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Preface

This Festschrift is dedicated to Professor Jürgen Dassow on the occasion of his
65th birthday on July 11, 2012. The volume contains articles on recent research
in the theory of automata, formal languages, biologically inspired computations,
and related topics. The contributing authors – leading researchers, colleagues,
and friends – honor Jürgen Dassow with papers covering a wide range of topics
in the field in which he has been very active for many years.

Jürgen Dassow studied mathematics at the University of Rostock. He ob-
tained his doctoral degree (Dr. rer. nat.) with the dissertation Über das Ver-
halten von lokalen Ringen bei monoidalen Transformationen in 1972 and his
habilitation (Dr. rer. nat. habil.) with the habilitationsschrift Ein modifizierter
Vollständigkeitsbegriff in einer Algebra von Automatenabbildungen in 1978, both
from the University of Rostock. He started his academic career as a research as-
sociate in Rostock. In 1980, Jürgen Dassow took a position as a lecturer in
Magdeburg, where he later became a professor of mathematics in 1987 and a
professor of computer science in 1992.

As a scientist, he is particularly known for his work on regulated rewriting and
on cooperating distributed grammar systems. Further main areas of his research
are grammatical picture generation, Lindenmayer systems, and biologically in-
spired formalisms. These five topics have also been chosen for the illustration
appearing on the cover of this book. The green tree in the center of the picture
was obtained after graphically interpreting a string generated by a Lindenmayer
system. The speech balloons emerging from birds residing in the tree symbolize
the connection between natural and formal languages. The picture in the upper
right corner shows symbolically a part of a DNA strand that stands for the work
inspired by biology, while the one in the upper left corner represents a chain
code picture that emblematizes the work on grammatical picture generation.
The speech balloon in the lower left corner contains a derivation tree from which
an unwanted part is to be cut – regulating a rewriting process. The picture in the
lower right corner symbolizes a cooperating distributed grammar system which
in turn models some kind of ‘blackboard architecture’ where different agents
perform actions toward a common solution. Further interpretations are welcome
and left to the reader . . .

To date, Jürgen Dassow has been the author/coauthor of more than 200
scientific papers, four monographs, and 18 proceedings. He has given at least
100 lectures at conferences and universities in 18 countries. Moreover, he has
been a very active organizer of scientific exchange. He is the Editor-in-Chief of
the Journal of Automata, Languages and Combinatorics (JALC), the successor
of the renowned East German Journal of Information Processing and Cybernet-
ics (EIK), and has organized several international conferences and workshops,
for instance the First International Workshop on Descriptional Complexity of
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Automata, Grammars and Related Structures (DCAGRS), one of the two pre-
decessors of the workshop Descriptional Complexity of Formal Systems (DCFS),
and the Second International Conference on Developments in Language The-
ory (DLT). In addition, Jürgen Dassow renders outstanding organizing services
within the German community. In 1992, he was one of the founders of the special
interest group on Automata and Formal Languages of the German Association
of Informatics (Gesellschaft für Informatik). For 14 years, he served as a member
of its Steering Committee, from 1993 to 2003 as Chairman. The Theorietag Au-
tomaten und Formale Sprachen, the annual meeting of the special interest group,
was organized by Jürgen Dassow in 1991, 2001, and 2011. Moreover, he was the
scientific host to five researchers who spent one or two years at the University
of Magdeburg with a Fellowship from the Alexander von Humboldt Foundation
of Germany. Many other guests were supervised during short-term visits.

Beside his research activities, Jürgen Dassow took responsibility in the admin-
istration of the University of Magdeburg. He served as the rector and prorector
of the university, and as dean of the Departments of Mathematics and Computer
Science. Last but not least, he has supervised several diploma and PhD theses.

The various authors and their contributions to this Festschrift cover many ar-
eas of automata and language theory and reflect the international reputation of
Jürgen Dassow. This volume contains papers on picture languages, cooperating
distributed systems of automata, quantum automata, grammar systems, online
computation, word equations, biologically motivated formal systems, controlled
derivations, descriptional complexity, as well as on ‘classic’ topics of automata
and language theory. The contributions have been refereed by at least two re-
viewers according to usual standards.

We would like to thank all those who helped to realize this Festschrift, the
authors and the referees for their contributions and for timely cooperation, as
well as Alfred Hofmann and Anna Kramer from Springer for their friendly col-
laboration and help in the preparation of this volume.

Dear Professor Dassow, dear Jürgen, we are grateful for all the ideas and
inspiring work you shared with us. We wish you many more years full of pleasure.
Happy Birthday!

April 2012 Henning Bordihn
Martin Kutrib
Bianca Truthe
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Undecidability of State Complexities Using Mirror Images . . . . . . . . . . . . . 221
Arto Salomaa

Asymptotic Subword Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Ludwig Staiger

On Grammars Controlled by Parikh Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 246
Ralf Stiebe

On the Nonterminal Complexity of Tree Controlled Grammars . . . . . . . . . 265
György Vaszil

One-Way Finite Automata with Quantum and Classical States . . . . . . . . 273
Shenggen Zheng, Daowen Qiu, Lvzhou Li, and Jozef Gruska

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291



Peptide Computers

M. Sakthi Balan1 and Helmut Jürgensen2
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London, Ontario, Canada, N6A 5B7
hjj@csd.uwo.ca

Abstract. A peptide computer is a formal model for computations
based on peptide-antibody interactions. We provide a rigorous detailed
formal model and prove that this model leads to a well-defined com-
putational behaviour. We review existing results concerning the power
and limitations of peptide computers and the types of non-determinism
arising in such computers on the basis of this formal model.

1 Introduction

To consider the interactions between peptides and antibodies as a model of com-
putation was proposed in 2001 by Hug and Schuler [30]. Like a DNA computer,
a peptide computer utilizes the massive parallelism of chemical reactions. Some
of the potential advantages of a peptide computer compared to other biologi-
cally inspired models of computing could be the larger number of basic building
blocks, the different binding affinities, and a potentially greater tolerance to
experimental conditions [30].

The classical model of computation, often referred to as the Turing model,
relies on the intuition of writing symbols on a sheet of paper. Several models rely-
ing on other perceived modes of computation have been formulated, for example,
models relying on biological or physical or chemical phenomena. The fundamen-
tal discussion regarding the essence of computing is far from settled. Even shortly
after the formulation of Church’s or Turing’s theses, there were well-founded for-
mal mathematical and philosophical arguments stating that the concept of Tur-
ing computability was too wide (Péter [40]) or too narrow (Kalmár [36]). With
our increased, but still and likely ever incomplete, understanding of natural pro-
cesses, many aspects of computability keep undergoing scrutiny (e.g. [29, 41]).

Natural processes can be modelled as computations at different levels. One
can work at a behavioural level, a phenomenological level or at the actual level
of the respective science involved. For any computing model, some abstraction
is needed.

A formal mathematical model of a peptide computer was introduced by Balan
in 2004 [3]. This model involved an ‘agent’ – like a human in a laboratory –
to supervise the process and to evaluate the respective situation. This model

H. Bordihn, M. Kutrib, and B. Truthe (Eds.): Dassow Festschrift 2012, LNCS 7300, pp. 1–29, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M.S. Balan and H. Jürgensen

is referred to as look-and-do by us in [8]. A more rigorous, but less intuitive
alternative definition, which does not need such an agent, was indicated by us
briefly in [8] and also in [4]. Certain essential details were omitted there because
of space limitations. Below we expand this definition by providing all details and
we augment it by explanations.

Several special results by Balan, Krithivasan and Sivasubramanyam [2, 10–12]
published between 2001 and 2004 concern the simulation of Boolean functions by
and the computational power of, peptide computers1. Much of this is summarized
in the survey [9]. Depending on the details of the definition, a peptide computer
is at least as powerful as a Turing machine [7, 8, 10]. In view of the ongoing
discussions regarding the foundations of computability, one could envisage a
model of peptide computing which is even more powerful than Turing machines.

When studying computing models inspired by natural processes one may have
several complementary goals, for instance:

– Understand the natural processes.
– Model the processes for simulation.
– Use the processes to perform computations.
– Use the model to understand aspects of computation.
– Use the model to build computers.
– Simulate the model to build computers.

In this respect, peptide computers are similar to other models of computation in-
spired by natural phenomena. The mathematical model of peptide computing is
an abstraction of the bio-chemical processes, which attempts to capture essential
properties and ignores issues which appear to be less important. As is common
in the literature on computing based on biological, chemical or other processes
occurring in nature, we focus on the mathematical aspects. It is obvious that, at
some point, in-vitro experiments would be needed to validate the practicability
of the proposed computations.

Our focus is on the mathematical model and its potential. For the bio-chemical
background we refer to [17]. In the book Immunological Computation [21] one
finds a much simplified introduction and a huge and useful, but not quite repre-
sentative, list of references. Also several interesting applications including fault-
tolerant computing and intrusion detection are presented there.

1 There seems to be a recent book Peptide Computing, which we have not seen yet [42],
ISBN 9786131428623. We have not found this book in any library search across the
world. According to the publishers the book “exclusively contains articles from the
free Wikipedia Encyclopedia, which means that we are not able to send a review
copy of the book because the content is available freely on the internet . . .” (email of
9 December, 2011 from l.sabjan at vdm-vsg.de). The book is announced to have 112
pages. On the internet we found one Wikipedia article on Peptide Computing as a
stub (end of November 2011) and about five additional pages on the topic which are
not copyrighted. According to the information available, this book is not a relevant
source and will be ignored in the sequel.
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Our conclusions in the present paper refer to the mathematical model. One
hopes that they translate into the reality of the bio-chemical world. If the ab-
straction leads to unrealistic conclusions, the model will have to be adjusted.
The intention is, however, that the conclusions are not only realistic, but lead
to insights into the natural processes.

As is the case with other models of computing based on natural phenomena –
like reaction systems [23], DNA computing [38], membrane computing [16, 39],
physarum machines [1] or soliton automata [14, 22] – the following fundamental
problems – among many other ones – need to be solved for peptide computing:

– How should one encode the input in a natural and efficient fashion? How
can this be programmed?

– How can one automate the computing procedure? How does one obtain the
required substances and the right amounts?

– How can one decode the system state to obtain the result of a computation?
– How does one deal with inherent non-determinism?

Several aspects of the first three issues are addressed in [5] and [13]. For com-
putations requiring huge bounded or even unbounded resources, an incremen-
tal strategy is proposed in [13] to provide additional molecules when needed2.
Automation or programming of the computation control is studied in [5]. For
example, an instruction set for peptide computing based on Head’s framework
for aqueous computing architecture [27] is proposed.

Computational processes are often non-deterministic, depending on the level
of detail at which they are observed. They may be non-deterministic at a micro-
level so that state changes are achieved non-deterministically, while at a
macroscopic level the state changes are deterministic; they may also be truly
non-deterministic at the macroscopic level, meaning that a state may have mul-
tiple successor states. The issue of non-determinism in peptide computing is
briefly addressed in [4]. Non-determinism is inherent to processes when the state-
transition is absolutely unclear. One knows the potential next states, but does
not know anything about which one it will be. Using probabilities in such a
situation does not capture the problem. In natural processes, non-determinism
can express itself in various ways: (1) as a transient uncertainty about the next
state3; (2) as an uncertainty about when the next state is reached; (3) as an
uncertainty as to how the next state is reached; (4) as an uncertainty about
the next state. One attempts to exploit some of these uncertainties by paral-
lelism: the process is run in parallel; the states reached are evaluated. If parallel
computing does not cost anything, exponential time reduces to polynomial-time.

A peptide, a sequence of amino acids attached by covalent bonds called pep-
tide bonds, consists of recognition sites, called epitopes, for the antibodies. A
peptide can contain more than one epitope for the same or different antibodies.

2 This is similar to a Turing machine being given additional symbols and additional
tape space when needed; for peptide computing (or DNA computing), the details
are significantly more complicated, however.

3 A similar phenomenon is encountered in asynchronous circuits.
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With each antibody, which attaches to a specific epitope, a binding power is
associated, called its affinity. When antibodies compete for recognition sites
– which may overlap in the given peptide – then the antibodies with greater
affinity have higher priority. For further information regarding the bio-chemical
processes themselves we refer to, for example, [17]. Dynamic global computing
models for the immune system are presented in [31, 43].

In [30] it was shown how to solve the satisfiability problem using peptide
computing and in a subsequent paper [12] it was shown how to solve two further
NP-complete problems – Hamiltonian circuit and exact cover by 3-set . Moreover
in [12], a simulation of a Turing machine by peptide computing is presented to
show that peptide computing is computationally complete in the sense of Turing
computability. Towards formalizing peptide computing, a model of a peptide
computer was proposed in [7, 8]. A formal peptide computer defines the notion
of a step and it was also shown in [8] that such a computer can be simulated
by a Turing machine under some conditions. A survey on peptide computing as
investigated to this point is presented in [9]. The model used in these articles
is formal enough to convey the ideas of the processes involved, but not rigorous
enough to lend itself to formal proofs. In this paper, we remedy this situation by
providing a mathematically accurate definition of a peptide computer, a peptide
program and related notions.

We model molecules as words over an appropriate alphabet; epitopes are in-
fixes4 of such words. Epitopes can overlap. One could ignore the internal struc-
ture of epitopes and their mutual arrangements and thus arrive at a computing
model solely based on finding optimal matchings between sets of complementary
entities with pairwise matching preferences. This model is introduced informally
in [26, 32, 33] as matching automaton. The idea is illustrated using the Stable
Marriage Problem (see, for example, [24, 25, 37]). The computational power of
this more abstract automaton model, also based on antibody reactions, has not
yet been explored.

Also other models of computation, inspired by natural processes, rely on
matching strings or patterns. For DNA computing string matching is one of
the key features. Using quite different basic concepts, both peptide computing
and DNA computing can simulate universal Turing machines. As an automaton
theoretic abstraction of DNA computing the model of Watson-Crick automata
has been studied (see the survey [20]), including parallel communicating Watson-
Crick automaton systems [18, 19]. In terms of language acceptance such systems
are at most as powerful as linearly bounded Turing machines.

This paper is organized as follows: After this introductory section, we sum-
marize the background information in Section 2. Section 3 is the centre part of
this article. We offer a rigorous definition of the concepts needed for the micro-
structure of computing based on peptide-antibody interactions, and we prove
that these definitions lead to a solid basis for an automaton-theoretic interpreta-
tion of processes using such interactions. We discuss the timing of such processes.

4 A word u is an infix of a word w if there are words x and y such that xuy = w.
Infixes or often also referred to as factors or subwords.
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In Section 4, we indicate how, using our rigorous model, the solution of problems
by peptide computing could be formulated. We also address complexity issues
there. We review ideas about non-determinism briefly in Section 5. Originally,
we planned the present article to be devoted to the sources of non-determinism
exclusively. This issue required the rigorous formulation of peptide computing
as it is now presented in Section 3. To keep this paper within limits, we decided
to defer the detailed treatment of non-determinism to another article. The main
point of this paper is to achieve a definition of peptide computation which is
both meaningful and manageable.

2 Preliminaries

For a set S, |S| denotes the cardinality of S. When S is a singleton set, S = {x}
say, we often omit the set brackets, that is, we write x instead of {x}. For sets
S and T , consider a relation � ⊆ S × T . Then �−1 is the relation �−1 = {(t, s) |
(s, t) ∈ �} and, for s ∈ S, �(s) = {t | (s, t) ∈ �} and dom � = {s | s ∈ S, �(s) �=
∅}. We use the notation � : S

◦→ T to denote a partial mapping of S into T . In
that case dom � is the subset of S on which � is defined. The notation � : S → T
means that � is a total mapping of S into T , hence dom � = S in this case.

Let S be a non-empty set. A multiset on S is a pair M = (I, ι) where I is a
set, the index set, and ι is a mapping of I into S, the index mapping. A multiset
M is non-empty, if I is non-empty; it is finite if I is finite. For s ∈ S, the number
multM (s) = |{i | i ∈ I, ι(i) = s}| is the multiplicity of s. When I is countable,
we write M = {mi | i ∈ I} where mi = ι(i) is implied. With this notation, it
is possible that mi = mj while i �= j for i, j ∈ I. We use modified standard
symbols for set theoretic operations also for multisets: However, on multisets,
union (∪m) is disjoint union and both intersection (∩m) and difference (\m)
take multiplicities into account. We also need the operation ×m of direct (or
Cartesian) product of multisets. We write s ∈m M if multM (s) > 0. Inclusion
of multisets is denoted by ⊆m. Formally this can be handled by appropriate
operations on the index sets5. Multisets as defined above are also called families
in the literature. The usual definition of a multiset as a set {(s,mult(s)) | s ∈ S}
of pairs is adequate only, if all multiplicities are finite and if different instances
of the same element need not be distinguished. In several parts of this paper, the
latter point is extremely important. In those cases, which we have indicated, it
is crucial that the reader consider distinguishable instances of the same object
rather than its multiplicity.

By N and N0 we denote the sets of positive integers and of non-negative
integers, respectively. The set B = {0, 1} represents the set of Boolean values.
By R we denote the set of real numbers, and R+ = {r | r ∈ R, r ≥ 0}. For
i, j ∈ N0 with i ≤ j, the interval [i, j] is the set {i, i+ 1, i+ 2, . . . , j}.

An alphabet is a non-empty set. Let X be an alphabet. Then X∗ is the
set of all words over X including the empty word λ, and X+ = X∗ \ {λ}.
5 For a rigorous treatment of multisets see [15, 34].
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For a word w ∈ X∗, |w| is its length. Let w = x0x1 · · ·xn−1 with n = |w|
and x0, x1, . . . , xn−1 ∈ X . For i and j with 0 ≤ i ≤ j < n, define w[i, j] =
xixi+1 · · ·xj . Any word u ∈ X∗ with w ∈ uX∗ is a prefix of w; let Pref(w)
be the set of prefixes of w; the words in Pref+(w) = {u | u ∈ X+, w ∈ uX+}
are the proper prefixes of w. One defines suffixes by left-right duality. A word
u ∈ X∗ with w ∈ X∗u is a suffix of w; let Suff(w) be the set of suffixes of w;
the words in Suff+(w) = {u | u ∈ X+, w ∈ X+u} are the proper suffixes of w.
Similarly, a word u ∈ X∗ with w ∈ X∗uX∗ is an infix of w, Inf(w) is the set of
infixes of w and Inf+(w) = {u | u ∈ X+, u ∈ Inf(w), u �= w} is the set of proper
infixes of w. A language over X is a subset of X∗. For a language L over X
and Y ∈ {Pref,Pref+, Inf, Inf+}, Y (L) =

⋃
w∈L Y (w). Finally two words u and v

overlap if u has a proper prefix which is a proper suffix of v or vice versa.
In this paper we use the following simplifying terminology: Two words u and

v are in conflict, if any one of the following conditions holds true:

1. u ∈ Pref+(v) or vice versa;

2. u ∈ Suff+(v) or vice versa;

3. u ∈ Inf+(v) or vice versa;

4. u and v overlap.

Let L be a language over X and w ∈ X∗. An L-decomposition of w is a
pair of sequences (u0, u1, . . . , uk), (v0, v1, . . . , vk−1) of words in X∗ such that
u0v0u1v1 · · · vk−1uk = w, v0, v1, . . . , vk−1 ∈ L and u0, u1, . . . , uk /∈ X∗LX∗. A
language in X+ such that every word has a unique L-decomposition is called a
solid code [35]. Consider w ∈ X+ of length n, say w = x0x1 · · ·xn−1 with xi ∈ X
for i = 0, 1, . . . , n − 1. An L-decomposition of w as above can be specified by
a set of pairs {(il, jl) | l = 0, 1, . . . , k − 1} such that, for l = 0, 1, . . . , k − 1,
vl = w[il, jl]. Let ∂L(w) be the set of L-decompositions when represented in this
way. Let D(L) = {(w, d) | w ∈ X∗, d ∈ ∂L(w)} be the set of words together with
all their L-decompositions.

To illustrate the concept of L-decomposition, consider the language L =
{ab, bb, aba} over the alphabet X = {a, b} and the word w = ababbaaba. The
word w has six L-decompositions as follows:

(λ, λ, ba, λ) (ab, ab, aba)
(λ, λ, ba, a) (ab, ab, ab)
(λ, a, a, λ) (ab, bb, aba)
(λ, a, a, a) (ab, bb, ab)
(λ, λ, a, λ) (aba, bb, aba)
(λ, λ, a, a) (aba, bb, ab)

Hence ∂L(w) consists of the following six sets:{
[0, 1], [2, 3], [6, 8]

}
,
{
[0, 1], [2, 3], [6, 7]

}
,{

[0, 1], [3, 4], [6, 8]
}
,
{
[0, 1], [3, 4], [6, 7]

}
,{

[0, 2], [3, 4], [6, 8]
}
,
{
[0, 2], [3, 4], [6, 7]

}
.
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The words ab and bb overlap; so do ab and aba. Moreover, ab is also a proper
prefix of aba. The words bb and aba each overlap themselves. Obviously, L is not
a solid code.

3 Peptide Computing – The Model

We provide the formal definition of peptide computing as proposed in Section 5
of [8], but modified and expanded to greater detail. We also include intuitive
explanations.

Definition 1. A peptide computer is a quintuple P = (X,E,A, α, β) with the
following properties:

1. X is a finite alphabet;
2. E ⊆ X+ is a language;
3. A is a countable alphabet with A ∩X∗ = ∅;
4. α ⊆ E ×A is a relation;
5. β : E ×A→ R+ is a mapping such that β(e, a) > 0 if and only if (e, a) ∈ α.

The components of the quintuple P = (X,E,A, α, β), which define a peptide
computer, have the following intuitive meanings:

1. The symbols in X are the basic building units, like molecules, of which larger
units are made.

2. The words in E represent molecules which can serve as epitopes.
3. The symbols in A represent antibodies. Their internal structure is not rele-

vant for the model.
4. The relation α states which antibodies can be attached to which epitopes.

Thus (e, a) ∈ α means that antibody a can be attached to the epitope e.
5. The value of β(e, a) denotes the affinity between epitope e and antibody a.

In the rest of this paper we frequently use the terms antibodies or epitopes instead
of symbols or words or sequences etc. This is intended to help the intuition, but
should always be understood in the rigorous sense of Definition 1.

We now define how antibodies are attached to epitopes.

Definition 2. Let w ∈ X+, where w = x0x1 · · ·xn with x0, x1, . . . , xn ∈ X.

1. Let d ∈ ∂E(w) and τ : d
◦→ A. The partial mapping τ is legal if, for all

(i, j) ∈ dom τ , one has (
w[i, j], τ(i, j)

)
∈ α.

2. An A-attachment to w is a pair ϑ = (d, τ) with d ∈ ∂E(w) and τ : d
◦→ A

such that τ is legal.

Consider a word w ∈ X+ as above, d ∈ ∂E(w) and a partial mapping τ : d
◦→ A.

Suppose d = {(il, jl) | l = 0, 1, . . . , k − 1}. Then ϑ = (d, τ) defines a word
wϑ ∈

(
X ∪ (E ×A)

)∗
as follows:
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For all l = 0, 1, . . . , k−1, if (il, jl) ∈ dom τ , then replace the infix w[il, jl]
by the pair

(
w[il, jl], τ(il, jl)

)
in w.

If τ is legal, then wϑ ∈ (X ∪ α)∗ and ϑ is an A-attachment to w. The situation
is illustrated in Fig. 1. Here the set X ∪ α is treated as the alphabet consisting
of the symbols of the alphabet X and the pairs in the relation α. Words over
the alphabet X ∪α are thus strings of symbols in X and pairs in α. The former
represent symbols to which nothing has been attached. The latter represent
epitopes to which antibodies have been attached. This formalism retains the
information about the string forming the epitope even when an antibody is
attached to it. If at some stage such an antibody becomes unattached, the epitope
is again represented by the corresponding string over the alphabet X .

Remark 1. For each z ∈ (X ∪ α)+ there is a word w ∈ X+ and an A-attach-
ment ϑ to w such that z = wϑ. Moreover, w is unique with this property.

Proof. The word w is obtained by applying, to z, the homomorphism, which
maps every x ∈ X to itself and every pair (e, a) ∈ α to e. The A-attachment ϑ
is the inverse of this application of the homomorphism. �

In Remark 1, the word w is unique. However, ϑ need not be unique as the A-
attachment may result in z for several different E-decompositions of w. The word
w is obtained from z by stripping all attachments away from z, strip (z) = w.
Moreover, with ϑ = (d, τ) as above, we define the multisets att (z) and epi (z) on
A and E, respectively, by

multatt(z)(a) =
∣∣{(i, j) ∣∣ (i, j) ∈ dom τ ∧ τ(i, j) = a

}∣∣
and

multepi(z)(e) =
∣∣{(i, j) ∣∣ (i, j) ∈ d ∧ (strip (z))[i, j] = e

}∣∣
for a ∈ A and e ∈ E. The multiset att (z) consists of all symbols in A which are
attached in z. The multiset epi (z) consists of all words in E which occur in the
current E-decomposition d of w = strip (z).

When several epitopes and antibodies are present, conflicts can arise between
the choice of both, the epitopes and the antibodies. Epitopes in different E-
decompositions may overlap. Different antibodies may attach to the same epi-
topes. Some of these conflicts are partially resolved using affinity values. How-
ever, some non-determinism remains. The case of conflicting epitopes is illus-
trated in Fig. 2.

Our next goal is to define basic reactions. We achieve this in several steps.
First we define the situation when an antibody dominates in a certain “area”
of epitopes. Then we explain the resulting reaction in such a case. Finally, we
define the basic reactions between words in (X ∪ α)+.

Definition 3. Let z ∈ (X ∪ α)+ and a ∈ A. Let w ∈ X+, and let ϑ = (d, τ) be
such that z = wϑ. Let d

′ ∈ ∂E(w) and (i, j) ∈ d′.



Peptide Computers 9

w with d ∈ ∂E(w); vi ∈ E for i = 0, 1, . . . , 5

u0 v0 u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6

∗ ∗ ∗ ∗ ∗ ∗

w with dom τ indicated

u0 v0

.......

.......
........
............

........................................................

u1 v1 u2 v2

.......

.......
........
............

........................................................

u3 v3

.......

.......
........
............

........................................................

u4 v4 u5 v5

.......

.......
........
............

........................................................

u6

∗ ∗ ∗ ∗ ∗ ∗

z = wϑ with ϑ = (d, τ)

u0 v0

.......

.......
........
............

........................................................

a

u1 v1 u2 v2

.......

.......
........
............

........................................................

a′

u3 v3

.......

.......
........
............

........................................................

a

u4 v4 u5 v5

.......

.......
........
............

........................................................

a′′

u6

∗ ∗ ∗ ∗ ∗ ∗

Fig. 1. An A-attachment to w resulting in z. Potential binding sites are indicated by
the symbol ∗; here att (z) = {a, a′, a, a′′}.

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......

.
.......
.......
.

.......

.......

.
.......
.......
.

.......

.......

.
.......
.......
.

.......

.......

.
.......
.......
.u′

0 v′0 u′
1 v′1 u′

2 v′2 u′
3

∗ ∗ ∗d′

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............u0 v0 u1 v1 u2 v2 v3 v4 v5

d ∗ ∗ ∗ ∗ ∗ ∗
u3 = u4 = u5 = λ

Fig. 2. Conflicting epitopes in E-decompositions d and d′ of a word w. The epitopes
are indicated by the symbol ∗.

1. The symbol a is said to dominate (i, j) in z if

β
(
w[i, j], a

)
> β
(
w[i′, j′], τ(i′, j′)

)
for all (i′, j′) ∈ dom τ with [i′, j′] ∩ [i, j] �= ∅.

2. If a dominates (i, j) in z, then all pairs (i′, j′) with (i′, j′) ∈ dom τ and
[i′, j′] ∩ [i, j] �= ∅ are said to be affected (by a at (i, j)).

If an antibody a dominates an epitope e at a specific position, then this implies
that all antibodies bound to epitopes which overlap the specific instance of e
have lower affinities for their current bindings. As a result, the bindings at the
affected sites are broken, and the antibody a attaches to that occurrence of the
epitope e. This intuition guides the definition of a basic reaction.

Definition 4. Let z ∈ (X ∪ α)+ and a ∈ A. Let w ∈ X+, and let ϑ = (d, τ) be
such that z = wϑ.

1. The pair (z, a) is said to be a critical pair, if there are d′ ∈ ∂E(w) and
(i, j) ∈ d′ such that a dominates (i, j) in z. In that case, the quadruple
(z, a, i, j) is called a critical constellation.
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2. Let (z, a, i, j) be a critical constellation. A basic reaction react(i,j)(z, a) be-
tween z and a at (i, j) consists of the following steps, and results in the
multiset Res(i,j)(z, a) and the set Out(i,j)(z, a).
(a) Initially, Res(i,j)(z, a) and Out(i,j)(z, a) are empty.
(b) For each affected pair (i′, j′), a copy of τ(i′, j′) is put into Out(i,j)(z, a),

and the multiplicity multRes(i,j)(z,a)
(
τ(i′, j′)

)
of τ(i′, j′) in Res(i,j)(z, a) is

increased by one.
(c) Let Y ⊆ dom τ be the set of pairs which are not affected and let d′′ ∈

∂E(w) be such that Y ∪ (i, j) ⊆ d′′. Let ϑ̄ = (d′′, τ ′′) be the A-attachment
with dom τ ′′ = Y ∪ (i, j) and

τ ′′(p) =
{
τ(p), if p ∈ Y ,
a, if p = (i, j).

Insert a copy of wϑ̄ into Res(i,j)(z, a), that is, let multRes(i,j)(z,a)
(
wϑ̄

)
= 1.

In the reaction react(i,j)(z, a), the antibody a, which dominates (i, j) in z, at-
taches to the epitope at (i, j). Simultaneously, the antibodies previously attached
to the epitopes affected by a at (i, j), if any, are released. Together with the new
word wϑ̄ obtained from z in this fashion, they form the multiset Res(i,j)(z, a).
The set (not multiset) of antibodies released in this reaction is Out(i,j)(z, a).

Example 1. Consider the situation in Fig. 2. Let a3 and a5 be attached to v3
and v5, respectively. Nothing is attached to v4, nor to v

′
2. Let z be the result of

these attachments to w. The positions of the various parts of w are given by

w[i3, j3] = v3, w[i4, j4] = v4, w[i5, j5] = v5, w[i
′
2, j

′
2] = v

′
2

where, by assumption,

i3 < i
′
2 < j3 < i4 = j3 + 1 ≤ j4 < i5 = j4 + 1 < j′2 < j5.

Thus, {(i3, j3), (i5, j5)} ⊆ dom τ . The details of this situation are shown in
Fig. 3(a).

Let a ∈ A, and suppose that β(v3, a3) = 1, β(v5, a5) = 4 and β(v′2, a) = 5.
Then a dominates (i′2, j

′
2) in z. The three pairs (i3, j3), (i4, j4) and (i5, j5) are

affected.
Thus (z, a) is a critical pair and (z, a, i′2, j′2) is a critical constellation. The basic

reaction react(i′2,j′2)(z, a) achieves the following: After Step (b) Out(i′2,j′2)(z, a) is
the set {a3} ∪ {a5} and Res(i′2,j′2)(z, a) is the multiset {a3} ∪m {a5}. In Step (c)

the word wϑ̄ is added to Res(i′2,j′2)(z, a). Here ϑ̄ is obtained from ϑ by removing
a3 from v3 and a5 from v5, and by attaching a to v′2. The relevant part of the
resulting word wϑ̄ is shown in Fig. 3(b).

A reaction react(i,j)(z, a) is modelled as a single step. In reality it consists of
a non-deterministic sequence of substeps in which antibodies are released and
attached. For the result, the order in which such substeps occur is not important.

We also need to consider basic reactions between (instances of) words z1, z2 ∈
(X ∪ α)+. The words z1 and z2 need not be distinct.
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.......
.

.......

.......

.
.......
.......
.· · · v′2 u′

3
(a) Before:

i′2 j′2...............
...............

...............
...............v3 v4 v5i3 j3 i4 j4 i5 j5· · ·

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.......
.

.......

.......

.
.......
.......
.· · · v′2 u′

3
(b) After:

i′2 j′2...............
...............

...............
...............v3 v4 v5i3 j3 i4 j4 i5 j5· · ·

a3 a5

a

Fig. 3. The situation of Example 1 before and after the basic reaction

Definition 5. For h = 1, 2, let zh ∈ (X ∪ α)+. Let wh ∈ X+, and let ϑh =
(dh, τh) be such that zh = wh,ϑh

.

1. The pair (z1, z2) is said to be a critical pair, if there exist (i2, j2) ∈ dom τ2,
d′ ∈ ∂E(w1) and (i1, j1) ∈ d′ such that τ2(i2, j2) dominates (i1, j1) in z1 and

β
(
w1[i1, j1], τ2(i2, j2)

)
> β
(
w2[i2, j2], τ2(i2, j2)

)
.

In that case, the sixtuple (z1, z2, i2, j2, i1, j1) is said to be a critical constel-
lation.

2. Let (z1, z2, i2, j2, i1, j1) be a critical constellation and let a = τ2(i2, j2). A ba-
sic reaction react(i2,j2),(i1,j1)(z1, z2) between z1 and z2 from (i2, j2) to (i1, j1)
consists of the following steps and results in the multiset Res(i2,j2),(i1,j1)(z1, z2)
and the set Out(i2,j2),(i1,j1)(z1, z2).

(a) In the separation step sep(i2,j2)(z1, z2) the multiset Sep(i2,j2)(z1, z2) is
formed as follows:
i. Initially, Sep(i2,j2)(z1, z2) contains only z1 and z2. If z1 �= z2 then

each has multiplicity one. If z1 and z2 are different instances of the
same word z, then this word has multiplicity two. If z1 and z2 are
the same instance of the word z, then this word has multiplicity one.

ii. Decrease the multiplicity of z2 in Sep(i2,j2)(z1, z2) by one.
iii. Let τ ′2 be the restriction of τ2 to dom τ2 \ (i2, j2). Let ϑ′2 = (d2, τ

′
2).

Let z′2 = w2,ϑ′
2
.

iv. Add a and z′2 to Sep(i2,j2)(z1, z2), that is, increase their multiplicities
by one.

(b) If z1 ∈ Sep(i2,j2)(z1, z2), continue as follows:

i. Perform react(i1,j1)(z1, a) to form Res(i1,j1)(z1, a) and Out(i1,j1)(z1, a).
ii. Remove one occurrence of z1 and one occurrence of a from

Sep(i2,j2)(z1, z2).
iii. Let Res(i2,j2),(i1,j1)(z1, z2) be the multiset union of Sep(i2,j2)(z1, z2)

and Res(i1,j1)(z1, a).
iv. Let Out(i2,j2),(i1,j1)(z1, z2) = Out(i1,j1)(z1, a).



12 M.S. Balan and H. Jürgensen

(c) Otherwise: Let

Res(i2,j2),(i1,j1)(z1, z2) = Res(i1,j1)(z
′
2, a)

and let
Out(i2,j2),(i1,j1)(z1, z2) = Out(i1,j1)(z

′
2, a).

In the reaction react(i2,j2),(i1,j1)(z1, z2) one starts with the following situation:
The antibody a is bound to an epitope w2[i2, j2] in z2. In z1 there is an epitope
w1[i1, j1] to which the symbol a has a greater affinity. Then the bond in z2 is
broken, that is, the antibody a is released from z2. The resulting word is z′2. After
that, a attaches to w1[i1, j1] releasing antibodies from affected epitopes. In the
end, one has the word z′2, the word z′1 formed in the reaction react(i1,j1)(z1, a)
and the antibodies released in that reaction.

A special case arises when z1 and z2 refer to the same occurrence of the same
word z. Let w = w1 = w2. In this case, a is initially attached to w[i2, j2] and
dominates (i1, j1) in z. It follows that (i1, j1) �= (i2, j2). After the separation
step, Sep(i2,j2)(z1, z2) consists of z

′ = z′2 and a, each with multiplicity one. Then
a attaches to z′2 at (i1, j1) releasing the antibodies from the affected epitopes.

Again, a reaction react(i2,j2),(i1,j1)(z1, z2) is modelled as a single step. For both
types of basic reactions, the result is a multiset consisting of the words after the
changes and the antibodies which have been released. The output is the set of
those antibodies. Reactions occur when words in (X∪α)+ and elements of A are
present and when, in addition, dominance conditions as specified in Definitions
4 and 5 prevail. This intuition is expressed formally in the next definition.

Definition 6. Let P be a peptide computer.

1. A peptide configuration is a finite multiset of words in (X ∪ α)+ ∪A.
2. A peptide configuration Q contains a critical pair, if one of the following

conditions holds:
(a) there are z, a ∈ Q and i, j such that (z, a, i, j) is a critical constellation

or
(b) there are z1, z2 ∈ Q and i1, j1, i2, j2 such that (z1, z2, i2, j2, i1, j1) is a

critical constellation.
3. A peptide configuration is said to be stable if it does not contain any critical

pair.
4. The base of a peptide configuration Q is the multiset base (Q) of symbols in
A and words in X+ with multiplicities as follows:

multbase(Q)(a) = multQ(a) +
∑

z∈(X∪α)+

multQ(z) ·multatt(z)(a)

and
multbase(Q)(w) =

∑
z∈(X∪α)+

w=strip(z)

multQ(z)

for a ∈ A and w ∈ X+.
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Peptide configurations denote the states of the computer P . If Q is a peptide
configuration, then also base (Q) is a peptide configuration. If a Q is stable, then
there are no critical pairs which could be involved in basic reactions. On the
other hand, if there is a critical pair, a reaction will occur leading to a new
configuration. This process continues non-deterministically without any input
from the environment; it stops when a stable configuration is reached.

We say that a peptide configuration contains a critical constellation (z, a, i, j)
or (z1, z2, i2, j2, i1, j1) if it contains (z, a) or (z1, z2) as a critical pair, respectively,
and the constellation is critical.

Definition 7. Let P be a peptide computer and let Q be a peptide configuration.

1. The immediate successors of Q are defined as follows:

(a) If Q contains a critical constellation (z, a, i, j) then the immediate suc-
cessor succz,a,(i,j) (Q) of Q is the multiset(

Q \m {z, a}
)
∪m Res(i,j)(z, a).

(b) If Q contains a critical constellation (z1, z2, i2, j2, i1, j1) then the imme-
diate successor succz1,z2,(i2,j2),(i1,j1) (Q) of Q is the multiset6(

Q \m {z1, z2}
)
∪m Res(i2,j2),(i1,j1)(z1, z2).

(c) If Q is stable its only immediate successor is Q.

2. Let succ (Q) be the set (not multiset) of all immediate successors of Q. For
a set Q of configurations, let

succ (Q) =
⋃
Q∈Q

succ (Q) .

Let Q be a set of configurations of P . We consider the transformation of the
configurations in Q under successive basic reactions. Those configurations in Q,
which are stable, will not change. The unstable ones may change and give rise
to sets of configurations. Define

succn (Q) =

⎧⎨⎩
Q, if n = 0,
succ (Q) , if n = 1,
succ

(
succn−1 (Q)

)
, if n > 1,

for n ∈ N0. A configuration Q is said to be reachable from Q if Q ∈ succn (Q)
for some n ∈ N0.

Remark 2. Let Q be a peptide configuration. Then Q ∈ succn (base (Q)) for some
n ∈ N0, that is, Q is reachable from base (Q).

6 Here {z1, z2} is considered as a multiset as follows: If z1 �= z2, each word occurs
with multiplicity one. If z1 = z2 = z then z occurs with multiplicity one or two,
depending on whether the same or different occurrences of z are considered in the
critical pair.
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Proof. To obtain Q from base (Q), a sequence of basic reactions of the form
react(i,j)(z, a) is sufficient. If Q contains n instances of epitopes to which anti-
bodies are attached, then such a sequence of basic reactions has length n. By
the definition of base (Q), there are enough words and antibodies of the required
kinds available. As the basic reactions occur non-deterministically, such a se-
quence is possible. Hence Q ∈ succn (base (Q)). �

Lemma 1. Let Q be a peptide configuration. Then base (Q′) = base (Q) for
every Q′ ∈ succ (Q).

Proof. Each basic reaction changes only the places where symbols from A are
located. It does not change the number of their occurrences nor the number
of occurrences of words w ∈ X+ which are stripped versions of words z ∈
(X ∪ α)+. �
As a consequence of Lemma 1, there is only a bounded number of different
peptide configurations which can result from a sequence of basic reactions ap-
plied to a given peptide configuration Q. Hence, the sequence {succn (Q)}n∈N0

is ultimately periodic. Below, we show that the sequence actually converges.

Theorem 1. Let P be a peptide computer, and let Q be a configuration of P.
The configuration Q is stable if and only if succ (Q) = {Q}.

Proof. If Q is stable, succ (Q) = {Q} by definition.
Assume that succ (Q) = {Q} and that Q is not stable. Then Q contains a

critical constellation. We distinguish two cases depending on the type of the
critical constellation.

1. The critical constellation has the form (z, a, i, j). As a dominates (i, j) in z,
a /∈ Res(i,j)(z, a). Hence

multsuccz,a,(i,j)(Q) a < multQ a

and, thus, succz,a,(i,j) (Q) �= Q.
2. The critical constellation has the form (z1, z2, i2, j2, i1, j1). We distinguish

two cases:

(a) First, assume that z1 and z2 do not refer to the same occurrence of
the same word. The basic reaction results7 in the multiset EC which
contains one occurrence of z′2, and the multiset Res(i1,j1)(z1, a). Let z

′
1 be

the word obtained in react(i1,j1)(z1, a). As Q = succz1,z2,(i2,j2),(i1,j1) (Q)
and z′2 �= z2, one has z1 = z′2, z2 = z′1 and Out(i2,j2),(i1,j1)(z1, z2) = ∅. It
follows that w1 = w2 = xe1ye2z for some words x, y, z ∈ (X ∪ α)∗ and
e1, e2 ∈ E such that e1 = w[i1, j1] and e2 = w[i2, j2] or vice versa. The
epitopes cannot overlap as the output set is empty. As these cases are
analogous, we consider only the former. Thus a is attached to e2 in z2

7 Throughout, we use the symbols with the same meanings as in the respective defi-
nitions.
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and, later, to e1 in z′1. Therefore, a is attached to both e1 and e2 in z2.
This implies that a is attached to e1 in z

′
2 = z1 leading to Res(i1,j1)(z1, a)

containing an occurrence of a, a contradiction!
(b) Next assume that z1 and z2 refer to the same occurrence of the same

word z. As Q = succz1,z2,(i2,j2),(i1,j1) (Q), the output set is empty. The
resulting word in Res(i1,i2)(z

′
2, a) is different from z. Thus

Res(i2,j2),(i1,j1)(z1, z2) �= Q,

again a contradiction!

This completes the proof. �

Theorem 2. Let P be a peptide computer, and let Q be a configuration of P.
If Q ∈ succ (Q), then Q is stable and, hence, succ (Q) = {Q}.

Proof. In every basic reaction, an antibody a attaches to an epitope where either
nothing was attached or antibodies with lower affinity where attached. Thus, if
Q is a successor of itself, Q does not contain any critical constellations. Hence,
Q is stable and, by Theorem 1, Q is its only successor. �
On the basis of Theorem 2 one is inclined to conjecture that every configuration
in a set Q of configurations is stable if and only if succ (Q) = Q. Assuming this,
one would have a simple test for when all configurations in such a set Q are
stable. Proving this claim turned out to be unexpectedly difficult. We state and
prove this claim further below as Theorem 5.

Let P be a peptide computer, and let Q be a configuration of P . Let stable (Q)
be the set of all stable configurations which are reachable from Q.

Lemma 2. Let P be a peptide computer and let Q be a configuration of P. The
following statements hold true:

1. If Q′ ∈ succ (Q) then stable (Q′) ⊆ stable (Q).
2. stable (Q) ⊆ stable (base (Q)).

Proof. The first statement is true because reachability is a transitive relation.
The second statement follows from Lemma 1 and the fact that Q is reachable
from base (Q). �
Our next goal is to derive a constructive description of the set stable (B) of all
stable peptide configurations having the same base B. If Q is any configuration
with base B, then, by Lemma 2, all stable configurations, which are reachable
from Q, are contained in that set. The construction reveals a layered structure
of the stable configurations. The existence of these layers is then used to prove
that the sequence of reactions originating at any configuration Q will ultimately
stabilize. This is stated formally in Theorem 4 below. Therefore, we describe a
construction of the set stable (base (Q)) of all stable configurations Q′ satisfying
base (Q′) = base (Q). To do so we need some auxiliary notions and notation as
follows:
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Let epitopes (Q) and antibodies (Q) be the multisets of occurrences of epitopes
and of antibodies in Q, respectively. Here it is important that one distinguishes
different instances of the same element and does not just count its multiplicity.
Thus we assume the existence of appropriate index setsM andN for epitopes (Q)
and antibodies (Q), respectively. Then eμ with μ ∈ M is a specific instance of
the epitope e ∈ E occurring in epitopes (Q), and aν with ν ∈ N is a specific
instance of the antibody a ∈ A occurring in antibodies (Q). In the sequel we do
not mention the index sets M and N explicitly.

Consider the multiset

B = epitopes (Q)×m antibodies (Q)

of pairs (eμ, aν). Intuitively, such a pair denotes a potential attachment (binding)
of aν to eμ. The multisetB represents all potential attachments between epitopes
and antibodies using the elements of base (Q). Attachments may exclude each
other. This is explained below.

Each pair in B has an affinity value β(eμ, aν) = β(e, a). As Q is finite, β has
only finitely different values on B. Let these be

0 ≤ β0 < β1 < · · · < βk.

For h = 0, 1, . . . , k, let Bh be the submultiset of those pairs (eμ, aν) ∈m B which
have the affinity value βh. The family {Bh | h = 0, 1, . . . , k} forms a partition
of B.

Consider two pairs p1 = (eμ1 , aν1) and p2 = (eμ2 , aν2) in B. These pairs are
in conflict in the following two situations:

1. eμ1 and eμ2 are distinct (as instances, μ1 �= μ2) and in conflict;
2. eμ1 and eμ2 are the same (as instances, μ1 = μ2), but aν1 and aν2 are different

(as instances, ν1 �= ν2).
A submultiset of B is conflict-free, if it contains no pair in conflict. Consider a
conflict-free multiset B ⊆m B and an arbitrary multiset B′ ⊆m B. We define
ConflictFree (B,B′) to be the set of maximal submultisets B′ of B′ such that,
for each of these multisets B′, the multiset B ∪m B

′ is conflict-free.
A conflict-free submultiset B of B defines a unique configuration config (B)

as follows: Starting from base (Q), for each pair (eμ, aν) ∈m B, the antibody aν
is attached to the epitope eμ.

We now start constructing stable configurations with base (Q) as their basis.

Construction 1. For h = k, k − 1, . . . , 1, we build sets Bh−1(Ch) of multisets
Ch−1. From these we define conflict-free submultisets Ch−1(Ch−1) of B to be
used in the next step.

1. One starts with Bk defined as the set of maximal conflict-free multisets con-
tained in Bk. For Ck ∈ Bk, let Ck(Ck) = ConflictFree (Ck,B \m Bk).

2. Now let Bk−1(Ck) be the set of multisets of the form Ck ∪m B
′ where B′ is

a maximal submultiset of Ck(Ck) ∩m Bk−1. For Ck−1 ∈ Bk−1(Ck), let

Ck−1(Ck−1) = ConflictFree (Ck−1,B \m (Bk ∪m Bk−1)) .
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3. Continuing this, for h > 0, we obtain Bh−1(Ch) as the set of multisets of the
form Ch ∪m B

′ where B′ is a maximal submultiset of Ch(Ch) ∩m Bh−1. For
Ch−1 ∈ Bh−1(Ch), let

Ch−1(Ch−1) = ConflictFree

(
Ch−1,B \m

⋃h−1≤i≤k

m
Bi

)
.

4. When h = 1, stop the construction. The result of the construction is the set
union B0 of all the sets B0(C1) of multisets obtained in this way.

Theorem 3. Let P be a peptide computer, and let Q be a configuration of P.
Let B0(Q) be the result of Construction 1. Then

{config (B) | B ∈ B0(Q)} = stable (base (Q)) .

Proof. By construction, each configuration config (B) with B ∈ B0(Q) is sta-
ble and has the same base as Q. Moreover, each configuration without critical
constellation is found by the construction. �

Theorem 4. Let P be a peptide computer, and let Q be a finite set of configu-
rations of P. There is an n ∈ N0 such that every configuration in succn (Q) is
stable.

Proof. Suppose, the statement is true for every Q ∈ Q, that is, there is an
nQ ∈ N0 such that every configuration in succnQ (Q) is stable. Then it is true for
Q with n = max{nQ | Q ∈ Q}. Therefore, it is sufficient to prove the statement
for the case of |Q| = 1. Let Q = {Q}.

In each basic reaction a specific instance of an antibody improves its situation:
It was either not attached and now attaches to an epitope; or it was attached,
but changes to an epitope with greater affinity. It can only be set free again
if another antibody attaches to a conflicting site with an even greater affinity.
Eventually, each antibody reaches a situation which cannot be improved and, if is
attached, from which it cannot be removed again. The former happens, because
there will be no epitopes to which it can attach with a greater affinity; the latter
happens, because there will be no antibodies which could attach to a conflicting
site with a greater affinity. Globally, each basic reaction improves the situation
for at least one instance of an antibody. That antibody may, of course, become
unattached again later, but only because an instance of a different antibody
replaced it through greater affinity. As Q is finite, after finitely many steps, all
epitopes and antibodies will have reached a stable situation as in Construction 1.

�
The basic reactions occurring in a configuration can be considered as steps of
a hill-climbing algorithm. The reachable stable configurations correspond to the
local maxima in the hill-climbing setting. Because of the non-deterministic choice
of the basic reactions, all local maxima are potentially reached. It is possible that
our proof could be replaced by one using results on matching automata and the
Stable Marriage Problem [24–26, 32, 33, 37]. Our present direct approach reveals
an essential part of the rôle of non-determinism.
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Fig. 4. Four cases of conflicts for pairs p1 = (eμ1 , aν1) and p2 = (eμ2 , aν2) in B. Further
cases arise from exchanging the rôles of eμ1 and eμ2 .

Corollary 1. Let Q be a finite set of configurations, and let n ∈ N0 be such that
all configurations in succn (Q) are stable. Then succ (succn (Q)) = succn (Q).
In viewofCorollary 1,we define succ∗ (Q) = limn→∞ succn (Q). ByTheorem4, the
limit is reached at some finite n. The value ofn can be very large. However, inmany
cases, it may be sufficient to stop at an earlier situation succm (Q) with m < n,
but stable (Q) ⊆ succm (Q). The operation succ (Q) describes non-deterministic
micro-steps of the peptide computerP . The operation succ∗ (Q) describes its steps.
The duration of such steps defines the internal time of the peptide computer when
considered as a system: it functions without an external clock, and without syn-
chronization. Time or the “clock” advances when the reactions have stopped.

As mentioned above, one can also prove the converse of Corollary 1. This leads
to a simple criterion to determine whether a set Q of configurations consists only
of stable configurations.

Theorem 5. Let P be a peptide computer, and let Q be a finite set of configu-
rations of P. Every configuration in Q is stable if and only if succ (Q) = Q.
Proof. If every configuration in Q is stable then succ (Q) = Q by Corollary 1.
For the converse statement, observe that succ (Q) = Q implies succk (Q) = Q
for all k ∈ N. By Theorem 4, succ∗ (Q) = Q and all configurations in Q are
stable. �
The following (rather artificial) small example illustrates how non-determinism
arises in unessential and essential ways:

Example 2. The components of the peptide computer P are as follows:

– X = {x, y, z}.
– A = {a, b}.
– E = {x, y, z, xy, yz}.
– β is given by the following table:

β(e, ·)
e ∈ E a b

x 0 1
y 0 1
z 0 1
xy 2 0
yz 2 0

The relation α is inferred from the definition of β.
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Consider the configuration Q with multQ xyz = 1, multQ a = 1 and multQ b =
2. The successor of Q, succ (Q), consists of the following multisets:

succ (Q) =
{
{(xy, a)z, b, b}, {x(yz, a), b, b},

{(x, b)yz, a, b}, {x(y, b)z, a, b}, {xy(z, b), a, b}
}
.

Continuing the computation of successors, one obtains:

succ2 (Q) =
{
{(xy, a)(z, b), b}, {(x, b)(yz, a), b}, {(xy, a)z, b, b},

{(x, b)(y, b)z, a}, {(x, b)y(z, b), a},

{x(y, b)(z, b), a}, {x(yz, a), b, b}
}

succ3 (Q) =
{
{(xy, a)(z, b), b}, {(x, b)(yz, a), b},

{(xy, a)z, b, b}, {(x(yz, a), b, b}
}

and
succ4 (Q) =

{
{(xy, a)(z, b), b}, {(x, b)(yz, a), b}

}
= succ∗ (Q) .

Non-determinism in the succesors of Q results from the fact that the order of
basic reactions is non-deterministic. The non-determinism in succ∗ (Q) is inher-
ent to the process. It is a consequence of the fact that certain reactions may be
irreversible.

To define peptide computations, we need the notions of state, instruction, and
program for peptide computers.

Definition 8. Let P be a peptide computer.

1. Let Γ (P) be the set of stable configurations of P. The set Γ (P) is called the
set of states of P.

2. A (peptide) instruction has the form +Q or −Q, where Q is a peptide config-
uration of P. If Q′ is a peptide configuration and I is a peptide instruction,
then

I(Q′) =
{
Q′ ∪m Q, if I = +Q,
Q′ \m Q, if I = −Q,

is the result of I applied to Q′.
3. Let Q′ be peptide configuration. An instruction −Q is called a flushing in-

struction for Q′, if Q contains only antibodies and, for all a ∈ A, multQ a ≥
multQ′ a.

4. A peptide program is a pair (P, χ) where P is a mapping from Γ ∗ into the
set of peptide instructions and χ is a function χ : Γ → B.

In the sequel we write Γ instead of Γ (P). The set Γ is infinite. Only stable
configurations are considered as states. Instructions add or remove elements
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from configurations. If −Q is a flushing instruction for Q′, then −Q(Q′) results
in the removal of all the symbols in A, which are not bound to any sequence
in X+, from the configuration Q′. In a peptide program (P, χ), the mapping
P defines the set of potential instructions to be used for the next step, taking
into account the past sequence of states; the mapping χ determines a halting
condition. Details are provided in the next definition.

Definition 9. Let P be a peptide computer and let (P, χ) be a peptide program
for P. A peptide computation according to (P, χ) is a word c = Q0Q1 · · ·Qt ∈
Γ ∗ with Q0, Q1, . . . , Qt ∈ Γ and Q0 = ∅ such that

Qi ∈ succ∗
((
P(Q0Q1 · · ·Qi−1)(Qi−1)

))
for i = 1, 2, . . . , t.

A computation as above starts with the empty multiset Q0 as the initial state
and ends when χ(Qi) = 1 for the first time. Then Qi is a final state.

Our definition of a peptide program incorporates non-determinism and takes into
account the full computational history (similar to recursion over all previous val-
ues). The computation starts with the configurationQ0 = ∅ using the instruction
I0 = P(λ). Basic reactions lead to the next state Q1 ∈ succ∗ (I0(∅)). Note that
nothing happens, if I0 has the form −Q for some configuration Q. On the other
hand, if I0 = +Q, then Q1 ∈ succ∗ (Q). Now suppose, that the state sequence so
far is given by the word Q0Q1 · · ·Qi−1 ∈ Γ ∗. The next instruction to be used is
Ii = P(Q0Q1 · · ·Qi−1), and it is applied to Qi−1. By applying this instruction, a
configurationQ′

i = Ii(Qi−1) is obtained, which need not be stable. Reactions will
result in a stable configuration Qi ∈ succ∗ (Q′

i). If χ(Qi) = 1, the computation
stops. Otherwise the computation continues with the next instruction.

Our model is non-deterministic. Natural processes seem to be inherently non-
deterministic unless one makes a special effort to force determinism. On the other
hand, when observed, natural processes often seem to be deterministic. This
discrepancy could result from our inability to observe or model all the relevant
parameters. For the mathematical model we accept the non-determinism. We
identify and discuss the sources of non-determinism further below.

No model of computation is usable unless the interface with the environment
is specified. This issue is often ignored. In the classical models, like the Turing
machine, it is somehow, but not explicitly, and certainly not adequately built into
the model. In nature-based models it is usually hidden in a pre-processing and a
post-processing phase, which often absorb the actual computational complexity
of the problem at hand. We pinpoint this issue without providing a solution
by defining input and output decodings, that is, by clarifying how a peptide
computer could be considered as a Moore (or Mealy) automaton.

To encode inputs we need a mapping γ from inputs to peptide programs, an
input encoding; we also need an output decoding, that is, a mapping δ from Γ
to outputs. It is an open question how such encodings and decodings would be
implemented. This is an unsolved problem – not just for peptide computing, but
for many of the nature-inspired computing models.



Peptide Computers 21

Definition 10. A binary relation f from inputs to outputs is peptide com-
putable if there is a peptide computer P, a computable input encoding γ of inputs
into the set of peptide programs for P and a computable decoding δ of Γ into
outputs such that the following condition is satisfied for every x ∈ dom f :

Let (Px, χx) = γ(x). One has y ∈ f(x) if and only if there is a peptide compu-
tation Q0Q1 · · ·Qt according to (Px, χx) such that χ(Qt) = 1 and δ(Qt) = y.

We have not imposed any restrictions on how the functions γ and δ are defined.
As mentioned before, the issue of how define the interfaces γ and δ is usually not
treated rigorously in computability and complexity theory. While this may not
always be obvious (obscured by intuition), this is an inherent problem. By Defini-
tion 10, we relativize the issue to the choice of the input encoding and the output
decoding.

Using the input encoding γ, the input is considered as a program. This idea
permits the computer P to access the input in many different ways:

1. as a whole with a single “input” instruction +Q;
2. as a sequence of such “input” instructions;
3. as a sequence of inputs in which certain inputs are re-visited;
4. as a sequence of inputs with intermediate calculations.

In the extreme, γ(x) could be the same program for all x ∈ dom f . Then the
same program would be used for all x. This would imply that f(x) = f(x′) for
all x, x′ ∈ dom f .

By definition, a partial function f is peptide computable if it is peptide com-
putable as a relation: For every x ∈ dom f , every computation according to γ(x)
results in the same output, that is, f(x).

4 Solving Problems by Peptide Computers

In this section we briefly review and discuss known techniques for solving prob-
lems with peptide computers.

We start with an example adapted from a proposal due to Hug and Schuler [30]:
Given two sets S1 and S2, determine whether |S1| < |S2|.

Example 3. First we define the components of the peptide computer P . Let
X = {x, y, z}, E = {x, y, z, xy, yz}, A = {a1, a2, b, c1, c2, d} and β be defined
according to following table:

β(e, a) for a = . . .
e ∈ E a1 a2 b c1 c2 d

x 0 0 0 3 0 0
y 0 0 0 0 2 1
z 0 0 4 0 0 0
xy 1 0 0 0 0 0
yz 0 3 0 0 0 0
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The relation α can be derived from this table. Consider the multisets C1 and C2

of the symbols c1 and c2, respectively, satisfying

multC1 c1 = |S1| and multC2 c2 = |S2|.

Let (P, χ) be the encoding γ(S1, S2). Let R be a multiset consisting of a very
large number of occurrences of the word xyz. Let A1, A2, B and D be at least
equally large multisets consisting of occurrences of only the symbols a1, a2, b
and d, respectively.

The instructions in P are as follows, writing Pi instead of P(Q0Q1 · · ·Qi):

1. P(λ)(∅) = +R. This results in Q0 = succ∗ (R) = R.
2. P0(Q0) = +A2. The symbols a2 attach to the epitopes yz, resulting in Q1.
3. P1(Q1) = +C1. The symbols c1 attach to the epitopes x, resulting in Q2.

Depending on the relative sizes of R and C1, there may be unattached oc-
currences of c1 or free epitopes x in Q2.

4. P2(Q2) = +B. As β(yz, a2) < β(z, b), the symbols b attach to the epitopes
z. The symbols a2 are unattached. The resulting state is Q3.

5. P3(Q3) = +A1. The resulting state is Q4.
6. P4(Q4) = +C2. The resulting state Q5 consists of the following objects:

(a) Words xyz with antibodies attached:
i. an antibody of type b is attached every epitope of type z;
ii. as many antibodies of type c1 are attached to as many epitopes of

type x as possible;
iii. as many antibodies of type c2 are attached to as many epitopes of

type y as possible;
iv. as β(x, c1) > β(xy, a1) and β(y, c2) > β(xy, a1), antibodies of type

a1 are attached to all epitopes of type xy, to which no c1 is attached
at x or no c2 is attached at y.

(b) Unattached antibodies of type c1, if |S1| > |R|.
(c) All antibodies of type a2, unattached.
(d) Unattached antibodies of type b, if |B| > |R|.
(e) Unattached antibodies of type c2, if |S2| > |R|.
(f) Unattached antibodies of type a1, if |A1| > |R| −max {|S1|, |S2|}.

7. P5(Q5) = +D. In the resulting stateQ6, as β(y, d) �> β(xy, a1) and β(y, c2) >
β(y, d), antibodies of type d are attached to all epitopes of type y, where
nothing is attached to the corresponding instance of xy.

Let χ(Qi) = 0 for i < 6 and let χ(Q6) = 1. The output decoding δ of Q6 is
defined by the following case distinction:

1. If there are no unattached antibodies of type c2 and some attached antibodies
of type d, then δ(Q6) = “|S1| > |S2|”.

2. If there are no unattached antibodies of type c2 and no attached antibodies
of type d, then δ(Q6) = “|S1| = |S2|”.

3. If there are unattached antibodies of type c2, but not of type c1, then δ(Q6) =
“|S1| < |S2|”. Again R should have been larger.
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4. If there are unattached antibodies of both, types c1 and c2, then δ(Q6) is
undefined, as R was not large enough.

Our presentation of Example 3 differs from the original in [30] in two ways:
We have expressed it within our formal framework, thus treating it as a purely
mathematical problem, and we have left out certain chemical features which are
not required at this level of abstraction. Four cases are needed to define the
output decoding δ(Q6). This is a consequence of the fact that the multiset R
may be too small. If |R| > max {|S1|, |S2|}, then the third and fourth cases in
the definition of δ cannot arise. The first and second cases can then be rephrased
as follows:

1′. If there are some attached antibodies of type d, then δ(Q6) = “|S1| > |S2|”.
2′. If there are no attached antibodies of type d, then δ(Q6) = “|S1| ≤ |S2|”.
These are the only cases needed to define δ, if R is large enough. In [30] this
assumption is made implicitly.

The fact that the size of R influences the outcome of the computation is not
surprising. To compute with inputs of unbounded size, one needs unbounded
resources if the inputs are taken into account completely. A simple analogy with
deterministic finite-state automata can illustrate the point:

Example 4. The task again is to compare the size of the sets S1 and S2. We
consider two different methods to achieve this:

1. Encode the input in the form c
|S1|
1 c

|S2|
2 and check whether the input word is

in the language
L> = {cn1 cm2 | n,m ∈ N0, n > m} .

This encoding simulates the encoding by the multisets C1 and C2 in Exam-
ple 3. As the language L> is not regular, a finite automaton will make mis-
takes on inputs which are too large. For instance, using a threshold counter8

with threshold r, one can detect the four cases defining the output decoding
in Example 3.

2. Encode the input over the alphabet
{
(c1, c2), (d, c2), (c1, d)

}
of pairs in the

form {
(c1, c2)

s(c1, d)
s1−s if s1 > s2,

(c1, c2)
s(d, c2)

s2−s if s1 ≤ s2,
where s1 = |S1|, s2 = |S2| and s = min{s1, s2}. Up to some details regarding
the rôle of the symbol d and ignoring the size of R, these words represent the
state Q6 in Example 3. To determine whether s1 > s2, one checks whether
the encoded input is in the language

L′
> = {(c1, c2)n(c1, d)m | n ∈ N0,m ∈ N} .

This language is regular. It is accepted by a 2-state automaton. To make this
work, the computation of the comparison has been shifted into the input
encoding. The size of the input is not a relevant issue.

8 A threshold counter is a finite automaton which can count up to a finite threshold
and down again.
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The examples establish the importance of specifying the input encoding and the
output decoding and the relevance of the size (and nature) of the base of peptide
configurations.

The computation in Example 3 is deterministic and takes 6 steps. The number
of steps should not be confused with computation time. As in any model of
computation, time costs accrue for several reasons:

1. Setting up the state Q0.
2. Encoding the input.
3. Getting the next instruction.
4. Interpreting the instruction.
5. Executing the instruction.
6. Stabilizing the configuration.
7. Evaluating the state and deciding whether to stop.
8. Decoding the final state.

Only if the time cost for each of these items is uniformly bounded, can the time
cost for a computation be measured in terms of the number of steps.

Continuing with Example 3, suppose one knows in advance that |R| ≥ r for
some given large r ∈ N will be sufficient. One needs to prepare the multisets
R, A1, A2, B and D of sizes no less than r, and also the multisets C1 and C2.
We ignore the time to create Q0. The input encoding could just result in terms
of symbolic instructions, or it could involve creating the multisets involved. In
the former case, the time cost for the encoding is a function depending on the
number i of inputs and the program length9 l; hence it is (roughly) in O(i+ l). In
the latter case as many copies of the multisets as are used in the program need
to be created; assuming that each multiset takes O(g(r)) time to create for some
positive function10 g : N→ R, then the time for the encoding is in O((i+r)g(r)).

In the former case, the cost for creating the multisets used by the program
arises during the input encoding and is not part of the actual computation cost.
In the latter case, the multisets are created during the computation. The cost of
creating them is part of the computation cost.

The time for a configuration to stabilize depends strongly on the configuration,
not just its size, as reactions cannot always occur in parallel. Similarly, the
time needed to evaluate χ on the current configuration may depend on that
configuration. In the example, the time for χ is a small constant. Decoding the
final configuration may involve many complicated steps.

In summary, the concrete time cost is not sufficiently represented by the num-
ber of steps. In this respect, peptide computers are no better, but also no worse,
than other computing models inspired by natural phenomena.

The paper by Hug and Schuler [30] contains informal programs for two further
problems: Estimating the multiplicity of an element in a multiset; solving the
satisfiability problem.

9 The program length may depend on inputs, not just their number.
10 The function log r could be a candidate for g; however, this depends on the nature

of the multisets and the tools to create them.
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In his thesis [3], Balan provides informal programs for the following prob-
lems: Hamiltonian path; exact cover by 3-sets; simulation of Turing machines;
logical gates; simulation of Boolean circuits; addition and subtraction of binary
numbers. Details and extensions of these results are also available as follows:

– Simulation of Turingmachines and universality of peptide computers: [7, 8, 12]
– Logical gates and Boolean circuits: [2, 10]
– Arithmetic: [11]

A survey of these and related results as of 2006 is presented in [9]. Proposals for
programming peptide computers are discussed in [5].

The applicability of the model of peptide computing relies strongly on the
availability of enough types of antibodies and epitopes and of enough copies
of these. Mathematically the former concerns the sizes of the components X ,
A and E of a peptide computer. The latter concerns the size and contents of
configurations. In Example 3 above, only the latter is an issue. In several of
the other simulations mentioned above, the sizes of at least the components A
and E also depend on the problem at hand. For problems with bounded space
requirements on a Turing machine, the sizes of A and E can be determined from
the instance of the respective problem. For the simulation of arbitrary Turing
machines there is no a priori bound on the sizes of A and E; this is a consequence
of the fact that there is no a priori space bound for Turing machines. In [13] a
peptide-computing-based method is proposed for creating the sets A and E
incrementally as needed. This approach not only improves the universality re-
sult for peptide computing, but also leads to more economical solutions to the
Hamilton-path and the exact-cover-by-3-sets problems.

One of the basic ideas of peptide computing is based on binding antibodies
to epitopes and on inhibiting such bindings. In Example 3 this phenomenon
appears on several occasions:

– Antibodies of type a2 block attachments to epitopes y, z and yz.
– Antibodies of type b unblock such attachments, but block attachments to z.
– Antibodies of type a1 block attachments to epitopes x, y and xy.

Several abstractions of the idea of using binding and blocking or permitting and
inhibiting, based on naturally observed computation, lead to different models: As
one extreme, on the theoretical end, one finds reaction systems [23]. Somewhere
in the middle, one finds, for example, binding-blocking automata [3, 6]. At the
other extreme end (ignoring all chemical details) one finds the present paper,
where we attempt to model a rather detailed structure of the processes.

5 Non-determinism

For this section we rely on the article [4] in which non-determinism in peptide
computers is classified. We review those results briefly. We postpone a more
detailed discussion of non-determinism to a later paper.

Non-determinism in peptide computations arises at two levels:
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1. At the micro-step level, reactions occur in an inherently non-deterministic
way. Starting from an unstable configuration, successive steps may lead to
further unstable configurations or to stable ones. A step is complete, when
all successor configurations are stable. However, non-deterministically, the
computation could continue much earlier as soon as one stable configura-
tion has been reached even if other possible configurations are still unstable.
In addition to the non-determinism regarding the sequence of reactions by
which a stable configuration is reached, there is also non-determinism con-
cerning the time it takes to reach a stable configuration and concerning the
time it takes to perform a step.

2. At the step level, a configuration may lead to more than one stable config-
uration. At this level, non-determinism of peptide computers is similar to
that of usual non-deterministic automata.

At the micro-step level, non-determinism can express massive parallelism, which
could speed up computations. At the step level, non-determinism might not lead
to a speed-up, but afford a natural model of non-deterministic computation.

Non-determinism of both kinds is found in Example 2. At the step level,
succ4 (Q) = succ∗ (Q) consists of two stable configurations. At the micro-step
level, already in succ2 (Q) does one find the two stable configurations, but also
many unstable ones. If one knew that these are the only reachable stable con-
figurations, then one could continue from these already two micro-steps earlier.

In the sequel we focus on the sources of non-determinism at the micro-step
level. Consider a peptide computer P and an unstable configuration Q of P .
When reviewing the details in Section 3, one notices the following instance of
non-determinism:

According to Definition 7, a critical constellation of one of the forms
(z, a, i, j) or (z1, z2, i2, j2, i1, j1) is chosen non-deterministically. Here a,
z, z1 and z2 are instances of symbols or words appearing in Q, not just
symbols or words.

For the first type of critical constellations, within w = strip (z), the choice of
d ∈ ∂E(w) and dom τ is non-deterministic. For the second type of critical con-
stellations a similar statement holds true.

In [4], three types of non-determinism are distinguished, and their sources are
identified:

1. Global non-determinism is inherent non-determinism at the step level. This
type of non-determinism can only arise, if there is an epitope to which two
different antibodies can bind with the same affinity or if there are overlapping
epitopes to which antibodies can bind with the same affinity, within the given
configuration.

2. Locally-global non-determinism is non-determinism at the step level with re-
spect to a specific configuration. According to Construction 1 this can also
only arise, if there is an instance of an epitope to which two different anti-
bodies can bind with the same affinity or if there are overlapping instances
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of epitopes to which antibodies can bind with the same affinity, within the
given configuration.

3. Local non-determinism is non-determinism at the micro-step level as ex-
plained above.

We leave the technical details to a later paper. In [4], some criteria are presented,
by which the types of non-determinism of a peptide computer can be determined
(Theorems 6–8) within the framework of that article.

6 Concluding Remarks

Peptide computers were first proposed by Hug and Schuler [30] in 2001. In sub-
sequent work a semi-formal framework was used to demonstrate the theoretical
feasibility, power and limitations of computing based on peptide-antibody in-
teractions [2–13]. In [4] a formal model without all details was used to analyse
the types of non-determinism occurring in peptide-based computations. In this
paper we present this formal model in full detail. Micro-steps represent basic
reactions, many of which may happen at unspecified moments in time and, thus,
in non-deterministic order. We prove that reactions ultimately result in stable
configurations. This leads to a well-defined notion of peptide computation with
a rigorous formal foundation. Moreover, the sources of phenomena observed at
the computational level can often be traced back to properties of the micro-step
level. This issue, one may call it controllability, is likely to influence the design
of programs using peptide-antibody interactions.

Our immediate plans include expanding the analysis of non-determinism,
which was initiated in [4], describing the peptide programs for concrete problems
in completely formal terms and relating the models of peptide computing and
reaction systems.
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Abstract. The recently introduced model of advice complexity of on-
line problems tries to achieve a fine-grained analysis of the hardness of
online problems by asking how many bits of advice about the still un-
known parts of the input an oracle has to provide for an online algorithm
to guarantee a specific competitive ratio. Until now, only deterministic
online algorithms with advice were considered in the literature. In this
paper, we consider, for the first time, online algorithms having access
to both random bits and advice bits. For this, we introduce the online
problem (n, k)-Boxes: Given a number of n closed boxes, an adversary
hides k <

√
n items, each of unit value, within k consecutive boxes. The

goal is to open exactly k boxes and gain as many items as possible.
In the classical online setting without advice, we show that, if k(k +

1) ≤ n, any deterministic algorithm is not competitive, because the ad-
versary can ensure that not a single item is found. However, random-
ization drastically increases the gain in expectation. More precisely, we
prove that the expected gain is in the order of k3/n and show that this
bound is tight up to some constant factor. A crucial result of our analysis
is the proof of the existence of two thresholds for the amount of random
bits used for solving (n, k)-Boxes. If the amount of random bits is below
the first threshold, randomization does not help at all. If, on the other
hand, the amount of randomness is above the second threshold of about
log n−2 log k random bits, then any additional random bit does not help
to improve the gain.

As our main result, we analyze the advice complexity of the boxes
problem both for deterministic and randomized online algorithms and
give a tight trade-off between the number of random bits and advice bits
needed for achieving a specific competitive ratio.

1 Introduction

In algorithmics, we seek for algorithms that produce high-quality output for
some specific problem within some given time or space bounds. In many real-
world applications, however, we are facing an additional hurdle when working in
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so-called online environments ; here, the input arrives piecewise in consecutive
discrete time steps while parts of the output have to be produced before the
whole input is known (for an introduction and comprehensive discussion, we
refer to the standard literature, e. g., [3, 7, 8, 10]). Formally, we are dealing with
the following class of problems.

Definition 1. A maximization online problem consists of a set I of inputs and
a cost function. Every input I ∈ I is a sequence of requests I = (x1, . . . , xn).
Furthermore, a set of feasible outputs (or solutions) is associated with every I;
every output is a sequence of answers O = (y1, . . . , yn). The cost function assigns
a positive real value cost(I, O) to every input I and any feasible output O. If the
input is clear from the context, we omit I and denote the cost of O as cost(O).
For every input I, we call any output O that is feasible for I and has highest
possible cost an optimal solution of I, denoted by Opt(I).

The established tool for measuring the performance of an online algorithm is the
competitive analysis [3, 12] where one compares the cost of the solution computed
by the online algorithms to the cost of an optimal offline solution computed by
an algorithm knowing the whole input in advance.

Definition 2. Consider an input I = (x1, . . . , xn) of a maximization online
problem. An online algorithm A computes the output sequence A(I) = (y1, . . . , yn)
such that yi is computed from x1, . . . , xi. We denote the costs of the computed
output by cost(A(I)).

The online algorithm A is c-competitive if there exists a non-negative constant
α such that, for every n and for each I of length at most n, cost(A(I)) ≥ 1/c ·
cost(Opt(I))− α. If α = 0, A is called strictly c-competitive; A is called optimal
if it is strictly 1-competitive.

Due to the definition of the problem we study in what follows, we only consider
strict competitiveness. However, in many cases, competitive analysis does not
seem very realistic because, by the nature of many real-world online scenarios,
optimal results can never be reached. We want to get a better understanding
of what online algorithms really lack. For a more fine-grained analysis of how
much knowledge about the future parts of the input an online algorithm needs to
compute a high-quality solution, we consider the information content of the given
online problem as it was defined in [9]. This model can be viewed as a cooperation
of an online algorithm A and an oracle O that has unlimited computational power,
sees the whole input in advance, and writes binary information about it onto an
advice tape before A reads any part of the input. Afterwards, A can access the
bits from the advice tape in a sequential manner, just as a randomized algorithm
would use its random tape. The advice complexity of the online problem is then
defined as the minimum number of advice bits needed for achieving a good
solution. The following definition formalizes this concept.

Definition 3. Consider an input I of a maximization online problem. An online
algorithm A with advice computes the output sequence Aφ(I) = (y1, . . . , yn) such
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that yi is computed from φ, x1, . . . , xi, where φ is the content of the advice tape,
i. e., an infinite binary sequence. We denote the costs of the computed output
by cost(Aφ(I)). A has advice complexity s(n) if at most the first s(n) bits of φ
have been accessed during the computation of Aφ(I). The c-competitiveness can
be defined analogously to Definition 2.

A first model of online algorithms with advice was introduced in [4] (see also [5])
and later refined in [2, 6]. For a survey of the concepts of advice complexity and
the information content of online problems, see [9]. This model was applied to
several classical online problems such as paging, job shop scheduling, the k-server
problem, or metrical task systems in [1, 2, 5, 6, 11].

Another powerful tool for increasing the output quality of online algorithms
is to allow randomized computation. One can easily extend Definition 2 for ran-
domized algorithms as well. For the first time, we consider algorithms using both
randomization and advice, and we give tight bounds on the trade-off between
the amount of randomness and advice needed for achieving a specific competitive
ratio.

We are now ready to introduce the online problem, denoted by (n, k)-Boxes,
we deal with in the following.

Definition 4 ((n, k)-Boxes). There are n boxes b1, . . . , bn standing in a row
and we know that all are empty except for k <

√
n boxes that are standing next

to each other and which contain some expensive item each. An online algorithm
A is allowed to open exactly k boxes of its choice aiming at opening as many full
ones as possible. After A has opened k boxes, the (remaining) positions of the
non-empty boxes are revealed and A’s gain is the number of non-empty boxes it
has opened.

Note that the optimal solution of (n, k)-Boxes has always gain k. We call the
position of the first full box the starting position and we note that, for any
instance of size n, there are exactly n−k+1 possible starting positions. Another
way to look at the analysis of online problems is to view it as a game between
the online algorithm A against an oblivious adversary Adv. The adversary tries
to hide the full boxes in such a way that A’s gain is (in expectation and/or for
any advice string) as small as possible.

At first, we can make the following straightforward observation about any
deterministic online algorithm without advice for (n, k)-Boxes.

Theorem 1. If n ≥ k(k+1), Adv can ensure that no deterministic algorithm A

has any gain.

Proof. Adv knows A’s deterministic strategy; however, for every box at position
i that A opens, the number of starting positions to hide the k items is decreased
by at most k. The removed positions are those between i to i − k + 1 where
i ≥ k (see Fig. 1); not all of them exist if i < k. Hence, if A chooses boxes such
that these intervals are disjoint, Adv is prevented to take at most k2 starting
positions. Accordingly, if n ≥ k2+ k, Adv may hide the items in such a way that
A is not able to find any item at all. �
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A

. . .

Fig. 1. A inspecting box b5 and the “forbidden” starting positions for Adv

Thus, any deterministic algorithm is not competitive. In the next section, we
show the power of randomization for (n, k)-Boxes.

2 Randomization

Since we are interested in values for k and n that are in the above order and
the situation seems desperate for any deterministic online algorithm, we consider
randomized algorithms, i. e., algorithms that use a source of randomness to make
their decisions. Which box is chosen next can depend on which boxes that are
already open are full and on the randomness that is available to the algorithm.
Usually, the source of randomness is just a stream of random bits. It is then
possible to measure the amount of randomness as the number of random bits
used as a function of the input size. However, the input of the (n, k)-Boxes
problem has always constant size, since n and k are fixed. As we are interested
(without loss of generality) in randomized algorithms with a fixed upper bound
on the running time, for any randomized algorithm R solving (n, k)-Boxes, there
is an upper bound r on the number of random bits used by R.

Measuring the amount of randomness as the number of random bits is, how-
ever, rather coarse; in the sequel, we aim for a more fine-grained analysis. If R
is allowed to use r random bits, then, equivalently, it can use a random number
between 1 and 2r instead. We generalize this model by considering algorithms
that get one random number drawn uniformly from the set {1, . . . ,M} where
M is not restricted to be a power of two. Let R(M) denote the set of random-
ized algorithms with randomness restricted to the uniformly random choice of a
number from {1, . . . ,M}.

If we fix an algorithm R, then the random variable Bs(R) denotes the number
of full boxes opened by R for starting position s. Then �[Bs(R)] is the expected
number of full boxes opened if Adv chooses the starting position equal to s, and
mins�[Bs(R)] is the worst-case expected gain of R. If R is clear from the context,
we abbreviate Bs(R) by Bs.

The following theorem gives a worst-case lower bound on the performance
of any randomized algorithm R ∈ R(M) solving (n, k)-Boxes with restricted
randomness.
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Theorem 2. For any randomized online algorithm R ∈ R(M) for (n, k)-Boxes,
there exists a starting position s (i. e., an input instance of (n, k)-Boxes), such
that

1. if M < (n− k + 1)/k2, then �[Bs] = 0,

2. for any M , �[Bs] ≤ k2(k+1)
2(n−k+1) ,

3. if M = c(n− k + 1)/k2 with c ∈ [1, 2k/(k+ 3)], then

(a) �[Bs] ≤ 2(k+ 3
2 )

M − 2(n−k+1)
M2k and also

(b) �[Bs] ≤ 2(c−1)
c2 · k3

n−k+1 + 3k2

c(n−k+1) .

Proof. R gets a random number from {1, . . . ,M}, so it can behave in M dif-
ferent ways and each behavior occurs with probability 1/M . This is equiva-
lent to choosing uniformly at random one deterministic algorithm from a set
{A1, . . . , AM} = Alg(R).

Recall that the k full boxes start at some starting position, i. e., a position
between 1 and n− k + 1.

1. Suppose thatM < (n−k+1)/k2. Basically, we now extend the idea from the
proof of Theorem 1. The number of starting positions that allow Adv to place
the obstacles in a way that R does not find any item is n− k+1− (Mk2) >
n− k + 1− (n− k + 1) = 0, which implies the claim.

2. At first, we can make a simple observation: Consider some specific (deter-
ministic) algorithm Ai ∈ Alg(R). There are at most k starting positions such
that Ai opens a full box in the first step and gets at most k full boxes in total.
Next, there are at most k starting positions such that Ai opens an empty
box in the first step and a full box in the second step and gets at most k− 1
full boxes in total, and so on.

Assume that the starting position is p. Let Oi,p denote the number of
empty boxes opened by Ai until the first full box is found (or k if none)
and let Oi,p := k − Oi,p and Op = O1,p + · · · + OM,p. Clearly, Oi,p is an
upper bound on the number of full boxes opened by Ai in total and Op/M is
an upper bound on the expected number of full boxes opened by R. Hence,
taking s such that Os is minimal, the expected number of full boxes opened
by R for starting position s is

�[Bs] =
1

M
Os =

1

M
min {O1, . . . , On−k+1}. (1)

From the observation above it follows that, for every Ai, we have

Oi,1 + · · ·+Oi,n−k+1 ≤ k2 + k(k − 1) + k(k − 2) + · · ·+ k =
k2(k + 1)

2
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and accordingly, using (1) and the fact that the minimum of a set of numbers
can never be larger than its average, we get

�[Bs] ≤
1

M
·
∑

pOp

n− k + 1
=

1

M(n− k + 1)

∑
p

M∑
i=1

Oi,p

=
1

M(n− k + 1)

M∑
i=1

∑
p

Oi,p =
1

M(n− k + 1)

M∑
i=1

k2(k + 1)

2

=
1

M
· Mk

2(k + 1)

2(n− k + 1)
=

k2(k + 1)

2(n− k + 1)
. (2)

3. Let us consider values of M such that n−k+1
k2 ≤ M ≤ 2(n−k+1)

k(k+3) . Choose

any value g such that g ≤ k/M and g ≥ k+1
M − n−k+1

kM2 . We call a starting
position p big if Oi,p ≥ gM for some i (i. e., there is a single algorithm Ai
that makes a large contribution to Op). Otherwise we call it small. Due to
the assumptions on g, we have that Mk(k − �gM�) ∈ [0, n− k + 1].

