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Preface

The 14th International Workshop on Descriptional Complexity of Formal Systems
(DCFS 2012)was held in Braga,Portugal, during July 23–25, 2012, and was jointly
organized by Universidade do Porto, Universidade do Minho, and Universidade da
Beira Interior. Braga is known as the “Portuguese Rome” for its concentration of
religious architecture, roman remains, beautiful churches, and museums.

The DCFS workshop is the successor workshop and the merger of two re-
lated workshops, Descriptional Complexity of Automata, Grammars and Re-
lated Structures (DCAGRS) and Formal Descriptions and Software Reliability
(FDSR). The DCAGRS workshop took place in Magdeburg, Germany (1999),
London, Ontario, Canada (2000), and Vienna, Austria (2001), while the FDSR
workshop took place in Paderborn, Germany (1998), Boca Raton, Florida, USA
(1999), and San Jose, California, USA (2000). The DCFS workshop has previ-
ously been held in London, Ontario, Canada (2002), Budapest, Hungary (2003),
London, Ontario, Canada (2004), Como, Italy (2005), Las Cruces, New Mexico,
USA (2006), Nový Smokovec, Slovakia (2007), Charlottetown, Prince Edward
Island, Canada (2008), Magdeburg, Germany (2009), Saskatoon, Saskatchewan,
Canada (2010), and Giessen/Limburg, Germany (2011).

This volume of Lecture Notes in Computer Science contains the invited con-
tributions and the accepted papers presented at DCFS 2012. Special thanks go
to the invited speakers for accepting our invitation and presenting their recent
results at DCFS 2012:

– Christos Kapoutsis (LIAFA, Paris)
– Dexter Kozen (Cornell University, USA)
– André Platzer (Carnegie Mellon University, USA)
– Pedro Silva (Universidade do Porto, Portugal)

There were 33 papers submitted to DCFS 2012 by a total of 65 authors from 17
different countries, from all over the world—Canada, Czech Republic, Estonia,
Finland, Germany, India, Italy, Japan, Republic of Korea, Poland, Romania,
Russian Federation, Slovakia, South Africa, Spain, UK, and USA. From these
submissions, on the basis of three referee reports each, the Program Committee
selected 20 papers—the submission and refereeing process was supported by the
EasyChair conference management system. We warmly thank the members of
the Program Committee for their excellent work in making this selection. More-
over, we also thank the additional external reviewers for their careful evaluation.
All these efforts were the basis for the success of the workshop.

We are grateful to all the members of the Organizing Committee for their
commitment in the preparation of the scientific sessions and social events. A
special thanks goes to José Pedro Rodrigues for his help in the graphic de-
sign of all the conference materials. We express our gratitude to the staff of the
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Department of Informatics of the University of Minho and of the D. Diogo de
Sousa Museum of Archaeology, for their support during the conference. Thanks
also go to Ivone Amorim, Rizó Israfov, Eva Maia, Davide Nabais, David Pereira,
and Alexandra Silva.

We wish to thank the workshop sponsors: Universidade do Porto, Universi-
dade do Minho, Universidade da Beira Interior, Centro de Matemática da Uni-
versidade do Porto, Munićıpio de Guimarães - Guimarães 2012, Multicert, and
Critical Software.

We would also like to thank the staff of the Computer Science Editorial
Department at Springer, for their efficient collaboration in making this volume
available before the conference. Their timely instructions were very helpful for
our preparation for this volume.

Finally, we would like to thank all the participants for attending the DCFS
workshop. We hope that this year’s workshop has stimulated new research and
scientific co-operations in the field of descriptional complexity, as in previous
years. Hope to see you at DCFS in 2013!

July 2012 Martin Kutrib
Nelma Moreira

Rogério Reis
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Computing with Capsules

Jean-Baptiste Jeannin and Dexter Kozen

Department of Computer Science, Cornell University,
Ithaca, New York 14853–7501, USA
{jeannin,kozen}@cs.cornell.edu

Abstract. Capsules provide an algebraic representation of the state of
a computation in higher-order functional and imperative languages. A
capsule is essentially a finite coalgebraic representation of a regular closed
λ-coterm. One can give an operational semantics based on capsules for
a higher-order programming language with functional and imperative
features, including mutable bindings. Static (lexical) scoping is captured
purely algebraically without stacks, heaps, or closures. All operations of
interest are typable with simple types, yet the language is Turing com-
plete. Recursive functions are represented directly as capsules without
the need for fixpoint combinators.

Keywords: capsules, semantics, functional programming, imperative
programming.

1 Introduction

Capsules provide an algebraic representation of the state of a computation in
higher-order functional and imperative programming languages. They conser-
vatively extend the classical λ-calculus with mutable variables and assignment,
enabling the construction of certain regular coterms (infinite terms) representing
recursive functions without the need for fixpoint combinators. They have a well-
defined statically-scoped evaluation semantics, are typable with simple types,
and are Turing complete.

Representations of state have been studied in the past by many authors,
e.g. [2–4, 8, 9, 18–20, 22, 23, 28, 29]. However, unlike previous approaches, cap-
sules are purely algebraic. Perhaps their most important aspect is that their
evaluation semantics captures static scoping without cumbersome combinatorial
machinery needed to implement closures. Capsules replace heaps, stores, stacks,
and pointers with the single mathematical concept of variable binding, yet are
equally expressive and represent the same data dependencies and liveness struc-
ture. In a sense, capsules are to closures what graphs are to their adjacency list
representations.

Formally, a capsule is a particular syntactic representation of a finite coalgebra
of the same signature as the λ-calculus. A capsule represents a regular closed
λ-coterm (infinite λ-term) under the unique morphism to the final coalgebra of
this signature. This final coalgebra has been studied under the name infinitary

M. Kutrib, N. Moreira, and R. Reis (Eds.): DCFS 2012, LNCS 7386, pp. 1–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 J.-B. Jeannin and D. Kozen

λ-calculus, focusing mostly on infinitary rewriting [7, 13]. It has been observed
that the infinitary version does not share many of the desirable properties of
its finitary cousin; for example, it is not confluent, and there exist coterms with
no computational significance. However, all coterms represented by capsules are
computationally meaningful.

One can give an operational semantics based on capsules for a higher-order pro-
gramming language with functional and imperative features, including recursion
andmutable variables. All operations of interest are typablewith simple types. Re-
cursive functions are constructed directly using Landin’s knot without the need for
fixpoint combinators, which involve self-application and are untypable with sim-
ple types. Moreover, the traditional Y combinator forces a normal-order (lazy)
evaluation strategy to ensure termination. Other more complicated fixpoint com-
binators can be used with applicative order by encapsulating the self-application
in a thunk to delay evaluation, but this is even more unnatural. In contrast, the
construction of recursive functions with Landin’s knot is direct and simply ty-
pable, and corresponds more closely to implementations. Turing completeness is
impossible with finite types and finite terms, as the simply-typed λ-calculus is
strongly normalizing; so we must have either infinitary types or infinitary terms.
Whereas the former is more conventional, we believe the latter is more natural.

Dynamic scoping, which was the scoping discipline in early versions of LISP
and Python, and which still exists in many languages today, can be regarded
as an implementation of lazy β-reduction that fails to observe the principle of
safe substitution (α-conversion to avoid capture of free variables). We explain
this view more fully with a detailed example in §3. In contrast, the λ-calculus
with β-reduction and safe substitution is statically scoped. Both capsules and
closures provide static scoping, but capsules do so without any extra combina-
torial machinery. Moreover, capsules work correctly in the presence of mutable
variables, whereas closures, naively implemented, do not (a counterexample is
given in §4.4). To correctly handle mutable variables, closures require some form
of indirection, and care must be taken to perform updates nondestructively. The
connection between closures and capsules in the presence of mutable variables
has been investigated recently by the first author [10].

Capsules provide a common framework for representing the global state of
computation for both functional and imperative programs. Valuations of mutable
variables used in the semantics of imperative programs are similar to closure
structures used in the operational semantics of functional programs. We also get
a clean definition of garbage collection: there is a natural notion of morphism,
and the garbage-collected version of a capsule is the unique (up to isomorphism)
initial object among its monomorphic preimages.

There is much previous work on reasoning about references and local state;
see [8,17–20,24–27]. State is typically modeled by some form of heap from which
storage locations can be allocated and deallocated [9, 18–20, 22, 28, 29]. Others
have used game semantics to reason about local state [5, 6, 15]. Moggi [23] pro-
posed monads, which can be used to model state and are implemented in Haskell.
Our approach is most closely related to the work of Mason and Talcott [18–20] and
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Felleisen and Hieb [8]. Objects can be modeled as collections of mutable bindings,
as for example in the ς-calculus of Abadi and Cardelli [1]. Here we have avoided the
introduction of mutable datatypes other than λ-terms in order to develop the the-
ory in its simplest form and to emphasize that no auxiliary datatypes are needed
to provide a basic operational semantics for a statically-scoped higher-order lan-
guage with functional and imperative features.

This paper is organized as follows. In §2, we give formal definitions of cap-
sules. In §3 we give a detailed motivating example illustrating how closures
and capsules deal with scoping issues. In §4 we prove two theorems. The first
(Theorem 1) establishes that capsule evaluation faithfully models β-reduction
in the λ-calculus with safe substitution. The second (Theorem 2) defines clo-
sure conversion for capsules and proves soundness of the translation, provided
there is no variable assignment. Taken together, these two theorems establish
that closures also correctly model β-reduction in the λ-calculus with safe substi-
tution. The same results hold in the presence of assignment, but the definition
of closures must be extended; the definition of capsules remains the same [10].
The proof techniques in this section are purely algebraic and involve some in-
teresting applications of coinduction. Finally, in §5, we describe a simply-typed
functional/imperative language with mutable bindings and give an operational
semantics in terms of capsules.

2 Definitions

2.1 Capsules

Consider the simply-typed λ-calculus with typed constants (e.g., 3 : int, true :
bool, + : int → int → int, ≤ : int → int → bool). The set of λ-abstractions is
denoted λ-Abs and the set of constants is denoted Const. A λ-term is irreducible
if it is either a λ-abstraction λx.e or a constant c. The set of irreducible terms
is Irred = λ-Abs+ Const. Note that variables x are not irreducible.

Let FV(e) denote the set of free variables of e. A capsule is a pair 〈e, σ〉, where
e is a λ-term and σ : Var ⇀ Irred is a partial function with finite domain domσ,
such that

(i) FV(e) ⊆ domσ
(ii) if x ∈ domσ, then FV(σ(x)) ⊆ domσ.

A capsule 〈e, σ〉 is irreducible if e is.
Note that cycles are allowed; this is how recursive functions are represented.

For example, we might have σ(f) = λn.if n = 0 then 1 else n · f(n− 1).

2.2 Scope, Free and Bound Variables

Let 〈e, σ〉 be a capsule and let d be either e or σ(y) for some y ∈ domσ. The
scope of an occurrence of a binding operator λx in d is its scope in the λ-term d
as normally defined.

Consider an occurrence of a variable x in d. The closure conditions (i) and
(ii) of §2.1 ensure that one of the following two conditions holds:
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– that occurrence of x falls in the scope of a binding operator λx in d, in which
case it is bound to the innermost binding operator λx in d in whose scope it
lies; or

– it is free in d, but x ∈ domσ, in which case it is bound by σ to the value σ(x).

Thus every variable x in a capsule is essentially bound. These conditions thus
preclude catastrophic failure due to access of unbound variables.

It is important to note that scope does not extend through bindings in σ. For
example, consider the capsule 〈λx.y, [y = λz.x, x = 2]〉. The free occurrence
of x in λz.x is not bound to the λx in λx.y, but rather to the value 2. The
coalgebra represented by the capsule has three states and represents the closed
term λx.λz.2. For this reason, one cannot simply substitute σ(y) for y in e
without α-conversion. This is also reflected in the evaluation rules to be given
in §4.1. In a capsule 〈e, σ〉, all free variables in e or σ(y) are in domσ, therefore
bound to a value; thus every capsule represents a closed coterm.

The term α-conversion refers to the renaming of bound variables. With a
capsule 〈e, σ〉, this can happen in two ways. The traditional form maps a subterm
λx.d to λy.d[x/y], provided y would not be captured in d. One can also rename
a variable x ∈ domσ and all free occurrences of x in e and σ(z) for z ∈ domσ
to y, provided y �∈ domσ already and y would not be captured.

3 Scoping Issues

We motivate the results of §4 with an example illustrating how dynamic scoping
arises from a naive implementation of lazy substitution and how capsules and
closures remedy the situation.

3.1 The λ-Calculus

The oldest and simplest of all functional languages is the λ-calculus. In this
system, a state is a closed λ-term, and computation consists of a sequence of
β-reductions

(λx.d) e → d[x/e],

where d[x/e] denotes the safe substitution of e for all free occurrences of x in
d. Safe substitution means that bound variables in d may have to be renamed
(α-converted) to avoid capturing free variables of the substituted term e.

For example, consider the closed λ-term (λy.(λz.λy.z 4)λx.y) 3 2. Evaluating
this term in (shallow) applicative order1, we get the following sequence of terms
leading to the value 3:

(λy.(λz.λy.z 4) λx.y) 3 2 → (λz.λy.z 4) (λx.3) 2

→ (λy.(λx.3) 4) 2 → (λx.3) 4 → 3 (1)

1 Also known as left-to-right call-by-value order, the order of evaluation in which the
leftmost innermost redex is reduced first, except that redexes in the scope of binding
operators λx are ineligible for reduction.
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No α-conversion was necessary. In fact, no α-conversion is ever necessary with
applicative-order evaluation of closed terms, because the argument substituted
for a parameter in a β-reduction is closed, thus has no free variables to be
captured.

However, the λ-calculus is confluent, and we may choose a different order of
evaluation; but an alternative order may require α-conversion. For example, the
following reduction sequence is also valid:

(λy.(λz.λy.z 4) λx.y) 3 2 → (λy.λw.(λx.y) 4) 3 2

→ (λw.(λx.3) 4) 2 → (λx.3) 4 → 3 (2)

A change of bound variable was required in the first step to avoid capturing the
free occurrence of y in λx.y substituted for z. Failure to do so results in the
erroneous value 2:

(λy.(λz.λy.z 4) λx.y) 3 2 → (λy.λy.(λx.y) 4) 3 2

→ (λy.(λx.y) 4) 2 → (λx.2) 4 → 2 (3)

3.2 Dynamic Scoping

In the early development of functional programming, specifically with the lan-
guage LISP, it was quickly determined that physical substitution is too inefficient
because it requires copying. This led to the introduction of environments, used to
effect lazy substitution. Instead of doing the actual substitution when perform-
ing a β-reduction, one can defer the substitution by saving it in an environment,
then look up the value when needed.

An environment is a partial function σ : Var ⇀ Irred with finite domain. A
state is a pair 〈e, σ〉, where e is the term to be evaluated and σ is an environment
with bindings for the free variables in e. Environments need to be updated, which
requires a rebinding operator

σ[x/e](y) =

{
e, if x = y,

σ(y), if x �= y

Naively implemented, the rules are

〈(λx.d) e, σ〉 → 〈d, σ[x/e]〉 〈y, σ〉 → 〈σ(y), σ〉

where the first rule saves the deferred substitution in the environment and the
second looks up the value. This is quite easy to implement. Moreover, it stands to
reason that if β-reduction in applicative order does not require any α-conversions,
then the lazy approach should not either. After all, the same terms are being
substituted, just at a later time.
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However, this is not the case. In the example above, we obtain the following
sequence of states leading to the value 2:

〈(λy.(λz.λy.z 4) λx.y) 3 2, [ ]〉, 〈(λz.λy.z 4) (λx.y) 2, [y = 3]〉,
〈(λy.z 4) 2, [y = 3, z = λx.y]〉, 〈z 4, [y = 2, z = λx.y]〉,
〈(λx.y) 4, [y = 2, z = λx.y]〉, 〈y, [y = 2, z = λx.y, x = 4]〉,
〈2, [y = 2, z = λx.y, x = 4]〉.

The issue is that the lazy approach fails to observe safe substitution. This exam-
ple effectively performs the deferred substitutions in the order (3) without the
change of bound variable. Nevertheless, this was the strategy adopted by early
versions of LISP [21]. It was not considered a bug but a feature and was called
dynamic scoping.

3.3 Static Scoping with Closures

The semantics of evaluation was brought more in line with the λ-calculus with
the introduction of closures [16, 21]. Formally, a closure is defined as a pair
{λx.e, σ}, where the λx.e is a λ-abstraction and σ is a partial function from
variables to values that is used to interpret the free variables of λx.e. When a
λ-abstraction is evaluated, it is paired with the environment σ at the point of
the evaluation, and the value is the closure {λx.e, σ}. Thus we have

σ : Var ⇀ Val Val = Const+ Cl

where Cl denotes the set of closures. We require that for a closure {λx.e, σ},
FV(λx.e) ⊆ domσ. Note that the definitions of values and closures are mutually
dependent.

The new reduction rules are

〈λx.d, σ〉 → {λx.d, σ} 〈{λx.d, σ} e, τ〉 → 〈d, σ[x/e]〉 〈y, σ〉 → σ(y).

The second rule says that an application uses the context σ that was in effect
when the closure was created, not the context τ of the call. Turning to our
running example,

〈(λy.(λz.λy.z 4) λx.y) 3 2, [ ]〉, 〈(λz.λy.z 4) (λx.y) 2, [y = 3]〉,
〈(λy.z 4) 2, [y = 3, z={λx.y, [y = 3]}]〉, 〈z 4, [y = 2, z = {λx.y, [y=3]}]〉,
〈{λx.y, [y = 3]} 4, [y = 2, z = {λx.y, [y = 3]}]〉, 〈(λx.y) 4, [y = 3]〉,
〈y, [y = 3, x = 4]〉, 〈3, [y = 3, x = 4]〉.

3.4 Static Scoping with Capsules

Closures correctly capture the semantics of β-reduction with safe substitution,
but at the expense of introducing extra combinatorial machinery to represent and
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manipulate pairs {λx.e, σ}. Capsules allow us to revert to a purely λ-theoretic
framework without losing the benefits of closures.

Capsules were defined formally in §2.1. The small-step reduction rules for
capsules are

〈(λx.e) v, σ〉 → 〈e[x/y], σ[y/v]〉 (y fresh) 〈y, σ〉 → 〈σ(y), σ〉

The key difference is the introduction of the fresh variable y in the application
rule. This is tantamount to performing an α-conversion on the parameter of a
function just before applying it. Turning to our running example, we see that
this approach gives the correct result.

〈(λy.(λz.λy.z 4) λx.y) 3 2, [ ]〉, 〈(λz.λy.z 4) (λx.y′) 2, [y′ = 3]〉,
〈(λy.z′ 4) 2, [y′ = 3, z′ = λx.y′]〉, 〈z′ 4, [y′ = 3, z′ = λx.y′, y′′ = 2]〉,
〈(λx.y′) 4, [y′ = 3, z′ = λx.y′, y′′ = 2]〉,
〈y′, [y′ = 3, z′ = λx.y′, y′′ = 2, x′ = 4]〉,
〈3, [y′ = 3, z′ = λx.y′, y′′ = 2, x′ = 4]〉.

We prove soundness formally in §4.

4 Soundness

In this section we show that capsule evaluation is statically scoped under applica-
tive-order evaluation and correctly models β-reduction in the λ-calculus with safe
substitution.

4.1 Evaluation Rules for Capsules

Let d, e, . . . denote λ-terms and u, v, . . . irreducible λ-terms (λ-abstractions and
constants). Variables are denoted x, y, . . . and constants c, f .

The small-step evaluation rules for capsules consist of reduction rules

〈(λx.e) v, σ〉 → 〈e[x/y], σ[y/v]〉 (y fresh) (4)

〈f c, σ〉 → 〈f(c), σ〉 (5)

〈y, σ〉 → 〈σ(y), σ〉 (6)

and context rules

〈d, σ〉 ∗→ 〈d′, τ 〉
〈d e, σ〉 ∗→ 〈d′ e, τ〉

〈e, σ〉 ∗→ 〈e′, τ〉
〈v e, σ〉 ∗→ 〈v e′, τ 〉

(7)

The reduction rules (4)–(6) identify three forms of redex: an application (λx.e) v,
an application f c where f and c are constants, or a variable y ∈ domσ. The
context rules (7) uniquely identify a redex in a well-typed non-irreducible capsule
according to an applicative-order reduction strategy.
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The corresponding large-step rules are

〈y, σ〉 → 〈σ(y), σ〉 (8)

〈d, σ〉 ∗→ 〈f, τ 〉 〈e, τ 〉 ∗→ 〈c, ρ〉
〈d e, σ〉 ∗→ 〈f(c), ρ〉

(9)

〈d, σ〉 ∗→ 〈λx.a, τ〉 〈e, τ 〉 ∗→ 〈v, ρ〉 〈a[x/y], ρ[y/v]〉 ∗→ 〈u, π〉
(y fresh)〈d e, σ〉 ∗→ 〈u, π〉

(10)

These rules are best understood in terms of the interpreter they generate:

Eval(c, σ) = 〈c, σ〉
Eval(λx.e, σ) = 〈λx.e, σ〉 (11)

Eval(y, σ) = 〈σ(y), σ〉
Eval(d e, σ) = let 〈u, τ 〉 = Eval(d, σ) in

let 〈v, ρ〉 = Eval(e, τ) in

Apply(u, v, ρ)

Apply(f, c, σ) = 〈f(c), σ〉
Apply(λx.e, v, σ) = Eval(e[x/y], σ[y/v]) (y fresh) (12)

4.2 β-Reduction

The small-step evaluation rules for β-reduction in applicative order are the same
as for capsules, except we replace (4) with

〈(λx.e) v, σ〉 → 〈e[x/v], σ〉 (13)

(substitution instead of rebinding). The other rules (5)–(7) are the same. This
makes sense even in the presence of cycles (recursive functions).

Note that the initial valuation σ persists unchanged throughout the compu-
tation. We might suppress it to simplify notation, giving

(λx.e) v → e[x/v] f c → f(c) y → σ(y)

d ∗→ d′

(d e) ∗→ (d′ e)
e ∗→ e′

(v e) ∗→ (v e′)

However, it is still implicitly present, as it is needed to evaluate variables y.
The corresponding interpreter Evalβ is defined exactly like Eval except for rule

(12), which we replace with

Applyβ(λx.e, v, σ) = Evalβ(e[x/v], σ).
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4.3 Soundness

Let S denote a sequential composition of rebinding operators [y1/v1] · · · [yk/vk],
applied from left to right. Applied to a partial valuation σ : Var ⇀ Irred, the
operator S sequentially rebinds y1 to v1, then y2 to v2, and so on. The result is
denoted σS. Formally, σ(S[y/v]) = (σS)[y/v].

To every rebinding operator S = [y1/v1] · · · [yk/vk] there corresponds a safe
substitution operator S− = [yk/vk] · · · [y1/v1], also applied from left to right.
Applied to a λ-term e, S− safely substitutes vk for all free occurrences of yk in
e, then vk−1 for all free occurrences of yk−1 in e[yk/vk], and so on. The result is
denoted eS−. Formally, e(S−[y/v]) = (eS−)[y/v]. Note that (ST )− = T−S−.

If S = [y1/v1] · · · [yk/vk], we assume that yi does not occur in vj for i ≥ j;
however, yi may occur in vj if i < j. This means that if FV(e) ⊆ {y1, . . . , yk}
and FV(vj) ⊆ {y1, . . . , yj−1}, 1 ≤ j ≤ k, then eS− is closed.

The following theorem establishes soundness of capsule evaluation with re-
spect to β-reduction in the λ-calculus.

Theorem 1. Evalβ(e, σ) = 〈v, σ〉 if and only if there exist irreducible terms
v1, . . . , vk, u and a rebinding operator S = [y1/v1] · · · [yk/vk], where y1, . . . , yk do
not occur in e, v, or σ, such that Eval(e, σ) = 〈u, σS〉 and v = uS−.

Proof. We show the implication in both directions by induction on the number
of steps in the evaluation. The result is trivially true for inputs of the form 〈c, σ〉,
〈λx.e, σ〉, and 〈σ(y), σ〉, and this gives the basis of the induction.

For an input of the form 〈d e, σ〉, we show the implication in both directions.
We first show that if Eval(d e, σ) is defined, then so is Evalβ(d e, σ), and the rela-
tionship between the two values is as described in the statement of the theorem.
By definition of Eval, we have

Eval(d, σ) = (u, σS) Eval(e, σS) = (v, σST )

for some S = [y1/v1] · · · [ym/vm] and T = [ym+1/vm+1] · · · [yn/vn], and where
y1, . . . , yn are the fresh variables and v1, . . . , vn the irreducible terms bound to
them in applications of the rule (12) during the evaluation of d and e. By the
induction hypothesis, we have

Evalβ(d, σ) = 〈uS−, σ〉 Evalβ(e, σS) = 〈vT−, σS〉.

Since the variables y1, . . . , ym do not occur in e, they are not accessed in its
evaluation, thus Evalβ(e, σ) = 〈vT−, σ〉. Also, since ym+1, . . . , yn do not occur in
u and y1, . . . , ym do not occur in v, we have uS− = u(ST )− and vT− = v(ST )−,
thus

Evalβ(d, σ) = 〈u(ST )−, σ〉 Evalβ(e, σ) = 〈v(ST )−, σ〉.
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We thus have

Eval(d e, σ) = Apply(u, v, σST ) Evalβ(d e, σ) = Applyβ(u(ST )
−, v(ST )−, σ)

If u and v are constants, say u = f and v = c, then

Eval(d e, σ) = Apply(f, c, σST ) = 〈f(c), σST 〉
Evalβ(d e, σ) = Applyβ(f, c, σ) = 〈f(c), σ〉,

and the implication holds. If u is a λ-abstraction, say u = λx.a, then u(ST )− =
λx.a(ST )−. Then

a(ST )−[x/v(ST )−] = a[x/v](ST )− = a[x/yn+1][yn+1/v](ST )
−

= a[x/yn+1](ST [yn+1/v])
−,

therefore

Eval(d e, σ) = Apply(λx.a, v, σST ) = Eval(a[x/yn+1], σST [yn+1/v])

Evalβ(d e, σ) = Applyβ(λx.a(ST )
−, v(ST )−, σ) = Evalβ(a(ST )

−[x/v(ST )−], σ)

= Evalβ(a[x/yn+1](ST [yn+1/v])
−, σ),

and the implication holds in this case as well.
For the reverse implication, assume that Evalβ(d e, σ) is defined. Let 〈u, σ〉 =

Evalβ(d, σ) and 〈v, σ〉 = Evalβ(e, σ). By the induction hypothesis, there exist
variables y1, . . . , ym and irreducible terms v1, . . . , vm and r such that

u = rS− Eval(d, σ) = 〈r, σS〉,

where S = [y1/v1] · · · [ym/vm]. We also have 〈v, σS〉 = Evalβ(e, σS), since the
evaluation of e does not depend on the variables y1, . . . , ym. Again by the
induction hypothesis, there exist variables ym+1, . . . , yn and irreducible terms
vm+1, . . . , vn and s such that

v = sT− = sT−S− = s(ST )− Eval(e, σS) = 〈s, σST 〉,

where T = [ym+1/vm+1] · · · [yn/vn]. Then ST = [y1/v1] · · · [yn/vn] and

Evalβ(d e, σ) = Applyβ(u, v, σ) Eval(d e, σ) = Apply(r, s, σST ).

If u and v are constants, say u = f and v = c, then r = f and s = c. In this case
we have

Evalβ(d e, σ) = Applyβ(f, c, σ) = 〈f(c), σ〉
Eval(d e, σ) = Apply(f, c, σST ) = 〈f(c), σST 〉,
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and the implication holds. If u is a λ-abstraction, then r = λx.a and u =
λx.aS− = λx.a(ST )−. In this case

a(ST )−[x/s(ST )−] = a[x/s](ST )− = a[x/yn+1][yn+1/s](ST )
−

= a[x/yn+1](ST [yn+1/s])
−,

thus

Evalβ(d e, σ) = Applyβ(λx.a(ST )
−, v, σ) = Evalβ(a(ST )

−[x/s(ST )−], σ)

= Evalβ(a[x/yn+1](ST [yn+1/s])
−, σ),

Eval(d e, σ) = Apply(λx.a, s, σST ) = Eval(a[x/yn+1], σST [yn+1/s]),

so the implication holds in this case as well.

4.4 Closure Conversion

In this section we demonstrate how to closure-convert a capsule and show that
the transformation is sound with respect to the evaluation semantics of closures
and capsules in applicative-order evaluation, provided variables are not mutable.

Closures do not work in the presence of mutable variables without introducing
the further complication of references and indirection. This is because closures
fix the environment once and for all when the closure is formed, whereas mutable
variables allow the environment to be subsequently changed. An example is given
by (λy.(λx.y) (y := 4; y)) 3, for which capsules give 4 and closures 3; in the latter,
the assignment has no effect.

Care must also be taken to implement updates nondestructively so as not to
overwrite parameters and local variables of recursive procedures, an issue that
is usually addressed at the implementation level. Again, the issue does not arise
with capsules.

Even without indirection, the types of closures and closure environments are
more involved than those of capsules. The definitions are mutually dependent
and require a recursive type definition. The types are

Env = Var ⇀ Val closure environments

Val = Const+ Cl values

Cl = λ-Abs× Env closures

We use boldface for closure environments σ : Env to distinguish them from the
simpler capsule environments. Closures {λx.e, σ} must satisfy the additional
requirement that FV(λx.e) ⊆ domσ.
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A state is now a pair 〈e, σ〉, where FV(e) ⊆ domσ, but the result of an evalu-
ation is a Val. The evaluation semantics for closures, expressed as an interpreter
Evalc, is

Evalc(c,σ) = c

Evalc(λx.e,σ) = {λx.e, σ}
Evalc(y,σ) = σ(y)

Evalc(d e,σ) = let u = Evalc(d,σ) in

let v = Evalc(e,σ) in

Applyc(u, v)

Applyc(f, c) = f(c)

Applyc({λx.a, ρ}, v) = Evalc(a,ρ[x/v]) (14)

The types are

Evalc : Tλ × Env ⇀ Val Applyc : Val× Val ⇀ Val.

The correspondence with capsules becomes simpler to state if we modify the in-
terpreter to α-convert the term λx.a to λy.a[x/y] just before applying it, where y
is the fresh variable that would be chosen by the capsule interpreter. Accordingly,
we replace (14) with

Applyc({λx.a, ρ}, v) = Evalc(a[x/y],ρ[y/v]) (y fresh)

The corresponding large-step rules are

〈c, σ〉 c→ c 〈λx.e, σ〉 c→ {λx.e, σ} 〈y, σ〉 c→ σ(y) (15)

〈d, σ〉 c
∗→ f 〈e, σ〉 c

∗→ c

〈d e, σ〉 c
∗→ f(c)

(16)

〈d, σ〉 c
∗→ {λx.a, ρ} 〈e, σ〉 c

∗→ v 〈a[x/y], ρ[y/v]〉 c
∗→ u

(y fresh)
〈d e, σ〉 c

∗→ u
(17)

The closure-converted form of a capsule 〈e, σ〉 is 〈e, σ̄〉, where

σ̄(y) =

{
{σ(y), σ̄}, if σ(y) : λ-Abs,

σ(y), if σ(y) : Const.

This definition is not circular, it is coinductive! In an OCaml-like language, the
definition might look like

let rec σ̄ = λy.match σ(y) with
| Const(c) → c
| λ-Abs(λx.e) → {λx.e, σ̄}
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To state the relationship between capsules and closures, we define a binary rela-
tion 
 on capsule environments, closure environments, and values. For capsule
environments, define σ 
 τ if domσ ⊆ dom τ and for all y ∈ domσ, σ(y) = τ(y).
The definition for values and closure environments is by mutual coinduction: 

is defined to be the largest relation such that

– on closure environments, σ 
 τ if
• domσ ⊆ dom τ , and
• for all y ∈ domσ, σ(y) 
 τ (y); and

– on values, u 
 v if either
• u and v are constants and u = v; or
• u = {λx.e, ρ}, v = {λx.e, π}, and ρ 
 π.

Lemma 1. The relation 
 is transitive.

Proof. This is obvious for capsule environments.
For closure environments and values, we proceed by coinduction. Suppose

σ 
 τ 
 ρ. Then domσ ⊆ dom τ ⊆ domρ, so domσ ⊆ domρ, and for all
y ∈ domσ, σ(y) 
 τ (y) 
 ρ(y), therefore σ(y) 
 ρ(y) by the transitivity of 

on values.

For values, suppose u 
 v 
 w. If u = c, then v = c and w = c. If u =
{λx.e, σ}, then v = {λx.e, τ} and w = {λx.e, ρ} and σ 
 τ 
 ρ, therefore
σ 
 ρ by the transitivity of 
 on closure environments.

Lemma 2. Closure conversion is monotone with respect to 
. That is, if σ 
 τ ,
then σ̄ 
 τ̄ .

Proof. We have dom σ̄ = domσ ⊆ dom τ = dom τ̄ . Moreover, for y ∈ domσ,

σ̄(y) =

{
{λx.e, σ̄}, if σ(y) = λx.e,

c, if σ(y) = c
=

{
{λx.e, σ̄}, if τ(y) = λx.e,

c, if τ(y) = c



{
{λx.e, τ̄}, if τ(y) = λx.e,

c, if τ(y) = c
= τ̄ (y).

The 
 step in the above reasoning is by the coinduction hypothesis.

Define a map V : Cap → Val on irreducible capsules as follows:

V (λx.a, σ) = {λx.a, σ̄} V (c, σ) = c. (18)

Lemma 3. σ̄(y) = V (σ(y), σ).

Proof.

σ̄(y) =

{
{λx.e, σ̄}, if σ(y) = λx.e,

c if σ(y) = c
=

{
V (λx.e, σ), if σ(y) = λx.e,

V (c, σ) if σ(y) = c

= V (σ(y), σ).
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Lemma 4. If y �∈ domσ, then σ̄[y/V (v, σ)] 
 ¯σ[y/v].

Proof. By Lemma 3,

¯σ[y/v](y) = V (σ[y/v](y), σ[y/v]) = V (v, σ[y/v]). (19)

If y �∈ domσ, then

σ̄[y/V (v, σ)] 
 ¯σ[y/v][y/V (v, σ)] 
 ¯σ[y/v][y/V (v, σ[y/v])] = ¯σ[y/v],

the first two inequalities by Lemma 2 and the last equation by (19).

Lemma 5. If σ 
 τ , then Evalc(e,σ) exists if and only if Evalc(e, τ ) does, and
Evalc(e,σ) 
 Evalc(e, τ ). Moreover, they are derivable by the same large-step
proofs.

Proof. We proceed by induction on the proof tree under the large-step rules
(15)–(17). For the single-step rules (15), we have

Evalc(c,σ) = c = Evalc(c, τ )

Evalc(λx.a,σ) = {λx.a, σ} 
 {λx.a, τ} = Evalc(λx.a, τ )

Evalc(y,σ) = σ(y) 
 τ (y) = Evalc(y, τ ).

For the rule (16), 〈d e, σ〉 c
∗→ f(c) is derivable by an application of (16) iff

〈d, σ〉 c
∗→ f and 〈e, σ〉 c

∗→ c are derivable by smaller proofs. Similarly, 〈d e, τ 〉 c
∗→

f(c) is derivable by an application of (16) iff 〈d, τ 〉 c
∗→ f and 〈e, τ 〉 c

∗→ c are deriv-
able by smaller proofs. By the induction hypothesis, 〈d, σ〉 c

∗→ f and 〈d, τ 〉 c
∗→ f

are derivable by the same proof, and similarly 〈e, σ〉 c
∗→ c and 〈e, τ 〉 c

∗→ c are
derivable by the same proof.

Finally, for the rule (17), 〈d e, σ〉 c
∗→ u1 is derivable by an application of (17) iff

〈d, σ〉 c
∗→ {λx.a, ρ1}, 〈e, σ〉 c

∗→ v1, and 〈a[x/y], ρ1[y/v1]〉 c
∗→ u1 are derivable by

smaller proofs. Similarly, 〈d e, τ 〉 c
∗→ u2 is derivable by an application of (17) iff

〈d, τ 〉 c
∗→ {λx.a, ρ2}, 〈e, τ 〉 c

∗→ v2, and 〈a[x/y], ρ2[y/v2]〉 c
∗→ u2 are derivable by

smaller proofs. By the induction hypothesis, 〈d, σ〉 c
∗→ {λx.a, ρ1} and 〈d, τ 〉 c

∗→
{λx.a, ρ2} are derivable by the same proof, and ρ1 
 ρ2. Similarly, 〈e, σ〉 c

∗→ v1
and 〈e, τ 〉 c

∗→ v2 are derivable by the same proof, and v1 
 v2. It follows that
ρ1[y/v1] 
 ρ2[y/v2]. Again by the induction hypothesis, 〈a[x/y], ρ1[y/v1]〉 c

∗→ u1
and 〈a[x/y], ρ2[y/v2]〉 c

∗→ u2 are derivable by the same proof, and u1 
 u2.

The following theorem establishes the soundness of closure conversion for
capsules.

Theorem 2. Eval(e, σ) exists if and only if Evalc(e, σ̄) does, and Evalc(e, σ̄) 

V (Eval(e, σ)). Moreover, they are derivable by isomorphic large-step proofs under
the obvious correspondence between the large-step rules of both systems.2

2 For this purpose, the definition of V in (18) can be viewed as a pair of proof rules
corresponding to the first two rules of (15).
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Proof. We proceed by induction on the proof tree under the large-step rules.
The proof is similar to the proof of Lemma 5. We write c

∗→ for the derivability
relation under the large-step rules (15)–(17) for closures to distinguish them
from the corresponding large-step rules (8)–(10) for capsules, which we continue
to denote by ∗→.

For the single-step rules (15), we have

Evalc(c, σ̄) = c = V (Eval(c, σ))

Evalc(λx.a, σ̄) = {λx.a, σ̄} = V (λx.a, σ) = V (Eval(λx.a, σ))

Evalc(y, σ̄) = σ̄(y) = V (σ(y), σ) = V (Eval(y, σ)).

The last line uses Lemma 3.
Consider the corresponding rules (9) and (16). A conclusion 〈d e, σ̄〉 c

∗→ f(c) is
derivable by an application of (16) iff 〈d, σ̄〉 c

∗→ f and 〈e, σ̄〉 c
∗→ c are derivable by

smaller proofs. Similarly, 〈d e, σ〉 ∗→ 〈f(c), ρ〉 is derivable by an application of
(9) iff 〈d, σ〉 ∗→ 〈f, σS〉 and 〈e, σS〉 ∗→ 〈c, σST 〉 are derivable by smaller proofs.

By the induction hypothesis, 〈d, σ̄〉 c
∗→ f = V (f, σS) and 〈d, σ〉 ∗→ 〈f, σS〉

are derivable by isomorphic proofs. By Lemma 5, 〈e, σ̄〉 c
∗→ c and 〈e, σ̄S〉 c

∗→ c
are derivable by the same proof. Again by the induction hypothesis, 〈e, σ̄S〉 c

∗→ c
and 〈e, σS〉 ∗→ 〈c, σST 〉 are derivable by isomorphic proofs, therefore so are
〈e, σ̄〉 c

∗→ c = V (c, σST ) and 〈e, σS〉 ∗→ 〈c, σST 〉.
Finally, consider the corresponding rules (10) and (17). A conclusion 〈d e, σ̄〉

c
∗→ u is derivable by an application of (17) iff for some λx.a, ρ, and v,

〈d, σ̄〉 c
∗→ {λx.a, ρ} 〈e, σ̄〉 c

∗→ v 〈a[x/y], ρ[y/v]〉 c
∗→ u

are derivable by smaller proofs. Similarly, 〈d e, σ〉 ∗→ 〈t, τ〉 is derivable by an
application of (10) iff for some λz.b, S, T , and w,

〈d, σ〉 ∗→ 〈λz.b, σS〉 〈e, σS〉 ∗→ 〈w, σST 〉 〈b[z/y], σST [y/w]〉 ∗→ 〈t, τ〉

are derivable by smaller proofs.
By the induction hypothesis, 〈d, σ̄〉 c

∗→ {λx.a, ρ} and 〈d, σ〉 ∗→ 〈λz.b, σS〉
are derivable by isomorphic proofs, and {λx.a, ρ} 
 V (λz.b, σS) = {λz.b, σ̄S},
therefore λx.a = λz.b and ρ 
 σ̄S 
 ¯σST .

By Lemmas 2 and 5, for some v′, 〈e, σ̄〉 c
∗→ v and 〈e, σ̄S〉 c

∗→ v′ are derivable by
the same proof, and v 
 v′. Again by the induction hypothesis, 〈e, σ̄S〉 c

∗→ v′ and
〈e, σS〉 ∗→ 〈w, σST 〉 are derivable by isomorphic proofs, and v′ 
 V (w, σST ).
By transitivity, 〈e, σ̄〉 c

∗→ v and 〈e, σS〉 ∗→ 〈w, σST 〉 are derivable by isomorphic
proofs, and v 
 V (w, σST ). By Lemma 4,

ρ[y/v] 
 ¯σST [y/V (w, σST )] 
 ¯σST [y/w].

Again by Lemma 5, for some u′, 〈a[x/y], ρ[y/v]〉 c
∗→ u and 〈a[x/y], ¯σST [y/w]〉

c
∗→ u′ are derivable by the same proof, and u 
 u′; and again by the induction
hypothesis, 〈a[x/y], ¯σST [y/w]〉 c

∗→ u′ and 〈a[x/y], σST [y/w]〉 ∗→ 〈t, τ 〉 are deriv-
able by isomorphic proofs, and u′ 
 V (t, τ). By transitivity, 〈a[x/y], ρ[y/v]〉 c

∗→ u
and 〈a[x/y], σST [y/w]〉 c

∗→ 〈t, τ〉 are derivable by isomorphic proofs, and u 

V (t, τ).



16 J.-B. Jeannin and D. Kozen

5 A Functional/Imperative Language

In this section we give an operational semantics for a simply-typed higher-order
functional and imperative language with mutable bindings.

5.1 Expressions

Expressions Exp = {d, e, . . .} contain both functional and imperative features.
There is an unlimited supply of variables x, y, . . . of all (simple) types, as well as
constants f, c, . . . for primitive values. In addition, there are functional features

– λ-abstraction λx.e
– application (d e),

imperative features

– assignment x := e
– composition d; e
– conditional if b then d else e
– repeat loop repeat e until b,

and syntactic sugar

– let x = d in e (λx.e) d
– let rec f = g in e let f = h in f := g; e

where h is any term of the appropriate type.

5.2 Types

Types are just simple types built inductively from the base types and a type
constructor → representing partial functions. The typing rules are:

x : α e : β

λx.e : α → β

d : α → β e : α

(d e) : β

d : α e : β

d; e : β

b : bool d : α e : α

if b then d else e : α

b : bool e : α

repeat e until b : α

x : α e : α

x := e : α

5.3 Evaluation

A value is the equivalence class of an irreducible capsule modulo bisimilarity
and α-conversion; equivalently, the λ-coterm represented by the capsule modulo
α-conversion.

A program determines a binary relation on capsules. The functional features
are interpreted by the rules of §4.1. Assignment is interpreted by the following
large-step and small-step rules, respectively:

〈e, σ〉 ∗→ 〈v, τ〉
(x ∈ domσ)

〈x := e, σ〉 ∗→ 〈v, τ [x/v]〉
〈x := v, τ 〉 → 〈v, τ [x/v]〉 (x ∈ dom τ)
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The remaining imperative constructs are defined by the following large-step
rules.

〈d, σ〉 ∗→ 〈u, ρ〉 〈e, ρ〉 ∗→ 〈v, τ 〉
〈d; e, σ〉 ∗→ 〈v, τ〉

〈b, σ〉 ∗→ 〈true, ρ〉 〈d, ρ〉 ∗→ 〈v, τ 〉
〈if b then d else e, σ〉 ∗→ 〈v, τ 〉

〈b, σ〉 ∗→ 〈false, ρ〉 〈e, ρ〉 ∗→ 〈v, τ 〉
〈if b then d else e, σ〉 ∗→ 〈v, τ 〉

〈e, σ〉 ∗→ 〈v, ρ〉 〈b, ρ〉 ∗→ 〈true, τ〉
〈repeat e until b, σ〉 ∗→ 〈v, τ 〉

〈e; b, σ〉 ∗→ 〈false, ρ〉 〈repeat e until b, ρ〉 ∗→ 〈v, τ 〉
〈repeat e until b, σ〉 ∗→ 〈v, τ 〉

5.4 Garbage Collection

A monomorphism h : 〈d, σ〉 → 〈e, τ 〉 is an injective map h : domσ → dom τ
such that

– τ(h(x)) = h(σ(x)) for all x ∈ domσ, where h(e) = e[x/h(x)] (safe substitu-
tion); and

– h(d) = e.

The collection of monomorphic preimages of a given capsule contains an initial
object that is unique up to α-conversion. This is the garbage collected version of
the capsule.

6 Conclusion

Capsules provide an algebraic representation of state for higher-order functional
and imperative programs. They are mathematically simpler than closures and
correctly model static scope without auxiliary data constructs, even in the pres-
ence of recursion and mutable variables. Capsules form a natural coalgebraic
extension of the λ-calculus, and we have shown how coalgebraic techniques can
be brought to bear on arguments involving state. We have shown that capsule
evaluation is faithful to β-reduction with safe substitution in the λ-calculus. We
have shown how to closure-convert capsules, and we have proved soundness of
the transformation in the absence of assignments. Finally, we have shown how
capsules can be used to give a natural operational semantics to a higher-order
functional and imperative language with mutable bindings.

Subsequent to this work, the relationship between capsules and closures es-
tablished in Theorem 2 has been strengthened to small-step bisimulation [11].
Also, with appropriate extensions to the definition of closure to allow indirection,
the same relationship has been shown to hold in the presence of assignment [10].
Capsules have also been used to model objects [14] and to provide a semantics
for separation logic [12].
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Minicomplexity

Christos A. Kapoutsis�

LIAFA, Université Paris VII, France

Abstract. This is a talk on minicomplexity, namely on the complexity
of two-way finite automata. We start with a smooth introduction to its
basic concepts, which also brings together several seemingly detached,
old theorems. We then record recent advances, both in the theory itself
and in its relation to Turing machine complexity. Finally, we illustrate a
proof technique, which we call hardness propagation by certificates. The
entire talk follows, extends, and advocates the Sakoda-Sipser framework.

1 Introduction

In Theory of Computation, the distinction between computability and complexity
is clear. In computability, we ask whether a problem can be solved by a Turing
machine (tm), namely whether the problem is decidable. In complexity, we focus
exclusively on problems that indeed can be solved, and we ask how much of the
tm’s resources they require, the main resource of interest being time or space.

This distinction is also valid in finite automata (fas). In fa-computability,
we ask whether a problem can be solved by a fa; often, but not always, this is
the same as asking whether the problem is regular. In fa-complexity, we focus
exclusively on problems that indeed can be solved, and we ask how much of the
fa’s resources they require; often, but not always, the resource of interest is size
(as expressed, e.g., by the number of states). Hence, much like the theory of tms,
the theory of fas also consists of a computability and a complexity component.

This distinction is not widely realized. Specifically, the complexity component
is often overlooked. Standard textbooks essentially identify the entire theory
of fas with fa-computability (see, e.g., [30, Chap. 1]), barely addressing any fa-
complexity issues (as, e.g., in [30, Probs. 1.60-1, 1.65]). Perhaps one might try
to justify this systematic neglect by claiming that these issues are not really a
theory; they are just a list of detached observations on the relative succinctness
of fas. We disagree. Before explaining, let us discuss another systematic neglect.

This is the systematic neglect of two-way fas (2fas, whose input head can
move in either direction) in favor of one-way fas (1fas, whose input head can
move only forward). Standard textbooks essentially identify fas with 1fas (see,
e.g., [20, Chaps. 3–16]), only briefly addressing 2fas, if at all, as a natural gen-
eralization (as, e.g., in [20, Chaps. 17–18]). As before, one might perhaps try to

� Supported by a Marie Curie Intra-European Fellowship (pief-ga-2009-253368) within
the European Union Seventh Framework Programme (fp7/2007-2013).
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justify this systematic neglect by pointing out that 2fas are no more powerful
than 1fas [27], and are thus worthy of no special attention. We again disagree.

Once we realize that the theory of fas is neither only about computability nor
only about one-way automata, we are rewarded with the meaningful, elegant, and
rich complexity theory of two-way finite automata: a mathematical theory with
all standard features of a complexity theory, including computational problems,
complexity classes, reductions, and completeness; with challenging, decades-old
open questions; and with strong links to tm-complexity and logic. Unfortunately,
this theory has eluded the systematic attention of researchers for a long time
now. Our goal in this talk is to help repair this . . . public-relations disaster.

In the title, we already make a solid first step. We suggest for this theory a
(hopefully catchy) new name. We call it minicomplexity, because we view it as
a ‘miniature version’ of the standard complexity theory for tms.

In Sect. 2, we present the fragment of minicomplexity which concerns 1fas.
We focus on determinism, nondeterminism, and alternation. By a series of exam-
ples of computational problems of increasing difficulty, we introduce complexity
classes, reductions, and completeness, also discussing the differences from the
respective concepts of tm-complexity. All problems and proofs are elementary.
The goal is to show how a list of old, seemingly detached facts about the relative
succinctness of 1fas are really part of one coherent complexity theory.

In Sect. 3, we continue to 2fas. We focus on the Sakoda-Sipser conjecture and
two stronger variants of it, recording their history and some recent advances. We
then discuss alternation and the relationship to tm-complexity.

In Sect. 4, we present a technique for separating micomplexity classes, using
closure properties (for upper bounds) together with hardness propagation by
certificates (for lower bounds). To illustrate it, we outline a modular proof which
implies an improvement on the main theorem of [9].

For h ≥ 0, we let [h] and [[h]] be {0, . . . , h−1} and its powerset. Our 2fas are
tuples (S,Σ, δ, qs, qa) of a state set, an alphabet, a transition function, a start,
and an accept state. Our parallel automata (p21dfas, ∪l1dfas, ∪r1dfas, ∩l1dfas)
are as in [16]. Our finite transducers (2dfts, 1dfts) are as in [19].

A (promise) problem over Σ is a pair L = (L, L̃) of disjoint subsets of Σ∗.
Every w ∈ L∪ L̃ is an instance of L: positive, if w ∈ L; or negative, if w ∈ L̃. To
solve L is to accept all w ∈ L but no w ∈ L̃. The reverse, complement, conjunctive
star, and disjunctive star of L are the problems LR := (LR, L̃R), ¬L := (L̃, L),∧

L :=
(

{#x1# · · · #xl# | (∀i)(xi ∈ L)}, {#x1# · · · #xl# | (∃i)(xi ∈ L̃)}
)
, and∨

L :=
(

{#x1# · · · #xl# | (∃i)(xi ∈ L)}, {#x1# · · · #xl# | (∀i)(xi ∈ L̃)}
)
,

where #x1# · · · #xl# means l ≥ 0, each xi ∈ L∪ L̃, and # is a fresh symbol. Easily,

¬(LR)= (¬L)R ¬
(∧

L
)
=
∨
¬L ¬

(∨
L
)
=
∧
¬L

(∧
L
)R
=
∧
LR

(∨
L
)R
=
∨
LR

by the definitions. The conjunctive concatenation L∧L′ and ordered star L<L′

of two problems L,L′ are defined in [16] and [9]. Families of promise problems
admit analogous operations. For more careful definitions, see [16,9].
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2 One-Way Automata

2.1 Size Complexity Basics

Let h ≥ 1, and consider the following elementary computational problem:

αi Given a number i ∈ [h] and a set α ⊆ [h], check that i ∈ α.

The input tape is shown on the left. Every instance fits in just two tape cells,
because we use the large alphabet Σ := [h]∪ [[h]]. The instance is surrounded by
the end-markers � and �, a feature unimportant for 1fas but essential for 2fas.
Moreover, every instance is promised to be of this form, i.e., a number followed
by a set; all other strings over Σ are irrelevant to this computational problem.

Solving this problem is trivial. We easily design a 1dfa M = ([h], Σ, . , 0, 0)
whose transition function implements the following obvious algorithm:

3 3
4
0

4
0
1

0 0 3 0 0 3 0 0

3
From state 0 on �, move to 0 on the 1st cell. Reading i,
move to state i on the 2nd cell. Reading α in state i,
check whether i ∈ α. If not, then hang. Otherwise,
move to state 0 on �. Then fall off �, again in state 0.

Two computations, on a negative and a positive instance (for h = 5), are shown
on the left. Note how M is designed only for instances of the promised form.

Now consider the reverse of this problem, where the set precedes the number:

iα Given a set α ⊆ [h] and a number i ∈ [h], check that i ∈ α.

This problem is again trivial. We easily design a 1dfa M R = ([[h]], Σ, . , ∅, ∅):

∅ ∅ ∅∅ ∅ ∅14
0 34

0

4
0
1 3

4
0 33

From state ∅ on �, move to ∅ on the 1st cell. Reading α,
move to state α on the 2nd cell. Reading i in state α,
check whether i ∈ α. If not, then hang. Otherwise,
move to state ∅ on �. Then fall off �, again in state ∅.

However, M R uses 2h states, whereas M uses only h. Moreover, this is not due
to poor design; we easily see that M R could not have done significantly better:

Proof. Assume a 1dfa solver X with < 2h−1 states. For each ∅ �= α ⊆ [h], the
prefix �α forces X to cross its right boundary (or else X hangs earlier, and fails to
accept �αi� for i ∈ α); let qα be the state after this crossing. Since the states of X
are fewer than the non-empty subsets of [h], there exist distinct ∅ �= α, β ⊆ [h] with
qα = qβ . If i ∈ (α\β)∪ (β \α), then X treats αi and β i the same, a contradiction.

Therefore, the reverse problem is indeed substantially different from the original.
To capture this difference formally, we first introduce a meaningful name for

the original problem: we call it membership. We then note that this “problem”
is in fact a family of problems, with a different member for every h ≥ 1:

membership := (membershiph)h≥1 .

In turn, each member is a promise problem over the alphabet Σh := [h] ∪ [[h]]:

membershiph := ( {iα | α ⊆ [h] & i ∈ α}, {iα | α ⊆ [h] & i ∈ α} ) . (1)
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At the same time, our “algorithm” for membership has been a family of 1dfas:

M := (Mh)h≥1 with Mh := ([h], Σh, . , 0, 0) .

Likewise, the reverse “problem” is a family membershipR := (membershipR

h)h≥1

with its h-th member as in (1) but with the order of i and α reversed; and the
“algorithm” for it is a family MR := (M R

h)h≥1 with M R

h := ([[h]], Σh, . , ∅, ∅).
(Hence, all this time we used the terms “problem”/“algorithm” and a single

description in terms of h to informally refer to and describe an entire family
of promise problems/fas. This is standard practice, which we will repeat. Also,
instead of the traditional n, which is reserved for denoting input length, the
name for the important parameter is h, for “height” and because h looks like n.)

In our new formal terms, the substantial difference between membership and
membershipR is that the former can be solved by a family of 1dfas which grow
linearly with h (each Mh has h states), whereas the latter can be solved by some
family of exponential growth (each M R

h has 2h states) and by no family of sub-
exponential growth. To state this more succinctly, we introduce the complexity
classes 1D and 21D of all problems which admit 1dfa algorithms with at most
polynomially or at most exponentially many states, respectively. More carefully,

1D :=
{
(Lh)h≥1

∣∣∣ for some polynomial p and 1dfa family (Mh)h≥1,
every Mh solves Lh with ≤ p(h) states

}
, (2)

1D

membershipR

21D

membership

and similarly for 21D, with 2p(h) instead of p(h). Then our
observations so far are summarized by the two statements

membership ∈ 1D and membershipR ∈ 21D \ 1D ,

and by the map on the side, including the obvious fact 1D ⊆ 21D.
From now on, we will informally say that an algorithm or automaton that is

described in terms of h is “small” if in the implicit family of finite automata the
h-th member has ≤ p(h) states, for some polynomial p and all h.

2.2 More Problems

The profile of membership is shared by several other elementary problems that
have appeared sporadically in the literature.(1) We list some of them below.
When appropriate, the endnotes explain who introduced them and why.

We start with a variant of membership, where the set is replaced by a list.
We call it ∃equality. The alphabet consists of [h] and {ı̌ | i ∈ [h]}, a tagged
copy of [h] which is used for distinguishing the query number:

i1 i2 · · ·ı̌
Given a tagged i ∈ [h] and a list i1, i2, . . . , il ∈ [h],
check that i = ij for some j.

Easily, ∃equality ∈ 1D but ∃equalityR ∈ 21D \ 1D. The same holds for a
variant problem, which we call sorted ∃equality, where the numbers in the
list are promised to be strictly increasing: i1 < i2 < · · · < il.

(2)

The next two problems are called projection and composition.(3) (4) The
first one uses the alphabet [h] ∪ [h]h of all numbers in [h] and h-tuples over [h]:
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j ui Given a number i ∈ [h], an index j ∈ [h], and a tuple u ∈ [h]h,
check that i = u(j).

The second problem uses the alphabet ([h] ⇀ [h]) of all partial functions on [h]:

gf Given two functions f, g : [h] ⇀ [h], check that f(g(0)) = 0.

Easily, projection,compositionR ∈ 1D but their reverses are in 21D \ 1D.
Finally, a classic. We call it retrocount, for the obvious reason: (5)

· · · · · ·1 Given a binary string, check that its h-th rightmost bit is 1.

Easily, retrocountR ∈ 1D but retrocount ∈ 21D \ 1D. The same holds for
two variant problems: ∃retrocount, where we must check that a 1 exists at
some distance from the end which is a multiple of h; and shortretrocount,
where the input is promised to be of length < 2h.(6)

projectionR

composition

shortretrocount

sorted ∃equalityR

21D

∃equalityR

∃retrocount

membershipR

1D

retrocount

The map on the right summarizes our observa-
tions so far. All problems shown in it are in 21D\1D,
whereas their reverses are in 1D. Perhaps this looks
like an unstructured list of detached observations on
how reversal affects the size of 1dfas. We will soon
see that this map does contain some structure. Even
at this early level, we can still classify problems in
terms of hardness, and use the resulting lattice to
deduce algorithms and lower bounds.

2.3 Reductions

Roughly speaking, a problem reduces to another ‘in one-way polynomial size’
if a small 1dft can convert its positive/negative instances to positive/negative
instances of the other problem, respectively, with only a small increase in height.

For example, consider the following simple algorithm for converting instances
of membershipR

h to instances of projectionR

h:

Reading α ⊆ [h], print the characteristic vector of α,
namely u ∈ [2]h such that u(x) = 1 iff x ∈ α, for all x.
Reading i ∈ [h], print the two-symbol string i1.

α iu 1i

Clearly, every instance αi of membershipR

h is mapped into a string ui1 which
is indeed an instance of projectionR

h; and αi is positive iff i ∈ α, namely iff
u(i) = 1, namely iff ui1 is also positive. Moreover, this conversion can be easily
implemented by a 1-state 1dft and does not increase h across the two problems.

For another example, consider converting projectionR

h to compositionh2

by the following algorithm, which can be implemented by an (h+1)-state 1dft:

Reading u ∈ [h]h, print a characteristic function of u,
f : [h2] → [2] such that f(y·h+x) = 0 iff u(y) = x,
for all x, y. Reading j ∈ [h], store j. Reading i, print
any function g : [h2] ⇀ [h2] such that g(0) = j·h+i.

gfu j i



Minicomplexity 25

Easily, every instance uj i maps to an instance fg which satisfies f(g(0)) = 0 iff
u(j) = i. Also, the increase in height, from h to h2, is small.

Formally, for two families of promise problems L=(Lh)h≥1 and L′ =(L′
h)h≥1,

we write L ≤1D L′ and say L reduces to L′ in one-way polynomial size, if there is
a family of 1dfts (Th)h≥1 and two polynomial functions s, e such that every Th

has s(h) states and maps instances of Lh to instances of L′
e(h) so that, for all x:

x ∈ Lh =⇒ Th(x) ∈ L′
e(h) and x ∈ L̃h =⇒ Th(x) ∈ L̃′

e(h) .

In the special case where s(h) = 1 for all h, every Th is nothing more that just a
mapping from symbols to strings. We then say L homomorphically reduces to L′

and write L ≤h L′. Hence, by our two algorithms above, we have already shown:

membershipR ≤h projectionR ≤1D composition ,

with s(h)= 1, e(h)=h and with s(h)= h+1, e(h)= h2, respectively.
A final, more interesting example, which involves problems of arbitrarily long

instances, is the reduction of ∃retrocounth to ∃equalityR

h:

Scan the input bits b1b2 · · · bn; whenever bj = 0, print
nothing; whenever bj = 1, print j mod h untagged. On
reaching �, print (n+1) mod h tagged.

b1 b2 b3 · · · bn

ı̌i1i2il · · ·
To see why this works, note that the input instance is positive iff it has a 1 among
all bj which satisfy j = n−λh+1 for some λ ≥ 1, namely j = (n+1) mod h.
Equivalently, the instance is positive iff the critical value (n+1) mod h appears in
the list of the modulo-h values of all positions of 1s. So, the algorithm outputs this
list, followed by the critical value. Easily, this can be implemented by an h-state
1dft which simply keeps track of the index of the current position modulo h.
Therefore ∃retrocount ≤1D ∃equalityR, with s(h) = e(h) = h.

One-way polynomial-size reductions do have the two nice properties we would
expect from them. The first one is, of course, transitivity:

L ≤1D L′ & L′ ≤1D L′′ =⇒ L ≤1D L′′ . (3)

This holds because we can combine an s1-state 1dft T1 with an s2-state 1dft T2

in standard cartesian-product style to build an s1·s2-state 1dft which outputs
T2(T1(x)) for all x. Note that, if s1, e1 and s2, e2 are the polynomial functions
associated with the assumption of (3), then the corresponding functions for the
conclusion are s1(h)·s2(e1(h)) and e2(e1(h)); hence, homomorphic reductions are
also transitive. The second nice property of one-way polynomial-size reductions
is that our complexity classes are closed under them. For example,

L ≤1D L′ & L′ ∈ 1D =⇒ L ∈ 1D , (4)

and similarly for 21D. This time, from an s1-state 1dft T and an s2-state 1dfaM
we get an s1·s2-state 1dfa which accepts x iff M accepts T (x), for all x. If the
polynomial functions associated with the assumption of (4) are s1, e1 and s2,
then the respective function for the conlusion is s1(h)·s2(e1(h)).
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shortretrocount

1D

retrocount
∃equalityR

∃retrocount

membershipR

projectionR

composition

sorted ∃equalityR

21D
By transitivity and a few more reductions, we

arrive at the lattice on the right, where arrows and
lines denote ≤1D in one and both directions, respec-
tively. So, by the closures and this lattice, all obser-
vations of Sect. 2.2 now follow from the three facts
membershipR /∈ 1D and (∃)retrocount ∈ 21D.

An analogy is now clear, between 1D, 21D, and
≤1D on one hand, and settings of tm-complexity on
the other: P, EXP, and polynomial-time reductions;
or L, PSPACE, and logarithmic-space reductions. So,
a natural next question is whether this map also contains an analog ofNP and NL.

2.4 Nondeterminism

1D

retrocount
∃equalityR

composition

21D

1N

The class 1N is defined as in (2), but for 1nfas. To
place it on our map, we note that 1D ⊆ 1N ⊆ 21D

(by the definitions and the subset construction [23]),
that retrocount, ∃equalityR ∈ 1N (easily [21]),
and that 1N is closed under ≤1D (by adapting the
argument for (4)). The result is shown on the side.

Naturally, the next step is to look for problems
in 21D \ 1N. We consider the following problem, de-
fined over [[h]], which we call inclusion:

α β Given two sets α, β ⊆ [h], check that α ⊆ β.

We also consider two related problems: set equality, which asks whether α=β;
and disjointness, which asks whether α ∩ β = ∅.(7) Clearly, all three problems
are in 21D. However, none is in 1N. The argument for inclusion is a classic:

Proof. Assume a 1nfa solver X with < 2h states. Let α0, . . . , α2h−1 list all subsets
of [h] so that the characteristic vector of each αi is the binary representation of i.
Consider the 2h×2h matrix with (i, j)-th entry the instance αiαj . Clearly, every
αiαi on the diagonal is positive, soX accepts it; pick an accepting branch, and let qi
be its state right after crossing into the second set. Since the states q0, . . . , q2h−1

outnumber those of X, we have qi = qj for some i > j. By a standard cut-and-paste
argument, this implies that X accepts αiαj . By i > j, some 1 in the representation
of i is a 0 for j, so αi � αj . So, X accepts a negative instance, a contradiction.

The argument for set equality is identical. As for disjointness, the simple
1dft which replaces β with β proves inclusion ≤1D disjointness (easily); so,
by the closure of 1N under ≤1D, this problem is also not in 1N.

Two more problems in this category are rollcall and equalends: (8) (9)

0, 1, . . . , h−1
Given a list of numbers from [h],
check that every number appears at least once.

· · · Given a binary string,
check that its h-long prefix and suffix are equal.
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We also consider their restrictions shortrollcall and shortequal ends,
where every instance is promised to be of length ≤ 2h.(10) Easily, all four prob-
lems are in 21D. But none of them is in 1N, as disjointness ≤h short rollcall
and set equality ≤h shortequalends, by straightforward reductions.

Before we update our map with the new problems, we note one more feature
that they have in common: although they do not admit small 1nfas, their com-
plements do. E.g., ¬inclusionh is solved by an (h+1)-state 1nfa which ‘guesses’
an i ∈ α \ β. This leads us to the class co1N, which is defined as in (2) but with
“Mh solves ¬Lh”. So, all seven of our new problems are actually in co1N \ 1N.

1N

1D

rollcall
shortrollcall

disjointness
inclusion

equalends
short equalends

set equality

co1N
21D

The new map is on the right. We have used a
few additional easy reductions, together with the
chain 1D ⊆ co1N ⊆ 21D (since 1D ⊆ 1N ⊆ 21D and
because 1D and 21D are closed under complement).
Of course, all problems shown here have their com-
plements in 1N \ co1N. Also, all problems from
Sect. 2.2 are in 1N∩co1N: this follows, e.g., because
(∃)retrocount and its complement homomorphi-
cally reduce to each other (by flipping the bits) and
co1N is closed under ≤1D (since 1N is).

At this point, two natural questions are whether 1N also contains complete
problems, by analogy to NP and NL; and whether we can also find problems in
21D \ (1N ∪ co1N). We postpone the answers for Sect. 2.6 and Sect. 2.7. In the
meantime, the next section examines 1N ∩ co1N a bit more carefully.

2.5 Complement and Reversal

In Sect. 2.1 we showed that 1D is not closed under reversal, and in Sect. 2.4 we
showed that 1N is not closed under complement. In contrast, 1D is closed under
complement (as every 1dfa can be ‘complemented’ just by swapping accepting
and rejecting states, after adding a new one as sink [23]) and 1N is closed under
reversal (as every 1nfa can be ‘reversed’ just by reversing all transitions, before
adding a fresh start state [23]). We thus have

co1D = 1D �= re1D and co1N �= 1N = re1N ,

where co1D is defined as co1N but for 1dfas, and the classes re1D and re1N are
defined as in (2) but with “Mh solves LR

h”.

1D

re1D

membership

retrocount
membershipR

membershipR∧membership
equalitylength

∃equality
retrocountR

1N

∃equalityR

co1N
To place the new class re1D on our map, we

note that it is in 1N∩co1N (by 1D ⊆ 1N and the
two closures we just mentioned), and that both
the difference (1N∩ co1N) \ (1D∪ re1D) and the
intersection 1D∩re1D are non-empty. For the dif-
ference, consider the conjunctive concatenation
(cf. Sect. 1) of any two problems that witness
the two sides of the symmetric difference of 1D
and re1D, e.g., membershipR and membership:
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this defies small 1dfas in either direction (as each of the original problems ≤h-
reduces to it), but small 1nfas can solve both it and its complement (easily). As
for 1D ∩ re1D, consider any elementary problem which is the reverse of itself:

i j Given two numbers i, j ∈ [h], check that i = j.

0 0 0· · ·0 Given a string w ∈ {0}∗, check that |w| = h.

We call these two problems equality and length, respectively.(11)

2.6 Completeness

1D

1N

zsp
sep ¬sep

¬zsp

¬inclusion
compactowl

owl ¬owl

co1N
21DA problem is 1N-complete if it is in 1N and every

problem in 1N reduces to it. This notion was intro-
duced by Sakoda and Sipser [24] together with the
first proof of 1N-completeness, for a problem which
we call one-wayliveness (or just owl).(12) A few
years earlier, Seiferas [26] had introduced two prob-
lems which would also turn out to be 1N-complete,
and which we call separability (or just sep) and
zero-safe programs (or just zsp).(13) (14)

For separability, the alphabet is [[h]]. To define it, we use the notion of a
‘block’: a string of sets α0α1 · · ·αl in which the first one contains the number of
those that follow, i.e., α0 � l. E.g., {0,2,4}∅{1,4} and {0,2} are blocks, but ∅ and
{0,2,4}{1,4} are not. A list of sets is ‘separable’ if it can be split into blocks.

· · ·α1α2 αn
Given a list of sets α1, α2, . . . , αn ⊆ [h],
check that it is separable.

For zero-safe programs, the alphabet is [h] ∪ [h]2. A symbol ι is seen as an
instruction, applied to a variable α ⊆ [h]: an i ∈ [h] means “remove i from α”;
a (j, i) ∈ [h]2 means “if j ∈ α, then add i to α”. A string ι1ι2 · · · ιn is seen as a
program. We call it ‘0-safe’ if it satisfies: 0 ∈ α at start =⇒ 0 ∈ α in the end.

· · ·ι1 ιnι2
Given a program ι1, ι2, . . . , ιn ∈ [h] ∪ [h]2,
check that it is 0-safe.

For one-wayliveness, the alphabet is P([h]2). A symbol γ is seen as
a 2-column graph of height h, with its pairs (i, j) ∈ γ as rightward
arrows. A string γ1γ2 · · · γn is seen as an h-tall, (n+1)-column graph.
We call this graph ‘live’ if column n+1 is reachable from column 1.

· · · Given a h-tall, one-way, multi-column graph,
check that it is live.

We also call compactowl the restriction where all instances have length n = 2.
The completeness of owl (under ≤h) was proved in [24]. The completeness of

sep was announced there, too (see [14], for an outline of owl ≤h sep). Here, we
show the completeness of zsp, which seems not to have been announced before.
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Proof. We copy the intuition of [26, p. 3] to homomorphically reduce seph to zsp2h.

Before we start, we need to consider how a 2h-state 1dfa solves seph. The strategy
is to keep track of the ‘overhang set’ of the input so far. This is the set α̃ of all i ∈ [h]
such that the input will be separable if it has exactly i more symbols. At start,
α̃ = {0}, because the empty string is separable. Then, on reading an α ⊆ [h], we
update α̃ as follows: (1) every 0 �= i ∈ α̃ is replaced by i−1, because we just read
1 symbol, and (2) if 0 ∈ α̃, then 0 is replaced by all i ∈ α, because in the ‘thread’
encoded by 0 this α starts a new block. In the end, the input is accepted if 0 ∈ α̃.

Our 1-state 1dft maps an instance α1α2 · · ·αn of seph to an instance p1p2 · · · pn
of zsp2h which uses the set variable to keep track of the overhang set α̃. Each pk is
a sub-program f(αk) which applies to α̃ the updates (1)-(2) caused by αk. For (1),
we use instruction pairs (i, i−1)i, which replace i by i−1 if i ∈ α̃, listing them by
increasing i so that newly-added values do not interfere with pre-existing ones:

(1, 0)1 (2, 1)2 · · · (h−1, h−2)h−1 . (∗)
For (2), we can use one instruction (0, i) for each i ∈ αk, and a final instruction 0
to remove 0. But there is a problem. These instructions must precede (∗), because
all tests for 0 ∈ α̃ must precede (1, 0), which may add 0 to α̃; but then, placing
the instructions before (∗), causes interference between the values added by them
and the values tested for by (∗).
This is why we reduce to zsp2h, and not just zsph: to use a set variable with both a
‘lower half’ in [h] and an ‘upper half’ in [2h]\[h]. This way, we can implement (2) in
two stages, one before (∗) and one after. The first stage uses one instruction (0, h+i)
for every i ∈ αk to copy αk into the upper half of α̃, ‘above’ all pre-existing values,
followed by the instruction 0 to remove 0. Then, after (∗) has correctly updated the
lower half, the second stage uses one instruction pair (h+i, i)h+i for every i ∈ αk

to transpose the copy of αk into the lower half, leaving the upper half empty again.

Overall, our 1dft replaces every α ⊆ [h] in its input x with the sub-program

f(α) :=
(
(0, h+i)

)
i∈α

0 (1, 0)1 (2, 1)2 · · · (h−1, h−2)h−1
(
(h+i, i)h+i

)
i∈α

to produce a program f(x). By our discussion above, x is separable iff its overhang
set contains 0 in the end, which holds iff f(x) transforms {0} into a superset of {0}.
In turn, this holds iff f(x) is 0-safe (for the ‘only if’ direction, note that starting
with a superset of {0} cannot shrink any of the intermediate sets).

Finally, it is interesting (and easy) to note that compactowl is ≤1D-equivalent
to the complement of disjointness, and thus also of inclusion.

2.7 Harder Problems 21D

1N co1N

twl

1D

compacttwl

functional path
functionalmatch

relationalmatch
relationalpath

inclusion∧¬inclusion

For a problem in 21D \(1N∪co1N), we may consider
the conjunctive concatenation of any two problems
from the two sides of the symmetric difference of
1N and co1N, e.g., inclusion∧¬inclusion: this is
≤h-harder than both inclusion and ¬inclusion,
but still in 21D. Two more interesting examples are
relationalmatch and relationalpath.(15) (16)
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For relationalmatch, the alphabet is two copies of P([h]2), one of them
tagged. Every symbol A ⊆ [h]2 is seen as an h-tall, 2-column graph with right-
ward arrows (as in owl), if it is untagged, or with leftward arrows, if it is tagged.
A pair AB̌ is seen as the overlay (union) of the corresponding two graphs. If this
overlay contains a cycle, we say that the binary relations A and B ‘match’.

A B̌ Given a relation A ⊆ [h]2 and a tagged B ⊆ [h]2,
check that A and B match.

For relationalpath, the alphabet includes in ad-
dition two copies of [h], one tagged. A string iAB̌ǰ
is seen again as the overlay for AB̌, but now with
the i-th left-column node and the j-th right-column
node marked respectively as ‘entry’ and ‘exit’.

i B̌ ǰA
Given i∈ [h] and A⊆ [h]2, and tagged B⊆ [h]2 and j ∈ [h],
check that the resulting overlay has a entry-to-exit path.

By functionalmatch and functional path we mean the restrictions where
both relations are promised to be partial functions, i.e., in ([h] ⇀ [h]).(17) (18)

To place these problems on the map, note that functionalmatch /∈ co1N
(because ¬disjointness ≤1D-reduces to it, by a 1dft which maps αβ to AB̌ for
A := {(i, i) | i ∈ α}, B := {(i, i) | i ∈ β}) and that functionalpath /∈ 1N [10].
Hence, both problems are outside 1N∪ co1N, provided that they reduce to each
other. Indeed they do, but to prove so we need two new, variant concepts.

First, the variant problem functional zero-match. This asks only that A
and B ‘0-match’, i.e., that their overlay contains a cycle through the 0-th left-
column node.(19) This is known to be ≤h-equivalent to functionalmatch [19].

Second, a variant ‘nondeterministic one-way polynomial-size reduction’, ≤1N.
This differs from ≤1D in that the underlying transducer T is nondeterministic
(a 1nft), and such that every input x causes all accepting branches to produce
the same output T (x). Easily, ≤1N is also transitive and 1N is closed under it.

We now prove functionalmatch and functionalpath ≤1N-equivalent.
First, we replace the first problem by its equivalent functional zero-match.
Then, functional zero-matchh reduces to functionalpathh+1 by a 1-state
1dft which adds a fresh node h which is both entry and exit, directs the entry h
into the path out of 0, and redirects 0 to the exit h:

Reading A, print hA′, where A′(t) := A(t) for t �= 0, h, whereas
A′(h) := A(0) and A′(0) := h. Reading B̌, print B̌′ȟ, where
B′(t) := B(t) for t �= h, whereas B′(h) is undefined. ȟ

B̌A

B̌′h A′

Conversely, functional pathh reduces to functional zero-matchh+1 by the
simple h-state 1nft which first transposes A, B̌ from [h] to [h+1] \ {0}, then
connects the 0-th left-column node to the transposed entry (via the 0-th right-
column node), and the transposed exit back to the 0-th left-column node:
Reading i, store i. Reading A, print A′, where A′(0) := 0
and A′(t) := A(t−1)+1 for t �= 0. Reading B̌ and recalling i,
guess j′ ∈ [h]; print B̌′, where B′(0) := i+1, B′(j′+1) := 0,
and B′(t) := B(t−1)+1 for t �= 0, j′+1; and store j′ in place
of i. Reading j and recalling j′, accept iff j = j′.

ǰB̌i A

A′ B̌′
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Note how nondeterminism allows the machine to use the exit j before reading it.
Appropriately adjusted, both of the above reductions work even when A and B

are relations. Hence, relationalmatch and relationalpath are also ≤1N-
equivalent, through the variant relational zero-match of the first problem,
which is again known to be ≤h-equivalent to it [19].(20)

Finally, we also introduce two-wayliveness (or just twl).(21) This
generalizes owl to the alphabet P([2h]2) of all h-tall, 2-column graphs
with arbitrary arrows. The restriction to instances of length 2 is called
compact twl, and is ≤1D-equivalent to relationalmatch (by a
modification of [19, Lemma 8.1]).(22) Hence, compacttwl and twl
are also outside 1N ∪ co1N —as well as (easily) inside 21D.

2.8 Alternation

= 1D =

1Π2

co1Σ1

1Π1=co1N
co1Π1

1N=1Σ1

1Σ2
co1Π2

...
...

1Σ0 1Π0

1H

co1Σ2

The classes 1N and co1N are on the first level of a
one-way polynomial-size hierarchy which is defined
by analogy to the polynomial-time hierarchy and
the space alternating hierarchies of tm-complexity.

For each k ≥ 1, we define the class 1Σk (resp.,
1Πk) as in (2) but for 1σkfas (1πkfas), namely for
alternating 1fas which perfrom <k alternations
between existential and universal states, starting
with an existential (universal) one. We also let
1Σ0, 1Π0 := 1D and 1H :=

⋃
k≥0(1Σk∪1Πk). Then

1D ⊆ 1Σk, 1Πk ⊆ 1Σk+1, 1Πk+1 ⊆ 1H

(by the definitions) and co1Σk = 1Πk and 1Σk =
co1Πk (easily), for all k ≥ 0, causing co1H = 1H.

The natural question is whether this hierarchy of classes is strict. For the
first level, we already know (Sect. 2.4) that, e.g., ¬inclusion ∈ 1Σ1 \ 1Π1 and
inclusion ∈ 1Π1 \ 1Σ1. For the higher levels, we use the (much more powerful)
theorems of [4]. We start with a ‘core’ problem, which we call ∃inclusion: (23)

α̌ α2 · · ·α1
Given a tagged α ⊆ [h] and a list α1, α2, . . . , αl ⊆ [h],
check that α ⊆ αj for some j.

Then, by alternate applications of conjunctive and disjunctive star (cf. Sect. 1),
we build the following table of witnesses for all levels, where ‘incl’ abbreviates
‘inclusion’ (for k = 1, reversal is redundant; we use it only for symmetry):

1Σ1\1Π1 1Σ2\1Π2 1Σ3\1Π3 1Σ4\1Π4 1Σ5\1Π5 · · ·
¬inclR ∃inclR

∨
¬∃inclR

∨∧
∃inclR

∨∧∨
¬∃inclR · · ·

inclR ¬∃inclR
∧

∃inclR
∧∨

¬∃inclR
∧∨∧

∃inclR · · ·
1Π1\1Σ1 1Π2\1Σ2 1Π3\1Σ3 1Π4\1Σ4 1Π5\1Σ5 · · ·

(5)

In fact, [4] shows that all lower bounds in this table for k ≥ 2 are valid even
for 2fas (see also the discussion in Sect. 3.4).
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3 Two-Way Automata

3.1 The Sakoda-Sipser Conjecture

co2N

twl
longlength

membershipR∧membership

21D

¬twl

re1D

1D

2D

2N

For 2fas, the main complexity classes, analogous
to 1D and 1N, are 2D and 2N. To place them on
the map, we note that 1D ⊆ 2D ⊆ 2N ⊆ 21D (by the
definitions and [27]), that 2D = re2D and 2N = re2N
(easily), and that 2D = co2D (by [28]). So, the chain

1D, re1D � 2D ⊆ 2N, co2N � 21D

mentions all interesting classes. The first inclusion is
strict, because of, e.g., membershipR∧membership
(cf. Sect. 2.5). The last inclusion is also strict, because of the variant of length
(cf. Sect. 2.5) for length 2h, which we call longlength (by [3, Fact 5.2], and
then by [7, Cor. 4.3]). The Sakoda-Sipser conjecture [24] says that the middle
inclusion is also strict: 2D �= 2N. In fact, it is believed that even 2N �= co2N [7].

A two-way head is very powerful. All problems mentioned in Sect. 2.1–2.7 are
in 2N. In fact, all of them are known to be already in 2D, except for:
• one-wayliveness, separability, and zero-safeprograms;
• compact twl, relationalmatch, and relationalpath; and
• two-wayliveness.

