
Earley’s Parsing Algorithm

and k-Petri Net Controlled Grammars

Taishin Y. Nishida

Department of Information Sciences, Toyama Prefectural University,
Imizu, 939-0398 Toyama, Japan

nishida@pu-toyama.ac.jp

Abstract. In this paper we modify Earley’s parsing algorithm to parse
words generated by Petri net controlled grammars. Adding a vector
which corresponds to a marking of a Petri net to Earley’s algorithm,
it is shown that languages generated by a subclass of k-Petri net con-
trolled grammars (introduced by J. Dassow and S. Turaev) are parsed
in polynomial time of the length of a word.

1 Introduction

Petri net controlled grammars have been introduced by M. ter Beek and J. Kleijn
[1] and then have been extensively studied by J. Dassow and S. Turaev [3–6, 13].
For a context-free grammar, there is a Petri net whose places correspond to the
nonterminals of the grammar and whose transitions correspond to the rules of
the grammar such that a transition occurs (fires) if and only if the corresponding
rule is applied in a derivation of the grammar. That is, the Petri net, called a
cf Petri net, represents a sequence of rules which are used in a derivation of the
grammar. Adding new places to a cf Petri net, a Petri net controls derivation of
a context-free grammar to generate a non-context-free language. Thus Petri net
controlled grammars have appeared quite naturally.

In this paper we focus our attention on the membership problem of Petri
net controlled grammars. It has been shown that languages generated by most
variants of Petri net controlled grammars are included in the class of matrix
languages [3, 4, 13]. Thus the membership problem of Petri net controlled gram-
mars might be reduced to that of matrix grammars. But we want to solve the
membership problem directly, that is, to parse a word in order to construct a
derivation tree. If a variant of Petri net controlled grammars has a fast parsing
algorithm, then the grammars will be as easily and frequently used as context-
free (without control) grammars, or even will replace context-free grammars, in
practical application.

There are two famous fast parsing algorithms, CKY algorithm [10, 14] and
Earley’s algorithm [8], for context-free grammars. CKY algorithm assumes a
grammar in Chomsky normal form. But, since modification of production rules
in a Petri net controlled grammar changes the structure of the Petri net, it is not
clear that a language generated by a variant of Petri net controlled grammars

H. Bordihn, M. Kutrib, and B. Truthe (Eds.): Dassow Festschrift 2012, LNCS 7300, pp. 174–185, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Earley’s Parsing Algorithm and k-Petri Net Controlled Grammars 175

is generated by a grammar in the same variant and in Chomsky normal form.
This is why CKY algorithm is inappropriate for our purpose. On the other hand,
Earley’s algorithm has no restriction on context-free grammars. Thus we start
to develop a parsing algorithm for Petri net controlled grammars from Earley’s
algorithm.

In Section 2 basic notions and notations about context-free grammars, Petri
nets, and Earley’s algorithm are described. A variant of Petri net controlled
grammars, k-Petri net controlled grammars (k-PN controlled grammars for short),
is introduced in Section 3. Earley’s algorithm is extended in Section 4 to parse
words generated by k-PN controlled grammars. The algorithm parses a word of
length n in time O(n3) for an unambiguous k-PN controlled grammar and in
time O(nk+4) for an ambiguous grammar. Section 5 is a conclusion.

2 Preliminaries

We assume that the reader is familiar with rudiments of context-free grammars,
regulated grammars, and Petri nets. For notions and notations which are not
described in this section, we refer to [2, 7, 9, 11, 12].

2.1 Context-Free Grammars

A context-free grammar is a construct G = (V,Σ, S,R) where V and Σ are non-
terminal and terminal alphabets, respectively, with V ∩Σ = ∅, S ∈ V is the start
symbol , and R ⊆ V × (V ∪Σ)∗ is a finite set of (production) rules . A rule (A, x)
is written as A → x. A word x ∈ (V ∪Σ)+ directly derives y ∈ (V ∪Σ)∗, written
as x

r⇒G y, if and only if there is a rule r : A → α ∈ R such that x = x1Ax2 and
y = x1αx2. We write x

r⇒ y ifG is understood and write x ⇒ y if we are not inter-
ested in the rule r. The reflexive and transitive closure of ⇒ is denoted by ⇒∗. If
there are a sequence of rules r1, r2, . . . , rn and a sequence of words w0, w1, . . . , wn

such that wi−1
ri⇒ wi for every 1 ≤ i ≤ n, then we write w0

r1r2···rn====⇒ wn. We call
the sequence of rules r1, r2, . . . , rn derivation process fromw0 town. The language
generated by G is defined by L(G) = {w ∈ Σ∗ |S ⇒∗

