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Abstract. In this paper, we study the generative power of one-sided
random context grammars working in a leftmost way. More specifically,
by analogy with the three well-known types of leftmost derivations in reg-
ulated grammars, we introduce three types of leftmost derivations to one-
sided random context grammars and prove the following three results.
(I) One-sided random context grammars with type-1 leftmost derivations
characterize the family of context-free languages. (II) One-sided random
context grammars with type-2 and type-3 leftmost derivations charac-
terize the family of recursively enumerable languages. (III) Propagating
one-sided random context grammars with type-2 and type-3 leftmost
derivations characterize the family of context-sensitive languages. In the
conclusion, the generative power of random context grammars and one-
sided random context grammars with leftmost derivations is compared.

Keywords: formal languages, regulated rewriting, one-sided random
context grammars, leftmost derivations, generative power.

1 Introduction

The investigation of grammars that perform leftmost derivations is central to
formal language theory as a whole. Indeed, from a practical viewpoint, leftmost
derivations fulfill a crucial role in parsing, which represents a key application
area of formal grammars (see [1,2,7,21]). From a theoretical viewpoint, an effect
of leftmost derivation restrictions to the power of grammars restricted in this
way represents an intensively investigated area of this theory as clearly indicated
by many studies on the subject. More specifically, [3,4,17,18,32] contain funda-
mental results concerning leftmost derivations in classical Chomsky grammars,
[6,14,19,30,33] and Section 5.3 in [9] give an overview of the results concern-
ing leftmost derivations in regulated grammars published until late 1980’s, and
[8,10,11,20,23,25] together with Section 7.3 in [24] present several follow-up re-
sults. In addition, [15,16,31] cover language-defining devices introduced with
some kind of leftmost derivations, and [5] discusses the recognition complexity
of derivation languages of various regulated grammars with leftmost derivations.
Finally, [16,22,28] study grammar systems working under the leftmost derivation
restriction, and [12,13,29] investigates leftmost derivations in terms of P systems.
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The present paper approaches this topic in terms of one-sided random con-
text grammars. Recall that a one-sided random context grammar (see [26,27])
represents a variant of a random context grammar (see [9] and Chapter 3 in the
second volume of [32]). In this variant, a set of permitting symbols and a set of
forbidding symbols are attached to every rule, and its set of rules is divided into
the set of left random context rules and the set of right random context rules.
A left random context rule can rewrite a nonterminal if each of its permitting
symbols occurs to the left of the rewritten symbol in the current sentential form
while each of its forbidding symbols does not occur there. A right random con-
text rule is applied analogically except that the symbols are examined to the
right of the rewritten symbol.

Specifically, this paper introduces three types of leftmost derivation restric-
tions placed upon one-sided random context grammars. In the type-1 derivation
restriction, during every derivation step, the leftmost occurrence of a nonterminal
has to be rewritten. In the type-2 derivation restriction, during every derivation
step, the leftmost occurrence of a nonterminal which can be rewritten has to be
rewritten. In the type-3 derivation restriction, during every derivation step, a
rule is chosen, and the leftmost occurrence of its left-hand side is rewritten.

The paper demonstrates the following three results. (I) One-sided random
context grammars with type-1 leftmost derivations characterize the family of
context-free languages. (II) One-sided random context grammars with type-2
and type-3 leftmost derivations characterize the family of recursively enumerable
languages. (III) Propagating one-sided random context grammars with type-
2 and type-3 leftmost derivations characterize the family of context-sensitive
languages.

The paper is organized as follows. First, Section 2 gives all the necessary ter-
minology. Then, Section 3 rigorously establishes the results mentioned above.
In the conclusion, Section 4 compares the generative power of random context
grammars and that of one-sided random context grammars with leftmost deriva-
tions.

2 Preliminaries and Definitions

We assume that the reader is familiar with formal language theory (see [32]).
For a set Q, 2Q denotes the power set of Q. For an alphabet (finite nonempty
set) V , V ∗ represents the free monoid generated by V under the operation of
concatenation. The unit of V ∗ is denoted by ε. Set V + = V ∗−{ε}; algebraically,
V + is thus the free semigroup generated by V under the operation of concate-
nation. For x ∈ V ∗, |x| denotes the length of x, and alph(x) denotes the set of
symbols occurring in x.