The first three problems are ≤h-equivalent (Sect. 2.6). So, 2D contains either all
three or none of them (because it is closed under ≤h [24,15]). The next three
problems reduce to each other under ≤1D or ≤1N (Sect. 2.7). However, all six of
the reductions among them can be easily replaced by ≤lac

2D -reductions, namely
‘(two-way) polynomial-size/print reductions ’ [19]. These differ from ≤1D in that
the underlying transducer is two-way (a 2dft), and restricted to print only
poly(h) times on its output tape. So, 2D again contains either all three or none
of the problems in the second group (because 2D is also closed under ≤lac

2D [19]).
Overall, we are essentially left with only three problems that could potentially

witness the Sakoda-Sipser conjecture: twl and its severe restrictions to one-way
graphs and to two-symbol graphs, respectively owl and compact twl.

The full problem is actually 2N-complete under ≤h [24]. Hence, by the closure
of 2D and 2N under ≤h [24], we get the following equivalences:

2D = 2N ⇐⇒ twl ∈ 2D and 2N = co2N ⇐⇒ ¬twl ∈ 2N .

So, the Sakoda-Sipser conjecture is concretely reformulated as twl /∈ 2D, i.e.:

no poly(h)-state 2dfa can check that an h-tall, two-way, multi-column
graph contains a path from its leftmost to its rightmost column.

(6)

Similarly, the conjecture that 2N �= co2N has the concrete reformulation that
¬twl /∈ 2N, namely that:

no poly(h)-state 2nfa can check that an h-tall, two-way, multi-column
graph contains no path from its leftmost to its rightmost column.

(7)

In the next two sections we discuss stronger versions of these two conjectures.
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3.2 A Stronger Conjecture I

2D

1N co1N

21D

longlength

inclusion

inclusion∧¬inclusion

¬inclusion

owl ¬owl

re1D

1D

The restriction of twl to owl leads to a stronger
conjecture, also from [24], that even owl /∈ 2D, i.e.,
that (6) holds even if the graph is one-way. Since
owl is 1N-complete, this is equivalent to 1N � 2D,
which was conjectured already in [26]. This stronger
claim has been the focus of most attacks against the
Sakoda-Sipser conjecture over the past four decades.
The typical strategy has been to confirm it for some
subclass of 2dfas of restricted bidirectionality or
restricted information. A chronological list follows.

• In [26], a fairly simple argument confirmed the claim for single-pass 2dfas,
that is, 2dfas which halt upon reaching an end-marker (cf. Note 13). How-
ever, this provably avoided the full claim, because, as noted also in [26],
unrestricted small 2dfas are strictly more powerful (cf. Note 9).

• In [29], a breakthrough argument confirmed the claim for sweeping 2dfas,
that is, 2dfas which reverse their head only on end-markers. The structure
and tools of that proof have since been copied and reused several times (see,
e.g., [13,16,9]). Again, the result provably avoided the full claim, because
unrestricted small 2dfas are strictly more powerful [29, by J. Seiferas].

• In [8], a reduction argument confirmed the claim for almost oblivious 2dfas,
that is, 2dfas whose number of distinct trajectories over n-long inputs is
only o(n) (instead of the 2O(n logn) maximum). The proof first showed that
small 2dfas of this kind are as powerful as sweeping ones, then made black-
box use of [29]. As a result, the full claim was once again provably avoided.

• In [13], a computability argument confirmed the claim for 2dfa moles, that
is, 2dfas which explore the multi-column graph of an instance of owl as a
‘system of tunnels’. In fact, the proof showed that owl5 is already unsolvable
by 2dfa moles of any size. Hence, it also completely avoided the full claim.

• In [9], a recent argument confirmed the claim for 2dfas with few reversals ,
that is, 2dfas whose number of head reversals is only o(n) (instead of the
O(n) maximum). This again avoided the full claim, because, as shown also
in [9], unrestricted small 2dfas are strictly more powerful. In fact, more
recent arguments show that few-reversal 2dfas necessarily perform only
O(1) reversals [18, Thm. 1], and that an infinite hierarchy of computational
power exists below them [18, Thm. 2]. In Sect. 4 we use these arguments to
give a simpler, modular argument for improving the main theorem of [9].

In conclusion, if the full claim owl /∈ 2D is false, then this can only be by a
multi-pass 2dfa algorithm which uses the full information of every symbol and,
infinitely often, performs Θ(n) reversals and exhibits Ω(n) trajectories.

A similar strengthening is also possible for the second conjecture of Sect. 3.1:
we believe that even ¬owl /∈ 2N, i.e., that (7) holds even if the graph is one-way.
One advance in this direction concerns 2nfas of restricted bidirectionality:

• In [12], it was confirmed that ¬owl admits no small sweeping 2nfas.
A tractable next goal could be to confirm the same for 2nfas with few reversals.
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3.3 A Stronger Conjecture II

compacttwl

2N/unary2N/poly

2N/const

2N

2D

2O
co2NThe restriction of twl to compact twl leads to

the stronger conjecture, suggested in [19], that even
compact twl /∈ 2D, i.e., that (6) holds even for
three-column graphs. This is part of an approach
in which we focus on subclasses of 2N for restricted
instance length, and ask whether 2D contains any
of them. Specifically, we introduce the subclasses

2N/const � 2N/poly � 2N/exp � 2N

of problems whose instances have length constant,
polynomial, or exponential in h, respectively. E.g., compacttwl ∈ 2N/const
and sorted ∃equality ∈ 2N/poly, since both problems are in 2N and their
instances are of length ≤ 2 and ≤h+1, respectively; but length /∈ 2N/exp, since
this problem has (negative) instances of arbitrary length. Our conjecture says
that, not only are all three of these subclasses not in 2D, but even compact twl,
a problem with the shortest interesting instance length, is not in 2D. To better
understand the meaning of this conjecture, two remarks are due.

First, compact twl does admit sub-exponential 2dfas. This can be shown
directly, by applying Savitch’s algorithm [25]. However, it also follows from a
more general phenomenon, involving outer-nondeterministic 2fas (2ofas, i.e.,
2nfas which perform nondeterminstic choices only on the end-markers), and the
respective class 2O. We know that 2N/poly ⊆ 2O (a simple argument [19]) and
2O ⊆ 2DSIZE(2poly(log h)) (a theorem of [5], which uses [25]). So, compact twl
admits quasi-polynomially large 2dfas because all problems in 2O do.

We note that, like 2N/poly, the class 2N/unary of all unary problems of 2N is
also in 2O (by [6]), and 2D contains either subclass iff it contains the entire 2O:

2N/poly ⊆ 2D ⇐⇒ 2O ⊆ 2D ⇐⇒ 2N/unary ⊆ 2D (8)

(because each subclass shares with 2O a common complete problem, for appro-
priate reductions under which 2D is closed [19]). Moreover, 2O = co2O (another
theorem of [5]), so that this entire discussion takes place inside 2N ∩ co2N.

The second remark about our stronger conjecture is the equivalence [19]:

compact twl /∈ 2D ⇐⇒ relationalmatch �≤h functionalmatch . (9)

This connects our conjecture on the left-hand side, which is clearly an algorithmic
statement, to the purely combinatorial statement on the right-hand side:

no pair of systematic ways of replacing h-tall relations
by poly(h)-tall functions respects the existence of cycles.

(10)

So, in regard to the well-known dichotomy of intuition betweeen algorithms and
combinatorics for upper and lower bounds respectively, we see that both sides
are supported: to disprove the conjecture, one may focus on the left-hand side
of (9) and search for a small algorithm for liveness on h-tall, two-way, two-symbol
graphs; to prove the conjecture, one may focus on the right-hand side and search
for a proof of (10). We continue this discussion in Sect. 3.5.
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3.4 Alternation Again

2H

...

2Σ0 = 2D = 2Π0

2Π12N=2Σ1

2Σ2 2Π2

...

The two-way polynomial-size hierarchy is defined as
in Sect. 2.8 but for 2fas. With the same witnesses
as for 1fas, we know this hierarchy does not collapse
either [4]. However, there are two important differ-
ences. First, the witnesses of (5) work only for k ≥ 2;
for k = 1, we still do not know:

• whether the inclusion 2Σ0 ⊆ 2Σ1 is strict,
• whether the inclusion 2Π0 ⊆ 2Π1 is strict, and
• whether 2Σ1 and 2Π1 are incomparable.

Second, although the first of these questions is in-
deed the Sakoda-Sipser conjecture, the last two are
not about 2D vs. co2N and 2N vs. co2N: for k ≥ 1, it
is open whether co2Σk = 2Πk (and thus also whether 2Σk = co2Πk). In fact,
Geffert [4, §7] conjectures that co2Π1 is not even in 2H, and thus co2H �= 2H.

3.5 Relation to Turing Machine Complexity

Minicomplexity is related to log-space tm-complexity as shown below. The main
link is that log-space deterministic tms with short advice can simulate log-space
nondeterministic tms (L/poly ⊇ NL) iff small 2dfas can simulate small 2nfas on
short inputs (2D ⊇ 2N/poly). This remains true if we reduce space to log logn
and advice to poly(logn) (LL/polylog ⊇ NLL) and lengthen the inputs to 2poly(h)

(2D ⊇ 2N/exp). The problems shorttwl and longtwl are the restrictions of
twl to inputs of promised length ≤ h and ≤ 2h, respectively.(24)

2D⊇ 2N/const =⇒ 2D�compact twl

[2,15]
⇑

[15,19]
⇑

L⊇NL =⇒ L/poly⊇NL ⇐⇒⇐⇒⇐⇒ 2D⊇ 2N/poly ⇐⇒ 2D� shorttwl
⇑[31]

[15]
⇑

[15]
⇑

LL⊇NLL =⇒ LL/polylog⊇NLL⇐⇒⇐⇒⇐⇒ 2D⊇ 2N/exp ⇐⇒ 2D� longtwl
⇑

[24]
⇑

2D⊇ 2N ⇐⇒ 2D�twl

Note that, by (8), 2D ⊇ 2N/unary is yet another reformulation of L/poly ⊇ NL.
Also, all inclusions and memberships in this diagram are conjectured to be false.

The diagram can be interpreted in two ways. On one hand, people interested in
space-bounded tms can see that 2D vs. 2N offers a unifying setting for studying
L vs.NL. Confirming 2D � 2N could be a first step in a gradual attack towards
2D � 2N/exp and 2D � 2N/poly, hence LL �= NLL and L �= NL. Or, confirming
2D ��compact twl (or its combinatorial version (10)) could be a single step to
L �= NL. On the other hand, people stydying 2D vs. 2N can use this diagram to
appreciate the difficulty of proving a separation on bounded-length inputs.

Analogous diagrams can be drawn for other modes. E.g., replacing 2N by its
counterpart 2A for alternating 2fas, we get L/poly ⊇ P ⇐⇒ 2D ⊇ 2A/poly [15],
since alternating log-space coincides with deterministic polynomial time.
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4 Hardness Propagation by Certificates

We now present a modular method of separating minicomplexity classes [16,18].
This has two parts, one for upper bounds and one for lower bounds.

The first part consists in proving ‘closure lemmas’ of the form: if an s-state fa
of type X solves problem L, then a poly(s)-state fa of type X solves problem L′,
where L′ is derived from L by via some problem operator (cf. Sect. 1). E.g., if
1ufas are the unambiguous 1nfas, then a straightforward closure lemma is:

Lemma 1. If an s-state 1ufa solves L, then a O(s)-state 1ufa solves
∧
L.

Intuitively, such a lemma says that type X can absorb the ‘increase in hardness’
caused by the operator which derives L′ from L.

In the second part, our approach proves ‘hardness-propagation lemmas’, of
the form: if no poly(s)-state fa of type X solves problem L, then no s-state fa
of type X ′ solves problem L′, where type X ′ is more powerful than X . E.g., a
straightforward lemma involving parallel automata (cf. Sect. 1) is [9, Fact 12]:

Lemma 2. (a) If no ∪l1dfa with s-state components solves L, then no ∪r1dfa
with s-state components solves LR. (b) If no ∩l1dfa with (s+1)-state components
solves L, then no ∪l1dfa with s-state components solves ¬L.
Intuitively, every such lemma describes a ‘propagation of hardness’ from X vs.L
to X ′ vs.L′. Typically, we prove the contrapositive. Assuming an s-state fa M ′

of type X ′ for L′, we find in M ′ a class of objects (e.g., tuples of states, crossing
sequences) which can serve as ‘certificates’ for the positive instances of L, in the
sense that an instance of L is positive iff it has such a certificate; then, we build
a poly(s)-state fa of type X which solves L by simply searching for certificates.

As an example, we prove that 2D[O(1)] � 1U, where 1U is the restriction
of 1N to problems solvable by small 1ufas, and 2D[O(1)] is the restriction of 2D
to problems solvable by small 2dfas with O(1) reversals [18]. (By [18, Thm. 1],
this strengthens the recent [9, Thm. 1].) As witness, we use the problem:

R = (Rh)h≥1 :=
∧[(∧

membershipR
)
<
(∧

membership
) ]

.

More concretely, an instance of Rh is a list of the form $y1$ · · · $yl$; each yj is
a list of the form *x1* · · ·*xl*; and each xj is a list of the form #α1i1# · · · #αlil#
or #i1α1# · · ·#ilαl#. The task is to check that, in every yj: either every xj has
some ij not in the adjacent αj ; or xj of both forms exist with all their ij in the
adjacent αj , and those in set-number form precede those in number-set form.

The upper bound of this theorem, R ∈ 1U, follows by the easy facts that
membership,membershipR ∈ 1U ∩ co1U, and by Lemmas 1 and 3:

Lemma 3. (a) If s-state 1ufas solve L,¬L, then a O(s)-state 1ufa solves
∨
L.

(b) If s-state 1ufas solve Ll,¬Ll,Lr,¬Lr, then a O(s)-state 1ufa solves Ll<Lr.

The lower bound, R /∈ 2D[O(1)], uses Lemma 2 and the additional hardness-
propagation Lemmas 4–6 below, which are [16, Lemma 5], [18, Lemma 4∗], and
(an extension of) [18, Lemma 6∗]. For each of them, we outline a proof, describing
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only the certificates and their usage. For the full arguments, definitions, and
notation, see [16,18]. The lower bound itself is proved in the end.

Lemma 4. If no s-state 1dfa solves L, then no ∩l1dfa with s-state components
solves

∨
L.

Proof. Suppose some ∩l1dfa M = (A, ∅) solves
∨
L with k s-state components,

where k is minimum possible. Pick anyD∗ ∈ A. LetM ′ =(A′, ∅) := (A\{D∗}, ∅).
Since k is minimum, M ′ does not solve

∨
L, neither does any ∩l1dfa that differs

from M ′ only in the selection of final states. By [16, Lemma 2], some string
y = #x1# · · · #xl# is confusing for M ′ on

∨
L = (K, K̃), namely:

y ∈ K & (∃D ∈ A′)
(
D(y) = ⊥

)
or

y ∈ K̃ & (∀D ∈ A′)(∃ỹ ∈ K)
(
D(y) = D(ỹ)

)
.

We know y ∈ K̃. [Otherwise, y ∈ K and some D ∈ A′ hangs on it, soM does not
accept y, so it does not solve (K, K̃), contradiction.] We also know D∗(y) �= ⊥.
[Otherwise, D∗(yx#) = ⊥ for any positive x, as well, hence M does not accept
yx# ∈ K, so it does not solve (K, K̃), contradiction.] Let p∗ := D∗(y).

Definition. A state q of D∗ is a certificate for an instance x of L if it satisfies:
(i) lcompD∗,p∗(x) hits right into q and (ii) D∗ from q on # moves to a final state.

Claim. An instance of L is positive iff it has a certificate.

Hence, to solve L, an s-state 1dfa simulates D∗ from p∗ and checks that � is
reached in a state q from which D∗ would move to a final state if it read #. �

Lemma 5. If no ∪l1dfa with 1+
(
s
2

)
-state components solves Ll and no ∪r1dfa

with 1+
(
s
2

)
-state components solves Lr, then no p21dfa with s-state components

solves Ll<Lr.

Proof. Let Ll = (Ll, L̃l), Lr = (Lr, L̃r). Suppose some p21dfa M = (A,B, F )
solves Ll<Lr with s-state components. Let ϑ be a generic string for M over the
strings L := {#x1# · · · #xl# | l ≥ 0 & (∀i)(xi ∈ L̃l ∪ L̃r)} of negatives of Ll,Lr.

Definition. A pair {p, q} of distinct states in M is a forward certificate for an
instance x of Ll or Lr if there exists D ∈ A such that

p, q ∈ QD

lr(ϑ) and
if both lcompD,p(xϑ) and lcompD,q(xϑ) hit right,
then they do so into the same state.

A backward certificate is defined symmetrically, with A, QD
lr, lcompD, . (xϑ),

and “hit right” replaced respectively by B, QD
rl, rcompD, . (ϑx), and “hit left”.

Claim. At least one is true: (i) an instance of Ll is positive iff it has a forward
certificate, or (ii) an instance of Lr is positive iff it has a backward certificate.
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If (i) is true, then an instance x of Ll is positive iff there is D ∈ A and distinct
p, q ∈ QD

lr(ϑ) such that either one of ĉp := lcompD,p(xϑ) or ĉq := lcompD,q(xϑ)
hangs or both hit right into the same state. Hence, to solve Ll, a ∪l1dfa checks
this condition using one 1+

(
s
2

)
-state component Dp,q for every such combination

of D and p, q. On input x, Dp,q runs a synchronized simulation of the prefixes
cp := lcompD,p(x) and cq := lcompD,q(x) of ĉp and ĉq. If at any point cp,cq are
about to enter the same state or one of them is about to hang, then Dp,q enters
a special state � which consumes the rest of x and accepts. Otherwise, cp,cq
hit right into distinct states p′,q′; then Dp,q accepts iff one of lcompD,p′(ϑ) or
lcompD,q′(ϑ) hangs or they both hit right into the same state.

If (ii) is true, we work symmetrically with Lr and backward certificates. �

Lemma 6. If no p21dfa with s-state components solves L, then no s-state 2dfa
with O(1) reversals solves

∧
L.

Proof. Let L = (L, L̃). Let M be an s-state 2dfa with O(1) reversals for
∧
L.

Then M performs <r∗ reversals on every input of length >n∗, for some r∗, n∗.
Let Q = {0, . . . , s−1} be the state set of M , and let m∗ := max(r∗, n∗).

Pick any x ∈ L. Then w := #(x#)m∗ is a positive of
∧
L. So, c := compM (w) is

accepting. Since |w| ≥ m∗+1 > n∗, the reversals in c are <r∗ ≤ m∗, hence fewer
than the copies of x in w. So, on some of these copies, c performs 0 reversals.

x

qt

#

q2
q1

q3

pt

#

p2
p1

p3 ...

Fix any of the copies with 0 reversals. On it, c con-
sists of t ≤ 2s one-way traversals (one-way, since there
are 0 reversals; and ≤ 2s, or else c would repeat a state
on the first cell of x, and loop). Let px := (p1, . . . , pt)
and qx := (q1, . . . , qt) be the crossing sequences of c on
the outer boundaries of the particular copy of x.

Let C := {(px, qx) | x ∈ L} be all crossing-sequence pairs created like this.

Definition. A pair (p, q) of t-long sequences of states of M is a certificate for an
instance x of L if (i) it is in C, and
(ii) For every odd i = 1, . . . , t: lcompM,pi(x) is one-way and hits right into qi.
(iii) For every even i = 1, . . . , t: rcompM,qi(x) is one-way and hits left into pi.

Claim. An instance of L is positive iff it has a certificate.

Hence, to solve L, a p21dfa P := ({Ap | p ∈ Q}, {Bp | p ∈ Q}, F ) searches for
a certificate. Each component Ap (resp., Bp) simulates M from p for as long
as it moves right (left); if M ever attempts to reverse, the component hangs.
Thus, on input x, P simulates M from every state and in either fixed direction,
covering all possible one-way traversals of x. In the end, P checks whether x has
a certificate by comparing the results of these 2s computations against every
(p, q) ∈ C. Formally, for each p = (p1, . . . , pt) and q = (q1, . . . , qt) we let F(p,q)

be the set of all 2s-tuples that we can build from two copies of Q

( 0, 1, . . . , s−1, 0, 1, . . . , s−1 ) ,

by replacing (i) every odd-indexed pi in the left copy with the respective qi (so
that Api hits right into qi); (ii) every even-indexed qi in the right copy with the
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respective pi (so that Bqi hits left into pi) and (iii) all other states in either copy
with any result in Q∪ {⊥} (to let all other 1dfas free). Thus, F(p,q) is all tuples
which prove that (p, q) is a certificate. Finally, we let F :=

⋃
(p,q)∈C F(p,q). �

We now prove that R /∈ 2D[O(1)]. This follows by applying Lemmas 2, 4–6 to
the fact that ¬membershipR /∈ 1D. For brevity, we let Mh := membershiph.

1. No (2h−2)-state 1dfa solves ¬MR

h, by a proof similar to that of Sect. 2.1.
2. No ∩l1dfa with (2h−2)-state components solves

∨
¬MR

h, by 1 and Lemma 4.
3. No ∪l1dfa with (2h−3)-state components solves

∧
MR

h, by 2 and Lemma 2b.
4. No ∪r1dfa with (2h−3)-state components solves

∧
Mh, by 3 and Lemma 2a.

5. Every p21dfa for
∧
MR

h<
∧
Mh has at least one Ω(2h/2)-state component,

by 3, 4, and Lemma 5.
6. Every O(1)-reversal 2dfa for Rh has Ω(2h/2) states, by 5 and Lemma 6.

This proves the lower bound for R, completing the proof that 2D[O(1)] � 1U.

5 Conclusion

This was an introduction to the complexity of two-way finite automata, or mini-
complexity. We presented it within the Sakoda-Sipser framework, to emphasize
the tight analogy with standard tm-complexity. We believe that this view helps
reveal important structure, which otherwise passes unnoticed. This is, of course,
a coarse view, which is unable to distinguish beyond polynomial differences. For
finer views, at the level of asymptotic or exact values, one should resort to the
more standard vocabulary in terms of ‘trade-offs’.

We focused on one-way and two-way heads and on deterministic, nondeter-
ministic, and alternating modes. However, minicomplexity also includes other
heads (rotating, sweeping) and other standard modes from tm-complexity (prob-
abilistic, quantum, interactive); see [14] for a broader view. It can also mimic
tm-complexity in other ways. E.g., see [17] for a first step towards descriptive
minicomplexity, where minicomplexity classes receive logical characterizations.

The selection of the presented material reflects this author’s immediate in-
terests and space restrictions. The effort to systematically record, organize, and
present material of this kind continues online, at www.minicomplexity.org.

Acknowledgment. Many thanks to Viliam Geffert for his kind help with some
of his theorems from [4] concerning alternating 2fas.
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Notes

(1)membership: Introduced in [16, p. 459], as a problem whose reverse can be used as
‘core’ for building witnesses of separations of complexity classes. See also [9, Eq. (7)].

(2)sorted ∃equality: Introduced in [21, Prop. 3] (essentially), as a problem whose
reverse has logarithmically-small 1-pebble 2dfas, but admits no small 1dfas.

(3)projection: Introduced in [21, Prop. 2] (essentially), as a problem whose reverse
witnesses the asymptotic value of the trade-off in converting 2dfas to 1dfas.

(4)composition: Introduced in [22, p. 1213] (essentially), as a problem which wit-
nesses the asymptotic value of the trade-off in converting 2dfas to 1dfas.

(5)retrocount: Introduced in [21] (attributed to M. Paterson), as a simple problem
which witnesses the asymptotic value of the trade-off in converting 1nfas to 1dfas.

(6)short retrocount: Introduced in [21] (essentially), for restricting retrocount
to finitely many instances which still admit no small 1dfas.

(7)disjointness: A classic, from Communication Complexity.
(8)roll call: Introduced in [1] (essentially), as a witnesss of 2D \ 1D.
(9)equal ends: Introduced in [26, Prop. 2], as a problem which has small general

2dfas but no small single-pass 2dfas.
(10)short equal ends: Introduced in [26, Prop. 1] (essentially), as a problem which
has small single-pass 2dfas but no small 1nfas.
(11)length: Introduced in [21, Prop. 4], as a problem against which 1nfas are forced
to stay essentially as large as 1dfas.
(12)one-way liveness: Introduced in [24, §2.1], as the first 1N-complete problem.
(13)separability: Introduced in [26, p. 1], as a problem that has small 1nfas but no
small single-pass 2dfas, and is also conjectured to have no small general 2dfas.
(14)zero-safe programs: Introduced in [26, p. 2] (essentially), as a problem which
appears to be “easier” than separability but still hard enough to have no small 2dfas.
(15)relationalmatch: Introduced in [19], for describing a conjecture which is equiv-
alent to compacttwl /∈ 2D.
(16)relational path: Introduced in [11] (essentially), as a problem which witnesses
the exact value of the trade-off in converting 2nfas to 1dfas.
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(17)functionalmatch: Introduced in [19], as a restriction of relationalmatch,
useful for describing a conjecture equivalent to compacttwl /∈ 2D.
(18)functional path: Introduced in [10,11], as a problem which witnesses the exact
value of the trade-off in converting 2nfas or 2dfas to 1nfas, and 2dfas to 1dfas.
(19)functional zero-match: Introduced in [19], for facilitating reductions.
(20)relational zero-match: Introduced in [19], for facilitating reductions.
(21)two-way liveness: Introduced in [24, §2.1], as the first 2N-complete problem.
(22)compact twl: Introduced in [19], for stating a conjecture that implies L/poly�NL.
(23)∃inclusion: Introduced in [4] (essentially), as a problem whose reverse can be used
as ‘core’ for building witnesses for all 1�k \ 2�k and 1�k \ 2�k, where k ≥ 2.
(24)short twl: Introduced in [19], as a problem complete for 2N/poly under ≤h.
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Abstract. Hybrid systems have a complete axiomatization in differ-
ential dynamic logic relative to continuous systems. They also have a
complete axiomatization relative to discrete systems. Moreover, there is
a constructive reduction of properties of hybrid systems to corresponding
properties of continuous systems or to corresponding properties of dis-
crete systems. We briefly summarize and discuss some of the implications
of these results.

1 Overview

Hybrid systems [2,6,11] are dynamical systems that combine discrete and contin-
uous dynamics. They are important for modeling embedded systems and cyber-
physical systems. Hybrid systems are very natural models for many application
scenarios, especially because each part of the system can be modeled in the most
natural way. Discrete aspects of the system, e.g., discrete switching, computing,
and control decisions can be modeled by discrete dynamics. Continuous aspects
of the system, e.g., motion or continuous physical processes can be modeled by
continuous dynamics. And hybrid systems simply combine either kind of dynam-
ics with each other as one hybrid system in very flexible ways.

This flexibility makes hybrid systems very natural for system modeling. Even
very complicated systems can be modeled as hybrid systems. Yet, reachability
in hybrid systems is undecidable [11]. Even purely discrete systems are already
undecidable, as witnessed by the halting problem. And even purely continuous
systems are already undecidable [23, Theorem 2]. Are hybrid systems funda-
mentally more difficult than purely discrete or purely continuous systems? Or
do they only add natural ways of expressing system models without causing
additional complexities that are fundamentally more difficult to solve? Are hy-
brid systems more complex than discrete systems? Are they more complex than
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continuous systems? And: are continuous systems more complex or are discrete
systems more complex?

Since hybrid systems combine two independent sources of undecidability, dis-
crete and continuous dynamics, the first intuition may be that hybrid systems
should be fundamentally more difficult than either of the fragments. That turns
out not to be the case, because there are complete proof-theoretical alignments
of the discrete dynamics, continuous dynamics, and hybrid dynamics [23,30]. In
this paper, we explain a few of the consequences of these results.

For background on logic for hybrid systems, we refer to the literature [23,
26, 31]. Dynamic logic [39] has been developed and used very successfully for
conventional discrete programs, both for theoretical [7–10,12,14,15,18,20,21,42]
and practical purposes [4,9,40]. We refer to other sources for more detail on dy-
namic logic for hybrid systems [22–26, 30]. Logic of hybrid systems has been
used to obtain interesting theoretical results [22–30, 32], while, at the same
time, enabling the practical verification of complex applications across different
fields [3, 16, 17, 19, 24, 26, 35, 37, 41] and inspiring algorithmic logic-based verifi-
cation approaches [24, 26, 33, 34, 36, 38, 41]. Extensions to logic for distributed
hybrid systems [27,29] and logic for stochastic hybrid systems [28] can be found
elsewhere.

2 Differential Dynamic Logic

Differential dynamic logic dL [22, 23, 30, 31] is a dynamic logic [39] for hybrid
systems [6, 11]. To set the stage, we give a brief introduction to dL. We refer to
previous work [23, 26, 30, 31] for more details.

Regular Hybrid Programs. We use (regular) hybrid programs (HP) [23] as
hybrid system models. HPs form a Kleene algebra with tests [13]. The atomic
HPs are instantaneous discrete jump assignments x := θ, tests ?H of a first-order
formula1 H of real arithmetic, and differential equation (systems) x′ = θ&H
for a continuous evolution restricted to the domain of evolution described by a
first-order formula H . Compound HPs are generated from these atomic HPs by
nondeterministic choice (∪), sequential composition (;), and Kleene’s nondeter-
ministic repetition (∗). We use polynomials with rational coefficients as terms.
HPs are defined by the following grammar (α, β are HPs, x a variable, θ a term
possibly containing x, and H a formula of first-order logic of real arithmetic):

α, β ::= x := θ | ?H | x′ = θ&H | α ∪ β | α;β | α∗

The first three cases are called atomic HPs, the last three compound HPs. These
operations can define all hybrid systems [26]. We, e.g., write x′ = θ for the un-
restricted differential equation x′ = θ& true. We allow differential equation sys-
tems and use vectorial notation. Vectorial assignments are definable from scalar
assignments (and ;).

1 The test ?H means “if H then skip else abort”.
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A state ν is a mapping from variables to R. Hence ν(x) ∈ R is the value of
variable x in state ν. The set of states is denoted S. We denote the value of term
θ in ν by ν[[θ]]. Each HP α is interpreted semantically as a binary reachability
relation ρ(α) over states, defined inductively by:

– ρ(x := θ) = {(ν, ω) : ω = ν except that ω[[x]] = ν[[θ]]}
– ρ(?H) = {(ν, ν) : ν |= H}
– ρ(x′ = θ&H) = {(ϕ(0), ϕ(r)) : ϕ(t) |= x′ = θ and ϕ(t) |= H for all 0 ≤ t ≤ r

for a solution ϕ : [0, r] → S of any duration r};
i.e., with ϕ(t)(x′) def

= dϕ(ζ)(x)
dζ (t), ϕ solves the differential equation and satis-

fies H at all times [23]
– ρ(α ∪ β) = ρ(α) ∪ ρ(β)
– ρ(α;β) = ρ(β) ◦ ρ(α)
– ρ(α∗) =

⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true.

We refer to our book [26] for a comprehensive background.We also refer to [23,26]
for an elaboration how the case r = 0 (in which the only condition is ϕ(0) |= H)
is captured by the above definition.

dL Formulas. The formulas of differential dynamic logic (dL) are defined by
the grammar (where φ, ψ are dL formulas, θ1, θ2 terms, x a variable, α a HP):

φ, ψ ::= θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀xφ | [α]φ

The satisfaction relation ν |= φ is as usual in first-order logic (of real arithmetic)
with the addition that ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α). The op-
erator 〈α〉 dual to [α] is defined by 〈α〉φ ≡ ¬[α]¬φ. Consequently, ν |= 〈α〉φ iff
ω |= φ for some ω with (ν, ω) ∈ ρ(α). Operators =, >,≤, <, ∨,→,↔, ∃x can be
defined as usual in first-order logic. A dL formula φ is valid, written � φ, iff
ν |= φ for all states ν.

3 Complete Relations

Even though hybrid systems are very expressive, they nevertheless have a com-
plete axiomatization in differential dynamic logic dL [23, 30] relative to elemen-
tary properties of differential equations. The completeness notions are inspired
by those of Cook [5] and Harel et al. [10], yet different, because the data logic
of hybrid systems is perfectly decidable (first-order real arithmetic). Using the
proof calculus of dL, the problem of proving properties of hybrid systems reduces
to proving properties of continuous systems [23]. Furthermore, the proof calculus
of dL reduces the problem of proving properties of hybrid systems to proving
properties of discrete systems [30].

FOD is the first-order logic of differential equations, i.e., first-order real arith-
metic augmented with formulas expressing properties of differential equations,
that is, dL formulas of the form [x′ = θ]F with a first-order formula F . We have
shown that the dL calculus is a sound and complete axiomatization relative to
FOD.
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Theorem 1 (Continuous relative completeness of dL [23, 30]). The dL
calculus is a sound and complete axiomatization of hybrid systems relative to
its continuous fragment FOD, i.e., every valid dL formula can be derived from
FOD tautologies:

� φ iff TautFOD � φ

In particular, if we want to prove properties of hybrid systems, all we need
to do is to, instead, prove properties of continuous systems, because the dL
calculus completely handles all other steps in the proofs that deal with discrete
or hybrid systems. Since the proof of Theorem1 is constructive, there even is a
complete constructive reduction of properties of hybrid systems to corresponding
properties of continuous systems. The dL calculus can prove hybrid systems
properties exactly as good as properties of the corresponding continuous systems
can be verified. One important step in the proof of Theorem1 shows that all
required invariants and variants for repetitions can be expressed in the logic
dL. Furthermore, the dL calculus defines a decision procedure for dL sentences
(closed formulas) relative to an oracle for FOD.

This result implies that the continuous dynamics dominates the discrete dy-
namics for once the continuous dynamics is handled, all discrete and hybrid
dynamics can be handled as well. This is reassuring, because we get the chal-
lenges of discrete dynamics solved for free (i.e., by the dL calculus) once we
address continuous dynamics.

However, in a certain sense, continuous dynamics may appear to be more com-
plicated to handle by discrete proof systems than continuous dynamics. After
all, computers are discrete, so mechanized proofs on computers will ultimately
need to understand continuous effects from a purely discrete perspective. If the
continuous dynamics are not just subsuming discrete dynamics but were inher-
ently more, then that could be understood as an indicator that hybrid systems
verification is fundamentally impossible with discrete means. Of course, if this
were the case, the argument would not even be quite so simple, because meta-
proofs may still enable discrete finitary proof objects to entail infinite continuous
object-properties. In fact, they do, because finite dL proof objects entail prop-
erties in uncountable continuous spaces.

Fortunately, we can settle worries about the insufficiency of discrete ways of
understanding continuous phenomena once and for all by studying the proof-
theoretical relationship between discrete and continuous dynamics. We have
shown not only that the axiomatization of dL is complete relative to the contin-
uous fragment, but that it is also complete relative to the discrete fragment [30].
The discrete fragment of dL is denoted by DL, i.e., the fragment without differ-
ential equations. It is, in fact, sufficient to restrict DL to the operators :=, ∗ and
allow either ; or vector assignments.

Theorem 2 (Discrete relative completeness of dL [30]). The dL calculus
is a sound and complete axiomatization of hybrid systems relative to its discrete
fragment DL, i.e., every valid dL formula can be derived from DL tautologies.

� φ iff TautDL � φ
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Thus, the dL calculus can prove properties of hybrid systems exactly as good as
properties of discrete systems can be proved. Again, the proof of Theorem2 is
constructive, entailing that there is a constructive way of reducing properties of
hybrid systems to properties of discrete systems using the dL calculus. Further-
more, the dL calculus defines a decision procedure for dL sentences relative to
an oracle for DL.

As a corollary to Theorems 1 and 2, we can proof-theoretically and construc-
tively equate

hybrid = continuous = discrete

Even though each kind of dynamics comes from fundamentally different princi-
ples, they all meet in terms of their proof problems being interreducible, even
constructively. The complexity of the proof problem of hybrid systems, the com-
plexity of the proof problem of continuous systems, and the complexity of the
proof problem of discrete systems are, thus, equivalent.

Since the proof problems interreduce constructively, every technique that is
successful for one kind of dynamics perfectly lifts to the other kind of dynamics
through the dL calculus. Induction is the primary technique for proving proper-
ties of discrete systems. Hence, by Theorem2, there is a corresponding induction
technique for continuous systems and for hybrid systems. And, indeed, differ-
ential invariants [25] are such an induction technique for differential equations
that has been used very successfully for hybrid systems with more advanced
differential equations [26,33–35,37]. Differential invariants had already been in-
troduced in 2008 [25] before Theorem2 was proved [30], but Theorem2 implies
that a differential invariant induction technique has to exist.

4 Conclusions and Future Work

We have summarized recent results about complete axiomatizations of hybrid
systems relative to continuous systems and relative to discrete systems. These
axiomatizations equate the proof problems for all three classes of systems and
align the complexity of the their proof problems. Practical consequences of this
result include differential invariants and the utility of discretization schemes, but
many other consequences are just waiting to be discovered.
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Abstract. We present a personal perspective, inspired by our own re-
search experience, of the interaction between group theory and automata
theory: from Benois’ Theorem to Stallings’ automata, from hyperbolic
to automatic groups, not forgetting the exotic automaton groups.

1 Introduction

Among abstract structures, it is groups which model the idea of symmetry in
Mathematics. Moreover, the existence of inverses makes them a natural model
for reversibility in theoretical computer science (see [37] for a model for partial
reversibility). At the present time, when quantum computation gives its first
steps (note than in quantum mechanics transformations are always assumed re-
versible), it is appropriate to make the history of the interaction between group
theory and automata theory, undoubtedly the branch of theoretical computer
science which has been playing the major role in the development of combina-
torial and geometric group theory.

We intend this text to be a brief and light account of these interactions, under
a personal perspective which emerged from our own work on the subject, and
relating to our talk at DCFS 2012. We therefore chose to leave out finite groups
(and the connections with group languages), being out of our own experience.
Anyway, such connections are well known in theoretical computer science and
can be easily found in the literature on finite automata [8,32].

A deeper and more extended survey on the interactions groups/automata can
be found out in two Handbook chapters written by Bartholdi and the author [5,4].

We shall pay special attention to free groups: we introduce them in Section 2,
discuss language-theoretic concepts in Section 3 and the representation of finitely
generated subgroups by automata in Section 4. We shall also explain the role
played by automata in the study of three important classes of groups: hyperbolic
groups in Section 5, automatic groups in Section 6 and automaton groups (also
known as self-similar groups) in Section 7. In Section 8, we present an example of
our recent research combining automata-theoretic and group-theoretic results.

We assume the reader to be familiar with the basic concepts of language
theory and automata theory, and to know the most basic definitions of group
theory. Throughout the whole paper, we assume alphabets to be finite.
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2 Free Groups

We start by introducing free groups. Informally, the free group on A is supposed
to be the most general group FA we can generate from a given set A, in the
sense that every other group generated by A turns out to be a quotient of FA.
Hence free groups play pretty much in the context of groups the same role that
free monoids play in the context of monoids.

We present now the formal definition. Given an alphabet A, we denote by
A−1 a set of formal inverses of A. We write Ã = A ∪ A−1 and (a−1)−1 = a for

every a ∈ A. The free group on A, denoted by FA, is the quotient of Ã∗ by the
congruence generated by the relation

RA = {(aa−1, 1) | a ∈ Ã}.

Thus two words u, v ∈ Ã∗ are equivalent in FA if and only if one can be trans-
formed into the other by successively inserting/deleting factors of the form aa−1

(a ∈ Ã). We denote by θ : Ã∗ → FA the canonical morphism.
We recall that a (finite) rewriting system on A is a (finite) subsetR of A∗×A∗.

Given u, v ∈ A∗, we write u−→Rv if there exist (r, s) ∈ R and x, y ∈ A∗ such
that u = xry and v = xsy. The reflexive and transitive closure of −→R is
denoted by −→∗

R.
We say that R is:

– length-reducing if |r| > |s| for every (r, s) ∈ R;
– confluent if, whenever u−→∗

Rv and u−→∗
Rw, there exists some z ∈ A∗ such

that v−→∗
Rz and w−→∗

Rz.

A word u ∈ A∗ is an irreducible if no v ∈ A∗ satisfies u−→Rv. We denote by
IrrR the set of all irreducible words in A∗ with respect to R.

If R is symmetric, then τ = −→∗
R is a congruence on A∗ and we can say that

the pair 〈A | R〉 constitutes a (monoid) presentation, defining the monoid A∗/τ .
If we view RA as a rewriting system on Ã, then it turns out to be both

length-reducing and confluent, and so, for every g ∈ FA, gθ
−1 contains a unique

irreducible word, denoted by g (see [9]). We write also u = uθ for every u ∈ Ã∗.
Note that the equivalence uθ = vθ ⇔ u = v holds for all u, v ∈ Ã∗, providing
the usual solution for the word problem of a free group (deciding whether two
words on the generators represent the same element of the group). Thus the
elements of a free group can be efficiently described as irreducible words.

We denote by
RA = Ã∗ \ (∪a∈Ã Ã∗aa−1Ã∗)

the set of all irreducible words in Ã∗ for the rewriting system RA. Clearly, RA

is a rational language.

3 Language Theory for Groups

If we follow Berstel’s general approach to language theory [8], rational and recog-
nizable emerge as two of the most important basic concepts. In this context, rec-
ognizable refers to finite syntactic monoids or recognizability by finite monoids.
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Of course, both concepts coincide for free monoids (Kleene’s Thorem [8, The-
orem I.4.1]) but nor for arbitrary monoids. Given a monoid M , we denote by
RatM (respectively RecM) the set of all rational (respectively recognizable)
subsets of M .

To understand the situation in the context of groups, we need the following
classical result of Anisimov and Seifert:

Proposition 31. [8, Theorem III.2.7] Let H be a subgroup of a group G. Then
H ∈ RatG if and only if H is finitely generated.

The analogous result for recognizable is part of the folklore of the theory. We
recall that a subgroup H of G has finite index if G is a finite union of cosets Hg
(g ∈ G).

Proposition 32. Let H be a subgroup of a group G. Then H ∈ RecG if and
only if H has finite index in G.

Since the trivial subgroup has finite index in G if and only if G is finite, it follows
that RatG = RecG if and only if G is finite. In general, these two classes fail
most nontrivial closure properties. However, free groups present a much better
case, due to the seminal Benois’ Theorem:

Theorem 33. [7]

(i) If L ∈ Rat Ã∗, then L ∈ Rat Ã∗ and can be effectively constructed from L.

(ii) If X ⊆ FA, then X ∈ RatG if and only if X ∈ Rat Ã∗.

The proof consists essentially on successively adding edges labelled by the empty
word to an automaton recognizing L (whenever a path is labelled by aa−1 (a ∈
Ã)) and intersecting in the end the corresponding language with the rational
language RA.
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b
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The following result summarizes some of the most direct consequences of
Benois’ Theorem:

Corollary 34. (i) Every X ∈ RatFA is recursive.
(ii) RatFA is closed under the boolean operations.

We remark that Theorem 33 has been successively adapted to groups/
monoids defined by more general classes of rewriting systems, the most general
versions being due to Sénizergues [33,34].
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Since FA is a finitely generated monoid, it follows that every recognizable
subset of FA is rational [8, Proposition III.2.4]. The problem of deciding which
rational subsets of FA are recognizable was first solved by Sénizergues [34]. A
shorter alternative proof was presented by the author in [36], where a third
alternative proof, of a more combinatorial nature, was also given.

These results are also related to the Sakarovitch conjecture [32], solved in
[34] (see also [36]), which states that every rational subset of FA must be either
recognizable or disjunctive (it has trivial syntactic congruence).

The quest for groups G such that RatG enjoys good properties has spread
over the years to wider classes of groups. An important case is given by virtually
free groups, i.e. groups having a free subgroup of finite index, as remarked by
Grunschlag [21]. In fact, in view of Nielsen’s Theorem, this free subgroup can be
assumed to be normal [27]. Virtually free groups will keep making unexpected
appearances throughout this paper.

Another important case is given by free partially abelian groups (the group-
theoretic version of trace monoids). Lohrey and Steinberg proved in [26] that the
recursiveness of the rational subsets depends on the independence graph being
a transitive forest.

A different idea of relating groups and language theory involves the classifica-
tion of the set 1π−1 ⊆ Ã∗ which collects all the words representing the identity
for a given matched surjective homomorphism π : Ã∗ → G (matched in the sense
that a−1π = (aπ)−1 for every a ∈ A). Clearly, 1π−1 determines the structure of
G, and it is a simple exercise to show that 1π−1 is rational if and only if G is
finite. What about higher classes in the Chomsky’s hierarchy? The celebrated
theorem proved by Muller and Schupp (with a contribution from Dunwoody)
states the following:

Theorem 35. [30,10] Let π : Ã∗ → G be a matched homomorphism onto a
group G. Then 1π−1 is a context-free language if and only if G is virtually free.

4 Stallings Automata

Finite automata became over the years the standard representation of finitely
generated subgroups H of a free group FA. The Stallings construction consti-
tutes a simple and efficient algorithm for building an automaton S(H) which
can be used for solving the membership problem for H in FA and many other
applications. Many features of S(H), which has a geometric interpretation (the
core of the Schreier graph of H) were (re)discovered over the years and were
known to Reidemeister, Schreier, and particularly Serre [35]. One of the great-
est contributions of Stallings [41] is certainly the algorithm to construct S(H):
taking a finite set of generators h1, . . . , hm of H in reduced form, we start with
the so-called flower automaton F(H), where petals labelled by the words hi (and
their inverse edges) are glued to a basepoint q0 (both initial and terminal vertex):



54 P.V. Silva

•
h1





h2

��

hm

��

Then we proceed by successively folding pairs of edges of the form
q

a←−p a−→r until reaching a deterministic automaton. And we will have just built
S(H). For details and applications of the Stallings construction, see [5,24,29].

The geometric interpretation of S(H) shows that its construction is inde-
pendent of the finite set of generators of H chosen at the beginning, and of
the particular sequence of foldings followed. And the membership problem is a
consequence of the following result:

Theorem 41. [41] Let H be a finitely generated subgroup of FA and let u ∈ RA.
Then u represents an element of H if and only if u ∈ L(S(H)).

The main reason for this is that any irreducible word representing an element of
H can be obtained by successively cancelling factors aa−1 in a word accepted by
the flower automaton of H , and folding edges is a geometric realization of such
cancellations.

For instance, taking H = 〈aba−1, aba2〉, we get
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����������� b

��

F(H) S(H)

We can then deduce that a3 represents an element of H but a4 does not.
The applications of Stallings automata to the algorithmics of finitely gener-

ated subgroups of a free group are immense. One of the most important is the
construction of a basis for H (a free group itself by Nielsen’s Theorem) using a
spanning tree of S(H).

The following result illustrates how automata-theoretic properties of S(H)
can determine group-theoretic properties of H :

Proposition 42. [41] Let H be a finitely generated subgroup of FA. Then H is
a finite index subgroup of FA if and only if S(H) is a complete automaton.

Note that Stallings automata constitute examples of inverse automata: they are
deterministic, trim and (p, a, q) is an edge if and only if (q, a−1, p) is an edge.
Inverse automata play a major role in the geometric theories of groups and, more
generally, inverse monoids [42].
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The Stallings construction invites naturally generalizations for further classes
of groups. For instance, an elegant geometric construction of Stallings type au-
tomata was achieved for amalgams of finite groups by Markus-Epstein [28]. On
the other hand, the most general results were obtained by Kapovich, Weidmann
and Miasnikov [25], but the complex algorithms were designed essentially to
solve the generalized word problem, and it seems very hard to extend other fea-
tures of the free group case, either geometric or algorithmic. In joint work with
Soler-Escrivà and Ventura [39], the author developed a new idea: restricting the
type of irreducible words used to represent elements (leading to the concept of
Stallings section), find out which groups admit a representation of finitely gener-
ated subgroups by finite automata obtained through edge folding from some sort
of flower automaton. It turned out that the groups admitting a Stallings section
are precisely the virtually free groups! And many of the geometric/algorithmic
features of the classical free group case can then be generalized to the virtually
free case.

5 Hyperbolic Groups

Automata also play an important role in the beautiful geometric theory of hy-
perbolic groups, introduced by Gromov in the eighties [20]. For details on this
class of groups, the reader is referred to [12].

Let π : Ã∗ → G be a matched epimorphism onto a group G. The Cayley
graph ΓA(G) of G with respect to π has vertex set G and edges g

a−→g(aπ) for all

g ∈ G and a ∈ Ã. If we fix the identity as basepoint, we get an inverse automaton
(which is precisely the minimal automaton of the language 1π−1).

If G = FA and π is canonical, then ΓA(FA) is an infinite tree. In particular, the
local structure of ΓA(FA) determines the global structure... and if we understand
the global structure of the Cayley graph, then we understand the group.

So the aim is to consider geometric conditions on the structure of ΓA(G)
that can lead to a global understanding of the Cayley graph through the lo-
cal structure (taking finitely many finite subgraphs of ΓA(G) as local charts,
actually). But which conditions? The answer came in the form of hyperbolic ge-
ometry. What does this mean and how does it relate to automata or theoretical
computer science in general?

We say that a path p
u−→q in ΓA(G) is a geodesic if it has shortest length

among all the paths connecting p to q in ΓA(G). We denote by GeoA(G) the set
of labels of all geodesics in ΓA(G). Note that, since ΓA(G) is vertex-transitive
(the left action of G on itself produces enough automorphisms of ΓA(G) to make
it completely symmetric), it is irrelevant whether or not we fix a basepoint for
this purpose.

The geodesic distance d on G is defined by taking d(g, h) to be the length of
a geodesic from g to h. Given X ⊆ G nonempty and g ∈ G, we define

d(g,X) = min{d(g, x) | x ∈ X}.
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A geodesic triangle in ΓA(G) is a collection of three geodesics

P1 : g1−→g2, P2 : g2−→g3, P3 : g3−→g1

connecting three vertices g1, g2, g3 ∈ G. Let V (Pi) denote the set of vertices
occurring in the path Pi. We say that ΓA(G) is δ-hyperbolic for some δ ≥ 0 if

∀g ∈ V (P1) d(g, V (P2) ∪ V (P3)) < δ

holds for every geodesic triangle {P1, P2, P3} in ΓA(G). If this happens for some
δ, we say that G is hyperbolic. It is well known that the concept is independent
from both alphabet and matched epimorphism, but the hyperbolicity constant
δ may change. Virtually free groups are among the most important examples of
hyperbolic groups (in fact, they can be characterized by strengthening the geo-
metric condition in the definition of hyperbolicity, replacing geodesic triangles by
geodesic polygons). However, the free Abelian group Z×Z, whose Cayley graph
(for the canonical generators) is the infinite grid is not hyperbolic. However, there
exist plenty of hyperbolic groups: Gromov remarked that, under some reasonable
assumptions, the probability of a finitely presented group being hyperbolic is 1.
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One of the extraordinary geometric properties of hyperbolic groups is closure
under quasi-isometry, being thus one of the few examples where algebra deals
well with the concept of deformation.

From an algorithmic viewpoint, hyperbolic groups enjoy excellent properties:
they have solvable word problem, solvable conjugacy problem and many other
positive features. We shall enhance three, which relate to theoretic computer
science.

The first result states that geodesics constitute a rational language.

Theorem 51. [11, Theorem 3.4.5] Let π : Ã∗ → G be a matched homomorphism
onto a hyperbolic group G. Then the set of geodesics GeoA(G) is a rational
language.

The second one shows how 1π−1 can be described by means of a suitable rewrit-
ing system:
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Theorem 52. [2] Let π : Ã∗ → G be a matched homomorphism onto a group
G. Then the following conditions are equivalent:

(i) G is hyperbolic;
(ii) there exists a finite length-reducing rewriting system R such that

∀u ∈ Ã∗ u ∈ 1π−1 ⇔ u−→∗
R1.

It follows easily that 1π−1 is a context-sensitive language if G is hyperbolic.
However, the converse fails, Z× Z being a counter-example.

In connection with the preceding theorem, it is interesting to recall a result by
Gilman, Hermiller, Holt and Rees [14, Theorem 1], which states that a group G

is virtually free if and only if there exists a matched homomorphism π : Ã∗ → G
and a finite length-reducing rewriting system R ⊆ Kerπ such that IrrR =
GeoA(G).

The third property is possibly the most intriguing. To present it, we need to
introduce the concept of isoperimetric function.

Suppose that G is a group defined by a finite presentation P = 〈Ã | R〉,
and let π : Ã∗ → G be the respective matched homomorphism. We say that
δ : N → N is an isoperimetric function for P if, whenever u ∈ 1π−1, we need
at most δ(|u|) transitions −→R to transform u into the empty word 1. In other
words, an isoperimetric function bounds the number of elementary transitions
we need to transform a word of a certain length into the empty word.

It is easy to see that the existence of an isoperimetric function belonging
to a certain complexity class depends only on the group and not on the finite
presentation considered. We note also that every hyperbolic group is finitely
presented.

Theorem 53. [20] Let G be a finitely presented group. Then the following con-
ditions are equivalent:

(i) G is hyperbolic;
(ii) G admits a linear isoperimetric function;
(iii) G admits a subquadratic isoperimetric function.

In this extraordinary result, geometry unexpectedly meets complexity theory.

6 Automatic Groups

Also in the eighties, another very interesting idea germinated in geometric group
theory, and automata were to play the leading role. The new concept was due
to Cannon, Epstein, Holt, Levy, Paterson and Thurston [11] (see also [6]).

In view of Theorem 51, it is easy to see that every hyperbolic group admits a
rational set of normal forms. But this is by no means an exclusive of hyperbolic
groups, and rational normal forms are not enough to understand the structure of
a group. We need to understand the product, or at least the action of generators
on the set of normal forms. Can automata help?
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There are different ways of encoding mappings as languages,
synchronously or asynchronously. We shall mention only the most popular way
of doing it, through convolution.

Given an alphabet A, we assume that $ is a new symbol (called the padding
symbol) and define a new alphabet

A$ = (A×A) ∪ (A× {$}) ∪ ({$} ×A).

For all u, v ∈ A∗, u  v is the unique word in A∗
$ whose projection to the first

(respectively second) components yields a word in u$∗ (respectively v$∗). For
instance, a  ba = (a, b)($, a).

Let π : A∗ → G be a homomorphism onto a group G. We say that L ∈ RatA∗

is a section for π if Lπ = G. For every u ∈ A∗, write

Lu = {v  w | v, w ∈ L, (vu)π = wπ}.

We say that L ∈ RatA∗ is an automatic structure for π if:

– L is a section for π;
– La ∈ RatA∗

$ for every a ∈ A ∪ {1}.

It can be shown that the existence of an automatic structure is independent
from the alphabet A or the homomorphism π, and implies the existence of an
automatic structure with uniqueness (where π|L is injective). A group is said to
be automatic if it admits an automatic structure.

The class of automatic groups contains all hyperbolic groups (in fact, GeoA(G)
is then an automatic structure!) and is closed under such operators as free prod-
ucts, finite extensions or direct products. As a consequence, it contains all free
abelian groups of finite rank and so automatic groups need not be hyperbolic.
By the following result of Gilman, hyperbolic groups can be characterized within
automatic groups by a language-theoretic criterion:

Theorem 61. [13] Let G be a group. Then the following conditions are equiva-
lent:

(i) G is hyperbolic;
(ii) G admits an automatic structure with uniqueness L such that the language

{u$v$w | u, v, w ∈ L, uvw =G 1} is context-free.

Among many other good algorithmic properties, automatic groups are finitely
presented, have decidable word problem (in quadratic time) and admit a quadratic
isoperimetric function (but the converse is false, unlike Theorem 53). The reader
is referred to [6,11] for details.

Geometry also plays an important part in the theory of automatic groups,
through the fellow traveller property. Given a word u ∈ A∗, let u[n] denote the
prefix of u of length n (or u itself if n > |u|). Let π : Ã∗ → G be a matched
homomorphism and recall the geodesic distance d on G introduced in Section
5 in connection with the Cayley graph ΓA(G). We say that a section L for π
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satisfies the fellow traveller property if there exists some constant K > 0 such
that

∀u, v ∈ L (d(uπ, vπ) ≤ 1 ⇒ ∀n ∈ N d(u[n]π, v[n]π) ≤ K).

Intuitively, this expresses the fact that two paths in ΓA(G) labelled by words
u, v ∈ L which start at the same vertex and end up in neighbouring (or equal)
vertices stay close all the way through.

This geometric property provides an alternative characterization of automatic
groups which avoids convolution:

Theorem 62. [11, Theorem 2.3.5] Let π : Ã∗ → G be a matched homomor-
phism onto a group G and let L be a rational section for π. Then the following
conditions are equivalent:

(i) L is an automatic structure for π;
(ii) L satisfies the fellow traveller property.

The combination of automata-theoretic and geometric techniques is typical of
the theory of automatic groups.

7 Automaton Groups

Automaton groups, also known as self-similar groups, were introduced in the
sixties by Glushkov [15] (see also [1]) but it was through the leading work of
Grigorchuk in the eighties [18] that they became a main research subject in
geometric group theory. Here automata play a very different role compared with
previous sections.

We can view a free monoid A∗ as a rooted tree T with edges u −− ua for all
u ∈ A∗, a ∈ A and root 1. The automorphism group of T , which is uncountable if
|A| > 1, is self-similar in the following sense: if we restrict an automorphism ϕ of
T to a cone uA∗, we get a mapping of the form uA∗ → (uϕ)A∗ : uv !→ (uϕ)(vψ)
for some automorphism ψ of T . This leads to wreath product decompositions (see
[31]) and the possibility of recursion.

But AutT is huge and non finitely generated except in trivial cases, hence it is
a natural idea to study subgroups G of T generated by a finite set of self-similar
generators (in the above sense) to keep all the chances of effective recursion
methods within a finitely generated context. It turns out that this is equivalent
to define G through a finite invertible Mealy automaton.

A Mealy automaton on the alphabet A is a finite complete deterministic
transducer where edges are labelled by pairs of letters of A. No initial/terminal
vertices are assigned. It is said to be invertible if the local transformations of
A (induced by the labels of the edges leaving a given vertex) are permutations.
Here is a famous example of an invertible Mealy automaton:

a0|0
��

1|1
��
b 1|0��

0|1
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The transformations of A = {0, 1} induced by the vertices a and b are the
identity mapping and the transposition (01), respectively.

Each vertex q of a Mealy automaton A defines an endomorphism ϕq of the
tree T through the paths q

u|uϕq−−−−→ . . . (u ∈ A∗). If the automaton is invertible,
each ϕq is indeed an automorphism and the set of all ϕq, for all vertices q of A,
satisfies the desired self-similarity condition. The (finitely generated) subgroup
of AutT generated by the ϕq is the automaton group G(A) generated by A.

For instance, the automaton group generated by the Mealy automaton in the
above example is the famous lamplighter group [17].

Automaton groups have decidable word problem. Moreover, the recursion po-
tential offered by their wreath product decompositions allowed successful compu-
tations which were hard to foresee with more traditional techniques and turned
automaton groups into the most rich source of counterexamples in infinite group
theory ever. The Grigorchuk group [18] is the most famous of the lot, but their
exist many others exhibiting fascinating exotic properties [22,19].

An interesting infinite family of Mealy automata was studied by the author
in collaboration with Steinberg [40] and Kambites and Steinberg [23]: Cay-
ley machines of finite groups G (the Cayley graph is adapted by taking edges
g

a|g(aπ)−−−−→g(aπ), and all the elements of the group as generators). If G is abelian,
these Cayley machines generate the wreath product GwrZ, and the lamplighter
group corresponds to the case G = Z2.

Surprising connections with fractals were established in recent years. We shall
briefly describe one instance. Given a matched homomorphism π : Ã∗ → G and
a subgroup P of G, the Schreier graph ΓA(G,P ) has the cosets Pg as vertices

and edges Pg
a−→Pg(aπ) for all g ∈ G and a ∈ Ã. Note that P = {1} yields the

familiar Cayley graph ΓA(G). It turns out that classical fractals can be obtained
as limits of the sequence of graphs (ΓA(G,Pn))n for some adequate automaton
group G, where Pn denotes the stabilizer of the nth level of the three T [3,31].
Note that Pn has finite index and so the Schreier graphs ΓA(G,Pn) are finite.

8 Automata and Dynamics

Automata appear also as a major tool in the study of the dynamics of many
families of group endomorphisms. We shall present an example taken from our
own recent research work [38].

We shall call T = (Q, q0, δ, λ) an A-transducer if:

– Q is a (finite) set;
– q0 ∈ Q;
– δ : Q×A → Q and λ : Q×A → A∗ are mappings.

We can view T as a directed graph with edges labelled by elements of A × A∗

(represented in the form a|w) by identifying (p, a)δ = q, (p, a)λ = w with the
edge p

a|w−→q.
We may extend δ and λ to Q × A∗ by considering the paths q

u|(q,u)λ−−−−→
(q, u)δ for all u ∈ A∗. When the transducer is clear from the context, we write

qa = (q, a)δ. The transformation T̂ : A∗ → A∗ is defined by uT̂ = (q0, u)λ.
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If T = (Q, q0, T, δ, λ) is an Ã-transducer such that

p
a|u−→q is an edge of T if and only if q

a−1|u−1

−−−−→p is an edge of T ,

then T is said to be inverse.
As an easy consequence of this definition, we get:

Proposition 81. [38, Proposition 3.1] Let T = (Q, q0, δ, λ) be an inverse Ã-
transducer. Then:

(i) δ : Q× Ã∗ → Q induces a mapping δ̃ : Q× FA → Q by (q, uθ)δ̃ = (q, u)δ;

(ii) T̂ : Ã∗ → Ã∗ induces a partial mapping T̃ : FA → FA by uθT̃ = uT̂ θ.
We can prove the following result:

Theorem 82. [38, Theorem 3.2] Let T be a finite inverse Ã-transducer and let
z ∈ FA. Then

L = {g ∈ FA | gT̃ = gz}
is rational.

The proof is inspired in Goldstein and Turner’s proof [16] for endomorphisms of
the free group. We give a brief sketch.

Write T = (Q, q0, δ, λ). For every g ∈ FA, let P1(g) = g−1(gT̃ ) ∈ FA and write

q0g = (q0, g)δ̃, P (g) = (P1(g), q0g). Note that g ∈ L if and only if P1(g) = z. We

define a deterministic Ã-automaton Aϕ = (P, (1, q0), S, E) by

P = {P (g) | g ∈ FA};
S = P ∩ ({z} ×Q);

E = {(P (g), a, P (ga)) | g ∈ FA, a ∈ Ã}.
Clearly, Aϕ is a possibly infinite automaton. Note that, since T is inverse, we

have qaa−1 = q for all q ∈ Q and a ∈ Ã. It follows that, whenever (p, a, p′) ∈ E,
then also (p′, a−1, p) ∈ E. We say that such edges are the inverse of each other.

Since every w ∈ Ã∗ labels a unique path P (1)
w−→P (wθ), it follows that

L(Aϕ) = Lθ−1.

To prove that L is rational, we show that only finitely many edges can occur in
the successful paths of Aϕ labelled by reduced words.

This is achieved by defining an appropriate subset E′ ⊆ E satisfying E =
E′ ∪ (E′)−1 and showing that there are only finitely many vertices in Aϕ which
are starting points for more than one edge in E′.

Theorem 82 can be used to produce an alternative proof [38, Theorem 4.1] of
the following Sykiotis’ theorem:

Theorem 83. [43, Proposition 3.4] Let ϕ be an endomorphism of a
finitely generated virtually free group. Then Fixϕ is finitely generated.

Automata are also at the heart of other results in [38], concerning the infinite
fixed points of endomorphism extensions to the boundary of virtually free groups.
The boundary is a very important topological concept defined for hyperbolic
groups [12], but out of the scope of this paper.
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Abstract. A distributed pushdown automata system consists of several
pushdown automata which work in turn on the input word placed on
a common one-way input tape under protocols and strategies similar to
those in which cooperating distributed (CD) grammar systems work. Un-
like the CD grammar systems case, where one may add or remove dupli-
cate components without modifying the generated language, the identical
components play an important role in distributed pushdown automata
systems. We consider here uniform distributed pushdown automata sys-
tems (UDPAS), namely distributed pushdown automata systems having
all components identical pushdown automata.

We consider here just a single protocol for activating/deactivating
components, namely a component stays active as long as it can perform
moves, as well as two ways of accepting the input word: by empty stacks
(all components have empty stacks) or by final states (all components are
in final states), when the input word is completely read. We mainly in-
vestigate the computational power of UDPAS accepting by empty stacks
and a few decidability and closure properties of the families of languages
they define. Some directions for further work and open problems are also
discussed.

1 Introduction

In the last decades, researchers and practitioners have shown an increasing in-
terest in distributed systems. Among various models a formal language theoretic
paradigm called grammar system has been proposed [5]. Two main architectures
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have been distinguished in the area, cooperating distributed (CD) grammar sys-
tems [4] and parallel communicating (PC) grammar systems [15]. Several moti-
vations have been involved in introducing the CD grammar system concept:

– A generalization of the two-level substitution grammars. This was the main
purpose of the paper [14] where the syntagma cooperating grammar system was
proposed.
– In the architecture of a CD grammar system one can recognize the structure
of a blackboard model, as used in problem-solving area: the common sentential
form is the “blackboard” (the common data structure containing the current
state of the problem which is to be solved), the component grammars are the
knowledge sources contributing to solving the problem, the protocol of coopera-
tion encodes the control on the work of the knowledge sources [10]. This was the
explicit motivation of [4], the paper where CD grammar systems were introduced
in the form we consider here.
– The increase of the computational power of components by cooperation and
communication and the decrease of the complexity of different tasks by distri-
bution and parallelism.

An entire theory has been developed for both types of grammar systems, see the
monograph [5] and more recently the chapter [8] in [16]. The obtained results
showed that cooperation and communication increases the power of individual
components: large language classes were described by systems of very simple
grammars belonging to grammar classes with weak computational power. In
spite of this notable development, very little has been done with respect to au-
tomata systems working under similar strategies. These investigations might be
of particular interest from several points of view: they might lead to a comparison
between the power of distributed generative and accepting devices, and might
give information on the boundaries of describing language classes in terms of
automata systems. A series of papers [6,12,13,3,2] was devoted to PC automata
systems whose components are finite or pushdown automata. We briefly recall
the previous works dealing with distributed systems formed by automata done
in this respect.

In [9] some special types of multi-stack pushdown automata were introduced.
These mechanisms are usual multi-stack pushdown automata whose stacks co-
operate in the accepting process under some strategies borrowed from CD gram-
mar systems. However, they cannot be seen as the automata counterpart of CD
grammar systems. A similar approach has been reported in [11].

The first (and unique so far) work considering systems of pushdown automata
whose working mode is very close to that of CD grammar systems is [7]. A
distributed pushdown automata system (DPAS) has a common one-way input
tape, one reading head, and several central units. Each central unit is in a state
from its own finite sets of states and accesses the topmost of its own pushdown
memory. At any moment only one central unit is active, the others are “frozen”.
When active, the central unit can also read the current input symbol by means of
the common reading head. Activation of some component means that the central
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unit of that component takes control over the reading head. We defined several
protocols for activating components. Two ways of accepting were defined: by
empty stacks or by final states meaning that all components have empty stacks
or are in final states, respectively, when the input word is completely read.

This note considers a problem of interest in our view which is represented
by the DPAS with identical components, that is all components are identical
pushdown automata. Such DPAS are called here uniform DPAS (UDPAS). This
aspect makes no difference for CD grammar systems; in other words, one can add
or remove identical components in a CD grammar system without modifying the
generated language. Unlike the CD grammar systems case, the identical compo-
nents play an important role in DPAS as we shall see in the sequel. Returning
to the original motivation mentioned in the beginning of this paper (blackboard
model of problem solving), it is not artificial to assume that all agents which par-
ticipate in the problem solving process have the same knowledge. This approach
suggests a close connection with amorphous systems: (i) each component has
rather modest computing power, (ii) each component is programmed identically
though each has means for storing local state and memory, (iii) each component
has no a priori knowledge of its position within the system.

We first prove that UDPAS accepting by final states are strictly more power-
ful than UDPAS accepting by empty stacks. Then we mainly consider UDPAS
accepting by empty stacks and investigate their computational power and a few
decidability and closure properties of the families of languages they define. Some
directions for further work and open problems are also discussed.

2 Basic Definitions

We assume the reader to be familiar with the basic concepts in automata and
formal language theory; for further details, we refer to [16].

An alphabet is a finite and nonempty set of symbols. Any sequence of symbols
from an alphabet V is called word over V . For an alphabet V , we denote by V ∗

the free monoid generated by V under the operation of concatenation; the empty
word is denoted by ε and the semigroup V ∗ −{ε} is denoted by V +. The length
of x ∈ V ∗ is denoted by |x| while |x|a denotes the number of occurrences of the
symbol a in x. A subset of V ∗ is called language over V . The Parikh mapping over
an alphabet V = {a1, a2, . . . , ak} denoted by ψV is a morphism from V ∗ to INk,
where ψV (ai) is the vector having all its entries equal to 0 except the i-th entry
which is 1. If L ⊆ V ∗, then the Parikh image of L is ψ(L) = {ψV (x) | x ∈ L}.
We omit the subscript V whenever the alphabet is understood from the context.

We shall also denote by RecX(A) the language accepted by a pushdown au-
tomaton A with final state if X = f , or with empty stack if X = ε. We note
that pushdown automata characterize the class of context-free languages in both
modes of acceptance. The family of context-free languages is denoted by CF .
Remember that the Parikh image of any context-free language is a semilinear
set.
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We now give the definition of the main concept of the paper following [7].
A distributed pushdown automata system (DPAS for short) of degree n is a
construct

A = (V,A1, A2, . . . , An),

where V is an alphabet and for each 1 ≤ i ≤ n, Ai = (Qi, V, Γi, fi, qi, Zi, Fi) is a
nondeterministic pushdown automaton with the set of states Qi, the initial state
qi ∈ Qi, the alphabet of input symbols V, the alphabet of pushdown symbols
Γi, the initial contents of the pushdown memory Zi ∈ Γi, the set of final states
Fi ⊆ Qi, and the transition mapping fi from Qi × V ∪ {ε} × Γi into the finite

subsets of Qi × Γ ∗
i . We refer to the automaton Ai, 1 ≤ i ≤ n, as the ith

component of A.
An instantaneous description (ID) of a DPAS as above is 2n+ 1-tuple

(x, s1, α1, s2, α2, . . . , sn, αn),

where x ∈ V ∗ is the part of the input word to be read, and for each 1 ≤ i ≤ n, si
is the current state of the automaton Ai and αi ∈ Γ ∗

i is the pushdown memory
content of the same automaton.

A one step move of A done by the component i, 1 ≤ i ≤ n, is represented by
a binary relation �i on all IDs defined in the following way:

(ax, s1, α1, s2, α2, . . . , si, αi, . . . , sn, αn) �i (x, s1, α1, s2, α2, . . . , ri, β, . . . , sn, αn)

if and only if (ri, δ) ∈ fi(si, a, A), where a ∈ V ∪ {ε}, αi = Aγ, and β = δγ.
As usual, �∗

i denotes the reflexive and transitive closure of �i. Let now C1, C2

be two IDs of a DPAS. We say that C1 directly derives C2 by a move representing
a sequence of steps done by the component i that cannot be continued, denoted
by C1 �t

A C2, if and only if C1 �∗
i C2 for some 1 ≤ i ≤ n, and there is no C′

with C2 �i C
′. In other words, as soon as a component is activated, it remains

active as long as it is possible.
The language accepted by a DPAS A as above by final states is defined by

Recf(A) = {w | w ∈ V ∗, (w, q1, Z1, q2, Z2, . . . , qn, Zn)(�t
A)

∗

(ε, s1, α1, s2, α2, . . . , sn, αn) with αi ∈ Γ ∗
i , si ∈ Fi, for all 1 ≤ i ≤ n}

Similarly, the language accepted by DPAS A as above by empty stacks is defined
by

Recε(A) = {w | w ∈ V ∗, (w, q1, Z1, q2, Z2, . . . , qn, Zn)(�t
A)

∗

(ε, s1, ε, s2, ε, . . . , sn, ε) for some si ∈ Qi, 1 ≤ i ≤ n}

For the rest of this paper we consider uniform DPAS (UDPAS) only. A DPAS
A = (V,A1, A2, . . . , An) with A1 = A2 = · · · = An = A, which is simply denoted
by A = (n, V,A), is said to be uniform. Therefore, for each UDPAS it suffices
to give its degree (number of components) and the pushdown automaton. We
illustrate the above notions through an example which will also be useful in the
sequel.
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Example 1. Let A be the UDPAS of degree 2 with the pushdown automaton
defined by the following transition mapping:

f(q0, X, Z0)={(sX , XZ0)}, X ∈ {a, b} f(sX , X,X)={(sX , XX)}, X∈{a, b},
f(sa, c, a) = {(sa, ε)} f(sb, d, b) = {(sb, ε)},
f(sX , X, Z0) = {(sX , XZ0)}, X ∈ {a, b} f(sX , ε, Z0) = {(s, ε)}, X ∈ {a, b}

The set {s} is the set of final states. We first note that the language accepted
by the pushdown automaton by final states/empty stack is L0 = Da,c ∪ Db,d.
Here Dx,y is the Dyck language over the alphabet {x, y}. Second, the language
recognized by A by final states/empty stacks is the language L1 that includes
D2

a,c ∪D2
b,d and all words formed by interleaving words from Da,c and Db,d.

The families of languages accepted by UDPAS of degree n by final states or
empty stacks are denoted by Lf (UDPAS, n) or Lε(UDPAS, n), respectively.

Example 1 shows a strong connection between the languages recognized by
(U)DPAS and languages obtained by means of the following operation inten-
sively investigated in the formal language and concurrency theory. The shuffle
operation applied to two words leads to the set of all words obtained from the
original two words by interleaving their letters but keeping their order in the two
words like interleaving two decks of cards. Formally, this operation is defined re-
cursively on words over an alphabet V as follows:

"⊥ (ε, x) = "⊥ (x, ε) = {x}, for any x ∈ V ∗

"⊥ (ax, by) = {a} "⊥ (x, by) ∪ {b} "⊥ (ax, y), for all a, b ∈ V, x, y ∈ V ∗.

This operation may naturally be extended to languages and to have k arguments
as

"⊥ (L1, L2) =
⋃

x∈L1,y∈L2

"⊥ (x, y),

and "⊥ k(x1, x2, . . . , xk)= "⊥ ( "⊥ k−1(x1, x2, . . . , xk−1), {xk}), respectively. Also,
"⊥ k is extended to languages as

"⊥ k(L1, L2, . . . , Lk) =
⋃

xi∈Li,1≤i≤k

"⊥ k(x1, x2, . . . , xk).

If each language L1, L2, . . . , Lk equals L, we denote

"⊥ 0(L) = {ε},
"⊥ k+1(L) = "⊥ ( "⊥ k(L), L)), for all k ≥ 0,

"⊥ ∗(L) =
⋃
k≥0

"⊥ k(L).

3 Computational Power

It is worth mentioning in the beginning of this section that any context-free
language can be accepted by a DPAS of degree n for all n ≥ 1. This is not true
anymore for UDPAS as we shall see in the sequel. We start with a result that
will be useful in what follows.
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Lemma 1. For any UDPAS A of degree n there exists a context-free language
L such that Ln ⊆ Recε(A) ⊆ "⊥ n(L).

Proof. Let A be a UDPAS formed by n copies of a pushdown automaton A. The
statement follows immediately as soon as we take the context-free language as
the language accepted with empty stack by A. �

It is known that pushdown automata accepting by empty stack or final state
define the same class of languages. The situation is different for UDPAS.

Theorem 1. Lε(UDPAS, p) ⊂ Lf (UDPAS, p), for all p ≥ 2.

Proof. The inclusion is proved by the standard construction that transforms a
pushdown automaton accepting with empty stack into a pushdown automaton
accepting with final states. For proving the properness of this inclusion we con-
struct the UDPAS with p ≥ 2 identical copies of the pushdown automaton A
defined as follows:

f(q0, a, Z0) = {(s1, aZ0)}, f(q0, b, Z0) = {(s2, bZ0)},
f(s1, a, a) = {(s1, aa)} f(s2, b, b) = {(s2, bb)},
f(s1, X, a) = {(se, a)}, X ∈ {b, c, d} f(s2, X, b) = {(se, b)}, X ∈ {a, c, d},
f(s1, ε, a) = {(p1, a)} f(s2, ε, b) = {(p2, b)},
f(p1, c, a) = {(p1, ε)} f(p2, d, b) = {(p2, ε)},
f(p1, X, a) = {(se, a)}, X ∈ {a, b, d} f(p2, X, b) = {(se, b)}, X ∈ {a, b, c},
f(p1, ε, Z0) = {(s1f , Z0)} f(p2, ε, Z0) = {(s2f , Z0)},
f(s1f , X, Z0)={(se, Z0)}, X ∈ {a, b, c} f(s2f , X, Z0)={(se, Z0)}, X∈{a, b, c, d},
f(q0, ε, Z0) = {(s3f , Z0)}.

It is easy to note that Recf(A) = {ancn | n ≥ 0}∪{bndn | n ≥ 0}, where the set
of final states of A is {s1f , s2f , s3f}. We now make a discussion about the language
accepted by A with final states. First, any non-empty input word must start
with either a or b. If the prefix of the input word composed by a is followed by
a d, it is plain that the input word cannot be accepted. We now consider the
case when the prefix of the input word composed by a is followed by c. Two
situations may appear:

– The whole prefix of a’s is processed continuously by the same component.
In this case this component may either reach the final state s1f , if the input
word is of the form ancn for some n ≥ 1, or get stuck.

– Only a part of the prefix of a’s is read by the first activated component; it
follows that other components have to read the remaining part of this prefix.
Now the next segment formed by c’s of the input word will block at least
one of all these two components.

Therefore, an input word of the form a+c+(a+b+c+d)∗ is accepted by A if and
only if it is of the form ancn for some n ≥ 1. Note that all the other components
different than that which starts the computation can reach the final state s3f by
reading the empty word.
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We analyze now the computation on an input word of the form a+b+(a+ b+
c+d)∗. Such a word might lead to acceptance if one component reads completely
the prefix of a’s while another reads completely the next factor formed by b only.
Furthermore, neither a nor d can be the next symbol after the segment of b’s.
Indeed, an a blocks both these components while a d blocks at least one of
them. The analysis may continue in the same way until we conclude that the
input word is of the form a+b+c+d+. More precisely, it has to be of the form
anbmcndm for some n,m ≥ 1. Analogously, any input word starting with b that
is eventually accepted is either of the form bmdm or of the form bmancndm for
some n,m ≥ 1. Consequently,

Recf(A) = {anbmcndm | n,m ≥ 0} ∪ {bmancndm | n,m ≥ 0}.

Note that every correct input word is actually accepted by means of only two
components of A. All the other components reach their final states by just one
move when nothing from the input tape is effectively read.

By Lemma 1, since there is no context-free language L and k ≥ 2 such that
Lk ⊆ Recf(A), therefore Recf(A) cannot lie in Lε(UDPAS, k) for any k ≥ 2. �

For the rest of this note we shall consider mainly UDPAS accepting by empty
stacks. As one can see in Lemma 1, every language accepted by a UPDAS of
degree p with empty stacks is a subset of "⊥ p(L) for some context-free language
L. The following problem naturally arises: When do we have equality? What
conditions should L satisfy such that "⊥ p(L) is accepted by a UPDAS with
empty stacks? It is worth mentioning that for every context-free language L, the
language "⊥ p(L) is accepted by a UDPAS of degree p with empty stacks if we
change the protocol of activating/deactivating the components. More precisely,
if we define the language accepted by a UDPAS A with empty stacks as follows

Recε(A, ∗) = {w | w ∈ V ∗, (w, q1, Z1, q2, Z2, . . . , qn, Zn) �∗
i1

(w1, s
(1)
1 , α

(1)
1 , s

(1)
2 , α

(1)
2 , . . . , s(1)n , α(1)

n ) �∗
i2

(w2, s
(2)
1 , α

(2)
1 , s

(2)
2 , α

(2)
2 , . . . , s(2)n , α(2)

n ) �∗
i3 · · · �∗

im

(ε, s
(m)
1 , ε, s

(m)
2 , ε, . . . , s(m)

n , ε) with m ≥ 1, 1 ≤ i1, i2, . . . , im ≤ n

and s
(m)
i ∈ Qi, 1 ≤ i ≤ n},

then we can state that Recε(A, ∗) = "⊥ p(L), where A is a UDPAS formed
by p copies of the pushdown automaton recognizing L. Therefore, the problem
can be reformulated as follows: Can our protocol of activating/deactivating the
components lead to more computational power than the protocol just defined
above?

We do not have an answer to this problem. However, along the same lines we
can show:

Proposition 1. There are finite languages L such that "⊥ ∗(L) do not belong
to Lε(UDPAS, n), for any n ≥ 1.
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Proof. We take the finite language {abc} and prove that

"⊥ ∗(abc) = {w ∈ {a, b, c}+ | |w|a = |w|b = |w|c & |x|a ≥ |x|b ≥ |x|c
for any prefix x of w},

none of the families Lε(UDPAS, n), n ≥ 1, contains this language.
Assume the contrary, by Lemma 1, there must be a context-free language L

such that
Ln ⊆ "⊥ ∗(abc) ⊆ "⊥ n(L).

Let ambmcm, for some m ≥ 1, be a word in "⊥ ∗(abc); there must exist the
words wi ∈ L, 1 ≤ i ≤ n, such that ambmcm ∈ "⊥ n(w1, w2, . . . , wn). On the
other hand, for any permutation σ of {1, 2, . . . , n} the word wσ(1)wσ(2) . . . wσ(n)

belongs to "⊥ ∗(abc), which means that wi ∈ a+b+c+ for all i. Furthermore, if
wi = apbqcr, for some p, q, r ≥ 1, we have p ≥ q ≥ r. We further note that for
each 1 ≤ i �= j ≤ n | ψ(wi) − ψ(wj) |= (k, k, k) holds for some k ≥ 0. By these
considerations and the fact that all words ambmcm, m ≥ 1, are in "⊥ ∗(abc), we
infer that L ∩ a+b+c+ is an infinite language of the form

L ∩ a+b+c+ = {as+kbp+kcq+k | k ∈ H},

where H is an infinite set of natural numbers. As L∩a+b+c+ is not context-free,
it follows that L is not context-free either, which is a contradiction. �

Proposition 2.
1. The family Lε(UDPAS, n), n ≥ 1, contains semilinear languages only.
2. There are semilinear languages that do not belong to any of these families.