For any Ai, p is made big by Ai if Oi,p takes values between �gM� and
k, which leads to k − �gM�+ 1 ≥ k − �gM� different values. For any such
value x, there are at most k positions p such that Oi,p = x, and since there
are M algorithms in total to consider, there are at most Mk(k− �gM�) big
positions and, accordingly, at least n − k + 1 −Mk(k − �gM�) ≥ 0 small
positions.

Let S be the set of all small positions. Since no algorithm Aj is allowed
to contribute strictly more than �gM� to these positions, we get, for any Ai,∑

p∈S

Oi,p ≤ k(1 + 2 + · · ·+ �gM�) = k�gM�(�gM�+ 1)

2

and consequently ∑
p∈S

Op ≤
Mk�gM�(�gM�+ 1)

2
.

In particular, there is some small position p with

Op ≤
Mk�gM�(�gM�+ 1)

2|S| ≤ Mk�gM�(�gM�+ 1)

2(n− k + 1−Mk(k − �gM�))

≤ MkgM(gM + 1)

2(n− k + 1−Mk(k − gM + 1))
(3)

and, since �[Bp] =
Op

M , there exists s such that

�[Bs] ≤
kgM(gM + 1)

2(n− k + 1−Mk(k − gM + 1))
. (4)

We choose

g =
2(k + 3

2 )

M
− 2(n− k + 1)

M2k
.
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It is straightforward to verify that g satisfies our assumptions. Plugging this
value of g into (4), we get �[Bs] ≤ g. Finally, by settingM = c(n−k+1)/k2,
we get

�[Bs] ≤
2(c− 1)

c2
· k3

n− k + 1
+

3k2

c(n− k + 1)
.

This concludes the proof. �

We now complement this lower bound by an upper bound that is tight up to a
small constant factor.

Theorem 3. Let M be an even number. There is a randomized algorithm R ∈
R(M) for (n, k)-Boxes such that, for every starting position s,

1. if M ≥ 2n
k(k−1) , then �[Bs] ≥ 8

9
k3

2n − 1,

2. if n−k+1
k2 < M ≤ 2n

k(k−1) , then �[Bs] ≥ 2k−2
M − 2n

M2k .

Proof. As we mentioned, R is a probability distribution over Alg(R) where each
deterministic algorithm A ∈ Alg(R) gets chosen with the same probability 1/M .
Every algorithm A opens boxes within some interval of fixed length and performs
a straightforward local search when a box is found, which enables A to find at
least k − i full boxes if a full box is discovered in step i. Moreover, consider
an adversary Adv that tries to hide the boxes as good as possible from every
algorithm in Alg(R) at once.

In the following, we focus on an equivalent problem to analyze the algorithm.
We shrink the instance to an instance of size �n/k�, that is, we compress k
boxes into one hyper-box, thereby neglecting the last d = k�n/k� < k original
boxes. There is exactly one non-empty hyper-box that has a value of k−1 in the
beginning and whose value is decreasing by one with every unsuccessful opening
of a hyper-box (except in the last step). The algorithm can open up to k hyper-
boxes. When it opens the full hyper-box in the j-th trial, it achieves gain k − j
if j < k, and gain 1 if j = k.

Now we show that it is possible to reduce (n, k)-Boxes to its shrunk version.
Indeed, assume that we have an algorithm A′ for the shrunk version. We can
construct an algorithm A for (n, k)-Boxes as follows. Whenever A′ opens some
hyper-box, A opens the last box corresponding to this hyper-box. As soon as A
finds some full box, it continues with a local search.

Consider any input instance for A, which is specified by the starting position
p. Then, A achieves at least the same gain as A′ running on an instance where
the hyper-box corresponding to p is full. Since p cannot be within the last k− 1
boxes, the hyper-box corresponding to p exists. If A′ opens a full hyper-box, the
starting position is within the distance k to the left of the box opened by A,
therefore A opens a full box as well. If this happens in step j, the local search of
A guarantees a gain of at least k − j if j < k, and of 1 if j = k.

In the sequel, we provide a randomized algorithm R solving the shrunk version
of (n, k)-Boxes, thereby proving that an equally good algorithm for the original
problem exists. Consider some constant l such that 1 ≤ l < 2k. Starting with
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Worst-case payoff

k − 1

︸ ︷︷ ︸
The length l of one interval

(a) An interval of size l and the gain of A and A

︸ ︷︷ ︸
l=k

(b) Optimally compressed inter-
val and the sums of the gains of
A and A

Fig. 2. The worst-case gain within one interval assigned to the �n/k� hyper-boxes

some hyper-box q, a deterministic algorithm A ∈ Alg(R) opens k consecutive
hyper-boxes until k empty hyper-boxes are inspected or it finds a full hyper-box
at the j-th trial, gaining k − j if j < k, and 1 if j = k. Next, we define the
symmetric algorithm to A denoted by A ∈ Alg(R): A initially opens hyper-box
q+ l−1 and then continues to open k−1 consecutive hyper-boxes left of q+ l−1
in reverse order until it arrives at s+ l− k or finds the item; A and A are called
an algorithm pair because they work on the same interval.

Let us now bound the minimum of the total gain of the two algorithms within
one interval of length l. Clearly, if l = k, the gain is at least k − 1 for every
hyper-box, and, more general, if l = k + i for −k < i < k, we get a gain of at
least k− 1− i = 2k− l− 1 (see Fig. 2). Starting at the first hyper-box, we assign
every of the M/2 algorithm pairs to one interval of length l in a way such that,
by allowing wrap-arounds, every hyper-box is covered by exactly c intervals.

It follows that

�[Bs] ≥
c(2k − l− 1)

M

if we can guarantee a number of c wrap-arounds (see Fig. 3); to do so, it clearly
has to hold that

M

2
· l ≥

⌊n
k

⌋
· c

which can be guaranteed by satisfying

l ≥ 2cn

Mk
(5)
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Fig. 3. The algorithm R with wrap-around c = 2

and we obviously aim at minimizing l while satisfying (5) which means that we
may set l := �2cn/Mk�, yielding

�[Bs] ≥
c
(
2k −

⌈
2cn
Mk

⌉
− 1
)

M
≥
c
(
2k − 2cn

Mk − 2
)

M
=

2ck − 2c

M
− 2c2n

M2k
. (6)

We now distinguish two cases according to the size of M .

1. Suppose M ≥ 2n
k(k−1) . Let

δ :=
k3

2n
− k(16k − 8 + k2)

18n
.

In the following, we want to guarantee that

2ck − 2c

M
− 2c2n

M2k
≥ δ

and therefore

0 ≥ kδM2 − (2ck2 − 2ck)M + 2c2n (7)

to prove the bound we claimed, that is, we have to show that there exists a
number of wrap-arounds c for anyM ≥ 2n

k(k−1) such that (7) holds. A simple

calculation gives that (7) is satisfied if and only if

3

2
· nc

k(k − 1)
≤M ≤ 3 · nc

k(k − 1)
.

To show that we can cover all possible values of M for the right choice of c,
note that, for c = 1, we have

3

2
· n

k(k − 1)
≤ 2 · n

k(k − 1)
≤M
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and, for two consecutive values c′ and c′′ (that is, c′′ = c′ + 1), we have

3c′n
k(k − 1)

≥ 3nc′′

2k(k − 1)
=

3n(c′ + 1)

2k(k − 1)
⇐⇒ 2 ≥ c′ + 1

c′

which obviously holds for any c′ ≥ 1. From (6) and (7), we immediately
conclude

�[Bs] ≥
2ck − 2c

M
− 2c2n

M2k
≥ k3

2n
− k(16k − 8 + k2)

18n
≥
(
1− 1

9

)
k3

2n
− 1.

2. Now suppose n−k+1
k2 < M ≤ 2n

k(k−1) . Here, we do not have enough random-

ness to do wrap-arounds. Thus, fixing c := 1 in (6), we immediately get

�[Bs] ≥
2k − l − 1

M
≥ 2k − 2

M
− 2n

M2k
.

The claim follows immediately. �

The intuitive idea behind the proof above is the following. With increasing M ,
as long asM ≤ 2n

k(k−1) , the gain of R increases, because we can choose from more

and more deterministic strategies and shrink l. However, if M grows too much,
the gain gets less and we start the wrap-around technique and thereby get a
bound that does not depend onM anymore. IfM increases over some threshold,
another wrap-around is made and the intervals get decompressed a little. If M
increases further, the intervals shrink until, for the some next threshold value,
another wrap-around is made.

Up to this point, we restricted ourselves to even values for M . However, a
simple observation resolves this issue.

Corollary 1. For any M and any randomized algorithm R ∈ R(M), the bounds
from Theorem 3 hold up to a multiplicative factor of 1− 1/M .

Proof. Theorem 3 holds for any even M . Now if M is odd, R acts as above for
any random choice from 1 to M − 1. In any of the cases, the expected gain X
is the same as in Theorem 3. If M is chosen, R may open some arbitrary boxes.
In this case, we assume that the gain is zero. We therefore get a total expected
gain of at least (

1− 1

M

)
·X +

1

M
· 0.

�

Observe the two theorems above provide us with two sharp thresholds on the
amount of randomness. If M < (n+k− 1)/k2, this small amount of randomness
does not help at all. On the other hand, ifM > 2n/(k(k−1)), which corresponds
to roughly logn− 2 log k random bits, any further randomness does not help to
improve the gain.
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3 Randomized Algorithms with Advice

In this section, we present our main result by analyzing the trade-off between
randomness and advice for (n, k)-Boxes. For this, we consider online algorithms
that base their computation on both advice bits and randomness. In essence, we
prove that, for the same amount of randomness, every additional advice bit
allows us to find the same expected number of full boxes within a sequence of

roughly double length. This implies that, for instance, the bound of 8
9 ·

k3

2n − 1
on the expected number of opened full boxes from the first claim of Theorem 3
can already be reached with a random number of roughly half the size.

To achieve this goal, we introduce the following notation. We denote by
F (n, k,M, b) the expected number of full boxes opened by the best algorithm
that solves (n, k)-Boxes with randomness M and b bits of advice.

For S ⊆ {1, . . . , n− k+1}, we generalize (n, k)-Boxes to (S, n, k)-Boxes. In
(S, n, k)-Boxes, the starting position Adv chooses for the full boxes, has to be
chosen from the set S, otherwise it is identical to (n, k)-Boxes. An algorithm
that solves (S, n, k)-Boxes is called faithful if it opens only boxes whose positions
are in S until the first full box is encountered.

Lemma 1. For every algorithm A that solves (S, n, k)-Boxes with random-
ness M and b advice bits, there exists a faithful algorithm A′ that also solves
(S, n, k)-Boxes with randomness M and b advice bits such that �[Bs(A

′)] ≥
�[Bs(A)], for all s.

Proof. Suppose we are given A as stated by the lemma. The following strategy
is carried out by A′ until it finds the first full box: If A opens box bi, then A′

opens bj with j = max{ s ∈ S | s ≤ i}, i. e., the next smaller box that is in S,
or it opens no box at all if this maximum does not exist. It is easy to see that
A′ opens its first full box not later than A: Assume A opens the first full box bi,
then bp, bp+1, . . . , bi are all full, where p is the starting position of the sequence
chosen by Adv. Of course, p ∈ S and p ≤ j ≤ i. Afterwards, A′ opens the same
boxes as A, except for the case where A wants to open the box bj which was
already opened by A′. In this case, A′ opens bi.

In that way, A′ opens at least the same number of full boxes as A. �

Lemma 2. Let A be an algorithm that solves (S, n, k)-Boxes with random-
ness M and no advice. Then

min
s
�[Bs(A)] ≤ F (|S|+ k − 1, k,M, 0) + 1.

Proof. Due to Lemma 1, we can assume that A is faithful without loss of gener-
ality. We now convert A into an algorithm A′ that solves (|S|+ k − 1, k)-Boxes
with randomness M and 0 advice bits such that

min
s
�[Bs(A

′)] ≥ min
s
�[Bs(A)]− 1.

Let S = {p1, . . . , p|S|} with p1 < p2 < · · · < p|S|. Let us further assume that A
would open boxes at positions pi1 , . . . , pik if we would report them all as empty.
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Then A′ opens boxes at positions i1, . . . , ir until it finds the first full box bir ;
afterwards A′ continues with local search.

Let i be a worst-case starting position for A′. As we have already discussed,
the last k − 1 boxes cannot be starting positions. We therefore have i ≤ |S| +
k − 1− (k − 1) = |S|. We choose pi as the starting position for A. If A′ does not
open a full box in the first r rounds, then neither does A, because A is faithful,
and therefore only opens boxes from S. By construction, any full box it finds
this way corresponds to a full box A′ opens. �

We are now ready to prove the main claims of this section.

Theorem 4. F (n, k,M, b) ≤ F (�(n− k + 1)/2b�+ k − 1, k,M, 0) + 1.

Proof. If an algorithm A solves (n, k)-Boxes with b advice bits, then, by the
pigeon-hole principle, there is at least one advice string that is used for at least
�(n − k + 1)/2b� different starting positions. Let S be the set of those starting
positions. Then the algorithm A can be used to solve (S, n, k)-Boxes without
advice (but with randomness M). Hence, if A is optimal, then F (n, k,M, b) ≤
mins�[Bs(A)] ≤ F (|S| + k − 1, k,M, 0) + 1 by Lemma 2. Clearly, F (n, k,M, b)
is anti-monotone in n (if k, M , and b are fixed, Adv obtains more positions to
hide the boxes with growing n) and thus F (|S|+ k − 1, k,M, 0) ≤ F (�(n − k +
1)/2b�+ k − 1, k,M, 0). �

Theorem 5. F (n, k,M, b) ≥ F (�(n− k + 1)/2b�+ k − 1, k,M, 0).

Proof. Consider an algorithm A for (n, k)-Boxes that uses b bits of advice.
Again, there are n − k + 1 possible starting positions for Adv. On the other
hand, we may subdivide these boxes into 2b groups of size⌈

n− k + 1

2b

⌉
,

and encode the position of the group that contains the starting position using b
bits. Easily, we can extend this interval by k − 1 boxes (which cannot contain a
starting position). Then, A simulates an optimal algorithm A′ for an instance of
this size. It directly follows that A gains at least as much as A′. �

Combining the results from Section 2 with Theorems 4 and 5 immediately yields
the following upper and lower bounds on the expected number of opened full
boxes for randomized algorithms with advice.

Corollary 2

(a) If M < �n−k+1
2b �/k2, then F (n, k,M, b) ≤ 1.

(b) For any M ,

F (n, k,M, b) ≤ k2(k + 1)

2�n−k+1
2b

�
+ 1.
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Fig. 4. The expected gain using randomness M and b bits of advice for n = 1000 000,
k = 300, different values of M and up to two advice bits

(c) If M = c�n−k+1
2b �/k2 with c ∈ [1, 2k/(k + 3)], then

F (n, k,M, b) ≤
2(k + 3

2 )

M
−

2�n−k+1
2b

�
M2k

+ 1 and

F (n, k,M, b) ≤ 2(c− 1)

c2
· k3

�n−k+1
2b

�
+

3k2

c · �n−k+1
2b

�
+ 1.

Corollary 3. Let M be an even number.

(a) If M ≥ 2(�n−k+1
2b

�+ k − 1)/(k(k − 1)), then

F (n, k,M, b) ≥ 8

9
· k3

2 · �n−k+1
2b

�+ k − 1
− 1.

(b) If �n−k+1
2b

� · 1
k2 < M < 2(�n−k+1

2b
�+ k − 1)/(k(k − 1)), then

F (n, k,M, b) ≥ 2k − 2

M
−

2 · �n−k+1
2b

�+ 2k − 2

M2k
.

Note that these upper and lower bounds are almost tight. Obviously, Corollary
3 can easily be extended to the case of odd M using Corollary 1. A graphical
illustration of the connection between the amount of randomness, the number
of advice bits and the expected number of full boxes that are opened is given
in Fig. 4.
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4 Conclusion

In this paper, we have analyzed, for the first time, the trade-off between ran-
domness and advice bits for online computation. We gave matching or almost
matching upper and lower bounds on the competitive ratio for (n, k)-Boxes for
any combination of randomness and advice bits. A goal for further research is
to extend these results to a broader class of online problems.
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Abstract. Reaction systems are a model for the investigation of pro-
cesses carried out by biochemical reactions in living cells. A reaction
system consists of a set of reactions which transform a current system’s
state (a set of entities) into the successor state. In this paper we in-
vestigate which entities are actually relevant from the point of view of
generating dynamic processes through such state transformations.

Keywords: reaction system, living cell, natural computing.

1 Introduction

The investigation of the computational nature of biochemical reactions is a re-
search theme of Natural Computing. One of the goals of this research is to
contribute to a computational understanding of the functioning of the living
cell.

Reaction systems [1–7] are a formal framework for the investigation of pro-
cesses carried out by biochemical reactions in living cells. The central idea of
this framework is that the functioning of a living cell is based on interactions
between (a large number of) individual reactions, and moreover these interac-
tions are regulated by two main mechanisms: facilitation/acceleration and inhi-
bition/retardation. These interactions determine the dynamic processes taking
place in living cells, and reaction systems are an abstract model of these pro-
cesses. This model is based on principles remarkably different from those under-
lying other models of computation in computer science. This is a consequence of
the fact that on the one hand the model takes into account the basic bioener-
getics of the living cell while on the other hand its (high) degree of abstraction
allows it to be a qualitative rather than quantitative model.

In a nutshell, a reaction system consists of a finite set of reactions which can
be applied to subsets (states) of a given set of entities, determining in this way
the transformations of states. The specific question we address in this paper is
which entities can be considered as relevant in the sense that state changes are
“sensitive” to them.
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We provide a characterisation of relevant elements in terms of resources of
reactions. In our considerations we use a specific “natural” notion of relevance,
but we also discuss its relationship to other possible “natural” definitions of
relevance.

The paper is organised in the following way. After setting up in Section 2 some
mathematical notation used in the paper, we describe basic notions concerning
reactions in Section 3, and basic notions concerning reaction systems in Section 4.
In Section 5, we introduce the central notions of this paper: relevant/irrelevant
sets and entities, and prove their basic properties. In Section 6, we demonstrate
that for a reduced reaction system the set of relevant entities coincides with
the resources used by the system’s reactions. Then, in Section 7, we discuss two
alternative formalisations of the notion of relevance. The last section contains a
brief discussion of our results.

2 Preliminaries

Throughout the paper we use mostly standard mathematical notation. We use
X÷Y to denote the symmetric difference (X \Y )∪(Y \X) of two sets X and Y .

3 Reactions

In this section, we recall some key definitions concerning reactions and sets of
reactions (see, e.g., [1, 5]).

Let Z be a finite nonempty set. A reaction over Z is a triplet of the form
a = (R, I, P ), where R, I, P ⊆ Z are nonempty sets such that R ∩ I = ∅. The
three component sets of reaction a are denoted by Ra, Ia and Pa, respectively,
and called the reactants, inhibitors and products (of a). We denote by rac(Z)
the set of all possible reactions over Z.

Let C ⊆ Z. A reaction a ∈ rac(Z) is enabled by C if Ra ⊆ C and Ia ∩ C = ∅.
We denote this by ena(C). The result of a reaction a ∈ rac(Z) on C is defined by

resa(C) =
{

Pa if a is enabled by C
∅ otherwise .

Moreover, the result of a set of reactions B ⊆ rac(Z) on C, denoted by resB(C),
is the union of the products of all the reactions from B, that is

resB(C) =
⋃
b∈B

resb(C) .

Note that resB(∅) = ∅ as the set of reactants of any reaction is nonempty and
so no reaction is enabled by C = ∅. Also, resB(Z) = ∅ as the set of inhibitors
of any reaction is nonempty and so no reaction is enabled by Z.

Let a, b ∈ rac(Z). Then b covers a if resb(C) = res{a,b}(C), for all C ⊆ Z. We
denote this by b ≥ a; thus what a does (produces) is already covered (produced)
by b. We also say that b strictly covers a if b ≥ a and a �= b. Note that ≥ is a
partial order.
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As a matter of fact (see [5]), b ≥ a iff Rb ⊆ Ra, Ib ⊆ Ia and Pb ⊇ Pa. Thus
b ≥ a if b requires a subset of reactants of a and a subset of inhibitors of a but
still produces at least all the products of a. Note that if b ≥ a then, for each
C ⊆ Z, ena(C) implies enb(C).

4 Reaction Systems

A reaction system is a pair A = (S, A), where S is a finite nonempty background
set comprising the entities of A, and A is the set of reactions over S. To capture
the dynamic behaviour of A, we now describe all possible transitions between
its states, where a state of A is any set C of its entities. Thus a reaction system
with a background set S has exactly 2|S| states.

Let C ⊆ S be a state of a reaction system A = (S, A). Then resA(C) =
resA(C) is the result of all the reactions of A enabled by C.

The state transformations captured by the above definition are deterministic.
Thus, indeed, a reaction system A = (S, A) defines (specifies, implements) a
function resA : 2S → 2S, called the result function of A. In the general model
of reaction systems, processes of A are also influenced by the “environment”
which reflects the fact that the living cell is an open system; it communicates
and interacts with its environment. However, for the notions that we study in
this paper it suffices to consider context-independent processes, i.e., processes
determined by the system A only (without influence of its environment). In
this way the successor state for a given state is determined solely by the result
function resA.

Note that in this case, the successor resA(C) of a current state C consists
only of entities from the product sets of reactions of A enabled by C. This means
that there is no permanency for entities A: an entity from a current state will be
present in (will carry over to) the successor state only if it is produced by at least
one reaction enabled by the current state. This way of defining state transitions
in reaction systems is motivated by the basic bioenergetics of the living cell, and
it constitutes a fundamental difference with models of computations considered
in computer science.

Since in this paper we are interested in state transitions in reaction systems, it
is convenient to convey the subsequent discussion in terms of functions specified
by reaction systems.

Proposition 1. Let A = (S, A) be a reaction system. Then⋃
C∈2S

resA(C) =
⋃
a∈A

Pa .

Proof. Follows from the fact that each reaction a ∈ A is enabled by the
state Ra. 
�
In other words, the entities occurring in the sets of the codomain of the result
function of a reaction system are all the entities which occur in the products of
the reactions of the system.



Relevance of Entities in Reaction Systems 47

Let A = (S, A) be a reaction system and b ∈ rac(S). Then b is consistent
with A if resb(C) ⊆ resA(C), for all C ⊆ S; thus adding b to A yields a reaction
system with the same result function.

A reaction system A = (S, A) is reduced if, for all a ∈ A,

(i) resA �= resA\{a}.
(ii) there is no b ∈ rac(S) which is consistent with A and strictly covers a.

Intuitively, (i) excludes reactions which do not add anything new to the results
produced by other reactions in A. As to the second condition, note that if b is
consistent with A and b strictly covers a then b is (from the point of view of
A) a more ‘efficient’ version of a. Therefore, condition (ii) requires that all the
reactions in A are in their most efficient version.

The two conditions in the definition of a reduced reaction system are inde-
pendent. Consider, for example, the reaction system A1 = (S, {a, b}), where

S = {1, 2} a = ({1}, {2}, {1}) b = ({1}, {2}, {2}) .

Then both reactions are necessary to specify resA1 . On the other hand, a and b
are covered by c = ({1}, {2}, {1, 2}) which is consistent with resA1 and can be
used to define a more efficient A′

1 = (S, {c}) specifying the same function as A1.
Conversely, let us consider the reaction system A2 = (S, {a, b, c}), where

S = {1, 2, 3} a = ({1, 2}, {3}, {1, 2}) b = ({1}, {3}, {1}) c = ({2}, {3}, {2}) .

In this case, the first condition is not satisfied because reaction a is redundant
(its enabledness implies enabledness of both b and c which together also produce
{1, 2}). However, the second condition is satisfied as all reactions over {1, 2, 3}
strictly covering a or b or c are inconsistent with resA2 .

We close this section by demonstrating that considering only reduced reaction
systems is not a restriction as far as result functions of reaction systems are
concerned.

Theorem 1. For every reaction system A there exists an equivalent reduced
reaction system A′, i.e., the two systems have the same background sets and the
same result function.

Proof. Let A = (S, A). Consider the set con(A) of all the reactions from rac(S)
consistent with A. Note that (S, con(A)) is equivalent with A — as a matter of
fact, it is the largest implementation of resA.

Let D be the set of all reactions in con(A) which are ≥-maximal in con(A).
Now we replace, in any order, each a ∈ A which is not maximal in con(A)

by a reaction b ∈ D such that b ≥ a, Let A′′ be the resulting set of reactions.
Clearly, A′′ = (S, A′′) is equivalent with A, and A′′ satisfies condition (ii) from
the definition of a reduced system.

Next, in order to ensure that also (i) is satisfied, we inspect one by one all
reactions, in any order, beginning with A′′ and remove those reactions from
the current set of reactions which can be removed without changing the result
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function. Let A′ be the final outcome of this procedure. Clearly, A′ = (S, A′)
still satisfies (ii), but it also satisfies (i). Thus A′ is reduced, and moreover A′ is
equivalent to A. Hence the theorem holds. 
�

5 Relevance in Reaction Systems

A central problem in the investigation of result functions of reaction systems
is to understand when and why (for a given reaction system A) resA does not
distinguish between two different states T and U , i.e., resA(T ) = resA(U). In-
tuitively, this means that the difference between T and U is irrelevant from the
point of view of resA. In this paper, we define irrelevant sets of entities as the
sets such that whenever two sets differ by an irrelevant set, then they will not be
distinguishable by resA. Since the operation of symmetric difference is a math-
ematically natural way to define the difference between two sets, we use this
operation in our definition of relevance. With this idea in mind, we say that:

– X ⊆ S is relevant in A if

(∃T, U ⊆ S) [ T ÷ U = X and resA(T ) �= resA(U) ] . (i)

– x ∈ S is relevant in A if {x} is relevant in A, i.e.,

(∃T ⊆ S) [ resA(T \ {x}) �= resA(T ∪ {x}) ] . (ii)

Intuitively, a set of entities X is irrelevant if any two sets of entities which ‘differ’
exactly by X are transformed to the same state, hence X is irrelevant from the
resA point of view. Thus, as expressed by (i), X is relevant if we can find two sets
of entities which ‘differ’ exactly by X and for which resA yields different results.
What we are really interested in is whether entities are relevant or irrelevant, as
expressed by part (ii) of the above definition. However, defining the relevance of
sets through the relevance of their elements does not work, as shown in Section 6
(see the comments after Proposition 3). Thus we had to define (i) first.

Now, for a reaction system A = (S, A), we define:

– the relevant domain of A as rdom(A) = {x ∈ S : x is relevant in A}.
– the irrelevant domain of A as irdom(A) = {x ∈ S : x is irrelevant in A}.

Intuitively, rdom(A) comprises those entities to which resA is ‘sensitive’, and
irdom(A) those to which resA is ‘insensitive’.

It turns out that by combining irrelevant entities we never obtain a relevant
set of entities. In other words, irrelevance is persistent, as shown next.

Proposition 2. Let A be a reaction system. Then each X ⊆ irdom(A) is irrel-
evant in A.

Proof. Let A = (S, A), and let X be a nonempty subset of irdom(A). Let T, U ⊆
S be such that T ÷ U = X . Let T \ U = Y and U \ T = Z; thus X = Y ∪ Z.
Since X �= ∅, at least one of Y, Z is nonempty.
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Without loss of generality, assume that Y �= ∅, thus Y = {y1, y2, . . . , yn} for
some n ≥ 1. Let T0 = T , T1 = T0 \ {y1}, T2 = T1 \ {y2}, . . . , Tn = Tn−1 \ {yn} =
T ∩ U . Since, for each i ∈ {1, . . . , n}, yi ∈ Y is irrelevant, we get

resA(T ) = resA(T0) = . . . = resA(Tn) = resA(T ∩ U) . (∗)
Similarly, one proves that

resA(T ∩ U) = resA(U) . (∗∗)
It follows from (∗) and (∗∗) that

resA(T ) = resA(T ∩ U) = resA(U) .

This implies that, for all T, U ⊆ S with T ÷U = X , we have resA(T ) = resA(U).
Therefore X is irrelevant. 
�
As a corollary of Proposition 2 we get the following property of the sets of
reactants of reactions in a reaction system.

Lemma 1. Let A be a reaction system. For each reaction a ∈ A, Ra �⊆ irdom(A).

Proof. Let a ∈ A. Assume to the contrary that Ra ⊆ irdom(A). Then, by
Proposition 2, Ra is irrelevant. Since Ra÷∅ = Ra and resA(∅) = ∅, this means
that

resA(Ra) = ∅ . (∗)
On the other hand, ena(Ra) and therefore

resA(Ra) = Pa . (∗∗)
But (∗) and (∗∗) imply that Pa = ∅, a contradiction with the definition of a
reaction. Therefore Ra �⊆ irdom(A). 
�

6 Characterising Relevant Domains

When it comes to sets of relevant entities, one should expect a relationship with
resources used by the reaction system. Here by the resources of a single reaction
a we mean Ma = Ra ∪ Ia. The essence of the next result is that relevant entities
must be resources.

Theorem 2. Let A = (S, A) be a reaction system. Then

rdom(A) ⊆
⋃
a∈A

Ma .

Proof. Let x ∈ S. If x /∈ ⋃a∈A Ma, then it follows directly from the definition of
resA that, for each T ⊆ S, resA(T \ {x}) = resA(T ∪ {x}). Hence x is irrelevant
and so x /∈ rdom(A). 
�
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The inclusion in the formulation of the above theorem can be replaced by equality
in case of a reaction system with a single reaction.

Proposition 3. Let A = (S, {a}) be a reaction system. Then

rdom(A) = Ma .

Moreover, every nonempty set X ⊆ Ra ∪ Ia is relevant.

Proof. To show the second part of the statement of the theorem, let X ⊆ Ra∪Ia

be such that X �= ∅. Let X ′ = X ∩ Ra and X ′′ = X ∩ Ia. To observe that
X is relevant it then suffices (see (i) in Section 5) to take T = Ra and U =
(Ra \ X ′) ∪ X ′′. We have then T ÷ U = X , but resa(T ) �= resa(U). Hence
all resources are relevant, and so from Theorem 2 it follows immediately that
rdom(A) = Ma. 
�
Thus we also obtained a counterpart of Proposition 2 for sets of relevant entities
in case of a system with a single reaction. However, any attempt to extend this
to reaction systems with more reactions is bound to fail, as illustrated by the
following example. Consider the reaction system A3 = (S, {a, b}), where

S = {1, 2} a = ({1}, {2}, {1}) b = ({2}, {1}, {1}) .

Then 1 is relevant because {1, 2} ÷ {2} = {1} and resA3({1, 2}) = ∅ �= {1} =
resA3({2}), and 2 is relevant because {1, 2}÷{1} = {2} and resA3({1, 2}) = ∅ �=
{1} = resA3({1}). However, X = {1, 2} is not a relevant set of entities which
is seen as follows. If T, U ⊆ S are such that T ÷ U = X , then either {T, U} =
{{1}, {2}} or {T, U} = {∅, S}. In the former case we obtain resA3(T ) = {1} =
resA3(U), and in the latter resA3(T ) = ∅ = resA3(U).

In general, not all resources are relevant. Consider, for example, the reaction
system A4 = (S, {a, b}), where

S = {1, 2, 3} a = ({1}, {2}, {1}) b = ({1, 3}, {2}, {1}) .

Then entity 3 is not relevant since 3 is a resource only in the presence of entity
1 and then it has no additional influence on the result.

To strengthen the general results obtained so far, we turn our attention to
reduced reaction systems which, intuitively, contain neither redundant nor inef-
ficient reactions. Moreover, by Theorem 1, any reaction system is equivalent to
a reduced reaction system, and so we still deal with all possible result functions
of reaction systems.

It is easy to see that every reaction system with a single reaction is reduced.
In the following main result of this paper which strengthens Theorem 2 we show
that in the case of any reduced reaction system the relevant entities are precisely
the resources used by the system.

Theorem 3. Let A = (S, A) be a reduced reaction system. Then

rdom(A) =
⋃
a∈A

Ma .



Relevance of Entities in Reaction Systems 51

Proof (Theorem 3). By Theorem 2 it suffices to prove that
⋃

a∈A Ma ⊆ rdom(A).
We do this by showing that:

(∀x ∈ S) [ x /∈ rdom(A) =⇒ x /∈ ⋃a∈A Ma ] . ($)

To this aim we will now present two lemmas: the first demonstrates that all the
reactants are relevant, and the second one demonstrates the same for inhibitors.

Lemma 2. For each reaction a ∈ A, Ra ∩ irdom(A) = ∅.

Proof (Lemma 2). Assume to the contrary that there exists a ∈ A such that

Ra ∩ irdom(A) �= ∅ .

Let b = (Ra \ irdom(A), Ia, Pa). By Lemma 1, Rb = Ra \ irdom(A) �= ∅, and
so b ∈ rac(S). Clearly, b strictly covers a, and so, because A is reduced, b is
not consistent with resA. Hence, there exists T ⊆ S such that enb(T ) and
resb(T ) = Pb �⊆ resA(T ). Since Pb = Pa, we get

Pa �⊆ resA(T ) . (∗)
Let U = T ∪ (Ra ∩ irdom(A)). Since enb(T ), we have (1) Rb ⊆ T and (2)
Ib ∩ T = ∅. Since Ra \ Rb = Ra ∩ irdom(A), (1) implies that Ra ⊆ U . Since
Ib = Ia (and Ia ∩ Ra = ∅), Ia ∩ U = ∅. Therefore ena(U) and, consequently,

Pa ⊆ resA(U) . (∗∗)
Thus by (∗) and (∗∗) we get that

Pa �⊆ resA(T ) and Pa ⊆ resA(T ∪ (Ra ∩ irdom(A))) .

This implies that the set U ÷ T is relevant, which contradicts Proposition 2 (as
U ÷ T ⊆ Ra ∩ irdom(A) and so, by Proposition 2, U ÷ T must be irrelevant).
Therefore Lemma 2 holds. (Lemma 2) 
�
Lemma 3. For each reaction a ∈ A, Ia ∩ irdom(A) = ∅.

Proof (Lemma 3). Assume to the contrary that there exists a ∈ A such that
Ia ∩ irdom(A) �= ∅. Clearly, for each T ⊆ S, resA\{a}(T ) ⊆ resA(T ). Moreover,
because A is reduced, there exists Ta ⊆ S such that resA\{a}(Ta) �= resA(Ta).
Thus

resA\{a}(Ta) ⊂ resA(Ta) . (∗)
Clearly, ena(Ta), as otherwise resA\{a}(Ta) = resA(Ta) which contradicts (∗).

Let U = Ta∪irdom(A). By Lemma 2, for each b ∈ A, if Rb ⊆ U then Rb ⊆ Ta.
Consequently, if b ∈ A is enabled by U , then it is also enabled by Ta, implying
that

(∀B ⊆ A) [resB(U) ⊆ resB(Ta)] . (∗∗)
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Since we assumed that Ia∩ irdom(A) �= ∅, reaction a is not enabled by U and so
resA(U) ⊆ resA\{a}(U). Since, by (∗∗), resA\{a}(U) ⊆ resA\{a}(Ta), we get that
resA(U) ⊆ resA\{a}(Ta). Consequently, by (∗), we obtain resA(U) ⊂ resA(Ta).
Since U = Ta ∪ irdom(A), this implies that the set U ÷ Ta is relevant, which
contradicts Proposition 2 (as U÷Ta ⊆ irdom(A) and so, by Proposition 2, U÷Ta

must be irrelevant).
Hence it must be that Ia ∩ irdom(A) = ∅, and consequently Lemma 3 holds.

(Lemma 3) 
�
By Lemma 2 and Lemma 3, irdom(A) ∩⋃a∈A Ma = ∅, which implies that ($)
holds and, consequently, the theorem holds. (Theorem 3) 
�
Our definition of a reduced reaction system A requires that A does not have
redundant reactions, and moreover each reaction is in its most “efficient” form
(as far as A is concerned). A redundant reaction is a reaction that can be removed
without influencing the result function resA. Another sort of redundancy is the
presence of resources which are not relevant: such entities influence the enabling
of (some) reactions but do not influence state transitions! Theorem 3 says that
also this kind of redundancy cannot happen in reduced reaction systems.

7 Alternative Notions of Relevance

In defining irrelevant/relevant sets of entities we relied on the operation of sym-
metric difference. In our view, this is just one of three natural choices to capture
the notion of irrelevance/relevance. In this section, we analyse the relationships
between them.

Let X ⊆ S be a set of entities of a reaction system A = (S, A).

– X is 1-irrelevant in A if:

(∀T, U ⊆ S) [ T ÷ U = X =⇒ resA(T ) = resA(U) ] .

– X is 2-irrelevant in A if:

(∀T, U ⊆ S) [ U ⊆ T and T \ U = X =⇒ resA(T ) = resA(U) ] .

– X is 3-irrelevant in A if:

(∀T ⊆ S) [ resA(T \ X) = resA(T ∪ X) ] .

We will use the notations irr1A(X), irr2A(X) and irr3A(X), respectively.
The first of the above three notions of irrelevance is the one investigated until

now in this paper. The second considers X irrelevant if removing its elements
from any set of entities does not change the result. The third notion of irrelevance
considers X irrelevant if, as far as the result function is concerned, removing X
from any set of entities has the same effect as adding X to this set of entities.

We now demonstrate relationships between these three notions of relevance.
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Lemma 4. For every X ⊆ S, irr1A(X) implies irr2A(X).

Proof. Let X ⊆ S and assume irr1A(X). Let T, U ⊆ S with U ⊆ T be such
that T \ U = X . Then T ÷ U = T \ U = X , and since irr1A(X), we get
resA(T ) = resA(U). Hence irr2A(X) and consequently the result holds. 
�

Lemma 5. For every X ⊆ S, irr2A(X) implies irr3A(X).

Proof. Let X ⊆ S and assume irr2A(X), hence

(∀T, U ⊆ S) [ U ⊆ T and T \ U = X =⇒ resA(T ) = resA(U) ] .

Consider arbitrary T ′ ⊆ S. Let T ′ \ X = U and T ′ ∪ X = T . Thus T \ U = X
and U ⊆ T . Hence, by irr2A(X), we get

resA(T ) = resA(U) . (∗)

We note that

resA(T ′ ∪ X) = resA(T ) and resA(T ′ \ X) = resA(U) . (∗∗)

By (∗) and (∗∗) we get resA(T ′ ∪ X) = resA(T ′ \ X). Therefore irr3A(X) and
so the result holds. 
�

Lemma 6. For every X ⊆ S, irr3A(X) implies irr2A(X).

Proof. Let X ⊆ S and assume irr3A(X), hence

(∀T ⊆ S) [ resA(T \ X) = resA(T ∪ X) ] .

Consider then arbitrary T, U ⊆ S such that U ⊆ T and T \ U = X . We note
that, by X ⊆ T , we have

T ∪ X = T . (†)

Moreover, by irr3A(X), we have

resA(T ∪ X) = resA(T \ X) . (‡)

Hence, by (†) and (‡), resA(T ) = resA(T \X). Since U = T \X , we get resA(T ) =
resA(U). Therefore irr2A(X) and so the result holds. 
�

We can therefore conclude that

Theorem 4. 1-irrelevance implies 2-irrelevance which in turn is equivalent to
3-irrelevance.

Proof. The theorem follows directly from Lemma 4, Lemma 5 and Lemma 6. 
�
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Hence the notion of relevant sets of entities as defined in Section 5 turns out to be
the strongest among those discussed in this section, and therefore a reasonable
choice for formalising the intuitive notion of relevance (from the point of view
of result functions of reaction systems).

Finally, note that for singleton sets X the three notions of irrelevance coincide.
This is no longer the case if X has two or more elements. Consider, for example,
the reaction system A5 = (S, {a}), where

S = {1, 2, 3} a = ({1, 2}, {3}, {1}) .

Then the set X = {1, 3} is not 1-irrelevant but it is 3-irrelevant. Hence the
implication in the above theorem cannot be reversed.

8 Conclusions

In this paper, we presented an investigation of sets of entities of reaction systems
which are relevant from the point of view of result functions. In particular,
we proved that for the reduced reaction systems relevant entities are precisely
those which are used as resources by the reactions. We have also discussed the
relationship between the notion of relevance investigated in this paper and two
alternative notions of relevance.

In our future work we intend to investigate derived notions of relevance where
one is interested in establishing which entities become irrelevant ‘sooner or later’.
For example, one might say that a set of entities X ⊆ S is eventually irrelevant
in a reaction system A if

(∀T, U ⊆ S)(∃n ≥ 1) [ T ÷ U = X =⇒ resn
A(T ) = resn

A(U) ] ,

where resn
A is the n-fold iteration of resA. In other words, eventual irrelevance

implies that the initial distinction between states T and U will eventually dis-
appear with the iteration of resA whenever the two states differ by the set of
entities X .
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Abstract. Generalized random context picture grammars (grcpgs) are a
method of syntactic picture generation. The terminals are subsets of the
Euclidean plane and the replacement of variables involves the building
of functions that will eventually be applied to terminals. Context is used
to permit or forbid production rules.

Iterated function systems (IFSs) and their generalization, mutually
recursive function systems (MRFSs), are among the best-known methods
for constructing fractals. In earlier work it was shown that any picture
sequence generated by an IFS or MRFS can be generated by a grcpg.
Moreover, it was shown that grcpgs can generate a wider range of pictures
than IFSs or MRFSs.

In this essay we give a summary of the above mentioned results. We
then consider language-restricted iterated function systems (LRIFSs), a
method of picture generation where a language controls which functions
of an IFS are applied. We first show that LRIFSs are more powerful than
IFSs. Then we show that any picture produced by an LRIFS where the
restricting language is regular, can be approximated by a grcpg.

1 Introduction

A method of syntactic picture generation, using random context picture gram-
mars (rcpgs), was described and studied elsewhere [6–9]. A summary of results
can be found in [5]. In [10], Ewert and van der Walt introduced the notion of
a generalized random context picture grammar (grcpg). These grammars use
production rules to compose functions from some finite set of functions. These
functions are then applied to terminals, which are subsets of the Euclidean plane,
to create a picture. Context is used to permit or forbid production rules.

An iterated function system (IFS) is an iterative method for constructing
fractals from a finite set of contractive maps defined on a complete metric space.
The sequence of pictures generated by an IFS converges to a unique limit. The
method was developed principally by Barnsley and co-workers, who obtained
impressively life-like images both of nature scenes and the human face [1, 2].
Ewert and van der Walt [10] showed that any picture sequence generated by an
IFS can also be generated by a grcpg that uses forbidding context only. Moreover,
since grcpgs use context to control the sequence in which functions are applied,
they can generate a wider range of fractals or, more generally, pictures than
IFSs.
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Mutually recursive function systems (MRFSs), called hierarchical iterated
function systems by Peitgen and co-workers [13], are powerful methods of math-
ematical picture generation. MRFSs are a generalization of IFSs, and consist of
networks or hierarchies of IFSs. Kruger and Ewert [12] generalized the above
mentioned result for IFSs to show that for every MRFS, an equivalent grcpg can
be constructed. They also showed that grcpgs are more general than MRFSs,
in the sense that grcpgs can be constructed that generate sets of pictures that
cannot be generated by any MRFS.

Language-restricted iterated function systems (LRIFSs) [15] are a generaliza-
tion of IFSs, and consist of an IFS and a language that controls which functions
of the IFS are applied. In this essay we first show that LRIFSs are more power-
ful than IFSs. Then we show that any picture produced by an LRIFS where the
restricting language is regular, can be approximated by a grcpg.

The remainder of this paper is structured as follows. In Sect. 2, we review
published results about the relationship between grcpgs and IFSs, and MRFSs,
respectively. In Sect. 3 we focus on LRIFSs and in particular show that any
picture produced by an LRIFS where the restricting language is regular, can be
approximated by a grcpg. Future work is recommended in Sect. 4.

2 Previously Published Results

In this section we give the definitions of grcpgs, IFSs and MRFSs. Then we state
the most important results about the relationship between grcpgs and IFSs, and
grcpgs and MRFSs.

2.1 Generalized Random Context Picture Grammars

We define a generalized random context picture grammar and illustrate the main
concepts with an example, the iteration sequence of the Sierpiński gasket.

Definition 1. Let S be any set. Then ℘ (S) denotes the power set of S.

Definition 2. A generalized random context picture grammar G =
(VN, VT, VF, P, (S, ε)) has a finite alphabet V of labels, consisting of
disjoint subsets VN of variables, VT of terminals and VF of function
identifiers. The productions, finite in number, are of the form A →
{(A1, ρ1) , (A2, ρ2) , . . . , (At, ρt)} (P;F), where A ∈ VN, A1, . . . , At ∈ VN ∪ VT,
ρ1, . . . , ρt ∈ V ∗

F and P,F ⊆ VN. Finally, there is an initial configuration (S, ε),
where S ∈ VN and ε denotes the empty string.

Definition 3. A pictorial form Π is a finite set
{(B1, ϕ1) , (B2, ϕ2) , . . . , (Bs, ϕs)}, where B1, . . . , Bs ∈ VN ∪ VT and
ϕ1, . . . , ϕs ∈ V ∗

F . We denote the set {B1, . . . , Bs} by l (Π).

Definition 4. For a grcpg G and pictorial forms Π and Γ we write Π =⇒G Γ
if there is a production A → {(A1, ρ1) , (A2, ρ2) , . . . , (At, ρt)} (P;F) in G, Π
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contains an element (A,ϕ), l (Π \ {(A,ϕ)}) ⊇ P and l (Π \ {(A,ϕ)}) ∩ F = ∅,
and Γ = (Π \ {(A,ϕ)})∪{(A1, ϕρ1) , (A2, ϕρ2) , . . . , (At, ϕρt)}. As usual, =⇒∗

G

denotes the reflexive transitive closure of =⇒G.

Definition 5. A picture is a pictorial form Π with l (Π) ⊆ VT.

Definition 6. The gallery G (G) generated by a grcpg G is the set of pictures Π
such that {(S, ε)} =⇒∗

G Π.

Definition 7. The gallery of a grcpg G is rendered by specifying functions ΨG :
VT → ℘

(
IR2
)
and ΥG : VF → F

(
IR2
)
, where F

(
IR2
)
=
{
g | g : IR2 → IR2

}
.

This yields a representation of a picture Π = {(B1, ϕ1) , (B2, ϕ2) , . . . , (Bs, ϕs)}
in IR2 by

r (Π) =

s⋃
i=1

ΥG (ϕi) (ΨG (Bi)) ,

where ΥG has been extended to V ∗
F in the obvious manner, ΥG (ε) representing

the identity function id.

Definition 8. If every production in G has P = ∅, we call G a generalized
random forbidding context picture grammar (grFcpg).

Note 1. It should be clear that we can also use (S, id) as initial configuration
without that affecting the rendered gallery.

Note 2. For the sake of convenience, we write a production A →
{(A1, ε)} (P;F) as A → A1 (P;F). Moreover, if P = F = ∅ in a pro-
duction A → {(A1, ρ1) , (A2, ρ2) , . . . , (At, ρt)} (P;F), then we write A →
{(A1, ρ1) , (A2, ρ2) , . . . , (At, ρt)}.

We illustrate these concepts with an example.

Example 1. We generate the typical iteration sequence of the Sierpiński gasket
with the grcpg Ggasket = ({S, T, U, F} , {b} , {glb, grb, gt} , P, (S, ε)), where P is
the set:

S → {(T, glb) , (T, grb) , (T, gt)} (∅; {U}) (1)

T → U (∅; {S, F}) | (2)

F (∅; {S,U, F}) | (3)

b ({F} ; ∅) (4)

U → S (∅; {T }) (5)

F → b (∅; {T }) (6)

We give the derivation of a picture Π in G (Ggasket) in detail.
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{(S, ε)}
=⇒G {(T, glb) , (T, grb) , (T, gt)} (rule 1)

=⇒∗
G {(U, glb) , (U, grb) , (U, gt)} (thrice rule 2)

=⇒∗
G {(S, glb) , (S, grb) , (S, gt)} (thrice rule 5)

=⇒∗
G {(T, glbglb) , (T, glbgrb) , (T, glbgt)}∪
{(T, grbglb) , (T, grbgrb) , (T, grbgt)}∪
{(T, gtglb) , (T, gtgrb) , (T, gtgt)} (thrice rule 1)

=⇒G {(T, glbglb) , (T, glbgrb) , (T, glbgt)}∪
{(T, grbglb) , (F, grbgrb) , (T, grbgt)}∪
{(T, gtglb) , (T, gtgrb) , (T, gtgt)} (rule 3)

=⇒∗
G {(b, glbglb) , (b, glbgrb) , (b, glbgt)}∪
{(b, grbglb) , (F, grbgrb) , (b, grbgt)}∪
{(b, gtglb) , (b, gtgrb) , (b, gtgt)} (repeated application of rule 4)

=⇒G {(b, glbglb) , (b, glbgrb) , (b, glbgt)}∪
{(b, grbglb) , (b, grbgrb) , (b, grbgt)}∪
{(b, gtglb) , (b, gtgrb) , (b, gtgt)} (rule 6)

Let ΥG (glb) = (x, y) →
(
x
2 ,

y
2

)
, ΥG (grb) = (x, y) →

(
x
2 + 1

2 ,
y
2

)
and ΥG (gt) =

(x, y)→
(

x
2 + 1

4 ,
y
2 +

√
3
4

)
.

Then r (Π) =
⋃9

i=1 ΥG (ϕi) (ΨG (b)), where ΥG (ϕ1) = (x, y) →(
1
2 ×

x
2 ,

1
2 ×

y
2

)
, ΥG (ϕ2) = (x, y) →

(
1
2

(
x
2 + 1

2

)
, 12 ×

y
2

)
, ΥG (ϕ3) = (x, y) →(

1
2

(
x
2 + 1

4

)
, 12

(
y
2 +

√
3
4

))
, . . . .

Let ΨG (b) be the dark triangle with vertices
{
(0, 0) , (1, 0) ,

(
1
2 ,

√
3
2

)}
. Then

r (Π) represents the picture in Fig. 1(a). Alternatively, let ΨG (b) be the dark
square determined by the vertices {(0, 0) , (1, 0) , (1, 1)}. Then r (Π) represents
Fig. 1(b).

2.2 Iterated Function Systems

Iterated function systems are among the best-known methods for constructing
fractals. An extensive treatment of IFSs can be found in [11]. In this section we
review results that show that grcpgs are more powerful than IFSs.

Definition 9. An iterated function system {X,F} or {X ; f1, f2, . . . , ft}, t > 0,
is a pair consisting of a complete metric space X together with a finite set of
contractive maps fi : X → X, 1 ≤ i ≤ t.
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(a) ΨG ({b}) is a dark triangle
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0.8

0 0.2 0.4 0.6 0.8 1

(b) ΨG ({b}) is a dark square

Fig. 1. Two pictures in the iteration sequence of the Sierpiński gasket

Let H (X) be the set of all nonempty compact subsets of X . For E ∈ H (X),
let F (E) = f1 (E) ∪ f2 (E) ∪ . . . ∪ ft (E). By repeated application of F to E, we
obtain a sequence in H (X), E0 = E,E1 = F (E0) , E2 = F (E1) , . . . .

The sequence E0, E1, E2, . . . converges to a unique limit E, called the attractor
of the IFS, which is independent of the choice of starting set E0, but completely
determined by the choice of the maps fi.

This sequence can be generated by a grFcpg, as was shown in [10]. We state
the full result here—in Theorem 1—since the proof gives the translation from a
given IFS to a grFcpg.

Theorem 1. Let {X,F} be an IFS. Then there is a grFcpg G such that for
every l ≥ 1, G generates the set

{(
a, ϕl

1

)
,
(
a, ϕl

2

)
, . . . ,

(
a, ϕl

tl

)}
, where the ϕl

i

are all tl possible sequences of length l of the fj ∈ F.

Proof. Let G = ({S, I, T, U, F} , {a} , {f1, f2, . . . , ft} , P, (S, ε)), where P is the
set:

S → {(I, f1) , (I, f2) , . . . , (I, ft)}

I → {(T, f1) , (T, f2) , . . . , (T, ft)} (∅; {F,U}) |
F (∅; {T, U})

T → U (∅; {I})
U → I (∅; {T })

F → a (∅; {I})

�

Example 2. We obtain the iteration sequence of the Sierpiński gasket with the
IFS

{
IR2; glb, grb, gt

}
, where glb : (x, y) →

(
x
2 ,

y
2

)
, grb : (x, y) →

(
x
2 + 1

2 ,
y
2

)
and

gt : (x, y)→
(

x
2 + 1

4 ,
y
2 +

√
3
4

)
.
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For any E ∈ H
(
IR2
)
, F (E) = glb (E) ∪ grb (E) ∪ gt (E). Let E0 = E. Then

E1 = F (E0) = glb (E0) ∪ grb (E0) ∪ gt (E0), E2 = F (E1) = glbglb (E0) ∪-
glbgrb (E0) ∪ glbgt (E0) ∪ grbglb (E0) ∪ grbgrb (E0) ∪ grbgt (E0) ∪ gtglb (E0) ∪-
gtgrb (E0)∪gtgt (E0) , . . . . When we choose E0 to be a dark triangle, respectively,
a dark square, E2 is represented by Fig. 1(a) and Fig. 1(b), respectively.

To this IFS corresponds the grFcpg G =
({S, I, T, U, F} , {a} , {glb, grb, gt} , P, (S, ε)), where P is the set:

S → {(I, glb) , (I, grb) , (I, gt)}

I → {(T, glb) , (T, grb) , (T, gt)} (∅; {F,U}) |
F (∅; {T, U})

T → U (∅; {I})
U → I (∅; {T })

F → a (∅; {I})
G generates the pictorial forms {(a, glb) , (a, grb) , (a, gt)},
{(a, glbglb) , (a, glbgrb) , (a, glbgt)} ∪ {(a, grbglb) , (a, grbgrb) , (a, grbgt)} ∪-
{(a, gtglb) , (a, gtgrb) , (a, gtgt)} , . . ..

In [10] it was also shown that there exists a set of pictures that can be gen-
erated by a grcpg, but that is not the sequence converging to the attractor of
any IFS. Since grcpgs use context to control the sequence in which functions are
applied, they can generate a wider range of pictures than IFSs. An example of
such a picture set is Gtrail, which is described below. Gtrail cannot be generated
by a grFcpg, as becomes clear when inspecting the proof in [8], and therefore
also not by an IFS.

Gtrail = {Θ1, Θ2, . . .}, where Θ1, Θ2 and Θ3 are shown in Fig. 2(a), Fig. 2(b)
and Fig. 2(c), respectively. For the sake of clarity, an enlargement of the lower
lefthand ninth of Θ3 is given in Fig. 2(d).

For i = 2, 3, . . ., Θi is obtained by dividing each dark square in Θi−1 into four
and placing a copy of Θ1, modified so that it has exactly i+ 2 dark squares, all
on the diagonal, into each quarter.

The modification of Θ1 is effected in its middle dark square only and pro-
ceeds in detail as follows: The square is divided into four and the newly-created
lower lefthand quarter coloured dark. The newly-created upper righthand quar-
ter is again divided into four and its lower lefthand quarter coloured dark. This
successive quartering of the upper righthand square is repeated until a total of
i − 1 dark squares have been created, then the upper righthand square is also
coloured dark. The new dark squares thus get successively smaller, except for
the last two, which are of equal size.

2.3 Mutually Recursive Function Systems

Mutually recursive function systems, called hierarchical iterated function sys-
tems by Peitgen and co-workers [13], are a generalization of IFSs, and consist of
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(a) Θ1 of Gtrail (b) Θ2 of Gtrail

(c) Θ3 of Gtrail (d) Bottom lefthand ninth of Θ3 en-
larged

Fig. 2. Pictures of Gtrail

networks or hierarchies of IFSs. Mutually recursive function systems were devel-
oped to study wider ranges of fractal-like images that do not exhibit such high
degrees of self-similarity as IFSs [13]. In this section we review results that show
that grcpgs are more powerful than MRFSs.

There are a number of slight variations in the definitions of MRFSs that can
be found in the literature. Here we use the definition used by Drewes [4].

Definition 10. Let n ∈ IN+. Then I = (M, c) is an MRFS of rank n such that

– M is an n× n matrix (mi,j) with
• mi,j = f

1
i,j , . . . , f

ti,j
i,j , ti,j ∈ IN, and

• ∀i, j ∈ [n] and k ∈ [ti,j ], f
k
i,j : IR

2 → R2.
– c = (c1, . . . , cn) is a vector where each ci is a possibly empty compact subset

of IR2. These sets are called condensation sets.
– For each i such that ci is empty, ∃j such that ti,j > 0.

Mutually recursive function systems generate pictures through application of the
extended Hutchinson operator.

Definition 11. Given an MRFS I = (M, c), the Hutchinson operator HI :(
℘
(
R2
))n →

(
℘
(
R2
))n

is defined as follows: for v = (v1, . . . , vn) ∈(
℘
(
R2
))n

, HI(v) = (v′1, . . . , v
′
n), where v

′
i = ci ∪

⋃
j∈[n]Hmi,j (vj) for i ∈ [n].
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Now, given an MRFS I = (M, c) and a vector of initial pictures u = (u1, . . . , un),
with ui a compact, possibly empty subset of R2, the sequence of pictures gener-
ated by I is SI(u, 1), SI(u, 2), . . ., where SI(u, i) = H

i
I(u) [1] (the first component

of the ith iteration of the Hutchinson operator). The picture language obtained
from I is the set L(I, u) = {SI(u, i)|i ∈ N+}.

Example 3. The MRFS IS of rank 3 generates pictures which consist of a
Sierpiński triangle with a “shadow” consisting of an inverse Sierpiński triangle.
Figure 3 shows the first four pictures in L(IS , a) where a = (a1, a2, a3), a1 is the
empty set, a2 is the filled-in triangle with vertices (0, 0), (5,

√
75) and(−5,

√
75)

and a3 is the filled-in triangle with vertices (−5, 0), (5, 0) and (0,
√
75).

IS = (M, c)
where :

M =

⎛⎝ ε f7 f4, f5, f6
ε id, f1, f2, f3 ε
ε ε f4, f5, f6

⎞⎠
and for i ∈ [3], ci = ∅,

with the functions defined as follows :

id(x, y) = (x, y)

f1(x, y) =
(x
2
+ 5,

y

2

)
f2(x, y) =

(x
2
− 5,

y

2

)
f3(x, y) =

(x
2
,
y

2
+
√
75
)

f4(x, y) =

(
x

2
,
y

2
+

√
75

2

)
f5(x, y) =

(x
2
− 2.5,

y

2

)
f6(x, y) =

(x
2
+ 2.5,

y

2

)
f7(x, y) =

(
x

2
+ y tan

Π

8
,−y

4

)
Kruger and Ewert [12] showed that for every MRFS, an equivalent grcpg can
be constructed. We state the result here in full—in Theorem 2—since the proof
gives the translation from a given MRFS to a grFcpg.

Theorem 2. An MRFS I = (M, c), of degree n with a vector of initial pictures
a = (a1, . . . , an), can be translated into a grcpg GI .
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2)

3) 4)

1)

Fig. 3. Four pictures generated by the MRFS IS

Proof.

GI = (VN , VT , VF , P, (S, ε)) where

VN = {S, I1, . . . , In, T1, . . . , Tn, U1, . . . , Un, F1, . . . , Fn}
VT = {a1, . . . , an, c1, . . . , cn}
VF =

⋃
i,j∈[n]

{f1i,j, . . . , f
ti,j
i,j }

and P is the set of productions :

S → {(I1, f11,1), . . . , (I1, f
t1,1
1,1 ), . . . , (In, f

1
1,n), . . . , (In, f

t1,n
1,n ), c1}

Ii → {(T1, f1i,1), . . . , (T1, f
ti,1
i,1 ), . . . , (Tn, f

1
i,n), . . . , (Tn, f

ti,n
i,n ), ci}

(∅; {I1, . . . , Ii−1, F1, . . . , Fn, U1, . . . , Un})
Ii → Fi(∅; {I1, . . . , Ii−1, T1, . . . , Tn, U1, . . . , Un})
Ti → Ui(∅; {I1, . . . , In, T1, . . . , Ti−1})
Ui → Ii(∅; {T1, . . . , Tn, U1, . . . , Ui−1})
Fi → ai(∅; {I1, . . . , In, F1, . . . , Fi−1}) �
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The language of GI can be rendered in such a way that it is equal to the set of
all approximations generated by I.

Example 4. The grcpg Gshadow was obtained by translating the MRFS IS into a
grcpg. With the terminals and functions defined as for IS above, this grammar
will generate exactly the same set of pictures as IS .

Gshadow = (VN , VT , VF , P, (S, ε)) where

VN = {S, I1, I2, I3, T1, T2, T3, U1, U2, U3, F1, F2, F3}
VT = {a1, a2, a3}
VF = {id, f1, f2, f3, f4, f5, f6, f7}

and P is the set of productions :

S → {(I2, f7), (I3, f4), (I3, f5), (I3, f6)}
I1 → {(T2, f7), (T3, f4), (T3, f5), (T3, f6)}(∅; {F1, F2, F3, U1, U2, U3})
I1 → F1(∅; {T1, T2, T3, U1, U2, U3})
I2 → {(T2, id), (T2, f1), (T2, f2), (T2, f3)}(∅; {I1, F1, F2, F3, U1, U2, U3})
I2 → F2(∅; {I1, T1, T2, T3, U1, U2, U3})
I3 → {(T3, f4), (T3, f5), (T3, f6)}(∅; {I1, I2, F1, F2, F3, U1, U2, U3})
I3 → F3(∅; {I1, I2, T1, T2, T3, U1, U2, U3})
T1 → U1(∅; {I1, I2, I3})
T2 → U2(∅; {I1, I2, I3, T1})
T3 → U3(∅; {I1, I2, I3, T1, T2})
U1 → I1(∅; {T1, T2, T3})
U2 → I2(∅; {T1, T2, T3, U1})
U3 → I3(∅; {T1, T2, T3, U1, U2})
F1 → a1(∅; {I1, I2, I3})
F2 → a2(∅; {I1, I2, I3, F1})
F3 → a3(∅; {I1, I2, I3, F1, F2})

In [12], Kruger and Ewert also showed that grcpgs can be constructed that
generate sets of pictures that cannot be generated by any MRFS. Such a grcpg is
easily obtained by simply modifying the context rules in a grcpg translated from
some MRFS, to remove some (or all) of the restrictions that guarantee uniform
refinement in the resulting pictures. Another easy way of obtaining such a grcpg
is to simply add production rules to a grcpg translation of an MRFS.

Consider the set of all pictures that consist of a Sierpiński triangle with uni-
form refinement and a “shadow” made of an inverted Sierpiński triangle, also
with uniform refinement, but the triangle and the “shadow” need not have the
same level of refinement. Thus, this set contains all the pictures in G(Gshadow) as
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well as pictures such as shown in Fig. 4. This set can be generated by a grFcpg,
called Gext1 in [12]. It should be clear that no MRFS can be constructed to
generate all the pictures in this set.

Fig. 4. Two pictures from G(Gext1) that are not in G(Gshadow)

3 Language-Restricted Iterated Function Systems

We can modify the picture produced by an IFS by using a language restriction,
where a language controls which functions of the IFS are applied at different
stages. This method of picture generation, introduced in [14], allows us to create
pictures which are self-similar but not self-identical. For example, we can take
an IFS which generates a picture of leaves on a stalk—Fig. 5(a)—and restrict
it to get leaves on alternating sides—Fig. 5(b)—without changing the leaves
themselves.

In this section we prove that the LRIFSs are strictly more powerful than
the IFSs, and therefore investigate the relationship between LRIFSs and grcpgs.
Although we do not investigate the relationship between LRIFSs and MRFSs, we
use different types of approximation sequences for the two systems, so LRIFSs
are of independent interest,

Definition 12. A language-restricted iterated function system (LRIFS) is a tu-
ple IL = {X,F, L} where I = {X,F} is an IFS, called the underlying IFS of
IL, and L ⊆ F∗.

Following [15], we interpret the words of F∗ as functions by reverse composition;
that is, if f = f1f2 . . . fn−1fn, where f1, f2, . . . , fn−1, fn ∈ F, then f(π) =
fn(fn−1(. . . f2(f1(π)) . . .)). Unlike [15], however, we give the symbol ◦ its usual
meaning.

The definition of the attractor of an LRIFS is based on the fact that if
{X,F} is an IFS and π is a point in its attractor, then the attractor is equal to
{f(π) | f ∈ F∗}, where · denotes the topological closure.
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(a) (b)

Fig. 5. An IFS and a language-restricted variation

Definition 13. If IL = (X,F, L) is an LRIFS and π ∈ X then the attractor of
IL at π is

Aπ(IL) = {f(π) | f ∈ L} .

Thus, every word of L contributes a single point to the picture. In [15], π is
required to be in the attractor of the underlying IFS, but Lemma 1 shows that
that is unnecessary.

In all examples in this work and in [15], L is a regular language and F a
set of affine functions (an affine function is a translation composed with linear
function). We call such LRIFSs regular and affine, respectively. Affine regular
LRIFSs can generate a wide variety of pictures, even with a single underlying
IFS. For example, see Fig. 5, already mentioned, and Fig. 6, which shows two
fractals described in [15] and a version of the Sierpiński triangle (restricted with
the language (F1+F3+F4)

∗ in the notation of that paper). The functions which
generate Fig. 5 are

f1 = t

(
0,

1

8

)
◦ s
(
7

8

)
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f2 = t

(
0,

1

8

)
◦ r (60) ◦ s

(
1

3

)
f3 = t

(
0,

1

8

)
◦ r (−60) ◦ s

(
1

3

)
f4 = projy ◦ s

(
1

4

)
where t denotes translation, s scaling, r rotation (in degrees) and projy projection
onto the y axis. Fig. 5(b) is restricted with the language (f1+f2+f3+f4)

∗(f2+
f3f1)(f1f1)

∗(f4f∗1 + ε).

Fig. 6. Attractors of a single IFS restricted by three different languages

Every attractor of an IFS is also an attractor of a regular LRIFS, which can
be seen by using the language L = F∗. On the other hand, there are pictures
which are the attractor of an LRIFS but not of any IFS (at least when we restrict
ourselves to the affine functions). To prove this, we will need some basic facts
about the closure properties of LRIFS attractors.

Lemma 1. If A is the attractor of an (affine, regular) LRIFS at a point π, then
there is another (affine, regular) LRIFS whose attractor is A at every point.

Proof. Suppose IL = {X,F, L} and A = Aπ(IL). Let g be the function which is
constantly π, and JgL = {X,F ∪ {g}, gL}. Then

A = Aπ(IL)

= {f(π) | f ∈ L}
= {(f ◦ g)(ρ) | f ∈ L}
= {f(ρ) | f ∈ gL}
= Aρ(JgL)

for any ρ. Thus JgL is the desired LRIFS; furthermore it is regular (resp. affine)
if IL is. �
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Thus the starting point π is essentially arbitrary: if we want to generate a single
picture, we can find an LRIFS which generates it from any starting point.

Lemma 2. If A is the attractor of an (affine, regular) LRIFS at a point π and
0 < a < 1, then there is another (affine, regular) LRIFS whose attractor at π is
s(a)(A).

Proof. Suppose IL = {X,F, L} and A = Aπ(IL). Let g = s(a). Then JLg =
{X,F ∪ {g}, Lg} has the desired attractor. �

Thus the class of LRIFS attractors is closed under downscaling. Furthermore,
we will now show that they are closed under union.

Lemma 3. If A and A′ are attractors of (affine, regular) LRIFSs, then so is
A ∪A′.

Proof. Let IL = {X,F, L} and I′L′ = {X,F′, L′} be LRIFSs whose attractors are
A and A′ respectively. By Lemma 1 we can assume, without loss of generality,
that they can be generated from the same starting point, π. Then

A ∪A′ = Aπ(IL) ∪Aπ(I
′
L′)

= {f(π) | f ∈ L} ∪ {f(π) | f ∈ L′}
= {f(π) | f ∈ L} ∪ {f(π) | f ∈ L′}
= {f(π) | f ∈ (L ∪ L′)}
= Aπ(JL∪L′)

where J = {X,F ∪ F′}. �

The previous three lemmas allow us to generate an LRIFS attractor by overlaying
the (possibly downscaled) attractors of other LRIFSs (with all three operations
preserving affineness and regularity). This contrasts with IFSs, as the following
theorem shows by an example.

Theorem 3. There is an LRIFS IL = {X,F, L} with F a set of affine functions
X → X whose attractor is not the attractor of any IFS J = {X,F′} with F′ a
set of affine functions.

Proof. Let A be the Cantor square, suitably scaled down, surrounded by a
square, as depicted in Fig. 7. Since the Cantor square and the square are both
attractors of IFSs, A is the attractor of an LRIFS by the above theorems.

Suppose A is the attractor of an IFS {X,F} where F is a set of affine functions.
Let S ⊆ A be the square, and C = A \ S be the Cantor square. Let f ∈ F.

Since S is connected, either f(S) ⊆ S or f(S) ⊆ C.
If f(S) ⊆ S, then f(S) must be a point or a line segment, since the image

of S under an affine map is either a quadrilateral (but f(S) �= S since f is a
contraction), a triangle (but no triangle is a subset of S), a line segment or a
point.
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Fig. 7. A square, S, and the Cantor square, C, which are attractors of IFSs, and their
union, A

On the other hand, if f(S) ⊆ C then f(S) is a singleton, because C is totally
disconnected.

Thus each f ∈ F maps S to either a line segment or a singleton. Since C is
inside S and each f is affine, f(A) is either a line segment or a singleton for
each f . However, A = f1(A) ∪ . . . ∪ fn(A) but A is not a finite union of line
segments and singletons, which is a contradiction. Thus A is not the attractor
of any IFS. �

Since we have proven the LRIFSs are strictly more powerful than IFSs, we wish
to extend our main result for IFSs—that they can be generated by a grFcpg—to
LRIFSs. We use a different notion of approximation than for IFSs, because we
wish to retain the information provided by all the strings in the language, rather
than discarding them in better approximations.

Definition 14. If L is a language, let L≤n = {x ∈ L : |x| ≤ n}.

We use the concept of L≤n to generate approximations to the attractors of an
LRIFS which are uniform, in that they are not closer approximations in one part
than another. This is illustrated by Fig. 8, which shows three approximations
based on L≤n for different n, and one based on an arbitrary subset of L.

Theorem 4. Let IL = {X,F, L} be a regular LRIFS, and π a point in X. Then
there is a grFcpg G that can be rendered as{

Aπ(IL≤n
) : n ∈ IN

}
,

and the functions used in rendering G are exactly those in F along with the
identity.

Proof. LetM = (Q,F, q0, A, δ) be a deterministic finite automaton which recog-
nizes Lr, the reverse language of L. The use of Lr is due to the fact that reverse
composition is used in LRIFSs. We simulate all the paths of M by a grcpg G,
and control G so that all paths are truncated at the same length.

Let G = ((Q× {0, 1}) ∪ {S,C0, C1, C2}, {e, p},F ∪ {id}, P, (S, id)), where S,
C0, C1, C2, e and p are fresh symbols, id is the identity function on X , and P
is constructed from N as follows:
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Fig. 8. Three uniform approximations of an LRIFS and a non-uniform approximation

1. S → (C0, id) ((q0, 0), id)
2. For each accepting state q ∈ A, with edges to q′1, . . . , q

′
k ∈ Q labelled with

f1, . . . , fk ∈ F respectively, add a production

(q, 0)→ ((q′1, 1), f1) . . . ((q
′
k, 1), fk) (p, id) (∅; {C1})

3. For each non-accepting state q ∈ Q\A, with edges to q′1, . . . , q
′
k ∈ Q labelled

with f1, . . . , fk ∈ F respectively, add a production

(q, 0)→ ((q′1, 1), f1) . . . ((q
′
k, 1), fk) (∅; {C1})

4. C0 → (C1, id) (∅;Q× {0})
5. For each state q ∈ Q, add a production (q, 1)→ ((q, 0), id) (∅; {C0, C2})
6. C1 → (C0, id) (∅;Q× {1})
7. C0 → (C2, id) (∅;Q× {0})
8. For each state q ∈ Q, add a production (q, 1)→ (e, id) (∅; {C0, C1})
9. C2 → (e, id) (∅;Q× {1})

Any derivation in this grammar proceeds in phases. First the start symbol is
rewritten by production 1. At any point where C0 and (q, 0) appear in the
string, we can only apply productions from 2 and 3, since all other productions
are forbidden or cannot be applied, and therefore these productions will be
applied to all non-terminals of the form (q, 0). When this is done, there is a
single C0 and all other non-terminals are of the form (q, 1), and there is a choice
of productions: 4 or 7.
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If we apply production 4, we rewrite every (q, 1) into (q, 0) by production 5.
When this is done we rewrite C1 into C0 by production 6 so that another iteration
can be applied.

If, instead, we apply production 7, we proceed to delete the (q, 1) non-terminals
by rewriting them to a symbol (production 8) which will be rendered as the
empty set. Once they are all deleted, we delete C2 by production 9.

Thus all branches are extended in tandem until they terminate. The branches,
besides those containing the control symbols C0, C1 and C2, correspond to paths
through M up to a certain length, and are labelled by a composition of the
symbols along the paths (interspersed with id). Thus if we render the generated
gallery by interpreting each function in F∪{id} as itself and rendering p by {π}
and e by ∅, then we obtain Aπ(IL≤n

) for each n ∈ IN (since L≤n is finite, the
closure operation in the definition of the attractor makes no difference). �

An example illustrating the method used in this proof is given in Fig. 9.

(a) (b)

Fig. 9. (a) An automaton for a language L and (b) the derivation tree corresponding
to L≤1, with the highlighted path corresponding to the word a ∈ L≤1

4 Future Work

Culik and Dube [3] showed that any uniformly growing, deterministic, context-
free Lindenmayer system (D0L-system) can be simulated by an MRFS. As men-
tioned above, Kruger and Ewert [12] showed that for any MRFS, an equivalent
grcpg can be constructed, and that the grcpg can be modified to generate se-
quences of pictures that cannot be generated by the basis MRFS. Therefore it
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would be interesting to simulate uniformly growing D0L-systems by grcpgs and
then modify the grcpg to generate pictures that cannot be generated by the basis
D0L-system, as we have done in this paper for IFSs and MRFS.

Our notion of a uniform approximation to an LRIFS is based exclusively on the
length of the strings in the language; it would be interesting to formulate a notion
which depends on the area, to obtain an approximation which looks uniform
rather than having uniform depth, and determine whether this approximation
can also be generated by a grcpg.

We showed that LRIFSs are more powerful than IFSs, but did not investigate
their relationship to other extensions of IFSs (in particular MRFSs), and this
topic is worthy of investigation.

Acknowledgements. We would like to thank the referees for their helpful
comments.

References

1. Barnsley, M.F.: Fractals Everywhere. Academic Press, Boston (1988)
2. Barnsley, M.F., Hurd, L.P.: Fractal Image Compression. Peters, Wellesley (1993)
3. Culik II, K., Dube, S.: L-systems and mutually recursive function systems. Acta

Informatica 30, 279–302 (1993)
4. Drewes, F.: Tree-based picture generation. Theoretical Computer Science 246, 1–51

(2000)
5. Ewert, S.: Random context picture grammars: The state of the art. In: Drewes, F.,

Habel, A., Hoffmann, B., Plump, D. (eds.) Manipulation of Graphs, Algebras and
Pictures, pp. 135–147. Hohnholt, Bremen (2009)

6. Ewert, S., van der Walt, A.: Generating pictures using random forbidding con-
text. International Journal of Pattern Recognition and Artificial Intelligence 12(7),
939–950 (1998)

7. Ewert, S., van der Walt, A.: Generating pictures using random permitting con-
text. International Journal of Pattern Recognition and Artificial Intelligence 13(3),
339–355 (1999)

8. Ewert, S., van der Walt, A.: A hierarchy result for random forbidding context
picture grammars. International Journal of Pattern Recognition and Artificial In-
telligence 13(7), 997–1007 (1999)

9. Ewert, S., van der Walt, A.: Random context picture grammars. Publicationes
Mathematicae (Debrecen) 54 (supp.), 763–786 (1999)

10. Ewert, S., van der Walt, A.: Shrink indecomposable fractals. Journal of Universal
Computer Science 5(9), 521–531 (1999), http://www.jucs.org/jucs_5_9

11. Hoggar, S.G.: Mathematics for Computer Graphics. Cambridge University Press,
Cambridge (1992)

12. Kruger, H., Ewert, S.: Translating mutually recursive function systems into gener-
alised random context picture grammars. South African Computer Journal (36),
99–109 (2006)

http://www.jucs.org/jucs_5_9


74 S. Ewert and M. Rabkin

13. Peitgen, H.O., Jürgens, H., Saupe, D.: Chaos and Fractals. New Frontiers of Sci-
ence. Springer, New York (1992)

14. Prusinkiewicz, P., Hammel, M.: Automata, languages, and iterated function sys-
tems. In: Hart, J.C., Musgrave, F.K. (eds.) Fractal Modeling in 3D Computer
Graphics and Imagery, pp. 115–143. ACM SIGGRAPH (1991)

15. Prusinkiewicz, P., Hammel, M.: Escape-time visualization method for language-
restricted iterated function systems. In: Proceedings of Graphics Interface 1992,
Vancouver, British Columbia, Canada, pp. 213–223 (May 1992)



Cooperating Distributed Tree Automata

Henning Fernau

Universität Trier, FB IV—Abteilung Informatik,
54286 Trier, Germany
fernau@uni-trier.de

Abstract. We propose a study on cooperating distributed tree
automata, proving in particular characterizations of the yields of such
automata systems.

1 Introduction

Jürgen Dassow is one of the pioneers of cooperating distributed grammar systems
(CDGS), as testified by one of the first papers on this topic that introduced the
very name of this area, as well as by the fact that he co-authored the (first)
textbook on this subject; see [10,11]. Although the subject comes close to its
silver jubilee soon, there are quite a number of questions still open ever since
they were introduced. For instance, it is still open whether (context-free) matrix
languages can be characterized by CDGS working in = k-mode. Can results from
tree automata be helpful here?

A related issue is that of cooperating distributed automata. As pioneering
papers, we refer to [13,15,16].

There is a third line of research that we will try to continue with this paper,
namely that of CDGS with regular components, as studied in [11,17]. Let us
recall that possibly surprising fact that in many cases, regular (meaning: right-
linear) components are just as powerful as context-free grammar components.
This is by large due to the fact that chain rules are permitted. This explains why
results using finite automata instead might yield different results, as presented
in this paper.

Finally, we continue our studies on accepting grammar systems; see [23,25],
as we exhibit tight relations between the questions of generating versus accept-
ing grammar systems on the one hand and of top-down versus bottom-up tree
automata systems on the other hand.

2 Definitions

2.1 Classical CDGS

A CD grammar system of degree n, with n ≥ 1, is a (n+ 3)-tuple

G = (N, T, S, P1, . . . , Pn),

H. Bordihn, M. Kutrib, and B. Truthe (Eds.): Dassow Festschrift 2012, LNCS 7300, pp. 75–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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where N , T are disjoint alphabets of nonterminal and terminal symbols, respec-
tively, S ∈ N is the axiom, and P1, . . . , Pn are finite sets of rewriting rules over
N ∪ T .

Throughout this paper, we consider only context-free rewriting rules. Since
we are interested in generating and accepting systems, we further distinguish
between so-called generating rules, which have the form A→ z, with A ∈ N and
z ∈ (N ∪ T )∗, and accepting rules, which are of the form z → A, with A ∈ N
and z ∈ (N ∪ T )∗.

Let G = (N, T, S, P1, . . . , Pn) be a CD grammar system with only generating
context-free rules. For x, y ∈ (N ∪ T )∗ and 1 ≤ i ≤ n, we write x ⇒i y iff
x = x1Ax2, y = x1zx2 for some A → z ∈ Pi. Hence, subscript i refers to
the production set to be used. In addition, we denote by ⇒=k

i (⇒≤k
i , ⇒≥k

i , ⇒∗
i ,

respectively) a derivation consisting of exactly k steps (at most k steps, at least k
steps, an arbitrary number of steps, respectively) as above. Moreover, we write

x⇒t
i y iff x⇒∗

i y and there is no z such that y ⇒i z.

For a CD grammar systemG = (N, T, S, P1, . . . , Pn) with only accepting context-

free rules, we define the above relations x⇒i y, ⇒=k
i , ⇒≤k

i , ⇒≥k
i , ⇒∗

i , and ⇒t
i

appropriately. In particular, for x, y ∈ (N ∪ T )∗ and 1 ≤ i ≤ n, we write x⇒i y
iff x = x1zx2, y = x1Ax2 for some z → A ∈ Pi.

Let D := { ∗, t } ∪ {≤ k,= k,≥ k | k ∈ N }. The language generated in the f -
mode, f ∈ D, by a CD grammar system G with only generating rules is defined
as:

Lgen
f (G) := {w ∈ T ∗ | S ⇒f

i1
α1 ⇒f

i2
. . .⇒f

im−1
αm−1 ⇒f

im
αm = w with

m ≥ 1, 1 ≤ ij ≤ n, and 1 ≤ j ≤ m }.

Similarly, one can define the language accepted in f -mode, f ∈ D, by a CD
grammar system G with only accepting rules:

Lacc
f (G) := {w ∈ T ∗ | w ⇒f

i1
α1 ⇒f

i2
. . .⇒f

im−1
αm−1 ⇒f

im
αm = S with

m ≥ 1, 1 ≤ ij ≤ n, and 1 ≤ j ≤ m }

If f ∈ D, then the families of languages generated (accepted, respectively) in
f -mode by CD grammar systems with at most n components using context-
free [λ-free] rules are denoted by Lgen(CDn,CF[−λ], f) (Lacc(CDn,CF[−λ], f),
respectively). If the number of components is not restricted, then we write
Lgen(CD∞,CF[−λ], f), Lacc(CD∞,CF[−λ], f), respectively. Notice that in or-
der to save space, we have used (and will employ later) a bracket notation;
when used within a sentence or statement, this means that the reader is asked
to either consistently neglect the symbols in brackets or to consistently read
all the contents in the brackets. So, in a sense, two statements are presented
at the same time, mostly differentiating between the cases that allow or for-
bid erasing productions. One more comment is in order here: As it is usually
the case in the theory of Regulated Rewriting, we consider two languages to be
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equal if they differ at most by the empty word. With this convention, the re-
sult Lgen(CD∞,CF−λ, t) = L(ET0L) (contained in the theorem below) is true,
although clearly ET0L systems can generate languages that contain the empty
word and that can, hence, not be generated by non-erasing CDGS.

Finally, the reader should be familiar with the extended Chomsky hierarchy:

L(REG) � L(CF) � L(ET0L) � L(CS) � L(RE).

From [25], we recall the following result:

Theorem 1. (1) If n ∈ N ∪ {∞} and f ∈ D \ {t}, then

Lgen(CDn,CF[−λ], f) = Lacc(CDn,CF[−λ], f).

(2) Lgen(CD∞,CF[−λ], t) = L(ET0L) � Lacc(CD∞,CF[−λ], t) = L(CS).

Later on, we will need a normal form result that relies on the following notion:
A CDGS G = (N, T, S, P1, . . . , Pn) is called arity-deterministic if for each non-
terminal A ∈ N , there exists a unique number α(A) (called the arity of A) such
that any rule A→ w ∈

⋃n
i=1 Pi (in the generating case) or w → A ∈

⋃n
i=1 Pi (in

the accepting case) obeys |w| = α(A).

Theorem 2 (Arity-deterministic normal form). For any f ∈ D, n ∈ N,
and L ∈ Lacc(CDn,CF[−λ], f), there exists an arity-deterministic context-free
[λ-free] CDGS G = (N, T, S, P1, . . . , Pn) with L

acc
f (G) = L. An analogous state-

ment is true for generating systems.

