphabetic homomor-
phism, i.e., a homomorphism sending each a ∈ Δ to a word from Σ ∪ {λ}.
Without loss of generality, assume that Σ ∩Δ = ∅. Then G′ is constructed as
G′ = (V1 ∪ Σ ∪ {Λ}, Δ, S1, R

′, C × N
|Σ|+1) with Λ /∈ V1 ∪ Σ ∪Δ and the set of

rules

R′ = R1 ∪ {a′ → Λa, a′ → aΛ : a′ ∈ Σ, a ∈ Δ,h(a) = a′} ∪
{Λ → aΛ : a ∈ Δ,h(a) = λ} ∪ {Λ → λ}.

By Lemma 5 we can restrict to derivations where a symbol from V1 is replaced
if present. This way we apply in the first phase the rules from R1 generating a
word w ∈ Σ∗. Then the remaining rules can be used to generate an arbitrary
word in h−1(w). Since the same restrictions as in G1 apply to V1, exactly the
words from L(G1) can be generated in the first phase. In the second phase,
a word w ∈ L(G1) can be transformed to any of its preimages under h by re-
placing every symbol in w by one of its preimages under h and inserting symbols
from Δ whose images under h is λ. Hence, L(G′) = h−1(L(G1)).

Intersection with Regular Sets. Let A = (Z,Σ, z0, Q, δ) be a finite automa-
ton. Without loss of generality, assume that Q contains only the single state q.

258 R. Stiebe

ConstructG′ = (V ′, Σ, S′, R′, C′) such that V ′ = Z×(V1∪Σ)×Z, S′ = (z0, S, q),

R′ = {(z, A, z′) → (z, x1, z1)(z1, x2, z2) · · · (zr−1xrz
′) : A → x1x2 · · ·xr ∈ R1} ∪

{(z, A, z) → λ : A → λ ∈ R} ∪ {(z, a, z′) → a : (z, a, z′) ∈ δ},

and C′ is defined such that in the defining system of inequalities for C every
term of the form k · |α|A, k ∈ N, A ∈ V1, is replaced by k · ∑

z,z′∈Z

|α′|(z,A,z′).

Again, we can restrict to derivations where a symbol from Z × V1 × Z is re-
placed, if possible. So, in a first derivation phase we generate a word β =
(z0, a1, z1)(z1, a2, z2) · · · (zn−1, an, q), a1, a2, . . . , an ∈ Σ. It can be shown by in-
duction that a sentential form can be generated in the first phase iff it has the
shape α′ = (z0, x1, z

′
1)(z

′
1, x2, z

′
2) · · · (z′m−1, xm, q), x1, x2, . . . , xm ∈ V1 ∪ Σ and

α = x1x2 · · ·xm can be derived in G1. In particular, α′ satisfies the constraints
of G′ iff α satisfies the constraints of G1 because |α|A =

∑

z,z′∈Z

|α′|(z,A,z′), for

all A ∈ V1. In a second phase, the intermediate word β can be transformed to
w = a1a2 · · ·an iff it describes a successful run of A on w. Hence, w can be
generated by G′ iff it is in L(G1) and L(A).
�
All constructions but the last result in a Parikh vector controlled grammar of
type 4 if both G1 and G2 are of type 4. We can conclude:

Corollary 5. The family L4 is closed under union, concatenation, Kleene clo-
sure, homomorphisms and inverse alphabetic homomorphisms.

Regarding the remaining two AFL operations, we can prove nonclosure of L4 by
help of the “replacement lemma”.

Corollary 6. L4 is not closed under intersection with regular sets and inverse
homomorphisms.

Proof. Using Lemma 4, it can be shown that the languages

L1 = {a3nx3yb3na3nx2yb3n : n ≥ 1},
L2 = {a3ncb3na3ndb3n : n ≥ 1}

are not in L4. However, as discussed in [9], there are a language L ∈ L1 ⊆ L4, a
regular set M and a homomorphism g such that L1 = L ∩M and L2 = g−1(L).