Proof. 1. By Lemma 1, for every UDPAS A of degree n, ψ(Recε(A)) = ψ(Ln)
holds for some context-free language L, hence Recε(A) is semilinear.

2. The language considered in Theorem 1 proves the second statement. �

4 Decidability and Closure Properties

Proposition 3. The emptiness and finiteness problems are decidable for all
families LX(UDPAS, n), X ∈ {f, ε}, n ≥ 1.

Proof. Obviously, the language accepted by a UDPAS is empty/finite if and
only if the language accepted by its components is empty/finite. Therefore, the
assertion follows from the decidability properties of context-free languages class.

Theorem 2. None of the families Lε(UDPAS, n) is closed under union and
concatenation with singleton languages, union, concatenation, intersection with
regular sets, non-erasing morphisms.

Proof. As we shall see, it suffices to give the reasoning for n = 2 only. Let us
take the language

L = L2
1 ∪ L2

2 ∪ ( "⊥ (L1, L2)),
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where
L1 = {anbn | n ≥ 1}, L2 = {cmdm | m ≥ 1}.

The language L can be accepted by a UDPAS of degree 2. A construction for this
system can be easily derived from the definition of the UDPAS in Example 1. We
show that L · {dcba} cannot be accepted by any UDPAS (no matter its degree)
with empty stacks. Assume the contrary, by Lemma 1 there exist a context-free
languages E and k ≥ 2 such that Ek ⊆ L{dcba}. Therefore, each word in E has
to be of the form xdcba. We take k words in E, x1dcba, x2dcba, . . . , xkdcba such
that x1dcbax2dcba . . . xkdcba ∈ L{dcba}, hence x1dcbax2dcba . . . xk ∈ L which is
a contradiction.

In similar way one can argue that L ∪ {dcba} does not belong to any family
Lε(UDPAS, n).

On the other hand, each regular language Rk = {dcban | n ≥ k}, k ≥ 2,
belongs to Lε(UDPAS, k). It follows that Lε(UDPAS, n) is not closed under
concatenation and union either.

In order to prove the non-closure under intersection with regular sets we return
to Example 1. The language accepted by the UPDAS from Example is L1. But

L1 ∩ a+b+c+d+ = {apbqcpdq | p, q ≥ 1},

which, by the proof of Theorem 1, does not belong to any family Lε(DPAS, n),
n ≥ 2.

The proof for the non-closure under morphisms is a bit more involved. We
consider the language

L = {xxyy, xyxy, xyyx, yyxx, yxyx, yxxy | x ∈ {an# | n ≥ 1},
y ∈ {bn# | n ≥ 1}}

which lies in Lε(UDPAS, 2). The construction of a UDPAS of degree 2 which
accepts L by empty stacks is left to the reader. We prove that the language h(L),
where h(a) = h(b) = a and h(#) = c, cannot be accepted by any DPAS (not
only UDPAS) by empty stacks.

Suppose that h(L) = Recε(A) with A = ({a, c}, A1, A2, . . . , Ap) for some
p ≥ 2. We may assume that we need at least two components as h(L) is not
context-free. There exists a word z ∈ Recε(A) such that the following conditions
are satisfied with respect to the accepting process of z:

(i) z = x1x2 . . . xs for some s > p, xj ∈ (a+ c)+.
(ii) For each 1 ≤ j ≤ s, the component ij , 1 ≤ ij ≤ p, is activated when the

system starts to read xj .
(iii) There exist 1 ≤ j < t ≤ s such that ij = it and all numbers ij+1, . . . , is

are distinct. That is, for the suffix xj+1 . . . xs of z each component of A is
activated at most once.

Under these circumstances, the word

w = x1x2 . . . xj−1xjxtxj+1 . . . xt−1xt+1 . . . xs
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is in Recε(A) as well. If t �= s, then also the word

y = x1x2 . . . xj−1xjxj+1 . . . xt−1xt+1 . . . xsxt

is in Recε(A). Furthermore, the first letter of xj+1 is different from the first
letter of xt. There are two possibilities:

(I) xj+1 ∈ a(a+ c)∗, xt ∈ c(a+ c)∗.
First, let us note that if xt ends with a, then t �= s holds, hence y must be in
h(L), But, y ends with a, a contradiction. Therefore, xt must start and end with
c. We note also that t cannot equals s because, if this were the case, then w
would ends with a. Then, it follows that y contains two adjacent occurrences of
c which is contradictory. Hence, the first case leads to a contradiction.

(II) xj+1 ∈ c(a+ c)∗, xt ∈ a(a+ c)∗.
First we note that xt cannot start and end with a. Indeed, if xt starts and ends
with a, then t �= s and y ends with a, a contradiction. But if xt starts with a and
ends with c, then w contains two adjacent occurrences of c since the segment
xjxtxj+1 has this property.

Therefore, h(L) /∈ Lε(DPAS, n) for any n ≥ 2, which proves the closure of
none of the families Lε(DPAS, n), n ≥ 2, under morphisms. �

5 Final Remarks

We briefly discuss here a few open problems and possible directions for further
developments. We start with the problem formulated in Section 3.

Open Problem 1. What conditions should a context-free language L satisfy
such that "⊥ p(L) is accepted by a UPDAS with empty stacks?

It is worth mentioning that one can increase the degree of the UPDAS from the
proof of Theorem 1 without modifying the accepted language. This is especially
due to the fact that the pushdown automaton A recognizes the empty word. Does
this hold for any UDPAS accepting the empty word? Which is the situation for
acceptance with empty stacks? More generally,

Open Problem 2. Is there any hierarchy depending on the number of compo-
nents?

However, if the classes of languages accepted by UPDAS with empty stacks
form a hierarchy depending on the number of components, then this hierarchy
is necessarily infinite.

Theorem 3. There exist arbitrarily many natural numbers n such that

Lε(UPDAS, n) \ Lε(UPDAS, k) �= ∅.

Proof. Let A be the pushdown automaton accepting the language

L = {#ambm$ | m ≥ 1} ∪ {#cmdm$ | m ≥ 1},
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and A be the UPDAS formed by n copies of A, where n is a prime number. We
first note that Recε(A) is not a context-free language. Indeed,

Recε(A) ∩#na+c+b+d+$n = {#napcqbpdq$n | p, q ≥ 1, p+ q ≥ n},

hence Recε(A) cannot be context-free. We now claim that Recε(A) cannot be
accepted by any UPDAS of a degree inferior to n. Assume the contrary and let
A′ be a UPDAS of degree k < n such that Recε(A) = Recε(A′). By Lemma 1,
there exists a context-free language R such that

Rk ⊆ Recε(A) = Recε(A′) ⊆ "⊥ k(R).

Clearly, for every word w ∈ Recε(A), |w|# = |w|$ = n holds. Therefore, for any
word x ∈ R, |x|# = |x|$ = p, with kp = n must hold. This implies that k = 1,
hence R = Recε(A) which is a contradiction. �

As we have seen the emptiness and finiteness problems are decidable for UDPAS
accepting by empty stacks and the complexity of these problems is directly
derived from the complexity of the same problems for usual pushdown automata.
The situation seems to be different for the membership problem. We recall that
for the shuffling of two context-free languages, the non-uniform version of the
membership problem is already NP-hard [1]. However, we ask:

Open Problem 3. Which is the complexity of the membership problem for
UPDAS accepting with empty stacks?

We have proved that UDPAS accepting by final states are strictly more
powerful than UDPAS accepting by empty stacks. In our view, the classes
Lf (DPAS, n), n ≥ 1, deserve to be further investigated.

Last but not least, the deterministic variants of the automata systems con-
sidered here appear to be attractive.
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15. Păun, G., Sântean, L.: Parallel communicating grammar systems: the regular case.
Ann. Univ. Bucharest, Ser. Matem.-Inform. 38, 55–63 (1989)

16. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1-3. Springer,
Berlin (1997)



Removing Nondeterminism

in Constant Height Pushdown Automata�
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Abstract. We study the descriptional cost of converting constant height
nondeterministic pushdown automata into equivalent deterministic de-
vices. We show a double-exponential upper bound for this conversion,
together with a super-exponential lower bound.
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1 Introduction

The first and most relevant generalization to computational devices is certainly
the introduction of nondeterminism. Among others, nondeterminism represents
an elegant tool to capture certain classes of problems and languages. Although
not existing in nature, a nondeterministic dynamic may in principle be “simu-
lated” by actual paradigms, such as probabilistic or quantum frameworks (see,
e.g., [8,12,16]). Nondeterministic variants of Turing machines, finite state au-
tomata, pushdown automata, and many other devices, have been studied from
the very beginning.

The investigation on nondeterminism may be pursued along several lines.
First, we may want to know whether nondeterminism really increases com-
putational power of the underlying computational model. For example (see,
e.g., [4,11]), it is well-known that nondeterminism does not increase the compu-
tational power of Turing machines or finite state automata. On the other hand,
it is well-known that nondeterministic pushdown automata (npdas) are strictly
more powerful than their deterministic counterpart (dpdas), corresponding to
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the respective classes of context-free and deterministic context-free languages.
Finally, for certain devices, the problem is not yet solved, e.g., it is still not known
whether the computational power of two-way dpdas and npdas coincide.

Another interesting line of research is the study of how nondeterminism helps
in presence of limited computational resources. Questions of this type, like
P vsNP or L vsNL, go to the very heart of theoretical computer science (see,
e.g., [4,11]).

In the realm of finite memory machines, the impact of nondeterminism on
device efficiency is usually evaluated by considering its size [7,10]. A classical
result of this kind [15,17] establishes an optimal exponential gap between the
number of finite control states in deterministic and nondeterministic finite state
automata (dfas and nfas, respectively).

In this paper, we tackle the impact of nondeterminism on descriptional com-
plexity of constant height pushdown automata [1,5]. Roughly speaking, these de-
vices are traditional pushdown automata (see, e.g., [11]) with a built-in constant
limit, not depending on the input length, on the height of the pushdown. It is a
routine exercise to show that their deterministic and nondeterministic versions
accept exactly regular languages, and hence they share the same computational
power. Nevertheless, a representation of regular languages by constant height
pushdown automata can potentially be more succinct than by standard devices.
In fact, in [5], optimal exponential and double-exponential gaps are proved be-
tween the size of constant height dpdas/npdas, and dfas and nfas. The diagram
in Fig. 1 quickly resumes such gaps.

h-npda

nfa

h-dpda

dfa

�

exp

�

exp

� exp

�
�

�
�

�
���

double
exp

�
≥ exp

Fig. 1. Costs of conversion among different types of automata. Here h-npda (h-dpda)
denote constant height npdas (dpdas). An arrow labeled by exp (double exp) from A
to B means that an automaton of type A can be converted to an equivalent automaton
of type B, paying by an exponential (double-exponential) increase in size. All costs
were known to be optimal, except for the cost of h-dpda←−h-npda conversion, which
we study in this paper.

The problem of optimal size cost of converting constant height npdas into
their deterministic counterparts was left open in [5], and will be the subject of
this contribution. What can be easily derived from Fig. 1 is that such a cost can-
not be smaller than exponential. In fact, a sub-exponential cost combined with
the optimal exponential cost for h-dpda → dfa would lead to a sub-double-
exponential cost of h-npda → dfa, thus contradicting the optimality of the
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double-exponential cost. We are going to show that elimination of nondetermin-
ism in constant height pushdown automata is at least super-exponential, i.e., it
cannot be bounded by 2p(h), for no polynomial p(h).

We start from the fact that any constant height npda, working with a finite
state set Q, pushdown alphabet Γ , and constant pushdown height h, can be

converted into an equivalent dfa with 2‖Q‖·‖Γ≤h‖ states, which is of course a
constant height dpda that does not actually use the power of pushdown storage.

One may think that a more sophisticated technique could lead to a smaller
constant height dpda, utilizing the capabilities of its pushdown store in a smarter
way. However, we shall show that this is not the case. In fact, we design {Lh}h≥1,
a family of languages, such that (i) Lh can be accepted by a constant height
npda using O(h) many states and pushdown height h with binary pushdown
alphabet, but (ii) any constant height dpda for Lh (with no restrictions on
the size of pushdown alphabet) cannot have both the number of states and the
pushdown height below 2p(h), for any polynomial p.

Note that a super-exponential lower bound cannot be obtained by standard
pigeonhole arguments directly, since already a machine with a single-exponential
pushdown height can reach a double-exponential number of different pushdown
configurations, so we need a more sophisticated counting argument.

2 Preliminaries

The set of words on an alphabet Σ, including the empty word ε, is denoted here
by Σ∗. By |ϕ|, we denote the length of a word ϕ ∈ Σ∗ and by Σi the set of words

of length i, with Σ0 = {ε} and Σ≤h =
⋃h

i=0Σ
i. For a word ϕ = a1 · · ·a�, let

ϕR = a� · · · a1 denote its reversal. By ‖S‖, we denote the cardinality of a set S,
and by Sc its complement. We assume the reader is familiar with the standard
models of deterministic and nondeterministic finite state automata (dfa and
nfa, for short) and pushdown automata (dpda and npda, see, e.g., [11]).

For technical reasons, we introduce the npdas in the following form [5], where
instructions manipulating the pushdown store are clearly distinguished from
those reading the input tape: an npda is a sextuplet A = 〈Q,Σ, Γ,H, qI, F 〉,
where Q is the finite set of states, Σ the input alphabet, Γ the pushdown alpha-
bet, qI ∈ Q the initial state, F ⊆ Q and Q\F the sets of accepting and rejecting
states, respectively, and H ⊆ Q×({ε}∪Σ∪{+,−}·Γ )×Q the transition relation,
establishing machine instructions with the following meaning:

(i) (p, ε, q) ∈ H : A gets from p to q without using the input tape or the
pushdown store.

(ii) (p, a, q) ∈ H : if the next input symbol is a, A gets from p to q by reading
the symbol a, not using the pushdown store.

(iii) (p,−X, q) ∈ H : if the symbol on top of the pushdown is X , A gets from p
to q by popping X , not using the input tape.

(iv) (p,+X, q) ∈ H : A gets from p to q by pushing the symbol X onto the
pushdown, not using the input tape.
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Such a machine does not need any initial pushdown symbol. An accepting com-
putation begins in the state qI with the empty pushdown store, and ends in an
accepting state p ∈ F after reading the entire input. As usual, L(A) denotes the
language accepted by the npda A.

A deterministic pushdown automaton (dpda) is obtained from npda by claim-
ing that the transition relation does not allow to execute more than one possible
instruction at a time. (As an example, a dpda cannot have a pair of instructions
of the form (p, ε, q1) and (p, a, q2), starting from the same state p.)

Traditionally (see, e.g., [11]), the dynamics of npdas is defined by a function
δ : Q× (Σ ∪ {ε})× Γ → 2Q×Γ∗

, combining input and pushdown operations into
a single step. However, a npda in this classical form can be easily turned into
our form and vice versa, preserving determinism in the case of dpdas.1

Given a constant h ≥ 0, we say that the npda A is of pushdown height h if, for
any ϕ ∈ L(A), there exists an accepting computation along which the pushdown
store never contains more than h symbols. Such a machine will be denoted by
a septuplet A = 〈Q,Σ, Γ,H, qI, F, h〉, where h ≥ 0 is a constant denoting the
pushdown height, and all other elements are defined as above. By definition, the
meaning of the transitions in the form (iv) is modified as follows:

(iv) (p,+X, q) ∈ H : if the current pushdown store height is smaller than h, then
A gets from the state p to the state q by pushing the symbol X onto the
pushdown, not using the input tape; otherwise A aborts and rejects.

For h = 0, the definition of constant height npda (dpda) coincides with that of
an nfa (dfa). For constant height npdas, a fair descriptional complexity measure
takes into account all the components the device consists of, i.e., (i) the number
of finite control states, (ii) the height of the pushdown store, and (iii) the size
of the pushdown alphabet [5].

In [1], the cost of implementing Boolean language operations on constant
height dpdas is investigated. In this paper, we shall need the following results:

Theorem 1 ([1, Thms. 3.1 and 3.2]). Each constant height dpda A = 〈Q,Σ,
Γ,H, qI, F, h〉 can be replaced by

(i) an equivalent constant height dpda A′ such that, on any input string, the
computation halts after reading the entire input (i.e., its computations are never
blocked in the middle of the input),

(ii) a constant height dpda A′′ accepting the complement of L(A).
Both A′ and A′′ use the same pushdown alphabet and pushdown height as does A,
with at most ‖Q‖(h+1)+1 states.

1 A classical transition δ(p, a,X) � (q,X1 . . . Xk) can be simulated by (p,−X,pX),
(pX , a, q0), (q0,+X1, q1), . . . , (qk−2,+Xk−1, qk−1), (qk−1,+Xk, q), where pX and
q0, . . . , qk−1 are new states, with obvious modifications for k < 2. This also requires
to store an initial pushdown symbol XI at the very beginning, using (q′I,+XI, qI),
where q′I is a new initial state. The converse transformation is also straightforward.
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3 A Double-Exponential Upper Bound

Here we show that a double-exponential increase in size is sufficient for sim-
ulating a constant height npda by an equivalent constant height dpda. Our
approach goes through the following steps: First, “remove the pushdown store”
by keeping all data in the finite state control, i.e., simulate an npda working with
a state set Q, a constant height h, and a pushdown alphabet Γ by an equivalent
nfa with at most ‖Q‖ · ‖Γ≤h‖ states. Second, make this nfa deterministic, i.e.,

transform it into a dfa with at most 2‖Q‖·‖Γ≤h‖ states, by the standard power
set construction. Let us begin with the first step (see also [5, Prop. 3]):

Lemma 2. For each constant height npda A = 〈Q,Σ, Γ,H, qI, F, h〉, there ex-
ists an equivalent nfa A′ = 〈Q′, Σ,H ′, q′I, F ′〉 with ‖Q′‖ ≤ ‖Q‖·‖Γ≤h‖.

Proof. The key idea is to keep the pushdown content of A, represented here by a
string γ ∈ Γ≤h (growing to the right), in the finite control state. The transitions
of A′ reflect step-by-step the evolution of both state and pushdown content.

Thus, we set Q′ = Q × Γ≤h, q′I = [qI, ε], F
′ = F × Γ≤h, and define H ′ as

follows, for any p, q ∈ Q, γ ∈ Γ≤h, a ∈ Σ, and X ∈ Γ :

– If (p, ε, q) ∈ H , then ([p, γ], ε, [q, γ]) ∈ H ′.
– If (p, a, q) ∈ H , then ([p, γ], a, [q, γ]) ∈ H ′.
– If (p,+X, q) ∈ H and |γ| < h, then ([p, γ], ε, [q, γX ]) ∈ H ′.
– If (p,−X, q) ∈ H and |γ| < h, then ([p, γX ], ε, [q, γ]) ∈ H ′.

The reader may easily verify that L(A′) = L(A). &"

Corollary 3. For each constant height npda A = 〈Q,Σ, Γ,H, qI, F, h〉, there
exists an equivalent constant height dpda A′′ = 〈Q′′, Σ, Γ ′′, H ′′, q′′I , F ′′, h′′〉 with
‖Q′′‖ ≤ 2‖Q‖·‖Γ≤h‖, Γ ′′ = ∅, and h′ = 0.

Proof. The double-exponential upper bound is obtained by applying the stan-
dard power set construction, making the nfa A′ of Lem. 2 deterministic. The
resulting dfa A′′ can obviously be viewed as a restricted constant-height dpda,
not using its pushdown store, with the claimed size. &"

Since the machine obtained in the above corollary does not, in fact, use the
pushdown storage at all, one may suspect that a more sophisticated technique—
using a full-featured constant height pushdown—could dramatically decrease
such a huge number of states. Surprisingly enough, we will show that our two-
step conversion is asymptotically optimal.

4 A Super-Exponential Lower Bound

Let us define the family of witness languages {Lh}h≥1 we shall be dealing with.
First, we fix the input alphabet to Σ = {0, 1, $} and let X = {0, 1}h. In what
follows, the elements of X will be called blocks . Clearly, we have ‖X‖ = 2h many
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different blocks. We say that a string ϕ is well formed, if it has the following
block structure:

ϕ = x1x2 · · ·xs$y1y2 · · · yr ,

where s, r ≥ 0 and xi, yj ∈ X , for i ∈ {1, . . . , s} and j ∈ {1, . . . , r}.

Definition 4. For each h ≥ 1, let Lh be the language consisting of

– all strings ϕ ∈ {0, 1, $}∗ which are not well formed,
– plus all well formed strings for which ∪s

i=1{xi}
⋂

∪r
j=1{yR

j } �= ∅, that is,
xi = yR

j for some i, j.

We need also an additional notation. We say that a string x = x1 · · ·xs ∈ X ∗

contains a block yR

j ∈ X , if yR

j ∈ ∪s
i=1{xi}. This can also be denoted by “yR

j ∈ x”.
In other words, |yR

j | = h, and yR

j is a substring of x that begins at a block
boundary.

We are going to prove that the languages {Lh}h≥1 can be accepted by constant
height npdas {Ah}h≥1 with O(h) states, pushdown height h, and the binary
pushdown alphabet but, in any constant height dpdas for these languages, either
the number of states or the pushdown height must be super-exponential (growing
faster than any exponential in h), no matter how large is the pushdown alphabet.
It is not hard to give a constant height npda for Lh:

Lemma 5. The language Lh can be recognized by a constant height npda A
using O(h) states, pushdown height h, and binary pushdown alphabet.

Proof. Let us informally describe the dynamics of A. In the first phase, it counts
the length of the initial part of the input (up to the symbol $) modulo h. If this
length is not an integer multiple of h, the input is not well formed an hence A
accepts immediately. While doing this, at each block boundary, A nondetermin-
istically chooses either to load the current input block in the pushdown or to
postpone the loading operation on some later block. If A never encounters $, it
accepts, since the input is not well formed.

In the second phase, after reading the symbol $, A similarly counts the length
of the second part of the input (the suffix from $) modulo h, but now, at each
block boundary, it nondeterministically chooses either to match the current input
block against the block loaded in the pushdown or to postpone the check on a
future block. A accepts if one of these block matchings is successful, if a second $
is read, or if the second part is not an integer multiple of h.

Clearly, since A counts modulo h, the number of states in A is bounded
by O(h). Moreover, since A stores a single block from X = {0, 1}h in the push-
down, we use the pushdown alphabet Γ = {0, 1} and the pushdown height h. &"

Consider now membership in Lc
h. By negating the membership condition

in Lh, we get that a string ϕ belongs to Lc
h if and only if:

– ϕ is well formed, i.e., ϕ = x1x2 · · ·xs$y1y2 · · · yr for some xi, yj ∈ X , and
– ∪s

i=1{xi}
⋂

∪r
j=1{yR

j } = ∅, that is, xi �= yR

j for each i, j.
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Theorem 6. Let {Ah}h≥1 be any constant height dpdas accepting the lan-
guages {Lc

h}h≥1, with no restrictions on the size of pushdown alphabets. Then,
for any polynomial p(h) and each sufficiently large h, the number of states and
the pushdown height of Ah cannot be both smaller than 2p(h).

Proof. From now on, for the sake of readability, we shall often write A instead
of Ah, and p instead of p(h).

Assume now, for contradiction, the existence of a constant height dpda A =
〈Q,Σ, Γ,H, qI, F, t〉 accepting Lc

h, in which both ‖Q‖ and t, the number of states
and the pushdown height, are smaller than 2p, for some polynomial p, using
an arbitrary pushdown alphabet Γ . By Thm. 1, we can assume without loss of
generality that, for any input string, A completely scans the entire input until the
end. (This only increases the number of states from 2p to ‖Q‖(t+1)+1 ≤ 22p+2,
keeping the same pushdown store.) We can also assume that p = p(h) ≥ h. Now
we are going to fool A, i.e., to show the existence of (at least) two strings ϕ1, ϕ2

such that ϕ1 ∈ Lc
h and ϕ2 /∈ Lc

h, but A accepts ϕ1 if and only if it accepts ϕ2.

First, we partition the blocks in X = {0, 1}h, upon which Lh is defined, into
two disjoint sets

U = {xi ∈ X : num(xi) <
1
82

h} and W = {xi ∈ X : num(xi) ≥ 1
82

h},

where num(xi) denotes the integer represented by the binary string xi. Clearly,
we have ‖U‖ = 1

82
h and ‖W‖ = ‖X‖ − ‖U‖ = 7

82
h. Define now the following

sets of strings composed of these blocks:

X0 = {x1 · · ·xs : num(x1) < . . . < num(xs) , x1, . . . , xs ∈ X} ,
U0 = {u1 · · ·us : num(u1) < . . . < num(us) , u1, . . . , us ∈ U} ,
W0 = {w1 · · ·ws : num(w1) < . . . < num(ws) , w1, . . . , ws ∈ W} .

Clearly, X0 = U0 ·W0. This follows from the fact that the blocks in each x ∈ X0

are sorted. Thus, x can be partitioned into x = uw, for some u ∈ U0 and w ∈ W0,
with boundary between u and w unambiguously given by the position of the first
block xi for which we have num(xi) ≥ 1

82
h. It is obvious that |u| and |w| are

integer multiples of h, that |u| ≤ h · 1
82

h, and that |w| ≤ h · 7
82

h, not excluding
the possibility of u = ε or w = ε.

This established a one-to-one correspondence between the subsets of X and
strings in X0: each B = {x1, x2, . . . , xs} ⊆ X corresponds to a binary string
xB ∈ X0, in which we list all blocks in sorted order. The same correspondence
holds between the subsets of U ,W and strings in U0,W0, respectively. Thus,

‖X0‖=2‖X‖=22
h

, ‖U0‖=2‖U‖=21/8·2
h

, ‖W0‖=2‖W‖=27/8·2
h

. (1)

Consider now a computation of A on a string x$ = uw$, where u ∈ U0, w ∈ W0,
and hence x ∈ X0. For this computation, we define the following parameters (see
also Fig. 2):

– �y ∈ {0, . . . , t}, the lowest height of pushdown store in the course of reading
the string w$,
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Fig. 2. Parameters along the first phase of the computation

– q� ∈ Q, the state in which the height �y is attained for the last time, along w$,
– �x ∈ {0, . . . , |w$|}, the distance from the beginning of w$ to the input posi-

tion in which q� is entered,
– γu be the pushdown content at the moment when q� is entered. Clearly, since

|γu| = �y, all symbols of γu had to be loaded in the pushdown in the course
of reading u, not modified in the course of reading w$, and hence γu does
not depend on w.

Since the machine uses ‖Q‖ ≤ 2p states, �x ≤ |w|+1 ≤ h · 7
82

h+1, and the
pushdown height is t ≤ 2p, the number of different triples [q�, �x, �y] can be
bounded by ‖Q‖ · (h · 7

82
h + 1) · t ≤ 24p, for each sufficiently large h. Now,

by considering (1) and a pigeonhole argument, we get the existence of a set
X1 ⊆ X0, with

‖X1‖ ≥ ‖X0‖
24p

= 22
h−4p, (2)

such that all strings in X1 share the same triple [q�, �x, �y]. Let us now build the
following “projection” sets from X1:

U1 = {u ∈ U0 : ∃w, such that uw ∈ X1} ,
W1 = {w ∈ W0 : ∃u, such that uw ∈ X1} .

Clearly, ‖U1‖ ≤ ‖U0‖ = 21/8·2
h

and ‖W1‖ ≤ ‖W0‖ = 27/8·2
h

, using (1). Note also
that X1 ⊆ U1 ·W1, with ‖X1‖ > 0, and hence also with ‖U1‖ > 0 and ‖W1‖ > 0.
Thus, we have ‖X1‖ ≤ ‖U1‖ · ‖W1‖, whence

‖W1‖ ≥ ‖X1‖
‖U1‖

≥ 22
h−4p

21/8·2h
= 27/8·2

h−4p.

Now, let us split W1 into the following two disjoint sets:

W2 = {w ∈ W1 : there exist more than one u ∈ U1 such that uw ∈ X1} ,
W c

2 = {w ∈ W1 : there exists exactly one u ∈ U1 such that uw ∈ X1} .
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Let ξ = ‖W2‖. First, using ‖W1‖ ≤ ‖W0‖ and (1), it is easy to see that

‖W c
2‖ = ‖W1‖ − ξ ≤ 27/8·2

h − ξ .

To evaluate a lower bound for ξ = ‖W2‖, observe that

X1 ⊆ U1 ·W1 = (U1 ·W c
2 ) ∪ (U1 ·W2) ,

but the contribution of elements from U1 ·W c
2 to the total number of elements

in X1 must be very “small”. Consequently, the contribution from U1 ·W2 must
be “large”. More precisely, observe that if w ∈ W c

2 , then it is impossible to have
u̇w ∈ X1 and üw ∈ X1 for two different strings u̇, ü ∈ U1. On the other hand,
if w ∈ W2, the number of strings uw ∈ X1 sharing this w is bounded only by

‖U1‖ ≤ ‖U0‖ = 21/8·2
h

, by (1). This gives us that

‖X1‖ ≤ 1·‖W c
2‖+ ‖U1‖ · ‖W2‖ ≤ (27/8·2

h−ξ) + 21/8·2
h · ξ .

By considering (2), one gets, for each sufficiently large h,

‖W2‖ = ξ ≥ ‖X1‖ − 27/8·2
h

21/8·2h − 1
≥ 22

h−4p − 27/8·2
h

21/8·2h

= 27/8·2
h−4p − 26/8·2

h ≥ 27/8·2
h−4p−1.

(3)

Let us now take, for each w ∈ W2, the first two different strings u̇, ü ∈ U1 such
that u̇w ∈ X1 and üw ∈ X1. (By definition ofW2, such strings must exist.) Since

the number of pairs u̇ �= ü is clearly bounded by ‖U1‖ · ‖U1‖ ≤ 21/8·2
h · 21/8·2h =

21/4·2
h

, again a simple pigeonhole argument yields a nonempty set W3 ⊆ W2, in
which all strings w share the same pair u̇ �= ü satisfying u̇w ∈ X1 and üw ∈ X1.
More precisely, using (3), we have

‖W3‖ ≥ ‖W2‖
‖U1‖ · ‖U1‖

≥ 27/8·2
h−4p−1

21/4·2h
= 25/8·2

h−4p−1. (4)

To sum up, we have found a set W3 such that all strings w ∈ W3 share
the same common pair u̇ �= ü and also the same triplet [q�, �x, �y] along the
computations on the inputs u̇w$ and üw$. Since u̇ �= ü, there must exist a block
yR
1 ∈ U such that yR

1 ∈ ü but yR
1 /∈ u̇. (The argument for yR

1 /∈ ü with yR
1 ∈ u̇ is

symmetrical, by swapping the roles of ü and u̇.)
Now, for all w ∈ W3, let us consider the computations of A on the strings

u̇w$y1. All these computations reach the same state q� after consuming u̇ and the
first �x symbols of w, with the same pushdown height at this moment, equal to �y.
Recall that �y is the lowest height of pushdown store in the course of reading
the string w$. Thus, also the pushdown content must be the same, some γu̇ of
length �y, loaded in the course of reading u̇. Moreover, these deepest �y symbols
in the pushdown will not be modified until the machine scans the symbol $.

At this point, we distinguish between the following two cases, depending on
whether, along the block y1, these computations will use the deepest �y symbols
in the pushdown store. More precisely, we have:
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Case I: There exists at least one w ∈ W3 such that the computation on u̇w$y1
never visits the deepest �y symbols in the pushdown store while processing y1.
First, let us fix one such string ŵ. Since ŵ ∈ W3 ⊆ W0 ⊆ W∗, the string ŵ is
composed only of blocks wi satisfying num(wi) ≥ 1

82
h. On the other hand, recall

that the block yR
1 ∈ U , and hence num(yR

1 ) <
1
82

h. This gives yR
1 /∈ ŵ. Recall

also that yR
1 ∈ ü but yR

1 /∈ u̇. Therefore, u̇ŵ$y1 ∈ Lc
h but üŵ$y1 /∈ Lc

h.
Compare now the computations on the inputs u̇ŵ$y1 and üŵ$y1. These two

computations are generally different. (See also Fig. 3.) However, after reading the

�

�

�

�

�

� �
�

��

x


y
q�

u̇ or ü ŵ y1

γu̇ or γü

Fig. 3. The second phase of the computation—Case I

first �x symbols of the string ŵ$, they both pass through the same state q� and the
respective pushdown contents at this moment are γu̇ and γü, with |γu̇| = |γü| =
�y. From the state q� forward, up to the end of the input, both computations
are identical, since they: (i) start from the same state q�, (ii) read the same
input symbols (namely, the last |ŵ$|−�x symbols of the string ŵ$ plus the entire
string y1), and (iii) never visit the deepest �y symbols in the pushdown (γu̇ or γü,
respectively). Hence, u̇ŵ$y1 is accepted if and only if üŵ$y1 is accepted, which
contradicts the fact that u̇ŵ$y1 ∈ Lc

h but üŵ$y1 /∈ Lc
h.

Case II: For all w ∈ W3, the computations on u̇w$y1 do visit the deepest �y
symbols in the pushdown store while processing y1. Hence, we can fix additional
parameters for each string w ∈ W3, namely:

– qk ∈ Q, the state in which the height �y is decreased to �y−1 for the first
time, in the course of reading y1,

– kx ∈ {1, . . . , |y1|}, the distance from the beginning of y1 to the input position
in which qk is entered. (See also Fig. 4.)

Since ‖Q‖ ≤ 2p and |y1| = h, the number of different pairs [qk, kx] is bounded by
‖Q‖ · h ≤ 22p. This, together with (4) and a pigeonhole argument, requires the
existence of a set W4 ⊆ W3, such that all w ∈ W4 share the same pair [qk, kx]
and hence, for each sufficiently large h,

‖W4‖ ≥ ‖W3‖
22p

≥ 25/8·2
h−4p−1

22p
= 25/8·2

h−6p−1 ≥ 2 .
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Fig. 4. The second phase of the computation—Case II

Thus, ‖W4‖ ≥ 2, and we can choose two different strings ẇ, ẅ ∈ W4. It means
that ẇ �= ẅ share the same u̇ (we now forget about ü, no longer required) and,
on the respective inputs u̇ẇ$y1 and u̇ẅ$y1, the same [q�, �x, �y] and also the same
[qk, kx]. Again, because ẇ �= ẅ, we can find a block yR

2 ∈ W such that yR
2 ∈ ẅ

but yR
2 /∈ ẇ. (The argument for yR

2 /∈ ẅ with yR
2 ∈ ẇ is symmetrical, by swapping

the roles of ẅ and ẇ.) Recall also that y1 was chosen so that yR
1 /∈ u̇. Second,

by a reasoning similar to that in Case I, we also get yR
1 /∈ ẇ and yR

2 /∈ u̇, taking
into account that num(yR

1 ) <
1
82

h, but all blocks in ẇ satisfy num(wi) ≥ 1
82

h,
and that num(yR

2 ) ≥ 1
82

h but, for blocks in u̇, we have num(ui) <
1
82

h. Putting
these facts together, we have that u̇ẇ$y1y2 ∈ Lc

h but u̇ẅ$y1y2 /∈ Lc
h.

The computations of A on these two inputs are clearly identical while pro-
cessing u̇, and they generally differ in the subsequent segments ẇ$ and ẅ$,
respectively. However, after reading the first �x symbols of these segments, both
computations pass through the same state q� and the pushdown content is also
the same at this moment, namely, γu̇ of length �y, loaded in the course of pro-
cessing u̇. After passing through the state q�, up to reaching qk, the computations
may differ again. However, the lower �y symbols in the pushdown will stay un-
changed. Thus, both computations reach the state qk with the pushdown content
equal to γu̇. By considering this latter fact, and due to the common suffix on
the input, namely, the last |y1y2|−kx symbols of the string y1y2, we get that,
from qk on, both computations turn out to proceed identically again, and hence
u̇ẇ$y1y2 is accepted if and only if u̇ẅ$y1y2 is accepted. This contradicts the fact
that u̇ẇ$y1y2 ∈ Lc

h but u̇ẅ$y1y2 /∈ Lc
h.

In conclusion, for each polynomial p = p(h) and each sufficiently large h,
each dpda A = Ah accepting Lc

h must use either more than 2p(h) states or a
pushdown height larger than 2p(h). &"

We are now ready to present the main super-exponential blow up:

Theorem 7. There exists {Lh}h≥1, a family of regular languages, such that

(i) there exists {Nh}h≥1, a sequence of constant height npdas accepting these
languages with binary pushdown alphabet, O(h) many states, and pushdown
height h, but
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(ii) for any constant height dpdas {Dh}h≥1 accepting these languages (with no
restrictions on the size of pushdown alphabets), for any polynomial p(h), and
for any sufficiently large h, either the number of states in Dh or its pushdown
height is above 2p(h).

Proof. The constant height npda for Lh (introduced in Def. 4) was given by
Lem. 5, which completes the argument for (i).
Now, suppose that Lh can be accepted by a constant height dpda having both
the number of states and the pushdown height bounded by 2p(h), for some poly-
nomial p(h). But then, by Thm. 1, the complement of Lh could be accepted
by a constant height dpda using 2p(h) · (2p(h)+1)+1 ≤ 22p(h)+2 states and the
pushdown height bounded by 2p(h) ≤ 22p(h)+2, which contradicts Thm. 6. &"

5 Conclusions and Open Problems

We tackled the problem of converting nondeterministic constant height
pushdown automata, npdas, into their deterministic version, dpdas, proving
super-exponential blow up in the size, by exhibiting a family of witness regular
languages. It may be interesting to remark that in the realm of finite mem-
ory devices, with the exception of converting alternating machines into simpler
ones [2], to the best of our knowledge this is the only case where elimination of a
single added feature is paid by a super-exponential blow up. Several interesting
questions may represent future research topics.

First, an interesting open problem is the complexity of converting an h-dpda
into nfa, i.e., giving up the pushdown store, but allowing nondeterminism, or
the other way around. For both conversions, exponential upper bounds follow
easily, but it is not known whether one or both conversions could not be done
better.

Second, it may be worth investigating the cost of eliminating nondetermin-
ism for restricted versions of npdas. For instance, one could study the cost for
npdas accepting unary languages, built over a single-letter alphabet. The same
investigation on nfas shows interesting asymmetries: the conversion of an n-state

unary nfa into an equivalent dfa has a tight bound e(1+o(1))·√n·lnn states while,
in the general case, the corresponding blow up is 2n [3]. By using this result in
the proof of Cor. 3, we can immediately improve our simulation and obtain that
any unary constant height npda can be simulated by a constant height dpda

(actually a dfa) with e(1+o(1))·
√

‖Q‖·‖Γ≤h‖·(ln ‖Q‖+h·ln ‖Γ‖) many states . Clearly,
it remains to show the optimality of this cost or to design a more sophisticated
simulation for unary constant height npdas.

One could also investigate the corresponding cost for counter machines (see,
e.g., [9,11]) of constant height, which are constant height npdas with a unary
pushdown alphabet. From Cor. 3, we directly get an equivalent deterministic
counter machine with only a single-exponential upper bound, namely 2‖Q‖·h

states. Again, the optimality of this trade-off should be certified.
Finally, in analogy to what has been done for finite state automata (see,

e.g., [6,13,14,18]), we would like to emphasize the interest in two-way devices.
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Abstract. We investigate the descriptional complexity of some inverse
language operations applied to languages accepted by finite automata.
For instance, the inverse Kleene star operation for a language L asks for
the smallest language S such that S∗ is equal to L, if it exists [J. Brzo-
zowski. Roots of star events. J. ACM 14, 1967]. Other inverse operations
based on the chop operation or on insertion/deletion operations can be
defined appropriately. We present a general framework, that allows us
to give an easy characterization of inverse operations, whenever simple
conditions on the originally considered language operation are fulfilled.
It turns out, that in most cases we obtain exponential upper and lower
bounds that are asymptotically close, for the investigated inverse lan-
guage operation problems.

1 Introduction

The study of the descriptional complexity of language operations is a vivid area
of research. After its decline in the mid 1970’s, a renewal initiated by the late
Sheng Yu in his influential paper [17] brought descriptional complexity issues, not
only for finite automata, back to life. Since then many aspects of descriptional
complexity of deterministic and nondeterministic finite automata, pushdown au-
tomata, and other language-accepting or -generating devices were studied. For
a recent survey on descriptional complexity issues on finite automata we refer
to [10] and [18]. In truth there is much more to regular languages, deterministic
finite automata, nondeterministic finite automata, etc., than one can summarize
in these surveys.

The operation problem on languages is well studied in the literature, and is
defined as follows: let ◦ be a fixed binary operation on languages that preserves
regularity; then given an n-state finite automaton A and an m-state finite au-
tomaton B, how many states are sufficient and necessary in the worst case (in
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Vigoni: Descriptional Complexity of Non-Classical Computational Models.”

M. Kutrib, N. Moreira, and R. Reis (Eds.): DCFS 2012, LNCS 7386, pp. 89–102, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



90 M.P. Bianchi et al.

terms of n and m) to accept the language L(A) ◦ L(B) by some automaton?
Obviously, this problem generalizes to unary operations on languages like, e.g.,
complementation or Kleene star. Tight bounds in the exact number of states for
classical language operations such as the Boolean operations union, intersection,
complement, and moreover concatenation, and Kleene star are known for deter-
ministic finite automata (DFAs) and nondeterministic finite automata (NFAs).
For instance, for the Kleene star operation, the tight bound on DFAs [17] reads
as 2n−1 + 2n−2, while for NFAs [9] it drops to n + 1 states. Thus, in general,
the Kleene star operation is expensive for DFAs, but cheap for NFAs, but there
are also other language operations such as, e.g., the complementation operation,
where it is exactly the other way around. For more results on some classical
language operations we refer to the already mentioned surveys. Besides these
classical operations also more exotic ones were investigated. Here we only want
to mention operations based on (alternative) forms of concatenations such as,
e.g., the chop operation [8] or the cyclic shift [12], and insertion/deletion related
operations such as, e.g., building the upward- or downward-closure of a lan-
guage [5,6,14]. In most cases tight bounds in the exact number of states, except
for some asymptotic bounds, were obtained.

Now the question arises, whether certain language operations, in particular
unary operations, can be inverted. It is clear, that this cannot always be done,
but one can find some examples in the literature where this problem was already
considered—see, e.g., [2,3,15]. For instance, in [2] the inverse Kleene star was in-
vestigated. There it was shown that every Kleene star closed language L, that is,
L = L∗, gives rise to an inclusion minimal set Smin such that S∗

min = L—cf. Equa-
tion (1). Moreover, an elegant characterization of this set was obtained, which
implies that the inverse Kleene star is a regularity preserving operation. The
descriptional complexity of the inverse Kleene star lacks investigation. In this
paper, we first identify conditions on unary operations ◦, which are recursively
defined on a language operation •, that allow the operation ◦ to be inverted. Here
the inversion is meant as in the case of the inverse Kleene star, giving an inclu-
sion minimal solution S satisfying S◦ = L, for a ◦-closed language L. Roughly
speaking, this minimal solution is described easily by means of removing the
elements from L that can be constructed with the help of the • operation. Then
we apply our findings to the following ◦-operations—the basic operation • the
◦-operation is build on, is listed in the corresponding bracket: Kleene star (with
concatenation), iterated chop (with chop), upward-closure Up (with insertion of
letters), and downward-closure Down (with deletion of letters). We also discuss
some limitations of our inversion theorem. Moreover, we investigate the descrip-
tional complexity of these inverse language operations, whenever the language to
be inverted is given as a finite automaton. In most cases we obtain exponential
upper and lower bounds, which are asymptotically close. For instance, for the
inverse Kleene star we show an upper bound of O(n · 2n) states and a lower
bound of Ω(2n) states.
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2 Definitions

We recall some definitions on finite automata as contained in [11]. A nondeter-
ministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F ), where Q
is the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q is the
initial state, F ⊆ Q is the set of accepting states, and δ : Q × Σ → 2Q is the
transition function. The language accepted by the finite automaton A is defined
as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ }, where the transition function is recur-
sively extended to δ : Q×Σ∗ → 2Q. A finite automaton is deterministic (DFA)
if and only if |δ(q, a)| = 1, for all states q ∈ Q and letters a ∈ Σ. In this case we
simply write δ(q, a) = p, for δ(q, a) = {p}, assuming that the transition function
is a mapping δ : Q × Σ → Q. So, any DFA is complete, that is, the transition
function is total, whereas for NFAs it is possible that δ maps to the empty set.

In the remainder of this section we recall the definition of the inverse Kleene
star operation, which was introduced in [2] to study the roots of star closed
languages. Here a language L is said to be star closed if and only if L = L∗.
Then the inverse star operation on a star closed language L is given by

L−∗ =
⋂

S∗=L

S, (1)

that is the smallest set, such that the Kleene star of this set is equal to L. In [2]
it is shown that the following properties hold, if L is a star closed language:

1. (L−∗)∗ = L.
2. L−∗ = Lλ \ L2

λ, where Lλ = L \ {λ}.
3. If L is regular, then L−∗ is regular, too.

Recently some aspects of inverse Kleene star applied to (star closed) context-free
languages were studied in [16]. This gives rise to the following definition.

Definition 1. Let ◦ be an arbitrary unary operation on languages. For a ◦-
closed language L, i.e., the language L satisfies L◦ = L, we define the inverse
◦-operation by

L−◦ =
⋂

S◦=L

S.

In order to clarify our notation we give two examples of language operations,
which are not invertible in this way. Both examples show certain subtle pitfalls
that may occur, when constructing the inverse of an operation ◦ according to
the above given definition.

Example 2. Let Σ be an arbitrary alphabet. Then define the rotation operation
←↩: Σ∗ → 2Σ

∗
by ←↩ (λ) = {λ} and ←↩ (ua) = {au}, for a ∈ Σ and u ∈ Σ∗.

Extending this language operation to sets L in the natural way by ←↩ (L) =⋃
u∈L ←↩ (u) and iterating the operation by �i (L) =←↩ (�i−1 (L)), for i ≥ 1,

and �0 (L) = L. Finally, the iterated rotation operation applied to a language L
is referred to L� and defined by L� =

⋃
i≥0 �i (L). Alternatively one can define
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L� = { vu | uv ∈ L with u, v ∈ Σ∗ }, which is also known under the name cyclic
shift operation [12] in the literature.

Now consider the cyclic shift closed language L = {abb, bab, bba}. It is easy to
see that any non-empty subset S of L satisfies S� = L. Thus, the language L−�

constructed according to Definition 1 can be written as

L−� =
⋂

S�=L

S =
⋂

∅
=S⊆L

S = {abb} ∩ {bab} ∩ {bba} ∩

{abb, bab} ∩ {abb, bba} ∩ {bab, bba} ∩ {abb, bab, bba} = ∅,
since the three different singleton sets {abb}, {bab}, and {bba} appear as solutions
in the intersection. Therefore, the equality (L−�)� = L does not hold. &"
The problem in the previous example is that the language has disjoint sets
of generators. Since we are interested in minimal generators, any of the three
singleton languages {abb}, {bab}, and {bba} could be seen as an appropriate
inverse of L, because they all generate L, and they are minimal (with respect to
set inclusion). But it can be even worse, as it may be that there is no minimal
generator at all. This is demonstrated by the following example.

Example 3. As in the previous example, let Σ be an alphabet. Then define
the deletion operation � : Σ∗ → 2Σ

∗
by �(λ) = ∅ and for a word u ∈ Σ+

let �(u) = { u1u2 | u = u1au2, for u1, u2 ∈ Σ∗ and a ∈ Σ }. As in the previ-
ous example this naturally extends to sets L by �(L) =

⋃
u∈L�(u). More-

over, we define the down operation by iterating the deletion operation namely
LDown =

⋃
i≥0 Downi(L), where Downi(L) = �(Downi−1(L)), for i ≥ 1,

and the termination condition is Down0(L) = L. Consider the Down closed
language L = a∗. With a similar reasoning as in the previous example we find
that L−Down = ∅, because, for instance, the following two disjoint sets Leven =
(a2)∗ and Lodd = a(a2)∗ both satisfy that their down-closure is equal to the
language L. Further there cannot be an inclusion minimal language Smin sat-
isfying SDown

min = L, which is seen as follows. Let SDown
0 = L for some lan-

guage S0 ⊆ a∗, and let ai be the shortest word in S0. Since ai+1 ∈ L, there
must be also some longer word aj in S0 with j > i, otherwise ai+1 could not
be generated by S0. But then also S1 = S0 \ {ai} satisfies SDown

1 = L. This
can be continued indefinitely, so there as an infinite descending strict inclusion
chain S0 ⊃ S1 ⊃ S2 ⊃ · · · , where for each i ≥ 0, we have SDown

i = a∗. This
shows the stated claim on the non-existence of an inclusion minimal generator
for the language L w.r.t. the down operation. &"
It turns out that the problems occurring in the above examples can be avoided by
disallowing the possibility to generate a word in the given language in infinitely
many ways. Now several questions on the inverse ◦-operation apply: (i) are there
any natural operations other than the Kleene star, for which properties similar
to the above-mentioned properties of the Kleene star hold, and (ii) what can
be said about the descriptional complexity of the inverse ◦-operation, if the
language L is given by a DFA or an NFA. We answer some of these questions in
the affirmative. Due to space constraints, most proofs are omitted.
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3 Inversion Operations

In this section we generalize the inversion technique from [2]. We provide a
framework of sufficient conditions, under which a unary operation on languages
(e.g., Kleene star), that can be seen as an iterated version of some underlying
operation (e.g., concatenation), can be inverted when applying the construction
given in Definition 1. Before we come to this, we also require some reasonable
properties for the basic operation, which underlies the iterated version that is
to be inverted. Since most operations in formal language theory are binary or
unary operations, we only consider these two cases.

First we discuss some reasonable and useful properties of operations. (i) Let
• : Σ∗ × Σ∗ → 2Σ

∗
be a binary operation on words, mapping to sets, that

naturally extends to languages U and V over Σ∗ by U • V =
⋃

u∈U,v∈V u • v
and which is associative on languages, i.e., U • (V •W ) = (U • V ) •W , for all
languages U, V,W ⊆ Σ∗. In the given characterization of an inverse operation
we will use so called pseudo-neutral elements. We call an element e ∈ Σ∗ pseudo-
neutral1 if e • v ⊆ {v} and v • e ⊆ {v}, for all v ∈ Σ∗. Then define the set of
pseudo-neutral elements E• = { e ∈ Σ∗ | e is pseudo-neutral }. The next step
is to iterate the •-operation in a suitable way. We say that a unary operation
◦ : 2Σ

∗ → 2Σ
∗
on languages is a well behaved iteration operation based on the

•-operation, if the recursive definition is written as L◦ =
⋃

i≥0 ◦i(L), where

◦0(L) = E• and ◦i(L) = L • (◦i−1(L)), for i ≥ 1. Note that if E• = ∅, then
this iteration yields L◦ = ∅ for any language L. But for the herein studied
operations, the basic binary operations • will satisfy E• �= ∅. (ii) Second, for a
unary operation • : Σ∗ → 2Σ

∗
we can do similar as above, by naturally extending

it to • : 2Σ
∗ → 2Σ

∗
acting on sets of words over the alphabet Σ. The set of

pseudo-neutral elements E• is then defined by E• = { e ∈ Σ∗ | •(e) ⊆ {e} } and
the recursive definition of the ◦-operation in L◦ must be altered to ◦0(L) = L
and ◦i(L) = •(◦i−1(L)), for i ≥ 1, in order to be called a well behaved iteration
operation. For unary •, the pseudo-neutral elements are not important for the
iteration, but they will play a role in the characterization of the inverse operation.
The next lemma gives useful properties for well behaved iteration operations.

Lemma 4. Let ◦ be a well behaved iteration operation on languages over the
alphabet Σ based on a binary operation •. Then the following inclusion relations
hold for all languages L,U, U ′, V, V ′ ⊆ Σ∗:

1. If U ⊆ U ′ and V ⊆ V ′, then U • V ⊆ U ′ • V ′.
2. If U, V ⊆ L◦, then U • V ⊆ L◦.

Corresponding inclusion relations are valid in case the ◦-operation is a well be-
haved iteration operation based on a unary operation •, namely •(U) ⊆ •(U ′),
if U ⊆ U ′, and •(U) ⊆ L◦, if U ⊆ L◦.
1 One could also differentiate between left- and right-(pseudo-)neutrals, but as-
suming there are only (pseudo-)neutral elements that are both left- and right-
(pseudo-)neutral simplifies our notation and some proofs, and in fact all operations
that will be studied later fulfill this condition.
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Proof. We only give the proof in case that the operation • is a binary operation
on languages. The results for the unary case can be shown by similar arguments
as given next.

The first statement is seen as follows. Let U ⊆ U ′ and V ⊆ V ′, then

U • V =
⋃

u∈U,v∈V

u • v ⊆
⋃

u′∈U ′,v′∈V ′
u′ • v′ = U ′ • V ′.

For the second statement let us prove first by induction that for every i, j ≥ 0,
we have (◦i(L)) • (◦j(L)) ⊆ ◦i+j(L), from which the second statement will then
be concluded. For i = 0 we have (◦0(L)) • (◦j(L)) ⊆ ◦j(L). Now let i > 0 and
assume by induction hypothesis that (◦k(L)) • (◦j(L)) ⊆ ◦k+j(L), for all k < i.
Then

(◦i(L)) • (◦j(L)) = (L • (◦i−1(L))) • (◦j(L))
= L • ((◦i−1(L)) • (◦j(L)))
⊆ L • (◦i−1+j(L))

= ◦i+j(L).

Now let U, V ⊆ L◦. Since for all words u, v ∈ L◦ there are integers i and j,
with i, j ≥ 0, such that u ∈ ◦i(L) and v ∈ ◦j(L), we obtain

u • v ⊆ (◦i(L)) • (◦j(L)) ⊆ ◦i+j(L) ⊆ L◦.

Thus, U • V =
⋃

u∈U,v∈V u • v ⊆ L◦ holds. &"

Before we can state the main theorem on the characterization of inverse opera-
tions, which are based on iteration, we need the definition of a relation, which
tells us that a “word u can be generated by v.” To this end we define for a binary
operation • acting on words over an alphabet Σ the relation>•⊆ Σ∗ ×Σ∗ as fol-
lows: for two words u, v ∈ Σ∗ let u >• v if and only if there is a word v′ ∈ Σ∗\E•
such that u ∈ v • v′ or u ∈ v′ • v. If • is a unary operation, the definition of the
relation >• simplifies to u >• v if and only if u ∈ •(v) and v ∈ Σ∗ \ E•. Then
we say that the language operation • is noetherian on a language L if and only
if the relation >• restricted to (L \ E•) × (L \ E•) is noetherian, which means,
that any descending chain v1 >• v2 >• v3 >• . . . , with vi ∈ L \ E•, for i ≥ 1, is
finite. Now we are ready for the theorem that characterizes inverse operations.

Theorem 5. Let ◦ be a well behaved iteration operation based on a binary op-
eration •. Moreover, let L ⊆ Σ∗ be a ◦-closed language and assume that • is
noetherian on L. Then (i) (L−◦)◦ = L and (ii) L−◦ = Le \ (Le • Le), where
Le = L\E•. A similar statement is valid in case • is a unary operation; then L−◦

must read as L \ •(Le) in statement (ii).

Proof. For proving the statement of the theorem, we discuss both cases of •
being unary or binary in parallel. Let M = Le \ (Le •Le) for the binary case and
M = L \ •(Le) in the unary case. We first show that M ⊆ L−◦ holds, and then
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we prove M◦ = L, from which M ⊇ L−◦, and finally statements (i) and (ii) can
be concluded.

For proving M ⊆ L−◦, let v ∈ M , and assume v /∈ L−◦ =
⋂

S◦=L S. This
means that v ∈ S◦ and v /∈ S holds for some S ⊆ Σ∗ that satisfies S◦ = L.
So there must be some integer j ≥ 1 (even j ≥ 2 in the binary case), such
that v ∈ ◦j(S) but v /∈ ◦i(S), for 0 ≤ i < j. We distinguish between the binary
and the unary case. In the binary case we have v ∈ v1 •v2 for some words v1 ∈ S
and v2 ∈ ◦j−1(S). Note that v1, v2 ∈ Le would contradict v ∈ Le\(Le•Le), so at
least one of the words v1 and v2 cannot belong to Le. Then at least one of these
two words belongs to E•, since S ⊆ L. But if v1 ∈ E•, then v = v2 ∈ ◦j−1(S),
and if v2 ∈ E•, then v = v1 ∈ S—in both cases we obtain a contradiction. In the
unary case we have v ∈ •(u) for some word u ∈ ◦j−1(S), and since v ∈ L\•(Le),
it must be u /∈ Le. But since u ∈ S ⊆ L, we obtain u ∈ E•, and so u = v—a
contradiction to v /∈ ◦j−1. Thus the assumption v /∈ L−◦ cannot hold, which
proves M ⊆ L−◦.

We now show thatM◦ = L. SinceM ⊆ L, by applying Lemma 4 we obtain the
inclusion M◦ ⊆ L◦ = L. For the other inclusion, L ⊆ M◦, let v ∈ L. If v ∈ M ,
then also v ∈ M◦. For the case v /∈ M we distinguish between the binary and
the unary case again.

1. If • is unary, for v /∈ M , it must be v ∈ •(v1) for some word v1 ∈ Le.
If v1 ∈ M◦, then also v ∈ M◦ by Lemma 4. The other case, v1 /∈ M◦ will lead
to a contradiction in the following. Assume v1 /∈ M◦, then certainly v1 /∈ M .
But since v1 ∈ Le it must be v1 ∈ •(Le), so there must be a word v2 ∈ Le

with v1 >• v2, such that v1 ∈ •(v2). If v2 ∈ M◦, then also v1 ∈ M◦—a
contradiction. So it must be v2 /∈ M◦, and by continuing this argumentation
indefinitely, we obtain an infinite descending chain v1 >• v2 >• v3 >• . . . ,
but this is a contradiction to • being noetherian. Thus, the case v1 /∈ M◦

cannot appear, which implies that v ∈ M◦.
2. Consider now the case v /∈ M , where • is binary. If v ∈ E•, then also v ∈ M◦,

so we also assume v /∈ E• here. Then v belongs to Le • Le, because other-
wise v ∈ L would also belong to M—recall M = Le \ (Le • Le). This means
that there are words v1, v2 ∈ Le, satisfying v ∈ v1 • v2, and thus v >• v1
and v >• v2. If both words v1 and v2 belong to M◦, then by Lemma 4
also v ∈ M◦. Again, we show in the following, that the other case, v1 /∈ M◦

or v2 /∈ M◦, cannot appear. Assume v(1) /∈ M◦, where v(1) = v1 or v(1) = v2.
Then we have v(1) ∈ Le, and v(1) /∈ M , and we can conclude v(1) ∈ ◦2(Le),

as above for the word v. So v(1) ∈ v
(1)
1 • v(1)2 for words v

(1)
1 , v

(1)
2 ∈ Le,

with v(1) >• v
(1)
1 and v(1) >• v

(1)
2 . If both words v

(1)
1 and v

(1)
2 would belong

to M◦, then we obtain v(1) ∈ M◦, which is a contradiction. Then, again,

there must be a word v(2) ∈ {v(1)1 , v
(1)
2 } that does not belong to M◦. By

continuing this argumentation indefinitely again, we obtain the descending
chain v >• v(1) >• v(2) >• . . . that is infinite—this contradicts • being
noetherian, which implies v ∈ M◦.
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Thus, also the inclusion L ⊆ M◦ holds, and we have shown M◦ = L. This
implies L−◦ =

⋂
S◦=L S ⊆ M , and together with the inclusion M ⊆ L−◦ from

above, we obtain L−◦ = M , which proves both statements (i) and (ii). &"

Note that there is a certain asymmetry in the second statement for binary and
unary operations •, which is induced by the terminating conditions of the re-
cursion schemes that are used for the definition of the well behaved iteration
operation ◦.

So far we have seen, that if the operation ◦ is the iterated version of an
operation • with some reasonable properties, then we can construct L−◦ from
the language L by combining set difference and a single application of •. It
is immediate, that if • is a regularity preserving operation and L is a regular
language with L◦ = L, then also L−◦ is a regular language. In fact, this is the
case for all operations that will be studied in the following, namely, Kleene star,
chop-star, Up, and Down. In the following subsections, we apply Theorem 5 to
these operations, and study the descriptional complexity of the corresponding
inverse operations.

3.1 Inverse Kleene Star

The following result on the inverse star L−∗ of a star closed language L, which
was presented in [2], can now also be verified by using Theorem 5. To this end
we have to slightly alter the standard definition of the concatenation operation
from the literature to map to a singleton set, i.e., let · : Σ∗ × Σ∗ → 2Σ

∗
be

defined by u · v = {uv}, for u, v ∈ Σ∗. This naturally extends to languages by
L1 · L2 =

⋃
u∈L1,v∈L2

u · v and to the Kleene star iteration by

L∗ =
⋃
i≥0

∗i(L), where ∗i (L) = L · (∗i−1(L)), for i ≥ 1, and ∗0 = {λ}.

It easy is to see that E· = {λ}, which induces that the Kleene star operation is a
well behaved iterated operation in our terminology. Since · is noetherian on Σ+

because u >· v implies |u| > |v|, for all words u and v in Σ+, we can apply
Theorem 5, by choosing · for • and ∗ for ◦, which leads us to the next result
that already appeared in [2].

Theorem 6. Let L be a Kleene star closed language. Then (i) (L−∗)∗ = L, and
(ii) L−∗ = Lλ \ (Lλ · Lλ), where Lλ = L \ {λ}. &"

Using this characterization we get an upper bound for the state complexity
of the inverse Kleene star of a regular language L by constructing automata
accepting Lλ \ (Lλ · Lλ). Since the construction will not rely on L being star
closed, the bound holds for regular languages in general.

Theorem 7. Let L be a language accepted by some n-state DFA. Then n ·2n+1
states are sufficient for a DFA to accept Lλ\(Lλ ·Lλ). If L is Kleene star closed,
this upper bound also holds for automata accepting L−∗. &"
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Next we show that this bound is asymptotically close already for a binary al-
phabet, by proving an exponential lower bound on the state complexity of the
inverse Kleene star. Note that the following lower bound even holds for NFAs.

Theorem 8. For any integer n ≥ 4 there exists a Kleene star closed language Ln

over a binary alphabet accepted by an n-state DFA, such that any NFA accept-
ing L−∗

n needs at least 2n−4 states.

Proof (Sketch). The star closed language L = a · {a, b}n−4 · b · {a, b}∗ ∪ {λ} can
be accepted by an n-state DFA. Further, L−∗ = { avbw | v ∈ {a, b}n−4, and w
has no infix in a · {a, b}n−4 · b }, and S = { (abn−4bw, bw) | w ∈ {a, b}n−4 } is an
extended fooling set2 [1,4] of size 2n−4 for L−∗. &"

3.2 Inverse Chop-Star

Recently the chop operation and its iterated variant were used to describe regular
languages by so called chop expressions [8]. The chop3 or fusion of two words
is similar to their concatenation, but it is only defined if the touching letters of
the words coincide, and if so, these letters get merged. Formally u)v = { u′av′ |
u = u′a and v = av′, for u′, v′ ∈ Σ∗ and a ∈ Σ }, for u, v ∈ Σ∗. It is easy to see
that the set of pseudo-neutral elements is E� = Σ. Again the chop operation
generalizes to languages in a similar vein as for concatenation. Then the iterated
chop or chop-star of a language L is defined as

L⊗ =
⋃
i≥0

⊗i(L), where ⊗i(L) = L) (⊗i−1(L)), for i ≥ 1, and ⊗0(L) = Σ.

Utilizing Theorem 5, by taking ) for • and ⊗ for ◦, we obtain the following
characterization for L−⊗, since all necessary preconditions, in particular, that
the relation >� is noetherian on Σ+, are satisfied.

Theorem 9. Let L be a chop-star closed language over the alphabet Σ. Then
(i) (L−⊗)⊗ = L, and (ii) L−⊗ = LΣ \ (LΣ ) LΣ), where LΣ = L \Σ. &"

For the descriptional complexity of the inverse chop-star, similar results as in
the case of the inverse Kleene star are obtained. Using the characterization of
Theorem 9, we obtain the following upper bound for the state complexity of the
inverse chop-star.

Theorem 10. Let L be a language over alphabet Σ accepted by an n-state DFA.
Then ((n − 1)2 + n) · 2n + n + 1 states are sufficient for a DFA to accept the
language LΣ \ (LΣ)LΣ), where LΣ = L\Σ. If L is chop-star closed, this upper
bound also holds for automata accepting L−⊗. &"
2 An extended fooling set S for a language L is a set of pairs (xi, yi), for 1 ≤ i ≤ n,
such that (i) xiyi ∈ L, and (ii) xiyj /∈ L or xjyi /∈ L, for 1 ≤ i, j ≤ n and i �= j. In
this case, any NFA accepting L needs at least |S| = n states.

3 We like to point out that this operation differs from the latin product defined in [13]
only if the words have no overlap. In that case, the latin product is just the concate-
nation of both words.
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This upper bound is asymptotically close to the lower bound, which can be
shown with the same technique as in the proof of Theorem 8 for the inverse
Kleene star.

Theorem 11. For any integer n ≥ 5 there exists a chop-star closed language Ln

over a binary alphabet accepted by an n-state DFA, such that any NFA accepting
the language L−⊗

n needs at least 2n−5 states. &"

3.3 Inverse Up and Down

In this section we consider the upward and downward closure of languages,
which are operations based on the insertion and deletion of letters. The in-
sertion operation � : Σ∗ → 2Σ

∗
is defined for all words u ∈ Σ∗ as follows:

�(u) = { u1au2 | u1, u2 ∈ Σ∗, a ∈ Σ, u1u2 = u }, and similarly the deletion
operation � : Σ∗ → 2Σ

∗
is defined for all u ∈ Σ∗ as �(u) = { u1u2 | u1, u2 ∈

Σ∗, a ∈ Σ, u1au2 = u }. Note that �(λ) = ∅. These operations naturally gen-
eralize to languages by setting �(L) =

⋃
v∈L �(v), and �(L) =

⋃
v∈L �(v),

for all languages L ⊆ Σ∗. Then, for a language L ⊆ Σ∗, the upward closure LUp

is

LUp =
⋃
i≥0

Upi(L), where Upi(L) = �(Upi−1(L)) for i ≥ 1, and Up0(L) = L,

and the downward closure LDown of L is

LDown =
⋃
i≥0

Downi(L), where Downi(L) = �(Downi−1(L)), for i ≥ 1,

and Down0(L) = L. Note that the languages LUp and LDown are also called
Higman-Haines sets of L in [5] and [6]. The upward closure LUp of a language L
over the alphabet Σ can also be described as the shuffle of L with Σ∗, i.e.,

LUp = L�Σ∗ =
⋃

a1a2...an∈L

Σ∗a1Σ∗a2Σ∗ . . . Σ∗anΣ∗.

We will use Theorem 5 again, to characterize the inverse languages L−Up and
L−Down. For L−Up, which is based on �, note that there are no words e ∈ Σ∗

with �(e) ⊆ {e}, i.e., there are no pseudo-neutral elements. Further the opera-
tion � is noetherian on Σ∗, because u ∈ �(v) implies |u| > |v|, for all words u
and v. Thus we obtain the following.

Theorem 12. Let L be an Up closed language over Σ. Then (i) (L−Up)Up = L
and (ii) L−Up = L \�(L). &"

What can be said about the state complexity of L−Up? Using a generalized cross
product construction with a power set construction in the second component, an
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upper bound4 of O(n · 2n) for the state complexity of L−Up can be obtained. In
fact, a tight bound of (n− 2) · 2n−2+3 for the state complexity of L \ (L�Σ+),
for some (not necessarily Up closed) n-state DFA language L is obtained in [15].
Whether such an exponential blow-up also appears for Up closed languages has
to be left open for now.

We now turn to the inverse Down, where we want to apply Theorem 5 in the
obvious way by choosing � for •, and Down for ◦. But we have to be more care-
ful about the condition of • being noetherian on the input language L, because
this time the basic operation � is not noetherian on Σ∗. This problem already
showed up in Example 3. If we consider the Down closed language L = a∗, then
we have ai ∈ �(ai+1), for all i ≥ 1, so there is an infinite descending chain
a >� a2 >� a3 >� . . . , which shows that � is not noetherian on L. Thus,
Theorem 5 does not apply in this case. In fact, we can show that whenever L
is an infinite Down closed language—note that any Down closed language is
regular [7], then L has no minimal regular generator, i.e., there is no regular
language S satisfying SDown = L, such that S is minimal with respect to set
inclusion.

Theorem 13. Let L ⊆ Σ∗ be an infinite Down closed language and S ⊆ Σ∗ be
a regular language satisfying SDown = L. Then there is a proper subset S′ � S,
satisfying S′Down = L. &"

So, whenever L = LDown is infinite, then there is no minimal generator. But
on the other hand, if L is a finite and Down closed language, then there is
such a generator again, because then � is easily seen to be noetherian on L,
since u ∈ �(v) implies |u| < |v|. Now our result on the inverse Down operation
for finite languages reads as follows—note that E� = {λ}.

Theorem 14. Let L be a finite Down closed language over Σ. Then we have
(i) (L−Down)Down = L and (ii) L−Down = L \�(Lλ), where Lλ = L \ {λ}. &"

This characterization can be used to obtain an upper bound for the state com-
plexity of L−Down by constructing an automaton that accepts L \�(Lλ).

Theorem 15. Let L be a language accepted by an n-state DFA. Then n · 2n
states are sufficient for a DFA to accept L\�(Lλ), where Lλ = L\{λ}. If L is fi-
nite and Down closed, this upper bound also holds for a DFA accepting L−Down.

&"
4 An upward closed language L is also called an all-sided ideal in [3]. There it is
said that for an all-sided ideal with quotient complexity n, the quotient complex-
ity of its minimal generator is at most n + 1, and this bound is tight. Since the
quotient complexity of a language is the same as the deterministic state complex-
ity of the language, and L−Up is the minimal generator for LUp, this result would
imply a tight bound of n + 1 states for the state complexity of L−Up. We give a
counter example to the above mentioned result. Consider the minimal generator
language S = {aa, ab, ac, ba, bbb, bbc}, and its upward closure L = SUp. The minimal
DFA for L has n = 4 states, while the minimal DFA for S has n+ 2 = 6 states.
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In the remaining part of this section we will also prove an exponential lower
bound for the state complexity of L−Down. To this end, we inductively define
languages Gn and G′

n over the alphabet Σn = { ai, bi, ci, di, ei | 1 ≤ i ≤ n } as
follows: Let5

Gn = dnenGn−1bn

+ an(Gn−1 +G′
n−1)(bn + cn)

+ enGn−1cn

+ enG
′
n−1(bn + cn),

G′
n = enGn−1bn

+ dnenGn−1cn

+ dnenG
′
n−1(bn + cn).

(2)

for n ≥ 1, and set G0 = {λ} and G′
0 = ∅.

Lemma 16. The minimal DFA for the language Gn requires Θ(2n) states.

Proof. (Sketch) We inductively construct the minimal DFA An for Gn as shown
in Figure 1. We omit, for brevity, the description of the base case n = 1: the
reader can easily check that A1 has the same structure as the innermost part
of D3. We let An−1 = ({s1, . . . , sm, qT }, Σn−1, δn−1, s1, {sm}) be the minimal
DFA for the language Gn−1, and A+ = ({p1, . . . , p�, qT }, Σn−1, δ+, p1, {p�}) be

the minimal DFA for the set Gn−1 +G′
n−1 =

(∏n−1
i=0 (dn−ien−i + an−i + en−i)

)
(
∏n

i=1(bi + ci)), where, in both cases, qT indicates the trap state. One can eas-
ily check that A+ has 3n + 2 states, and only one of them is final, while we
assume An−1 has only one accepting state by induction. In Figure 1, the states

Q(1) = {q(1)1 , . . . , q
(1)
� } in D1 are non-accepting copies of p1, . . . , p�, while the

states Q(2) = {q(2)1 , . . . , q
(2)
m } in D2 and Q(3) = {q(3)1 , . . . , q

(3)
m } in D3 are non-

accepting copies of s1, . . . , sm. Moreover, the function δn describes the transitions
shown in Figure 1 involving qin, q0 and qfin, plus the following ones:

δn(q
(1)
j , σ) = q

(1)
k

for every σ ∈ Σn−1, j, k ≥ 1, if δ+(pj , σ) = pk, i.e., the transitions in A+ are
copied in D1,

δn(q
(2)
j , σ) = q

(2)
k and δn(q

(3)
j , σ) = q

(3)
k

for every σ ∈ Σn−1, j, k ≥ 1, if δn−1(sj , σ) = sk, i.e., the transitions in An−1 are
copied in D2, D3,

δn(δn(q
(3)
1 , vjen−jwj), bn−j) = δn(δn(q

(3)
1 , vjdn−jen−jwj), cn−j) = q

(1)
�−j+1, (3)

where, for 1 ≤ j ≤ n − 1, vj ∈
∏j−1

k=1(dn−ken−k), wj ∈ Gn−1−j , and q
(1)
�−j+1 =

δn(q
(1)
1 , vjen−jwjbn−j). These transitions are the ones from D3 to D1 shown in

bold in Figure 1. All the undefined transitions of δn go to the trap state qT .

5 In abuse of notation, to keep the presentation simple, we write + to denote the union
and

∏
as a short hand notation for the concatenation of elements from left to right

according to the running index.
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qin qfin

q0
dn

q
(2)
1

en
q
(2)
m bn

An−1
D2

q
(1)
1

an

dn−1 en−1

an−1, en−1

dn−2 en−2

an−2, en−2

· · ·
d1 e1

a1, e1
b1, c1

· · · q
(1)
�

bn, cnbn−1, cn−1

D1

q
(3)
1

en

dn−1

en−1

en−1

dn−2

en−2

en−2

q
(3)
m

cn

· · ·
· · ·

· · ·
· · ·

bn−1

cn−1

cn−1

bn−1

· · ·
· · ·

bn−2

cn−2

cn−2

bn−2

· · ·
· · ·

d1

e1

c1

e1

b1

a1

b1

c1

b1, c1
· · ·· · ·

D3

Fig. 1. Structure of the DFA An. The edges in bold represent the transitions from
states in D3 to states in D1 defined in Equation (3). For sake of readability, the trap
state is omitted in the figure.

It can be easily shown that An is the minimal DFA for Gn: intuitively, words
whose computation path goes through the whole automaton D1 (D2 and D3,
respectively) are the ones of the form an(Gn−1 +G′

n−1)(bn + cn) (dnenGn−1bn
and enGn−1cn, respectively), while the words whose computation goes through
the edges described by Equation (3), are of the form enG

′
n−1(bn + cn). The set

of states of An is Qn = {qin, q0, qfin, qT } ∪ Q(1) ∪ Q(2) ∪ Q(3), thus we have
|Qn| = 3n+ 2|Qn−1|, with |Q1| = 6, which is of order Θ(2n). &"

Since enGn−1bn ∈ GDown
n , when applying the down operation to Gn, the part D3

in Figure 1 collapses into D2 at each level, leading to the following bound:

Lemma 17. The minimal DFA for the language GDown
n requires O(n2) states.

Since language Gn is scattered subword free, it is the smallest generator set
for GDown

n , therefore, Lemmata 16 and 17 directly imply the following result.

Theorem 18. For any integer n ≥ 1 there exists a finite Down closed lan-
guage Ln over an alphabet of size O(

√
n) accepted by an n-state DFA, such that

any DFA accepting the language L−Down
n needs at least Ω(2

√
n) states. &"
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Abstract. Partial words are sequences over a finite alphabet that may
have holes that match, or are compatible with, all letters in the alphabet;
partial words without holes are simply words. Given a partial word w,
we denote by subw(n) the set of subwords of w of length n, i.e., words
over the alphabet that are compatible with factors of w of length n. We
call a set S of words h-representable if S = subw(n) for some integer n
and partial word w with h holes. Using a graph theoretical approach,
we show that the problem of whether a given set is h-representable can
be decided in polynomial time. We also investigate other computational
problems related to this concept of representability.

1 Introduction

In the past several years, algorithms and combinatorics on words, or sequences
of letters over a finite alphabet, have been developing and many important ap-
plications in several areas including emergent areas, such as Bioinformatics and
DNA computing, have been found (see, for instance, [6,10]). In 1999, being mo-
tivated by molecular biology of nucleic acids, Berstel and Boasson [2] used the
terminoloy of partial words for sequences that may have undefined positions,
called don’t-care symbols or holes, that match any letter in the alphabet (se-
quences with don’t-cares were actually introduced by Fischer and Paterson [7] in
1974). Partial words are a special case of so-called generalized or indeterminate
or degenerate sequences, first discussed in 1987 by Abrahamson [1] and studied
since 2003. Algorithms and combinatorics on partial words have been recently
the subject of much investigation (see, for instance, [3]).

In this paper, we introduce a few computational problems on partial words
related to subwords. Subwords have been studied in relation to combinatorics
on words (see, for instance, [9]). In particular, we define Rep, or the problem of
deciding whether a set S of words of length n can be represented by a partial
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under Grant No. DMS–1060775.
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word w, i.e., whether S = subw(n). If h is a non-negative integer, we also define
h-Rep, or the problem of deciding whether S can be represented by a partial
word with exactly h holes. Recently, Blanchet-Sadri et al. [4] started the study
of representing languages by infinite partial words. Here, we deal with finite
representing partial words rather than infinite ones. One of our motivations for
studying representability of sets of words of equal length is the construction
of compressed de Bruijn sequences, which are partial words of minimal length
representing An for some alphabet A and integer n [5].

It is known that 0-Rep is in P . Indeed, set subS(m) = {x | |x| = m and
x is a subword of some s ∈ S} and let GS = (V,E) be the digraph where
V = subS(n − 1) and E = S, with s ∈ S being directed from s[0..n − 1) to
s[1..n). Finding a word w such that subw(n) = S is the same as finding a path
in GS that includes every edge at least once. However, showing the membership
of h-Rep in P is not that simple.

The contents of our paper is as follows: In Section 2, we prove the membership
of Rep and h-Rep in NP . In Section 3, for any fixed non-negative integer h,
we describe an algorithm that runs in polynomial time which, given a set S of
words of length n, decides if there is a partial word w with h holes such that
S = subw(n) (our algorithm actually constructs w), showing the membership of
h-Rep in P . In Section 4, we prove that some natural subproblem of Rep is in
P . Finally in Section 5, we conclude with some remarks.

We need some background material on partial words (for more information,
we refer the reader to [3]). An alphabet A is a non-empty finite set of letters.
A (full) word w = a0 · · ·an−1 over A is a finite concatenation of letters ai ∈ A.
The length of w, denoted by |w|, is the number of letters in w. The empty word
ε is the unique word of length zero. A partial word w over A is a sequence of
symbols over the extended alphabet A∪{ }, where  /∈ A plays the role of a hole
symbol. The symbol at position i is denoted by w[i]. The set of defined positions
of w, denoted by D(w), consists of the i’s with w[i] ∈ A and the set of holes of
w, denoted by H(w), consists of the i’s with w[i] =  . If H(w) = ∅, then w is a
(full) word.

For two partial words w and w′ of equal length, we denote by w ⊂ w′ the
containment of w in w′, i.e., w[i] = w′[i] for all i ∈ D(w); we denote by w ↑ w′

the compatibility of w with w′, i.e., w[i] = w′[i] for all i ∈ D(w) ∩ D(w′). A
completion ŵ is a full word compatible with a given partial word w. For example,
ab  b ⊂ ab ab, ab  b ↑ a a  , and ababb is one of the four completions of ab  b
over the binary alphabet {a, b}.

If w is a partial word over A, then a factor of w is a block of consecutive
symbols of w and a subword of w is a full word over A compatible with a factor
of w. For instance, ab  b is a factor of aaab  ba , while abaab, ababb, abbab, abbbb
are the subwords compatible with that factor. The factor w[i]w[i+1] · · ·w[j− 1]
will be abbreviated by w[i..j), the discrete interval [i..j) being the set {i, i +
1, . . . j − 1}. Then sub(w) is the set of all subwords of w; similarly, subw(n) is
the set of all subwords of w of length n. Letting h be a non-negative integer,
we call a set S of words h-representable if S = subw(n) for some integer n and
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partial word w with h holes; we call S representable if it is h-representable for
some h.

We also need some background material on graph theory. For instance, recall
that a digraph G is strongly connected if, for every pair of vertices u and v, there
exists a path from u to v. For other concepts not defined here, we refer the reader
to [8].

2 Membership of Rep and h-Rep in NP
In this section, we show that Rep and h-Rep are both in NP . To do this we
need the following lemmas.

Lemma 1. Let S be a set of words of length n. If S is representable, then there

exists a partial word w with |w| ≤ n(2|S|−1)+ |S|(|S|−1)
2 such that S = subw(n).

Proof. Assume that w is the shortest partial word such that S = subw(n). Set
S = {s0, . . . , s|S|−1}. Let ij be the smallest integer such that sj ↑ w[ij ..ij + n).
Without loss of generality, we can assume that 0 = i0 ≤ i1 ≤ i2 ≤ · · · ≤ i|S|−1.
Clearly, the partial word w[0..i|S|−1+n) contains every word in S as a subword,
so since w is minimal it must be the case that w = w[0..i|S|−1+n), which implies

|w| = i|S|−1 + n = n+

|S|−1∑
j=1

(ij − ij−1) (1)

Now, assume towards a contradiction that ij − ij−1 > j + 2n for some j, where
1 ≤ j ≤ |S|−1. By definition of ij, this implies that if ij−1 ≤ l < ij then w[l..l+n)
is compatible with one of s0, . . . , sj−1. However, since ij − ij−1 > j + 2n there
must be at least j + 1 integers in the discrete interval [ij−1 + n..ij − n). By
the pigeonhole principle, this implies that we can find j′, l1, and l2 such that
0 ≤ j′ ≤ j−1, ij−1+n ≤ l1 < l2 < ij−n, w[l1..l1+n) ↑ sj′ , and w[l2..l2+n) ↑ sj′ .
Since sj′ is a full word, we have both containments w[l1..l1 + n) ⊂ sj′ and
w[l2..l2 + n) ⊂ sj′ .

