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Abstract. Looking for ideas which would lead to computing devices
able to compute “beyond the Turing barrier” is already a well estab-
lished research area of computing theory; such devices are said to be
able of doing hypercomputations. It is also a dream and a concern of
computability to speed-up computing devices; we propose here a name
for the case when this leads to polynomial solutions to problems known
to be (at least) NP-complete: fypercomputing – with the initial F coming
from “fast”.

In short: fypercomputing means going polynomially beyond NP.
The aim of these notes is to briefly discuss the existing ideas in mem-

brane computing which lead to fypercomputations and to imagine new
ones, some of them at the level of speculations, subject for further inves-
tigation.

Keywords: Turing computing, Hypercomputing, Membrane comput-
ing, Complexity.

1 Foreword: Jürgen the Fast

These pages are dedicated to the 65th birthday of Jürgen Dassow. The age of
retirement! I have met him in 1983 (it was my first trip out of Romania), we
collaborated a lot, we met periodically in the framework of IMYCS - Interna-
tional Meeting of Young Computer Scientists, at Smolenice Castle, Slovakia. A
young computer scientist is now retiring! He is maybe not the first, but I am
not aware of others (to whom I was close enough). I feel this as an end of an
epoch... The romantic time of grammars and automata, of sequential computing,
of theory for the sake of theory, with aesthetic motivation. I remember the time
spent in Magdeburg as a Humboldt fellow in 1991-92 and after that as a visiting
researcher. Jürgen was, after 1993, the rector of the university. A very dynamical
period, after the unification of Germany, with a lot of bureaucratic work – but
with Jürgen switching in an amazingly quick way from administrative matters
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to scientific matters. I have never seen such a distributed and fast mind – and
this fits with the topic of my notes. I cannot imagine Jürgen “doing nothing”,
so I am wishing to him, young pensioner, a long and active life!

2 Introduction – From Hyper... to Fyper...

The aim of this note is to briefly discuss an important research topic in computer
science in general, in membrane computing in particular, namely ways to speed-
up computations. The goal is to obtain devices able to significantly improve from
this point of view, e.g., to solve intractable problems (usually, NP-complete or
even harder) in a feasible time (usually, polynomial). Our constant framework
is membrane computing (the reader is supposed to be familiar with the domain,
or (s)he can consult [17], [19], [21], and the domain website from [30]), but some
considerations/speculations are more general. (By the way, Jürgen is a co-author
of one of the earliest papers in membrane computing, [7].)

The model we have in mind is that of hypercomputations, already with a
large literature (see, e.g., [6], [9], [25], or the recent survey from [27]). The goal
is to imagine computing machineries able “to compute the uncomputable”, to
compute more than Turing machines. More than a dozen of ideas were proposed
and proved to reach the above goal: oracles (already considered by Turing),
introducing real numbers in the device, accelerating the functioning of machines,
using ingredients of an analogical nature and so on.

Also in membrane computing there were reported attempts of this kind. We
mention here the papers [4] and [26]. The first one passes beyond Turing by means
of acceleration (we come back below to this idea), the latter by constructing
“lineages” of P systems, following the model of [28].

It should be noted that there also are people who do not believe in hypercom-
putation, refuting it as a circular trick (basically, one introduces uncomputable
components in a computing device which is then shown to compute more than
a Turing machine...); one of the most explicit voices in this respect is Martin
Davis – see, e.g., [8].

We are looking here not for the power of computing devices, but for their
efficiency, and we propose the term fypercomputation to name the case when
a device can solve an intractable problem in a polynomial time. Surprisingly
enough, this research vista has not received a similar attention as hypercompu-
tation; the literature of the latter one is much more extended (more explicit),
there were organized debates about it, workshops and special sessions in general
conferences. Complexity theory discusses many speed-up procedures, but not at
the level of “breaking the NP barrier”, to put it in the style of “breaking the
Turing barrier”. The time-space trade-off is a common sense in algorithmics,
but using an exponential space is not considered a serious candidate for fyper-
computations – excepting the recent natural computing area, molecular (DNA)
computing in special.