A context-free grammar is a quadruple, G = (N , T , P , S), where N and T
are two disjoint alphabets, S ∈ N , and P ⊆ N × (N ∪T )∗ is a finite relation. Set
V = N ∪ T . The components V , N , T , P , and S are called the total alphabet,
the alphabet of nonterminals, the alphabet of terminals, the set of rules, and
the start symbol, respectively. Each (A, x) ∈ P is written as A → x throughout
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this paper. If A → x ∈ P implies that |x| ≥ 1, then G is propagating. The
direct derivation relation over V ∗, symbolically denoted by ⇒, is defined as
follows: uAv ⇒ uxv in G if and only if u, v ∈ V ∗ and A → x ∈ P . Let ⇒n

and ⇒∗ denote the nth power of ⇒, for some n ≥ 0, and the reflexive-transitive
closure of ⇒, respectively. The language of G is denoted by L(G) and defined
as L(G) = {w ∈ T ∗ | S ⇒∗ w}.

A one-sided random context grammar (see [27]) is a quintuple, G = (N , T , PL,
PR, S), where N and T are two disjoint alphabets, S ∈ N , and PL, PR ⊆ N ×
(N∪T )∗×2N×2N are two finite relations. Set V = N∪T . The components V ,N ,
T , PL, PR and S are called the total alphabet, the alphabet of nonterminals, the
alphabet of terminals, the set of left random context rules, the set of right random
context rules, and the start symbol, respectively. Each (A, x, U,W ) ∈ PL ∪ PR

is written as �A → x, U,W 	 throughout this paper. For �A → x, U,W 	 ∈ PL,
U and W are called the left permitting context and the left forbidding context,
respectively. For �A → x, U,W 	 ∈ PR, U and W are called the right permitting
context and the right forbidding context, respectively. If �A → x, U,W 	 ∈ PL ∪
PR implies that |x| ≥ 1, then G is propagating. The direct derivation relation
over V ∗, symbolically denoted by ⇒, is defined as follows. Let u, v ∈ V ∗ and
�A→ x, U,W 	 ∈ PL ∪ PR. Then, uAv ⇒ uxv in G if and only if

�A→ x, U,W 	 ∈ PL, U ⊆ alph(u) and W ∩ alph(u) = ∅
or

�A→ x, U,W 	 ∈ PR, U ⊆ alph(v) and W ∩ alph(v) = ∅
Let ⇒n and ⇒∗ denote the nth power of ⇒, for some n ≥ 0, and the reflexive-
transitive closure of ⇒, respectively. The language of G is denoted by L(G) and
defined as L(G) = {w ∈ T ∗ | S ⇒∗ w}.

2.1 Leftmost Derivations

By analogy with the discussion of leftmost derivations in [9], we next place three
types of leftmost derivation restrictions on one-sided random context grammars.

In the first derivation restriction type, during every derivation step, the left-
most occurrence of a nonterminal has to be rewritten. This type of leftmost
derivations corresponds to the well-known leftmost derivations in context-free
grammars.

Definition 1. Let G = (N , T , PL, PR, S) be a one-sided random context
grammar. The type-1 direct leftmost derivation relation over V ∗, symbolically
denoted by ⇒1lm , is defined as follows. Let u ∈ T ∗, A ∈ N and x, v ∈ V ∗. Then,
uAv ⇒1lm uxv in G if and only if uAv ⇒ uxv in G.

Let ⇒1 n
lm and ⇒1 ∗

lm denote the nth power of ⇒1lm , for some n ≥ 0, and the
reflexive-transitive closure of ⇒1lm , respectively. The -1lm language of G is denoted
by L(G, ⇒1lm ) and defined as L(G, ⇒1lm ) = {w ∈ T ∗ | S ⇒1 ∗

lm w}. �

Notice that if the leftmost occurrence of a nonterminal cannot be rewritten by
any rule, then the derivation is blocked.
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In the second derivation restriction type, during every derivation step, the
leftmost occurrence of a nonterminal that can be rewritten has to be rewritten.

Definition 2. Let G = (N , T , PL, PR, S) be a one-sided random context
grammar. The type-2 direct leftmost derivation relation over V ∗, symbolically
denoted by ⇒2lm , is defined as follows. Let u, x, v ∈ V ∗ and A ∈ N . Then,
uAv ⇒2lm uxv in G if and only if uAv ⇒ uxv in G and there is no B ∈ N and
y ∈ V ∗ such that u = u1Bu2 and u1Bu2Av ⇒ u1yu2Av in G.