Thus consider the partial word w′ = w[0..l1)sj′w[l2+n..|w|). We want to prove
that subw′(n) = S. First, consider sl ∈ S. If l ≤ j − 1 we get il + n ≤ l1, thus
w[il..il+n) is a factor of w[0..l1), which by definition of il means sl is a subword
of w[0..l1), and thus is a subword of w′. A similar argument works when l ≥ j,
so S ⊆ subw′(n). Next, consider s ∈ subw′(n). Then s is a subword of either
w[0..l1)sj′ or sj′w[l2+n..|w|). Without loss of generality, assume it is a subword
of w[0..l1)sj′ . Since w[l1..l1 + n) ⊂ sj′ , we have w[0..l1 + n) ⊂ w[0..l1)sj′ . This
implies that s is a subword of w, and thus must be in S. Therefore, S = subw′(n).

Note, however, that w′ is strictly shorter than w, which contradicts the min-
imality of w. Therefore, ij − ij−1 ≤ j + 2n for all j ∈ [1..|S|). So we get

|w| = n+

|S|−1∑
j=1

(ij − ij−1) ≤ n+

|S|−1∑
j=1

(j + 2n) = n(2|S| − 1) +
|S|(|S| − 1)

2

&"
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Lemma 2. Let S be a set of words of length n. If S is h-representable, then there
exists a partial word w with h holes such that |w| ≤ n+(|S|+n+1)(|S|+h− 1)
and such that S = subw(n).

Proof. The proof is similar to the one of Lemma 1. &"

Proposition 1. Rep and h-Rep are in NP.

Proof. This is an immediate consequence of Lemma 1 and Lemma 2. &"

The question arises as to whether the problems Rep and h-Rep are in P .

3 Membership of h-Rep in P
As mentioned before, 0-Rep is in P . In this section, we show that h-Rep is
also in P for any fixed non-negative integer h. We describe a polynomial time
algorithm, Algorithm 3, that given a set S of words of length n, decides if there
is a partial word w with h holes such that S = subw(n). If so, this algorithm
constructs one such w.

The following definition partitions the set of vertices of a digraph into disjoint
sets.

Definition 1. Let G = (V,E) be a digraph. If u, v ∈ V then we write u ⇀ v if
there exists a path in G from u to v. Then V = ∪r

i=0Vi, where

V0 = {v ∈ V | if u ∈ V and u ⇀ v, then v ⇀ u}

and for i > 0,

Vi = {v ∈ V −
i−1⋃
j=0

Vj | if u /∈
i−1⋃
j=0

Vj and u ⇀ v, then v ⇀ u }

Note that the Vi’s form a partition of V into disjoint sets. Letting Gi = (Vi, Ei)
be the subgraph of G spanned by Vi, we say that V0, . . . , Vr is the decomposition
of V with respect to ⇀.

In some sense, we can consider V0 to consist of all minimal elements in V with
respect to ⇀, V1 to consist of all minimal elements in V − V0, and so on. This
comes naturally from thinking of ⇀ as a preorder.

Example 1. Consider the set S consisting of the following 30 words of length six:

aaaaaa aabbaa abbbaa baabbb bbabab bbbabb
aaaaab aabbba abbbab bababb bbabbb bbbbaa
aaaabb aabbbb abbbba babbba bbbaaa bbbbab
aaabba ababbb abbbbb babbbb bbbaab bbbbba
aaabbb abbaab baabba bbaabb bbbaba bbbbbb
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Now consider the digraph GS = (V,E) where E = S and V = subS(5) is the
set consisting of 20 words of length five. Then the decomposition of V with
respect to ⇀ consists of the sets: V0 = {aaaaa}, V1 = {aaaab}, V2 = {aaabb},
V4 = {bbaaa}, and V3 = V − (V0 ∪ V1 ∪ V2 ∪ V4).

The following lemma gives useful properties of the decomposition of Definition 1.

Lemma 3. Let G = (V,E) be a digraph and let V0, . . . , Vr be the decomposition
of V with respect to ⇀. If i < j, u ∈ Vj and v ∈ Vi, then u �⇀ v. Moreover, if
v ∈ Vi+1 then there exists u ∈ Vi such that u ⇀ v. Finally for i < r, there exist
vertices u ∈ Vi and v ∈ Vi+1 such that (u, v) ∈ E.

Proof. First, consider i < j. Assume u ∈ Vj and v ∈ Vi are such that u ⇀ v.

Since u /∈
i−1⋃
l=0

Vl, it follows by the definition of Vi that v ⇀ u. Thus if w /∈
i−1⋃
l=0

Vl

and w ⇀ u, the assumption that u ⇀ v implies w ⇀ v. Since v ∈ Vi this implies
v ⇀ w, so since u ⇀ v it follows that u ⇀ w. We get u ∈ Vi, which is impossible.

Next, consider v ∈ Vi+1. Assume there is no u ∈ Vi such that u ⇀ v. Since
v ∈ Vi+1, if w /∈

⋃i
j=0 Vj and w ⇀ v, then v ⇀ w. Furthermore, if w /∈

⋃i−1
j=0 Vj

and w ⇀ v, then v ⇀ w. This, however, implies by definition that v ∈ Vi, a
contradiction.

Finally, consider i ∈ [0..r) and let v ∈ Vi+1. By the above, there exists u ∈ Vi
such that u ⇀ v. Let u = u0, u1, . . . , ul = v be a path from u to v. Note that
since there is no path from any vertex in Vr′ to any vertex in Vi+1 for r′ > i+1,
it follows, since ul ∈ Vi+1, that if uj ∈ Vr′ then r

′ ≤ i+1. By a similar argument,
r′ ≥ i. Then let l′ be the smallest integer such that ul′ ∈ Vi+1. The above tells
us that ul′−1 ∈ Vi, so (ul′−1, ul′) is the desired edge. &"

The following definition introduces our set Sh, given a set S of words of length n.
This set is crucial in the description of our algorithm. We then show, in a lemma,
that if w is a partial word with h holes whose set of subwords of length n is a
non-empty subset of S, then w can somehow be built from a h-holed sequence
in Sh.

Definition 2. Given a set S of words of length n, we define the set Sh such
that (s0, . . . , sl−1) ∈ Sh if l > 0 and the following conditions hold:

1. Each si is a partial word with |si| ≥ n− 1;
2. The partial word s0 · · · sl−1 has exactly h holes;
3. Each si, except possibly s0 and sl−1, has at least one hole;
4. If x is a full word and a factor of some si, then |x| < 2n;
5. If si[j] =  , then for i > 0 we have that j ≥ n− 1, and for i < l− 1 we have

that j < |si| − n+ 1;
6. For each i and for every m ≤ n, subsi(m) ⊆ subS(m).

Lemma 4. Let S be a set of words of length n and w be a partial word with
h holes. If subw(n) ⊆ S and subw(n) �= ∅, then there exists (s0, . . . , sl−1) ∈ Sh

such that w = s0w0s1w1 · · ·wl−2sl−1, where each wi is a full word.
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Proof. We proceed by induction on |w|. This holds trivially if |w| = n by letting
s0 = w and l = 1. Therefore assume that the claim holds for all w′ with |w′| <
|w|. If w does not contain any full word of length greater than or equal to 2n as a
factor, letting l = 1 and s0 = w, gives us what we want. Therefore, assume that w
contains a factor y that is a full word of length at least 2n. Furthermore, assume
that |y| is maximal. There exists i such that w[i..i + |y|) = y. Furthermore, the
maximality of y implies that either i+|y| = |w|, i = 0, or w[i−1] = w[i+|y|] =  .

Consider the case w[i− 1] = w[i+ |y|] =  (the other cases are similar). Then
w = x y z = x w[i..i + n − 1)y′w[i + |y| − n + 1..i + |y|) z for some y′. As-
sume x0 = x w[i..i + n− 1) has h0 holes and z0 = w[i + |y| − n + 1..i + |y|) z
has h1 holes. Then by the inductive hypothesis, there exist (t0, . . . , tl0−1) ∈
Sh0 and full words w0, . . . , wl0−2 such that x0 = t0w0 · · ·wl0−2tl0−1. Similarly,
there exist (t′0, . . . , t

′
l1−1) ∈ Sh1 and full words w′

0, . . . , w
′
l1−2 such that z0 =

t′0w
′
0 · · ·w′

l1−2t
′
l1−1. We can let (s0, . . . , sl−1) = (t0, . . . , tl0−1, t

′
0, . . . , t

′
l1−1) ∈

Sh when both tl0−1 and t′0 have holes; otherwise, in the case of tl0−1 hav-
ing a hole and t′0 having no hole for instance, we can let (s0, . . . , sl−1) =
(t0, . . . , tl0−1, t

′
1, . . . , t

′
l1−1). &"

Example 2. Returning to Example 1, let n = 6 and h = 5. Consider

w = aaaaaaaaaaaaaaabb abbbbbababbbba bbbb  bbbaa 

Here, subw(6) = S − {baabba}. Using the proof of Lemma 4, we can factorize w
as follows:

aaaaa aaaaa aaaaabb abbbb baba bbbba bbbb  bbbaa 
s0 s1 s2

By Definition 2, (s0, s1, s2) ∈ S5.

Our next step is to prove that Algorithm 1, given below, generates Sh in polyno-
mial time. The idea behind the algorithm is simple. Basically if (s0, . . . , sl−1) ∈
Sh, then l ≤ h+2. Furthermore, there exists a constant c such that |si| < cn, and
each si can be created by concatenating subwords of elements of S. Using this,
it is easy to produce Sh by enumerating all such (s0, . . . , sl−1)’s. Algorithm 1
works as follows:

– Creates T0, the set of all t0t1 · · · t2h+1, where each tj ∈ sub(S) (sub(S)
denotes the set of subwords of elements of S);

– For h′ = 1, . . . , h, creates Th′ by inserting h′ holes into the elements of T0

(i.e., by replacing h′ positions by  ’s);
– Creates T = T0 ∪ T1 ∪ · · · ∪ Th;
– Creates S′ = T ∪ T 2 ∪ · · · ∪ T h+2;
– Removes from S′ any sequence (s0, . . . , sl−1) that does not satisfy one of the

conditions 1–6 of Definition 2;
– Returns Sh = S′.

The size of the set sub(S)2h+2 is bounded by a polynomial in the size of the
input.



Deciding Representability of Sets of Words of Equal Length 109

Algorithm 1. Generating Sh, where S is a set of words of length n

1: Let T ′
0 = ∅

2: for (t0, . . . , t2h+1) ∈ sub(S)2h+2 do
3: T ′

0 = T ′
0 ∪ {t0 · · · t2h+1}

4: Let T0 = T ′
0

5: for h′ = 1 to h do
6: Let Th′ = ∅
7: for t ∈ Th′−1 do
8: for j = 0 to |t| − 1 do
9: if t[j] �= � then
10: Letting t′ = t, replace t′[j] by � and add t′ to Th′

11: Let T =

h⋃

h′=0

Th′

12: Let S′ =
h+2⋃

l=1

T l

13: for s = (s0, . . . , sl−1) ∈ S′ do
14: for i = 0 to l − 1 do
15: if si is a full word and i /∈ {0, l − 1}, or si contains a � in its prefix of length

n− 1 and i �= 0, or si contains a � in its suffix of length n− 1 and i �= l− 1, or
|si| < n− 1, or si contains a full word t of length at least 2n as a factor then

16: remove s from S′

17: for m = 1 to n do
18: if subsi(m) �⊆ subS(m) then
19: remove s from S′

20: if s0 · · · sl−1 does not contain exactly h holes then
21: remove s from S′

22: return Sh = S′

Lemma 5. For any fixed non-negative integer h, Algorithm 1 generates Sh in
polynomial time given a set S of words of length n.

Proof. Let T ′
0, Th, T , etc. be as in the algorithm. First we want to show that if

(s0, . . . , sl−1) ∈ Sh, then si ∈ T . To see this, let ŝi be any completion of si. Then
the facts that si contains at most h holes and no full word of length greater than
or equal to 2n as a factor imply that |ŝi| = |si| ≤ 2n−1+h(2n) = 2(h+1)n−1.
This means that |ŝi| = qn + q′ for some integers q and q′, where 0 ≤ q′ < n
and q < 2h+ 2. Thus we can write ŝi = t0t1 · · · t2h+1 where tj is of length n for
j < q, tq is of length q′, and tj = ε for all other j. Note for each j, since |tj | ≤ n,
we have by definition of Sh that tj ∈ subŝi(|tj |) ⊆ subsi(|tj |) ⊆ subS(|tj |).
Therefore (t0, . . . , t2h+1) ∈ sub(S)2h+2, where sub(S) is the set of all subwords
of S, so ŝi = t0t1 · · · t2h+1 ∈ T ′

0 = T0 by Lines 3–4.
Then by a simple induction argument, if s′ is formed from ŝi by inserting

h′ ≤ h holes then s′ ∈ Th′ ⊆ T (see Lines 5–11). In particular, si ∈ T . Since
this is true for all i, it follows that (s0, . . . , sl−1) ∈ T l. Note that l ≤ h+ 2 since
s0 · · · sl−1 contains h holes, and for i ∈ [1..l − 1), we know that si must contain
at least one of the holes. Thus, (s0, . . . , sl−1) ∈ T l ⊆ S′ (see Line 12).
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We have now reached the for loop on Line 13 of the algorithm. Assume that
s = (s0, . . . , sl−1) ∈ S′. Then, by looking at the interior of this for loop (Lines 14–
21), s is not removed from S′ if and only if the conditions 1–6 of Definition 2
hold. Furthermore, by construction l > 0. Therefore s is removed from S′ if and
only if s /∈ Sh. Since Sh ⊆ S′ at the beginning of the loop, it follows that at
the end of the loop Sh = S′. The algorithm then returns Sh = S′ on Line 22.
We know that |sub(S)| ≤ |S|n2 + 1 (since each element of S contains at most n
non-empty subwords beginning at each of its n positions). Thus |sub(S)2h+2| ≤
(|S|n2 + 1)2h+2, a polynomial in the input. &"

Our next step is to prove that Algorithm 2 constructs, in polynomial time,
a partial word w with h holes such that subw(n) = S from a given h-holed
sequence (s0, . . . , sl−1) in Sh if such partial word exists. Algorithm 2 uses the
decomposition of the vertex set V of G = GS = (V,E) with respect to ⇀, i.e.,
V0, . . . , Vr. The partial word w has the form

s0[0..|s0| − n+ 1)w0s1[n− 1..|s1| − n+ 1)w1s2[n− 1..|s2| − n+ 1)
· · ·wl−2sl−1[n− 1..|sl−1|)

where each wj is a path from sj [|sj | − n + 1..|sj|) to sj+1[0..n − 1) satisfying
some conditions related to the spanned subgraphs G0, . . . , Gr.

Lemma 6. Let S be a set of words of length n and s = (s0, . . . , sl−1) ∈ Sh.
If there exists a partial word w′ with h holes such that subw′(n) = S and w′ =
s0x0s1x1 · · ·xl−2sl−1 for some full words xj, then Algorithm 2 returns a partial
word w with h holes such that subw(n) = S and w = s0y0s1y1 · · · yl−2sl−1 for
some full words yj. Otherwise, it returns null. Furthermore, the algorithm runs
in polynomial time.

Proof. Assume the algorithm returns null (the other case is simple). Suppose
towards a contradiction that there exists w′ with h holes such that subw′(n) =
S and w′ = s0x0s1x1 · · ·xl−2sl−1 for some full words xj . We will check each
return statement one by one to see which returned null. Let w′

i = si[|si| − n +
1..|si|)xisi+1[0..n− 1), then note that each w′

i is a full word with

w′ = s0[0..|s0| − n+ 1)w′
0s1[n− 1..|s1| − n+ 1)w′

1s2[n− 1..|s2| − n+ 1) · · ·
w′

l−2sl−1[n− 1..|sl−1|)

Consider the return statement on Line 36 (the ones on Line 6, Line 19, Line 17,
and Line 22 are simpler). This implies, if w is as in the algorithm, that subw(n) �=
S. Note that if x ∈ subw(n), then either x ∈ subsi(n) ⊆ S for some i or x ∈
subwi(n) ⊆ S for some i; in either case, subw(n) ⊆ S. Thus, there exists e ∈ S
such that e /∈ subw(n). Since E = S, e is an edge in the edge set E of G.

We can show that there exist i �= i′ such that e is an edge from u ∈ Vi to
v ∈ Vi′ (the case where e ∈ Ei for some i leads to a contradiction). By Lemma 3,
i < i′. Note that e is not a subword of sj for any j, since otherwise it would
be a subword of w. Thus, e is a subword of some w′

j . Lemma 3 implies that
i1,j ≤ i < i′ ≤ i0,j+1.
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Algorithm 2. Checking words for s = (s0, . . . , sl−1) ∈ Sh, where S is a set of
words of length n

1: Let G = GS = (V,E)
2: if l = 1 then
3: if subs0(n) = S then
4: return s0
5: else
6: return null
7: Decompose V into V0, . . . , Vr with respect to ⇀
8: for j = 0 to l − 1 do
9: if j > 0 then
10: Let s0,j = sj [0..n − 1)
11: Let i0,j be the index with s0,j ∈ Vi0,j

12: if j < l − 1 then
13: Let s1,j = sj [|sj | − n+ 1..|sj |)
14: Let i1,j be the index with s1,j ∈ Vi1,j

15: for j = 0 to l − 2 do
16: if i1,j > i0,j+1 then
17: return null
18: if j �= 0 and i0,j > i1,j then
19: return null
20: for i = 0 to r do
21: if i1,j ≤ i ≤ i0,j+1 for some j, and Gi is not strongly connected then
22: return null
23: for i = 0 to r − 1 do
24: Choose ui ∈ Vi and vi+1 ∈ Vi+1 such that (ui, vi+1) ∈ E (this can be done by

Lemma 3)
25: for j = 0 to l − 2 do
26: Choose a path pi1,j from s1,j to ui1,j that includes every edge in Ei1,j (this can

be done since Gi1,j is strongly connected)
27: for i = i1,j + 1 to i0,j+1 − 1 do
28: Choose a path pi from vi to ui that includes every edge in Ei (this can be

done since Gi is strongly connected)
29: If i1,j �= i0,j+1, choose a path pi0,j+1 from vi0,j+1 to s0,j+1 that includes ev-

ery edge in Ei0,j+1 ; else choose a path pi0,j+1 from ui0,j+1 = ui1,j to s0,j+1

that includes every edge in Ei0,j+1 (this can be done since Gi0,j+1 is strongly
connected)

30: Let Pj be the path in G produced by first taking pi1,j , then the edge from ui1,j

to vi1,j+1, then pi1,j+1, then the edge from ui1,j+1 to vi1,j+2, and continuing
until you reach s0,j+1

31: Let wj be the word associated with the path Pj

32: Let w = s0[0..|s0 | − n + 1)w0s1[n − 1..|s1| − n + 1)w1s2[n − 1..|s2| − n +
1) · · ·wl−2sl−1[n− 1..|sl−1|)

33: if subw(n) = S then
34: return w
35: else
36: return null
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Assume that i′ > i + 1. Set w′
j = yez for some y, z. Every subword of w′

j of
length n − 1 is a subword of either ye[0..n − 1) = yu or e[1..n)z = vz. Since
Vi+1 �= ∅, consider any x ∈ Vi+1. Then x cannot be a subword of yu since
otherwise x ⇀ u, contradicting Lemma 3. Similarly, it cannot be a subword of
vz. By construction, however, x is a subword of w′

j , a contradiction.
Now, assume that i′ = i + 1. By construction of Pj , there must exist some

u′ ∈ Vi and v
′ ∈ Vi+1 such that f = (u′, v′) is an edge in Pj . Thus f is a subword

of w. Since e is not a subword of w, we have f �= e. However, both e and f must
occur as subwords of w′. This implies that there exists a completion ŵ′ of w′

with f as a subword. Note, however, that since w′
j is full and w

′
j is a factor of w′,

it must be a factor of ŵ′, so e is also a subword of ŵ′. Without loss of generality,
we can assume that e occurs before f in ŵ′. This implies that v occurs before
u′ in ŵ′, so v ⇀ u′ (since ŵ′ corresponds to a path in G). The latter along with
v ∈ Vi+1 and u′ ∈ Vi contradict Lemma 3. &"
Example 3. Returning to Examples 1 and 2, given as input (s0, s1, s2) ∈ S5,
Algorithm 2 computes the following values:

j s1,j i1,j s0,j i0,j
0 aaaaa 0
1 abbbb 3 aaaaa 0
2 bbbba 3

Then Algorithm 2 may output the following word w to represent the set S:

aaaaa w′
0 aaaaabb abbbb w′

1 bbbba bbbb  bbbaa 
s0 s1 s2

where w′
0 = ε and w′

1 = bbababbbbabbbabbbbaabbaabbbaa. Note that

w0 = s0[|s0| − n+ 1..|s0|)w′
0s1[0..n− 1) = aaaaaw′

0aaaaa

is a path from aaaaa to aaaaa visiting every edge in G0 and

w1 = s1[|s1| − n+ 1..|s1|)w′
1s2[0..n− 1) = abbbbw′

1bbbba

is a path from abbbb to bbbba visiting every edge in G3.

Our next step is to prove that Algorithm 3 determines whether or not a given
set of words of equal length is h-representable.

Theorem 1. If a given input set S of words of length n is not h-representable,
then Algorithm 3 returns null. Otherwise, it returns a partial word w with h
holes such that subw(n) = S. Furthermore, it runs in polynomial time.

Proof. It is not difficult to show that Algorithm 3 works. It also runs in polyno-
mial time. This follows easily from the fact that Lemma 5 implies as a corollary
that given any fixed non-negative integer h, there exists a polynomial fh(x, y)
such that |Sh| ≤ fh(|S|, n) (thus the for loop only iterates a polynomial number
of times in the input size |S|), the fact that generating Sh using Algorithm 1
takes polynomial time, and the fact that Algorithm 2 runs in polynomial time.

&"
Corollary 1. h-Rep is in P for any fixed non-negative integer h.
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Algorithm 3. Deciding the h-representability of a set S of words of equal length

1: if S = ∅ then
2: return ε
3: Generate Sh using Algorithm 1
4: for s ∈ Sh do
5: Let w be the partial word produced by Algorithm 2
6: if w �= null then
7: return w
8: return null

4 Membership of a Subproblem of Rep in P
In this section, we give a subproblem of Rep that is in P . To prove this mem-
bership, we first need some terminology.

Definition 3. Let S be a set of words of length n over some alphabet A, |A| =
k > 1, and let G = GS = (V,E). A partial word path is a sequence A0, . . . , Am

of non-empty subsets of V = subS(n− 1) such that the following conditions 1–3
hold:

1. There exists a partial word u0 satisfying |u0| = n− 1 and subu0(n− 1) = A0;
2. For each i, either

Ai = {va | a ∈ A and bv ∈ Ai−1 for some b ∈ A} (2)

or there exists an a ∈ A such that

Ai = {va | bv ∈ Ai−1 for some b ∈ A}; (3)

3. If bv ∈ Ai−1 and va ∈ Ai for some a, b ∈ A and full word v, then bva ∈ E.

Let h′ be the number of i’s such that Eq. (2) holds. We say that the partial word
path A0, . . . , Am has h holes if h = logk |A0| + h′ (note that logk |A0| is the
number of holes in u0, defined in Statement 1, because each hole in u0 can be
filled by one of k letters).

We say that a partial word path contains an edge e = (x, y) if there exists an
i such that x ∈ Ai and y ∈ Ai+1.

Finally, defining ui recursively by ui = ui−1 if Ai satisfies Eq. (2) and ui =
ui−1a if Ai satisfies Eq. (3) for some a ∈ A, we say that um is a partial word
associated with the partial word path A0, . . . , Am.

In the zero-hole case, the following remark tells us that S = subw(n) for a full
word w if and only if there is a path in GS including every edge at least once.
This is decidable in polynomial time, as we knew already. Note, however, that
the remark also gives a polynomial time algorithm that works in the one-hole
case.
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Remark 1. Let S be a set of words of length n. Then there exists a partial word
w with h holes such that S = subw(n) if and only if there exists a partial word
path with h holes that includes every edge of GS at least once.

To see this, assuming that such a w exists, let Ai = subw[i..i+n−1)(n− 1). Then
A0, . . . , A|w|−n+1 is the partial word path we want. On the other hand, assuming
that such a path A0, . . . , Am exists, the partial word w = um associated with
the partial word path A0, . . . , Am, as constructed in Definition 3, has h holes
and satisfies subw(n) = S.

We now have the terminolgy needed to prove the following lemma.

Lemma 7. Let S be a set of words of length n and let G = GS = (V,E), where
V0, . . . , Vr is the decomposition of V with respect to⇀. Then there exists a partial
word w such that S = subw(n) and such that every subword of w of length n− 1
is compatible with exactly one factor of w if and only if V0, . . . , Vr is a partial
word path including every edge.

Proof. To show the backward implication, if w is the partial word associated
with our partial word path, every subword of w of length n − 1 occurs exactly
once in w and subw(n) = S. To show the forward direction, assume there is a
partial word w such that each subword of w of length n− 1 occurs exactly once,
and subw(n) = S. Let A0, . . . , Ar be the partial word path associated with w.
We want to prove that Ai = Vi. By construction, Ai = subw[i..i+n−1)(n− 1).

Suppose towards a contradiction that this is not the case, and let j be the
smallest index such that Aj �= Vj . Then let w′ = w[j..|w|) and let S′ = subw′(n).
Let G′ = GS′ = (V ′, E′). Then each word in subw′(n − 1) occurs in w′ exactly
once. Since each word in subw(n− 1) occurs in w exactly once, it follows that

subw′(n− 1) = subw(n− 1)−
j−1⋃
i=0

Ai = subw(n− 1)−
j−1⋃
i=0

Vi

Let V ′
0 , . . . , V

′
s be the decomposition of V ′ = V −

⋃j−1
i=0 Vi with respect to ⇀. By

definition of decomposition, however, it is easy to see that V ′
i = Vi+j . Further-

more, Aj , . . . , Ar is a partial word path in G′.
If v ∈ Aj then v has no incoming edges in G′, since if it has an incoming

edge e then Aj , . . . , Ar must contain e. This implies v must occur in Ai for some
i > j, contradicting the fact that each length n− 1 subword of w′ occurs exactly
once in w′. Since no v ∈ Aj has incoming edges, Aj ⊆ V ′

0 = Vj . On the other
hand, assume v ∈ V ′

0 , v ∈ Ai for some i > j. This implies there is a path from
some u ∈ Aj to v. By definition of V ′

0 , this implies there is a path from v to u,
contradicting the fact that u has no incoming edges. Therefore it must be that
Vj = V ′

0 = Aj . This is a contradiction, so our claim follows. &"
Lemma 7 gives the following problem a membership in P .

Proposition 2. The problem of deciding whether a set S of words of length n
can be represented by a partial word w, such that every subword of w of length
n− 1 occurs exactly once in w (in other words, every element in subS(n− 1) is
compatible with exactly one factor of w), is in P.
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Proof. The proof reduces to checking that the graph GS has the properties listed
in Lemma 7. This check can clearly be done in polynomial time. &"

5 Conclusion

We provided a polynomial time algorithm to solve h-Rep, that is, given a set
S of words of length n, our algorithm decides, in polynomial time with respect
to the input size n|S|, whether there exists a partial word with h holes that
represents S. Our algorithm also computes such a representing partial word. To
find a more tractable algorithm is an open problem.

Whether or not Rep is in P is also an open problem. We have some hope that
the following proposition might be useful in understanding Rep. Letting S be a
set of words of length n, set

Comp(S) = {u | u is a partial word and every completion of u is in S}

The set Comp(S) is important because if subw(n) = S, then every factor of
length n of w is an element of Comp(S).

Proposition 3. Assume |A| > 1. If S is a set of words of length n, then
|Comp(S)| ≤ |S|2. Furthermore, Comp(S) can be computed in O(n|S|4) time.

Proof. Assume that u ∈ Comp(S). Choose a, b ∈ A, a �= b. Let ûa (resp., ûb) be
the word we get by replacing all the  ’s in u with a (resp., b). Then ûa, ûb ∈ S, by
definition of Comp(S). Furthermore, u is the partial word with the least number
of holes such that u ⊂ ûa and u ⊂ ûb, in other words, u is the greatest lower
bound of ûa and ûb. Therefore,

Comp(S) ⊆ {u | u is the greatest lower bound of (u1, u2) ∈ S2}

However, the latter set has cardinality at most |S2| = |S|2, so |Comp(S)| ≤ |S|2.
Therefore, all we need to do in order to compute Comp(S) is to iterate through
(u1, u2) ∈ S2 (which takes |S|2 iterations). In each iteration we calculate u, the
greatest lower bound of u1 and u2. We then iterate through all completions of
u until either we have checked them all (in which case, we add u to Comp(S)),
or until we find one that is not in S (in which case, u is not in Comp(S)).
This produces Comp(S). Furthermore, each iteration takes O(n|S|2) time, so
the algorithm takes O(n|S|4) time. &"

A World Wide Web server interface has been established at

http://www.uncg.edu/cmp/research/subwordcomplexity6

for automated use of a program that when given as input a set S of words,
decides if there exists a word w such that subw(n) = S for some n.
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Abstract. The syntactic complexity of a regular language is the cardi-
nality of its syntactic semigroup. The syntactic complexity of a subclass
of regular languages is the maximal syntactic complexity of languages in
that subclass, taken as a function of the state complexity n of these lan-
guages. We study the syntactic complexity of three subclasses of star-free
languages. We find tight upper bounds for languages accepted by mono-
tonic, partially monotonic and “nearly monotonic” automata; all three
of these classes are star-free. We conjecture that the bound for nearly
monotonic languages is also a tight upper bound for star-free languages.

Keywords: finite automaton, monotonic, nearly monotonic, partially
monotonic, star-free language, syntactic complexity, syntactic semigroup.

1 Introduction

Star-free languages are the smallest class containing the finite languages and
closed under boolean operations and concatenation. In 1965, Schützenberger
proved [19] that a language is star-free if and only if its syntactic monoid is
group-free, that is, has only trivial subgroups. An equivalent condition is that
the minimal deterministic automaton of a star-free language is permutation-free,
that is, has only trivial permutations (cycles of length 1). Such automata are
called aperiodic, and this is the term we use. Star-free languages were studied in
detail in 1971 by McNaughton and Papert [15].

The state complexity of a regular language is the number of states in the
minimal deterministic finite automaton (DFA) recognizing that language. State
complexity of operations on languages has been studied quite extensively; for a
survey of this topic and a list of references see [21]. An equivalent notion is that
of quotient complexity [2], which is the number of left quotients of the language.

Quotient complexity is closely related to the Nerode equivalence [17]. Another
well-known equivalence relation, the Myhill equivalence [16], defines the syntactic
semigroup of a language and its syntactic complexity, which is the cardinality of
the syntactic semigroup. It was pointed out in [5] that syntactic complexity can
be very different for languages with the same quotient complexity.
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In contrast to state complexity, syntactic complexity has not received much at-
tention. Suppose L is a regular language and has quotient complexity n. In 1970
Maslov [14] noted that nn is a tight upper bound on the syntactic complexity
of L. In 2003–2004 Holzer and König [9], and Krawetz, Lawrence and Shallit [12]
studied the syntactic complexity of unary and binary languages. In 2010 Brzo-
zowski and Ye [5] showed that, if L is any right ideal, then nn−1 is a tight upper
bound on its syntactic complexity. They also proved that nn−1 + (n − 1) (re-
spectively, nn−2 + (n − 2)2n−2 + 1) is a lower bound if L a left (respectively,
two-sided) ideal. In 2012 Brzozowski, Li and Ye [3] showed that nn−2 is a tight
upper bound for prefix-free languages and that (n−1)n−2+(n−2) (respectively,
(n− 1)n−3+(n− 2)n−3+(n− 3)2n−3 or (n− 1)n−3+(n− 3)2n−3+1) is a lower
bound for suffix-free (respectively, bifix-free or factor-free) languages.

Here we deal with star-free languages. It has been shown in 2011 by Brzo-
zowski and Liu [4] that boolean operations, concatenation, star, and reversal in
the class of star-free languages meet all the quotient complexity bounds of reg-
ular languages, with very few exceptions. Also, Kutrib, Holzer, and Meckel [10]
proved in 2012 that in most cases exactly the same tight state complexity bounds
are reached by operations on aperiodic nondeterministic finite automata (NFA’s)
as on general NFA’s. In sharp contrast to this, the syntactic complexity of star-
free languages appears to be much smaller than the nn bound for regular lan-
guages. We derive tight upper bounds for three subclasses of star-free languages,
the monotonic, partially monotonic, and nearly monotonic languages. We con-
jecture that the bound for star-free languages is the same as that for nearly
monotonic languages.

The remainder of the paper is structured as follows. Our terminology and some
basic facts are stated in Section 2. Aperiodic transformations are examined in
Section 3. In Section 4, we study monotonic, partially monotonic, and nearly
monotonic automata and languages. Section 5 concludes the paper.

2 Preliminaries

We assume the reader is familiar with basic theory of formal languages as in [18],
for example. Let Σ be a non-empty finite alphabet and Σ∗, the free monoid
generated by Σ. A word is any element of Σ∗, and the empty word is ε. The
length of a word w ∈ Σ∗ is |w|. A language over Σ is any subset of Σ∗. For any
languages K and L over Σ, we use the boolean operations: complement (L) and
union (K ∪L). The product, or (con)catenation, of K and L is KL = {w ∈ Σ∗ |
w = uv, u ∈ K, v ∈ L}; the star of L is L∗ =

⋃
i�0 L

i, and the positive closure

of L is L+ =
⋃

i�1 L
i.

We call languages ∅, {ε}, and {a} for any a ∈ Σ the basic languages. Reg-
ular languages are the smallest class of languages constructed from the basic
languages using boolean operations, product, and star. Star-free languages are
the smallest class of languages constructed from the basic languages using only
boolean operations and product.

A deterministic finite automaton (DFA) is a quintuple A = (Q,Σ, δ, q1, F ),
where Q is a finite, non-empty set of states, Σ is a finite non-empty alphabet,



Syntactic Complexities of Some Classes of Star-Free Languages 119

δ : Q×Σ → Q is the transition function, q1 ∈ Q is the initial state, and F ⊆ Q
is the set of final states. We extend δ to Q × Σ∗ in the usual way. The DFA
A accepts a word w ∈ Σ∗ if δ(q1, w) ∈ F . The set of all words accepted by A
is L(A). Regular languages are exactly the languages accepted by DFA’s. By
the language of a state q of A we mean the language Lq accepted by the DFA
(Q,Σ, δ, q, F ). A state is empty if its language is empty.

An incomplete deterministic finite automaton (IDFA) is a quintuple I =
(Q,Σ, δ, q1, F ), where Q, Σ, q1 and F are as in a DFA, and δ is a partial function.
Every DFA is also an IDFA.

The left quotient, or simply quotient, of a language L by a word w is the
language w−1L = {x ∈ Σ∗ | wx ∈ L}. The Nerode equivalence ∼L of any
language L over Σ is defined as follows [17]: For all x, y ∈ Σ∗,

x ∼L y if and only if xv ∈ L ⇔ yv ∈ L, for all v ∈ Σ∗.

Clearly, x−1L = y−1L if and only if x∼Ly. Thus each equivalence class of the
Nerode equivalence corresponds to a distinct quotient of L.

Let L be a regular language. The quotient DFA of L is A = (Q,Σ, δ, q1, F ),
where Q = {w−1L | w ∈ Σ∗}, δ(w−1L, a) = (wa)−1L, q1 = ε−1L = L, and
F = {w−1L | ε ∈ w−1L}. State w−1L of a quotient DFA is reachable from the
initial state L by the word w. Also, the language of every state is distinct, since
only distinct quotients are used as states. Thus every quotient DFA is minimal.
The quotient IDFA of L is the quotient DFA of L after the empty state, if
present, and all transitions incident to it are removed. The quotient IDFA is also
minimal. If a regular language L has quotient IDFA I, then the DFA A obtained
by adding the empty state to I, if necessary, is the quotient DFA of L. The two
automata A and I accept the same language.

The number κ(L) of distinct quotients of L is the quotient complexity of L.
Since the quotient DFA of L is minimal, quotient complexity is the same as state
complexity. The quotient viewpoint is often useful for deriving upper bounds,
while the state approach may be more convenient for proving lower bounds.

The Myhill equivalence ≈L of L is defined as follows [16]: For all x, y ∈ Σ∗,

x ≈L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗.

This equivalence is also known as the syntactic congruence of L. The quotient
set Σ+/≈L of equivalence classes of the relation ≈L is a semigroup called the
syntactic semigroup of L (which we denote by SL), and Σ∗/≈L is the syntac-
tic monoid of L. The syntactic complexity σ(L) of L is the cardinality of its
syntactic semigroup. The monoid complexity μ(L) of L is the cardinality of its
syntactic monoid. If the equivalence class containing ε is a singleton in the syn-
tactic monoid, then σ(L) = μ(L)− 1; otherwise, σ(L) = μ(L).

A partial transformation of a set Q is a partial mapping of Q into itself; we
consider partial transformations of finite sets only, and we assume without loss
of generality that Q = {1, 2, . . . , n}. Let t be a partial transformation of Q. If t
is defined for i ∈ Q, then it is the image of i under t; otherwise it is undefined
and we write it = �. For convenience, we let �t = �. If X is a subset of Q, then
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Xt = {it | i ∈ X}. The composition of two partial transformations t1 and t2 of
Q is a partial transformation t1 ◦ t2 such that i(t1 ◦ t2) = (it1)t2 for all i ∈ Q.
We usually drop the composition operator “◦” and write t1t2 for short.

An arbitrary partial transformation can be written in the form

t =

(
1 2 · · · n− 1 n
i1 i2 · · · in−1 in

)
,

where ik = kt and ik ∈ Q∪ {�}, for k ∈ Q. The domain of t is the set dom(t) =
{k ∈ Q | kt �= �}. The range of t is the set rng(t) = dom(t)t = {kt | k ∈
Q and kt �= �}. When the domain is clear, we also write t = [i1, . . . , in].

A (full) transformation t of a set Q is a partial transformation such that
dom(t) = Q. The identity transformation maps each element to itself, that is,
it = i for i = 1, . . . , n. A transformation t is a cycle of length k � 2 if there exist
pairwise distinct elements i1, . . . , ik such that i1t = i2, i2t = i3, . . . , ik−1t = ik,
ikt = i1, and jt = j for all j �∈ {i1, . . . , ik}. Such a cycle is denoted by
(i1, i2, . . . , ik). For i < j, a transposition is the cycle (i, j). A singular trans-
formation, denoted by

(
i
j

)
, has it = j and ht = h for all h �= i. A constant

transformation, denoted by
(
Q
j

)
, has it = j for all i. Let TQ be the set of all

transformations of Q, which is a semigroup under composition.
Let A = (Q,Σ, δ, q1, F ) be a DFA. For each word w ∈ Σ+, the transition

function defines a transformation tw of Q: for all i ∈ Q, itw
def
= δ(i, w). The

set TA of all such transformations by non-empty words forms a subsemigroup
of TQ, called the transition semigroup of A [18]. Conversely, we can use a set
{ta | a ∈ Σ} of transformations to define δ, and so the DFA A. When the context
is clear we simply write a = t, where t is a transformation of Q, to mean that the
transformation performed by a ∈ Σ is t. If A is the quotient DFA of L, then TA
is isomorphic to the syntactic semigroup SL of L [15], and we represent elements
of SL by transformations in TA.

For any IDFA I, each word w ∈ Σ∗ performs a partial transformation of Q.
The set of all such partial transformations is the transition semigroup of I. If
I is the quotient IDFA of a language L, this semigroup is isomorphic to the
transition semigroup of the quotient DFA of L, and hence also to the syntactic
semigroup of L.

3 Aperiodic Transformations

A transformation is aperiodic if it contains no cycles of length greater than 1.
A semigroup T of transformations is aperiodic if and only if it contains only
aperiodic transformations. Thus a language L with quotient DFA A is star-free
if and only if every transformation in TA is aperiodic.

Let An be the set of all aperiodic transformations of Q. Each aperiodic trans-
formation can be characterized by a forest of labeled rooted trees as follows.
Consider, for example, the forest of Fig. 1 (a), where the roots are at the bottom.
Convert this forest into a directed graph by adding a direction from each child



Syntactic Complexities of Some Classes of Star-Free Languages 121

322 3

4 6

1 5 7

(b)

6

75

4

1

(a)

Fig. 1. Forests and transformations

to its parent and a self-loop to each root, as shown in Fig. 1 (b). This directed
graph defines the transformation [1, 4, 4, 5, 5, 7, 7] and such a transformation is
aperiodic since the directed graph has no cycles of length greater than one. Thus
there is a one-to-one correspondence between aperiodic transformations of a set
of n elements and forests with n nodes.

Proposition 1. There are (n+1)n−1 aperiodic transformations of a set of n � 1
elements.

Proof. By Cayley’s theorem [6,20], there are (n + 1)n−1 labeled unrooted trees
with n+1 nodes. If we fix one node, say node n+1, in each of these trees to be
the root, then we have (n + 1)n−1 labeled trees rooted at n + 1. Let T be any
one of these trees, and let v1, . . . , vm be the parents of n+ 1 in T . By removing
the root n + 1 from each such rooted tree, we get a labeled forest F with n
nodes formed by m rooted trees, where v1, . . . , vm are the roots. The forest F is
unique since T is a unique tree rooted at n+ 1. Then we get a unique aperiodic
transformation of {1, . . . , n} by adding self-loops on v1, . . . , vm.

All labeled directed forests with n nodes can be obtained uniquely from some
rooted tree with n + 1 nodes by deleting the root. Hence there are (n + 1)n−1

labeled forests with n nodes, and that many aperiodic transformations of Q. &"

Since the quotient DFA of a star-free language can perform only aperiodic trans-
formations, we have

Corollary 2. For n � 1, the syntactic complexity σ(L) of a star-free language
L with n quotients satisfies σ(L) � (n+ 1)n−1.

The bound of Corollary 2 is our first upper bound on the syntactic complexity
of a star-free language with n quotients, but this bound is not tight in general
because the set An is not a semigroup for n � 3. For example, if a = [1, 3, 1] and
b = [2, 2, 1], then ab = [2, 1, 2], which contains the cycle (1, 2). Hence our task is
to find the size of the largest semigroup contained in An.

First, let us consider small values of n:

1. If n = 1, the only two languages, ∅ and Σ∗, are both star-free, since Σ∗ = ∅.
Here σ(L) = 1, for both languages, the bound 20 = 1 of Corollary 2 holds
and it is tight.

2. If n = 2, |A2| = 3. The only unary languages are ε and ε = aa∗, and σ(L) = 1
for both. For Σ = {a, b}, one verifies that σ(L) � 2, and Σ∗aΣ∗ meets this
bound. If Σ = {a, b, c}, then L = Σ∗aΣ∗bΣ∗ has σ(L) = 3.
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In summary, for n = 1 and 2, the bound of Corollary 2 is tight for |Σ| = 1 and
|Σ| = 3, respectively.

We say that two aperiodic transformations a and b conflict if ab or ba contains
a cycle; then (a, b) is called a conflicting pair. When n = 3, |A3| = 42 = 16. The
transformations a0 = [1, 2, 3], a1 = [1, 1, 1], a2 = [2, 2, 2], a3 = [3, 3, 3] cannot
create any conflict. Hence we consider only the remaining 12 transformations.

Let b1 = [1, 1, 3], b2 = [1, 2, 1], b3 = [1, 2, 2], b4 = [1, 3, 3], b5 = [2, 2, 3], and
b6 = [3, 2, 3]. Each of them has only one conflict. There are also two conflicting
triples (b1, b3, b6) and (b2, b4, b5), since b1b3b6 and b2b4b5 both contains a cycle.
Figure 2 shows the conflict graph of these 12 transformations, where normal
lines indicate conflicting pairs, and dotted lines indicate conflicting triples. To
save space we use three digits to represent each transformation, for example, 112
stands for the transformation [1, 1, 2], and (112)(113) = 111. We can choose at
most two inputs from each triple and at most one from each conflicting pair. So
there are at most 6 conflict-free transformations from the 12, for example, b1,
b3, b4, b5, c1 = [1, 1, 2], c2 = [2, 3, 3]. Adding a0, a1, a2 and a3, we get a total
of at most 10. The inputs a0, b4, b5, c1 are conflict-free and generate precisely
these 10 transformations. Hence σ(L) � 10 for any star-free language L with
κ(L) = n = 3, and this bound is tight.

322

113 122 323 121

313 112 233 221

223

131

133

Fig. 2. Conflict graph for n = 3

4 Monotonicity in Transformations, Automata and
Languages

We now study syntactic semigroups of languages accepted by monotonic and
related automata. We denote by Cn

k the binomial coefficient “n choose k”.

4.1 Monotonic Transformations, DFA’s and Languages

We have shown that the tight upper bound for n = 3 is 10, and it turns out
that this bound is met by a monotonic language (defined below). This provides
one reason to study monotonic automata and languages. A second reason is the
fact that all the tight upper bounds on the quotient complexity of operations on
star-free languages are met by monotonic languages [4].

A transformation t of Q is monotonic if there exists a total order � on Q such
that, for all p, q ∈ Q, p � q implies pt � qt. From now on we assume that � is
the usual order on integers, and that p < q means that p � q and p �= q.
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Let MQ be the set of all monotonic transformations of Q. In the following, we
restate slightly the result of Gomes and Howie [8,11] for our purposes, since the
work in [8] does not consider the identity transformation to be monotonic.

Theorem 3 (Gomes and Howie). When n � 1, the set MQ is an aperiodic
semigroup of cardinality

|MQ| = f(n) =

n∑
k=1

Cn−1
k−1C

n
k = C2n−1

n ,

and it is generated by the set H = {a, b1, . . . , bn−1, c}, where, for 1 � i � n− 1,
1. 1a = 1, ja = j − 1 for 2 � j � n;
2. ibi = i+ 1, and jbi = j for all j �= i;
3. c is the identity transformation.
Moreover, for n = 1, a and c coincide and the cardinality of the generating

set cannot be reduced for n � 2.

Remark 4. By Stirling’s approximation, f(n) = |MQ| grows asymptotically like
4n/

√
πn as n → ∞.

Now we turn to DFA’s whose inputs perform monotonic transformations. A DFA
is monotonic [1] if all transformations in its transition semigroup are monotonic
with respect to some fixed total order. Every monotonic DFA is aperiodic because
monotonic transformations are aperiodic. A regular language is monotonic if its
quotient DFA is monotonic.

Let us now define a DFA having as inputs the generators of MQ:

Definition 5. For n � 1, let An = (Q,Σ, δ, 1, {1}) be the DFA in which Q =
{1, . . . , n}, Σ = {a, b1, . . . , bn−1, c}, and each letter in Σ performs the transfor-
mation defined in Theorem 3.

DFA An is minimal, since state 1 is the only accepting state, and for 2 � i � n
only state i accepts ai−1. From Theorem 3 we have

Corollary 6. For n � 1, the syntactic complexity σ(L) of any monotonic lan-
guage L with n quotients satisfies σ(L) � f(n) = C2n−1

n . Moreover, this bound
is met by the language L(An) of Definition 5, and, when n � 2, it cannot be met
by any monotonic language over an alphabet having fewer than n+ 1 letters.

4.2 Monotonic Partial Transformations and IDFA’s

As we shall see, for n � 4 the maximal syntactic complexity cannot be reached
by monotonic languages; hence we continue our search for larger semigroups of
aperiodic transformations. In this subsection, we extend the concept of mono-
tonicity from full transformations to partial transformations, and hence define
a new subclass of star-free languages. The upper bound of syntactic complexity
of languages in this subclass is above that of monotonic languages for n � 4.
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A partial transformation t of Q is monotonic if there exists a total order � on
Q such that, for all p, q ∈ dom(t), p � q implies pt � qt. As before, we assume
that the total order on Q is the usual order on integers. Let PMQ be the set of
all monotonic partial transformations of Q with respect to such an order. Gomes
and Howie [8] showed the following result, again restated slightly:

Theorem 7 (Gomes and Howie). When n � 1, the set PMQ is an aperiodic
semigroup of cardinality

|PMQ| = g(n) =

n∑
k=0

Cn
kC

n+k−1
k ,

and it is generated by the set I = {a, b1, . . . , bn−1, c1, . . . , cn−1, d}, where, for
1 � i � n− 1,
1. 1a = �, and ja = j − 1 for j = 2, . . . , n;
2. ibi = i+ 1, (i + 1)bi = �, and jbi = j for j = 1, . . . , i− 1, i+ 2, . . . , n;
3. ici = i+ 1, and jci = j for all j �= i;
4. d is the identity transformation.
Moreover, the cardinality of the generating set cannot be reduced.

Example 8. For n = 1, the two monotonic partial transformations are a = [�],
and d = [1]. For n = 2, the eight monotonic partial transformations are gen-
erated by a = [�, 1], b1 = [2,�], c1 = [2, 2], and d = [1, 2]. For n = 3, the 38
monotonic partial transformations are generated by a = [�, 1, 2], b1 = [2,�, 3],
b2 = [1, 3,�], c1 = [2, 2, 3], c2 = [1, 3, 3] and d = [1, 2, 3].

Partial transformations correspond to IDFA’s. For example, a = [�, 1], b =
[2,�] and c = [2, 2] correspond to the transitions of the IDFA of Fig. 3 (a). �

(a)

1 2

a

b, c
c 3 1 2

a, b, c

a

b, c
c

b

a

(b)

Fig. 3. Partially monotonic automata: (a) IDFA; (b) DFA

Laradji and Umar [13] proved the following asymptotic approximation:

Remark 9. For large n, g(n) = |PMQ| ∼ 2−3/4(
√
2 + 1)2n+1/

√
πn.

An IDFA is monotonic if all partial transformations in its transition semigroup
are monotonic with respect to some fixed total order. A quotient DFA is partially
monotonic if its corresponding quotient IDFA is monotonic. A regular language
is partially monotonic if its quotient DFA is partially monotonic. Note that
monotonic languages are also partially monotonic.
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Example 10. If we complete the transformations in Fig. 3 (a) by replacing the
undefined entry � by a new empty (or “sink”) state 3, as usual, we obtain the
DFA of Fig. 3 (b). That DFA is not monotonic, because 1 < 2 implies 2 < 3
under input b and 3 < 2 under ab. A contradiction is also obtained if we assume
that 2 < 1. However, this DFA is partially monotonic, since its corresponding
IDFA, shown in Fig. 3 (a), is monotonic.

a, b

2 4
b

a

ba

b a
1 3

Fig. 4. Partially monotonic DFA that is monotonic and has an empty state

The DFA of Fig. 4 is monotonic for the order shown. It has an empty state,
and is also partially monotonic for the same order. �
Consider any partially monotonic language L with quotient complexity n. If
its quotient DFA A does not have the empty quotient, then L is monotonic;
otherwise, its quotient IDFA I has n − 1 states, and the transition semigroup
of I is a subset of PMQ′ , where Q′ = {1, . . . , n − 1}. Hence we consider the
following semigroup CMQ of monotonic completed transformations of Q. Start
with the semigroup PMQ′ . Convert all t ∈ PMQ′ to full transformations by
adding n to dom(t) and letting it = n for all i ∈ Q \ dom(t). Such a conversion
provides a one-to-one correspondence between PMQ′ and CMQ. For n � 2,
let e(n) = g(n − 1). Then semigroups CMQ and PMQ′ are isomorphic, and
e(n) = |CMQ|.
Definition 11. For n � 1, let Bn = (Q,Σ, δ, 1, {1}) be the DFA in which Q =
{1, . . . , n}, Σ = {a, b1, . . . , bn−2, c1, . . . , cn−2, d}, and each letter in Σ defines a
transformation such that, for 1 � i � n− 2,
1. 1a = na = n, and ja = j − 1 for j = 2, . . . , n− 1;
2. ibi = i+ 1, (i + 1)bi = n, and jbi = j for j = 1, . . . , i− 1, i+ 2, . . . , n;
3. ici = i+ 1, and jci = j for all j �= i;
4. d is the identity transformation.

We know that monotonic languages are also partially monotonic. As shown in
Table 1, |MQ| = f(n) > e(n) = |CMQ| for n � 3. On the other hand, one verifies
that e(n) > f(n) when n � 4. By Corollary 6 and Theorem 7, we have

Corollary 12. The syntactic complexity of a partially monotonic language L
with n quotients satisfies σ(L) � f(n) for n � 3, and σ(L) � e(n) for n � 4.
Moreover, when n � 4, this bound is met by L(Bn) of Definition 11, and it cannot
be met by any partially monotonic language over an alphabet having fewer than
2n− 2 letters.

Table 1 contains these upper bounds for small values of n. By Remark 9, the
upper bound e(n) is asymptotically 2−3/4(

√
2 + 1)2n−1/

√
π(n− 1).
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4.3 Nearly Monotonic Transformations and DFA’s

In this section we develop an even larger aperiodic semigroup based on partially
monotonic languages.

Let KQ be the set of all constant transformations of Q, and let NMQ =
CMQ ∪KQ. We shall call the transformations in NMQ nearly monotonic with
respect to the usual order on integers.

Theorem 13. When n � 2, the set NMQ of all nearly monotonic transforma-
tions of a set Q of n elements is an aperiodic semigroup of cardinality

|NMQ| = h(n) = e(n) + (n− 1) =

n−1∑
k=0

Cn−1
k Cn+k−2

k + (n− 1),

and it is generated by the set J = {a, b1, . . . , bn−2, c1, . . . , cn−2, d, e} of 2n− 1
transformations of Q, where e is the constant transformation

(
Q
1

)
, and all other

transformations are as in Definition 11. Moreover, the cardinality of the gener-
ating set cannot be reduced.

Proof. Pick any t1, t2 ∈ NMQ. If t1, t2 ∈ CMQ, then t1t2, t2t1 ∈ CMQ. Other-
wise t1 ∈ KQ or t2 ∈ KQ, and both t1t2, t2t1 are constant transformations. Hence
t1t2, t2t1 ∈ NMQ and NMQ is a semigroup. Since constant transformations are
aperiodic and CMQ is aperiodic, NMQ is also aperiodic.

If X is a set of transformations, let 〈X〉 denote the semigroup generated
by X . Since J ⊆ NMQ, 〈J〉 ⊆ NMQ. Let I

′ = J \ {e}, and Q′ = Q \ {n}. Then
PMQ′ / CMQ = 〈I ′〉. For any t =

(
Q
j

)
∈ KQ, where j ∈ Q, since sj =

(
Q
j

)(
n
n

)
∈

CMQ ⊆ 〈J〉, we have that t = esj ∈ 〈J〉. So NMQ = 〈J〉. Note that
(
Q
i

)
∈ CMQ

if and only if i = n. Thus h(n) = |NMQ| = |PMQ′ |+ (n− 1) = e(n) + (n− 1).
Since the cardinality of I ′ cannot be reduced, and e �∈ 〈I ′〉, also the cardinality

of J cannot be reduced. &"

An input a ∈ Σ is constant if it performs a constant transformation of Q. Let
A be a DFA with alphabet Σ; then A is nearly monotonic if, after removing
constant inputs, the resulting DFA A′ is partially monotonic. A regular language
is nearly monotonic if its quotient DFA is nearly monotonic.

Definition 14. For n � 2, let Cn = (Q,Σ, δ, 1, {1}) be a DFA, where Q =
{1, . . . , n}, Σ = {a, b1, . . . , bn−2, c1, . . . , cn−2, d, e}, and each letter in Σ performs
the transformation defined in Theorem 13 and Definition 11.

Theorem 13 now leads us to the following result:

Theorem 15. For n � 2, if L is a nearly monotonic language L with n quo-
tients, then σ(L) � h(n) =

∑n−1
k=0 C

n−1
k Cn+k−2

k + (n− 1). Moreover, this bound
is met by the language L(Cn) of Definition 14, and cannot be met by any nearly
monotonic language over an alphabet having fewer than 2n− 1 letters.
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Proof. State 1 is reached by ε. For 2 � i � n − 1, state i is reached by wi =
b1 · · · bi−1. State n is reached by wn−1bn−2. Thus all states are reachable. For
1 � i � n− 1, the word ai−1 is only accepted by state i. Also, state n rejects ai

for all i � 0. So all n states are distinguishable, and Cn is minimal. Thus L has
n quotients. The syntactic semigroup of L is generated by J ; so L has syntactic
complexity σ(L) = h(n) =

∑n−1
k=0 C

n−1
k Cn+k−2

k + (n− 1), and it is star-free. &"

As shown earlier, e(n) > f(n) for n � 4. Since h(n) = e(n) + (n − 1), and
h(n) = f(n) for n ∈ {2, 3}, as shown in Table 1, we have that h(n) � f(n) for
n � 2, and the maximal syntactic complexity of nearly monotonic languages is
at least that of both monotonic and partially monotonic languages.

Although we cannot prove that NMQ is the largest semigroup of aperiodic
transformations, we can show that no transformation can be added to NMQ.

A set S = {T1, T2, . . . , Tk} of transformation semigroups is a chain if T1 ⊂
T2 ⊂ · · · ⊂ Tk. Semigroup Tk is the largest in S, and we denote it by max(S) = Tk.
The following result shows that the syntactic semigroup SL(Cn) = TCn of L(Cn)
in Definition 14 is a local maximum among aperiodic subsemigroups of TQ.

Proposition 16. Let S be a chain of aperiodic subsemigroups of TQ. If TCn ∈ S,
then TCn = max(S).

Proof. Suppose max(S) = Tk for some aperiodic subsemigroup Tk of TQ, and
Tk �= TCn . Then there exist t ∈ Tk such that t �∈ TCn , and i, j ∈ Q such that
i < j �= n but it > jt, and it, jt �= n. Let τ ∈ TQ be such that (jt)τ = i, (it)τ = j,
and hτ = n for all h �= i, j; then τ ∈ TCn . Let λ ∈ TQ be such that iλ = i, jλ = j,
and hλ = n for all h �= i, j; then also λ ∈ TCn . Since Tk = max(S), TCn ⊂ Tk and
τ, λ ∈ Tk. Then s = λtτ is also in Tk. However, is = i(λtτ) = j, js = j(λtτ) = i,
and hs = n for all h �= i, j; then s = (i, j)

(
P
n

)
, where P = Q \ {i, j}, is not

aperiodic, a contradiction. Therefore TCn = max(S). &"

5 Conclusions

We conjecture that the syntactic complexity of languages accepted by the nearly
monotonic DFA’s of Definition 14 meets the upper bound for star-free languages:

Conjecture 17. The syntactic complexity of a star-free language L with κ(L) =
n � 4 satisfies σ(L) � h(n).

Our results are summarized in Table 1. Let Q = {1, . . . , n}, and Q′ = Q \ {n}.
The figures in bold type are tight bounds verified using GAP [7], by enumerating
aperiodic subsemigroups of TQ. The asterisk ∗ indicates that the bound is already
tight for a smaller alphabet. The last five rows show the values of f(n) = |MQ|,
e(n) = |CMQ| = g(n− 1) = |PMQ′ |, h(n) = |NMQ|, and the weak upper bound
(n+ 1)n−1.
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Table 1. Syntactic complexity of star-free languages

|Σ| / n 1 2 3 4 5 6

1 1 1 2 3 5 6

2 ∗ 2 7 19 62 ?

3 ∗ 3 9 31 ? ?

4 ∗ ∗ 10 34 ? ?

5 ∗ ∗ ∗ 37 125 ?

· · · · · · · · · · · · · · · · · · · · ·
f(n) = |MQ| 1 3 10 35 126 462

e(n) = |CMQ| = g(n− 1) = |PMQ′ | − 2 8 38 192 1, 002

h(n) = |NMQ| = e(n) + (n− 1) − 3 10 41 196 1, 007

(n+ 1)n−1 1 3 16 125 1, 296 16, 807

Acknowledgment. We thank Zoltan Ésik and Judit Nagy-Gyorgy for pointing
out to us the relationship between aperiodic inputs and Cayley’s theorem.
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Abstract. In this paper we prove that plain complexity induces the
weakest form of randomness for all Blum Universal Static Complexity
Spaces [11]. As a consequence, there is all infinite sequences have an
infinite number of non-random prefixes with respect to any given Blum
Universal Static Complexity Space. This is a generalization of the result
obtained by Solovay [27] and Calude [7] for plain complexity, and also of
the result obtained by Câmpeanu [10]1, and independently, later on, by
Bienvenu and Downey in [1]2 for prefix-free complexity.

1 Introduction

The complexity of an object can be defined in terms of minimal description
length (MDL) as the length of the shortest string describing the object. It is ob-
vious that the complexity depends on the alphabet used for the description and
the definition of a description. If we consider as an acceptable description any
Turing machine, where input is included in the description of the machine, then
we obtain the plain complexity. If we restrict the type of Turing machines to self
delimiting programs, we obtain the prefix complexity. Beside the plain complex-
ity [19] and prefix complexity [14, 18, 20], there are several other forms of static
or descriptional complexities considered in literature, like: process complexity
[23], monotone complexity [20], uniform complexity [21], Chaitin’s complexity
[16], or Solomonoff’s universal complexity [24–26]. Several other variants were
introduced and used to accommodate various needs, most notably being the ef-
fort in finding a complexity that can be used to define in an uniform way the
randomness for both strings and sequences. Chaitin [13] and, to some extent,
Loveland [21] were successful in this attempt.

Developing an uniform approach for complexity measures has been always a
goal for researchers, but the big factor that discouraged them to use an uniform
approach was the impossibility of defining randomness for infinite sequences, by
using plain complexity. Burgin proposed a generalized Kolmogorov complexity,
called dual complexity measure in [4], which is based on the axioms proposed
by Blum in 1967 in [3]. These axioms “are all so fantastically weak that any

1 The result was never published, but cited in DCFS 2007 by Helmut Jürgensen.
2 This is obtained as a consequence of a stronger result for Solovay functions.

M. Kutrib, N. Moreira, and R. Reis (Eds.): DCFS 2012, LNCS 7386, pp. 130–140, 2012.
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reasonable model of a computer and any reasonable definition of size and step
satisfies them” [3].

Thus, it is natural to consider this approach, find out common properties for
dual complexity measures, and study how can we define randomness for various
classes of such measures. In [11], the notions of Blum Static Complexity Space
(BSC) and Blum Universal Static Complexity Space (BUSC) are introduced as
a generalization of computable complexity measures, including the particular
cases of plain and prefix complexity. Thus, the most general framework for a
complexity measure for a family of computable functions is a BSC space. In case
the algorithms considered can emulate any kind of computation, the BSC space
becomes automatically a BUSC space. The notion of randomness is defined with
respect to a BSC for natural numbers, and several results are proved in the most
general case. Many of the plain and prefix-free complexity measures properties,
including some properties of random strings, become particular cases for this new
approach. In the present paper we continue this effort, and prove in Section 3 that
the weakest form of randomness defined in a BUSC is the randomness defined
by the plain complexity measure. As a consequence, we extend in Section 4 the
negative result obtained for infinite sequences for plain complexity, to any other
dual complexity defined in a BUSC. In Section 5, we conclude our work by listing
a set of open problems, and possible future directions to extend this approach.

2 Notations

We denote by N = {0, 1, . . .} the set of natural numbers. For a set T , we denote
by #T its cardinal. For a finite alphabet with p letters, we use the set Ap =
{0, 1, . . . , p−1}. The free monoid generated by Ap is A∗

p, and the neutral element
with respect to concatenation, i.e., the word with no letters, is ε .

The length of a word w = w1 . . . wn ∈ A∗
p, wi ∈ Ap, 1 ≤ i ≤ n, is |w| = n.

The set A∗
p can be ordered using the quasi-lexicographical order: ε, 0, 1, . . . , p−

1, 00, 01, 0(p− 1), 10, . . .. We denote by stringp(n) the one to one function be-
tween N and A∗

p, representing the n-th string of A∗
p in the quasi-lexicographical

order. Thus, stringp(0) = ε, stringp(1) = 0, . . . stringp(p) = p − 1, string(p +
1) = 00, . . ..

We also use the function bp : N −→ Ap defined by

bp(n) = the positional representation in base p of the number n.

We denote by bin(n) = b2(n) = the binary representation of n.
The set of strings w ∈ A∗

p of length equal to, less than, less than or equal to,

greater than, and greater than or equal to n is denoted by: An
p , A

<n
p , A≤n

p , A>n
p ,

and respectively, A≥n
p .

If f is a function defined on N and x ∈ A∗
p, when we write f(x), we always

understand f(string−1
p (x)).

The set of infinite sequences x = x1x2 . . . xn . . ., with xi ∈ Ap, for all i ∈ N,
over the alphabet Ap, is denoted by Aω

p . The prefix of length n of x is x[n] =
x1 . . . xn. We will omit the index p when it can be understood from the context.
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Following the terminology used in [7], an algorithm for computing a partial

function f : N
◦−→ N is a finite set of instructions which, on any given input

x ∈ dom(f), outputs y = f(x) after a finite number of steps. The algorithm
must specify how to obtain each step in the computation from previous steps
and from the input. In case f is computed by an algorithm, we call it partial
computable function; if f is also total, then is called a computable function (the
old terminology referred to partial recursive and recursive functions [7]).

We consider an acceptable enumeration of the set of all partial computable

functions over N, F = (φ
(n)
i )i∈N, i.e., an enumeration satisfying the Wagner-

Strong axioms [22].
A function < ·, · >: N× N −→ N is called a pairing function if it is injective,

and its inverses (·)1, (·)2 : N
◦−→ N satisfy the following properties:

1. < (z)1, (z)2 >= z;

2. (< x, y >)1 = x, (< x, y >)2 = y.

In case < ·, · > is bijective, the inverses (·)1, (·)2 become total functions.
In what follows we will use only computable pairing functions. It is a common

practice to use paring functions to extend unary functions to functions having

more than one argument by defining φ
(2)
i (x, y) = φ

(1)
i (< x, y >), and to consider

that indexes of algorithms are encodings of algorithms over a finite alphabet Ap.
In case p = 2, the encoding is over the binary alphabet.

Example 1. Let us consider the alphabet Σ = A2 = {0, 1} and the corresponding
string function string = string2.

1. The Cantor function J : N× N −→ N defined by

J(x, y) =
(x + y + 1)(x+ y)

2
+ x,

is a pairing function.

2. The function < ·, · >: N2 −→ N defined by , < x, y >= 2x(2y + 1) − 1 is a
pairing function.

3. The function < ·, · >: N2 −→ N defined by

< x, y >= string−1(1|string(x)|0string(x)string(y))− 1

is obviously a pairing function. If z =< x, y >, than string(z + 1) =
1i0string(x)string(y), where |string(x)| = i.

4. The function < ·, · >: N2 −→ N defined by

< x, y >= string−1(T (string(x))string(y)),

where T (z) is defined by T (z1 . . . zn) = z1z1 . . . znzn01, is a pairing function
having the property: |string(< x, y >)| ≤ |string(y)| + h(x), where h is
computable function.
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5. The function < ·, · >: N2 −→ N defined by

< x, y >= string−1(11+log x0string(x)string(y))

is also a pairing function, 3 and |string(< x, y >)| ≤ |string(y)|+2 logx+1.
For the last two examples we can see that any encoding of < x, y > is just
injective.

We refer the reader to [8, 17] for more on computability, computable functions,
and recursive function theory.

We consider an acceptable enumeration of the set of all partial computable

functions over N, F = (φ
(n)
i )i∈N, i.e., an enumeration satisfying the Wagner-

Strong axioms [22].
In [4, 5], the definitions of direct and dual complexity measures are stated in

a formalism similar with what follows.
Let G ⊆ F , G = (ψ

(n)
i )i∈I be a class of algorithms. A function m : I −→ N is

called a (direct) complexity measure [3, 5] if satisfies:

1. (Computational axiom) m is computable;
2. (Re-computational Axiom) the set {j | m(j) = n} is computable;
3. (Cofinitness Axiom) #{j | m(j) = n} < ∞.

In [5], additional axioms are considered, for defining axiomatic complexity mea-
sures:

4. (Re-constructibility Axiom) For any number n, it is possible to build all
algorithms A from G for which m(A) = n, or, using our notations, the set
{j | m(j) = n} is computable.

5. (Compositional Axiom) If A ⊆ B, then m(A) ≤ m(B).

Since the semantics of the relation “ ⊆“ between algorithms is usually defined
depending on some encoding of the algorithm, in this paper we will only consider
axioms 1–4.

Definition 1. [11] A space (G,m) satisfying axioms 1–4 is called Blum static
complexity space.

Definition 2. [4, 5] Let d : N −→ N be a function. An algorithm U : N×N
◦−→

N is called d-universal for the set G = (ψi)i∈I , if ψi(n) = U(d(i), n), for all i ∈ I
and n ∈ N.

If U is a two argument universal algorithm for the algorithms with one argument,
i.e., U(i, x) = ψi(x), then U is 1N-universal for G.

Given a complexity measure m : I −→ N and ψ ∈ G, the dual to m with
respect to ψ is4

m0
ψ(x) = min{m(y) | y ∈ I, ψ(y) = x}.5

3 We make the convention that log 0 = −1, without this convention we cannot use
x = 0.

4 min∅ = ∞.
5 We can consider that I is embedded in N.
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In what follows, we reiterate the convention that a function f : Nk −→ N, when
applied to a string w ∈ A∗

p, is in fact the function f applied to string−1
p (w),

and when the result is in A∗
p, we apply the function stringp to the result of f .

Thus, we do not distinguish between a number n ∈ N and its representation
stringp(n) ∈ A∗

p.
If I is the encoding of algorithms over Ap, then m(I) is usually the length

of the encoding; in this case, m0
ψ is called dual to length complexity of x, with

respect to the algorithm ψ.
Throughout the rest of the paper we consider that m is the dual to length

complexity measure, and we denote complexity by CG
ψ = m0

ψ .
When the space G is understood, we may omit the superscript G.
If there exists i0 such that for all i ∈ I, there is a c ∈ N satisfying the

inequality:
Cψi0

(x) ≤ Cψi(x) + c (1)

for all x ∈ N, then the algorithm ψi0 is an universal algorithm for the family G.6
Since the measure m satisfies the Cofinitness Axiom 3, we can define the

maximum complexity of objects having a certain measure as:

ΣG
φ (n) = max{m0

φ(x) | m(x) = n}.

Using the notation CG
φ = m0

φ, for dual to length complexity measures, we get:

ΣG
φ (n) = max{CG(x) | |x| = n}.

In many papers some properties are proved for plain or prefix free complexity,
and is stated without any proof that the property should hold true for the other
type of complexity, just because it would be a matter of encoding. However, the
technical difficulties for translating the proof used for one complexity to the other
one may be so big, that is simply better to write a completely new proof. In other
cases, such a translation is not even possible, because that property is specific to
that particular representation. Thus, it is natural to ask ourselves what would
be some simple properties of encodings of natural numbers that would allow us
to talk about a general type of complexity, and distinguish, using the properties
of the encodings, between several complexity classes having common properties.

In [11] we propose such a set of properties for the encoding, and for keeping
the paper self-contained, we include them here:

Definition 3. ([11]) Let e and E be two computable functions satisfying the
following properties:

1. E is injective and is a length increasing function in the second argument,
i.e., there exists ce, such that if |x| ≤ |y|, then |E(i, x)| ≤ |E(i, y)|+ ce.

2. |E(i, x)| ≤ |E(i′, x)|+ η(i, i′), for some function η : N2 −→ N.

Then we say that the pair (e, E) is an encoding.7

6 The constant c depends on i and i0, but does not depend on x.
7 Please note that the constant ce depends on the function e, but does not depend on
i or y.
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Definition 4. ([11]) We say that the family G = (ψj)j∈J is an (e, E)-encoding
of the family H = (μi)i∈I , if for every i ∈ I and all x ∈ N, we have that:

1. μi(x) = ψe(i)(E(i, x)), for all i ∈ I and x ∈ N,
2. if ψj(z) = x, then e(i) = j and E(i, y) = z, for some i ∈ I and y ∈ N.

Theorem 1. [11] If H has an universal algorithm in H, and G is an encoding
of H, then G has an universal algorithm in G.

In case G encodes F , then G is called Blum universal static complexity space
(BUSC). One can check that (Prefix-free) Turing Machines, together with their
sizes, form a BUSC space, more details being presented in [4, 11]. Thus, it
is natural to check if common properties of plain and prefix-free versions of
Kolmogorov-Chaitin complexity can be proved in the general context of Blum
universal static complexity.

If G is a Blum Universal Static Complexity space, with the universal function
ψi0 , then the canonical program of x is x∗ = min{y ∈ N | ψi0(y) = x}. Since
we work with complexities that are dual to length measures, and because x < y
implies |string(x)| ≤ |string(y)|, it follows that we can also write x < y implies
|x| ≤ |y|. Thus, if G is an (e, E)-encoding of F , then:

if x < y it follows that |E(i, x)| ≤ |E(i, y)|+ ce. (2)

We say that a number x is t-compressible in G, if CG(x) < ΣG(|x|)− t, and that
is t-incompressible, if CG(x) ≥ ΣG(|x|) − t. A t-incompressible element is also
called random in G, and the set of all these elements is denoted by RANDG

t . We
denote by non−RANDG

t = N \RANDG
t .

The following results have already been proved in [11] for a BUSC:

1. The set of canonical programs is immune.
2. The function f(x) = x∗ is not computable.
3. The function CG is not computable.
4. The set RANDG

t is immune.

3 Relations between Universal Complexities

Let us set the universal algorithm φi0 for F . Then G has the induced universal
algorithm [11], ψe(i0).

We first prove the following technical lemma:

Lemma 1. Let G be a BUSC space. The set

non−RANDG
t = {x | CG(x) ≤ ΣG(n)− t}

is computable enumerable.
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Proof. We use the following algorithm:

1. Put k = 1, xk = 0.
2. Run ψe(i0)(x1), . . . , ψe(i0)(xk), for the first k steps.
3. Let i1, . . . , in n < k be all such values that ψe(i0)(xi1 ), . . . , ψe(i0)(xin) stop

in at most k steps.
Then for j = 1, . . . , n take yj = ψe(i0)(xij ), 1 ≤ j ≤ n, and set

CG,k(yj) = min{|xil |) | ψe(i0)(xil ) = yj, 1 ≤ l ≤ n}.

4. For j = 1 to n perform:
(a) Compute ΣG,k(|yj |) = max{CG,k(yl) | |yj | = |yl|, 1 ≤ l ≤ n}.
(b) If CG,k(yj) < Σk(|yj |)− t, then output yj .

5. Set k = k + 1, generate xk = k − 1, and go to step 2.

We can see the following facts:

1. If CG(y) = |x|, ψe(i0)(x) = y, and this computation finishes after k steps.

Then CG,max{k,x}(y) = |x|;
2. CG(y) ≤ CG,max{k,x}(y).
3. ΣG,k(|yj |) ≤ ΣG,k+1(|yj |) ≤ ΣG(|yj |)
4. If yj is produced, then CG,k(yj) < ΣG,k(|yj |) − t, which means that the

computation
CG(yj) < ΣG(|yj |)− t.

Now let y be such that CG(y) < ΣG(|y|) − t. This means that ψe(i0)(x) = y
terminates in k steps and |x| < ΣG(|y|)− t.

But {z | |z| < |y|} is finite, therefore there is m ∈ N such that CG,m(z) =
CG(z) for all z ∈ {z | |z| < |y|}. Hence, ΣG,m = ΣG and for max{k,m} we have
that:

CG,max{k,m}(y) < ΣG,max{k,m}(|y|)− t.

We conclude that this algorithm enumerates exactly the set non−RANDG
t .

Comment 1. The existence of k,m in the proof of the previous Lemma is non
effective.

We enhance the condition for the encoding (e, E), making it slightly stronger:

Definition 5. We say that the encoding is a normal encoding if for any T ∈ N,
there exists t ∈ N such that, if |x| ≤ |y| − t, then |E(i, x)| ≤ |E(i, y)| − T .

We can see that for T = 0 there exists a t ∈ N such that |x| ≤ |y| − t implies
|E(i, x)| ≤ |E(i, y)|. However, |x| ≤ |y| − t implies |x| ≤ |y|, thus |E(i, x)| ≤
|E(i, y)|+ O(1). This makes condition stated in Definition 5 somehow stronger
than the original condition stated in Definition 3.

In case of a normal encoding |E(i, x)| + T ≤ |E(i, y)|, whenever |x| + t ≤ |y|.
Thus, the increase of the length of the encoding can be controlled, even if we do
not require any kind of effectiveness condition for the existence of t.
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The choice of t should not depend on the particular computer i, but to simplify
things, we can ask that the normality property holds only for the universal
computer.

In what follows, we will consider only BUSC spaces G that are normal encod-
ings of F , for the universal computer, i.e., for which Definition 5 is satisfied for
i = i0.

Theorem 2. Let G be a normal encoding of F . Then for every m ∈ N, there
is a t ∈ N such that for each x ∈ N CF (x) < ΣF(|x|) − t, implies CG(x) <
ΣG(|x|)−m.

Proof. Let T ∈ N. Because G is a normal encoding of F , there exits t ∈ N such
that:

|x|+ t < |y| implies |E(i, x)|+ T < |E(i, y)|.

We choose x ∈ non−RANDF
t , such that z is the canonical program of x in F .

Therefore, we have that: |z| < ΣF(|x|) − t, and φi0 (z) = x, thus ψe(i0)

(E(i0, z)) = x. It follows that the complexity of x in G cannot exceed |E(i0, z)|.
Let z′ be such that E(i0, z

′) is the canonical program of x in G. Then we have
ψe(i0)(E(i0, z

′)) = x and CG(x) = |E(i0, z
′)| ≤ |E(i0, z)|.

Since φi0 (z
′) = x, and z is canonical program for x in F , we have that z ≤ z′,

therefore |E(i0, z)| ≤ |E(i0, z
′)|+ ce. Hence, C

G(x) + ce ≥ |E(i0, z)|.
It follows that ΣG(|x|) + ce ≥ |E(i0, v)|, where v is such that |v| = CF (y) =

ΣF(|x|) and |y| = |x|.
Now, using that |z| < |v| − t and the fact that the encoding is normal, we

deduct |E(i0, z)| ≤ |E(i0, v)| − T , which implies that CG(x) ≤ |E(i0, v)| − T ≤
ΣG(|x|) + ce − T .

Let m ∈ N be an arbitrary number. We take T = ce + m + 1 thus, for
x ∈ non−RANDF

t , we have that C
G(x) ≤ ΣG(|x|)+ce−ce−m−1 < ΣG(|x|)−m,

which is the conclusion of the theorem.

Therefore, we just proved the following as a consequence:

Corollary 1. Randomness with respect to prefix-free complexity is stronger than
randomness with respect to plain complexity.

Proof. We just need to observe that the BUSC for prefix-free complexity is a
normal encoding of F , because E(i, z) is a prefix free encoding of z.

Since any BUSC G is an (e, E)−encoding of F , it follows that the weakest form
of randomness is represented by the plain complexity.

4 Infinite Sequences and Randomness

In this section we prove that all infinite sequences have an infinite number of non-
random prefixes, regardless of the universal complexity space selected. We prove
the statement for the general case of a BUSC G, that has a normal encoding of F .
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In [7], the following theorem is proved:

Theorem 3. Let x ∈ Aω
p . Then for every t ∈ N, there exists infinitely many

values of n, such that
CF (x(n)) ≤ n− t.

We prove now the same result, but this time for the more general case of a BUSC
space.

Theorem 4. Let x ∈ Aω
p . Then for every T ∈ N, there exists infinitely many

values of n, such that
CG(x(n)) ≤ ΣG(n)− T.

Proof. Let x ∈ Aω
p , t ≥ 0 and T as in Theorem 2.

Because CF(x(n)) < ΣF(n) − t for an infinity of n, it follows that for the
exact same n’s, we also have: CG(x(n)) < ΣG(n)− T .

It is clear that in case G = F , we obtain the result of Calude [7], and in case
G is the set of prefix-free computers, we obtained the result in [10], which also
appears in [1].

5 Conclusions

In this paper we proved the following results for the general case of BUSC spaces:

1. The set of non random strings is computable enumerable.
2. If BUSC space G is a normal encoding of F , then the definition of randomness

in G is always stronger than randomness in F .
One can verify that this result can be extended to an arbitrary normal en-
coding of a BUSC space G of a BUSC space H, since we did not use any
particularity of the BUSC F .

3. We proved that all infinite sequences have an infinite number of non-random
prefixes, regardless of what ever complexity measure8 we consider, and not
only for the plain and prefix free complexity.

Since we have done the proofs just for BUSC spaces, it is natural to ask what
happens for BSC spaces, i.e., the ones that are not universal. Will a theorem
like Theorem 2 hold true?

If we consider the BSC of finite transducers [9, 11], can we conclude that any
infinite string has a limited number of prefixes of maximal complexity? If not,
how would such an infinite sequence look like? Can we relax the condition for
the encoding? What would be the weakest reasonable condition that we could
consider for the encoding?

We may also examine the following condition:

|z| ≤ |E(i0, z)|+O(1). (3)

In this case, we say that G is a non-compressing encoding of F .

8 That can be expressed as a dual complexity measure.
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How would this condition, or the opposite condition, influence the results
proved in this paper? What are other properties of BSC spaces with this extra
condition?
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Abstract. We investigate context-free languages with respect to the
measure Prod of descriptional complexity, which gives the minimal num-
ber of productions necessary to generate the language. In particular,
we consider the behaviour of this measure with respect to operations.
For given natural numbers c1, c2, . . . , cn and an n-ary operation τ on
languages, we discuss the set gτ (c1, c2, . . . , cn) which is the range of
Prod(τ (L1, L2, . . . , Ln)) where, for 1 ≤ i ≤ n, Li is a context-free lan-
guage with Prod(Li) = ci. The operations under discussion are union,
concatenation, reversal, and Kleene closure.

