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Abstract. We establish the undecidability of the state complexity of
compositions of the operation mirror image and two other regularity-
preserving operations. The undecidability of Hilbert’s Tenth Problem
is not needed; the weaker Davis-Putnam-Robinson Theorem suffices for
the reduction. Special attention is paid to the maximal state complex-
ity of mirror images and the maximal deterministic state complexity of
nondeterministic finite automata.
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the very first, researcher in the Eastern bloc who investigated develop-
mental languages. Our early cooperation was possible because it was
easier to travel to Finland than elsewhere in the West. When life and
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contribution to be appropriate for the volume. I wish Jürgen continuing
success in science and life in general.

1 Introduction

It is well known that, for every regular language L, there is a unique, up to
isomorphism, finite deterministic automaton accepting L which is minimal with
respect to the number of states. The effect of a regularity-preserving operation
on the number of states is customarily referred to as the state complexity of
that operation. For instance, if Li, 1 ≤ i ≤ 3, are regular languages accepted
by automata with xi states, respectively, how many states does the composition
(L1 ∪ L2)L3 require in terms of the numbers xi?

The recent study of state complexity has been motivated by many new appli-
cations of automata, e.g., in natural language and speech processing, software

H. Bordihn, M. Kutrib, and B. Truthe (Eds.): Dassow Festschrift 2012, LNCS 7300, pp. 221–235, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



222 A. Salomaa

engineering, and parallel processing, which utilize finite automata of very large
sizes. The state complexity gives a good estimate of the size of the application
and a lower bound of its time and space complexities.

The effect of basic regularity-preserving operations was settled in [13]. Apart
from the basic operations alone, also combined operations have been investi-
gated, for instance, in [12,7,2,10,1]. The worst-case state complexity of the com-
position of two operations can be smaller than the one obtained directly from
the (known) complexities of the two operations. For instance, the state complex-
ity of the star operation on the result of the union of two regular languages,
with the state complexities m and n, is 2m+n−1 − 2m−1 − 2n−1 + 1. The direct
composition of the two state complexities gives the result 2mn−1+2mn−2, which
is much higher than the actual state complexity [7].

However, there is no general method of determining the state complexity of
arbitrary compositions of operations. This undecidability result was established
in [8], using compositions of two simple operations. Then a reduction of Hilbert’s
Tenth Problem could be used.

It is natural to investigate the effect and applicability of other operations
within this framework. In this paper we focus the attention on the operation
mirror image, denoted mi(w),mi(L), (also called reversal, denoted wr, Lr).

The state complexity of the mirror image of a regular language is of special
interest because it is connected with the difference between nondeterminism
and determinism in the following way. The mirror image of a language L(A) is
accepted by an automaton obtained fromA by reversing all (labeled) arrows, and
interchanging initial and final states. The latter automaton is nondeterministic.
Thus, the (deterministic) state complexity of the mirror image is the number
of states in the minimal equivalent deterministic automaton. Using the subset
construction, [4], we see that the maximal increase in the number of states goes
from n to 2n. Thus, the state complexity of the language mi(L) is between n and
2n if the state complexity of L is n. Languages L where the mirror image mi(L)
actually reaches the upper bound 2n can be used as “representations” of the
exponential function. Consequently, we can, instead of Hilbert’s Tenth Problem,
use the weaker Davis-Putnam-Robinson Theorem as a basis of reduction.

A brief outline of the contents of the paper follows. In Section 2 we introduce
the basics about state complexity, and discuss a special operation needed in the
sequel. The next section investigates languages, with detailed proofs, whose mir-
ror images possess the maximal state complexity. In fact, the results obtained
there are interesting on their own right. They are stronger than what is actually
needed for our undecidability result. Section 4 discusses exponential polynomi-
als and modifies the Davis-Putnam-Robinson Theorem to suit for our purposes.
Sections 5 and 6 present a method of associating with an exponential polynomial
E a composition C of regular languages such that, for all tuples of values of the
variables, the state complexity of C equals at most the value of E when the lan-
guages in C have state complexities defined by the tuple in question. For specific
languages the value is actually reached. Moreover, Section 6 proves the following
undecidability result. Given a sequence Ci, i = 1, 2, . . . , of compositions and
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a sequence Ei, i = 1, 2, . . . , of exponential polynomials, both effectively con-
structible, it is undecidable whether or not Ei is a state complexity function for
Ci. Some open problems are presented in the final section.