Let ⇒2 n
lm and ⇒2 ∗

lm denote the nth power of ⇒2lm , for some n ≥ 0, and the
reflexive-transitive closure of ⇒2lm , respectively. The -2lm language of G is denoted
by L(G, ⇒2lm ) and defined as L(G, ⇒2lm ) = {w ∈ T ∗ | S ⇒2 ∗

lm w}. �

In the third derivation restriction type, during every derivation step, a rule is
chosen, and the leftmost occurrence of its left-hand side is rewritten.

Definition 3. Let G = (N , T , PL, PR, S) be a one-sided random context
grammar. The type-3 direct leftmost derivation relation over V ∗, symbolically
denoted by ⇒3lm , is defined as follows. Let u, x, v ∈ V ∗ and A ∈ N . Then,
uAv ⇒3lm uxv in G if and only if uAv ⇒ uxv in G and alph(u) ∩ {A} = ∅.

Let ⇒3 n
lm and ⇒3 ∗

lm denote the nth power of ⇒3lm , for some n ≥ 0, and the
reflexive-transitive closure of ⇒3lm , respectively. The -3lm language of G is denoted
by L(G, ⇒3lm ) and defined as L(G, ⇒3lm ) = {w ∈ T ∗ | S ⇒3 ∗

lm w}. �

Notice the following difference between the second and the third type. In the
former, a leftmost occurrence of a rewritable nonterminal is chosen first, and
then, a choice of a rule with this nonterminal on its let-hand side is made. In the
latter, a rule is chosen first, and then, the leftmost occurrence of its left-hand
side is rewritten.

2.2 Denotation of Language Families

Throughout the rest of this paper, the language families under discussion are
denoted in the following way. The families of context-free languages, context-
sensitive languages, and recursively enumerable languages are denoted by L ε

CF,
LCS, and L ε

RE, respectively.
The language family generated by one-sided random context grammars is de-

noted by L ε
ORC. The language families generated by one-sided random context

grammars with type-1 leftmost derivations, one-sided random context gram-
mars with type-2 leftmost derivations, and one-sided random context grammars
with type-3 leftmost derivations are denoted by L ε

ORC( ⇒1lm ), L ε
ORC( ⇒2lm ), and

L ε
ORC( ⇒3lm ), respectively.
The notation without ε stands for the corresponding propagating family. For

example, LORC denotes the language family generated by propagating one-sided
random context grammars.

3 Results

In this section, we prove results I through III, given next.
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I. One-sided random context grammars with type-1 leftmost derivations char-
acterize L ε

CF (Theorem 1). An analogical result holds for propagating one-
sided random context grammars (Theorem 2).

II. One-sided random context grammars with type-2 leftmost derivations char-
acterize L ε

RE (Theorem 3). Propagating one-sided random context grammars
with type-2 leftmost derivations characterize LCS (Theorem 4).

III. One-sided random context grammars with type-3 leftmost derivations char-
acterize L ε

RE (Theorem 5). Propagating one-sided random context grammars
with type-3 leftmost derivations characterize LCS (Theorem 6).

3.1 Type-1 Leftmost Derivations

First, we consider one-sided random context grammars with type-1 leftmost
derivations.

Lemma 1. For every context-free grammar G, there is a one-sided random con-
text grammar H such that L(H, ⇒1lm ) = L(G). Furthermore, if G is propagating,
then so is H.

Proof. Let G = (N , T , P , S) be a context-free grammar. Construct the one-sided
random context grammar H = (N , T , P ′, P ′, S), where

P ′ =
{�A→ x, ∅, ∅	 | A→ x ∈ P

}

As the rules in P ′ have their permitting and forbidding contexts empty, any
successful type-1 leftmost derivation in H is also a successful derivation in G,
so the inclusion L(H, ⇒1lm ) ⊆ L(G) holds. On the other hand, let w ∈ L(G) be
a string successfully generated by G. Then, it is well known that there exists a
successful leftmost derivation of w in G. Observe that such a leftmost derivation
is also possible in H . Thus, the other inclusion L(G) ⊆ L(H, ⇒1lm ) holds as well.
Finally, notice that whenever G is propagating, then so is H . Hence, the theorem
holds. �


Lemma 2. For every one-sided random context grammar G, there is a context-
free grammar H such that L(H) = L(G, ⇒1lm ). Furthermore, if G is propagating,
then so is H.