1 Introduction

One interesting question which has been investigated very intensively over the
last 20 years concerns the behaviour of descriptional complexity under opera-
tions. More precisely, for a language family L, a measureK of descriptional com-
plexity, an n-ary operation τ on languages under which L is closed, and natural
numbers m1,m2, . . . ,mn, one tries to determine the set gτ,K(m1,m2, . . . ,mn) of
all values K(τ(L1, L2, . . . , Ln)), where Li is a language of L with K(Li) = mi for
1 ≤ i ≤ n, and the number fτ,K(m1,m2, . . . ,mn) which is given by the maximal
number in gτ,K(m1,m2, . . . ,mn).

There are many papers devoted to the study of fτ,sc where sc is the state
complexity of regular languages (i. e., sc(L) is given by the number of states of
a minimal deterministic automaton accepting L) and τ is an operation under
which the family of regular languages is closed. For example, for union and
concatenation, one has f∪,sc(m,n) = mn and f·,sc(m,n) = (2m − 1)2n−1. For
further results, we refer to [1,17,12,11] and the summarizing articles [15,16].

For some operations, the number fτ,nsc where nsc is the state complexity with
respect to nondeterministic automata is studied in [4] and [10], and research on
fτ,tr where tr is the complexity measure given by the number of transitions is
done in [3].

There is only a small number of papers investigating the range gτ,K . For
complementation C, gC,nsc(n) is partially determined in [11].

With respect to context-free languages and the nonterminal complexity Var
(Var(L) gives the number of nonterminals which are required for the generation

M. Kutrib, N. Moreira, and R. Reis (Eds.): DCFS 2012, LNCS 7386, pp. 141–154, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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of L by context-free grammars), an early result can be found in [13]. A system-
atic study was presented in [2], where the sets gτ,Var(m1,m2) and gτ,Var(m1)
were extensively determined for the unary and binary AFL operations. Besides
concatenation, the presented results are complete.

In this paper we consider context-free grammars and their production com-
plexity Prod introduced by J. Gruska (see [5], [6], [7], [8]). Formally, for a
context-free grammar G = (N, T, P, S) (with the sets N , T and P of nonter-
minals, terminals and productions, respectively, and the axiom S), we define
Prod(G) as the cardinality of P . For a context-free language L, we set

Prod(L) = min{Prod(G) | G is a context-free grammar and L(G) = L}.

Moreover, for an r-ary operation τ under which the family of context-free lan-
guages is closed and natural numbers n1, n2, . . . , nr, we define gτ (n1, n2, . . . , nr)
as the set of all natural numbers k such that there are context-free languages Li,
1 ≤ i ≤ r, such that Prod(Li) = ni for 1 ≤ i ≤ r and Prod(τ(L1, . . . , Lr)) = k.

In this paper we discuss gτ for the unary operations of reversal and Kleene
closure and the binary operations of union and concatenation, i. e., we study
gR(n), g∗(n), g∪(n,m), and g·(n,m). For the unary operations, we determine the
sets completely; for union, the results are almost complete; for concatenation,
we only present a partial solution.

2 Production Complexity of Some Languages

We assume that the reader is familiar with the basic concepts of the theory of
formal languages (see [14]). For the sake of completeness, we start with some
notation. For an alphabet V , i. e, V is a finite non-empty set, the set of all words
and all non-empty words over V are denoted by V ∗ and V +, respectively. The
empty word is denoted by λ. Throughout the paper, we assume that a language
over V , i. e., a subset of V ∗, is a non-empty set. For a language L, let alph(L) be
the minimal set V such that L ⊆ V ∗. For a word w ∈ V ∗ and a subset C of V ,
the number of occurrences of letters of C in w is denoted by #C(w). If C only
consists of the letter a, we write #a(w) instead of #{a}(w).

In order to simplify the formulations we introduce the following concept.

Definition 1. A context-free language L is called a language with initial loops
if, for any context-free grammar G = (N, T, P, S) with L(G) = L and Prod(G) =
Prod(L), there is a derivation S =⇒∗ xSy with x, y ∈ T ∗ and xy �= λ.

Obviously, no finite languages is a language with initial loops.
We now determine the production complexity of some languages which will

be used later.

Lemma 1. i) For a context-free language L, we have Prod(L) = 1 if and only
if L is a singleton.

ii) For a finite language L, we have Prod(L) = 2 if and only if L consists of
exactly two words.
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iii) For any two natural numbers r and s with 0 ≤ r and r+2 ≤ s, the relation
Prod({ai | r ≤ i ≤ s}) = 3 holds.

iv) For any natural number r ≥ 1, we have Prod({ai | i ≥ r}) = 2. �

Lemma 2. Let n and m be natural numbers with n ≥ 1 and m ≥ 1, C =
{c1, c2, . . . , cn} and D = {d1, d2, . . . , dm} disjoints alphabets consisting of n and
m letters, respectively, and a and b two additional letters not contained in C∪D.
Let R1(n) = {atxbt | t ≥ 0, x ∈ C}. Then

i) Prod(R1(n)) = n+ 1,
ii) Prod(R1(n)

∗) = n+ 3, and
iii) Prod(R1(n)D) = n+m+ 1.

Proof. i) Let G = (N, T, P, S) be a context-free grammar with L(G) = R1(n)
and Prod(G) = Prod(R1(n)). Since no word of R1(n) contains two letters of
C, for any i, 1 ≤ i ≤ n, we need a rule Ai → x1,icix2,i with Ai ∈ N and
x1,i, x2,i ∈ (N ∪ {a, b})∗. Moreover, R1(n) is infinite, and therefore we need a
derivation A =⇒∗ uAv with u, v ∈ T ∗ and uv �= λ and have a derivation

S =⇒∗ u′Av′ =⇒∗ u′uAvv′ =⇒∗ u′u2Av2v′ =⇒∗ u′u2wv2v′ ∈ T ∗

for certain words u′, v′, w ∈ T ∗. Hence u and v cannot contain any letter of C.
Thus we also have a rule A → z where z contains no letter of C. Thus we obtain
n+ 1 ≤ Prod(G) = Prod(R1(n)).

On the other hand, the grammar

G′ = ({S}, C ∪ {a, b}, {S → aSb} ∪ {S → ci | 1 ≤ i ≤ n}, S)

generates R1(n) with n+1 rules which implies Prod(R1(n)) ≤ Prod(G′) = n+1.
The combination of the derived inequalities gives the first statement of the

lemma.

ii) Let G∗ = (N, T, P, S) be a context-free grammar with L(G∗) = R1(n)
∗

and Prod(G∗) = Prod(R1(n)
∗). Since R1(n) ⊂ R1(n)

∗, by the same arguments
as in i) we have rules Ai → x1,icix2,i with Ai ∈ N and x1,i, x2,i ∈ (N ∪ {a, b})∗
and a derivation A =⇒∗ uAv with u, v ∈ {a, b}∗ and can derive the words
u′vrwvrv′ ∈ R1(n) with some u′, v′, w ∈ T ∗. Since any word in R1(n) contains
the same number of occurrences of a and b, it is easy to prove that u = as, v = bs

for some s ≥ 1, u′ ∈ {a}∗, and v′ ∈ {b}∗.
Let us assume that there is a word z with A =⇒∗ z ∈ T ∗ and #C(z) ≥ 2.

Then we have the derivations S =⇒∗ u′uzvv′ and S =⇒∗ u′u2zv2v′ in G∗ and
hence u′u2zv2v′ and u′uzvv′ in L(G∗). But only one of these words can be in
R1(n)

∗ since we only change the numbers of occurrences of a and b before and
after z, respectively. This contradiction shows that any such letter A can derive
at most one occurrence of a letter of C. The same holds for the nonterminals Ai

given above since Ai has such a loop derivation or it derives only a finite set of
words.

Since the axiom derives words with at least two occurrences of letters of C,
S has no loop derivation like those considered above. If there are two rules for S
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we have at least n+3 rules. If there is only one rule for S, then its right-hand side
cannot contain S since we cannot terminate the derivation otherwise. If the right-
hand side only contains the nonterminals Ai and those with a loop derivation as
above, we can only produce words with a limited number of occurrences of C.
This implies L(G∗) �= R1(n)

∗ in contrast to our choice. Therefore the right-hand
side contains a further nonterminal for which we have an additional rule. Thus
we get n+ 3 ≥ Prod(G∗) = Prod(R1(n)

∗).
On the other hand, the language R1(n)

∗ is generated by the context-free
grammar with the rules S → AS, S → λ, A → aAb and, A → x with x ∈ C,
i. e., Prod(R1(n)

∗) ≤ n+ 3.
iii) Let G = (N, T, P, S) be a grammar with L(G) = R1(n)D and Prod(G) =

Prod(R1(n)D). Obviously, T = {a, b} ∪ C ∪D.
For 1 ≤ i ≤ n and sufficiently large r, we consider the word w = arcib

rd1 of
R1(n)D. As above we get the existence of a derivation

S =⇒∗ u′Av′ =⇒∗ u′uAvv′ =⇒∗ u′uzvv′ = w

with uv �= λ, which implies the existence of derivations

S =⇒∗ u′Av′ =⇒∗ u′uAvv′ =⇒∗ u′u2Av2v′

=⇒∗ u′usAvsv′ =⇒∗ u′uszvsv′ = ws for s ≥ 0.

Since ws ∈ R1(n)D, we obtain

– that u and v cannot contain ci or d1 (otherwise, we can produce words in
R1(n)D with at least two occurrences of ci or d1, respectively), i. e., u, v are
in {a, b}∗,

– that u and v cannot contain occurrences of a as well as b (otherwise, we can
produce words where b occurs before a), i. e., u and v are contained in {a}∗
or {b}∗,

– that #a(ws)−#a(w) = #b(ws)−#a(w),
#a(ws)−#a(w) = #a(u

s−1vs−1),
#b(ws)−#a(w) = #b(u

s−1vs−1),
which implies#a(u

s−1vs−1) = #b(u
s−1vs−1) > 0 and#a(uv) = #b(uv) > 0.

Combining these facts and taking into consideration the order of the letters we
have

u′ ∈ {a}∗, u ∈ {a}+, z ∈ {a}∗{ci}{b}∗, v ∈ {b}+, v′ ∈ {b}∗{d1}.

Moreover, by changing the order of the application of rules, the derivation
Ai =⇒∗ zi can be written as

A =⇒∗ xAix
′ =⇒ xyciy

′x′ =⇒∗ xqciq′x′

with x, q ∈ {a}∗, x′, q′ ∈ {b}∗, Ai → yciy
′ ∈ P , y ∈ (N ∪ {a})∗, and y′ ∈

(N ∪ {b})∗. Because 1 ≤ i ≤ n, this gives the existence of n− 1 rules. (We note
that the nonterminals Ai and Aj can be equal, but the rules Ai → yciy

′ ∈ P
and Aj → y′′cjy′′′ ∈ P are different.)
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Furthermore, A =⇒∗ uAv can be written as

A =⇒∗ hCh′ =⇒ hgh′ =⇒∗ hg′h′ = uAv

where C → g ∈ P , g ∈ ({a, b} ∪ N)∗ and #{a,b}(g) ≥ 1. Thus we get a further
rule.

Moreover, for any 1 ≤ j ≤ m, we need at least one rule pj whose right-hand
side contains dj . Since the right-hand side of pj cannot contain two symbol of
D, we obtain m additional rules.

Thus Prod(R1(n)D) ≥ n+ 1 +m.
Since

H = ({S,A}, {a, b}∪C∪D, {S → Ad | d ∈ D}∪{A → aAb}∪{A→ c | c ∈ C}, S)

generates R1(n)D, we also have Prod(R1(n)D) ≤ n+ 1 +m, which implies the
statement. �

Lemma 3. Let R2(n) = {a1, a2, . . . , an} where ai, 1 ≤ i ≤ n, are pairwise
different letters of some alphabet. Then Prod(R2(n)) = n, Prod(R2(n)

∗) = n+1,
and Prod(R2(n)

+) = n + 1. Moreover R2(n)
∗ and R2(n)

+ are languages with
initial loops. �

Lemma 4. For any numbers n and m with 0 ≤ m < n, let

R(m,n) = {a2i | m ≤ i ≤ n} and R′(m,n) = {a2i−1 | m ≤ i ≤ n}.

Then Prod(R(m,n)) = Prod(R′(m,n)) = n−m+ 1.

Proof. The statement for R(m,n) follows by slight modifications of the proof for
R(1, n) in [5].

Using the rules S → a2
i−1 for n ≤ i ≤ m, we get Prod(R′(m,n)) ≤ n−m+1.

Assume that Prod(R′(m,n)) < n−m+1. Let G = (N, T, P, S) be a grammar
with L(G) = R′(m,n) and Prod(G) = Prod(R′(m,n)). Obviously, there is no
rule S → xSy ∈ P . (If xy = λ, the cancellation of the rule does not change the
generated language, and hence P is not a minimal production set in contrast to
the choice of G; if xy �= λ, then we can generate an infinite language, because
any nonterminal occurring in xy has a derivation to a non-empty word.) Now we
construct G′ = (N, T, P ′, S) where P ′ is obtained from P by replacing S → w ∈
P by S → wa. Then Prod(G′) < n−m+1. It is easy to see that L(G′) = R(m,n).
This implies Prod(R(m,n)) < n−m+ 1. This assertion contradicts our shown
statement for R(m,n). �

Lemma 5. Let R3 = {a} ∪ {ai | i ≥ 3} and R4 = {a, a2, a3} ∪ {ai | i ≥ 5}.
Then Prod(R3) = 3 and Prod(R4) = 4. Moreover, R3 and R4 are languages with
initial loops. �
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3 Behaviour under Operations

We start with the reversal (or mirror image) R (which is defined by λR = λ,
aR = a for letters a, (uv)R = vRuR for words u, v, LR = {wr | w ∈ L} for
languages L), where the situation is very easy.

Theorem 1. For any n ≥ 1, we have gR(n) = {n}.

Proof. Let L be a context-free language, and let G = (N, T, P, S) be a context-
free grammar with L = L(G) and Prod(L) = Prod(G). Since the grammar
G′ = (N, T, {A → wR | A → w ∈ P}, S) generates LR, we have Prod(LR) ≤
Prod(L). Analogously, we get Prod(L) = Prod((LR)R) ≤ Prod(LR). Therefore,
Prod(LR) = Prod(L). The statement follows immediately. �

We now discuss the binary operations union and concatenation. Our first result
shows that both corresponding functions gτ (m,n) are symmetric in the argu-
ments. Thus in the sequel we can restrict to the case where m ≤ n.

Lemma 6. For any positive natural numbers n and m, the equalities g∪(m,n) =
g∪(n,m) and g·(m,n) = g·(n,m) hold.

Proof. Let k ∈ g∪(m,n). Then there are context-free languages L1 and L2 such
that Prod(L1) = m, Prod(L2) = n, and Prod(L1 ∪ L2) = k. Since we have
L1∪L2 = L2∪L1, we get immediately k ∈ g∪(n,m). Thus g∪(m,n) ⊆ g∪(n,m).
The converse inclusion can be shown analogously.

Let k ∈ g·(m,n). Then there are languages context-free L1 and L2 such that
Prod(L1) = m, Prod(L2) = n, and Prod(L1 · L2) = k. Then we have

k = Prod(L1 · L2) = Prod((L1 · L2)
R) = Prod(LR

2 · LR
1 ).

Since Prod(LR
1 ) = Prod(L1) = m and Prod(LR

2 ) = Prod(L2) = n, we get
immediately k ∈ g·(n,m). Therefore g·(m,n) ⊆ g·(n,m). The converse inclusion
can be proved analogously. �

We now give a lemma which gives the production complexity of the union in the
case that the languages are defined over disjoint alphabets.

Lemma 7. If L1 and L2 are context-free languages with alph(L1)∩alph(L2) = ∅,
λ /∈ L1, and λ /∈ L2, then the following assertions hold:

i) If L1 as well as L2 are languages with initial loops, then Prod(L1 ∪ L2) =
Prod(L1) + Prod(L2) + 2.

ii) If L1 is a language with initial loops and L2 is not a language with initial
loops, then Prod(L1 ∪ L2) = Prod(L1) + Prod(L2) + 1.

iii) If neither L1 nor L2 is language with initial loops, then the equality
Prod(L1 ∪ L2) = Prod(L1) + Prod(L2) holds.

iv) The language L1 ∪ L2 is not a language with initial loops. �

We are now in the position to determine the sets g∪(m,n) for most values m
and n.
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Theorem 2. Let 2 ≤ m ≤ n.
i) The number 1 and all numbers k with k > n+m+ 2 are not in g∪(n,m).
ii) If m ≥ 7, then {k | 6 ≤ k ≤ n+m+ 2} ⊆ g∪(m,n).
iii) If m ∈ {5, 6}, then {k | 4 ≤ k ≤ n+m+ 2} ⊆ g∪(m,n).
iv) If m = 4, then {2} ∪ {k | 4 ≤ k ≤ n+m+ 2} ⊆ g∪(m,n).
v) If m ∈ {2, 3}, then {k | 2 ≤ k ≤ n+m+ 2} = g∪(m,n).

Proof. i) By the standard construction for the closure of context-free grammars
under union, one gets immediately that Prod(L1∪L2) ≤ Prod(L1)+Prod(L2)+2.
Hence g∪(m,n) cannot contain numbers which are strictly larger than m+n+2.
Since m ≥ 2 and n ≥ 2, the languages L1 and L2 with Prod(L1) = m and
Prod(L2) = n have at least two words. Hence the union also contains at least
two words. Thus Prod(L1 ∪ L2) ≥ 2, too, i. e., we have 1 /∈ g∪(m,n).

ii) We distinguish the following cases.
k = n +m + 2. Let L1 = {a1, a2, . . . , am−1}+ and L2 = {b1, b2, . . . , bn−1}+

where a1, a2, . . . , am−1, b1, b2, . . . , bn−1 are pairwise different letters. By Lem-
mas 3 and 7, we get Prod(L1) = m, Prod(L2) = n, and Prod(L1∪L2) = m+n+2.

k = n + m + 1. Let L1 = {a1, a2, . . . , am−1}+ and L2 = {a2i | 1 ≤ i ≤ n}
where a1, a2, . . . , am−1, a are pairwise different letters. By Lemmas 3, 4, and 7,
we get Prod(L1) = m, Prod(L2) = n, and Prod(L1 ∪ L2) = m+ n+ 1.
k with n ≤ k ≤ n+m. Let L1 = R(1,m) and L2 = R(k−n+1, k). By Lemma 4,

we get Prod(L1) = m, Prod(L2) = n, and Prod(L1 ∪ L2) = Prod(R(1, k)) = k.
k with 6 ≤ k ≤ n. Let a, b, c be three pairwise different letters and

L1 = {c2r | 1 ≤ r ≤ m− 3} ∪ {b}+ and

L2 = {a2i | 1 ≤ i ≤ k − 6} ∪ {b2j | 1 ≤ j ≤ n− k + 3} ∪ {c}+.

Then we obtain by Lemmas 3, 4, and 7,

Prod(L1) = (m− 3) + 2 + 1 = m,

Prod(L2) = ((k − 6) + (n− k + 3)) + 2 + 1 = n,

Prod(L1 ∪ L2) = Prod({a2i | 1 ≤ i ≤ k − 6} ∪ {b}+ ∪ {c}+)
= (k − 6) + (2 + 2 + 2) = k.

iii) The cases k with 6 ≤ k ≤ n+m+ 2 can be taken from the constructions
given in ii).
m = 6 and k = 5. We consider the languages L1 = R3 ∪ {b, c} and L2 =

R(1, n). By Lemmas 1, 4, 5, and 7, we get

Prod(L1) = 3 + 2 + 1 = 6, Prod(L2) = n, and

Prod(L1 ∪ L2) = Prod({a}∗ ∪ {b, c}) = 2 + 2 + 1 = 5.

m = 6 and k = 4. Using L1 = R4 ∪ {b} and L2 = R(1, n), we get as above

Prod(L1) = 4 + 1 + 1 = 6, Prod(L2) = n, and

Prod(L1 ∪ L2) = Prod({a}∗ ∪ {b}) = 2 + 1 + 1 = 4.
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m = 5 and k = 5. We give the proof for the more general situation 3 ≤ m ≤ k.
Let a and b be different letters and

L1 = {a2i | 1 ≤ i ≤ m− 3} ∪ {br | 1 ≤ r ≤ 2n−k+3} and

L2 = {a2i | 1 ≤ i ≤ k − 3} ∪ {b2j | 1 ≤ j ≤ n− k + 3}.

Then we obtain by Lemmas 1, 3, 4, and 7,

Prod(L1) = (m− 3) + 3 = m,

Prod(L2) = (k − 3) + (n− k + 3) = n,

Prod(L1 ∪ L2} = Prod({a2i | 1 ≤ i ≤ k − 3} ∪ {br | 1 ≤ r ≤ 2n−k+3}
= (k − 3) + 3 = k.

m = 5 and k = 4. We repeat the proof form = 6 and k = 5 with L1 = R3∪{b}.

iv) The cases k with 4 ≤ k ≤ m + n + 2 can be shown analogously to the
above proofs. It remains to show that 2 ∈ g∪(4, n).

By Lemmas 1, 4, and 5, we have Prod(R4) = 4, Prod(R(1, n)) = n, and
Prod(R4 ∪R(1, n)) = Prod({a}+) = 2.

v) Let m = 3. The cases k with 3 ≤ k ≤ m+ n+2 can be shown analogously
to the above proofs. Because we have Prod(R3) = 3, Prod(R(1, n)) = n, and
Prod(R3 ∪R(1, n)) = Prod({a}+) = 2, we also have 2 ∈ g∪(3, n).

Now let m = 2. For k ≥ n, we take the constructions as above.
For k with 4 ≤ k ≤ n, we take

L1 = {b}+ and L2 = {a2
i

| 1 ≤ i ≤ k − 3} ∪ {b2
j

| 1 ≤ j ≤ n− k + 3},

which satisfy Prod(L1) = 2 by Lemma 3, Prod(L2) = n by Lemmas 4 and 7,

and Prod(L1 ∪ L2) = Prod({b}∗ ∪ {a2i | 1 ≤ i ≤ k − 3}) = k by Lemma 7.
For k = 3, we take L1 = {ai | i ≥ 4} and L2 = R′(1, n). Then Prod(L1) = 2

and Prod(L2) = n by Lemmas 1 and 4. Moreover, L1 ∪ L2 = R3 and thus
Prod(L1 ∪ L2) = 3 by Lemma 5.

For k = 2, let L1 = {a}+ and L2 = R(1, n). Then we have Prod(L1) = 2,
Prod(L2) = n, and Prod(L1 ∪ L2) = 2 by Lemmas 3 and 4. �

Theorem 3. i) For all numbers n with n ≥ 2, the number 1 and all numbers k
with k > n+ 2 are not in g∪(1, n).

ii) For n ≥ 2, we have {k | n ≤ k ≤ n+ 2} ⊆ g∪(1, n). For n ≥ 5 and n ≥ 6,
the relations n− 1 ∈ g∪(1, n) and n− 2 ∈ g∪(1, n) hold, respectively. Moreover,
we have g∪(1, 1) = {1, 2}. �

We now turn to concatenation.

Theorem 4. i) For any natural numbers m and n with 1 ≤ m ≤ n, all numbers
k with k > n+m+ 1 are not contained in g·(m,n). If n ≥ 2, then 1 /∈ g·(m,n).

ii) For any natural numbers m ≥ 1 and n ≥ 2, we have n+m+1 ∈ g·(m,n).
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iii) For any natural numbers m ≥ 2 and n ≥ 3, we have n+m ∈ g·(m,n).
iv) For any natural numbers m ≥ 3 and n ≥ 3, we have n+m− 1 ∈ g·(m,n).
v) For any natural numbers m ≥ 5 and n ≥ 5, the relation {k | n + 2 ≤ k ≤

m+ n− 2} ⊆ g·(m,n) holds.
vi) Let m ∈ {2, 3, 4}. Then 2 ∈ g·(m,n). If, in addition, n ≥ 7, then we have

{4, 5, . . . , n− 3} ⊆ g·(m,n).

Proof. i) can be shown as statement i) of Theorem 2. We only give the proof for
ii), iii), and v).

ii) If n = 1, we take L1 = {d} and L2 = R1(m−1). Then we get Prod(L1·L2) =
Prod((L1 · L2)

R) = 1 +m+ 1 by Lemma 2.
If n ≥ 2, we set

L1 = R1(m− 1) and L2 = {dryer | r ≥ 0, y ∈ {f1, f2, . . . , fn−1}}.

Obviously, L2 can be obtained from R1(m − 1) by renaming of the letters. By
Lemma 2, we get Prod(L1) = m and Prod(L2) = n.

We now prove that Prod(L1 · L2) = n + m + 1. Let G = (N, T, P, S) be
a grammar with L(G) = L1 · L2 and Prod(G) = Prod(L1 · L2). Obviously,
T = {a, b, d, e, c1, c2, . . . , cm−1, f1, f2, . . . , fn−1}.

We consider the words w = arcib
rf1 and w′ = c1d

rfje
r of L1 · L2 for a

sufficiently large number r, 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1. As in the proof of
Lemma 2 iii), we can show that there are rules
– Ai → yciy

′ ∈ P with y ∈ (N ∪ {a})∗ and y′ ∈ (N ∪ {b})∗ and
– C → g ∈ P , g ∈ ({a, b} ∪N)∗ and #{a,b}(g) ≥ 1,
– Dj → pjfjp

′
j with pj ∈ ({d} ∪N)∗ and p′j ∈ ({e} ∪N)∗,

– E → k ∈ ({d, e} ∪N)∗ with #{d,e}(k) ≥ 1.

The letter S is different from all the letters Ai, C,Dj , E, 1 ≤ i ≤ n− 1, 1 ≤ j ≤
m− 1. We only give the proof for Ai, for the other letters the statement follows
analogously. If S = Ai, we have a derivation (see proof of Lemma 2 iii))

S =⇒∗ u′usAvsv′ =⇒∗ u′usxAix
′vsv′ = u′usxSx′vsv′ =⇒∗ u′usxc1f1x′vsv′

because S =⇒∗ c1f1 is a valid derivation in G. However, because u ∈ {a}+
and v ∈ {b}+, the generated word does not belong to L1 · L2 in contrast to
L(G) = L1 · L2.

Thus we require an additional rule for S. Altogether, we have at leastm+n+1
rules in G, which results in Prod(L1 · L2) ≥ n+m+ 1.

On the other hand, the grammar with axiom S and the rules

S → AB, A → aAb, B → dBe, A → ci, 1 ≤ i ≤ m− 1, B → fj , 1 ≤ j ≤ n− 1

generates L1 ∪ L2, which implies Prod(L1 ∪ L2) ≤ m+ n+ 1.
Combining the relations, we have Prod(L1 ∪ L2) = m+ n+ 1.

iii) We take

L1 = R1(m− 2){c} and L2 = {dnxen | n ≥ 0, x ∈ {f1, f2, . . . , fn−1}}.
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Then Prod(L1) = m and Prod(L2) = n by Lemma 2.
Let G be a grammar such that L(G) = L1 ·L2 and Prod(G) = Prod(L1 ·L2).

As in i) we can show that, for the generation of L1 · L2, we need rules
– Ai → yciy

′ ∈ P , y ∈ (N ∪ {a})∗ and y′ ∈ (N ∪ {b})∗, 1 ≤ i ≤ m− 2,
– C → g ∈ P , g ∈ ({a, b} ∪N)∗ and #{a,b}(g) ≥ 1,
– Dj → pjfjp

′
j with pj ∈ ({d} ∪N)∗ and p′j ∈ ({e} ∪N)∗, 1 ≤ j ≤ n− 1,

– E → k ∈ ({d, e} ∪N)}∗ with #{d,e}(k) ≥ 1,
– and an additional rule for the axiom S.
Hence we need at least (m− 2)+1+ (n− 1)+1+1 = m+n rules. On the other
hand, the grammar with axiom S and the rules

S → AcB, A → aAb, B → dBe, A → ci, 1 ≤ i ≤ m− 2, B → fj , 1 ≤ j ≤ n− 1

generates L1 · L2 and thus m+ n rules are sufficient, too.

iv) We take

L1 = R1(m− 2){c} and L2 = {drxer | r ≥ 0, x ∈ {f1, f2, . . . , fn−2}}{f}.

By Lemma 2, Prod(L1) = m and Prod(L2) = n.
Let G be a grammar such that L(G) = L1 ·L2 and Prod(G) = Prod(L1 ·L2).

Again, we need m− 2 rules for the generation of the ci, 1 ≤ i ≤ m− 2, one rule
for the generation of words containing an arbitrary number of as or bs, n − 2
rules for the generation of the fj, 1 ≤ j ≤ n − 2, one rule for the generation
of words containing an arbitrary number of ds or es,and a rule for the axiom.
Hence Prod(L1 · L2) ≥ m+ n− 1.

The grammar with axiom S and the rules

S → AcBf, A → aAb, B → dBe, A → ci, 1 ≤ i ≤ m−2, B → fj , 1 ≤ j ≤ n−2

generates L1 · L2. Therefore Prod(L1 · L2) ≤ m+ n− 1.

v) Let 5 ≤ m ≤ n. We choose a number x such that 2 ≤ x ≤ m− 3. Let

a, b, d, e, p, q, c1, c2, . . . , cm−x−2, f1, f2, . . . fn−x−2, g1, g2 . . . , gx−1

be pairwise different letters. Then we set

Q = {prgkqr | r ≥ 0, 1 ≤ k ≤ x− 1},
L1 = R1(m− x− 2)Q, and

L2 = {drfjer | r ≥ 0, 1 ≤ j ≤ n− x− 2}Q.

By part i), we get

Prod(L1) = (m− x− 1) + x+ 1 = m and Prod(L2) = (n− x− 1) + x+ 1 = n.

Let G be a grammar such that L(G) = L1 · L2 and Prod(G) = Prod(L1 · L2).
As in the proof of Lemma 2 iii), we can show that we need m− x − 1 rules for
the generation of words with ci, 1 ≤ i ≤ m− x− 2, one rule for the generation
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of words containing arbitrarily many letters a or b, n − x − 2 rules for the
generation of words with fj , one rule for the generation of words containing
arbitrarily many letters d or e, and x− 1 rules for the generation of words with
gk, 1 ≤ k ≤ x − 1, one rule for the generation of words containing arbitrarily
many letters p or q, and an additional rule for the axiom. Thus Prod(L1 ·L2) ≥
(m− x− 2) + 1 + (n− x− 2) + 1 + x− 1 + 1 + 1 = m+ n− x− 1.

Since the grammar with the rules

S → ACBC, A → aAb, B → dBe, C → pCq,A → ci, 1 ≤ i ≤ m− x− 1,

B → fj , 1 ≤ j ≤ n− x− 1, C → gk, 1 ≤ k ≤ x− 1

generates L1 ·L2, we obtain Prod(L1 ·L2) ≤ 4+(m−x−2)+(n−x−2)+(x−1) =
m+ n− x− 1.

By our choice of x, 2 ≤ x ≤ m − 2, we can cover all the values given in the
statement.

vi) Let m = 2 and m ≤ n. We consider L1 = {c}+ and L2 = {cj | 0 ≤
j ≤ n − 1}. Then L1 · L2 = {ci | i ≥ 2}. By Lemmas 1, 4, and 5, we obtain
Prod(L1) = 2, Prod(L2) = n, and Prod(L1 · L2) = 2

Let m = 2, 4 ≤ k and k + 3 ≤ n. We consider

L1 = {c}+ and L2 = {ci | 0 ≤ i ≤ n− k − 3}R1(k − 3).

Obviously, L1 · L2 = {ci | i ≥ 2}R1(k − 2).
By Lemma 1, Prod(L1) = 2.
We now prove that Prod(L2) = n. Let G = (N, T, P, S) be a context-free

grammar with L(G) = L2 and Prod(G) = Prod(L2). As in the preceding proofs,
we get the existence of rules Ai → yi with yi ∈ {N ∪{ci, a, b})+ and #ci(yi) = 1,
1 ≤ i ≤ k − 3 and a rule B → x with x ∈ (N ∪ {a, b})+. Moreover, B occurs in
the derivation A =⇒∗ asAbs for some s > 0 and the nonterminals Ai occur in
derivations A =⇒∗ aricibsi with ri, si ≥ 0. Thus there are no derivation starting
in B or Ai which produce a word containing c (otherwise, for B, we would have
derivations S =⇒∗ cuAv =⇒∗ cuAstAbstv =⇒ cxBy =⇒∗ cxzy with #a(x) ≥ 1,
#b(y) ≥ 1, and #c(z) ≥ 1 which is impossible for words in L2).

We construct the grammar G′ as follows: we cancel all rules for B and Ai,
1 ≤ i ≤ k− 3. In the remaining rules we replace all occurrences of a, b, B, ci and
Ai, 1 ≤ i ≤ k − 3, in right hand sides by λ. Obviously, L(G′) = {ci | 0 ≤ i ≤
n− k − 3}. Hence G′ has at least n− k − 2 rules. Consequently, G has at least
(n− k − 2) + (k − 2) = n rules. Therefore Prod(L2) ≥ n.

The grammar

({S,A}, {a, b, c} ∪ {ci | 1 ≤ i ≤ k − 3}, Q, S)

with

Q = {S → cjA | 0 ≤ j ≤ n− k − 3} ∪ {A → aAb} ∪ {A → ci | 1 ≤ i ≤ k − 3}

generates L2 with n rules. Hence Prod(L2) = n.
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Analogously we can prove that the generation of {ci | c ≥ 2}R1(k−2) requires
at least 2 + (k − 2) (the first summand 2, because we need two rules for the
generation of {ci | c ≥ 2} by the grammar G′, and k − 2 rules for cR1(k − 3),
and it can be generated by

({S,A}, {a, b, c} ∪ {ci | 1 ≤ i ≤ k − 3}, Q′, S)

with

Q′ = {S → cS, S → c2A,A → aAb} ∪ {A→ ci | 1 ≤ i ≤ k − 3}.

Thus Prod(L1 · L2) = k.

The proof for m = 3 and m = 4 can be given analogously using

L1 = {c} ∪ {cj | j ≥ 3} and L1 = {c, c2, c3} ∪ {cj | j ≥ 5},

respectively, instead of L1 = {c}+. �

Finally, we discuss the behaviour under Kleene closure.

Theorem 5. i) For any n ≥ 2, we have g∗(n) = {k | 2 ≤ k ≤ n+ 2}.
ii) The equality g∗(1) = {1, 2} holds.

Proof. i) By the standard construction for the closure of context-free grammars
under Kleene closure, one gets immediately that Prod(L∗) ≤ Prod(L)+2. Hence
g∗(n) cannot contain numbers which are strictly larger than n+ 2. Since n ≥ 2,
any language L with Prod(L) = n has at least two words. Hence its Kleene
closure L∗ also contains at least two words (more precisely, L∗ is infinite). Thus,
by Lemma 1 i), Prod(L∗) ≥ 2, too, i. e., 1 /∈ g∗(n).

We now prove that the remaining cases can occur.
k = n+2. The assertion follows from Lemma 2 by consideration of R1(n−1).
k with 3 ≤ k ≤ n+1. Let L = R2(k−2)∪R(0, n−k+1). Since R2(k−2) and

R(0, n− k+1) are finite, they are languages without initial loops. Therefore, by
Lemmas 3, 4, and 7, we obtain Prod(L) = (k − 2) + (n − k + 2) = n. Because
L∗ = {a, a1, a2, . . . , ak−2}∗, we get Prod(L∗) = k by Lemma 3.
k = 2. By Lemma 4, we have Prod(R(1, n)) = n. Moreover, Prod(R(1, n)∗) =

Prod({a}∗) = 2 by Lemma 3.

ii) If L is a language with Prod(L) = 1, then L = {w} for some w. If w = λ,
then L∗ = {λ} and Prod(L∗) = 1. If w �= λ, then L∗ = {λ,w,w2, w3, . . . }, and
L∗ is generated by the grammar with the two rules S → wS and S → λ. �

4 Conclusion

In this paper we have studied the sets gτ (m1,m2, . . . ,mn) for union, concate-
nation, Kleene closure and reversal. With respect to reversal and Kleene clo-
sure the results are complete, i. e., we have determined the sets gR(n) and
g∗(n) for all numbers n ≥ 1. Concerning union, we have determined the sets
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g∪(2, n) and g∪(3, n) for all values n. For m ≥ 4, we know that all numbers k
with 6 ≤ k ≤ n + m + 2 are in g∪(m,n), but we do not know whether some
small numbers are in g∪(m,n). More precisely, it is open whether 3 ∈ g∪(4, n),
2, 3 ∈ g∪(m,n) for m ∈ {5, 6}, and 2, 3, 4, 5 ∈ g∪(m,n) for m ≥ 7. Moreover,
we do not know whether k ∈ g∪(1, n) for k ∈ {2, 3, . . . , n− 3}. With respect to
the concatenation, we have presented an almost complete result for m ∈ {2, 3, 4}
and n ≥ 7 (we only left open whether 3, n−2, n−1, n, n+1 ∈ g·(m,n)); for other
values of m, only numbers larger than the maximal argument are obtained. This
corresponds to the situation for the nonterminal complexity.

In order to obtain the results, in most cases, we have used languages over
alphabets which have a cardinality depending on m and n. It remains to inves-
tigate whether all results hold over alphabets with bounded cardinality.

As we already mentioned in the Introduction, most result on regular language
and state complexity, nondeterministic state complexity and transition com-
plexity concern only the maximal value which can be obtained by application
of operations to languages with a given complexity. Thus it is of interest, for an
n-ary operation τ under which the family of context-free languages is closed, to
study the function fτ : Nn → N defined by

fτ (m1,m2, . . . ,mn) = max gτ (m1,m2, . . . ,mn).

From the constructions/proofs of the preceding section, we get immediately the
following result.

Theorem 6. i) If m ≥ 2 and n ≥ 2, then f∪(m,n) = m+ n+ 2. If n ≥ 2, then
f∪(1, n) = f∪(n, 1) = n+ 2. Furthermore, we have f∪(1, 1) = 2.

ii) If m ≥ 2 and n ≥ 2, then f·(m,n) = m+ n+ 1. If n ≥ 2, then f·(1, n) =
f·(n, 1) = n+ 1. Furthermore, we have f·(1, 1) = 1.

iii) If n ≥ 2, then f∗(n) = n+ 2. Furthermore, we have f∗(1) = 2.
iv) For n ≥ 1, the equality fR(n) = n holds. �

Again, it remains open whether the statements of Theorem 6 are valid for lan-
guages over alphabets with bounded size.

Besides the nonterminal complexity (where the behaviour under operations
is studied in [2]) and the production complexity, the total number of symbols is
a further well investigated measure of descriptional complexity for context-free
grammars and languages. In the dissertation [9], the behaviour under operations
with respect to the total number of symbols is also investigated.
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Abstract. In this paper, we study the state complexities of (
k⋃

i=1

Li)
∗

and (
k⋃

i=1

Li)
2, where Li, 1 ≤ i ≤ k, k ≥ 2 are regular languages. We

obtain exact bounds for both of these multiple combined operations and
show that they are much lower than the mathematical compositions of
the state complexities of their basic individual component operations,
but have similar forms with the state complexities of some participating
combined operations.
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1 Introduction

State complexity is a fundamental topic in automata theory and its study dates
back to the 1950’s [16]. State complexity is a type of descriptional complexity for
regular languages based on the number of states in their minimal finite automata.
The state complexity of a language operation gives an upper bound for both the
time and space complexity of the operation [20]. The study of state complexity
is motivated by the use of automata of very large sizes in multiple areas, e.g.
programming languages, natural language and speech processing, and so on.

Many papers on state complexity appeared in the literature, see, e.g.,
[4–6, 10, 12, 14, 15, 20, 21]. The state complexities of almost all the individ-
ual standard regular language operations, e.g., union, intersection, catenation,
star, reversal, shuffle, orthogonal catenation, proportional removal, and cyclic
shift, etc., have been obtained.

In practice, not only a single operation, but also a sequence of operations
can be applied in some specific order. For example, primer extension, which is
a basic biological operation, can be formalized as a combination of catenation
and antimorphic involution [1]. Therefore, in the mid of 2000s, the study of state
complexity of combined operations was initiated [18, 22]. Following that, many
results on this topic were obtained, e.g., [2, 3, 7–9, 13].
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A theoretical reason for studying the state complexity of combined operations
is that, given an arbitrary combined operation, we cannot use the mathematical
composition of the state complexities of its individual component operations as
its state complexity. The state complexity of a combined operation can be much
lower than the aforementioned composition, because the resulting languages of
one individual operation may not be among the worst case inputs of the next op-
eration [13, 18]. An often used example for this phenomenon is (L1∪L2)

∗, where
L1 and L2 are regular languages accepted by n1- and n2-state DFAs, respectively.
In [18], the state complexity of the combined operation (L1 ∪ L2)

∗ was proved
to be 2n1+n2−1 − 2n1−1 − 2n1−1 + 1, whereas the mathematical composition of
the state complexities of union and star is 3

42
n1n2 .

It has been proved that there does not exist a general algorithm that, for an
arbitrarily given combined operation and a class of regular languages, computes
the state complexity of the operation on this class of languages [19]. It seems
that every combined operation must be investigated separately. However, the
number of combined operations is obviously unlimited, and it is impossible to
investigate all of them. Thus, the combined operations with arbitrarily many
individual operations should be the emphasis of theoretical studies because they
are more general than the basic combined operations which are composed of
only a limited number of individual operations. The latter can indeed be viewed
as the special cases of the former.

In this paper, we study such two general combined operations: (
k⋃

i=1

Li)
∗ and

(
k⋃

i=1

Li)
2, where Li, 1 ≤ i ≤ k, k ≥ 2 are regular languages. Clearly, the com-

bined operation (L1 ∪ L2)
∗ is an instance of (

k⋃
i=1

Li)
∗. We show that the state

complexity of star of union on k regular languages is not only much lower than
the mathematical composition of the state complexities of union and star, but
also in a similar form with the state complexity of (L1 ∪ L2)

∗.

We obtain tight bounds for (
k⋃

i=1

Li)
2 as well. One interesting thing is, when we

investigated this combined operation, we found that it could be considered as a
combination of (1) union and square, or (2) union-catenation ((L1 ∪L2)L3) and
union, or (3) union and catenation-union (L1(L2∪L3)). Finally, the tight upper
bound was obtained with the last combination which has a similar form with the
state complexity of L1(L2∪L3). It seems that decomposing a combined operation
into its participating combined operations can give better upper bounds than the
mathematical composition of the state complexities of its individual component
operations.

In the next section, we introduce the basic notation and definitions used in

this paper. In Sections 3 and 4, we investigate the state complexities of (
k⋃

i=1

Li)
∗

and (
k⋃

i=1

Li)
2, respectively.
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2 Preliminaries

A DFA is denoted by a 5-tuple A = (Q,Σ, δ, s, F ), where Q is the finite set of
states, Σ is the finite input alphabet, δ : Q × Σ → Q is the state transition
function, s ∈ Q is the initial state, and F ⊆ Q is the set of final states. A DFA is
said to be complete if δ(q, a) is defined for all q ∈ Q and a ∈ Σ. All the DFAs we
mention in this paper are assumed to be complete. We extend δ to Q×Σ∗ → Q
in the usual way.

In this paper, the state transition function δ of a DFA is often extended to
δ̂ : 2Q × Σ → 2Q. The function δ̂ is defined by δ̂(R, a) = {δ(r, a) | r ∈ R}, for
R ⊆ Q and a ∈ Σ. We just write δ instead of δ̂ if there is no confusion.

A string w ∈ Σ∗ is accepted by a DFA if δ(s, w) ∈ F . Two states in a DFA
A are said to be equivalent if and only if for every string w ∈ Σ∗, if A is started
in either state with w as input, it either accepts in both cases or rejects in both
cases. A language accepted by a DFA is said to be regular. The language accepted
by a DFA A is denoted by L(A). The reader may refer to [11] for more details
about regular languages and finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number
of states of the minimal complete DFA that accepts L. The state complexity of
a class S of regular languages, denoted by sc(S), is the supremum among all
sc(L), L ∈ S. The state complexity of an operation on regular languages is the
state complexity of the resulting languages from the operation as a function of
the state complexity of the operand languages. Thus, in a certain sense, the state
complexity of an operation is a worst-case complexity.

3 State Complexity of (
k⋃

i=1

Li)
∗

We first consider the state complexity of (
k⋃

i=1

Li)
∗, where Li, 1 ≤ i ≤ k, k ≥ 2

are regular languages accepted by ni-state DFAs. It has been proved that the
state complexity of L∗

i is 3
42

ni and the state complexity of Li∪Lj is ninj [14, 21].

Their mathematical composition for the combined operation (
k⋃

i=1

Li)
∗ is 3

42

k∏
i=1

ni

.

As we mentioned in Section 1, this upper bound is too high to be reached even
when k = 2, that is, (L1 ∪L2)

∗ [18]. The combined operation (L1 ∪L2)
∗ can be

viewed as not only a base case of (
k⋃

i=1

Li)
∗ when k = 2, but also its participating

combined operation.

In the following, we show that the state complexity of (
k⋃

i=1

Li)
∗ has a similar

form with that of (L1 ∪ L2)
∗. Note that although these two state complexities

look similar, the proofs for the general case k ≥ 2 is very different from those for
k = 2, especially the proof for the highest lower bound. This is because, when k
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is arbitrarily many, a lot more questions need to be considered which are easy
to solve or do not exist for the case with only two operand languages, e.g., how
to update the ith component of a state of the resulting DFA without interfering
with the other k − 1 components, and so on.

Theorem 1. Let Li, 1 ≤ i ≤ k, k ≥ 2 be regular languages accepted by ni-state

DFAs. Then (
k⋃

i=1

Li)
∗ is accepted by a DFA of no more than

k∏
i=1

(2ni−1 − 1) + 2

k∑
j=1

nj−k

states.

Proof. For 1 ≤ i ≤ k, let Li = L(Ai) and Ai = (Qi, Σ, δi, si, Fi) be a DFA of ni

states. Without loss of generality, we assume that the state sets of A1, A2, . . .,
Ak are disjoint. We construct a DFA A = (Q,Σ, δ, s, F ) to accept the language

(
k⋃

i=1

Li)
∗ similarly with [18]. We define Q to be Q = {s} ∪ P ∪R where

P = {〈P1, P2, . . . , Pk〉 | Pi ⊆ Qi − Fi, Pi �= ∅, 1 ≤ i ≤ k},

R = {〈R1, R2, . . . , Rk〉 | (
k⋃

j=1

Rj) ∩ (

k⋃
h=1

Fh) �= ∅, si ∈ Ri ⊆ Qi, 1 ≤ i ≤ k}.

If si /∈ Fi for every DFA Ai, 1 ≤ i ≤ k, the initial state s of the DFA A is then

a new symbol, because the empty word is not in the language
k⋃

i=1

Li. If there

exists an i such that si ∈ Fi, we choose s = 〈s1, s2, . . . , sk〉 to be the initial state
of A. In this case, s is clearly contained in the set R. Note that the sets P and
R are always disjoint.

We define the set of final states F to be R∪ {s}. The transition function δ of
the DFA A is defined as follows.

For each letter a ∈ Σ,

δ(s, a) =

{
〈{δ1(s1, a)}, . . . , {δk(sk, a)}〉, if δi(si, a) /∈ Fi for all 1 ≤ i ≤ k;
〈{δ1(s1, a)} ∪ {s1}, . . . , {δk(sk, a)} ∪ {sk}〉, otherwise,

and for each state p = 〈P1, P2, . . . , Pk〉 ∈ Q− {s},

δ(p, a) =

{
〈δ1(P1, a), . . . , δk(Pk, a)〉, if δi(Pi, a) ∩ Fi = ∅ for all 1 ≤ i ≤ k;
〈δ1(P1, a) ∪ {s1}, . . . , δk(Pk, a) ∪ {sk}〉, otherwise.

The DFA A can simulate the computation of the DFAs A1, A2, . . ., Ak and when
one of them enter a final state, the initial states s1, s2, . . ., sk are added. It is

easy to see that L(A) = (
k⋃

i=1

L(Ai))
∗.
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Now let us count the number of states of A which is an upper bound of the

state complexity of the combined operation (
k⋃

i=1

Li)
∗.

For the DFAs A1, A2, . . ., Ak, denote |Fi| by ti. The resulting language

(
k⋃

i=1

Li)
∗ =

{
Σ∗, if ti = ni;
(L1 ∪ L2 ∪ . . . ∪ Li−1 ∪ Li+1 . . . ∪ Lk)

∗, if ti = 0.

Both of the above cases are trivial. Therefore, we only need to consider the case

when 0 < ti < ni. There are
k∏

i=1

(2ni−ti − 1) states in the set P . The cardinality

of the set R is

|R| =

⎧⎪⎪⎨⎪⎪⎩
2

k∑
j=1

nj−k

, if ∃p(sp ∈ Fp), 1 ≤ p ≤ k;

2

k∑
j=1

nj−k

− 2

k∑
j=1

nj−
k∑

r=1
tr−k

, otherwise.

There are 2

k∑
j=1

nj−k

states 〈R1, R2, . . . , Rk〉 in A such that si ∈ Ri for all 1 ≤
i ≤ k. When sp /∈ Fp for all 1 ≤ p ≤ k, the number of states 〈R′

1, R
′
2, . . . , R

′
k〉

such that sp ∈ Rp and Fp ∩ Rp = ∅ is 2

k∑
j=1

nj−
k∑

r=1
tr−k

. In this case, these states
are contained in the set P rather than R according to the definition.

Since Q = {s} ∪ P ∪R, the size of the state set Q is

|Q| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k∏

i=1

(2ni−ti − 1) + 2

k∑
j=1

nj−k

, if ∃p(sp ∈ Fp), 1 ≤ p ≤ k;

k∏
i=1

(2ni−ti − 1) + 2

k∑
j=1

nj−k

− 2

k∑
j=1

nj−
k∑

r=1
tr−k

+ 1, otherwise.

As we mentioned before, a new symbol is needed to be the initial state only when
si /∈ Fi for all 1 ≤ i ≤ k. Thus, the upper bound of the number of states in A
reaches the worst case when Ai has only one final state (ti = 1) for all 1 ≤ i ≤ k
and at least one of the initial states of these DFAs is final. &"

Next, we show that this upper bound is reachable.

Theorem 2. For any integer ni ≥ 3, 1 ≤ i ≤ k, there exist a DFA Ai of ni

states such that any DFA accepting (
k⋃

i=1

L(Ai))
∗ needs at least

k∏
i=1

(2ni−1 − 1) + 2

k∑
j=1

nj−k

states.
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Proof. For 1 ≤ i ≤ k, let Ai = (Qi, Σ, δi, 0, {0}) be a DFA, where Q1 =
{0, 1, . . . , ni − 1}, Σ = {ai | 1 ≤ i ≤ k} ∪ {bj | 1 ≤ j ≤ k} ∪ {c} and the
transitions of Ai are

δi(q, ai) = q + 1 mod ni, q = 0, 1, . . . , ni − 1,

δi(q, aj) = q, j �= i, q = 0, 1, . . . , ni − 1,

δi(q, bi) = 0, q = 0, 1, . . . , ni − 1,

δi(q, bj) = q, j �= i, q = 0, 1, . . . , ni − 1,

δi(0, c) = 1, δi(q, c) = q, q = 1, . . . , ni − 1.

The transition diagram of Ai is shown in Figure 1.

Fig. 1. Witness DFA Ai for Theorems 2

Then we construct the DFA A = (Q,Σ, δ, s, F ) exactly as described in the
proof of Theorem 1, where

Q = P ∪R,

P = {〈P1, P2, . . . , Pk〉 | Pi ⊆ Qi − {0}, Pi �= ∅, 1 ≤ i ≤ k},
R = {〈R1, R2, . . . , Rk〉 | 0 ∈ Ri ⊆ Qi, 1 ≤ i ≤ k},
s = 〈{0}, {0}, . . . , {0}〉,
F = {〈{0}, {0}, . . . , {0}〉},

and for each state p = 〈P1, P2, . . . , Pk〉 ∈ Q,

δ(p, a) =

{
〈δ1(P1, a), δ2(P2, a), . . . , δk(Pk, a)〉, if 0 /∈ δi(Pi, a) for all 1 ≤ i ≤ k;
〈δ1(P1, a) ∪ {0}, δ2(P2, a) ∪ {0}, . . . , δk(Pk, a) ∪ {0}〉, otherwise.

It is easy to see that A accepts (
k⋃

i=1

L(Ai))
∗ and it has

k∏
i=1

(2ni−1− 1)+2

k∑
j=1

nj−k

states. Now we need to show that A is a minimal DFA.

(I) We first show that every state p = 〈P1, P2, . . . , Pk〉 ∈ Q is reachable from
the initial state s = 〈{0}, {0}, . . . , {0}〉.
1. |P1| ≥ 1, |P2| = |P3| = . . . = |Pk| = 1. According to the nature of the

combined operation of star of union, the order of |P1|, |P2|, . . ., |Pk| does
not matter. Thus, in this case, we just let |P1| ≥ 1 and |P2|, . . ., |Pk| be
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1 without loss of generality. Let us use induction on the cardinality of
P1 to prove this.
Base: We show that, when |P1| = |P2| = |P3| = . . . = |Pk| = 1, the
state p is reachable from the initial state. Assume that Pi = {qi} ⊆ Qi,
1 ≤ i ≤ k. Then

〈P1, P2, . . . , Pk〉 =
{
s, if q1 = 0;

δ(s, caq1−1
1 aq2−1

2 · · · aqk−1
k ), if q1 > 0.

Note that when q1 = 0, q2, . . . , qk must also be 0 according to the con-
struction of the DFA A. Similarly, when q1 > 0, all of q2, . . . , qk must be
greater than 0.
Induction Step: Assume that all states in A such that |P1| = m1 ≥ 1,
|P2| = |P3| = . . . = |Pk| = 1 are reachable from s. Then we prove any
state p such that |P1| = m1 + 1, |P2| = |P3| = . . . = |Pk| = 1 is also
reachable.

Assume P1 = {q11, q12, . . . , q1m1 , q1(m1+1)} ⊆ Q1, q11 < q12 < . . . <
q1m1 < q1(m1+1), Pj = {qj1} ⊆ Qj, 2 ≤ j ≤ k. Then

p =

{
δ(p′, b2b3 · · · bk), if q11 = 0;

δ(p′′, caq11−1
1 aq2−1

2 aq3−1
3 · · ·aqk−1

k ), if q11 > 0,

where

p′ = 〈{q12, q13, q14, . . . , q1(m1+1)}, {1}, . . . , {1}〉,
p′′ = 〈{0, q12 − q11 + 1, . . . , q1(m1+1) − q11 + 1}, {0}, . . . , {0}〉.

Since the state p′ is reachable according to the induction hypothesis and
p′′ has been proved to be reachable in the case when q11 = 0, the state
p can also be reached.

2. |P1| ≥ 1, |P2| ≥ 1, . . ., |Pt| ≥ 1, |Pt+1| = |Pt+2| . . . = |Pk| = 1, 2 ≤ t ≤ k.
We use induction on t to prove that p is reachable in this case. Case 1
can be used as the base of the induction.
Induction Step: Assume all states in A such that |P1| = m1 ≥ 1,
|P2| = m2 ≥ 1, . . ., |Pt−1| = mt−1 ≥ 1, |Pt| = |Pt+1| . . . = |Pk| = 1,
2 ≤ t ≤ k, can be reached from the initial state s. Let us prove any
state p such that |P1| = m1 ≥ 1, |P2| = m2 ≥ 1, . . ., |Pt| = mt ≥ 1,
|Pt+1| = |Pt+2| . . . = |Pk| = 1 can also be reached.

Assume Pi = {qi1, qi2, . . . , qimi} ⊆ Qi, qi1 < qi2 < . . . < qimi , 2 ≤
mi ≤ ni Pj = {qj1} ⊆ Qj , 1 ≤ i ≤ t, t+ 1 ≤ j ≤ k. In the following, let
us first consider the case when q11 > 0 this time.

(2.1) q11 > 0. If q11 > 0, then q21 > 0, q31 > 0, . . ., qk1 > 0 and
Pi �= Qi for all 1 ≤ i ≤ t. According to the induction hypothesis, the
state

p′ = 〈P1, P2, . . . , Pt−1, {1}, {1}, . . . , {1}〉
is reachable from s. We begin the computation from p′ by reading qtmt −
qt(mt−1) − 1 symbols at.

δ(p′, a
qtmt−qt(mt−1)−1
t ) = 〈P1, . . . , Pt−1, {qtmt − qt(mt−1)}, {1}, . . . , {1}〉.
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Denote the resulting state by r. Next, we apply n1 − q1m1 symbols a1
and the DFA A reaches the state

r′ = 〈P ′
1, P2 ∪ {0}, . . . , Pt−1 ∪ {0}, {0, qtmt − qt(mt−1)}, {0, 1}, . . . , {0, 1}〉

where

P ′
1 = {0, q11 + n1 − q1m1 , q12 + n1 − q1m1 , . . . , q1(m1−1) + n1 − q1m1}.

Now we apply an at-transition and the resulting state r′′ is

〈P ′
1, P2∪{0}, . . . , Pt−1∪{0}, {0, 1, qtmt−qt(mt−1)+1}, {0, 1}, . . . , {0, 1}〉.

We cycle using a1-transitions as long as elements of P ′
1 are consecutively

passing by 0. The last a1-transition increases the cardinality of P ′
1 by 1

and after that we apply a c-transition which removes the 0 in every com-
ponent of the state. We continue to apply a1-transitions until a sequence
of consecutive elements of P ′

1 passed by 0 and the cardinality of P ′
1 is

increased by 1. Then a c-transition is applied to eliminate 0. Clearly, we
can cyclicly shift the set P ′

1 back into P1 by repeating these two steps.
Now the DFA A reaches the state

p′′ = 〈P1, P2, . . . , Pt−1, {1, qtmt − qt(mt−1) + 1}, {1}, . . . , {1}〉.

The state p′′ is the same as p except that qtmt − qt(mt−1) + 1 is added
into the tth set. Therefore, we can continue in the same way to add more
elements to it. After the next loop, the state reached will be

〈P1, . . . , Pt−1, {1, qt(mt−1)−qt(mt−2)+1, qtmt−qt(mt−2)+1}, {1}, . . . , {1}〉.

In this way, we add all the mt elements of Pt but keep them in a position
that is shifted backwards qt1 − 1 steps so that qt1 is in the position 1,
qt2 is in the position qt2 − qt1 +1, and so on. Now we use an input word
aqt1−1
t to shift all the elements of Pt into correct positions, which does

not change the other elements of the state, and the state is

p′′′ = 〈P1, P2, . . . , Pt−1, Pt, {1}, . . . , {1}〉.

Finally, by reading a word a
q(t+1)1−1
t+1 a

q(t+2)1−1
t+2 · · · aqk1−1

k , the DFA A
reaches the state p = 〈P1, P2, . . . , Pk〉.

(2.2) q11 = 0. When q11 = 0, we know that q21 = q31 = . . . = qk1 = 0.
Then the state p is

〈{0, q12, . . . , q1m1}, . . . , {0, qt2, . . . , qtmt}, {0}, . . . , {0}〉.

To prove p is reachable, we start from a state

p′ = 〈{q12, . . . , q1m1}, . . . , {qt2, . . . , qtmt}, {1}, . . . , {1}〉.

The state p′ has been proved to be reachable in the case (2.1). It is easy
to see that δ(p′, bt+1bt+2 · · · bk) = p. Thus, the state p can be reached
from the initial state s when q11 = 0.
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Now we have proved that all the states in A are reachable.
(II) Any two different states p1 and p2 in Q are distinguishable.

Let p1 and p2 be 〈P1, P2, . . . , Pk〉 and 〈P ′
1, P

′
2, . . . , P

′
k〉, respectively. Since

p1 and p2 are different, without loss of generality we can assume that there
exists an integer 1 ≤ t ≤ k such that Pt �= P ′

t and x ∈ Pt − P ′
t .

1. x = 0. If x = 0, then 0 ∈ Pi for all 1 ≤ i ≤ k and the state p1 is a final
state of A. Oppositely, since x /∈ P ′

t , none of P
′
i contains 0, which makes

the state p2 a nonfinal state. Therefore, p1 and p2 are distinguishable.
2. x > 0. For this case, we claim that δ(p1, a

mt−1−x
t ca) ∈ F . In the DFA

At, the transition function δt on the input word amt−1−x
t takes the state

x to mt− 1. The input letter c does not change the state mt − 1 and the
letter a takes from mt − 1 to 0. The last a-transition also adds 0 into
the other components in p1 according to the definition of A. Thus, the
resulting state is final.
Next, we show that δ(p2, a

mt−1−x
t ca) /∈ F . Since x /∈ P ′

t , it is easy to
see that mt − 1 /∈ δ(P ′

t , a
mt−1−x
t ). Note that 0 may be added into the

other components in p2 if the state 0 in At is passed by when processing
the input word amt−1−x

t . However, since x > 0, it is impossible for a
computation from the newly added 0’s to reach mt − 1 on amt−1−x

t .
Then the input letter c removes the 0 in P ′

i for all 1 ≤ i ≤ k. The last
input letter a shifts the states in δ(P ′

t , a
mt−1−x
t c) by 1 but none of its

elements can reach 0 because it does not containmt−1. The a-transition
does not change the other elements in P2. Clearly, the resulting state is
nonfinal. Thus, the states p1 and p2 are distinguishable.

Since all states in A are reachable and distinguishable, A is a minimal DFA. &"

This lower bound coincides with the upper bound in Theorem 1. Thus, it is the

state complexity of (
k⋃

i=1

L(Ai))
∗.

4 State Complexity of (
k⋃

i=1

Li)
2

In this section, we consider the state complexity of (
k⋃

i=1

Li)
2, where Li, 1 ≤ i ≤ k,

k ≥ 2 are regular languages accepted by ni-state DFAs. As we mentioned in
Section 1, this combined operation can be viewed as a combination of (1) union
and square, or (2) union-catenation ((L1 ∪ L2)L3) and union, or (3) union and
catenation-union (L1(L2 ∪L3)). It was shown that the state complexity of L2

1 is
n12

n1 −2n1−1 [17] and the state complexity of L1∪L2 is n1n2 [14, 21]. Thus, for
combination (1), we can get an upper bound through mathematical composition

k∏
h=1

nh · 2
k∏

i=1

ni

− 2

k∏
j=1

nj−1
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Next, we consider (
k⋃

i=1

Li)
2 as the second combination. The state complexity of

(L1∪L2)L3 was proved to be n1n22
n3 − (n1+n2−1)2n3−1 in [2]. Then its naive

mathematical composition with the state complexity of union is

k∏
h=1

nh · 2
k∏

i=1

ni

− (n1 +

k∏
j=2

nj − 1)2

k∏
l=1

nl−1

which is better than the first upper bound.
Now, let us consider the last combination. In [3], the state complexity of

L1(L2 ∪ L3) is shown to be

(n1 − 1)[(2n2 − 1)(2n3 − 1) + 1] + 2n2+n3−2

and its naive mathematical composition with the state complexity of union is

k∏
h=1

(nh − 1)[(2n2 − 1)(2
n1

k∏
i=3

ni

− 1) + 1] + 2

k∑
j=1

nj−2

which is the best among the three upper bounds.

In the following, we will show that the state complexity of (
k⋃

i=1

Li)
2 has a

similar form with the third bound. Again, although the two state complexities
look similar, the proofs vary a lot because one is a general combined operation
for k ≥ 2 and the other is a specific combined operation. Besides, the base case of
the combined operation when k = 2, that is, (L1 ∪L2)

2, has never been studied.
Its state complexity is obtained in this paper as a case of the general operation.

Theorem 3. Let Li, 1 ≤ i ≤ k, k ≥ 2 be regular languages accepted by DFAs

of ni states and fi final states. Then (
k⋃

i=1

Li)
2 is accepted by a DFA of no more

than

k∏
h=1

(nh − fh)[
k∏

i=1

(2ni − 1) + 1] + [
k∏

j=1

nj −
k∏

l=1

(nl − fl)]2

k∑
m=1

nm−k
.

states.

Proof. For 1 ≤ i ≤ k, let Li = L(Ai) and Ai = (Qi, Σ, δi, si, Fi) be a DFA of ni

states and fi final states. We construct a DFA A = (Q,Σ, δ, s, F ) to accept the

language (
k⋃

i=1

Li)
2. We define the state set Q to be Q = P ∪R ∪ T , where

P = {〈p1, p2, . . . , pk, P1, P2, . . . , Pk〉 | pi ∈ Qi − Fi, Pi ∈ 2Qi − {∅}, 1 ≤ i ≤ k},
R = {〈p1, p2, . . . , pk, ∅, . . . , ∅〉 | pi ∈ Qi − Fi, 1 ≤ i ≤ k},
T ={〈p1, p2, . . . , pk, {s1}∪ P1, . . . , {sk} ∪ Pk〉 | pi ∈ Fi,Pi ∈ 2Qi−{si}, 1 ≤ i ≤ k}.
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The initial state s is

s =

{
〈s1, s2, . . . , sk, ∅, ∅, . . . , ∅〉, if si /∈ Fi, 1 ≤ i ≤ k;
〈s1, s2, . . . , sk, {s1}, {s2}, . . . , {sk}〉, otherwise.

We define the set of final states F to be

F = {〈p1, p2, . . . , pk, P1, P2, . . . , Pk〉 ∈ Q | ∃i(Pi ∩ Fi �= ∅), 1 ≤ i ≤ k}.

For any p ∈ Q and a ∈ Σ, the transition function δ is defined as:

δ(p, a) =

{
〈p′1, p′2, . . . , p′k, P ′

1, P
′
2 . . . , P

′
k〉, if p′i ∩ Fi = ∅ for all 1 ≤ i ≤ k;

〈p′1, p′2, . . . , p′k, P ′
1 ∪ {s1}, P ′

2 ∪ {s2}, . . . , P ′
k ∪ {sk}〉, otherwise,

where p′i = δi(pi, a) and P ′
i = δi(Pi, a), 1 ≤ i ≤ k.

An arbitrary state in A is a 2k-tuple whose first k components can be viewed

as a state in the DFA accepting
k⋃

i=1

Li constructed through cross-product and

last k components components are subsets of Q1, Q2, . . ., Qk, respectively.
If the first k components of a state are non-final states in A1, A2, . . ., Ak,

respectively, then the last k components are either all empty sets or all nonempty
sets, because the last k components always change from the empty set to a non-
empty set at the same time. This is why P and R are subsets of Q.

Also, we notice that if at least one of the first k components of a state in
A is final in the corresponding DFA, then the last k components of the state
must contain the initial states of A1, A2, . . ., Ak, respectively. Such states are
contained in the set T .

It is easy to see that A accepts (
k⋃

i=1

Li)
2. Now let us count the number of

states in A. The cardinalities of P , R and T are respectively

|P | =
k∏

h=1

(nh − fh)[

k∏
i=1

(2ni − 1)], |R| =
k∏

h=1

(nh − fh),

|T | = [

k∏
j=1

nj −
k∏

l=1

(nl − fl)]2

k∑
m=1

nm−k
.

Thus, the total number of states in A is |P |+ |R|+ |T | which is the same as the
upper bound shown in Theorem 3. &"

Next, we show this upper bound can be reached.

Theorem 4. For any integer ni ≥ 3, 1 ≤ i ≤ k, there exist a DFA Ai of ni

states such that any DFA accepting (
k⋃

i=1

L(Ai))
2 needs at least

k∏
h=1

(nh − 1)[

k∏
i=1

(2ni − 1) + 1] + [

k∏
j=1

nj −
k∏

l=1

(nl − 1)]2

k∑
m=1

nm−k

states.



166 Y. Gao and L. Kari

Proof. For 1 ≤ i ≤ k, let Ai = (Qi, Σ, δi, 0, {ni − 1}) be a DFA, where Q1 =
{0, 1, . . . , ni − 1}, Σ = {ai | 1 ≤ i ≤ k} ∪ {bj | 1 ≤ j ≤ k} ∪ {c} and the
transitions of Ai are

δi(q, ai) = q + 1 mod ni, q = 0, 1, . . . , ni − 1,

δi(q, aj) = q, j �= i, q = 0, 1, . . . , ni − 1,

δi(1, bi) = 0, δi(q, bi) = q, q = 0, 2, 3 . . . , ni − 1,

δi(q, bj) = q, j �= i, q = 0, 1, . . . , ni − 1,

δi(q, c) = q + 1 mod ni, q = 0, 1, . . . , ni − 1.

The transition diagram of Ai is shown in Figure 2.

Fig. 2. Witness DFA Ai for Theorems 4

Now we construct the DFA A = (Q,Σ, δ, s, F ) accepting (
k⋃

i=1

L(Ai))
2 exactly

as described in the proof of Theorem 3. The number of states in A is clearly

k∏
h=1

(nh − 1)[
k∏

i=1

(2ni − 1) + 1] + [
k∏

j=1

nj −
k∏

l=1

(nl − 1)]2

k∑
m=1

nm−k
.

Next, we will prove that A is a minimal DFA.

(I) We first need to show that every state

p = 〈p1, p2, . . . , pk, P1, P2, . . . , Pk〉 ∈ Q

is reachable from the initial state s = 〈0, 0, . . . , 0, ∅, ∅, . . . , ∅〉. The reacha-
bility of p can be proved by considering the following three cases.

1. pi /∈ Fi, Pi = ∅, 1 ≤ i ≤ k.
2. |P1| ≥ 1, |P2| = |P3| = . . . = |Pk| = 1.
3. |P1| ≥ 1, |P2| ≥ 1, . . . , |Pt| ≥ 1, |Pt+1| = . . . = |Pk| = 1, 2 ≤ t ≤ k.

Due to the page limitation, we omit the proof for the three cases above.
(II) Any two different states p and p′ in Q are distinguishable.

Assume that

p = 〈p1, p2, . . . , pk, P1, P2, . . . , Pk〉,
p′ = 〈p′1, p′2, . . . , p′k, P ′

1, P
′
2, . . . , P

′
k〉.
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1. ∃t(Pt �= P ′
t ), 1 ≤ t ≤ k.

Let x ∈ Pt − P ′
t without loss of generality. Then there exists a word w

such that

δ(p, w) = 〈0, . . . , 0, rt, 0, . . . , 0, {0}, . . . , {0}, Rt, {0}, . . . , {0}〉 ∈ F,

δ(p′, w) = 〈0, . . . , 0, r′t, 0, . . . , 0, {0}, . . . , {0}, R′
t, {0}, . . . , {0}〉 /∈ F,

where

w = ant−1−xw1w2 · · ·wt−1wt+1wt+2 · · ·wk,

wj = (ajbj)
nj , 1 ≤ j ≤ k, j �= t.

It is easy see that Rt ∩ Ft �= ∅ whereas R′
t ∩ Ft = ∅.

2. ∃t(pt �= p′t), 1 ≤ t ≤ k and Pi = P ′
i for all 1 ≤ i ≤ k.

For this case, there exists a word w′ such that

δ(p, w′) = 〈0, . . . , 0, R1, {0}, . . . , {0}〉 ∈ F,

δ(p′, w′) = 〈0, . . . , 0, R′
1, {0}, . . . , {0}〉 /∈ F,

where

w′ = w1w2 · · ·wt−1wt+1wt+2 · · ·wkwt,

wj = (ajbj)
nj , 1 ≤ j ≤ k, j �= t,

wt = ant+1−pt

t (atbt)
nt−2an1

1 atbt.

We can see that R1 ∩ F1 �= ∅ whereas R′
1 ∩ F1 = ∅.

Since all the states in A are reachable and pairwise distinguishable, A is a min-

imal DFA. Therefore, any DFA that accepts (
k⋃

i=1

L(Ai))
2 needs at least

k∏
h=1

(nh − 1)[

k∏
i=1

(2ni − 1) + 1] + [

k∏
j=1

nj −
k∏

l=1

(nl − 1)]2

k∑
m=1

nm−k

states. &"

Since this lower bound coincides with the upper bound in Theorem 3, it is the

state complexity of the combined operation (
k⋃

i=1

Li)
2.
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Abstract. We continue our research on the descriptional complexity
of chop operations. Informally, the chop of two words is like their con-
catenation with the touching letters merged if they are equal, otherwise
their chop is undefined. The iterated variants chop-star and chop-plus are
defined similar as the classical operations Kleene star and plus. We in-
vestigate the state complexity of chop operations on unary and/or finite
languages, and obtain similar bounds as for the classical operations.

1 Introduction

An interesting field of descriptional complexity of formal languages is the state
complexity of regular languages. Given a regular language L, its state complex-
ity is the minimum number of states that are sufficient and necessary for a finite
automaton to accept L. This can be adopted to operations on languages. Given a
(regularity preserving) k-nary operation ◦ and regular languages L1, L2, . . . , Lk,
the state complexity of ◦ is the minimum number of states that are sufficient
and necessary for a finite automaton to accept ◦(L1, L2, . . . , Lk), as a function
depending on the state complexities of the input languages. First results on the
state complexity of operations on regular languages were obtained about more
than three decades ago in [11] and [12]. Later in [15], besides some other oper-
ations, the state complexity of concatenation and Kleene star, which are basic
operations for describing regular languages, was studied. Also the special case
of unary input languages was investigated there, for which significantly differ-
ent bounds than in the general case were obtained. Similarly, research on these
operation problems on finite languages was done in [3]. All these results concen-
trated on deterministic finite automata, but one can study the same problems on
nondeterministic finite automata. Research on the nondeterministic state com-
plexity of concatenation, Kleene star and Kleene plus was done in [9], where it
turned out that, unlike in the deterministic case, the bounds for general regular
input languages and those for unary or finite input languages do not differ much.

Recently in [1], the chop operation and its iterated variant were introduced as
alternatives for concatenation and Kleene star. Substituting these operations, so
called chop expressions, which are defined similarly to regular expressions, can
be used to describe exactly the family of (λ-free) regular languages—here λ is the

M. Kutrib, N. Moreira, and R. Reis (Eds.): DCFS 2012, LNCS 7386, pp. 169–182, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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empty word. Various other operations that are more or less closely related to the
herein studied chop operations can be found in, e.g., [4,5,8,10,13]. Descriptional
complexity of chop expressions and chop operations on regular expressions and
finite automata, as introduced in [1], was studied in [7]. There, tight bounds of
m+n, n+1, and n+2 for the nondeterministic state complexity of, respectively,
chop, chop-plus, and chop-star were obtained. This should be compared to the
results for the classical operations concatenation, Kleene plus, and Kleene star,
which yield the tight bounds m+n, n, and n+1, respectively, on the number of
states. When considering the deterministic state complexity instead, the bounds
for (iterated) chop differ from those for (iterated) concatenation, since the size
of the alphabet appears as a parameter.

The deterministic state complexity of (iterated) concatenation was also in-
vestigated for the special cases of finite languages [3], and unary languages [15],
where notably different bounds than in the general case could be found. On the
other hand, as shown in [9], the bounds for the nondeterministic state complexity
of (iterated) concatenation on unary and/or finite languages are nearly the same
as for general regular languages. Following these results for (iterated) concate-
nation on specific language families, we investigate the corresponding operation
problems for chop, chop-star, and chop-plus on deterministic and nondetermin-
istic finite automata accepting unary and/or finite languages. The situation will
be quite similar to concatenation, which perhaps may be expected—but in the
light of [7], where it was shown that chop expressions can be exponentially more
succinct than regular expressions, this is also a bit surprising.

Results on the deterministic state complexity of chop operations compared
to the corresponding classical operations can be found in Table 1, and the cor-
responding results for the nondeterministic state complexity are presented in
Table 2. The next section provides basic definitions concerning finite automata
and chop operations. After that, we first discuss the nondeterministic state com-
plexity, and Section 4 will deal with the deterministic case.

2 Definitions

We investigate the descriptional complexity of the chop operation, which was
recently introduced in [1], and its iterated variants. The chop or fusion of two
words u and w in Σ∗ is defined as

u) v =

{
u′av′ if u = u′a and v = av′, for u′, v′ ∈ Σ∗ and a ∈ Σ

undefined otherwise,

which is extended to languages as L1 ) L2 = { u ) v | u ∈ L1 and v ∈ L2 }.
Note that in the case of a unary alphabet, the chop of two non-empty words
is always defined, in particular, am ) an = am+n−1, for all m,n ≥ 1. For the
chop iteration, we set L⊗0 = Σ and L⊗i = L ) L⊗i−1 , for i ≥ 1, and the
iterated chop or chop-star of a language L is defined as L⊗ =

⋃
i≥0 L

⊗i . Moreover

the chop-plus is denoted by L⊕ =
⋃

i≥1 L
⊗i . It is easy to see that the chop
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Table 1. Deterministic state complexities of chop �, chop-star ⊗, and chop-plus ⊕,
compared to their classical counterparts concatenation ·, Kleene star ∗, and Kleene
plus + on different language families. Here m and n are the number of states of the
input automata (where m corresponds to the “left” automaton in the case of · and �), k
is the alphabet size, and t is the number of accepting states (of the “left” automaton).

Deterministic state complexity

Language family
Regular Unary Finite unary Finite

· m · 2n − t · 2n−1 m · n m+ n− 2 (m− n+ 3)2n−2 − 1

� m · 2n − t · 2n−min(k,n) + 1 m · n+ 1 m+ n− 3 (m− n+ 2)2n−2 − 1

∗ 2n−1 + 2n−2 (n− 1)2 + 1 n2 − 7n+ 13 2n−3 + 2n−4

⊗ 2n − 1 + min(k, n) (n− 1)2 + 2 n2 − 9n+ 22 2n−3 + 2n−3−t + 2

+ 2n−1 + 2n−2 + 1 (n− 1)2 + 1 n2 − 7n+ 13 2n−3 + 2n−4 + 1

⊕ 2n (n− 1)2 + 2 n2 − 9n+ 22 2n−3 + 2n−3−t + 1

operation ) is associative and by definition the set Σ acts as the neutral element
on all languages L from Σ+. This is compatible with the definition of chop-star,
because ∅⊗ = Σ. In general, an application of the chop operation with Σ will
cancel λ from the language L. Therefore, we have Σ )L = L)Σ = L \ {λ}, for
every L ⊆ Σ∗.

A nondeterministic finite automaton (NFA) is a quintupleA = (Q,Σ, δ, q0, F ),
where Q is the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q is
the initial state, F ⊆ Q is the set of accepting states, and δ : Q × Σ → 2Q

is the transition function. If p ∈ δ(q, a) for p, q ∈ Q and a ∈ Σ, then we
say that (q, a, p) is a transition of A. As usual the transition function is ex-
tended to δ : Q × Σ∗ → 2Q, reflecting sequences of inputs: δ(q, λ) = {q} and
δ(q, aw) =

⋃
p∈δ(q,a) δ(p, w), for q ∈ Q, a ∈ Σ, and w ∈ Σ∗. Automaton A

accepts the word w ∈ Σ∗ if δ(q0, w) ∩ F �= ∅. The language accepted by A is
L(A) = {w ∈ Σ∗ | w is accepted by A }. A finite automaton is deterministic
(DFA) if and only if |δ(q, a)| = 1, for all states q ∈ Q and symbols a ∈ Σ. In this
case we simply write δ(q, a) = p for δ(q, a) = {p} assuming that the transition
function is a mapping δ : Q × Σ → Q. Note that the transition function of a
DFA is required to be total, while in an NFA, the transition function may map
to the empty set.

3 Nondeterministic State Complexity

In this section we investigate the nondeterministic state complexity of chop op-
erations applied to unary and/or finite languages. For the convenience of the
reader we restate the constructions from [7] of nondeterministic finite automata
for the operations under consideration on arbitrary regular languages.
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Table 2. Nondeterministic state complexities of chop �, chop-star ⊗, and chop-plus ⊕,
compared to their classical counterparts concatenation ·, Kleene star ∗, and Kleene
plus + on different language families. Again, m and n are the number of states of the
input automata. Concerning the nondeterministic state complexity of the concatenation
of (infinite) unary languages, an m + n upper bound an m + n − 1 lower bound was
shown in [9]. Whether the upper bound can be lowered or not is still open.

Nondeterministic state complexity

Language family
Regular Unary Finite unary Finite

· m+ n m+ n− 1 ≤ · ≤ m+ n m+ n− 1 m+ n− 1

� m+ n m+ n m+ n− 2 m+ n− 2

∗ n+ 1 n+ 1 n− 1 n− 1

⊗ n+ 2 n+ 2 n− 1 n

+ n n n n

⊕ n+ 1 n+ 1 n n

Theorem 1. Let Ai = (Qi, Σ, δi, si, Fi), for i = 1, 2, be two nondeterministic
finite automata with |Q1| = m and |Q2| = n. Then the following holds:

1. Let A� = (Q1 ∪ Q2, Σ, δ, s1, F2) such that for all states p, q ∈ Q1 ∪ Q2

and a ∈ Σ we have p ∈ δ(q, a) if either p, q ∈ Qi and p ∈ δi(q, a), for
i ∈ {1, 2}, or if q ∈ Q1 and p ∈ Q2, such that δ1(q, a) ∩ F1 �= ∅ and
p ∈ δ2(s2, a). Then L(A�) = L(A1)) L(A2).