2 State Complexity – Marked Catenations

We assume that the reader is familiar with the basics of finite automata and
regular languages. Whenever necessary, the article of Sheng Yu in [4] can be
consulted.

We use the customary notation

A = (Q,Σ, δ, q0, F )

for deterministic finite automata, DFA’s. The five items are, respectively, the
state set, the input alphabet, the transition function, the initial state, and the
set of final states. We consider only complete automata: δ(q, a) is defined for all
q ∈ Q and a ∈ Σ. Very often in this paper, n refers to the cardinality of the
state set: �(Q) = n.

A state of an automaton is called a sink if no sequence of transitions leads
from it to a final state. (Sinks are often also referred to as garbage states.)

The (regular) language accepted by the DFA A is denoted by L(A). The state
complexity of a regular language L is the number of states in the minimal DFA
A such that L = L(A).

The DFA A is functionally complete if the transition monoid of A, that is
the monoid generated by the functions fa(q) = δ(q, a) where a ranges over
Σ, consists of all of the nn mappings of Q into Q. The notion of functional
completeness can be extended to sets of functions f : Q → Q, where Q is an
arbitrary finite set. (For more details, see [5] or [11].)

We use natural graphical representations for DFA’s, where states are repre-
sented by circles and transitions by labeled arrows.

We consider also nondeterministic finite automata, NFA’s. Our NFA’s may
possess several initial states. (They are actually called NNFA’s in [4].)

For an NFA A, we denote by S(A) the DFA obtained from A by the subset
construction. The initial state of S(A) is the set of initial states of A. As states
of S(A) we consider only subsets reachable from the initial state. If �(Q) = n,
the automaton S(A) has at most 2n states. It is a direct consequence of the
subset construction that the automaton S(A) is complete.

We already pointed out that, for a regular language L, there is a unique
minimal automaton accepting L. The number of states in this automaton is
referred to as the state complexity of L. The situation is more involved if we
consider classes of languages and state complexity functions.

We are interested in compositions of variable regular languages. We will now
give a general definition of state complexity functions. The definition is given for
arbitrary compositions although, for the undecidability result below, we actually
need it only for some special compositions. The functions we are considering will
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always map some power of N0 into N0. Again, only some special functions (expo-
nential polynomials defined below) will be needed for our undecidability result.

In the usual state complexity considerations, each variable of the function
corresponds to a unique language. We allow also the more general case, where
several languages are associated with the same variable.

Definition 1. Consider a function F (x1, . . . , xm), m ≥ 1,, some composition
Cn(L1, . . . , Ln), n ≥ m, of languages involving only regularity-preserving oper-
ations, as well as a surjective mapping ϕ of the index set {1, . . . , n} onto the
index set {1, . . . ,m}. Then the function F (x1, . . . , xm) is a state complexity
function of the composition Cn(L1, . . . , Ln) if the following condition is satis-
fied. Let (x1, . . . , xm) be an arbitrary m-tuple of nonnegative integers. Whenever
1 ≤ i ≤ m and each Lj , j ∈ ϕ−1(i), is a regular language with state complexity
xi, then the composition Cn(L1, . . . , Ln) is accepted by an automaton with at
most F (x1, . . . , xm) states.

Note that when we say that a function F (x1, . . . , xm) is a state complexity func-
tion of the composition Cn(L1, . . . , Ln), this means that the value of
F (x1, . . . , xm) gives an upper bound for the state complexity of the language
Cn(L1, . . . , Ln) when each variable xi is assigned the state complexity of the
languages Lj such that ϕ(j) = i.

Marked Catenation. L1‡L2 is a special operation needed in the sequel. It is the
catenation of the languages L1, ‡, L2, where ‡ is a letter not appearing in the
alphabets of L1 and L2. Similarly we consider marked catenations of arbitrarily
many languages. The following result is from [8]. In view of its importance, we
give the proof also here.