Proof. Let G = (N , T , PL, PR, S) be a one-sided random context grammar.
In what follows, symbols 〈 and 〉 are used to clearly unite more symbols into a
single compound symbol. Construct the context-free grammar

H =
(
N ′, T, P, 〈S, ∅〉)

in the following way. Initially, set N ′ = {〈A,Q〉 | A ∈ N , Q ⊆ N} and P = ∅
(without any loss of generality, we assume that N ′∩V = ∅). Perform (1) and (2),
given next:
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(1) for each �A→ y0Y1y1Y2y2 · · ·Yhyh, U,W 	 ∈ PR, where yi ∈ T ∗, Yj ∈ N , for
all i and j, 0 ≤ i ≤ h, 1 ≤ j ≤ h, for some h ≥ 0, and for each 〈A,Q〉 ∈ N ′

such that U ⊆ Q and W ∩Q = ∅, add the following rule to P :

〈A,Q〉 → y0〈Y1, Q ∪ {Y2, Y3, . . . , Yh}〉y1
〈Y2, Q ∪ {Y3, . . . , Yh}〉y2
...

〈Yh, Q〉yh
(2) for each �A → y0Y1y1Y2y2 · · ·Yhyh, ∅,W 	 ∈ PL, where yi ∈ T ∗, Yj ∈ N , for

all i and j, 0 ≤ i ≤ h, 1 ≤ j ≤ h, for some h ≥ 0, and for each 〈A,Q〉 ∈ N ′,
add the following rule to P :

〈A,Q〉 → y0〈Y1, Q ∪ {Y2, Y3, . . . , Yh}〉y1
〈Y2, Q ∪ {Y3, . . . , Yh}〉y2
...

〈Yh, Q〉yh
Before proving that L(H) = L(G, ⇒1lm ), let us give an insight into the con-
struction. As G always rewrites the leftmost occurrence of a nonterminal, we
use compound nonterminals of the form 〈A,Q〉 in H , where A is a nonterminal,
and Q is a set of nonterminals that appear to the right of this occurrence of A.
When simulating rules from PR, the check for the presence and absence of sym-
bols is accomplished by using Q. Also, when rewriting A in 〈A,Q〉 to some y, the
compound nonterminals from N ′ are generated instead of nonterminals from N .

Rules from PL are simulated analogously; however, notice that if the permit-
ting set of such a rule is nonempty, it is never applicable in G. Therefore, such
rules are not introduced to P ′. Furthermore, since there are no nonterminals to
the left of the leftmost occurrence of a nonterminal, no check for their absence
is done.

Clearly, L(G, ⇒1lm ) ⊆ L(H). The opposite inclusion, L(H) ⊆ L(G, ⇒1lm ),
can be proved by analogy with the proof of Lemma 1 by simulating the leftmost
derivation of every w ∈ L(H) by G. Observe that since the check for the presence
and absence of symbols in H is done in the second components of the compound
nonterminals, each rule introduced to P in (1) and (2) can be simulated by a
rule from PR and PL from which it is created.

Finally, notice that whenever G is propagating, then so is H . Hence, the
theorem holds. �

Theorem 1. L ε

ORC( ⇒1lm ) = L ε
CF

Proof. By Lemma 1, L ε
CF ⊆ L ε

ORC( ⇒1lm ). By Lemma 2, L ε
ORC( ⇒1lm ) ⊆ L ε

CF.
Consequently, L ε

ORC( ⇒1lm ) = L ε
CF, so the theorem holds. �


Theorem 2. LORC( ⇒1lm ) = LCF

Proof. Since it is well-known that any context-free grammar that does not gener-
ate the empty string can be converted to an equivalent propagating context-free
grammar, this theorem follows from Lemmas 1 and 2. �
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3.2 Type-2 Leftmost Derivations

Next, we turn our attention to one-sided random context grammars with type-2
leftmost derivations.

Lemma 3. For every one-sided random context grammar G, there is a one-
sided random context grammar H such that L(H, ⇒2lm ) = L(G). Furthermore,
if G is propagating, then so is H.