It is true, there are many papers which can be put under the flag of fypercom-
puting. They exploit ideas from physics, such as [24] (the abstract of the paper
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is worth recalling: We propose to “boost” the speed of communication and com-
putation by immersing the computing environment into a medium whose index
of refraction is smaller than one, thereby trespassing the speed-of-light barrier),
propose analogical computations, such as [2] and [3]. The area of DNA comput-
ing is full of such ideas, its very beginning is of this kind, [1]. The starting point
is the fact that the DNA molecules are a very compact support of information,
one can operate with bits stored at a molecular level, hence in a small space (in
a test tube) we can have a huge number of molecules. “Huge” however, has no
precise mathematical meaning; when we need “exponentially many” molecules,
what is perfect in theory becomes unfeasible in a lab...

But not this is the position we adopt here: however “unrealistic” (for current
knowledge, be it physical, biological or of another nature), we look for “nice”
ideas able to lead to fypercomputations. And membrane computing abounds
already in such investigations.

3 Ways towards Fyper... in Membrane Computing

The main practical goal of natural computing is to learn computing ideas from
nature and to implement/use them in computer science, starting with a better
use of the existing computers and ending – the dream of DNA computing and
of quantum computing, at least – with the construction of computers of a new
kind, maybe using new materials. In all cases, the aim is to be more efficient,
especially with respect to the duration of computations.

Membrane computing started with a more theoretical goal in mind: just learn
interesting ideas for computability from the structure and the functioning of the
living cells.

The basic computing models (called cell-like P systems) considered in this area
consist of an hierarchical arrangement of membranes, delimiting compartments
(also called regions) where multisets of objects (symbols from a given alphabet)
are placed; these objects evolve according to evolution rules also associated to
regions.

The membranes are labeled with symbols in a given alphabet (in most cases we
use natural numbers). Each region is precisely identified by its upper membrane,
hence we can identify regions by means of the labels of the membranes which
delimit them. The external membrane, the one separating the cell from the
environment is called the skin membrane; a membrane without any membrane
inside is said to be elementary. We also call region the environment of the system
(and usually we label it with 0).

The rules are of a multiset rewriting type (corresponding to biochemical reac-
tions taking place in a cell) or of other forms, in general, inspired from biology
(transport across membranes in the form of symport or aniport, membrane di-
vision, membrane creation, etc.). Starting from an initial configuration of the
system (with initial multisets of objects associated with the regions) and us-
ing the rules in various ways (the most investigated one is the nondeterministic
maximally parallel way), one passes from a configuration to another one. Such
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a sequence of transitions among configurations is called a computation. With
a halting computation (one reaching a configuration where no rule can be ap-
plied) we can associate a result, for instance, as the number of objects present
in a given region. We will give some further details in the next sections, this
quick description of a P system and of its functioning should be sufficient for
understanding the general discussion which follows.

The class of cell-like P systems is the basic one (and most investigated) in
membrane computing. Several other types of similar devices were considered.
For instance, instead of symbol objects, one can consider string objects (then,
the rules should be string processing rules, such as rewriting, the splicing from
DNA computing, etc.), or, instead of an hierarchical arrangement of membranes
(hence described by a tree), we can place the membranes in the nodes of an
arbitrary graph – one obtains in this way the tissue-like P systems. Also P
systems inspired from the neurons architecture and functioning were introduced
– a class of a particular interest is that of spiking neural P systems (SN P
systems, for short), where neurons (membranes) placed in the nodes of a graph
communicate to each other by means of spikes, electrical impulses of identical
shapes (hence, the system uses only one object, the spike, present in various
numbers of copies in different neurons) which are processed by specific spiking
rules. We refer to [13] and to the corresponding chapter of [21] for details.

Besides the computing power of P systems (in comparison with classic com-
puting devices, such as Turing machines and their restrictions), also the efficiency
issue was addressed, and, in order to speed-up computations, the first proposal
was to make use of the biological operation of cell division. In this way, P systems
with active membranes have appeared, [18], and they proved indeed to speed-up
computations enough for solving NP-complete problems in a polynomial time.
(The typical rules are of the form [a]h → [b]h[c]h, where a, b, c are objects and h
is a label; the membrane h, containing the object a and maybe other objects, is
divided into two new membranes, with the same label h; in the first copy, a is
replaced by b, in the second one it is replaced by c; any objects different from
a are replicated in the two new membranes. Clearly, the new membranes with
label h use the same set of rules as the former membrane h; otherwise stated,
the label of a membrane identifies the set of rules which can be applied to it.)