Theorem 1. Assume that Li are regular languages (maybe over different alpha-
bets) with state complexities σi, 1 ≤ i ≤ r, r ≥ 2. Assume, further, that for each
i, 1 ≤ i ≤ r, the minimal automaton Ai for Li has no sinks. Then the marked
catenation

L1‡L2‡ · · · ‡Lr

is accepted by an automaton A with

r∑

i=1

σi + 1 = σ

states but by no automaton with fewer than σ states. The alphabet of A consists
of the union of the alphabets of Li and of ‡. The initial state of A1 is the initial
state of A, and the final states of Ar constitute the set of final states of A.

Proof. An automaton A accepting the marked catenation is obtaining by joining
the automataAi, 1 ≤ i ≤ r, in the following way. From each final state ofAi, 1 ≤
i ≤ r − 1, introduce a transition labeled by ‡ to the initial state of Ai+1. From
all other states of Ai, 1 ≤ i ≤ r − 1, as well as from all states of Ar, introduce
a transition labeled by ‡ to an additional sink state. It is clear that A accepts
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the marked catenation and has σ states. On the other hand, no automaton with
fewer states can accept the marked catenation. Eachword has to have exactly r−1
occurrences of ‡. States in two different automataAi cannot be combined because
this would result into too many occurrences of the letter ‡. �

If some of the automata Ai would possess a sink, then the various sinks can be
combined, and the total number σ can be reduced accordingly.

3 Mirror Images

For a word w = b1b2 . . . bk, bi ∈ Σ, its mirror image (also called reversal) is
defined by

mi(w) = bk . . . b2b1.

The mirror image mi(L) of a language L consists of the mirror images of its
words. For a DFA A = (Q,Σ, δ, q0, F ), we denote by R(A) the NFA obtained
from A by reversing all arrows and interchanging the initial and final states. It is
obvious that R(A) accepts the language mi(L(A)). If �Q = n, then S(R(A)) has
at most 2n states. Consequently, the state complexity of mi(L(A)) is at most
2n. For a proof of the following well-known result, see [4], Vol. 1, p. 95.

Lemma 1. If in a DFA A = (Q,Σ, δ, q0, F ) all states of Q are reachable from
q0, then S(R(A)) is the minimal DFA accepting mi(L(A)).

Thus, assuming that the state complexity of a language L = L(A) equals n, the
state complexity of mi(L) equals 2n if and only if all of the 2n subsets of Q
appear as states of S(R(A)). We now consider a sequence of automata where
this actually happens. Some of the automata were discussed, omitting many
details, in [9] which was one of the very last joint works of the present author
with the late Derick Wood. Therefore, we call them here Wood automata. Wood
automata are investigated, from a different point of view, also in [6].

The Wood automaton W (n) with n states is over the binary alphabet {a, b}.
(If some other letters, say c, d, are used, this will be indicated in the notation:
W (n)(c, d)). The state set is Q = {1, 2, . . . , n}. The transitions fa(x) = δ(x, a)
and fb(x) = δ(x, b) are defined as follows. The function fa(x) is the circular
permutation (123 · · ·n), whereas

fb(1) = fb(3) = 1, fb(4) = 3, fb(x) = x otherwise.

We assume first that n ≥ 5 and that n is not divisible by 4. Then the state 1
is both the initial and the only final state. In this case the automaton W (n) is
depicted in Figure 1. (Final states are marked by double circles, the incoming
arrow points to the initial state.) We will return later to the remaining cases.

The essential tool in our considerations is the subset construction, and the
main problem the connectedness of the resulting graph. The framework can be
described in terms of subset functions as follows.

Consider a finite set Q = {1, 2, . . . , n} and mappings f : Q → 2Q. Extend
such a mapping additively to a mapping from 2Q to 2Q. (Thus, for X ⊆ Q, the
value f(X) is the union Y of the values f(x), where x ∈ X.)
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Let F be a (finite) set of such subset functions For X,Y ⊆ Q, we use the
notation X ⇒F Y to indicate that f(X) = Y , for some f ∈ F. Finally, let ⇒∗

F

be the reflexive transitive closure of the relation ⇒F .

Definition 2. A set F of subset functions is complete if, for any X ⊆ Q, X 	=
∅, Q and any Y ⊆ Q, we have

X ⇒∗
F Y.