�
By a slight modification of the proof of Lemma 6, we can also show that L4 and
L5 are closed under nested iterated substitutions.

Theorem 2. L4 and L5 are closed under nested iterated substitutions.

A full AFL which is closed under nested iterated substitutions has been termed
a superAFL by Greibach [6]. We can therefore give the following characterization
of L5.

On Grammars Controlled by Parikh Vectors 259

Corollary 7. L5 is the least superAFL containing MATfi.

Finally, we are going to prove that grammars of type 6 generate exactly the fam-
ily of matrix languages. This is achieved by giving simulations showing equiva-
lence to grammars with regular control.

Lemma 7. L6 ⊆ MAT.

Proof. The construction is similar to that in the proof of Lemma 2.
Let G = (V,Σ, S,R,C1 × N

n−l) be a Parikh vector controlled grammar where
V = {A1, A2, . . . , An} and C1 ⊆ N

l is finite. Without loss of generality we can
assume that S does not appear on the right-hand of any rule, S = A1 and
C1 ⊆ [0, 1]×N

l−1 (the last assumption implies l > 0). We set V1 = {A1, . . . , Al},
V2 = {Al+1, . . . , An}. The automaton for the regular control language keeps
track of the nonterminals from V1, hence its state set is basically C1, a subset of
N

l. Let A = (C1 ∪ {0}, R, e1, {0}, δ) be the deterministic finite automaton with
the transition function δ defined as follows. If r : Ai → α is a rule in R with
1 ≤ i ≤ l, x = (x1, . . . , xl) is in C1 and y is defined by y = x− ei+ΨV1(α) then

δ(x, r) =

{
y, if xi > 0 and y ∈ C1 ∪ {0}
undefined, otherwise.

If r : Ai → α is a rule in R with l < i ≤ n, x = (x1, . . . , xl) is in C1 and y is
defined by y = x+ ΨV1(α) then

δ(x, r) =

{
y, if y ∈ C1 ∪ {0}
undefined, otherwise.

It is easy to prove by induction that a sequence ρ = r1r2 · · · rm reaches a state
z ∈ C iff ρ is a possible derivation sequence in G and leading to a sentential
form α with ΨV1(α) = z. Hence, L(A) is the set of all correct terminal derivation
sequences in G and the grammar with regular control G′ = (V,Σ, S,R, L(A))
generates the same language as G.
�
Lemma 8. MAT ⊆ L6.

Proof. Let G = (V,Σ, S,R, L) be a grammar with regular control and let A =
(Z,R, z0, F, δ) be a finite automaton accepting L. The proof strategy is to con-
struct a Parikh vector controlled grammar of type 6 that simulates the steps of
G while simultaneously keeping track of the state of the automaton. Formally,
we construct G′ = (V ′, Σ, S′, R′, C) where the set of nonterminals is

V ′ = V ∪ {S′} ∪ Z ∪ VR ∪ Vδ with VR = {Ar, Br : r ∈ R}, Vδ = {Xt, Yt : t ∈ δ},

R′ contains the following rules:

– S′ → z0S;
– for each rule r : A → α in R, the rules A → Ar, Ar → Br, Br → α;

260 R. Stiebe

– for each transition t = (z, r, z′) in δ, the rules z → Xt, Xt → Yt, Yt → z′;
– for each zf ∈ F , the rule zf → λ;

and C is defined by the following constraints on each nonterminal sentential form
in a derivation process:

1. Exactly one symbol from {S′} ∪ Z ∪ Vδ is present.
2. At most one symbol from VR is present.
3. If a symbol from Z is present, then no symbol Ar, r ∈ R, is allowed.
4. If a symbol of the form Xt with t ∈ δ, t = (z, r, z′) is present, then the only

admissible symbol from VR is Ar.
5. If a symbol of the form Yt with t ∈ δ is present, then at least one symbol

from VR is present.

First note that G′ is indeed of type 6, since the total number of symbols from
{S′} ∪Z ∪ Vδ ∪ VR is bounded by 2, while the symbols from V are unrestricted.