An important point should be made here. P systems (with rules of the form
a → u, where a is an object and u is a multiset of objects) are able to cre-
ate exponentially many objects in a linear time: using the rule a → aa in the
maximally parallel manner for n times, we get 2n copies of a. However, such an
exponential workspace is not enough in order to essentially speed-up computa-
tions: the so-called Milano Theorem from [29] says that a P system (with rules
as above, but without membrane division) can be simulated by a Turing ma-
chine with a polynomial overhead. Membrane division produces an exponential
workspace, but also introduces some organization of it, some localization. In a
specified membrane, specific rules are used, which is not possible without sepa-
rating the objects among “protected reactors” – like in biology (compartments
with specific chemicals evolving according to specific sets of reactions).
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This lesson, of localization, with specific “chemistry” taking place in each
compartment, is applied also in the case of P systems with membrane creation,
[16], where rules of the form a → [b]h are used, transforming an object a into a
new membrane, with label h and containing the object b (as above, the label of
the membrane identifies the set of rules to apply to its objects). This time, the
aspect mentioned above, i.e., the power of the localization, is still more visible:
The rules for creating membranes produce only a linear number of membranes,
not an exponential one, as in the case of division, but the exponential space is
produced by object evolution rules (such as a → aa).

There are many other important details in this area, for instance, additional
ingredients which have (or not) an influence on the efficiency of P systems with
membrane division or membrane creation (for instance, membrane polarization,
membrane dissolution, division of only elementary membranes or also of non-
elementary membranes). In most cases, polynomial solutions to NP-complete
problems – often, also of PSPACE-complete problems – are obtained. Fyper-
computing! (The list of computationally hard problems addressed in terms of
membrane computing is very large, ranging from decidability problems, such as
SAT and QSAT, to numerical problems – e.g., counting various parameters in a
graph; a chapter of [21] is devoted to this research direction, and the reader is
refereed to it for details.)

Further two similar ideas were investigated in membrane computing, both of
them related to the previous two. The first one is based on string replication, [5],
for P systems with string objects (the rules are of the form a → u1||u2, where
a is a symbol, u1, u2 are strings; when rewriting a string xay by such a rule we
obtain two strings, xu1y and xu2y, maybe placed in two different membranes,
because the strings u1, u2 can also have associated target indications). Replicat-
ing a string looks like dividing a membrane: the symbols of each string remain
together, hence “localized”, like being encapsulated in separated membranes.
Fypercomputations are again obtained (in [5] one shows how SAT can be solved
in polynomial time in this framework).

A different approach is that of considering arbitrarily large pre-computed re-
sources. For instance, we can assume as given in advance, for free (from the
point of view of the computing time), a spiking neural P system (this is the
case of [14], [15]), with arbitrarily many neurons and synapses, but with a small
(finite) number of spikes inside and having a regular structure; otherwise stated,
the given system is large, but it cannot contain more than a bounded amount
of information, not enough, for instance, to encode the solution to the problem
we want to solve. Then, we plug in a code of the (instance of the) problem to
solve, in the form of a bounded number of spikes (a bounded number of bits),
and this activates the arbitrarily large “hardware”, which eventually provides
the solution in a polynomial time.

This last idea is only briefly investigated in membrane computing. Issues
related to the conditions to be imposed to the given pre-computed resources
should be further considered.
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Anyway, we count already four ideas, all of them having biological motiva-
tions (maybe better: all of them suggested by biological facts), which lead to
fypercomputations in the membrane computing area.

There is a large bibliography of this direction of research. We refer here only
to the survey paper [22], where the basic ideas of computational complexity for
P systems can be found, and to the chapter of [21] devoted to this topic, [23].

4 Further Ways towards Fypercomputations in
Membrane Computing

In membrane computing there are several versions of the previously mentioned
speed-up tools, for instance, operations of separating membranes according to
their contents, budding membranes, etc., but they have the same philosophy and
the same functions as membrane division, so we do not count them separately
here, but we look for ideas essentially different.