Proof. Let G = (N , T , PL, PR, S) be a one-sided random context grammar. We
construct the one-sided random context grammar H in such a way that always
allows it to rewrite an arbitrary occurrence of a nonterminal. Construct

H =
(
N ′, T, P ′

L, P
′
R, S

)

as follows. Initially, set N̄ = {Ā | A ∈ N}, N̂ = {Â | A ∈ N}, N ′ = N ∪ N̄ ∪ N̂ ,
and P ′

L = P ′
R = ∅ (without any loss of generality, we assume that N , N̄ , and N̂

are pairwise disjoint). Define the function ψ from 2N to 2N̄ as ψ(∅) = ∅ and

ψ
({A1, A2, . . . , An}

)
= {Ā1, Ā2, . . . , Ān}

Perform (1) through (3), given next:

(1) for each A ∈ N ,

(1.1) add �A→ Ā, ∅, N ∪ N̂	 to P ′
L,

(1.2) add �Ā→ Â, ∅, N ∪ N̄	 to P ′
R,

(1.3) add �Â→ A, ∅, N̄ ∪ N̂	 to P ′
R;

(2) for each �A→ y, U,W 	 ∈ PR, add �A→ y, U,W 	 to P ′
R;

(3) for each �A→ y, U,W 	 ∈ PL, add �A→ y, ψ(U), ψ(W ) ∪N ∪ N̂	 to P ′
L.

Before proving that L(H) = L(G), let us informally explain (1) through (3).
Rules from (2) and (3) simulate the corresponding rules from PR and PL, re-
spectively. Rules from (1) allow H to rewrite any occurrence of a nonterminal.

Consider a sentential form x1Ax2, where x1, x2 ∈ (N ∪ T )∗ and A ∈ N . To
rewrite A in H using type-2 leftmost derivations, all occurrences of nonterminals
in x1 are first rewritten to their barred versions by rules from (1.1). Then, A
can be rewritten by a rule from (2) or (3). By rules from (1.1), every occurrence
of a nonterminal in the current sentential form is then rewritten to its barred
version. Rules from (1.2) then start rewriting barred nonterminals to hatted
nonterminals. This is done from the right to the left. Finally, hatted nonterminals
are rewritten to their original versions by rules from (1.3). This is also done from
the right to the left.

To establish L(H, ⇒2lm ) = L(G), we prove two claims. First, Claim 1 shows
how derivations of G are simulated by H . Then, Claim 2 demonstrates the
converse—that is, it shows how derivations of H are simulated by G.

Claim 1. If S ⇒n x in G, where x ∈ V ∗, for some n ≥ 0, then S ⇒2 ∗
lm x in H.
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Proof. This claim is established by induction on n ≥ 0.

Basis. For n = 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that the claim holds
for all derivations of length �, where 0 ≤ � ≤ n.

Induction Step. Consider any derivation of the form S ⇒n+1 w in G, where
w ∈ V ∗. Since n + 1 ≥ 1, this derivation can be expressed as S ⇒n x ⇒ w, for
some x ∈ V +. By the induction hypothesis, S ⇒2 ∗

lm x in H . Next, we consider
all possible forms of x⇒ w in G, covered by the following two cases—(i) and (ii).

(i) Application of �A → y, U,W 	 ∈ PR. Let x = x1Ax2 and r = �A →
y, U,W 	 ∈ PR, where x1, x2 ∈ V ∗ such that U ⊆ alph(x2) and W ∩
alph(x2) = ∅, so x1Ax2 ⇒ x1yx2 in G. If x1 ∈ T ∗, then x1Ax2 ⇒2lm x1yx2
in H by the corresponding rule introduced in (2), and the induction step
is completed for (i). Therefore, assume that alph(x1) ∩ N �= ∅. Let x1 =
z0Z1z1Z2z2 · · ·Zhzh, where zi ∈ T ∗ and Zj ∈ N , for all i and j, 0 ≤ i ≤ h,
1 ≤ j ≤ h, for some h ≥ 1. By rules introduced in (1.1),

z0Z1z1Z2z2 · · ·ZhzhAx2 ⇒2 ∗
lm z0Z̄1z1Z̄2z2 · · · Z̄hzhAx2 in H

By the corresponding rule to r introduced in (2),

z0Z̄1z1Z̄2z2 · · · Z̄hzhAx2 ⇒2lm z0Z̄1z1Z̄2z2 · · · Z̄hzhyx2 in H

By rules introduced in (1.1) through (1.3),

z0Z̄1z1Z̄2z2 · · · Z̄hzhyx2 ⇒2 ∗
lm z0Z1z1Z2z2 · · ·Zhzhyx2 in H

which completes the induction step for (i).
(ii) Application of �A → y, U,W 	 ∈ PL. Let x = x1Ax2 and r = �A →

y, U,W 	 ∈ PL, where x1, x2 ∈ V ∗ such that U ⊆ alph(x1) and W ∩
alph(x1) = ∅, so x1Ax2 ⇒ x1yx2 in G. To complete the induction step
for (ii), proceed by analogy with (i), but use a rule from (3) instead of a rule
from (2).