Proof. If L ∈ Lacc(CDn,CF[−λ], f), then there is a context-free [λ-free] CDGS
G0 = (N0, T, S0, P0,1, . . . , P0,n) with L

acc
f (G0) = L. We will construct a sequence

of grammar systems Gk = (Nk, T, Sk, Pk,1, . . . , Pk,n) with L
acc
f (Gk) = L. We will

show by an inductive argument that G|N0| is arity-deterministic. To this end, we
need an auxiliary notion that allows us to quantify the distance of a CDGS from
being arity-deterministic. We say that Gk fails arity-determinism by r if there
are r nonterminals A for which we can find rules w → A and w′ → A in Gk

with |w| �= |w′|. Obviously, G0 fails arity-determinism by at most |N0|. Assume
(by induction hypothesis) that Gk fails arity-determinism by at most |N0| − k
and that Lacc(Gk) = L. If k = |N0|, then Gk is arity-deterministic as claimed.
Otherwise, there is a nonterminal A such that

β(A) = {|w| | ∃j ∈ {1, . . . , n}∃w ∈ (T ∪Nk)
∗ : w → A ∈ Pk,j}

contains at least two elements. Replacing A, we introduce nonterminals (A, n)
with n ∈ β(A).

(1) Left-hand sides w of rules that contain A are replaced by any (A, n) for
n ∈ β(A) (so that this may yield quite an increase on the number of rules).
(2) Right-hand sides A of rules w → A (where w does not contain any A after
step 1)) are replaced by (A, |w|).
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This describes a new CDGS Gk+1 that is obviously equivalent to Gk and that
fails arity-determinism by at most |N0| − k − 1 by construction.

Clearly, there is some k ≤ |N0| such that Lacc(Gk) = L and Gk is arity-
deterministic by induction. �

2.2 Tree Automata

Let N be the set of nonnegative integers and let (N∗, ·, λ) (or simply N∗) be the
free monoid generated by N. For y, x ∈ N∗, we write y ≤ x iff there is a z ∈ N∗

with x = y · z. “y < x” abbreviates: y ≤ x and y �= x. As usual, |x| denotes the
length of the word x.

We are now giving the necessary definitions for trees and tree automata. More
details can be found, e.g., in the chapter written by Gécseg and Steinby in [36].

A ranked alphabet V is a finite set of symbols together with a finite relation
called rank relation rV ⊂ V × N. Define Vn := {f ∈ V | (f, n) ∈ rV }. Since
elements in Vn are often considered as function symbols (standing for functions
of arity n), elements in V0 are also called constant symbols. A tree over V is a
mapping t : Δt → V , where the domain Δt is a finite subset of N∗ such that
(1) if x ∈ Δt and y < x, then y ∈ Δt; (2) if y · i ∈ Δt, i ∈ N, then y · j ∈ Δt

for 1 ≤ j ≤ i. An element of Δt is also called a node of t, where the node λ
is the root of the tree. Then t(x) ∈ Vn whenever, for i ∈ N, x · i ∈ Δt iff
1 ≤ i ≤ n. If t(x) = A, A is the label of x. Let V t denote the set of all finite trees
over V . By this definition, trees are rooted, directed, acyclic graphs in which
every node except the root has one predecessor and the direct successors of any
node are linearly ordered from left to right. Interpreting V as a set of function
symbols, V t can be identified with the well-formed terms over V . A frontier
node in t is a node y ∈ Δt such there is no x ∈ Δt with y < x. If y ∈ Δt is
not a frontier node, it is called interior node. The depth of a tree t is defined as
depth(t) = max{|x| | x ∈ Δt}, whereas the size of t is given by |Δt|. Letters will
be viewed as trees of size one and depth zero.

We are now going to define a catenation on trees. Let $ be a new symbol, i.e.,
$ /∈ V , of rank 0. Let V t

$ denote the set of all trees over V ∪ {$} which contain
exactly one occurrence of label $. By definition, only frontier nodes can carry
the label $. For trees u ∈ V t

$ and t ∈ (V t ∪ V t
$ ), we define an operation # to

replace the frontier node labelled with $ of u by t according to

u#t(x) =

{
u(x), if x ∈ Δu ∧ u(x) �= $,
t(y), if x = z · y ∧ u(z) = $ ∧ y ∈ Δt.

If U ⊆ V t
$ and T ⊆ (V t ∪ V t

$ ), then U#T := {u#t | u ∈ U ∧ t ∈ T }. For t ∈ V t

and x ∈ Δt, the subtree of t at x, denoted by t/x, is defined by t/x(y) = t(x · y)
for any y ∈ Δt/x, where Δt/x := {y | x·y ∈ Δt}. ST(T ) := {t/x | t ∈ T ∧x ∈ Δt}
is the set of subtrees of trees from T ⊆ V t. Furthermore, for any t ∈ V t and any
tree language T ⊆ V t, the quotient of T and t is defined as:

UT (t) :=

{
{u ∈ V t

$ | u#t ∈ T }, if t ∈ V t \ V0,
t, if t ∈ V0.
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Let V be a ranked alphabet and m be the maximum rank of the symbols in V . A
(bottom-up) (finite-state) tree automaton over V is a quadruple A = (Q, V, δ, F )
such that Q is a finite state alphabet (disjoint with V0), F ⊆ Q is a set of final
states, and δ = (δ0, . . . , δm) is an m+1-tuple of state transition functions, where
δ0(a) = {a} for a ∈ V0 and δk : Vk × (Q ∪ V0)k → 2Q for k = 1, . . . ,m. In this
definition, the constant symbols at the frontier nodes are taken as sort of initial
states. Now, a transition relation (also denoted by δ) can be recursively defined
on V t by letting

δ(f(t1, . . . , tk)) :=

{
{f}, if k = 0,⋃

qi∈δ(ti),i=1,...,k δk(f, q1, . . . , qk), if k > 0.

A tree t is accepted by A iff δ(t) ∩ F �= ∅. The tree language accepted by A is
denoted by T (A). A is deterministic if each of the functions δk maps each possi-
ble argument to a set of cardinality of at most one. Deterministic tree automata
can be viewed as algorithms for labelling the nodes of a tree with states. Anal-
ogously to the case of string automata, it can be shown that nondeterministic
and deterministic bottom-up finite-state tree automata accept the same class of
tree languages, namely the regular tree languages, at the expense of a possibly
exponential state explosion.

An alternative view on the work of tree automata is that of labelling a tree
with states. To this end, we will formally view all symbols from Q as having
rank zero, so that they may serve as labels of frontier nodes. Now, A (or more
specifically, its transition function δ) defines a derivation relation �δ on (V ∪Q)t
by s �δ t if s �= t and there are trees u ∈ (V ∪Q)t$, s′ = f(q1, . . . , qk), t′ = q with
s = u#s′, t = u#t′, f ∈ Vk, q ∈ δk(f, q1, . . . , qk). Clearly, s ∈ V t is accepted by
a tree automaton A = (Q, V, δ, F ) if s �∗δ qf for some qf ∈ F .

We are now defining the central new notion of this paper. A cooperating
distributed (bottom-up finite-state) tree automata system, or CDTAS for short,
of degree n, with n ≥ 1, is a (n + 3)-tuple A = (Q, V, δ1, . . . , δn, F ), where
Ai = (Q, V, δi, F ) are bottom-up finite-state tree automata. As with CDGS,

�i denotes the derivation relation �δi , and we can introduce �fi for f ∈ D :=
{ ∗, t } ∪ {≤ k,= k,≥ k | k ∈ N } as before, leading to the tree language

Lf(A) := { t ∈ V t | t⇒f
i1
t1 ⇒f

i2
. . .⇒f

im−1
tm−1 ⇒f

im
tm ∈ F with

m ≥ 1, 1 ≤ ij ≤ n, and 1 ≤ j ≤ m }
and corresponding tree language families Lt(CDn, f).

Notice that we can assume |F | = 1 as a normal form, as otherwise we might
introduce a new (unique) final state qf and (to each transition component δi)
rules that might lead into qf whenever a transition into some q ∈ F has been
possible in δi before. This construction will possibly turn a deterministic δi into
a nondeterministic one, but this is not of any concern in this paper.

3 Basic Results

The main result shows that the famous theorem usually attributed to Doner,
Thatcher (and also to Wright) [18,37] transfers and generalizes to the case of
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cooperating distributed systems. This theorem characterizes context-free lan-
guages via yields of regular tree languages. We therefore provide the necessary
key notion: For t ∈ V t, we define the yield-operator Y as follows:

Y(t) =
{
t(λ), if t(λ) ∈ V0
Y(t/1) · · · Y(t/k), if t(λ) ∈ Vk, k > 0

The operator naturally extends to tree languages and tree language families.

Lemma 1

∀n ∈ N ∪ {∞}∀f ∈ D : Y(Lt(CDn, f)) ⊆ Lacc(CDn,CF− λ, f).

Proof. As it is usually the case with nondeterministic automata, we can assume
(without loss of generality) that CDTAS have only one final (accepting) state.
So, consider a CDTAS A = (Q, V, δ1, . . . , δn, F ) with |F | = 1, i.e., F = {qf}. Let
m be the maximum rank of symbols from V . We construct a simulating accepting
CDGS GA = (N, T, qf , P1, . . . , Pn), as follows: N = Q, T = V0, w → q ∈ Pi if
q ∈ Q, w = w1 · · ·wk, wj ∈ V0 ∪ Q whenever q ∈ δk(g, w1, . . . , wk) for some
g ∈ Vk (*).

Now, each derivation of A producing a certain yield can be simulated by GA,
where the correct labels of inner nodes are guessed during the derivation due
to (*). Conversely, these guesses according to (*) label the inner nodes of a
derivation tree in a way corresponding to a tree that can be accepted by A.

A formal reasoning would be a relatively tedious exercise, based on the ideas
originating from Doner, Thatcher and Wright in the late sixties, which can be
also found in any textbook on tree languages. Therefore, we only sketch the basic
idea of the inductive step of the proof in the following. Recall that the definition
of �i transforms trees with leaf labels from (V0 ∪ Q) into trees with leaf labels
from (V0 ∪Q); extending the definition of the yield operator Y accordingly, this
means that sentential forms of GA are transformed, so that the basic claim can
be written as:

∀1 ≤ i ≤ n : (s �i t) =⇒ (Y(s)⇒i Y(t)), (1)

where ⇒i refers to an application of a rule from Pi. The converse of this claim
would contain the mentioned guessing step of labels of inner nodes, i.e., whenever
u ⇒i v according to GA, then there are trees s, t such that Y(s) = u and
Y(t) = v, and also s �i t.

Moreover, notice that the derivation modes translate 1-1 between the tree
automaton model and the accepting grammar model. For instance, Equation (1)
would translate into:

∀f ∈ D∀1 ≤ i ≤ n : (s �fi t) =⇒ (Y(s)⇒f
i Y(t)),

This claim follows easily (again) by induction apart from the t-mode. Here, we
need the following additional argument: There is no tree t such that s �i t if
and only if there is no sentential form v such that u⇒i v for u = Y(s). But this
claim follows immediately from the definition of the rules in GA.



Cooperating Distributed Tree Automata 81

For the converse, we would have to argue for all modes f ∈ D that, whenever
u ⇒f

i v according to GA, then there are trees s, t such that Y(s) = u and

Y(t) = v, and also s �fi t. �

Lemma 2

∀n ∈ N ∪ {∞}∀f ∈ D : Y(Lt(CDn, f)) ⊇ Lacc(CDn,CF− λ, f).

Proof. Consider an accepting CDGS G = (N, T, S, P1, . . . , Pn). As we have
shown above, we may assume that G is arity-deterministic. The rank of A ∈ N
is hence given by an arity function α. The idea is to construct tree automata
that accept the derivation trees of the component grammars.

As G contains no erasing rules, this means that we can consider N ∪ T as
a ranked alphabet V , with V0 = T . We construct an equivalent CDTAS AG =
(Q, V, δ1, . . . , δn, F ) as follows. Q = {A′ | A ∈ N}. Let h : Q∪V → V be defined
as being constant on V and removing the prime from A′ to yield A; h can be
easily extended to a morphism h : (Q ∪ V )+ → V ∗. We build δi as follows: For
any rule w → A ∈ Pi, we introduce a rule δi,k(A,w1, . . . , wk) = {A′}, where
|w| = α(A) = k and h(w1) · · ·h(wk) = w. Finally, set F = {S′}.
AG accepts derivation trees of G. Conversely, the yield of any tree that de-

rives S′ (in AG) corresponds to a sentential form that derives S (in G). The
straightforward induction proof showing the correctness of the construction is
left to the reader. �
This allows us to state:

Theorem 3

∀n ∈ N ∪ {∞}∀f ∈ D : Y(Lt(CDn, f)) = Lacc(CDn,CF− λ, f).

Without going into further formal details, let us remark that, apart from the
notion of bottom-up tree automata as introduced above, there also exists a
notion of top-down tree automata. The according formalizations can be found
(again) in any textbook on tree languages and are suppressed here in the inter-
est of space. The yields of of top-down tree automata naturally correspond to
word languages generated by grammars. This can be generalized towards gram-
mar systems completely analogous as before. In our notations, we will write for
instance Lt(TD-CDn, f) to refer to tree languages that are accepted by cooper-
ating distributed tree automata systems that work top-down.

We only summarize the corresponding statements below.

Corollary 1

∀n ∈ N ∪ {∞}∀f ∈ D : Y(Lt(TD-CDn, f)) = Lgen(CDn,CF− λ, f).

From Theorem 1, we can hence deduce:

Corollary 2. (1) If n ∈ N ∪ {∞} and f ∈ D \ {t}, then

Lt(TD-CDn, f) = Lt(CDn, f).

(2) Lt(TD-CDn, t) � Lt(CDn, t).
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4 Comments and Remarks

Remark 1 . There is another line of interpretation of our results, namely purely
on the level of tree grammars. It is well-known that regular tree languages can
be (also) characterized by regular tree grammars. The usual proof shows that
(generating) regular tree grammars can be seen as a re-interpretation of top-down
finite tree automata. Basically the same reasoning (which is hence not repeated
here) shows that accepting regular tree grammars (a notion that was not fomerly
studied in the literature to the best of the knowledge of the author) are in one-
to-one correspondance with bottom-up finite tree automata. Of course, one can
(now) define generating and accepting CDGS whose components are regular tree
grammars. Then, we may state that for any mode but the t-mode, generating
and accepting CDGS having regular tree grammar components describe the
same tree language families, while accepting CDGS with regular tree grammar
components are strictly more powerful than their generating counterparts. Such
results are perfectly in line with earlier findings in the case of word languages;
see [7,23,25].

Remark 2 . The relations between CDGS and systems of tree automata should
easily extend beyond what has been stated so far. We only discuss four extensions
here:

1. Mitrana and Păun introduced in [32,34] hybrid CDGS, i.e., systems where
each component runs according to an individual mode.

2. There habe been also many other modes introduced for CDGS whose def-
initions easily transfer to CDTAS, for instance, those derived by internal
hybridization [26,22] or those based on competence notions [3,6,12,14].

3. Occasionally, CDGS have been considered whose components work accepting
or generating (bidirectional); see [24]. This finds natural analogues in CDTAS
whose components work top-down or bottom-up.

4. The notion of multi-dimensional trees allows to have, for instance, trees as
yields of higher-dimensional trees, whose (string) yields finally characterize
important classes of mildly context-sensitive languages, one of the core topics
of (computer-)linguistics; see [28,35]. For those mainly interested in Regu-
lated Rewriting, the connections to the Weir hierarchy of control languages
described in [35,38] should be an intersting aspect in itself.

It looks as if in most cases (at least), the equivalences between yields of CDTAS
and the power of CDGS hold for these variants, as well.

Remark 3 . While the standard notion of derivation in grammars is that of a
grammar as a generative device, standard tree automata work bottom-up. Hence,
these standard notions define the same word language classes (in the case of tree
automata, via the yield operation) only because in most cases, the power of
generating and accepting grammars coincide [7,8,25,23,31]. This is not the case
with various types of Regulated Rewriting, so that investigating accordingly
defined tree automta might yield interesting results.
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5 Conclusions and Future Research

Tree automata have become an increasingly important topic in formal language
theory, due to their versatility and applicability. Can aspects of cooperation and
distribution stir even more interest, i.e., can automata systems as proposed in
this note be useful in applications? Or will techniques from tree automata be
useful for solving old open questions in CDGS or other areas within Regulated
Rewriting, see Remark 3? In this context, we like to draw the reader’s attention
to the papers [20,21,19] which are the only ones we could recall that is somehow
interconnecting regulated rewriting and tree automata theory. Further relations
to linguistics have been described in the preceding Remark 2; in particular, we
mention again the tight relation between the Weir hierarchy (within Regulated
Rewriting) and the formalism of multi-dimensional trees.

Furthermore, there is some hope that the viewpoint of tree automata might
bring CDGS closer to being applied in areas like natural language processing.
For instance, the way these automata interface may be seen as a special case of
the interaction possible within so-called millstream systems that were introduced
from linguistic motivations; see [4,5]. It might be nice to continue this line of
research in more depth. Another aspect might be that bidirectional grammars
(also discussed in the preceding Remark) have their foundings in linguistics, as
well; see [1,2,27]. In this context, also research relating context-free languages to
classes of graphs more general than trees might revive; see [9].

In the relations we obtained in this note, we considered tree automata basically
working step-by-step as transformators of trees corresponding to derivation trees.
More generally, it might be interesting to explore cooperating distributed systems
of tree transducers (as defined in textbooks on tree automata), which might
also give interesting applications in the world of XML document processing; see
[29,30,33].
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17. Dassow, J., Păun, G., Vicolov, S.: On the power of cooperating/distributed gram-
mar systems with regular components. Foundations of Computing and Decision
Sciences 18(2), 83–108 (1993)

18. Doner, J.: Tree acceptors and some of their applications. Journal of Computer and
System Sciences 4(5), 406–451 (1970)

19. Drewes, F., van der Merwe, B.: Path languages of random permitting context tree
grammars are regular. Fundamenta Informaticae 82(1-2), 47–60 (2008)

20. Drewes, F., du Toit, C., Ewert, S., van der Merwe, B., van der Walt, A.P.J.: Random
context tree grammars and tree transducers. South African Computer Journal 34,
11–25 (2005)

21. Drewes, F., du Toit, C., Ewert, S., van der Merwe, B., van der Walt, A.P.J.: Bag
context tree grammars. Fundamenta Informaticae 86(4), 459–480 (2008)

22. Fernau, H., Freund, R., Holzer, M.: Hybrid modes in cooperating distributed gram-
mar systems: combining the t-mode with the modes ≤ k and = k. Theoretical
Computer Science 299, 633–662 (2003)

23. Fernau, H., Holzer, M.: Accepting multi-agent systems II. Acta Cybernetica 12,
361–379 (1996)

24. Fernau, H., Holzer, M.: Bidirectional cooperating distributed grammar systems.
Publicationes Mathematicae, Debrecen 54(supplement), 787–806 (1999)



Cooperating Distributed Tree Automata 85

25. Fernau, H., Holzer, M., Bordihn, H.: Accepting multi-agent systems: the case of co-
operating distributed grammar systems. Computers and Artificial Intelligence 15(2-
3), 123–139 (1996)

26. Fernau, H., Holzer, M., Freund, R.: Hybrid modes in cooperating distributed gram-
mar systems: internal versus external hybridization. Theoretical Computer Sci-
ence 259(1-2), 405–426 (2001)

27. Hogendorp, J.A.: Controlled bidirectional grammars. International Journal of Com-
puter Mathematics 27, 159–180 (1989)

28. Kasprzik, A.: Making finite-state methods applicable to languages beyond context-
freeness via multi-dimensional trees. In: Piskorski, J., Watson, B., Yli-Jyrä, A.
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Abstract. We investigate the generative power of cooperating distri-
buted grammar systems (CDGS) with context-free rules working in cut-
f -mode of derivation, when f is a full-competence mode in combination
with another derivation mode, combined sf -mode, for short. Cut-modes
were introduced in [Bordihn, Holzer: Cooperating distributed gram-
mar systems as models of distributed problem solving, Fund. Inform. 76,
2007] in order to model distributed problem solving by CDGSs, and
combined sf -modes were recently investigated in [Bordihn, Holzer: A
note on cooperating distributed grammar systems working in combined
modes. Inform. Process. Lett. 108, 2008]. While cut-f -modes were in-
vestigated for the classical CDGS derivation modes and moreover also
for combined t-modes, the generative capacity for cut-modes based on
combined sf -modes was left open in the literature. This paper closes this
gap.

1 Introduction

The theory of cooperating distributed grammar systems—for an overview we
refer to [6]—has become a well established field in formal language theory since
its origin in [3], with the forerunner paper [10]. A cooperating distributed gram-
mar system (CDGS, for short) consists of a finite set of (context-free) grammars,
called components, performing derivation steps on a common sentential form in
turns, according to some cooperation protocol. Standard cooperation protocols
are the so-called ∗-mode, ≤ k-mode, = k-mode, or ≥ k-mode, where a compo-
nent, once started, has to perform an arbitrary number, at most k, exactly k,
or at least k derivation steps, respectively. Moreover, there are two basic coop-
eration protocols which are based on the feature of competence of the problem
solving agents on the current state of the problem solving: (1) In the t-mode,
a component can start and has to remain deriving unless and until there is
no nonterminal left in the sentential form to which one of its productions is
applicable (that is, the component is not able to contribute to the problem solv-
ing any more), and (2) in the sf -mode, a component is allowed to become and
has to remain active unless and until there is some nonterminal present in the
sentential form which cannot be rewritten by this component (that is, the com-
ponent does not possess the full competence on the current state of the problem
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solving). Forcing a derivation to fulfill two or multiple requirements simultane-
ously leads to the so called combined modes from [7]. In particular, combined
t- and combined sf -modes were investigated in the literature [2,7]. We summa-
rize the results for CDGSs working in the above mentioned derivation modes
in Table 1. Here L(LIN) denotes the family of linear context-free languages,

Table 1. Generative capacity of CD grammar systems working in the classical modes,
the combined t-modes, and the combined sf -modes of derivation compared

Derivation mode f L(CD,CF[−λ], f) L(CD,CF[−λ], (t ∧ f)) L(CD,CF[−λ], (sf ∧ f))

∗

L(CF)

L(ET0L) L(P,CF[−λ], ac)

≤ 1 Lfin(P,CF[−λ]) L(LIN)
= 1

≥ 1 L(ET0L)

L(P,CF[−λ], ac)
≤ k with k ≥ 2 Lfin(P,CF[−λ])
= k with k ≥ 2 L(CF) ⊂ · ⊆ L(P,CF[−λ])
≥ k with k ≥ 2 L(RP,CF[−λ], ac)

t L(ET0L) L(CF)
sf L(P,CF[−λ], ac) L(CF) L(P,CF[−λ], ac)

L(CF) the family of context-free languages, and L(ET0L) the family of lan-
guages generated by ET0L systems. Moreover, L(P,CF[−λ], ac) (L(P,CF[−λ]),
respectively) refers to the family of all languages generated by programmed
context-free grammars with (without, respectively) appearance checking. The
definition of a programmed context-free grammar is briefly recalled in one of
the next sections. We note that L(P,CF, ac) equals the family of recursively
enumerable languages, while L(P,CF−λ, ac) is a proper subset of the family of
context-sensitive languages. The family of languages generated by programmed
context-free grammars without appearance checking of finite index is denoted
by Lfin(P,CF[−λ]). Loosely speaking, the index of a grammar is the maximal
number of nonterminals simultaneously appearing in a sentential form during
a terminating derivation, considering the most economical derivation for each
string. Finally, L(RP,CF[−λ], ac) refers to the family of languages generated by
recurrent programmed grammars introduced in [11].

Originally CDGSs were introduced to formally model communities of coop-
erating autonomous problem solving agents which use the blackboard model of
problem solving [3,4]. Recently in [1] this original motivation was used to revisit
the known cooperation protocols for CDGSs under the effect that agents con-
tribute to the solution by solving sub-tasks of the whole problem. In terms of
CD grammar systems, solving sub-tasks corresponds to working on a substring
of the current sentential form. This led to the concept of CDGSs working in
the cut-f -mode of derivation, where f is one of the aforementioned coopera-
tion protocols. In these cut-f -modes, in any derivation step the sentential form
is partitioned (cut) into several substrings which can be associated to different
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components. In order to avoid any rigidity, this association is done via a partial
mapping, such that both some substrings of the sentential form and some com-
ponents may be disregarded. Then, each component to which a substring has
been associated works in (one and the same) derivation mode, more precisely,
in the f -mode of derivation if the CDGS as a whole is driven in the cut-f -mode.
Finally, the new sentential form is obtained after finishing this procedure by
concatenating all the subwords, regarded or disregarded by the partial mapping,
in their original order. Clearly from the AI motivation this approach seems to
be more adequate. The results presented in [1] only deal with the cut-mode
versions of the classical derivation modes, as well as the cut-mode versions of
the combined t-modes. To our knowledge, surprisingly, the cut-mode versions
of the combined sf -modes were not investigated so far. In this paper we close
this gap and complete the picture of CDGSs working in these sub-task oriented
cooperation protocols. We summarize the results on CDGS working in cut-mode
derivations for the above mentioned derivation modes in Table 2, which can be
found in Section 4. The next section contains preliminaries, where we provide
the basic definition of cut-f -mode derivations, in particular cut-mode versions
of combined sf -modes. Then in Section 3 we investigate the generative power
of CD grammar systems working in these newly defined derivations modes and,
finally, we summarize our results and highlight the remaining open questions in
Section 4.

2 Definitions

We assume the reader to be familiar with the standard notions of formal language
theory as contained in [5]. In particular, for some alphabet V , let v ∈ V ∗ be a
word over V , and if W ⊆ V , then |v|W denotes the number of occurrences of
symbols from W in the word v. In what follows, we consider two languages to
be equal if they differ at most by the empty word λ.

A context-free cooperating distributed grammar system (CDGS) with n com-
ponents, n ≥ 1, is a construct G = (N, T, P1, P2, . . . , Pn, S), where each Gi =
(N, T, Pi, S) is a context-free grammar and Pi is called a component of G. For
1 ≤ i ≤ n, let

dom(Pi) = {A ∈ N | there is a word v such that A→ v ∈ Pi }

denote the set of all nonterminals which can be rewritten by the component Pi.
For x, y ∈ (N ∪T )∗ and 1 ≤ i ≤ n, we write x⇒i y if and only if x = x1Ax2 and
y = x1zx2 for some A → z ∈ Pi. Hence, subscript i refers to the component to
be used. By ⇒≤ k

i , ⇒= k
i ,⇒≥ k

i , ⇒∗
i , for k ≥ 1, we denote a derivation consisting

of at most k steps, exactly k steps, at least k steps, an arbitrary number of steps,
respectively, executed by component Pi. Furthermore, we write x ⇒t

i y if and

only if x ⇒∗
i y and there is no z such that y ⇒i z. Moreover, x ⇒sf

i y if and
only if x⇒∗

i x
′, x′ ⇒i y, and Pi is sf -competent on x′ but is not sf -competent

on y, where a component Pi is said to be sf -competent on a word x if and only
if (1) x = u0A1u1A2u2 . . . um−1Amum with m ≥ 1, uj ∈ T ∗, for 0 ≤ j ≤ m, and
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Aj ∈ N , for 1 ≤ j ≤ m, and (2) for each j, for 1 ≤ j ≤ m, there is a production
Aj → wj in Pi. Note that the definition of the derivation relation implies that
component Pi is sf -competent on x and on all intermediate sentential forms in
the derivation x⇒∗

i x
′, too.

Combining the former modes with the requirement concerning the t-mode we
obtain the modes (t ∧ ∗), (t ∧≤ k), (t ∧= k), and (t ∧≥ k) which are defined as
follows—see, e.g., [7,8]: There exists a derivation which satisfies both properties

at once, e.g., x⇒(t∧≤ k)
i y if and only if there exists an m-step derivation from x

to y using Pi such thatm ≤ k and there is no z such that y ⇒i z. These combined
t-modes were investigated in [7,8] in more detail. Moreover, in [2] the authors
generalized combined t-modes to combined sf -modes, which are analogously de-
fined as their corresponding t-mode counterparts. In this way one obtains the
derivation modes (sf ∧ ∗), (sf ∧ ≤ k), (sf ∧ = k), (sf ∧ ≥ k), and even (sf ∧ t).
For results on these modes we refer to [2].

Applying the idea on distributed problem solving from [1] to one of the afore-
mentioned modes f leads to the cut-f -mode, fc-mode for short, which is defined
as follows: x⇒fc y if and only if

1. x = x0x1 . . . xm with m ≥ 0, xi ∈ (N ∪ T )∗, for 0 ≤ i ≤ m,
2. there is a partial injective mapping ρ : {0, 1, . . .m} ↪→ {1, 2, . . . , n} such that

yi = xi, if i �∈ dom(ρ), and yi = zi, if xi ⇒f
ρ(i) zi, and

3. y = y0y1 . . . ym.

Here dom(ρ) = { i | ρ(i) is defined } denotes the set of indices in the decomposi-
tion x = x0x1 . . . xm to which some component is associated by ρ.

Let f be some of the aforementioned ordinary derivation modes or a corre-
sponding cut-mode derivation, then the language generated by G working in the
f -mode is the set

L(G) = {w ∈ T ∗ | S = w0 ⇒f w1 ⇒f . . .⇒f wm = w, for m ≥ 0 }

where ⇒f denotes the f -mode derivation relation induced by the CDGS G.
For any derivation mode f , the family of languages generated by CDGSs with
context-free components working in the f -mode of derivation is denoted by
L(CD,CF, f). If λ-rules are forbidden, then we use the notation L(CD,CF−λ, f).

In order to clarify our notation we give an example, which we literally take
from [2], extended by the discussion on the cut-mode derivation.

Example 1. Let G = ({S, S′, A,A′, B,B′}, {a, b, c}, P1, P2, P3, P4, S) be a CD
grammar system with the production sets P1 = {S → S′, S′ → AB}, P2 =
{A → A′, A′ → A′, B → cB′}, P3 = {B′ → B,B → B,A′ → aAb}, and
P4 = {A→ ab,B → c}.

Then it is not difficult to see that the CDGS G generates the non-context-
free language { anbncn | n ≥ 1 } in (sf ∧ =2)-mode. To this end we argue as
follows: The derivation has to start with component P1 resulting in the sentential
form AB. Assume the sentential form to be anAbncnB, for n ≥ 0. Then either P2

or P4 is competent on the sentential from. In the latter case the (sf ∧ =2)-
derivation terminates with the terminal word an+1bn+1cn+1. In the former case,
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i.e., when P2 is active, the only possible way to successfully continue the (sf ∧
=2)-derivation is to apply A→ A′ followed by B → cB′, which makes P2 non-
competent on anA′bncn+1B′. Otherwise, if B → cB′ is applied first, then P2 is
non-competent on the sentential form, thus the =2-requirement is not satisfied; if
the application of A→ A′ is followed by A′ → A′, then P2 remains competent on
the sentential form after two steps, thus the (sf ∧=2)-condition is not fulfilled.
Next, the derivation can only be continued by P3. By a similar reasoning as
above we find that the only successful sequence of rules is B′ → B followed by
A′ → aAb. This leads to the sentential form an+1Abn+1cn+1B. Hence, the stated
claim on (sf ∧=2)-mode of derivation follows.

When considering the (sf ∧ =2)c-mode a similar reasoning applies, since no
production set is successfully applicable to a sentential form containing one non-
terminal only, except from the application of P1 to the axiom S. Thus, a pro-
duction set Pi with 2 ≤ i ≤ 4 is successful only, if two appropriate nonterminals
in the sentential form are present. Therefore, the only possible derivations in
(sf ∧ =2)c-mode are the derivations shown above. Thus, we obtain the non-
context-free language mentioned above. �

Since in the previous example the ordinary and the cut-mode derivation coin-
cides, we give another example were these modes differ.

Example 2. Consider the CDGS G = ({S,A,A′, B,B′}, {a, b}, P1, P2, S) with
the production sets P1 = {S → AB} and P2 = {A→ a,B → b}.

The language generated by the CDGS in (sf ∧=1)-mode is the empty set ∅.
This is seen as follows: The derivation starts with P1 resulting in the sentential
form AB. Then the only component that is competent on this sentential form
is P2. It is easy to see that P2 cannot perform a successful derivation in (sf ∧=1)-
mode. Thus, no terminal word can be derived from the axiom. This shows the
stated claim.

When considering the (sf ∧ =1)c-mode of derivation, nonterminals can be
hidden from a particular production set by the cutting of the sentential form
and an appropriate assignment of the values to the partial injective mapping.
As above, the derivation starts by S ⇒(sf ∧=1)c AB, but now it can be contin-
ued by AB ⇒(sf∧=1)c aB ⇒(sf∧=1)c ab, AB ⇒(sf ∧=1)c Ab ⇒(sf ∧=1)c ab, or
AB ⇒(sf∧=1)c ab, which are also the only possible derivation sequences at all.
Therefore, the language generated by G in (sf ∧ =1)-mode of derivation is the
finite set {ab}. �

3 Simulation Results

We consider context-free CDGSs working together according to the cut-mode
derivation of a combined sf -mode protocol. First, we recall some known facts
about the generative capacity of CDGSs working in combined sf -modes. We start
with the cut-mode versions of the (sf ∧≤ 1)- and (sf ∧=1)-mode of derivation.
It was shown in [2] that

L(CD,CF[−λ], f) = L(LIN),



A Note on Combined Derivation Modes for CDGS 91

for f ∈ {(sf ∧≤ 1), (sf ∧=1)}. For the cut-mode version of these two modes we
find a characterization in terms of context-free languages (cf. [2]).

Theorem 1. If f ∈ {(sf ∧≤ 1), (sf ∧=1)}, then L(CD,CF[−λ], fc) = L(CF).
Proof. Let G = (N, T, P, S) be a context-free grammar. We construct an equiva-
lent CDGS G′ = (N ′, T, P1, P2, S) working in the (sf ∧=1)c- or (sf ∧≤ 1)c-mode
as follows. Let N ′ = N ∪ {A′ | A ∈ N }, the union being disjoint, and define
P1 = {A → h(w) | A → w ∈ P } and P2 = { h(A) → A | A ∈ N }, where
h : (N ∪ T )∗ → (N ′ ∪ T )∗ is a homomorphism given by h(a) = a for a ∈ T and
h(A) = A′ for A ∈ N . It is easy to see that L(G′) = L(G), when G′ works in
one of the aforementioned cut-derivation modes.

Conversely, let G = (N, T, P1, P2, . . . , Pn, S) be a context-free CDGS working
in the (sf ∧ =1)c- or (sf ∧ ≤ 1)c-modes. First observe, that any fc-mode of
derivation, for any derivation mode f , can be sequentialized, i.e., we may assume
that the domain of the partial injective function ρ used in an fc-derivation step is
a singleton set—the straightforward proof is left to the reader. Next we consider
a derivation in the (sf ∧ =1)c- or (sf ∧ ≤ 1)c-mode in more detail. First, let
x⇒(sf ∧=1)c y be an arbitrary derivation step performed by the CDGS G from
above. By definition and the above reasoning on sequentialization we may assume
that (1) x = x0x1x2 with xi ∈ (N ∪ T )∗, for 0 ≤ i ≤ 2, (2) there is a partial
injective mapping ρ : {0, 1, 2} ↪→ {1, 2, . . . n} satisfying dom(ρ) = {1}, and (3)

y = x0z1x2, for x1 ⇒(sf∧=1)
ρ(i) z1. Since x1 ⇒(sf ∧=1)

ρ(i) z1 there is a derivation that

satisfies both, the sf - and the = 1-mode property. Hence, component Pρ(i) is fully
competent on x1 and after applying one single rule from Pρ(i) this component is
either not fully competent anymore or has derived a word from T ∗. Therefore, we
can write x1 = x′0Ax

′
2 and z1 = x′0zx

′
2 for some rule A→ z from Pρ(i), such that

z ∈ (N∪T )∗(N \dom(Pρ(i))(N ∪T )∗ or z ∈ T ∗. In the latter case both x′0 and x
′
2

are from T ∗, too. But then we can alter the decomposition of x chosen in (1) such
that the middle word, for which ρ assigns a value, is the nonterminal A instead
of x1, still leading to y under the (sf ∧=1)c derivation, when choosing the partial
injective mapping ρ from (2) and the rule A → z from Pρ(i) for the derivation
in (sf ∧=1)-mode on the nonterminal A. Obviously, a similar reasoning applies
for the (sf ∧≤ 1)c-mode of derivation.

Thus, in (sf ∧ =1)c- or (sf ∧ ≤ 1)c-derivations which eventually terminate,
only those rules of the CDGS are relevant, which introduce a nonterminal not
in dom(Pi) or terminate. We set

Qi = {A→ z | A→ z ∈ Pi, z ∈ T ∗ ∪ (N ∪ T )∗(N \ dom(Pi))(N ∪ T )∗ },
for each i with 1 ≤ i ≤ n, and define the context-free grammarG′ = (N, T,Q, S),
where Q =

⋃
1≤i≤nQi. By our previous investigation we find L(G′) = L(G).

Thus, the stated claim follows. �
As shown in [10] context-free [λ-free] CDGSs working in the sf -mode precisely
characterize the family family L(P,CF[−λ], ac) of languages generated by pro-
grammed context-free [λ-free] grammars with appearance checking, that is

L(CD,CF[−λ], sf ) = L(P,CF[−λ], ac).
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Let us briefly recall the definition of programmed context-free grammars. A pro-
grammed context-free grammar (see, e.g., [5]) is a tuple G = (N, T, P, S, Λ, σ, φ),
where N , T , P , and S, for S ∈ N , are as in the definition of context-free gram-
mars. Let Λ be a finite set of labels (for the productions in P ), such that Λ can be
interpreted as a function which outputs a production when being given a label;
σ and φ are functions from Λ into the set of subsets of Λ. Usually, the productions
are written in the form (r : A→ α, σ(r), φ(r)), where r is the label of A→ α. For
(x, r1) and (y, r2) in (N∪T )∗×Λ and Λ(r1) = A→ α, we write (x, r1)⇒ (y, r2) if
and only if either x = x1Ax2, y = x1αx2 and r2 ∈ σ(r1), or x = y and rule A→ α
is not applicable to x, i.e., nonterminal A is not present in x, and r2 ∈ φ(r1).
In the latter case, the derivation step is done in appearance checking mode. The
set σ(r1) is called success field and the set φ(r1) failure field of r1. As usual,
the reflexive transitive closure of ⇒ is denoted by ⇒∗. The language generated
by G is defined as L(G) = {w ∈ T ∗ | (S, r1)⇒∗ (w, r2) for some r1, r2 ∈ Λ }.
A programmed context-free grammar G is a recurrent programmed context-free
grammar if for every p ∈ Λ of G, if φ(p) = ∅, then p ∈ σ(p), and if φ(p) �= ∅,
then p ∈ σ(p) = φ(p).

Now we are ready to continue our considerations on the sf - and sf c-mode. For
the context-free [λ-free] CDGS working in sf c-mode of derivation the following
upper and lower bounds

L(RP,CF, ac) ⊆ L(CD,CF, sf c) ⊆ L(P,CF, ac) = L(RE)

and
L(RP,CF− λ, ac) ⊆ L(CD,CF− λ, sf c) ⊆ L(CS)

were reported in [1]. Since by definition of the combined sf -modes both (sf ∧∗)-
and (sf ∧≥ 1)-mode obviously coincide with the ordinary sf -mode, the following
theorem is immediate.

Theorem 2. If f ∈ {(sf ∧ ∗)} ∪ {(sf ∧ ≥ 1)}, then

L(CD,CF[−λ], fc) = L(CD,CF[−λ], sf c). �

Thus, the previously mentioned upper and lower bounds on the generative ca-
pacity of CDGSs working in sf c-mode carry over to the cut-modes under con-
sideration. Hence, we obtain the following corollary.

Corollary 1. If f ∈ {(sf ∧ ∗)} ∪ {(sf ∧ ≥ 1)}, then

1. L(RP,CF, ac) ⊆ L(CD,CF, fc) ⊆ L(P,CF, ac) = L(RE) and
2. L(RP,CF− λ, ac) ⊆ L(CD,CF− λ, fc) ⊆ L(CS). �

It is left open which of the inclusions in this corollary are strict. Next we turn
our attention to the remaining combined sf -modes.

Regardless, whether the [λ-free] context-free CDGS works in one of the com-
bined sf -modes that count the derivation steps in a non-trivial manner in [2] a
characterization of L(P,CF[−λ], ac) was obtained, i.e.,

L(CD,CF[−λ], f) = L(P,CF[−λ], ac),
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for f ∈ { (sf ∧ ≤ k) | k ≥ 2 } ∪ { (sf ∧ = k) | k ≥ 2 } ∪ { (sf ∧ ≥ k) | k ≥ 2 }.
For the cut-mode versions of these derivation modes the situation is similar, but
the proofs are much more involved. First we show that for [λ-free] context-free
CDGS running in (sf ∧≤ k)c- or (sf ∧= k)c-mode, for k ≥ 2, a characterization
in terms of [λ-free] context-free programmed grammar with appearance checking
is obtained. The proof of the following theorem parallels the proof given in [2]
for the ordinary sf -combined modes.

Theorem 3. If f ∈ { (sf ∧ ≤ k) | k ≥ 2 } ∪ { (sf ∧= k) | k ≥ 2 }, then

L(P,CF[−λ], ac) ⊆ L(CD,CF[−λ], fc).

Proof. Obviously the language families L(CD,CF[−λ], (sf ∧= k)c), for k ≥ 2, are
closed under union and embrace the finite languages. Let L ⊆ T ∗ be a language
in L(P,CF[−λ], ac), then

L =
⋃

a,b∈T

(a · δa,b(L) · b) ∪ (L ∩ T 2) ∪ (L ∩ T ) ∪ (L ∩ {λ}),

where δa,b(L) = {w ∈ T+ | awb ∈ L }. Since L is in L(P,CF[−λ], ac), the
language δa,b(L) is in L(P,CF[−λ], ac) due to the closure of these families under
derivatives. Thus, for the proof of the present assertion, it is sufficient to show
that a · δa,b(L) · b is in L(CD,CF[−λ], (sf ∧ = k)c), provided that δa,b(L) is in
L(P,CF[−λ], ac). Let G = (N, T, P, S, Λ, σ, φ) be a programmed context-free
grammar generating δa,b(L).

Now, we design a CDGS G′ working in (sf ∧=2)c-mode generating the lan-
guage a · δa,b(L) · b, where

N ′ = N ∪ Λ ∪ { p′, p′′, p̃ | p ∈ Λ } ∪ {Ap, A
′
p | A ∈ N, p ∈ Λ }

∪ {Rp | p ∈ Λ } ∪ {R,S′, S′′}

is the set of nonterminals, the unions being pairwise disjoint, T is the set of
terminals, S′ is the axiom, and G′ has the production sets given below.

To start the derivation one uses

Pinit = {S′ → S′′} ∪ {S′′ → pSR | p ∈ Λ }.

Then for every production A → w with label p we consider the following two
cases:

1. To apply the rule under consideration we define

Pp,σ,1 = {p→ p′} ∪ {A→ Ap, Ap → Ap} ∪ {B → B | B ∈ N },
Pp,σ,2 = {p′ → p′′, p′′ → p′′} ∪ {Ap → A′

p} ∪ {B → B | B ∈ N },
and

Pp,σ,3 = {p′′ → q | q ∈ σ(p) } ∪ {A′
p → A′

p, A
′
p → w} ∪ {B → B | B ∈ N }.
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2. To verify that the rule is not applicable one uses

Pp,φ,1 = { p→ p̃} ∪ {R→ Rp, Rp → Rp} ∪ {B → B | B ∈ N \ {A} }
and
Pp,φ,2 = { p̃→ q, q → q | q ∈ φ(p) } ∪ {Rp → R} ∪ {B → B | B ∈ N \ {A} }.

Finally,

Pterm = { p→ a | p ∈ Λ } ∪ {R→ b}

is used to terminate the derivation.
The only component applicable to the axiom S′ is Pinit. Now, in every non-

terminal sentential form, either R or Rp appears as right marker and one label
symbol p ∈ Λ or its primed, double primed, or tilded version appears as left
marker. Given a sentential form pαR with α ∈ (N ∪T )∗, the components Pp,σ,1,
Pp,σ,2, and Pp,σ,3 can be used in order to simulate the successful application
of the production with label p of G, yielding a string qβR, for q ∈ σ(p) and
string β ∈ (N ∪ T )∗, and Pp,φ,1 and Pp,φ,2 can simulate its application in ap-
pearance checking mode, yielding qαR, for q ∈ φ(p). For this, the complete
sentential form is given to the components. When a string of the form pwR
with w ∈ T ∗ is obtained, the component Pterm can be applied yielding w. This
proves every word of L(G) can be derived by the CDGS G′ in (sf ∧=2)c-mode
of derivation.

For the converse inclusion observe the following. A terminal word can only
be obtained by applying Pterm to a sentential form in ΛT ∗{R}. Starting off
with a sentential form α = pβR, for p ∈ Λ and β ∈ (N ∪ T )∗, neither the
components Pq,σ,2 and Pq,σ,3 nor Pq,φ,2, for q ∈ Λ, are applicable to any substring
of α, since the presence of some symbol Aq, q

′′, or q̃ is needed, respectively, in
order to stop deriving. Therefore, we have to distinguish the following two cases:

1. Some Pq,φ,1 becomes active first. If a component Pq,φ,1 is applied to a sub-
string α′ of α, this component can become inactive only after the production
q → q̃ has been used. Therefore, q = p has to hold. Since p̃ can be rewritten
only with the help of Pp,φ,2 and Pp,φ,2 can stop deriving only by application
of Rp → R the symbol Rp must have been introduced when Pq,φ,1 was ac-
tive. Thus, α′ = α has to hold. In conclusion, |α|A = 0 since Pp,φ,1 is not
fully competent on α otherwise. Furthermore, p̃ must be replaced together
with Rp during one and the same application of Pp,φ,2. Therefore,

α = pβR⇒(sf∧=2)c
p,φ,1 p̃βRp ⇒(sf∧=2)c

p,φ,2 qβR,

for q ∈ φ(p), is the only successful continuation of such derivation, simulating
the application of the production with label p in appearance checking mode.

Note that some Pq,σ,1, for q ∈ Λ, cannot be applied to any substring of p̃βRp

since it would need a symbol q to terminate its derivation in (sf ∧=2)c-mode.
Similarly both Pq,σ,2 and Pq,σ,3 cannot be applied to any substring since they
require Ap and p′′ (or A′

p if the simulated production is terminating).
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2. Some Pq,σ,1 becomes active first. Similarly as above, if a component Pq,σ,1 is
applied to a substring α′ of α this component can become inactive only after
the production q → q′, which implies q = p. Since p′ can be rewritten only
with the help of Pp,σ,2 and this component can stop deriving only by applying
the rule Ap → A′

p the symbol Ap must have been introduced during the
application of Pq,σ,1 in (sf ∧=2)c-mode of derivation. Since the component
works in (sf ∧ =2)c-mode only one nonterminal Ap can be introduced in a
successful derivation. Hence, we have found the derivation

α = pβAγR⇒(sf∧=2)c
p,σ,1 p′βApγR.

Then with similar argumentation as above, one can show that these deriva-
tion can be continued with an application of component Pp,σ,2 and finally
with Pp,σ,3, i.e.,

p′βApγ ⇒(sf∧=2)c
p,σ,2 p′′βA′

pγR⇒
(sf∧=2)c
p,σ,3 qβwγR,

where q ∈ σ(p) and A → w is the rule with label p. Hence, this simulates
a successful application of the rule A → w with label p of the programmed
grammar G. Finally, it is easy to see that by construction, no other sequence
of components is applicable to α and its intermediate sentential forms. The
details are left to the reader.

The result for arbitrary k, where k ≥ 3, follows by a similar construction, where
the productions in Pinit and Pterm have to be replaced by sets containing chains
of productions of appropriate length, and in each other component the rules that
force the component to quit its derivation must be also replaced by chains of
productions accordingly. For instance the component Pp,σ,1 must be replaced by

{p→ [p, 1], [p, 1]→ [p, 2], . . . , [p, k − 2]→ p′}
∪ {A→ Ap, Ap → Ap} ∪ {B → B | B ∈ N },

where all [p, i], for 1 ≤ i ≤ k−2, are new nonterminals, in order to work properly
in the (sf ∧= k)c-mode of derivation. This technique was used in [7,8] under the
name prolongation technique.

A careful analysis of the designed CDGS G′ in fact reveals that it still works
properly, even in the (sf ∧≤ 2)c-mode, which also generalizes to the (sf ∧≤ k)c-
mode, for k ≥ 2. Hence, also in these cases the [λ-free] context-free programmed
grammar is simulated by a [λ-free] context-free CDGS. This proves the stated
claim. �

What about the remaining combined sf -mode that counts? Recall, that if the
CDGSs are driven in the ordinary (sf ∧ ≥ k)-mode then we have

L(CD,CF[−λ], (sf ∧≥ k)) = L(P,CF[−λ], ac),

if k ≥ 2. For the cut-mode version of the (sf ∧ ≥ k)-mode, for k ≥ 2, we find
the following situation. As already observed, the (sf ∧≥ 1)-mode is equal to the
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sf -mode, which also holds for their cut-mode versions. For the (sf ∧ ≥ k)-mode
in general, it is easy to see that one can do a simulation of the ordinary sf -mode
by the prolongation technique, as elaborated by [7,8]. Whether the converse
simulation is also possible is left open. Thus, by the argumentation above and
Corollary 1 we have shown the following theorem.

Theorem 4. If f ∈ { (sf ∧ ≥ k) | k ≥ 2 }, then

L(RP,CF[−λ], ac) ⊆ L(CD,CF[−λ], fc). �

For the upper bound we state the following theorem.

Theorem 5. If f ∈ { (sf ∧ ≤ k) | k ≥ 2 } ∪ { (sf ∧= k) | k ≥ 2 } ∪ { (sf ∧ ≥ k) |
k ≥ 2 } then

L(CD,CF[−λ], fc) ⊆ L(P,CF[−λ], ac).

Proof. We only sketch the construction. In [2] the simulation of a [λ-free] context-
free CDGS working in f -mode of derivation by a [λ-free] context-free programmed
grammar with appearance checking was shown. During this simulation the sen-
tential form is considered as a whole, since f is a non-cut-mode. In order to
design a simulation of a CDGS for a cut-f -mode of derivation by a programmed
grammar in a step by step way one has to (1) mark a substring of the sentential
form that is consecutive, then (2) to do the simulation of the f -mode derivation
on the marked substring, and finally (3) to unmark the substring. In principle
the tasks of marking symbols, simulation of the f -mode, and unmarking sym-
bols can be done by the programmed grammar. But how to ensure that the
marked symbols are consecutive using context-free rules only? To this end recall
the simulation of a phrase structure grammar in Kuroda normal form1 [9] by a
context-free programmed grammar with appearance checking, see, e.g., [5]. By a
coding and decoding mechanism of the sentential form that can be implemented
by a [λ-free] context-free programmed grammar, one is able to verify whether
two symbols A and B are consecutive (and in the right order AB or BA) in
the underlying sentential form. It is easy to see that this mechanism can also be
used to verify whether more than two symbols are consecutive. Now combining
this with the idea of the step by step simulation results in a [λ-free] context-free
programmed grammar with appearance checking that is able to simulate the
CDGS under consideration that runs its derivation in cut-f -mode. The tedious
details are left to the reader. �

Combining the aforementioned statements results in the following corollary.

Corollary 2. 1. If f ∈ { (sf ∧ ≤ k) | k ≥ 2 } ∪ { (sf ∧= k) | k ≥ 2 }, then

L(CD,CF[−λ, fc) = L(P,CF[−λ], ac).
1 A Chomsky grammar with set of nonterminals N and set of terminals T is in Kuroda
normal form, if every production is either of the form A → BC, A → B, A → a, or
AB → CD, where A,B,C,D ∈ N and a ∈ T .
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2. If f ∈ { (sf ∧ ≥ k) | k ≥ 2 } then

L(RP,CF[−λ], ac) ⊆ L(CD,CF[−λ, fc) ⊆ L(P,CF[−λ], ac). �

Although the previous corollary looks very similar to Corollary 1, there is a
subtle difference, because by similar techniques as in [7,8], one can show that

L(CD,CF[−λ], (sf ∧ ≥ k)c) ⊆ L(CD,CF[−λ], (sf ∧ ≥ k · �)c),

for k, � ≥ 1. In particular, this means that

L(CD,CF[−λ], sf c) = L(CD,CF[−λ], (sf ∧ ≥ 1)c)

⊆ L(CD,CF[−λ], (sf ∧ ≥ k)c) ⊆ L(P,CF[−λ], ac),

for k ≥ 1. We leave open whether these inclusions are strict or not.
Finally, if the sf -mode is combined with the t-mode, then a new characteri-

zation of the context-free languages is obtained in [2], that is,

L(CD,CF[−λ], (sf ∧ t)) = L(CF).

A careful analysis reveals that exactly the same proof can be used to show the
next theorem only replacing (sf ∧t)-mode by (sf ∧t)c-mode in all the arguments.

Theorem 6. L(CD,CF[−λ], (sf ∧ t)c) = L(CF). �
There is still a last combined sf -mode, namely the (sf ∧ t̄)-mode, which was
not formally defined, but its meaning should be clear. Here x derives y with
component Pi of the underlying CDGS in the t̄-mode of derivation, i.e., x⇒t̄

i y,
if and only if x⇒∗

i y and there is z such that y ⇒i z. Trivially, the latter mode
does not generate anything, since it can not terminate by the t̄-mode property
regardless whether the cut- or non-cut-mode version is considered. Therefore
L(CD,CF[−λ], (sf ∧ t̄)) = L(CD,CF[−λ], (sf ∧ t̄)c) = {∅}.

4 Conclusions

Our findings on cut-mode derivations of combined sf -modes for context-free
CDGSs (gray shaded) together with the results on cut-modes for ordinary and
combined t-modes for context-free CDGSs are summarized in Table 2—if in the
table only a lower bound for the language family under consideration is given
and an upper bound is not stated, then one can safely assume that the upper
bound is L(P,CF[−λ], ac). In most cases exact characterizations are obtained.
However, for the stated inclusion results, we have to leave open, whether they
are strict or not. Moreover, we also have to leave open, whether the inclusions

L(CD,CF[−λ], (sf ∧ ≥ k)c) ⊆ L(CD,CF[−λ], (sf ∧ ≥ k · �)c),

for k, � ≥ 1 are proper or not. Here it is worth mentioning that in the non-cut
mode case, that is, the ordinary (sf ∧≥ k)- and (sf ∧≥ k · �)-mode of derivation,
we have the situation that the induced language families coincide. Thus, we have
L(CD,CF[−λ], (sf ∧≥ k)) = L(CD,CF[−λ], (sf ∧≥ k · �)), for k, � ≥ 1, which in
turn is equal to L(P,CF[−λ], ac).
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Table 2.Generative capacity of CD grammar systems working in the cut-mode versions
of the classical modes, the combined t-modes, and the combined sf -modes of derivation
compared. The gray shaded parts mark the results obtained by our investigations.

Derivation mode f L(CD,CF[−λ], fc) L(CD,CF[−λ], (t ∧ f)c) L(CD,CF[−λ], (sf ∧ f)c)

∗

L(CF)

L(RP,CF[−λ], ac) ⊆ ·
≤ 1

= 1

≥ 1 L(RP,CF[−λ], ac) ⊆ ·
≤ k with k ≥ 2

= k with k ≥ 2 L(CF) ⊂ · ⊆ L(P,CF[−λ])
L(CF) ⊂ ·

L(P,CF[−λ], ac)

≥ k with k ≥ 2 Lfin(P,CF[−λ]) ⊆ · L(RP,CF[−λ], ac) ⊆ ·
t L(CF)
sf L(RP,CF[−λ], ac) ⊆ · L(RP,CF[−λ], ac) ⊆ ·
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Department of Mathematics and TUCS,
University of Turku, 20014 Turku, Finland

{mahuov,karhumak}@utu.fi

Abstract. We consider an overlapping product of words as a partial
operation where the product of two words is defined when the former
ends with the same letter as the latter starts, and in this case the product
is obtained by merging these two occurrences of letters, for example
aba•ab = abab. Some basic results on equations of words are established
by reducing them to corresponding results of ordinary word equations.

Keywords: combinatorics on words, overlapping product, equations.

1 Introduction

Motivated by bio-operations, or more formally, DNA computing, see [18], we
consider an operation of overlapping product of words defined as follows. For
two words ua and bv, with a and b letters, we define their overlapping product

ua • bv =
{
uav if a = b ,
undefined if a �= b .

Consequently, the operation is locally controlled, and clearly a (partial) associa-
tive operation on the set of nonempty words Σ+.

Recently the descriptional complexity of this operation was analyzed in the
case of regular languages, see [10]. The same operation and its extensions have
been studied in a number of articles motivated by bio-operations in DNA strands,
see, e.g., [4], [5], [6], [7], [11], [16] and [17]. We consider this operation in con-
nection with word equations. It turns out that many questions on equations can
be transformed, and finally solved, by translating these to related problems on
ordinary word equations. The translation is made because, for example, the sim-
ple operation of cancellation does not work. Thus, for example, x • y = x • z • x
is not equal to y = z • x, as explained more closely in Section 3.

More concretely, we solve a few basic equations over overlapping product,
introduce a general translation of such equations to a Boolean system of ordinary
equations, and as a consequence establish, e.g., that the fundamental result of
solvability of the satisfiability problem extends to these new types of equations.
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2 Preliminaries

Let Σ be a finite alphabet. We denote by Σ+ the set of all nonempty words
over Σ and view it as the free semigroup with respect to the product of words.
Notation Σ∗ is also used refering to the monoid Σ+ ∪ {1}, where 1 denotes the
empty word. As general references of the combinatorics on words we refer to [13]
and [9].

We define a new partial binary operation, so-called overlapping product, on
Σ+ as follows: For two words ua and bv, with a, b ∈ Σ,we set

ua • bv =
{
uav if a = b ,
undefined if a �= b .

Clearly, the operation • is associative (partial) operation so that we have

Fact 1. (Σ+, •) is a partial semigroup.

Actually, in (Σ+, •) letters (considered as words of length 1) constitute partial
(nonunique) left and right units. Indeed, a • u with any u ∈ Σ+, is equal to u if
defined.

Due to the associativity it is justified to write the product without parenthesis:

α = α1 • α2 • · · · • αn , for any αi ∈ Σ+. (1)

The word α, if defined, as an element of Σ+ is deduced from (1) as follows. We
need one additional notation. For any word u = a1a2 · · · ak, with ai ∈ Σ, the
notation u(ak)

−1 refers to the word a1a2 · · · ak−1 and correspondingly (a1)
−1u

to the word a2a3 · · · ak. In order for α to be defined, for each i = 1, . . . , n − 1,
necessarily

last αi = first αi+1 ,

and then

α = α1(last α1)
−1α2(last α2)

−1 · · ·αn−1(last αn−1)
−1αn

= α1(first α2)
−1α2(first α3)

−1 · · ·αn−1(first αn)
−1αn .

On the other hand any word

α = α1α2 · · ·αn with αi ∈ Σ+

can be written as an element of the partial semigroup (Σ+, •) as follows:

α = α1(first α2) • α2(first α3) • · · · • αn−1(first αn) • αn .

It is worth noting that the latter translation is always defined.
These considerations make our goal to consider the theory of word equations

over the overlapping product feasible - as described in details in Section 4.
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3 Examples of Basic Equations

Common tools for solving word equations such as Levi’s Lemma, splitting of
equation and length argument are not so straightforward to use with equations
containing overlapping products. Problems for using these tools arise from the
facts that for overlapping products to be defined the last and the first letters
of the adjacent factors have to coincide and when a product is conducted these
two letters are unified to a single letter. For example, the first of these reasons
causes the following problem.

Example 1. Consider an equation x•y = x•z •x with overlapping products and
an equation xy = xzx. Equation xy = xzx can be reduced into the form y = zx,
accordingly we could suppose that x•y = x•z•x equals with equation y = z•x.
However, for example, y = abb, z = ab, x = bb is a solution for y = z • x but not
for the original equation because the overlapping product x • y = bb • abb is not
defined.

Example 1 shows that we cannot use Levi’s Lemma straightforwardly to elim-
inate the leftmost or the rightmost unknowns. The same problem arises if we
split an equation. Again we may loose the information of the requirements that
originated from the overlapping product that was located at the point of split-
ting.

Unification of the last and the first letters of the adjacent factors complicates
the use of length argument. The total length of an expression containing over-
lapping products depends on the lengths of the factors and on the number of
factors, i.e. |x1 • · · · • xk| = |x1| + · · · + |xk| − (k − 1). For some equations it
may, nevertheless, be easy to detect, for example, the middle of both sides as
for example in the equation x • y • y • x = z • z. From this we can conclude that
x • y = z, y • x = z, but the consequences of splitting the equation have to be
taken into account.

We proceed by solving some basic equations over the partial semigroup with
overlapping product. First we consider the equation x • y = y • x, which corre-
sponds to commutation.

Example 2. To solve the equation x • y = y • x we first assume that |x| , |y| > 1.
For the overlapping product to be defined we can assume that x = ax′a and
y = ay′a, where a ∈ Σ and x′, y′ ∈ Σ∗. Now we can reduce the equation
x • y = y • x into an ordinary word equation x • y = ax′a • ay′a = ax′ay′a =
ay′ax′a = ay′a • ax′a = y • x. From the equation ax′ay′a = ay′ax′a we can
notice that ax′ay′ = ay′ax′, and hence ax′ and ay′ commute. Now we can write
ax′ = ti and ay′ = tj , where t = aα with α ∈ Σ∗ and i, j > 0. From this we get
x = ax′a = tia = (aα)ia and y = ay′a = tja = (aα)ja, where a ∈ Σ,α ∈ Σ∗

and i, j > 0. In the case that |x| = 1 (resp. |y| = 1) we have x = a (resp. y = a),
with a ∈ Σ and y = aαa or y = a (resp. x = aαa or x = a), with α ∈ Σ∗. Thus
the equation x • y = y • x has solutions{

x = (aα)ia
y = (aα)ja

, where a ∈ Σ,α ∈ Σ∗ and i, j ≥ 0.
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We remark that the answer of the equation of the previous example could also be
written with the help of the overlapping product. For example, if x = (aα)2a, y =
(aα)3a we could also write x = (aαa) • (aαa), y = (aαa) • (aαa) • (aαa). Thus,
the words that are solutions of this equation refering to commutation are, in
fact, overlapping products of words of the form aαa or letters as a special case.

The second equation we will examine is associated with conjugation, i.e. xz =
zy.

Example 3. We first check two special cases for equation x • z = z • y. If x = a,
with a ∈ Σ, then y = b, b ∈ Σ, and z = aαb, α ∈ Σ∗, or if a = b, then z = a is
possible, too. If x = aa , with a ∈ Σ, then y = aa and z = ai, where i > 0.

Now we can assume that |x| , |y| , |z| > 2 in equation x • z = z • y. As in
Example 2 we may assume x = ax′a, y = by′b and z = az′b, where a, b ∈ Σ and
x′, y′, z′ ∈ Σ+. These assumptions are due to the facts that overlapping products
have to be defined and x and z have a common first letter and y has a common
last letter with z. Reduction now gives now x•z = ax′az′b = az′by′b = z•y. From
the word equation x′az′ = z′by′ we can conclude that x′a and by′ conjugate. The
conjugation property gives that there exist p, q′ ∈ Σ∗ so that x′a = pq′, by′ = q′p
and z′ = p(q′p)i, where i ≥ 0 and in addition if q′ �= 1 then q′ = bqa with q ∈ Σ∗.
Now with these assumptions we have a solution⎧⎨⎩

x = ax′a = apq′ = apbqa
y = by′b = q′pb = bqapb
z = az′b = ap(q′p)ib = ap(bqap)ib

,

where a, b ∈ Σ, p, q ∈ Σ∗ and i ≥ 0.
If q′ = 1 then p = bp′a, where p′ ∈ Σ∗ and solutions are of the form⎧⎨⎩

x = ax′a = ap = abp′a
y = by′b = pb = bp′ab
z = az′b = a(p)i+1b = a(bp′a)i+1b

,

where a, b ∈ Σ, p, p′ ∈ Σ∗ and i ≥ 0.
In fact, these latter solutions are included in the upper formula. Thus equation

x • z = z • y has solutions⎧⎨⎩
x = apbqa
y = bqapb
z = ap(bqap)ib

, where a, b ∈ Σ, p, q ∈ Σ∗ and i ≥ 0

and special solutions⎧⎨⎩
x = a
y = b
z = aαb

,

⎧⎨⎩
x = a
y = a
z = ai

and

⎧⎨⎩
x = aa
y = aa
z = ai

,

where a, b ∈ Σ,α ∈ Σ∗, i > 0.
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The third basic equation we consider asks when the product of two squares is
a square, a problem first studied in [14]. In the case of word equation x2y2 = z2

the answer is that the equation has only periodic solutions. If we consider the
equation with overlapping product we get a corresponding result.

Example 4. We first assume that |x| , |y| , |z| > 1 in the equation x • x • y • y =
z • z. Because overlapping products have to be defined we can again assume
that x = ax′a, y = ay′a and z = az′a, where a ∈ Σ and x′, y′, z′ ∈ Σ∗.
Reduction of overlapping products into usual word products gives an equation
ax′ax′ay′ay′a = az′az′a from which we get a simpler equation x′ax′ay′ay′ =
z′az′. The length argument gives now that |x′ay′| = |z′|, and thus by comparing
the beginnings and the ends of both sides on the equation x′ax′ay′ay′ = z′az′ we
conclude z′ = x′ay′. Now the equation has the form x′ax′ay′ay′ = x′ay′ax′ay′

which leads to an equation ax′ay′ = ay′ax′ showing that ax′ and ay′ commute.
From this observation we can conclude that ax′ = ti and ay′ = tj with t = aα,
α ∈ Σ∗ and i, j > 0 and hence x = ax′a = (aα)ia, y = ay′a = (aα)ja and z =
az′a = ax′ay′a = (aα)i+ja. Again if some of the unknowns equal a letter, then
the solution is gained from the following general formula by allowing i, j ≥ 0.
The equation x • x • y • y = z • z has solutions⎧⎨⎩

x = (aα)ia
y = (aα)ja
z = (aα)i+ja

, where a ∈ Σ,α ∈ Σ∗ and i, j ≥ 0.

We yet give one example of a basic equation which leads us to analyze the defect
property.

Example 5. To solve an equation x • y = u • v we may assume x = x′a, y =
ay′, u = u′b and v = bv′ where a, b ∈ Σ and x′, y′, u′, v′ ∈ Σ∗. With these
assumptions we have an ordinary word equation x′ay′ = u′bv′. We consider only
the case |x′| < |u′|, the case |u′| < |x′| is symmetric and |x′| = |u′| is clear.
The equation x′ay′ = u′bv′ has now a solution x′ = α, y′ = βbγ, u′ = αaβ
and v′ = γ where α, β, γ ∈ Σ∗. The solution for the original equation with the
assumption |x| < |u| can now be given:⎧⎪⎪⎨⎪⎪⎩

x = αa
y = aβbγ
u = αaβb
v = bγ

, where a, b ∈ Σ,α, β, γ ∈ Σ∗.

We remark that these four words x, y, u and v of the previous example can be
expressed in the form x = αa, y = aβb • bγ, u = αa • aβb and v = bγ, thus
they can be formed from three words by overlapping product. This implies, as
stated in the next theorem, that a so-called defect property, see [3], is also valid
in (Σ+, •).

Theorem 1. Let X be a set of n words with X ∩ Σ = ∅. If X satisfies a
nontrivial equation with overlapping products, then these words can be expressed
with n− 1 words by using overlapping products.
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Proof. Let x1 • x2 • · · · • xk = y1 • y2 • · · · • yl be a nontrivial equation such that
xi, yj ∈ X for all i = 1, . . . , k and j = 1, . . . , l. We may assume that |x1| < |y1|
and hence y1 can be written in the form y1 = x1 • (last x1) y′1. Thus, the words
of the set X can be expressed with words X1 = (X −{y1})∪{(last x1) y′1}. The
number of words in X1 is clearly at most n and X1 ∩Σ = ∅. Now the equation
corresponding to the original equation can be reduced at least from the beginning
with a factor x1 and hence, the new (nontrivial) equation will be shorter in
terms of the total length of an expression which is given by |x1 • · · · • xk| =
|x1|+ · · ·+ |xk| − (k − 1). We divide the analyzis into two cases.

Case 1. Inductively with respect to the length of the nontrivial equation we
will proceed into an equation u = v1 • · · · • vm with u, v1, . . . vm words from
the processed set of at most n words. Now it is clear that the word u may be
removed from the set and the original words can be expressed with n− 1 words
as claimed.

Case 2. If in some point of the procedure described above the equation will
reduce into a trivial equation, the constructed set of words corresponding to
that situation contains already at most n− 1 words. This follows from the fact
that the reduction from a nontrivial equation into a trivial equation is possible
only if some factor replacing an old word already exists in the considered set of
words. �

As a conclusion, the above examples and the theorem show that results for word
equations over overlapping product are often similar, but not exactly the same,
as in the case of ordinary word equations. Moreover, the proofs reduce to that
of ordinary words - as further explained in the next section.

4 Reduction into Word Equations

In this section the reduction of equations over overlapping products to that of
ordinary word equations is analyzed in general. The reduction leads to a Boolean
combination of word equations, as we shall see in the next result.

Theorem 2. Let Σ be a finite alphabet, X be the set of unknowns and e : u = v
be an equation over X with overlapping products. Then the equation e can be
reduced into a Boolean combination of ordinary word equations.

Proof. Consider the equation u = x1 • x2 • · · · • xl = y1 • y2 • · · · • ym = v, where
xi, yj ∈ X for all i = 1, . . . , l and j = 1, . . . ,m.

Part 1. Assume that the solutions ui for xi and vj for yj have |ui| , |vj | > 1, for
all i = 1, . . . , l and j = 1, . . . ,m, and hence we can mark the first and the last
letters of the words and write

x1 = a1x
′
1a2 , x2 = a2x

′
2a3 , . . . , xl = alx

′
lal+1 ,

y1 = b1y
′
1b2 , y2 = b2y

′
2b3 , . . . , ym = bmy

′
mbm+1 ,

where ai, bj ∈ Σ and x′i and y
′
j are new unknowns from the set X ′.
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Now we have some restrictions for choosing the letters ai, bj . If xi = xj then
ai = aj and ai+1 = aj+1, and similarly if yi = yj, then bi = bj and bi+1 = bj+1.
Comparing unknowns of the equation e on both sides we have that if xi = yj ,
then ai = bj and ai+1 = bj+1, and in addition, a1 = b1 and al+1 = bm+1 always
hold.

With these assumptions and markings we have a reduced word equation e′ :
u′ = v′ without overlapping products where u′ and v′ are defined as follows:

u = x1 • x2 • · · · • xl = a1x′1a2x′2a3 · · · alx′lal+1 = u′

v = y1 • y2 • · · · • ym = b1y
′
1b2y

′
2b3 · · · bmy′mbm+1 = v′ .

In fact, to solve the original equation e we have to solve the reduced equation
e′ with all possible combinations of values for letters ai and bj from the set Σ.
In other words, the set of solutions of the original equation u = v equals the
set of solutions of a Boolean set of equations which is a disjunction of equations
without overlapping products.

Part 2. In Part 1 we assumed that each unknown corresponds to a word of length
at least two. Now we assume that at least one of the unknowns corresponds to
a letter. We proceed as in Part 1 but with a bit different markings. Let xi =
ai,1x

′
iai,2 or xi = ai,12, with ai,1, ai,2, ai,12 ∈ Σ, depending on the length of the

solution corresponding to xi. Because overlapping products have to be defined
we have ai,2 = ai+1,1 or ai,2 = ai+1,12 and ai,12 = ai+1,1 or ai,12 = ai+1,12.
We process similarly with yj ’s and b’s. As in Part 1, we have some apparent
additional restrictions for letters a’s and b’s depending on equation e. With
these assumptions and markings we can again form a corresponding reduced
word equation e′ : u′ = v′ without overlapping products.

To solve the original equation with assumptions of Part 2 we have again a
Boolean combination of word equations to solve. This set is a disjunction of
equations of the form e′ with all possible combinations such that at least one
unknown corresponds to a letter and values of corresponding a’s and b’s vary in
the set Σ.

Part 3. In Part 1 and Part 2 we have only discussed the cases of constant free
equations. If some factors in the equation u = x1•x2•· · ·•xl = y1•y2•· · ·•ym = v
are constants we proceed as previously in Parts 1 and 2 but with the additional
knowledge of constants. If, for example, xi is a constant in e and we have marked
xi = aix

′
iai+1 we treat ai, ai+1 and x′i in equation e′ as constants, too.

As a conclusion we remark that the considered Boolean sets are finite and the
set of solutions of the original equation e is the set of solutions of a disjunction
of Boolean sets of Part 1 and Part 2, the observations of the third part taken
into account if necessary. Equations in this combined Boolean set do not contain
overlapping products, and this proves the claim. �

We remark that regardless of equation e having constants or not the equations
in the constructed Boolean set have constants because the given reduction takes
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into consideration the fact that overlapping products have to be defined. The
property that the overlapping product is only partially defined also makes the
conversion of equations to the other direction difficult. As mentioned in Section
2 it is easy to write a word as the element of this partial semigroup (Σ+, •).
But if we try to convert, for example, an equation xy = z we cannot just write
x • y = z. Instead, the equation x • y′ = z with requirements y′ = ay, x = x′a,
with a ∈ Σ, would correspond the original equation.

5 Consequences of the Reduction

It is known that any Boolean combination of word equations can be transformed
into a single equation, see [12], [3] or [2] as the original source. Another well
known result concerning word equations is the satisfiability problem, that is
decidability of whether a word equation has a solution or not. The satisfiability
problem is shown to be decidable by Makanin [15], see also [19]. We will show
that corresponding results are also valid for equations with overlapping products.

Theorem 3. For any Boolean combination of equations with overlapping prod-
ucts we can construct a single equation without overlapping products such that
the sets of solutions of the Boolean combination and the single equation are equal
when restricted to unknowns of the original equations.

Proof. The result of the previous section shows that an equation with over-
lapping products can be reduced into a Boolean combination of usual word
equations. From this it follows that any Boolean combination of equations with
overlapping products can be reduced into another Boolean combination of ordi-
nary word equations. This, in turn, as stated above can be transformed into a
single equation without overlapping products. �

We remind that combining a conjunction of two word equations into a single
equation does not require any extra unknowns but in a case of disjunction two
additional unknowns are required in the construction given in [12], see also [3].
Thus, the single equation constructed from the Boolean combination of equations
is likely to contain many more unknowns than the original equations because of
the disjunctions derived from the reduction method.

We next slightly modificate this old proof for the result of [12] concerning a
disjunction of two equations. The new result shows that, in fact, two additional
unknowns are enough to combine a disjunction of a finite set of equations into
a single equation.

Theorem 4. Let e1 : u1 = v1, . . . , en : un = vn be a finite set of equations. A
disjunction of these equations, i.e. the property expressible by e1 or e2 or . . . or
en, can be transformed into a single equation with only two additional unknowns.

Proof. We may assume that the right hand sides of the equations are the same
because the disjunctions of the equations of the following two sets S1 and S2 are
equivalent:
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S1 :

u1 = v1
u2 = v2

...
un = vn

and S2 :

u1v2v3 · · · vn = v1v2 · · · vn
v1u2v3 · · · vn = v1v2 · · · vn

...
v1v2 · · · vn−1un = v1v2 · · · vn .

Thus, we may assume that v1 = v2 = · · · = vn = v holds for equations e1, . . . , en.
To complete the proof we will outline the necessary constructions, the justifi-

cations can be deduced as in [12]. First we define a function 〈 〉 by

〈α〉 = αaαb , where a, b ∈ Σ, a �= b.

We will use the properties that for each α the shortest period of 〈α〉 is longer
than half of its length and 〈α〉 is primitive. We remark that now 〈α〉 can occur

in 〈α〉2 only as a prefix and a suffix. Let us denote u1 · · ·un = u. With these
observations we may deduce that

u1 = v or u2 = v or · · · or un = v ⇔ ∃Z,Z ′ : X = ZY Z ′ ,

where
Y = 〈u〉2 v 〈u〉 v 〈u〉2

and
X = 〈u〉2 u1 〈u〉u1 〈u〉2 u2 〈u〉u2 〈u〉2 · · · 〈u〉2 un 〈u〉un 〈u〉2 .

The proof of the previous equivalence is based on the facts that the word 〈u〉2
is a prefix and a suffix of Y and that it occurs in X in exactly n+ 1 places. We
concentrate on the nontrivial part of the proof. Thus, if X = ZY Z ′ holds there
are essentially two possibilities for v 〈u〉 v:

v 〈u〉 v = ui 〈u〉ui , for some i

or

v 〈u〉 v = ui 〈u〉ui 〈u〉2 ui+1 〈u〉ui+1 〈u〉2 · · ·
uj−1 〈u〉uj−1 〈u〉2 uj 〈u〉uj , for some i and j with i < j.

In the first case v = ui as required. In the second case we can use the positions of
factors 〈u〉 and 〈u〉2 to conclude that this case is not possible, which completes
the proof. We separate the analyzis into two cases depending on whether v 〈u〉 v
equals to an expression containing an odd number of factors 〈u〉2 or an even
number of those. The following two examples illustrate the argumentation in
each case. We leave it to the reader to apply corresponding arguments for the
other values of i and j.

Let w = u1 〈u〉u1 〈u〉2 u2 〈u〉u2 and assume v 〈u〉 v = w. Now the factor 〈u〉 in
the middle of v 〈u〉 v has to overlap with the factor 〈u〉2 of w, otherwise one of the
v′s would contain a factor 〈u〉2. In a general case the overlapping concerns the

centermost occurrence of factors 〈u〉2. Now the factor preceding (or succeeding)
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the mentioned 〈u〉 has the length at least 2|u1|+ 2| 〈u〉 | (or 2|u2|+ 2| 〈u〉 |). We
may assume |v| ≥ 2|u1| + 2| 〈u〉 |, the other case being similar. Now |v 〈u〉 v| ≥
4|u1|+ 5| 〈u〉 | > |w| because | 〈u〉 | > 2|u2|. This gives a contradiction.

Let w′ = u1 〈u〉u1 〈u〉2 u2 〈u〉u2 〈u〉2 u3 〈u〉u3 and assume v 〈u〉 v = w′. Now
the factor 〈u〉2 has to be located in the same place on both occurrences of v

in the word v 〈u〉 v. This gives v = u1 〈u〉u1 〈u〉2 u3 〈u〉u3 and thus |v 〈u〉 v| =
9| 〈u〉 |+ 4|u1|+ 4|u3| > |w′| giving a contradiction.

�

With a positive Boolean combination we refer to a Boolean combination that
does not contain any negations, e.g. a Boolean combination of equations without
inequalities. Now we can show that the conversion of a finite positive Boolean
combination of equations over overlapping products into a single ordinary word
equation requires only two extra unknowns.

Theorem 5. For any finite positive Boolean combination of equations with over-
lapping products we can construct a single ordinary word equation with two ad-
ditional unknowns such that the sets of solutions of the Boolean combination and
the single equation are equal for some choice of these additional unknowns.

Proof. For each equation over overlapping products we have a corresponding
finite disjunction of ordinary equations based on reduction of Theorem 2. Thus,
any finite positive Boolean combination of equations with overlapping products
can be transformed into a finite positive Boolean combination of ordinary word
equations. We may write the constructed Boolean combination in a disjunctive
normal form and replace each conjuction of equations by a single equation. Thus,
we have formed a finite disjunction of word equations without any additional
unknowns. By Theorem 4 we can transform this disjunction into a single equation
with two additional unknowns which proves the claim. �

The compactness theorem for words says that each system of equations over Σ+

and with a finite number of unknowns is equivalent to some of its finite subsys-
tems, see [1], [8] and also [9]. We remark that the analogical result concerning
equations with overlapping products is not as obvious a consequence of the reduc-
tion as the satisfiability theorem analyzed in the end of this section. If we use the
reduction on an infinite system of equations with overlapping products in order
to be able to use the compactness theorem of ordinary word equations, we will
end up with an infinite number of finite systems of disjunctions connected with
conjunctions. Although, a finite positive Boolean combination of equations over
overlapping products can be reduced into a single ordinary word equation with
only two additional unknowns, a corresponding reduction of an infinite Boolean
combination would require an infinite number of unknowns. Thus, we cannot use
the original compactness theorem because of the infinite number of unknowns
and the question about validity of the compactness theorem for equations over
overlapping products remains open.

The decidability result for equations with overlapping products is instead
obtained easily.
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Theorem 6. The satisfiability problem for a finite positive Boolean combination
of equations with overlapping products is decidable.

Proof. Theorem 3 shows that an equation with overlapping products can be
reduced into a single equation without overlapping products. With Makanin’s
algorithm we can decide whether this equation without overlapping products
has solutions or not and the existence of solutions is not affected by the addi-
tional unknowns in a sense that they would restrict the existence. Thus, we can
straightforwardly decide the existence of solutions of the original equation with
overlapping products, too. �

Acknowledgements. We would like to thank the anonymous referee for con-
structive comments, especially on Theorem 4.
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16. Mateescu, A., Păun, G., Rozenberg, G., Salomaa, A.: Simple splicing systems.
Discrete Applied Mathematics 84, 145–162 (1998)

17. Mateescu, A., Salomaa, A.: Parallel composition of words with re-entrant symbols.
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Abstract. We study stateless deterministic two-phase RR-automata of
window size one: stl-det-2-RR(1)-automata. While general deterministic
RR-automata of window size one characterize the regular languages, it
turns out that the class of languages accepted by the stateless two-phase
variants is subregular. Therefore we combine stl-det-2-RR(1)-automata
into computationally stronger cooperating distributed systems, obtain-
ing the stl-det-local-CD-2-RR(1)-systems. By limiting their inherent non-
determinism, two further variants are derived. The relations between the
different classes and some well-known language families are investigated,
and it is shown that the classes defined here form a finite hierarchy whose
levels are incomparable to several well-known language families. Further,
closure properties and decision problems are studied for these classes.

1 Introduction

One of the fundamental concepts of computing models and automata is that
of internal states which evolve at discrete time steps. Accordingly, the number
of these states can be seen as a parameter of such systems. By reducing this
number as much as possible, we obtain types of automata that only have a
single internal state. Thus, the behavior of these automata does not depend on
their internal state at all and, therefore, these devices are called stateless. It is
easily seen that the computational power of stateless finite automata is strictly
weaker than that of general finite automata. On the other hand, it is well known
that already stateless nondeterministic pushdown automata accept all context-
free languages [5]. Thus, for nondeterministic pushdown automata, the resource
‘pushdown store’ can compensate for the absence of states. Generally speaking,
it is a natural and interesting question of how resources given to finite automata
relate to the absence or presence of internal states. Given some computational
model, are states necessary at all?

Inspired by biologically motivated models of computing related studies were
initiated in [6,18], as it is difficult and even unrealistic to maintain a global state
for a massively parallel group of objects appearing in natural phenomena of cell
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evolutions and chemical reactions. The study of stateless multi-head finite au-
tomata and stateless multi-counter systems in [18] and the successor paper [6]
shows that the resource ‘heads’ cannot compensate for the absence of states.
Recently, also stateless two-pushdown automata have been investigated [7], and
it has been shown that for shrinking as well as for length-reducing determin-
istic and nondeterministic two-pushdown automata states are not needed. Fur-
ther, also stateless variants of restarting automata have been studied. In [7]
so-called R-automata with combined rewrite/restart operations are considered,
while in [8] restarting automata which, after executing a rewrite step may con-
tinue to read their tape before performing a restart, so-called RR-automata, are
of main interest. Thus, even after executing a rewrite step an RR-automaton has
still the option to accept or to reject instead of performing a restart. In particu-
lar, in [8] the two-phase RR-automaton has been introduced, which is a stateless
RR-automaton that can distinguish between the two parts of each cycle: the first
part, which ends with an application of a rewrite (that is, delete) operation, and
the second part, which ends with an execution of a restart operation.

Here we study the influence of the size k of the read/write window on the
expressive power of stateless deterministic two-phase RR-automata, abbreviated
as stl-det-2-RR(k)-automata. We will see that based on the size k, we obtain
an infinite strict hierarchy of language classes that, however, are incomparable
to the class REG of regular languages with respect to inclusion. In particular,
it turns out that the class of languages accepted by the stateless two-phase
RR-automata of window size one is subregular, while general deterministic RR-
automata of window size one characterize the regular languages [9].