In the first step of a derivation in G′, the rule S′ → z0S is applied; the
last derivation step of each successful derivation is of the form zfw ⇒ w with
zf ∈ F,w ∈ Σ∗. Now consider a sentential form zβ with z ∈ Z and β ∈ (V ∪Σ)∗

where β contains at least one nonterminal symbol. Because of restriction 3, the
symbol z has to be rewritten in the first step using some rule z → Xt; let
t = (z, r, z′) and r : A → α. In the next step, the rule Xt → Yt cannot be
applied by restriction 5, so restriction 4 requires the rule A → Ar to be used.
This implies that β can be decomposed as β1Aβ2 and the sentential form reached
after the second step is Xtβ1Arβ2. By restriction 2 no other symbol from V can
be rewritten in the next derivation steps. Restriction 4 forbids the application of
Ar → Br, so the next applied rule has to be Xt → Yt yielding Ytβ1Arβ2. In the
next step Yt cannot be replaced by z′ because of restriction 3; hence Ar must be
rewritten to reach the sentential form Ytβ1Brβ2. Now the only admissible rule
is Yt → z′ due to restriction 5, giving z′β1Brβ2. Finally, restriction 4 requires
the application of Br → α which derives z′β1αβ2. Hence, every sentential form
reachable from zβ in six steps has the form z′β′ where β′ can be directly derived
in G from β using rule r and z can be transferred by r to z′ in A. On the other
hand, every such sentential form z′β′ can be derived from zβ using the above
derivation sequence thus completing the proof.
�
Corollary 8. L4 ⊂ L5 ⊂ L6 = MAT.

3.3 The Families L7 and L8

Finally, we discuss grammars whose restricting sets are solution sets of arbitrary
systems of linear inequalities (type 7) or semilinear sets (type 8). While the first
variant turns out to be equivalent to matrix grammars, the second can generate
all recursively enumerable languages.

On Grammars Controlled by Parikh Vectors 261

Lemma 9. MAT ⊆ L7.

Proof. The same construction as in the proof of Lemma 8 can be used. We need
just to verify that the restrictions on the Parikh sets can be established by a
system of linear inequalities. Indeed, the five restrictions can be reformulated as
follows:

1. |α|S′ +
∑

z∈Z

|α|z +
∑

X∈Vδ

|α|X = 1.

2.
∑

X∈VR

|α|X ≤ 1.

3.
∑

z∈Z

|α|z +
∑

r∈R

|α|Ar ≤ 1.

4. |α|Xt +
∑

Y ∈VR\{Ar}
|α|Y ≤ 1, for every t ∈ δ where t = (z, r, z′).

5. |α|Yt −
∑

Y ∈VR

|α|Y ≤ 0, for every t ∈ δ where t = (z, r, z′).

Only the last kind of inequalities is not obvious. It follows since the count of Yt

is limited by one (in condition 2).
�
The reverse inclusion L7 ⊆ MAT can be quite easily shown by the construction
of a positive valence grammar where the compliance with each of the inequalities
is accomplished by a dimension of the valence vector. However, the construction
below (Lemma 11) will lead to a positive valence grammar with a slightly dif-
ferent acceptance condition than the usual one. We will therefore first show a
technical result regarding positive valence grammars. Let G = (V,Σ, S,R,Zk)
be a positive valence grammar and t ∈ Z

k a vector. Then we define L(G, t) as
the set of all words w for which a derivation

(S,0) ⇒ (α1, z1) ⇒ · · · ⇒ (αr, zr) ⇒ (w, t) with zi ≥ 0, 1 ≤ i ≤ r,

exists. Note that t needs not to be in N
k.

Lemma 10. For every positive valence grammar G over Z
k and every t ∈ Z

k,
there is a positive valence grammar G′ (over Z

k+1) such that L(G′) = L(G, t).