2

31

45n

b b

a a a· · ·

a

b

a

b

a

a

b

b

Fig. 1. Wood automaton W (n), n ≥ 5, 4 � n

If X ⇒∗
F Y, we say that Y is reachable from X (via F ). Although functional

completeness is well understood (see [5] and the references given there), the com-
pleteness of sets of subset functions is an open problem area. The restrictions
in Definition 2, concerning ∅, Q, become obvious below.

The following general considerations are independent of initial and final states
and concern an arbitrary n ≥ 4. For convenience, we denote the inverses of
the functions fa and fb by A and B, respectively. We denote also F = {A,B}.
Clearly, A and B are subset functions in the sense defined above. Thus, A affects
the circular permutation (n · · · 321), whereas B maps 1 to {1, 3}, 3 to 4, 4 to ∅,
and x to x, otherwise. In connection with the set Q, additions will be carried
out modulo n, that is, i+ j stands for the smallest positive remainder modulo n.
For X = {x1, . . . , xk} ⊆ Q, we consider sets

X+i = {x1+i, . . . , xk+i}, 1 ≤ i ≤ n.

(Observe that X+n = X .) Since A is a circular permutation, we have, for all i,

X ⇒∗
A X+i.
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This fact will be used frequently in our following arguments.

Observe that 4 ⇒B ∅. We now claim that, from any

X ⊆ Q, 2 ≤ �X = k ≤ n− 1,

a subset Y of Q with cardinality k− 1 is reachable. If, for some i, 0 ≤ i ≤ n− 1,
the element i+4 is in X , whereas i+1 is not there, then we apply B to the set
X+(n−i), and obtain a subset Y as required. If no such pair of elements exists in
X , then n is divisible by 3, and X consists of one or two residue classes modulo
3. (This follows because X 	= Q.) We may assume, by applying A if necessary,
that the numbers 3, 6, . . . , n are in X , whereas the numbers 1, 4, . . . , n−2 are not
there. Now B(X) is obtained fromX by replacing 3 with 4. Hence, Y = B(B(X))
is of cardinality k − 1. This completes the proof of our claim.

We now work inductively “upwards”, increasing the cardinality of the reach-
able sets. We will investigate which subsets Y are reachable from the singleton
{1}. Reachability is immediately verified for ∅ and all singletons. We now as-
sume inductively that every subset X ′ of Q with cardinality k− 1, 2 ≤ k ≤ n, is
reachable, and consider an arbitrary subset X of Q with cardinality k. Given X ,
we want to show how to choose an X ′ of cardinality k − 1 such that X ′ ⇒∗

F X.
Assume first that X contains, for some i, the elements i and i+2. By applying

A, we may assume that 1 and 3 are contained in X . If 4 is (resp. is not) in the
set X thus modified, we let X ′ be the set obtained from X by removing the
element 4 (resp. 3). Then X ′ ⇒∗

F X. (Of course, we still have to use A to get
the original X .)

From now on we assume that no elements i and i + 2 are in X . This implies
that X contains no three consecutive elements i, i + 1, i + 2 and, whenever i is
in X but i+ 1 is not in X , then also i+ 2 is not in X . Intuitively, X consists of
singletons and pairs of two consecutive elements, all separated by at least two
“non-elements”. (All the time we are using the modular arithmetic: n and 1 are
consecutive.)

Assume that, for some i, the element i is in X , whereas i+1 and i−1 are not.
By the preceding paragraph, also i+2 and i− 2 are not in X . By an A-shift, we
may assume that 1 is in X , whereas 2, 3, n− 1, n are not.

Let j be the smallest element, apart from 1, in X . We know that j ≥ 4.
Construct X ′ by removing j from X . In the following reachability sequence we
have marked down only the relevant elements in the sets. It is essential that n
is not in X . (Observe that B alters elements 1, 3, 4 only.)

X ′ ⇒∗
B {1, 3, 4} ⇒∗

A {2, 4, 5} ⇒∗
B {2, 5} ⇒∗

A {1, 4}
⇒∗

A {n, 3, } ⇒∗
B {n, 4} ⇒∗

A {1, 5}

This shows how X is reachable if j = 4 or j = 5. For an arbitrary j, we reach X
by repeating the transformations on the second line.