G w}.
Let G = (V,Σ, S,R) be a context-free grammar. A rule of the form A → λ is

called a λ-rule, where λ is the empty word. A rule A → α is said to be a chain
rule if α ∈ V . Let σ be a derivation process from S to w ∈ Σ∗ in G. Then σ
determines a derivation tree, which is denoted by t(σ). Let U be the set of nodes
of t(σ) and let ν : U → V ∪Σ ∪ {λ} be the labelling function of t(σ). We make
a derivation tree in rules , denoted by tR(σ), by:

(1) Removing every node u which satisfies ν(u) ∈ Σ ∪ {λ}, i.e., a node which is
labelled by a terminal or λ.

(2) Replacing every label of nonterminal with the rule which rewrites the non-
terminal in the derivation process σ. That is, define a new labelling function
ν′ : U → R by ν′(u) = r where rule r rewrites the nonterminal ν(u).

176 T.Y. Nishida

2.2 Petri Net

A Petri net is a quadruple N = (P, T, F, φ) where P and T are disjoint finite
sets of places and transitions, respectively, F ⊆ (P × T) ∪ (T × P) is the set of
directed arcs, φ : (P ×T)∪(T ×P) → IN is a weight function with φ(x, y) = 0 for
every (x, y)
∈ F , where IN is the set of nonnegative integers. A Petri net can be
represented by a bipartite directed graph with the node set P ∪ T where places
are drawn as circles, transitions are rectangles, and arcs as arrows with labels
φ(p, t) or φ(t, p). If φ(p, t) = 1 or φ(t, p) = 1, then the label is omitted.

A place contains a number of tokens. Each number of tokens in every place is
expressed by a mapping μ : P → IN, which is called a marking. For every place
p ∈ P , μ(p) denotes the number of tokens in p. Graphically, tokens are drawn as
small solid dots inside circles.

A transition t ∈ T is enabled by a marking μ if and only if μ(p) ≥ φ(p, t)
for every p ∈ P . In this case t can occur (fire). An occurrence of a transition
t transforms the marking μ into a new marking μ′ which is defined by μ′(p) =
μ(p)−φ(p, t)+φ(t, p) for every p ∈ P . More than one transition may be enabled
by a marking. In this case one transition is nondeterministically selected and
fires. If a transition t occurs in a marking μ and the marking changes to μ′, then
we write μ

t→ μ′. A finite sequence t1t2 · · · tk of transitions is called an occurrence
sequence enabled at a marking μ if there are markings μ1, μ2, . . . , μk such that

μ
t1→ μ1

t2→ · · · tk→ μk. In short this sequence can be written as μ
t1t2···tk−−−−→ μk or

μ
ν→ μk where ν = t1t2 · · · tk. For each 1 ≤ i ≤ k, the marking μi is called

reachable from the marking μ.
A marked Petri net is a system N = (P, T, F, φ, ι) where (P, T, F, φ) is a Petri

net, ι is the initial marking. Let M be a set of marking. An occurrence sequence
ν of transitions is called successful for M if it is enabled at the initial marking ι
and finished at a final marking τ of M . Thus M is called a set of final markings.
If M is understood from the context, we say that ν is a successful occurrence
sequence.

Let N = (P, T, F, φ) be a Petri net. For an arc e = (u, v) in F (note that
(u ∈ P and v ∈ T) or (u ∈ T and v ∈ P)), we use the notations •e = u and
e• = v. A sequence of arcs e1, e2, . . . , en is said to be a path in N if e•i = •ei+1

for every i ∈ {1, . . . , n− 1}. A path is a cycle if e•n = •e1.