Proof. Let G = (V,Σ, S,R,Zk) be a positive valence grammar and t ∈ Z
k. The

idea of the construction is to add an extra vector −t in the final derivation
step. To this end the simulating grammar G′ needs for its nonterminal alphabet
a copy of V and one additional dimension in the valence vectors. Hence, the
nonterminal alphabet of G′ is V ∪V ′∪{S0} where V ′ is a disjoint copy of V and
S0 /∈ V ∪ V ′ is the new start symbol. In what follows, the copy of a nonterminal
symbol A ∈ V in V ′ will be denoted by A′; moreover, the vectors in Z

k+1 will
be written in the form (y, z) where y ∈ Z

k and z ∈ Z. The set R′ of valence
rules in G′ is defined as

R′ = {(S0 → S, (0, 1))} ∪ {(A → A′, (0,−1)) : A ∈ V } ∪
{(A′ → α, (z, 1) : (A → α, z) ∈ R} ∪
{(A′ → α, (z − t, 0)) : (A → α, z) ∈ R}.

We will prove by induction over n that a pair (β, (y, z)) with z ≥ 0 is derivable
in G′ in 2n+ 1 steps, iff either

262 R. Stiebe

– (β,y) is derivable in G in n steps and z = 1 or

– (β,y + t) is derivable in G in n steps and z = 0.

The assertion is true for n = 0 since the only pair derivable in one step in G′

is (S, (0, 1)). The first step in a derivation in G′ is (S0, (0, 0)) ⇒ (S, (0, 1)).
Now suppose that the assertion has been shown for n = k. Consider some pair
(β, (y, z)) derived inG′ in 2k+1 steps. By induction hypothesis, β ∈ (V ∪Σ)∗ and
z ∈ {0, 1} hold. The next derivation step has to apply a rule (A → A′, (0,−1))
yielding (β1A

′β2, (y, z − 1)) where β = β1Aβ2 is a decomposition of β. If z = 0,
no further derivation step is possible. If z = 1, the next step must use a rule of
either of the forms (A′ → α, (z, 1)) or (A′ → α, (z−t, 0)) in order to keep the last
component non-negative. In the first case, the resulting pair is (β1αβ2, (y+z, 1)).
The step is valid iff y + z ≥ 0, i.e., iff (β1αβ2,y + z) is directly derivable from
(β,y) in G. In the second case, the resulting pair is (β1αβ2, (y+z−t, 0)). Hence,
the induction hypothesis is true for n = k + 1.

Since all sentential forms generated in 2n steps by G′ are nonterminal, the
language of G′ is found as

L(G′) = {w ∈ Σ∗ : (w, (0, 0)) derivable in G′ in 2n+ 1 steps , n ≥ 0}
= {w ∈ Σ∗ : (w, t) derivable in G in n steps , n ≥ 0} = L(G, t),

as claimed.
�

Lemma 11. L7 ⊆ MAT.

Proof. Let G = (V,Σ, S,R,C) be a Parikh vector controlled grammar where
V = {A1, A2, . . . , An}, S = A1 and C ⊆ N

n is the solution set of a system of m
linear inequalities

n∑

j=1

ai,jxj + bi ≥ 0, (1 ≤ i ≤ m).

We construct the positive valence grammar G′ = (V ∪ {S′}, Σ, S′, R′,Zm) with
the start symbol S′ /∈ V and the set of valence rules R′ constructed as follows.

– The starting rule is (S′ → A1, (z1, . . . , zm)) with zi = ai,1 + bi, 1 ≤ i ≤ m.

– For any rule Ar → α with ΨV (α) = (y1, . . . , yn), R
′ contains the valence rule

(Ar → α, (z1, . . . , zm)) with zi =
n∑

j=1

ai,jyj − ai,r.

It is easy to verify by induction on the number of derivation steps that G′ can
generate a pair (α, (z1, . . . , zm)) iff G can generate α and ΨV (α) = (x1, . . . , xn)

satisfies zi =
n∑

j=1

ai,jxj+bi, for 1 ≤ i ≤ m. Hence, G produces the same language

as G′ with the target vector (b1, . . . , bm).
�

Lemma 12. L8 is the family of recursively enumerable languages.