Then, in analogy to the work presented in [14,15] we introduce cooperating
distributed systems (CD-systems) of stl-det-2-RR(1)-automata, the so-called stl-
det-local-CD-2-RR(1)-systems. These systems are an adaptation of the notion
of cooperating distributed grammar system with external control (see, for ex-
ample, [1,3]) to the setting of stl-det-2-RR(1)-automata. As it turns out these
systems are strictly more expressive than the CD-systems of stateless determin-
istic R(1)-automata (the so-called stl-det-local-CD-R(1)-systems) studied in [14].
On the other hand, the class of languages L=1(stl-det-local-2-RR(1)) accepted
by the stl-det-local-CD-2-RR(1)-systems is incomparable under inclusion to the
classes of (deterministic) context-free languages, linear languages, Church-Rosser
languages and growing context-sensitive languages.

Although all the component automata of a stl-det-local-CD-2-RR(1)-systemare
deterministic, the system itself is not. Therefore, also two types of deterministic
CD-systems of stl-det-2-RR(1)-automata are defined: the strictly deterministic
CD-systems and the globally deterministic CD-systems. We compare the result-
ing classes of languages to each other and to the class of regular languages, and
we establish closure and non-closure properties for them.

The paper is organized as follows. First we describe in short the two-phase
restarting automaton and derive a few fundamental results on them. In Sec-
tion 3, CD-systems of stateless deterministic 2-RR(1)-automata are introduced
and investigated. Then the two variants without nondeterminism are defined and
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studied in Section 4. It turns out that the strictly deterministic CD-systems de-
fine a language class that forms a non-reversal and non-intersection closed anti-
AFL, which is quite surprising for a deterministic automaton model. Although
anti-AFLs are sometimes referred to as “unfortunate families of languages,”
there is linguistical evidence that such language families might be of crucial im-
portance, since in [2] it was shown that the family of natural languages is an
anti-AFL. Decidability problems are the main aspect of Section 5. The results
on the relations between the different language classes are summarized in Fig-
ure 1, and Table 1 summarizes the closure and non-closure properties. Finally,
we conclude and present some open and untouched questions in Section 6.

2 Two-Phase Restarting Automata

A stateless deterministic two-phase RR-automaton, stl-det-2-RR-automaton for
short, is described by a 6-tuple M = (Σ, c, $, k, δ1, δ2), where Σ is a finite in-
put alphabet, c and $ are additional symbols that serve as markers for the left
and right border of the input tape, k ≥ 1 is the size of the read/write window,
and δ1 and δ2 are the transition functions that associate a transition step to
each possible content u of the window. There are four types of transition steps:
A move-right step (MVR) causes M to shift the window one position to the
right. However, the window cannot be shifted beyond the right border marker $.
A rewrite step causes M to delete at least one and at most all symbols of the
content u of the window, thereby replacing u by v and shortening the tape. Sub-
sequently, the window is placed immediately to the right of v. Some additional
restrictions apply in that the border markers c and $ must not disappear from
the tape. Hence, if u ends with the symbol $, then so does v, and in this situation
the window is placed on the $. An accept step causes M to halt and accept, and
a restart step causes M to place the window again over the left end of the tape,
so that the first symbol it contains is the left border marker c. If the transition
step is undefined for the current situation, then M necessarily halts and rejects.

A computation ofM consists of cycles followed by a tail computation. A cycle
begins with the window scanning the left border marker. It consists of a sequence
of MVR steps which is followed by a rewrite step that completes the first phase
of the cycle. The behavior ofM during the first phase is determined by δ1. After
the rewrite step, the second phase controlled by δ2 starts. It consists of further
MVR steps followed by a restart step that completes the cycle. A computation
of M ends by a tail computation, which is an incomplete cycle ending with an
accept step or a reject. Accept instructions can occur in both δ1 and δ2.

With M we associate two languages – the simple language

S(M) = {w ∈ Σ∗ |M accepts w in a tail computation }

and the language

L(M) = {w ∈ Σ∗ | ∃z ∈ S(M) : w �c
∗

M z }



114 M. Kutrib and F. Otto

of words accepted by M . Here �cM denotes the reduction relation on Σ∗ that is
induced by the cycles of M . In order to clarify our notion we give a first short
example.

Example 1. The non-regular language {w ∈ {a, b}∗ | |w|a = |w|b } is accepted by
the stateless deterministic two-phase RR-automaton M = ({a, b}, c, $, 2, δ1, δ2),
where δ1(c$) = Accept, δ1(u) = ε for all u ∈ {ab, ba}, δ1(u) = MVR for all
u ∈ {ca, cb, aa, bb}, and δ2(u) = Restart for all u ∈ {ab, ba, aa, bb, a$, b$, $}. �

In the example above, the stl-det-2-RR(2)-automaton restarts after a rewrite
in any case. This particular behavior led to the definition of the so-called R-
automata that cannot continue to read the input after a rewrite, that is, rewrite
and restart steps are combined. Therefore, for these automata the transition
function δ2 can be omitted.

For each k ≥ 1, stl-det-2-RR(k) denotes the class of stateless deterministic
two-phase RR-automata with window of size k, and L (stl-det-2-RR(k)) denotes
the class of languages that are accepted by stl-det-2-RR(k)-automata. Similarly
for R-automata. For devices with states it is evident that RR-automata are at
least as powerful as R-automata. But this cannot be derived from the definition
for stateless variants. Nevertheless, we have the following result.

Lemma 2. For each k ≥ 1 and each stl-det-R(k)-automaton M , there exists
a stl-det-2-RR(k)-automaton M ′ such that the reduction relations �cM and �cM ′

coincide, S(M) = S(M ′) and, thus, L(M) = L(M ′).

Proof. Let M = (Σ, c, $, k, δ) be a stl-det-R(k)-automaton. We obtain a stl-det-
2-RR(k)-automatonM ′ = (Σ, c, $, k, δ1, δ2) by taking δ1 = δ and δ2(u) = Restart
for all u that can occur as the contents of the window of M . Then the cycles
of M ′ and of M correspond to each other, and S(M ′) = S(M) holds. �

Example 3. For k ≥ 1 and Σ = {a, b}, we define the language Lk = b∗ ·(ak ·b+)∗.

Claim. Lk ∈ L (stl-det-2-RR(k)).

Proof (of claim). We define a stl-det-2-RR(k)-automatonMk = (Σ, c, $, k, δ1, δ2)
as follows:

δ1(cb
i$) = Accept, for all 0 ≤ i ≤ k − 2,

δ1(cb
iak−1−i) = MVR, for all 0 ≤ i ≤ k − 1,

δ1(b
iak−i) = MVR, for all 1 ≤ i ≤ k,

δ1(a
k) = ε,

δ1(b
k−1$) = Accept;

δ2(b
iak−i) = Restart, for all 1 ≤ i ≤ k,

δ2(b
i$) = Restart, for all 1 ≤ i ≤ k − 1.

Then S(M) = b∗, and biaku �cM biu for all i ≥ 0 and all words u such that
u ∈ b+ or u = brasu′ for some r, s ≥ 1 such that r + s ≥ k. Thus, it is easily
seen that L(M) = Lk holds. �

Claim. Lk �∈ L (stl-det-R(k)).
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Proof (of claim). Assume to the contrary that M = (Σ, c, $, k, δ) is a stl-det-
R(k)-automaton such that L(M) = Lk holds. The word w1 = akb belongs to Lk,
that is, M accepts on input w1. Now we consider the function δ. Obviously,
δ(cak−1) must be defined. It cannot be an accept instruction, and it cannot be a
rewrite instruction, as the prefix ak−1 of w1 cannot be replaced by any shorter
word without obtaining a word that is not a member of Lk. Thus, it follows that
δ(cak−1) = MVR. If δ(ak) = MVR, then we must consider δ(ak−1b). The suffix
ak−1b of w1 cannot be replaced by a shorter word without obtaining a word that
is not a member of Lk, and so it follows that δ(ak−1b) = MVR. Finally, δ(ak−2b$)
must be an accept instruction. However, then together with w1, M also accepts
the word ak+1b �∈ Lk. This contradiction shows that δ(ak) = ε must hold. But
then akakb �cM akb �∗M Accept, and M accepts akakb �∈ Lk. �

Together with Lemma 2, Example 3 yields the following proper inclusions.

Corollary 4. For all k ≥ 1, L (stl-det-R(k)) � L (stl-det-2-RR(k)).

In [14] it is shown that the regular language L′
k = { (abk)i | i ≥ 0 } separates

the language class L (stl-det-R(k)) from the class L (stl-det-R(k + 1)). From
Lemma 2 we see that L′

k is also accepted by a stl-det-2-RR(k+ 1)-automaton.

Lemma 5. The language L′
k is not accepted by any stl-det-2-RR(k)-automaton.

Proof. Assume to the contrary that M = (Σ, c, $, k, δ1, δ2) is a stl-det-2-RR(k)-
automaton that accepts the language L′

k. Then on input abkabk, M will have
to accept. However, as M has a window of size k only, it cannot accept the
word abkabk in a tail computation without accepting some word not belonging
to L′

k. Hence, the accepting computation of M on input abkabk begins with a
cycle abkabk �cM z. Then |z| < 2k + 2, and as M can delete at most k symbols
in a single cycle, we have |z| ≥ k + 2. This implies, however, that z �∈ L′

k.
So, M cannot accept abkabk without accepting z as well. It follows that L′

k is
not accepted by any stl-det-2-RR(k)-automaton. �

Recall from [9] that L (det-RR(1)) coincides with the class of regular languages,
and from Example 1 that L (stl-det-2-RR(2)) includes a non-regular language.
Thus, together with Lemma 5 this yields the following results.

Corollary 6. (a) For all k ≥ 1, L (stl-det-2-RR(k)) � L (stl-det-2-RR(k+ 1)).
(b) The class L (stl-det-2-RR(1)) is properly contained in the class REG of regular
languages. (c) For all k ≥ 2, the class L (stl-det-2-RR(k)) is incomparable under
inclusion to the class REG.

3 CD-Systems of stl-det-2-RR(1)-Automata

Cooperating distributed systems (CD-systems) of restarting automata were in-
troduced and studied in [12]. Here we study CD-systems of stateless deterministic
2-RR(1)-automata, comparing them in particular to the CD-systems of stateless
deterministic R(1)-automata of [14].
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A CD-system of stateless deterministic 2-RR(1)-automata consists of a fi-
nite collectionM = ((Mi, σi)i∈I , I0) of stateless deterministic 2-RR(1)-automata

Mi = (Σ, c, $, 1, δ
(i)
1 , δ

(i)
2 ) (i ∈ I), successor relations σi ⊆ I (i ∈ I), and a subset

I0 ⊆ I of initial indices. Here it is required that I0 �= ∅, and that σi �= ∅ for
all i ∈ I. For the CD-systems of stl-det-R(1)-automata introduced in [14] it was
required in addition that i �∈ σi for all i ∈ I, but this requirement is easily met
by using two isomorphic copies of each component automaton. Therefore, we
abandon it here in order to simplify the presentation.

Various modes of operation have been introduced and studied for CD-systems
of restarting automata, but here we are only interested in mode = 1 compu-
tations. A computation of M in mode = 1 on an input word w proceeds as
follows. First an index i0 ∈ I0 is chosen nondeterministically. Then the 2-RR-
automaton Mi0 starts the computation with the initial configuration cw$, and
executes a single cycle. Thereafter an index i1 ∈ σi0 is chosen nondetermin-
istically, and Mi1 continues the computation by executing a single cycle. This
continues until, for some l ≥ 0, the automatonMil accepts. Such a computation
will be denoted as (i0, w) �cM (i1, w1) �cM · · · �cM (il, wl) �∗Mil

Accept. Should

at some stage the chosen automaton Mil be unable to execute a cycle or to
accept, then the computation fails. By L=1(M) we denote the language that
the system M accepts in mode = 1, and by L=1(stl-det-local-CD-2-RR(1)) we
denote the class of languages that are accepted by mode = 1 computations of stl-
det-local-CD-2-RR(1)-systems, that is, by CD-systems of stateless deterministic
2-RR(1)-automata.

From Lemma 2 we immediately obtain that L=1(stl-det-local-CD-R(1)) is con-
tained in L=1(stl-det-local-CD-2-RR(1)). Below we will see that this inclusion is
actually a proper one.

Recall from [4] or from [14] that a language L ⊆ Σ∗ is called a rational trace
language if there exists a reflexive and transitive binary relation D on Σ (a de-
pendency relation) such that L =

⋃
w∈R [w]D for some regular language R on Σ.

Here [w]D denotes the congruence class of w with respect to the congruence
≡D = { (uabv, ubav) | u, v ∈ Σ∗, a, b ∈ Σ, (a, b) �∈ D }. In [14] it is shown that
the stl-det-local-CD-R(1)-systems accept all rational trace languages. Thus, we
see that also the stl-det-local-CD-2-RR(1)-systems accept all rational trace lan-
guages. Further, it is shown in [14] that one can extract a finite-state acceptor A
from a stl-det-local-CD-R(1)-system M such that A accepts a sublanguage of
L=1(M) that is letter-equivalent to L=1(M). Below we prove that this result
does not carry over to stl-det-local-CD-2-RR(1)-systems.

Example 7. LetM = ((Mi, σi)i∈{1,2}, {1}) be the CD-system of stl-det-2-RR(1)-
automata on Σ = {a, b} that is specified by σ1 = {2}, σ2 = {1}, and

M1 : δ
(1)
1 : c !→ MVR, a !→ ε, $ !→ Accept; δ

(1)
2 : a !→ Restart, b !→ Restart;

M2 : δ
(2)
1 : c !→ MVR, b !→ ε, a !→ MVR; δ

(2)
2 : b !→ MVR, $ !→ Restart.

Then M accepts the empty word. If w ∈ Σ+ is accepted, then we see from
the definition of M that w = anbm for some n,m ≥ 1. In fact, as M1
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and M2 alternate in every computation of M, we have n = m and, therefore,
L=1(M) = { anbn | n ≥ 0 }. �

Actually, the following stronger result can be derived.

Proposition 8. For all m ≥ 1,

Lm = { an1an2 . . . anm | n ≥ 0 } ∈ L=1(stl-det-local-CD-2-RR(1)).

The language Lm (m ≥ 2) does not contain a regular sublanguage that is letter-
equivalent to Lm. It follows that this language is not accepted by any stl-det-
local-CD-R(1)-systems. So we obtain the following proper inclusion.

Corollary 9. L=1(stl-det-local-CD-R(1)) � L=1(stl-det-local-CD-2-RR(1)).

In order to determine the computational capacity of stl-det-local-CD-2-RR(1)-
systems we continue with an example that shows that these systems accept a
language that is not even growing context-sensitive.

Example 10. Let Σ = {a, b, ã, b̃}. For any word w = x1x2 · · ·xn ∈ {a, b}∗, we set
w̃ = x̃1x̃2 · · · x̃n ∈ {ã, b̃}∗, and consider Ltc = { awãw̃ | w ∈ {a, b}∗ } over Σ.

The language Ltc is not growing context-sensitive, as the growing context-
sensitive languages are closed under union and ε-free homomorphisms, and the
copy language is not growing context-sensitive [10]. However, it is accepted by the
stl-det-local-CD-2-RR(1)-systemM = ((Mi, σi)i∈{0,1,2,3,4}, {0}) that is specified
by σ0 = {1}, σ1 = {0, 2, 4}, σ2 = {3}, σ3 = {0, 2, 4}, σ4 = {4}, and

δ
(0)
1 : c !→ MVR, a !→ ε;

δ
(0)
2 : a !→ Restart, b !→ Restart, ã !→ Restart;

δ
(1)
1 : c !→ MVR, a !→ MVR, b !→ MVR, ã !→ ε;

δ
(1)
2 : ã !→ Restart, b̃ !→ Restart, $ !→ Restart;

δ
(2)
1 : c !→ MVR, b !→ ε;

δ
(2)
2 : a !→ Restart, b !→ Restart, b̃ !→ Restart;

δ
(3)
1 : c !→ MVR, a !→ MVR, b !→ MVR, b̃ !→ ε;

δ
(3)
2 : ã !→ Restart, b̃ !→ Restart, $ !→ Restart;

δ
(4)
1 : c !→ MVR, $ !→ Accept.

Initially, component 0 deletes the first input symbol if it is an a, otherwise the
input is rejected. Then component 1 searches for the first occurrence of an in-
put letter from {ã, b̃}. It is deleted if it is ã, otherwise the input is rejected.
In subsequent cycles corresponding symbols a and ã or b and b̃ are deleted by
the components 0 and 1 or 2 and 3. After deleting an a, component 0 rejects
if the next input symbol is b̃ or $. In all other cases it restarts. The follow-
ing component 1 deletes the first occurrence of an input letter from {ã, b̃} if it
is ã, otherwise the input is rejected. Moreover, component 1 restarts only if the
deleted symbol is followed by another symbol from {ã, b̃} or by $. Similarly, for
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the components 2 and 3, and b and b̃. Whenever a pair of corresponding symbols
has been deleted, system M guesses of which type the next pair is, or whether
all pairs have been deleted. In the first case either component 0 or 2 is chosen
to continue the computation. In the latter case, component 4 is used to verify
that in fact all symbols have been deleted. Only in this situation it accepts. It
follows that L=1(M) = Ltc. �

The power of stl-det-local-CD-2-RR(1)-systems is only deployed for languages
over an alphabet with at least two symbols. For unary languages we have the
following characterization.

Theorem 11. A language L ⊆ {a}∗ is accepted by a stl-det-local-CD-2-RR(1)-
system if and only if it is regular.

Proof. As already stl-det-local-CD-R(1)-systems accept all regular languages [14],
we see from Corollary 9 that the implication from right to left holds. To prove
the reverse implication let M = ((Mi, σi)i∈I , I0) be a CD-system of stateless

deterministic 2-RR(1)-automata on Σ = {a}. For all i ∈ I, if δ(i)1 (c) is undefined,

then each computation ofM that activatesMi fails, and if δ
(i)
1 (c) = Accept, then

each computation of M that activates Mi accepts. Thus, in the former case Mi

can be seen as a trap “state,” while in the latter case it can be seen as an

accepting “state” that keeps on digesting a’s. Now assume that δ
(i)
1 (c) = MVR.

If also δ
(i)
1 (a) = MVR, then Mi can only execute tail computations. In fact,

either Mi accepts all words from Σ∗ in tail computations, and this is the case if

δ
(i)
1 ($) = Accept, or it rejects all words from Σ∗ in tail computations, and this

is the case if δ
(i)
1 ($) is undefined. Also if δ

(i)
1 (a) = ε and δ

(i)
2 (a) �= Restart and

δ
(i)
2 ($) �= Restart, then Mi can only execute tail computations. Hence, again Mi

can be seen as a trap “state” or as an accepting “state.”
Now we can construct a finite-state acceptor A = (Q,Σ, S, F, δA) fromM that

accepts the language L = L=1(M). Essentially the states of A correspond to the
component automata Mi of M, with certain component automata becoming
trap states and others becoming accepting states. For each i ∈ I, if Mi can

execute a cycle (that is, δ
(i)
1 (c) = MVR, δ

(i)
1 (a) = ε, and δ

(i)
2 (a) = Restart or

δ
(i)
2 (a) = MVR and δ

(i)
2 ($) = Restart), then A has an a-transition from the state

corresponding to Mi to all states that correspond to component automata Mj

with j ∈ σi. It is now easy to set up the transition relation δA in such a way
that L(A) = L=1(M) holds. �

Since, for example, the unary language { a2n | n ≥ 0 } belongs to the class of
Church-Rosser languages [11], which in turn is a proper subset of the growing
context-sensitive languages, we obtain the following incomparability results.

Corollary 12. The language class L=1(stl-det-local-CD-2-RR(1)) is incompara-
ble under inclusion to the classes CRL of Church-Rosser languages and GCSL of
growing context-sensitive languages.
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Now we turn to consider the closure properties of the language class
L=1(stl-det-local-CD-2-RR(1)). Closure under certain operations indicates a cer-
tain robustness of the language families considered, while non-closure properties
may serve, for example, as a valuable basis for extensions. We start to explore
the closure properties under the Boolean operations union, intersection, and
complementation. The first result is immediate.

Lemma 13. The class L=1(stl-det-local-CD-2-RR(1)) is closed under union.

Proof. Given two stl-det-local-CD-2-RR(1)-systems M = ((Mi, σi)i∈I , I0) and
M′ = ((M ′

i , σ
′
i)i∈I′ , I ′0), we can assume without loss of generality that I and I ′

are disjoint. So, it suffices to construct a new stl-det-local-CD-2-RR(1)-system
M′′ = ((Mi, σi)i∈I∪I′ , I0 ∪ I ′0) that consists of the components of M and M′.
Initially, M′′ guesses a starting component from the union I0 ∪ I ′0, that is,
whether to simulate M or M′. �

In order to show non-closure under intersection with regular sets we give the
following example.

Example 14. Let D1 denote the Dyck language on Σ = {a, b}, ϕ : Σ∗ → Σ∗ be
the homomorphism that is induced by a !→ a and b !→ ba, and Dϕ = ϕ(D1).
Then w ∈ Σ+ belongs to Dϕ if and only if w ∈ {a, ba}+ and there exists an
n ≥ 1 such that (w = anbaz) ∧ (an−1z ∈ Dϕ).

The stl-det-local-CD-2-RR(1)-system M = ((Mi, σi)i∈{1,2,3}, {1}) is specified
by σ1 = {2}, σ2 = {3}, σ3 = {1}, and

M1 : δ
(1)
1 (c) = MVR, M2 : δ

(2)
1 (c) = MVR, M3 : δ

(3)
1 (c) = MVR,

δ
(1)
1 (a) = ε, δ

(2)
1 (a) = MVR, δ

(3)
1 (a) = ε;

δ
(1)
1 ($) = Accept; δ

(2)
1 (b) = ε; δ

(3)
2 (a) = Restart,

δ
(1)
2 (a) = Restart, δ

(2)
2 (a) = Restart; δ

(3)
2 (b) = Restart,

δ
(1)
2 (b) = Restart; δ

(3)
2 ($) = Restart.

Obviously, M accepts on input ε. Now let w = anbaz such that an−1z ∈ Dϕ.
Then on input w, M proceeds as follows:

(1, w) = (1, anbaz) �cM1
(2, an−1baz) �cM2

(3, an−1az) �cM3
(1, an−1z).

By induction it follows thatM accepts input an−1z, which shows w ∈ L=1(M).
Thus, Dϕ ⊆ L=1(M).

Conversely, assume that w ∈ L=1(M). If w = ε, then w ∈ Dϕ. Otherwise, the
accepting computation of M on input w looks as follows:

(1, w) �cM1
(2, w1) �cM2

(3, w2) �cM3
(1, w3) �∗M Accept,

where w = aw1 for w1 �= ε, w1 = ambaz for some z ∈ Σ∗, w2 = amaz, and
w3 = amz ∈ L=1(M). By induction it follows that amz ∈ Dϕ, which implies
that w = aw1 = am+1baz belongs to Dϕ. Thus, L=1(M) = Dϕ holds. �
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Theorem 15. The class L=1(stl-det-local-CD-2-RR(1)) is not closed under in-
tersection (with regular sets), complementation, and ε-free homomorphisms.

Proof. By Example 14, the language Dϕ is accepted by a stl-det-local-CD-2-
RR(1)-system. We take R = a∗ · (ba)∗ and show that the intersection Dϕ ∩ R
does not belong to the class L=1(stl-det-local-CD-2-RR(1)).

Claim. Dϕ ∩R /∈ L=1(stl-det-local-CD-2-RR(1)).

Proof (of claim). Assume that M = ((Mi, σi)i∈I , I0) is a stl-det-local-CD-2-
RR(1)-system such that L=1(M) = Dϕ ∩ R. Then, for each n ≥ 1, M has
an accepting computation on input wn+1 = an+1(ba)n+1. Let n > |I|, and let

(i0, wn+1) �cMi0
(i1, z1) �cMi1

· · · �cMim−1
(im, zm) �∗Mim

Accept

be an accepting computation of M on input wn+1. We now analyze this com-
putation. Assume that there exists an index k < n such that

(i0, wn+1) �c
k

M (ik, a
n+1−k(ba)n+1) �cMik

(ik+1, a
n+1−ka(ba)n) �∗M Accept

holds, that is, in each of the first k < n cycles, an occurrence of the letter a is
deleted, while in the (k+1)-st cycle the first occurrence of the letter b is deleted.
Then M would also perform the following computation:

(i0, a
nbaa(ba)n) �ckM (ik, a

n−kbaa(ba)n) �cMik
(ik+1, a

n−kaa(ba)n) �∗M Accept,

which shows that M accepts on input anbaa(ba)n as well. However, since
anbaa(ba)n �∈ Dϕ ∩R, this contradicts our assumption on M.

Thus, during the first k cycles, in the accepting computation above the pre-
fix ak is deleted, for a k ≥ n. As n > |I|, this means that there exist integers j
and � > 0 such that j + � ≤ n and ij = ij+�. Hence, the accepting computation
above has the following form:

(i0, wn+1) �c
j

M (ij , a
n+1−j(ba)n+1) �c�M (ij, a

n+1−j−�(ba)n+1) �∗M Accept.

But then M will also execute the following accepting computation:

(i0, a
n+1−�(ba)n+1) �c

j

M (ij, a
n+1−j−�(ba)n+1) �∗M Accept,

which shows that it accepts on input an+1−�(ba)n+1 �∈ Dϕ ∩ R. Again this
contradicts our assumption onM. It follows that Dϕ∩R is not accepted by any
stl-det-local-CD-2-RR(1)-system working in mode = 1. �
So the class L=1(stl-det-local-CD-2-RR(1)) is not closed under intersection even
with regular sets. By Lemma 13 it is closed under union. Since closure under com-
plementation and union implies closure under intersection, it cannot be closed
under complementation, either.

By Example 7, the language L2 = { anbn | n ≥ 0 } is accepted by a stl-det-
local-CD-2-RR(1)-system. Let h : {a, b}∗ → {a, b}∗ be the ε-free homomorphism
defined by h(a) = a and h(b) = ba. Then h(L2) = Dϕ ∩ R does not belong to
L=1(stl-det-local-CD-2-RR(1)), which shows the non-closure under ε-free homo-
morphisms. �
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The proof of Theorem 15 together with Example 10 reveal further incompara-
bilities. Since the language Dϕ ∩ R belongs to the intersection of deterministic
and linear context-free languages, we have the following corollary.

Corollary 16. The language class L=1(stl-det-local-CD-2-RR(1)) is incompara-
ble under inclusion to the classes CFL of context-free languages, LIN of linear,
and DCFL of deterministic context-free languages.

We continue with further (non-)closure properties.

Example 17. Let Σ = {a, b, c, d} and define the language

Ldc = {wcmdcn | w ∈ {a, b}∗,m = |w|a, n = |w|b }.

The language Ldc is accepted by the stl-det-local-CD-2-RR(1)-system M =
((Mi, σi)i∈{0,1,2,3,4,5}, {0, 2}) that is specified by σ0 = {1}, σ1 = {0, 2}, σ2 =
{3, 5}, σ3 = {4}, σ4 = {3, 5}, σ5 = {5}, and

δ
(0)
1 : c !→ MVR, b !→ MVR, a !→ ε;

δ
(0)
2 : a !→ Restart, b !→ Restart, c !→ Restart;

δ
(1)
1 : c !→ MVR, a !→ MVR, b !→ MVR, c !→ ε;

δ
(1)
2 : c !→ Restart, d !→ Restart;

δ
(2)
1 : c !→ MVR, b !→ MVR, d !→ ε;

δ
(2)
2 : c !→ Restart, $ !→ Restart;

δ
(3)
1 : c !→ MVR, b !→ ε;

δ
(3)
2 : b !→ Restart, c !→ Restart;

δ
(4)
1 : c !→ MVR, b !→ MVR, c !→ ε;

δ
(4)
2 : c !→ Restart, $ !→ Restart;

δ
(5)
1 : c !→ MVR, $ !→ Accept.

Basically, the idea of the construction is that components 0 and 1 are used to
delete one a from the prefix w and, subsequently, one c from the first block of c’s.
When all a’s and c’s have been deleted, component 2 is used to delete the sole
symbol d. The input is rejected if component 2 sees an a or a c before reaching
the d. Next, components 3 and 4 are used to delete successively the remaining b’s
from the prefix and the c’s from the second block. Finally, component 5 checks
that all symbols have been deleted. Only in this situation it accepts. �

Theorem 18. The class L=1(stl-det-local-CD-2-RR(1)) is not closed under in-
verse homomorphisms.

Proof. By Example 17, the language Ldc is accepted by a stl-det-local-CD-2-
RR(1)-system. Let h : {a, c, d}∗ → {a, b, c, d}∗ be the homomorphism that is de-
fined by h(a) = ab, h(c) = c, and h(d) = d. Then h−1(Ldc) = { ancndcn | n ≥ 0 }.

Assume that M = ((Mi, σi)i∈I , I0) is a stl-det-local-CD-2-RR(1)-system such
that L=1(M) = h−1(Ldc).
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First we note that in any accepting computation none of the c’s following the
sole d can be deleted as long as there is at least one c left before the d.

Let n > |I|. Clearly, M cannot accept the input wn = ancndcn in a tail
computation. So, there exist integers j and � > 0 with j + � ≤ n and ij = ij+�,
and integers k1, k2, �1, �2 with k1+ �1+k2+ �2 = j+ � such that, assuming that
the sole d is not deleted during the first j + � cycles, the accepting computation
on wn has the following form:

(i0, wn) �c
j

M (ij , a
n−k1cn−k2dcn) �c�M (ij , a

n−k1−�1cn−k2−�2dcn) �∗M Accept.

But then M will also execute the following accepting computation:

(i0, a
n−�1cn−�2dcn) �c

j

M (ij , a
n−k1−�1cn−k2−�2dcn) �∗M Accept,

which shows that it accepts the input an−�1cn−�2dcn not belonging to h−1(Ldc).
Now assume that the sole d is deleted during the first j + � cycles.

Then we obtain immediately a contradiction since the input ancn+1dcn−1 /∈
h−1(Ldc) is accepted as well. It follows that h−1(Ldc) is not accepted by any
stl-det-local-CD-2-RR(1))-system, which proves the non-closure under inverse
homomorphisms. �

Theorem 19. L=1(stl-det-local-CD-2-RR(1)) is not closed under reversal.

Proof. By Example 14, the language Dϕ is accepted by a stl-det-local-CD-2-
RR(1)-system. We show the theorem by proving that the reversal DR

ϕ does not
belong to L=1(stl-det-local-CD-2-RR(1)).

In contrast to the assertion assume that M = ((Mi, σi)i∈I , I0) is a stl-det-
local-CD-2-RR(1)-system such that L=1(M) = DR

ϕ . We consider accepting com-
putations on inputs of the form wn = (ab)nan, for n large enough.

First we note that each component that deletes a symbol has to delete the
leftmost occurrence of that symbol. Therefore, none of the components can delete
an a from the suffix an as long as there is at least one a left in the prefix (ab)n.
Moreover, it is not hard to see thatM cannot accept without deleting some a’s
from the suffix. Consider the tape inscription before the cycle in which the
first symbol a from the suffix is deleted. It must be of the form bkan, and k is
determined by the prefix (ab)n. Furthermore, for a fixed k, there are less than |I|
different values n such that bkan is the tape inscription in that situation. This
implies that k is not bounded, that is, for any k ≥ 0 we can find an n such that
(ab)nan is transformed into bk

′
an, where k′ ≥ k. We choose an n large enough

such that k is large enough as well. Therefore, during the computation on the
prefix there must occur two cycles in which the same component deletes an a
such that the number of b’s preceding the a is larger in the second cycle. More
precisely, there exist integers j and � > 0 with j + � ≤ n and ij = ij+�, and
integers k1 ≥ 0, k2, m1, m2 with m2 −m1 ≥ 1, k2 −m2 − 1 ≥ 0 such that the
accepting computation on wn = (ab)nan has the following form:
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(i0, wn) �c
j

M (ij , b
k1(ab)k2an)

�cM (ij+1, b
k1b(ab)k2−1an) �c

�−1

M (ij , b
k1−m1+m2(ab)k2−m2an)

�cM (i′j+1, b
k1−m1+m2b(ab)k2−m2−1an) �∗M Accept.

But then M will also execute the following accepting computation:

(i0, (ab)
n−k2abbm2−m1(ab)k2−m2−1an) �c

j

M (ij , b
k1abbm2−m1(ab)k2−m2−1an)

�cM (i′j+1, b
k1bbm2−m1(ab)k2−m2−1an) �∗M Accept,

which shows that it accepts the input (ab)n−k2+1bm2−m1(ab)k2−m2−1an �∈ DR
ϕ .

It follows that DR
ϕ is not accepted by any stl-det-local-CD-2-RR(1)-system. �

4 Deterministic CD-Systems of stl-det-2-RR(1)-
Automata

Although all the component automata of a stl-det-local-CD-2-RR(1)-system are
deterministic, the system itself is not. Indeed, the initial component with which
to begin a particular computation is chosen nondeterministically from the set I0
of all initial components, and after each cycle the component for executing the
next cycle is chosen nondeterministically from among all the successors of the
previously active component. Here we define two types of deterministic CD-
systems of stl-det-2-RR(1)-automata: the strictly deterministic CD-systems and
the globally deterministic CD-systems.

4.1 Strictly Deterministic CD-Systems of stl-det-2-RR(1)-Automata

Here we introduce and study a first type of CD-system of stateless deterministic
2-RR(1)-automata that is completely deterministic. The idea and the notation
is taken from [13], where a corresponding notion was introduced for CD-systems
of general restarting automata.

A CD-system M = ((Mi, σi)i∈I , I0) of stateless deterministic 2-RR(1)-
automata is called strictly deterministic if |I0| = 1 and |σi| = 1 for all i ∈ I.
Then, for each word w ∈ Σ∗,M has a unique computation that begins with the
initial configuration corresponding to input w. By L=1(stl-det-strict-CD-2-RR(1))
we denote the class of languages that are accepted by strictly deterministic
stateless CD-2-RR(1)-systems. Note that the CD-systems in Examples 7, 14,
and Proposition 8 are strictly deterministic. On the other hand, we have the
following simple but useful observation on the weakness of stl-det-strict-CD-2-
RR(1)-systems.

Lemma 20. Let M = ((Mi, σi)i∈I , {i0}) be a stl-det-strict-CD-2-RR(1)-system

that accepts a language over the alphabet Σ, where δ
(i0)
1 (c) = MVR. For all

w ∈ Σ∗ and all x, y ∈ Σ, if δ
(i0)
1 (x) = δ

(i0)
1 (y) = ε, then xw ∈ L=1(M) if and

only if yw ∈ L=1(M).



124 M. Kutrib and F. Otto

Lemma 21. The finite language L0 = {aaa, bb} is not accepted by any strictly
deterministic stateless CD-2-RR(1)-system.

Proof. Assume that M = ((Mi, σi)i∈I , I0) is a strictly deterministic stateless
CD-2-RR(1)-system such that L=1(M) = L0, and let I0 = {i0}. Since L0 is

neither {a, b}∗ nor empty, we have δ
(i0)
1 (c) = MVR. Similarly, L0 ∩ a+ is nei-

ther a+ nor empty and, thus, we see that δ
(i0)
1 (a) = ε. Analogously it follows

that δ
(i0)
1 (b) = ε. So we see from Lemma 20 that aaa ∈ L=1(M) if and only if

baa ∈ L=1(M), a contradiction. �
We obtain the following consequences.

Corollary 22. L=1(stl-det-strict-CD-2-RR(1)) is incomparable under inclusion
to the language classes FIN of finite languages, REG of regular languages,
and CFL of context-free languages. In particular, it follows that the inclusion
L=1(stl-det-strict-CD-2-RR(1)) ⊆ L=1(stl-det-local-CD-2-RR(1)) is proper.

Further, we see that L=1(stl-det-strict-CD-2-RR(1)) is incomparable under in-
clusion to the language class L=1(stl-det-local-CD-R(1)). For future reference we
consider another finite example language.

Lemma 23. The finite language L′
0 = {aaaa, abb} is not accepted by any strictly

deterministic stateless CD-2-RR(1)-system.

Proof. Assume that M = ((Mi, σi)i∈I , I0) is a strictly deterministic state-
less CD-2-RR(1)-system such that L=1(M) = L′

0, let I0 = {i0}, and let

σi0 = {i1} and σi1 = {i2}. Obviously, we have δ
(i0)
1 (c) = MVR, and

δ
(i0)
1 (a) = ε. Further, it holds that δ

(i1)
1 (c) = MVR, and δ

(i1)
1 (a) = δ

(i1)
1 (b) = ε.

Now (i0, aaaa) �cM (i1, aaa) �cM (i2, aa), which leads to acceptance, while
(i0, abaa) �cM (i1, baa) �cM (i2, aa) should lead to rejection, which is a con-
tradiction. Thus, L′

0 is not accepted by any strictly deterministic stateless CD-
2-RR(1)-system working in mode = 1. �
From Lemma 21 we immediately obtain several non-closure properties for the
class L=1(stl-det-strict-CD-2-RR(1)). In fact, we can derive the following result.

Theorem 24. The language class L=1(stl-det-strict-CD-2-RR(1)) is not closed
under union, intersection with regular sets, ε-free homomorphisms, and inverse
homomorphisms.

Proof. The languages {aaa}, {bb}, and {a, b}∗ are all accepted by stl-det-
strict-CD-2-RR(1)-systems. As {aaa} ∪ {bb} = {aaa, bb} = {aaa, bb} ∩ {a, b}∗,
Lemma 21 shows that this language class is neither closed under union nor un-
der intersection with regular sets.

The languages {c, d} and {c6} are accepted by stl-det-strict-CD-2-RR(1)-
systems. Let h1 : {c, d}∗ → {a, b}∗ be the homomorphism defined by c !→ aaa
and d !→ bb, and let h2 : {a, b}∗ → {c}∗ be the homomorphism defined by a !→ c2

and b !→ c3. Then h1({c, d}) = {aaa, bb} = h−1
2 ({c6}), and hence, Lemma 21

shows that this language class is neither closed under ε-free homomorphisms nor
under inverse homomorphisms. �
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Proposition 25. The class L=1(stl-det-strict-CD-2-RR(1)) is (a) closed under
complementation and (b) not closed under intersection.

Proof. (a) Let M = ((Mi, σi)i∈I , {i0}) be a stl-det-strict-CD-2-RR(1)-system
on Σ such that L=1(M) = L. By interchanging accept transitions and unde-

fined transitions within each function δ
(i)
1 and δ

(i)
2 , we obtain a stl-det-strict-CD-

2-RR(1)-system M′ = ((M ′
i , σi)i∈I , {i0}) that executes exactly the same cycles

as M, but for each index i ∈ I, the accepting tail computations of M ′
i corre-

spond to rejecting tail computations ofMi, and vice versa. Hence, it follows that
L=1(M′) = Σ∗ � L = L.
(b) Closure under complementation and non-closure under union yield immedi-
ately that L=1(stl-det-strict-CD-2-RR(1)) is not closed under intersection. �

Proposition 26. The class L=1(stl-det-strict-CD-2-RR(1)) is (a) not closed un-
der commutative closure and (b) not closed under reversal.

Proof. (a) From Example 7 we know that the language L2 = { anbn | n ≥ 0 } is
accepted by a stl-det-strict-CD-2-RR(1)-system. Its commutative closure is the
language L= = {w ∈ {a, b}∗ | |w|a = |w|b ≥ 0 }.

Assume that M = ((Mi, σi)i∈I , I0) is a stl-det-strict-CD-2-RR(1)-system ac-

cepting the language L=, and assume that I0 = {i0}. Then δ(i0)1 (c) = MVR, and

as ε ∈ L=, we also have δ
(i0)
1 ($) = Accept. As a �∈ L=, we see that δ

(i0)
1 (a) = ε,

and as b �∈ L=, we also have δ
(i0)
1 (b) = ε. Further, it holds that δ

(i0)
2 (b) = Restart,

or δ
(i0)
2 (b) = MVR and δ

(i0)
2 ($) = Restart, as ab ∈ L=, while abb �∈ L=. Hence,

M performs the following computations, where σi0 = {i1}:

(i0, ab) �cM (i1, b) �∗M Accept and (i0, bb) �cM (i1, b) �∗M Accept.

As bb does not belong to L=, this contradicts our assumption onM. Hence, L=

is not accepted by any stl-det-strict-CD-2-RR(1)-system, which means that
L=1(stl-det-strict-CD-2-RR(1)) is not closed under the operation of commuta-
tive closure.
(b) Let L = { aaw | w ∈ {a, b}∗ }. Then L is accepted by the following stl-det-
strict-CD-2-RR(1)-system M = ((M0, {1}), (M1, {1}), {0}), where M0 and M1

are defined as follows:

M0 : δ
(0)
1 : c !→ MVR, a !→ ε; δ

(0)
2 : a !→ Restart;

M1 : δ
(1)
1 : c !→ MVR, a !→ ε; δ

(1)
2 : a !→ MVR, b !→ MVR, $ !→ Accept.

Assume that M = ((Mi, σi)i∈I , I0) is a stl-det-strict-CD-2-RR(1)-system such
that L=1(M) = LR. Without loss of generality we can assume that I =

{0, 1, . . . ,m}, that I0 = {0} and that σ0 = {1}. Obviously, δ
(0)
1 (c) = MVR,

and δ
(0)
1 (a) = ε, as a �∈ LR, while a2 ∈ LR. If δ

(0)
1 (b) = ε as well, then with

aa ∈ LR, M would also accept ba �∈ LR. Hence, δ
(0)
1 (b) = MVR. It remains to

consider the function δ
(0)
2 .
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If δ
(0)
2 (a) = Accept, thenM would accept the word aab �∈ LR. Also if δ

(0)
2 ($) =

Accept, then M would accept the word a �∈ LR. Hence, δ
(0)
2 (a) = Restart, or

δ
(0)
2 (a) = MVR and δ

(0)
2 ($) = Restart. Further, as abaa ∈ LR, while abab �∈ LR,

it follows that δ
(0)
2 (b) ∈ {MVR,Restart} holds, too. But then M executes the

following computations:

(0, baa) �cM (1, ba) �∗M Accept and (0, aba) �cM (1, ba) �∗M Accept.

As aba �∈ LR, this again contradicts our assumption on M. Thus, LR

is not accepted by any stl-det-strict-CD-2-RR(1)-system, and it follows that
L=1(stl-det-strict-CD-2-RR(1)) is not closed under reversal. �

For showing that the class L=1(stl-det-strict-CD-2-RR(1)) is an anti-AFL, it re-
mains to be proven that this class is not closed under concatenation and Kleene
star, either. Let Lp be the language Lp = a+ · b · a+ on Σ2 = {a, b}.

Lemma 27. Lp ∈ L=1(stl-det-strict-CD-2-RR(1)).

Proof. The language Lp is accepted by the stl-det-strict-CD-2-RR(1)-system
Mp = ((Mi, σi)i∈{0,1,2}, {0}), where σ0 = {1}, σ1 = {2}, σ2 = {0}, and the
stl-det-2-RR(1)-automataM0, M1 and M2 are defined as follows:

M0 : δ
(0)
1 : c !→ MVR, a !→ ε; δ

(0)
2 : a !→ Restart, b !→ Restart;

M1 : δ
(1)
1 : c !→ MVR, a !→ MVR, b !→ ε; δ

(1)
2 : a !→ Restart;

M2 : δ
(2)
1 : c !→ MVR, a !→ MVR, $ !→ Accept. �

Non-closure under concatenation for L=1(stl-det-strict-CD-2-RR(1)) will follow
from the following negative result.

Lemma 28. Lp · Lp �∈ L=1(stl-det-strict-CD-2-RR(1)).

Proof. Obviously,

L2
p = Lp · Lp = a+ · b · a · a+ · b · a+ = { ambanbap | m, p ≥ 1, n ≥ 2 }.

We claim that the language L2
p is not accepted by any stl-det-strict-CD-2-RR(1)-

system.
Assume to the contrary that M = ((Mi, σi)i∈I , I0) is a stl-det-strict-CD-2-

RR(1)-system such that L=1(M) = L2
p. Without loss of generality we may as-

sume that I = {0, 1, . . . , r}, and that I0 = {0}.
We first analyze the transition functions of M0. Obviously, δ

(0)
1 (c) = MVR. If

δ
(0)
1 (a) = MVR, then δ

(0)
1 (b) = ε, as L=1(M) is neither empty nor the set Σ∗

2 .
But then M cannot distinguish between the input abaaba ∈ L2

p and the input
aababa �∈ L2

p, contradicting our assumption above. Hence, we conclude that

δ
(0)
1 (a) = ε.

If δ
(0)
1 (b) = Accept, thenM would accept all words beginning with the letter b.

If δ
(0)
1 (b) = MVR, then M cannot distinguish between the input abaaba ∈ L2

p
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and the input baaaba �∈ L2
p. It follows that δ

(0)
1 (b) = ∅. Further, as in the second

phase of the first cycle, M0 cannot possibly ensure that the remaining tape
contents is of the form a∗ · b · a · a+ · b · a+, we see that M0 executes a restart
operation after deleting the first a.

Let σ0 = {1}. We continue by analyzing the transition functions of M1. Ob-

viously, δ
(1)
1 (c) = MVR.

Assume first that δ
(1)
1 (a) = ε. If also δ

(1)
1 (b) = ε, then M cannot distinguish

between the input aabaaba ∈ L2
p and the input abbaaba �∈ L2

p, which contradicts

our assumption above. If δ
(1)
1 (b) = MVR, then we have the following partial

computations of M, where σ1 = {2} is taken:

(0, abaaba) �cM (1, baaba) �cM (2, baba),

and
(0, aababa) �cM (1, ababa) �cM (2, baba).

Hence, M cannot distinguish between the input abaaba ∈ L2
p and the input

aababa �∈ L2
p. It follows that δ

(1)
1 (a) = MVR. But then δ

(1)
1 (b) = ε follows, which

in turn means that M executes the following partial computations:

(0, abaaba) �cM (1, baaba) �cM (2, aaba)

and
(0, aababa) �cM (1, ababa) �cM (2, aaba).

This again shows that M cannot distinguish between the input abaaba ∈ L2
p

and the input aababa �∈ L2
p. In conclusion we see that L2

p is not accepted by any
stl-det-strict-CD-2-RR(1)-system. �

In fact, it can be shown that each stl-det-strict-CD-2-RR(1)-system that accepts
all words from L2

p also accepts some words from (a∗ · b · a∗)∗ that do not belong
to the language L∗

p. Hence, it follows that L∗
p (and also L+

p ) is not accepted
by any stl-det-strict-CD-2-RR(1)-system. Thus, we have the following additional
non-closure results.

Corollary 29. The language class L=1(stl-det-strict-CD-2-RR(1)) is not closed
under concatenation, Kleene plus and Kleene star.

Thus, we see that L=1(stl-det-strict-CD-2-RR(1)) is an anti-AFL.

4.2 Globally Deterministic CD-Systems of stl-det-2-RR(1)-
Automata

In a globally deterministic CD-system of stateless deterministic R(1)-automata,
each rewrite operation of each component automaton is associated with a par-
ticular successor index. Thus, if Mi1 is the active component, and if it executes
a cycle involving the deletion of the letter a ∈ Σ, then the component i2 ∈ σi1
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that is associated with the delete operation δi1(a) = ε is activated. Hence, the
choice of the successor component is based on the symbol deleted.

In a computation of a CD-system of stateless deterministic 2-RR(1)-automa-
ta, a successor component is chosen whenever the active component executes a
restart operation. Accordingly, for these CD-systems we associate a particular
successor index with each restart operation.

Let ((Mi, σi)i∈I , I0) be a CD-system of stateless deterministic 2-RR(1)-

automata over Σ such that |I0| = 1. For each i ∈ I, let Σ(i)
rs be the set of symbols

that cause the component automaton Mi to perform a restart operation, that
is,

Σ(i)
rs = { a ∈ Σ | δ(i)2 (a) = Restart } ∪ { $ | δ(i)2 ($) = Restart }.

Further, let δ :
⋃

i∈I({i} × Σ
(i)
rs ) → I be a mapping that assigns to each pair

(i, a) ∈ {i}×Σ(i)
rs an element j ∈ σi. Then δ is called a global successor function. It

assigns a successor component j ∈ σi to the active component i based on the sym-

bol a ∈ Σ(i)
rs that causesMi to perform a restart operation in the current cycle. It

follows that, for each input word w ∈ Σ∗, the systemM = ((Mi, σi)i∈I , I0, δ) has
a unique computation that starts from the initial configuration corresponding to
input w. Accordingly we call M a globally deterministic stateless CD-2-RR(1)-
system, and by L=1(stl-det-global-CD-2-RR(1)) we denote the class of languages
that are accepted by these systems.

Obviously, each strictly deterministic stateless CD-2-RR(1)-system is globally
deterministic. However, the globally deterministic stateless CD-2-RR(1)-systems
are more expressive than the strictly deterministic ones.

Example 30. Let M = ((Mi, σi)i∈I , I0, δ) be the globally deterministic CD-
system of stateless deterministic 2-RR(1)-automata over Σ = {a, b} that is de-
fined as follows:
I = {0, 1, 2, 3, 4, 5}, I0 = {0}, σ0 = {1, 4}, σ1 = {2}, σ2 = {3}, σ3 = {5} = σ4,
σ5 = {1}, and M0 to M5 are the stateless deterministic 2-RR(1)-automata that
are given by the following transition functions:

M0 : δ
(0)
1 : c !→ MVR, a !→ ε; δ

(0)
2 : a !→ Restart, b !→ Restart;

M1 : δ
(1)
1 : c !→ MVR, a !→ ε; δ

(1)
2 : a !→ Restart;

M2 : δ
(2)
1 : c !→ MVR, a !→ ε; δ

(2)
2 : a !→ Restart;

M3 : δ
(3)
1 : c !→ MVR, a !→ ε; δ

(3)
2 : $ !→ Accept;

M4 : δ
(4)
1 : c !→ MVR, b !→ ε; δ

(4)
2 : b !→ Restart;

M5 : δ
(5)
1 : c !→ MVR, b !→ ε; δ

(5)
2 : $ !→ Accept.

and δ is defined by δ(0, a) = 1, δ(0, b) = 4, δ(1, a) = 2, δ(2, a) = 3, δ(4, b) = 5.
Then it is easily seen that L=1(M) = {aaaa, abb}, which is not accepted by any
strictly deterministic stateless CD-2-RR(1)-system by Lemma 23. �

Thus, we have the following proper inclusion.
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Corollary 31

L=1(stl-det-strict-CD-2-RR(1)) � L=1(stl-det-global-CD-2-RR(1)).

Further, we relate the stl-det-global-CD-2-RR(1)-systems to the stl-det-local-CD-
2-RR(1)-systems.

Proposition 32

L=1(stl-det-global-CD-2-RR(1)) ⊆ L=1(stl-det-local-CD-2-RR(1)).

Proof Let M = ((Mi, σi)i∈I , {i0}, δ) be a stl-det-global-CD-2-RR(1)-system on

alphabet Σ and, for each i ∈ I, Σ
(i)
rs as defined above. From M we now

construct a stl-det-local-CD-2-RR(1)-system M′ = ((M ′
j , σ

′
j)j∈J , J0) satisfying

L=1(M′) = L=1(M). For all i ∈ I, let S(i) = Σ
(i)
rs , if Σ

(i)
rs �= ∅, and S(i) = {+},

otherwise. Now let J = { (i, a) | i ∈ I, a ∈ S(i) }, let J0 = { (i0, a) | a ∈ S(i0) },
and for all i ∈ I, take

σ′(i,a) = { (j, b) | j = δ(i, a), b ∈ S(j) } for all a ∈ Σ(i)
rs ,

σ′(i,+) = J0, if Σ
(i)
rs = ∅.

Finally, we define the stateless deterministic 2-RR(1)-automataM ′
(i,a) as follows,

where i ∈ I, a ∈ S(i), and b ∈ Σ:

M ′
(i,a) : δ

(i,a)
1 (x) = δ

(i)
1 (x) for all x ∈ Σ ∪ {c, $};

δ
(i,a)
2 (x) = δ

(i)
2 (x) for all x ∈ (Σ ∪ {$})�Σrs,

δ
(i,a)
2 (a) = Restart, if a ∈ Σrs,

δ
(i,a)
2 (b) = ∅, for all b ∈ Σrs � {a}.

Let w = a1a2 · · · an ∈ Σ∗, where n ≥ 0 and a1, . . . , an ∈ Σ. Assume that the
computation of M on input w has the following form:

(i0, w) = (i0, u0b0v0) �cM (i1, u0v0) = (i1, u1b1v1) �cM · · ·
�cM (ir, ur−1vr−1) = (ir, wr),

and that starting with the configuration (ir, wr), the component automatonMir

performs a tail computation. Then M′ can simulate this sequence of cycles by
guessing, in each step, on which letter the next restart operation of M will be
executed. Thus, we conclude that L=1(M) ⊆ L=1(M′) holds.

Conversely, if M′ has an accepting computation on input w ∈ Σ∗, then it
follows easily from the above construction of M′ that M will also accept on
input w. Thus, we see that L=1(M′) = L=1(M), which completes the proof. �

Since all rational trace languages are accepted by stl-det-local-CD-2-RR(1)-
systems, the inclusion result above raises the question of whether all rational
trace languages are accepted by stl-det-global-CD-2-RR(1)-systems as well. The
following result answers this question in the negative.
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Proposition 33. The rational trace language

L∨ = {w ∈ {a, b}∗ | ∃n ≥ 0 : |w|a = n and |w|b ∈ {n, 2n} }

is not accepted by any globally deterministic stateless CD-2-RR(1)-system.

Proof. As L∨ is the commutative closure of the regular language (ab)∗ ∪ (abb)∗,
it is obviously a rational trace language.

It remains to be proven that L∨ �∈ L=1(stl-det-global-CD-2-RR(1)). Assume to
the contrary that M = ((Mi, σi)i∈I , I0, δ) is a stl-det-global-CD-2-RR(1)-system
such that L=1(M) = L∨. Without loss of generality we can assume that I =
{0, 1, . . . ,m− 1} and that I0 = {0}.

Let n > 2m, and let w = anbn ∈ L∨. Then the computation ofM on input w
is accepting, that is, it is of the form

(0, anbn) �cM (i1, w1) �cM · · · �cM (ir, wr) �∗Mir
Accept,

where Mir accepts the tape contents cwr$ in a tail computation. Let i = |wr |a
and j = |wr|b.

If j > 1, then Mir would also accept the tape contents wrb
k = aibj+k for any

k > 0, and therewith M would accept the input wb2n = anb3n. As this word
is not contained in L∨, this contradicts our assumption that L=1(M) = L∨.
Hence, we conclude that j = |wr|b ≤ 1.

Analogously, if i > 1, thenMir would also accept the tape contents ai+kbj for
any k > 0, and therewith M would accept the input anw = a2nbn �∈ L∨. Hence,
we conclude that i = |wr|a ≤ 1. Thus, |wr| = i+ j ≤ 2, which shows that in the
above computation at least the first n − 1 occurrences of the letter a and the
first n− 1 occurrences of the letter b are deleted letter by letter, and then Mir

accepts the word wr of length at most two.
As n > m, there exists an index i ∈ I such that the component automa-

tonMi is used twice within the above sequence of cycles. Thus, there are integers
s, t, k, � ≥ 0, m ≥ s+ t ≥ 0 and m ≥ k+ � > 0, such that the above computation
can be written as follows:

(0, anbn) �c∗M (i, an−sbn−t) �c+M (i, an−s−kbn−t−�) �c∗M (ir, wr) �∗Mir
Accept.

Obviously,M will also execute the following shortened computation:

(0, an−kbn−�) �c∗M (i, an−s−kbn−t−�) �c∗M (ir, wr) �∗Mir
Accept,

that is,M accepts on input an−kbn−�. From our assumption that L=1(M) = L∨
we can therefore conclude that k = �, as n > 2m.

Now consider the computation of M on input anb2n. As anb2n ∈ L∨, this
computation is accepting, that is, it has the following form:

(0, anb2n) �c∗M (i, an−sb2n−t) �c+M (i, an−s−kb2n−t−k) �c∗M (i′, z′) �∗Mi′ Accept

for some i′ ∈ I and some word z′ ∈ Σ∗. But then M will also execute the
following computation:

(0, an−kb2n−k) �c
∗

M (i, an−s−kb2n−t−k) �c
∗

M (i′, z′) �∗Mi′ Accept,
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that is, it accepts on input an−kb2n−k �∈ L∨. It follows that L=1(M) �= L∨, that
is, L∨ is not accepted by any globally deterministic stateless CD-2-RR(1)-system
working in mode = 1. �

This yields the following consequence.

Corollary 34.

L=1(stl-det-global-CD-2-RR(1)) � L=1(stl-det-local-CD-2-RR(1)).

The Dyck language D1 is not a rational trace language, but it is accepted by
a strictly deterministic stateless CD-2-RR(1)-system as can be shown easily (see
Example 14). Thus, we have the following consequence.

Corollary 35. The two language classes L=1(stl-det-strict-CD-2-RR(1)) and
L=1(stl-det-global-CD-2-RR(1)) are incomparable under inclusion to the class of
rational trace languages.

In a stl-det-global-CD-R(1)-system, the choice of the successor component is
based on the letter removed in the current cycle, while in a stl-det-global-CD-2-
RR(1)-system, this choice is based on the letter on which the currently active
component automaton executes the restart that completes the current cycle. This
raises the question of whether each stl-det-global-CD-R(1)-system can be simu-
lated by a stl-det-global-CD-2-RR(1)-system. In order to answer this question
we first note that Lemma 20 applies also to stl-det-global-CD-2-RR(1)-systems.
Hence, from Lemma 21 we adapt the following negative result.

Corollary 36. The finite language L0 = {aaa, bb} is not accepted by any glob-
ally deterministic stateless CD-2-RR(1)-system.

Since all regular languages are accepted by stl-det-global-CD-R(1)-systems, the
corollary implies that the class L=1(stl-det-global-CD-R(1)) is not contained
in L=1(stl-det-global-CD-2-RR(1)). On the other hand, Example 7 shows that
already stl-det-strict-CD-2-RR(1)-systems accept some languages that are not
accepted by stl-det-local-CD-R(1)-systems. Hence, we have the following incom-
parability results.

Corollary 37. The language classes

L=1(stl-det-strict-CD-2-RR(1)) and L=1(stl-det-global-CD-2-RR(1))

are incomparable under inclusion to the classes

L=1(stl-det-global-CD-R(1)) and L=1(stl-det-local-CD-R(1)).

Even though stl-det-global-CD-2-RR(1)-systems cannot accept all finite lan-
guages, they seem to be powerful devices. In particular, the language of Ex-
ample 10, which is not even growing context-sensitive, can be shown to belong
to the class L=1(stl-det-global-CD-2-RR(1)) by adding a corresponding global
successor function to the stl-det-local-CD-2-RR(1))-system of Example 10.
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Fig. 1. Hierarchy of language classes accepted by various types of CD-R(1)- and CD-
2-RR(1)-systems. Here SLIN denotes the class of semi-linear languages, LRAT is the
class of rational trace languages, and FIN is the class of all finite languages. Each arrow
represents a proper inclusion, the dotted arrow represents an inclusion that is still open,
and all other classes that are not connected by a sequence of arrows are incomparable
under inclusion.

Theorem 38. The language class L=1(stl-det-global-CD-2-RR(1)) is incompa-
rable under inclusion to the classes GCSL of growing context-sensitive languages,
CRL of Church-Rosser languages, CFL of context-free languages, LIN of linear
languages, DCFL of deterministic context-free languages, REG of regular lan-
guages as well as to the class FIN of finite languages.

The diagram in Figure 1 summarizes our inclusion results. We have the fol-
lowing results on closure and non-closure properties for the language class
L=1(stl-det-global-CD-2-RR(1)).

Proposition 39. The class L=1(stl-det-global-CD-2-RR(1)) is (a) closed under
complementation, (b) not closed under union or intersection, (c) not closed un-
der intersection with regular languages, concatenation, ε-free homomorphisms,
and inverse homomorphisms, and (d) not closed under commutative closure and
reversal.

Proof. (a) Let M = ((Mi, σi)i∈I , {i0}, δ) be a stl-det-global-CD-2-RR(1)-system
on Σ such that L=1(M) = L. By interchanging accept transitions and unde-

fined transitions within each function δ
(i)
1 and δ

(i)
2 , we obtain a stl-det-global-

CD-2-RR(1)-system M′ = ((M ′
i , σi)i∈I , {i0}, δ) that executes exactly the same

cycles as M, but for each index i ∈ I, the accepting tail computations of M ′
i

correspond to rejecting tail computations ofMi, and vice versa. Hence, it follows
that L=1(M′) = Σ∗ � L = L.

(b) By Corollary 36 the finite language L0 = {aaa, bb} is not accepted
by any stl-det-global-CD-2-RR(1)-system. It is easily seen that the languages
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L0,1 = {aaa} and L0,2 = {bb} are accepted by such systems and, thus, the class
L=1(stl-det-global-CD-2-RR(1)) is not closed under union. Together with closure
under complementation this also yields non-closure under intersection.

(c) As {a, b}∗ is accepted by a stl-det-global-CD-2-RR(1)-system, and as L0 is
regular, we see from the claim above and the fact that L0 = {a, b}∗ ∩ L0 that
the class L=1(stl-det-global-CD-2-RR(1)) is not closed under intersection with
regular languages.

It is not hard to see that the languages {ε, aa} and {ε, bb} are accepted by
stl-det-global-CD-2-RR(1)-systems. By an application of Lemma 20 their concate-
nation {ε, aa} · {ε, bb} = {ε, aa, bb, aabb} is not.

The languages {c, d} and {c6} are accepted by stl-det-global-CD-2-RR(1)-
systems. Let h1 : {c, d}∗ → {a, b}∗ be the homomorphism defined by c !→ aaa
and d !→ bb, and let h2 : {a, b}∗ → {c}∗ be the homomorphism defined by a !→ c2

and b !→ c3. Then h1({c, d}) = {aaa, bb} = h−1
2 ({c6}), and hence, Corollary 36

shows that the language class L=1(stl-det-global-CD-2-RR(1)) is neither closed
under ε-free homomorphisms nor under inverse homomorphisms.
(d) Since the regular language (ab)∗ ∪ (abb)∗ can be accepted by some stl-
det-global-CD-2-RR(1)-system, Proposition 33 implies that the language class
L=1(stl-det-global-CD-2-RR(1)) is not closed under commutative closure.

From Example 30 we know that the language L′
0 = {aaaa, abb} is accepted

by a stl-det-global-CD-2-RR(1)-system. In analogy it can be shown that also the
language L′

1 = {caaa, cbb} is accepted by a stl-det-global-CD-2-RR(1)-system.

Here we claim that the language L′
1
R

= {aaac, bbc} is not accepted by any
stl-det-global-CD-2-RR(1)-system.

Assume that M = ((Mi, σi)i∈I , I0, δ) is a stl-det-global-CD-2-RR(1)-system

accepting the language L′
1
R
. Without loss of generality we can assume that

I = {0, 1, . . . , n}, and that I0 = {0}. Obviously, δ
(0)
1 (c) = MVR. We now consider

various cases.
(i) If δ

(0)
1 (a) = δ

(0)
1 (b) = MVR, then necessarily δ

(0)
1 (c) = ε and δ

(0)
2 ($) = Restart

follow. Let δ(0, $) = 1. Then the system M′ = ((Mi, σi)i∈I , {1}, δ) accepts the
language L0 = {aaa, bb}. This, however, contradicts Corollary 36.

(ii) If δ
(0)
1 (a) = δ

(0)
1 (b) = ε, Lemma 20 shows that L′

1
R
is not accepted by M.

(iii) If δ
(0)
1 (a) = MVR and δ

(0)
1 (b) = ε, then δ

(0)
1 (c) = ε and δ

(0)
2 ($) = Restart.

Then M executes the following accepting computation:

(0, aaac) �cM (1, aaa) �∗M Accept,

where δ(0, $) = 1. But then M also executes the following computation:

(0, aaab) �cM (1, aaa) �∗M Accept,

which again contradicts our assumption on M, as aaab �∈ L′
1
R
.

(iv) If δ
(0)
1 (a) = ε and δ

(0)
1 (b) = MVR, then δ

(0)
1 (c) = ε and δ

(0)
2 ($) = Restart.

Then M executes the following accepting computation:

(0, bbc) �cM (1, bb) �∗M Accept,
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where δ(0, $) = 1. But then M also executes the following computation:

(0, bba) �cM (1, bb) �∗M Accept,

which again contradicts our assumption on M, as bba �∈ L′
1
R
.

As this covers all cases, we see that indeed L′
1
R

is not accepted by any stl-
det-global-CD-2-RR(1)-system. �

5 Decidability Problems

In this section we turn to investigate decidability problems for the classes
L=1(stl-det-local-CD-R(1)) and L=1(stl-det-local-CD-2-RR(1)). Basically it turns
out that all undecidable problems are not even semidecidable. For these prob-
lems, it suffices to show the results for L=1(stl-det-local-CD-R(1)). We will use
a reduction of Post’s Correspondence Problem (PCP) (see, for example, [17]).

Let Σ be an alphabet. An instance of the PCP is given by two lists α =
α1, α2, . . . , αn and β = β1, β2, . . . , βn of words from Σ+. It is well known that
it is undecidable whether a PCP has a solution [16], that is, whether there
is a nonempty finite sequence of indices i1, i2, . . . , ik such that αi1αi2 · · ·αik =
βi1βi2 · · ·βik . In particular, it is semidecidable whether a PCP has a solution, but
is not semidecidable whether it has no solution. In the sequel we call i1, i2, . . . , ik
as well as αi1αi2 · · ·αik a solution of the PCP.

Theorem 40. Regularity, context-freeness, equivalence, and inclusion are not
semidecidable for L=1(stl-det-local-CD-R(1)) and L=1(stl-det-local-CD-2-RR(1)).

Proof. Let an instance of the PCP be given by the lists α = α1, α2, . . . , αn and
β = β1, β2, . . . , βn of nonempty words over some alphabet Σ = {a1, a2, . . . , am}.
Further, let H = {1, 2, . . . , n}, αj = αj,1αj,2 · · ·αj,|αj |, βj = βj,1βj,2 · · ·βj,|βj|,
define Σ̃ = { ã | a ∈ Σ } to be a disjoint copy ofΣ, and set β̃j = β̃j,1β̃j,2 · · · β̃j,|βj|,
for 1 ≤ j ≤ n.

In order to construct a language that meets our purposes we start with the
set E = { x1x′1x2x′2 · · ·x�x′� | � ≥ 0, xi ∈ Σ, x′i ∈ Σ̃, 1 ≤ i ≤ �, and x′i = x̃i },
that is, the set of words in which symbols from Σ and Σ̃ occur alternatingly (!)
so that each symbol from Σ̃ is the copy of its left neighbor from Σ. Now define

L1 = ((Σ ∪ Σ̃)∗ � E) X H∗,

that is, the complement of E with respect to Σ∪Σ̃ shuffled with indices from H ,
and

L2 = (E X H∗) ∩ { (wX w̃)X v | v = v1v2 · · · vk ∈ H+

such that w = αv1αv2 · · ·αvk , w̃ = β̃v1 β̃v2 · · · β̃vk }.
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To conclude the construction of the language set LP = L1∪L2. It can be shown
that LP is accepted by a stl-det-local-CD-R(1)-systemM. Essentially M is the
union of two subsystems, the one of which accepts the language L1, while the
other accepts a superset of the language L2.

Now assume that the PCP has no solution. Then L2 is empty and LP = L1

is regular and, thus, context-free. Conversely, if LP is context-free, then
LP ∩ (E X H∗) = L2 is context free. A straightforward application of the pump-
ing lemma on words of the form (Σ∪ Σ̃)∗ ·H∗ that belong to L2 shows a contra-
diction. Therefore, the non-semidecidability of regularity and context-freeness
follows by the non-semidecidability of the unsolvability of the PCP.

As mentioned above, M includes a subsystem for accepting L1. Therefore,
the semidecidability of equivalence implies the semidecidability of whether M
accepts L1, that is, whether L2 is empty and, thus, the semidecidability of the
unsolvability of the PCP. Finally, if inclusion is semidecidable then so is equiv-
alence. �

Theorem 41. Universality and cofiniteness are not semidecidable for the
classes L=1(stl-det-local-CD-R(1)) and L=1(stl-det-local-CD-2-RR(1)).

Proof. Given an instance of the PCP, a stl-det-local-CD-2-RR(1)-system can be
constructed for the language L2 (which includes L1). Since L2 is empty if and
only if the PCP has no solution, L2 = (Σ ∪ Σ̃ ∪H)∗ if and only if the PCP has
no solution. Therefore, universality is non-semidecidable.

A PCP has either no solution or infinitely many solutions. So L2 is cofinite if
and only if the PCP has no solution, which completes the proof. �

6 Conclusions

We have investigated cooperating distributed systems of stateless determinis-
tic two-phase RR-automata of window size one. The main interest was on the
computational power and the closure properties of the language classes in-
duced by the systems considered. The proven inclusion relations are depicted
in Figure 1, while Table 1 summarizes the closure and non-closure proper-
ties obtained. Moreover, we considered decidability problems for the classes
L=1(stl-det-local-CD-R(1)) and L=1(stl-det-local-CD-2-RR(1)). However, several
questions remain unanswered: (1) Do the systems in question only accept semi-
linear languages? (2) Is the class L=1(stl-det-local-CD-2-RR(1)) not closed under
concatenation or Kleene plus? Similarly, is L=1(stl-det-global-CD-2-RR(1)) not
closed under Kleene plus? (3) What are the remaining algorithmic properties of
the language class L=1(stl-det-local-CD-2-RR(1))? Is emptiness or finiteness de-
cidable? How about the decidability problems for L=1(stl-det-strict-CD-2-RR(1))
and L=1(stl-det-global-CD-2-RR(1))?
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Table 1. “+” denotes the fact that the corresponding class is closed under the given
operation, “−” denotes the fact that it is not closed, and “?” indicates that the status
of this property is still open. ∪ denotes union, complementation, ∩ intersection,
∩REG intersection with regular languages, · concatenation, + Kleene plus, hε ε-free
homomorphism, h−1 inverse homomorphism, com commutative closure, and R denotes
reversal.

Types of CD-Systems Operations

∪ ∩ ∩REG · + hε h−1 com R

stl-det-local-CD-2-RR(1) + − − − ? ? − − ? −
stl-det-global-CD-2-RR(1) − + − − − ? − − − −
stl-det-strict-CD-2-RR(1) − + − − − − − − − −
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Abstract. The Boolean formula value problem asks for the Boolean
output value of a given input formula. We code it as a formal language
D+ ⊂ {a, b}∗. D+ is a nonregular, visibly pushdown language. We give
automata for D+ which enable us to derive some of its syntactic equa-
tions. It is unknown whether the given list of equations is complete. Using
these equations some algebraic properties of the syntactic monoid of D+

are sketched.

Keywords: Boolean formula value problem, syntactic monoid, word
equations, algebraic approach, TC0 vs NC1.

1 Introduction

The Boolean formula value problem (BFVP) consists in evaluating Boolean for-
mulas. Compared to the P -complete circuit value problem it is of rather low
complexity; depending in the coding of the input formula the evaluation can be
done in NC1 if the formula is given in a parenthesized way (or in polish normal
form) or deterministically in logarithmic space if the input formula is given as a
tree coded by nodes and edges. In this paper we will be interested in the first of
these two possibilities. It is quite easy to show the NC1-hardness of the Boolean
evaluation problem for formulas given by parenthesized words or expressions in
polish normal form. On the other hand,the construction to prove membership
in NC1 is quite involved [5].

The class NC1 is quite attractive from the formal language viewpoint since
Barrington showed, that each regular set, whose syntactic monoid contains an
nonsolvable group is NC1-complete ([3]). Thus there exist regular sets whose
word problem is NC1-complete.

The aim of this investigation is to consider the Boolean formula evaluation
problem from the algebraic formal language view-point despite the fact that it
is nonregular and hence its syntactic monoid is infinite. This short note comes
without proofs. Just the constructions and some examples are given. Proofs for
the correctness of the automata constructions can be found in the Studienarbeit
of Bernd Brumm ([4]).

This paper is structured as follows: we first express (a special version of) the
Boolean formula value problem via the Dyck language D over one pair of paren-
thesis. Then we present automata constructions. Finally, some first algebraic
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properties of BFVP are given including a list of defining equations which are
not known to be complete.

1.1 Preliminaries

Let L ⊆ {a, b}∗. We say that two words x, y ∈ {a, b}∗ are congruent modulo L if
and only if we have

zxz′ ∈ L⇐⇒ zyz′ ∈ L
for all z, z′ ∈ {a, b}∗. By [x]L we denote the congruence class of x modulo L. For
the resulting notions and results concerning the syntactic monoid of L we refer
to [6].

In our investigations of the Boolean formula value problem we will use the
notion of visibly pushdown automata and languages as introduced by Alur ([1]).
These were known before as input-driven languages and are characterized by the
restriction that the modification of the stack in terms of push or pop moves are
not dependent in the state but only in the input symbol. While the one-sided
Dyck languages are visibly pushdown languages, the two-sided ones are not.

2 Coding the Boolean Formula Value Problem

The coding of a problem, i.e.: its representation as formal language containing
words which code problem instances, can usually be done in different ways with-
out affecting the complexity of the problem. But the resulting formal languages
will differ signifcantly in their algebraic properties expressed in their syntactic
monoids. For instance will a parenthesis-language contain a zero in its syntac-
tic monoid, while in the corresponding polish normal form language arbitrary
words are subwords of valid expressions, which means that there is no zero in
the syntactic monoid.

Our aim is to choose a representation of BFVP which leads to a syntactic
monoid as simple as possible. That is why we will represent boolean formulas
by the NAND-operation, we will use a polish normal form instead of using
parentheses, and we will represent binary trees by dyck words and not by the
more usual Lukasiewicz words.

It is well known that every Boolean function can be expressed by the (bi-
nary) NAND-function together with the Boolean constant TRUE. The con-
version is possible by replacing AND(x, y) by NAND(TRUE,NAND(x, y)),
OR(x, y) by NAND(NAND(TRUE, x), NAND(TRUE, y)), and NOT (x) by
NAND(TRUE, x). The size of the resulting NAND-formula is linear in the size
of the original AND,OR-formula.

Hence we will consider as input formulas, which are to be evaluated, complete
binary trees labelled with NAND-function, i.e.; all inner nodes have two prede-
cessors and are labelled by the NAND-function, while the remaining nodes are
leaves of indegree zero labelled by the Boolean constant TRUE.

As mentioned before, coding these formulas as graphs, with vertices and edges,
leads to evaluation problems which are hard for deterministic logarithmic space.
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The well-known alternative is to use parentheses to express the tree structure.
Throughout of this paper we will represent the opening paranthesis by the letter
a and the closing one by the letter b.

We code complete binary trees as follows: the tree consisting of a single (root)
vertex is coded by the empty word λ. If a vertex has two outgoing edges leading
to its predecessors the left edge is labelled by a and the right one by b. The
tree is then read in-order from left to right. Thus the word aabb represents
the binary tree with 3 leaves, the left subree containing 2 leaves, and the right
one containing one leave. Switching the left and right subtree yields the tree
represented by abab. This gives a one-to-one corrspondence between complete
binary trees and the Dyck language D ⊂ {a, b}∗.

We decided in favour of labelling the edges and against the more usual la-
belling of the vertices, which would lead to the well known representation of
complete binary trees by the Lukasiewicz language.

While (contextfree) grammars are in general easier to construct for the
Lukasiewicz language, in the Dyck case the resulting syntactic (bicyclic) monoid
is more simple. For instance D is generated by the single equation ab = λ whereas
the Lukasiewicz language results in the equations aba = a, abb = b, and aab = a.

A tree labelled by Boolean functions and constants evaluates either to TRUE
or to FALSE. In this way the Dyck set D is divided into the two disjoint sub-
sets D = D+ ∪ D− where D+ consists in those elements of D which represent
a tree (labelled with the NAND-function and the constant TRUE) which eval-
uates to TRUE and D− contain those which evaluate to FALSE. Thus D+ is
a special formulation of the Boolean formual value problem which makes D+

NC1-complete.
In the following, we are going to investigate the properties of the formal

language D+.

3 Properties of D+

It is easy to see that D+ is a context-free language. For instance, the set D+b
1

is generated by the grammar with the rules S → aaSSS|aSaSS|aaSSaSS|b.
Obviously, D+ is a visibly push-down language as defined by Alur([1]), i.e. for

each element of the terminal alphabet it is determined whether the stack of an
push-down automaton accepting D+ is pushed (here by the symbol a) or popped
(here by the symbol b).

Alur et al. showed that a language is visibly push-down if and only if a certain
congruence relation is of finite index ([2]).

A close inspection shows that the resulting congruence relation divides the
set D into four classes

D = F ∪N ∪ P ∪ T.

This was explicated in [4].

1 This set might be regarded as the Lukasiewicz-version of D+
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These four classes might be explained in the following way: T consists in those
Dyck-words w which represent formulas, which evaluate to TRUE and if we add
a suffix v such that wv is still a Dyck word, wv evaluates to TRUE, as well.
F consists of the dual class of words representing fomulae evaluating to FALSE

regardless how they are completed by a Dyck suffix.
P and N are represent those formulas which evaluate to TRUE (respectively,

FALSE) whose value can be changed by a suffix.
The shortest member of these four classes are λ ∈ P, ab ∈ N, aabb ∈ T, and,

abaabb ∈ F. We have

D+ = T ∪ P and D− = F ∪N.

These four classes can be characterized in the following way: every w ∈ D admits
a unique decomposition w = aw1baw2 · · · awnb for some n ≥ 0 and some wi ∈ D.
We then have

– w ∈ P iff n is even and for all 1 ≤ j ≤ n we have wj ∈ D+,
– w ∈ N iff n is odd and for all 1 ≤ j ≤ n we have wj ∈ D+,
– w ∈ T iff there exists some i < n/2 such that w2i+1 ∈ D− and for all

1 ≤ j ≤ 2i we have wj ∈ D+, and
– w ∈ F iff there exists some i < n/2 such that w2i ∈ D− and for all 1 ≤ j ≤

2i− 1 we have wj ∈ D+.

Thus w ∈ D+ iff w consists in a concatenation of an even number of words
avb, v ∈ D+, followed by a word aub, u ∈ D−, or followed by nothing. If that
number is odd,we have w ∈ D−.

3.1 Automata for D+

Alur showed how to construct a push-down automaton out of the congruence
whose classes serve both as stack alphabet and as set of states. In the case of D+

the resulting automaton can be simplified by keeping as set of states {F,N, P, T }
but shrinking the stack alphabet to Γ := {P,N} with the pushing transitions

T a→ F, P
P a→ P, P
N a→ P,N
F a→ F,N

and the popping transitions
T, P b→ N
P,P b→ N
N,P b→ T
F, P b→ T
T,N b→ P
P,N b→ P
N,N b→ F
F,N b→ F

.
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The resulting automaton has a very regular structure like an infinite binary
tree. It is thus possible to represent uniquely each combination of state and
stack content of this automaton as a binary string in a way, that configurations
connected by transitions are of a very similar shape. A pushing transition, i.e.
reading an a, acts on a binary string ending in the bits xy, x, y ∈ {0, 1}, by
appending the second to last bit x which makes the string now ending in xyx.
A popping transition, i.e. reading a b, acts on a binary string ending in the
bits xyz, x, y, z ∈ {0, 1}, by deleting the last bit z and then exchanging the
remaining last two bits which makes the string now ending in yx. Interpreting
these strings as binary numbers, the four pushing and eight popping rules can be
given by the following rules: The automaton has infinitely many states labelled
by natural numbers greater or equal to 4. The starting state is state 6. If the
(one-way) input reads an a and the automaton is in state 4n+ i for some n and
some i < 4 it goes to state 8n+ j where i and j are given by:

4n+ 0→ 8n+ 0
4n+ 1→ 8n+ 2
4n+ 2→ 8n+ 5
4n+ 3→ 8n+ 7

.

If a b is read we have the following rules:

8n+ 0→ 4n+ 0
8n+ 1→ 4n+ 0
8n+ 2→ 4n+ 2
8n+ 3→ 4n+ 2
8n+ 4→ 4n+ 1
8n+ 5→ 4n+ 1
8n+ 6→ 4n+ 3
8n+ 7→ 4n+ 3

.

Since D+ is NC1-completeit is thus an NC1-complete task to read a Dyck word
and make according to the input letters the corresponding modulo computations
and then to determine whether the result is 6 or 7 (corresponding to D+) or 4
or 5 (corresponding to D−).

4 The Syntactic Monoid of D+

We now investigate the infinite syntactic monoid of D+. To do so, we first con-
sider equations fulfilled by the syntactic congruence of D+. After that we give a
few algebraic properties of D+.

4.1 Equations

It is easy to check the validity of the following equations fulfilled in {a, b}∗ by
D+ either directly or using the automata given in the previous section:
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1. abab = λ,
2. aabbb = b,
3. aabaabb = aabba,
4. abbabb = babb,
5. aabbaiab = aabbai for all i ≥ 0, and
6. abbiabaabb = biabaabb for all i ≥ 1.

The last two (sets of) equations express that to the right of the word in aabba∗

respectively to the left of the word in b∗babaabb the D+-evaluation is simply just
a D-evaluation, i.e.: the reduction of the subword ab to λ.

It is unclear, whether these equations are complete, i.e.: whether there are
new equations not implied by the given ones, or independent, i.e.; whether one
of them is implied by the others.

Another interesting question is, whether these equations can be directed in
either way (either from left to right or from right to left) such that each sequence
of applications of the bidirectional equations could be simulated by a sequence
of applications of the unidirectional versions of these equations.

The last question is closely connected to the search for rewriting systems
converting each w ∈ {a, b}∗ into a normal form w′ (for instance a shortest
word w.r.t. some ordering) such that w′ and w are congruent modulo D+. An
application of the Knuth-Bendix-procedure to (unidirectional versions of) the
given equations didn’t give new ones.

4.2 Algebraic Properties of the D+

We finally give a few algebraic properties of the syntactic monoid MD+ of D+.
A standard tool to investigate the structure of a monoid are Green’s relations

(see for instance [6]). For finite monoids the D- and the J-relation allways co-
incide. This can hold in the infinite case, as well; an example is the syntactic
monoid of the language D which is the bicyclic monoid. In contrast to that the
syntactic monoid of D+ has one J-class (i.e. for all x, y ∈ {a, b}∗ there exist
z, z′ ∈ {a, b}∗ such that x is congruent zyz′ modulo D+), but more then one
D-class, since aabb and the empty word λ are not D-equivalent, i.e.: there is no
x ∈ {a, b}∗ such that both [aabb]LMD+ = [x]LMD+ andMD+ [x]L =MD+ [λ]L.

We finally mention, that the syntactic monoid of D+ is regular. That is, for
all x ∈ {a, b}∗ there exists some y (called an inverse of x) such that xyx is
congruent with x and yxy with y modulo D+.

If that inverse element y is uniquely determined by x, such a monoid is called
inverse. While the syntactic monoid of D is inverse, that of D+ is not; for instance
the word bab has the two different inverses a and aaabb.

These algebraic differences between D and D+ express their differences in
complexity. While D is in TC0 (and complete w.r.t. Turing reducibilities), D+

is NC1-complete(w.r.t. many-one reducibilities).
Compared to D+ a totally different NC1-complete problem is the word prob-

lem of A5 (or of any other regular set whose syntactic monoid contains a nonsolv-
able group ([3])). In the proof of this fact the action of a Boolean gate with inputs
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x and y is in some sense simulated by evaluating the commutator x−1y−1xy of
the algebraic simulations of x and y. The proof makes uses of the fact, that
a nonsolvable group contains arbitrarily long, nonvanishing commutatorchains.
This leads to the question whether we can find in the syntactic monoid of D+,
which is regular and has only one J-class, a similar algebraic simmulation of the
action of Boolean gates, which would give a new proof of the NC1-hardness of
the Boolean formula value problem.