(1) The first candidate is the acceleration. The idea of an accelerated Turing
machine is old in computer science: imagine that the machine is “clever”, it
learns from its own functioning, in the following way; after performing a step in
a time unit, it performs better for the second step, which is completed in half of
the time necessary for the first step – and so on, at each step halving the time
with respect to the previous step. If the first step takes one time unit, then the
second one takes 1/2 time units, the third one 1/4 and so on, hence in two time
units the computation ends.

Important: we have here two clocks, an internal one, of the machine, and an
external one, of the observer. The internal clock is faster and faster, so that the
computation ends in two time units measured by the external clock, that of the
observer/user.

Accelerated Turing machines can solve the halting problem, hence they com-
pute what usual Turing machines cannot. See references in [4], where the idea
is extended to P systems: It is known from biology that nature creates mem-
branes also for enhancing the reactions inside (if the reactants are closer, then
the probability to collide and react is higher). If “smaller is faster”, then take
it as in accelerated Turing machines: the reactions taking place in a membrane
placed inside another membrane are twice faster than in the parent membrane.
Using membrane creation rules, create then membranes inside membranes, in an
unbounded hierarchy, which means faster and faster towards the “center” of the
membrane structure. Like for accelerated Turing machines, such P systems were
proved to “compute the uncomputable”.

Well, then why not using this trick also in complexity sense? Natural enough,
but Martin Davis is smiling ironically: we accelerate in order to speed-up... In two
(external) time units we solve any problem, whatever complex it is (remember
that most classes of P systems are Turing complete, they can do whatever a
Turing machine can do).

A way to make the things interesting is to accelerate only parts of a P sys-
tem, thus having several levels of time speed. For instance, imagine a P system
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with several internal membranes, all of them governed by the same clock, but
some, say, elementary membranes being accelerated: for each of them we have
a constant kh (h is the label of the membrane) and, after introducing a “sub-
problem” in membrane h (e.g., a string x and a language L – by means of a
grammar), we get the answer (the fact whether or not x ∈ L) in at most kh time
units (as measured by the global clock). Not all types of P systems are universal
when using only one membrane, so, for such cases, the local acceleration can be
indeed of interest (i.e., non-trivial). What other restrictions to consider remains
as a research topic.

(2) For instance, we can accelerate not elementary membranes, but rules: a
given rule takes one time unit for the first application, half for the second appli-
cation, and so on. If all rules are accelerated, we go back to globally accelerated
systems, but if we allow only to a bounded number of rules to get faster in this
way, it is possible to obtain interesting results.

(3) Maybe also objects can be accelerated: the descendants of an object react
faster than the father object, irrespective which are the rules which act on them
and irrespective of the membranes where they are.

(4) The previous ideas suggest a speculation of a science-fiction type, but let
us place it here, the context is speculative enough. Namely, we mentioned before
(at least) two clocks, an external one, of the observer (or of the higher membranes
in the structure) and the local clock(s), of the accelerated element, membrane,
rule, object. Always, the inner clock is (much) faster than the external one, it
performs sometimes an exponential number of steps while the external one only
ticks once. We can then imagine that the inner time is orthogonal to the external
time, hence the time has a 2D structure! Is this too much with respect to the
“classic” time, in general interpreted as linear (or circular, spiral, in various
philosophies)? As a speculation, I would not refuse to think about this.

So: what about considering the time as a plane, not as a line, with the observer
only sensing one dimension of it, but with the possibility of some “processors”
to run along the other dimension, doing this at-no-time for the observer? (After
all, the current models of the universe, the so-called membrane theory – having
nothing common with membrane computing! –, which has replaced/generalized
the string theories, deals with eleven dimensions, enough for “lateral” times...)

Well, passing from this speculation to precise models, to symbols, algorithms
and theorems, is another story... (but what else are the oracles than processors
working in a “lateral” time – and space?).