Hence, we may assume that X does not contain such isolated elements. This
implies, by our previous constructions, that X consists of pairs of consecutive
elements, separated by at least two “non-elements”. Suppose that, for some i, the
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elements i and i+1 are inX , whereas none of the elements i−3, i−2, i−1, i+2, i+3
is in X . By an A-shift, we may again assume that 1 and 2 are in X , whereas
none of the elements n− 2, n− 1, n, 3, 4 is in X .

We now let X ′ be the following subset of cardinality k − 1:

X ′ = {1} ∪ {j + 1| j ∈ X, j 	= 1, 2}.

Then the following reachability chain is valid:

X ′ ⇒∗
B {1, 3} ∪ {j + 1| j ∈ X, j 	= 1, 2} = X1

⇒∗
A {3, 5} ∪ {j + 3| j ∈ X, j 	= 1, 2} = X2

⇒∗
B {4, 5} ∪ {j + 3| j ∈ X, j 	= 1, 2} ⇒∗

A X

It is important to observe that neither n − 1 nor n is in X1 and, consequently,
neither 1 nor 2 is in X2.

Thus, we have reached the conclusion that X consists of pairs of consecutive
elements, separated by exactly two “non-elements”. But this means that n is
divisible by 4 : n = 4m.

For n = 4m, we now define the Wood automaton W (n) by choosing the set

WF (n) = {4i+ 1, 4i+ 2| 0 ≤ i ≤ m− 1}

as the set of final states. Otherwise, the definition of W (n) remains unaltered.
The automaton W (8) is illustrated in Figure 2.

2 31 4

5678

a a

aaa
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a a

b

b

b

b

bbbb

Fig. 2. Wood automaton W (8)
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Our argument above shows, by Lemma 1 and the reachability of all subsets,
that the state complexity of the language mi(L(W (n))), n ≥ 5, equals 2n,
provided n is not divisible by 4. In fact, in this case we are free, [6], to choose the
initial and the set of final states. However, our choice of the final state setWF (n)
guarantees that the state complexity result holds true also if n is divisible by
4. (There is no change in the proof when we reduce the cardinality of reachable
subsets. The argument applies also if we want to increase the cardinality or
keep it 2m which is the cardinality of WF (n).) Hence, we have established the
following result.

Theorem 2. For n ≥ 4, the state complexity of the language mi(L(W (n)))
equals 2n.

We still have to deal with the small values of n. The automata W (2) and W (3)
are depicted in Figure 3. It is immediately verified that the state complexities
of the mirror images are 4 and 8 in these cases. Hence, we obtain the following
corollary of Theorem 2.

Theorem 3. For n ≥ 2, the state complexity of the language mi(L(W (n)))
equals 2n.

Summarizing, we obtain the following result.

Theorem 4. For every n ≥ 2, the Wood automaton W (n) has n states but the
minimal deterministic automaton equivalent to R(W (n)) has 2n states.

2

1

1

2

3

b

a

a, b

b

a, b

b

a a

Fig. 3. Wood automata W (2) and W (3)

4 Modifications of the Davis-Putnam-Robinson Theorem

By an exponential polynomial, briefly E-polynomial, we mean a finite sum of
terms of the form α1α2 · · ·αn, n ≥ 1, where each αi, i ≥ 1, is a variable, or of



230 A. Salomaa

the form 2x, for some variable x. An exponential polynomial may contain several
identical terms, which will be expressed with coefficients in N0. For instance,

2x1x2
3x4 + 4x1x2 + 2x32x1x2x3x4

is an exponential polynomial.
By the Davis-Putnam-Robinson Theorem, for every recursively enumerable

set S of nonnegative integers, there are (effectively constructible) exponential
polynomials Ei(x0, x1, . . . , xm), i = 1, 2, such that x0 ∈ S if and only if the
equation

E1(x0, x1, . . . , xm) = E2(x0, x1, . . . , xm)

has a solution in nonnegative integers (x1, . . . , xm). (For details and a proof
using register machines, see [3].) Using the universal Turing machine and the
undecidability of the emptiness of recursively enumerable languages, the result
can be expressed in the following form. There are (effectively constructible) ex-
ponential polynomials E(x0, x1, . . . , xm) and E′(x0, x1, . . . , xm) such that, given
x0 ≥ 0, it is undecidable whether or not the equation