2. Let A⊕ = (Q1 ∪ {s}, Σ, δ⊕, s, F1) such that for all a ∈ Σ we have δ⊕(s, a) =
δ1(s1, a), and for all states p, q ∈ Q1 we have p ∈ δ⊕(q, a) if p ∈ δ1(q, a), or
if δ1(q, a) ∩ F1 �= ∅ and p ∈ δ1(s1, a). Then L(A⊕) = L(A1)

⊕.
3. Let A⊗ = (Q1 ∪ {s, f}, Σ, δ⊗, s, F1 ∪ {f}) such that for all a ∈ Σ we have

f ∈ δ⊗(s, a) if δ1(s1, a) ∩ F1 = ∅, and further, for all states p ∈ Q1 and
q ∈ Q1 ∪ {s} we have p ∈ δ⊗(q, a) if p ∈ δ⊕(q, a). Then L(A⊗) = L(A1)

⊗.

As for the corresponding operations based on concatenation, the bounds for the
general case are tight already for unary languages. We start with the chop of
two languages.

Theorem 2. Let A be an m-state and B be an n-state nondeterministic finite
automaton for any integers m,n ≥ 1. Then f(m,n) states are sufficient and
necessary in the worst case for any nondeterministic finite automaton to accept
the language L(A))L(B), where f(m,n) = m+n if L(A) and L(B) are unary,
and f(m,n) = m+ n− 2 if L(A) and L(B) are finite, or finite and unary.

Proof. Let Li = L(Ai) for some NFAs Ai = (Qi, Σ, δi, si, Fi), for i = 1, 2,
and A� be the NFA constructed as described in Theorem 1 such that L(A�) =
L(A1))L(A2). We begin with the unary case. The upper bound is trivial and for
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the lower bound consider the languages (am)∗ and (an)∗, that can be accepted
by minimal m-state and n-state NFAs, respectively. Since am+n−1 is the shortest
word in the language L = L1 ) L2, any NFA accepting L needs at least m + n
states.

We now turn to finite languages. Here the state graphs of A1 and A2 are
acyclic, from which immediately follows that s2 is not reachable in A�. Further,
since we may assume A1 to be minimal and L1 not to be empty, there must be
some state f ∈ F1, such that δ1(f, a) = ∅ for all a ∈ Σ. This state is not useful
in A� and may be eliminated. So A� needs at most m+n− 2 states. The lower
bound for finite unary languages is easily verified with the languages {am−1}
and {an−1}. &"

Next we investigate the chop-star operation, where we get slightly different
bounds for all three language families.

Theorem 3. Let A be an n-state nondeterministic finite automaton for n ≥ 4.
Then f(n) states are sufficient and necessary in the worst case for any non-
deterministic finite automaton to accept the language L⊗, where f(n) = n + 2
if L(A) is unary, f(n) = n if L(A) is finite, and f(n) = n− 1 if L(A) is finite
and unary.

Proof. Theorem 1 provides the upper bound for the unary case. For the lower
bound consider the language L = (an)∗ for some n ≥ 4. We will show that

S = {(λ, a), (a, λ), (an−1, an+1), (an+1, an−1), (an, an)}
∪ { (ai, an−i) | 2 ≤ i ≤ n− 2 }

is an extended fooling set1 [2,6] for L⊗, so any NFA needs at least n+2 states to
accept L⊗. Notice that (u, v) ∈ S implies (v, u) ∈ S. The words represented by
these pairs of words are a, an and a2n, which all belong to L⊗. We now consider
the possible combinations of different pairs from S. The pair (λ, a) cannot be
combined with (an, an), for this results in the word ana = an+1 /∈ L⊗ for n > 2,
and it cannot be combined with any other pair (u, v) ∈ S because λv /∈ L⊗

for all possible v. Combinations with the pair (a, λ) behave symmetrically. The
combination (an−1, an+1) with its symmetric counterpart results in a2n−2, and
the combination with (an, an) gives anan+1 = a2n+1. Further, (an−1, an+1) and
(ai, an−i) produces words an+1, . . . , a2n−3 /∈ L⊗, for n > 3. Again, we can argue
symmetrically for (an+1, an−1). Pairs (an, an) and (ai, an−i) result in an+i /∈ L⊗,
since n < n + i < 2n− 1. Finally, let 2 ≤ i < j ≤ n − 2 and consider two pairs
from the second subset of S. Then we have the word aian−j = an+i−j /∈ L⊗,
because n+ i− j ≤ n− 1. So S is a fooling set.

Now let L = L(A) for some NFA A be finite. The construction from Theorem 1
provides two additional states s and f . As in the previous proof we argue, that

1 An extended fooling set S for a language L is a set of pairs (xi, yi), for 1 ≤ i ≤ n,
such that (i) xiyi ∈ L, and (ii) xiyj /∈ L or xjyi /∈ L, for 1 ≤ i, j ≤ n and i �= j. In
this case, any NFA accepting L needs at least |S| = n states.
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the initial state of A is not reachable in the NFA for the chop-star language,
so this state can be eliminated. And further, the additional accepting state f
can be eliminated as well, since there must be some accepting state in A with
no outgoing transitions. This gives an upper bound of n states. For the lower
bound consider the language {an−2b}, which is accepted by a minimal n-state
NFA. The corresponding chop-star language is {a, b, an−2b}, which also needs
any NFA to have at least n states.

It remains to consider the case of L being both, finite and unary. Here, the
minimal NFA can be assumed to be a string of n states, where the first state
is the initial state and the last state is an accepting state. From this, an NFA
for the chop-star language can be constructed by making the second state in
the string an accepting state and rerouting the ingoing transition of the last
state onto the second state (and possibly adding some additional transitions as
required). This allows us to eliminate this last state, yielding an upper bound
of n− 1 states. The lower bound is easily verified with the language {an−1}. &"

Finally we turn to chop-plus. Here the upper bound of n+ 1 from Theorem 1 is
easily seen to be optimal for unary languages via the n-state witness language
L = (an)∗—the length of the shortest word in L⊕ is n. And for finite languages
note again, that no new initial state is needed. This gives a bound of n states,
which is necessary for the language {an−1}. Thus we can state the following.

Theorem 4. Let A be an n-state nondeterministic finite automaton for n ≥ 1.
Then f(n) states are sufficient and necessary in the worst case for any nonde-
terministic finite automaton to accept L(A)⊕, where f(n) = n + 1 if L(A) is
unary, and f(n) = n if L(A) is finite, or finite and unary. &"

4 Deterministic State Complexity

Now we study the deterministic state complexity of chop operations, beginning
with unary languages. In this case, there obviously cannot be any dependency
on the size of the alphabet, so the corresponding bounds and proofs are almost
the same as in [15]. But also for finite languages, where the alphabet size could
play an important role, there is hardly a difference between the bounds for chop
operations and the bounds for the corresponding classical operations based on
concatenation, as studied in [3]. This contrasts the situation for general regular
languages, where the size of the alphabet matters for chop operations [7], but
is mostly irrelevant for concatenation and related operations. We first recall a
lemma from [15], that is useful for unary languages.

Lemma 5 ([15]). Let m and n be relatively prime. Then the largest integer that
cannot be presented as i ·m+ j · n, for any integers i, j ≥ 0, is m · n−m− n.

The proofs of the following statements on unary languages utilize this lemma
and use similar proof strategies as for the corresponding statements for (it-
erated) concatenation from [15]. Note that deterministic finite automata that
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accept unary languages have a very simple structure: an initial tail, possibly
of length zero, attached to a cycle of size at least one. For any unary n-state
DFA A = (Q, {a}, δ, q0, F ) we assume Q = {0, 1, . . . , n − 1} with q0 = 0 and
δ(0, ai) = i, for 0 ≤ i ≤ n− 1.

We now come to the state complexity of the chop of two unary languages.

Theorem 6. Let A be an m-state and B be an n-state unary deterministic finite
automaton for m,n ≥ 1. Then m · n + 1 states are sufficient and, if m and n
are relatively prime, also necessary in the worst case for any deterministic finite
automaton to accept L(A)) L(B).

Proof. We first prove sufficiency. Let A be an m-state DFA with transition func-
tion δ1, state set Q1, final states F1, and let B be an n-state DFA with transition
function δ2, states Q2, and final states F2. Let C be the DFA for L(A)) L(B),
with transition function δ, such that for all states q ∈ Q1 and sets P ⊆ Q2:

δ(〈q, P 〉, a) =
{
〈 δ1(q, a),

⋃
p∈P {δ2(p, a)} 〉 if δ1(q, a) /∈ F1,

〈 δ1(q, a),
⋃

p∈P {δ2(p, a)} ∪ {δ2(0, a)} 〉 if δ1(q, a) ∈ F1.

Accepting states are pairs 〈q, P 〉 where P ∩F2 �= ∅ and the initial state is 〈0, ∅〉.
We differentiate between L(A) being finite and L(A) being infinite: first, as-

sume L(A) to be finite. Then state m − 2 from A is accepting and m − 1 is a
non-accepting sink state. Consider the states C traverses, while reading am+n−1,
starting in the initial state 〈0, ∅〉: after reading m − 1 letters, C is in the state
〈m−1,M0〉 for some nonempty setM0 ⊆ {0, 1, . . . , n−1} of states from B. From
there on, only the second component changes: δ(〈m− 1,M0〉, ai) = 〈m− 1,Mi〉.
If we look at what happens to the smallest element q of M0 when reading an,
we see that there must be integers j and k with 0 ≤ j < k ≤ n such that
δ2(q, a

j) = δ2(q, a
k). Thus, q enters the loop of B. Since q also “pushes” all

larger elements into the loop, we can conclude Mj = Mk. So there are no more
than n− 1 states of the form 〈m− 1,Mi〉, which together with the first m states
are obviously less than m · n+ 1 states.

Now let |L(A)| = ∞, let t be the first accepting state in the loop of A, and �
be the length of that loop. In the case t = 0, which means that A is a loop of
length m, we define t = m instead, so we have 1 ≤ �, t ≤ m. We count all reach-
able states. From the initial state 〈0, ∅〉, reading at, automaton C reaches 〈t, {1}∪
S0〉 for some (possibly empty) set S0 of states from B. By reading ai·�, for i ≥ 1,
we always reach a state 〈t, Pi〉 for some set Pi ⊆ {0, 1, . . . , n−1}. We investigate
these sets in more detail now. Let t, t+ r1, t + r2, . . . , t + rs for some s < � − 2
be the accepting states in the loop of A. Then we have P1 = M1 ∪ S1 with
M1 =

⋃s
i=1 δ2(1, a

�−ri) ∪ {1} and S1 =
⋃

q∈S0
δ2(q, a

�) \M1. Further, for i > 1,

let Mi =
⋃

q∈Mi−1
δ2(q, a

�) ∪M1 and Si =
⋃

q∈Si−1
δ2(q, a

�) \Mi, then we have
Pi = Mi ∪ Si. Note that Mi−1 ⊆ Mi for i ≥ 2, and so there must be some i ≤ n
such thatMi−1 = Mi. If this occurs not until i = n, thenMi−1 = {0, 1, . . . , n−1}
and then from 〈t, Pi−1〉 on, every state is accepting, so this is an accepting sink
state in the minimal DFA. Then C needs at most 1 + t+ (n− 1) · � ≤ m · n+ 1
states, since at+(n−1)·� leads to the accepting sink.
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Finally let Mi−1 = Mi for some integer i ≤ n− 1. If Sj = ∅ for some integer j
with i − 1 ≤ j ≤ n − 1, then 〈t, Pj〉 is an accepting sink again, and C needs
at most 1 + t + j · � ≤ m · n + 1 states. Otherwise there is a subset S ⊆ Si

such that δ2(q, a
h·�) /∈ Mi−1 for all q ∈ S and h ≥ 0. Since at most n− i states

are not in Mi−1, there are integers j and k with 0 ≤ j < k ≤ n − i such that
δ2(q, a

j·�) = δ2(q, a
k·�) for all q ∈ S, which results in 〈t, Pi−1+j〉 = 〈t, Pi−1+k〉.

Then C has at most 1 + t+ (i− 1 + k) · � ≤ m · n+ 1 states.
Utilizing Lemma 5, this bound is easy to prove optimal. Let m and n be rel-

atively prime and consider the languages L1 = (am)∗ and L2 = (an)∗. Then
L1 ) L2 = { am+n−1+i·m+j·n | i, j ≥ 0 } and corresponding to Lemma 5,
word am·n−1 is the longest word that is not in L1 ) L2. So any DFA accepting
the language L1 ) L2 needs at least m · n+ 1 states. &"

The bounds for iterated chop can be proven in a similar manner, resulting in a
quadratic blow-up of states. We give a detailed proof for chop-star only, since
the only possible difference to chop-plus is L⊗ \ L⊕ = {a}. It will turn out that
the initial tail of the corresponding DFAs is long enough, so the successor of the
initial state can freely be chosen to be accepting or non-accepting.

Theorem 7. Let A be an n-state unary deterministic finite automaton for
n ≥ 3. Then (n− 1)2+2 states are sufficient and necessary in the worst case for
any deterministic finite automaton to accept L(A)⊗ or L(A)⊕.

Proof. Let L = L(A) for some minimal n-state DFA A with transition function δ.
Recall that we assumed the state set to be ordered such that δ(0, ai) = i for
0 ≤ i ≤ n− 1. If δ(0, aa) is accepting, then L⊗ = a+ and L⊕ ⊇ aa+, and both
languages can be accepted with 2 or 3 states. Further, if 1 is the only accepting
state, the accepted language must be L = a(an)∗, or L = a(an−1)∗, or L = {a},
but then L⊗ = L⊕ = L, so n states are sufficient. Therefore let t with 3 ≤ t ≤ n
be the smallest integer such that δ(0, at) is an accepting state. An NFA for the
language L⊗ can be constructed by adding a new initial state s, an additional
final state f , and the transitions (s, a, f), (s, a, 1), and (q, a, 1) for all states q
for which δ(q, a) is accepting. In particular we get the transition (t− 1, a, 1).

Let A′ be the corresponding powerset automaton with transition function δ′,
and let Si = δ′({s}, a1+i(t−1)), for all i ≥ 1. Then Si ⊆ Si+1, because every set Si

contains the state 1 = δ(0, a). Since |Si| ≤ n, either Sn−1 = {0, 1, . . . , n− 1} or
there must be some integer i ≤ n−2 such that Si = Si+1. In the first case, Sn−1

is an accepting sink state and A′ needs at most 2+ (n− 1)(t− 1) ≤ (n− 1)2 +2
states. If Si = Si+1, for i ≤ n−2, there are at most (i+1)(t−1) ≤ (n−1)2 states.

To construct an automaton for L⊕, if a /∈ L, we simply omit state f and
associated transitions, obtaining the same upper bound. For the lower bound we
use the language L = (an)∗, for n ≥ 3. Then L⊕ = { an+i·n+j·(n−1) | i, j ≥ 0 }
and according to Lemma 5, the longest word that does not belong to L⊗ is
an+n·(n−1)−n−(n−1) = a(n−1)2 . Naturally, n and n − 1 are relatively prime. So
any DFA accepting L⊗ needs at least (n− 1)2+2 states. The same lower bound
holds for L⊕, since L⊗ = L⊕ ∪ {a}. &"
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We briefly discuss the case of finite unary languages. Given two m-state and
n-state DFAs, accepting finite unary languages, the longest word in the cor-
responding chop-language has length m + n − 5, so we immediately get the
following.

Theorem 8. Let A be an m-state and B be an n-state deterministic finite au-
tomaton for m,n ≥ 3, such that L(A) and L(B) are finite unary languages.
Then m + n − 3 states are sufficient and necessary in the worst case for any
deterministic finite automaton to accept L(A)) L(B). &"

For the iterated chop of finite unary languages, again, Lemma 5 gives a bound
for the length of the longest word that is not accepted.

Theorem 9. Let A be an n-state deterministic finite automaton for n ≥ 4, such
that L(A) is a finite unary language. Then n2− 9n+22 states are sufficient and
necessary in the worst case for any deterministic finite automaton to accept the
language L(A)⊗ or L(A)⊕.

Proof. Let L = L(A) be a finite unary language of some minimal n-state DFA A
with transition function δ. State n − 1 must be a non-accepting sink state,
and n − 2 must be an accepting state. If this is the only accepting state, then
L⊕ = an−2(an−3)∗ and L⊗ = L⊕ ∪ {a} can be accepted by (n − 1)-state and,
respectively, (n − 2)-state DFAs. Therefore let k ≤ n − 3 be another accepting
state. Then L⊗ contains all words { a1+i·(n−3)+j·(k−1) | i, j ≥ 0 }. According to
Lemma 5 we have aj ∈ L⊗, for all j ≥ 2+(n−3)(k−1)−(n−3)−(k−1), so that
a DFA needs at most 1 plus this number of states to accept L⊗. Since k ≤ n−3,
we get an upper bound of 3 + (n− 3)(n− 4)− (n− 3)− (n− 4) = n2 − 9n+ 22
for the state complexity. This bound is reachable if n− 3 and n− 2 are the only
accepting states of A. Note that the DFA for L⊗ differs from the one for L⊕

only in the acceptance value of the successor of the initial state. So we obtain
the same bounds for L⊕. &"

Finally we turn to finite languages over arbitrary alphabets. For all three chop
operations, an exponential blow-up on the number of states can be observed,
again similar to the results on concatenation and iteration.

Theorem 10. Let A be an m-state and B be an n-state deterministic finite
automaton with m,n ≥ 3 over an alphabet Σ of size k, such that L(A) and L(B)
are finite languages. Let F1 be the accepting states of A and q = min(q, |F1|).
Then

m−2∑
q=0

min

(
q∑

i=0

(
n− 2

i

)
, kq

)

states are sufficient for any deterministic finite automaton to accept L(A))L(B).
For |Σ| = 2 and m > n ≥ 3, these are (m − n + 2) · 2n−2 − 1 states and this
number of states is necessary in the worst case.
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Proof. This proof is indeed a reformulation of the corresponding proof for con-
catenation of finite languages given in [3]. Let L1 and L2 be two finite lan-
guages. Assume without loss of generality that they are accepted by minimal
DFA A1 and A2 with topologically ordered state sets Q1 = {0, 1, . . . ,m−1} and
Q2 = {0, 1, . . . , n − 1}. So in both automata 0 is the initial state, m − 1 and
n−1 are the non-accepting sink states, and m−2 and n−2 are accepting states
that lead to the sink states on every input symbol. Note that the latter states
must exist, since A1 and A2 are assumed to be minimal. Let A be the DFA
accepting L1 )L2 constructed by combining the construction of Theorem 1 and
the powerset construction [14] with state set Q1× 2Q2 and transition function δ,
such that for all q ∈ Q1, P ⊆ Q2, and a ∈ Σ we have:

δ(〈q, P 〉, a) =
{
〈 δ1(q, a),

⋃
p∈P {δ2(p, a)} 〉 if δ1(q, a) /∈ F1,

〈 δ1(q, a),
⋃

p∈P {δ2(p, a)} ∪ {δ2(0, a)} 〉 if δ1(q, a) ∈ F1.

The accepting states are the pairs 〈q, P 〉 where P ∩ F2 �= ∅ and the initial
state is 〈0, ∅〉. We will now show that the number of reachable and distinguish-
able states in this DFA does not exceed the stated bound. First note that no
state 〈q, P 〉 with 0 ∈ P is reachable and that all states 〈q, P 〉 are equivalent
to 〈q, P \ {n− 1}〉. Also, since the state m− 2 of A1 is irrelevant for acceptance
in A, all states 〈m − 2, P 〉 are equivalent to 〈m − 1, P 〉. To further restrict the
number of states 〈q, P 〉, we now take a more detailed look on the size of P de-
pending on q. From the topological ordering of Q1 we know that the length of
the longest word leading from 0 to q in A1 is at most q. Then on any path from 0
to q, there are at most q = min(|F1| , q) accepting states, and so P has at most q
elements from the set Q2 \ {0, n− 1}. Then for any q ∈ Q1 \ {m− 1} there are at

most
∑q

i=0

(
n−2
i

)
states of the form 〈q, P 〉. Additionally, the number of different

states of that form is trivially bounded by the number of words of length q. Note
that we need not consider words of length i < q, because if q could be reached
from 0 in A1 by some word v shorter than q, then no word w that has v as a
prefix may lead to q (or else L1 could not be finite), and then we get even less
possible states. So there are at most

m−2∑
q=0

min

(
q∑

i=0

(
n− 2

i

)
, kq

)

states of the form 〈q, P 〉 where 0 ≤ q ≤ m − 2 and P ⊆ {1, 2, . . . , n − 2}. Note
that the first argument of the min-function can never exceed 2n−2, since this is
the maximum number of possible sets P . For m > n and k = 2, we get

n−3∑
q=0

2q +
m−2∑

q=n−2

2n−2 = (m− n+ 2) · 2n−2 − 1

as an upper bound for the number of states in A.
We now prove this bound to be reachable, with the same automata as in [3]. Let

Ai = (Qi, {a, b}, δi, 0, Fi), for i ∈ {1, 2}, with state sets Q1 = {0, 1, . . . ,m − 1},
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0 1 2 . . . m - 2 m - 1
a, b a, b a, b a, b a, b

a, b

0 1 2 . . . n - 2 n - 1
b a, b a, b a, b a, b

a, b

a

Fig. 1. DFAs A1 (top) and A2 (bottom) proving the lower bound for L(A1)� L(A2)

Q2 = {0, 1, . . . , n− 1}, and final states F1 = {1, 2, . . . ,m − 2}, and
F2 = {n− 2}. The transition function of A1 is defined as δ1(q, a) = δ1(q, b) =
q+1 for 0 ≤ q ≤ m− 2 and δ1(m−1, a) = δ1(m−1, b) = m−1, and the transition
function of A2 is δ2(q, a) = δ2(q, b) = q + 1 for 1 ≤ q ≤ n− 2, and δ2(0, b) = 1,
and δ2(0, a) = δ2(n− 1, a) = δ2(n− 1, b) = n− 1—see Figure 1.

Let A be the DFA for L(A1) ) L(A2) constructed as above. We show that
there are at least (m − n + 2) · 2n−2 − 1 reachable and distinguishable states.
First note that states 〈q, P 〉 and 〈q′, P ′〉 with q < q′ can be distinguished by
reading bm+n−5−q, since this word is accepted from the first but not from the
latter state. If q = q′, then there must be some p ∈ P 0P ′ and the states can be
distinguished by reading bn−2−p—here 0 refers to the symmetric difference of
two sets. So all reachable states are pairwise inequivalent. To count the number
of reachable states 〈q, P 〉, note that different words v and w with |v| , |w| ≤ n−2
produce different sets in the second component since every input symbol shifts
the set towards n− 1, while only the symbol b produces the new element 1 in P .
Since there are 2n−1 − 1 different words with length of at most n − 2, this is
also the number of reachable states 〈q, P 〉 with 0 ≤ q ≤ n− 2. In particular, any
subset P ⊆ {1, 2, . . . , n−2} is reachable and this also holds for states 〈q, P 〉 with
n− 1 ≤ q ≤ m− 2. Note that we do not count states 〈m− 1, P 〉 since these are
equivalent to 〈m−2, P 〉. Summing up, we get 2n−1−1+2n−2 · (m−2−n+2) =
(m− n+ 2) · 2n−2 − 1 reachable states. &"

For the iterated chop of finite languages, the results depend on whether the
DFA has exactly one or at least two final states. In the latter case we get an
exponential blow-up, similar to iterated concatenation. But in the other case,
the size of the alphabet appears as a parameter in the bounds for chop-plus and
chop-star, whereas for iterated concatenation, no additional states are needed [3].

Theorem 11. Let A be an n-state deterministic finite automaton with one final
state and n ≥ 4, such that L(A) ⊆ Σ∗ is finite. Then n − 2 + min(|Σ| , n − 2)
states are sufficient and necessary in the worst case for any deterministic finite
automaton to accept L(A)⊗. A similar statement also holds for L(A)⊕, where
the corresponding bound is n− 1 + min(|Σ| , n− 2).

Proof. We begin with the chop-star operation. Let A = (Q,Σ, δ, q0, {qf}) be a
DFA accepting a finite language. Then there is a non-accepting sink state qs ∈ Q
such that δ(qs, a) = δ(qf , a) = qs, for all a ∈ Σ. Further there must be some state
q1 ∈ Q\{qf , qs} that is only reachable with words of length one. For constructing
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the NFA A⊗, there is no need of adding new states s and f , since these can be
identified with q0 and qf : the initial state q0 has no ingoing transitions and qf
only leads to the sink state. So we have an NFA A⊗ = (Q,Σ, δ⊗, q0, {qf})
such that for all p, q ∈ Q and a ∈ Σ we have p ∈ δ⊗(q, a) if p = δ(q, a), and
additionally, qf ∈ δ⊗(q0, a) if δ(q0, a) �= qf , and δ(q0, a) ∈ δ⊗(q, a) if δ(q, a) = qf .

In the corresponding powerset automaton, only singleton sets and sets of the
form {q, qf} for some q ∈ Q\{qf} are reachable (note that all states P �= {n−1}
are equivalent to P \{n−1}). In particular, the states {q, qf} are actually of the
form {δ(q0, a), qf} for some a ∈ Σ. For the singleton sets note that {q1} is not
reachable, since states containing q1 must also contain qf . Further, the number
of states P with qf ∈ P is bounded by min(|Σ| , n − 2), which can be seen as
follows. If {qf} is reachable, then there must be some a ∈ Σ with δ(q0, a) = qf .
Then there are at most |Σ \ {a}| other states of the form {q, qf}. Otherwise,
if {qf} is not reachable, there are at most |Σ| many states {q, qf}. But even for
large alphabets we cannot reach more than n−2 states of size two: the set {0, qf}
is not reachable, and {qs, qf} is equivalent to {qs}. So we get the stated upper
bound of n− 2 + min(|Σ| , n− 2) states.

It suffices to prove this bound to be optimal for Σ = {a1, a2, . . . , ak} with
2 ≤ k ≤ n− 2. Let A = (Q,Σ, δ, 0, {n− 2}) for Q = {0, 1, . . . , n− 1}, and

δ(0, ai) =

{
i for i < k,

n− 2 for i = k,
δ(n− 3, ai) =

{
n− 2 for i < k,

n− 1 for i = k,

δ(q, ai) = q + 1 for 1 ≤ q ≤ n− 4, δ(n− 2, ai) = δ(n− 1, ai) = n− 1.

The construction of the NFA A⊗ as described above gives rise to the additional
transitions (0, ai, n− 2) and (n− 3, ai, i) for 1 ≤ i ≤ k − 1. In the powerset au-
tomaton, the singletons {q}, for 2 ≤ q ≤ n−3, are reachable from {0} by reading
the word a1a

q−1
k , the state {n− 2} by reading ak, and the sink state {n− 1} by

reading a1a
n−3
k . Further, the sets {p, n − 2}, for 1 ≤ p ≤ k − 1, are reachable

from {n− 3} by reading ap and no other states can be reached.
The inequivalence of distinct states P and P ′ is easy to see: it suffices to proof

that singletons {p} and {q} with 0 ≤ p < q ≤ n−2 are inequivalent, because this
generalizes to the states {q, n− 2}, and obviously {n− 1} cannot be equivalent
to any other state. So let p < q. The states {0} and {n − 3} are distinguished
by ak and if p �= 0 or q �= n− 3, then the word an−2−q

1 is accepted from {q} but
not from {p}.

The bounds for chop-plus can be proven with nearly the same argumentation
as above. The only difference is that no additional transitions get defined for
the initial state, and so {q1} and, respectively, {1} are reachable in the resulting
automata, so we need one more state. &"
We now show that if the DFA accepting a finite language has at least two final
states, we get an exponential blow-up of states in the DFA for the iterated chop
language.

Theorem 12. Let A be an n-state deterministic finite automaton with t final
states, 2 ≤ t ≤ n − 3, and n ≥ 5, such that L(A) is a finite language. Then
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2n−3 + 2n−3−t + 2 states are sufficient and necessary in the worst case for any
deterministic finite automaton to accept L(A)⊕. A similar statement also holds
for L(A)⊗, where the corresponding bound is 2n−3 + 2n−3−t + 1.

Proof. We first provide the upper bound. Let A = (Q,Σ, δ, q0, F ) be a minimal
DFA with n states from which t are accepting, such that L(A) is finite. Then A
has a sink state qs and an accepting state qf such that δ(qf , a) = δ(qs, a) = qs
for all a ∈ Σ. Further, there must be some state q1 /∈ {qf , qs} that is only
reachable with words of length 1. Thus, when constructing an NFA B for the
language L(A)⊕, there is no need for an additional accepting state, and since A
is non-returning, i.e., no transition goes to the initial state, no new initial state
is needed. We obtain the transition function δB from δ by adding transitions
(q, a, p), if δ(q, a) ∈ F and p = δ(q0, a). Applying the powerset construction [14]
on B, we obtain a DFA A⊕ with state set Q′ ⊆ 2Q. We will see that there are at
most 2n−3 + 2n−3−t + 2 reachable and inequivalent states in Q′. First note that
the only state containing q0 is {q0}, and if any state P ⊆ Q contains the sink
state qs, then P is equivalent to P \{qs}. Further, besides for {q1}, for all sets P
containing q1 it must be P ∩ F �= ∅, since the only way to reach q1 is either
directly from q0, or by simultaneously entering an accepting state. Then there
are at most 2n−3−t + 2 pairwise inequivalent non-accepting states P , because
P ⊆ (Q \ {q0, qs, q1}) \ F , or P = {q0}, or P = {q1}. For an accepting state P ,
note that P is equivalent to P ∪{qf} and so we may assume that every accepting
state has the form P = P ′ ∪ {qf} for some P ′ ⊆ (Q \ {q0, qs, qf}). These are at
most 2n−3 states, which proves the upper bound for L(A)⊕.

For the lower bound for let A = (Q, {a, b, c}, δ, 0, F ) with Q = {0, . . . , n− 1},
F = {2, . . . , t, n− 2}, and transition function

δ(q, a) =

{
q + 1 for 0 ≤ q < n− 1,

n− 1 for q = n− 1,
δ(q, b) =

{
q + 1 for 1 ≤ q < n− 1,

n− 1 for q ∈ {0, n− 1},

δ(n− 3, c) = n− 2, and δ(q, c) = n− 1 for q �= n− 3. We construct an NFA B
for the chop-plus language by adding transitions (q, a, 1), for 1 ≤ q ≤ t − 1
and for q = n − 3. No other transitions need to be added, since a is the only
useful transition of q0. Let A

⊕ be the corresponding powerset automaton of B,
where we associate the sink state {n − 1} with ∅. We first count reachable
states, beginning with the accepting states. From the initial state {1}, by reading
enough a symbols, A⊕ reaches the state {1, 2, . . . , n − 2} and from there, any
other state P ∪ {n − 2} for P ⊆ {1, 2, . . . , n − 3} is reachable by a word w
of length n − 3 where the ith position of w is the letter a if n − 2 − i ∈ P ,
otherwise it is the letter b. Note that all states P that contain an accepting
element from {2, 3, . . . , k} are equivalent to P ∪ {n − 2}, so we do not count
these states. For the non-accepting states, note that {0}, {1} and ∅ (or {n− 1})
are reachable from {0} by, respectively, λ, a, and b. The other non-accepting
states are the nonempty subsets P = {p1, p2, . . . , pi} ⊆ {t+ 1, t+ 2, . . . , n− 3},
which are reachable from {p1 − 1, p2 − 1 . . . , pi − 1, n − 2} by reading b. So we
have 2n−3 accepting and 2n−3−t + 2 non-accepting reachable and presumably
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inequivalent states. Finally we prove these states to be pairwise inequivalent.
Since we did not count accepting states that do not contain the state n − 2,
it suffices to prove that any two states P and P ′ with q = min(P 0 P ′) and
1 ≤ q ≤ n − 3 are inequivalent. Since n − 3 is the only state accepting the
input c, the inequivalence is easily verified with the word bn−3−qc.

When considering L(A)⊗, we need to add Σ to the language. The argumen-
tation for the upper bound is the same as for L(A)⊕, with the only difference
that now {q1} is not reachable anymore. This also holds for the lower bound
example: the non-accepting state {1} is not reachable. So we get a tight bound
for L(A)⊗ of 2n−3 + 2n−3−t + 1 states. &"
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Abstract. It is demonstrated that the family of languages generated
by unambiguous conjunctive grammars with 1 nonterminal symbol is
strictly included in the languages generated by 2-nonterminal grammars,
which is in turn a proper subset of the family generated using 3 or more
nonterminal symbols. This hierarchy is established by considering gram-
mars over a one-letter alphabet, for which it is shown that 1-nonterminal
grammars generate only regular languages, 2-nonterminal grammars gen-
erate some non-regular languages, but all of them have upper density
zero, while 3-nonterminal grammars may generate some non-regular lan-
guages of non-zero density. It is also shown that the equivalence problem
for 2-nonterminal grammars is undecidable.

1 Introduction

Conjunctive grammars, introduced by Okhotin [11], extend the standard
context-free grammars by allowing a conjunction operation in any rules. These
grammars maintain the main principle behind the context-free grammars—that
of inductive definition of the membership of strings in the language—and thus
augment the expressive power of the context-free grammars in a meaningful
way. At the same time, conjunctive grammars inherit the context-free parsing
techniques and subcubic time complexity [15].

As far as the basic language-theoretical properties are concerned, the study
of conjunctive grammars is still in its infancy. Most importantly, there is no
known method for proving that a given language is not generated by any con-
junctive grammar. In the absence of such methods, not much is known about
the descriptional complexity of the model. For the subclass of linear conjunctive
grammars [12], it was proved that every such grammar can be transformed to an
equivalent grammar with two nonterminal symbols [13]. Another known result
is that one-nonterminal conjunctive grammars are strictly weaker in power than
two-nonterminal grammars [17].

The limitations of conjunctive grammars with one nonterminal symbol were
established by analyzing grammars over a one-letter alphabet Σ = {a}. The
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general non-triviality of this kind of grammars was discovered by Jeż [6], who
constructed a grammar for the language {a4n | n � 0}. It was subsequently
shown that these grammars have high expressive power, a number of undecidable
properties [7] and complexity-theoretic lower bounds [8]. All these results were
established using grammars with numerous nonterminal symbols, which left open
the question of whether one-nonterminal conjunctive grammars can generate any
non-regular unary language [6]. This question was answered by Okhotin and
Rondogiannis [17], who produced a one-nonterminal grammar for a variant of
the set of powers of four, as well as proved that no unary language containing
almost all strings (a dense language [17]) can be represented by such grammars.
A subsequent paper by the authors [9] extended the complexity lower bounds
and the undecidability results to the one-nonterminal case.

This paper continues the study of the nonterminal complexity of conjunctive
grammars over a unary alphabet by investigating the subclass of unambiguous
conjunctive grammars [14]. Their known properties include a parsing algorithm
with |G| · O(n2) running time, where n is the length of the input [14], and
another parsing algorithm for the unary alphabet working in time |G| ·n(logn)2 ·
2O(log∗ n) developed by Okhotin and Reitwießner [16]. The authors [10] have
recently constructed the first example of an unambiguous conjunctive grammar
generating a non-regular unary language, as well as developed a general method
for constructing such grammars, leading to undecidability results.

The investigation undertaken in this paper begins with a simple observation
that unambiguous grammars with a single nonterminal symbol are powerless,
that is, generate only regular unary languages. However, two-nonterminal gram-
mars are (potentially) nontrivial, and Section 4 develops a method for encoding
a grammar with an arbitrary number of nonterminals into a grammar with
two nonterminal symbols, which generates a related language. For the resulting
grammar to be unambiguous, this method requires the original grammar to be
not only unambiguous, but to satisfy an additional condition, that of having
“bi-partite unambiguous concatenation” (to be defined). As none of the known
examples of unambiguous grammars [10] meet this condition, Section 5 proceeds
with constructing grammars of a suitable form encoding the operation of a cellu-
lar automaton. These grammars are used in the next Section 6 to determine the
undecidability of the equivalence problem for two-nonterminal grammars. At the
same time, the emptiness problem—and, more generally, testing the equivalence
of a grammar to a regular unary language—is shown to be decidable.

Finally, Section 7 demonstrates the limitations of two-nonterminal unambigu-
ous conjunctive grammars, showing that all non-regular languages generated by
such grammars must be sparse. This leads to a hierarchy of languages repre-
sentable using 1, 2, and 3 or more nonterminal symbols.

2 Conjunctive Grammars and Ambiguity

Conjunctive grammars generalize context-free grammars by allowing an explicit
conjunction operation in the rules.
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Definition 1 (Okhotin [11]). A conjunctive grammar is a quadruple G =
(Σ,N, P, S), in which Σ and N are disjoint finite non-empty sets of terminal
and nonterminal symbols respectively; P is a finite set of grammar rules, each
of the form

A → α1& . . .&αn (with A ∈ N , n � 1 and α1, . . . , αn ∈ (Σ ∪N)∗), (*)

while S ∈ N is a nonterminal designated as the start symbol.
A grammar is called linear, if αi ∈ Σ∗NΣ∗ ∪Σ∗ in each rule (*).

A rule (*) informally means that every string generated by each conjunct αi is
therefore generated by A. This understanding may be formalized either by term
rewriting [11], or, equivalently, by a system of language equations. According to
the definition by language equations, conjunction is interpreted as intersection
of languages as follows.

Definition 2. Let G = (Σ,N, P, S) be a conjunctive grammar. The correspond-
ing system of language equations is the following system in variables N :

A =
⋃

A→α1&...&αn∈P

n⋂
i=1

αi (for all A ∈ N),

where each αi in the equation is a concatenation of variables and constant lan-
guages {a} representing terminal symbols (or constant {ε} if αi is the empty
string). Let (. . . , LA, . . .) be its least solution (that is, such a solution that ev-
ery other solution (. . . , L′

A, . . .) has LA ⊆ L′
A for all A ∈ N) and denote

LG(A) := LA for each A ∈ N . Define L(G) := LG(S).

Such a system always has a least solution, because the operations in its right-
hand side (union, intersection and concatenation) are monotone and continuous
with respect to the partial ordering of vectors of languages by inclusion.

An equivalent definition of conjunctive grammars is given via term rewriting,
which generalizes the string rewriting used by Chomsky to define context-free
grammars.

Definition 3 ([11]). Given a conjunctive grammar G = (Σ,N, P, S), consider
terms over concatenation and conjunction, with symbols from Σ ∪N as atomic
terms. The relation =⇒ of immediate derivability on the set of terms is defined
as follows:

– Using a rule A → α1& . . .&αn, a subterm A ∈ N of any term ϕ(A) can be
rewritten as ϕ(A) =⇒ ϕ(α1& . . .&αn).

– A conjunction of several identical strings can be rewritten by one such string:
ϕ(w& . . .&w) =⇒ ϕ(w), for every w ∈ Σ∗.

The language generated by a term ϕ is LG(ϕ) = {w | w ∈ Σ∗, ϕ =⇒∗ w}. The
language generated by the grammar is L(G) = LG(S) = {w |w ∈ Σ∗, S =⇒∗ w}.
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Examples of conjunctive grammars for such non-context-free languages as
{anbncn | n � 0} and {wcw | w ∈ {a, b}∗} can be found in the literature [11].

This paper concentrates on a subclass of conjunctive grammars defined by
analogy with unambiguous context-free grammars. Let a concatenation L1·. . .·Lk

be called unambiguous if every string w ∈ L1 · . . . ·Lk has a unique factorization
w = u1 . . . uk with ui ∈ Li.

Definition 4 ([14]). Let G be a conjunctive grammar. Then,

I. the choice of a rule in G is said to be unambiguous, if different rules for
every single nonterminal generate disjoint languages;

II. concatenation in G is said to be unambiguous, if for every conjunct α =
s1 . . . s�, the concatenation LG(s1) · . . . · LG(s�) is unambiguous.

If both conditions are satisfied, the grammar is called unambiguous.

Every conjunctive grammar that does not generate ε can be transformed to a
conjunctive grammar in the binary normal form [11], with all rules of the form
A → B1C1& . . .&BnCn with n � 1 and Bi, Ci ∈ N (referred as non-terminating
rules), or of the form A → a with a ∈ Σ (terminating rules). Furthermore, if
the original grammar was unambiguous, then so is the resulting grammar [14].
The system of language equations corresponding to a grammar in binary normal
form is known to have a unique solution in ε-free languages [7].

In this paper, the conditions of binary normal form are relaxed to allow ter-
minating rules of the form A → w with w ∈ Σ+.

3 Grammars over a One-Letter Alphabet

At the first glance, one could expect conjunctive grammars over a unary alphabet
Σ = {a} to generate only regular languages, similarly to standard context-
free grammars. However, no proof of that conjecture could be found for some
years, until a counterexample was presented by the first author [6]: that was
a conjunctive grammar generating the language {a4n | n � 0}.

Further research, conducted by both authors, turned this single example into
a general representation theorem for a large class of formal languages. This class
is defined in terms of positional notations of numbers: a string an is identified
with a number n, which is in turn represented in base-k positional notation. Let
Σk = {0, 1, . . . , k − 1} be the alphabet of k-ary digits; for every w ∈ Σ∗

k, let
(w)k be the number defined by this string of digits. For a language L ⊆ Σ∗

k

of positional notations, define a(L)k = {a(w)k | w ∈ L}. In this notation, the
language {a4n | n � 0} is represented as a(10

∗)4 .

Theorem A (Jeż, Okhotin [7, Thm. 3]). For every k � 2 and for every
linear conjunctive grammar G over Σk satisfying L(G) ∩ 0Σ∗

k = ∅, there exists
and can be effectively constructed a conjunctive grammar over {a} generating
the language a(L(G))k .
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This result does not extend to unambiguous grammars, as virtually all grammars
given in the construction from Theorem A are ambiguous. In fact, already the
first grammar for the language {a4n |n � 0} [6] is ambiguous. Only recently, this
example was re-created by the authors using an unambiguous grammar.

Example 1 ([10]). The conjunctive grammar

A1 → A1A3 &A7A9 | a | a4
A2 → A1A7 &A2A6 | a2
A3 → A1A2 &A3A9 | a3
A6 → A1A2 &A9A15 | a6

A7 → A1A3 &A1A6

A9 → A1A2 &A2A7

A15 → A6A9 &A2A7

is unambiguous and generates the language {a4n | n � 0} = a(10
∗)4 . Each non-

terminal Ai generates the language {ai·4n | n � 0}.

In the corresponding system of language equations, the equation for A1 is

A1 = (A1A3 ∩ A7A9) ∪ {a, a4},

etc. Substituting the intended solution into the intersection yields

a(10
∗)4a(30

∗)4 ∩ a(130
∗)4a(210

∗)4 =
(
a(10

+)4 ∪ a(10
∗30∗)4 ∪ a(30

∗10∗)4
)
∩

∩
(
a(10

�2)4 ∪ a(2110
∗)4 ∪ a(2230

∗)4 ∪ a(130
∗210∗)4 ∪ a(210

∗130∗)4
)
= a(10

�2)4 .

That is, both concatenations contain some garbage, yet the garbage in the con-
catenations is disjoint, and is filtered out by the intersection. The final union
with {a, a4} yields the language {a4n | n � 0}, and thus the first equation turns
into an equality. The rest of the equations are verified similarly, and hence the
given septuple of languages forms a solution. Since the solution in ε-free lan-
guages is unique, this is therefore the least solution of the system. The form of
both concatenations is simple enough to see that they are unambiguous.

As in the case of unrestricted conjunctive grammars over {a}, the technique
used in this example can be generalised to a representation theorem, which is
obtained by a careful step-by-step reimplementation of the proof of Theorem A.

Theorem B ([10]). Let L be any linear conjunctive language over a d-letter
input alphabet Ω, let c � d+2 and assume that Ω = {c, . . . , c+d−1}. Then, for
every base k � 2c + 2d − 3, there exists an unambiguous conjunctive grammar
generating the language {an | the base-k notation of n is 1w1 and w ∈ L}.

While positional notations used in both Theorem A and Theorem B are defined
in terms of linear conjunctive grammars, the proofs are by simulating an equiv-
alent automaton model [12]: one-way real-time cellular automata, also known as
trellis automata.

A trellis automaton [3,4,12], defined as a quintuple (Σ,Q, I, δ, F ), processes

an input string of length n � 1 using a uniform array of n(n+1)
2 nodes, as

presented in the figure below. Each node computes a value from a fixed finite
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set Q. The nodes in the bottom row obtain their values directly from the input
symbols using a function I : Σ → Q. The rest of the nodes compute the function
δ : Q×Q → Q of the values in their predecessors. The string is accepted if and
only if the value computed by the topmost node belongs to the set of accepting
states F ⊆ Q.

Definition 5. A trellis automaton is a quintuple M = (Σ,Q, I, δ, F ), in which:

– Σ is the input alphabet,
– Q is a finite non-empty set of states,
– I : Σ → Q is a function that sets the initial states,
– δ : Q×Q → Q is the transition function, and
– F ⊆ Q is the set of final states.

Extend δ to a function δ : Q+ → Q by δ(q) = q and

δ(q1, . . . , qn) = δ(δ(q1, . . . , qn−1), δ(q2, . . . , qn)),

while I is extended to a homomorphism I : Σ∗ → Q∗.
Let LM (q) = {w | δ(I(w)) = q} and define L(M) =

⋃
q∈F LM (q).

The proof of Theorem B simulates a trellis automaton by a conjunctive grammar,
whose nonterminals Cs,s′

q with s, s′ ∈ {1, 2} and q ∈ Q generate the languages

LG(C
s,s′
q ) = {a(sws′0∗)k | δ(w) = q}. The grammar encodes a recursive depen-

dence of these languages on each other.

4 Encoding into Two Nonterminals

The first example of a conjunctive grammar generating a non-regular language [6]
used four nonterminal symbols. Soon thereafter, a derivative example using a
single nonterminal was constructed by Okhotin and Rondogiannis [17]. The latter
grammar encodes the languages of all nonterminals of the original grammar [6]
in a single language. This ad hoc encoding was then extended to the following
general method of encoding any unary conjunctive language in a one-nonterminal
conjunctive grammar:

Theorem C (Jeż, Okhotin [9]). Let G = ({a}, {A1, . . . , Am}, P , A1) be
a conjunctive grammar in binary normal form. Assume that for every rule, each
nonterminal A appears at most once in its right-hand side. Furthermore, assume
that each non-terminating rule is a conjunction of at least two conjuncts. Then
there exist integers p, d1, . . . , dm with 0 < d1 < . . . < dm < p and a conjunctive
grammar G′ = ({a}, {S}, P ′, S) generating the language L(G′) = {anp−di | 1 �
i � m, an ∈ LG(Ai)}.

Every conjunctive language L ⊆ a+ has a grammar of the form required by
Theorem C [10, Lem. 1], and hence this result is ultimately applicable to every
conjunctive grammar.
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For every number t ∈ {1, . . . , p}, the set of strings of length −t modulo p is
called track t. According to Theorem C, each language LG(Ai) is encoded on
the di-th track of the language L(G′), in the sense that an ∈ LG(Ai) if and
only if anp−di ∈ L(G′). The values of p and di are chosen in the way that each
conjunction in any rule of G′ extracts the contents of one particular track, and
each rule of G′ simulates the corresponding rule of G.

For unambiguous grammars, Theorem C clearly cannot hold: the concatena-
tion SS is bound to be ambiguous, as long as S generates at least two different
strings. Hence, an unambiguous one-nonterminal grammar cannot use concate-
nations employing two or more instances of S. However, for one-nonterminal
grammars, concatenating their initial symbol S with itself is the only chance
of generating anything non-regular. Indeed, if every conjunct is of the form
akSa� or am, then the former can be equivalently written as ak+�S, and the
concatenation in the grammar becomes one-sided; and language equations with
one-sided concatenation are well-known to have regular least solutions [2]. Since,
conversely, all regular unary languages are generated by such grammars [17], this
observation leads to the following small result.

Lemma 1. One-nonterminal unambiguous conjunctive grammars over a unary
alphabet generate exactly the regular languages.

The possibility of concatenating nonterminal symbols to each other begins with
two nonterminals: if N = {S, T }, then the concatenation LG(S)LG(T ) may be
unambiguous. This turns out to be already sufficient to express the same idea as
in Theorem C. Instead of fitting the encodings of all nonterminals of the original
grammar into a single set, the same encodings shall be distributed among the
two available nonterminals S, T of the constructed grammar. However, this leads
to certain complications.

Assume a partition of the nonterminals A1, . . . , Am into two classes, so that
the nonterminals from the first class are encoded in S, and those in the sec-
ond class are encoded in T . The concatenation ST in the constructed grammar
therefore reflects all possible concatenations of nonterminals from the first class
with nonterminals from the second class. The simulation will work similarly to
Theorem C, as long as no one ever needs to concatenate nonterminals belong-
ing to the same class, because such concatenations are reflected nowhere. For
the concatenation ST to be unambiguous, the original grammar should have
unambiguous concatenations of all pairs of nonterminals belonging to different
classes, including the concatenations not used in that grammar.

These conditions of applicability are defined below, for a more general case of
k classes.

Definition 6. A conjunctive grammar G = (Σ,N, P, S) in binary normal form
(with possible rules A → a�) is said to have k-partite unambiguous concatena-
tion, if there is such a partition of its nonterminals N = N1∪· · ·∪Nk, that (i) for
every conjunct BC occurring in any rule, the nonterminals B and C belong to
two different classes of N , and (ii) for every pair of nonterminals B,C belonging
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to two different classes, the concatenation LG(B)LG(C) is unambiguous. If the
choice of a rule in G is unambiguous as well, G is k-partite unambiguous.

Theorem C generalizes to a grammar satisfying these conditions as follows.

Theorem 1. Let G = ({a}, {A1, . . . , Am}, P , A1) be a k-partite unambiguous
conjunctive grammar. Assume, that for every rule, each nonterminal A appears
at most once in its right-hand side; and furthermore, that every non-terminating
rule is a conjunction of at least two conjuncts. Let N1∪. . .∪Nk be the partition of
N = {A1, . . . , Am}. Then there exist numbers 0 < d1 < . . . < dm < p depending
only on m, and an unambiguous k-nonterminal conjunctive grammar G′ = ({a},
{B1, . . . , Bk}, P ′, B1), in which every nonterminal Bj generates the language
LG′(Bj) = {anp−di |Ai ∈ Nj, a

n ∈ LG(Ai)}.

Let p = 4m+2 and di =
p
4 + 4i for each Ai ∈ N . For each Ai ∈ N , denote by

[i] ∈ {1, . . . , k} the unique number with Ai ∈ N[i]. Then, for each rule Ai → as

in G, the new grammar G′ contains the rule B[i] → asp−di and for each rule
Ai → Aj1Ar1 & . . .&Aj�Ar� in G, the grammar G′ has the rule

B[i] → adj1+dr1−diB[j1]B[r1] & . . .& adj�
+dr�

−diB[j�]B[r�].

The assumptions of Theorem 1 are quite restrictive, and none of the previ-
ously known conjunctive grammars are bi-partite unambiguous. The grammar
in Example 1 is tri-partite unambiguous, but not bi-partite, and hence can be
encoded only in three nonterminals. A family of unambiguous conjunctive gram-
mars meeting the conditions of the theorem for k = 2 is given in the next section.

5 Construction of Bi-partite Grammars

The goal is now to develop a variant of Theorems A and B, which would produce
bi-partite unambiguous conjunctive grammars defining similar languages.

The grammars used to prove Theorem B are constructed in two stages. First,
for k � 9, a grammarG with nonterminals Ai,j for i, j ∈ Σk, i > 0 is constructed,
such that LG(Ai,j) = a(ij0

∗)k for each nonterminal Ai,j . The grammar elaborates
the ideas of Example 1 and contains the following rules:

A1,j → Ak−1,0Aj+1,0 &Ak−2,0Aj+2,0 | a(1j)k , for j < k
3 + 2;

Ai,j → Ai−1,k−1Aj+1,0 &Ai−1,k−2Aj+2,0 | a(ij)k , for i � 2, j < k
3 + 2;

Ai,j → Ai,j−1A1,0&Ai,j−2A2,0 | a(ij)k , for i � 1, j � k
3 + 2.

Unfortunately, G is not bi-partite unambiguous, it was not designed to be such.
The following new bi-partite unambiguous grammar generates the same lan-
guages using a more elaborate collection of rules. Some generality is lost in the
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process, though: as the conditions imposed on the grammar are much more re-
strictive, the construction is given for a fixed k = 11:

A1,j → Ak−4+j,k−1A3,1 &Ak−4+j,9A3,2 | a(1j)k for j � 3

A2,j → Aj−3,0A2,3 &Aj−4,0A2,4 | a(2j)k for j � 6

A3,j → A3,1Aj−1,0 &A2,2A1,j−2 for 6 � j � 8

Ai,j → Ai−2,k+j−3A1,3 &Ai−2,k+j−4A1,4 for i � 2, j � 2

Ai,j → Ai−2,k+j−5A1,5 &Ai−2,k+j−6A1,6 for 2 � i � 6, 3 � j � 4

Ai,5 → Ai−1,0A1,5 &Ai−2,k−1A1,6 for 2 � i � 6

Ai,j → Ai−1,j−2A1,2&Ai−1,j−3A1,3 in other cases

Its correctness can be proved by the same type of arguments, as in Example 1; for
each i, j, the nonterminal Ai,j generates the language a(ij0

∗)k . The authors had
those arguments automatically sketched and verified by a computer program.

The second step of the construction in Theorem B is a simulation of a trellis
automaton over the alphabet Ω = {5, 6}. The constructed grammar has a non-
terminal Cs,s′

q for each s, s′ ∈ {1, 2} and q ∈ Q, which generates the language

{a(sws′0∗)k | δ(w) = q}. The rules for Cs,s′
q are

Cs,s′
q → C1,s′

q′′ As,i−1 &C2,s′
q′′ As,i−2 &Cs,1

q′ Aj−1,s′ &Cs,2
q′ Aj−2,s′ ,

for i, j ∈ Ω and q′, q′′ ∈ Q with δ(q′, q′′) = q,

Cs,s′
q → A1,s′As,b−1 &A2,0As,b−2, for all b ∈ Ω with I(b) = q.

It was proved that this grammar is unambiguous and generates the intended
language [10].

The resulting grammar is comprised of the given new rules for Ai,j , the given

old rules for Cs,s′
q and the following rules for a new initial symbol S:

S → A (there is a rule C1,1
q → A for some q ∈ F )

The grammar accordingly generates a(1L(M)10∗)11 .
It is left to show that the defined grammar is bi-partite unambiguous. The

partition is defined as follows:

N1 = {A1,j}6j=2 ∪ {Aj,1}6j=2 ∪ {A2,j}5j=3 ∪ {Aj,2}5j=3

andN2 contains the rest of the nonterminals. For every concatenation used in the
grammar, one of the nonterminals comes from N1 and the other from N2. The
choice of a rule for each Ai,j is clearly unambiguous, for Cs,s′

q the unambiguity
of choice was proved earlier [10], and the same argument extends to S.

To see that each concatenationXY withX ∈ N1 and Y ∈ N2 is unambiguous,
consider the following two possibilities. If X = Ai,j and Y = Ai′,j′ , this case is
covered by the following known result.
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Lemma D ([10]) Let k � 2, and consider any two different languages of the
form K = a(ij0

∗)k and L = a(i
′j′0∗)k , with i, i′ ∈ Σk \ {0} and j, j′ ∈ Σk, except

for those with i = j = i′ and j′ = 0, or vice versa. Then the concatenation KL
is unambiguous.

If X = Ai,j and Y = Cs,s′
q or Y = S, this follows from the below lemma:

Lemma 2. Consider i, s, s′ ∈ {1, 2} and j ∈ {2, 3, 4, 5, 6}, where i �= j. Let

L ⊆ a(sΩ
+s′0∗)k . Then both concatenations Ai,jL and Aj,iL are unambiguous.

The proof further develops the methods in the unambiguity argument for The-
orem B [10], and the combinatorial details have been verified by a computer
program. This leads to the following bi-partite version of Theorem B.

Theorem 2. Let L ⊆ {5, 6}∗ be any linear conjunctive language. Then there
exists a bi-partite unambiguous conjunctive grammar generating the language
a(1L10∗)11 .

6 Decision Problems for Two-Nonterminal Grammars

For conjunctive grammars, most properties of a language are known to be unde-
cidable. In particular, there is no algorithm to test equality to any fixed language.

Theorem E ([7,10]). For every alphabet Σ and for every conjunctive (unam-
biguous conjunctive) language L0 ⊆ Σ∗, it is undecidable whether a given con-
junctive grammar (unambiguous conjunctive grammar, respectively) generates
L0.

For one-nonterminal conjunctive grammars over a unary alphabet, many prop-
erties, such as finiteness of the language generated by a given grammar, or
equivalence of two given grammars, remain undecidable. On the other hand,
for any given regular language R ⊆ Σ∗

k, testing whether such a grammar gener-
ates a(R)k—a so-called automatic set [1]—becomes decidable [9]. A similar, but
weaker decidability result holds for two-nonterminal unambiguous grammars.

Theorem 3. It is decidable whether a given two-nonterminal unambiguous con-
junctive grammar generates a given regular language over a unary alphabet.

In order to show some undecidable properties of two-nonterminal unambiguous
grammars, it is necessary to recall the main undecidability method for unary con-
junctive grammars. For a Turing machine T over an input alphabet Γ , consider
some representation of its computation histories as strings over an auxiliary al-
phabet Ω. For every w ∈ L(T ), let CT (w) ∈ Ω∗ denote this history. For a certain
simple encoding CT : Γ ∗ → Ω∗, the language of all such histories

VALC(T ) = {CT (w) | w ∈ Γ ∗ and CT (w) is an accepting computation}

is known to be an intersection of two linear context-free languages, and hence
recognized by a trellis automaton [12]. Now consider the symbols in Ω as digits
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in a certain base-k notation, for a suitable k. Then VALC(T ) ⊆ Σ∗
k , and its

unary version a(VALC(T ))k is representable by a conjunctive grammar [7]. This
can be used to establish undecidability of various decision problems [7,9].

Restricting Ω to be a two-letter alphabet and regarding its elements as base-
11 digits 5 and 6, one can use Theorem 2 together with Theorem 1 to obtain
undecidability results for two-nonterminal grammars.

Theorem 4. It is undecidable whether two given 2-nonterminal unambiguous
conjunctive grammars over a one-letter alphabet generate the same language.

Theorem 5. It is undecidable to determine whether a given 2-nonterminal con-
junctive grammar over a one-letter alphabet is unambiguous.

The proofs of both theorems begin by representing the emptiness problem for
a Turing machine T as the emptiness of the language L = a(VALC(T ))11 , with
VALC(T ) ⊆ {4, 5}∗, and then constructing a 2-nonterminal unambiguous gram-
mar G with anp−d1 ∈ L(G) if and only if an ∈ L, according to Theorems 1 and 2.
The proof of Theorem 4 then proceeds by constructing a modified grammar G′

by omitting some of the rules of G, so that L(G) = L(G′) if and only if L = ∅.
In the proof of Theorem 5, the rules generating anp−d1 are modified, so that if
any of these strings are generated, they will be generated ambiguously.

7 Limitations of Two Nonterminals

It is known that one-nonterminal conjunctive grammars are strictly less expres-
sive than those with multiple nonterminals [17]. This can be seen by analyzing
the density of the generated languages. A language L ⊆ a∗ is said to have den-

sity d(L) = limn→∞
|L∩{ε,...,an−1}|

n , as long as the limit is defined. If a language
has density 1, it is called dense, and one of the limitations of one-nonterminal
grammars is that they cannot generate any dense non-regular languages.

Theorem F (Okhotin, Rondogiannis [17]). Let L ⊆ a∗ be a non-regular
language with d(L) = 1. Then there is no one-nonterminal conjunctive grammar
generating L.

A stronger result on unambiguous grammars given in this paper employs a more
general notion of upper density: for every unary language L ⊆ a∗, its upper

density is d(L) = lim supn→∞
|L∩{ε,...,an−1}|

n . It is shown that if a language
L ⊆ a∗ is generated by an unambiguous conjunctive grammar with two non-
terminals, then L is regular or d(L) = 0.

The proof is based upon the observation that a concatenation of a language
of non-zero upper density with a language containing a large number of strings
is always ambiguous.

Lemma 3. Let a language L ⊆ a∗ satisfy d(L) > 1
c , and let K ⊆ a∗ be either

a finite language with |K| � c, or any infinite language. Then the concatenation
KL is ambiguous.
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The lemma follows by estimating the size of KL∩ {ε, . . . , an−1} in two ways: as
a subset of {ε, . . . , an−1}, and as c disjoint copies of L∩{ε, . . . , an−1}. These two
estimations imply a bound on |L∩ {ε, . . . , an−1}|, and the limit of these bounds
contradicts the assumption that d(L) > 1

c .
With Lemma 3 established, the non-representability theorem easily follows.

Theorem 6. If a non-regular language L ⊆ a∗ is representable by a two-
nonterminal unambiguous conjunctive grammar, then d(L) = 0.

Theorem 6 is proved by considering the languages K,L ⊆ a∗ generated by the
two nonterminals of such a grammar. The concatenation KL cannot be used in
the grammar due to Lemma 3, while the concatenations KK and LL are always
ambiguous, as long as K and L define infinite languages. Hence, the grammar
has to use only one-sided concatenation, and thus defines a regular language [2].

Three-nonterminal grammars are not subject to this restriction, and turn out
to be more powerful than two-nonterminal grammars.

Lemma 4. There exists a 3-nonterminal unambiguous conjunctive grammar
generating a non-regular language L ⊆ a∗ of density 1

2 .

This establishes a hierarchy of unambiguous conjunctive grammars with respect
to the number of nonterminal symbols. Grammars with one, two and three non-
terminals are separated according to their expressive power over a one-letter
alphabet, for which 1-nonterminal grammars generate only regular languages
(Lemma 1), 2-nonterminal grammars may generate some non-regular languages
of upper density 0 (Theorems 1 and 2), but no non-regular languages of higher
density (Theorem 6), while 3-nonterminal grammars can generate some non-
regular languages of non-zero density (Lemma 4).

8 Open Problems

It remains unknown whether the hierarchy of unambiguous conjunctive lan-
guages with respect to the number of nonterminals continues further (like the
hierarchy of n-nonterminal context-free languages [5]), or whether every unam-
biguous conjunctive language can be represented using 3 nonterminals (similarly
to linear conjunctive grammars, in which 2 nonterminals are sufficient [13]). The
same question stands open for conjunctive grammars of the general form, where
it is not even known whether any language requires more than 2 nonterminal
symbols [9].

Other suggested future work includes constructing a bi-partite unambigu-
ous conjunctive grammar grammar for some unary language with EXPTIME-
complete positional notation [8], which would allow extending the complex-
ity lower bounds to two-nonterminal unambiguous conjunctive grammars. Fur-
thermore, one can try establishing undecidability of some additional decision
problems for two-nonterminal grammars, such as finiteness and regularity: this
worked for (ambiguous) one-nonterminal conjunctive grammars [9], perhaps it
could work in this case as well.
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Finally, there are still no known examples of any inherently ambiguous con-
junctive languages, which would have only ambiguous grammars [14]. Finding
such a language is a worthy problem for future research.
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6. Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Inter-
national Journal of Foundations of Computer Science 19(3), 597–615 (2008)
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Abstract. A biautomaton is a finite automaton which arbitrarily alter-
nates between reading the input word from the left and from the right.
Some compatibility assumptions in the formal definition of a biautoma-
ton ensure that the acceptance of an input does not depend on the way
how the input is read. The paper studies the constructions of biautomata
from the descriptional point of view. It proves that the tight bounds on
the size of a biautomaton recognizing a regular language represented by
a deterministic or nondeterministic automaton of n states, or by a syn-
tactic monoid of size n, are n · 2n − 2(n − 1), 22n − 2(2n − 1), and n2,
respectively.

1 Introduction

A biautomaton is a device consisting of a finite control which reads symbols from
a read-only input tape using a pair of input heads. The heads read the symbols
in a sequential manner, the first head from left to right, and the second one from
right to left. Initially, the first head is scanning the leftmost symbol, and the
second head the rightmost symbol of an input word. The heads read symbols
alternately, not depending on the current state of the finite control or on the
symbol read from the tape; thus the choice of which one of the two heads will
read the next symbol is completely nondeterministic. A computation ends when
the heads finish the reading of the input word and meet somewhere inside the
tape. Moreover, the acceptance of a word depends neither on the position, in
which the heads meet, nor on the sequence of states the final control goes through
while reading the input. In other words, if an input is accepted by a computation,
then it must be accepted by any other computation. From this point of view, a
biautomaton is a deterministic device rather than a nondeterministic one.

� Research supported by the Slovak Research and Development Agency under con-
tract APVV-0035-10 “Algorithms, Automata, and Discrete Data Structures”, and
by VEGA grant 2/0183/11.

�� Supported by the research center Institute for Theoretical Computer Science (ITI),
project No. P202/12/G061 of the Grant Agency of the Czech Republic.

M. Kutrib, N. Moreira, and R. Reis (Eds.): DCFS 2012, LNCS 7386, pp. 196–208, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Descriptional Complexity of Biautomata 197

The determinism is guaranteed by the following two simple conditions. First,
the heads read input symbols independently, that is, if one head reads one symbol
and the other reads another, the resulting state does not depend on the order
in which the heads read these single symbols. Second, if in a state of the finite
control one head accepts a symbol, then this symbol is accepted in this state by
the other head as well.

Biautomata have been recently introduced by Polák and Kĺıma [5], and recog-
nize exactly the class of regular languages. The paper [5] shows that some useful
constructions from the theory of automata work for biautomata as well. In par-
ticular, every regular language has a unique, up to isomorphism, minimal biau-
tomaton. The main idea of the proof relies on the construction of the so-called
canonical biautomaton based on quotients, and the construction is analogous to
Brzozowski’s construction of the minimal complete deterministic automaton for
a given regular language [1].

In algebraic theory of regular languages, certain natural classes of languages
are characterized by properties of their syntactic monoids or some other, more
sophisticated, syntactic structures. Optimally, such a characterization gives an
effective algorithm for membership problem for a considered class of languages.
The most cited examples of such effective characterizations are Simon’s re-
sult [13] stating that a regular language is piecewise testable if and only if its
syntactic monoid is J -trivial, and Schützenberger’s result [10] stating that a
regular language is star-free if and only if its syntactic monoid is aperiodic.

The authors of [5] believe that biautomata can be successfully used for a sim-
ilar characterization of some classes of languages. They do not expect to get new
characterizations of classes, for which the membership problem is not solved yet,
but rather to get alternative biautomatas characterizations of classes, for which
the membership problem is already solved. One example in [5] gives a character-
ization of prefix-suffix testable languages, and another one gives an alternative
characterization of piecewise testable languages: A language is piecewise testable
if and only if the canonical biautomaton for the language is acyclic.

As a continuation of the results in [5], the same authors in [6] point out
a relationship between the complexity of piecewise testable languages and a
characteristic of a graph of their biautomata, called the depth of biautomaton,
and defined as the length of a longest cycle-free path in the biautomaton. Since
the canonical biautomaton of a regular language contains, as a substructure,
the minimal deterministic automaton for the language, many characterizations
given by properties of the minimal automaton can be translated to conditions
for biautomata. For practical applications it is important to know whether such
characteristics can be computed efficiently.

This paper studies constructions of biautomata from the descriptional point
of view. As a descriptional complexity measure, we only consider the size of a
biautomaton, that is, its number of states. We represent a given regular language
by a deterministic or nondeterministic automaton, or by a syntactic monoid,
respectively, and ask how many states are sufficient and necessary in the worst
case for a biautomaton to recognize the given language.
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In all three cases, we obtain tight bounds. To prove upper bounds, we use
the constructions described in [5]. To get lower bounds, we use Šebej’s binary
automata meeting the upper bound for reversal [12] in the deterministic case,
and a modification of witness automata for left quotient from [15] in the non-
deterministic case. In case languages are given by syntactic monoids, we prove
the tightness of the bound in infinitely many cases using the k-th dihedral group
Dk, that is, the group of symmetries of a regular polygon with k sides.

2 Biautomata

In this section we recall the necessary basis of the notion of biautomata recently
developed in [5]. We refer to this paper, as well as to [11,14], for all missing
information and details. For an arbitrary finite non-empty alphabet A, the set
of all words over A is denoted by A∗, and λ denotes the empty word.

Definition 1. A biautomaton is a sixtuple B = (Q,A, ·, ◦, i, T ) where

(1) Q is a non-empty finite set of states,
(2) A is an alphabet,
(3) · : Q×A → Q is a left action,
(4) ◦ : Q×A → Q is a right action,
(5) i ∈ Q is the initial state,
(6) T ⊆ Q is the set of terminal states,
(7) (q · a) ◦ b = (q ◦ b) · a for each q ∈ Q and a, b ∈ A,
(8) q · a ∈ T if and only if q ◦ a ∈ T for each q ∈ Q and a ∈ A.

The left and right actions are naturally extended to the domain Q × A∗ by
q ·λ = q, q · (ua) = (q ·u) ·a, and by q ◦λ = q, q ◦ (av) = (q ◦ v) ◦ a, respectively,
where q ∈ Q, u, v ∈ A∗, a ∈ A. A state q ∈ Q accepts a word u ∈ A∗ if q · u ∈ T ,
and the language of all words accepted by q is denoted by LB(q). The language
recognized by B is LB = LB(i). Conditions (7) and (8) stay true when words
u, v in A∗ are considered instead of letters a, b in A as shown in [5, Lemma 2.2].

In the definition of acceptance of a word u by a biautomaton, i · u ∈ T , the
biautomaton reads u from the left-hand side letter by letter and moves among
states according to the left action. In the equivalent condition, i◦u ∈ T , it reads
u from the right-hand side and moves among states according to right action.
But the biautomaton can read the word u in many other ways. We can divide
u = u1 · · ·ukvk · · · v1 arbitrarily, where u1, . . . , uk, vk, . . . , v1 ∈ A∗, and read u1
from left first and move to the state i · u1, then read v1 from right and move
to (i · u1) ◦ v1, then read u2 from left, and so on. In this way, the biautomaton
moves from the initial state i to the state

q = ((· · · ((((i · u1) ◦ v1) · u2) ◦ v2) · · · ) · uk) ◦ vk .

The basic observation in [5, Lemma 2.3] says that q ∈ T if and only if i · u ∈ T .
Therefore, the acceptance of the word u does not depend on the way how the
biautomaton reads this word.
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The proof that q ∈ T uses the generalization of property (7) in Definition 1,
and expresses q as (i · (u1 · · ·uk)) ◦ (vk · · · v1). This basic observation leads us to
the following natural definition. A state q in Q of biautomaton B is reachable if
there exist words u, v in A∗ such that q = (i · u) ◦ v.

The minimalization procedure for biautomata is similar to that for deter-
ministic automata, that is, it is based on the notion of factorization. If B =
(Q,A, ·, ◦, i, T ) is a biautomaton and ∼ is an equivalence relation on the set Q
such that for each pair of states p, q in state set Q with p ∼ q we have

(i) p · a ∼ q · a and p ◦ a ∼ q ◦ a for each a in A, and (ii) p ∈ T implies q ∈ T,

then ∼ is called a congruence relation on B. The class in the partition Q/∼
containing a state q is denoted by [q]. For a congruence ∼ on B, we define the
factor structure B/∼ = (Q/∼, A, ·∼, ◦∼, [i], T/∼) where [q] ·∼ a = [q · a] and
[q] ◦∼ a = [q ◦ a]. This structure is again a biautomaton which recognizes the
same language as B. Notice that LB(p) = LB(q) whenever p ∼ q. In other words,
the congruence ≈B on B, given by the rule p ≈B q if and only if LB(p) = LB(q),
is the maximal congruence on B. Moreover, if we assume that all states in B
are reachable, then the biautomaton B/ ≈B is minimal among all biautomata
recognizing language LB [5, Sections 2.3 and 2.4].

In fact, it was proved that there is, up to isomorphism, a unique minimal
biautomaton of a given language L, which is called a canonical biautomaton
in [5]. Therefore, to prove that a biautomaton B is minimal, it is enough to show
that all the states in B are reachable, and that ≈B is the diagonal relation on Q.
The second condition is equivalent to the fact that for each pair of states p, q in Q
we have LB(p) �= LB(q), that is, there is a word u such that |{p ·u, q ·u}∩T |= 1.

3 From Deterministic Automata to Biautomata

The next construction, taken from [5], converts a deterministic automaton into a
biautomaton recognizing the same language. The construction is not surprising
since it is similar to the classical construction of a deterministic automaton for
the reverse of a given language.

Given a complete deterministic automaton A = (Q,A, ·, i, T ), we define the
structure AB = (QB, A, ·B, ◦B, iB, T B) with

QB = { (q, P ) | q ∈ Q, P ⊆ Q },
iB = (i, T ),

(q, P ) ·B a = (q · a, P ),

(q, P ) ◦B a = ( q, {p ∈ Q | p · a ∈ P} ),
(q, P ) ∈ T B if and only if q ∈ P,

where q ∈ Q, P ⊆ Q, a ∈ A.

Lemma 1 ([5], Lemma 2.4). For every complete deterministic automaton A,
the structure AB is a biautomaton recognizing the language L(A). &"
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Since the action ◦B in AB is applied only to the second component of the states
in QB, we will use the symbol ◦ also for the corresponding operation on subsets
of Q. More formally, for a subset P of Q and a word u in A∗, we write P ◦ u =
{q ∈ Q | q · u ∈ P}. Therefore, for each state q in Q, each subset P of Q, and
each word u in A∗, we have (q, P ) ·B u = ( q · u, P ) and (q, P ) ◦B u = ( q, P ◦ u ).

To factorize the biautomaton AB, we define an equivalence relation ∼ on QB

by the following rule:

(p, P ) ∼ (r, R) if and only if ( (p, P ) = (r, R) or P = R = ∅ or P = R = Q ).

Lemma 2. The relation ∼ is a congruence of the biautomaton AB, and the
quotient biautomaton AB/∼ recognizes the language L(A).

Proof. The relation ∼ is an equivalence relation. Only two of its classes contain
more than one element, namely � = {(p,Q) | p ∈ Q} and ⊥= {(p, ∅) | p ∈ Q}.
All the states in � are terminal and all the states in ⊥ are non-terminal in AB.
Moreover, for each ρ = (q,Q) in � and each a in A, we have ρ ·B a ∈ �.
Furthermore, we have ρ ◦B a = (q, {p ∈ Q | p · a ∈ Q}) = (q,Q) = ρ because we
consider the complete deterministic automaton A. Hence ρ ◦B a ∈ �. A similar
property holds for ⊥. It follows that ∼ is a congruence. &"

We denote the biautomaton AB/∼ from the previous construction by AB,r. By
the proof of Lemma 2, state � is an absorbing terminal state, while state ⊥ is an
absorbing non-terminal state in AB,r. All the other states in AB,r are singleton
classes, so we denote them by their single element, that is, we write (p, P ) instead
of [(p, P )] = {(p, P )}. Next, notice that if a language is recognized by a 1-state
deterministic automaton, then the corresponding biautomaton consists of one
state as well. Therefore, we assume n ≥ 2 in what follows. The construction
of the biautomaton AB,r described above and Lemma 2 provide the following
result.

Proposition 1. Let L be an arbitrary regular language such that its minimal
deterministic automaton has n states, where n ≥ 2. Then there exists a biau-
tomaton of size n · 2n − 2(n− 1) which recognizes L. &"

The aim of the remaining part of this section is to show that the bound in
Proposition 1 is tight. To this aim consider the n-state deterministic automaton
A = (Q,A, ·, 1, {n}), where Q = {1, 2, . . . , n}, A = {a, b}, and · is given by Fig. 1;
if n = 2, then 2 · a = 1, and if n = 3, then 3 · b = 3. Denote by L the language
recognized by automaton A. Our goal is to show that the biautomaton AB,r

described above is a minimal biautomaton recognizing L. As shown in [4], the
minimal deterministic automaton for the reverse of L has 2n states. In particular,
paper [4] proves the next lemma, from which the reachability of all the states in
AB follows.

Lemma 3 ([4], Theorem 5). For each subset P of Q, there is a word v such
that {q ∈ Q | q · v = n} = P , that is, {n} ◦ v = P . &"
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Fig. 1. The binary n-state dfa meeting the upper bound 2n for reversal

Lemma 4. Each state in the biautomaton AB is reachable.

Proof. Let (p, P ) be an arbitrary state in AB. Recall, that the initial state in
AB is iB = (1, {n}). In automaton A, there is a word u in a∗ or in a∗ba∗ such
that 1 · u = p. By Lemma 3, there is a word v in A∗ such that {n} ◦ v = P .
Altogether, for the initial state iB = (1, {n}) and these words u and v, we have
(iB ·B u) ◦B v = (p, P ). &"

The useful property in the following lemma says that automaton A is so-called
synchronizing. After that we state one more technical observation.

Lemma 5. There is a word w in {a, b}∗ and a state q in Q such that for each
state p in Q, we have p · w = q.

Proof. The word w = b(ab)n−2 satisfies the lemma since p ·w = 1 for each p. &"

Lemma 6. Let P be a non-empty proper subset of Q. Then
(i) there exists a word u ∈ A∗ such that |P ◦ u| = |P | − 1;
(ii) there exists a word v ∈ A∗ such that |P ◦ v| = |P |+ 1.

Proof. First, notice that the word bb acts on a subset P of Q as follows. If
{1, 2} ⊆ P or {1, 2} ∩ P = ∅, then P ◦ bb = P . If 1 ∈ P and 2 �∈ P then
P ◦ bb = P ∪ {2}, and if 1 �∈ P and 2 ∈ P then P ◦ bb = P \ {2}. Next, the word
a acts as a permutation, so |P ◦ ak| = |P | for every subset P .

Now let P be an arbitrary non-empty proper subset of Q. To prove (i), we
distinguish three cases depending on the size of the set P ∩ {1, 2, 3}.

1. |P ∩ {1, 2, 3}| ∈ {1, 2}. Then there is a word u1 in {λ, a, aa} such that
2 ∈ P ◦ u1, and 1 �∈ P ◦ u1. Hence |(P ◦ u1) ◦ bb| = |P | − 1, and this case is
solved. An appropriate word is u = bbu1 because P ◦ bbu1 = (P ◦ u1) ◦ bb.

2. |P ∩ {1, 2, 3}| = 0. Since P is non-empty, it contains a state in {4, . . . , n},
and there is a word u2 in a∗ such that 4 ∈ P ◦ u2. Now let P ′ = (P ◦ u2) ◦ b.
Then |P ′| = |P | and P ′ ∩ {1, 2, 3} = {3}. As shown in case (1), there is a
word w with |P ′ ◦w| = |P ′|−1 = |P |−1. Consequently |P ◦wbu2| = |P |−1.

3. |P ∩ {1, 2, 3}| = 3. Since P is a proper subset of Q, there is a state k in
{4, . . . , n} such that k �∈ P . Similarly as in case (2) there is a word u3 in a∗

such that 4 �∈ P ◦ u3. Then P ◦ u3 ◦ b ∩ {1, 2, 3} = {1, 2}, and we may use
case (1) of our discussion.
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This concludes the proof of (i). The proof of (ii) proceeds in a similar way; we
only interchange the roles of 1 and 2. For example, in the case (1), there is a word
v1 in {λ, a, aa} such that 1 ∈ P ◦v1 and 2 /∈ P ◦v1. Then |P ◦v1◦bb| = |P |+1. &"

Lemma 7. The biautomaton AB,r is the minimal biautomaton for L.

Proof. Every state in AB is reachable by Lemma 4, and hence the same is true
forAB,r. We next show that two different states π, ρ ofAB,r can be distinguished.

If {π, ρ} = {�,⊥}, then π and ρ are distinguished by the empty word.
Let π = (p, P ) be a state in AB with P /∈ {∅, Q}, and let ρ ∈ {�,⊥}.

By Lemma 6, there exist words u and v in A∗ such that (p, P ) ◦B u = � and
(p, P )◦Bv =⊥. Since � and ⊥ are absorbing states, the distinguishability follows.

Now assume that π = (p, P ) and ρ = (r, R), where both P and R are non-
empty proper subsets of Q. First assume P �= R. Without loss of generality,
there is a state q with q ∈ P \ R. By Lemma 5, there is a word w such that
p · w = r · w. Next, there is word u such that p · w · u = r · w · u = q. It follows
that ((p, P ) ·B w) ·B u is a terminal state, while ((r, R) ·B w) ·B u is non-terminal.

If P = R then p �= r. By Lemma 6, which we use repeatedly, there is a word
u such that |P ◦ u| = 1; thus P ◦ u = {q} for a state q of A. We claim that there
is a word v such that {q} ◦ v = {p}. Indeed, if both p and q are in {1, 2, 3} or in
{4, . . . , n} then v can be taken as a power of a, otherwise v is a word in a∗ba∗.
Then the word v ·u distinguishes states (p, P ) and (r, P ) since (p, P ) ◦B (v ·u) =
((p, P ) ◦B u) ◦B v) = (p, {q}) ◦B v = (p, {p}) while (r, P ) ◦B (v · u) = (r, {p}). &"

Summarised, we get the following theorem.

Theorem 1. Let L be a regular language recognized by a deterministic automa-
ton of n states, where n ≥ 2. Then the minimal biautomaton for L has at most
n ·2n−2(n−1) states. The bound is tight, and it is met by a binary language. &"

4 From Nondeterministic Automata to Biautomata

If a regular language L is given by a nondeterministic automaton, then to con-
struct a biautomaton for L, we may first convert the nondeterministic automaton
into deterministic automaton, and then use the construction described in the pre-
vious section. If a given nondeterministic automaton has n states, then the corre-
sponding deterministic automaton has at most 2n states, and hence the resulting
biautomaton has at most 2n22

n − 2(2n − 1) states. To get a more efficient con-
struction, we use similar ideas as in case when a biautomaton was constructed
from deterministic automaton.

Let N = (Q,A, δ, I, T ) be a nondeterministic automaton over an alphabet A
with the state set Q, the set of initial states I, the set of terminal states T , and
the transition function δ which maps Q ×A to 2Q. The transition function δ is
extended to the domain 2Q ×A∗ in the natural way.
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Let us construct the structure NB = (QB, A, ·B, ◦B, iB, TB), where

QB = {(P,R) | P ⊆ Q,R ⊆ Q},
(P,R) ·B a = (δ(P, a), R),

(P,R) ◦B a = (P, {q ∈ Q | δ(q, a) ∩R �= ∅}),
iB = (I, T ),

(P,R) ∈ TB if and only if P ∩R �= ∅.