Acknowledgement. I would like to thank the referees for their careful reading
of this note.
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Abstract. We consider here two formal operations on words inspired
by the DNA biochemistry: hairpin lengthening introduced in [15] and
its inverse called hairpin shortening. We study the closure of the class
of regular languages under the non-iterated and iterated variants of the
two operations. The main results are: although any finite number of
applications of the hairpin lengthening to a regular language may lead
to non-regular languages, the iterated hairpin lengthening of a regular
language is always regular. As far as the hairpin shortening operation is
concerned, the class of regular languages is closed under bounded and
unbounded iterated hairpin shortening.

1 Introduction

This paper is a continuation of a series of works started with [3] (based on some
ideas from [1]), where a new, bio-inspired, formal operation on words, called
hairpin completion, was introduced. The initial work was followed by a series of
related papers ([5,7,12,14,16,17,13]), where both the hairpin completion, as well
as its inverse operation, the hairpin reduction, were further investigated both
from the algorithmic and the language theoretic points of view.

We briefly recall the biological motivation of this operation. Polymerase chain
reaction (PCR) is an automated process which enables researchers to produce
a huge number of copies of a specific DNA sequence. Although PCR starts
with a test tube containing double-stranded DNA molecules (called template
and primer), we consider here a pretty similar phenomenon involving single-
stranded DNA (ssDNA) following the second and third step of PCR, namely
annealing and extension, respectively. It is well known that ssDNA are com-
posed by nucleotides which differ from each other by their bases: A (adenine), G
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(guanine), C (cytosine), and T (thymine). Two single strands can bind to each
other, forming the secondary structure of DNA, if they are pairwise Watson-
Crick complementary: A is complementary to T , and C to G. The binding of
two strands is usually called annealing. This process which appears at about
540C is due to the Hydrogen-bonds that are constantly formed and broken be-
tween the two ssDNA. More bonds last longer and allow the polymerase to attach
new nucleotides [22]. Once a few bases are built in, the ionic bond between the
two ssDNA becomes so strong, that it does not break anymore. The polymerase
attaches the bases (complementary to the template) to the primer on the 3’ side.

We now imagine the following situation in which the role of the two ssDNA
(template and primer) in the PCR is played by only one ssDNA. An intramolecu-
lar base pairing, known as hairpin, is a pattern that can occur in single-stranded
DNA or RNA molecules. In this case, the single-stranded molecule bends, and
one part of the strand bonds to another part of the same strand. In this way,
the role of template and primer is played by the prefix and suffix, or vice-versa,
of the ssDNA. In our case the phenomenon produces a new molecule as follows
(see Figure 1): one starts with a ssDNA molecule, such that one of its ends (a
prefix or, respectively, a suffix) is annealed to another part of itself by Watson-
Crick complementarity forming a hairpin, and a polymerization buffer with many
copies of the four basic nucleotides. Then, the initial hairpin is lengthened by
polymerases (thus adding a suffix or, respectively, a prefix), until a complete
hairpin structure is obtained (the beginning of the strand is annealed to the
end of the strand). Of course, all these phenomena are considered here in an
idealized way. For instance, we allow polymerase to extend the strand at either
end (usually denoted in biology with 3’ and 5’) despite that, due to the greater
stability of 3’ when attaching new nucleotides, DNA polymerase can act con-
tinuously only in the 5’−→ 3’ direction. However, polymerase can also act in
the opposite direction, but in short “spurts” (Okazaki fragments). This is the
source of inspiration for the hairpin completion operation introduced in [3]. The
situation is schematically illustrated in Picture 1.

γ α β αR annealing

γ
α

β

α
R

lengthening
by poly-
merases

γ
α

β

α
R

γ
R

single strand hairpin hairpin completion

Fig. 1. Hairpin Completion

Hairpin or hairpin-free structures have numerous applications to molecu-
lar genetics and DNA-computing. In some DNA-based algorithms, these DNA
molecules cannot be used in the subsequent computations. Therefore, it is im-
portant to design methods for constructing sets of DNA sequences which are
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unlikely to lead to such “bad” hybridizations. This problem was considered in a
series of papers, see e.g. [4,8,10] and the references therein. On the other hand,
molecules which may form a hairpin structure have been used as the basic feature
of a computational model reported in [21], where an instance of the 3-SAT prob-
lem has been solved by a DNA algorithm whose second phase is mainly based on
the elimination of hairpin structured molecules. Different types of hairpin and
hairpin-free languages are defined in [2,19] and more recently in [11,9], where
they are studied from a language theoretical point of view.

In [15] and later on in [18], a new variant of the hairpin completion, called
hairpin lengthening, which seems more appropriate for possible bio-lab imple-
mentation, is considered. Informally, it seems more natural to consider that the
prefix/suffix added by the hairpin completion cannot be arbitrarily long, since
every step of a computation in a laboratory has to use a finite amount of re-
sources and finite time. This variant concerns the prolongation of a strand which
forms a hairpin, similarly to the process described for hairpin completion, but
not necessarily until a complete hairpin structure is obtained. The main motiva-
tion in introducing this operation is that, in practice, it may be a difficult task
to control the completion of a hairpin structure, and it seems easier to model
only the case when such a structure is extended.

Both the hairpin completion and hairpin lengthening can be seen as formal
operations by which one can generate a set of words, starting from a single
word: for each possible pairing between a prefix and a complementary factor, or
a suffix and a complementary factor, we can obtain a word by hairpin completion
and several words by hairpin lengthening. As most of the unary operations on
words, the hairpin completion and lengthening defined above can be extended
canonically to operations on languages, and, then, their iterated version can be
defined. We consider here two formal operations on words inspired by the DNA
biochemistry: hairpin lengthening discussed above and a new operation which is
its inverse, namely hairpin shortening. We study the closure of the class of regular
languages under the non-iterated and iterated variants of the two operations.

In this paper we show that although any finite number of applications of the
hairpin lengthening to a regular language may lead to non-regular languages, the
iterated hairpin lengthening preserves the regularity of a language (in the final
preparation of this paper we learned1 that this result has been independently
obtained by [6]). As far as the hairpin shortening operation is concerned, we
prove that the class of regular languages is closed both under finitely-iterated
and freely iterated hairpin shortening.

2 Preliminaries

We assume the reader to be familiar with the fundamental concepts of formal lan-
guages and automata theory, particularly with the notions of regular languages
and finite automata; for all the related notions see [20].

1 Volker Diekert, personal communication.
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We denote by V ∗ and V + the set of all words over V including the empty
word ε, and the set of all non-empty words over V , respectively. Given a word w
over an alphabet V , we denote by |w| its length, while w[i..j] denotes the factor
of w starting at position i and ending at position j, 1 ≤ i ≤ j ≤ |w|. If i = j,
then w[i..j] is the i-th letter of w, which is simply denoted by w[i].

Let Ω be a “superalphabet”, that is an infinite set such that any alphabet
considered in this paper is a subset of Ω. In other words, Ω is the universe of
the languages in this paper, i.e., all words and languages are over alphabets that
are subsets of Ω. An involution over a set S is a bijective mapping σ : S −→ S
such that σ = σ−1. Any involution σ on Ω such that σ(a) �= a for all a ∈ Ω is
said to be, in this paper’s context, a Watson-Crick involution. Despite that this
is nothing more than a fixed point-free involution, we prefer this terminology
since the hairpin lengthening defined later is inspired by the DNA lengthening
by polymerases, where the Watson-Crick complementarity plays an important
role. Let · be a Watson-Crick involution fixed for the rest of the paper. The
Watson-Crick involution is extended to a morphism from Ω∗ to Ω∗ in the usual
way. We say that the letters a and a are complementary to each other. For an
alphabet V , we set V = {a | a ∈ V }. Note that V and V could be disjoint or
intersect or be equal. We denote by (·)R the mapping defined by R : V ∗ −→ V ∗,
(a1a2 . . . an)

R = an . . . a2a1. Note that R is an involution and an anti-morphism
((xy)R = yRxR for all x, y ∈ V ∗). Note also that the two mappings · and ·R
commute, namely, for any word x the equality (x)R = xR holds.

Let V be an alphabet, for any w ∈ V + we define the k-hairpin lengthening of
w, denoted by HLk(w), for some k ≥ 1, as follows:

– HLPk(w) = {δRw|w = αβαRγ, |α| = k, α, β, γ ∈ V + and δ is a prefix of γ},
– HLSk(w) = {wδR|w = γαβαR, |α| = k, α, β, γ ∈ V + and δ is a suffix of γ},
– HLk(w) = HLPk(w) ∪HLSk(w).

The hairpin lengthening of w is defined by HL(w) =
⋃
k≥1

HLk(w). Clearly,

HLk+1(w) ⊆ HLk(w) for any w ∈ V + and k ≥ 1. Therefore, one can easily note
that HL(w) = HL1(w).

The k-hairpin lengthening is naturally extended to languages by HLk(L) =⋃
w∈L

HLk(w) for k ≥ 1.

This operation is schematically illustrated in Figure 2.
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Fig. 2. Hairpin lengthening
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The iterated version of the k-hairpin lengthening is defined as usual by:

HL0
k(w) = {w}, HLn+1

k (w) = HLk(HL
n
k (w)), HL

∗
k(w) =

⋃
n≥0

HLn
k (w),

and HL∗
k(L) =

⋃
w∈L

HL∗
k(w).

The iterated version of the hairpin lengthening is HL∗(L) = HL∗
1(L).

Let us define the inversion operation of the hairpin lengthening, namely the
hairpin shortening. Let V be an alphabet, and define for any w ∈ V + the k-
hairpin shortening of w, denoted by HSk(w), for some k ≥ 1, as follows:

– HSPk(w) = {x| exists δ such that δRx = δRαβαRγ = w, |α| = k, α, β, γ ∈ V +

and δ is a prefix of γ},
– HSSk(w) = {x| exists δ such that xδR = γαβαRδR = w, |α| = k, α, β, γ ∈ V +

and δ is a suffix of γ},
– HSk(w) = HSPk(w) ∪HSSk(w).

The hairpin shortening of w is defined by HS(w) =
⋃
k≥1

HSk(w). The k-

hairpin shortening is naturally extended to languages byHSk(L) =
⋃
w∈L

HSk(w)

for k ≥ 1.
The iterated version of the k-hairpin shortening is defined as usual by:

HS0
k(w) = {w}, HSn+1

k (w) = HSk(HS
n
k (w)), HS

∗
k(w) =

⋃
n≥0

HSn
k (w),

and HS∗
k(L) =

⋃
w∈L

HS∗
k(w).

The iterated version of the hairpin lengthening is HS∗(L) = HS∗
1 (L).

3 Hairpin Lengthening of Regular Languages

The following results were reported in [18]:

Theorem 1. A language is linear context-free if and only if it is the gsm image
of the k-hairpin lengthening of a regular language for k ≥ 1.

Consequently,

Proposition 1. The class of regular languages is not closed under k-hairpin
lengthening for k ≥ 1.

A first natural question concerns the closure of the class of regular languages
under the application for a finite number of times of the k-hairpin lengthening
operation. In [18], we show that if we apply for a finite number of times the
k-hairpin lengthening operation to a regular language we can obtain non-regular
languages. The regular language L = {"anckdck | n ≥ k} proves this. Indeed, it
is not hard to see that, for m ≥ 2, we have

HLm
k (L) = {"anckdckas | n ≥ k, 0 ≤ s ≤ n+ (m− 1)(n− k)} ∪

{"anckdckas" | n ≥ k, s ≥ k, s ≤ n+ (m− 1)(n− k)}.
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Thus, HLm
k (L) ∩ "V ∗" = {"anckdckas" | n ≥ k, s ≥ k, s ≤ n+ (m− 1)(n− k)}

and one can easily show that this language is not regular.
We now came to the second natural question: Is the class of regular languages

closed under iterated k-hairpin lengthening? Somehow surprising (in the view of
the above discussion), the answer is affirmative.

First, let us note that every iterated k-hairpin lengthening can be simulated
by an iterated k-hairpin lengthening, where only one symbols is added in the
right-hand or left-hand end of the current word. Let V be an alphabet and k ≥ 1.
For each letter a ∈ V we define the two languages:

R(k, a) = {xayzyR | x ∈ V ∗, y, z ∈ V +, |y| = k},
L(k, a) = {yzyRax | x ∈ V ∗, y, z ∈ V +, |y| = k}.

Obviously, the two languages are regular.
We now define the mapping φk : V ∗ −→ V ∗ by:

φk(w) = {w} ∪ {wa | w ∈ R(k, a), a ∈ V } ∪ {aw | w ∈ L(k, a), a ∈ V }.

This mapping is naturally extended to languages by φk(L) =
⋃
w∈L

φk(w).

The iterated version of this mapping is defined as usual by:

φ0k(w) = {w}, φn+1
k (w) = φk(φ

n
k (w)), φ∗k(w) =

⋃
n≥0

φnk (w),

and φ∗k(L) =
⋃
w∈L

φ∗k(w).

It is plain that for any language L and any k ≥ 1, HL∗
k(L) = φ∗k(L). The

main result of this section is based on this simple remark.

Theorem 2. The class of regular languages is closed under iterated k-hairpin
lengthening for k ≥ 1.

Proof. We begin our proof with a simple remark. Let w and w′ be two words over
an alphabet V such that w ∈ HL∗

k(w
′). According to the remarks made before

this proof, there exist the words w0, w1, . . . , wt such that w0 = w′, wt = w,
wi ∈ HLk(wi−1) and |wi| = |wi−1|+ 1 for 1 ≤ i ≤ t. Then, for 1 ≤ i ≤ t:

– If wi ∈ HLSk(wi−1) has the suffix αa with a ∈ V and α ∈ V k, and w ends
with α, then wa ∈ HL∗

k(w
′).

– If wi ∈ HLPk(wi−1) has the prefix aα with a ∈ V and α ∈ V k, and w starts
with α, then aw ∈ HL∗

k(w
′).

Assume now that we want to determine whether a word w of length n can
be obtained by iterated k-hairpin lengthening from one of its factors w[i..j].
More precisely, we determine whether w can be obtained from w[i..j] by iterated
k-hairpin lengthening such that in each step the current word is lengthened
with exactly one symbol (which is equivalent to the general iterated k-hairpin
lengthening, as we have already seen before in this proof).
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Let S1 = (x1, x2, . . . , xt) be a list of the distinct words of length k + 1 that
occur as factors of the word w[1..i + k − 1], ordered increasingly according to
the rightmost position where they appear in w[1..i + k − 1] (i.e., the rightmost
occurrence of x� in w[1..i + k − 1] is to the left of the rightmost position where
x�+1 occurs in the same factor). Let p� be the maximum number such that
p� ≤ i− 1 and w[p�..p�+ k] = x�, i.e., p� is the starting position of the rightmost
occurrence of x� in w[1..i+k−1]; clearly, pt = i−1. Finally, we define the list of
numbers S′

1 = (n1, . . . , nt) by n1 = min(k, p1−1) and n� = min(k, p�−p�−1−1)
for 2 ≤ � ≤ t.

It is not hard to see that all the factors w[i′..i′ + k] with p�−1 +1 ≤ i′ ≤ i− 1
are from the set {x�, x�+1, . . . , xt}. By the remark stated at the beginning of
this proof, it follows that if j′ ≥ j and w[p�..j

′] can be obtained by iterated
k-hairpin lengthening from w[i..j], then w[p�−1 + 1..j′] can be also obtained by
iterated k-hairpin lengthening from w[i..j]. Moreover, w[p�..j

′] can be obtained
from w[p� + 1..j] by k-hairpin lengthening if and only if x�

R appears as a factor
in w[p�+k+1..j′]. Finally, w[1..j′] can be obtained from w[p1+1..j] by k-hairpin
lengthening if and only if x1

R appears as a factor in w[p1 + k + 1..j′].
Analogously, let S2 = (y1, y2, . . . , ys) be a list of all the different words of

length k+1 that occur as factors of the word w[j−k+1..n], ordered increasingly
according to the leftmost position where they appear in w[j − k+1..n] (i.e., the
leftmost occurrence of y� in w[j − k+ 1..n] is to the left of the leftmost position
where y�+1 occurs in the same factor). Let q� be the minimum number such that
q� ≥ j + 1 and w[q� − k..q�] = y�, i.e., q� is the ending position of the leftmost
occurrence of y� in w[j − k + 1..n]; clearly, q1 = j + 1. We also define the list of
numbers S′

2 = (m1, . . . ,ms) byms = min(k, n−qs) andm� = min(k, q�+1−q�+1)
for 1 ≤ � ≤ s− 1.

It is immediate that all the factors w[i′ − k..i′] with j + 1 ≤ i′ ≤ q�+1 − 1
are from the set {y1, y2, . . . , y�}. Thus, if i′ ≤ i and w[i′..q�] can be obtained
by iterated k-hairpin lengthening from w[i..j], then w[i′..q�+1 − 1] can be also
obtained by iterated k-hairpin lengthening from w[i..j]. Moreover, w[i′..q�] can
be obtained from w[i′..q�−1] by k-hairpin lengthening if and only if y�

R appears
as a factor in w[i′..q�−k− 1]. Also, w[i′..n] can be obtained from w[i′..qs− 1] by
k-hairpin lengthening if and only if ys

R appears as a factor in w[i′..qs − k − 1].
Further, assume that S is a list of the distinct factors of length k + 1 of

w[i..j − k] and S′ a list of the distinct factors of length k + 1 of w[i + k..j];
also, let T and T ′ be two lists containing initially k times the word ⊥k+1, where
⊥ /∈ V . It follows that w[pt−1 + 1..j] can be obtained from w[i..j] if and only if
xRt appears in S′. Similarly, w[i..q2 − 1] can be obtained from w[i..j] if and only
if yR1 appears in S. Now we are in the position of extending these words even
more, in order to see if the whole word w can be generated. We update the lists
S1, S

′
1, S2, S

′
2, S, S

′ as well as T and T ′ as follows:

– If w[pt−1 +1..j] can be obtained from w[i..j], we delete from S1 the element
xt and from S′

1 the element nt. If nt = k we add xt to S′ and set T ′ to be
the list with k elements ⊥k+1; otherwise, if nt = � < k, we update the list
T ′ as follows: we delete the last �+1 elements of T and put in S′ those that
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do not contain ⊥, and add at the beginning of T ′ the word xt and, then, �
times the word ⊥k+1.

– If w[i..q1 − 1] can be obtained from w[i..j], we delete from S2 the element
y1 and from S′

2 the element m1. If m1 = k we add y1 to S′ and set T to be
the list with k elements ⊥k+1; otherwise, if m1 = � < k, we update the list
T as follows: we delete the last �+ 1 elements of T and put in S those that
do not contain ⊥, and add at the beginning of T the word y1 and, then, �
times the word ⊥k+1.

At this point we can repeat the process just described above and try to extend
the newly obtained word (w[pt−1 + 1..j] or w[i..q1 − 1]) even more, to the left
or to the right. We stop iterating this process either when both S1 and S2 are
empty or when the current word cannot be extended (to the left or to the right)
anymore. In the first case, when the two lists become empty, we decide that
w can be obtained from w[i..j] by iterated k-hairpin lengthening, while in the
second case we decide that w can not be obtained from w[i..j] by iterated k-
hairpin lengthening. It is worth noting that our decision is taken by looking only
at the lists S1, S

′
1, S2, S

′
2, S and S′, and the total number of possible assignments

for these lists depends only on k, not on w or on the values of i and j. Therefore,
we call a 6-tuples of lists (S1, S

′
1, S2, S

′
2, S, S

′) acceptable if the process described
above ends with S1 and S2 empty; otherwise, they are called unacceptable. One
clearly needs a constant amount of time (depending on k) to decide which 6-
tuples of lists are acceptable, and which are unacceptable; this can be done
by a preprocessing phase before designing an algorithm (or, equivalently, an
automaton, as we will see in the end of this proof) recognizing HL∗

k(L).
According to these remarks we present a non-deterministic algorithm that

accepts the iterated k-hairpin lengthening of a regular language L over V . The
main idea is quite simple: we choose non-deterministically a factor of the input
word, and compute the sets S1, S

′
1, S2, S

′
2, S, and S

′ determined by this factor.
Then, we just check if these sets form an acceptable 6-tuple or not, and if the
chosen factor is in L; if both checks return positive answers, we accept the input
word, otherwise we reject it.

This algorithm is made of several different phases, which we present separately.
Assume that L is specified by a deterministic automaton accepting it M =
(Q, V, qo, F, δ). Also, for the first seven phases of the algorithm we assume that
the input word w has at least length 2k + 2, otherwise it belongs to HL∗

k(L) if
and only if it lies in L. For simplicity, if S is an ordered list with m elements
(x1, x2, . . . , xm), we denote by S[�] the �-th element of that list, namely x�. By
deleting an element S[�] from a list as the above we obtain a new list with m− 1
elements, (x1, x2, . . . , x�−1, x�+1, . . . , xm). By adding a new element x to the end
of the list S above we obtain a new list with m+ 1 elements (x1, x2, . . . , xm, x).

In the first phase we initialize the lists we use in the rest of the computation.
In the second phase of the algorithm we just read the first k symbols of the

input word, and store them in the word lastk.
The third phase of the algorithm is used to compute the lists S1 and S′

1. We
also decide non-deterministically when we have read the first k symbols of a
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Algorithm 3.1. Phase 1: Initialization

Initialize the ordered lists S1, S2, S
′
1, S

′
2, S, S

′ as the void lists;
Initialize the words lastk = λ and lastk+1 = λ;
Set the variables phase = 2, i = 1, f = 1, and count = 0; set the state q = q0;

Algorithm 3.2. Phase 2

while phase = 2 do
Add the symbol w[i] at the end of lastk;
Increase i by 1;
if i = k + 1 then

Set phase = 3;
end if

end while

factor of w, that is tested if it is in L, and used to test whether w is in HL∗
k(L)

or not.
At the beginning of the fourth phase of the algorithm we have already analyzed

the first k symbols of the chosen factor. In this phase we start computing the
set S. We also count the number of symbols read after the first k symbols of
the factor, in order to detect the precise moment when we should start adding
words to S′ as well. As soon as we reach this moment or when we decide non-
deterministically that we reached the last k symbols of the factor, we move on
to one of the following phases. In the fifth phase we finish computing the set

Algorithm 3.3. Phase 3

while phase = 3 do
Add the symbol w[i] at the end of lastk, set lastk+1 = lastk, and delete the first
symbol of lastk; Let t be the number of elements in S1;
if count < k then

Increase count by 1;
else

count = k;
end if
if there exists � < t such that S1[�] = lastk+1 then

Delete S1[�] from S1, set S
′
1[�+ 1] = min(k, S′

1[�+ 1] + S′
1[�]), delete S′

1[�] from
S′
1, set count = 1;

else
if S1[t] = lastk+1 then

Delete S1[t] from S1, delete S′
1[t] from S′

1;
end if

end if
Insert lastk+1 at the end of S1, insert count at the end of S′

1;
Increase i by 1.
Choose non-deterministically between phase = 3 or setting phase = 4 ;

end while
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Algorithm 3.4. Phase 4

1: Set t = 1; let q = δ(q0, lastk);
2: while phase = 4 do
3: Set q = δ(q, w[i]);
4: Add the symbol w[i] at the end of lastk, set lastk+1 = lastk, and delete the first

symbol of lastk;
5: Insert lastk+1 in S, if it was not in this list already; Increase t by 1;
6: Increase i by 1;
7: if t = k + 1 then
8: Set phase = 5;
9: else
10: Choose non-deterministically between phase = 4 or setting phase = 6 ;
11: end if
12: end while

S′ and start computing the set S. In this phase, as in the previous one, we can
also decide non-deterministically that we have reached the last k symbols of the
chosen factor, case in which we move to Phase 6.

Algorithm 3.5. Phase 5

1: while phase = 5 do
2: Set q = δ(q, w[i]);
3: Add the symbol w[i] at the end of lastk, set lastk+1 = lastk, and delete the first

symbol of lastk;
4: Insert lastk+1 in S, if it is not already in this list; Insert lastk+1 in S′, if it was

not in this list already;
5: Increase i by 1;
6: Choose non-deterministically between phase = 5 or setting phase = 6;
7: end while

In the sixth phase we finish reading the chosen factor as well as we finish
computing S. After this phase q is in F if and only if the non-deterministically
chosen factor is in L.

In the seventh phase we compute the lists S2 and S′
2. The computation de-

scribed in this phase stops at the moment we have reached the end of the input
word. Then we move along to phase 8, where the decision is made.

Finally, once we have computed all the needed lists, we use the eighth phase
to decide whether the input word was obtained by hairpin lengthening from the
non-deterministically chosen factor. The decision taken in this phase relies on
the preprocessing that we have already mentioned: we assume that we know
which 6-tuples of lists are acceptable and which are not.

By the remarks made prior to the detailed description of the eight phases it
is clear that our algorithm decides exactly HL∗

k(L).
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Algorithm 3.6. Phase 6

1: Set t = 1;
2: while phase = 6 do
3: Set q = δ(q, w[i]);
4: Add the symbol w[i] at the end of lastk, set lastk+1 = lastk, and delete the first

symbol of lastk;
5: Insert lastk+1 in S′, if it was not in this list already;
6: Increase i by 1;
7: Increase t by 1;
8: if t = k + 1 then
9: Set phase = 7;
10: end if
11: end while

Algorithm 3.7. Phase 7

1: Set count = 0.
2: while phase = 7 do
3: Add the symbol w[i] at the end of lastk, set lastk+1 = lastk, and delete the first

symbol of lastk;
4: if lastk+1 appears in S2 then
5: if count < k then
6: Increase count by 1;
7: else
8: count = k;
9: end if
10: else
11: Insert lastk+1 at the end of S2;
12: Add count at the end of S′

2 and reset count = 1 when S2 contains at least
two elements;

13: end if
14: Increase i by 1.
15: if i = n+ 1 then
16: Add count at the end of S′

2; set phase = 8;
17: end if
18: end while

Algorithm 3.8. Phase 8: Decision

1: if |w| < 2k + 2 and w ∈ L then
2: ACCEPT; HALT;
3: else
4: if |w| < 2k + 2 then
5: REJECT; HALT;
6: end if
7: end if
8: if |w| ≥ 2k + 2 and (S1, S

′
1, S2, S

′
2, S, S

′) is acceptable and q ∈ F then
9: ACCEPT; HALT;
10: else
11: REJECT;
12: end if
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Further, one can easily see that this approach can be implemented on a finite
automaton. The states of this automaton store the six lists we use, and all the
other variables used in the algorithm, except for i (clearly, only a constant mem-
ory is needed to do this). The transitions are defined according to the processing
described in the phases above. Clearly, the variable i should not be memorized,
since this variable is used only to read the symbols of the input word one by one,
and this can be done by a finite automaton. Thus, if L is regular, then HL∗

k(L)
is also regular.

In conclusion, the class of regular languages is closed under iterated k-hairpin
lengthening. �

4 Hairpin Shortening of Regular Languages

We get the following result:

Theorem 3. The class of regular languages is closed under k-hairpin shortening
for any k ≥ 1.

Proof. Let us take a regular language L, and denote by A = (Q, V, q0, F, δ)
the deterministic finite automaton accepting L. We assume that there exists no
state q ∈ Q such that q0 = δ(q, a), for some letter a ∈ V . For a fixed integer
k ≥ 1, we show thatHSSk is regular.We define the non-deterministic automaton
A′ = (Q′, V, q0, F ′, δ′), as follows:

Q′ = Q ∪Q×Q ∪Q×Q× {x ∪ [x] ∪ (x)|x ∈ V i, where 0 ≤ i ≤ k},
F = {(q, q, (λ))|q ∈ Q},

δ′(q1, a) = δ(q1, a) ∪ {(δ(q1, a), q2)|f = δ(q2, a) and f ∈ F},
δ′((q1, q2), a) = {(δ(q1, a), q′2)|q2 = δ(q′2, a)} ∪

{(δ(q1, a), q′2, λ)|q2 = δ(q′2, a)},
δ′((q1, q2, x), a) = {(δ(q1, a), q2, ax)||x| < k} ∪ {(δ(q1, a), q2, [x])||x| = k},
δ′((q1, q2, [x]), a) = {(δ(q1, a), q2, [x])} ∪ {(δ(q1, a), q2, (x))},
δ′((q1, q2, (xa)), a) = {(q1, q′2, (x))|q2 = δ(q′2, a)}.

Our automaton accepts all words γδαβα where γδαβαγ ∈ L. In order to see how
it works, please note that at the beginning the automaton just reads the prefix
of γ, possibly empty that precedes δ. After that, with a non-deterministic choice
we ensure that reading δ, we would have a word that has δR as a suffix in L.
Next we again non-deterministically start to read α, and remember the letters
for a later comparison with the end of the word. Please note that since the
number of factors of length k is finite, the automaton remains finite. Finally, we
non-deterministically start to read β and guess when β ends; then we compare
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the rest of the word with the complement image of the reverse of α, and accept
in the case we end up in the same state.

It is easy to see that A′ accepts exactlyHSSk(L). Due to the closure of regular
languages on the reverse operation, the result follows. �

A direct consequence is:

Corollary 1. The class of regular languages is closed under finitely iterated k-
hairpin shortening for any k ≥ 1.

Let us finally look at the iterated case of hairpin shortening of a regular language.
Clearly, given a language L ⊆ V ∗ and a word w ∈ V ∗, if w ∈ HS∗

k(L), then
HL∗

k(w) ∩ L �= ∅ must hold.

Theorem 4. The class of regular languages is closed under iterated k-hairpin
shortening for all k ≥ 1.

Proof. The proof is to some extend similar to that of Theorem 2. Let A =
(Q, V, q0, F, δ) be a deterministic finite automaton with the transition function
δ totally defined. We now consider the following nondeterministic algorithm
consisting of three phases: initialization, update, decision.

Algorithm 4.1. Phase 1: Initialization

1: Choose a pair of states (q, r) ∈ Q×Q such that δ(q, w) = r;
2: P = w[1..k]; P2k+1 = w[1..2k + 1];
3: S = w[|w| − k + 1..|w|]; S2k+1 = w[|w| − 2k..|w|];
4: L = {x ∈ V ∗ | w = uxv, |x| = k + 1, u, v ∈ V ∗, |v| ≥ k + 1};
5: R = {x ∈ V ∗ | w = uxv, |x| = k + 1, u, v ∈ V ∗, |u| ≥ k + 1};
6: Set phase := 2;

The input of this algorithm is the automaton A, an integer k ≥ 1, and a word
w ∈ V ∗ with |w| ≥ 2k+2. Clearly, any word shorter than 2k+2 is in HS∗

k(L) if
and only if it belongs to L. The first phase can be accomplished by scanning once
from left to right the input word. The second phase is devoted to the update of
all variables initialized in the first phase.

Phases 2 and 3 are executed alternatively until a decision is made in Phase 3.
It is not hard to see that the algorithm decides any input, as in the first phase

we make a number of steps proportional to the length of the input, while in the
second and third phase we make only a finite number of steps, depending only on
k. Note that in these latter phases the algorithm does not read any input symbol,
so, basically, the only part of the algorithm where we need to have access to the
input is Phase 1. The proof is complete as soon as we note that this algorithm
can be implemented on a finite automaton. �
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Algorithm 4.2. Phase 2: Update

1: Choose only one of the two situations:
2: if PRa ∈ R for some a ∈ V then
3: R = R ∪ {P2k+1[k + 1..2k + 1]}
4: L = L ∪ {aP};
5: P = aP [1..k − 1]; P2k+1 = aP2k[1..2k];
6: q = q′ such that δ(q′, a) = q;
7: end if
8: if aSR ∈ L for some a ∈ V then
9: L = L ∪ {S2k+1[1..k + 1]}
10: R = R ∪ {Sa};
11: S = S[2..k]a; S2k+1 = S2k+1[2..2k + 1]a;
12: r = δ(r, a);
13: end if
14: phase := 3;

Algorithm 4.3. Phase 3: Decision

1: if q = q0 and r ∈ F then
2: ACCEPT;
3: else
4: if (q, r, L,R, P, S) has been considered already in Phase 2 then
5: REJECT;
6: else
7: phase := 2;
8: end if
9: end if
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Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158,
pp. 296–306. Springer, Heidelberg (2010)

16. Manea, F., Mitrana, V.: Hairpin Completion Versus Hairpin Reduction. In: Cooper,
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Abstract. In this paper, we study the generative power of one-sided
random context grammars working in a leftmost way. More specifically,
by analogy with the three well-known types of leftmost derivations in reg-
ulated grammars, we introduce three types of leftmost derivations to one-
sided random context grammars and prove the following three results.
(I) One-sided random context grammars with type-1 leftmost derivations
characterize the family of context-free languages. (II) One-sided random
context grammars with type-2 and type-3 leftmost derivations charac-
terize the family of recursively enumerable languages. (III) Propagating
one-sided random context grammars with type-2 and type-3 leftmost
derivations characterize the family of context-sensitive languages. In the
conclusion, the generative power of random context grammars and one-
sided random context grammars with leftmost derivations is compared.

Keywords: formal languages, regulated rewriting, one-sided random
context grammars, leftmost derivations, generative power.

1 Introduction

The investigation of grammars that perform leftmost derivations is central to
formal language theory as a whole. Indeed, from a practical viewpoint, leftmost
derivations fulfill a crucial role in parsing, which represents a key application
area of formal grammars (see [1,2,7,21]). From a theoretical viewpoint, an effect
of leftmost derivation restrictions to the power of grammars restricted in this
way represents an intensively investigated area of this theory as clearly indicated
by many studies on the subject. More specifically, [3,4,17,18,32] contain funda-
mental results concerning leftmost derivations in classical Chomsky grammars,
[6,14,19,30,33] and Section 5.3 in [9] give an overview of the results concern-
ing leftmost derivations in regulated grammars published until late 1980’s, and
[8,10,11,20,23,25] together with Section 7.3 in [24] present several follow-up re-
sults. In addition, [15,16,31] cover language-defining devices introduced with
some kind of leftmost derivations, and [5] discusses the recognition complexity
of derivation languages of various regulated grammars with leftmost derivations.
Finally, [16,22,28] study grammar systems working under the leftmost derivation
restriction, and [12,13,29] investigates leftmost derivations in terms of P systems.
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The present paper approaches this topic in terms of one-sided random con-
text grammars. Recall that a one-sided random context grammar (see [26,27])
represents a variant of a random context grammar (see [9] and Chapter 3 in the
second volume of [32]). In this variant, a set of permitting symbols and a set of
forbidding symbols are attached to every rule, and its set of rules is divided into
the set of left random context rules and the set of right random context rules.
A left random context rule can rewrite a nonterminal if each of its permitting
symbols occurs to the left of the rewritten symbol in the current sentential form
while each of its forbidding symbols does not occur there. A right random con-
text rule is applied analogically except that the symbols are examined to the
right of the rewritten symbol.

Specifically, this paper introduces three types of leftmost derivation restric-
tions placed upon one-sided random context grammars. In the type-1 derivation
restriction, during every derivation step, the leftmost occurrence of a nonterminal
has to be rewritten. In the type-2 derivation restriction, during every derivation
step, the leftmost occurrence of a nonterminal which can be rewritten has to be
rewritten. In the type-3 derivation restriction, during every derivation step, a
rule is chosen, and the leftmost occurrence of its left-hand side is rewritten.

The paper demonstrates the following three results. (I) One-sided random
context grammars with type-1 leftmost derivations characterize the family of
context-free languages. (II) One-sided random context grammars with type-2
and type-3 leftmost derivations characterize the family of recursively enumerable
languages. (III) Propagating one-sided random context grammars with type-
2 and type-3 leftmost derivations characterize the family of context-sensitive
languages.

The paper is organized as follows. First, Section 2 gives all the necessary ter-
minology. Then, Section 3 rigorously establishes the results mentioned above.
In the conclusion, Section 4 compares the generative power of random context
grammars and that of one-sided random context grammars with leftmost deriva-
tions.

2 Preliminaries and Definitions

We assume that the reader is familiar with formal language theory (see [32]).
For a set Q, 2Q denotes the power set of Q. For an alphabet (finite nonempty
set) V , V ∗ represents the free monoid generated by V under the operation of
concatenation. The unit of V ∗ is denoted by ε. Set V + = V ∗−{ε}; algebraically,
V + is thus the free semigroup generated by V under the operation of concate-
nation. For x ∈ V ∗, |x| denotes the length of x, and alph(x) denotes the set of
symbols occurring in x.

A context-free grammar is a quadruple, G = (N , T , P , S), where N and T
are two disjoint alphabets, S ∈ N , and P ⊆ N × (N ∪T )∗ is a finite relation. Set
V = N ∪ T . The components V , N , T , P , and S are called the total alphabet,
the alphabet of nonterminals, the alphabet of terminals, the set of rules, and
the start symbol, respectively. Each (A, x) ∈ P is written as A → x throughout
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this paper. If A → x ∈ P implies that |x| ≥ 1, then G is propagating. The
direct derivation relation over V ∗, symbolically denoted by ⇒, is defined as
follows: uAv ⇒ uxv in G if and only if u, v ∈ V ∗ and A → x ∈ P . Let ⇒n

and ⇒∗ denote the nth power of ⇒, for some n ≥ 0, and the reflexive-transitive
closure of ⇒, respectively. The language of G is denoted by L(G) and defined
as L(G) = {w ∈ T ∗ | S ⇒∗ w}.

A one-sided random context grammar (see [27]) is a quintuple, G = (N , T , PL,
PR, S), where N and T are two disjoint alphabets, S ∈ N , and PL, PR ⊆ N ×
(N∪T )∗×2N×2N are two finite relations. Set V = N∪T . The components V ,N ,
T , PL, PR and S are called the total alphabet, the alphabet of nonterminals, the
alphabet of terminals, the set of left random context rules, the set of right random
context rules, and the start symbol, respectively. Each (A, x, U,W ) ∈ PL ∪ PR

is written as �A → x, U,W � throughout this paper. For �A → x, U,W � ∈ PL,
U and W are called the left permitting context and the left forbidding context,
respectively. For �A→ x, U,W � ∈ PR, U and W are called the right permitting
context and the right forbidding context, respectively. If �A → x, U,W � ∈ PL ∪
PR implies that |x| ≥ 1, then G is propagating. The direct derivation relation
over V ∗, symbolically denoted by ⇒, is defined as follows. Let u, v ∈ V ∗ and
�A→ x, U,W � ∈ PL ∪ PR. Then, uAv ⇒ uxv in G if and only if

�A→ x, U,W � ∈ PL, U ⊆ alph(u) and W ∩ alph(u) = ∅

or
�A→ x, U,W � ∈ PR, U ⊆ alph(v) and W ∩ alph(v) = ∅

Let ⇒n and ⇒∗ denote the nth power of ⇒, for some n ≥ 0, and the reflexive-
transitive closure of ⇒, respectively. The language of G is denoted by L(G) and
defined as L(G) = {w ∈ T ∗ | S ⇒∗ w}.

2.1 Leftmost Derivations

By analogy with the discussion of leftmost derivations in [9], we next place three
types of leftmost derivation restrictions on one-sided random context grammars.

In the first derivation restriction type, during every derivation step, the left-
most occurrence of a nonterminal has to be rewritten. This type of leftmost
derivations corresponds to the well-known leftmost derivations in context-free
grammars.

Definition 1. Let G = (N , T , PL, PR, S) be a one-sided random context
grammar. The type-1 direct leftmost derivation relation over V ∗, symbolically
denoted by ⇒1lm , is defined as follows. Let u ∈ T ∗, A ∈ N and x, v ∈ V ∗. Then,
uAv ⇒1lm uxv in G if and only if uAv ⇒ uxv in G.

Let ⇒1 n
lm and ⇒1 ∗

lm denote the nth power of ⇒1lm , for some n ≥ 0, and the
reflexive-transitive closure of ⇒1lm , respectively. The -1lm language of G is denoted
by L(G, ⇒1lm ) and defined as L(G, ⇒1lm ) = {w ∈ T ∗ | S ⇒1 ∗

lm w}. �

Notice that if the leftmost occurrence of a nonterminal cannot be rewritten by
any rule, then the derivation is blocked.
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In the second derivation restriction type, during every derivation step, the
leftmost occurrence of a nonterminal that can be rewritten has to be rewritten.

Definition 2. Let G = (N , T , PL, PR, S) be a one-sided random context
grammar. The type-2 direct leftmost derivation relation over V ∗, symbolically
denoted by ⇒2lm , is defined as follows. Let u, x, v ∈ V ∗ and A ∈ N . Then,
uAv ⇒2lm uxv in G if and only if uAv ⇒ uxv in G and there is no B ∈ N and
y ∈ V ∗ such that u = u1Bu2 and u1Bu2Av ⇒ u1yu2Av in G.

Let ⇒2 n
lm and ⇒2 ∗

lm denote the nth power of ⇒2lm , for some n ≥ 0, and the
reflexive-transitive closure of ⇒2lm , respectively. The -2lm language of G is denoted
by L(G, ⇒2lm ) and defined as L(G, ⇒2lm ) = {w ∈ T ∗ | S ⇒2 ∗

lm w}. �

In the third derivation restriction type, during every derivation step, a rule is
chosen, and the leftmost occurrence of its left-hand side is rewritten.

Definition 3. Let G = (N , T , PL, PR, S) be a one-sided random context
grammar. The type-3 direct leftmost derivation relation over V ∗, symbolically
denoted by ⇒3lm , is defined as follows. Let u, x, v ∈ V ∗ and A ∈ N . Then,
uAv ⇒3lm uxv in G if and only if uAv ⇒ uxv in G and alph(u) ∩ {A} = ∅.

Let ⇒3 n
lm and ⇒3 ∗

lm denote the nth power of ⇒3lm , for some n ≥ 0, and the
reflexive-transitive closure of ⇒3lm , respectively. The -3lm language of G is denoted
by L(G, ⇒3lm ) and defined as L(G, ⇒3lm ) = {w ∈ T ∗ | S ⇒3 ∗

lm w}. �

Notice the following difference between the second and the third type. In the
former, a leftmost occurrence of a rewritable nonterminal is chosen first, and
then, a choice of a rule with this nonterminal on its let-hand side is made. In the
latter, a rule is chosen first, and then, the leftmost occurrence of its left-hand
side is rewritten.

2.2 Denotation of Language Families

Throughout the rest of this paper, the language families under discussion are
denoted in the following way. The families of context-free languages, context-
sensitive languages, and recursively enumerable languages are denoted by L ε

CF,
LCS, and L ε

RE, respectively.
The language family generated by one-sided random context grammars is de-

noted by L ε
ORC. The language families generated by one-sided random context

grammars with type-1 leftmost derivations, one-sided random context gram-
mars with type-2 leftmost derivations, and one-sided random context grammars
with type-3 leftmost derivations are denoted by L ε

ORC( ⇒1lm ), L ε
ORC( ⇒2lm ), and

L ε
ORC( ⇒3lm ), respectively.
The notation without ε stands for the corresponding propagating family. For

example, LORC denotes the language family generated by propagating one-sided
random context grammars.

3 Results

In this section, we prove results I through III, given next.
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I. One-sided random context grammars with type-1 leftmost derivations char-
acterize L ε

CF (Theorem 1). An analogical result holds for propagating one-
sided random context grammars (Theorem 2).

II. One-sided random context grammars with type-2 leftmost derivations char-
acterize L ε

RE (Theorem 3). Propagating one-sided random context grammars
with type-2 leftmost derivations characterize LCS (Theorem 4).

III. One-sided random context grammars with type-3 leftmost derivations char-
acterize L ε

RE (Theorem 5). Propagating one-sided random context grammars
with type-3 leftmost derivations characterize LCS (Theorem 6).

3.1 Type-1 Leftmost Derivations

First, we consider one-sided random context grammars with type-1 leftmost
derivations.

Lemma 1. For every context-free grammar G, there is a one-sided random con-
text grammar H such that L(H, ⇒1lm ) = L(G). Furthermore, if G is propagating,
then so is H.

Proof. Let G = (N , T , P , S) be a context-free grammar. Construct the one-sided
random context grammar H = (N , T , P ′, P ′, S), where

P ′ =
{
�A→ x, ∅, ∅� | A→ x ∈ P

}
As the rules in P ′ have their permitting and forbidding contexts empty, any
successful type-1 leftmost derivation in H is also a successful derivation in G,
so the inclusion L(H, ⇒1lm ) ⊆ L(G) holds. On the other hand, let w ∈ L(G) be
a string successfully generated by G. Then, it is well known that there exists a
successful leftmost derivation of w in G. Observe that such a leftmost derivation
is also possible in H . Thus, the other inclusion L(G) ⊆ L(H, ⇒1lm ) holds as well.
Finally, notice that whenever G is propagating, then so is H . Hence, the theorem
holds. �

Lemma 2. For every one-sided random context grammar G, there is a context-
free grammar H such that L(H) = L(G, ⇒1lm ). Furthermore, if G is propagating,
then so is H.

Proof. Let G = (N , T , PL, PR, S) be a one-sided random context grammar.
In what follows, symbols 〈 and 〉 are used to clearly unite more symbols into a
single compound symbol. Construct the context-free grammar

H =
(
N ′, T, P, 〈S, ∅〉

)
in the following way. Initially, set N ′ = {〈A,Q〉 | A ∈ N , Q ⊆ N} and P = ∅
(without any loss of generality, we assume that N ′∩V = ∅). Perform (1) and (2),
given next:
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(1) for each �A→ y0Y1y1Y2y2 · · ·Yhyh, U,W � ∈ PR, where yi ∈ T ∗, Yj ∈ N , for
all i and j, 0 ≤ i ≤ h, 1 ≤ j ≤ h, for some h ≥ 0, and for each 〈A,Q〉 ∈ N ′

such that U ⊆ Q and W ∩Q = ∅, add the following rule to P :

〈A,Q〉 → y0〈Y1, Q ∪ {Y2, Y3, . . . , Yh}〉y1
〈Y2, Q ∪ {Y3, . . . , Yh}〉y2
...

〈Yh, Q〉yh
(2) for each �A→ y0Y1y1Y2y2 · · ·Yhyh, ∅,W � ∈ PL, where yi ∈ T ∗, Yj ∈ N , for

all i and j, 0 ≤ i ≤ h, 1 ≤ j ≤ h, for some h ≥ 0, and for each 〈A,Q〉 ∈ N ′,
add the following rule to P :

〈A,Q〉 → y0〈Y1, Q ∪ {Y2, Y3, . . . , Yh}〉y1
〈Y2, Q ∪ {Y3, . . . , Yh}〉y2
...

〈Yh, Q〉yh
Before proving that L(H) = L(G, ⇒1lm ), let us give an insight into the con-
struction. As G always rewrites the leftmost occurrence of a nonterminal, we
use compound nonterminals of the form 〈A,Q〉 in H , where A is a nonterminal,
and Q is a set of nonterminals that appear to the right of this occurrence of A.
When simulating rules from PR, the check for the presence and absence of sym-
bols is accomplished by using Q. Also, when rewriting A in 〈A,Q〉 to some y, the
compound nonterminals from N ′ are generated instead of nonterminals from N .

Rules from PL are simulated analogously; however, notice that if the permit-
ting set of such a rule is nonempty, it is never applicable in G. Therefore, such
rules are not introduced to P ′. Furthermore, since there are no nonterminals to
the left of the leftmost occurrence of a nonterminal, no check for their absence
is done.

Clearly, L(G, ⇒1lm ) ⊆ L(H). The opposite inclusion, L(H) ⊆ L(G, ⇒1lm ),
can be proved by analogy with the proof of Lemma 1 by simulating the leftmost
derivation of every w ∈ L(H) by G. Observe that since the check for the presence
and absence of symbols in H is done in the second components of the compound
nonterminals, each rule introduced to P in (1) and (2) can be simulated by a
rule from PR and PL from which it is created.

Finally, notice that whenever G is propagating, then so is H . Hence, the
theorem holds. �
Theorem 1. L ε

ORC( ⇒1lm ) = L ε
CF

Proof. By Lemma 1, L ε
CF ⊆ L ε

ORC( ⇒1lm ). By Lemma 2, L ε
ORC( ⇒1lm ) ⊆ L ε

CF.
Consequently, L ε

ORC( ⇒1lm ) = L ε
CF, so the theorem holds. �

Theorem 2. LORC( ⇒1lm ) = LCF

Proof. Since it is well-known that any context-free grammar that does not gener-
ate the empty string can be converted to an equivalent propagating context-free
grammar, this theorem follows from Lemmas 1 and 2. �
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3.2 Type-2 Leftmost Derivations

Next, we turn our attention to one-sided random context grammars with type-2
leftmost derivations.

Lemma 3. For every one-sided random context grammar G, there is a one-
sided random context grammar H such that L(H, ⇒2lm ) = L(G). Furthermore,
if G is propagating, then so is H.

Proof. Let G = (N , T , PL, PR, S) be a one-sided random context grammar. We
construct the one-sided random context grammar H in such a way that always
allows it to rewrite an arbitrary occurrence of a nonterminal. Construct

H =
(
N ′, T, P ′

L, P
′
R, S

)
as follows. Initially, set N̄ = {Ā | A ∈ N}, N̂ = {Â | A ∈ N}, N ′ = N ∪ N̄ ∪ N̂ ,
and P ′

L = P ′
R = ∅ (without any loss of generality, we assume that N , N̄ , and N̂

are pairwise disjoint). Define the function ψ from 2N to 2N̄ as ψ(∅) = ∅ and

ψ
(
{A1, A2, . . . , An}

)
= {Ā1, Ā2, . . . , Ān}

Perform (1) through (3), given next:

(1) for each A ∈ N ,

(1.1) add �A→ Ā, ∅, N ∪ N̂� to P ′
L,

(1.2) add �Ā→ Â, ∅, N ∪ N̄� to P ′
R,

(1.3) add �Â→ A, ∅, N̄ ∪ N̂� to P ′
R;

(2) for each �A→ y, U,W � ∈ PR, add �A→ y, U,W � to P ′
R;

(3) for each �A→ y, U,W � ∈ PL, add �A→ y, ψ(U), ψ(W ) ∪N ∪ N̂� to P ′
L.

Before proving that L(H) = L(G), let us informally explain (1) through (3).
Rules from (2) and (3) simulate the corresponding rules from PR and PL, re-
spectively. Rules from (1) allow H to rewrite any occurrence of a nonterminal.

Consider a sentential form x1Ax2, where x1, x2 ∈ (N ∪ T )∗ and A ∈ N . To
rewrite A in H using type-2 leftmost derivations, all occurrences of nonterminals
in x1 are first rewritten to their barred versions by rules from (1.1). Then, A
can be rewritten by a rule from (2) or (3). By rules from (1.1), every occurrence
of a nonterminal in the current sentential form is then rewritten to its barred
version. Rules from (1.2) then start rewriting barred nonterminals to hatted
nonterminals. This is done from the right to the left. Finally, hatted nonterminals
are rewritten to their original versions by rules from (1.3). This is also done from
the right to the left.

To establish L(H, ⇒2lm ) = L(G), we prove two claims. First, Claim 1 shows
how derivations of G are simulated by H . Then, Claim 2 demonstrates the
converse—that is, it shows how derivations of H are simulated by G.

Claim 1. If S ⇒n x in G, where x ∈ V ∗, for some n ≥ 0, then S ⇒2 ∗
lm x in H.
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Proof. This claim is established by induction on n ≥ 0.

Basis. For n = 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that the claim holds
for all derivations of length �, where 0 ≤ � ≤ n.
Induction Step. Consider any derivation of the form S ⇒n+1 w in G, where
w ∈ V ∗. Since n + 1 ≥ 1, this derivation can be expressed as S ⇒n x ⇒ w, for
some x ∈ V +. By the induction hypothesis, S ⇒2 ∗

lm x in H . Next, we consider
all possible forms of x⇒ w in G, covered by the following two cases—(i) and (ii).

(i) Application of �A → y, U,W � ∈ PR. Let x = x1Ax2 and r = �A →
y, U,W � ∈ PR, where x1, x2 ∈ V ∗ such that U ⊆ alph(x2) and W ∩
alph(x2) = ∅, so x1Ax2 ⇒ x1yx2 in G. If x1 ∈ T ∗, then x1Ax2 ⇒2lm x1yx2
in H by the corresponding rule introduced in (2), and the induction step
is completed for (i). Therefore, assume that alph(x1) ∩ N �= ∅. Let x1 =
z0Z1z1Z2z2 · · ·Zhzh, where zi ∈ T ∗ and Zj ∈ N , for all i and j, 0 ≤ i ≤ h,
1 ≤ j ≤ h, for some h ≥ 1. By rules introduced in (1.1),

z0Z1z1Z2z2 · · ·ZhzhAx2 ⇒2 ∗
lm z0Z̄1z1Z̄2z2 · · · Z̄hzhAx2 in H

By the corresponding rule to r introduced in (2),

z0Z̄1z1Z̄2z2 · · · Z̄hzhAx2 ⇒2lm z0Z̄1z1Z̄2z2 · · · Z̄hzhyx2 in H

By rules introduced in (1.1) through (1.3),

z0Z̄1z1Z̄2z2 · · · Z̄hzhyx2 ⇒2 ∗
lm z0Z1z1Z2z2 · · ·Zhzhyx2 in H

which completes the induction step for (i).
(ii) Application of �A → y, U,W � ∈ PL. Let x = x1Ax2 and r = �A →

y, U,W � ∈ PL, where x1, x2 ∈ V ∗ such that U ⊆ alph(x1) and W ∩
alph(x1) = ∅, so x1Ax2 ⇒ x1yx2 in G. To complete the induction step
for (ii), proceed by analogy with (i), but use a rule from (3) instead of a rule
from (2).

Observe that cases (i) and (ii) cover all possible forms of x⇒ w in G. Thus, the
claim holds. �

Set V = N ∪ T and V ′ = N ′ ∪ T . Define the homomorphism τ from V ′∗ to V ∗

as τ(A) = τ(Ā) = τ(Â) = A, for all A ∈ N , and τ(a) = a, for all a ∈ T .

Claim 2. If S ⇒2 n
lm x in H, where x ∈ V ′∗, for some n ≥ 0, then S ⇒∗ τ(x)

in G, and either x ∈ (N̄ ∪ T )∗V ∗, x ∈ (N̄ ∪ T )∗(N̂ ∪ T )∗, or x ∈ (N̂ ∪ T )∗V ∗.

Proof. This claim is established by induction on n ≥ 0.

Basis. For n = 0, this claim obviously holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that the claim holds
for all derivations of length �, where 0 ≤ � ≤ n.
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Induction Step. Consider any derivation of the form S ⇒2 n+1
lm w in H , where

w ∈ V ′∗. Since n+ 1 ≥ 1, this derivation can be expressed as S ⇒2 n
lm x ⇒2lm w,

for some x ∈ V ′+. By the induction hypothesis, S ⇒∗ τ(x) in G, and either
x ∈ (N̄ ∪ T )∗V ∗, x ∈ (N̄ ∪ T )∗(N̂ ∪ T )∗, or x ∈ (N̂ ∪ T )∗V ∗. Next, we consider
all possible forms of x ⇒2lm w in H , covered by the following five cases—(i)
through (v).

(i) Application of a rule introduced in (1.1). Let �A → Ā, ∅, N ∪ N̂� ∈ P ′
L

be a rule introduced in (1.1). Observe that this rule is applicable only if
x = x1Ax2, where x1 ∈ (N̄ ∪ T )∗ and x2 ∈ V ∗. Then,

x1Ax2 ⇒2lm x1Āx2 in H

Since τ(x1Āx2) = τ(x1Ax2) and x1Āx2 ∈ (N̄ ∪T )∗V ∗, the induction step is
completed for (i).

(ii) Application of a rule introduced in (1.2). Let �Ā → Â, ∅, N ∪ N̄� ∈ P ′
R

be a rule introduced in (1.2). Observe that this rule is applicable only if
x = x1Āx2, where x1 ∈ (N̄ ∪ T )∗ and x2 ∈ (N̂ ∪ T )∗. Then,

x1Āx2 ⇒2lm x1Âx2 in H

Since τ(x1Âx2) = τ(x1Āx2) and x1Âx2 ∈ (N̄ ∪ T )∗(N̂ ∪ T )∗, the induction
step is completed for (ii).

(iii) Application of a rule introduced in (1.3). Let �Â → A, ∅, N̄ ∪ N̂� ∈ P ′
R

be a rule introduced in (1.3). Observe that this rule is applicable only if
x = x1Âx2, where x1 ∈ (N̂ ∪ T )∗ and x2 ∈ V ∗. Then,

x1Âx2 ⇒2lm x1Ax2 in H

Since τ(x1Ax2) = τ(x1Âx2) and x1Ax2 ∈ (N̂ ∪T )∗V ∗, the induction step is
completed for (iii).

(iv) Application of a rule introduced in (2). Let �A → y, U,W � ∈ P ′
R be a rule

introduced in (2) from �A → y, U,W � ∈ PR, and let x = x1Ax2 such that
U ⊆ alph(x2) and W ∩ alph(x2) = ∅. Then,

x1Ax2 ⇒2lm x1yx2 in H

and
τ(x1)Aτ(x2)⇒ τ(x1)yτ(x2) in G

Clearly, x1yx2 is of the required form, so the induction step is completed
for (iv).

(v) Application of a rule introduced in (3). Let �A→ y, ψ(U), ψ(W )∪N ∪ N̂� ∈
P ′
L be a rule introduced in (3) from �A→ y, U,W � ∈ PL, and let x = x1Ax2

such that ψ(U) ⊆ alph(x1) and
(
ψ(W ) ∪N ∪ N̂

)
∩ alph(x1) = ∅. Then,

x1Ax2 ⇒2lm x1yx2 in H

and
τ(x1)Aτ(x2)⇒ τ(x1)yτ(x2) in G

Clearly, x1yx2 is of the required form, so the induction step is completed
for (v).
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Observe that cases (i) through (v) cover all possible forms of x ⇒2lm w in H .
Thus, the claim holds. �

We now prove that L(H, ⇒2lm ) = L(G). Consider Claim 1 with x ∈ T ∗. Then,
S ⇒∗ x in G implies that S ⇒2 ∗

lm x in H , so L(G) ⊆ L(H, ⇒2lm ). Consider
Claim 2 with x ∈ T ∗. Then, S ⇒2 ∗

lm x in H implies that S ⇒∗ x in G, so
L(H, ⇒2lm ) ⊆ L(G). Consequently, L(H, ⇒2lm ) = L(G).

Finally, notice that whenever G is propagating, then so is H . Hence, the
theorem holds. �

Lemma 4. L ε
ORC( ⇒2lm ) ⊆ L ε

RE

Proof. This inclusion can be obtained by standard simulations, so we leave the
proof to the reader. �

Theorem 3. L ε
ORC( ⇒2lm ) = L ε

RE

Proof. Since L ε
ORC = L ε

RE (see Theorem 2 in [27]), Lemma 3 implies that
L ε

RE ⊆ L ε
ORC( ⇒2lm ). By Lemma 4, L ε

ORC( ⇒2lm ) ⊆ L ε
RE. Consequently, we have

that L ε
ORC( ⇒2lm ) = L ε

RE, so the theorem holds. �

Lemma 5. LORC( ⇒2lm ) ⊆ LCS

Proof. Since the length of sentential forms in derivations of propagating one-
sided random context grammars is nondecreasing, propagating one-sided random
context grammars can be simulated by linear bounded automata. A rigorous
proof of this lemma is left to the reader. �

Theorem 4. LORC( ⇒2lm ) = LCS

Proof. Since LORC = LCS (see Theorem 1 in [27]), Lemma 3 implies that LCS ⊆
LORC( ⇒2lm ). By Lemma 5, LORC( ⇒2lm ) ⊆ LCS. Consequently, we have that
LORC( ⇒2lm ) = LCS, so the theorem holds. �

3.3 Type-3 Leftmost Derivations

Finally, we consider one-sided random context grammars with type-3 leftmost
derivations.

Lemma 6. For every one-sided random context grammar G, there is a one-
sided random context grammar H such that L(H, ⇒3lm ) = L(G). Furthermore,
if G is propagating, then so is H.

Proof. Let G = (N , T , PL, PR, S) be a one-sided random context grammar. We
prove this lemma by analogy with the proof of Lemma 3. That is, we construct
the one-sided random context grammar H in such a way that always allows it
to rewrite an arbitrary occurrence of a nonterminal. Construct

H =
(
N ′, T, P ′

L, P
′
R, S

)
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as follows. Initially, set N̄ = {Ā | A ∈ N}, N ′ = N ∪ N̄ , and P ′
L = P ′

R = ∅
(without any loss of generality, we assume thatN∩N̄ = ∅). Define the function ψ
from 2N to 2N̄ as ψ(∅) = ∅ and

ψ
(
{A1, A2, . . . , An}

)
= {Ā1, Ā2, . . . , Ān}

Perform (1) through (3), given next:

(1) for each A ∈ N ,
(1.1) add �A→ Ā, ∅, N� to P ′

L;
(1.2) add �Ā→ A, ∅, N̄� to P ′

R;
(2) for each �A→ y, U,W � ∈ PR, add �A→ y, U,W � to P ′

R;
(3) for each �A→ y, U,W � ∈ PL, let U = {X1, X2, . . . , Xk}, and for each

U ′ ∈
{
{Y1, Y2, . . . , Yk} | Yi ∈ {Xi, X̄i}, 1 ≤ i ≤ k

}
add �A→ y, U ′,W ∪ Ψ(W )� to P ′

L (U ′ = ∅ if and only if U = ∅).
Before proving that L(G) = L(H, ⇒3lm ), let us give an insight into the construc-
tion. Rules introduced in (1) allow H to rewrite an arbitrary occurrence of a
nonterminal. Rules from (2) and (3) simulate the corresponding rules from PR

and PL, respectively.
Consider a sentential form x1Ax2, where x1, x2 ∈ (N ∪T )∗ and A ∈ N , and a

rule, r = �A→ y, U,W � ∈ P ′
L ∪P ′

R, introduced in (2) or (3). If A ∈ alph(x1), all
occurrences of nonterminals in x1 are rewritten to their barred versions by rules
from (1). Then, r is applied, and all barred nonterminals are rewritten back to
their non-barred versions. Since not all occurrences of nonterminals in x1 need
to be rewritten to their barred versions before r is applied, all combinations
of barred and non-barred nonterminals in the left permitting contexts of the
resulting rules in (3) are considered.

The identity L(H, ⇒3lm ) = L(G) can be established by analogy with the proof
given in Lemma 3, and we leave its proof to the reader. Finally, notice that
whenever G is propagating, then so is H . Hence, the theorem holds. �
Lemma 7. L ε

ORC( ⇒3lm ) ⊆ L ε
RE

Proof. This inclusion can be obtained by standard simulations, so we leave the
proof to the reader. �
Theorem 5. L ε

ORC( ⇒3lm ) = L ε
RE

Proof. Since L ε
ORC = L ε

RE (see Theorem 2 in [27]), Lemma 6 implies that
L ε

RE ⊆ L ε
ORC( ⇒3lm ). By Lemma 7, L ε

ORC( ⇒3lm ) ⊆ L ε
RE. Consequently, we have

that L ε
ORC( ⇒3lm ) = L ε

RE, so the theorem holds. �
Lemma 8. LORC( ⇒3lm ) ⊆ LCS

Proof. This lemma can be established by analogy with the proof of Lemma 5.

Theorem 6. LORC( ⇒3lm ) = LCS

Proof. Since LORC = LCS (see Theorem 1 in [27]), Lemma 6 implies that LCS ⊆
LORC( ⇒3lm ). By Lemma 8, LORC( ⇒3lm ) ⊆ LCS. Consequently, we have that
LORC( ⇒3lm ) = LCS, so the theorem holds. �
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4 Concluding Remarks

In this final section, we compare the results achieved in the previous section
with some well-known results of formal language theory. More specifically, we
relate the language families generated by one-sided random context grammars
with leftmost derivations to the language families generated by random con-
text grammars with leftmost derivations (in what follows, by random context
grammars, we always mean random context grammars with both permitting and
forbidding contexts, see [9] for the details).

The language families generated by random context grammars, random con-
text grammars with type-1 leftmost derivations, random context grammars with
type-2 leftmost derivations, and random context grammars with type-3 leftmost
derivations are denoted by L ε

RC, L
ε
RC( ⇒1lm ), L ε

RC( ⇒2lm ), and L ε
RC( ⇒3lm ), respec-

tively (see [9] for the definitions of all these families). The notation without ε
stands for the corresponding propagating family. For example, LRC denotes the
language family generated by propagating random context grammars.

The fundamental relationships between these families are summarized next.

Corollary 1. L ε
CF ⊂ LRC ⊂ LORC = LCS ⊂ L ε

ORC = L ε
RC = L ε

RE

Proof. This corollary follows from Theorems 1 and 2 in [27] and from Theo-
rems 1.2.4 and 1.2.5 in [9]. �
Considering type-1 leftmost derivations, we significantly decrease the power of
both one-sided random context grammars and random context grammars.

Corollary 2. L ε
ORC( ⇒1lm ) = L ε

RC( ⇒1lm ) = L ε
CF

Proof. This corollary follows from Theorem 1 in the previous section and from
Theorem 1.4.1 in [9]. �
Type-2 leftmost derivations increase the generative power of propagating ran-
dom context grammars, but the generative power of random context grammars
remains unchanged.

Corollary 3

(i) LORC( ⇒2lm ) = LRC( ⇒2lm ) = LCS

(ii) L ε
ORC( ⇒2lm ) = L ε

RC( ⇒2lm ) = L ε
RE

Proof. This corollary follows from Theorems 3 and 4 in the previous section and
from Theorem 1.4.4 in [9]. �
Finally, type-3 leftmost derivations are not enough for propagating random con-
text grammars to generate the family of context-sensitive languages.

Corollary 4

(i) LRC( ⇒3lm ) ⊂ LORC( ⇒3lm ) = LCS

(ii) L ε
ORC( ⇒3lm ) = L ε

RC( ⇒3lm ) = L ε
RE

Proof. This corollary follows from Theorems 5 and 6 in the previous section,
from Theorem 1.4.5 in [9], and from Remarks 5.11 in [10]. �
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Abstract. In this paper we modify Earley’s parsing algorithm to parse
words generated by Petri net controlled grammars. Adding a vector
which corresponds to a marking of a Petri net to Earley’s algorithm,
it is shown that languages generated by a subclass of k-Petri net con-
trolled grammars (introduced by J. Dassow and S. Turaev) are parsed
in polynomial time of the length of a word.

1 Introduction

Petri net controlled grammars have been introduced by M. ter Beek and J. Kleijn
[1] and then have been extensively studied by J. Dassow and S. Turaev [3–6, 13].
For a context-free grammar, there is a Petri net whose places correspond to the
nonterminals of the grammar and whose transitions correspond to the rules of
the grammar such that a transition occurs (fires) if and only if the corresponding
rule is applied in a derivation of the grammar. That is, the Petri net, called a
cf Petri net, represents a sequence of rules which are used in a derivation of the
grammar. Adding new places to a cf Petri net, a Petri net controls derivation of
a context-free grammar to generate a non-context-free language. Thus Petri net
controlled grammars have appeared quite naturally.

In this paper we focus our attention on the membership problem of Petri
net controlled grammars. It has been shown that languages generated by most
variants of Petri net controlled grammars are included in the class of matrix
languages [3, 4, 13]. Thus the membership problem of Petri net controlled gram-
mars might be reduced to that of matrix grammars. But we want to solve the
membership problem directly, that is, to parse a word in order to construct a
derivation tree. If a variant of Petri net controlled grammars has a fast parsing
algorithm, then the grammars will be as easily and frequently used as context-
free (without control) grammars, or even will replace context-free grammars, in
practical application.

There are two famous fast parsing algorithms, CKY algorithm [10, 14] and
Earley’s algorithm [8], for context-free grammars. CKY algorithm assumes a
grammar in Chomsky normal form. But, since modification of production rules
in a Petri net controlled grammar changes the structure of the Petri net, it is not
clear that a language generated by a variant of Petri net controlled grammars

H. Bordihn, M. Kutrib, and B. Truthe (Eds.): Dassow Festschrift 2012, LNCS 7300, pp. 174–185, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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is generated by a grammar in the same variant and in Chomsky normal form.
This is why CKY algorithm is inappropriate for our purpose. On the other hand,
Earley’s algorithm has no restriction on context-free grammars. Thus we start
to develop a parsing algorithm for Petri net controlled grammars from Earley’s
algorithm.

In Section 2 basic notions and notations about context-free grammars, Petri
nets, and Earley’s algorithm are described. A variant of Petri net controlled
grammars, k-Petri net controlled grammars (k-PN controlled grammars for short),
is introduced in Section 3. Earley’s algorithm is extended in Section 4 to parse
words generated by k-PN controlled grammars. The algorithm parses a word of
length n in time O(n3) for an unambiguous k-PN controlled grammar and in
time O(nk+4) for an ambiguous grammar. Section 5 is a conclusion.

2 Preliminaries

We assume that the reader is familiar with rudiments of context-free grammars,
regulated grammars, and Petri nets. For notions and notations which are not
described in this section, we refer to [2, 7, 9, 11, 12].

2.1 Context-Free Grammars

A context-free grammar is a construct G = (V,Σ, S,R) where V and Σ are non-
terminal and terminal alphabets, respectively, with V ∩Σ = ∅, S ∈ V is the start
symbol , and R ⊆ V × (V ∪Σ)∗ is a finite set of (production) rules . A rule (A, x)
is written as A→ x. A word x ∈ (V ∪Σ)+ directly derives y ∈ (V ∪Σ)∗, written
as x

r⇒G y, if and only if there is a rule r : A→ α ∈ R such that x = x1Ax2 and
y = x1αx2. We write x

r⇒ y ifG is understood and write x⇒ y if we are not inter-
ested in the rule r. The reflexive and transitive closure of⇒ is denoted by⇒∗. If
there are a sequence of rules r1, r2, . . . , rn and a sequence of words w0, w1, . . . , wn

such that wi−1
ri⇒ wi for every 1 ≤ i ≤ n, then we write w0

r1r2···rn====⇒ wn. We call
the sequence of rules r1, r2, . . . , rn derivation process fromw0 town. The language
generated by G is defined by L(G) = {w ∈ Σ∗ |S ⇒∗

G w}.
Let G = (V,Σ, S,R) be a context-free grammar. A rule of the form A→ λ is

called a λ-rule, where λ is the empty word. A rule A→ α is said to be a chain
rule if α ∈ V . Let σ be a derivation process from S to w ∈ Σ∗ in G. Then σ
determines a derivation tree, which is denoted by t(σ). Let U be the set of nodes
of t(σ) and let ν : U → V ∪Σ ∪ {λ} be the labelling function of t(σ). We make
a derivation tree in rules , denoted by tR(σ), by:

(1) Removing every node u which satisfies ν(u) ∈ Σ ∪ {λ}, i.e., a node which is
labelled by a terminal or λ.

(2) Replacing every label of nonterminal with the rule which rewrites the non-
terminal in the derivation process σ. That is, define a new labelling function
ν′ : U → R by ν′(u) = r where rule r rewrites the nonterminal ν(u).
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2.2 Petri Net

A Petri net is a quadruple N = (P, T, F, φ) where P and T are disjoint finite
sets of places and transitions, respectively, F ⊆ (P × T ) ∪ (T × P ) is the set of
directed arcs, φ : (P ×T )∪(T ×P )→ IN is a weight function with φ(x, y) = 0 for
every (x, y) �∈ F , where IN is the set of nonnegative integers. A Petri net can be
represented by a bipartite directed graph with the node set P ∪ T where places
are drawn as circles, transitions are rectangles, and arcs as arrows with labels
φ(p, t) or φ(t, p). If φ(p, t) = 1 or φ(t, p) = 1, then the label is omitted.

A place contains a number of tokens. Each number of tokens in every place is
expressed by a mapping μ : P → IN, which is called a marking. For every place
p ∈ P , μ(p) denotes the number of tokens in p. Graphically, tokens are drawn as
small solid dots inside circles.

A transition t ∈ T is enabled by a marking μ if and only if μ(p) ≥ φ(p, t)
for every p ∈ P . In this case t can occur (fire). An occurrence of a transition
t transforms the marking μ into a new marking μ′ which is defined by μ′(p) =
μ(p)−φ(p, t)+φ(t, p) for every p ∈ P . More than one transition may be enabled
by a marking. In this case one transition is nondeterministically selected and
fires. If a transition t occurs in a marking μ and the marking changes to μ′, then
we write μ

t→ μ′. A finite sequence t1t2 · · · tk of transitions is called an occurrence
sequence enabled at a marking μ if there are markings μ1, μ2, . . . , μk such that

μ
t1→ μ1

t2→ · · · tk→ μk. In short this sequence can be written as μ
t1t2···tk−−−−→ μk or

μ
ν→ μk where ν = t1t2 · · · tk. For each 1 ≤ i ≤ k, the marking μi is called

reachable from the marking μ.
A marked Petri net is a system N = (P, T, F, φ, ι) where (P, T, F, φ) is a Petri

net, ι is the initial marking. Let M be a set of marking. An occurrence sequence
ν of transitions is called successful for M if it is enabled at the initial marking ι
and finished at a final marking τ of M . Thus M is called a set of final markings.
If M is understood from the context, we say that ν is a successful occurrence
sequence.

Let N = (P, T, F, φ) be a Petri net. For an arc e = (u, v) in F (note that
(u ∈ P and v ∈ T ) or (u ∈ T and v ∈ P )), we use the notations •e = u and
e• = v. A sequence of arcs e1, e2, . . . , en is said to be a path in N if e•i = •ei+1

for every i ∈ {1, . . . , n− 1}. A path is a cycle if e•n = •e1.

2.3 Earley’s Algorithm

Here we introduce Earley’s algorithm [8]. Let G = (V,Σ, S,R) be a context-free
grammar. Let G′ = (V ∪ {S′}, Σ, S′, R′ = R ∪ {S′ → S}) be a new context-free
grammar where S′ is a new nonterminal. For a rule r : A → α in P ′, an item
[A → β · γ] is said to be an Earley’s state where βγ = α. Let S′ ⇒∗ w =
a1a2 · · · am ∈ Σ∗ be a derivation in G′. If a rule A → αβ which is used in the
derivation

S′ ⇒∗ γAδ ⇒ γαβδ ⇒∗ a1 · · · akak+1 · · · aiβδ
satisfies

γ ⇒∗ a1 · · · ak and α⇒∗ ak+1 · · · ai,
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then the state [A → α · β] belongs to a set Ew(k, i). The sets Ew(k, i) of such
states (0 ≤ k ≤ i ≤ m) are called sets of Earley’s state. The next property
directly follows from the definition.

Property 1. Let G, G′, and w be grammars and a word described in the above
paragraph.

(1) If a state of the form [A → ·α] appears in Ew(k, i), then k = i. Thus
[S′ → ·S] ∈ Ew(0, 0).

(2) [A→ α·] is in Ew(k, i) if and only if A⇒∗ ak+1 · · ·ai.
(3) [S′ → S·] is in Ew(0,m) if and only if S′ ⇒∗ a1 · · ·am, that is, w is in L(G).
(4) If [A → α · Bβ] ∈ Ew(k, i) with B ∈ V , then [B → ·γ] ∈ Ew(i, i) for every

B-rule B → γ.
(5) If [A → α · Bβ] ∈ Ew(k, i) and [B → γ·] ∈ Ew(i, j), then [A → αB · β] ∈

Ew(k, j).
(6) If [A→ α · aβ] ∈ Ew(k, i− 1) and ai = a, then [A→ αa · β] ∈ Ew(k, i).

The above property shows that an algorithm which constructs every set of
Earley’s states solves the membership problem for context-free languages.
Algorithm 1 constructs sets of Earley’s states.

Algorithm 1. An algorithm which constructs sets of Earley’s states

input: a word w = X1X2 · · ·Xm (Xi ∈ Σ)
output: the sets of Earley’s states Ew(k, i) (0 ≤ k ≤ i ≤ m)
1: for every k, i with ((k, i) �= (0, 0))
2: Ew(k, i) = ∅
3: Ew(0, 0) = {[S′ → ·S]}
4: do
5: if [A → α ·Bβ] ∈ Ew(0, 0) and [B → γ·] ∈ Ew(0, 0), then
6: insert [A → αB · β] to Ew(0, 0)
7: if [A → α ·Bβ] ∈ Ew(0, 0) with B ∈ V , then
8: insert [B → ·γ] to Ew(0, 0) for every B-rule B → γ
9: while Ew(0, 0) is changed
10: do
11: if [A → α · aβ] ∈ Ew(k, i− 1) and Xi = a, then
12: insert [A → αa · β] in Ew(k, i)
13: if [A → α ·Bβ] ∈ Ew(k, i) and [B → γ·] ∈ Ew(i, j), then
14: insert [A → αB · β] to Ew(k, j)
15: if [A → α ·Bβ] ∈ Ew(k, i) with B ∈ V , then
16: insert [B → ·γ] to Ew(i, i) for every B-rule B → γ
17: while some Ew(k, i) is changed

For an Earley’s state [A → α·] ∈ Ew(k, i) a set of derivations from A to
ak · · · ai can be constructed inductively.

(1) If α ∈ Σ∗, then A⇒ α is a derivation.
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(2) If α = u0B1u1 · · ·ul−1Blul for some B1, . . . , Bl ∈ V and u0u1 · · ·ul ∈ Σ∗

and a set of derivations from Bi to βi has been constructed for every i ∈
{1, . . . , l}, then the set of derivations from A to ak · · · ai contains all deriva-
tions of the form

A⇒ u0B1u1 · · ·ul−1Blul ⇒∗ u0β1u1 · · ·ul−1Blul ⇒∗ · · ·

⇒∗ u0β1u1 · · ·ul−1βlul = ak · · · ai.

If a start symbol S of a grammar does not appear in a right-hand side of any
rule, then we do not introduce new start symbol S′ and we use states of the form
[S → α·] to decide whether a word is generated or not. Whenever we discuss
Earley’s states, a new start symbol S′ is implicitly assumed if necessarily.

3 k-Petri Net Controlled Grammars

In this section we define k-Petri net controlled grammars according to [6].
Let G = (V,Σ, S,R) be a context-free grammar. A marked Petri net N =

(P, T, F, φ, ι) is a cf Petri net with respect to G under labelling functions (β, γ)
if N and (β, γ) satisfy:

(1) β : P → V and γ : T → R are bijections.
(2) F and φ satisfy:

• (p, t) ∈ F if and only if γ(t) = A → α and β(p) = A, in this case
φ(p, t) = 1.

• (t, p) ∈ F if and only if γ(t) = A → α and β(p) = x where |α|x ≥ 1, in
this case φ(t, p) = |α|x.

(3) ι(p) = 1 if β(p) = S and ι(p) = 0 for every p ∈ P − {β−1(S)}.

We note that a cf Petri net is uniquely determined from a combination of a
context-free grammar G and a pair of labelling functions (β, γ). Therefore, a cf
Petri net with respect to G under (β, γ) can be denoted by PN [G, (β, γ)].

Definition 1. Let G0 = (V,Σ, S,R) be a context-free grammar and let N =
PN [G0, (β, γ)] = (P, T, F, φ, ι) be a cf Petri net with respect to G0. A k-Petri net
controlled grammar (k-PN controlled grammar) is a quintuple G = (V,Σ, S,R,
Nk) where V , Σ, S, R are the components from the grammar G0 and Nk =
(P ′, T ′, F ′, φ′, ι′) is a k-Petri net which satisfies:

(1) P ′ = P ∪Q where Q = {q1, . . . , qk} is a set of new places.
(2) T ′ = T .
(3) F ′ = F ∪E where E ⊆ (T ×Q)∪ (Q× T ) is a set of new arcs. Every arc in

E satisfies the following condition;
• for every t ∈ T , (t, qi) ∈ E and (t, qj) ∈ E imply i = j and (qi, t) ∈ E
and (qj , t) ∈ E imply i = j.

• for every 1 ≤ i < j ≤ k, there exists no t ∈ T such that (t, qi) ∈ E and
(qj , t) ∈ E.
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• for every 1 ≤ i ≤ k, (qi, t) ∈ E for some t ∈ T if and only if (t′, qi) ∈ E
for some t′ ∈ T .

(4) φ′(x, y) = φ(x, y) if (x, y) ∈ F and φ′(x, y) = 1 if (x, y) ∈ E.
(5) ι′(p) = 1 if β(p) = S and ι′(p) = 0 for every p ∈ (P − {β−1(S)}) ∪ Q, i,e.,

ι′(p) = ι(p) if p ∈ P and ι′(p) = 0 if p ∈ Q.

We call G0 the underlying grammar of G.

In [6], condition (3) is described differently:

– E = {(t, qi) | t ∈ T i
1, 1 ≤ i ≤ k}∪{(qi, t) | t ∈ T i

2, 1 ≤ i ≤ k} such that T i
1 ⊂ T

and T i
2 ⊂ T , 1 ≤ i ≤ k where T i

l ∩ T
j
l = ∅ for 1 ≤ l ≤ 2, T i

1 ∩ T
j
2 = ∅ for

1 ≤ i < j ≤ k and T i
1 = ∅ if and only if T i

2 = ∅ for any 1 ≤ i ≤ k.

It is clear that the two conditions say the same thing. The most important point
of condition (3) is that a k-Petri net does not have any cycle of arcs in E. We
call it cycle-free condition.

Let τ be the marking τ(p) = 0 for every p ∈ P ∪ Q. Next we define the
derivation in a k-PN controlled grammar G and the language generated by G.

Definition 2. Let G = (V,Σ, S,R,Nk) be a k-PN controlled grammar. A word

α ∈ (V ∪Σ)∗ is derived in G if S
r1r2···rn====⇒ α such that t1t2 · · · tn = γ−1(r1r2 · · · rn)

∈ T ∗ is an occurrence sequence of the transitions of Nk enabled at the initial
marking ι. A derivation S

r1r2···rn====⇒ w ∈ Σ∗ successfully generates a terminal
word if t1t2 · · · tn = γ−1(r1r2 · · · rn) ∈ T ∗ is an occurrence sequence of the tran-
sitions of Nk enabled at the initial marking ι and finished at the final marking
τ . The language generated by G, denoted by L(G), consists of all words which
are successfully generated in G1.

In k-PN controlled grammars, new places control sequence of rules in a deriva-
tion, which is shown in the next example.

Example 1 (Example 7 of [3]). Let G = ({S,A,B}, {a, b, c}, S, R,N1) be a 1-PN
controlled grammar where R consists of the following rules

r0 : S → AB, r1 : A→ aAb, r2 : A→ ab, r3 : B → cB, r4 : B → c

1 A k-PN controlled grammar can be viewed a kind of positive valence grammar [6].
A (context-free) valence grammar G on ZZk for some positive integer k is a construct
G = (V,Σ, S,R, ν) where ZZ is the set of integers, (V,Σ, S,R) = G0 is a context-free
grammar (the underlying grammar), and ν : R → ZZk is the valence function. Let
σ = (r1, r2, . . . , rn) be a derivation process from S to w ∈ Σ∗ in G0. The word
w is generated by G if and only if

∑n
j=1 ν(rj) = 0 and for every initial segment

(r1, r2, . . . , ri) of σ
∑i

j=1 ν(rj) ≥ 0 where a ≥ b if and only if aj ≥ bj for every
jth component. A k-PN controlled grammar (V,Σ, S,R,Nk) is a positive valence
grammar (V,Σ, S,R, ν) where ν : R → ZZk is given by

ν(r) = (φ(γ−1(r), q1)− φ(q1, γ
−1(r)), . . . , (φ(γ−1(r), qk)− φ(qk, γ

−1(r)).

Clearly, every component of ν(r) is one of 1, 0, or −1. It should be noted that the
notion of positive valence grammars is different from that of valence grammars. The
latter permits

∑i
j=1 ν(rj) �≥ 0 for some initial segment (r1, · · · , ri).
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Fig. 1. 1-Petri net controlled grammar generating {anbncn |n > 0}

and N1 is illustrated in Fig. 1, in which rules are drawn in the rectangles of the
corresponding transitions. The grammar G generates the language {anbncn |n >
0}. �

4 Parsing for k-Petri Net Controlled Grammars

Our aim of this section is to develop a parsing algorithm for k-PN controlled
grammars.