E(x0, x1, . . . , xm) = E′(x0, x1, . . . , xm)

has a solution in nonnegative integers (x1, . . . , xm). By substituting the value
x0 = i ≥ 1 to the exponential polynomials E and E′, we obtain two infinite
sequences Ei and E′

i, i = 1, 2, . . . , such that, given i ≥ 1, it is undecidable
whether or not the equation

Ei(x1, . . . , xm) = E′
i(x1, . . . , xm)

has a solution in nonnegative integers (x1, . . . , xm). Denote

Pi(x1, . . . , xm) = Ei(x1, . . . , xm)− E′
i(x1, . . . , xm), i ≥ 1.

Consider the inequalities

0 ≤ (Pi(x1, . . . , xm)2)− 1, i = 1, 2, . . .

Clearly, for any given i, this inequality is valid for all m-tuples (x1, . . . , xm) of
nonnegative integers exactly in case the equation

Ei(x1, . . . , xm) = E′
i(x1, . . . , xm)

has no solution in nonnegative integers. Therefore, by the Davis-Putnam-Robinson
Theorem, there is no algorithm of deciding, given i, whether or not the inequality

0 ≤ (Pi(x1, . . . , xm)2)− 1

holds for all m-tuples (x1, . . . , xm) of nonnegative integers. We now move all
negative terms from the right side to the left side. This gives rise to a new
inequality, equivalent to the original one,

E
(l)
i (x1, . . . , xm) ≤ E

(r)
i (x1, . . . , xm),

where E
(l)
i and E

(r)
i are E-polynomials.

These considerations are summarized in the following Theorem.
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Theorem 5. There is no algorithm of deciding, given a positive integer i, whether
or not the inequality

E
(l)
i (x1, . . . , xm) ≤ E

(r)
i (x1, . . . , xm)

holds for all m-tuples (x1, . . . , xm) of nonnegative integers. Here E
(l)
i and E

(r)
i

are effectively constructible E-polynomials over the set of variables {x1, . . . , xm}.
Moreover, there is a finite set S of terms of the form

yj11 · · · yj2m2m , jμ ≥ 0, 1 ≤ μ ≤ 2m,

such that every polynomial E
(l)
i , i = 1, 2, . . . , equals the sum of some terms in

S, provided with positive integer coefficients.

Thus, each E
(l)
i is a (finite) sum of terms of the form

yj11 · · · yj2m2m , jν ≥ 0, 1 ≤ ν ≤ 2m,

provided with positive integer coefficients depending on i. The choice of i affects
only the multiplicity of each term, i.e., it tells how many times each term appears

in the polynomial E
(l)
i . (We have 2m instead of m because a term may contain

both x and 2x, for some variable x.)

In the sequel we will associate the E-polynomials E
(l)
i with specific compo-

sitions of regular operations, whereas the polynomials E
(r)
i will constitute the

proposed state complexities.

5 Special Compositions and Associated E-Polynomials

The specific compositions we will need use the three regularity-preserving oper-
ations of mirror image, intersection and marked catenation. Therefore, we will
call them three-compositions. The operations are not nested arbitrarily. The way
of nesting is specified in the following definition.

Definition 3. A three-composition over the set {L1, . . . , Ln}, n ≥ 2, of lan-
guage variables is an expression

γ1‡γ2‡ · · · ‡γr, r ≥ 2,

where each γi, 1 ≤ i ≤ r, is of the form

γi = M1 ∩ · · · ∩Mj(i), j(i) ≥ 1,

such that the M ’s are different ones among the language variables Lν , 1 ≤ ν ≤ n,
either appearing as plain Lν, or in the form mi(Lν). A language variable Lν can
appear both as such and in the form mi(Lν) in the same γi.
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Parentheses can be added for clarity. For instance,

(mi(L2) ∩ L3)‡(L1 ∩ L2 ∩ L3)‡(mi(L1) ∩mi(L3) ∩ L1)

is a three-composition over the set {L1, L2, L3} of language variables.
Above we defined the Wood automata W (n), n ≥ 2, and showed that the

state complexity of the language mi(L(W (n))) equals 2n. We make the for-
mal convention that the state complexity of mi(L(W (1))) (resp. mi(L(W (0))))
equals 2 (resp. 1).