Observe that cases (i) and (ii) cover all possible forms of x⇒ w in G. Thus, the
claim holds. �

Set V = N ∪ T and V ′ = N ′ ∪ T . Define the homomorphism τ from V ′∗ to V ∗

as τ(A) = τ(Ā) = τ(Â) = A, for all A ∈ N , and τ(a) = a, for all a ∈ T .

Claim 2. If S ⇒2 n
lm x in H, where x ∈ V ′∗, for some n ≥ 0, then S ⇒∗ τ(x)

in G, and either x ∈ (N̄ ∪ T )∗V ∗, x ∈ (N̄ ∪ T )∗(N̂ ∪ T )∗, or x ∈ (N̂ ∪ T )∗V ∗.

Proof. This claim is established by induction on n ≥ 0.

Basis. For n = 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that the claim holds
for all derivations of length �, where 0 ≤ � ≤ n.
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Induction Step. Consider any derivation of the form S ⇒2 n+1
lm w in H , where

w ∈ V ′∗. Since n+ 1 ≥ 1, this derivation can be expressed as S ⇒2 n
lm x ⇒2lm w,

for some x ∈ V ′+. By the induction hypothesis, S ⇒∗ τ(x) in G, and either
x ∈ (N̄ ∪ T )∗V ∗, x ∈ (N̄ ∪ T )∗(N̂ ∪ T )∗, or x ∈ (N̂ ∪ T )∗V ∗. Next, we consider
all possible forms of x ⇒2lm w in H , covered by the following five cases—(i)
through (v).

(i) Application of a rule introduced in (1.1). Let �A → Ā, ∅, N ∪ N̂	 ∈ P ′
L

be a rule introduced in (1.1). Observe that this rule is applicable only if
x = x1Ax2, where x1 ∈ (N̄ ∪ T )∗ and x2 ∈ V ∗. Then,

x1Ax2 ⇒2lm x1Āx2 in H

Since τ(x1Āx2) = τ(x1Ax2) and x1Āx2 ∈ (N̄ ∪T )∗V ∗, the induction step is
completed for (i).

(ii) Application of a rule introduced in (1.2). Let �Ā → Â, ∅, N ∪ N̄	 ∈ P ′
R

be a rule introduced in (1.2). Observe that this rule is applicable only if
x = x1Āx2, where x1 ∈ (N̄ ∪ T )∗ and x2 ∈ (N̂ ∪ T )∗. Then,

x1Āx2 ⇒2lm x1Âx2 in H

Since τ(x1Âx2) = τ(x1Āx2) and x1Âx2 ∈ (N̄ ∪ T )∗(N̂ ∪ T )∗, the induction
step is completed for (ii).

(iii) Application of a rule introduced in (1.3). Let �Â → A, ∅, N̄ ∪ N̂	 ∈ P ′
R

be a rule introduced in (1.3). Observe that this rule is applicable only if
x = x1Âx2, where x1 ∈ (N̂ ∪ T )∗ and x2 ∈ V ∗. Then,

x1Âx2 ⇒2lm x1Ax2 in H

Since τ(x1Ax2) = τ(x1Âx2) and x1Ax2 ∈ (N̂ ∪T )∗V ∗, the induction step is
completed for (iii).

(iv) Application of a rule introduced in (2). Let �A → y, U,W 	 ∈ P ′
R be a rule

introduced in (2) from �A → y, U,W 	 ∈ PR, and let x = x1Ax2 such that
U ⊆ alph(x2) and W ∩ alph(x2) = ∅. Then,

x1Ax2 ⇒2lm x1yx2 in H

and
τ(x1)Aτ(x2) ⇒ τ(x1)yτ(x2) in G

Clearly, x1yx2 is of the required form, so the induction step is completed
for (iv).