2.3 Earley’s Algorithm

Here we introduce Earley’s algorithm [8]. Let G = (V,Σ, S,R) be a context-free
grammar. Let G′ = (V ∪ {S′}, Σ, S′, R′ = R ∪ {S′ → S}) be a new context-free
grammar where S′ is a new nonterminal. For a rule r : A → α in P ′, an item
[A → β · γ] is said to be an Earley’s state where βγ = α. Let S′ ⇒∗ w =
a1a2 · · · am ∈ Σ∗ be a derivation in G′. If a rule A → αβ which is used in the
derivation

S′ ⇒∗ γAδ ⇒ γαβδ ⇒∗ a1 · · · akak+1 · · · aiβδ
satisfies

γ ⇒∗ a1 · · · ak and α ⇒∗ ak+1 · · · ai,

Earley’s Parsing Algorithm and k-Petri Net Controlled Grammars 177

then the state [A → α · β] belongs to a set Ew(k, i). The sets Ew(k, i) of such
states (0 ≤ k ≤ i ≤ m) are called sets of Earley’s state. The next property
directly follows from the definition.

Property 1. Let G, G′, and w be grammars and a word described in the above
paragraph.

(1) If a state of the form [A → ·α] appears in Ew(k, i), then k = i. Thus
[S′ → ·S] ∈ Ew(0, 0).

(2) [A → α·] is in Ew(k, i) if and only if A ⇒∗ ak+1 · · ·ai.
(3) [S′ → S·] is in Ew(0,m) if and only if S′ ⇒∗ a1 · · ·am, that is, w is in L(G).
(4) If [A → α · Bβ] ∈ Ew(k, i) with B ∈ V , then [B → ·γ] ∈ Ew(i, i) for every

B-rule B → γ.
(5) If [A → α · Bβ] ∈ Ew(k, i) and [B → γ·] ∈ Ew(i, j), then [A → αB · β] ∈

Ew(k, j).
(6) If [A → α · aβ] ∈ Ew(k, i− 1) and ai = a, then [A → αa · β] ∈ Ew(k, i).

The above property shows that an algorithm which constructs every set of
Earley’s states solves the membership problem for context-free languages.
Algorithm 1 constructs sets of Earley’s states.

Algorithm 1. An algorithm which constructs sets of Earley’s states

input: a word w = X1X2 · · ·Xm (Xi ∈ Σ)
output: the sets of Earley’s states Ew(k, i) (0 ≤ k ≤ i ≤ m)
1: for every k, i with ((k, i) �= (0, 0))
2: Ew(k, i) = ∅
3: Ew(0, 0) = {[S′ → ·S]}
4: do
5: if [A → α ·Bβ] ∈ Ew(0, 0) and [B → γ·] ∈ Ew(0, 0), then
6: insert [A → αB · β] to Ew(0, 0)
7: if [A → α ·Bβ] ∈ Ew(0, 0) with B ∈ V , then
8: insert [B → ·γ] to Ew(0, 0) for every B-rule B → γ
9: while Ew(0, 0) is changed
10: do
11: if [A → α · aβ] ∈ Ew(k, i− 1) and Xi = a, then
12: insert [A → αa · β] in Ew(k, i)
13: if [A → α ·Bβ] ∈ Ew(k, i) and [B → γ·] ∈ Ew(i, j), then
14: insert [A → αB · β] to Ew(k, j)
15: if [A → α ·Bβ] ∈ Ew(k, i) with B ∈ V , then
16: insert [B → ·γ] to Ew(i, i) for every B-rule B → γ
17: while some Ew(k, i) is changed

For an Earley’s state [A → α·] ∈ Ew(k, i) a set of derivations from A to
ak · · · ai can be constructed inductively.

(1) If α ∈ Σ∗, then A ⇒ α is a derivation.

178 T.Y. Nishida

(2) If α = u0B1u1 · · ·ul−1Blul for some B1, . . . , Bl ∈ V and u0u1 · · ·ul ∈ Σ∗

and a set of derivations from Bi to βi has been constructed for every i ∈
{1, . . . , l}, then the set of derivations from A to ak · · · ai contains all deriva-
tions of the form

A ⇒ u0B1u1 · · ·ul−1Blul ⇒∗ u0β1u1 · · ·ul−1Blul ⇒∗ · · ·

⇒∗ u0β1u1 · · ·ul−1βlul = ak · · · ai.
If a start symbol S of a grammar does not appear in a right-hand side of any
rule, then we do not introduce new start symbol S′ and we use states of the form
[S → α·] to decide whether a word is generated or not. Whenever we discuss
Earley’s states, a new start symbol S′ is implicitly assumed if necessarily.