On Grammars Controlled by Parikh Vectors 263

Proof. We will simulate a programmed grammar with appearance checking by
a Parikh vector controlled grammar with a semilinear restricting set. Let G =
(V,Σ, S,R, σ, φ) be a programmed grammar with appearance checking. Then we
construct the Parikh vector controlled grammar G′ = (V ′, Σ, S′, R′, C) where

V ′ = V ∪ {S′} ∪ {Xr, Yr, Zr, Fr, Ar, Br : r ∈ R},
R′ = {S′ ⇒ SXr : r ∈ R} ∪

{Xr → Yr, Yr → Zr : r ∈ R} ∪ {Zr → Xs : s ∈ σ(r)} ∪
{Xr → Fr : r ∈ R} ∪ {Fr → Xf : f ∈ φ(r)} ∪
{A → Ar, Ar → Br, Br → α : (r : A → α) ∈ R},

and C is defined by the following constraints on the Parikh vector for a nonter-
minal sentential form:

1. One symbol from {S′} ∪ {Xr, Yr, Zr, Fr : r ∈ R} is present.
2. At most one symbol from {Ar, Br : r ∈ R} is present.
3. If Xs is present then no symbol Ar is present, r, s ∈ R.
4. If Ys is present then no symbol Br is present, r, s ∈ R.
5. If Zr is present then one of the symbols Ar, Br is present.
6. If Fs is present, s ∈ R, then no symbol from {Ar, Br : r ∈ R} is present.
7. If Fr is present, for r : A → α, then A is not present.

It is easy to see that each of the constraints describes a semilinear set. The set
C is the intersection of all these sets and thus semilinear, too. The correctness
proof is similar to that in Lemma 7. The last constraint models the appearance
checking case. It is the only one that cannot be described by a system of linear
inequalities.
�

4 Conclusions

We have introduced Parikh vector controlled grammars and investigated sev-
eral restrictions on the Parikh sets of sentential forms. The results concerning
the generative power with respect to the different restrictions can be summa-
rized as follows (arrows indicating strict inclusions, disconnected families being
incomparable).

CFfi ��

��

L1
��

��

MATfi = L2 = L3

��
CF �� L4

�� L5
�� MAT = L6 = L7

�� RE = L8

A particularly interesting family is L5 defined by grammars whose restricting
sets are solutions of positive systems of linear inequalities. This language family
does not coincide with any of the formerly known classes and is a superAFL of
semilinear languages.

264 R. Stiebe

It remains to study the power of non-erasing grammars of the respective types.
It might be also worthwhile to investigate connections to other variants of regu-
lated rewriting. For instance, a characterization of random context grammars by
an appropriate Parikh vector control could be helpful to settle the longstanding
question if random context grammars are equivalent to matrix grammars.

References

1. Berstel, J.: Transductions and Context-Free Languages. Teubner-Verlag, Stuttgart
(1979)

2. Brainerd, B.: An analog of a theorem about context-free languages. Information and
Control 11, 561–567 (1968)

3. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer
(1989)

4. Ginsburg, S., Spanier, E.: Derivation bounded languages. Journal of Computer and
System Sciences 2, 228–250 (1968)

5. Greibach, S.: Full AFLs and nested iterated substitution. Information and Con-
trol 16(1), 7–35 (1970)

6. Greibach, S.: A generalization of Parikh’s semilinear theorem. Discrete Mathemat-
ics 2, 347–355 (1972)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

8. Stiebe, R.: Positive valence grammars. In: Csuhaj-Varjú, E., Kintala, C., Wotschke,
D., Vaszil, G. (eds.) Fifth International Workshop Descriptional Complexity of For-
mal Systems, pp. 186–197. MTA SZTAKI, Budapest (2003)

9. Stiebe, R., Turaev, S.: Capacity bounded grammars. Journal of Automata,
Languages and Combinatorics 15, 175–194 (2010)

	On Grammars Controlled by Parikh Vectors
	Introduction
	Definitions
	Results
	The Families L1, L2 and L3
	The Families L4, L5 and L6
	The Families L7 and L8

	Conclusions
	References