(v) Application of a rule introduced in (3). Let �A→ y, ψ(U), ψ(W )∪N ∪ N̂	 ∈
P ′
L be a rule introduced in (3) from �A→ y, U,W 	 ∈ PL, and let x = x1Ax2

such that ψ(U) ⊆ alph(x1) and
(
ψ(W ) ∪N ∪ N̂) ∩ alph(x1) = ∅. Then,

x1Ax2 ⇒2lm x1yx2 in H

and
τ(x1)Aτ(x2) ⇒ τ(x1)yτ(x2) in G

Clearly, x1yx2 is of the required form, so the induction step is completed
for (v).
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Observe that cases (i) through (v) cover all possible forms of x ⇒2lm w in H .
Thus, the claim holds. �

We now prove that L(H, ⇒2lm ) = L(G). Consider Claim 1 with x ∈ T ∗. Then,
S ⇒∗ x in G implies that S ⇒2 ∗

lm x in H , so L(G) ⊆ L(H, ⇒2lm ). Consider
Claim 2 with x ∈ T ∗. Then, S ⇒2 ∗

lm x in H implies that S ⇒∗ x in G, so
L(H, ⇒2lm ) ⊆ L(G). Consequently, L(H, ⇒2lm ) = L(G).

Finally, notice that whenever G is propagating, then so is H . Hence, the
theorem holds. �

Lemma 4. L ε

ORC( ⇒2lm ) ⊆ L ε
RE

Proof. This inclusion can be obtained by standard simulations, so we leave the
proof to the reader. �

Theorem 3. L ε

ORC( ⇒2lm ) = L ε
RE

Proof. Since L ε
ORC = L ε

RE (see Theorem 2 in [27]), Lemma 3 implies that
L ε

RE ⊆ L ε
ORC( ⇒2lm ). By Lemma 4, L ε

ORC( ⇒2lm ) ⊆ L ε
RE. Consequently, we have

that L ε
ORC( ⇒2lm ) = L ε

RE, so the theorem holds. �

Lemma 5. LORC( ⇒2lm ) ⊆ LCS

Proof. Since the length of sentential forms in derivations of propagating one-
sided random context grammars is nondecreasing, propagating one-sided random
context grammars can be simulated by linear bounded automata. A rigorous
proof of this lemma is left to the reader. �

Theorem 4. LORC( ⇒2lm ) = LCS

Proof. Since LORC = LCS (see Theorem 1 in [27]), Lemma 3 implies that LCS ⊆
LORC( ⇒2lm ). By Lemma 5, LORC( ⇒2lm ) ⊆ LCS. Consequently, we have that
LORC( ⇒2lm ) = LCS, so the theorem holds. �


3.3 Type-3 Leftmost Derivations

Finally, we consider one-sided random context grammars with type-3 leftmost
derivations.

Lemma 6. For every one-sided random context grammar G, there is a one-
sided random context grammar H such that L(H, ⇒3lm ) = L(G). Furthermore,
if G is propagating, then so is H.

Proof. Let G = (N , T , PL, PR, S) be a one-sided random context grammar. We
prove this lemma by analogy with the proof of Lemma 3. That is, we construct
the one-sided random context grammar H in such a way that always allows it
to rewrite an arbitrary occurrence of a nonterminal. Construct

H =
(
N ′, T, P ′

L, P
′
R, S

)
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as follows. Initially, set N̄ = {Ā | A ∈ N}, N ′ = N ∪ N̄ , and P ′
L = P ′

R = ∅
(without any loss of generality, we assume thatN∩N̄ = ∅). Define the function ψ
from 2N to 2N̄ as ψ(∅) = ∅ and

ψ
({A1, A2, . . . , An}

)
= {Ā1, Ā2, . . . , Ān}

Perform (1) through (3), given next:

(1) for each A ∈ N ,
(1.1) add �A→ Ā, ∅, N	 to P ′

L;
(1.2) add �Ā→ A, ∅, N̄	 to P ′

R;
(2) for each �A→ y, U,W 	 ∈ PR, add �A→ y, U,W 	 to P ′

R;
(3) for each �A→ y, U,W 	 ∈ PL, let U = {X1, X2, . . . , Xk}, and for each

U ′ ∈ {{Y1, Y2, . . . , Yk} | Yi ∈ {Xi, X̄i}, 1 ≤ i ≤ k
}

add �A→ y, U ′,W ∪ Ψ(W )	 to P ′
L (U ′ = ∅ if and only if U = ∅).