Let us go back to theE-polynomialsE
(l)
i defined in the preceding section. They

use the fixed set of variables {x1, . . . , xm}. As already pointed out, the variables
may appear either by themselves or as exponents of 2. However, each variable x
and each power 2x appears only a bounded number of times in each product in each

E
(l)
i . Thus, for each j, 1 ≤ j ≤ m, there is a numberKj such that every exponent

of xj in every product equals at mostKj, and that 2xj appears as a factor in every

product at mostKj times, no matter whatE
(l)
i we are considering. This important

fact follows because, as explained above, a change of the index i in E
(l)
i does not

affect the summands in E
(l)
i , only their multiplicities.

Consider now language variables

Lν
j , 1 ≤ j ≤ m, 1 ≤ ν ≤ Kj.

The variables Lν
j , 1 ≤ ν ≤ Kj correspond to xj in the sense of the mapping ϕ

in Definition 1. With each summand

(2x1)μ1 · · · (2xm)μmxν1
1 · · ·xνm

m ,

where 0 ≤ μj , νj ≤ Kj , 1 ≤ j ≤ m, in E
(l)
i , we associate an intersection as

follows. (We consider an arbitrary index i. For readability, we do not include
it in the notation.) Consider an arbitrary j, 1 ≤ j ≤ m. The part (2xj )μj is
associated with the intersection

mi(L1
j) ∩ . . . ∩mi(L

μj

j ).

The part x
νj
j is associated with the intersection

L1
j ∩ . . . ∩ L

νj
j .

Finally, the three-composition C(E
(l)
i ) associated with E

(l)
i is the marked cate-

nation of the summands appearing in E
(l)
i .

As an example, consider the E-polynomial

(2x1)2x1x3 + 2x1x
2
2x3 + 2x2 .

Now we have K1 = K2 = 2, K3 = 1. The three-composition associated with this
E-polynomial is

(mi(L1
1) ∩mi(L2

1) ∩ L1
1 ∩ L1

3)‡(L1
1 ∩ L1

2 ∩ L2
2 ∩ L1

3)

‡(L1
1 ∩ L1

2 ∩ L2
2 ∩ L1

3)‡(mi(L1
2)).

We will need the following result from [13]. It is proved also in [8].
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Theorem 6. Assume that Li, 1 ≤ i ≤ r, are regular languages with the state
complexities σi. Then the state complexity of the regular language L1 ∩ . . . ∩ Lr

is at most the product σ = σ1 · · ·σr . Moreover, for any r-tuple (σ1, . . . , σr) of
nonnegative integers, it is possible to construct regular languages Ki, 1 ≤ i ≤ r,
with the state complexity σi such that the intersection of the languages Ki has
exactly the state complexity σ = σ1 · · ·σr .

The following theorem is an immediate corollary of Theorems 1 and 6. (The
additional summand +1 of Theorem 1 is not needed if we assume that at least
one exponential term appears in the E-polynomial.)

Theorem 7. For each i = 1, 2, . . . , the E-polynomial E
(l)
i (x1, . . . , xm) is a state

complexity function of the three-composition C(E
(l)
i ).

In the next section specific languages will be substituted in three-compositions
in such a way that the alphabets of the languages appearing in intersections will
be pairwise disjoint. (We do not estimate here the size of the total alphabet.
Such an estimation was done in an analogous situation in [8].)

6 Undecidability

We consider in the sequel an arbitrary but fixed E-polynomial E
(l)
i (x1, . . . , xm),

and the numbers Kj as defined above. Let C(E
(l)
i ) be the three-composition

associated with E
(l)
i (x1, . . . , xm). Introduce the alphabet Σ consisting of the

letters
aνj , b

ν
j , c

ν
j , 1 ≤ j ≤ m, 1 ≤ ν ≤ Kj.

The specific languages defined below will be over the alphabet Σ. The languages
will depend on a fixed nonnegative integer n. (It will be the value assigned for
the variable xj in our E-polynomial.) By definition,

Aν
j (n) = mi(W (n)(bνj , c

ν
j )), 1 ≤ j ≤ m, 1 ≤ ν ≤ Kj .