First we must consider chain rules and λ-rules. Every context-free grammar
can be converted, without changing the generated language, to a grammar with
no chain rules and no λ-rules. But it is not obvious whether a k-PN controlled
grammar has an equivalent grammar (generating the same language) with no
chain rules and no λ-rules since a chain rule or a λ-rule may make a token in Q.
Indeed these rules cause a subtle problem (see Section 5). On the other hand,
a grammar with chain rules or λ-rules may have infinite derivation trees for a
word, which makes parsing very complex. So, in the remaining sections in this
paper, we assume that an underlying context-free grammar does not have any
chain rules nor λ-rules (but S → λ for the start symbol S with the condition
that S does not appear in a right-hand side of any rule).

A parsing algorithm for k-PN controlled grammars is obtained by associating
a vector which corresponds to a marking of a k-Petri net to each Earley’s state.
LetG = (V,Σ, S,R,Nk) be a k-PN controlled grammar and letG0 = (V,Σ, S,R)
be the underlying grammar of G. For a word w ∈ L(G0) we define an Earley’s
state with a token counter, which is a vector from ZZk with set of integers ZZ, as
follows:

(1) For a rule A→ α, the state [A→ ·α] has a token counter (v1, . . . , vk) where
vi = 1 and vj = 0 for j �= i if (γ−1(A→ α), qi) ∈ E, vi = −1 and vj = 0 for
j �= i if (qi, γ−1(A→ α)) ∈ E, or vi = 0 for every 1 ≤ i ≤ k otherwise.
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(2) If a state [A→ αB ·β] is obtained from [A→ α·Bβ]v1 and [B → γ·]v2 where
v1 and v2 are token counters associated to the states, then [A→ αB ·β] has
the token counter v1+v2 in which the addition is the normal component-wise
vector addition.

If the underlying grammar is ambiguous, then there may be states [A→ α·Bβ] ∈
Ew(i, j), [B → γ·] ∈ Ew(j, l), [A→ α·Bβ] ∈ Ew(i, j

′), and [B → γ′·] ∈ Ew(j
′, l).

In this case a state [A→ αB ·β] ∈ Ew(i, l) is constructed more than one way. The
state may have different token counters, that is, the situation [A → αB · β]v ∈
Ew(i, l) and [A → αB · β]v′ ∈ Ew(i, l) with v �= v′ is possible. States with
different token counters should be treated differently.

Example 2. In Example 1, the sets of Earley’s statesEw(k, i) with token counters
for the word w = a2b2c2 are shown in the next table.

�

It is obvious that a successful derivation S ⇒∗ w ∈ Σ∗ in G (under control)
implies [S′ → S·]0 ∈ Ew(0, n) where 0 is the zero vector and n = |w|. But the
converse is not always the case. Let us consider the next example.

Example 3. LetG = ({S,A,B,C}, {a, b, c}, S, R,N1) be a 1-PN controlled gram-
mar where R and N1 are illustrated in Fig. 2.

The word bbabc is generated by G while the word bacc cannot be generated
by G. But, as seen in the next tables, both token counters attached to Earley’s
states for the words become the zero vector.

Earley’s states for the word bbabc.
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Fig. 2. Petri net of Example 3

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5
[S → ·AC](0) [S → A · C](−1) [S → AC·](0)
[A → ·Ba](−1) [A → B · a](0) [A → B · a](−1) [A → Ba·](−1)
[B → ·b](1) [B → b·](1)
[B → ·bb](0) [B → b · b](0) [B → bb·](0)
k = 1

k = 2
[C → ·Bc](0) [C → B · c](1) [C → Bc·](1)

k = 3 [C → ·cc](0)
[B → ·b](1) [B → b·](1)
[B → ·bb](0) [B → b · b](0)
k = 4

k = 5

Earley’s states for the word bacc.
i = 0 i = 1 i = 2 i = 3 i = 4

[S → ·AC](0) [S → A · C](0) [S → AC·](0)
[A → ·Ba](−1) [A → B · a](0) [A → Ba·](0)
[B → ·b](1) [B → b·](1)
[B → ·bb](0) [B → b · b](0)
k = 1

[C → ·Bc](0)
k = 2 [C → ·cc](0) [C → c · c](0) [C → cc·](0)

[B → ·b](1)
[B → ·bb](0)
k = 3

k = 4

�

If a k-Petri net Nk = (P, T, F, φ, ι) satisfies “every cycle in Nk does not contain
any places in Q”, then we can prove equivalence between derivations S ⇒∗ w ∈
Σ∗ under control of Nk and [S′ ⇒ S·]0 ∈ Ew(0, n). We call the condition strict
cycle-free condition.

Lemma 1. Let G = (V,Σ, S,R,Nk) be a k-PN controlled grammar with strict
cycle-free Petri net Nk and let G0 = (V,Σ, S,R) be the underlying grammar of
G. For every w ∈ L(G0) with |w| = n, if [S′ → S·]0 ∈ Ew(0, n), then w ∈ L(G).

Proof. Let S′ ⇒∗ w be a derivation which is constructed from [S′ → S·]0 ∈
Ew(0, n). Let αAβ be a sentential form in the derivation such that there is an
arc (ql, γ

−1(A → δ)) ∈ E where A → δ is the rule in the derivation. If the
l-th component of the token counter increases in the derivation A ⇒ δ ⇒∗
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u ∈ Σ∗, then there is a path from γ−1(A → δ) to ql in Nk. The path and the
arc (ql, γ

−1(A → δ)) forms a cycle, which contradicts to the strict cycle-free
condition. Thus the l-th component of the token counter cannot increase in the
derivation A⇒∗ u.

Since the l-th component of the token counter becomes to 0 after derivation,
some positive values in the l-th component must appear in one of the derivations:
S′ ⇒∗ αAβ, α ⇒∗ x, or β ⇒∗ y where xuy = w. Hence there is a derivation in
which an occurrence of a positive value in the l-th component is prior to use the
rule A → δ, that is, A → δ can be applied under control of Nk. Therefore, the
derivation S ⇒∗ w is possible in G. �

Since to associate a token counter to an Earley’s state can be done in a constant
time, parsing for a strict cycle-free k-PN controlled grammar is performed in
time proportional to multiplication of n and the number of Earley’s states with
token counters. Number of Earley’s states for a context-free grammar is O(n2).
Now we enumerate different token counters. At most n rules are used to generate
a word of length n because the grammar has no chain rules and no λ-rules. Then
at most one token is generated or consumed when a rule is used. For a token
counter v = (v1, . . . , vk) sum of all components of the vector v′ = (|v1|, . . . , |vk|)
is at most n. There are (

n+ k
k

)
= O(nk)

different vectors in INk that sum of all components is n. Considering cases that
total tokens are less than n, there areO(nk+1) different token counters. Therefore
time complexity of Earley’s algorithm with token counters is O(nk+4). We note
that if the underlying grammar is unambiguous, then the time complexity is
O(n3).

The strict cycle-free condition, however, is so strict that some k-PN controlled
grammars are excluded from the algorithm, an example is illustrated in Example
3. It is an open problem whether every language generated by a k-PN controlled
grammar is generated by a strict cycle-free k-PN controlled grammar or not.

5 Conclusion

We have developed a parsing algorithm for k-PN controlled grammars. If an
underlying grammar of a k-PN controlled grammar is unambiguous, then the
algorithm is effective, that is, the time complexity is O(n3) where n is the length
of a word. For ambiguous grammars, the algorithm is less effective, that is, the
time complexity becomes O(nk+4) for k-PN controlled grammars.

There are some restrictions on the algorithms investigated in this paper. The
condition of no chain rules and no λ-rules is necessary to avoid infinitely many
possibilities in derivation. Let us consider the next 1-PN controlled grammar
shown in Fig. 3.

In the underlying grammar, there are infinite derivation trees for every word
of the form a(bb)+. For a fixed word in a(bb)+, only one derivation is possible
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Fig. 3. A 1-PN controlled grammar with chain rules

under the control of the 1-Petri net. A parsing algorithm must select one possible
derivation (tree) from infinite candidates. There may be two methods to resolve
this problem: converting every k-PN controlled grammar into a grammar with-
out chain rules and λ-rules or developing other algorithms for k-PN controlled
grammars with chain rules or λ-rules. These will be done in future.

References

1. ter Beek, M., Kleijn, J.: Petri Net Control for Grammar Systems. In: Brauer, W.,
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2. Dassow, J., Păun, G.: Regulated rewriting in formal language theory. Springer,
Berlin (1989)

3. Dassow, J., Turaev, S.: k-Petri Net Controlled Grammars. In: Mart́ın-Vide, C.,
Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 209–220. Springer,
Heidelberg (2008)

4. Dassow, J., Turaev, S.: Petri net controlled grammars: the case of special Petri
nets. Journal of Universal Computer Science 14, 2808–2835 (2009)

5. Dassow, J., Turaev, S.: Petri net controlled grammars: the power of labeling and
final markings. Romanian Journal of Information Science and Technology 12, 191–
207 (2009)

6. Dassow, J., Turaev, S.: Petri net controlled grammars with a bounded number of
additional places. Acta Cybernetica 19, 609–634 (2010)

7. David, R., Alla, H.: Petri nets and grafcet: tool for modelling discrete event systems.
Prentice Hall, Hertfordshire (1992)

8. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13, 94–102 (1970)

9. Hopcroft, J.H., Ullman, J.: Introduction to automata theory, languages, and com-
putation. Addison-Wesley, Reading (1979)

10. Kasami, T.: An efficient recognition and syntax algorithm for context-free lan-
guages, Scientific Report AFCRL-65-758, Air force Cambridge Research Lab.,
Bedford, Mass (1965)



Earley’s Parsing Algorithm and k-Petri Net Controlled Grammars 185

11. Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg
(1998)

12. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1-3. Springer,
Berlin (1997)

13. Turaev, S.: Petri net controlled grammars. In: Proc. 3rd Doctoral Workshop on
MEMICS 2007, Znojmo, Czech Republic, pp. 233–240 (2007)

14. Younger, D.H.: Recognition and parsing of context-free languages in time n3.
Information and Control 10, 189–208 (1967)



Descriptional Complexity

of Input-Driven Pushdown Automata

Alexander Okhotin1,�, Xiaoxue Piao2, and Kai Salomaa2

1 Department of Mathematics, University of Turku,
20014 Turku, Finland

alexander.okhotin@utu.fi
2 School of Computing, Queen’s University,

Kingston, Ontario K7L 3N6, Canada
{piao,ksalomaa}@cs.queensu.ca

Abstract. It is known that a nondeterministic input-driven push-
down automaton (IDPDA) can be determinized. Alur and Madhusudan
(“Adding nesting structure to words”, J.ACM 56(3), 2009) showed that
a deterministic IDPDA simulating a nondeterministic IDPDA with n

states and stack symbols may need, in the worst case, 2Ω(n2) states.
In their construction, the equivalent deterministic IDPDA does, in fact,
not need to use the stack. This paper considers the size blow-up of deter-
minization in more detail, and gives a lower bound construction, that is
tight within a multiplicative constant, with respect to the size of the non-
deterministic automaton both for the number of states and the number
of stack symbols. The paper also surveys the recent results on opera-
tional state complexity of IDPDAs, and on the cost of converting a non-
deterministic automaton to an unambiguous one, and an unambiguous
automaton to a deterministic one.

Keywords: descriptional complexity, state complexity, nondetermin-
ism, input-driven pushdown.

1 Introduction

In an input-driven pushdown automaton computation, the current input symbol
determines whether the automaton performs a push operation, a pop operation,
or does not touch the stack. Input-driven pushdown automata were originally
introduced by Mehlhorn [37] in 1980, who showed that the languages recognized
by such automata, called input-driven languages in the following, have space

complexity O
(

log2 n
log logn

)
. This bound was further improved to O(log n) by von

Braunmühl and Verbeek [8,9], and later Rytter [49] obtained a different algo-
rithm with the same space requirements. Von Braunmühl and Verbeek [9] also
considered the nondeterministic variant of the model, and proved it to be equal
in power to the deterministic case. Input-driven languages were shown to be in
NC1 by Dymond [15].
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The model was reintroduced by Alur and Madhusudan [2] in 2004 under the
name of visibly pushdown automata, and there has been considerably more work
on the model since then [1,3,11,43,45]. In particular, Alur and Madhusudan
established bounds for the descriptional complexity of determinizing a nonde-
terministic automaton of this kind [3], and showed that the corresponding class
of languages has strong closure properties. Furthermore, part of the recent lit-
erature considers an equivalent model called nested word automaton [3,4,46,50].
Nested words provide a natural data model for applications like XML document
processing, where the data has a dual linear-hierarchical structure. In partic-
ular, the 2Ω(n2) lower bound for the descriptional complexity of determinizing
nondeterministic automata was established using the model of nested word au-
tomata [3].

This paper sticks to the original name of input-driven pushdown automata
(IDPDA) for this machine model. Though the name “visibly pushdown automa-
ton” has been more widespread in the recent literature, the authors believe that
the original name better describes the operation of the machine model1. In the
following, when referring to work on nested word automata we, without separate
mention, use terminology associated with IDPDAs, that is, talk about states and
stack symbols of an IDPDA, instead of linear and hierarchical states of a nested
word automaton.

Input-driven pushdown automata were shown by Gauwin et al. [17] to be
equivalent to the pushdown forest automata of Neumann and Seidl [39]. A push-
down forest automaton can be viewed, roughly speaking, as a tree automaton
that traverses a tree in depth-first left-to-right order and is equipped with a syn-
chronized pushdown. That is, the machine pushes the stack when going down to
the leftmost child and pops the stack when returning from the rightmost child.
The class of tree languages recognized by pushdown forest automata coincides
with the regular tree languages; however, a pushdown forest automaton may be
considerably more concise than an ordinary bottom-up tree automaton: Alur
and Madhusudan [3] establish this succinctness gap by comparing nested word
automata and bottom-up tree automata.

A tree-walking transducer model with a synchronized pushdown, albeit work-
ing on ranked trees and with an arbitrary traversal strategy, was considered
already by Engelfriet et al. [16]. Kamimura and Slutzki [26] have proved in 1981,
that the nondeterministic and deterministic variants of such graph-walking au-
tomata equipped with a synchronized pushdown are equivalent. Instead of trees,
the automata of Kamimura and Slutzki [26] operate on directed acyclic graphs.

The subject of this paper is descriptional complexity of input-driven lan-
guages, which is measured in terms of the number of states and pushdown sym-
bols in several kinds of IDPDAs. This work further describes the capabilities
of IDPDAs, and also contributes to the ongoing studies of the state complex-
ity of other important language families. Descriptional complexity of regular

1 For example, Bollig [7] actually uses multiple times the term “input-driven” to de-
scribe the operation of visibly pushdown automata, in spite of being unaware of this
name from Mehlhorn [37].
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languages has been fruitfully studied over half a century, and particularly inten-
sively in the last two decades, see a recent survey by Holzer and Kutrib [24]. The
size cost of determinizing finite automata was determined in the early papers
of Rabin and Scott [47] and Lupanov [34], the costs of unambiguous nonde-
terminism were settled by Leung [33], and the tradeoffs between two-way and
one-way finite automata were determined by Kapoutsis [27]. Similar questions
in the case of a one-letter alphabet were addressed by Chrobak [12], Mereghetti
and Pighizzini [38], Okhotin [41,42] and Kunc and Okhotin [28]. State complex-
ity of basic operations on DFAs was determined by Maslov [36] and by Yu et
al. [54], and the subject was exhaustively studied in numerous follow-up papers;
Holzer and Kutrib [22] similarily settled the state complexity of operations on
NFAs, while Jirásková and Okhotin [25] and Kunc and Okhotin [29] obtained the
first results on the complexity of operations on two-way finite automata. Turn-
ing to context-free languages, their descriptional complexity is known to involve
undecidability problems and non-recursive tradeoffs, brought to light by Hart-
manis [21]; their succinctness with respect to the number of nonterminal symbols
in a grammar was studied in the works of Gruska [19], Domaratzki et al. [14]
and Dassow and Stiebe [13]. As the input-driven languages are strictly contained
between the regular languages and the context-free languages, and possess good
closure properties, the study of their descriptional complexity belongs to the
same research area.

The first result on the succinctness of input-driven pushdown automata was
obtained by Alur and Madhusudan [2,3], who determined the costs of their deter-
minization in terms of the number of states. This line of research was continued
by the authors [45], who refined this result by investigating the succinctness of
an intermediate class with unambiguous nondeterminism (UIDPDA). The com-
plexity of basic operations on input-driven languages was gradually determined
in a series of papers by Han and Salomaa [20], Piao and Salomaa [46], Salo-
maa [50] and Okhotin and Salomaa [44]. In this paper, the above results shall
be reviewed, and, in particular, the size blow-up of determinization shall be con-
sidered in more detail. We give a lower bound for the size of a deterministic
IDPDA equivalent to a given nondeterministic IDPDA that is tight within a
multiplicative constant on the size of the original automaton, both with respect
to the number of states and the number of stack symbols. The results of Alur
and Madhusudan [2,3] give the same lower bound for the number of states of
the equivalent deterministic IDPDA; however, in their construction, the deter-
ministic IDPDA does not need to use the stack at all, and could be replaced by
a deterministic finite automaton (DFA).

The IDPDA model has been intensively studied, because it allows deter-
minization, and because of its strong closure and decidability properties [3].
Input-driven pushdown automata with multiple stacks have been introduced and
shown to retain many of the desirable closure and decidablity properties [30].
Another promising extension of the input-driven pushdown automaton model
are the height-deterministic pushdown automata of Nowotka and Srba [40]. In
the last section, we discuss possible extensions of the IDPDA model, as well
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as, the realization of such automata as graph automata by Madhusudan and
Parlato [35] that extends the correspondence between IDPDAs and nested word
automata.

2 Preliminaries

We assume the reader to be familiar with basic notions of formal lan-
guages [48,52]. Good references on descriptional complexity of finite automata
include surveys by Holzer and Kutrib [23,24] and a handbook article by Yu [53].

The cardinality of a finite set F is |F | and the set of subsets of F is 2F . Let
N denote the set of positive integers and for n ∈ N denote [n] = {1, . . . , n}. The
domain of a binary relation R ⊆ X × Y is dom(R) = {x ∈ X | (∃y ∈ Y )(x, y) ∈
R}. The image of R is im(R) = {y ∈ Y | (∃x ∈ X)(x, y) ∈ R}. The relation R
is said to be left-total if dom(R) = X and R is surjective if im(R) = Y . A left-
total and surjective binary relation is called a correspondence. For every integer
n � 1, the number of correspondences R ⊆ [n] × [n] is denoted by corr(n). It
would be possible to give a recursive formula for the number of correspondences
on [n] × [n], however, for our purposes it is sufficient to have a lower bound

2Ω(n2). Consider that
corr(n) � (2n − 1)n−1. (1)

The lower bound of (1) follows from the observation that if f is a function
[n− 1]→ (2[n] − {∅}), then the relation

{ (x, y) | x ∈ [n− 1], y ∈ f(x) } ∪ ({n} × [n])

is a correspondence on [n]× [n].
In the following, Σ denotes a finite input alphabet. The set of strings over Σ

is Σ∗. The length of a string w ∈ Σ∗ is denoted by |w|, and the empty string
ε is the unique string of length 0. Let Σ+ = Σ∗ \ {ε} be the set of nonempty
strings, let Σm with m � 0 be the set of strings of length exactly m, and let
Σ�m denote the set of strings of length at most m. For any subalphabet Γ ⊆ Σ,
the projection πΓ : Σ∗ → Γ ∗ is the homomorphism that maps all symbols in Γ
to themselves and erases the symbols from Σ \ Γ .

Next, we recall and introduce definitions and notation concerning input-driven
pushdown automata (IDPDA) [37], also known under the name of visibly push-
down automata. The reader is referred to Alur and Madhusudan [2,3] for a more
detailed presentation and examples.

An IDPDA is a pushdown automaton, in which the type of the current input
symbol determines whether the next operation pushes onto the stack, pops from
the stack, or does not touch the stack. In the formal definition, the input alphabet
is an action alphabet , defined as a triple Σ̃ = (Σ+1, Σ−1, Σ0), in which the
components Σ+1, Σ−1 and Σ0 are finite disjoint sets. In the following, unless
otherwise mentioned, Σ+1, Σ−1 and Σ0 always refer to components of an action

alphabet, and their union is denoted by Σ. A string over Σ̃ is an ordinary string
over Σ, where each symbol is assigned a “type” depending on the component it
belongs to.
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Definition 2.1. A nondeterministic input-driven pushdown automaton,
NIDPDA is a tuple

A = (Σ̃, Γ,Q, q0, F, δi, δpush, δpop) (2)

where Σ = Σ+1 ∪ Σ−1 ∪ Σ0 is the input alphabet, Γ is the finite set of stack
symbols, Q is the finite set of internal states, q0 ∈ Q is the start state, F ⊆ Q
is the set of final states, δi : Q × Σ0 → 2Q is the internal transition function,
and δpush : Q × Σ+1 → 2Q×Γ and δpop : Q × (Γ ∪ {⊥}) × Σ−1 → 2Q are the
transition functions determining the push and pop operations, respectively. The
symbol ⊥ �∈ Γ is used to denote the empty stack.

A configuration of A is a tuple (q, w, u), where q ∈ Q is the state, w ∈ Σ∗ is the
remaining input and u ∈ Γ ∗ is the stack contents2. The height of the stack of the
configuration (q, w, u) is |u| (and hence the height of the empty stack is zero).
The set of configurations of A is C(A) and we define the single step computation
relation �A⊆ C(A)× C(A) as follows.

Operation not changing the stack: (q, aw, u) �A (q′, w, u), for all a ∈ Σ0,
q′ ∈ δi(q, a), w ∈ Σ∗ and u ∈ Γ ∗.

Push operation: (q, aw, u) �A (q′, w, γu), for all a ∈ Σ+1, (q
′, γ) ∈ δpush(q, a),

γ ∈ Γ , w ∈ Σ∗ and u ∈ Γ ∗.
Pop operation: (q, aw, γu) �A (q′, w, u) for all a ∈ Σ−1, q

′ ∈ δpop(q, γ, a),
γ ∈ Γ , w ∈ Σ∗ and u ∈ Γ ∗; furthermore, (q, aw, ε) �A (q′, w, ε), for all
a ∈ Σ−1, q

′ ∈ δpop(q,⊥, a) and w ∈ Σ∗.

According to the last case, when the automaton A encounters an element
a ∈ Σ−1 with an empty stack, A can make a state transition chosen from
δpop(q1,⊥, a) (where q1 ∈ Q is the current state) and the stack remains empty.
When reading a symbol from Σ0∪Σ+1, the next state does not depend on the top
stack symbol. Naturally, given an IDPDA A, it would be possible to construct
an IDPDA B that simulates the computation of A and keeps track (in its state)
of the topmost stack symbol in the corresponding computation of A. However,
this transformation would need to increase the number of states and the number
of stack symbols of A. The descriptional complexity results on IDPDAs assume
that the transition relations are defined as in Definition 2.1.

The initial configuration of A on input w is CinitA (w) = (q0, w, ε). The language
recognized by A is defined as

L(A) = {w ∈ Σ∗ | CinitA (w) �∗A (q, ε, u) for some q ∈ F, u ∈ Γ ∗}.

The distinguishing property of input-driven pushdown automata is that the type
of the stack operation is always determined by the input symbol and, in partic-
ular, the height of the stack that any NIDPDA reaches in an arbitrary compu-
tation at the end of an input w is uniquely determined by w.

2 A stack ε is, for the purposes of the transition relation δpop, interpreted to contain
the bottom of stack symbol ⊥.
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A configuration (q, ε, u), with q ∈ Q, u ∈ Γ ∗ and with the remaining input
empty, is called a terminal configuration. If CinitA (w) �∗A C, where C is a terminal
configuration, we say that the stack height of w is the height of the stack of C.
As observed above, the stack height of a string w is a property of w that does
not depend on the nondeterministic computation of A reaching the terminal
configuration C.

An NIDPDA A as in (2) is deterministic, a DIDPDA, if its transition functions
δi, δpush and δpop give at most one action in each configuration, that is, are
defined as partial functions δi : Q × Σ0 → Q, δpush : Q × Σ+1 → Q × Γ and
δpop : Q× (Γ ∪ {⊥})×Σ−1 → Q.

The computations of an NIDPDA accept by final state only. There is a natural
correspondence between NIDPDAs and nested word automata [3], where the
stack contents of the NIDPDA consists of the sequence of hierarchical states
assigned to currently pending call symbols in the corresponding nested word
automaton computation. The above definition of acceptance corresponds to a
so called linearly accepting nested word automaton [3] that does not care about
the hierarchical states assigned to pending calls.

In the following sections, when citing results from papers using the nested
word automaton formalism, often without separately mentioning it, we translate
them to the notation of input-driven pushdown automata.

3 Size Explosion of Determinization

An extension of the subset construction allows a deterministic simulation of an
NIDPDA. The following upper bound and lower bounds for the size blow-up of
determinization were established in two papers by Alur and Madhusudan [2,3],
respectively.

By the size of an NIDPDA A we mean the sum of the number of states of A
and the number of stack symbols of A.

Theorem 3.1 (Alur and Madhusudan [2,3])). An NIDPDA with h states
and k stack symbols has an equivalent DIDPDA with 2k·h states and 2k·k stack
symbols. Conversely, there exists a family of languages

Ln = {<u1$v1#u2$v2# · · ·#um$vm%v>u | m � 1, ui, vi ∈ {0, 1}+ :

∃t ∈ {1, . . . ,m} : u = ut, v = vt, |u| = |v| = �log2 n�},

with n � 1, such that Ln has an NIDPDA of size O(n) and any DIDPDA

recognizing Ln needs 2Ω(n2) states.

A small NIDPDA for the witness language Ln begins its computation on the
left bracket < by guessing the string u and pushing it to the stack, as well as
remembering it in the internal states. Then it scans over the pairs ui$vi, until it
nondeterministically chooses one of them, and verifies that the first component
of the chosen pair is the string u stored in the internal state. Next, it remembers
the second component of the next pair as v, scans until the marker %, and
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verifies that the string after the marker % is exactly the string v remembered
in the state. It remains to recall the value of u from the stack upon reading the
right bracket >, and check that it matches the string given in the end of the
input.

This language is designed to enable efficient use of nondeterminism when
guessing stack symbols to be pushed. At the same time, a deterministic com-
putation cannot utilize the stack in any useful way. This means that a minimal
equivalent DIDPDA is essentially an ordinary deterministic finite automaton,
and does not need the stack.

Here we consider the size exposion of determinization in a little more detail.
We construct a family of languages Lk,h, for k, h ∈ N with k � h, such that
each Lk,h has an NIDPDA with c · h states and k stack symbols, where c is a
constant independent of k and h, and any DIDPDA for the language Lk,h needs

2k·h states and 2Ω(k2) stack symbols.
First we recall from [45,46] some techniques for establishing lower bounds for

DIDPDAs. Lemmas 3.1 and 3.2 are inspired by the fooling set methods used
for lower bounds for NFAs [5,18,52]. When dealing with input-driven pushdown
automata we need to rely on fooling set type lower bound methods also in the
case of deterministic automata and, in general, the methods do not always es-
tablish optimal lower bounds [50]. Further variants of the lower bound methods
can be found in the literature [20,45,46] where they have been used to estab-
lish tight lower bounds for operational state complexity of deterministic and
nondeterministic IDPDAs.

Definition 3.1. Let Σ̃ = (Σ+1, Σ−1, Σ0) be an action alphabet and L ⊆ Σ∗.

(a) A finite set S ⊆ Σ∗ is a k-separator set for L, k � 0, if

(i) each string of S has stack height k,
(ii) each string of S is a prefix of some string of L, and,
(iii) for any u, v ∈ S, u �= v, there exists x ∈ Σ∗ such that ux ∈ L if and only

if vx �∈ L.
(b) A finite set S ⊆ Σ∗ is a separator set (for L) if S is a k-separator set (for

L) for some k � 0.
A separator set {u1, . . . , un} is a linear separator set if there exists v ∈ Σ∗

such that ui = vu
′
i, u

′
i ∈ Σ∗

0 , i = 1, . . . , n.

Any two strings of a linear separator set contain only symbols of Σ0 after their
longest common prefix.

The lemma below is from Piao and Salomaa [46] and Lemma 3.2 is from
Okhotin and Salomaa [45]. For completeness we include a short proof for the
lemmas.

Lemma 3.1 (Piao and Salomaa [46]). Let A be a DIDPDA with set of states
Q and set of stack symbols Γ . If S is a k-separator set for L(A), then

|Γ |k · |Q| � |S|.
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Proof. Consider any distinct strings u1, u2 ∈ S, u1 �= u2. Since ui is a prefix
of some string of L(A), there exists a unique terminal configuration (qi, ε, vi),
qi ∈ Q, vi ∈ Γ ∗, such that CinitA �∗A (qi, ε, vi), i = 1, 2. The stack height of
each element of S is k and, hence, vi ∈ Γ k, i = 1, 2. Since (qi, ε, vi) uniquely
determines the computation of A on a suffix following ui, condition (a-iii) of
Definition 3.1 implies that q1 �= q2 or v1 �= v2, and the claim follows. �

Lemma 3.2 (Okhotin and Salomaa [45]). If a language L has a linear sep-
arator set S, then any DIDPDA for L has at least |S| states.

Proof. Let S = {u1, . . . , um} and let A be an arbitrary DIDPDA recognizing L.
Since ui is a prefix of some string of L, the computation of A on ui is defined
and ends in a configuration Ci with a state qi with 1 � i � m. For the sake of
contradiction, assume that A has fewer than |S| states; then qi = qj for some
i �= j. Since after their common prefix, ui and uj contain only symbols of Σ0

and A is deterministic, we know that the stack contents of Ci and Cj are the
same. Now, as in the proof of the previous lemma, we get a contradiction from
the fact that S is a separator set. �

A limitation of Lemma 3.1 is the requirement that all strings of a separator
set need to have the same stack height. It seems not easy to develop analogous
conditions without this requirement. On the other hand, as will be done below,
by using more than one k-separator set (with different values of k) for the same
language and the linear separator sets of Lemma 3.2 we can obtain improved
lower bounds for the size of DIDPDAs.

Next we define the languages used for our size lower bound for converting an
NIDPDA to a deterministic automaton.

Choose Σ̃ = (Σ+1, Σ−1, Σ0), where Σ0 = {0, $,#,%},Σ+1 = {<} and Σ−1 =
{>}, and let k, h ∈ N. For 1 � r � k and 1 � s � h we define the language

Mk,h
r,s,0 = { <u1$v1#u2$v2# · · ·#um$vm%vt>ut | ui, vi ∈ 0+, (3)

i = 1, . . . ,m, m � 1, |ut| = r, |vt| = s, t ∈ {1, . . . ,m} }

The union of all the sets Mk,h
r,s,0 with 1 � r � k and 1 � s � h would be roughly

analogous to the language used by Alur and Madhusudan [3] to establish the
lower bound for the size blow-up of the number of states in determinization.

Define a family of languages Mk,h
x,i , 1 � x � k, inductively on i as follows:

Mk,h
x,0 =

⋃
1�s�h

Mk,h
x,s,0, (4)

Mk,h
x,i+1 ={<u1$v1#u2$v2# · · ·um$vm αi>ut | uj, vj ∈ 0+, (5)

j = 1, . . . ,m, m � 1, (∃t ∈ {1, . . . ,m}) such that

|ut| = x, |vt| = r, and αi ∈Mk,h
r,i , 1 � r � k}.

Any computation of an NIDPDA on any wj ∈ Mk,h
x,j with j � 1 must perform

j + 1 push-operations on the stack followed by j + 1 pop-operations. According
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to definition (5), if i � 1, then a string wi+1 of Mk,h
x,i+1 always contains a unique

string of Mk,h
r,i , for some 1 � r � k, as a substring. If i = 0, then Mk,h

x,i+1 has a

unique substring from Mk,h
r,s,0, for some 1 � r � k, 1 � s � h. In the notations

of (5) this is αi, and αi is called the directly enclosed substring of wi+1.
In the notation of (5), the choice of the substring ut$vt with 1 � t � m

need not be unique, but the directly enclosed substring of wi+1 ∈ Mk,h
x,i+1 is

determined as the unique substring beginning with the second occurrence of
the symbol < ∈ Σ+1 in wi+1, and ending with the symbol preceding the last
occurrence of the symbol > ∈ Σ−1.

Now we define
Lk,h =

⋃
1�x�k,

i�0

Mk,h
x,i .

Lemma 3.3. There exists a constant c ∈ N such that for k, h � 1, the language
Lk,h is recognized by an NIDPDA with c ·max{k, h} states and k stack symbols.

Proof. We describe the construction of an NIDPDA A recognizing Lk,h. The
below discussion assumes that the input does not contain any left brackets <
after the first occurrence of a right bracket > (that is, the projection of the input
to {<,>} belongs to <∗>∗). Clearly, this property can be checked by doubling
the number of states.

The set of stack symbols of A is {γ1, . . . , γk}. On the first input symbol <, A
pushes a nondeterministically chosen symbol γj , with 1 � j � k, to the stack.
In general, when A on input symbol < pushes γj , it “remembers” j in the state
and nondeterministically chooses to operate as in (i) or (ii) below. As explained
in the following, except for the first input symbol <, the stack symbol γj is
determined by the state of the computation at <.

(i) A nondeterministically guesses that it has read the last occurrence of <.
The computation of A verifies that the input before the first symbol > is
of the form (0+$0+#)∗0+$0+%0j

′
, and A nondeterministically “selects” one

substring 0i1$0i2 delimited by the #-markers and verifies that i1 = j and
i2 = j′.

(ii) A nondeterministically guesses that < is not the last occurrence of this sym-
bol. Now the computation verifies that the input before the next < is of the
form (0+$0+#)∗0+$0+, and A nondeterministically “selects” one substring
0i1$0i2 delimited by the #-markers and verifies that i1 = j and then goes to
a state that in the next symbol < pushes γi2 .

On a symbol >, the automaton A pops γj from the stack, and the subsequent
computation verifies that the substring before the next > is 0j .

The operation of A between the push and pop operations needs to store and
compare strings of the form 0j, j � max{k, h} and this can clearly be done with
the required number of states. Note that because all occurrences of symbol <
precede all occurrences of >, at no point in the computation the state of A needs
to remember the length of more than one substring 0j , 1 � j � max{k, h}.
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Assuming the input is well-nested, the push and pop operations nondeter-
ministically verify that the input is of the form as specified in the definition of
Mk,h

x,i+1 (5), or Mk,h
r,s,0 (3). In the latter case, at the first symbol <, according to

(i), A guesses that this was the last occurrence of < and pushes γr to the stack.
Finally, A can verify that the input is well nested, by storing in the state the

information whether or not the stack is empty, and for this it is sufficient to
double the number of states.3 �

Next we give a lower bound for the size of a DIDPDA recognizing Lk,h. Recall
that corr(n), n � 1, is the number of correspondences on [n]× [n].

Lemma 3.4. Any DIDPDA for the language Lk,h, h � k � 1, needs at least
2k·h − 1 states and corr(k) stack symbols.

Proof. For R ⊆ [k]× [h], denote

wR = <u1#u2# · · ·#u|R|,

where the sequence of substrings ui, i = 1, . . . , |R|, consists of all strings 0r$0s,
(r, s) ∈ R, 1 � r � k, 1 � s � h, in a fixed but arbitrary order. Now the set

S1 = {wR | ∅ �= R ⊆ [k]× [h]}

is a linear separator set for Lk,h. To see this consider two non-empty relations
R1 �= R2, and without loss of generality choose (r, s) ∈ R1 − R2, 1 � r � k,
1 � s � h. This means that wR1%0s > 0r ∈ Lk,h and wR2%0s > 0r �∈ Lk,h.
All strings of S1 contain an element of Σ+1 ∪Σ−1 only as the first symbol, and
hence S1 is a linear separator set.

Since |S1| = 2k·h − 1, Lemma 3.2 gives the required lower bound for the
number of states of an arbitrary DIDPDA for Lk,h.

To get the lower bound for the number of stack symbols, consider R ⊆ [k]×[k].
By the string representation of R we mean a string wR = u1#u2# · · ·#u|R|
where the substrings ui, 1 � i � |R|, are all substrings 0r$0s, 1 � r, s � k, in
some (fixed but arbitrary) order. Thus for each R ⊆ [k] × [k] the string wR is
uniquely determined.

For m � 2, define

Sm = {<wR1<wR2< · · ·<wRm |
Ri ⊆ [k]× [k] is a correspondence, i = 1, . . . ,m }.

We show that Sm is an m-separator set for Lk,h. Consider two distinct strings
of Sm,

u1 = <wR1<wR2< · · ·<wRm and u2 = <wR′
1
<wR′

2
< · · ·<wR′

m
.

Thus, there exists 1 � i � m such that Ri �= R′
i and, without loss of generality,

we can choose (r0i , s
0
i ) ∈ Ri−R′

i. Since each Rj , 1 � j � m, is a correspondence,

3 This is the same construction that converts an arbitrary nested string automaton to
a linearly accepting one [3].
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there exists a chain (rj , sj) ∈ Rj , j = 1, . . . ,m, such that sj = rj+1, 1 � j < m,
and ri = r0i , si = s0i , that is, the element r0i is in the image of the composed
relation R1 ◦ · · · ◦Ri−1, and s

0
i is in the domain of Ri+1 ◦ . . . ◦Rm.

This means that

u1%sm>rm>rm−1> · · ·>r2>r1 ∈ Lk,h.

On the other hand, we note that (r0i , s
0
i ) = (ri, ri+1) if i < m, and (r0i , s

0
i ) =

(rm, sm) if i = m. Since (r0i , s
0
i ) �∈ R′

i, it follows that

u2%sm>rm>rm−1> · · ·>r2>r1 /∈ Lk,h.

Now Lemma 3.1 implies that if A is an arbitrary DIDPDA for Lk,h with set of
states Q and set of stack symbols Γ , then

|Γ |m · |Q| � |Sm| � corr(k)m.

Since the inequality has to hold for any m � 2, we get |Γ | � corr(k). �

Using Lemmas 3.3 and 3.4, and the estimation (1) we have:

Theorem 3.2. For all k, h ∈ N, k � h, there exists a language Lk,h recognized
by an NIDPDA with O(h) states and O(k) stack symbols such that any DIDPDA

for Lk,h needs Ω(2k·h) states and Ω(2k
2

) stack symbols.

Note that the assumption k � h was used in Lemma 3.3, and it is needed in
Theorem 3.2 to guarantee that the number of states of an NIDPDA for Lk,h

does not depend on k.

4 Unambiguous Nondeterminism and Its Succinctness

Nondeterministic machines of any kind have an important special case, in which
every accepted string has a unique accepting computation. In particular, this
restriction yields unambiguous finite automata (UFA) and unambiguous com-
plexity classes, such as UL and UP. For UFAs, it is known from Leung [33] that
simulating an n-state UFA requires, in the worst case, a DFA with 2n states,
while the NFA–UFA tradeoff is 2n − 1. In the case of a one-letter alphabet, the
UFA–DFA and NFA–UFA tradeoffs are known from Okhotin [41,42].

Applying the same restriction to IDPDAs leads to the notion of an unambigu-
ous input-driven pushdown automaton (UIDPDA). The succinctness tradeoffs
between NIDPDAs, UIDPDAs and DIDPDAs, which are the subject of this sec-
tion, are similar to the case of finite automata: converting a UIDPDA of size n
to a DIDPDA requires 2Θ(n2) states in the worst case, and the same number of
states is necessary for converting NIDPDAs to UIDPDAs [44].

The UIDPDA–DIDPDA tradeoff is established using the lower bound method
of Lemma 3.1 for DIDPDAs. However, the known lower bound languages used for
the NIDPDA–DIDPDA tradeoff, as presented in Theorems 3.1 and 3.2, do not
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have small UIDPDAs. The next theorem presents an example with a similarly
high lower bound on the size of a DIDPDA, which is, however, recognized by a
small UIDPDA.

For every binary string w ∈ {0, 1}∗, let (w)2 denote the nonnegative integer
with the binary notation w.

Theorem 4.1 (Okhotin and Salomaa [44]). For every n � 1, the language{
<x0#x1# . . .#x�$v>u

∣∣ xi ∈ {0, 1}∗, 1 � i � �,
u, v ∈ {0, 1}�logn�, bit number (v)2 in x(u)2 is 1

}
is recognized by an UIDPDA with O(n) states, but every DIDPDA for this lan-

guage needs 2n
2

states.

The small automaton recognizing this language can be unambiguous, because
all the nondeterministic guesses it has to make are explicitly written out in the
end of the string as v>u. Then, any guesses made are eventually verified, and
hence at most one possible sequence of guesses may lead to acceptance.

In the beginning of the computation, when reading the left bracket <, the
automaton guesses a string u ∈ {0, 1}�logn�, stores it in the stack, and at the
same time preserves it in the current state. Inside the brackets, it looks for
the string x(u)2 , and then nondeterministically guesses a true bit in this string,
remembering its number in the current state. Next, the automaton reads until
the marker $, and then checks that the string v ∈ {0, 1}�logn� represents the
binary notation of the number of that bit: that is, verifies that v has earlier
been guessed correctly. Finally, once the value of u guessed in the beginning is
popped from the stack after reading the right bracket >, it remains to check
that it matches the intended value of u included in the input after the bracket.

Turning to the size tradeoff between NIDPDAs and UIDPDAs, proving that
every UIDPDA for a given language must have a certain number of states re-
quires a different lower bound method. Such a method is obtained by generalizing
a result by Schmidt [51] for unambiguous finite automata.

Lemma 4.1 (Okhotin and Salomaa [44]; cf. Schmidt [51], Leung [33]).
Let L ⊆ Σ∗ be a language. Let F = {(xi, yi) | i = 1, . . . , n} be a paired k-set, and
define an integer matrix M = M(F,L) ∈ Zn×n by setting Mi,j = 1 if xiyj ∈ L,
and Mi,j = 0 otherwise. Then, if L is recognized by an UIDPDA A with a set of
states Q and a pushdown alphabet Γ , this implies

|Γ |k · |Q| � rankM.

Using this lower bound method, one can establish the following tradeoff.

Theorem 4.2 (Okhotin and Salomaa [44]). For every n � 1, the language

Ln =
{
<#u1$v1#u2$v2# · · ·#um$vm%v′1$u

′
1#v

′
2$u

′
2# · · ·#v′m′$u′m′>

∣∣ (6)

m,m′ � 1, ui, vi, u
′
j, v

′
j ∈ a+, ∃s, t : us = u′t, vs = v′t, |us|, |vs| � n

}
.

is recognized by an NIDPDA with O(n) states, but every UIDPDA for Ln needs

at least 2�
n2

2 �−1 states.
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Upon reading the left bracket <, the NIDPDA guesses a string u, pushes it to
the stack and preserves it in the state, and then detects a pattern of the form
< . . . u$v . . .% . . . v$u . . .> in the input. First, it nondeterministically selects a
pair in the left part of the string, and verifies that its first component is the
earlier guessed string u. Then it memorizes the second component v of this
pair and proceeds to the right part, where another pair is nondeterministically
chosen. The first component of this pair should be v, the second component is
memorized, and checked against the value of u stored in the stack upon the
transition by the right bracket >.

The lower bound on the size of every UIDPDA recognizing this language is
obtained by using a set of pairs of strings (<xi%, yi>), where each xi and yi
encodes a subset of [1, n]× [1, n] of size n2

2 (assuming n is even). The sets of pairs
used in xi and in yi form a disjoint partition of [1, n] × [1, n], and hence each
string <xi%yi> is not in Ln, but <xi%yj> ∈ Ln for all i �= j. Therefore, the
corresponding matrix, as defined in Lemma 4.1, has a zero diagonal and ones in
the rest of its elements. Hence, the matrix has full rank, and the lemma asserts
the desired lower bound.

The results in Theorems 4.1–4.2 refine the NIDPDA–DIDPDA tradeoff, as
established by Alur and Madhusudan [2,3]. However, the given bounds apply
only to the number of states. Establishing stronger lower bounds that also take
into account the number of stack symbols, as in Theorem 3.2, is left as a task
for future research.

5 State Complexity of Operations

Alur and Madhusudan [2] established the closure of input-driven languages under
basic operations, such as the Boolean operations, concatenation and Kleene star.
For each operation, they defined an effective construction of a DIDPDA for
the result of the operation, given DIDPDA(s) for its argument(s). For some
operations, their constructions were later found to be optimal; for some other
operations, they have been superceded with improved constructions.

This section reviews the results on the exact number of states needed to
represent basic operations on input-driven pushdown automata with a given
number of states. The case of union and intersection is the simplest one, handled
by the well-known direct product construction in the same way as for finite
automata.

Lemma 5.1 (Alur and Madhusudan [2]). Let A and B be two DIDPDAs
over the same alphabet (Σ+1, Σ−1, Σ0), with the sets of states P and Q, respec-
tively, and with the pushdown alphabets Γ and Ω. Then there exists DIDPDAs C
and D, each with the set of states P ×Q and with the pushdown alphabet Γ ×Ω,
which recognize the languages L(A) ∪ L(B) and L(A) ∩ L(B), respectively.

As established by Piao and Salomaa [46], this construction is optimal with re-
spect to both the number of states and the number of stack symbols.
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Next, consider the concatenation. The closure of input-driven languages under
this operation was established by Alur and Madhusudan [2], who constructed an
NIDPDA with m+n+const states for the concatenation of anm-state and an n-
state DIDPDAs. Determinizing this NIDPDA yields a DIDPDA with 2Θ((m+n)2)

states for the desired concatenation. The same construction was used to prove
the closure of input-driven languages under two concatenation-like operations,
Kleene star and reversal, producing 2Θ(n2)-state upper bounds on their state
complexity.

This construction can be substantially improved. It turns out, that, in-
formally speaking, the amount of nondeterminism required to simulate these
concatenation-like operations is less than in a general NIDPDA. Instead of sim-
ulating general nondeterminism, it is sufficient to calculate the following simpler
data structure: the behaviour of a DIDPDA on the last well-nested substring.

Consider that the computation of a DIDPDA on any well-nested string has a
simple form: it finishes processing such a string with the same stack contents as in
the beginning, without ever attempting to pop any symbols underneath. Hence,
the behaviour of an automaton on a well-nested string w can be characterized
by a function fw : Q → Q, which maps the initial state of the automaton to
its state after processing the string. The behaviour on a concatenation uv is a
function composition fuv = fv ◦ fu.

As shown in the following lemma, the behaviour function can be calculated
using only nn · |Σ+1| states.

Lemma 5.2 (Okhotin and Salomaa [45, implicit in Lemma 4]). For every
DIDPDA A with the set of states Q and the pushdown alphabet Γ , there exists
a DIDPDA C with the set of states QQ and the pushdown alphabet QQ × Σ+1,
that calculates the behaviour of A on the longest well-nested suffix of the read
portion of the input.

Proof (Sketch of a proof.). The construction uses a simplified notation for the
transition function, with δc(q) for c ∈ Σ0 (instead of δi(q, c), as per Defini-
tion 2.1), δ<(q) for < ∈ Σ+1 (instead of δpush(q,<)), and δ>(q, γ) for > ∈ Σ−1

(instead of δpop(q, γ,>)).
The initial state of C is q′0 = id, the identity function on Q. This is the

behaviour on ε.
On any symbol c ∈ Σ0, the automaton calculates a composition of the be-

haviour on the previously read string with the behaviour on the next symbol:

δ′c(f) = δc ◦ f.

Whenever the automaton goes into the next level of brackets, it pushes the be-
haviour on the current level into the stack and begins calculating a new behaviour
on the inner level. To this end, for f : Q→ Q and < ∈ Σ+1, the transitions are
as follows:

δ′<(f) = id,
γ′<(f) = (f,<).
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When the automaton eventually returns into the previous level of brackets, it
composes the behaviour on the inner level with the behaviour on the previously
read prefix on the outer level: for < ∈ Σ+1, > ∈ Σ−1, and f, g : Q → Q, the
transitions are:

δ′>(g, (f,<)) = h ◦ f,
where h : Q→ Q is defined by

h(q) = δ>
(
g(δ<(q)), γ<(q)

)
.

�

Consider how this calculation of behaviours is applied to constructing a DIDPDA
for reversal.

Lemma 5.3 (Okhotin and Salomaa [45]). For every DIDPDA A over an
alphabet (Σ+1, Σ−1, Σ0) with a set of states Q and a pushdown alphabet Γ , there
exists a DIDPDA C over the inverted alphabet (Σ−1, Σ+1, Σ0) with the set of
states QQ × 2Q and the pushdown alphabet QQ × 2Q × Σ−1 that recognizes the
language L(A)R.

Given a string uv, where u is its longest well-nested prefix, the automaton C is
given a string vRuR and should simulate the computation of A on uv. The goal
of the construction is that C calculates (i) the behaviour of A on u, as the first
component of its state, and (ii) the set of states, beginning from which A would
accept the string uv, as the second component.

The initial state of C is q′0 = (id, F ), where F is the set of accepting states
of A. The transitions of C manipulate the first component of its states basically
accordingly in Lemma 5.2; the fact that the input is read in the reverse, changes
only the order of function composition. What is done on the second compo-
nent of the states, mostly resembles the subset construction for finite automata,
Whenever a well-nested suffix has to be taken into account in the second com-
ponent, the automaton C uses the behaviour on this component to calculate the
pre-image of the set of states at the previous step.

This construction asserts that the reversal is representable using 2O(n log n)

states, and, as shown below, this upper bound is tight.

Lemma 5.4 (Piao and Salomaa [46]). Let Σ+1 = {<}, Σ−1 = {>}, Σ0 =
{a, b, c}. For n � 1, the language

Ln =
⋃

u∈{a,b}�log n�
u<({a, b}∗c)n−1uc({a, b}∗c)∗>

has an IDPDA with O(n) states, while any IDPDA for its reversal requires at
least 2Ω(n logn) states.

Theorem 5.1. The state complexity of reversal of DIDPDAs is 2Θ(n logn).

Similar constructions apply to concatenation and Kleene star. The following
lemma defines a DIDPDA recognizing a concatenation of two given DIDPDAs.
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Lemma 5.5 (Okhotin and Salomaa [45]). Let A and B be any DIDPDAs
over an alphabet (Σ+1, Σ−1, Σ0), let P and Q be their respective sets of states, let
Γ and Ω be their pushdown alphabets. Then there exists a DIDPDA C with the
set of states P×2Q×2Q×QQ and the pushdown alphabet Γ×2Q×2Q×QQ×Σ+1

that recognizes the language L(A) · L(B).

The first component of the states of C is used for a plain simulation of A. The
fourth component is the behaviour of B on the last well-nested suffix, calculated
as in Lemma 5.2. The second and the third component implement two subset
constructions for B, referring to different partitions of the bracket structure of
the input into concatenations L(A) · L(B).

The next lemma presents a lower bound on the state complexity of concate-
nation.

Lemma 5.6 (Okhotin and Salomaa [45]). For every m,n � 1, there exists a
language Km recognized by an m-state DFA, and a language Ln recognized by an
DIDPDA with O(n) states and n pushdown symbols, such that every DIDPDA
for their concatenation KmLn requires at least mnn states.

These bounds match, up to a constant multiple in the exponent, leading to the
following theorem.

Theorem 5.2. The state complexity of the concatenation operation for
DIDPDAs is m · 2Θ(n logn).

The next lemma gives an upper bound on the state complexity of Kleene star.

Lemma 5.7 (Okhotin and Salomaa [45]). Let B be any DIDPDA over an
alphabet (Σ+1, Σ−1, Σ0), let Q be its set of states, and let Γ be its pushdown
alphabet. Then there exists a DIDPDA C with the set of states 2Q × 2Q × QQ

and the pushdown alphabet Γ ×2Q×2Q×QQ×Σ+1 that recognizes the language
L(A)∗.

This construction is very similar to the one for the concatenation, but follows the
acceptance decisions of the instances of the simulated automaton B, as encoded
in the subset constructions, instead of following a simulated automaton A. A
matching lower bound is also known.

Lemma 5.8 (Salomaa [50]). There exists a sequence of DIDPDAs {An}n�1,
with O(n) states and stack symbols, such that the total number of states and
stack symbols in any DIDPDA recognizing L(A)∗ is at least 2n logn.

These results are combined to the following asymptotic estimation.

Theorem 5.3. The state complexity of Kleene star of DIDPDAs is 2Θ(n logn).

One further result on the complexity of operations on DIDPDAs is that a ho-
momorphic image requires 2Θ(n2) states in the worst case. The upper bound
is immediate by constructing a NIDPDA for the homomorphic image, and the
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lower bound follows by using a variant of the languages Ln from Theorem 4.2,
in which the pairs to be “guessed” are annotated by special symbols, and these
symbols are erased by a homomorphism, so that any DIDPDA recognizing the
homomorphic image has to deal with the unmodified languages Ln.

Theorem 5.4 (Okhotin and Salomaa [44]). Let h be a homomorphism and
A a DIDPDA with n states. The language h(L(A)) can be recognized by a

DIDPDA with 2O(n2) states.
Conversely, there exists a homomorphism h and regular languages L′

n, with
n � 1, recognized by a DIDPDA with O(n) states, such that any DIDPDA for

h(L′
n) needs 2n

2

states.

Finally, consider the complexity of operations on NIDPDAs. Most operations
can be represented directly, with a minimal overhead: for instance, union of
an m-state and an n-state NIDPDAs has an NIDPDA with m + n + const
states, and concatenation requires the same number of states; Kleene star and
reversal require only n+ const states. However, there are two exceptions. First,
intersection requires mn states.

Theorem 5.5 (Han and Salomaa [20]). Let k, �,m, n � 1, let m be divisible
by k, and let n be divisible by �. Then there exist NIDPDAs A,B with m and n
states, respectively, and with k and � pushdown symbols, such that every NIDPDA
for L(A) ∩ L(B) has at least mn states and k� pushdown symbols.

Secondly, complementing NIDPDAs is hard.

Theorem 5.6 (Okhotin and Salomaa [44]). For every n � 1, consider the
language Ln defined in Theorem 4.2, which has a NIDPDA with O(n) states.
Let A be any NIDPDA recognizing its complement Ln, let Q be its set of states
and let Γ be its pushdown alphabet. Then, |Q| · |Γ | � 2n

2

.
Accordingly, the worst-case state complexity of complementing an n-state

NIDPDA is 2Θ(n2).

In contrast, every DIDPDA can be complemented simply by inverting its set of
accepting states. This situation is similar to the case of finite automata, where
every DFA is complemented by changing its accepting states, thus using n states,
while complementing NFAs requires up to 2n states [6].

The known results on the complexity of operations on deterministic and non-
deterministic IDPDAs are summarized in the below table, which compares them
to similar results for finite automata.

DFA NFA DIDPDA NIDPDA
∪ mn [36] m+ n+ 1 [22] Θ(mn) [46] m+ n+O(1) [2]
∩ mn [36] mn [22] Θ(mn) [46] Θ(mn) [20]

∼ n 2n [6] n 2Θ(n2) [44]

· m · 2n − 2n−1 [36] m+ n [22] m2Θ(n log n) [45] m+ n+O(1) [2]
∗ 3

42
n [36] n+ 1 [22] 2Θ(n logn) [45] n+O(1) [2]

R 2n [32] n+ 1 [22] 2Θ(n logn) [45] n+O(1) [2]
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The main open problem is the complexity of operations for UIDPDAs. In fact,
already for unambiguous finite automata (UFA), these questions appear to be
quite difficult, with only very modest bounds known up to date [41,42].

6 Extensions and Open Problems

An attractive feature of input-driven pushdown automata is that every nonde-
terministic automaton has an equivalent deterministic automaton. The height-
deterministic pushdown automata of Nowotka and Srba [40], where the stack
height is a priori fixed at any point of a nondeterministic computation, are
a natural model that properly extends IDPDAs. A nondeterministic realtime
height-deterministic automaton always has an equivalent deterministic automa-
ton. This is established using a construction analogous to the one used by Alur
and Madhusudan [2] for determinizing NIDPDAs.

La Torre, Madhusudan and Parlato [30] have shown that multi-stack input-
driven pushdown automata are closed under Boolean operations and have a de-
cidable inclusion/equivalence problem, albeit equivalence is not tractable even in
the deterministic case. In a multi-stack input-driven automaton the input letter
determines the type of the operation on each of the stacks and, furthermore, any
computation of the machine can be split into a fixed number of phases where
each phase can pop only one of the stacks. Two-stack input-driven automata are
not closed under complement without the restriction that each computation can
be split into a fixed number of phases (as described above) [7]. It was claimed by
Carotenuto et al. [10] that nondeterministic two-stack input-driven pushdown
automata could be determinized; however, this claim does not hold [31].

Analogously to an input-driven pushdown automaton being implemented by
an automaton operating on nested words, other types of machines with aux-
iliary storage can be realized using the graph automata of Madhusudan and
Parlato [35] that operate on specialized graphs. Madhusudan and Parlato [35]
deduce from the structure of the corresponding graphs the decidability of the
emptiness problem for a number of multi-stack automaton models with vari-
ous restrictions on the allowable computations. Descriptional complexity of such
graph automata [35] remains a topic for further study.
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25. Jirásková, G., Okhotin, A.: On the State Complexity of Operations on Two-Way
Finite Automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257,
pp. 443–454. Springer, Heidelberg (2008)

26. Kamimura, T., Slutzki, G.: Parallel and two-way automata on directed ordered
acyclic graphs. Inform. Control 49, 10–51 (1981)

27. Kapoutsis, C.A.: Removing Bidirectionality from Nondeterministic Finite Au-
tomata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618,
pp. 544–555. Springer, Heidelberg (2005)

28. Kunc, M., Okhotin, A.: Describing Periodicity in Two-Way Deterministic Finite
Automata Using Transformation Semigroups. In: Mauri, G., Leporati, A. (eds.)
DLT 2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011)

29. Kunc, M., Okhotin, A.: State Complexity of Operations on Two-Way Deterministic
Finite Automata over a Unary Alphabet. In: Holzer, M. (ed.) DCFS 2011. LNCS,
vol. 6808, pp. 222–234. Springer, Heidelberg (2011)

30. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: Proceedings of the 22nd IEEE Symposium on Logic in Computer
Science, LICS, pp. 161–170. IEEE Computer Society Press (2007)

31. La Torre, S., Madhusudan, P., Parlato, G.: A note posted at,
http://www.cs.uicu.edu/~madhu/vpa/wrong-proof-CMP07.html

32. Leiss, E.L.: Succinct representation of regular languages by Boolean automata.
Theoret. Comput. Sci. 13, 323–330 (1981)

33. Leung, H.: Descriptional complexity of NFA of different ambiguity. Internat. J.
Foundations Comput. Sci. 16(5), 975–984 (2005)

34. Lupanov, O.B.: A comparison of two types of finite automata. Problemy Kiber-
netiki 9, 321–326 (1963) (in Russian)

35. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Proc.
38th ACM Symposium on Principles of Programming Languages, POPL 2011,
pp. 283–294 (2011)

36. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math-
ematics Doklady 11, 1373–1375 (1970)

37. Mehlhorn, K.: Pebbling Mountain Ranges and its Application to DCFL-
Recognition. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS,
vol. 85, pp. 422–435. Springer, Heidelberg (1980)

38. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30(6), 1976–1992 (2001)

39. Neumann, A., Seidl, H.: Locating Matches of Tree Patterns in Forests. In: Arvind,
V., Sarukkai, S. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 134–146. Springer,
Heidelberg (1998)

40. Nowotka, D., Srba, J.: Height-Deterministic Pushdown Automata. In: Kučera, L.,
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Abstract. Looking for ideas which would lead to computing devices
able to compute “beyond the Turing barrier” is already a well estab-
lished research area of computing theory; such devices are said to be
able of doing hypercomputations. It is also a dream and a concern of
computability to speed-up computing devices; we propose here a name
for the case when this leads to polynomial solutions to problems known
to be (at least) NP-complete: fypercomputing – with the initial F coming
from “fast”.

In short: fypercomputing means going polynomially beyond NP.
The aim of these notes is to briefly discuss the existing ideas in mem-

brane computing which lead to fypercomputations and to imagine new
ones, some of them at the level of speculations, subject for further inves-
tigation.

Keywords: Turing computing, Hypercomputing, Membrane comput-
ing, Complexity.

1 Foreword: Jürgen the Fast

These pages are dedicated to the 65th birthday of Jürgen Dassow. The age of
retirement! I have met him in 1983 (it was my first trip out of Romania), we
collaborated a lot, we met periodically in the framework of IMYCS - Interna-
tional Meeting of Young Computer Scientists, at Smolenice Castle, Slovakia. A
young computer scientist is now retiring! He is maybe not the first, but I am
not aware of others (to whom I was close enough). I feel this as an end of an
epoch... The romantic time of grammars and automata, of sequential computing,
of theory for the sake of theory, with aesthetic motivation. I remember the time
spent in Magdeburg as a Humboldt fellow in 1991-92 and after that as a visiting
researcher. Jürgen was, after 1993, the rector of the university. A very dynamical
period, after the unification of Germany, with a lot of bureaucratic work – but
with Jürgen switching in an amazingly quick way from administrative matters
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to scientific matters. I have never seen such a distributed and fast mind – and
this fits with the topic of my notes. I cannot imagine Jürgen “doing nothing”,
so I am wishing to him, young pensioner, a long and active life!

2 Introduction – From Hyper... to Fyper...

The aim of this note is to briefly discuss an important research topic in computer
science in general, in membrane computing in particular, namely ways to speed-
up computations. The goal is to obtain devices able to significantly improve from
this point of view, e.g., to solve intractable problems (usually, NP-complete or
even harder) in a feasible time (usually, polynomial). Our constant framework
is membrane computing (the reader is supposed to be familiar with the domain,
or (s)he can consult [17], [19], [21], and the domain website from [30]), but some
considerations/speculations are more general. (By the way, Jürgen is a co-author
of one of the earliest papers in membrane computing, [7].)

The model we have in mind is that of hypercomputations, already with a
large literature (see, e.g., [6], [9], [25], or the recent survey from [27]). The goal
is to imagine computing machineries able “to compute the uncomputable”, to
compute more than Turing machines. More than a dozen of ideas were proposed
and proved to reach the above goal: oracles (already considered by Turing),
introducing real numbers in the device, accelerating the functioning of machines,
using ingredients of an analogical nature and so on.

Also in membrane computing there were reported attempts of this kind. We
mention here the papers [4] and [26]. The first one passes beyond Turing by means
of acceleration (we come back below to this idea), the latter by constructing
“lineages” of P systems, following the model of [28].

It should be noted that there also are people who do not believe in hypercom-
putation, refuting it as a circular trick (basically, one introduces uncomputable
components in a computing device which is then shown to compute more than
a Turing machine...); one of the most explicit voices in this respect is Martin
Davis – see, e.g., [8].

We are looking here not for the power of computing devices, but for their
efficiency, and we propose the term fypercomputation to name the case when
a device can solve an intractable problem in a polynomial time. Surprisingly
enough, this research vista has not received a similar attention as hypercompu-
tation; the literature of the latter one is much more extended (more explicit),
there were organized debates about it, workshops and special sessions in general
conferences. Complexity theory discusses many speed-up procedures, but not at
the level of “breaking the NP barrier”, to put it in the style of “breaking the
Turing barrier”. The time-space trade-off is a common sense in algorithmics,
but using an exponential space is not considered a serious candidate for fyper-
computations – excepting the recent natural computing area, molecular (DNA)
computing in special.

It is true, there are many papers which can be put under the flag of fypercom-
puting. They exploit ideas from physics, such as [24] (the abstract of the paper
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is worth recalling: We propose to “boost” the speed of communication and com-
putation by immersing the computing environment into a medium whose index
of refraction is smaller than one, thereby trespassing the speed-of-light barrier),
propose analogical computations, such as [2] and [3]. The area of DNA comput-
ing is full of such ideas, its very beginning is of this kind, [1]. The starting point
is the fact that the DNA molecules are a very compact support of information,
one can operate with bits stored at a molecular level, hence in a small space (in
a test tube) we can have a huge number of molecules. “Huge” however, has no
precise mathematical meaning; when we need “exponentially many” molecules,
what is perfect in theory becomes unfeasible in a lab...

But not this is the position we adopt here: however “unrealistic” (for current
knowledge, be it physical, biological or of another nature), we look for “nice”
ideas able to lead to fypercomputations. And membrane computing abounds
already in such investigations.

3 Ways towards Fyper... in Membrane Computing

The main practical goal of natural computing is to learn computing ideas from
nature and to implement/use them in computer science, starting with a better
use of the existing computers and ending – the dream of DNA computing and
of quantum computing, at least – with the construction of computers of a new
kind, maybe using new materials. In all cases, the aim is to be more efficient,
especially with respect to the duration of computations.

Membrane computing started with a more theoretical goal in mind: just learn
interesting ideas for computability from the structure and the functioning of the
living cells.

The basic computing models (called cell-like P systems) considered in this area
consist of an hierarchical arrangement of membranes, delimiting compartments
(also called regions) where multisets of objects (symbols from a given alphabet)
are placed; these objects evolve according to evolution rules also associated to
regions.

The membranes are labeled with symbols in a given alphabet (in most cases we
use natural numbers). Each region is precisely identified by its upper membrane,
hence we can identify regions by means of the labels of the membranes which
delimit them. The external membrane, the one separating the cell from the
environment is called the skin membrane; a membrane without any membrane
inside is said to be elementary. We also call region the environment of the system
(and usually we label it with 0).

The rules are of a multiset rewriting type (corresponding to biochemical reac-
tions taking place in a cell) or of other forms, in general, inspired from biology
(transport across membranes in the form of symport or aniport, membrane di-
vision, membrane creation, etc.). Starting from an initial configuration of the
system (with initial multisets of objects associated with the regions) and us-
ing the rules in various ways (the most investigated one is the nondeterministic
maximally parallel way), one passes from a configuration to another one. Such
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a sequence of transitions among configurations is called a computation. With
a halting computation (one reaching a configuration where no rule can be ap-
plied) we can associate a result, for instance, as the number of objects present
in a given region. We will give some further details in the next sections, this
quick description of a P system and of its functioning should be sufficient for
understanding the general discussion which follows.

The class of cell-like P systems is the basic one (and most investigated) in
membrane computing. Several other types of similar devices were considered.
For instance, instead of symbol objects, one can consider string objects (then,
the rules should be string processing rules, such as rewriting, the splicing from
DNA computing, etc.), or, instead of an hierarchical arrangement of membranes
(hence described by a tree), we can place the membranes in the nodes of an
arbitrary graph – one obtains in this way the tissue-like P systems. Also P
systems inspired from the neurons architecture and functioning were introduced
– a class of a particular interest is that of spiking neural P systems (SN P
systems, for short), where neurons (membranes) placed in the nodes of a graph
communicate to each other by means of spikes, electrical impulses of identical
shapes (hence, the system uses only one object, the spike, present in various
numbers of copies in different neurons) which are processed by specific spiking
rules. We refer to [13] and to the corresponding chapter of [21] for details.

Besides the computing power of P systems (in comparison with classic com-
puting devices, such as Turing machines and their restrictions), also the efficiency
issue was addressed, and, in order to speed-up computations, the first proposal
was to make use of the biological operation of cell division. In this way, P systems
with active membranes have appeared, [18], and they proved indeed to speed-up
computations enough for solving NP-complete problems in a polynomial time.
(The typical rules are of the form [a]h → [b]h[c]h, where a, b, c are objects and h
is a label; the membrane h, containing the object a and maybe other objects, is
divided into two new membranes, with the same label h; in the first copy, a is
replaced by b, in the second one it is replaced by c; any objects different from
a are replicated in the two new membranes. Clearly, the new membranes with
label h use the same set of rules as the former membrane h; otherwise stated,
the label of a membrane identifies the set of rules which can be applied to it.)

An important point should be made here. P systems (with rules of the form
a → u, where a is an object and u is a multiset of objects) are able to cre-
ate exponentially many objects in a linear time: using the rule a → aa in the
maximally parallel manner for n times, we get 2n copies of a. However, such an
exponential workspace is not enough in order to essentially speed-up computa-
tions: the so-called Milano Theorem from [29] says that a P system (with rules
as above, but without membrane division) can be simulated by a Turing ma-
chine with a polynomial overhead. Membrane division produces an exponential
workspace, but also introduces some organization of it, some localization. In a
specified membrane, specific rules are used, which is not possible without sepa-
rating the objects among “protected reactors” – like in biology (compartments
with specific chemicals evolving according to specific sets of reactions).
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This lesson, of localization, with specific “chemistry” taking place in each
compartment, is applied also in the case of P systems with membrane creation,
[16], where rules of the form a→ [b]h are used, transforming an object a into a
new membrane, with label h and containing the object b (as above, the label of
the membrane identifies the set of rules to apply to its objects). This time, the
aspect mentioned above, i.e., the power of the localization, is still more visible:
The rules for creating membranes produce only a linear number of membranes,
not an exponential one, as in the case of division, but the exponential space is
produced by object evolution rules (such as a→ aa).

There are many other important details in this area, for instance, additional
ingredients which have (or not) an influence on the efficiency of P systems with
membrane division or membrane creation (for instance, membrane polarization,
membrane dissolution, division of only elementary membranes or also of non-
elementary membranes). In most cases, polynomial solutions to NP-complete
problems – often, also of PSPACE-complete problems – are obtained. Fyper-
computing! (The list of computationally hard problems addressed in terms of
membrane computing is very large, ranging from decidability problems, such as
SAT and QSAT, to numerical problems – e.g., counting various parameters in a
graph; a chapter of [21] is devoted to this research direction, and the reader is
refereed to it for details.)

Further two similar ideas were investigated in membrane computing, both of
them related to the previous two. The first one is based on string replication, [5],
for P systems with string objects (the rules are of the form a → u1||u2, where
a is a symbol, u1, u2 are strings; when rewriting a string xay by such a rule we
obtain two strings, xu1y and xu2y, maybe placed in two different membranes,
because the strings u1, u2 can also have associated target indications). Replicat-
ing a string looks like dividing a membrane: the symbols of each string remain
together, hence “localized”, like being encapsulated in separated membranes.
Fypercomputations are again obtained (in [5] one shows how SAT can be solved
in polynomial time in this framework).

A different approach is that of considering arbitrarily large pre-computed re-
sources. For instance, we can assume as given in advance, for free (from the
point of view of the computing time), a spiking neural P system (this is the
case of [14], [15]), with arbitrarily many neurons and synapses, but with a small
(finite) number of spikes inside and having a regular structure; otherwise stated,
the given system is large, but it cannot contain more than a bounded amount
of information, not enough, for instance, to encode the solution to the problem
we want to solve. Then, we plug in a code of the (instance of the) problem to
solve, in the form of a bounded number of spikes (a bounded number of bits),
and this activates the arbitrarily large “hardware”, which eventually provides
the solution in a polynomial time.

This last idea is only briefly investigated in membrane computing. Issues
related to the conditions to be imposed to the given pre-computed resources
should be further considered.
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Anyway, we count already four ideas, all of them having biological motiva-
tions (maybe better: all of them suggested by biological facts), which lead to
fypercomputations in the membrane computing area.

There is a large bibliography of this direction of research. We refer here only
to the survey paper [22], where the basic ideas of computational complexity for
P systems can be found, and to the chapter of [21] devoted to this topic, [23].

4 Further Ways towards Fypercomputations in
Membrane Computing

In membrane computing there are several versions of the previously mentioned
speed-up tools, for instance, operations of separating membranes according to
their contents, budding membranes, etc., but they have the same philosophy and
the same functions as membrane division, so we do not count them separately
here, but we look for ideas essentially different.

(1) The first candidate is the acceleration. The idea of an accelerated Turing
machine is old in computer science: imagine that the machine is “clever”, it
learns from its own functioning, in the following way; after performing a step in
a time unit, it performs better for the second step, which is completed in half of
the time necessary for the first step – and so on, at each step halving the time
with respect to the previous step. If the first step takes one time unit, then the
second one takes 1/2 time units, the third one 1/4 and so on, hence in two time
units the computation ends.

Important: we have here two clocks, an internal one, of the machine, and an
external one, of the observer. The internal clock is faster and faster, so that the
computation ends in two time units measured by the external clock, that of the
observer/user.

Accelerated Turing machines can solve the halting problem, hence they com-
pute what usual Turing machines cannot. See references in [4], where the idea
is extended to P systems: It is known from biology that nature creates mem-
branes also for enhancing the reactions inside (if the reactants are closer, then
the probability to collide and react is higher). If “smaller is faster”, then take
it as in accelerated Turing machines: the reactions taking place in a membrane
placed inside another membrane are twice faster than in the parent membrane.
Using membrane creation rules, create then membranes inside membranes, in an
unbounded hierarchy, which means faster and faster towards the “center” of the
membrane structure. Like for accelerated Turing machines, such P systems were
proved to “compute the uncomputable”.

Well, then why not using this trick also in complexity sense? Natural enough,
but Martin Davis is smiling ironically: we accelerate in order to speed-up... In two
(external) time units we solve any problem, whatever complex it is (remember
that most classes of P systems are Turing complete, they can do whatever a
Turing machine can do).

A way to make the things interesting is to accelerate only parts of a P sys-
tem, thus having several levels of time speed. For instance, imagine a P system
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with several internal membranes, all of them governed by the same clock, but
some, say, elementary membranes being accelerated: for each of them we have
a constant kh (h is the label of the membrane) and, after introducing a “sub-
problem” in membrane h (e.g., a string x and a language L – by means of a
grammar), we get the answer (the fact whether or not x ∈ L) in at most kh time
units (as measured by the global clock). Not all types of P systems are universal
when using only one membrane, so, for such cases, the local acceleration can be
indeed of interest (i.e., non-trivial). What other restrictions to consider remains
as a research topic.

(2) For instance, we can accelerate not elementary membranes, but rules: a
given rule takes one time unit for the first application, half for the second appli-
cation, and so on. If all rules are accelerated, we go back to globally accelerated
systems, but if we allow only to a bounded number of rules to get faster in this
way, it is possible to obtain interesting results.

(3) Maybe also objects can be accelerated: the descendants of an object react
faster than the father object, irrespective which are the rules which act on them
and irrespective of the membranes where they are.

(4) The previous ideas suggest a speculation of a science-fiction type, but let
us place it here, the context is speculative enough. Namely, we mentioned before
(at least) two clocks, an external one, of the observer (or of the higher membranes
in the structure) and the local clock(s), of the accelerated element, membrane,
rule, object. Always, the inner clock is (much) faster than the external one, it
performs sometimes an exponential number of steps while the external one only
ticks once. We can then imagine that the inner time is orthogonal to the external
time, hence the time has a 2D structure! Is this too much with respect to the
“classic” time, in general interpreted as linear (or circular, spiral, in various
philosophies)? As a speculation, I would not refuse to think about this.

So: what about considering the time as a plane, not as a line, with the observer
only sensing one dimension of it, but with the possibility of some “processors”
to run along the other dimension, doing this at-no-time for the observer? (After
all, the current models of the universe, the so-called membrane theory – having
nothing common with membrane computing! –, which has replaced/generalized
the string theories, deals with eleven dimensions, enough for “lateral” times...)

Well, passing from this speculation to precise models, to symbols, algorithms
and theorems, is another story... (but what else are the oracles than processors
working in a “lateral” time – and space?).

5 P Systems with ω-Populations of Objects

(5) Let us come back to the ground, namely to the recently introduced reaction
systems (we call them R systems) – see [10], [11], [12]. An attempt to bridge
the two research areas, P systems and R systems, was done in [20]; the present
section can be seen as a continuation of this attempt.
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Both areas deal with populations of reactants (molecules) which evolve by
means of reactions, with several basic differences. Most of these differences are
not mentioned here (e.g., the compartmental structure of models in membrane
computing versus the lack of membranes in reaction systems; the focus on evo-
lution, not on computation, in reaction systems; the unique form of rules in
reaction systems and so on), and we recall the two basic ones, the crucial pos-
tulates of R systems, in the formulation from [10]:

The way that we define the result of a set of reactions on a set of elements
formalizes the following two assumptions that we made about the chemistry of a
cell:

(i) We assume that we have the “threshold” supply of elements (molecules) –
either an element is present and then we have “enough” of it, or an element
is not present. Therefore we deal with a qualitative rather than quantitative
(e.g., multisets) calculus.

(ii) We do not have the “permanence” feature in our model: if nothing happens
to an element, then it remains/survives (status quo approach). On the con-
trary, in our model, an element remains/survives only if there is a reaction
sustaining it.

Bringing the first assumption in membrane computing is a way to obtain fyper-
computations! This, however, is not very surprising: if each object is present in
“enough” copies, this means already that we have an arbitrarily large workspace.
The only problem is how to use this unstructured space for efficient computa-
tions.

Because we want to get a little bit more technical here, we introduce some
formal prerequisites.

Given an alphabet O of symbols called here objects, we denote by O∗ the set
of all strings over O, the empty string λ included, and by O+ = O∗ − {λ} the
set of all non-empty strings over O. A multiset-rewriting rule (over O; we also
say evolution rule) is a pair (u, v), written in the form u → v, where u and v
are multisets over O (given as strings over O). The rules are classified according
to the complexity (of their left hand side). A rule with at least two objects in
its left hand side is said to be cooperative. The result in Theorem 1 is given for
such rules; a restrictive type of rules is that of non-cooperative ones, of the form
u→ v, with u being an object in O.

Now, a cell-like P system (of degree m) is a construct

Π = (O, μ,w1, . . . , wm, R1, . . . , Rm, iin, iout),

where O is the alphabet of objects, μ is the membrane structure (with m mem-
branes), given as an expression of labeled parentheses, w1, . . . , wm are (strings
over O representing) multisets of objects present in the m regions of μ at the be-
ginning of a computation, R1, . . . , Rm are finite sets of evolution rules associated
with the regions of μ, and iin, iout are the labels of input and output regions,
respectively, iin ∈ {1, 2, . . . ,m}, iout ∈ {0, 1, 2, . . . ,m}; if iout = 0, this indicates
that the output is obtained in the environment. If the system is used in the
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generative mode, then iin is omitted, and if the system is used in the accepting
mode, then iout is omitted. The number m of membranes in μ is called the degree
of Π .

The rules in sets Ri are of the form u → v, as specified above, with u ∈
O+, but with the objects in v also having associated target indications, i.e.,
v ∈ (O × {here, out, in})∗. After using a rule u → v, the objects in u are
consumed, and those in v are produced; if (a, here) appears in v, then a remains
in the same compartment of the system where the rule was used, if (a, out)
is in v, then the object a is moved immediately in the region surrounding the
compartment where the rule was used (this is the environment if the rule is
used in the skin region), and if (a, in) is in v, then a is sent to one of the
inner membranes, nondeterministically chosen (if there is no membrane inside
the membrane where the rule is meant to be applied, then the use of the rule is
forbidden). The indication here is omitted, we write a instead of (a, here).

The rules are used in the nondeterministic maximally parallel manner: in each
membrane, a multiset of rules is applied such that there is no larger multiset of
rules which is applicable in that membrane.

In the generative mode, the result of a computation consists of the number of
objects in region iout in the moment when the computation halts, i.e., no rule
can be applied in any membrane of the system. In the accepting mode, a number
is introduced in the region iin, e.g., in the form of the multiplicity of a given
object, and, if the computation halts, then this number is accepted. A P system
can also be used in the computing mode, with a number introduced in region
iin and the result obtained in region iout, in the moment when the computation
halts. P systems can be also used for solving decidability problems: an encoding
of a problem (of an instance) is introduced in membrane iin, in the form of a
multiset of objects, and the answer, YES or NO, is obtained, for instance, by
halting, or by sending out of the system a distinguished object yes or no.

Note that in the previous definitions multisets play a crucial role, objects not
evolving by a rule remain unchanged, and that always successful computations
are defined by halting – all these are essential differences with respect to R
systems.

Consider now a P system with some of its objects being present in arbitrarily
many copies, like in R systems. More exactly, we consider P systems which contain
certain distinguished elementary membranes, whose objects are present in arbi-
trarily many copies (for instance, if an object a is introduced from outside in such
a membrane, then inside the membrane it becomes aω; it enters as a single copy,
and immediately multiplies inside to arbitrarily many, like in reaction systems).

Let us call such a system an ωP system.
The arbitrary multiplicity of objects introduces an important change in the

functioning of a usual system. For instance, if we have the objects a, b, c in a
distinguished membrane, together with the rules ab → d, ac → e, then both
these rules can be (and should be) applied, because we have enough copies of a
for both rules; we obtain d, e, with all copies of a, b, c being consumed. If also an
object f is present together with a, b, c, then it remains unchanged.
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We do not adopt here also the second assumption from the definition of R
systems, because then all objects from a halting configuration vanish. Please
note that the “easy solution” of introducing dummy rules of the form f → f for
all objects which cannot evolve otherwise does not work either: the computation
will never stop.

This apparently innocent change in the structure of P systems, i.e., consid-
ering objects with ω multiplicity, is able to speed-up a P system to the level of
fypercomputations.

Theorem 1. SAT can be solved (in a uniform way) in a polynomial time by an
ωP system.

Proof. Let us consider the SAT problem for n variables, x1, x2, . . . , xn, and m
clauses. We consider xl and ¬xl, 1 ≤ l ≤ n, as symbols, we denote by Lit their
alphabet, and we also denote V al = {ti, fi | 1 ≤ i ≤ n}. If α ∈ Lit, then ¬α is
its negation (e.g., ¬(¬xi) = xi).

An instance γ = C1∧C2∧. . .∧Cm of SAT(n,m), with Ci = yi,1∨yi,2∨. . .∨yi,ki ,
for yi,j ∈ Lit, 1 ≤ j ≤ ki, is encoded as

code(γ) = y
(1)
1,1 . . . y

(1)
1,k1
y
(2)
2,1 . . . y

(2)
2,k2

. . . y
(m)
m,1 . . . y

(m)
m,km

.

We now construct the following ωP system (the unique elementary membrane
is the distinguished one, the region where the objects are present with ω multi-
plicity):

Π = (O, μ,w1, w2, R1, R2, 1, 0),

O = {α(j) | α ∈ Lit, 1 ≤ j ≤ m} ∪ V al
∪ {a, yes, d, d1, d2, . . . , dm+1} ∪ {〈aw〉 | w ∈ V al∗, |w| ≤ m},

μ = [ [ ]2 ]1,

w1 = adm+1, w2 = λ,

R1 = {a→ (〈a〉, in), d1 → (d, in), yes→ (yes, out)}
∪ {x(1)i → (ti, in), ¬x(1)i → (fi, in) | 1 ≤ i ≤ n}
∪ {x(j+1)

i → x
(j)
i , ¬x(j+1)

i → ¬x(j)i | 1 ≤ i ≤ n, 2 ≤ j ≤ m}
∪ {dj+1 → dj | 1 ≤ j ≤ m},

R2 = {〈aw〉xi → λ | ¬xi ∈ w,w ∈ V al+, 1 ≤ i ≤ n}
∪ {〈aw〉¬xi → λ | xi ∈ w,w ∈ V al+, 1 ≤ i ≤ n}
∪ {〈aw〉α→ 〈aw〉 | α ∈ w,α ∈ V al, w ∈ V al+}
∪ {〈aw〉α→ 〈awα〉 | α /∈ w,¬α /∈ w,α ∈ V al, w ∈ V al∗}
∪ {〈awd〉 → (yes, out) | w ∈ V al+}.

For an easier understanding, we also present this system in a graphical form, in
Figure 1 (besides the membranes and the objects present in the initial configu-
ration, the rules from each regions are specified).
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1

2

adm+1

〈aw〉α → λ, if ¬α ∈ w

〈aw〉α → 〈aw〉, if α ∈ w

〈aw〉α → 〈awα〉,

if α /∈ w,¬α /∈ w

〈awd〉 → (yes, out),

w �= λ

a → (〈a〉, in)

x
(1)
i → (ti, in),

¬x(1)
i → (fi, in),

1 ≤ i ≤ n

x
(j+1)
i → x

(j)
i ,

¬x(j+1
i → ¬x(j)

i ,

1 ≤ i ≤ n, 2 ≤ j ≤ m

dj+1 → dj , 1 ≤ j ≤ m

d1 → (d, in)

yes → (yes, out)

Fig. 1. The ωP system from the proof of Theorem 1

The computation ofΠ starts after introducing the multiset code(γ) in the skin
membrane, for a given instance γ of the SAT(n,m) problem. The “seed” object
a enters immediately membrane 2, in the form 〈a〉, together with the truth
values which make true the first clause (the literals in clause C1 are present in
code(γ) with superscripts 1). All other objects evolve in the skin membrane,
those associated with literals in clauses C2 to Cm of γ decreasing by one the
superscript, d by decreasing by one the subscript.