Lemma 8. For every nondeterministic automaton N , the structure NB is a
biautomaton of size 22n recognizing the language L(N ).

Proof. To prove that NB is a biautomaton, we only need to check conditions
(7) and (8) in Definition 1. Since actions ·B and ◦B act on the first and the
second component independently, these actions commute and we have (7). Now
(P,R) ·B a ∈ TB if and only if δ(P, a) ∩R �= ∅. The latter condition is equivalent
to the existence of states r in R and p in P with r ∈ δ(p, a), which is equivalent
to P ∩ {q ∈ Q | δ(q, a) ∩ R �= ∅} �= ∅, and hence to (P,R) ◦B a ∈ TB. Therefore,
the structure NB is a biautomaton. A word w is accepted by NB if and only if
(I, T ) ·Bw ∈ TB, hence if and only if δ(I, w)∩T �= ∅, that is, iff w is in L(N ). &"

Now, the situation is similar as it was in the previous section. The biautoma-
ton NB is not minimal since no terminal state can be reached from any state
with one component equal to the empty set: For every word u in A∗, we have
(∅, R) ·B u = (∅, R) and (P, ∅) ◦B u = (P, ∅). Therefore, all these states can be
merged. More formally, the relation ∼ on QB, given by the rule

(P,R) ∼ (P ′, R′) if and only if (P,R) = (P ′, R′) or ∅ ∈ {P,R} ∩ {P ′, R′}

is a congruence of biautomaton NB.

Lemma 9. If a nondeterministic automaton N has n states, then the biautoma-
ton NB/∼ recognizes L(N ) and has 22n − 2(2n − 1) states.

Proof. All the classes of congruence ∼ are singleton sets, except for the class
⊥= {(P, ∅) | P ⊆ Q} ∪ {(∅, R) | R ⊆ Q}. There are 2 · 2n − 1 elements in ⊥.
Hence there are 2n · 2n − (2 · 2n − 1) singleton sets and one big class. In total,
we have 22n − 2(2n − 1) states in NB/∼. &"

Our next goal is to describe a nondeterministic automaton N , for which the
above mentioned biautomaton NB/∼ is a minimal biautomaton. To this aim
consider the n-state nondeterministic automaton N = (Q,A, δ, I, T ), where Q =
{1, 2, . . . , n}, A = {a, b}, I = T = Q, and δ is given by transitions in Fig. 2.

Notice that all the transitions are deterministic, and the only nondeterminism
comes from having multiple initial states. Therefore, we use operation · for the
action by a letter instead of using δ. We also point out that 1 · b is not defined.
Recall that P ◦ u = {q ∈ Q | q · u ∈ P} for any subset P of Q.
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Fig. 2. The nondeterministic automaton meeting the bound 22n − 2(2n − 1)

Lemma 10. Let N be the nondeterministic automaton depicted in Fig. 2. Then
the biautomaton NB/∼ is minimal and it has 22n − 2(2n − 1) states.

Proof. Consider the word uk = an+1−kbak−1 for k = 1, 2, . . . , n. We have k ·uk =
1 ·bak−1 = ∅. On the other hand, we have i ·uk = i for every state i different from
k. It follows that P · uk = P \ {k} for every subset P of Q. The same argument
proves P ◦ uk = P \ {k}. Using this idea repeatedly, we get that for an arbitrary
non-empty subset P of Q and an arbitrary state p in P , there exist words u, v
such that P · u = P ◦ v = {p}. For an arbitrary state (P,R) in NB, there exist
words u, v in A∗ such that ((Q,Q) ·B u) ◦B v = (P,R). Hence each state in NB is
reachable. Consequently, each state in NB/∼ is reachable.

First, let us show that at least one word is accepted from any state (P,R)
with P �= ∅ and R �= ∅. Let p ∈ P and r ∈ R. Take as u the product of all the
uk’s, except for up. Then P · u = {p}. Next, there is a word v in a∗ such that
{p} · v = {r}. It follows that the word uv is accepted from state (P,R) since we
have ((P,R) ·B u) ·B v = ({p}, R) ·B v = ({r}, R). Hence state ⊥ is the only state
in biautomaton NB/∼, from which no word is accepted.

Now let (P,R) and (P ′, R′) be two different states in NB/∼, both different
from state ⊥. If P �= P ′, then without loss of generality, there is a state p with
p ∈ P \P ′. Take as u the product of all the uk’s, except for up. Then P ·u = {p}
and P ′·u = ∅. Therefore, we have (P,R)·Bu = ({p}, R) and (P ′, R′)·Bu = (∅, R′).
Since no word is accepted from (∅, R′), while at least one word is accepted from
({p}, R), states (P,R) and (P ′, R′) are distinguishable. If P = P ′, then R �= R′.
To distinguish (P,R) and (P,R′), we can construct a word v for action ◦B in a
similar way as we construct u in the previous case. &"

As a corollary of the three lemmas above, we get the following result.

Theorem 2. Let L be a regular language recognized by a nondeterministic au-
tomaton of n states. Then the minimal biautomaton for the language L has at
most 22n − 2(2n − 1) states. The bound is tight, and it is met by a binary non-
deterministic automaton with multiple initial states. &"

If we insist on having just one initial state, then we can modify our worst-
case example by adding a new letter c which only acts on state 1 as δ(1, c) =
{1, 2, . . . , n}. Theorem 2 still holds, and, moreover, the upper bound can be met
by a ternary nondeterministic automaton with a single initial state.
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5 From Syntactic Monoids to Biautomata

Let L be a regular language over an alphabet A. The syntactic relation ≡L of
language L is an equivalence relation on A∗ defined by u ≡L v if and only if
for every x, y in A∗, we have xuy ∈ L if and only if xvy ∈ L. It is known that
the relation ≡L is a congruence on the monoid A∗, and it has a finite index. Then
the finite quotient A∗/≡L is called syntactic monoid and it is denoted by ML.
The natural mapping ηL : A∗ → ML given by ηL(u) = [u]≡L is called syntactic
morphism. For simplicity, we write η, M , and [u] instead of ηL, ML, and [u]≡L ,
respectively. The language L is a union of certain classes of M . If we denote by
F the set of these classes, that is, F = η(L), then L = {u ∈ A∗ | [u] ∈ F}. See
[9] for other information on the notion of syntactic monoids.

For each pair m,n in M , let C(m,n) = {s ∈ M | msn ∈ F}. Consider the
structure BL = (BL, A, ·, ◦, i, T ), where

BL = {C(m,n) | m,n ∈ M},
C(m,n) · a = C([a]m,n),

C(m,n) ◦ a = C(m,n[a]),

i = C(1, 1) = F,

C(m,n) ∈ T if and only if 1 ∈ C(m,n), that is, if mn ∈ F.

We use the following result from [5] to get an upper bound on the size of the
biautomaton for a language given by its syntactic monoid.

Lemma 11 ([5], Proposition 2.9). Let L be a regular language. Then the
structure BL described above is a minimal biautomaton for L. &"

Proposition 2. Let L be a regular language given by a syntactic monoid of
size n. Then the minimal biautomaton for L has at most n2 states. &"

In what follows, we prove that there are languages with syntactic monoids of size
n, for which the minimal biautomaton has n2 states. To construct a worst-case
example, we consider monoids which are groups. Then every subset C(m,n) can
be written as {m−1fn−1 | f ∈ F}, where x−1 denotes an inverse element of x
in group M . Next, we have BL = {sF t | s, t ∈ M}, where sF t = {sft | f ∈ F}.
Our goal is to describe a group such that state sF t of BL are pairwise distinct.

We do not provide a group for every n, but only for even numbers 2k with
an odd k. For an odd natural number k, we consider the k-th dihedral group
Dk, that is, Dk is a group of symmetries of a regular polygon with k sides. For
more precise description of these groups we refer to [3]. The group Dk has 2k
elements which are of two kinds, namely rotations and reflections. We prefer to
work with the usual presentation Dk = 〈α, β | αk = 1, β2 = 1, βα = αk−1β〉.
Here α corresponds to a rotation through an angle of 2π

k , and β corresponds to a
reflection across a line. The relation βα = αk−1β means, in fact, that αβα = β.

If we use relations as rewriting rules βα !→ αk−1β, αk !→ λ, β2 !→ λ, then
every word over the alphabet {α, β} can be rewritten to the unique normal form
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αiβj with i ∈ {0, 1, . . . , k− 1} and j ∈ {0, 1}. We represent every element of Dk

in this unique way. We write αi for elements with j = 0, and denote the neutral
element in Dk by 1 as usually. Let the parity p(s) of an element s = αiβj be
defined by p(s) = (−1)j . Then p : Dk → {1,−1} is a morphism of groups.

Lemma 12. Let k be an odd number with k ≥ 7. Let A = {a, b}. Consider the
subset F = {1, α2, α3, β} of Dk. Let η : A∗ → Dk be given by η(a) = α, η(b) = β,
and let L = η−1(F ). Then the minimal biautomaton BL for L has 4k2 states.

Proof. First we show that Dk is isomorphic to syntactic monoidM of language L.
Since Dk recognizes L, there is a monoid morphism ψ from Dk onto M . Since Dk

is a group, there is a normal subgroup H of Dk, the kernel of ψ, such that F is a
union of some classes in the partition Dk/H . Next H ⊆ F since 1 ∈ F . However,
only one subset of F , namely {1}, forms a normal subgroup of Dk: Indeed, for
a normal subgroup H , we see that α2 ∈ H implies αk−2 ∈ H , α3 ∈ H implies
αk−3 ∈ H , and β ∈ H implies α−1βα = αk−2β ∈ H . Therefore, the kernel of ψ
is the trivial subgroup and ψ is an isomorphism.

Now our goal is to prove that states sF t with s, t ∈ Dk are pairwise distinct
in biautomaton BL. For each i in {0, 1, . . . , k − 1}, set

F+
i = αk−iFαi = {1, α2, α3, αk−iβαi}.

Since αβα = β, we can deduce αiβαi = β. Hence αk−iβαi = α2k−2iβ, and we
have F+

i = {1, α2, α3, α2k−2iβ}. Let us show that α2k−2iβ �= α2k−2jβ whenever
i �= j. Recall that k is odd. For each i with 0 ≤ 2i < k, we have α2k−2i = αk−2i,
where the exponent k − 2i is odd. For each i with k < 2i < 2k, that is, with
0 < 2k− 2i < k, we have α2k−2i with an even exponent in the set {0, . . . , k− 1}.
So, states F+

0 , F
+
1 , . . . , F

+
k−1 are pairwise distinct in biautomaton BL. Now let

F−
i = βF+

i β = {1, βα2β, βα3β, βα2k−2i},

where βα2β = α−2, βα3β = α−3 and βα2k−2i = α2iβ.
Therefore we have F−

i = {1, α−2, α−3, α2iβ}. States F−
i are different from

states F+
i because they contain αk−2. Furthermore, states F−

i are pairwise dis-
tinct because the equality βF+

i β = βF+
j β for some i and j implies F+

i = F+
j .

Next for every j in {0, 1, . . . , k− 1}, consider states αjF+
i and αjF−

i . Thus in
total, we have 2k2 states, and we need to show that they are pairwise distinct.
Let G be one of these states, thus G is a four-element subset of Dk. We are going
to show that it is possible to reconstruct i and j and sign + or − from G. The
set G consists of three elements of parity 1, and of one element of parity −1.

The three elements of parity 1 are powers of α with some exponents. Two of
these exponents are consecutive numbers under the assumption that we count
modulo k, that is, the numbers k − 1 and 0 are understood to be consecutive.
Denote the third exponent by �. This exponent is isolated, formally α� ∈ G,
α�−1 �∈ G, and α�+1 �∈ G. Now if α�+2 ∈ G, then G = α�F+

i for some i, and if
α�+2 �∈ G, then α�−2 ∈ G and G = α�F−

i for some i.
The element of parity −1 is of the form αmβ. In case G = α�F+

i , the expo-
nent m is congruent with � − 2i modulo k. Hence � −m is congruent modulo k
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with 2i. This describes i uniquely because k is relatively prime to 2. IfG = α�F−
i ,

then we have m congruent with 2i which describes i in {0, 1, . . . , k−1} uniquely.
Let F be the family of the above 2k2 sets. We define the second family by

F ′ = {Gβ | G ∈ F}. The sets in F ′ consist of three elements of parity −1,
and of one element of parity 1. This observation implies that the sets in F ′ are
different from the sets in F . Moreover, if two sets Gβ and Hβ in F ′ are equal,
then after multiplying by β, we get that two sets G and H in F are equal. This
is not possible. Altogether, we have 4k2 pairwise distinct sets of the form sF t,
which concludes the proof. &"

Hence the upper bound n2 can be met in infinitely many cases. The next theorem
summarizes the above results.

Theorem 3. Let L be a regular language with the syntactic monoid of size n.
Then the minimal biautomaton for L has at most n2 states. The bound can be
met for every n with n = 2k, where k is an odd number with k ≥ 7, by a binary
language L given in Lemma 12. &"

6 Final Remarks

There are several natural questions that are not considered in this paper. First,
we could discuss in more detail the case of a unary alphabet. This is not so
interesting because both actions are identical in the minimal biautomaton for a
unary language. Consequently, the minimal biautomaton is exactly of the same
size as minimal deterministic automaton. For example, for the language (an)∗,
the minimal deterministic automaton, the minimal nondeterministic automaton,
as well as the minimal biautomaton, all have n states. If a unary language is rep-
resented by a nondeterministic automaton, then the corresponding biautomaton

is of size eΘ(
√
n lnn) since this function provides a trade-off for the conversion of

unary nondeterministic automata into deterministic automata [2,8].
Next, we could solve the missing cases in Section 5. We also could discuss in

more detail the transformations in the opposite direction. More precisely, if a bi-
automaton is given, then how large can the other structures be? Or, equivalently,
having some classical structure, like deterministic automaton, nondeterministic
automaton, or syntactic monoid for a given language, how small can the biau-
tomaton be? By the results in [5], a minimal deterministic automaton is a part
of a minimal biautomaton, and this lower bound for a biautomaton is tight, as
the example in the previous paragraph shows. For nondeterministic automata
and syntactic monoids, we only have some asymptotic estimations.

Last but not least, there are natural questions concerning descriptional com-
plexity of language operations. If B is a biautomaton for a language L, then a bi-
automaton for the reverse of L can be obtained from B by interchanging the roles
of the right and left actions. Similarly, we get a biautomaton for the complement
of L from B by interchanging the terminal and non-terminal states. The opera-
tions of union and intersection lead to classical product constructions, and it is
possible to prove that the product of the sizes of the given biautomata provides
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a

b

1 2

Fig. 3. A nondeterministic biautomaton accepting the language {anbn | n ≥ 0};
the right action is drawn by the dashed arrow

the tight bound for the resulting biautomaton. Concatenation and Kleene star
could also be considered, but we only expect some asymptotic bounds here.

To conclude the paper, let us remark that allowing nondeterministic, or even
undefined transitions like in Fig. 3, results in nondeterministic biautomata that
recognize the class of linear context-free languages [7].
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Abstract. It is well known that the pushdown store language P (M)
of a pushdown automaton (PDA) M — i.e., the language consisting of
words occurring on the pushdown along accepting computations of M
— is a regular language. Here, we design succinct nondeterministic finite
automata (NFA) accepting P (M). In detail, an upper bound on the size
of an NFA for P (M) is obtained, which is quadratic in the number of
states and linear in the number of pushdown symbols of M . Moreover,
this upper bound is shown to be asymptotically optimal. Then, several
restricted variants of PDA are considered, leading to improved construc-
tions. In all cases, we prove the asymptotical optimality of the size of
the resulting NFA. Finally, we apply our results to decidability questions
related to PDA, and obtain solutions in deterministic polynomial time.

Keywords: pushdown automata, pushdown store languages, descrip-
tional complexity, decidability questions.

1 Introduction

Beside the formal definition of the accepted or generated language, the introduc-
tion of an accepting or generating device always brings the attention to several
“auxiliary” formal structures related to the device itself. Such structures, which
can be either crucial part of or derived from the device definition, are not only
interesting per se, but their investigation has often other relevant motivations.
For instance, we can act on these structures to tune device computational capa-
bilities. Or, they can directly imply certain device properties. Yet, they can also
be used as a theoretical tool to get results in different contexts.

Only to cite some examples, in the realm of Turing machines, the well known
language of valid computations is introduced in [11]. The study of this language
has been widely used to point out undecidability of several problems and non-
recursiveness of certain descriptional trade-offs (see, e.g., [7,14]). In quantum
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automata theory, a basic part of the definition of several variants of quantum
automata is the so-called control language which, very roughly speaking, de-
scribes computational dynamics which are admissible in a given model [19]. By
modifying the control language, we obtain several quantum devices with different
computational power. In [3], particular families of so-called selection languages
are considered to tune the generative power of contextual grammars.

In this paper, we focus on pushdown store languages for pushdown automata
(PDA). Given a PDAM , its pushdown store language P (M) consists of all words
occurring on the pushdown store along accepting computations of M . (It should
be remarked that similar sets for stack automata have been investigated in [6].) It
is known from [8] that, surprisingly enough, P (M) is regular for any PDA. More
recently, an alternative proof of this fact has been given in [1]. Here, we tackle the
study of pushdown store languages from a descriptional complexity point of view,
and design succinct nondeterministic finite automata (NFA) for their acceptance.
In Section 3, a first general construction of an NFA for P (M) inspired by [1]
is presented. We subsequently improve this construction and obtain an upper
bound to the size (i.e., number of states) of the NFA, which is quadratic in the
number of states and linear in the number of pushdown symbols of the PDA M .
Then, we show that this bound cannot be improved in general by proving its
asymptotical optimality. In Section 4, we will be dealing with restricted versions
of PDA, namely: PDA which cannot pop, stateless PDA, and counter machines,
i.e., PDA whose pushdown store languages are subsets of Z∗Z0, for a bottom-
of-pushdown symbol Z0 and a different pushdown symbol Z. For any of these
restrictions, we present NFA for pushdown store languages which are strictly
smaller than the NFA given for the general case. Moreover, in all cases, we prove
the optimality of our constructions.

Finally, in Section 5, we apply our results on the descriptional complexity
of pushdown store languages to the analysis of the hardness of some decision
problems related to PDA. We show that the questions of whether P (M) of a
given PDAM is a finite set or is a finite set of words having at most length k, for
a given k ≥ 1, can be answered in deterministic polynomial time. Moreover, we
also prove the P-completeness of these questions. As an application, we obtain
that it is P-complete to decide whether a given unambiguous PDA is a constant
height PDA or is a PDA of constant height k, for a given k ≥ 1 [2,5]. As another
application, we show the same complexity evaluation for the question of whether
P (M) is a subset of Z∗Z0. This is equivalent to asking whether a given PDA is
essentially a counter machine. In what follows, some proofs are omitted owing
to space restrictions.

2 Preliminaries and Definitions

We assume that the reader is familiar with basic notions in formal language
theory (see, e.g., [10,15]). The set of natural numbers, with 0, is denoted by N.
The set of all words (including the empty word λ) over a finite alphabet Σ is
denoted by Σ∗, and we let Σ+ = Σ∗ \ {λ}. The length of a word w ∈ Σ∗ is
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denoted by |w|, and by Σ≤k and Σ>k we denote, respectively, the set of all words
of length less than or equal to k and larger than k. Given a language L ⊆ Σ∗,
then suf(L) = {y ∈ Σ∗ | ∃x ∈ Σ∗: xy ∈ L} is the set of all suffixes of words in L.
The reversal of a word w is denoted by wR, and of a language L by LR.

A pushdown automaton (PDA, see e.g. [10,15]) is formally defined to be a
7-tuple M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉, where Q is a finite set of states, Σ is a finite
input alphabet, Γ is a finite pushdown alphabet, δ is the transition function
mapping Q×(Σ∪{λ})×Γ to finite subsets of Q×Γ ∗, q0 ∈ Q is the initial state,
Z0 ∈ Γ is a particular pushdown symbol, called the bottom-of-pushdown symbol,
which initially appears on the pushdown store, and F ⊆ Q is a set of accepting
(or final) states. Roughly speaking, a nondeterministic finite automaton (NFA)
can be viewed as a PDA where the pushdown store is never used.

A configuration of a PDA is a triple (q, w, γ), where q is the current state, w
the unread part of the input, and γ the current content of the pushdown store,
the leftmost symbol of γ being the top symbol. For p, q ∈ Q, a ∈ Σ ∪ {λ},
w ∈ Σ∗, γ, β ∈ Γ ∗, and Z ∈ Γ , we write (q, aw, Zγ) � (p, w, βγ) whenever
(p, β) ∈ δ(q, a, Z). As usual, the reflexive transitive closure of � is denoted by �∗.
The language accepted by M by accepting states is the set

L(M) = {w ∈ Σ∗ | (q0, w, Z0) �∗ (f, λ, γ), for some f ∈ F and γ ∈ Γ ∗}.

Throughout the paper, unless otherwise stated, we will always be considering
acceptance by accepting states. We measure the size of a PDA M by the prod-
uct of the number of states, the number of pushdown symbols, the number of
input symbols, and the maximum length μ(M) of strings of pushdown symbols
appearing in the transition rules, i.e., |Q| · |Γ | · |Σ| · μ(M). We also refer to [14]
for a the discussion on PDA size measuring.

We consider PDA to be in normal form, i.e., with μ(M) ≤ 2. In this case, the
pushdown height grows at most by 1 at each move. By introducing new states
for every transition of a given PDA, it can be shown similarly to [14] that every
PDA of size n can be converted to an equivalent normal form PDA of size O(n).
For the rest of the paper, we assume that all PDA are in normal form.

The pushdown store language of a PDA M (see, e.g., [1,8]) is defined as the
set P (M) of all words occurring on the pushdown store along accepting compu-
tations of M . Formally:

P (M) = {u ∈ Γ ∗ | ∃x, y ∈ Σ∗, q ∈ Q, f ∈ F :

(q0, xy, Z0) �∗ (q, y, u) �∗ (f, λ, γ), for some γ ∈ Γ ∗}.

To clarify the notion of pushdown store language, we continue with an example.

Example 1. The language { anbn | n ≥ 1 } is accepted by the following (deter-
ministic) PDA M = 〈{q0, q1, q2}, {a, b}, {Z,Z0}, δ, q0, Z0, {q2}〉 such that

δ(q0, a, Z0) = {(q0, ZZ0)}, δ(q0, a, Z) = {(q0, ZZ)},
δ(q0, b, Z) = {(q1, λ)}, δ(q1, b, Z) = {(q1, λ)}, δ(q1, λ, Z0) = {(q2, Z0)}.

It is easy to see that the pushdown store language is P (M) = Z∗Z0. &"
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3 Pushdown Store Languages: The General Case

Already in [8], it is proved that the pushdown store language P (M) of a PDAM
is regular. However, here we quickly review the proof given in [1], whose con-
structions enable us to obtain better bounds on the size of NFA accepting P (M).
In what follows, for x ∈ Σ∗, we use the short-hand notation

(p, w) �x (p′, w′) if and only if (p, x, w) �∗ (p′, λ, w′).

Theorem 2 ([1]). The pushdown store language of any PDA is regular.

Proof. The construction given in [1] can be summarized as follows. Let M =
〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a PDA. For every q ∈ Q, the following sets are defined:

Acc(q) = {u ∈ Γ ∗ | ∃x, y ∈ Σ∗ : (q0, xy, Z0) �∗ (q, y, u)},
Co-Acc(q) = {u ∈ Γ ∗ | ∃y ∈ Σ∗, f ∈ F, u′ ∈ Γ ∗ : (q, y, u) �∗ (f, λ, u′)}.

Then, the pushdown store language is easily seen to be

P (M) =
⋃
q∈Q

Acc(q) ∩ Co-Acc(q).

Now, for every q ∈ Q, we construct a left-linear grammar GAcc(q) for Acc(q)
and a right-linear grammar GCo-Acc(q) for Co-Acc(q), thus showing that P (M) is
regular. Informally speaking, GAcc(q) simulates the behavior ofM from an initial
configuration until the state q is entered, while generating u on the pushdown
store. Formally, GAcc(q) has terminal alphabet Γ , nonterminal alphabet Q× Γ ,
start symbol (q0, Z0), and the following rules:

(1) (p, Z) −→ (p′, Z ′), if there exists x ∈ Σ∗ such that (p, Z) �x (p′, Z ′)
(2) (p, Z) −→ (p′, Z ′)t, if there exists a ∈ Σ ∪ {λ} with (p′, Z ′t) ∈ δ(p, a, Z)
(3) (p, Z) −→ λ, if there exists x ∈ Σ∗ such that (p, Z) �x (q, λ)
(4) (q, Z) −→ Z.

It is shown in [1] that GAcc(q) generates Acc(q). On the other hand, GCo-Acc(q)

simulates the behavior ofM from configurations having q as state, u as pushdown
content, and reaching an accepting state. Formally, GCo-Acc(q) has terminal al-
phabet Γ , nonterminal alphabet Q∪{s}, start symbol q, and the following rules:

(5) p −→ Zp′, if there exists x ∈ Σ∗ such that (p, Z) �x (p′, λ)
(6) p −→ Zs, if there exists x ∈ Σ∗, p′ ∈ F, u′ ∈ Γ+ : (p, Z) �x (p′, u′)
(7) s −→ Zs | λ, for all Z ∈ Γ
(8) p −→ λ, if p ∈ F.

Again in [1], it is shown that GCo-Acc(q) generates Co-Acc(q). Finally, it is im-
portant to stress that grammars GAcc(q) and GCo-Acc(q) can be effectively con-
structed. In particular, for establishing rules (1), (3), (5), and (6), the decidability
of the emptiness problem for context-free languages is used (see, e.g., [15]). &"
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To clarify the meaning and construction of grammars GAcc(q) and GCo-Acc(q)

given in the previous theorem, in the following example we provide such gram-
mars for the PDA M in Example 1 accepting the language {anbn | n ≥ 1}.

Example 3. For the sake of brevity, we provide grammars only for Acc(q0) and
Co-Acc(q0). However, the reader may easily verify that P (M) consists of only
Acc(q0)∩Co-Acc(q0). The grammarGAcc(q0) (resp.,GCo-Acc(q0)) has start symbol
(q0, Z0) (resp., q0), and the following rules:

GAcc(q0) GCo-Acc(q0)

(q0, Z0) → (q0, Z)Z0 q0 → Zq1
(q0, Z) → (q0, Z)Z |Z q1 → Zq1 |Z0s

s → Zs |Z0s |λ

It is not hard to verify that GAcc(q0) generates Z∗Z0, while GCo-Acc(q0) gives
Z∗Z0{Z,Z0}∗. The intersection of these languages clearly yields Z∗Z0, which is
P (M) as pointed out in Example 1. &"

From the constructive proof of Theorem 2, we are able to provide a first upper
bound on the size of NFA for pushdown store languages. From now on, for the
descriptional costs of well known operations on NFA, the reader is referred to,
e.g., [13,21].

Proposition 4. Let M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a PDA. Then, P (M) can be
accepted by an NFA with |Q|3|Γ |+ |Q|2(|Γ |+ 1) + |Q|+ 1 many states.

Proof. By Theorem 2, we have that P (M) =
⋃

q∈Q Acc(q) ∩ Co-Acc(q). So, we
begin by constructing, for any q ∈ Q, NFA accepting Acc(q) and Co-Acc(q). For
Acc(q), we start from the left-linear grammarGAcc(q) and construct a right-linear
grammar generating the reversal Acc(q)R by simply interchanging every type (2)
rule (p, Z) → (p′, Z ′)t with (p, Z) → t(p′, Z ′). Second, this right-linear grammar
is directly converted to an equivalent NFA of size |Q| · |Γ | plus an additional and
unique accepting state due to type (3) and (4) rules. This gives an NFA N of
size |Q| · |Γ |+ 1. Now, by basically “reverting arrows” and switching the initial
and final state in N , we get an NFA NAcc(q) of the same size accepting Acc(q).
For Co-Acc(q), the right-linear grammar GCo-Acc(q) can be directly translated
into an equivalent NFA NCo-Acc(q) of size |Q|+ 1.

From NFA NAcc(q), NCo-Acc(q), and by using well known constructions on
NFA, we get an NFA with (|Q| · |Γ |+ 1)(|Q|+ 1) states for Acc(q) ∩Co-Acc(q).
Finally, the union over all q ∈ Q can be implemented by an NFA of at most
|Q|(|Q| · |Γ |+ 1)(|Q|+ 1) + 1 = |Q|3|Γ |+ |Q|2(|Γ |+ 1) + |Q|+ 1 states. &"

We are now going to improve Proposition 4 and obtain a smaller NFA:

Theorem 5. Let M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a PDA. Then, P (M) is accepted
by an NFA whose size is bounded by |Q|2(|Γ |+ 1) + |Q|(2|Γ |+ 3) + 2.

Proof. The key idea is to “get rid” of the union over q ∈ Q in the definition
of P (M), by defining the set Acc(Q) (resp., Co-Acc(Q)) representing all the
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pushdown contents reachable from the initial configuration (resp., from which a
final state can be reached). Then, we have to build only the intersection of these
two sets. More precisely, we let [Q] = {[q] | q ∈ Q} and define the following sets:

Acc(Q) = {[q]u ∈ [Q]Γ ∗ | u ∈ Acc(q)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ ∗ | u ∈ Co-Acc(q)}.

A left-linear grammar for Acc(Q) is built similarly as GAcc(q) in Theorem 2, but
we enlarge the terminal alphabet by the set [Q], and have the following rules:

(1) (p, Z) −→ (p′, Z ′), if there exists x ∈ Σ∗ such that (p, Z) �x (p′, Z ′)
(2) (p, Z) −→ (p′, Z ′)t, if there exists a ∈ Σ∪{λ} such that (p′, Z ′t)∈δ(p, a, z)
(3)′ (p, Z) −→ [q], if there exists x ∈ Σ∗ such that (p, Z) �x (q, λ)
(4)′ (q, Z) −→ [q]Z.

Similarly as in Proposition 4, from this left-linear grammar we can obtain an
NFA for Acc(Q) featuring |Q| · (|Γ |+ 1) + 1 many states.

The right-linear grammar for Co-Acc(Q) is also built similarly as GCo-Acc(q)

in Theorem 2. We enlarge again the terminal alphabet by [Q], and we add a new
nonterminal S which will be the start symbol. Then, we have the same rules (5)
to (8) and additional rules S −→ [p]p, for all p ∈ Q. As in Proposition 4, this
right-linear grammar can be converted to an NFA having at most |Q|+2 states.

From the two obtained NFA, an NFA N for Acc(Q) ∩ Co-Acc(Q) can be
constructed, featuring (|Q|·(|Γ |+1)+1)(|Q|+2) = |Q|2(|Γ |+1)+|Q|(2|Γ |+3)+2
many states. Now, notice that P (M) can be obtained by deleting the initial
symbols [q] from every string in L(N). Thus, by simply substituting in N the
initial transitions taking place on [q] with λ-transitions, we get an NFA for P (M)
with |Q|2(|Γ |+ 1) + |Q|(2|Γ |+ 3) + 2 states. &"

Our construction in Theorem 5 is the best possible. In fact, we are able to show
an optimal lower bound of Ω(|Q|2|Γ |). To achieve this, we start by introducing
a simple language with the corresponding accepting PDA, and study the lower
limit to the size of NFA for the pushdown store language of the given PDA. The
result is contained in the following

Lemma 6. For a fixed m ≥ 2, let the single word language Lm = {am2

b}. Then,
Lm can be accepted by a PDA Mm,1 of size O(m) such that every NFA accepting
P (Mm,1) needs at least m2 + 3 states.

This result can then be generalized to the following lemma which gives the
desired lower bound of Ω(|Q|2|Γ |). More precisely, PDA for the finite languages

Lm,k = {(am2

bm
2

)k/2c} for even k, and Lm,k = {(am2

bm
2

)(k−1)/2am
2

c} for odd
k ≥ 3, can be provided and lower limits to the size of NFA for their pushdown
store languages can be shown:

Lemma 7. For m, k ≥ 2, there exist PDA Mm,k = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 ac-
cepting Lm,k such that |Q| = 2m+ 2 and |Γ | = 2k + 1. Moreover, any NFA for
P (Mm,k) needs at least k ·m2 + 3 ∈ Ω(|Q|2|Γ |) states.
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As a consequence of Lemma 7, we obtain that our construction in Theorem 5 of
NFA for pushdown store languages is the best possible:

Theorem 8. Let M=〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a PDA. Then, an NFA for P (M)
exists with O(|Q|2|Γ |) states. On the other hand, there exist infinitely many
PDA MQ,Γ of size O(|Q| · |Γ |) such that every NFA accepting P (MQ,Γ ) needs
Ω(|Q|2|Γ |) states.

4 Pushdown Store Languages for Special Cases

Here, we consider restricted models of PDA for which we are able to provide
NFA for their pushdown store languages, whose size is strictly below the general
upper bound given in Theorem 5.

4.1 PDA Which Can Never Pop

As a first restriction, we consider PDA which never pop a symbol from the
pushdown. Thus, for such devices, once stored in the pushdown, symbols can
never be modified. It is easy to see that these PDA accept exactly the regular
languages. In what follows, given a PDA M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 of this kind,
we quickly outline the construction of an NFA for P (M) of size |Q| · |Γ |+ 1.

It is not hard to see that, in this case, we have

P (M) = {u ∈ Γ ∗ | u ∈ Acc(q) and q ∈ F}.

Moreover, the left-linear grammars for Acc(q), with q ∈ F , given in Theorem 2
now drop type (1) and type (3) rules, and can be summarized in a single left-
linear grammar with terminal alphabet Γ , nonterminal alphabet Q × Γ , start
symbol (q0, Z0), and the following rules:

(1) (p, Z) −→ (p′, Z ′)t, if there exists a ∈ Σ∪{λ} such that (p′, Z ′t)∈δ(p, a, Z)
(2) (q, Z) −→ Z, if q ∈ F.

From this left-linear grammar, we can easily obtain an NFA for P (M) with
|Q| · |Γ |+ 1 states. This upper bound is also tight owing to the following

Lemma 9. For m, k ≥ 2, there exist PDA Mm,k which can never pop having
m states and k pushdown symbols, for which every NFA for P (Mm,k) needs at
least k ·m+ 1 states.

Altogether, for PDA which can never pop, we get that |Q| · |Γ | + 1 is a tight
bound for the size of NFA accepting their pushdown store languages.

4.2 Stateless PDA

Next, we consider PDA which have one state only, whose acceptance policy is
clearly by empty pushdown (i.e., they accept by completely sweeping the input
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and emptying the pushdown store [10,15]). Such devices are also called stateless
PDA. It is well known that they are equivalent to PDA, while their deterministic
version is strictly less powerful, characterizing the class of simple languages (see,
e.g., [10]). Clearly, for stateless PDA the upper bound of Theorem 5 reduces to
3 · |Γ |+ 6. However, we are now going to provide a better upper bound.

Let us apply the constructions in the proof of Theorem 2 to a stateless PDA
M = 〈{q0}, Σ, Γ, δ, q0, Z0, ∅〉. For Acc(q0), we can take 〈Γ 〉 = {〈Z〉 | Z ∈ Γ} as
set of nonterminal symbols, and consider rules of the following form:

(1) 〈Z〉 −→ 〈Z ′〉, if there exists x ∈ Σ∗ such that (q0, Z) �x (q0, Z
′)

(2) 〈Z〉 −→ 〈Z ′〉t, if there exists a ∈ Σ ∪ {λ} such that (q0, Z
′t) ∈ δ(q0, a, Z)

(3) 〈Z〉 −→ λ, if there exists x ∈ Σ∗ such that (q0, Z) �x (q0, λ)
(4) 〈Z〉 −→ Z.

This leads to an NFA of size at most |Γ | + 1. For the set Co-Acc(q0), we only
have to consider rules of the form

(5) q0 −→ Zq0, if there exists x ∈ Σ∗ such that (q0, Z) �x (q0, λ)
(6) q0 −→ λ.

An equivalent NFA can be trivially constructed, with exactly one state. Thus,
an NFA for P (M) = Acc(q0) ∩ Co-Acc(q0) needs at most |Γ | + 1 states. The
optimality of this bound can also be shown and, altogether, we get the following

Theorem 10. Let M = 〈{q0}, Σ, Γ, δ, q0, Z0, ∅〉 be a stateless PDA. Then, every
NFA for P (M) needs at most |Γ |+1 states. Moreover, for any k ≥ 0, there exists
a stateless PDA Mk having |Γk| = k+1 pushdown symbols, for which every NFA
for P (Mk) needs at least k + 2 = |Γk|+ 1 states.

4.3 Counter Machine

A counter machine (see, e.g., [9,15]) is defined as a traditional PDA with the
restriction that the pushdown alphabet contains only two symbols, namely, the
usual bottom-of-pushdown symbol Z0, which can never be pushed or popped,
and a distinguished symbol Z. So, the pushdown store language of a counter
machine is a subset of Z∗Z0 (see also [12]). As an example, the PDA in Example 1
is actually a counter machine.

We are going to show that the size of NFA accepting the pushdown store
language of counter machines is linear in |Q| and not quadratic as proved in
Theorem 5 for general PDA. Moreover, we will show the optimality of such a
size bound. Let us begin by observing the following easy fact:

Lemma 11. Given a counter machine M , then P (M) is either Z∗Z0 or Z≤hZ0

for a fixed h ≥ 0.

For a counter machine having pushdown store language of the form Z≤hZ0, we
are able to bound h by the number of finite control states:
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Theorem 12. Given the counter machine M = 〈Q,Σ, {Z0, Z}, δ, q0, Z0, F 〉, let
P (M) = Z≤hZ0 for a fixed h ≥ 0. Then, h ≤ |Q|.

Proof. Let us assume that h > |Q|. We are going to prove that P (M) = Z∗Z0,
thus contradicting the supposed finiteness of P (M). Consider an accepting com-
putation Π of M on an input string x ∈ L(M), along which the pushdown
content ZhZ0 appears.

To deal with the “hardest” situation, we assume that ZhZ0 appears during
a branch of Π at the end of which the pushdown store is emptied. So, more
formally, Π has a branch of computation with the following features:

(1) it starts from a configuration with pushdown content ZZ0,

(2) it reaches a configuration where the pushdown content ZhZ0 shows up,

(3) it starts from such a configuration and ends in a configuration with pushdown
content ZZ0,

(4) it never finds itself in a configuration where the pushdown contains Z0 only.

At the end of this proof, we will fix the case in which (3) does not hold within Π .
We call ascending (resp., descending) the sub-branch between breakpoints (1)
and (2) (resp., (2) and (3)). During the ascending sub-branch, M being in
normal form, there must exist a sequence of configurations having the form
{(q(i), x(i), ZiZ0)}hi=1. Since h > |Q|, there exist 1 ≤ r < s ≤ h such that
q(r) = q(s) = q and x(r) = wx(s), for some w ∈ Σ∗. It is easy to see that, upon
consuming the substring w, M increases the pushdown content by the factor Zt

with 0 < t = s− r.
For the descending sub-branch, again due to the normal form, we get the

existence of a sequence of configurations of the form {(p(i), y(i), Zh−iZ0)}h−1
i=0 .

Since h > |Q|, there exist 0 ≤ r′ < s′ ≤ h − 1 such that p(r
′) = p(s

′) = p
and y(r

′) = w′y(s
′), for some w′ ∈ Σ∗. Now, upon consuming w′, M deletes the

factor Zt′ from the pushdown store, with 0 < t′ = s′ − r′.
All this reasoning enables us to factorize the input string as x = uwzw′v, on

which the accepting computation Π presents the following breakpoints:

(q0, uwzw′v, Z0)�∗(q, wzw′v, ZrZ0)�∗(q, zw′v, Zr+tZ0)�∗

�∗(p,w′v, Zh−r′Z0)�∗(p, v, Zh−r′−t′Z0)�∗(f, λ, γ), with f ∈ F, γ ∈ Γ ∗.

Fig. 1. Breakpoints in the accepting computation Π on x

For reader’s ease of mind, we assume that both w and w′ are not the empty
string; however, situations in which this does not hold can be easily dealt with.
Now, the idea is to construct from x a family of strings in L(M) by suitably
pumping factors w and w′, whose accepting computations, “originating” fromΠ ,
will display all the strings Z∗Z0 as pushdown contents. By starting from the
original accepting computation Π of M on x, we obtain accepting computations
for strings uwα+1zw′β+1v, with α = t′γ, β = tγ, and any γ > 0, as follows (the
reader may follow the birth of these accepting computations by scanning Fig. 1):
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– processing uwα+1: After reading u, M is in the state q and has ZrZ0

as pushdown content. Processing the first occurrence of w leaves M in q
again with pushdown content Zr+tZ0. Notice that, along this processing, Z
is always seen on top of the pushdown due to feature (4). Clearly, we can
repeat such processing α times upon consuming the subsequent factor wα,
and finally reach the state q with pushdown content Zs+αtZ0.

– processing z: This branch of computation takes place exactly as in Π , but
starting with the pushdown store at a higher level. Precisely, we start from
the state q with pushdown content Zs+αtZ0, and end in p with pushdown
content Zh−r′+αtZ0.

– processing w′β+1: After reading the first occurrence of w′,M is again in the
state p with pushdown content Zh−r′+αt−t′Z0. We can repeat this branch of
computation on the subsequent factor w′β provided that we always have Z on
top of the pushdown, which is always the case. Indeed, upon consuming w′β ,
we delete a number of Z symbols which is βt′ = tγt′ = αt, thus reducing the
pushdown content to Zh−r′−t′Z0 = Zh−s′Z0. Notice that, at this point,M is
again in the state p.

– processing v: This branch of computation takes place exactly as in Π ,
starting from the configuration (p, v, Zh−s′Z0) and ending in a final state.

The reader may easily verify that along the above constructed computation, the
highest pushdown content is Zh+tγt′Z0, reached at the end of the ascending sub-
branch. Since this reasoning holds for any γ > 0, we get that there cannot exist
any given constant bounding the pushdown height of M along every accepting
computation. This clearly implies that P (M) = Z∗Z0.

As a final fixing, we discuss the case in which feature (3) does not hold
within Π . In this case, there exists a branch of computation in Π which: (i)
starts from a configuration with ZZ0 as pushdown content, (ii) reaches a con-
figuration with ZhZ0 as pushdown content, but then (iii) never empties the
pushdown. The sub-branch from (i) to (ii) again guarantees the existence of a
factor w in x upon which M starts and end in the same state q, adding on the
pushdown a factor Zt, for t > 0. So, we can “pump the computation” of M on
this factor and obtain accepting computations on strings uwγv with pushdown
height h + γt. Indeed, after reading the last occurrence of w, M is in the state
q and, while processing v, the symbol Z is always seen as top of the pushdown.
So, M will end up in a final state, as in the original computation Π for x. &"
As a consequence of Theorem 12, we are able to provide the exact size cost of
accepting pushdown store languages of counter machines by NFA:

Theorem 13. Let M be a counter machine with state set Q. Then, P (M) is
accepted by some NFA with size bounded by |Q| + 2. Moreover, this size bound
is optimal.

5 Computational Complexity of Decidability Questions

In this section, we study the complexity of deciding some properties of P (M)
for a given PDA M , namely, finiteness and being subset of Z∗Z0. These two
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questions can be answered by constructing the NFA N for P (M) and then
deciding, respectively, finiteness or inclusion in Z∗Z0 for L(N). We show that
the construction of N as well as the decision of both questions can be done
in deterministic polynomial time with respect to the size of M . On the other
hand, we also prove the P-completeness of these two decision problems. As a
consequence, we get the P-completeness of deciding whether a PDA is of a certain
“nature”. For a background on complexity theory, we refer to, e.g., [4,15].

Lemma 14. Let M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a PDA. Then, an NFA for P (M)
can be constructed in deterministic polynomial time.

Proof. We will show that the construction given in Theorem 5 can be done in
polynomial time with respect to the size ofM . Let us first take a close look at the
construction of the set Acc(Q). We have to consider every pair (p, Z) ∈ Q×Γ and,
in particular, to test the existence of x ∈ Σ∗ such that (p, Z) �x (p′, Z ′) for some
other pair (p′, Z ′) ∈ Q×(Γ∪{λ}). As recalled in the proof of Theorem 2, this test
is in essence an instance of the emptiness problem for context-free languages,
which is known to be decidable in polynomial time. Since there are at most
|Q|2(|Γ |+ 1)2 such pairs, which is polynomial in the size of M , we obtain that
the NFA for Acc(Q) can be constructed in polynomial time. A similar reasoning
holds for the NFA for Co-Acc(Q). At this point, the NFA for Acc(Q)∩Co-Acc(Q)
plus deleting the first symbol of every word in this intersection can be done in
polynomial time as well. &"

This is the first step to prove the P-completeness of the above mention decision
problems on pushdown store languages:

Theorem 15. Given a PDA M , it is P-complete to decide whether: (i) P (M)
is a finite set. (ii) P (M) is a finite set of words having at most length k, for a
given k ≥ 1.

Proof. We only show point (i). The problem belongs to P: by Lemma 14, an
NFA N for P (M) can be built in polynomial time. Then, the infiniteness of
L(N) can be decided in NLOGSPACE [17]. Since NLOGSPACE is closed under
complementation [16,20], we get that the finiteness of L(N) can be decided in
NLOGSPACE ⊆ P as well.

To show the completeness of the problem, we log-space reduce to it the empti-
ness problem for context-free grammars, which is known to be P-complete [18].
Given a context-free grammar G = 〈N, T, S,R〉, let $ /∈ T be a new terminal
symbol, and S′, S′′ /∈N be new nonterminals. We define the context-free grammar

G′ = 〈N ∪ {S′, S′′}, T ∪ {$}, S′, R ∪ {S′ → SS′′, S′′ → S′′$ | $}〉.

Observe that L(G′) = L(G)$+. From G′, we construct an equivalent PDA M ′

using the standard construction [15], where a stateless PDA is built which mim-
ics a left derivation of G′. More precisely, let M ′ = 〈{q}, T ∪ {$}, N ∪ T ∪
{S′, S′′, $}, δ, q, S′, ∅〉. Observe that G′ is not in Greibach normal form, but this
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is not essential for the construction in [15] since we can define δ to have the follow-
ing transitions: (q, γ) ∈ δ(q, λ, A), if A → γ belongs to G′ for all A ∈ N∪{S′, S′′}
and γ ∈ (N∪T∪{S′, S′′, $})∗, and (q, λ) ∈ δ(q, a, a) for all a ∈ T∪{$}. Moreover,
M ′ can be converted to an equivalent PDA which is in normal form and accepts
by accepting states. This conversion increases the size of M ′ at most linearly.
Due to the left-recursive rule S′′ → S′′$, we obtain that P (M ′) is finite if and
only if L(G) is empty.

To conclude the proof, we have to make sure that our reduction can be done
in deterministic logarithmic space. We quickly notice that the only possibly
costly operation is the construction from [15] for the PDA M ′. However, this
construction gives that M ′ has one state, |N |+ |T |+ 3 pushdown symbols, and
|R|+ 3 + |T |+ 1 transitions. Thus, the size of M ′ is the order of the size of G.
Altogether, the reduction can be done in deterministic logarithmic space. &"

A PDA M is of constant height whenever there exists a constant k ≥ 1 such
that, for any word in L(M), there exists an accepting computation along which
the pushdown store never contains more than k symbols [2,5]. As a consequence
of Theorem 15, we get the P-completeness of testing constant height property
for unambiguous PDA, i.e., presenting at most one accepting computation on
any input:

Corollary 16. Given an unambiguous PDAM , it is P-complete to decide wheth-
er: (i) M is a constant height PDA. (ii) M is a PDA of constant height k, for
a given k ≥ 1.

The next P-completeness result can be shown similarly as Theorem 15:

Theorem 17. Given a PDA M , it is P-complete to decide whether P (M) is a
subset of Z∗Z0.

As a consequence, we get the P-completeness of deciding whether a PDA is essen-
tially a counter machine, i.e., in all of its accepting computations the pushdown
storage is used as a counter:

Corollary 18. Given a PDA M , it is P-complete to decide whether M is es-
sentially a counter machine.
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2. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The Size-Cost of Boolean
Operations on Constant Height Deterministic Pushdown Automata. In: Holzer, M.,
Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 80–92. Springer,
Heidelberg (2011)



Descriptional Complexity of Pushdown Store Languages 221

3. Dassow, J., Manea, F., Truthe, B.: On contextual grammars with subregular se-
lection languages. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011.
LNCS, vol. 6808, pp. 135–146. Springer, Heidelberg (2011)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., San Francisco (1979)

5. Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular
languages by automata and regular expressions. Inf. Comput. 208, 385–394 (2010)

6. Ginsburg, S., Greibach, S.A., Harrison, M.A.: Stack automata and compiling. J.
ACM 14, 172–201 (1967)

7. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8, 193–234
(2002)

8. Greibach, S.A.: A note on pushdown store automata and regular systems. Proc.
Amer. Math. Soc. 18, 263–268 (1967)

9. Greibach, S.A.: An infinite hierarchy of context-free languages. J. ACM 16, 91–106
(1969)

10. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

11. Hartmanis, J.: Context-free languages and Turing machines computations. In:
Proc. Symposium on Applied Mathematics, vol. 19, pp. 42–51 (1967)

12. Hoogeboom, H.J., Engelfriet, J.: Pushdown automata. In: Formal Languages and
Applications. STUDFUZZ, vol. 148, pp. 117–138. Springer (2004)

13. Holzer, M., Kutrib, M.: Nondeterministic finite automata—recent results on the
descriptional and computational complexity. Int. J. Found. Comp. Sci. 20, 563–580
(2009)

14. Holzer, M., Kutrib, M.: Descriptional complexity—an introductory survey. In: Sci-
entific Applications of Language Methods, pp. 1–58. Imperial College Press (2010)

15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

16. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17, 935–938 (1988)

17. Jones, N.D.: Space-bounded reducibility among combinatorial questions. J. Com-
put. System. Sci. 11, 68–85 (1975)

18. Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time
19. Mereghetti, C., Palano, B.: Quantum finite automata with control language. The-

oretical Informatics and Applications 40, 315–332 (2006)
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Abstract. In this paper, we study the power of internal contextual
grammars with selection languages from subfamilies of the family of reg-
ular languages. If we consider families Fn which are obtained by restric-
tion to n states or nonterminals or productions or symbols to accept
or to generate regular languages, we obtain four infinite hierarchies of
the corresponding families of languages generated by internal contextual
grammars with selection languages in Fn.

1 Introduction

Contextual grammars were introduced by S. Marcus in [4] as a formal model
that might be used in the generation of natural languages. The derivation steps
consist in adding contexts to given well formed sentences, starting from an initial
finite basis. Formally, a context is given by a pair (u, v) of words and the external
adding to a word x gives the word uxv whereas the internal adding gives all words
x1ux2vx3 when x = x1x2x3. Obviously, by linguistic motivation, a context can
only be added if the words x or x2 satisfy some given conditions. Thus, it is
natural to define contextual grammars with selection in a certain family F of
languages, where it is required that x or x2 have to belong to a language of the
family F which is associated with the context. Mostly, the family F is taken from
the families of the Chomsky hierarchy (see [3,6,5], and the references therein).

In [1], the study of external contextual grammars with selection in special
regular sets was started. Finite, combinational, definite, nilpotent, regular suffix-
closed, regular commutative languages and languages of the form V ∗ for some
alphabet V were considered. In [2], the research was continued and new results on
the effect of regular commutative, regular circular, definite, regular suffix-closed,
ordered, combinational, nilpotent, and union-free selection languages on the gen-
erative power of external contextual grammars were obtained. Furthermore, fam-
ilies of regular languages which are defined by restrictions on the resources used
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to generate or to accept them were investigated. As measures, the number of
states necessary to accept the regular languages and the number of nontermi-
nals, production rules or symbols needed to generate the regular languages have
been considered. In all these cases, infinite hierarchies were obtained.

In the present paper, we continue this line of research and investigate the
effect of the number of resources (states, nonterminals, production rules, and
symbols) on the generative power of internal contextual grammars. This case
seems more complicated than the case of external contextual grammars, as there
are two important differences between the way a derivation is conducted in
internal grammars and in an external one. First, in the case of internal contextual
grammars, the insertion of a context in a sentential form can be done in more
than one place, so the derivation becomes, in a sense, non-deterministic; in the
case of external grammars, once a context was selected there is at most one way
to insert it: wrapped around the sentential form, when this word was in the
selection language of the context. Second, if a context can be added internally,
then it can be added arbitrarily often (because the subword where the context is
wrapped around does not change) which does not necessarily hold for external
grammars. However, we are able to obtain infinite hierarchies with respect to the
descriptional complexity measures we use, but with different proof techniques.

2 Definitions

Throughout the paper, we assume that the reader is familiar with the basic
concepts of the theory of automata and formal languages. For details, we re-
fer to [6]. Here we only recall some notation and the definition of contextual
grammars with selection which form the central notion of the paper.

Given an alphabet V , we denote by V ∗ and V + the set of all words and the set
of all non-empty words over V , respectively. The empty word is denoted by λ.
For a word w ∈ V ∗ and a letter a ∈ V , by |w| and #a(w) we denote the length
of w and the number of occurrences of a in w, respectively. The cardinality of a
set A is denoted by #(A).

Let G = (N, T, P, S) be a regular grammar (specified by finite sets N and T of
nonterminals and terminals, respectively, a finite set of productions of the form
A → wB or A → w with A,B ∈ N and w ∈ T ∗ as well as S ∈ N). Further,
let A = (X,Z, z0, F, δ) be a deterministic finite automaton (specified by sets X
and Z of input symbols and states, respectively, an initial state z0, a set F of
accepting states, and a transition function δ) and L be a regular language. Then
we define

State(A) = #(Z),

Var(G) = #(N), Prod(G) = #(P ), Symb(G) =
∑

A→w∈P

(|w| + 2),

State(L) = min { State(A) | A is a det. finite automaton accepting L } ,
K(L) = min {K(G) | G is a reg. grammar for L } (K∈{Var ,Prod , Symb}),
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and, for K ∈ { State,Var ,Prod , Symb }, we set

REGK
n = { L | L is a regular language with K(L) ≤ n } .

Remark. We note that if we restricted ourselves to rules of the form A → aB
and A → λ with A,B ∈ N and a ∈ T , then we would have State(L) = Var(L).

We now introduce the central notion of this paper.
Let F be a family of languages. A contextual grammar with selection in F is

a triple
G = (V, { (S1, C1), (S2, C2), . . . , (Sn, Cn) } , B)

where

– V is an alphabet,
– for 1 ≤ i ≤ n, Si is a language over V in F and Ci is a finite set of pairs
(u, v) with u ∈ V ∗, v ∈ V ∗,

– B is a finite subset of V ∗.

The set V is called the basic alphabet; the languages Si and the sets Ci, 1 ≤ i ≤
n, are called the selection languages and the sets of contexts of G, respectively;
the elements of B are called axioms.

We now define the internal derivation for contextual grammars with selection.
Let G = (V, { (S1, C1), (S2, C2), . . . , (Sn, Cn) } , B) be a contextual grammar

with selection. A direct internal derivation step in G is defined as follows: a
word x derives a word y (written as x =⇒ y) if and only if there are words x1,
x2, x3 with x1x2x3 = x and there is an integer i, 1 ≤ i ≤ n, such that x2 ∈ Si

and y = x1ux2vx3 for some pair (u, v) ∈ Ci. Intuitively, we can only wrap a
context (u, v) ∈ Ci around a subword x2 of x if x2 belongs to the corresponding
language Si. We call a word of a selection language useful, if it is a subword of a
word of the generated language – if it is really selected from wrapping a context
around it.

By =⇒∗ we denote the reflexive and transitive closure of =⇒. The internal
language generated by G is defined as

L(G) = { z | x =⇒∗ z for some x ∈ B } .

By L(IC ,F) we denote the family of all internal languages generated by contex-
tual grammars with selection in F . When we speak about contextual grammars
in this paper, we mean contextual grammars with internal derivation (also called
internal contextual grammars).

Example 1. Let n ≥ 1 and V = {a} be a unary alphabet. We set

Bn =
{
ai | 1 ≤ i ≤ n

}
, Un = { an }+ , and Ln = Bn ∪ Un.

The contextual grammar Gn = (V, { (Un, {(λ, an)}) } , Bn) generates the lan-
guage Ln. This can be seen as follows. The context an can be added to a word
w if and only if w contains at least n letters. The only axiom to which a context
can be added is an. From this, we get the unique derivation

an =⇒ a2n =⇒ a3n =⇒ · · · .
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It is easy to see that the set Un is accepted by the automaton

(V, {z0, z1, . . . , zn}, z0, {zn}, δn)

where the graph

start �� �������	z0
a �� �������	z1

a ��


��� �

a

· · · a �� �������	����
��
zn

represents the transition function δn.
Hence, we have Ln ∈ L(IC ,REGState

n+1 ). ♦

3 Selection with Bounded Resources

First we prove that we obtain an infinite hierarchy with respect to the number
of states.

Theorem 2. For any natural number n ≥ 1, we have the proper inclusion

L(IC ,REGState
n ) ⊂ L(IC ,REGState

n+1 ).

Proof. For n ≥ 2, let

Bn =
{
ai | 1 ≤ i ≤ n

}
, Un = { an }+ , and Ln = Bn ∪ Un

be the languages from Example 1, where we have shown the relation

Ln ∈ L(IC ,REGState
n+1 ).

We now prove that Ln /∈ L(IC ,REGState
n ) for n ≥ 2.

Let G = (V, { (S1, C1), (S2, C2), . . . , (Sm, Cm) } , B) be a contextual grammar
with L(G) = Ln and where every selection language is an arbitrary regular
language.

Let k′ = max { |uv| | (u, v) ∈ Ci, 1 ≤ i ≤ m }, k′′ = max { |z| | z ∈ B }, and
k = k′ + k′′. Let us consider the word w = a(k+1)n ∈ Ln. Obviously, w /∈ B
because the length (k + 1)n is greater than k′′. Thus, the word w is obtained
from some word w′ = w′

1w
′
2w

′
3 ∈ Ln by adding a context (u, v) ∈ Ci for some

index i with 1 ≤ i ≤ m around the subword w′
2 ∈ Si. Then w = w′

1uw
′
2vw

′
3. For

the length of the word w′, we obtain

|w′| = |w| − |uv| = (k′ + k′′ + 1)n− |uv| ≥ k′(n− 1) + k′′n+ n > n.

The word w′ belongs to the language Ln and has a length greater than n which
implies w′ ∈ Un. Hence, w

′ = ajn for some j with 2 ≤ j ≤ k and uv = a(k+1−j)n.
If Si contains the empty word λ, then also the word auv belongs to the language
Ln (since a ∈ Ln). However, the length |auv| = 1+(k+1− j)n is greater than n
but not a multiple of n which is a contradiction. If Si contains a non-empty
word z that has a length smaller than n, then z belongs to the language Ln and
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also uzv ∈ Ln. But then the length |uzv| = |z|+ (k + 1− j)n is greater than n
but not a multiple of n which is again a contradiction. Hence, the set Si does not
contain a word with a length smaller than n. Let r = min

{
l | al ∈ Si

}
. Then

r ≥ n. We set zi = ar−i for 0 ≤ i ≤ r. Then we have the relations aizi ∈ Si and
ajzi /∈ Si for 0 ≤ j < i ≤ r because aizi = ar and |ajzi| < r for 0 ≤ j < i ≤ r.

Therefore the words λ, a, a2, . . . , ar are pairwise not in the Myhill-Nerode
relation. Thus, the minimal deterministic finite automaton accepting Si has at
least r + 1 ≥ n+ 1 states.

For n = 1, consider the language

L1 = {λ } ∪
{
w | w ∈ {a, b}+, #b(w) = 1

}
.

This language can be generated by the contextual grammar

G1 = ({a, b},
{
({a, b}+, {(λ, a), (a, λ)})

}
, {λ, b}).

Since the language {a, b}+ can be accepted by an automaton with two states,
we have the relation

L1 ∈ L(IC ,REGState
2 ).

For every contextual grammar G = (V, { (S1, C1), (S2, C2), . . . , (Sm, Cm) } , B)
with Si ∈ REGState

1 for 1 ≤ i ≤ m, we have Si = ∅ or Si = V ∗ for 1 ≤ i ≤ m. If
all selection languages are empty, the generated language is the set B of axioms
and hence finite. In order to obtain the infinite language L1, one set Si is equal
to V ∗. Then any context of Ci can be applied to any word of the language L1.
If such a context consists of letters a only, we obtain from the empty word a
word which does not belong to the language L1 (which has only letters a). If
such a context contains a letter b, we obtain from a word with a b another word
with two letters b and hence does not belong to the language L1. Thus, the
language L1 does not belong to the family L(IC ,REGState

1 ). �

We now consider the measure Var .

Theorem 3. For any natural number n ≥ 0, we have the proper inclusion

L(IC ,REGVar
n ) ⊂ L(IC ,REGVar

n+1).

Proof. Let V = { a, b }. For each natural number n ≥ 1, we consider a lan-
guage Ln which consists of words formed by 2n blocks of letters a, ended by the
letter b each, where the block lengths coincide in a crossed agreement manner:

Ln = { ap1bap2b . . . apnbap1bap2b . . . apnb | pi ≥ 1, 1 ≤ i ≤ n } .

A contextual grammar generating the language Ln is

Gn = (V, { (S, { (a, a) }) } , { w | w = abab . . . ab, |w| = 4n })

with
S = ({b}{a}+)n−1{b}{a}.
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The selection language S can be generated by the following regular grammar

G = ({N1, N2, . . . , Nn } , V, P,N1)

with the rules

N1 → baN2,

Nk → aNk | baNk+1 for 2 ≤ k ≤ n− 1,

Nn → aNn | ba.

Hence, we obtain Ln ∈ L(IC ,REGVar
n ) for all numbers n ≥ 1.

It remains to show that, for any n ≥ 1, the language Ln cannot be generated
by a contextual grammar where, for generating the selection languages, less
than n nonterminal symbols are sufficient.

Let n ≥ 1 and G′
n = (V, { (S1, C1), (S2, C2), . . . , (Sm, Cm) } , B) be a con-

textual grammar with L(G′
n) = Ln and where every selection language is an

arbitrary regular language. Since the language Ln is infinite, there are words
that do not belong to the set B of axioms and which are therefore generated by
adding a context. Whenever a context (u, v) ∈ Ci for some i with 1 ≤ i ≤ m can
be wrapped around a subword z of a word z1zz2 ∈ Ln, it can be added infinitely
often because the subword z remains unchanged. Hence, the letter b cannot oc-
cur in any context because otherwise words with an unbounded number of the
letter b could be generated. Thus, every context (u, v) of the system consists of
letters a only and, moreover, u = v = anc for some number nc. Otherwise, a
word would be generated which does not belong to the language Ln. Any useful
word of a selection language of the system belongs to the set

F = {a}∗({b}{a}+)n,

otherwise the application of a context would yield a word which does not belong
to the language Ln. We consider only the useful words of the selection languages.
All these words contain exactly n letters b and at least a letter a after each b.
The maximal word which is between two letters b and consists of letters a only
is called an inner a-block.

There is a selection language Si (1 ≤ i ≤ m) where all inner a-blocks are
unbounded. Suppose that this is not the case. Then in every selection language,
at least one inner a-block is bounded. Let l be the maximal length of bounded
inner a-blocks over all selection languages Si (1 ≤ i ≤ m) and the set B of
axioms. Let k = l + 1. We consider the word w = akbakb . . . akb ∈ Ln. By the
choice of k, the word w is not an axiom. Hence, it is derived from a word w′ ∈ Ln

by wrapping a context (anc , anc) around a subword w′′ = aq1(bak)n−1baq2 where
q1 ≥ 0 and q2 ≥ 1. This word w′′, however, does not belong to any selection
language (because in every word of any selection language, at least one of the
inner a-blocks has a length less than k). This contradiction implies that there is
a selection language Si (1 ≤ i ≤ m) where all inner a-blocks are unbounded.

When generating such a language Si, a second nonterminal must appear before
the second letter b is generated because otherwise the first inner a-block would
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be bounded or the number of letters b would be unbounded and a word with
n + 1 letters b would be generated (because a derivation of a word w ∈ Si

would exist with the form A =⇒ aqbarA =⇒∗ w ∈ Si and hence, also the
derivation A =⇒∗ aqbar+qbarA =⇒∗ w′ would exist which yields a word w′ with
#b(w

′) = #b(w) + 1). Such a word should not be in the language Si because
otherwise the lengths of two a-blocks not corresponding to each other would be
increased but not the corresponding ones. By induction, one obtains that an
n-th nonterminal must appear before the n-th letter b is generated.

From this follows, that n− 1 nonterminals are not sufficient.
As a result, we have Ln ∈ L(IC ,REGVar

n ) \ L(IC ,REGVar
n−1) for any natural

number n ≥ 1. �

As consequences from the previous theorem, we obtain also infinite hierarchies
with respect to the number of production rules and the number of symbols.
However, to show that the inclusions L(IC ,REGK

n ) ⊆ L(IC ,REGK
n+1) with

K ∈ {Prod , Symb } are proper for each number n ≥ n0 for some start number n0,
we need further investigations.

We start with the complexity measure Prod . Let us consider a generalization
of the languages Ln for n ≥ 1 used in the proof of the previous theorem.

Let m ≥ 1, Am = { a1, . . . , am }, and V = Am∪{b}. The languages Ln consist
again of words formed by 2n a-blocks ended by the letter b each and where the
block lengths coincide in a crossed agreement manner. However, an a-block now
consists of letters from the set Am instead of the single letter a only.

Formally, we define for n ≥ 1 the languages

L(m)
n = { w1bw2b . . . wnbwn+1bwn+2b . . . w2nb |

wi, wn+i ∈ A+
m, |wi| = |wn+i|, 1 ≤ i ≤ n }.

Example 4. Let us consider the languages L
(m)
n for n = 1, n = 2, and n = 3.

Then

L
(m)
1 =

{
w1bw2b | {w1, w2} ⊂ A+

m, |w1| = |w2|
}
,

L
(m)
2 =

{
w1bw2bw3bw4b | {w1, w2, w3, w4} ⊂ A+

m, |w1| = |w3|, |w2| = |w4|
}
,

L
(m)
3 =

{
w1bw2bw3bw4bw5bw6b | {wi, w3+i} ⊂ A+

m, |wi| = |w3+i|, 1 ≤ i ≤ 3
}
.

The following contextual grammar generates the language L
(m)
1 :

G
(m)
1 = (V,S, B)

with
B = { xbyb | {x, y} ⊆ Am } and S = { (Sx, C) | x ∈ Am }

where
Sx = { bx } and C = { (x, y) | {x, y} ⊆ Am } .

For generating such a selection language Sx, only one rule is necessary. Hence,

L
(m)
1 ∈ L(IC ,REGProd

1 ) for each number m ≥ 1.
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For generating the language L
(m)
2 by a contextual grammar, we first increase

the lengths of the first and third a-blocks and then the lengths of the remaining
blocks.

The language L
(m)
2 is generated by the contextual grammar

G
(m)
2 = (V,S, B)

with

B = { x1bx2bx3bx4b | xi ∈ Am, 1 ≤ i ≤ 4 } ,
S = { (Si,j , C) | 1 ≤ i, j ≤ m }

where

Si,j = { baiwbaj | w ∈ A∗
m } ,

C = { (x, y) | {x, y} ⊆ Am } .

Each selection language Si,j can be generated by m + 2 rules (N1 → baiN2,

N2 → xN2 for any x ∈ Am and N2 → baj). Hence, L
(m)
2 ∈ L(IC ,REGProd

m+2) for
each number m ≥ 1.

A contextual grammar for the language L
(m)
3 for an arbitrary number m ≥ 1

is
G

(m)
3 = (V,S, B)

with

B = { x1bx2bx3bx4bx5bx6b | xi ∈ Am, 1 ≤ i ≤ 6 } ,
S = { (Si,j,k, C) | 1 ≤ i, j, k ≤ m }

where

Si,j,k = { baiw1bajw2bak | {w1, w2} ⊂ A∗
m } ,

C = { (x, y) | {x, y} ⊆ Am } .

The following picture shows where contexts can be added:

Ap1
m {b} Ap2

m {b} Ap3
m {b} Ap1

m {b} Ap2
m {b} Ap3

m {b}

A grammar generating a selection language Si,j,k with 1 ≤ i, j, k ≤ m is
Gi,j,k = ({N1, N2, N3}, V, P,N1) with the rules

N1 → baiN2,

N2 → xN2 | bajN3,

N3 → xN3 | bak

for x ∈ Am. Hence, L
(m)
3 ∈ L(IC ,REGProd

2(m+1)+1) for each number m ≥ 1. ♦
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If the number of rules of a regular grammar is equal to zero, the language
generated is empty. Hence, the class L(IC ,REGProd

0 ) contains only finite lan-

guages. Since L
(m)
1 ∈ L(IC ,REGProd

1 ) (as shown in the previous example) and

L
(m)
1 /∈ L(IC ,REGProd

0 ) (because the language is infinite), we have the first
proper inclusion.

Corollary 5. The proper inclusion

L(IC ,REGProd
0 ) ⊂ L(IC ,REGProd

1 )

holds.

Let us now have a closer look at the relation between the L
(m)
n languages and

the Prod -hierarchy.
For n = 3, we have found in the Example 4 that (m+1)(n− 1)+1 rules is an

upper bound for generating the selection languages. This bound also holds for
n = 1 and n = 2, as one can see from the example.

We now investigate the languages L
(m)
n for n ≥ 4 and prove the tightness of

the bound for n ≥ 1.

Lemma 6. Let m ≥ 1, n ≥ 1, and

L(m)
n = { w1bw2b . . . wnbwn+1bwn+2b . . . w2nb |

wi, wn+i ∈ A+
m, |wi| = |wn+i|, 1 ≤ i ≤ n }.

Then
L(m)
n = L(IC ,REGProd

(m+1)(n−1)+1) \ L(IC ,REGProd
(m+1)(n−1))

holds.

Proof. A contextual grammar for the language L
(m)
n for arbitrary numbersm ≥ 1

and n ≥ 1 is
G(m)

n = (V,S, B)

with

B = { x1bx2b . . . x2nb | xi ∈ Am, 1 ≤ i ≤ 2n } ,
S = { (Si1,i2,...,in , C) | 1 ≤ ij ≤ m, 1 ≤ j ≤ n }

where

Si1,i2,...,in =
{
bai1w1bai2w2 . . . bain−1wn−1bain | wi ∈ A∗

m, 1 ≤ i ≤ n1

}
,

C = { (x, y) | {x, y} ⊆ Am } .

A grammar generating a selection language Si1,i2,...,in with 1 ≤ ij ≤ m for
1 ≤ j ≤ n is Gi1,i2,...,in = ({N1, N2, . . . , Nn}, V, P,N1) with the rules

N1 → bai1N2,

Nk → xNk | baikNk+1 for 2 ≤ k ≤ n− 1,

Nn → xNn | bain
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for x ∈ Am. Hence, L
(m)
n ∈ L(IC ,REGProd

(m+1)(n−1)+1) for each number m ≥ 1
and n ≥ 2 and, together with the considerations in the beginning, also for n ≥ 1.

We now show that, for any m ≥ 1 and n ≥ 1, the language L
(m)
n cannot

be generated by a contextual grammar where, for generating every selection
language, at most (m+ 1)(n− 1) nonterminal symbols are sufficient.

Let n ≥ 1,m ≥ 1, andH
(m)
n = (V, { (S1, C1), (S2, C2), . . . , (Sm, Cm) } , B) be a

contextual grammar with L(H
(m)
n ) = L

(m)
n and where every selection language is

an arbitrary regular language. Since the language L
(m)
n is infinite, there are words

that do not belong to the set B of axioms and which are therefore generated by
adding a context. Whenever a context (u, v) ∈ Ci for some i with 1 ≤ i ≤ m can

be wrapped around a subword z of a word z1zz2 ∈ L
(m)
n , it can be added infinitely

often because the subword z remains unchanged. Hence, the letter b cannot occur
in any context because otherwise words with an unbounded number of the letter
b could be generated. Thus, every context (u, v) of the system consists of letters
from the alphabet Am only and, moreover, |u| = |v|. Otherwise, a word would

be generated which does not belong to the language L
(m)
n . Any useful word of a

selection language of the system belongs to the set

F = A∗
m({b}A+

m)n,

otherwise the application of a context would yield a word which does not be-

long to the language L
(m)
n . We consider only the useful words of the selection

languages. All these words contain exactly n letters b and at least a letter of
the set Am after each b. The maximal word which is between two letters b and
consists of letters from the set Am only is called an inner a-block.

There is a selection language Si (1 ≤ i ≤ m) where in every inner a-block the
number of occurrences of each letter of the alphabet Am is unbounded. Suppose
that this is not the case. Then for every selection language, there is a letter
aj ∈ Am such that at least one inner a-block contains a bounded number of
the letter aj . Let l be the maximal number of each letter in an inner a-block
(if the number of occurrences of this letter is bounded in this block) over all
selection languages Si (1 ≤ i ≤ m) and the set B of axioms. Let k = l + 1 and
wa = ak1a

k
2 . . . a

k
m. We consider the word w = wabwab . . . wab ∈ Ln. By the choice

of k, the word w is not an axiom. Hence, it is derived from a word w′ ∈ Ln by
wrapping a context (u, v) ∈ A+

m × A+
m around a subword w′′ = ua(bwa)

n−1bva
where ua is a suffix of the word wa and va is a prefix of the word wa. This
word w′′, however, does not belong to any selection language (because in every
word of any language, at least one of the inner a-blocks contains less than k
occurrences of a certain letter of Am). This contradiction implies that there is
a selection language Si (1 ≤ i ≤ m) where in every inner a-block the number of
occurrences of each letter of the alphabet Am is unbounded.

When generating such a language Si, a second nonterminal must appear before
the second letter b is generated because otherwise the first inner a-block would
be bounded or the number of letters b would be unbounded and a word with
n+1 letters b would be generated. Such a word should not be in the language Si
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because otherwise the lengths of two a-blocks not corresponding to each other
would be increased but not the corresponding ones. By induction, one obtains
that an n-th nonterminal must appear before the n-th letter b is generated. Since,
in every inner a-block, the number of each letter from Am is unbounded and the
appearance is in arbitrary order, one needs a ‘loop’ for every letter of the set
Am. Hence, for each inner a-block, one needs a rule for generating every letter
of Am and the letter b. Since, we have to remember in which block we are, we
need those m+ 1 rules for every inner a-block. Furthermore, we need a rule for
the first nonterminal symbol. Thus, (n − 1)(m + 1) + 1 rules are necessary for
at least one selection language. From this follows, that (n− 1)(m+ 1) rules are
not sufficient.

Hence, (m+1)(n−1)+1 rules are sufficient for generating every selection lan-
guage and necessary for at least one selection language in a contextual grammar

generating the language L
(m)
n . �

From the previous result, we obtain the strictness of the following inclusions.

Lemma 7. Let m ≥ 1. For n ≥ 1, the proper inclusion

L(IC ,REGProd
(m+1)(n−1)) ⊂ L(IC ,REGProd

(m+1)(n−1)+1)

holds.

Let us now consider the inclusion

L(IC ,REGProd
k−1 ) ⊆ L(IC ,REGProd

k )

for some number k ≥ 1.
For k = 1, we know from Corollary 5 that the inclusion is proper.
For k ≥ 3, we obtain the strictness of the inclusion from Lemma 7 when we

set n = 2 and m = k − 2.
We now prove that the inclusion is also proper for k = 2.

Lemma 8. Let V = { a, b, c, d, e } and

L =
{
wabcd

nem | m ≥ 0, n ≥ 0, wab ∈ { a, b }∗ ,#a(wab) = n,#b(wab) = m
}
.

Then L ∈ L(IC ,REGProd
2 ) but L /∈ L(IC ,REGProd

1 ).

Proof. The contextual grammar

G = (V, ({ce}, { (b, e) }), ({b}∗{c}, { (a, d) }), { c, bce })

generates the language L as can be seen as follows.
Let m ≥ 0, n ≥ 0, and wab ∈ { a, b }∗ with #a(wab) = n and #b(wab) = m.

Then there exist numbers m1,m2, . . .mn+1 with mi ≥ 0 for 1 ≤ i ≤ n + 1 and
m1+m2+ · · ·+mn+1 = m such that wab = bm1abm2a . . . bmnabmn+1. How is the
word w = wabcd

nem ∈ L generated? If n = m = 0, then w = c ∈ B. If n = 0 and
m = 1, then w = bce ∈ B. Otherwise, the word w is derived from the axiom bce
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by first wrapping the letters b and e around the subword ce until the word bmcem

is obtained and then wrapping the letters a and d around the subwords bm−m1c,
bm−m1−m2c, and so on until bmn+1c. This yields the derivation

bce =⇒∗ bmcem =⇒ bm1abm−m1cdem

=⇒ bm1abm2abm−m1−m2cd2em

=⇒∗ bm1abm2abm−m1−m2a . . . bmnabmn+1cdnem = w.

Hence, every word of the language L is generated by the contextual grammar G.
On the other hand, from a word of the language L, only words of the lan-

guage L are obtained. Let w = wabcd
nem ∈ L. If n = 0, then w = bmcem. From

the word w, the word bm+1cem+1 can be obtained in one derivation step as well
as any word bm1abm2cdem with m1 ≥ 0, m2 ≥ 2, and m1 + m2 = m. These
words belong to the language L, too; other words cannot be derived in one step.
If n > 0, then the number of the letters b and e cannot be increased further.
Hence, only words w′

abab
kcdn+1em with k ≥ 0 and w′

abb
k = wab can be derived

in one step. All these words also belong to the language L.
Thus, we obtain L = L(G). The selection language {ce} can be generated by

a grammar with only one rule. The selection language {b}∗{c} can be generated
by a grammar with exactly two rules (S → bS and S → c).

Hence, L ∈ L(IC ,REGProd
2 ).

We now show that the language L cannot be generated by a contextual gram-
mar where every selection language is generated by a grammar with one rule
only.

Suppose, L ∈ L(IC ,REGProd
1 ). Then there is a contextual grammar

G′ = (V, { (S1, C1), (S2, C2), . . . , (Sp, Cp) } , B′)

with L(G′) = L and every language Si is a singleton set for 1 ≤ i ≤ p. Let k
be the length of the longest word in the union of these sets and B′ as well as
among the contexts:

k1 = max { |w| | w ∈ B′ } ,

k2 = max

p⋃
i=1

{ |w| | w ∈ Si } ,

k3 = max

p⋃
i=1

{ |w| | (u,w) ∈ Ci or (w, u) ∈ Ci } ,

k = max { k1, k2, k3 } .

Let us consider the word w = a2kb2kcd2ke2k ∈ L. Due to its length, it is not an
axiom of the set B′. Hence, it is derived from another word of the language L.
The number of letters a and d as well as b and e must be increased by the same
number in each derivation step. For any context (u, v), we know that v ∈ {d}+
or v ∈ {e}+, otherwise also a word which does not belong to the language L
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could be generated. Let (u, v) be a context that was added to a word to obtain
the word w. If v ∈ {d}+, then the word u contains an occurrence of the letter a
and the subword where the context is wrapped around contains at least k + 1
letters. If v ∈ {e}+, then the word u contains an occurrence of the letter b and
the subword also contains k + 1 letters. However, no such word exists in any
selection language. Because of this contradiction, the assumption is not true.
This yields that L /∈ L(IC ,REGProd

1 ). �
Together, we obtain the following result.

Theorem 9. The relation

L(IC ,REGProd
n ) ⊂ L(IC ,REGProd

n+1 )

holds for every natural number n ≥ 0.

We now consider the complexity measure Symb. Both the language families
L(IC ,REGSymb

0 ) and L(IC ,REGSymb
1 ) are equal to the class of finite languages

(every selection language is the empty set; the language generated coincides

with the set of axioms). The class L(IC ,REGSymb
2 ) contains infinite languages;

for instance, the language L = {a}∗ is generated by the contextual grammar
G = ({ a } , { ({λ}, {(λ, a)}) } , {λ }). This yields the proper inclusion

L(IC ,REGSymb
1 ) ⊂ L(IC ,REGSymb

2 ).

Also the further inclusions are proper.

Lemma 10. We have L(EC,REGSymb
n ) ⊂ L(EC,REGSymb

n+1 ) for n ≥ 2.

Proof. Let n ≥ 2, Vn = { a, b, c1, c2, . . . , cn−1 }, and

Ln = { amc1c2 . . . cn−1b
m | m ≥ 0 } .

This language is generated by the contextual grammar

Gn = (Vn, { ({c1c2 . . . cn−1}, {(a, b)}) } , { c1c2 . . . cn−1 }).

Hence, Ln ∈ L(IC ,REGSymb
n+1 ). Let G′

n be a contextual grammar generating
the language Ln. Every applicable context is of the form (ak, bk) (with another
context, a word would be generated which does not belong to the language).
When such a context is inserted, the word that selects it contains the word
c1c2 . . . cn−1. Hence, any selection language contains a word which contains n−1
different letters. Thus, at least n+ 1 symbols are necessary for generating each
selection language. Hence, Ln /∈ L(IC ,REGSymb

n ). �
Together, we obtain the following result.

Theorem 11. We have the relations

L(IC ,REGSymb
0 ) = L(IC ,REGSymb

1 ) = FIN

and
L(IC ,REGSymb

n ) ⊂ L(IC ,REGSymb
n+1 )

for every natural number n ≥ 1.
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4 Conclusions and Further Work

The main contribution of our paper consists in exhibiting a series of languages
that highlight the difference between the power of internal contextual grammars
that have the selection languages from different families of subregular languages.
Here we only considered families defined by imposing restriction on the number
of states, nonterminals, productions, or symbols needed to accept or generate
them. It seems a natural continuation to consider in this context other families
of subregular languages, defined by restrictions of combinatorial nature, like the
ones considered in [1,2] for external contextual grammars.