5 P Systems with ω-Populations of Objects

(5) Let us come back to the ground, namely to the recently introduced reaction
systems (we call them R systems) – see [10], [11], [12]. An attempt to bridge
the two research areas, P systems and R systems, was done in [20]; the present
section can be seen as a continuation of this attempt.
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Both areas deal with populations of reactants (molecules) which evolve by
means of reactions, with several basic differences. Most of these differences are
not mentioned here (e.g., the compartmental structure of models in membrane
computing versus the lack of membranes in reaction systems; the focus on evo-
lution, not on computation, in reaction systems; the unique form of rules in
reaction systems and so on), and we recall the two basic ones, the crucial pos-
tulates of R systems, in the formulation from [10]:

The way that we define the result of a set of reactions on a set of elements
formalizes the following two assumptions that we made about the chemistry of a
cell:

(i) We assume that we have the “threshold” supply of elements (molecules) –
either an element is present and then we have “enough” of it, or an element
is not present. Therefore we deal with a qualitative rather than quantitative
(e.g., multisets) calculus.

(ii) We do not have the “permanence” feature in our model: if nothing happens
to an element, then it remains/survives (status quo approach). On the con-
trary, in our model, an element remains/survives only if there is a reaction
sustaining it.

Bringing the first assumption in membrane computing is a way to obtain fyper-
computations! This, however, is not very surprising: if each object is present in
“enough” copies, this means already that we have an arbitrarily large workspace.
The only problem is how to use this unstructured space for efficient computa-
tions.

Because we want to get a little bit more technical here, we introduce some
formal prerequisites.

Given an alphabet O of symbols called here objects, we denote by O∗ the set
of all strings over O, the empty string λ included, and by O+ = O∗ − {λ} the
set of all non-empty strings over O. A multiset-rewriting rule (over O; we also
say evolution rule) is a pair (u, v), written in the form u → v, where u and v
are multisets over O (given as strings over O). The rules are classified according
to the complexity (of their left hand side). A rule with at least two objects in
its left hand side is said to be cooperative. The result in Theorem 1 is given for
such rules; a restrictive type of rules is that of non-cooperative ones, of the form
u → v, with u being an object in O.

Now, a cell-like P system (of degree m) is a construct

Π = (O, μ,w1, . . . , wm, R1, . . . , Rm, iin, iout),

where O is the alphabet of objects, μ is the membrane structure (with m mem-
branes), given as an expression of labeled parentheses, w1, . . . , wm are (strings
over O representing) multisets of objects present in the m regions of μ at the be-
ginning of a computation, R1, . . . , Rm are finite sets of evolution rules associated
with the regions of μ, and iin, iout are the labels of input and output regions,
respectively, iin ∈ {1, 2, . . . ,m}, iout ∈ {0, 1, 2, . . . ,m}; if iout = 0, this indicates
that the output is obtained in the environment. If the system is used in the
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generative mode, then iin is omitted, and if the system is used in the accepting
mode, then iout is omitted. The number m of membranes in μ is called the degree
of Π .

The rules in sets Ri are of the form u → v, as specified above, with u ∈
O+, but with the objects in v also having associated target indications, i.e.,
v ∈ (O × {here, out, in})∗. After using a rule u → v, the objects in u are
consumed, and those in v are produced; if (a, here) appears in v, then a remains
in the same compartment of the system where the rule was used, if (a, out)
is in v, then the object a is moved immediately in the region surrounding the
compartment where the rule was used (this is the environment if the rule is
used in the skin region), and if (a, in) is in v, then a is sent to one of the
inner membranes, nondeterministically chosen (if there is no membrane inside
the membrane where the rule is meant to be applied, then the use of the rule is
forbidden). The indication here is omitted, we write a instead of (a, here).

The rules are used in the nondeterministic maximally parallel manner: in each
membrane, a multiset of rules is applied such that there is no larger multiset of
rules which is applicable in that membrane.

In the generative mode, the result of a computation consists of the number of
objects in region iout in the moment when the computation halts, i.e., no rule
can be applied in any membrane of the system. In the accepting mode, a number
is introduced in the region iin, e.g., in the form of the multiplicity of a given
object, and, if the computation halts, then this number is accepted. A P system
can also be used in the computing mode, with a number introduced in region
iin and the result obtained in region iout, in the moment when the computation
halts. P systems can be also used for solving decidability problems: an encoding
of a problem (of an instance) is introduced in membrane iin, in the form of a
multiset of objects, and the answer, YES or NO, is obtained, for instance, by
halting, or by sending out of the system a distinguished object yes or no.

Note that in the previous definitions multisets play a crucial role, objects not
evolving by a rule remain unchanged, and that always successful computations
are defined by halting – all these are essential differences with respect to R
systems.