3 k-Petri Net Controlled Grammars

In this section we define k-Petri net controlled grammars according to [6].
Let G = (V,Σ, S,R) be a context-free grammar. A marked Petri net N =

(P, T, F, φ, ι) is a cf Petri net with respect to G under labelling functions (β, γ)
if N and (β, γ) satisfy:

(1) β : P → V and γ : T → R are bijections.
(2) F and φ satisfy:

• (p, t) ∈ F if and only if γ(t) = A → α and β(p) = A, in this case
φ(p, t) = 1.

• (t, p) ∈ F if and only if γ(t) = A → α and β(p) = x where |α|x ≥ 1, in
this case φ(t, p) = |α|x.

(3) ι(p) = 1 if β(p) = S and ι(p) = 0 for every p ∈ P − {β−1(S)}.
We note that a cf Petri net is uniquely determined from a combination of a
context-free grammar G and a pair of labelling functions (β, γ). Therefore, a cf
Petri net with respect to G under (β, γ) can be denoted by PN [G, (β, γ)].

Definition 1. Let G0 = (V,Σ, S,R) be a context-free grammar and let N =
PN [G0, (β, γ)] = (P, T, F, φ, ι) be a cf Petri net with respect to G0. A k-Petri net
controlled grammar (k-PN controlled grammar) is a quintuple G = (V,Σ, S,R,
Nk) where V , Σ, S, R are the components from the grammar G0 and Nk =
(P ′, T ′, F ′, φ′, ι′) is a k-Petri net which satisfies:

(1) P ′ = P ∪Q where Q = {q1, . . . , qk} is a set of new places.
(2) T ′ = T .
(3) F ′ = F ∪E where E ⊆ (T ×Q)∪ (Q× T) is a set of new arcs. Every arc in

E satisfies the following condition;
• for every t ∈ T , (t, qi) ∈ E and (t, qj) ∈ E imply i = j and (qi, t) ∈ E
and (qj , t) ∈ E imply i = j.

• for every 1 ≤ i < j ≤ k, there exists no t ∈ T such that (t, qi) ∈ E and
(qj , t) ∈ E.

Earley’s Parsing Algorithm and k-Petri Net Controlled Grammars 179

• for every 1 ≤ i ≤ k, (qi, t) ∈ E for some t ∈ T if and only if (t′, qi) ∈ E
for some t′ ∈ T .

(4) φ′(x, y) = φ(x, y) if (x, y) ∈ F and φ′(x, y) = 1 if (x, y) ∈ E.
(5) ι′(p) = 1 if β(p) = S and ι′(p) = 0 for every p ∈ (P − {β−1(S)}) ∪ Q, i,e.,

ι′(p) = ι(p) if p ∈ P and ι′(p) = 0 if p ∈ Q.

We call G0 the underlying grammar of G.

In [6], condition (3) is described differently:

– E = {(t, qi) | t ∈ T i
1, 1 ≤ i ≤ k}∪{(qi, t) | t ∈ T i

2, 1 ≤ i ≤ k} such that T i
1 ⊂ T

and T i
2 ⊂ T , 1 ≤ i ≤ k where T i

l ∩ T j
l = ∅ for 1 ≤ l ≤ 2, T i

1 ∩ T j
2 = ∅ for

1 ≤ i < j ≤ k and T i
1 = ∅ if and only if T i

2 = ∅ for any 1 ≤ i ≤ k.

It is clear that the two conditions say the same thing. The most important point
of condition (3) is that a k-Petri net does not have any cycle of arcs in E. We
call it cycle-free condition.

Let τ be the marking τ(p) = 0 for every p ∈ P ∪ Q. Next we define the
derivation in a k-PN controlled grammar G and the language generated by G.

Definition 2. Let G = (V,Σ, S,R,Nk) be a k-PN controlled grammar. A word

α ∈ (V ∪Σ)∗ is derived in G if S
r1r2···rn====⇒ α such that t1t2 · · · tn = γ−1(r1r2 · · · rn)

∈ T ∗ is an occurrence sequence of the transitions of Nk enabled at the initial
marking ι. A derivation S

r1r2···rn====⇒ w ∈ Σ∗ successfully generates a terminal
word if t1t2 · · · tn = γ−1(r1r2 · · · rn) ∈ T ∗ is an occurrence sequence of the tran-
sitions of Nk enabled at the initial marking ι and finished at the final marking
τ . The language generated by G, denoted by L(G), consists of all words which
are successfully generated in G1.