In the inner membrane we have (at an arbitrary step) several multisets aw in
the bracketed form 〈aw〉 (hence interpreted as symbol objects); initially, w = λ.
Each multiset w contains truths values of variables which make true the clauses
of γ, starting with the first clauses in the ordering C1, C2, . . .. When the truth
values which render true a further clause enter membrane 2, they are checked
against the existing truth values, those which made true the previous clauses. It
is important to note that each of the existing sets of truth values “react” with
each newly introduced truth value, in the style of reaction systems, because we
have arbitrarily many copies of each object present in membrane 2. If a previous
set of truth values w falsifies the new clause, then the object 〈aw〉 disappears.
If it contains a truth value which renders true the new clause, then it survives.
When neither of these situations holds, then we add to w a truth value which
makes true the new clause (without falsifying the previous clauses).
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The process continues for each of the m clauses. In the end, the “checker” d
enters membrane 2. If it finds here at least one object 〈aw〉 with w �= λ, this
means that at least a truth assignment satisfies all clauses, hence the formula is
satisfiable. The signal object yes is produced and sent out of the system. The
computation halts. (If the formula is not satisfiable, it halts after m+ 1 steps.)

Therefore, if the system halts without sending out the object yes, then the
formula was unsatisfiable; if the system sends out the object yes, in step m+3,
then the formula is satisfiable.

Note that the initial configuration of the system, the rules of each compart-
ment included, is of a polynomial size with respect to n andm; the total alphabet
of the system is exponential in size, but the objects are constructed during the
computation, not while constructing the system itself.

The construction is uniform (it starts from the problem itself, not from a
given instance of the problem – in membrane computing, the weaker case when
we start from an instance of the decision problem, is called semi-uniform), and
this concludes the proof. �

The previous system has been presented with two membranes, in order to make
clear the ω component of it, the inner membrane, with a “standard” membrane
around it. The construction can be easily modified in order to obtain a system
with only one membrane (decreasing superscripts and subscripts can be done in
the same way for objects supposed to appear in arbitrarily many copies, because
each object is modified by only one rule and all copies of an object evolve at the
same time, in the same way). Thus, the previous theorem can be also considered
as a fypercomputation result for R systems instead of P systems.

We do not know whether the previous result can be improved by imposing
the restriction to use only non-cooperative rules.

6 Final Remarks

Following the model of hypercomputation, we have introduced the notion and we
considered the issue of “fypercomputation” – of speeding-up computations (of
P systems) to such an extent to obtain polynomial time solutions to intractable
(typically, NP-complete) problems. After briefly mentioning the existing speed-
up ideas investigated in membrane computing (membrane division, membrane
creation, string replication, and using pre-computed resources), we propose fur-
ther ideas, such as (local) acceleration, two-dimensional time, using arbitrary
populations of objects (like in reaction systems, i.e., assuming for each object
that it is either absent or present in arbitrarily many copies). An example of
fypercomputation is given for the last idea.

The paper is preliminary and speculative, it mainly calls the attention to the
systematic study of fypercomputations.
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20. Păun, G., Pérez-Jiménez, M.J.: Towards bridging two cell-inspired models: P sys-

tems and R systems. Theoretical Computer Sci. (to appear)
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Abstract. We establish the undecidability of the state complexity of
compositions of the operation mirror image and two other regularity-
preserving operations. The undecidability of Hilbert’s Tenth Problem
is not needed; the weaker Davis-Putnam-Robinson Theorem suffices for
the reduction. Special attention is paid to the maximal state complex-
ity of mirror images and the maximal deterministic state complexity of
nondeterministic finite automata.
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Dedication. This paper is dedicated to my friend and colleague Jürgen
Dassow on the occasion of his 65th birthday. The first scientific contacts
between us go back to early 70’s. Jürgen was one of the first, maybe
the very first, researcher in the Eastern bloc who investigated develop-
mental languages. Our early cooperation was possible because it was
easier to travel to Finland than elsewhere in the West. When life and
travel became easier, many mutual visits and different forms of coop-
eration started to be possible between us, as well as our students. The
conferences organized by Jürgen, such as the DLT-95 in Magdeburg fol-
lowing DLT-93 in Turku, made even further contacts possible. Jürgen
was always interested in decision problems and, therefore, I believe my
contribution to be appropriate for the volume. I wish Jürgen continuing
success in science and life in general.

1 Introduction

It is well known that, for every regular language L, there is a unique, up to
isomorphism, finite deterministic automaton accepting L which is minimal with
respect to the number of states. The effect of a regularity-preserving operation
on the number of states is customarily referred to as the state complexity of
that operation. For instance, if Li, 1 ≤ i ≤ 3, are regular languages accepted
by automata with xi states, respectively, how many states does the composition
(L1 ∪ L2)L3 require in terms of the numbers xi?

The recent study of state complexity has been motivated by many new appli-
cations of automata, e.g., in natural language and speech processing, software
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engineering, and parallel processing, which utilize finite automata of very large
sizes. The state complexity gives a good estimate of the size of the application
and a lower bound of its time and space complexities.

The effect of basic regularity-preserving operations was settled in [13]. Apart
from the basic operations alone, also combined operations have been investi-
gated, for instance, in [12,7,2,10,1]. The worst-case state complexity of the com-
position of two operations can be smaller than the one obtained directly from
the (known) complexities of the two operations. For instance, the state complex-
ity of the star operation on the result of the union of two regular languages,
with the state complexities m and n, is 2m+n−1 − 2m−1 − 2n−1 + 1. The direct
composition of the two state complexities gives the result 2mn−1+2mn−2, which
is much higher than the actual state complexity [7].

However, there is no general method of determining the state complexity of
arbitrary compositions of operations. This undecidability result was established
in [8], using compositions of two simple operations. Then a reduction of Hilbert’s
Tenth Problem could be used.

It is natural to investigate the effect and applicability of other operations
within this framework. In this paper we focus the attention on the operation
mirror image, denoted mi(w),mi(L), (also called reversal, denoted wr, Lr).

The state complexity of the mirror image of a regular language is of special
interest because it is connected with the difference between nondeterminism
and determinism in the following way. The mirror image of a language L(A) is
accepted by an automaton obtained fromA by reversing all (labeled) arrows, and
interchanging initial and final states. The latter automaton is nondeterministic.
Thus, the (deterministic) state complexity of the mirror image is the number
of states in the minimal equivalent deterministic automaton. Using the subset
construction, [4], we see that the maximal increase in the number of states goes
from n to 2n. Thus, the state complexity of the languagemi(L) is between n and
2n if the state complexity of L is n. Languages L where the mirror image mi(L)
actually reaches the upper bound 2n can be used as “representations” of the
exponential function. Consequently, we can, instead of Hilbert’s Tenth Problem,
use the weaker Davis-Putnam-Robinson Theorem as a basis of reduction.

A brief outline of the contents of the paper follows. In Section 2 we introduce
the basics about state complexity, and discuss a special operation needed in the
sequel. The next section investigates languages, with detailed proofs, whose mir-
ror images possess the maximal state complexity. In fact, the results obtained
there are interesting on their own right. They are stronger than what is actually
needed for our undecidability result. Section 4 discusses exponential polynomi-
als and modifies the Davis-Putnam-Robinson Theorem to suit for our purposes.
Sections 5 and 6 present a method of associating with an exponential polynomial
E a composition C of regular languages such that, for all tuples of values of the
variables, the state complexity of C equals at most the value of E when the lan-
guages in C have state complexities defined by the tuple in question. For specific
languages the value is actually reached. Moreover, Section 6 proves the following
undecidability result. Given a sequence Ci, i = 1, 2, . . . , of compositions and
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a sequence Ei, i = 1, 2, . . . , of exponential polynomials, both effectively con-
structible, it is undecidable whether or not Ei is a state complexity function for
Ci. Some open problems are presented in the final section.

2 State Complexity – Marked Catenations

We assume that the reader is familiar with the basics of finite automata and
regular languages. Whenever necessary, the article of Sheng Yu in [4] can be
consulted.

We use the customary notation

A = (Q,Σ, δ, q0, F )

for deterministic finite automata, DFA’s. The five items are, respectively, the
state set, the input alphabet, the transition function, the initial state, and the
set of final states. We consider only complete automata: δ(q, a) is defined for all
q ∈ Q and a ∈ Σ. Very often in this paper, n refers to the cardinality of the
state set: #(Q) = n.

A state of an automaton is called a sink if no sequence of transitions leads
from it to a final state. (Sinks are often also referred to as garbage states.)

The (regular) language accepted by the DFA A is denoted by L(A). The state
complexity of a regular language L is the number of states in the minimal DFA
A such that L = L(A).

The DFA A is functionally complete if the transition monoid of A, that is
the monoid generated by the functions fa(q) = δ(q, a) where a ranges over
Σ, consists of all of the nn mappings of Q into Q. The notion of functional
completeness can be extended to sets of functions f : Q → Q, where Q is an
arbitrary finite set. (For more details, see [5] or [11].)

We use natural graphical representations for DFA’s, where states are repre-
sented by circles and transitions by labeled arrows.

We consider also nondeterministic finite automata, NFA’s. Our NFA’s may
possess several initial states. (They are actually called NNFA’s in [4].)

For an NFA A, we denote by S(A) the DFA obtained from A by the subset
construction. The initial state of S(A) is the set of initial states of A. As states
of S(A) we consider only subsets reachable from the initial state. If #(Q) = n,
the automaton S(A) has at most 2n states. It is a direct consequence of the
subset construction that the automaton S(A) is complete.

We already pointed out that, for a regular language L, there is a unique
minimal automaton accepting L. The number of states in this automaton is
referred to as the state complexity of L. The situation is more involved if we
consider classes of languages and state complexity functions.

We are interested in compositions of variable regular languages. We will now
give a general definition of state complexity functions. The definition is given for
arbitrary compositions although, for the undecidability result below, we actually
need it only for some special compositions. The functions we are considering will
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always map some power of N0 into N0. Again, only some special functions (expo-
nential polynomials defined below) will be needed for our undecidability result.

In the usual state complexity considerations, each variable of the function
corresponds to a unique language. We allow also the more general case, where
several languages are associated with the same variable.

Definition 1. Consider a function F (x1, . . . , xm), m ≥ 1,, some composition
Cn(L1, . . . , Ln), n ≥ m, of languages involving only regularity-preserving oper-
ations, as well as a surjective mapping ϕ of the index set {1, . . . , n} onto the
index set {1, . . . ,m}. Then the function F (x1, . . . , xm) is a state complexity
function of the composition Cn(L1, . . . , Ln) if the following condition is satis-
fied. Let (x1, . . . , xm) be an arbitrary m-tuple of nonnegative integers. Whenever
1 ≤ i ≤ m and each Lj , j ∈ ϕ−1(i), is a regular language with state complexity
xi, then the composition Cn(L1, . . . , Ln) is accepted by an automaton with at
most F (x1, . . . , xm) states.

Note that when we say that a function F (x1, . . . , xm) is a state complexity func-
tion of the composition Cn(L1, . . . , Ln), this means that the value of
F (x1, . . . , xm) gives an upper bound for the state complexity of the language
Cn(L1, . . . , Ln) when each variable xi is assigned the state complexity of the
languages Lj such that ϕ(j) = i.

Marked Catenation. L1‡L2 is a special operation needed in the sequel. It is the
catenation of the languages L1, ‡, L2, where ‡ is a letter not appearing in the
alphabets of L1 and L2. Similarly we consider marked catenations of arbitrarily
many languages. The following result is from [8]. In view of its importance, we
give the proof also here.

Theorem 1. Assume that Li are regular languages (maybe over different alpha-
bets) with state complexities σi, 1 ≤ i ≤ r, r ≥ 2. Assume, further, that for each
i, 1 ≤ i ≤ r, the minimal automaton Ai for Li has no sinks. Then the marked
catenation

L1‡L2‡ · · · ‡Lr

is accepted by an automaton A with

r∑
i=1

σi + 1 = σ

states but by no automaton with fewer than σ states. The alphabet of A consists
of the union of the alphabets of Li and of ‡. The initial state of A1 is the initial
state of A, and the final states of Ar constitute the set of final states of A.

Proof. An automaton A accepting the marked catenation is obtaining by joining
the automataAi, 1 ≤ i ≤ r, in the following way. From each final state ofAi, 1 ≤
i ≤ r − 1, introduce a transition labeled by ‡ to the initial state of Ai+1. From
all other states of Ai, 1 ≤ i ≤ r − 1, as well as from all states of Ar, introduce
a transition labeled by ‡ to an additional sink state. It is clear that A accepts
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the marked catenation and has σ states. On the other hand, no automaton with
fewer states can accept the marked catenation. Eachword has to have exactly r−1
occurrences of ‡. States in two different automataAi cannot be combined because
this would result into too many occurrences of the letter ‡. �

If some of the automata Ai would possess a sink, then the various sinks can be
combined, and the total number σ can be reduced accordingly.

3 Mirror Images

For a word w = b1b2 . . . bk, bi ∈ Σ, its mirror image (also called reversal) is
defined by

mi(w) = bk . . . b2b1.

The mirror image mi(L) of a language L consists of the mirror images of its
words. For a DFA A = (Q,Σ, δ, q0, F ), we denote by R(A) the NFA obtained
from A by reversing all arrows and interchanging the initial and final states. It is
obvious that R(A) accepts the language mi(L(A)). If #Q = n, then S(R(A)) has
at most 2n states. Consequently, the state complexity of mi(L(A)) is at most
2n. For a proof of the following well-known result, see [4], Vol. 1, p. 95.

Lemma 1. If in a DFA A = (Q,Σ, δ, q0, F ) all states of Q are reachable from
q0, then S(R(A)) is the minimal DFA accepting mi(L(A)).
Thus, assuming that the state complexity of a language L = L(A) equals n, the
state complexity of mi(L) equals 2n if and only if all of the 2n subsets of Q
appear as states of S(R(A)). We now consider a sequence of automata where
this actually happens. Some of the automata were discussed, omitting many
details, in [9] which was one of the very last joint works of the present author
with the late Derick Wood. Therefore, we call them here Wood automata. Wood
automata are investigated, from a different point of view, also in [6].

The Wood automaton W (n) with n states is over the binary alphabet {a, b}.
(If some other letters, say c, d, are used, this will be indicated in the notation:
W (n)(c, d)). The state set is Q = {1, 2, . . . , n}. The transitions fa(x) = δ(x, a)
and fb(x) = δ(x, b) are defined as follows. The function fa(x) is the circular
permutation (123 · · ·n), whereas

fb(1) = fb(3) = 1, fb(4) = 3, fb(x) = x otherwise.

We assume first that n ≥ 5 and that n is not divisible by 4. Then the state 1
is both the initial and the only final state. In this case the automaton W (n) is
depicted in Figure 1. (Final states are marked by double circles, the incoming
arrow points to the initial state.) We will return later to the remaining cases.

The essential tool in our considerations is the subset construction, and the
main problem the connectedness of the resulting graph. The framework can be
described in terms of subset functions as follows.

Consider a finite set Q = {1, 2, . . . , n} and mappings f : Q → 2Q. Extend
such a mapping additively to a mapping from 2Q to 2Q. (Thus, for X ⊆ Q, the
value f(X) is the union Y of the values f(x), where x ∈ X.)
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Let F be a (finite) set of such subset functions For X,Y ⊆ Q, we use the
notation X ⇒F Y to indicate that f(X) = Y , for some f ∈ F. Finally, let ⇒∗

F

be the reflexive transitive closure of the relation ⇒F .

Definition 2. A set F of subset functions is complete if, for any X ⊆ Q, X �=
∅, Q and any Y ⊆ Q, we have

X ⇒∗
F Y.

2

31

45n

b b

a a a· · ·

a

b

a

b

a

a

b

b

Fig. 1. Wood automaton W (n), n ≥ 5, 4 � n

If X ⇒∗
F Y, we say that Y is reachable from X (via F ). Although functional

completeness is well understood (see [5] and the references given there), the com-
pleteness of sets of subset functions is an open problem area. The restrictions
in Definition 2, concerning ∅, Q, become obvious below.

The following general considerations are independent of initial and final states
and concern an arbitrary n ≥ 4. For convenience, we denote the inverses of
the functions fa and fb by A and B, respectively. We denote also F = {A,B}.
Clearly, A and B are subset functions in the sense defined above. Thus, A affects
the circular permutation (n · · · 321), whereas B maps 1 to {1, 3}, 3 to 4, 4 to ∅,
and x to x, otherwise. In connection with the set Q, additions will be carried
out modulo n, that is, i+ j stands for the smallest positive remainder modulo n.
For X = {x1, . . . , xk} ⊆ Q, we consider sets

X+i = {x1+i, . . . , xk+i}, 1 ≤ i ≤ n.

(Observe that X+n = X .) Since A is a circular permutation, we have, for all i,

X ⇒∗
A X

+i.
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This fact will be used frequently in our following arguments.

Observe that 4⇒B ∅. We now claim that, from any

X ⊆ Q, 2 ≤ #X = k ≤ n− 1,

a subset Y of Q with cardinality k− 1 is reachable. If, for some i, 0 ≤ i ≤ n− 1,
the element i+4 is in X , whereas i+1 is not there, then we apply B to the set
X+(n−i), and obtain a subset Y as required. If no such pair of elements exists in
X , then n is divisible by 3, and X consists of one or two residue classes modulo
3. (This follows because X �= Q.) We may assume, by applying A if necessary,
that the numbers 3, 6, . . . , n are in X , whereas the numbers 1, 4, . . . , n−2 are not
there. Now B(X) is obtained fromX by replacing 3 with 4. Hence, Y = B(B(X))
is of cardinality k − 1. This completes the proof of our claim.

We now work inductively “upwards”, increasing the cardinality of the reach-
able sets. We will investigate which subsets Y are reachable from the singleton
{1}. Reachability is immediately verified for ∅ and all singletons. We now as-
sume inductively that every subset X ′ of Q with cardinality k− 1, 2 ≤ k ≤ n, is
reachable, and consider an arbitrary subset X of Q with cardinality k. Given X ,
we want to show how to choose an X ′ of cardinality k − 1 such that X ′ ⇒∗

F X.
Assume first that X contains, for some i, the elements i and i+2. By applying

A, we may assume that 1 and 3 are contained in X . If 4 is (resp. is not) in the
set X thus modified, we let X ′ be the set obtained from X by removing the
element 4 (resp. 3). Then X ′ ⇒∗

F X. (Of course, we still have to use A to get
the original X .)

From now on we assume that no elements i and i + 2 are in X . This implies
that X contains no three consecutive elements i, i + 1, i + 2 and, whenever i is
in X but i+ 1 is not in X , then also i+ 2 is not in X . Intuitively, X consists of
singletons and pairs of two consecutive elements, all separated by at least two
“non-elements”. (All the time we are using the modular arithmetic: n and 1 are
consecutive.)

Assume that, for some i, the element i is in X , whereas i+1 and i−1 are not.
By the preceding paragraph, also i+2 and i− 2 are not in X . By an A-shift, we
may assume that 1 is in X , whereas 2, 3, n− 1, n are not.

Let j be the smallest element, apart from 1, in X . We know that j ≥ 4.
Construct X ′ by removing j from X . In the following reachability sequence we
have marked down only the relevant elements in the sets. It is essential that n
is not in X . (Observe that B alters elements 1, 3, 4 only.)

X ′ ⇒∗
B {1, 3, 4} ⇒∗

A {2, 4, 5} ⇒∗
B {2, 5} ⇒∗

A {1, 4}
⇒∗

A {n, 3, } ⇒∗
B {n, 4} ⇒∗

A {1, 5}

This shows how X is reachable if j = 4 or j = 5. For an arbitrary j, we reach X
by repeating the transformations on the second line.

Hence, we may assume that X does not contain such isolated elements. This
implies, by our previous constructions, that X consists of pairs of consecutive
elements, separated by at least two “non-elements”. Suppose that, for some i, the
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elements i and i+1 are inX , whereas none of the elements i−3, i−2, i−1, i+2, i+3
is in X . By an A-shift, we may again assume that 1 and 2 are in X , whereas
none of the elements n− 2, n− 1, n, 3, 4 is in X .

We now let X ′ be the following subset of cardinality k − 1:

X ′ = {1} ∪ {j + 1| j ∈ X, j �= 1, 2}.

Then the following reachability chain is valid:

X ′ ⇒∗
B {1, 3} ∪ {j + 1| j ∈ X, j �= 1, 2} = X1

⇒∗
A {3, 5} ∪ {j + 3| j ∈ X, j �= 1, 2} = X2

⇒∗
B {4, 5} ∪ {j + 3| j ∈ X, j �= 1, 2} ⇒∗

A X

It is important to observe that neither n − 1 nor n is in X1 and, consequently,
neither 1 nor 2 is in X2.

Thus, we have reached the conclusion that X consists of pairs of consecutive
elements, separated by exactly two “non-elements”. But this means that n is
divisible by 4 : n = 4m.

For n = 4m, we now define the Wood automaton W (n) by choosing the set

WF (n) = {4i+ 1, 4i+ 2| 0 ≤ i ≤ m− 1}

as the set of final states. Otherwise, the definition of W (n) remains unaltered.
The automaton W (8) is illustrated in Figure 2.

2 31 4

5678

a a

aaa

a

a a

b

b

b

b

bbbb

Fig. 2. Wood automaton W (8)
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Our argument above shows, by Lemma 1 and the reachability of all subsets,
that the state complexity of the language mi(L(W (n))), n ≥ 5, equals 2n,
provided n is not divisible by 4. In fact, in this case we are free, [6], to choose the
initial and the set of final states. However, our choice of the final state setWF (n)
guarantees that the state complexity result holds true also if n is divisible by
4. (There is no change in the proof when we reduce the cardinality of reachable
subsets. The argument applies also if we want to increase the cardinality or
keep it 2m which is the cardinality of WF (n).) Hence, we have established the
following result.

Theorem 2. For n ≥ 4, the state complexity of the language mi(L(W (n)))
equals 2n.

We still have to deal with the small values of n. The automata W (2) and W (3)
are depicted in Figure 3. It is immediately verified that the state complexities
of the mirror images are 4 and 8 in these cases. Hence, we obtain the following
corollary of Theorem 2.

Theorem 3. For n ≥ 2, the state complexity of the language mi(L(W (n)))
equals 2n.

Summarizing, we obtain the following result.

Theorem 4. For every n ≥ 2, the Wood automaton W (n) has n states but the
minimal deterministic automaton equivalent to R(W (n)) has 2n states.

2

1

1

2

3

b

a

a, b

b

a, b

b

a a

Fig. 3. Wood automata W (2) and W (3)

4 Modifications of the Davis-Putnam-Robinson Theorem

By an exponential polynomial, briefly E-polynomial, we mean a finite sum of
terms of the form α1α2 · · ·αn, n ≥ 1, where each αi, i ≥ 1, is a variable, or of
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the form 2x, for some variable x. An exponential polynomial may contain several
identical terms, which will be expressed with coefficients in N0. For instance,

2x1x23x4 + 4x1x2 + 2x32x1x2x3x4

is an exponential polynomial.
By the Davis-Putnam-Robinson Theorem, for every recursively enumerable

set S of nonnegative integers, there are (effectively constructible) exponential
polynomials Ei(x0, x1, . . . , xm), i = 1, 2, such that x0 ∈ S if and only if the
equation

E1(x0, x1, . . . , xm) = E2(x0, x1, . . . , xm)

has a solution in nonnegative integers (x1, . . . , xm). (For details and a proof
using register machines, see [3].) Using the universal Turing machine and the
undecidability of the emptiness of recursively enumerable languages, the result
can be expressed in the following form. There are (effectively constructible) ex-
ponential polynomials E(x0, x1, . . . , xm) and E′(x0, x1, . . . , xm) such that, given
x0 ≥ 0, it is undecidable whether or not the equation

E(x0, x1, . . . , xm) = E′(x0, x1, . . . , xm)

has a solution in nonnegative integers (x1, . . . , xm). By substituting the value
x0 = i ≥ 1 to the exponential polynomials E and E′, we obtain two infinite
sequences Ei and E′

i, i = 1, 2, . . . , such that, given i ≥ 1, it is undecidable
whether or not the equation

Ei(x1, . . . , xm) = E′
i(x1, . . . , xm)

has a solution in nonnegative integers (x1, . . . , xm). Denote

Pi(x1, . . . , xm) = Ei(x1, . . . , xm)− E′
i(x1, . . . , xm), i ≥ 1.

Consider the inequalities

0 ≤ (Pi(x1, . . . , xm)2)− 1, i = 1, 2, . . .

Clearly, for any given i, this inequality is valid for all m-tuples (x1, . . . , xm) of
nonnegative integers exactly in case the equation

Ei(x1, . . . , xm) = E′
i(x1, . . . , xm)

has no solution in nonnegative integers. Therefore, by the Davis-Putnam-Robinson
Theorem, there is no algorithm of deciding, given i, whether or not the inequality

0 ≤ (Pi(x1, . . . , xm)2)− 1

holds for all m-tuples (x1, . . . , xm) of nonnegative integers. We now move all
negative terms from the right side to the left side. This gives rise to a new
inequality, equivalent to the original one,

E
(l)
i (x1, . . . , xm) ≤ E(r)

i (x1, . . . , xm),

where E
(l)
i and E

(r)
i are E-polynomials.

These considerations are summarized in the following Theorem.
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Theorem 5. There is no algorithm of deciding, given a positive integer i, whether
or not the inequality

E
(l)
i (x1, . . . , xm) ≤ E(r)

i (x1, . . . , xm)

holds for all m-tuples (x1, . . . , xm) of nonnegative integers. Here E
(l)
i and E

(r)
i

are effectively constructible E-polynomials over the set of variables {x1, . . . , xm}.
Moreover, there is a finite set S of terms of the form

yj11 · · · y
j2m
2m , jμ ≥ 0, 1 ≤ μ ≤ 2m,

such that every polynomial E
(l)
i , i = 1, 2, . . . , equals the sum of some terms in

S, provided with positive integer coefficients.

Thus, each E
(l)
i is a (finite) sum of terms of the form

yj11 · · · y
j2m
2m , jν ≥ 0, 1 ≤ ν ≤ 2m,

provided with positive integer coefficients depending on i. The choice of i affects
only the multiplicity of each term, i.e., it tells how many times each term appears

in the polynomial E
(l)
i . (We have 2m instead of m because a term may contain

both x and 2x, for some variable x.)

In the sequel we will associate the E-polynomials E
(l)
i with specific compo-

sitions of regular operations, whereas the polynomials E
(r)
i will constitute the

proposed state complexities.

5 Special Compositions and Associated E-Polynomials

The specific compositions we will need use the three regularity-preserving oper-
ations of mirror image, intersection and marked catenation. Therefore, we will
call them three-compositions. The operations are not nested arbitrarily. The way
of nesting is specified in the following definition.

Definition 3. A three-composition over the set {L1, . . . , Ln}, n ≥ 2, of lan-
guage variables is an expression

γ1‡γ2‡ · · · ‡γr, r ≥ 2,

where each γi, 1 ≤ i ≤ r, is of the form

γi =M1 ∩ · · · ∩Mj(i), j(i) ≥ 1,

such that theM ’s are different ones among the language variables Lν , 1 ≤ ν ≤ n,
either appearing as plain Lν, or in the form mi(Lν). A language variable Lν can
appear both as such and in the form mi(Lν) in the same γi.
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Parentheses can be added for clarity. For instance,

(mi(L2) ∩ L3)‡(L1 ∩ L2 ∩ L3)‡(mi(L1) ∩mi(L3) ∩ L1)

is a three-composition over the set {L1, L2, L3} of language variables.
Above we defined the Wood automata W (n), n ≥ 2, and showed that the

state complexity of the language mi(L(W (n))) equals 2n. We make the for-
mal convention that the state complexity of mi(L(W (1))) (resp. mi(L(W (0))))
equals 2 (resp. 1).

Let us go back to theE-polynomialsE
(l)
i defined in the preceding section. They

use the fixed set of variables {x1, . . . , xm}. As already pointed out, the variables
may appear either by themselves or as exponents of 2. However, each variable x
and each power 2x appears only a bounded number of times in each product in each

E
(l)
i . Thus, for each j, 1 ≤ j ≤ m, there is a numberKj such that every exponent

of xj in every product equals at mostKj, and that 2xj appears as a factor in every

product at mostKj times, no matter whatE
(l)
i we are considering. This important

fact follows because, as explained above, a change of the index i in E
(l)
i does not

affect the summands in E
(l)
i , only their multiplicities.

Consider now language variables

Lν
j , 1 ≤ j ≤ m, 1 ≤ ν ≤ Kj.

The variables Lν
j , 1 ≤ ν ≤ Kj correspond to xj in the sense of the mapping ϕ

in Definition 1. With each summand

(2x1)μ1 · · · (2xm)μmxν11 · · ·xνmm ,

where 0 ≤ μj , νj ≤ Kj , 1 ≤ j ≤ m, in E
(l)
i , we associate an intersection as

follows. (We consider an arbitrary index i. For readability, we do not include
it in the notation.) Consider an arbitrary j, 1 ≤ j ≤ m. The part (2xj )μj is
associated with the intersection

mi(L1
j) ∩ . . . ∩mi(L

μj

j ).

The part x
νj
j is associated with the intersection

L1
j ∩ . . . ∩ L

νj
j .

Finally, the three-composition C(E
(l)
i ) associated with E

(l)
i is the marked cate-

nation of the summands appearing in E
(l)
i .

As an example, consider the E-polynomial

(2x1)2x1x3 + 2x1x
2
2x3 + 2x2 .

Now we have K1 = K2 = 2, K3 = 1. The three-composition associated with this
E-polynomial is

(mi(L1
1) ∩mi(L2

1) ∩ L1
1 ∩ L1

3)‡(L1
1 ∩ L1

2 ∩ L2
2 ∩ L1

3)

‡(L1
1 ∩ L1

2 ∩ L2
2 ∩ L1

3)‡(mi(L1
2)).

We will need the following result from [13]. It is proved also in [8].
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Theorem 6. Assume that Li, 1 ≤ i ≤ r, are regular languages with the state
complexities σi. Then the state complexity of the regular language L1 ∩ . . . ∩ Lr

is at most the product σ = σ1 · · ·σr . Moreover, for any r-tuple (σ1, . . . , σr) of
nonnegative integers, it is possible to construct regular languages Ki, 1 ≤ i ≤ r,
with the state complexity σi such that the intersection of the languages Ki has
exactly the state complexity σ = σ1 · · ·σr .

The following theorem is an immediate corollary of Theorems 1 and 6. (The
additional summand +1 of Theorem 1 is not needed if we assume that at least
one exponential term appears in the E-polynomial.)

Theorem 7. For each i = 1, 2, . . . , the E-polynomial E
(l)
i (x1, . . . , xm) is a state

complexity function of the three-composition C(E
(l)
i ).

In the next section specific languages will be substituted in three-compositions
in such a way that the alphabets of the languages appearing in intersections will
be pairwise disjoint. (We do not estimate here the size of the total alphabet.
Such an estimation was done in an analogous situation in [8].)

6 Undecidability

We consider in the sequel an arbitrary but fixed E-polynomial E
(l)
i (x1, . . . , xm),

and the numbers Kj as defined above. Let C(E
(l)
i ) be the three-composition

associated with E
(l)
i (x1, . . . , xm). Introduce the alphabet Σ consisting of the

letters
aνj , b

ν
j , c

ν
j , 1 ≤ j ≤ m, 1 ≤ ν ≤ Kj.

The specific languages defined below will be over the alphabet Σ. The languages
will depend on a fixed nonnegative integer n. (It will be the value assigned for
the variable xj in our E-polynomial.) By definition,

Aν
j (n) = mi(W (n)(bνj , c

ν
j )), 1 ≤ j ≤ m, 1 ≤ ν ≤ Kj .

(Recall our way of indicating the alphabet of a Wood language.) Similarly, let
Bν

j (n) be the language over Σ consisting of all words w such that the number
of occurrences of the letter aνj in w is divisible by n. Finally, for each n-tuple
(x1, . . . , xm) of nonnegative integers, let Di(x1, . . . , xm) be the regular language,

resulting from C(E
(l)
i ) as follows. If nj is the value assigned for xj , 1 ≤ j ≤ m ,

substitute every occurrence of mi(Lν
j ) (resp. L

ν
j ) with A

ν
j (nj) (resp. B

ν
j (nj)).

Consider now the example

(mi(L1
1) ∩mi(L2

1) ∩ L1
1 ∩ L1

3)‡(L1
1 ∩ L1

2 ∩ L2
2 ∩ L1

3)

‡(L1
1 ∩ L1

2 ∩ L2
2 ∩ L1

3)‡(mi(L1
2)).
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from the preceding section, as well as the ordered triple (8, 6, 5) as values of the
three variables. Then the associated Di-languages is

(mi(W (8)(b11, c
1
1)) ∩mi(W (8)(b21, c

2
1)) ∩B1

2(6) ∩B1
3(5))

‡(B1
1(8) ∩B1

2(6) ∩B2
2(6) ∩B1

3(5))

‡(B1
1(8) ∩B1

2(6) ∩B2
2(6) ∩B1

3(5))‡(mi(W (6)(b12, c
1
2))).

The proof of the following lemma is straightforward, along the lines of Theorems
1 and 6. The only additional technicality needed is to take care of the possible
sinks appearing in automata for the mirror images of the languages of Wood
automata. Since the alphabets are pairwise disjoint, we can introduce transitions
in such a way that sinks can never be combined, and there is only one sink where
the wrong transitions, including the ones involving ‡, are leading.

Lemma 2. For all values of the variables, the state complexity of the language

Di(x1, . . . , xm) equals E
(l)
i (x1, . . . , xm).

Our undecidability result now follows by Theorems 5 and 7 and Lemma 2.

Theorem 8. For the sequence of E-polynomials E
(r)
i , i = 1, 2, . . . and three-

compositions C(E
(l)
i ), i = 1, 2, . . . , as constructed above, it is undecidable whether

or not E
(r)
i is a state complexity function of C(E

(l)
i ).

7 Conclusion

We have investigated the operation mirror image, in particular, the cases where
the state complexity of the language mi(L) is maximal in comparison with the
state complexity of L. This gives also the maximal increase in state complexity in
the transition from a nondeterministic automaton to the equivalent deterministic
automaton. Wood automata W (n) with n states constitute good examples. If n
is divisible by 4, the state complexity of mi(W (n)) is, for certain choices of the
final state set, maximal but sometimes only 2n−4. Several open problems remain
in connection with mirror images, in particular, the construction of automata
for languages L such that the state complexity of mi(L) is close to the maximal,
or close to the minimal one.

In our result concerning the undecidability of the state complexity of compo-
sitions of regular languages, we were able to use reduction to exponential poly-
nomials, instead of polynomials. The three operations in the compositions were
mirror image, intersection and marked catenation. The Davis-Putnam-Robinson
Theorem provided the undecidable problem used as the basis of reduction. Other
undecidable problems will in general lead to other operations. The undecidability
of the state complexity will then concern composition sequences in terms of these
operations. It is an interesting open problem to study the possibilities in this
direction. For instance, is it possible to use the undecidability of the Post Cor-
respondence Problem and, if this is the case, which are the regularity-preserving
operations involved?
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In our undecidability result above the state complexities of the languages ap-
pearing as components of the marked catenations depended on the values for
the variables in a rather complicated way. On the other hand, we can study
simpler cases. If the state complexity of each of the component languages Lj

equals directly the value of one of the variables xj , then the state complexity
of the marked catenation is a linear function of the variables, and our problem
is clearly decidable, provided an E-polynomial is the proposed state complex-
ity function. This result can possibly be extended to the case where the state
complexity of each component language is of the form xtj , where t is a positive
integer. Each pair ((C,F)), where C (resp. F) is a class in compositions (resp.
functions) defines in the natural way a decision problem. A general task is to
find interesting pairs for which this problem is decidable.
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Abstract. The subword complexity of an infinite word ξ is a function
f(ξ, n) returning the number of finite subwords (factors, infixes) of length
n of ξ. In the present paper we investigate infinite words for which the
set of subwords occurring infinitely often is a regular language. Among
these infinite words we characterise those which are eventually recurrent.

Furthermore, we derive some results comparing the asymptotics of
f(ξ, n) to the information content of sets of finite or infinite words related
to ξ. Finally we give a simplified proof of Theorem 6 of [18].

Following [9] the subword complexity of an infinite word ξ is a function f(ξ, n)
returning the number of finite subwords (infixes, factors) of ξ having length n. It
was mainly investigated for infinite words of low complexity (see [2,9] or the book
[1]). However [9, Question 2] asked for the general complexity of quasiperiodic
infinite words. An answer on their maximally possible complexity was given in
[11] showing that this complexity satisfies f(ξ, n) ≤ae c · tnP where tP is the
smallest Pisot number. Moreover, for quasiperiodic infinite words with maximal
subword complexity the set of factors form a regular language.

The aim of our paper is to investigate in more detail those infinite words whose
set of factors occurring infinitely often is a regular language. In contrast to [2]
and [1] we are mainly interested in infinite words ξ whose subword complexity
f(ξ, n) is not bounded by a subexponential function.

In the case of exponentially growing subword complexity the results of [15]
and [18] show a close connection between the growth of f(ξ, n) and the Haus-
dorff dimension of regular ω-languages containing the infinite word ξ. Using this
connection we prove that every infinite word having a regular subword language
satisfies the condition f(ξ, n) ≈ c · tnξ for a suitable real number tξ.

As a consequence we obtain a simplified proof of Theorem 6 of [18]. This
theorem states, roughly speaking, that finite automata cannot distinguish one-
sided eventually recurrent infinite words having the same set of infinitely often
occurring factors provided this set of factors is a regular language. A more general
result for two-sided infinite words had been obtained earlier [10,12].

After introducing some necessary notation in Section 2 we derive some basic
facts on infinite words having a regular language of infinitely often occurring fac-
tors. Moreover, the concept of asymptotic subword complexity of infinite words
is introduced. This concept proves to be useful in the following.

The entropy of languages known from [3,7,8] is closely related to asymptotic
subword complexity. In Section 3 we derive some elementary properties and

H. Bordihn, M. Kutrib, and B. Truthe (Eds.): Dassow Festschrift 2012, LNCS 7300, pp. 236–245, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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also some results relating the entropy of languages to the Hausdorff dimension
of ω-languages are presented (cf. also [14,15]). These facts are used to derive
our results in the last section. Here we focus our considerations on eventually
recurrent infinite words having a regular language of infinitely often occurring
subwords. From these considerations several conditions necessary or sufficient
for an infinite word to be eventually recurrent are obtained. Finally, we give a
simple proof of Theorem 6 of [18].

The previous proof in [18] uses considerations involving Hausdorff measure.
In the present paper we circumvent these measure-theoretic considerations con-
fining to language-theoretic results only, although we make implicitly use of the
close connection between the entropy of languages and Hausdorff dimension.

1 Notation

In this section we introduce the notation used throughout the paper. By IN =
{0, 1, 2, . . .} we denote the set of natural numbers. Let X be an alphabet of
cardinality |X | = r ≥ 2. By X∗ we denote the set of finite words on X , including
the empty word e, and Xω is the set of infinite strings (ω-words) over X . Subsets
of X∗ will be referred to as languages and subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗∪Xω let w ·η be their concatenation. This concatena-
tion product extends in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗ ∪ Xω.
For a language W let W ∗ :=

⋃
i∈IN W i, and let Wω := {w1 · · ·wi · · · : wi ∈

W \ {e}} the set of infinite strings formed by concatenating words in W .
We denote by w[−1]B := {η : w · η ∈ B} the left derivative of the set B ⊆

X∗ ∪ Xω. As usual a language W ⊆ X∗ is regular provided it is accepted by
a finite automaton. An equivalent condition is that its set of left derivatives
{w[−1]W : w ∈ X∗} is finite. In the sequel we assume the reader to be familiar
with basic facts of language theory.

Furthermore |w| is the length1 of the word w ∈ X∗ and A(B) is the set of all
finite prefixes of strings in B ⊆ X∗ ∪ Xω. We shall abbreviate w ∈ A(η) (η ∈
X∗ ∪ Xω) by w � η (w � η if w �= η).

T(B) :=
⋃

w∈X∗ A(w[−1]B) is set of infixes (factors) of words in B ⊆ X∗∪Xω,
and for an infinite word ξ ∈ Xω its sets of factors occurring infinitely often is
T∞(ξ) :=

⋂
w�ξ T(w[−1]ξ).

As usual a language V ⊆ X∗ is called a code provided w1 · · ·wl = v1 · · · vk for
w1, . . . , wl, v1, . . . , vk ∈ V implies l = k and wi = vi. A code V is said to be a
prefix code provided v � w implies v = w for v, w ∈ V .

2 The Languages of Subwords

In this part, we consider, for an infinite word ξ ∈ Xω, the languages of subwords
T(ξ) and of subwords occurring infinitely often T∞(ξ), respectively.
1 Since there is no danger of confusion, the length |w| of a word w ∈ X∗ is denoted in

the same way as the cardinality |M | of a set M .
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For the tails (suffixes) of ξ we have the following obvious inclusion.

T(w[−1]ξ) ⊇ T(v[−1]ξ) whenever w � v (1)

Thus the family
(
T(w[−1]ξ)

)
w�ξ is an infinite decreasing chain of languages,

and the infinite intersection T∞(ξ) :=
⋂

w�ξ T(w[−1]ξ) consists of all subwords
occurring infinitely often in ξ.

It depends on the ω-word ξ whether the chain in Eq. (1) is stationary or not. If
the family

(
T(v[−1]ξ)

)
v�ξ

is stationary, that is, there is a prefix v � ξ such that
T(v[−1]ξ) = T∞(ξ), we will refer to the ω-word ξ ∈ Xω as eventually recurrent2

(see [21]).
Next we consider the case when one of the languages T(w[−1]ξ) is a regular

language. To this end we derive the following relation between v[−1]T(ξ) and
T(v[−1]ξ).

Lemma 1. Let v � ξ. Then v[−1]T(ξ) ⊆ T(v[−1]ξ) = T(v[−1]T(ξ)).

Proof. If u ∈ v[−1]T(ξ) then vu ∈ T(ξ) and thus there is a w such that wvu � ξ.
Since v � ξ, we have also v � wv. Consequently, wv = vw̄ for some w̄, and we
obtain vw̄u � ξ, that is, u ∈ T(v[−1]ξ).

v[−1]T(ξ) ⊆ T(v[−1]ξ) implies T(v[−1]T(ξ)) ⊆ T(v[−1]ξ), so it suffices to show
T(v[−1]ξ) ⊆ T(v[−1]T(ξ)). Let u ∈ T(v[−1]ξ). Then there is a w̄ ∈ X∗ such that
vw̄u � ξ. Consequently, w̄u ∈ v[−1]T(ξ), whence u ∈ T(v[−1]T(ξ)). �

As in [18] we refer to an ω-word ξ ∈ Xω as infix-regular provided there is a prefix
w � ξ such that T(w[−1]ξ) is a regular language. The following lemma yields a
connection between infix-regular ω-words and eventually recurrent ω-words.

Lemma 2. An ω-word ξ ∈ Xω is an infix-regular ω-word if and only if ξ is
eventually recurrent and T∞(ξ) is a regular language.

Proof. Let ξ ∈ Xω be infix-regular. Then in Lemma 5 of [18] it is shown that
there is a w′ � ξ such that T(w′[−1]ξ) is a regular language and T(w′[−1]ξ) =
T∞(ξ).

The other direction is follows from the definition and the fact that T∞(ξ) is
a regular language. �

Corollary 1. If T(ξ) is regular then T∞(ξ) is also regular.

It should be noted that not every ω-word ξ for which T∞(ξ) is a regular lan-
guage is eventually recurrent. The following example shows that T∞(ξ) might
be regular, although none of the sets T(w[−1]ξ), w � ξ, is regular.

Example 1. Consider ξ0 :=
∏∞

i=1 ai · b. Then T∞(ξ0) = a∗ ∪ a∗ · b · a∗, but,
for every w � ξ0, the intersection T(w[−1]ξ0) ∩ b · a∗ · b · a∗ · b is a non-regular
language of the form {b · ai · b · ai+1 · b : i ∈ IN ∧ i ≥ cw}, hence T(w[−1]ξ0) is
also non-regular. �
2 An ω-word ξ is referred to as recurrent iff T∞(ξ) = T(ξ). This resembles the notion

of recurrence for ZZ-words as considered in [10,12].
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2.1 Subword Complexity and Asymptotic Subword Complexity of
ω-Words

The subword complexity of an infinite word ξ is the function f(ξ, n) := |T(ξ) ∩
Xn|. In this section we focus on the growth of the function f(ξ, n), in particular,
on the real number λξ for which lim

n→∞ f(ξ, n)/(λξ+ε)n = 0 and lim
n→∞ f(ξ, n)/(λξ−

ε)n = ∞. 3.
First observe the following simple property for eventually recurrent ω-words.

Lemma 3. If ξ ∈ Xω and T(w[−1]
0 ξ) = T∞(ξ) then f(ξ, n) ≤ |w0| + |T∞(ξ) ∩

Xn|.

Proof. This follows from the fact that every factor of length n of ξ is a factor of
w

[−1]
0 ξ or a factor of the length |w0| + n − 1 prefix of ξ. �

Along with the subword complexity we consider the asymptotic subword com-
plexity τ(ξ) of an ω-word ξ. This quantity is defined as the logarithm of the real
number λξ.

Definition 1 (Asymptotic subword complexity)

τ(ξ) := lim
n→∞

log|X| f(ξ, n)
n

Since f(ξ, n + m) ≤ f(ξ, n) · f(ξ, m), the limit in Definition 1 exists and equals
τ(ξ) = inf

{
log|X| f(ξ,n)

n : n ∈ IN
}
. Moreover, we have the following relation

between f(ξ, n) and |T∞(ξ) ∩ Xn| (see [15, Eq. (5.2)]).

τ(ξ) = lim
n→∞

log|X| |T∞(ξ) ∩ Xn|
n

(2)

3 The Entropy of Languages

Closely related with the asymptotic subword complexity is the concept of the
entropy of languages introduced in [3]. Let W ⊆ X∗. Then the quantity

HW := lim sup
n→∞

log|X| max{1, |W ∩ Xn|}
n

(3)

is referred to as the entropy of the language W . Eq. (3) strongly resembles
Eq. (2). Since the limit need not exist, we use the limit superior instead, and
the additional 1 in the numerator is added to ensure that HW = 0 for finite
languages W . For more details on the entropy of languages see also [7,8,19].

3 We have to express this fact in the complicated manner because the growth of f(ξ, n)
need not behave like c · λn

ξ .
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3.1 The Entropy of Regular Languages

Next we derive some properties of the entropy of regular languages (cf. also
[5,15]).

We start with some easily derived relations between the number of words in
a regular language and the number of its subwords.

Lemma 4. If W ⊆ X∗ is a regular language then there is a k ∈ IN such that

|W ∩ Xn| ≤ |T(W ) ∩ Xn| ≤ k
2 · ∑k

i=0 |W ∩ Xn+i| .
As a suitable k one may choose twice the number of states of an automaton
accepting the language W ⊆ X∗.

A first consequence of Lemma 4 is the following.

Corollary 2. Let W ⊆ X∗ be a non-empty regular language. Then HT(W ) =
HA(W ) = HW .

Corollary 4 of [13] shows a more precise bound for the number of words in regular
star languages W ∗ ⊆ X∗.

Lemma 5. For every regular language W ⊆ X∗ there are constants c1, c2 > 0
and a λ, 0 ≤ λ ≤ |X |, such that

c1 · λn ≤ |A(W ∗) ∩ Xn| ≤ c2 · λn .

A consequence of Lemma 4 is that |T(W ) ∩ Xn| ≤ k · |A(W ) ∩ Xn+k|. Thus
Lemma 5 holds also (with constant k · c2 · |X |k instead of c2) for T(W ∗).

In order to obtain a relation between HW and HW∗ we consider, for a language
W ⊆ X∗, the generating function SW (t) :=

∑
i∈IN |W ∩X i| · ti. It is well-known

(cf. [8]) that HW = − log|X| sup{t : 0 ≤ t ≤ 1 ∧ SW (t) < ∞}. Moreover, for
regular languages W , the function SW (t) is a rational function [3,5], that is, in
particular, if W �= ∅ there is always a value t1 < |X |−HW such that SW (t1) = 1.

For codes V ⊆ X∗ we have SV ∗(t) = (1− SV (t))−1, and consequently, HV ∗ =
− log|X| t1 whenever t1 < |X |−HV . Thus we have the following.

Lemma 6. Let ∅ �= V ⊆ X∗ be a regular language and simultaneously a code.
Then HV ∗ > HV .

Proposition 1. If V is a regular code, v ∈ V and W = V \ {v} then
HW∗ < HV ∗ .

Proof. Since V is regular, there is a value t1 such that SV (t1) = 1, that is,
HV ∗ = − log|X| t1.

We use the inequality SW (t) < SV (t) which holds for 0 ≤ t < |X |−HV and
the fact that W is also a regular code. Then the value t′1 for which SW (t′1) = 1
satisfies t1 < t′1, and the assertion follows. �

We conclude this part with the following connection between the asymptotic
subword complexity τ(ξ) and the entropy of regular languages containing A(ξ).
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Theorem 1. τ(ξ) = inf
{
HW : W is regular ∧ A(ξ) ⊆ A(W )

}
Proof. The inequality τ(ξ) ≤ HW follows from τ(ξ) = HT(ξ), T(ξ) ⊆ T(W ) and
Corollary 2.

Since τ(ξ) = inf
{ log|X| f(ξ,n)

n : n ∈ IN
}
, the relations A(ξ) ⊆ A((T(ξ)∩Xn)∗),

for n > 0, and H(T(ξ)∩Xn)∗ =
log|X| f(ξ,n)

n show the other inequality. �

3.2 Entropy of Languages and Hausdorff Dimension

In the next sections we will see that the asymptotic subword complexity of an
ω-word ξ is closely related to the Hausdorff dimension of certain ω-languages
containing ξ. To this end we derive here some properties of the entropy of lan-
guages and the Hausdorff dimension of related ω-languages.

The usual definition of Hausdorff dimension (see e.g. [6,15]) is based on mea-
sure theoretical notions. Here we avoid this and refer instead to a characterisation
via the entropy of languages given in Eq. (3.11) of [15].

Definition 2. Let F ⊆ Xω. Then

dimH F := inf
{
HW : W ⊆ X∗ ∧ F ⊆ {ξ : |A(ξ) ∩ W | = ∞}}

is referred to as the Hausdorff dimension of the set F .

We mention the following well-known stability property of the Hausdorff dimen-
sion.

dimH

⋃
i∈IN Fi = sup{dimH Fi : i ∈ IN} (4)

In what follows we shall use Eq. (4) mainly to show that F ′ ⊆ F implies
dimH F ′ ≤ dimH F or that dimH W · F = dimH F when W �= ∅.

Next we consider the limit (or adherence) ls W := {ξ : A(ξ) ⊆ A(W )} ⊆ Xω

of a language W ⊆ X∗.
For languages of the form T(V ) the language itself and its limit ls T(V )

satisfy A(ls T(V )) = T(V ), T(V ) ⊇ v[−1]T(V ) and ls T(V ) ⊇ v[−1](ls T(V )),
for v ∈ X∗. Then one can apply Theorem 6 of [14] and obtains

dimH ls T(V ) = HT(V ) . (5)

In view of Corollary 2 our Eq. (5) implies dimH ls W ≤ HW for regular languages
W ⊆ X∗. Furthermore, the Hausdorff dimension of the ω-power V ω equals the
entropy of V ∗ (see Eq. (6.2) of [15]).

dimH V ω = HV ∗ (6)

Now Corollary 2, Eqs. (5), (6) and Lemma 6 yield the following.

Corollary 3. Let V ⊆ X∗ be a regular language. Then dimH ls V ≤ dimH V ω,
and if, moreover, V is a code then dimH ls V < dimH V ω.
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4 Maximum Subword Complexity in Regular
ω-Languages

In this section we derive the announced above results on eventually recurrent ω-
words having a regular language of infinitely often occurring subwords. To this
end we investigate the relations between the asymptotic subword complexity
τ(ξ) of an ω-word ξ and its containment in ω-languages of a special shape. Here
we consider the class of regular ω-languages (see [16,20]), that is, the class of
ω-languages accepted by finite automata. This class of regular ω-languages is
closely related to regular languages.

As usual an ω-language F ⊆ Xω is referred to as regular provided there are
an n ∈ IN and regular languages Wi, Vi ⊆ X∗ such that

F =
⋃n

i=1 Wi · V ω
i .

Here the languages Vi can be chosen to be prefix codes (see [4]). We mention
still that the class of regular ω-languages is closed under Boolean operations (see
[16,20]).

In the sequel we need the identity

ls V ∗ = V ω ∪ V ∗ · ls V for V ⊆ X∗ (7)

which can be found in [17] and the fact that ls V is a regular ω-language whenever
V is a regular language (see [15,16]).

Then the following relation between the asymptotic subword complexity and
the Hausdorff dimension of regular ω-languages can be proved.

τ(ξ) = inf{dimH F : F ⊆ Xω ∧ F is regular ∧ ξ ∈ F} (8)

Proof. Since ξ ∈ ls W if and only if A(ξ) ⊆ A(W ) and ls W is regular provided
W is regular, the inequality “≥” follows from Theorem 1 and Eq. (5), and the
reverse inequality is Proposition 5.4 of [15]. �

We proceed with a relation between T∞(ξ) and an ω-power V ω containing a tail
of ξ.

Lemma 7. 1. If ξ ∈ w · V ω for some w ∈ X∗ then T∞(ξ) ⊆
T(V ∗) ⊆ T(V ) · V ∗ · T(V ).

2. If η is eventually recurrent then there is a w ∈ X∗ such that η ∈ w ·ls T∞(η).

Proof. The first assertion is immediate.
Since η is eventually recurrent, T∞(η) = T(w[−1]η) for some w � η. Thus

{η} = ls w ·A(w[−1]η) ⊆ w · ls T∞(η). �

This yields an obvious upper bound on τ(ξ) when ξ ∈ w · V ω.

Corollary 4. If ξ ∈ w · V ω then τ(ξ) ≤ HT(V ∗).

For regular codes V ⊆ X∗ we have a stronger property.
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Theorem 2. Let V ⊆ X∗ be a regular code, ξ ∈ w · V ω for some w ∈ X∗ and
τ(ξ) = HV ∗ . Then V ∗ ⊆ T∞(ξ) = T(V ∗).

Proof. The inclusion T∞(ξ) ⊆ T(V ∗) is Lemma 7.1, and together with V ∗ ⊆
T∞(ξ) it implies T∞(ξ) = T(V ∗). Thus, it remains to show V ∗ ⊆ T∞(ξ).

Assume the contrary, that is, there is a v0 ∈ V ∗ such that v0 /∈ T∞(ξ). Since,
for n > 0, V ω = (V n)ω and V n is also a regular code whenever V is a regular
code, we may assume v0 ∈ V . Set W := V \ {v0}.

Then ξ ∈ w · Wω, and according to Corollary 4 and Proposition 1 we have
τ(ξ) ≤ HW∗ < HV ∗ . This contradicts our assumption. �

4.1 Eventually Recurrent ω-Words with Regular T∞(ξ)

Theorem 2 allows us to derive conditions necessary or sufficient for an ω-word ξ
with a regular language T∞(ξ) to be eventually recurrent.

The first condition is a sufficient one.

Theorem 3. Let F ⊆ Xω be a regular ω-language. If ξ ∈ F and τ(ξ) = dimH F
then ξ is eventually recurrent and T∞(ξ) is a regular language.

Proof. Since F is regular and ξ ∈ F there are a word w ∈ X∗ and a regular
prefix code V ⊆ X∗ such that ξ ∈ w · V ω ⊆ F . Corollaries 4 and 2 and Eq. (6)
show that τ(ξ) ≤ HV ∗ = dimH V ω ≤ dimH F .

Now the assertion follows with Theorem 2. �

The next two conditions are necessary ones.

Lemma 8. If ξ is eventually recurrent and T∞(ξ) is a regular language then
there is a regular prefix code V ⊆ X∗ such that T∞(ξ) = T(V ∗).

Proof. Lemma 7.2 shows ξ ∈ w · ls T∞(ξ) for a suitable w � ξ. By assumption,
the ω-language w · ls T∞(ξ) = ls (w ·T∞(ξ)) is regular. Thus there is a regular
prefix code such that ξ ∈ w′ · V ω ⊆ ls (w · T∞(ξ)) and according to Theorem 2
we have T∞(ξ) = T(V ∗). �

Together with Lemmata 5 and 3 we obtain the following.

Corollary 5. If ξ is eventually recurrent and T∞(ξ) is a regular language then
there are constants c1, c2 > 0 such that

c1 · |X |τ(ξ)·n ≤ |T∞(ξ) ∩ Xn| ≤ |T(ξ) ∩ Xn| ≤ c2 · |X |τ(ξ)·n.

The conditions in Lemma 8 and Corollary 5 are, however, not sufficient as will
be seen in the subsequent example. To this end we derive a relation between
T(ξ) and T∞(ξ).

Lemma 9. Let Mξ := Mininfix

(
T(ξ) \ T∞(ξ)

)
the set of minima w.r.t. to the

infix relation of T(ξ) \ T∞(ξ). If every w ∈ Mξ occurs only once as a factor in
ξ then |T(ξ) ∩ Xn| ≤ |T∞(ξ) ∩ Xn| + ∑

w∈Mξ
max{0, n− |w| + 1}.
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Proof. If v ∈ T(ξ) \T∞(ξ) then some w ∈ Mξ is a subword of v. Since w occurs
only once as a factor in ξ, v is one of the |v| − |w| + 1 factors of length |v| of ξ
containing w. �

Example 2. Let V := (aa)∗ ·ab. Then HV ∗ = 1
2 . We use an enumeration {vi : i ∈

IN} of V ∗\{e} and set ξ1 :=
∏

i∈IN via
2ib. Then T∞(ξ1) = T(V ∗), Mξ1 = b(aa)∗b

and every word of Mξ1 occurs only once as a factor in ξ1.
Using Lemma 9 we calculate |T(ξ1)∩Xn| ≤ |T∞(ξ1)∩Xn|+n2, and thus the

inequality of Corollary 5 is satisfied although every T(w[−1]ξ1)\T∞(ξ1), w � ξ1,
contains infinitely many words from b(aa)∗b. �

It should be mentioned that the ω-word ξ0 from Example 1 satisfies T∞(ξ0) =
a∗ba∗∪a∗, whence |T∞(ξ0)∩Xn| = n+1 and τ(ξ0) = 0. Thus Corollary 5 yields
another proof that ξ0 is not eventually recurrent.

4.2 A New Proof of Theorem 6 of [18]

Theorem 2 and Lemma 7 allow us to simplify the proof of Theorem 6 in [18].
We start with an auxiliary lemma.

Lemma 10. Let F ⊆ Xω be regular, ξ ∈ F and τ(ξ) = dimH F . If η is
eventually recurrent and T∞(ξ) = T∞(η) then there are u, u′ ∈ X∗ such that
u′ · (u[−1]η) ∈ F .

Proof. First Theorem 3 shows that ξ is eventually recurrent and T∞(ξ) is a
regular language. Thus, for a suitable w � ξ, F ∩ w · ls T∞(ξ) is a regular
language containing ξ. Consequently, there are a u′ � ξ and a regular prefix
code V ⊆ X∗ such that ξ ∈ u′ · V ω ⊆ F ∩w · ls T∞(ξ). Now, it suffices to prove
η ∈ X∗ · V ω. Then η ∈ u · V ω and, consequently, u′ · (u[−1]η) ∈ u′ · V ω ⊆ F .

To this end observe that in view of HV ∗ = dimH V ω ≥ τ(ξ) = dimH F The-
orem 2 and Lemma 7.2 imply T(V ∗) = T∞(ξ) = T∞(η) and η ∈ v · ls T(V ∗)
for a suitable v � η. From T(V ∗) ⊆ T(V ) · V ∗ · T(V ) and Eq. (7) we obtain
ls T(V ∗) ⊆ T(V ) · V ∗ · ls T(V ) ∪ T(V ) · V ω. Since V is a regular prefix code,
in view of Corollary 3 we have dimH ls T(V ) < dimH V ω = τ(η). This shows
η ∈ v · T(V ) · V ω. �

Now we can drop the assumption that ξ ∈ F but have to ensure that ξ is
eventually recurrent and T∞(ξ) is regular.

Theorem 4. Let F ⊆ Xω be regular, ξ, η be eventually recurrent and T∞(ξ) =
T∞(η) be a regular language.

If ξ ∈ F then there are u, u′ ∈ X∗ such that u′ � ξ and u′ · (u[−1]η) ∈ F .

Proof. Since ξ is eventually recurrent and T∞(ξ) is regular there is a u′ � ξ such
that ξ ∈ u′ · ls T∞(ξ) and ls T∞(ξ) is a regular ω-language. Moreover, τ(ξ) =
dimH ls T∞(ξ). Now apply Lemma 10 to the ω-language F ∩ u′ · ls T∞(ξ). �

Our Example 2 shows that the assumption in Theorem 4 and Lemma 10 that
η be eventually recurrent cannot be dropped. Take e.g. F :=

(
(aa)∗ · ab

)ω,
ξ :=

∏
i∈IN vi and η := ξ1.
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Abstract. We suggest a concept of grammars with controlled deriva-
tions where the Parikh vectors of all intermediate sentential forms have
to be from a given restricting set. For several classes of restricting sets,
we investigate set-theoretic and closure properties of the corresponding
language families.

1 Introduction

Grammars with restricted numbers of nonterminal symbols in the sentential
forms in the course of the derivation process have been investigated for a long
time. Most prominent are the grammars of finite index, introduced by Brain-
erd [2], where every word of the generated language can be generated using
only sentential forms with a bounded number of nonterminal symbols. These
grammars (and regulated grammars of finite index, like matrix grammars, as
well) have been studied in numerous publications. Ginsburg and Spanier [4] dis-
cussed the slightly different concept of a derivation-bounded grammar where
only those derivations are permitted that use sentential forms with a bounded
number of nonterminals. While being of finite index is a combinatorial prop-
erty of the grammar and context-free grammars of finite index can by definition
only generate context-free languages, the latter concept provides a kind of con-
trol for the derivation process and could potentially lead to the generation of
languages not in the original language class. However, it has been shown in [4]
that derivation-bounded context-free grammars can only generate context-free
languages of finite index.

More recently, Stiebe and Turaev [9] introduced capacity-bounded grammars
where a capacity function associates to each nonterminal symbol a bound. A
derivation is valid if in every sentential form the number of appearances of each
symbol is at most its capacity. It could be shown that context-free capacity-
bounded grammars generate non-context-free grammars and are strictly weaker
than matrix grammars of finite index.

To overcome the limitations of capacity-bounded grammars, in particular the
restriction to sentential forms with a bounded number of nonterminal symbols,
we will discuss in this paper some more general conditions for the nontermi-
nals in the sentential forms. Probably the most straightforward extension is to
allow infinite capacities for some nonterminal symbols. More generally, we will
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demand that, for every sentential form in a derivation process, the Parikh vec-
tor (restricted to the nonterminal symbols) has to be in a given restricting set.
Grammars with such conditions will be called Parikh vector controlled grammars
in what follows. Depending on the properties of the restricting sets, several lan-
guage classes can be defined. We will study the relations of these language classes
among each other and to known families of languages as well. When encountering
previously unknown language classes, we will also investigate closure properties.

Beside this introduction, the paper contains two sections. The necessary def-
initions and notations are given in Section 2, in its end introducing the notion
of Parikh vector controlled grammars. Section 3 contains the results.

2 Definitions

Throughout the paper, we assume that the reader is familiar with basic concepts
of formal language theory; for details we refer to [7]. An introduction to regulated
rewriting can be found in [3].

The sets of integers and non-negative integers are denoted by Z and N, re-
spectively. The cardinality of a set S is denoted by |S|, and the power set of a
set S by P(S). We use the symbols ⊆ for inclusion and ⊂ for proper inclusion.
In the vector space Zk, the zero vector is denoted by 0 and the i-th unit vector,
1 ≤ i ≤ k, by ei (a reference to the dimension k will usually not be necessary, as
it is clear from the context). A subsetM ⊆ Nk is called linear if it can be written

as M = {c+
n∑

i=1

aipi : ai ∈ N, 1 ≤ i ≤ n}, for appropriate c,p1, . . . ,pn ∈ Nk. A

set is semilinear if it is the union of a finite number of linear sets.
A system of linear inequalities in n variables is a finite set of inequalities

n∑
j=1

ai,jxj ≤ bi, (1 ≤ i ≤ m) with ai,j , bi ∈ Z, for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

A non-negative and integral solution of above the system of linear inequalities
is a vector (x1, x2, . . . , xn) ∈ Nn that satisfies all inequalities. The set of all non-
negative and integral solutions of a system of linear inequalities will, for the sake
of brevity, simply be referred to as the solution set of the given system. In this
paper, a system of linear inequalities as above will be called

– positive if ai,j ≥ 0, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n;
– strictly positive if furthermore

m∑
i=1

ai,j > 0, for all 1 ≤ j ≤ n.

The solution sets of systems of linear inequalities have some useful properties
utilized in this paper. The simple proofs are left to the reader.

1. The solution set of a system of linear equations is semilinear.
2. If S1 and S2 are solution sets of systems of linear inequalities with disjoint

sets of variables then S1 × S2 is the solution set of the system containing
all inequalities of both systems. Moreover, if both S1 and S2 are (strictly)
positive, the resulting system is (strictly) positive, too.
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3. The solution set of a strictly positive system of linear inequalities is finite.
4. After an appropriate renaming of the variables, the solution set of a positive

system of linear inequalities can be written as S1×Nk where S1 is the solution
set of a strictly positive system of linear inequalities.

5. If x ∈ Nn is a solution of a positive system of linear inequalities then every
y ∈ Nn with y ≤ x is a solution of the same system.

The set of finite strings over an alphabet X is denoted by X∗, the length of a
string w ∈ X∗ by |w|, the number of occurrences of a symbol a in w by |w|a and
the number of occurrences of symbols from Y ⊆ X in w by |w|Y . The empty
string is denoted by λ. Given an ordered alphabet X = {a1, a2, . . . , an}, the
Parikh mapping is the homomorphism Ψ : X∗ → Nn sending ai, 1 ≤ i ≤ n, to
the i-th unit vector. For a string w ∈ X∗, Ψ(w) is referred to as the Parikh vector
of w; for a language L ⊆ X∗, the Parikh set of L is Ψ(L) = {Ψ(w) : w ∈ L}.
For a subset Y of X with Y = {ai1 , ai2 , . . . , aim}, i1 < i2 < . . . < im, let
ΨY : X∗ → Nm be the homomorphism sending aij to the i-th unit vector (of Nm)
and x ∈ X \ Y to the zero vector (of Nm). In what follows, for any alphabet, an
order will be tacitly assumed so that Parikh mappings are used without explicitly
mentioning the order.

Besides the AFL operations (union, concatenation, homomorphisms, inverse
homomorphisms, intersection with regular sets, Kleene closure) we will consider
nested iterated substitutions which were extensively investigated by Greibach
[5,6]. A substitution is a homomorphism τ : X∗ → P(Y ∗) where X and Y are
alphabets. We extend τ to (X ∪ Y )∗, where X ∩ Y = ∅, by defining τ(a) = {a}
for all a ∈ Y . For n ≥ 0, τn is the substitution defined by τ0(a) = {a} and
τn+1(a) = τ(τn(a)), for a ∈ X ∪ Y . The iterated substitution defined by τ is the
substitution τ∞ defined by τ∞(a) =

⋃∞
n=0 τ

n(a), for a ∈ X ∪ Y . Moreover, τ∞

is called a nested iterated substitution if a ∈ τ(a), for all a ∈ X ∪ Y . A family of
languages L is closed under nested iterated substitutions if L ∈ L and τ(a) ∈ L
for every a ∈ X imply τ∞(L) ∈ L. It has been shown in [6] that the family of
semilinear languages is closed under nested iterated substitutions.

A finite automaton is a tuple A = (Z,X, z0, F, δ) where Z is a finite set of
states, X is a finite input alphabet, z0 ∈ Z is the initial state, F ⊆ Z is the set
of accepting states, and δ ⊆ Z ×X ×Z is the transition relation. The successor
relation � over Z ×X∗ is defined as (z, v) � (z′, v′) iff v = av′ and (z, a, z′) ∈ δ.
The reflexive and transitive closure of � is denoted by �∗. The language accepted
by A is L(A) = {w ∈ X∗ : (z0, w) �∗ (zf , λ), for some zf ∈ F}.

A grammar is a quadruple G = (V,Σ, S,R) where V and Σ are two finite
disjoint alphabets of nonterminal and terminal symbols, respectively, S ∈ V
is the start symbol and R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ is a finite set of
rules. G is called a GS grammar1 if R ⊆ V + × (V ∪ Σ)∗ and a context-free
grammar if R ⊆ V × (V ∪ Σ)∗. A string x ∈ (V ∪ Σ)∗ directly derives a string
y ∈ (V ∪ Σ)∗ in G, written as x⇒G y, if and only if there is a rule α → β ∈ R
such that x = x1αx2 and y = x1βx2 for some x1, x2 ∈ (V ∪ Σ)∗. The reflexive

1 This kind of grammar was introduced by Ginsburg and Spanier and for this reason
named GS grammar here.
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and transitive closure of the relation ⇒G is denoted by ⇒∗
G. A derivation using

the sequence of rules π = r1r2 · · · rk, ri ∈ R, 1 ≤ i ≤ k, is denoted by
π
=⇒G

or
r1r2···rk=====⇒G. The language generated by G, denoted by L(G), is defined by

L(G) = {w ∈ Σ∗ : S ⇒∗
G w}. If G is clear from the context, the subscript G will

be omitted in the notation. The family of languages generated by context-free
grammars is denoted CF.

We next give some prerequisites concerning grammars with controlled deriva-
tions. Unless stated otherwise, extensive explanations, proofs and reference to
the original literature can be found in [3]. A matrix grammar is a quadruple
G = (V,Σ, S,M) where V,Σ, S are defined as for a context-free grammar, M is
a finite set of matrices which are finite strings (or finite sequences) over a set R
of context-free rules. The language generated by a matrix grammar G consists of
all strings w ∈ Σ∗ such that there is a derivation S

r1r2···rn=====⇒ w where r1r2 · · · rn
is a concatenation of some matrices mi1 ,mi2 , . . . ,mik ∈ M , k ≥ 1. The family
of languages generated by matrix grammars is denoted by MAT.

A grammar with regular control is a quintuple G = (V,Σ, S,R, L) where
G′ = (V,Σ, S,R) is a context-free grammar and L ⊆ R∗ is a regular language.

The language of G is defined by L(G) = {w ∈ Σ∗ : S
π
=⇒ w, for some π ∈ L}.

It is known that the family of languages generated by grammars with regular
control is MAT.

A valence grammar over Zk is a quintuple G = (V,Σ, S,R,Zk) where V,Σ, S
are defined as in a context-free grammar, and R is a finite set of valence rules
(A→ β, r), where A→ β is a rule and r ∈ Zk. The direct derivation relation⇒
over (V ∪Σ)∗ × Zk is defined by:

(γ, z)⇒ (γ′, z′) iff
γ = γ1Aγ2, γ

′ = γ1βγ2 and z′ = z + r for some (A→ β, r) ∈ P.

The language generated by G is L(G) = {w ∈ T ∗ : (S,0)⇒∗ (w,0)}.
A positive valence grammar over Zk [8] is defined like a valence grammar

with the additional condition z ≥ 0 in the definition of the derivation relation
(γ, z)⇒ (γ′, z′).2 It has be shown in [8] that the family of languages generated
by positive valence grammars is MAT.

A programmed grammar with appearance checking is defined as a sextuple
G = (V,Σ, S,R, σ, φ) where (V,Σ, S,R) is a context-free grammar, and σ and φ
are mappings from R into P(R). For a rule r ∈ R, σ(r) and φ(r) are called the
success field and the failure field of r, respectively. The derivation relation over
(V ×Σ)∗×R is defined as follows. If r : A→ α is a rule in R then (β, r)⇒ (β′, r′)
iff either β = β1Aβ2, β

′ = β1αβ2 and r′ ∈ σ(r) or |β|A = 0 and r′ ∈ φ(r). The
language generated by G is L(G) = {w ∈ T ∗ : (S, r) ⇒∗ (w, r′), r, r′ ∈ R}. It
is known that programmed grammars with appearance checking generate the
family of recursively enumerable languages [3].

2 Actually, z ≥ 0 and z′ ≥ 0 were required in [8]. The definition given here is equiva-
lent to the previous one, since the zero vector has to be reached in the final step. It
will be technically useful later.
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A context-free grammar G is of index k ∈ N if every word w ∈ L(G) has a
derivation with at most k nonterminal symbols in every sentential form. G is
of finite index if such a k exists. The family of languages generated by context-
free grammars of finite index is denoted by CFfi. For grammars with regulated
rewriting, the concept of finite index is defined analogously. It is known that ma-
trix grammars of finite index and programmed grammars of finite index generate
the same family of languages MATfi.

A capacity-bounded grammar [9] is a quintuple G = (V,Σ, S,R, κ) where
G′ = (V,Σ, S,R) is a grammar and κ : V → N is a capacity function assigning
to each nonterminal a bound. The direct derivation relation⇒ over (V ∪Σ)∗×Zk

is defined by α ⇒G β iff α ⇒G′ β and |α|A ≤ κ(A) and |β|A ≤ κ(A), for all
A ∈ V . It has been shown that capacity-bounded GS grammars are equivalent to
matrix grammars of finite index while capacity-bounded context-free grammars
generate a proper subset of MATfi.

Finally, we give the definition of the generative device to be investigated.

Definition 1. A Parikh vector controlled grammar is defined as a quintuple
G = (V,Σ, S,R,C) where G′ = (V,Σ, S,R) is a grammar and C ⊆ Nn, n = |V |
is a set of admitted nonterminal Parikh vectors, referred to as the restricting
set of G. The derivation relation ⇒G is defined as α ⇒G β iff α ⇒G′ β and
ΨV (α) ∈ C. The language of G is defined as L(G) = {w ∈ Σ∗ : S ⇒∗

G w}.
Note that by this definition only the Parikh vectors of the nonterminal sentential
forms have to be within the restricting set.

The main objective of this paper is to study the generative power of Parikh
vector controlled grammars with respect to properties of the restricting sets.
To avoid complicated notations, we just enumerate the types of restricting sets
and the respective language families. Let G = (V,Σ, S,R,C) be a Parikh vector
controlled grammar with |V | = n. G is of

– type 1 if C = [0, k1]× [0, k2]× · · · × [0, kn], k1, k2, . . . , kn ∈ N;
– type 2 if C is the solution set of a strictly positive system of linear inequali-

ties;
– type 3 if C is finite;
– type 4 if C = C1 × Nn−j where j ∈ {0, 1, . . . n} and
C1 = [0, k1]× [0, k2]× · · · × [0, kj], k1, k2, . . . , kj ∈ N;

– type 5 if C is the solution set of a positive system of linear inequalities;
(equivalently, if C = C1 × Nn−j where j ∈ {0, 1, . . . n} and C1 ⊆ Nj is the
solution set of a strictly positive system of linear inequalities;)

– type 6 if C = C1 × Nn−j where j ∈ {0, 1, . . . n} and C1 is a finite subset of
Nj ;

– type 7 if C is the solution set of a system of linear inequalities;
– type 8 if C is semilinear.

The restricting sets are usually given by defining conditions. Instead of explicitly
giving a nonterminal Parikh vector ΨV (β) we will often refer to its components
|β|A. In particular, a system of inequalities for a nonterminal alphabet V will
sometimes be written as

∑
A∈V ai,A|β|A ≤ bi (1 ≤ i ≤ m).
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Note that Parikh vector controlled grammars of type 1 are simply the capacity-
bounded context-free grammars and that the types 4,5,6 are extensions of the
types 1,2,3, respectively, by adjoining nonterminals that are no subject to any
restrictions. In what follows, let Li, 1 ≤ i ≤ 8, denote the family of languages
generated by Parikh vector controlled grammars of type i.

3 Results

We will mainly investigate the generative power of Parikh vector controlled gram-
mars of the different types. In cases where the language families do not coincide
with previously known families we will also study closure properties with respect
to the AFL operations.

Lemma 1. The following inclusions hold for the language families CFfi, CF
and L1, . . . ,L8 (a dotted arrow represents a not necessarily proper inclusion;
disconnected families need not to be incomparable).

CFfi ��

��

L1
��

��

L2
��

��

L3

��
CF �� L4

�� L5
��

��

L6

��
L7

�� L8

Proof. All inclusions follow easily from the definitions and some elementary prop-
erties. More specifically,

– CFfi ⊆ CF,L1 ⊆ L4,L2 ⊆ L5,L3 ⊆ L6, CF ⊆ L4 and L5 ⊆ L7 hold
directly by definition;

– CFfi ⊆ L1holds as a grammar (V,Σ,R, S) of finite index k generates the
same language as the Parikh vector controlled grammar (V,Σ,R, S, C) where
C = [0, k]|V |, see [9];

– L1 ⊆ L2 and L4 ⊆ L5 are valid because a set [0, k1]× [0, k2]× · · · × [0, kn] is
the solution set of the system of linear inequalities xi ≤ ki (i = 1, 2, . . . , k);

– L2 ⊆ L3 and L5 ⊆ L6 are valid because the solution set of a strictly positive
system of linear inequalities is finite;

– L6 ⊆ L8 and L7 ⊆ L8 are true as the restricting sets of grammars of type 6
and 7 are semilinear.

�

It is of course known that the proper inclusion CFfi ⊂ CF holds. Moreover, in
[9] the proper inclusions CFfi ⊂ L1 ⊂ MATfi have been shown. We will now
investigate the properness of the remaining inclusions and try to relate the Li

to known families of languages.
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3.1 The Families L1, L2 and L3

We will first study the grammars with a finite restricting set. While L1 is known
to be a proper subfamily of MATfi, it turns out that L2 and L3 coincide with
MATfi. To this end, we will prove the inclusions L3 ⊆MATfi and MATfi ⊆
L2.

Lemma 2. L3 ⊆MATfi.

Proof. Let G = (V,Σ, S,R,C) be a Parikh vector controlled grammar with
V = {A1, A2, . . . , An}, S = A1 and C a finite subset of Nn. The idea is to
construct a grammar with regular control, where the control language is given
by a finite automaton whose state keeps track of the nonterminal Parikh vector
of the derived sentential form. More specifically, let A = (C ∪ {0}, R, e1, {0}, δ)
be the deterministic finite automaton with the transition function δ defined as
follows. If r : Ai → α is a rule in R, x = (x1, . . . , xn) is in C and y is defined by
y = x− ei + ΨV (α) then

δ(x, r) =

{
y, if xi > 0 and y ∈ C ∪ {0}
undefined, otherwise.

It is easy to prove by induction that a sequence ρ = r1r2 · · · rm reaches a state
z ∈ C∪{0} iff ρ is a possible derivation sequence in G and leading to a sentential
form with nonterminal Parikh vector z. Hence, L(A) is the set of all correct
terminal derivation sequences in G and the grammar with regular control G′ =
(V,Σ, S,R, L(A)) generates the same language as G. �

Lemma 3. MATfi ⊆ L2.

Proof. In [9] it has been shown that matrix grammars of finite index are equiv-
alent to capacity-bounded GS grammars. We will therefore show how to sim-
ulate a capacity-bounded GS grammar by a Parikh vector controlled grammar
with a restricting set defined by a strictly positive system of linear inequalities.
Let G = (V,Σ, S,R, κ) be a capacity-bounded GS grammar. As proved in [9,
Lemma 3], we can assume that any word from L(G) can be derived replacing
in each derivation step a maximal nonterminal block. (A maximal nonterminal
block is a substring over V which cannot be extended to a longer substring over
V . As G is capacity-bounded there is only a finite number of maximal nontermi-
nal blocks.) Then we construct the equivalent Parikh vector controlled grammar
G′ = (V ′, Σ, [S], R′, C) where we devise the nonterminal alphabet V ′ and the
set of rules R′ like in [9] as

V ′ = {[α] : α ∈ V + is a maximal nonterminal block in G},
R′ = {[α]→ w0[β1]w1[β2] · · ·wk−1[βk]wk : α→ w0β1w1β2 · · ·wk−1[βk]wk ∈ R,

where β1, . . . , βk ∈ V +, w0, wk ∈ Σ∗, w1, . . . , wk−1 ∈ Σ+}.
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With V ′ = {[α1], [α2] . . . , [αn]}, the restricting set C is defined as the solution
set of the system of linear inequalities

n∑
i=1

|αi|A · xi ≤ κ(A), A ∈ V.

For a word β ∈ (V ∪Σ)∗ with all maximal blocks in V ′, let [β] ∈ (V ′∪Σ)∗ be the
word obtained by replacing every maximal block α in β by [α]. It is now easily
checked by induction on the derivation steps that a sentential form β ∈ (V ∪Σ)∗

can be derived in G iff all its maximal blocks are in V ′ and [β] can be derived
in G′. �

Corollary 1. L1 ⊂ L2 = L3 = MATfi.

3.2 The Families L4, L5 and L6

The Parikh vector controlled grammars of types 4,5,6 can be seen as Parikh
vector controlled grammars of types 1,2,3, respectively, extended by sets of non-
restricted nonterminal symbols. In other words, the nonterminal set V of a Parikh
vector controlled grammar of type 4,5 or 6 can be decomposed as V = V1 ∪ V2
where V1 is subject to the restrictions as in Parikh vector controlled grammars
of types 1,2,3, respectively, and V2 is not at all restricted.

Essentially, we will show that L4 and L5 are obtained from L1 and L2 by
nested iterated substitutions, while L6 is equal to the family of matrix languages
MAT. In particular, L4 and L5 are proper subfamilies of MAT.

We start with the following “replacement lemma” for languages from L4,
which is virtually the same result as for capacity-bounded grammars given
in [9].

Lemma 4. For any infinite language L ∈ L4, there are a constant n and a finite
setM of infinite languages from L4 such that, for every word z ∈ L with |z| ≥ n,
there are a decomposition z = uvw, |v| ≤ n, and a language L′ ∈ M such that
uv′w ∈ L, for all v′ ∈ L′.

Proof. As the claim of the lemma, the proof is virtually the same as that
for capacity-bounded grammars in [9]. Consider some Parikh vector controlled
grammar G = (V,Σ, S,R,C) of type 4 such that L = L(G). For A ∈ V , let
GA = (V,Σ,R,A,C) and LA = L(GA); clearly, LA = {w ∈ Σ∗ : A⇒∗

G w}. The
following assertions hold for any derivation in G involving A:

– If αAβ ⇒∗
G uvw, where α, β ∈ (V ∪Σ)∗, u, v, w ∈ Σ∗ and v is the yield of A,

then v ∈ LA. (Given a derivation αAβ ⇒∗
G uvw, construct a derivation of v

from A by keeping the derivation steps arising from A. The Parikh vectors of
the sentential forms in the second derivation are less or equal to those of the
corresponding sentential forms in the first derivation, hence the derivation
A⇒∗

G v is valid.)
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– On the other hand, for all u, v, w ∈ Σ∗ such that v ∈ LA, the relation
uAw ⇒∗

G uvw holds. (Given a derivation A ⇒∗
G v, do the same derivation

steps starting from uAw. The nonterminal Parikh vectors of the sentential
forms in the second derivation are equal to those of the corresponding sen-
tential forms in the first derivation, hence the derivation uAw ⇒∗

G uvw is
valid.)

The nonterminal set V can be decomposed as V = Vinf ∪ Vfin , where

Vinf = {A ∈ V : LA is infinite},
Vfin = {A ∈ V : LA is finite}.