Consider now a P system with some of its objects being present in arbitrarily
many copies, like in R systems. More exactly, we consider P systems which contain
certain distinguished elementary membranes, whose objects are present in arbi-
trarily many copies (for instance, if an object a is introduced from outside in such
a membrane, then inside the membrane it becomes aω; it enters as a single copy,
and immediately multiplies inside to arbitrarily many, like in reaction systems).

Let us call such a system an ωP system.
The arbitrary multiplicity of objects introduces an important change in the

functioning of a usual system. For instance, if we have the objects a, b, c in a
distinguished membrane, together with the rules ab → d, ac → e, then both
these rules can be (and should be) applied, because we have enough copies of a
for both rules; we obtain d, e, with all copies of a, b, c being consumed. If also an
object f is present together with a, b, c, then it remains unchanged.
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We do not adopt here also the second assumption from the definition of R
systems, because then all objects from a halting configuration vanish. Please
note that the “easy solution” of introducing dummy rules of the form f → f for
all objects which cannot evolve otherwise does not work either: the computation
will never stop.

This apparently innocent change in the structure of P systems, i.e., consid-
ering objects with ω multiplicity, is able to speed-up a P system to the level of
fypercomputations.

Theorem 1. SAT can be solved (in a uniform way) in a polynomial time by an
ωP system.

Proof. Let us consider the SAT problem for n variables, x1, x2, . . . , xn, and m
clauses. We consider xl and ¬xl, 1 ≤ l ≤ n, as symbols, we denote by Lit their
alphabet, and we also denote V al = {ti, fi | 1 ≤ i ≤ n}. If α ∈ Lit, then ¬α is
its negation (e.g., ¬(¬xi) = xi).

An instance γ = C1∧C2∧. . .∧Cm of SAT(n,m), with Ci = yi,1∨yi,2∨. . .∨yi,ki ,
for yi,j ∈ Lit, 1 ≤ j ≤ ki, is encoded as

code(γ) = y
(1)
1,1 . . . y

(1)
1,k1

y
(2)
2,1 . . . y

(2)
2,k2

. . . y
(m)
m,1 . . . y

(m)
m,km

.

We now construct the following ωP system (the unique elementary membrane
is the distinguished one, the region where the objects are present with ω multi-
plicity):

Π = (O, μ,w1, w2, R1, R2, 1, 0),

O = {α(j) | α ∈ Lit, 1 ≤ j ≤ m} ∪ V al

∪ {a, yes, d, d1, d2, . . . , dm+1} ∪ {〈aw〉 | w ∈ V al∗, |w| ≤ m},
μ = [ [ ]2 ]1,

w1 = adm+1, w2 = λ,

R1 = {a → (〈a〉, in), d1 → (d, in), yes → (yes, out)}
∪ {x(1)

i → (ti, in), ¬x(1)
i → (fi, in) | 1 ≤ i ≤ n}

∪ {x(j+1)
i → x

(j)
i , ¬x(j+1)

i → ¬x(j)
i | 1 ≤ i ≤ n, 2 ≤ j ≤ m}

∪ {dj+1 → dj | 1 ≤ j ≤ m},
R2 = {〈aw〉xi → λ | ¬xi ∈ w,w ∈ V al+, 1 ≤ i ≤ n}

∪ {〈aw〉¬xi → λ | xi ∈ w,w ∈ V al+, 1 ≤ i ≤ n}
∪ {〈aw〉α → 〈aw〉 | α ∈ w,α ∈ V al, w ∈ V al+}
∪ {〈aw〉α → 〈awα〉 | α /∈ w,¬α /∈ w,α ∈ V al, w ∈ V al∗}
∪ {〈awd〉 → (yes, out) | w ∈ V al+}.

For an easier understanding, we also present this system in a graphical form, in
Figure 1 (besides the membranes and the objects present in the initial configu-
ration, the rules from each regions are specified).