In k-PN controlled grammars, new places control sequence of rules in a deriva-
tion, which is shown in the next example.

Example 1 (Example 7 of [3]). Let G = ({S,A,B}, {a, b, c}, S, R,N1) be a 1-PN
controlled grammar where R consists of the following rules

r0 : S → AB, r1 : A → aAb, r2 : A → ab, r3 : B → cB, r4 : B → c

1 A k-PN controlled grammar can be viewed a kind of positive valence grammar [6].
A (context-free) valence grammar G on ZZk for some positive integer k is a construct
G = (V,Σ, S,R, ν) where ZZ is the set of integers, (V,Σ, S,R) = G0 is a context-free
grammar (the underlying grammar), and ν : R → ZZk is the valence function. Let
σ = (r1, r2, . . . , rn) be a derivation process from S to w ∈ Σ∗ in G0. The word
w is generated by G if and only if

∑n
j=1 ν(rj) = 0 and for every initial segment

(r1, r2, . . . , ri) of σ
∑i

j=1 ν(rj) ≥ 0 where a ≥ b if and only if aj ≥ bj for every
jth component. A k-PN controlled grammar (V,Σ, S,R,Nk) is a positive valence
grammar (V,Σ, S,R, ν) where ν : R → ZZk is given by

ν(r) = (φ(γ−1(r), q1)− φ(q1, γ
−1(r)), . . . , (φ(γ−1(r), qk)− φ(qk, γ

−1(r)).

Clearly, every component of ν(r) is one of 1, 0, or −1. It should be noted that the
notion of positive valence grammars is different from that of valence grammars. The
latter permits

∑i
j=1 ν(rj) �≥ 0 for some initial segment (r1, · · · , ri).

180 T.Y. Nishida

Fig. 1. 1-Petri net controlled grammar generating {anbncn |n > 0}

and N1 is illustrated in Fig. 1, in which rules are drawn in the rectangles of the
corresponding transitions. The grammar G generates the language {anbncn |n >
0}. �

4 Parsing for k-Petri Net Controlled Grammars

Our aim of this section is to develop a parsing algorithm for k-PN controlled
grammars.

First we must consider chain rules and λ-rules. Every context-free grammar
can be converted, without changing the generated language, to a grammar with
no chain rules and no λ-rules. But it is not obvious whether a k-PN controlled
grammar has an equivalent grammar (generating the same language) with no
chain rules and no λ-rules since a chain rule or a λ-rule may make a token in Q.
Indeed these rules cause a subtle problem (see Section 5). On the other hand,
a grammar with chain rules or λ-rules may have infinite derivation trees for a
word, which makes parsing very complex. So, in the remaining sections in this
paper, we assume that an underlying context-free grammar does not have any
chain rules nor λ-rules (but S → λ for the start symbol S with the condition
that S does not appear in a right-hand side of any rule).

A parsing algorithm for k-PN controlled grammars is obtained by associating
a vector which corresponds to a marking of a k-Petri net to each Earley’s state.
LetG = (V,Σ, S,R,Nk) be a k-PN controlled grammar and letG0 = (V,Σ, S,R)
be the underlying grammar of G. For a word w ∈ L(G0) we define an Earley’s
state with a token counter, which is a vector from ZZk with set of integers ZZ, as
follows:

(1) For a rule A → α, the state [A → ·α] has a token counter (v1, . . . , vk) where
vi = 1 and vj = 0 for j
= i if (γ−1(A → α), qi) ∈ E, vi = −1 and vj = 0 for
j
= i if (qi, γ

−1(A → α)) ∈ E, or vi = 0 for every 1 ≤ i ≤ k otherwise.

Earley’s Parsing Algorithm and k-Petri Net Controlled Grammars 181

(2) If a state [A → αB ·β] is obtained from [A → α·Bβ]v1 and [B → γ·]v2 where
v1 and v2 are token counters associated to the states, then [A → αB ·β] has
the token counter v1+v2 in which the addition is the normal component-wise
vector addition.

If the underlying grammar is ambiguous, then there may be states [A → α·Bβ] ∈
Ew(i, j), [B → γ·] ∈ Ew(j, l), [A → α·Bβ] ∈ Ew(i, j

′), and [B → γ′·] ∈ Ew(j
′, l).