(Recall our way of indicating the alphabet of a Wood language.) Similarly, let
Bν

j (n) be the language over Σ consisting of all words w such that the number
of occurrences of the letter aνj in w is divisible by n. Finally, for each n-tuple
(x1, . . . , xm) of nonnegative integers, let Di(x1, . . . , xm) be the regular language,

resulting from C(E
(l)
i ) as follows. If nj is the value assigned for xj , 1 ≤ j ≤ m ,

substitute every occurrence of mi(Lν
j ) (resp. L

ν
j ) with Aν

j (nj) (resp. B
ν
j (nj)).

Consider now the example

(mi(L1
1) ∩mi(L2

1) ∩ L1
1 ∩ L1

3)‡(L1
1 ∩ L1

2 ∩ L2
2 ∩ L1

3)

‡(L1
1 ∩ L1

2 ∩ L2
2 ∩ L1

3)‡(mi(L1
2)).
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from the preceding section, as well as the ordered triple (8, 6, 5) as values of the
three variables. Then the associated Di-languages is

(mi(W (8)(b11, c
1
1)) ∩mi(W (8)(b21, c

2
1)) ∩B1

2(6) ∩B1
3(5))

‡(B1
1(8) ∩B1

2(6) ∩B2
2(6) ∩B1

3(5))

‡(B1
1(8) ∩B1

2(6) ∩B2
2(6) ∩B1

3(5))‡(mi(W (6)(b12, c
1
2))).

The proof of the following lemma is straightforward, along the lines of Theorems
1 and 6. The only additional technicality needed is to take care of the possible
sinks appearing in automata for the mirror images of the languages of Wood
automata. Since the alphabets are pairwise disjoint, we can introduce transitions
in such a way that sinks can never be combined, and there is only one sink where
the wrong transitions, including the ones involving ‡, are leading.

Lemma 2. For all values of the variables, the state complexity of the language

Di(x1, . . . , xm) equals E
(l)
i (x1, . . . , xm).

Our undecidability result now follows by Theorems 5 and 7 and Lemma 2.

Theorem 8. For the sequence of E-polynomials E
(r)
i , i = 1, 2, . . . and three-

compositions C(E
(l)
i ), i = 1, 2, . . . , as constructed above, it is undecidable whether

or not E
(r)
i is a state complexity function of C(E

(l)
i ).

7 Conclusion

We have investigated the operation mirror image, in particular, the cases where
the state complexity of the language mi(L) is maximal in comparison with the
state complexity of L. This gives also the maximal increase in state complexity in
the transition from a nondeterministic automaton to the equivalent deterministic
automaton. Wood automata W (n) with n states constitute good examples. If n
is divisible by 4, the state complexity of mi(W (n)) is, for certain choices of the
final state set, maximal but sometimes only 2n−4. Several open problems remain
in connection with mirror images, in particular, the construction of automata
for languages L such that the state complexity of mi(L) is close to the maximal,
or close to the minimal one.

In our result concerning the undecidability of the state complexity of compo-
sitions of regular languages, we were able to use reduction to exponential poly-
nomials, instead of polynomials. The three operations in the compositions were
mirror image, intersection and marked catenation. The Davis-Putnam-Robinson
Theorem provided the undecidable problem used as the basis of reduction. Other
undecidable problems will in general lead to other operations. The undecidability
of the state complexity will then concern composition sequences in terms of these
operations. It is an interesting open problem to study the possibilities in this
direction. For instance, is it possible to use the undecidability of the Post Cor-
respondence Problem and, if this is the case, which are the regularity-preserving
operations involved?
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In our undecidability result above the state complexities of the languages ap-
pearing as components of the marked catenations depended on the values for
the variables in a rather complicated way. On the other hand, we can study
simpler cases. If the state complexity of each of the component languages Lj

equals directly the value of one of the variables xj , then the state complexity
of the marked catenation is a linear function of the variables, and our problem
is clearly decidable, provided an E-polynomial is the proposed state complex-
ity function. This result can possibly be extended to the case where the state
complexity of each component language is of the form xt

j , where t is a positive
integer. Each pair ((C,F)), where C (resp. F) is a class in compositions (resp.
functions) defines in the natural way a decision problem. A general task is to
find interesting pairs for which this problem is decidable.
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