Towards “Fypercomputations” (in Membrane Computing) 217

�

�

�

�

�

�

�

�

1

2

adm+1

〈aw〉α → λ, if ¬α ∈ w

〈aw〉α → 〈aw〉, if α ∈ w

〈aw〉α → 〈awα〉,
if α /∈ w,¬α /∈ w

〈awd〉 → (yes, out),

w �= λ

a → (〈a〉, in)

x
(1)
i → (ti, in),

¬x(1)
i → (fi, in),

1 ≤ i ≤ n

x
(j+1)
i → x

(j)
i ,

¬x(j+1
i → ¬x(j)

i ,

1 ≤ i ≤ n, 2 ≤ j ≤ m

dj+1 → dj , 1 ≤ j ≤ m

d1 → (d, in)

yes → (yes, out)

Fig. 1. The ωP system from the proof of Theorem 1

The computation ofΠ starts after introducing the multiset code(γ) in the skin
membrane, for a given instance γ of the SAT(n,m) problem. The “seed” object
a enters immediately membrane 2, in the form 〈a〉, together with the truth
values which make true the first clause (the literals in clause C1 are present in
code(γ) with superscripts 1). All other objects evolve in the skin membrane,
those associated with literals in clauses C2 to Cm of γ decreasing by one the
superscript, d by decreasing by one the subscript.

In the inner membrane we have (at an arbitrary step) several multisets aw in
the bracketed form 〈aw〉 (hence interpreted as symbol objects); initially, w = λ.
Each multiset w contains truths values of variables which make true the clauses
of γ, starting with the first clauses in the ordering C1, C2, . . .. When the truth
values which render true a further clause enter membrane 2, they are checked
against the existing truth values, those which made true the previous clauses. It
is important to note that each of the existing sets of truth values “react” with
each newly introduced truth value, in the style of reaction systems, because we
have arbitrarily many copies of each object present in membrane 2. If a previous
set of truth values w falsifies the new clause, then the object 〈aw〉 disappears.
If it contains a truth value which renders true the new clause, then it survives.
When neither of these situations holds, then we add to w a truth value which
makes true the new clause (without falsifying the previous clauses).
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The process continues for each of the m clauses. In the end, the “checker” d
enters membrane 2. If it finds here at least one object 〈aw〉 with w 
= λ, this
means that at least a truth assignment satisfies all clauses, hence the formula is
satisfiable. The signal object yes is produced and sent out of the system. The
computation halts. (If the formula is not satisfiable, it halts after m+ 1 steps.)

Therefore, if the system halts without sending out the object yes, then the
formula was unsatisfiable; if the system sends out the object yes, in step m+3,
then the formula is satisfiable.

Note that the initial configuration of the system, the rules of each compart-
ment included, is of a polynomial size with respect to n andm; the total alphabet
of the system is exponential in size, but the objects are constructed during the
computation, not while constructing the system itself.

The construction is uniform (it starts from the problem itself, not from a
given instance of the problem – in membrane computing, the weaker case when
we start from an instance of the decision problem, is called semi-uniform), and
this concludes the proof. ��
The previous system has been presented with two membranes, in order to make
clear the ω component of it, the inner membrane, with a “standard” membrane
around it. The construction can be easily modified in order to obtain a system
with only one membrane (decreasing superscripts and subscripts can be done in
the same way for objects supposed to appear in arbitrarily many copies, because
each object is modified by only one rule and all copies of an object evolve at the
same time, in the same way). Thus, the previous theorem can be also considered
as a fypercomputation result for R systems instead of P systems.

We do not know whether the previous result can be improved by imposing
the restriction to use only non-cooperative rules.

6 Final Remarks

Following the model of hypercomputation, we have introduced the notion and we
considered the issue of “fypercomputation” – of speeding-up computations (of
P systems) to such an extent to obtain polynomial time solutions to intractable
(typically, NP-complete) problems. After briefly mentioning the existing speed-
up ideas investigated in membrane computing (membrane division, membrane
creation, string replication, and using pre-computed resources), we propose fur-
ther ideas, such as (local) acceleration, two-dimensional time, using arbitrary
populations of objects (like in reaction systems, i.e., assuming for each object
that it is either absent or present in arbitrarily many copies). An example of
fypercomputation is given for the last idea.

The paper is preliminary and speculative, it mainly calls the attention to the
systematic study of fypercomputations.
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18. Păun, G.: P systems with active membranes: Attacking NP-complete problems. J.
Automata, Languages, and Combinatorics 6, 75–90 (2001)

19. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
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