In this case a state [A → αB ·β] ∈ Ew(i, l) is constructed more than one way. The
state may have different token counters, that is, the situation [A → αB · β]v ∈
Ew(i, l) and [A → αB · β]v′ ∈ Ew(i, l) with v
= v′ is possible. States with
different token counters should be treated differently.

Example 2. In Example 1, the sets of Earley’s statesEw(k, i) with token counters
for the word w = a2b2c2 are shown in the next table.

�

It is obvious that a successful derivation S ⇒∗ w ∈ Σ∗ in G (under control)
implies [S′ → S·]0 ∈ Ew(0, n) where 0 is the zero vector and n = |w|. But the
converse is not always the case. Let us consider the next example.

Example 3. LetG = ({S,A,B,C}, {a, b, c}, S, R,N1) be a 1-PN controlled gram-
mar where R and N1 are illustrated in Fig. 2.

The word bbabc is generated by G while the word bacc cannot be generated
by G. But, as seen in the next tables, both token counters attached to Earley’s
states for the words become the zero vector.

Earley’s states for the word bbabc.

182 T.Y. Nishida

Fig. 2. Petri net of Example 3

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5
[S → ·AC](0) [S → A · C](−1) [S → AC·](0)
[A → ·Ba](−1) [A → B · a](0) [A → B · a](−1) [A → Ba·](−1)
[B → ·b](1) [B → b·](1)
[B → ·bb](0) [B → b · b](0) [B → bb·](0)
k = 1

k = 2
[C → ·Bc](0) [C → B · c](1) [C → Bc·](1)

k = 3 [C → ·cc](0)
[B → ·b](1) [B → b·](1)
[B → ·bb](0) [B → b · b](0)
k = 4

k = 5

Earley’s states for the word bacc.
i = 0 i = 1 i = 2 i = 3 i = 4

[S → ·AC](0) [S → A · C](0) [S → AC·](0)
[A → ·Ba](−1) [A → B · a](0) [A → Ba·](0)
[B → ·b](1) [B → b·](1)
[B → ·bb](0) [B → b · b](0)
k = 1

[C → ·Bc](0)
k = 2 [C → ·cc](0) [C → c · c](0) [C → cc·](0)

[B → ·b](1)
[B → ·bb](0)
k = 3

k = 4

�

If a k-Petri net Nk = (P, T, F, φ, ι) satisfies “every cycle in Nk does not contain
any places in Q”, then we can prove equivalence between derivations S ⇒∗ w ∈
Σ∗ under control of Nk and [S′ ⇒ S·]0 ∈ Ew(0, n). We call the condition strict
cycle-free condition.

Lemma 1. Let G = (V,Σ, S,R,Nk) be a k-PN controlled grammar with strict
cycle-free Petri net Nk and let G0 = (V,Σ, S,R) be the underlying grammar of
G. For every w ∈ L(G0) with |w| = n, if [S′ → S·]0 ∈ Ew(0, n), then w ∈ L(G).

Proof. Let S′ ⇒∗ w be a derivation which is constructed from [S′ → S·]0 ∈
Ew(0, n). Let αAβ be a sentential form in the derivation such that there is an
arc (ql, γ

−1(A → δ)) ∈ E where A → δ is the rule in the derivation. If the
l-th component of the token counter increases in the derivation A ⇒ δ ⇒∗

Earley’s Parsing Algorithm and k-Petri Net Controlled Grammars 183

u ∈ Σ∗, then there is a path from γ−1(A → δ) to ql in Nk. The path and the
arc (ql, γ

−1(A → δ)) forms a cycle, which contradicts to the strict cycle-free
condition. Thus the l-th component of the token counter cannot increase in the
derivation A ⇒∗ u.

Since the l-th component of the token counter becomes to 0 after derivation,
some positive values in the l-th component must appear in one of the derivations:
S′ ⇒∗ αAβ, α ⇒∗ x, or β ⇒∗ y where xuy = w. Hence there is a derivation in
which an occurrence of a positive value in the l-th component is prior to use the
rule A → δ, that is, A → δ can be applied under control of Nk. Therefore, the
derivation S ⇒∗ w is possible in G. �
Since to associate a token counter to an Earley’s state can be done in a constant
time, parsing for a strict cycle-free k-PN controlled grammar is performed in
time proportional to multiplication of n and the number of Earley’s states with
token counters. Number of Earley’s states for a context-free grammar is O(n2).
Now we enumerate different token counters. At most n rules are used to generate
a word of length n because the grammar has no chain rules and no λ-rules. Then
at most one token is generated or consumed when a rule is used. For a token
counter v = (v1, . . . , vk) sum of all components of the vector v′ = (|v1|, . . . , |vk|)
is at most n. There are (

n+ k
k

)
= O(nk)

different vectors in INk that sum of all components is n. Considering cases that
total tokens are less than n, there areO(nk+1) different token counters. Therefore
time complexity of Earley’s algorithm with token counters is O(nk+4). We note
that if the underlying grammar is unambiguous, then the time complexity is
O(n3).