Before proving that L(G) = L(H, ⇒3lm ), let us give an insight into the construc-
tion. Rules introduced in (1) allow H to rewrite an arbitrary occurrence of a
nonterminal. Rules from (2) and (3) simulate the corresponding rules from PR

and PL, respectively.
Consider a sentential form x1Ax2, where x1, x2 ∈ (N ∪T )∗ and A ∈ N , and a

rule, r = �A→ y, U,W 	 ∈ P ′
L ∪P ′

R, introduced in (2) or (3). If A ∈ alph(x1), all
occurrences of nonterminals in x1 are rewritten to their barred versions by rules
from (1). Then, r is applied, and all barred nonterminals are rewritten back to
their non-barred versions. Since not all occurrences of nonterminals in x1 need
to be rewritten to their barred versions before r is applied, all combinations
of barred and non-barred nonterminals in the left permitting contexts of the
resulting rules in (3) are considered.

The identity L(H, ⇒3lm ) = L(G) can be established by analogy with the proof
given in Lemma 3, and we leave its proof to the reader. Finally, notice that
whenever G is propagating, then so is H . Hence, the theorem holds. �

Lemma 7. L ε

ORC( ⇒3lm ) ⊆ L ε
RE

Proof. This inclusion can be obtained by standard simulations, so we leave the
proof to the reader. �

Theorem 5. L ε

ORC( ⇒3lm ) = L ε
RE

Proof. Since L ε
ORC = L ε

RE (see Theorem 2 in [27]), Lemma 6 implies that
L ε

RE ⊆ L ε
ORC( ⇒3lm ). By Lemma 7, L ε

ORC( ⇒3lm ) ⊆ L ε
RE. Consequently, we have

that L ε
ORC( ⇒3lm ) = L ε

RE, so the theorem holds. �

Lemma 8. LORC( ⇒3lm ) ⊆ LCS

Proof. This lemma can be established by analogy with the proof of Lemma 5.

Theorem 6. LORC( ⇒3lm ) = LCS

Proof. Since LORC = LCS (see Theorem 1 in [27]), Lemma 6 implies that LCS ⊆
LORC( ⇒3lm ). By Lemma 8, LORC( ⇒3lm ) ⊆ LCS. Consequently, we have that
LORC( ⇒3lm ) = LCS, so the theorem holds. �
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4 Concluding Remarks

In this final section, we compare the results achieved in the previous section
with some well-known results of formal language theory. More specifically, we
relate the language families generated by one-sided random context grammars
with leftmost derivations to the language families generated by random con-
text grammars with leftmost derivations (in what follows, by random context
grammars, we always mean random context grammars with both permitting and
forbidding contexts, see [9] for the details).

The language families generated by random context grammars, random con-
text grammars with type-1 leftmost derivations, random context grammars with
type-2 leftmost derivations, and random context grammars with type-3 leftmost
derivations are denoted by L ε

RC, L
ε
RC( ⇒1lm ), L ε

RC( ⇒2lm ), and L ε
RC( ⇒3lm ), respec-

tively (see [9] for the definitions of all these families). The notation without ε
stands for the corresponding propagating family. For example, LRC denotes the
language family generated by propagating random context grammars.

The fundamental relationships between these families are summarized next.

Corollary 1. L ε
CF ⊂ LRC ⊂ LORC = LCS ⊂ L ε

ORC = L ε
RC = L ε

RE

Proof. This corollary follows from Theorems 1 and 2 in [27] and from Theo-
rems 1.2.4 and 1.2.5 in [9]. �

Considering type-1 leftmost derivations, we significantly decrease the power of
both one-sided random context grammars and random context grammars.

Corollary 2. L ε
ORC( ⇒1lm ) = L ε

RC( ⇒1lm ) = L ε
CF

Proof. This corollary follows from Theorem 1 in the previous section and from
Theorem 1.4.1 in [9]. �

Type-2 leftmost derivations increase the generative power of propagating ran-
dom context grammars, but the generative power of random context grammars
remains unchanged.

Corollary 3

(i) LORC( ⇒2lm ) = LRC( ⇒2lm ) = LCS

(ii) L ε
ORC( ⇒2lm ) = L ε

RC( ⇒2lm ) = L ε
RE

Proof. This corollary follows from Theorems 3 and 4 in the previous section and
from Theorem 1.4.4 in [9]. �

Finally, type-3 leftmost derivations are not enough for propagating random con-
text grammars to generate the family of context-sensitive languages.

Corollary 4

(i) LRC( ⇒3lm ) ⊂ LORC( ⇒3lm ) = LCS

(ii) L ε
ORC( ⇒3lm ) = L ε

RC( ⇒3lm ) = L ε
RE

Proof. This corollary follows from Theorems 5 and 6 in the previous section,
from Theorem 1.4.5 in [9], and from Remarks 5.11 in [10]. �
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