We choose M = {LA : A ∈ Vinf } and n = r ·max{|w| : w ∈
⋃

A∈Vfin
LA}, where

r is the longest length of a right side in a rule of R. For a derivation of z ∈ L
with |z| > n, consider the last sentential form α with a symbol from Vinf . Let
this symbol be A. All other nonterminals in α are from Vfin , and none of them
generates a subword containing A in the further derivation process. We get thus
another derivation of z in G by postponing the rewriting of A until all other
nonterminals have vanished by applying on them the derivation sequence of the
original derivation. This new derivation has the form

S ⇒∗ α⇒∗ uAw ⇒∗ uvw = z.

The length of v can be estimated by |v| ≤ n, as A is in the first step replaced by
a word over (Σ ∪ Vfin ) of length at most r. By the remarks in the beginning of
the proof, any word uv′w with v′ ∈ LA can be derived in G. �

The replacement lemma can be used to show that certain languages are not in
L4. This implies some limitations for L4, similar to those of L1 shown in [9].

Corollary 2. L4 and MATfi are incomparable, while L4 is a proper subset
of L5.

Proof. Using the same arguments as in [9], it can be shown that the language L =
{anbncn : n ≥ 1} does not satisfy the consequence of the replacement lemma,
hence it is not in L4. On the other hand, L is a language from MATfi = L2

and thus in L5. Together with the inclusions CF ⊆ L4 ⊆ L5, this proves the
claims. �

Next we prove a useful result concerning derivations in Parikh vector controlled
grammars of type 4 or 5.

Lemma 5. Let G = (V,Σ, S,R,C) be a Parikh vector controlled grammar of
type 4 or 5, and let V = V1 ∪ V2 be a partition of V such that the appearance of
symbols from V2 is unrestricted. Then every word in L(G) can be derived such
that whenever the current sentential form contains a symbol from V1, a symbol
from V1 will be replaced.
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Proof. Consider a derivation S ⇒∗ γ ⇒∗ w of a word w ∈ L(G) where the first
derivation step replacing a symbol from V2 although a symbol from V1 is present,
is after generating γ. We will construct a derivation of w with the same number
of derivation steps such that a symbol from V1 is replaced in γ. The claim of the
lemma then follows by induction.

We can decompose γ and w as

γ = α0A1α1A2 · · ·αm−1Amαm,

w = u0v1u1v2 · · ·um−1vmum,

where A1, A2, . . . , Am are the symbols from V2 in γ, u0, u1, . . . , um are the sub-
words of w derived from α0, α1, . . . , αm, v1, v2, . . . , vm are the subwords of w
derived from A1, A2, . . . , Am.

Consider the derivation S ⇒∗ γ ⇒∗ γ′ ⇒∗ w with

γ′ = u0A1u1A2 · · ·um−1Amum,

where the derivation steps replacing the Ai and their derivatives are first omit-
ted, thus yielding γ′, and then executed in the same sequence, yielding w. This
derivation is valid as u0, u1, . . . , um and A1, A2, . . . , Am do not contain symbols
from V1. �

Lemma 6. Every language L ∈ L5 over the alphabet Σ can be represented as
L = L′ ∩Σ∗ where L′ is the nested iterated substitution of languages from L2.

Proof. Let G = (V,Σ, S,R,C1 × Nn−l) be a Parikh vector controlled grammar
where V = {A1, A2, . . . , An} and C1 ⊆ Nl is the solution set of a strictly positive
system of linear inequalities. The nonterminal set V is partitioned as V = V1∪V2,
where V1 = {A1, . . . , Al} is the set of restricted symbols and V2 = {Al+1, . . . , An}
is the set of non-restricted symbols. Without loss of generality, we assume that
S does not appear on the right-hand side of any rule and belongs to V2. For
every A ∈ V2, let LA be the language generated by the Parikh vector controlled
grammar GA = (V1 ∪ {A′}, V2 ∪Σ,A′, RA, C1 × [0, 1]) where

RA = {A′ → α : A→ α ∈ R} ∪ {B → α : B → α ∈ R,B ∈ V1}.

GA is of type 2 as C1×[0, 1] ⊆ Nl+1 is the solution set of the system of inequalities
for C1 (in the variables x1, . . . , xn) with the additional inequality xl+1 ≤ 1.
Obviously, LA is the set of all sentential forms that can be derived in G from
A by replacing, except for the first step, only symbols from V1. We claim that
L(G) = Σ∗ ∩ τ∞(S) where τ(A) = LA ∪ {A} for A ∈ V2 and τ(a) = {a} for
a ∈ Σ.

To prove the inclusion L(G) ⊇ Σ∗ ∩ τ∞(S) we show by induction that every
word from τ∞(S) is derivable inG. The induction basis is correct, as τ0(S) = {S}
and S is derivable. Now assume that every word in τn(S) is derivable. By defini-
tion, a word w ∈ τn+1(S) can be written as w = w1w2 · · ·wm where wi ∈ τ(Xi),
Xi ∈ Σ∪V2, and w′ = X1X2 · · ·Xm ∈ τn(S). Now w can be derived in G by first
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generating w′ ∈ τn(S) and then deriving sequentially from each Xi the subword
wi. The subderivations w1 · · ·wi−1XiXi+1 · · ·Xm ⇒∗ w1 · · ·wi−1wiXi+1 · · ·Xm

are valid as w1, . . . , wi−1, Xi+1, . . . , Xm contain no symbols from V2.
To prove L(G) ⊆ Σ∗ ∩ τ∞(S) we can restrict to derivations where a symbol

from V1 is replaced when present. We will show by induction that every sentential
form over (V2 ∪ Σ) obtained in such a derivation is from τ∞(S). The claim is
true for S. Now consider some sentential form α ∈ (V2 ∪Σ)∗ with α ∈ τ∞(S). It
is decomposed as α = α1Aα2 where A ∈ V2 is the next symbol to be replaced.
The next sentential form α′ over (V2 ∪ Σ) is reached when all symbols from V1
that originate from the A replaced in the first step are rewritten. Hence, it has
the shape α′ = α1βα2 where β ∈ LA ⊆ τ(A). By α1 ∈ τ(α1), α2 ∈ τ(α2) and
the induction hypothesis α ∈ τ∞(S) we conclude α′ ∈ τ∞(S). �

If the grammar G in the proof is of type 4 then all grammars constructed in the
further course are of type 1. This implies:

Corollary 3. Every language L ∈ L4 over the alphabet Σ can be written as
L = L′ ∩Σ∗ where L′ is the nested iterated substitution of languages from L1.

Since all languages in L2 = MATfi are semilinear and by the closure of the
semilinear languages under nested iterated substitution, we can furthermore con-
clude:

Corollary 4. Any language in L5 is semilinear.

Let us now study the closure properties of L4 and L5. As regards L5, the well-
known constructions to show the closure of the context-free languages under the
AFL operations can be adapted.

Theorem 1. The family L5 is a full AFL.

Proof. We need to show closure under union, concatenation, Kleene closure, ho-
momorphisms, inverse homomorphisms and intersection with regular languages.
Let G1 = (V1, Σ, S1, R1, C1) and G2 = (V2, Σ, S2, R2, C2) be Parikh vector con-
trolled grammars of type 5. Without loss of generality, suppose that V1∩V2 = ∅.
For the mentioned operations, we give now the respective constructions.

Union. Let G′ = (V ′, Σ, S′, R′, C′) where V ′ = V1 ∪ V2 ∪ {S′}, R′ = {S′ →
S1, S

′ → S2} ∪R1 ∪R2 and C′ = C1 × C2 × N.
The first derivation step produces either S1 or S2. In the first case, only rules
from R1 are used in the rest of the derivation. Since 0 ∈ C2, the derivation is
valid iff every encountered Parikh vector is from C1×{0}×{0}, i.e., iff from the
second step on it is valid in G1. Analogously, if S2 is produced, the derivation is
valid iff from the second step on it is valid in G2. Hence, L(G

′) = L(G1)∪L(G2).

Concatenation. Set G′ = (V ′, Σ, S′, R′, C′) where V ′ = V1 ∪ V2 ∪ {S′}, R′ =
{S′ → S1S2}∪R1∪R2 and C′ = C1×C2×N. The first derivation step produces
S1S2. Since S1 and S2 derive only sentential forms over Σ ∪ V1 and Σ ∪ V2,
respectively, and since 0 ∈ C1, we can restrict to derivations where symbols
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from V1 are replaced as long as they are present. Such a derivation is of the
form S′ ⇒ S1S2 ⇒∗

G1
w1S2 ⇒∗

R2
w1w2 with w1w2 ∈ Σ∗. The subderivation

S1S2 ⇒∗
G1
w1S2 is valid iff every Parikh vector is in C1 × {e1} × {0}, i.e., iff

w1 ∈ L(G1) and e1 ∈ C2. The subderivation wS2 ⇒∗
R2
w1w2 is valid iff every

Parikh vector is in 0× C2 × {0}, i.e., iff w2 ∈ L(G2). Since w2 ∈ L(G2) implies
e1 ∈ C2, the complete derivation is valid iff w1 ∈ L(G1) and w2 ∈ L(G2).

Kleene Closure. Let G′ = (V ′, Σ, S′, R′, C′) where V ′ = V1∪{S′}, R′ = {S′ →
S1S

′, S′ → λ} ∪ R1 and C′ = C1 × N. We can restrict to derivations where a
symbol from V1 is replaced if present. Such a derivation has the form

S′ ⇒ S1S
′ ⇒∗

G1
w1S

′ ⇒ w1S1S
′ ⇒∗

G1
w1w2S

′ ⇒∗ w1w2 · · ·wnS
′ ⇒ w1w2 · · ·wn

with w1, w2, . . . , wn ∈ Σ∗. A subderivation

w1 · · ·wi−1S
′ ⇒ w1 · · ·wi−1S1S

′ ⇒∗
G1
w1 · · ·wi−1wiS

′

is valid iff every encountered sentential form is in C1 ×{1}, i.e., iff wi ∈ L(G1).

Homomorphisms. Let h : Σ∗ → Δ∗ be a homomorphism. We extend h to a
mapping from (Σ ∪ V1)∗ to (Δ ∪ V1)∗ by setting h(A) = A, for all A ∈ V1. Now
set G′ = (V1, Δ, S1, R

′, C) where R′ = {A→ h(α) : A → α ∈ R1}. A sentential
form β can be derived in the context-free grammar associated with G1 iff h(β)
can be derived in the context-free grammar associated with G′. Moreover, the
nonterminal Parikh vectors of β and h(β) are equal. Hence, β is derivable in G1

iff h(β) is so in G′ and thus L(G′) = h(L(G1)).

Inverse Homomorphisms. It suffices to show closure under inverse alphabetic
homomorphisms (see, e.g., [1]). Let h : Δ∗ → Σ∗ be an alphabetic homomor-
phism, i.e., a homomorphism sending each a ∈ Δ to a word from Σ ∪ {λ}.
Without loss of generality, assume that Σ ∩Δ = ∅. Then G′ is constructed as
G′ = (V1 ∪ Σ ∪ {Λ}, Δ, S1, R′, C × N|Σ|+1) with Λ /∈ V1 ∪ Σ ∪Δ and the set of
rules

R′ = R1 ∪ {a′ → Λa, a′ → aΛ : a′ ∈ Σ, a ∈ Δ,h(a) = a′} ∪
{Λ→ aΛ : a ∈ Δ,h(a) = λ} ∪ {Λ→ λ}.

By Lemma 5 we can restrict to derivations where a symbol from V1 is replaced
if present. This way we apply in the first phase the rules from R1 generating a
word w ∈ Σ∗. Then the remaining rules can be used to generate an arbitrary
word in h−1(w). Since the same restrictions as in G1 apply to V1, exactly the
words from L(G1) can be generated in the first phase. In the second phase,
a word w ∈ L(G1) can be transformed to any of its preimages under h by re-
placing every symbol in w by one of its preimages under h and inserting symbols
from Δ whose images under h is λ. Hence, L(G′) = h−1(L(G1)).

Intersection with Regular Sets. Let A = (Z,Σ, z0, Q, δ) be a finite automa-
ton. Without loss of generality, assume that Q contains only the single state q.
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ConstructG′ = (V ′, Σ, S′, R′, C′) such that V ′ = Z×(V1∪Σ)×Z, S′ = (z0, S, q),

R′ = {(z, A, z′)→ (z, x1, z1)(z1, x2, z2) · · · (zr−1xrz
′) : A→ x1x2 · · ·xr ∈ R1} ∪

{(z, A, z)→ λ : A→ λ ∈ R} ∪ {(z, a, z′)→ a : (z, a, z′) ∈ δ},

and C′ is defined such that in the defining system of inequalities for C every
term of the form k · |α|A, k ∈ N, A ∈ V1, is replaced by k ·

∑
z,z′∈Z

|α′|(z,A,z′).

Again, we can restrict to derivations where a symbol from Z × V1 × Z is re-
placed, if possible. So, in a first derivation phase we generate a word β =
(z0, a1, z1)(z1, a2, z2) · · · (zn−1, an, q), a1, a2, . . . , an ∈ Σ. It can be shown by in-
duction that a sentential form can be generated in the first phase iff it has the
shape α′ = (z0, x1, z

′
1)(z

′
1, x2, z

′
2) · · · (z′m−1, xm, q), x1, x2, . . . , xm ∈ V1 ∪ Σ and

α = x1x2 · · ·xm can be derived in G1. In particular, α′ satisfies the constraints
of G′ iff α satisfies the constraints of G1 because |α|A =

∑
z,z′∈Z

|α′|(z,A,z′), for

all A ∈ V1. In a second phase, the intermediate word β can be transformed to
w = a1a2 · · ·an iff it describes a successful run of A on w. Hence, w can be
generated by G′ iff it is in L(G1) and L(A). �

All constructions but the last result in a Parikh vector controlled grammar of
type 4 if both G1 and G2 are of type 4. We can conclude:

Corollary 5. The family L4 is closed under union, concatenation, Kleene clo-
sure, homomorphisms and inverse alphabetic homomorphisms.

Regarding the remaining two AFL operations, we can prove nonclosure of L4 by
help of the “replacement lemma”.

Corollary 6. L4 is not closed under intersection with regular sets and inverse
homomorphisms.

Proof. Using Lemma 4, it can be shown that the languages

L1 = {a3nx3yb3na3nx2yb3n : n ≥ 1},
L2 = {a3ncb3na3ndb3n : n ≥ 1}

are not in L4. However, as discussed in [9], there are a language L ∈ L1 ⊆ L4, a
regular set M and a homomorphism g such that L1 = L ∩M and L2 = g−1(L).

�

By a slight modification of the proof of Lemma 6, we can also show that L4 and
L5 are closed under nested iterated substitutions.

Theorem 2. L4 and L5 are closed under nested iterated substitutions.

A full AFL which is closed under nested iterated substitutions has been termed
a superAFL by Greibach [6]. We can therefore give the following characterization
of L5.
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Corollary 7. L5 is the least superAFL containing MATfi.

Finally, we are going to prove that grammars of type 6 generate exactly the fam-
ily of matrix languages. This is achieved by giving simulations showing equiva-
lence to grammars with regular control.

Lemma 7. L6 ⊆MAT.

Proof. The construction is similar to that in the proof of Lemma 2.
Let G = (V,Σ, S,R,C1 × Nn−l) be a Parikh vector controlled grammar where
V = {A1, A2, . . . , An} and C1 ⊆ Nl is finite. Without loss of generality we can
assume that S does not appear on the right-hand of any rule, S = A1 and
C1 ⊆ [0, 1]×Nl−1 (the last assumption implies l > 0). We set V1 = {A1, . . . , Al},
V2 = {Al+1, . . . , An}. The automaton for the regular control language keeps
track of the nonterminals from V1, hence its state set is basically C1, a subset of
Nl. Let A = (C1 ∪ {0}, R, e1, {0}, δ) be the deterministic finite automaton with
the transition function δ defined as follows. If r : Ai → α is a rule in R with
1 ≤ i ≤ l, x = (x1, . . . , xl) is in C1 and y is defined by y = x− ei+ΨV1(α) then

δ(x, r) =

{
y, if xi > 0 and y ∈ C1 ∪ {0}
undefined, otherwise.

If r : Ai → α is a rule in R with l < i ≤ n, x = (x1, . . . , xl) is in C1 and y is
defined by y = x+ ΨV1(α) then

δ(x, r) =

{
y, if y ∈ C1 ∪ {0}
undefined, otherwise.

It is easy to prove by induction that a sequence ρ = r1r2 · · · rm reaches a state
z ∈ C iff ρ is a possible derivation sequence in G and leading to a sentential
form α with ΨV1(α) = z. Hence, L(A) is the set of all correct terminal derivation
sequences in G and the grammar with regular control G′ = (V,Σ, S,R, L(A))
generates the same language as G. �

Lemma 8. MAT ⊆ L6.

Proof. Let G = (V,Σ, S,R, L) be a grammar with regular control and let A =
(Z,R, z0, F, δ) be a finite automaton accepting L. The proof strategy is to con-
struct a Parikh vector controlled grammar of type 6 that simulates the steps of
G while simultaneously keeping track of the state of the automaton. Formally,
we construct G′ = (V ′, Σ, S′, R′, C) where the set of nonterminals is

V ′ = V ∪ {S′} ∪ Z ∪ VR ∪ Vδ with VR = {Ar, Br : r ∈ R}, Vδ = {Xt, Yt : t ∈ δ},

R′ contains the following rules:

– S′ → z0S;
– for each rule r : A→ α in R, the rules A→ Ar, Ar → Br, Br → α;
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– for each transition t = (z, r, z′) in δ, the rules z → Xt, Xt → Yt, Yt → z′;
– for each zf ∈ F , the rule zf → λ;

and C is defined by the following constraints on each nonterminal sentential form
in a derivation process:

1. Exactly one symbol from {S′} ∪ Z ∪ Vδ is present.
2. At most one symbol from VR is present.
3. If a symbol from Z is present, then no symbol Ar, r ∈ R, is allowed.
4. If a symbol of the form Xt with t ∈ δ, t = (z, r, z′) is present, then the only

admissible symbol from VR is Ar.
5. If a symbol of the form Yt with t ∈ δ is present, then at least one symbol

from VR is present.

First note that G′ is indeed of type 6, since the total number of symbols from
{S′} ∪Z ∪ Vδ ∪ VR is bounded by 2, while the symbols from V are unrestricted.

In the first step of a derivation in G′, the rule S′ → z0S is applied; the
last derivation step of each successful derivation is of the form zfw ⇒ w with
zf ∈ F,w ∈ Σ∗. Now consider a sentential form zβ with z ∈ Z and β ∈ (V ∪Σ)∗

where β contains at least one nonterminal symbol. Because of restriction 3, the
symbol z has to be rewritten in the first step using some rule z → Xt; let
t = (z, r, z′) and r : A → α. In the next step, the rule Xt → Yt cannot be
applied by restriction 5, so restriction 4 requires the rule A → Ar to be used.
This implies that β can be decomposed as β1Aβ2 and the sentential form reached
after the second step is Xtβ1Arβ2. By restriction 2 no other symbol from V can
be rewritten in the next derivation steps. Restriction 4 forbids the application of
Ar → Br, so the next applied rule has to be Xt → Yt yielding Ytβ1Arβ2. In the
next step Yt cannot be replaced by z′ because of restriction 3; hence Ar must be
rewritten to reach the sentential form Ytβ1Brβ2. Now the only admissible rule
is Yt → z′ due to restriction 5, giving z′β1Brβ2. Finally, restriction 4 requires
the application of Br → α which derives z′β1αβ2. Hence, every sentential form
reachable from zβ in six steps has the form z′β′ where β′ can be directly derived
in G from β using rule r and z can be transferred by r to z′ in A. On the other
hand, every such sentential form z′β′ can be derived from zβ using the above
derivation sequence thus completing the proof. �

Corollary 8. L4 ⊂ L5 ⊂ L6 = MAT.

3.3 The Families L7 and L8

Finally, we discuss grammars whose restricting sets are solution sets of arbitrary
systems of linear inequalities (type 7) or semilinear sets (type 8). While the first
variant turns out to be equivalent to matrix grammars, the second can generate
all recursively enumerable languages.
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Lemma 9. MAT ⊆ L7.

Proof. The same construction as in the proof of Lemma 8 can be used. We need
just to verify that the restrictions on the Parikh sets can be established by a
system of linear inequalities. Indeed, the five restrictions can be reformulated as
follows:

1. |α|S′ +
∑
z∈Z

|α|z +
∑

X∈Vδ

|α|X = 1.

2.
∑

X∈VR

|α|X ≤ 1.

3.
∑
z∈Z

|α|z +
∑
r∈R

|α|Ar ≤ 1.

4. |α|Xt +
∑

Y ∈VR\{Ar}
|α|Y ≤ 1, for every t ∈ δ where t = (z, r, z′).

5. |α|Yt −
∑

Y ∈VR

|α|Y ≤ 0, for every t ∈ δ where t = (z, r, z′).

Only the last kind of inequalities is not obvious. It follows since the count of Yt
is limited by one (in condition 2). �
The reverse inclusion L7 ⊆MAT can be quite easily shown by the construction
of a positive valence grammar where the compliance with each of the inequalities
is accomplished by a dimension of the valence vector. However, the construction
below (Lemma 11) will lead to a positive valence grammar with a slightly dif-
ferent acceptance condition than the usual one. We will therefore first show a
technical result regarding positive valence grammars. Let G = (V,Σ, S,R,Zk)
be a positive valence grammar and t ∈ Zk a vector. Then we define L(G, t) as
the set of all words w for which a derivation

(S,0)⇒ (α1, z1)⇒ · · · ⇒ (αr, zr)⇒ (w, t) with zi ≥ 0, 1 ≤ i ≤ r,

exists. Note that t needs not to be in Nk.

Lemma 10. For every positive valence grammar G over Zk and every t ∈ Zk,
there is a positive valence grammar G′ (over Zk+1) such that L(G′) = L(G, t).

Proof. Let G = (V,Σ, S,R,Zk) be a positive valence grammar and t ∈ Zk. The
idea of the construction is to add an extra vector −t in the final derivation
step. To this end the simulating grammar G′ needs for its nonterminal alphabet
a copy of V and one additional dimension in the valence vectors. Hence, the
nonterminal alphabet of G′ is V ∪V ′∪{S0} where V ′ is a disjoint copy of V and
S0 /∈ V ∪ V ′ is the new start symbol. In what follows, the copy of a nonterminal
symbol A ∈ V in V ′ will be denoted by A′; moreover, the vectors in Zk+1 will
be written in the form (y, z) where y ∈ Zk and z ∈ Z. The set R′ of valence
rules in G′ is defined as

R′ = {(S0 → S, (0, 1))} ∪ {(A→ A′, (0,−1)) : A ∈ V } ∪
{(A′ → α, (z, 1) : (A→ α, z) ∈ R} ∪
{(A′ → α, (z − t, 0)) : (A→ α, z) ∈ R}.

We will prove by induction over n that a pair (β, (y, z)) with z ≥ 0 is derivable
in G′ in 2n+ 1 steps, iff either
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– (β,y) is derivable in G in n steps and z = 1 or

– (β,y + t) is derivable in G in n steps and z = 0.

The assertion is true for n = 0 since the only pair derivable in one step in G′

is (S, (0, 1)). The first step in a derivation in G′ is (S0, (0, 0)) ⇒ (S, (0, 1)).
Now suppose that the assertion has been shown for n = k. Consider some pair
(β, (y, z)) derived inG′ in 2k+1 steps. By induction hypothesis, β ∈ (V ∪Σ)∗ and
z ∈ {0, 1} hold. The next derivation step has to apply a rule (A → A′, (0,−1))
yielding (β1A

′β2, (y, z − 1)) where β = β1Aβ2 is a decomposition of β. If z = 0,
no further derivation step is possible. If z = 1, the next step must use a rule of
either of the forms (A′ → α, (z, 1)) or (A′ → α, (z−t, 0)) in order to keep the last
component non-negative. In the first case, the resulting pair is (β1αβ2, (y+z, 1)).
The step is valid iff y + z ≥ 0, i.e., iff (β1αβ2,y + z) is directly derivable from
(β,y) in G. In the second case, the resulting pair is (β1αβ2, (y+z−t, 0)). Hence,
the induction hypothesis is true for n = k + 1.

Since all sentential forms generated in 2n steps by G′ are nonterminal, the
language of G′ is found as

L(G′) = {w ∈ Σ∗ : (w, (0, 0)) derivable in G′ in 2n+ 1 steps , n ≥ 0}
= {w ∈ Σ∗ : (w, t) derivable in G in n steps , n ≥ 0} = L(G, t),

as claimed. �

Lemma 11. L7 ⊆MAT.

Proof. Let G = (V,Σ, S,R,C) be a Parikh vector controlled grammar where
V = {A1, A2, . . . , An}, S = A1 and C ⊆ Nn is the solution set of a system of m
linear inequalities

n∑
j=1

ai,jxj + bi ≥ 0, (1 ≤ i ≤ m).

We construct the positive valence grammar G′ = (V ∪ {S′}, Σ, S′, R′,Zm) with
the start symbol S′ /∈ V and the set of valence rules R′ constructed as follows.

– The starting rule is (S′ → A1, (z1, . . . , zm)) with zi = ai,1 + bi, 1 ≤ i ≤ m.

– For any rule Ar → α with ΨV (α) = (y1, . . . , yn), R
′ contains the valence rule

(Ar → α, (z1, . . . , zm)) with zi =
n∑

j=1

ai,jyj − ai,r.

It is easy to verify by induction on the number of derivation steps that G′ can
generate a pair (α, (z1, . . . , zm)) iff G can generate α and ΨV (α) = (x1, . . . , xn)

satisfies zi =
n∑

j=1

ai,jxj+bi, for 1 ≤ i ≤ m. Hence, G produces the same language

as G′ with the target vector (b1, . . . , bm). �

Lemma 12. L8 is the family of recursively enumerable languages.
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Proof. We will simulate a programmed grammar with appearance checking by
a Parikh vector controlled grammar with a semilinear restricting set. Let G =
(V,Σ, S,R, σ, φ) be a programmed grammar with appearance checking. Then we
construct the Parikh vector controlled grammar G′ = (V ′, Σ, S′, R′, C) where

V ′ = V ∪ {S′} ∪ {Xr, Yr, Zr, Fr, Ar, Br : r ∈ R},
R′ = {S′ ⇒ SXr : r ∈ R} ∪

{Xr → Yr, Yr → Zr : r ∈ R} ∪ {Zr → Xs : s ∈ σ(r)} ∪
{Xr → Fr : r ∈ R} ∪ {Fr → Xf : f ∈ φ(r)} ∪
{A→ Ar, Ar → Br, Br → α : (r : A→ α) ∈ R},

and C is defined by the following constraints on the Parikh vector for a nonter-
minal sentential form:

1. One symbol from {S′} ∪ {Xr, Yr, Zr, Fr : r ∈ R} is present.
2. At most one symbol from {Ar, Br : r ∈ R} is present.
3. If Xs is present then no symbol Ar is present, r, s ∈ R.
4. If Ys is present then no symbol Br is present, r, s ∈ R.
5. If Zr is present then one of the symbols Ar, Br is present.
6. If Fs is present, s ∈ R, then no symbol from {Ar, Br : r ∈ R} is present.
7. If Fr is present, for r : A→ α, then A is not present.

It is easy to see that each of the constraints describes a semilinear set. The set
C is the intersection of all these sets and thus semilinear, too. The correctness
proof is similar to that in Lemma 7. The last constraint models the appearance
checking case. It is the only one that cannot be described by a system of linear
inequalities. �

4 Conclusions

We have introduced Parikh vector controlled grammars and investigated sev-
eral restrictions on the Parikh sets of sentential forms. The results concerning
the generative power with respect to the different restrictions can be summa-
rized as follows (arrows indicating strict inclusions, disconnected families being
incomparable).

CFfi ��

��

L1
��

��

MATfi = L2 = L3

��
CF �� L4

�� L5
�� MAT = L6 = L7

�� RE = L8

A particularly interesting family is L5 defined by grammars whose restricting
sets are solutions of positive systems of linear inequalities. This language family
does not coincide with any of the formerly known classes and is a superAFL of
semilinear languages.
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It remains to study the power of non-erasing grammars of the respective types.
It might be also worthwhile to investigate connections to other variants of regu-
lated rewriting. For instance, a characterization of random context grammars by
an appropriate Parikh vector control could be helpful to settle the longstanding
question if random context grammars are equivalent to matrix grammars.
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Abstract. A tree controlled grammar is a regulated rewriting device
which can be given as a pair (G,R) where G is a context-free gram-
mar and R is a regular set over the terminal and nonterminal alphabets
of G. The language generated by the tree controlled grammar contains
those words of L(G) which have a derivation tree where all the words
obtained by reading the symbols labeling the nodes belonging to the dif-
ferent levels of the tree, from left to right, belong to the language R.
The nonterminal complexity of tree controlled grammars can be given
as the number of nonterminals of the context-free grammar G, and the
number of nonterminals that a regular grammar needs to generate the
control language R. Here we improve the currently known best upper
bound on the nonterminal complexity of tree controlled grammars from
seven to six, that is, we show that a context-free grammar with five non-
terminals and a control language which can be generated by a grammar
with one nonterminal is sufficient to generate any recursively enumerable
language.

1 Introduction

The aim of the area called “regulated rewriting” is to add some kind of a con-
trol mechanism to ordinary (usually context-free) grammars which restricts the
application of the rules in such a way that some of the derivations which are pos-
sible in the usual derivation process are eliminated from the controlled variant.
This means that the set of words generated by the controlled device is a subset
of the original (context-free) language generated without the control mechanism.
As these generated subsets can be non-context-free languages, these mechanisms
are usually more powerful than ordinary (context-free) grammars.

The need for rewriting devices which use rules of a simple form but still have
a considerable generative power is justified by the study of phenomena occurring
in different areas of mathematics, linguistics, or even developmental biology. To
study problems in these areas which cannot be described by the capabilities of
context-free languages, it is often desirable to construct generative mechanisms
which have as many context-free-like properties as possible, but are also able to
describe the non-context-free features of the specific problem in question. See [2]
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for a discussion about non-context-free phenomena in different areas, and [3] for
regulated rewriting in general.

Tree controlled grammars were introduced in [1] as a pair (G,R) where G
is a context-free grammar and R is a regular set, called the control language.
The control language contains words composed of the terminal and nonterminal
alphabets of G, and it is used to control the work of G by restricting the set
of derivations which G is allowed to make. Only those words belong to the
generated language of the tree controlled grammar which can be generated by
the context-free grammar G, and moreover, which have a derivation tree where
all the strings obtained by reading from left to right the symbols labeling nodes
which belong to the same level of the tree (with the exception of the last level)
are elements of the regular set R.

As it was already shown in [1], tree controlled grammars are able to generate
any recursively enumerable language. Variants of the notion with control sets
which are not regular but belong to different classes from the Chomsky hierarchy
were studied in [7], the power of subregular control sets were examined in more
detail in [4].

Investigations concerning the nonterminal complexity of tree controlled gram-
mars began in [11] where this measure was defined as the sum of the number
of nonterminals of the context-free grammar and the number of nonterminals
which are necessary to generate the regular control language. They showed in
[11] that nine nonterminals altogether are sufficient to generate any recursively
enumerable language with a tree controlled grammar. Then they improved this
bound to seven in [10] by simulating a phrase structure grammar being in the so
called Geffert normal form (see [6]), that is, having four nonterminals and only
linear context-free productions, together with one non-context-free production
in addition which is able to erase three neighboring nonterminals as it is of the
form ABC → λ.

Here we improve the bound from seven to six using a similar technique as
in [10], but simulating a grammar being in a different version of the Geffert
normal form: Instead of four nonterminals and the non-context-free production
ABC → λ, we use a variant which has five nonterminals and two non-context-
free productions AB → λ, CD → λ. Since the nonterminals, A,B,C,D, will be
encoded in the simulating tree controlled grammar by strings over just two sym-
bols (as it was done also in [10]), it does not matter that instead of the symbols
A,B,C we need to simulate a grammar which uses more symbols, A,B,C,D.
On the other hand, the fact that instead of three, only two neighboring symbols
have to be deleted simultaneously, helps to construct a simulating tree controlled
grammar which uses one nonterminal less than the one in [10], thus helps to re-
duce the currently known best bound from seven to six.

2 Preliminaries and Definitions

The reader is assumed to be familiar with the basics of formal language theory.
In the following we list some notions and notations we will use in the subsequent
parts of the paper. For more information, see for example [9,2,8].
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A finite set of symbols V is called an alphabet. The cardinality, that is, the
number of elements of V is denoted by |V |. The set of non-empty words over
the alphabet V is denoted by V +; the empty word is λ, and V ∗ = V + ∪ {λ}. A
set L ⊆ V ∗ is called a language over V. For a word w ∈ V ∗ and a set of symbols
A ⊆ V , we denote the length of w by |w|, and the number of occurrences of
symbols from A in w by |w|A. If A is a singleton set, i.e., A = {a}, then we write
|w|a instead of |w|{a}. The concatenation of two sets L1, L2 ⊆ V ∗, denoted as
L1L2, is defined as L1L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}.

A generative grammar G is a quadruple G = (N, T, S, P ) where N and T
are the disjoint sets of nonterminal and terminal symbols, S ∈ N is the initial
nonterminal, and P is a set of rewriting rules (or productions) of the form α→ β
where α, β ∈ (N ∪T )∗ with |α|N ≥ 1. A string v can be derived from a string u,
denoted as u⇒ v for some u, v ∈ (N ∪T )∗, if they can be written as u = u1αu2,
v = v1βv2 for a rewriting rule α → β ∈ P . The reflexive and transitive closure
of the relation ⇒ is denoted by ⇒∗. The language generated by the grammar G
is the set of terminal strings which can be derived from the initial nonterminal,
that is, L(G) = {w ∈ T ∗ | S ⇒∗ w}. It is known that any recursively enumerable
language can be generated by a generative grammar defined as above.

A generative grammar is context-free, if the rewriting rules α → β are such,
that α ∈ N . A context-free grammar is regular, if in addition to the property
that α ∈ N , it also holds, that β ∈ T ∗ ∪ T ∗N . The classes of context-free and
regular grammars and languages are denoted by CF, REG, L(CF), and L(REG),
respectively.

The number of nonterminals of a generative grammar G = (N, T, S, P ) is
denoted by Var(G), that is, Var(G) = |N |. For a language L and a class of
grammars X ∈ {REG,CF}, we denote by VarX(L) the minimal number of non-
terminals necessary to generate L with a grammar of type X , that is, VarX(L) =
min{Var(G) | L = L(G) and G is of type X ∈ {REG,CF}}.

An ordered tree is a derivation tree of a context-free grammarG = (N, T, S, P )
if its nodes are labeled with symbols from N ∪ T ∪ {λ} in a way which satisfies
the following properties: (a) The root is labeled with S, (b) the leaves are labeled
with symbols from T ∪ {λ}, and (c) every interior vertex is labeled from N in
such a way that if a vertex has a label A ∈ N and its children are labeled from
left to right with x1, x2, . . . , xm, xi ∈ N ∪ T ∪ {λ}, 1 ≤ i ≤ m, then there is a
production A → x1x2 . . . xm in P . A derivation tree corresponds to a terminal
word w from L(G) if the concatenation of the symbols labeling the leaves of the
tree from left to right coincide with w.

The distance of a vertex t from the root is the length of the shortest path
leading to t from the root node. The string corresponding to the ith level of a
derivation tree for some i ≥ 0 is the word obtained by concatenating from left to
right the symbols labeling those nodes of the tree which are at distance i from
the root.

A tree controlled grammar G is a pair G = (G′, R) where G′ = (N, T, S, P ) is
a context-free grammar and R is a regular language over the alphabetN∪T . The
language L(G) generated by the tree controlled grammar G contains all words
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w ∈ T ∗ from L(G′) which have a derivation tree where the strings corresponding
to each different level, except the last one, belong to the regular set R.

The nonterminal complexity of a tree controlled grammar G = (G′, R) is
the number of nonterminals of G′ plus the minimal number of nonterminals
that a regular grammar needs for generating the language R, that is, Var(G) =
Var(G′) + VarREG(R).

To illustrate the notion of tree controlled grammars, let us recall an example
from [2].

Example 1. Let G = (G′, R) where G′ = ({S}, {a}, S, {S → SS, S → a}) and
R = {S}∗. As the control language R contains words which are sequences of the
nonterminal symbol S, all the nodes of every level (except the last one) of the
derivation tree of a word w ∈ L(G) are labeled by the symbol S. This means
that all the nonterminals, with the exception of the ones labeling the nodes
directly above the last level of the tree, are rewritten by the rule S → SS, and
the nonterminals of the level directly above the last one are rewritten by S → a.
Thus, the language generated by G is L(G) = {a2n | n ≥ 0}.
Now we present a normal form result for generative grammars from [6] where
it is shown that any recursively enumerable language can be generated by a
grammar G = (N, T, S, P ) where N = {S,A,B,C,D} and P = P1 ∪ P2 where
P1 contains linear productions of the form S → zSa, S → uSv and S → λ where
z, u ∈ {A,C}∗, v ∈ {B,D}∗, a ∈ T , and P2 contains the two non-context-free
productions P2 = {AB → λ,CD → λ}. A grammar of the above form is said to
be in the Geffert normal form.

The derivations of a Geffert normal form grammar consists of three phases.
First, rules of the form S → zSa, z ∈ {A,C}∗, a ∈ T are used to generate a
sentential form from {A,C}∗ST ∗, this is the first phase. Then the rules S →
uSv, u ∈ {A,C}∗, v ∈ {B,D}∗ and S → λ are used to produce a string from
{A,C}∗{B,D}∗T ∗, this is the second phase. Finally, in the third phase, the
erasing rules AB → λ, CD → λ are used to produce a terminal word from T ∗.

We will also need the notion of a unique-sum set which was introduced in [5] as
follows. A set of natural numbers U = {u1, . . . , up} having the sum σU = Σp

i=1ui
is said to be a unique-sum set, if the equation Σp

i=1ciui = σU for ci ∈ N has the
only solution ci = 1, 1 ≤ i ≤ p. Examples of unique-sum sets are {2, 3}, {4, 6, 7},
or {8, 12, 14, 15}, while the set {4, 5, 6} is not unique-sum, as 4 + 5 + 6 = 15 =
5+5+5. It is clear that any subset of a unique-sum set is unique-sum, and that
the sum of any two numbers from the set, σi,j = ui+ uj, cannot be produced as
the linear combination of elements of the set in any other way.

3 The Number of Nonterminals

Now we show that every recursively enumerable language can be generated by
a tree controlled grammar with six nonterminals.

Theorem 1. For any recursively enumerable language L, there exists a tree
controlled grammar G with L = L(G), such that Var(G) = 6.
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Proof. Let L ⊆ T ∗ be a recursively enumerable language generated by the Geffert
normal form grammarG1 = ({S,A,B,C,D}, T, S, P ) where T = {a1, a2, . . . , at}
and P = {AB → λ,CD → λ, S → λ} ∪ {S → ziSai, S → ujSvj | zi, uj ∈
{A,C}∗, vj ∈ {B,D}∗, 1 ≤ i ≤ t, 1 ≤ j ≤ s}.

Let us define the morphism h : {A,B,C,D}∗ → {0, $}∗ by h(A) = $06$,
h(B) = $010$, h(C) = $012$, h(D) = $013$ which encodes four of the nontermi-
nals of the grammar G1 as strings over two symbols. Notice that the length of
the coding sequences forms the unique-sum set {8, 12, 14, 15}.

Let us now construct the tree controlled grammar G = (G′, R) where G′ =
(N, T, S, P ′) with N = {S, S′, $, 0,#},

P ′ = {S → h(z)Sa | S → zSa ∈ P, a ∈ T, z ∈ {A,C}∗} ∪
{S → S′} ∪
{S′ → h(u)S′h(v) | S → uSv ∈ P, u ∈ {A,C}∗, v ∈ {B,D}∗} ∪
{S′ → λ, $→ $, $→ #, 0→ 0, 0→ #,#→ λ},

and

R = ({S, S′} ∪ T ∪X1 ∪X2)
∗{#20,#29, λ},

where

X1 = {$06$, $010$, $012$, $013$}, (1)

X2 = {$06$, $010$}{#20,#29}{$012$, $013$}. (2)

First we show that any terminal derivation of G1 can be simulated by the tree
controlled grammar G, that is, L(G1) ⊆ L(G). Let w ∈ L(G1) and let

S ⇒∗ zSw⇒∗ zuSvw⇒ zuvw (3)

be the first and the second phases of a derivation of w in G1 where z, u ∈
{A,C}∗, v ∈ {B,D}∗. We can generate h(zuv)w, the encoded version of zuvw
with the rules of G as follows

S ⇒∗ h(z)Sw⇒ h(z)S′w ⇒∗ h(zu)S′h(v)w ⇒ h(zuv)w, (4)

h(zu) ∈ {$06$, $012$}∗, h(v) ∈ {$010$, $013$}∗. If we use the chain rules, $ → $
and 0 → 0, we can make sure that the word corresponding to each level of the
derivation tree belongs to the regular set R, and moreover, that h(zuv) is the
string corresponding to the last level of the derivation tree which belongs to
the derivation (4) of G above simulating the first two phases of the derivation of
the word w in G1 depicted at (3).

Now w can be derived in G1 if zuv can be erased by using the rules AB → λ
and CD → λ. If AB or CD is a substring of zuv, then h(AB) = $06$$010$ or
h(CD) = $012$$013$ is a substring of h(zuv), thus, one of the derivations

h(zuv)⇒ h(zu′)#20h(v′)w ⇒ h(zu′v′)w,
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or
h(zuv)⇒ h(zu′)#29h(v′)w ⇒ h(zu′v′)w

can be executed in G using the chain rules as above, and the rules 0 → #,
$→ #, #→ λ in such a way that h(zu′v′) is again the string which corresponds
to the last level of the derivation tree of h(zu′v′)w.

It is clear, that whenever zuv can be erased in G1, then h(zuv) can also be
erased in G, thus, w can also be generated by G which means that w ∈ L(G).

Now we show that L(G) ⊆ L(G1). To see this, we have to show that any w ∈
L(G) can also be generated by G1. Consider the derivation tree corresponding
to a derivation of w ∈ L(G) in G and look at the words corresponding to the
different levels of the tree.

Notice the following: (A) There is no symbol # appearing in the levels as
long as S or S′ is present. This statement holds because the words in R have
a special form: They are the concatenations of “complete” coding sequences of
A,B,C, or D, that is, each subword over {$, 0} is a concatenation of coding
strings of the form $0i$ (for some i ∈ {6, 10, 12, 13}). Thus, if # symbols appear
in a word corresponding to a level of the derivation tree, then either all symbols
of such a coding subword are rewritten to #, or no symbol of such a coding
subword is rewritten to #. Recall that the lengths of these coding sequences
form a unique-sum set, {8, 12, 14, 15}, thus, 20 and 29 can only arise through
some linear combination of the elements as 20 = 8+12, and 29 = 14+ 15. This,
together with the above considerations, means that #20 or #29 can only be
obtained by rewriting all symbols of $06$$010$ or $012$$013$ to #. Notice that
when S or S′ is present, then no sequence over {$06$, $012$} can be followed
directly by a sequence over {$010$, $013$}, thus, when S or S′ is present no
neighboring code sequences of length 20 or 29 can occur which means that the
words cannot contain #20 or #29 as a subsequence.

Statement (A) above implies that as long as S or S′ is present in the words
corresponding to the levels of the derivation tree, the chain rules $ → $ and
0 → 0 have to be used on the symbols $, 0 when passing to the next level of
the derivation tree. This is also true for the word corresponding to the first
level in which S′ disappears after using a rule of the form S′ → h(u)h(v), since
uv �= λ. Note that the part of the derivations of G with the presence of S and the
presence of S′ corresponds to the first and the second phases of the derivations
of the Geffert normal form grammar G1, respectively.

Consider now the first such level of the derivation tree corresponding to a
derivation of w in G in which none of the symbols S or S′ are present. From the
above considerations it follows that the string corresponding to this level has the
form h(zu)h(v) where h(zu) ∈ {$06$, $012$}∗, h(v) ∈ {$010$, $013$}∗, and zuvw
can also be derived in the grammar G1.

Note also: (B) There cannot be two distinct subsequences of the symbols #
in any of the words corresponding to any level of the derivation tree of the
word w ∈ L(G). To see this, consider the first level of the tree which is without
S and S′, and denote the string corresponding to this level as h(zuv). Recall that
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h(zuv) = α1α2 where α1 ∈ {$06$, $012$}∗, α2 ∈ {$010$, $013$}∗, so subwords
of the form {$06$, $012$}∗{#20,#29}{$010$, $013$}∗ can only be present in the
words corresponding to subsequent levels of the tree in such a way that the
sequence of # symbols is the result of rewriting a suffix of α1 and a prefix of α2

to #.
Property (B) above implies that in order to be in the control set R, a word

which corresponds to some level of the derivation tree and also contains #, must
be of the form {$06$, $012$}∗{#20,#29}{$010$, $013$}∗ where #20 or #29 is ob-
tained from the word corresponding to the previous level of the tree by rewriting
each symbol in a substring $06$$010$ or $012$$013$ to #, respectively. Therefore,
the word corresponding to the previous level of the tree is either α′

1$0
6$$010$α′

2

or α′
1$0

12$$013$α′
2 where α′

1 and α′
2 satisfy either h−1(α′

1)AB h
−1(α′

2) = zuv or
h−1(α′

1)CD h−1(α′
2) = zuv provided that α1α2 = h(zuv).

This means that the uncoded version of the word corresponding to the next
level of the derivation tree, where the # symbols are erased, can also be derived in
G1 by the rules AB → λ or CD → λ. More precisely, the word corresponding to
the next level of the derivation tree is either of the form α′

1α
′
2 or α

′′
1{#20,#29}α′′

2 ,
all of them corresponding to the sentential form h−1(α′

1)h
−1(α′

2)w which can also
be derived in G1.

Continuing the above reasoning, we obtain that the word corresponding to
the level which is above the last one in the derivation tree of w ∈ L(G) is of
the form #20 or #29, corresponding to the sentential form ABw or CDw in G1,
thus, if w can be generated by the tree controlled grammar G with the control
set R, then w can also be generated by the Geffert normal form grammar G1.

This means that L(G) ⊆ L(G1), and since we have already shown the that
the opposite inclusion holds, we have L(G) = L(G1). As the control set R can
be generated by the regular grammar G2 = ({A}, T ∪{0, $,#, S, S′}, A, P2) with
P2 = {A → xA,A → #20, A → #29, A → λ | x ∈ {S, S′} ∪ T ∪ X1 ∪X2 where
X1 and X2 is defined as above at (1) and (2), respectively, and this grammar
has just one nonterminal, we have proved the statement of the theorem.

4 Conclusion

We have shown how to improve a descriptional complexity result from [10] by
reducing the nonterminal complexity of tree controlled grammars from seven
to six. We have used a similar technique as was used in [10], namely, we have
shown how to simulate a phrase structure grammar in the so called Geffert
normal form by tree controlled grammars. Instead of the normal form with the
single erasing rule ABC → λ, we have used the variant with two erasing rules
AB → λ, CD → λ, thus we needed to simulate the simultaneous erasing of
only two nonterminals, as opposed to the simultaneous erasing of three symbols
simulated in [10]. This simplification made it possible to realize the simulation
with six nonterminals which number is one less than needed in the proof of the
previously known best result.
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1 Introduction

An important way to get a deeper insight into the power of various quantum
resources and features for information processing is to explore power of various
quantum variations of the basic models of classical automata. Of a special inter-
est and importance is to do that for various quantum variations of classical finite
automata because quantum resources are not cheap and quantum operations are
not easy to implement. Attempts to find out how much one can do with very
little of quantum resources and consequently with the most simple quantum
variations of classical finite automata are therefore of particular interest. This
paper is an attempt to contribute to such line of research.

There are two basic approaches how to introduce quantum features to classical
models of finite automata. The first one is to consider quantum variants of the
classical one-way (deterministic) finite automata (1FA or 1DFA) and the sec-
ond one is to consider quantum variants of the classical two-way finite automata
(2FA or 2DFA). Already the very first attempts to introduce such models, by
Moore and Crutchfields [20] and Kondacs and Watrous [12] demonstrated that
in spite of the fact that in the classical case, 1FA and 2FA have the same recog-
nition power, this is not so for their quantum variations. Moreover, already the
first important model of two-way quantum finite automata (2QFA), namely that
introduced by Kondacs and Watrous, demonstrated that very natural quantum
variants of 2FA are much too powerful - they can recognize even some non-
context free languages and are actually not really finite in a strong sense. It
started to be therefore of interest to introduce and explore some “less quantum”
variations of 2FA and their power [1–6, 8, 14–19, 22, 26–30].

A very natural “hybrid” quantum variations of 2FA, namely, two-way quan-
tum automata with quantum and classical states (2QCFA) were introduced by
Ambainis and Watrous [3]. Using this model they were able to show in an ele-
gant way that an addition of a single qubit to a classical model can enormously
increase power of automata. A 2QCFA is essentially a classical 2FA augmented
with a quantum memory of constant size (for states in a fixed Hilbert space) that
does not depend on the size of the (classical) input. In spite of such a restriction,
2QCFA have been shown to be more powerful than two-way probabilistic finite
automata (2PFA) [3].

Because of the simplicity, elegance and interesting properties of the 2QCFA
model, as well as its natural character, it seems to be both useful and interesting
to explore what such a new “hybrid” approach will provide in case of one-way
finite automata and this we will do in this paper by introducing and exploring
1QCFA.

In the first part of the paper, 1QCFA are introduced formally and it is
shown that they can be used to simulate a variety of other models of finite
automata. Namely, 1DFA, coin-tossing 1PFA, measure-once 1QFA (MO-1QFA)
[12], measure-many 1QFA (MM-1QFA) [12] and one-way quantum finite au-
tomata with control language (1QFACL) [6]. Of a special interest is the way
how 1QCFA can simulate 1QFACL - an interesting model the behavior of which
is, however, quite special. Our simulation of 1QFACL by 1QCFA allows to see
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behavior of 1QFACL in a quite transparent way. We also explore several closure
properties of the family of languages accepted by 1QCFA. Finally, we derive a
result concerning the state complexity of 1QCFA that also demonstrates a merit
of this new model. Namely we show that for any prime m and any ε1 > 0,
there exists a language Lm than cannot be recognized by any MM-1QFA with
bounded error 7

9 + ε1, and any 1PFA recognizing it has at last m states, but
Lm can be recognized by a 1QCFA for any error bound ε > 0 with O(logm)
quantum states and 12 classical states.

The rest of the paper is organized as follows. Definitions of all automata
models explored in the paper are presented in Section 2. In Section 3 we show
how several other models of finite automata can be simulated by 1QCFA. We
also explore several closure properties of the family of languages accepted by
1QCFA in Section 4. In Section 5 the above mentioned succinctness result is
proved and the last section contains just few concluding remarks.

2 Basic Models of Classical and Quantum Finite
Automata

In the first part of this section we formally introduce those basic models of finite
automata we will refer to in the rest of the paper and in the second part of this
section, we formally introduce as a new model 1QCFA. Concerning the basics
of quantum computation we refer the reader to [9, 21] and concerning the basic
properties of the automata models introduced in the following we refer the reader
to [9–11, 23, 25].

2.1 Basic Models of Classical and Quantum Finite Automata

In this subsection, we recall the definitions of DFA, 1PFA, MO-1QFA, MM-1QFA
and 1QFACL.

Definition 1. A deterministic finite automaton (DFA) A is specified by a 5-
tuple

A = (S,Σ, δ, s0, Sacc), (1)

where:

1. S is a finite set of classical states;
2. Σ is a finite set of input symbols;
3. s0 ∈ S is the initial state of the machine;
4. Sacc ⊂ S is the set of accepting states;
5. δ is the transition function:

δ : S ×Σ → S. (2)

Let w = σ1σ2 · · ·σn be a string over the alphabet Σ. The automaton A accepts
the string w if a sequence of states, r0, r1, · · · , rn, exists in S with the following
conditions:
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1. r0 = s0;
2. ri+1 = δ(ri, σi+1), for i = 0, · · · , n− 1;
3. rn ∈ Sacc.

DFA recognize exactly the set of regular languages (RL).

Definition 2. A one-way probabilistic finite automata (1PFA) A is specified by
a 5-tuple

A = (S,Σ, δ, s1, Sacc), (3)

where:

1. S = {s1, s2, · · · , sn} is a finite set of classical states;
2. Σ is a finite set of input symbols; Σ is then extended to the tape symbol set
Γ = Σ ∪ { |c, $}, where |c /∈ Σ is called the left end-marker and $ /∈ Σ is
called the right end-marker;

3. s1 ∈ S is the initial state;
4. Sacc ⊂ S is the set of accepting states;
5. δ is the transition function:

δ : S × Γ × S → [0, 1]. (4)

For example, δ(s, σ, t) means that if A is in the state s with the tape head
scanning the symbol σ, then the automaton enters the state t with probability
δ(s, σ, t).
Note: A 1 PFA is a coin-tossing 1PFA if the range of its transition function
δ is {0, 1/2, 1}. For any s ∈ S and any σ ∈ Γ , δ(s, σ, t) is a so-called coin-
tossing distribution1 on S such that

∑
t∈S δ(s, σ, t) = 1. It is not hard to see

that rational transition probabilities can be obtained by repeating coin-flip.

For an input string ω = σ1 . . . σl, the probability distribution on the states of
A during its acceptance process can be traced using n-dimensional vectors. It is
assumed that A starts to process the input word written on the input tape as
w = |c ω$ and let v0 = (1, 0, . . . , 0)Tn×1 denote the initial probability distribution
on states. If, during the acceptance process, the current probability distribution
vector is v and a tape symbol σ is read, then the new state probability distri-
bution vector will be, after the automaton step, u = Aσv, where Aσ is such a
matrix that Aσ(i, j) = δ(sj , σ, si). We then use v|w| = A$Aσl

· · ·Aσ1A |cv0 to
denote the final probability distribution on states in case of the input ω. The
accepting probability of A with input ω is then

Pr[A accepts ω] =
∑

si∈Sacc

v|w|(i), (5)

where v|w|(i) denotes the ith entry of v|w|.

1 A coin-tossing distribution on a finite set Q is a mapping φ from Q to {0, 1/2, 1}
such that

∑
q∈Q φ(q) = 1.
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Definition 3. A measurement-once one-way quantum automaton (MO-1QFA)
A is specified by a 5-tuple

A = (Q,Σ,Θ, |q0〉, Qacc), (6)

where:

1. Q is a finite set of quantum orthogonal states;
2. Σ is a finite set of input symbols; Σ is then extended to the tape symbol set
Γ = Σ ∪ { |c, $}, where |c /∈ Σ is called the left end-marker and $ /∈ Σ is
called the right end-marker;

3. |q0〉 ∈ Q is the initial quantum state;
4. Qacc ⊂ Q is the set of accepting quantum states;
5. For each σ ∈ Γ , a unitary transformation Θσ is defined on the Hilbert space

spanned by the states from Q.

We describe the acceptance process of A for any given input string ω = σ1 · · ·σl
as follows. The automaton A states with the initial state |q0〉, reading the left-
marker |c. Afterwards, the unitary transformation Θ|c is applied on |q0〉. After
that, Θ|c|q0〉 becomes the current state and the automaton reads σ1. The process
continues until A reads $ and ends in the state |ψω〉 = Θ$Θσl

· · ·Θσ1Θ|c|q0〉.
Finally, a measurement is performed on |ψω〉 and the accepting probability of A
on the input ω is equal to

Pr[A accepts ω] = 〈ψω|Pa|ψω〉 = ||Pa|ψω〉||2, (7)

where Pa =
∑

q∈Qacc
|q〉〈q| is the projection onto the subspace spanned by {|q〉 :

|q〉 ∈ Qacc}.

Definition 4. A measurement-many one-way quantum automaton (MM-1QFA)
A is specified by a 6-tuple

A = (Q,Σ,Θ, |q0〉, Qacc, Qrej), (8)

where Q, Σ, Θ, |q0〉, Qacc, and the tape symbol set Γ are the same as those
defined above in an MO-1QFA. Qrej ⊂ Q is the set of rejecting states.

For any given input string ω = σ1 · · ·σl, the acceptance process is similar to that
of MO-1QFA except that after every transition, MM-1QFA A measures its state
with respect to the three subspaces that are spanned by the three subsets Qacc,
Qrej and Qnon, respectively, where Qnon = Q \ (Qacc ∪ Qrej). In other words,
the projective measurement consists of {Pa, Pr, Pn}, where Pa =

∑
q∈Qacc

|q〉〈q|,
Pr =

∑
q∈Qrej

|q〉〈q| and Pn =
∑

q∈Qnon
|q〉〈q|. The accepting and rejecting

probability are given as follows (for convenience, we denote σ0 = |c and σl+1 = $):

Pr[A accepts ω] =

l+1∑
k=0

||PaΘσk

k−1∏
i=0

(PnΘσi )|q0〉||2, (9)
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Pr[A reject ω] =

l+1∑
k=0

||PrΘσk

k−1∏
i=0

(PnΘσi)|q0〉||2. (10)

An important convention: In this paper we define
∏n

i=1 Ai = AnAn−1 · · ·A1,
instead of the usual one A1A2 · · ·An.

Definition 5. A one-way quantum finite automata with control language
(1QFACL) A is specified by as a 6-tuple

A = (Q,Σ,Θ, |q0〉,O,L), (11)

where:

1. Q, Σ, Θ, |q0〉 and the tape symbol set Γ = Σ ∪ { |c, $} are the same as those
defined above in an MO-1QFA;

2. O is an observable with the set of possible eigenvalues C = {c1, · · · , cs} and
the projector set {P (ci) : i = 1, · · · , s} where P (ci) denotes the projector
onto the eigenspace corresponding to ci;

3. L ⊂ C∗ is a regular language (called here a control language).

The input word ω = σ1 · · ·σl to 1QFACL A is in the form: w = |cω$ (for
convenience, we denote σ0 = |c and σl+1 = $). Now, we define the behavior
of A on the word w. The computation starts in the state |q0〉, and then the
transformations associated with symbols in the word w are applied in succession.
The transformation associated with any symbol σ ∈ Γ consists of two steps:

1. Firstly, Θσ is applied to the current state |φ〉 of A, yielding the new state
|φ′〉 = Θσ|φ〉.

2. Secondly, the observable O is measured on |φ′〉. According to quantum me-
chanics principle, this measurement yields result ck with probability pk =
||P (ck)|φ′〉||2, and the state of A collapses to P (ck)|φ′〉/

√
pk.

Thus, the computation on the word w leads to a string y0y1 . . . yl+1 ∈ C∗ with
probability p(y0y1 . . . yl+1|σ0σ1 . . . σl+1) given by

p(y0y1 . . . yl+1|σ0σ1 . . . σl+1) = ||
l+1∏
i=0

(P (yi)Θσi)|q0〉||2. (12)

A computation leading to a word y ∈ C∗ is said to be accepted if y ∈ L. Oth-
erwise, it is rejected. Hence, the accepting probability of 1QFACL A is defined
as:

Pr[A accepts ω] =
∑

y0y1...yl+1∈L
p(y0y1 . . . yl+1|σ0σ1 . . . σl+1) (13)



1QCFA 279

2.2 Definition of 1QCFA

In this subsection we introduce 1QCFA and its acceptance process formally and
in details.

2QCFA were first introduced by Ambainis and Watrous [3], and then studied
by Qiu, Yakaryilmaz and etc. [24, 28, 32–34]. 1QCFA are the one-way version of
2QCFA. Informally, we describe a 1QCFA as a DFA which has access to a quan-
tum memory of a constant size (dimension), upon which it performs quantum
transformations and measurements. Given a finite set of quantum states Q, we
denote by H(Q) the Hilbert space spanned by Q. Let U(H(Q)) and O(H(Q))
denote the sets of unitary operators and projective measurements over H(Q),
respectively.

Definition 6. A one-way finite automata with quantum and classical states
(1QCFA) A is specified by a 10-tuple

A = (Q,S,Σ,Θ,Δ, δ, |q0〉, s0, Sacc, Srej) (14)

where:

1. Q is a finite set of quantum states;
2. S, Σ and the tape symbol set Γ = Σ ∪ { |c, $} are the same as those defined

above in a 1PFA;
3. |q0〉 ∈ Q is the initial quantum state;
4. s0 ∈ S is the initial classical state;
5. Sacc ⊂ S and Srej ⊂ S are the sets of classical accepting and rejecting states,

respectively;
6. Θ is the mapping:

Θ : S × Γ → U(H(Q)), (15)

assigning to each pair (s, γ) a unitary transformation;
7. Δ is the mapping:

Δ : S × Γ → O(H(Q)), (16)

where each Δ(s, γ) corresponds to a projective measurement (a projective
measurement will be taken each time a unitary transformation is applied; if
we do not need a measurement, we denote that Δ(s, γ) = I, and we assume
the result of the measurement to be ε with certainty);

8. δ is a special transition function of classical states. Let the results set of the
measurement be C = {c1, c2, . . ., cs}, then

δ : S × Γ × C → S, (17)

where δ(s, γ)(ci) = s′ means that if a tape symbol γ ∈ Γ is being scanned
and the projective measurement result is ci, then the state s is changed to s′.

Given an input ω = σ1 · · ·σl, the word on the tape will be w = |c ω$ (for
convenience, we denote σ0 = |c and σl+1 = $). Now, we define the behavior of
1QCFA A on the word w. The computation starts in the classical state s0 and
the quantum state |q0〉, then the transformations associated with symbols in
the word σ0σ1 · · · , σl+1 are applied in succession. The transformation associated
with a state s ∈ S and a symbol σ ∈ Γ consists of three steps:
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1. Firstly, Θ(s, σ) is applied to the current quantum state |φ〉, yielding the new
state |φ′〉 = Θ(s, σ)|φ〉.

2. Secondly, the observableΔ(s, σ) = O is measured on |φ′〉. The set of possible
results is C = {c1, · · · , cs}. According to such a quantum mechanics principle,
such a measurement yields the classical outcome ck with probability pk =
||P (ck)|φ′〉||2, and the quantum state of A collapses to P (ck)|φ′〉/

√
pk.

3. Thirdly, the current classical state s will be changed to δ(s, σ)(ck) = s
′.

An input word ω is assumed to be accepted (rejected) if and only if the classical
state after scanning σl+1 is an accepting (rejecting) state. We assume that δ
is well defined so that 1QCFA A always accepts or rejects at the end of the
computation.

Let L ⊂ Σ∗ and 0 ≤ ε < 1/2, then 1QCFA A recognizes L with bounded
error ε if

1. For any ω ∈ L, Pr[A accepts ω] ≥ 1− ε, and
2. For any ω /∈ L, Pr[A rejects ω] ≥ 1− ε.

3 Simulation of Other Models by 1QCFA

In this section, we prove that the following automata models can be simulated
by 1QCFA: DFA, coin-tossing 1PFA, MO-1QFA, MM-1QFA and 1QFACL.

Theorem 1. Any n states DFA A = (S,Σ, δ, s0, Sacc) can be simulated by a
1QCFA A′ = (Q′, S′, Σ′, Θ′, Δ′, δ′, |q0〉′, s′0, S′

acc, S
′
rej) with 1 quantum state and

n+ 1 classical states.

Proof. Actually, if we do not use the quantum component of 1QCFA, the au-
tomaton is reduced to a DFA. Let Q′ = {|q0〉′}, S′ = S ∪ {sr}, Σ′ = Σ, s′0 = s0,
S′
acc = Sacc and S′

rej = {sr}. For any s ∈ S and any σ ∈ Σ, let Θ(s, σ) = I,
Δ′(s, σ) = I, and the classical transition function δ′ is defined as follows:

δ′(s, σ)(c) =

⎧⎪⎪⎨⎪⎪⎩
s, σ = |c;
δ(s, σ), σ ∈ Σ,
s, σ = $, s ∈ S′

acc;
sr, σ = $, s /∈ S′

acc.

(18)

where c is the measurement result.

Theorem 2. Any n states coin-tossing 1PFA A1 = (S1, Σ1, δ1, s11, S
1
acc) can be

simulated by a 1QCFA A2 = (Q2, S2, Σ2, Θ2, Δ2, δ2, |q0〉2, s20, S2
acc, S

2
rej) with 2

quantum states and n+ 1 classical states.

Proof. A coin-tossing 1PFA is essentially a DFA augmented with a fair coin-flip
component. In every transition, coin-tossing 1PFA can use a fair coin-flip or not
freely. Using the quantum component, a 1QCFA can simulate the fair coin-flip
perfectly.
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Lemma 1. A fair coin-flip can be simulate by 1QCFA A with two quantum
states, a unitary operation and a projective measurement.

Proof. The automaton A simulates a coin-flip according to the following transi-
tion functions, with |p0〉 as the starting quantum state. We use two orthogonal
basis states |p0〉 and |p1〉. Let a projective measurementM = {P0, P1} be defined
by

P0 = |p0〉〈p0|, P1 = |p1〉〈p1|. (19)

The results 0 and 1 represent the results of coin-flip “head” and “tail”, respec-
tively. The corresponding unitary operation will be

U =

(
1√
2

1√
2

1√
2
− 1√

2

)
. (20)

This operator changes the state |p0〉 or |p1〉 to a superposition state |ψ〉 or |φ〉,
respectively, as follows:

|ψ〉 = 1√
2
(|p0〉+ |p1〉), |φ〉 =

1√
2
(|p0〉 − |p1〉). (21)

When measuring |ψ〉 or |φ〉 withM , we will get the result 0 or 1 with probability
1
2 , respectively. This is similar to a coin-flip process. If the result is 0, we simulate
“head” result of the coin-flip; if the result is 1, we simulate “tail” result of the
coin-flip. So the Lemma is proved.

If the current state of coin-tossing 1PFA A1 is s and the scanning symbol is
σ ∈ Σ, A1 makes a coin-flip. The current state of A1 will change to t1 or t2,
in both cases with probability 1

2 . We use a 1QCFA A2 to simulate this step as
follows:

1. Use the quantum component of 1QCFA A2 to simulate a fair coin-flip. We
assume the outcome to be 0 or 1.

2. We define δ2(s, σ)(0) = t1 and δ2(s, σ)(1) = t2.

The other parts of the simulation are similar to the one described in the proof
of Theorem 1.

Theorem 3. Any n quantum states MO-1QFA A1 = (Q1, Σ1, Θ1, |q0〉1, Q1
acc)

can be simulated by a 1QCFA A2 = (Q2, S2, Σ2, Θ2, Δ2, δ2, |q0〉2, s20, S2
acc, S

2
rej)

with n quantum states and 3 classical states.

Proof. We use the quantum component of 1QCFA to simulate the evolution of
quantum states of MO-1QFA and use the classical states of 1QCFA to calculate
the accepting probability. Let Q2 = Q1, S2 = {s20, s2a, s2r}, Σ2 = Σ1, |q0〉2 =
|q0〉1, S2

acc = {s2a} and S2
rej = {s2r}. For any current classical state s and scanning

symbol σ, the quantum transition function is defined to be

Θ2(s, σ) = Θ1(σ). (22)
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The measurement function is defined to be

Δ2(s, σ) =

{
I, σ �= $;
{Pa, Pr}, σ = $.

(23)

where Pa =
∑

q∈Qacc
|q〉〈q|, Pr = I − Pa. If we assume the outcome to be ca or

cr, then the classical transition function will be defined to be

δ2(s, σ)(c) =

⎧⎨⎩
s, σ �= $;
s2a, σ = $, c = ca;
s2r, σ = $, c = cr.

(24)

Theorem 4. Any n quantum states MM-1QFA A1 = (Q1, Σ1, Θ1, |q0〉1, Q1
acc,

Q1
rej) can be simulated by a 1QCFA A2 = (Q2, S2, Σ2, Θ2, Δ2, δ2, |q0〉2, s20, S2

acc,

S2
rej) with n quantum states and 3 classical states.

Proof. We use the quantum component of 1QCFA to simulate both the evolution
of quantum states of MM-1QFA and its projective measurements. We use the
classical states of 1QCFA to calculate the accepting and rejecting probability.
Let Q2 = Q1, S2 = {s20, s2a, s2r}, Σ2 = Σ1, |q0〉2 = |q0〉1, S2

acc = {s2a} and
S2
rej = {s2r}. For any current classical state s and any scanning symbol σ, the

quantum transition function is defined to be

Θ2(s, σ) = Θ1(σ). (25)

The measurement function is defined to be

Δ2(s, σ) = {Pa, Pr, Pn}, (26)

where Pa =
∑

q∈Qacc
|q〉〈q|, Pr =

∑
q∈Qrej

|q〉〈q| and Pn =
∑

q∈Qnon
|q〉〈q|. If we

assume the classical outcomes to be ca, cr or cn, then the classical transition
function will be defined to be

δ2(s, σ)(c) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s2a, s = s2a;
s2r, s = s2r;
s2a, s = s20, c = ca;
s2r, s = s20, c = cr;
s20, s = s20, c = cn, σ �= $;
s2r, s = s20, c = cn, σ = $.

(27)

Although 1QFACL can accept all regular languages, their behavior seems to be
rather complicated. We prove that any 1QFACL can be simulated by a 1QCFA
with an easy to understand behavior.

Theorem 5. Any n quantum states 1QFACL A1 = (Q1, Σ1, Θ1, |q0〉1,O1,L1),
whose control language L1 can be recognized by an m states DFA A = (S,Σ, δ,
s0, Sacc), can be simulated by a 1QCFA A2 = (Q2, S2, Σ2, Θ2, Δ2, δ2, |q0〉2, s20,
S2
acc, S

2
rej) with n quantum states and m+ 1 classical states.
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Proof. We use the quantum component of 1QCFA to simulate the evolution of
quantum states of 1QFACL and also its projective measurements. We use the
classical states of 1QCFA to simulate DFA L1. Let Q2 = Q1, S2 = S ∪ {sr},
Σ2 = Σ1, s20 = s0, |q0〉2 = |q0〉1, S2

acc = Sacc and S2
rej = {sr}. For any current

classical state s and any scanning symbol σ, the quantum transition function
will be defined to be

Θ2(s, σ) = Θ1(σ). (28)

The measurement function is defined to be

Δ2(s, σ) = {P (ci) : i = 1, · · · , t}, (29)

where P (ci) denotes the projector onto the eigenspace corresponding to ci. We
assume that the set of possible classical outcomes is C = {c1, · · · , ct}, where
C = Σ, then the classical transition function will be defined to be

δ2(s, σ)(c) =

⎧⎨⎩
δ(s, c), σ �= $;
δ(s, c), σ = $, δ(s, c) ∈ Sacc;
sr, σ = $, δ(s, c) /∈ Sacc.

(30)

4 Closure Properties of Languages Accepted by 1QCFA

For convenience, we denote by 1QCFA(ε) the classes of languages recognized
by 1QCFA with bounded error ε. Moreover, let QS(A) and CS(A) denote the
numbers of quantum states and classical states of a 1QCFA A. We start to
consider the operation of complement.

Theorem 6. If L ∈ 1QCFA(ε), then also Lc ∈ 1QCFA(ε), where Lc is the
complement of L.

Proof. Let a 1QCFA(ε) A = (Q,S,Σ,Θ,Δ, δ, |q0〉, s0, Sacc, Srej) accept L with a
bounded error ε. We can construct the 1QCFA Ac only by exchanging the clas-
sical accepting and rejecting states in A. That is, Ac = (Q,S,Σ,Θ,Δ, δ, |q0〉, s0,
Sc
acc, S

c
rej), where S

c
acc = Srej , S

c
rej = Sacc and the other components remain

the same as those defined in A. Afterwards we have:

1. If ω ∈ Lc, then ω /∈ L. Indeed, for an input ω, A will enter a rejecting state
with probability at least 1− ε at the end of the computation. With the same
input ω, Ac will enter an accepting state with probability at least 1 − ε at
the end of the computation. Hence, Ac accepts ω with the probability at
least 1− ε;

2. The case ω /∈ Lc is treated in a symmetric way.

Remark 1. According to the construction given above, if QS(A) = n, CS(A) =
m, then QS(Ac) = n, CS(Ac) = m.

Theorem 7. If L1 ∈ 1QCFA(ε1) and L2 ∈ 1QCFA(ε2), then L1 ∩ L2 ∈
1QCFA(ε), where ε = ε1 + ε2 − ε1ε2.
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Proof. Let Ai = (Qi, Si, Σi, Θi, Δi, δi, |q0〉i, si0, Si
acc, S

i
rej) be 1QCFA to recog-

nize Li with bounded error εi (i = 1, 2). We construct a 1QCFA A = (Q,S,Σ,Θ,
Δ, δ, |q0〉, s0, Sacc, Srej) where:

1. Q = Q1 ⊗Q2,
2. S = S1 × S2,
3. Σ = Σ1 ∩Σ2,
4. s0 = 〈s10, s20〉,
5. |q0〉 = |q0〉1 ⊗ |q0〉2,
6. Sacc = S

1
acc × S2

acc,
7. Srej = (S1

acc × S2
rej) ∪ (S1

rej × S2
acc) ∪ (S1

rej × S2
rej)

8. For any classical state s = 〈s1, s2〉 ∈ S and any σ ∈ Σ, the quantum transi-
tion function of A is defined to be

Θ(s, σ) = Θ(〈s1, s2〉, σ) = Θ1(s1, σ)⊗Θ2(s2, σ). (31)

9. For any classical state s = 〈s1, s2〉 ∈ S and any σ ∈ Σ, the measurement
function of A is defined to be

Δ(s, σ) = Δ(〈s1, s2〉, σ) = Δ1(s1, σ)⊗Δ2(s2, σ). (32)

As classical measurements outcomes are then tuples cij = 〈ci, cj〉.
10. For any classical state s = 〈s1, s2〉 ∈ S and any σ ∈ Σ, the classical transition

function of A is defined to be

δ(s, σ)(cij) = δ(〈s1, s2〉, σ)(〈ci, cj〉) = 〈δ1(s1, σ)(ci), δ2(s2, σ)(cj)〉. (33)

In terms of the 1QCFA A constructed above, for any ω ∈ Σ∗, we have:

1. If ω ∈ L1 ∩ L2, then A will enter a state 〈t1, t2〉 ∈ S1
acc × S2

acc at the end of
the computation with probability at least (1− ε1)(1− ε2). A accepts ω with
the probability at least (1− ε1)(1 − ε2) = 1− (ε1 + ε2 − ε1ε2).

2. If ω ∈ L1 but ω /∈ L2, then A will enter a state 〈t1, t2〉 ∈ S1
acc × S2

rej at the
end of the computation with probability at least (1− ε1)(1 − ε2). A rejects
ω with the probability at least 1− (ε1 + ε2 − ε1ε2).

3. The case ω /∈ L1 but ω ∈ L2 is symmetric to the previous one and therefore
the same is the outcome.

4. If ω /∈ L1 and ω /∈ L2, then A will enter a state 〈t1, t2〉 ∈ S1
rej × S2

rej at the
end of the computation with probability at least (1− ε1)(1 − ε2). A rejects
ω with the probability at least 1− (ε1 + ε2 − ε1ε2).

So L1 ∩ L2 ∈ 1QCFA(ε).

Remark 2. According to the construction given above, letQS(A1) = n1, CS(A1)
= m1, QS(A2) = n2 and CS(A2) = m2, then QS(A) = n1n2, CS(A) = m1m2.

A similar outcome holds for the union operation.

Theorem 8. If L1 ∈ 1QCFA(ε1) and L2 ∈ 1QCFA(ε2), then L1 ∪ L2 ∈
1QCFA(ε), where ε = ε1 + ε2 − ε1ε2.
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Proof. Let Ai = (Qi, Si, Σi, Θi, Δi, δi, |q0〉i, si0, Si
acc, S

i
rej) be 1QCFA to rec-

ognize Li with bounded error εi (i = 1, 2). The construction of the 1QCFA
A = (Q,S,Σ,Θ,Δ, δ, |q0〉, s0, Sacc, Srej) is the same as in the proof of Theo-
rem 7 except for Sacc and Srej . We define Sacc = (S1

acc × S2
rej)∪ (S1

rej × S2
acc)∪

(S1
acc×S2

acc) and Srej = S
1
rej×S2

rej. The rest of the proof is similar to the proof in
Theorem 7.

Remark 3. In the last proof the set of input symbols was defined asΣ = Σ1∩Σ2.
Actually, if we take Σ = Σ1 ∪ Σ2, the theorem still holds. In that case, we
extend Σi to Σ by adding a rejecting classical state sir to Ai. For any classical
state si ∈ Si and σi /∈ Σi, the quantum transition function is defined to be
Θi(si, σi) = I, the measurement function is defined to be Δi(si, σi) = I. We
assume the measurement result to be c, then the classical transition function
will be defined to be δi(si, σi)(c) = sir. For the new adding state sir, we define
the transition functions as follow: for any σ ∈ Σ, Θi(sir, σ) = I, Δi(sir, σ) = I,
δi(sir, σ)(c) = s

i
r, where c is the the measurement result.

5 Succinctness Results

State complexity and succinctness results are an important research area of
classical automata theory, see [31], with a variety of applications. Once quantum
versions of classical automata were introduced and explored, it started to be
of large interest to find out through succinctness results a relation between the
power of classical and quantum automata model. This has turned out to be an
area of surprising outcomes that again indicated that relations between classical
and corresponding quantum automata models is intriguing. For example, it has
been shown, see [2, 4, 5, 13], that for some languages 1QFA require exponentially
less states that classical 1FA, but for some other languages it can be in an
opposite way.

Since 1QCFA can simulate both 1FA and 1QFA, and in this way they combine
the advantages of both of these models, it is of interest to explore the relation
between the state complexity of languages for the case that they are accepted
by 1QCFA and MM-1QFA and this we will do in this section.

The main result we obtain when considering languages Lm = {a∗b∗ | |a∗b∗| =
km, k = 1, 2, · · ·}, where m is a prime. For survey on the famous language {a∗ |
|a∗| = km, k = 1, 2, · · ·}, the reader may refer to [7].

Obviously, there exist a 2m+2 states DFA, depicted in Figure 1 that accepts
Lm.

Lemma 2. DFA A depicted in Figure 1 is minimal.

Proof. We show that any two different state s and t are distinguishable (i.e.,

there exists a string z such that exactly one of the following states δ̂(p, z)2 or

δ̂(q, z) is an accepting state [31]).

2 For any string x ∈ Σ∗ and any σ ∈ Σ, δ̂(s, σx) = δ̂(δ(s, σ), x); if |x| = 0, δ̂(s, x) = s
[11].
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Fig. 1. DFA A recognizing Lm

1. For 0 ≤ i ≤ m, 0 ≤ j ≤ m and i �= j, we have δ̂(pi, a
m−i) = pm and

δ̂(pj , a
m−i) = pk, where k �= m. Hence, pi and pj are distinguishable.

2. For 1 ≤ i ≤ m, 1 ≤ j ≤ m and i �= j, we have δ̂(qi, b
m−i) = qm and

δ̂(qj , b
m−i) = qk, where k �= m. Hence, qi and qj are distinguishable.

3. For 0 ≤ i ≤ m and 1 ≤ j ≤ m, we have δ̂(pi, a
m−i) = pm and δ̂(qj , a

m−i) = r.
Hence, pi and qj are distinguishable.

4. Obviously, the state r is distinguishable from any other state s.

Therefore, the Lemma has been proved.

Lemma 3 ([2, 18]). For any prime m, any 1PFA recognizing Lm with proba-
bility 1/2 + ε, for a fixed ε > 0, has at least m states.

Remark 4. The proof can be obtained by an easy modification of the
proof from the paper [2] where the state complexity of the language Lp =
{ai | i is divisible by p} is considered.

Lemma 4 ([2]). (Forbidden construction) Let L be a regular language, and let
A be its minimal DFA. Assume that there is a word w such that A contains
states s, t (a forbidden construction) satisfying:

1. s �= t,
2. δ̂(s, x) = t,

3. δ̂(t, x) = t and
4. t is neither “all-accepting” state, nor “all-rejecting” state (i.e., there exist

strings u and v such that δ̂(t, u) is an accepting state and δ̂(t, v) is not an
accepting state).
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Then L cannot be recognized by an MM-1QFA with bounded error 7
9 + ε for any

fixed ε > 0.

Theorem 9. For any fixed ε > 0, Lm cannot be recognized by an MM-1QFA
with bounded error 7

9 + ε.

Proof. According to Lemma 4, we know that Lm cannot be accepted by any MM-
1QFA with bounded error 7

9 + ε since its minimal DFA (see Figure 1) contains
the “Forbidden construction” of Lemma 4. For example, we can take s = p0,
t = pm, x = am, then we have δ̂(p0, a

m) = pm, δ̂(pm, a
m) = pm, δ̂(pm, b

m) = qm
and δ̂(pm, ba) = r.

Let L1 = {a∗b∗} and L2 = {w | w ∈ {a, b}∗, |w| = km, k = 1, 2, · · ·} where m is
a prime. So we have Lm = L1 ∩ L2. We will show L1 and L2 can be recognized
by 1QCFA.

Lemma 5. The language L1 can be recognized by a 1QCFA A1 with certainty
with 1 quantum state and 4 classical states.

Proof. L1 can be accepted by a DFA A with 3 classical states (see Figure 2).
According to Theorem 1, A can be simulated by a 1QCFA A1 with 1 quantum
state and 4 classical states.
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Fig. 2. A DFA recognizing the language L1

Lemma 6 ([2]). For any ε > 0, there is an MM-1QFA A with O(logm) quan-
tum states recognizing L2 with a bounded error ε.

Lemma 7. For any ε > 0, there is a 1QCFA A2 with O(logm) quantum states
and 3 classical states recognizing L2 with a bounded error ε.

Proof. According to Lemma 6, there is an MM-1QFA A with O(logm) quantum
states recognizingL2 with bounded error ε. According to Theorem 4, anO(logm)
quantum states MM-1QFA A can be simulated by a 1QCFA with O(logm)
quantum states and 3 classical states.
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Theorem 10. For any ε > 0, Lm can be recognized by a 1QCFA with O(logm)
quantum states and 12 classical states with a bounded error ε.

Proof. Lm = L1 ∩ L2. According to Lemma 5, the language L1 can be recog-
nized by 1QCFA A1 with 1 quantum state and 4 classical states with certainty
(i.e., ε1 = 0). According to Lemma 7, for any ε > 0, the language L2 can be
recognized by 1QCFA A2 with O(logm) quantum states and 3 classical states
with a bounded error ε. According to Theorem 7, 1QCFA is closed under in-
tersection. Hence, there is a 1QCFA A recognize Lm with a bounded error ε.
Therefore QS(A1) = 1, CS(A1) = 4, QS(A2) = O(logm) and CS(A2) = 3, so
QS(A) = QS(A1)×QS(A2) = O(logm), CS(A) = CS(A1)× CS(A2) = 12.

6 Conclusions

2QCFA were introduced by Ambainis and Watrous [3]. In this paper, we investi-
gated the one-way version of 2QCFA, namely 1QCFA. Firstly, we gave a formal
definition of 1QCFA. Secondly, we showed that DFA, coin-tossing 1PFA, MO-
1QFA, MM-1QFA and 1QFACL can be simulated by 1QCFA. As we know, the
behavior of 1QFACL seems to be rather complicated. However, when we used
a 1QCFA to simulate a 1QFACL, the behavior of 1QCFA started to be seen
as quite natural. Thirdly, we studied closure properties of languages accepted
by 1QCFA, and we proved that the family of languages accepted by 1QCFA is
closed under intersection, union, and complement. Fourthly, for any fixed ε1 > 0
and any prime m we have showed that the language Lm = {a∗b∗ | |a∗b∗| =
km, k = 1, 2, · · ·}, cannot be recognized by any MM-1QFA with bounded error
7
9 + ε1, and any 1PFA recognizing it has at last m states, but Lm can be rec-
ognized by a 1QCFA for any error bound ε > 0 with O(logm) quantum states
and 12 classical states. Thus, 1QCFA can make use of merits of both 1FA and
1QFA.

To conclude, we would like to propose some problems for further consideration.

1. How about the state complexity of 1QCFA compared with other 1QFA for
recognizing the same languages, such as one-way quantum finite automata
together with classical states in [26]?

2. Are 1QCFA closed under catenation and reversal?
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