The strict cycle-free condition, however, is so strict that some k-PN controlled
grammars are excluded from the algorithm, an example is illustrated in Example
3. It is an open problem whether every language generated by a k-PN controlled
grammar is generated by a strict cycle-free k-PN controlled grammar or not.

5 Conclusion

We have developed a parsing algorithm for k-PN controlled grammars. If an
underlying grammar of a k-PN controlled grammar is unambiguous, then the
algorithm is effective, that is, the time complexity is O(n3) where n is the length
of a word. For ambiguous grammars, the algorithm is less effective, that is, the
time complexity becomes O(nk+4) for k-PN controlled grammars.

There are some restrictions on the algorithms investigated in this paper. The
condition of no chain rules and no λ-rules is necessary to avoid infinitely many
possibilities in derivation. Let us consider the next 1-PN controlled grammar
shown in Fig. 3.

In the underlying grammar, there are infinite derivation trees for every word
of the form a(bb)+. For a fixed word in a(bb)+, only one derivation is possible

184 T.Y. Nishida

Fig. 3. A 1-PN controlled grammar with chain rules

under the control of the 1-Petri net. A parsing algorithm must select one possible
derivation (tree) from infinite candidates. There may be two methods to resolve
this problem: converting every k-PN controlled grammar into a grammar with-
out chain rules and λ-rules or developing other algorithms for k-PN controlled
grammars with chain rules or λ-rules. These will be done in future.

References

1. ter Beek, M., Kleijn, J.: Petri Net Control for Grammar Systems. In: Brauer, W.,
Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing.
LNCS, vol. 2300, pp. 220–243. Springer, Heidelberg (2002)

2. Dassow, J., Păun, G.: Regulated rewriting in formal language theory. Springer,
Berlin (1989)

3. Dassow, J., Turaev, S.: k-Petri Net Controlled Grammars. In: Mart́ın-Vide, C.,
Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 209–220. Springer,
Heidelberg (2008)

4. Dassow, J., Turaev, S.: Petri net controlled grammars: the case of special Petri
nets. Journal of Universal Computer Science 14, 2808–2835 (2009)

5. Dassow, J., Turaev, S.: Petri net controlled grammars: the power of labeling and
final markings. Romanian Journal of Information Science and Technology 12, 191–
207 (2009)

6. Dassow, J., Turaev, S.: Petri net controlled grammars with a bounded number of
additional places. Acta Cybernetica 19, 609–634 (2010)

7. David, R., Alla, H.: Petri nets and grafcet: tool for modelling discrete event systems.
Prentice Hall, Hertfordshire (1992)

8. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13, 94–102 (1970)

9. Hopcroft, J.H., Ullman, J.: Introduction to automata theory, languages, and com-
putation. Addison-Wesley, Reading (1979)

10. Kasami, T.: An efficient recognition and syntax algorithm for context-free lan-
guages, Scientific Report AFCRL-65-758, Air force Cambridge Research Lab.,
Bedford, Mass (1965)

Earley’s Parsing Algorithm and k-Petri Net Controlled Grammars 185

11. Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg
(1998)

12. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1-3. Springer,
Berlin (1997)

13. Turaev, S.: Petri net controlled grammars. In: Proc. 3rd Doctoral Workshop on
MEMICS 2007, Znojmo, Czech Republic, pp. 233–240 (2007)

14. Younger, D.H.: Recognition and parsing of context-free languages in time n3.
Information and Control 10, 189–208 (1967)

	Earley’s Parsing Algorithmand k-Petri Net Controlled Grammars
	Introduction
	Preliminaries
	Context-Free Grammars
	Petri Net
	Earley's Algorithm

	k-Petri Net Controlled Grammars
	Parsing for k-Petri Net Controlled Grammars
	Conclusion
	References