Also, it may be interesting to show that there are languages over a constant
alphabet that separate the classes on consecutive levels of every hierarchy we
defined. While such a result was obtained in the case of the State-hierarchy, by
Theorem 2, as well as in the case of the Var -hierarchy, by Theorem 3, showing
the existence of such languages remains an open problem in the other two cases.

Acknowledgements. We thank Jürgen Dassow for fruitful discussions and the
anonymous referees for their remarks which helped to improve the paper.
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Abstract. As its name suggests, a stateless pushdown automaton has
no states. As a result, each of its computational steps depends only on
the currently scanned symbol and the current pushdown-store top. In
this paper, we consider stateless pushdown automata whose size of their
pushdown alphabet is limited by a positive integer. More specifically, we
establish an infinite hierarchy of language families resulting from stateless
pushdown automata with limited pushdown alphabets. In addition, we
prove analogous results for stateless deterministic pushdown automata
and stateless real-time pushdown automata. A formulation of an open
problem closes the paper.

Keywords: stateless pushdown automata, limited pushdown alphabets,
generative power, infinite hierarchy of language families.

1 Introduction

A stateless pushdown automaton (see [6,12,11,5]) is an ordinary pushdown au-
tomaton with only a single state. Consequently, the moves of a stateless push-
down automaton do not depend on internal states but solely on the symbols
currently scanned by its head accessing the input tape and pushdown store. Re-
cently, there has been a renewed interest in the investigation of various types of
stateless automata. Namely, consider stateless restarting automata [8,9], state-
less multihead automata [4,7], a relation of stateless automata to P systems [13],
and stateless multicounter machines and Watson-Crick automata [3,1,2].

It is well known that stateless pushdown automata (accepting by empty push-
down) still characterize the family of context-free languages (see [10]), while for
deterministic pushdown automata their computational power strictly increases
with the number of states (see [6]). Also, recall that stateless two-way pushdown
automata induce an infinite hierarchy of language families resulting from the
number of their input reading heads (see [4]).

In this paper, we consider the impact of the size of pushdown alphabets to the
power of stateless pushdown automata. More specifically, we establish an infinite
hierarchy of language families resulting from stateless pushdown automata with

M. Kutrib, N. Moreira, and R. Reis (Eds.): DCFS 2012, LNCS 7386, pp. 236–243, 2012.
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limited pushdown alphabets. For every positive integer n, we give a language
which can only be accepted by a stateless pushdown automaton with at least n
pushdown symbols. This result is in contrast with the fact that in terms of
ordinary pushdown automata and their deterministic variant, two pushdown
symbols suffice to generate any context-free language. Indeed, one can use a
binary alphabet to encode any finite number of symbols. Hence, we see that in
the case of stateless pushdown automata, the absence of states do not allow us
to use the encoding trick.

In addition, we prove analogous results for stateless deterministic pushdown
automata and stateless real-time pushdown automata. Recall that a determin-
istic pushdown automaton has the choice of making no more than one move
from any configuration, and a real-time pushdown automaton is a deterministic
pushdown automaton that reads an input symbol during every move (see [6]).

From a theoretical viewpoint, infinite hierarchies reflect the impossibility to
limit certain abilities or resources of language-defining devices. From a practical
viewpoint, limited resources might result in a more efficient implementation of
language processing tools. However, from the obtained results, we see that we
cannot simultaneously limit the number of states to one and the size of pushdown
alphabets. The achieved results can be seen as a continuation of existing studies
on infinite hierarchies resulting from limited resources of various types of stateless
automata (see [1,2,7,3,4]).

The paper is organized as follows. First, Section 2 gives all the necessary
terminology. Then, Section 3 establishes the infinite hierarchies mentioned above.
In the conclusion, Section 4 gives an observation regarding yet another variant
of a stateless pushdown automaton, and states an open problem related to the
achieved results.

2 Preliminaries and Definitions

In this paper, we assume that the reader is familiar with the theory of formal
languages (see [6]). For a set Q, card(Q) denotes the cardinality of Q. For an
alphabet (finite nonempty set) V , V ∗ represents the free monoid generated by V
under the operation of concatenation. The unit of V ∗ is denoted by ε. Set V + =
V ∗ − {ε}; algebraically, V + is thus the free semigroup generated by V under
the operation of concatenation. For w ∈ V ∗, |w| denotes the length of w, and
prefix(w) denotes the set of all proper1 prefixes of w. For w ∈ V ∗ and a ∈ V ,
#aw denotes the number of occurrences of a in w.

Next, we define stateless pushdown automata. Since these automata have only
a single state, for brevity, we define them without any states at all.

Definition 1 (see [11]). A stateless pushdown automaton (an SPDA for short)
is a quadruple

M =
(
Σ,Γ,R, α

)
,

1 A prefix p of w ∈ V ∗ is proper if p �= ε and p �= w.
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where Σ is an input alphabet, Γ is a pushdown alphabet, R ⊆ Γ × (Σ ∪{ε})×Γ ∗

is a finite relation, called the set of rules, and α ∈ Γ+ is the initial pushdown
string. Instead of (A, a, w) ∈ R, we write Aa → w throughout the paper. For
r = (Aa → w) ∈ R, Aa and w represent the left-hand side of r and the right-hand
side of r, respectively.

The configuration of M is any element of Γ ∗ × Σ∗. For a configuration c =
(π,w), π is called the pushdown of c and w is called the unread part of the input
string (or just input string for short) of c.

The direct move relation over the set of all configurations, symbolically de-
noted by �, is a binary relation over the set of all configurations defined as
follows: (πA, au) � (πw, u) in M if and only if Aa → w ∈ R, where π,w ∈ Γ ∗,
A ∈ Γ , a ∈ Σ ∪ {ε}, and u ∈ Σ∗. Let �k and �∗ denote the kth power of �, for
some k ≥ 1, and the reflexive-transitive closure of �, respectively.

The language accepted by M is denoted by L(M) and defined as

L
(
M
)
=
{
w ∈ Σ∗ | (α,w) �∗ (ε, ε)

}
. &"

Definition 2 (see [11]). Let M = (Σ, Γ , R, α) be an SPDA. If Aa → w ∈ R
implies that R− {Aa→ w} contains no rule with its left-hand side equal to Aa
or A, then M is a stateless deterministic pushdown automaton (an SDPDA for
short). &"

Definition 3 (see [6]). Let M = (Σ, Γ , R, α) be an SDPDA. If Aa → w ∈ R
implies that a �= ε, then M is a stateless real-time pushdown automaton (an
SRPDA for short). &"

Next, we define SPDAs with limited pushdown alphabets, which are central to
this paper.

Definition 4. Let M = (Σ, Γ , R, α) be an SPDA. M is an n-pushdown-
alphabet-limited SPDA (an n-SPDA for short) for n ≥ 1 if card(Γ ) ≤ n. &"

By analogy with n-SPDAs, we define their deterministic and real-time versions.

Definition 5. Let M = (Σ, Γ , R, α) be an SDPDA. M is an n-pushdown-
alphabet-limited SDPDA (an n-SDPDA for short) for n ≥ 1 if card(Γ ) ≤ n. &"

Definition 6. Let M = (Σ, Γ , R, α) be an SRPDA. M is an n-pushdown-
alphabet-limited SRPDA (an n-SRPDA for short) for n ≥ 1 if card(Γ ) ≤ n. &"

For every n ≥ 1, let nSPDA, nSDPDA, and nSRPDA denote the families of
languages accepted by n-SPDAs, n-SDPDAs, and n-SRPDAs, respectively.

3 Results

In this section, we establish three infinite hierarchies of language families induced
by n-SPDAs, n-SDPDAs, and n-SRPDAs, where n ≥ 1.
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For each positive integer n, define the language Ln as

Ln =
⋃

1≤k≤n

{
w ∈ {ak, bk}+ | #ak

(w) = #bk(w) and

p ∈ prefix(w) implies that #ak
(p) > #bk(p)

}
.

First, we show that for every positive integer n, n+1 pushdown symbols suffice
to generate Ln.

Lemma 1. Ln ∈ n+1SPDA for each n ≥ 1.

Proof. Let n be a positive integer, and consider the (n+ 1)-SPDA

M =
(
Σ,Γ,R, S

)
,

where
Σ = {ai, bi | 1 ≤ i ≤ n},
Γ = {S} ∪ {Ai | 1 ≤ i ≤ n},
R =

⋃
1≤i≤n{Sai → Ai, Aiai → AiAi, Aibi → ε},

with S /∈ {Ai | 1 ≤ i ≤ n}. Observe that L(M) = Ln, so the lemma holds. &"

Now, we show that any SPDA accepting Ln has to have at least n + 1 unique
pushdown symbols. To simplify the proof, we first establish three lemmas illus-
trating the inability of SPDAs to transfer any kind of information during steps
that decrease the pushdown.

The first lemma illustrates the effect of the statelessness on the direct move
relation.

Lemma 2. Let M = (Σ, Γ , R, α) be an SPDA. If (π1, u1) �∗ (π2, u2) for some
π1, π2 ∈ Γ ∗ and u1, u2 ∈ Σ∗, then (ππ1, u1u) �∗ (ππ2, u2u) for all π ∈ Γ ∗ and
u ∈ Σ∗.

Proof. This lemma follows from the fact that the definition of � depends only
on the topmost symbol of the pushdown and on the leftmost symbol of the input
string. &"

Notice that Lemma 2 implies that if (π1, u1) �∗ (ε, ε), then (ππ1, u1u) �∗ (π, u)
for each π ∈ Γ ∗ and u ∈ Σ∗. This implication is used extensively throughout
the rest of this paper.

The next lemma shows that we can erase a part of the pushdown with some
corresponding part of the input string independently of the rest of the pushdown
and of the rest of the input string.

Lemma 3. Let M = (Σ, Γ , R, α) be an SPDA. If (πσ, u) �∗ (π, v) for some
π ∈ Γ ∗, σ ∈ Γ+, and u, v ∈ Σ∗, then there is s ∈ Σ∗ such that s is a prefix of u
and (σ, s) �∗ (ε, ε).

Proof. Clearly, (πσ, u) �∗ (π, v) can be written as

(πσ1, u1) � (πσ2, u2) � · · · � (πσn, un) � (π, u′) �∗ (π, v)
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where σ1, . . . , σn ∈ Γ+, u1, . . . , un ∈ Σ∗, σ1 = σ, u1 = u, and n ≥ 1. Observe
that by the definition of �, u′ is a suffix of each uj, where 1 ≤ j ≤ n. Thus,
u1 = su′ for some s ∈ Σ∗. As |σj | > 0, where 1 ≤ j ≤ n, all the rules used
in (πσ1, u1) � (πσ2, u2) � · · · � (πσn, un) �∗ (π, u′) are not working with any
symbol from π or from u′. Thus, their applicability depends only on σ1 and s.
Hence, the lemma holds. &"

The next lemma shows that we can rewrite the pushdown with some correspond-
ing part of the input string independently of the rest of the input string.

Lemma 4. Let M = (Σ, Γ , R, α) be an SPDA. If (π1, uv) �∗ (π2, v) for some
π1, π2 ∈ Γ ∗ and u, v ∈ Σ∗, then (π1, u) �∗ (π2, ε).

Proof. The lemma follows from the fact that the rules used in (π1, uv) �∗ (π2, v)
are not working with any symbols from v. &"

Now, we use the three previously established lemmas to show that we need at
least n+ 1 pushdown symbols to accept Ln.

Lemma 5. Let M = (Σ, Γ , R, α) be an SPDA such that L(M) = Ln, where
n ≥ 1. Then, card(Γ ) ≥ n+ 1.

Proof. First, we introduce some notation to simplify the proof. LetΣk = {ak, bk}
for k = 1, 2, . . . , n, Σa = {a1, a2, . . . , an}, and Σb = {b1, b2, . . . , bn}. Further-
more, we suppose that there are no useless rules in R and no useless symbols
in Γ (by a useless rule, we mean a rule that is not used during the acceptance
of any w ∈ L(M)).

Before proving that card(Γ ) ≥ n + 1, we prove a claim. It shows that there
is a unique A ∈ Γ for each b ∈ Σb. This claim together with the fact that each
b ∈ Σb has to occur in some rule implies that card(Γ ) ≥ n. Then, we show that
there has to be at least one more symbol in Γ in order to have L(M) = Ln, thus
proving that card(Γ ) ≥ n+ 1.

Claim 1. For each bj , bk ∈ Σb such that bj �= bk, there is no A ∈ Γ such that
Abj → σj ∈ R and Abk → σk ∈ R, where σj , σk ∈ Γ ∗.

Proof. By contradiction. Without any loss of generality, we use b1 ∈ Σ1 ∩ Σb

and b2 ∈ Σ2 ∩ Σb. For the sake of contradiction, assume that there is A ∈ Γ
such that Ab1 → σ1 ∈ R and Ab2 → σ2 ∈ R, where σ1, σ2 ∈ Γ ∗. As there are no
useless rules in R, there is w1 ∈ Ln ∩Σ∗

1 such that Ab1 → σ1 is used during its
acceptance. Then,

(α,w1) �∗ (π1A, b1w
′) � (π1σ1, w

′) �∗ (π1, w
′′) �∗ (ε, ε), (1)

where π1 ∈ Γ ∗ and w′, w′′ ∈ Σ∗. Next, we show that there is s1 ∈ Σ∗ such that
s1 is a prefix of w′ and (σ1, s1) �∗ (ε, ε). Consider two possible cases, (i) and
(ii), discussed next, based on whether σ1 = ε or σ1 �= ε:

(i) σ1 = ε. Then, s1 = ε since (ε, ε) �∗ (ε, ε).
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(ii) σ1 �= ε. Observe that (π1σ1, w
′) �∗ (π1, w

′′) in (1), so by Lemma 3, there is
s1 such that (σ1, s1) �∗ (ε, ε).

Therefore, (1) can be rewritten using w1 = u1b1s1v1, where u1, v1 ∈ Σ∗, to

(α, u1b1s1v1) �∗ (π1A, b1s1v1) � (π1σ1, s1v1) �∗ (π1, v1) �∗ (ε, ε). (2)

Note that by Lemma 4, (α, u1) �∗ (π1A, ε).
Now, let w2 ∈ Ln ∩ Σ∗

2 be a string such that Ab2 → σ2 is used during its
acceptance. In the same way as with w1, we can find s2 such that (σ2, s2) �∗

(ε, ε). Let w2 = u2b2s2v2 ∈ Ln, where u2, v2 ∈ Σ∗
2 . Then,

(α, u2b2s2v2) �∗ (π2A, b2s2v2) � (π2σ2, s2v2) �∗ (π2, v2) �∗ (ε, ε), (3)

where π2 ∈ Γ ∗. As (A, b2s2) � (σ2, s2) by Ab2 → σ2 and (σ2, s2) �∗ (ε, ε),
(A, b2s2) �∗ (ε, ε).

To complete the proof, let x = u1b2s2v1. Recall that (α, u1) �∗ (π1A, ε), so
by Lemma 2,

(α, u1b2s2v1) �∗ (π1A, b2s2v1).

Furthermore, recall that (A, b2s2) �∗ (ε, ε), so by Lemma 2,

(π1A, b2s2v1) �∗ (π1, v1).

Finally, according to (2),
(π1, v1) �∗ (ε, ε).

Thus, (α, x) �∗ (ε, ε), so x ∈ L(M). However, as u1 is followed by b1 in w1 ∈
Ln, by the definition of Ln, it has to contain at least one occurrence of a1.
Then, since x = u1b2s2v1 contains both a1 and b2, it is not in Ln, which is a
contradiction. Thus, the claim holds. &"

Now, we show that card(Γ ) ≥ n + 1. Again, we proceed by contradiction. By
Claim 1, card(Γ ) ≥ n. For the sake of contradiction, suppose that card(Γ ) = n.
Let α = α′A for some α′ ∈ Γ ∗ and A ∈ Γ . Furthermore, let w = uv ∈ Ln be a
string such that

(α′A, uv) �∗ (α′, v) �∗ (ε, ε). (4)

Observe that card(Γ ) = card(Σb) and A ∈ Γ . By Claim 1, there is a unique
pushdown symbol for each input symbol in Σb, so there has to be some b ∈ Σb

such that Ab → σ ∈ R, where σ ∈ Γ ∗. As there are no useless rules in R, there
is also w′ ∈ Ln such that Ab → σ is used during its acceptance. Therefore, in
the same way as with w1 in Claim 1, we can find s such that (σ, s) �∗ (ε, ε). Let
w′ = u′bsv′ ∈ Ln be a string such that

(α, u′bsv′) �∗ (πA, bsv′) � (πσ, sv′) �∗ (π, v′) �∗ (ε, ε), (5)

where π ∈ Γ ∗. Note that according to (5) and Lemma 3, (A, bs) �∗ (ε, ε). To
obtain a contradiction, let x = bsv. Then, by Lemma 2,

(α′A, bsv) �∗ (α′, v).
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Furthermore, according to (4),

(α′, v) �∗ (ε, ε).

Thus, (α′A, bsv) �∗ (ε, ε). As α′A = α and bsv = x, x ∈ L(M). However, x
begins with b ∈ Σb, which is a contradiction with the definition of Ln. Hence,
the lemma holds. &"

The next theorem represents the main achievement of this paper.

Theorem 1. nSPDA ⊂ n+1SPDA for every n ≥ 1.

Proof. By Lemma 5, Ln �∈ nSPDA. However, Ln ∈ n+1SPDA by Lemma 1.
Hence, the theorem holds. &"

Observe that the SPDA constructed in the proof of Lemma 1 is, in fact, de-
terministic and realtime. Furthermore, the argumentation used in the proofs
of Lemmas 2 through 5 holds also for SDPDAs and SRPDAs. Therefore, the
following two theorems also hold.

Theorem 2. nSDPDA ⊂ n+1SDPDA, for every n ≥ 1. &"

Theorem 3. nSRPDA ⊂ n+1SRPDA, for every n ≥ 1. &"

4 Concluding Remarks

In this concluding section, we first discuss another version of stateless pushdown
automata. Then, we propose an open problem related to the topic of this paper.

Considered a stateless version of extended pushdown automata (see [6]). Recall
that an extended pushdown automaton may read a string from the top of its
pushdown during a single step, not just a single symbol. Observe that in this
case, we may convert any pushdown automaton M into an equivalent stateless
extended pushdown automaton M ′ with only two pushdown symbols in the
following way. We encode every pushdown symbol of M into a binary string
using the two pushdown symbols of M ′. Then, in M ′, we read and modify
encoded strings rather than the original symbols. Hence, we see than in terms of
stateless extended pushdown automata, a limitation of the number of pushdown
symbols is possible while in terms of ordinary stateless pushdown automata, this
is not possible as proved in the present paper.

We close the paper by proposing an open problem. Reconsider Definition 4.
Modify it so that M is an n-SPDA if card(Γ )− card(Σ) ≤ n; that is, we count
only the number of non-input symbols. Do the results proved in this paper hold
even with this modified definition?
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Abstract. In returning mode centralized PC systems of pushdown auto-
mata of degree n can simulate n-head pushdown automata (Csuhaj-Varjú
et. al. 2000). At DCFS 2009, Balan claimed that also the converse holds.
Here we show that Balan’s proof of this claim is not correct1. Accordingly
it is still open whether n-head pushdown automata and centralized PC
systems of pushdown automata of degree n working in returning mode
accept the same class of languages.

Keywords: PC system of pushdown automata, centralized PC system,
multi-head pushdown automaton.

1 Introduction

Parallel communicating grammar systems, or PC grammar systems for short,
have been invented to model a certain type of cooperation: the so-called class
room model [2]. Here a group of experts, modelled by grammars, work together
in order to produce a document, that is, an output word. These experts work
on their own, but synchronously, and they exchange information on request.

In the literature many different types and variants of PC grammar systems
have been studied (see, e.g., [2,4]). Also the notion of PC system has been carried
over to various types of automata. Here we are interested in the PC systems of
pushdown automata as introduced in [3]. In such a system a finite number n
of pushdown automata, say A1, . . . , An, work in parallel in a synchronous way,
where the number n of components is called the degree of the PC system. If one
of these pushdown automata, say Ai, encounters a special communication symbol
as the topmost symbol on its pushdown store, say Kj, then a communication
step takes place: the symbol Kj on the top of the pushdown of Ai is replaced
by the complete pushdown contents of the pushdown automaton Aj , provided
that the topmost symbol of it is not a communication symbol. The PC system
is said to work in returning mode, if by this communication step the contents of
the pushdown of Aj is reset to its initial symbol Zj. It is known that PC systems

1 We tried to contact M. Balan by e-mail, but unfortunately this was not possible,
as his e-mail address, given in [1], is not valid anymore, and we did not succeed in
finding a more recent one.

M. Kutrib, N. Moreira, and R. Reis (Eds.): DCFS 2012, LNCS 7386, pp. 244–251, 2012.
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of pushdown automata of degree 3 working in returning mode do already accept
all recursively enumerable languages [3].

If there is only one component, called the master of the system, that can use
communication symbols, then the PC system is called centralized. It is known
that a centralized PC system of pushdown automata of degree n that is working
in returning mode can simulate an n-head pushdown automaton [3]. In [1] it
is claimed that also conversely, centralized PC systems of pushdown automata
of degree n working in returning mode can be simulated by n-head pushdown
automata. Using its first head the n-head pushdown automaton simulates the
master of the PC system until a communication step is to be simulated, and then
it uses one of its other heads to simulate the component from which the master
requests the pushdown contents. The simulation turns back to simulating the
master as soon as the other component has been simulated up to the time of the
communication step. In order to detect this, Balan coined the notion of known
communication property, which states that the non-master components can de-
tect when they have been subjected to a communication step. Balan proved that
each centralized PC system of pushdown automata working in returning mode is
equivalent to a PC system of the same type that has this known communication
property. This is proved by showing that a non-master component can detect a
communication step by simply checking the contents of its pushdown. However,
in the simulating n-head pushdown automaton, no equivalent of the communica-
tion step takes place, and accordingly, the n-head pushdown automaton cannot
detect the exact moment when it has to stop the simulation of a non-master
component. This means that it is still open whether or not all centralized PC
systems of pushdown automata of degree n working in returning mode can be
simulated by n-head pushdown automata.

Here we present an example language L that is accepted by a centralized PC
system of pushdown automata of degree 2 working in returning mode, where the
inherent synchronization of the two components is used in an essential way. The
simulation of Balan [1] does not work for this system. In fact, we expect that
the language L cannot be accepted by any 2-head pushdown automaton at all.

The paper is structured as follows. In Section 2 we restate the definition of PC
systems of pushdown automata from [3] in short and recall some of their prop-
erties. In the next section we recall the definition of the multi-head pushdown
automaton and describe Balan’s simulation of centralized PC systems of push-
down automata working in returning mode by multi-head pushdown automata
from [1] in some detail. Then in Section 4 we present and discuss our example
language.

2 PC Systems of Pushdown Automata

Here we restate the definition of the PC system of pushdown automata from [3]
in short.

Definition 1. A PC system of pushdown automata is given through a tuple

A = (Σ,Γ,A1, . . . , An,K),
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where

– Σ is a finite input alphabet and Γ is a finite pushdown alphabet,

– for each 1 ≤ i ≤ n, Ai = (Qi, Σ, Γ, δi, qi, Zi, Fi) is a nondeterministic push-
down automaton with finite set of internal states Qi, initial state qi ∈ Qi and
set of final states Fi ⊆ Qi, input alphabet Σ, pushdown alphabet Γ , initial
pushdown symbol Zi ∈ Γ , and transition relation δi : Qi × (Σ ∪ {ε})× Γ →
2Qi×Γ∗

, where, for each triple (q, a, A) ∈ Qi × (Σ ∪ {ε})× Γ , δi(q, a, A) is a
finite subset of Qi × Γ ∗,

– and K ⊆ {K1,K2, . . . ,Kn} ⊆ Γ is a set of query symbols.

Here the pushdown automata A1, . . . , An are the components of the system A,
and the integer n is called the degree of this PC system.

Definition 1 (cont.). A configuration of A is described by a 3n-tuple

(s1, x1, α1, s2, x2, α2, . . . , sn, xn, αn),

where, for 1 ≤ i ≤ n,

– si ∈ Qi is the current state of component Ai,

– xi ∈ Σ∗ is the remaining part of the input which has not yet been read by
component Ai, and

– αi ∈ Γ ∗ is the current contents of the pushdown of Ai, where the first symbol
of αi is the topmost symbol on the pushdown.

On the set of configurations A induces a computation relation �∗
A,r that is the

reflexive and transitive closure of the following relation �A,r.

Definition 2. For two configurations

(s1, x1, c1α1, . . . , sn, xn, cnαn) and (p1, y2, β2, . . . , pn, yn, βn),

where c1, . . . , cn ∈ Γ ,

(s1, x1, c1α1, . . . , sn, xn, cnαn) �A,r (p1, y1, β1, . . . , pn, yn, βn)

if and only if one of the following two conditions is satisfied:

(1) K ∩ {c1, . . . , cn} = ∅, and xi = aiyi for some ai ∈ Σ ∪ {ε}, (pi, γi) ∈
δi(si, ai, ci), and βi = γiαi for all 1 ≤ i ≤ n, or

(2) – K ∩ {c1, . . . , cn} �= ∅,
– for all i ∈ {1, . . . , n} such that ci = Kji and cji �∈ K, βi = cjiαjiαi and
βji = Zji ,

– βr = crαr for all other values of r ∈ {1, . . . , n},
– yt = xt and pt = st for all t ∈ {1, . . . , n}.
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The steps of form (1) are called local steps, as in them each component Ai

(1 ≤ i ≤ n) performs a local step, concurrently, but otherwise independently.
The steps of form (2) are called communication steps, as in them the topmost
symbol Kji on the pushdown of component Ai is replaced by the complete
contents cjiαji of the pushdown of component Aji , provided that the topmost
symbol cji is itself not a query symbol. At this time also the pushdown of Aji

is reset to its initial symbol Zji . Accordingly, it is said that A works in return-
ing mode. If the contents of the pushdown of Aji were to remain unchanged by
the communication step, then A would work in nonreturning mode. Here, how-
ever, we are only interested in PC systems of pushdown automata that work in
returning mode.

Definition 3. (a) The language Lr(A) that is accepted by A working in return-
ing mode is defined by

Lr(A) = {w ∈ Σ∗ | (q1, w, Z1, . . . , qn, w, Zn) �∗
A,r (s1, ε, α1, . . . , sn, ε, αn)

for some si ∈ Fi and αi ∈ Γ ∗, 1 ≤ i ≤ n }.

(b) By Lr(PCPDA(n)) we denote the class of languages that are accepted by PC
systems of pushdown automata of degree n working in returning mode.

(c) A PC system of pushdown automata A = (Σ,Γ,A1, . . . , An,K) is central-
ized if there is a single component, say A1, that can use query symbols. In
this case, A1 is called the master of the system A. By Lr(CPCPDA(n)) we
denote the class of languages that are accepted by centralized PC systems of
pushdown automata of degree n working in returning mode.

In [3] the following result is established on the expressive power of PC systems
of pushdown automata working in returning mode.

Theorem 1. The class Lr(PCPDA(3)) coincides with the class of all recursively
enumerable languages.

This result is proved by showing that a pushdown automaton with two pushdown
stores can be simulated by a PC system of pushdown automata of degree 3
working in returning mode.

Let A = (Σ,Γ,A1, . . . , An,K) be a centralized PC system of pushdown au-
tomata, and let

(s1, x1,Kjα1, . . . , sj , xj , αj , . . .) �A,r (s1, x1, αjα1, . . . , sj , xj , Zj , . . .)

be a communication step of A. The component A1 is actively involved in this
communication step, while component Aj is only passively involved in this com-
munication step, that is, it does not really notice its involvement in this step.
To remedy this situation, Balan introduced the so-called known communication
property.

Definition 4. [1] Let A = (Σ,Γ,A1, . . . , An,K) be a centralized PC system of
pushdown automata, where, for each 1 ≤ i ≤ n, Ai = (Q′

i, Σ, Γ, δi, qi, Zi, Fi)
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and Q′
i has the form Q′

i = Qi × {0, 1}. Then A is said to have the known
communication property if, whenever component Aj, being in state (pj , 0), has
communicated the contents of its pushdown to component A1, then in the next
local transition Aj will enter the state (pj , 1), and this is the only way in which
a state of this form can be reached.

Thus, the second component 1 of a state (qj , 1) ∈ Q′
j indicates that component

Aj has just sent its pushdown contents to A1 in the previous step. On the known
communication property Balan derived the following result.

Theorem 2. [1] For every centralized PC system of pushdown automata A,
there exists a centralized PC system of pushdown automata A′ of the same degree
as A such that Lr(A′) = Lr(A), and A′ has the known communication property.

Essentially component Aj replaces its initial pushdown symbol Zj by a new
symbol Z ′

j , and hence, when it detects in the following that Zj is the topmost
symbol on its pushdown, then it realizes that it has just passively taken part in
a communication step. Observe that the detection of a passive involvement in a
communication step is not done internally within Aj ’s finite-state control, but
that it is done simply by observing the pushdown of Aj .

3 Multi-head Pushdown Automata

Next we repeat in short the definition of the multi-head pushdown automaton,
where we follow the presentation in [3].

Definition 5. For n ≥ 1, an n-head pushdown automaton is given through an
8-tuple B = (n,Q,Σ, Γ, δ, q0, Z0, F ), where Q is a finite set of internal states,
q0 ∈ Q is the initial state and F ⊆ Q is a set of final states, Σ is a finite
input alphabet and Γ is a finite pushdown alphabet with initial pushdown symbol
Z0 ∈ Γ , and δ : Q × (Σ ∪ {ε})n × Γ → 2Q×Γ∗

is a transition relation. For
each tuple (q, a1, . . . , an, X) ∈ Q× (Σ ∪ {ε})n × Γ , δ(q, a1, . . . , an, X) is a finite
subset of Q × Γ ∗. If (q′, α) ∈ δ(q, a1, . . . , an, X), then this means that B, when
in state q with X as the topmost symbol on its pushdown and reading ai with its
i-th head (1 ≤ i ≤ n), can change to state q′ and replace the symbol X by the
string α on the top of the pushdown. In addition, if ai ∈ Σ, then head i moves
one step to the right, and if ai = ε, then head i remains stationary.

A configuration of B is described by an (n+ 2)-tuple

(q, x1, . . . , xn, α) ∈ Q × (Σ∗)n × Γ ∗,

where q is the current internal state, xi is the remaining part of the input still
unread by head i (1 ≤ i ≤ n), and α is the current contents of the pushdown,
where the first symbol of α is the topmost symbol. By �B we denote the single-
step computation relation that B induces on its set of configurations, and �∗

B is
its reflexive and transitive closure.
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The language L(B) accepted by B is now defined as

L(B) = {w ∈ Σ∗ | (q0, w, . . . , w, Z0) �∗
B (s, ε, . . . , ε, α)

for some s ∈ F and α ∈ Γ ∗ }.

In [3] the following result is shown.

Theorem 3. If L is accepted by some n-head pushdown automaton, then it is
also accepted by some centralized PC system of pushdown automata of degree n
that is working in returning mode.

Essentially the master of the simulating PC system simulates one of the
heads and the pushdown of the n-head pushdown automaton, while the other
n− 1 components each simulate one of the other heads of the n-head pushdown
automaton. Each of them guesses the next operation of the head it simulates
and stores it in the topmost symbol on its pushdown, from where the master
obtains it by a communication step.

In [1] Balan claims that also the converse of Theorem 3 holds:

Claim. If L is accepted by some centralized PC system of pushdown automata
of degree n that is working in returning mode, then L is also accepted by some
n-head pushdown automaton.

In his proof Balan presents a simulation of a centralized PC system of pushdown
automata of degree n working in returning mode by an n-head pushdown au-
tomaton. This simulation works as follows. Each of the n heads of the n-head
pushdown automaton B will simulate the input head of one of the components
of the PC system A. First, using head 1, B simulates the master A1 of the sys-
tem A up to the point, where a query symbol Kj occurs as the topmost symbol
on the pushdown. Then using head j, B simulates the component Aj using the
pushdown of B. Thus, at the time of the communication step, the pushdown
contents of B will correspond exactly to the pushdown contents of the mas-
ter A1 after execution of the communication step. Now the problem is that B
must recognize this moment in time, and then it must switch back to simulating
the master component A1. For this Balan uses the known communication prop-
erty of the PC system A, but as remarked above, the component Aj realizes its
having been subjected to a communication step only after the fact by looking
at its pushdown. By a communication step, its pushdown is reset to the initial
symbol, but when B is simulating the component Aj , no actual communication
takes place, that is, B will not be able to recognize the exact moment in time
when to abandon the simulation of Aj in order to switch back to simulating the
master component. Thus, the above claim must still be considered to be open!

The problem with the above simulation is the inherent synchronization of the
components of a PC system of pushdown automata. While the master A1 is
doing some computation, the other components may also be doing some steps
in synchronization with A1. Below we present an example language that is ac-
cepted by a centralized PC system of pushdown automata of degree 2 working
in returning mode, where this synchronous behaviour is used in an essential way.
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4 An Example Language

Let Σ = {a, b}, and let L = { uvuRvRuR | u, v ∈ Σ+, |u| = |v| }, where wR

denotes the reversal (or mirror image) of w.

Proposition 1. L ∈ Lr(CPCPDA(2)), that is, the language L is accepted by
a centralized PC system of pushdown automata of degree 2 that is working in
returning mode.

Proof. Let A = (Σ,Δ,A1, A2, {K2}) be the centralized PC system of pushdown
automata of degree 2 that is defined as follows:

– Δ = Σ∪{Z1, Z2,K2}, where Zi is the initial symbol for the pushdown of Ai,
i = 1, 2,

– A1 = (Q1, Σ,Δ, δ1, q0, Z1, {q4}), where Q1 = {q0, q1, q2, q3, q4},
– A2 = (Q2, Σ,Δ, δ2, p0, Z2, {p4}), where Q2 = {p0, p1, p2, p3, p4}, and
– the transition relations δ1 and δ2 are given through the following table, where
x ∈ Σ:

δ1(q0, a, Z1) = {(q1, aZ1)}, δ2(p0, ε, Z2) = {(p1, Z2)},
δ1(q0, b, Z1) = {(q1, bZ1)}, δ2(p1, a, Z2) = {(p2, a)},
δ1(q1, a, x) = {(q2, ax), (q3,K2ax)}, δ2(p1, b, Z2) = {(p2, b)},
δ1(q1, b, x) = {(q2, bx), (q3,K2bx)}, δ2(p2, ε, x) = {(p3, x)},
δ1(q2, a, x) = {(q1, ax)}, δ2(p2, ε, Z2) = {(p4, Z2)},
δ1(q2, b, x) = {(q1, bx)}, δ2(p3, a, x) = {(p2, ax)},
δ1(q3, a, a) = {(q3, ε)}, δ2(p3, b, x) = {(p2, bx)},
δ1(q3, b, b) = {(q3, ε)}, δ2(p4, a, Z2) = {(p4, Z2)},
δ1(q3, ε, Z1) = {(q4, Z1)}, δ2(p4, b, Z2) = {(p4, Z2)},
δ1(q4, ε, Z1) = {(q4, Z1)}, δ2(p4, ε, Z2) = {(p4, Z2)}.

We claim that Lr(A) = L holds. First let u, v ∈ Σ+ such that u = a1a2 . . . an and
v = b1b2 . . . bn, a1, . . . , an, b1, . . . , bn ∈ Σ and n ≥ 1. On input w = uvuRvRuR,
A can execute the following computation:

(q0, uvu
RvRuR, Z1, p0, uvu

RvRuR, Z2)
�A,r (q1, a2 . . . anvu

RvRuR, a1Z1, p1, uvu
RvRuR, Z2)

�A,r (q2, a3 . . . anvu
RvRuR, a2a1Z1, p2, a2 . . . anvu

RvRuR, a1)
�2n−3
A,r (q1, bnu

RvRuR, bn−1 . . . b1u
RZ1, p3, anvu

RvRuR, an−1 . . . a1)

�A,r (q3, u
RvRuR,K2v

RuRZ1, p2, vu
RvRuR, uR)

�A,r (q3, u
RvRuR, uRvRuRZ1, p2, vu

RvRuR, Z2)
�3n
A,r (q3, ε, Z1, p4, b1u

R, Z2)

�A,r (q4, ε, Z1, p4, u
R, Z2)

�n
A,r (q4, ε, Z1, p4, ε, Z2),

which shows that L ⊆ Lr(A). On the other hand, if w ∈ Lr(A), then we consider
an accepting computation of A on input w:

(q0, w, Z1, p0, w, Z2) �+
A,r (q4, ε, Z1, p4, ε, α)
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for some α ∈ Δ+. From the form of δ1, we see that w = w1w2 such that

(q0, w1w2, Z1) �|w1|
A1

(q3, w2,K2w
R
1 Z1) holds. In addition, we see that |w1| is

even, and that (p0, w1w2, Z2) �|w1|
A2

(p2, w1,2w2, w
R
1,1), where w1 = w1,1w1,2

and |w1,1| = |w1,2|. Now the communication step takes A into the config-
uration (q3, w2, w

R
1,1w

R
1 Z1, p2, w1,2w2, Z2), from which the final configuration

(q4, ε, Z1, p4, ε, α) = (q4, ε, Z1, p4, ε, Z2) is reached if and only if w2 = wR
1,1w

R
1 .

This implies that w = w1w2 = w1,1w1,2w
R
1,1w

R
1,2w

R
1,1, and since |w1,1| = |w1,2|,

this shows that w ∈ L. Thus, it follows that Lr(A) = L. &"

The 2-head pushdown automaton from Balan’s proof cannot possibly simulate
the above PC system correctly. After simulating the component A1 for an even
number of steps, the simulating 2-head pushdown automaton B has moved its
first head across a prefix uv of the input, where |u| = |v|, pushing vRuR onto
its pushdown. Then it starts to simulate the component A2 for a number of
steps, using its second head. During this phase it moves its second head across
a prefix x of the input, pushing xR onto the pushdown. However, there is no
synchronisation between these two phases, that is, |x| is not related to |uv|. Now
B gets either stuck in this phase, or it switches at some nondeterministically
chosen time to the third phase, during which it uses its first head to check that
the remaining part of the input is of the form xRvRuR. Thus, either B does not
accept any word at all, or it accepts all words of the form uvxRvRuR, where
|u| = |v| and x is a prefix of uv, or x = uvz for some word z satisfying z = zR.
In any case it follows that L(B) differs from the language L.

Actually, we expect that the above language L is not accepted by any 2-head
pushdown automaton at all; however, we do not yet have a formal proof for this
claim. Finally, we would like to point out that the language L is accepted by a
4-head pushdown automaton.
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Abstract. We consider nondeterministic finite automata having finite
tree width (ftw-NFA) where the computation on any input string has
a constant number of branches. We give effective characterizations of
ftw-NFAs and a tight worst-case state size bound for determinizing an
ftw-NFA A as a function of the tree width and the number of states of
A. We introduce a lower bound technique for ftw-NFAs and consider the
operational state complexity of this model.
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1 Introduction

The descriptional complexity of finite automata has been studied for over half
a century, and there has been particularly much work done over the last two
decades. Various ways of quantifying the nondeterminism of finite automata
have been considered since the 70’s. The ambiguity of a nondeterministic finite
automaton (NFA) refers to the number of accepting computations, and other
nondeterminism measures count, roughly speaking, the amount of guessing in
both accepting and non-accepting computations.

Schmidt [23] first established an exponential trade-off between the size of un-
ambiguous finite automata and general NFAs, and the bound was later refined
in [19,25]. The relationship between the degree of ambiguity and succinctness of
finite automata was considered in [13,18,22] and the state complexity of unam-
biguous finite automata over a unary alphabet has been recently studied in [21].

The branching measure of an NFA is the product of the degrees of nonde-
terministic choices on the best accepting computation [6,17], and the guessing
measure counts the minimum (or maximum) number of advice bits used on a
computation on a given input [6,13]. The reader is referred to [5] for more details
on the different notions of limited nondeterminism.

Here we focus on the state complexity of NFAs having finite tree width. By the
tree width of an NFA A on input w we mean the total number of nondeterministic
branches the computation tree of A on w has, and A has finite tree width if the
number is bounded for all inputs. The tree width of an NFA A is called in [13]
the leaf size of A and in [2] it is denoted as “computations(A)”. It is known
that the tree width of an NFA on inputs of length m is either constant (which
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situation will be our focus here), or in between linear and polynomial in m, or
otherwise 2Θ(m) [13].

The tree width measure can be viewed to be more restrictive than the other
nondeterminism measures for NFAs considered in the literature, with the ex-
ception of the δNFAs of [2] that are a special case of tree width 2 NFAs. Note
that while a DFA equivalent to an n state unambiguous NFA may need 2n − 1
states [19], the size blow-up of determinizing a constant tree width NFA is clearly
polynomial. Here we give a tight upper bound for the conversion as a function
of the size of an NFA and its tree width.

We show that there exist regular languages for which any n-state NFA needs
finite tree width 2n−2. We establish that an NFA A has finite tree width if and
only if A can be subdivided into deterministic components that are connected by
the reachability relation in an acyclic way. We introduce a separator set technique
that gives considerably better lower bounds for the size of finite tree width
automata than the known fooling set and biclique edge-cover methods [1,4,8] for
general NFAs. However, even the separator set technique is not powerful enough
to handle, for example, the constructions we use to give lower bounds for the
state complexity of union and intersection of finite tree width NFAs. Due to
the inherent hardness of minimization of very restricted NFAs [2,9,20], it can
perhaps be expected that general techniques do not give optimal lower bounds
even for finite tree width NFAs.

Following the convention used by the overwhelming majority of the literature
on finite automata, we use an NFA model that allows only one initial state. Some
of our state complexity results could be stated in a nicer form if the NFA model
were to allow multiple initial states; see Remark 4.1.

Many proofs are omitted due to the limitation on the number of pages.

2 Preliminaries

We assume that the reader is familiar with the basic definitions concerning fi-
nite automata [24,26] and descriptional complexity [5,11]. Here we just fix some
notation needed in the following.

The set of strings over a finite alphabet Σ is Σ∗, the length of w ∈ Σ∗ is
|w| and ε is the empty string. The set of positive integers is denoted N. The
cardinality of a finite set S is #S.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F ),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is the
transition function, q0 ∈ Q is the start state and F ⊆ Q is the set of accepting
states. The function δ is extended in the usual way as a function Q×Σ∗ → 2Q

and the language recognized by A, L(A), consists of strings w ∈ Σ∗ such that
δ(q0, w) ∩ F �= ∅.

If δ is as above, we denote rel(δ) = {(q, a, p) | p ∈ δ(q, a), q, p ∈ Q, a ∈ Σ}. We
call rel(δ) as the transition relation of A. A transition of A is an element μ =
(q, a, p) ∈ rel(δ). The transition μ is nondeterministic if there exists p′ �= p such
that p′ ∈ δ(q, a) and otherwise μ is deterministic. The NFA A is deterministic
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(a DFA) if all transitions of A are deterministic, this is equivalent to saying
that #δ(q, a) ≤ 1 for all q ∈ Q and a ∈ Σ. Note that we allow DFAs to have
undefined transitions. Unless otherwise mentioned, we assume that any state q
of an NFA A is reachable from the start state and some computation originating
from q reaches a final state.

A computation chain of A from state s1 to s2 is a sequence of transitions
(qi, ai, pi), 1 ≤ i ≤ k, where pi+1 = qi, i = 1, . . . , k − 1, and s1 = q1, s2 = pk. A
cycle of A is a computation chain from state s to the same state s.

Note that we can specify an NFA either as a tuple (Q,Σ, δ, q0, F ) or as
(Q,Σ, rel(δ), q0, F ). In the former notation δ is a function with domain Q × Σ
and when we want to specify the transitions as a subset of Q×Σ ×Q we write
rel(δ). By the size of A we mean the number of states of A, size(A) = #Q.

The minimal size of a DFA or an NFA recognizing a regular language L is
called the (nondeterministic) state complexity of L and denoted, respectively,
sc(L) and nsc(L). Note that we allow DFAs to be incomplete and, consequently,
the deterministic state complexity of L may differ by one from a definition using
complete DFAs. If A = (Q,Σ, δ, q0, F ) is an NFA (respectively, DFA), the triple
(Q,Σ, δ) without the start state and the set of accepting states is called a semi-
NFA (respectively, semi-DFA).

For q ∈ Q and w ∈ Σ∗, the q-computation tree of A on w, TA,q,w, is a finite
tree where the nodes are labeled by elements of Q×(Σ∪{ε, $}). We define TA,q,w

inductively by first setting TA,q,ε to consist of one node labeled by (q, ε). When
w = au, a ∈ Σ, u ∈ Σ∗ and δ(q, a) = ∅ we set TA,q,w to be the singleton tree
where the only node is labeled by (q, $). Then assuming δ(q, a) = {p1, . . . , pm},
m ≥ 1, we define TA,q,w as the tree where the root is labeled by (q, a) and the root
has m children where the subtree rooted at the ith child is TA,pi,u, i = 1, . . . ,m.
For our purposes the order of children of a node is not important and we can
assume that the elements of δ(q, a) are ordered by a fixed but arbitrary linear
order. Note that in TA,q,w every path from the root to a leaf has length at most
|w|. A path may have length less than w because the corresponding computation
of A may become blocked at a node labeled by a pair (p, b) where δ(p, b) = ∅.

The tree TA,q0,w is called the computation tree of A on w and denoted simply
as TA,w. The NFA A accepts w if and only if TA,w contains a leaf labeled by an
element (q, ε), where q ∈ F . Note that a node label (q, ε) can occur in TA,w only
after the corresponding computation branch has consumed the entire string w.

Remark 2.1. We mostly refer to a node of a computation tree of A to be labeled
simply by an element q ∈ Q. This is taken to mean that the node is labeled by
a pair (q, x) where x ∈ Σ ∪ {ε, $} is arbitrary.

To conclude the preliminaries, we recall and introduce a few definitions con-
cerning NFAs for unary languages. The below notion of simple normal form is
from [14] and it is a special case of the Chrobak normal form [3,14]. Note that
simple normal form automata do not recognize all unary regular languages.

Definition 2.1. Let Σ = {a} and let (m1, . . . ,mk) ∈ Nk. An NFA A over Σ is
said to be in (m1, . . . ,mk)-simple normal form if A consists of an initial state
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q0 and k disjoint cycles Ci, where the length of Ci is mi, 1 ≤ i ≤ k. The initial
state q0 is not part of any of the cycles and from q0 there is a transition to one
state of Ci, for each 1 ≤ i ≤ k. An NFA is in k-simple normal form if it is in
(m1, . . . ,mk)-simple normal form for some positive integers m1, . . . ,mk, and it
is in simple normal form if it is in k-simple normal form for some k ≥ 1.

3 Nondeterministic Tree Width

Various ways to measure the nondeterminism in finite automata have been con-
sidered in [6,13,17,19]. The tree width measure was used in [13] under the name
of leaf size.

Definition 3.1. Let A = (Q,Σ, δ, q0, F ) be an NFA and w ∈ Σ∗. The tree
width of A on w, twA(w), is the number of leaves of the tree TA,w. The tree
width of A is defined as tw(A) = sup{twA(w) | w ∈ Σ∗}. We say that A has
finite tree width if tw(A) is finite.

Note that twA(w) is simply the number of all (accepting and non-accepting)
branches in the computation tree of A on w. An NFA in k-simple normal form
has tree width k. In the following, ftw-NFA (respectively, tw(k)-NFA) stands
for a finite tree width NFA (respectively, an NFA having tree width at most k,
k ∈ N).

We will be mainly concerned with the state complexity of NFAs of given finite
tree width and for this purpose define, for a regular language L and k ∈ N∪{∞},

sctwk(L) = inf{size(A) | A is a tw(k)-NFA and L(A) = L}.

Above sctwk(L) is the smallest number states needed by an NFA of tree width
at most k to recognize the language L. In particular, sctw1(L) = sc(L) and
sctw∞(L) = nsc(L).

Definition 3.2. We say that an NFA A has optimal tree width if L(A) is not
recognized by any NFA B where size(B) ≤ size(A) and tw(B) ≤ tw(A) where
one of the inequalities is strict. We say that a regular language L has tree width
k if L has an optimal tw(k)-NFA A such that A has a minimal number of states
among all ftw-NFAs for L.

When A has optimal tree width, sctwtw(A)(L(A)) = size(A). A language L hav-
ing tree width k means, roughly speaking, that an NFA recognizing L can “make
use of” limited nondeterminism of tree width k, that is, the tree width k non-
determinism allows us to reduce the number of states, but any additional finite
nondeterminism would not allow a further reduction of the number of states. If
L has tree width 1 this means any ftw-NFA for L cannot be smaller than the
minimal (incomplete) DFA.

For a given NFA A, the tree width of the language L(A) can be determined
by a brute-force algorithm that checks all NFAs of size less than the size of
the minimal DFA for L(A). The problem of finding the tree width of a regular
language is intractable because it is known that minimizing bounded tree width
NFAs is NP-hard [2,20].
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Lemma 3.1. A regular language L has tree width k (k ≥ 1) iff L has a tw(k)-
NFA with optimal tree width and, for any � > k, L does not have a tw(�)-NFA
with optimal tree width.

3.1 Characterizations of ftw-NFAs

An immediate observation is that if some cycle of an NFA A contains a nonde-
terministic transition, then the tree width of A on words that repeat the cycle
cannot be bounded.

Lemma 3.2. If A is an ftw-NFA, then no cycle of A can contain a nondeter-
ministic transition.

We want to show that the condition of Lemma 3.2 is also sufficient to guaran-
tee that an NFA has finite tree width. For this purpose we establish an upper
bound for the tree width of an NFA where no cycle contains a nondeterministic
transition.

Theorem 3.1. If A is an NFA with n states and no cycle contains a nondeter-
ministic transition, then

tw(A) ≤ 2n−2

From Lemma 3.2 and Theorem 3.1 we get a characterization of finite tree width
NFAs.

Corollary 3.1. An NFA A has finite tree width iff no cycle of A contains a
nondeterministic transition. We can decide in polynomial time whether or not a
given NFA has finite tree width.

The upper bound of Theorem 3.1 is tight as seen in the below example which
gives an n-state NFA having optimal tree width 2n−2.

Example 3.1. Let n ≥ 2, Σ = {a, b} and A = (Q,Σ, δ, 1, {n}) where Q =
{1, . . . , n} and we define for i ∈ {1, . . . , n − 1}, δ(i, a) = {i + 1, i + 2, . . . , n},
δ(i, b) = {i+ 1}, δ(n, a) = δ(n, b) = ∅.

Since L(A)∩b∗ = {bn−1}, in any n-state NFA B = ({1, . . . , n}, Σ, γ, 1, FB) for
the language L(A) there can be only one final state. Without loss of generality,
we can set FB = {n} and γ(i, b) = {i+1}, 1 ≤ i ≤ n− 1. Once the b-transitions
are fixed, we observe that

(∀1 ≤ i < j ≤ n) : bi−1abn−j ∈ L(B) iff j ∈ γ(i, a).

The above means that B must be an isomorphic copy of A and, consequently, A
has optimal tree width. It is easy to calculate that tw(A) = 2n−2. Furthermore,
since A is a minimal NFA for L(A) the tree width of the language L(A) is 2n−2.

An NFA A with finite tree width can be thought to consist of a finite number
of deterministic “components” that are connected by the reachability relation in
an acyclic way. This can be formalized as follows.
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Definition 3.3. LetA = (Q,Σ, rel(δ), q0, F ) beanNFA.LetBi = (Pi, Σ, rel(γi)),
Pi ⊆ Q, 1 ≤ i ≤ k, be a collection of semi-DFAs. We say that the tuple D =
(B1, . . . , Bk) is a deterministic decomposition of A if the sets P1, . . . , Pk form a
partition ofQ, rel(γi) is the restriction of rel(δ) to Pi×Σ×Pi, and every transition
of A of the form (p1, a, p2) ∈ rel(δ), p1, p2 ∈ Pi, a ∈ Σ, 1 ≤ i ≤ k is deterministic.

Note that the above definition says that the transitions of rel(γi) have to be
deterministic as transitions of the original NFA A, which is more restrictive than
just requiring that the transition relation rel(γi) of each Bi is deterministic.

For a decompositionD = (B1, . . . , Bk) we can order the components by setting
Bi <D Bj , i �= j, if some state of Bj is reachable in A from a state of Bi. We
say that the decomposition D = (B1, . . . , Bk) is acyclic if <D is a partial order.

An NFA A where no state q has a nondeterministic transition that is a self-
loop on q has always a trivial deterministic decomposition where each component
consists of a single state. The property of having an acyclic deterministic decom-
position exactly characterizes NFAs having finite tree width.

Theorem 3.2. An NFA A has finite tree width iff A has an acyclic deterministic
decomposition.

3.2 Converting Finite Tree Width NFAs to DFAs

When applying the subset construction to an NFA with tree width k, only sets
of states of size at most k can be reachable. This idea, together with some
refinements, yields the following upper bound:

Lemma 3.3. Let L be a regular language where sctwk(L) = n for some k ≤
n− 1. Then sc(L) ≤ 1 +

∑k
j=1

(
n−1
j

)
.

A k-entry DFA [12,16] (k ≥ 1) has a deterministic transition function but allows
k-initial states. The computation of a k-entry DFA has at most k branches,
however, strictly speaking a k-entry DFA is not a special case of an ftw-NFA
because, following usual conventions, our NFAmodel allows only one initial state.
By using a modification of the worst-case construction from [12] that converts
a k-entry DFA to an ordinary DFA we see that the upper bound of Lemma 3.3
can be reached.

Theorem 3.3. For every 1 ≤ k ≤ n− 1 there exists an n-state NFA An,k such

that tw(An,k) = k and sc(L(An,k)) = 1 +
∑k

j=1

(
n−1
j

)
.

Note that, in general, the finite tree width of an n-state NFA is bounded only
by 2n−2 (Theorem 3.1), however, in cases where the tree width is greater than
the number of states, estimates for the size of an equivalent DFA analogous to
Lemma 3.3 would clearly not be useful.

As a consequence of results and constructions in [6,19] we observe that there
exist regular languages where the unambiguous NFA to ftw-NFA conversion
causes an exponential size blow-up.
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Proposition 3.1. For n ≥ 4, there exists an unambiguous NFA A with n states
such that, for any k ∈ N, sctwk(L(A)) = 2n−1.

Proof. Let LLeung
n , n ≥ 3, be the language having an n-state unambiguous NFA

(UFA) An used in Theorem 1 of [19]. From there we know that any incomplete
DFA for LLeung

n needs 2n − 1 states.

As in Theorem 4.2 of [6] we now define Ln = ($LLeung
n−1 $)∗, n ≥ 4. The language

Ln has an n-state UFA. (It is easy to verify that the NFA constructed as in the
proof of Theorem 4.2 of [6] is unambiguous.)

As in Theorem 4.2 of [6] it is seen that any NFA B with finite branching for the
language Ln has at least 2n−1 states. Note that the construction of Theorem 4.2
of [6] relies only on the size of the minimal DFA for the original regular languages
used to define Ln, and exactly the same construction works when Ln is defined
in terms of LLeung

n−1 . The branching measure of an NFA B, βB, is not the same
as tree width, but it is immediate that any NFA with finite tree width has finite
branching. (The converse does not hold in general.) �

3.3 Lower Bounds for the Size of ftw-NFAs

Recently Björklund and Martens [2] have shown that minimization is NP-hard
for any class of finite automata that contains the so called δNFAs, which are a
restriction of NFAs with tree width 2. Thus, in order to establish lower bounds
for the size of ftw-NFAs we need to rely on ad hoc methods inspired by the
fooling set techniques used for general NFAs [1,4,8,11].

Let S be a finite set. By an (S, k)-family of sets we mean a family C ⊆ 2S

such that all sets in C have cardinality at most k, and any two sets in C are
incomparable as subsets of S.

Lemma 3.4. Let S be a finite set of cardinality n and k ≤ n
2 . If C is an (S, k)-

family, then #C ≤
(
n
k

)
. (Here #C is the number of sets in the family C.)

Let L be a regular language overΣ. We say that a finite set of strings {u1, . . . , ut},
ui ∈ Σ∗, 1 ≤ i ≤ t, is a t-separator set for the language L if

(∀1 ≤ i, j ≤ t, i �= j)(∃z ∈ Σ∗) uiz ∈ L and ujz �∈ L. (1)

Note that the above definition treats (i, j) as an ordered pair, and it is not
sufficient if z ∈ Σ∗ satisfies the corresponding condition where i and j are
interchanged. On the other hand, the condition (1) allows z to depend on the
pair (i, j) and, consequently, for a given regular language we can typically find
a much larger separator set than a fooling set; see Example 3.2.

Lemma 3.5. Suppose that a regular language L has a t-separator set {u1, . . . ,
ut}, t ≥ 1. If L has a tw(k)-NFA A with n states, where k ≤ n

2 , then(
n

k

)
≥ t.
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Proof. Let A = (Q,Σ, δ, q0, F ) be an NFA with #Q = n and tw(A) = k. Define
Pi = δ(q0, ui), i = 1, . . . , t. Since A has tree width k, #Pi ≤ k. Consider 1 ≤
i, j ≤ t, i �= j, and suppose Pi ⊆ Pj . This means that, for any z ∈ Σ∗, uiz ∈ L
implies ujz ∈ L. Thus the sets Pi, i = 1, . . . , t, have to be pairwise incomparable
as subsets of Q and the claim follows from Lemma 3.4. �

Example 3.2. Consider the unary language Lm = {w ∈ a∗ | |w| �≡ 0 (mod m)},
m ≥ 1. The language Lm has a separator set {ε, a, a2, . . . , am−1}. According to
Lemma 3.5, if Lm has a tw(k)-NFA with n states where k ≤ n

2 , we have the
estimation

(
n
k

)
≥ m. This is exponentially better than the lower bound obtained

for the size of (general) NFAs with the bipartite dimension method (Theorem 9
in [8]). Recall that the bipartite dimension method is guaranteed to give at least
as good bounds as (and often better bounds than) the fooling set methods [8,11].

However, also our bound does not coincide with the real lower bound except
in the case k = 1.

Example 3.3. For {m1, . . . ,mk} ⊆ N, k ≥ 1, we define

L{m1,...,mk} = {w ∈ a∗ | (∃1 ≤ j ≤ k) |w| ≡ 0 (mod mj)}. (2)

When m1, . . . ,mk are pairwise relatively prime, {a1, a2, . . . , a
∏k

i=1 mi} is a sepa-

rator set and, consequently, if L{m1,...,mk} has a tw(k)-NFA A where k ≤ size(A)
2 ,

we have (
size(A)

k

)
≥

k∏
i=1

mi.

Again this is not an optimal bound and, in the next section, we will see that under
the above assumptions for any h ≥ k ≥ 2, sctwh(L{m1,...,mk}) = 1 +

∑k
i=1mi.

4 The State Complexity of Union and Intersection

We consider the union and intersection of languages recognized by a tw(k1)-
NFA and a tw(k2)-NFA. For union (respectively, intersection) we give a state
complexity upper bound in terms of a tw(k1+k2)-NFA (respectively, tw(k1 ·k2)-
NFA), and almost matching lower bounds.

Lemma 4.1. For regular languages Li and ki ≥ 1, i = 1, 2,

(i) sctwk1+k2(L1 ∪ L2) ≤ sctwk1(L1) + sctwk2(L2) + 1.
(ii) sctwk1·k2(L1 ∩ L2) ≤ sctwk1(L1) · sctwk2(L2).

Proof. Let Ai = (Qi, Σ, δi, q0,i, Fi) be a tw(ki)-NFA recognizing Li, i = 1, 2.

(i) Without loss of generality we assume that Q1 ∩ Q2 = ∅. We define B =
(P,Σ, γ, p0, FB) where P = Q1 ∪Q2 ∪ {p0}, p0 �∈ Q1 ∪Q2 is a new state,

FB =

{
F1 ∪ F2 if q0,i �∈ Fi, i = 1, 2,
F1 ∪ F2 ∪ {p0} otherwise,



260 A. Palioudakis, K. Salomaa, and S.G. Akl

and for b ∈ Σ, q ∈ Qi, we set γ(q, b) = δi(q, b), i = 1, 2, and δ(p0, b) =
δ1(q0,1, b) ∪ δ2(q0,1, b).

It is sufficient to verify that tw(B) ≤ k1 + k2. Consider w = bw′, where
b ∈ Σ, w ∈ Σ∗. If δi(q0,i, b) = ∅, i = 1, 2, TB,w and TAi,w, i = 1, 2, each are
a singleton tree and we are done. (The same holds in the case when w = ε.)

If δ1(q0,1, b) �= ∅ and δ2(q0,2, b) = ∅, the tree TB,w is obtained from TA1,w

by changing the label of the root.
Finally consider the case where δi(q0,i, b) �= ∅, i = 1, 2. Now the sequence

of immediate subtrees of the root of TB,w consists of the immediate subtrees
of the root of TA1,w and of TA2,w.

1 This means that the number of leaves of
TB,w is the sum of the numbers of leaves of TA1,w and of TA2,w, respectively.

(ii) We define C = (Q1 ×Q2, Σ, γ, (q0,1, q0,2), F1 ×F2) where for b ∈ Σ, qi ∈ Qi,
i = 1, 2, γ((q1, q2), b) = δ1(q1, b)× δ(q2, b).

Again it is sufficent to verify the claimed bound for the tree width:
tw(C) ≤ k1 · k2. We denote the number of leaves of a tree T as #leaves(T ).
We claim that for all w ∈ Σ∗ and qi ∈ Qi, i = 1, 2,

#leaves(TC,(q1,q2),w) ≤ #leaves(TA1,q1,w) ·#leaves(TA2,q2,w). (3)

We prove the claim using induction on the length of w. When w = ε,
TC,(q1,q2),ε, and TAi,qi,ε, i = 1, 2, each are a singleton tree.

Consider then w = bw′, where b ∈ Σ, w ∈ Σ∗. If δi(q1, b) = ∅ or
δi(q2, b) = ∅, TC,(q1,q2),w is a singleton tree and we are done. Hence, without
loss of generality, we can assume δi(qi, b) �= ∅, i = 1, 2. Now the subtrees cor-
responding to the children of the root of TC,(q1,q2),w are the trees TC,(p1,p2),w′ ,
pi ∈ δi(qi, b), i = 1, 2. Thus, by the inductive assumption,

#leaves(TC,(q1,q2),w) =
∑

pi∈δi(qi,b),i=1,2

#leaves(TC,(p1,p2),w′)

≤
∑

pi∈δi(qi,b),i=1,2

#leaves(TA1,p1,w′) ·#leaves(TA2,p2,w′).

Since the number of leaves of TAi,qi,w is equal to
∑

pi∈δi(qi,b)
#leaves

(TAi,pi,w′), 1 ≤ i ≤ 2, we have verified that (3) holds for the string w.

�

The proof of Lemma 4.1 uses the “natural” constructions, respectively, for the
union and intersection of two NFAs. Note that the cross-product of a tw(k1)- and
a tw(k2)-NFA, typically, has tree width considerably less than k1 · k2, however,
as we will see, in the worst case the upper bound of Lemma 4.1 (ii) cannot be
improved, at least not by much.

Our lower bound constructions are based on languages of the form L{m1,...,mk}
considered in Example 3.3. When the integers mi, 1 ≤ i ≤ k, are pairwise

1 Recall that for our purposes the order of children of a node is not important and we
assume that the elements of γ(p0, b) have an arbitrary, but fixed, order.
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relatively prime, from Theorem 2.1 of [14] it follows easily that L{m1,...,mk} has
a minimal NFA in k-simple normal form. We will need a corresponding property
also under slightly less restrictive conditions.

Before establishing lower bounds for the size of ftw-NFAs for the unary lan-
guages (2) we state the following corollary which follows from Lemma 3.2 using
the observation that a unary NFA may exit a cycle only using a nondeterministic
transition.

Corollary 4.1. If A is an ftw-NFA over a unary alphabet, then no cycle C of
A has a transition exiting C and, in particular, no two cycles of A can share
a state. Furthermore, if A has more than one cycle, then the start state of A
cannot be part of any cycle.

Below we will show that, under certain assumptions on the numbers mi, the
language L{m1,...,mk} has a unique minimal ftw-NFA in k-simple normal form.
More generally, from Corollary 4.1 it follows that any unary regular language
has a (not necessarily unique) minimal ftw-NFA that is in Chrobak normal
form [3,14].

We say that a set of integers {m1, . . . ,mk}, mi ≥ 2, 1 ≤ i ≤ k, is pairwise
relatively prime if, for all i �= j, mi and mj do not have any common factor
greater than one. A set of integers P is said to be an independent set of prime
pairs if we can write P = {p1·p2 | pi ∈ Pi, i = 1, 2}, for two sets of prime numbers
P1 and P2 where P1 ∩ P2 = ∅. Note that the elements of an independent set of
prime pairs P are not pairwise relatively prime, however, no element of P is a
multiple of any other element.

Lemma 4.2. Let k ≥ 2 and assume that the set {m1, . . . ,mk}, mi ≥ 2, 1 ≤ i ≤
k, is either a set of independent prime pairs, or a pairwise relatively prime set
that is not {2, 3}. Then the minimal ftw-NFA for L{m1,...,mk} is unique (up to
renaming of states) and it is in (m1, . . . ,mk)-simple form.

Corollary 4.2. Let k ≥ 2. Assume that the set {m1, . . . ,mk}, mi ≥ 2, 1 ≤ i ≤
k, is either an independent set of prime pairs or a pairwise relatively prime set.
Then

sctwk(L{m1,...,mk}) = 1 +
k∑

i=1

mk.

Furthermore, assuming we exclude the case k = 2, {m1,m2} = {2, 3}, the lan-
guage L{m1,...,mk} has tree width k.

Note that if a regular language L has tree width k, the maximum amount of
limited nondeterminism an NFA recognizing L can “make use of” is precisely
k (see Definition 3.2). By relying on Corollary 4.2, in the following lemmas we
give state complexity lower bounds for the union and intersection of ftw-NFAs.

Lemma 4.3. For every ki, ni ∈ N, i = 1, 2, there exist regular languages Li of
tree width ki such that sctwki(Li) ≥ ni and

sctwk1+k2(L1 ∪ L2) ≥ sctwk1(L1) + sctwk2(L2)− 1.
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Furthermore, L1 ∪ L2 has tree width k1 + k2.

Proof. First consider the case k1, k2 ≥ 2. Choose a set of pairwise relatively
prime integers {m1,i,m2,j | m1,i,m2,j ≥ 2, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2}, where∑kh

i=1mh,i ≥ nh, h = 1, 2. Define Lh = L{mh,1,...,mh,kh
}, h = 1, 2. Directly from

the definition (2) it follows that

L1 ∪ L2 = L{m1,1,...,m1,k1
,m2,1,...,m2,k2

}.

Immediately from Corollary 4.2, we get that

sctwk1+k2(L1 ∪ L2) = sctwk1(L1) + sctwk2(L2)− 1, (4)

and Li has tree width ki, i = 1, 2, as well as, L1 ∪ L2 has tree width k1 + k2.
When k1 ≥ 2 and k2 = 1, the construction is the same but instead of (4) we

get sctwk1+1(L1 ∪ L2) = sctwk1(L1) + sctw1(L2).
Finally, with k1 = k2 = 1, by choosing two relatively prime numbers mi ≥ ni,

{m1,m2} �= {2, 3}, Li = L{mi}, i = 1, 2, we have sctw2(L1 ∪ L2) = sctw1(L1) +
sctw1(L2)+1, and the language L1∪L2 has tree width 2. Note that {m1,m2} =
{2, 3} is the one exception in Lemma 4.2, and the tree width of L{2,3} would be
one. �

Above note that since L1 ∪ L2 has tree width k1 + k2, it follows that for any
k < k1 + k2, sctwk(L1 ∪L2) is strictly larger than sctwk1(L1) + sctwk2(L2)− 1.

Lemma 4.4. For every ki, ni ∈ N, i = 1, 2, there exist regular languages Li of
tree width ki such that sctwki(Li) ≥ ni and

sctwk1·k2(L1 ∩ L2) ≥ (sctwk1(L1)− 1) · (sctwk2(L2)− 1) + 1.

Furthermore, L1 ∩ L2 has tree width k1 · k2.

Proof. We begin by considering the case k1, k2 ≥ 2. Let pi,j , 1 ≤ j ≤ ki, 1 ≤ i ≤
2, be distinct prime numbers, where

∑ki

j=1 pi,j ≥ ni, i = 1, 2.
We define Li = L{pi,1,...,pi,ki

}, i = 1, 2. By Corollary 4.2 we know that

sctwki(Li) = 1 +

ki∑
j=1

pi,j , 1 ≤ i ≤ 2, (5)

where the tree width of Li is ki. Define P (k1, k2) = {p1,j1 · p2,j2 | 1 ≤ ji ≤
ki, i = 1, 2}. Here P (k1, k2) is an independent set of prime pairs. Also we note
that L1 ∩ L2 = LP (k1,k2). Now, again using Corollary 4.2, the tree width of
L1 ∩ L2 is #P (k1, k2) = k1 · k2 and

sctwk1·k2(L1 ∩ L2) = 1 +
∑

1≤j1≤k1,1≤j2≤k2

p1,j1 · p2,j2 .

Comparing this with (5) we get that the inequality in the claim of the lemma
holds as an equality.
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In the case where k1 ≥ 2 and k2 = 1, instead of (5), we have sctw1(L2) = p2,1
and, using Corollary 4.2, we get

sctwk1(L1 ∩ L2) = (sctwk1(L1)− 1) · sctw1(L2) + 1.

Finally, when k1 = k2 = 1, the inequality in the statement of the lemma holds
due to the well-known lower bound for the deterministic state complexity of
intersection. �

According to Lemmas 4.3 and 4.4 the lower bound can, corresponding to any
tree widths ki, i = 1, 2, be reached with automata of arbitrarily large sizes. In
particular, in the case of intersection, it is not clear whether the construction
could be modified to always allow us to choose sctwki(Li) to be exactly ni.

The lower bound for union differs only by a constant 2 from the upper bound
in Lemma 4.1 and for intersection the gap is larger. We conjecture that the
bounds of Lemma 4.1 are optimal for the NFA model (used here and in most of
the literature) that allows only a single initial state. However, we might need to
use NFAs over a nonunary alphabet to get exactly matching lower bounds.

Remark 4.1. For an NFA model that allows multiple initial states, the upper
bound (of Lemma 4.1) for union would be changed to be sctwk1(L1)+sctwk2(L2),
while the upper bound for intersection would stay the same. For NFAs with
multiple initial states, the lower bound constructions of the proof of Lemma 4.3
and 4.4 will exactly match the corresponding state complexity upper bounds
that are modified from Lemma 4.1 as described above.

4.1 Other Language Operations

A general NFA recognizing the concatenation of an n1 and an n2 state NFA needs
only n1+n2 states [10]. For ftw-NFAs the situation is not equally simple because,
with only limited nondeterminism available, the automaton is not able to guess
when a string belonging to the first language ends. The following upper bound
is inspired by the construction originally used for deterministic state complexity
of concatenation [26,27]. Note however that, with k = 1, the result of Lemma 4.5
does not coincide with the deterministic state complexity of concatenation. This
is because a tw(1)-NFA is an incomplete DFA, and the well-known deterministic
state complexity results [26,27] are stated in terms of complete DFAs.

Lemma 4.5. For regular languages Li, i = 1, 2, and k ≥ 1,

sctwk(L1 · L2) ≤ sctwk(L1) · 2nsc(L2) + 2nsc(L2)−1 − 1.

The bound of Lemma 4.5 is stated in terms of the nondeterministic state com-
plexity of the second language L2 because the construction used in the proof
would result in the same bound even if L2 were recognized by an ftw-NFA. We
do not have a lower bound construction that would be close to the upper bound
of Lemma 4.5 for general values k ≥ 2.
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Determining the worst-case state complexity of operations such as concatena-
tion and Kleene-star for ftw-NFAs remains open. For the Kleene-star operation
it seems that, in the worst-case, an ftw-NFA cannot be smaller than a DFA.

Note that using constructions inspired by [6], similar to the one used here in
the proof of Proposition 3.1, it is, in fact, possible to construct regular languages
L such that any ftw-NFA for L∗ cannot be smaller than a DFA. However, the
construction delimits the strings of L by end-markers, which makes it seem
unsuitable to be used in worst-case constructions for the state complexity of
Kleene-star (or concatenation) where we, roughly speaking, need to make it
hard for the NFA to detect the end of a substring belonging to L.

5 Conclusion and Open Problems

The results of the previous section have barely scratched the surface of oper-
ational state complexity of ftw-NFAs and most questions in this area remain
open. Below we mention some other possible future research directions.

Hromkovič et al. [13] have given upper and lower bounds for the tree width of
an NFA A in terms of the ambiguity of A and the number of advice bits required
by A. (The tree width is called “leaf size” in [13].) The guessing measure of
A [6] is related to the advice measure, except that for a given input it considers
the computation of A using the least (as opposed to the largest) number of
advice bits. Also, Goldstine et al. [7] have studied the relationships between the
ambiguity of an NFA A and the amount of nondeterminism used by A.

In the context of state complexity, similar questions could be asked for regular
languages, as opposed to individual NFAs. For example, it would be interesting
to know, for a given regular language L, how the optimal sizes of an NFA rec-
ognizing L, respectively, with advice measure k and with tree width k′ relate
to each other. Similar questions can be asked also for other combinations of the
complexity measures. Note that from Proposition 3.1 we know that there exist
regular languages for which an unambiguous NFA can be exponentially smaller
than any ftw-NFA. On the other hand, the state complexity of converting an
ftw-NFA to an unambiguous NFA remains, to the best of our knowledge, open.
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Abstract. We show that deterministic finite automata equipped with
k two-way heads are equivalent to deterministic machines with a single
two-way input head and k− 1 linearly bounded counters if the accepted
language is strictly bounded, i.e., a subset of a∗

1a
∗
2 · · · a∗

m for a fixed se-
quence of symbols a1, a2, . . . , am. Then we investigate linear speed-up for
counter machines. Lower and upper time bounds for concrete recognition
problems are shown, implying that in general linear speed-up does not
hold for counter machines. For bounded languages we develop a technique
for speeding up computations by any constant factor at the expense of
adding a fixed number of counters.

1 Introduction

The computational model investigated in the present work is the two-way counter
machine as defined in [4]. Recently, the power of this model has been compared
to quantum automata and probabilistic automata [14,17].

We will show that bounded counters and heads are equally powerful for finite
deterministic devices, provided the languages under consideration are strictly
bounded. By equally powerful we mean that up to a single head each two-
way input head of a deterministic finite machine can be simulated by a counter
bounded by the input length and vice versa. The condition that the input is
bounded cannot be removed in general, since it is known that deterministic
finite two-way two-head automata are more powerful than deterministic two-
way one counter machines if the input is not bounded [2]. The special case of
equivalence between deterministic one counter machines and two-head automata
over a single letter alphabet has been shown with the help of a two-dimensional
automata model as an intermediate step in [10], see also [11].

Adding resources to a computational model should intuitively increase its
power. This is true in the case of time and space hierarchies for Turing machines,
see the text book [15, Chapter 9]. The language

{x0# · · ·#xk | k ≥ 0, xj ∈ {0, 1}∗ for 0 ≤ j ≤ k, for some 1 ≤ i ≤ k xi = x0}

from [2] cited above is easily acceptable with two counters. Notice that the
language formalizes a simplified string matching problem where the possible
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positions of string x0 are marked. If two counters are available, then one counter
can keep track of the symbols being compared while the other counter stores
the number j of the string xj under consideration. The input head travels back
and forth between x0 and xj . Thus this language shows that two counters are
more powerful than one. A further growing number of unbounded counters does
however not increase the power of these machines due to the classical result
of Minsky [8], showing that machines with two counters are universal. Thus
the formally defined hierarchy of language classes accepted by machines with a
growing number of counters collapses to the second level. A tight hierarchy is
obtained if the counters are linearly bounded [9] or if the machines are working
in real-time [4, Theorem 5.1]. In the latter case the machines are allowed to make
one step per input symbol and there is obviously no difference in accepting power
between one-way and two-way access to the input. If we restrict the input to be
read one-way (sometimes called on-line [5]), a hierarchy in exponential time can
be shown [12].

The starting point of our investigation of time hierarchies is Theorem 1.3 of
[4], where the authors show that the language of marked binary palindromes has
time complexity Θ(n2/ logn) on two-way counter machines. By techniques from
descriptional complexity [7] for the lower bounds we are able to separate classes
of machines with different numbers of counters. A main motivation for this work
is of course a fundamental interest in the way the capabilities of a computational
device influence its power.

Regarding time bounded computations, we present an algorithm for the recog-
nition of marked palindromes working with only two counters, while the upper
bound outlined in the proof of [4, Theorem 1.3] requires at least three counters
(one for storing log2m and two for encoding portions of the input). We show
that counter machines lack general linear speed-up. Other models of computa-
tion with this property include Turing machines with tree storages [6] and Turing
machines with a fixed alphabet and a fixed number of tapes [1]. By adapting the
witness language, we disprove a claim that these machines satisfy speed-up for
polynomial time bounds [5]. Finally we present a class of languages where linear
speed-up can be achieved by adding a fixed number of counters.

2 Definitions

A language is bounded if it is a subset of w∗
1w

∗
2 · · ·w∗

m for a fixed sequence of
words w1, w2 . . . , wm (which are not necessarily distinct). We call w∗

1w
∗
2 · · ·w∗

m

the bound of the language. A language is strictly bounded if it is a subset of
a∗1a

∗
2 · · · a∗m for pairwise distinct symbols a1, a2, . . . , am. A maximal sequence of

symbols ai in the input will be called a block.1

1 As pointed out by one of the referees, strictly bounded languages have been defined
without requiring symbols from non-adjacent blocks to be distinct. Our constructions
can be adapted to this more general definition by keeping the information which
block is read by the input head in the finite control.
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Formal definitions of variants of counter machines can be found in [4]. We only
point out a few essential features of the models. The main models of computation
investigated here are the k-head automaton, the bounded counter machine with
k counters, and the register machine with k bounded registers, cf. [9]. The two
former types of automata have read-only input tapes bordered by end-markers.
Therefore on an input of length n there are n + 2 different positions that can
be read. The k-head automaton is equipped with k two-way heads that may
move independently on the input tape and transmit the symbols read to the
finite control. Note that informally two heads of the basic model cannot see
each other, i.e., the machine has no way of finding out that they happen to be
reading the same input square. Heads with the capability of “seeing” each others
are called sensing.

The bounded counter machine is equipped with a single two-way head and k
counters that can count up to the input length. The operations it can perform on
the counters are increment, decrement, and zero-test. The machines start their
operation with all heads next to the left end-marker (on the first input symbol
if the input is not empty) and all counters set to zero. Acceptance is by final
state and can occur with the input head at any position.

A register machine with k registers receives an input number in its first regis-
ter, all other registers are initially zero. The finite control of a register machine
can increment and decrement registers or test them for being zero. Notice that
in contrast to the models with one or more input heads, a register machine can
erase its input.

We compare register machines with the other types of machines by identifying
nonnegative integers and strings over a single letter alphabet of a corresponding
length. All machines have deterministic and nondeterministic variants and accept
by entering a final state.

For machines with a single input-head, the sequence of states the machine
enters when the head moves across the border between two adjacent symbols, is
called the crossing sequence at this position.

The set of marked palindromes over a binary alphabet is L = {x$xR | x ∈
{0, 1}∗}, where xR denotes the reversal of x (in [4] the notation xT is used for
the reversal of x).

With the restriction that at least approximately half of the input is filled by
zeros, we obtain

L′ = {x0|x|$0|x|xR | x ∈ {0, 1}∗}.
The central portion of the strings will be called the desert and L′ the language
of marked palindromes with desert. A further restriction to only a logarithmic
information content leads to the family

Lm = {x02|x|/m−|x|$02
|x|/m−|x|xR | x ∈ {0, 1}∗}

for m ≥ 1.
The languages introduced will separate classes of languages accepted by dif-

ferent computational models and thus serve as witnesses for their difference
in power. The family Lm will allow us to disprove a claimed speed-up in linear
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time. This would not be possible with the more natural languages based on palin-
dromes, since their optimum recognition time is between linear and quadratic.

In our proofs of lower bounds we make use of the concept of Kolmogorov
Complexity [7]. The descriptional complexity of a string is measured in terms
of the minimum size of programs for a universal computational model, e.g., a
universal Turing machine generating the string. A key fact is that for every
length, at least one incompressible string exists that cannot be generated by a
program shorter than the string itself.

3 Equivalence of Heads and Counters for Deterministic
Machines

In order to simplify the presentation we assume below without loss of generality
that a multi-head automaton moves exactly one head in every step. Suppose
a multi-head automaton operates on a word from a strictly bounded language.
We call a step in which a head passes from one block of identical symbols to a
neighboring block or an end-marker an event. The head moved in this step is
said to cause the event.

Lemma 1. Let the input of a deterministic multi-head automaton be strictly
bounded. It is possible to determine whether a head will cause the next event
(under the assumption that no other head does) by inspecting an input segment
of fixed length around this head independently of the input size. If it can cause
the next event it will also be determined at which boundary of the scanned block
it will happen.

Proof. Let the automaton have r internal states. If the head moves to a square at
least r positions away from its initial position within the same block before the
next event, then some state must have been repeated (since all other heads keep
reading the same symbols) and the automaton, receiving the same information
from its heads while no event occurs, will continue to work in a cycle until a head
causes an event. Therefore it suffices to simulate the machine on a segment of
2r− 1 symbols under and around the head under consideration (or less symbols
if the segment exceeds the boundaries of the input tape). We assume that no
other head causes the next event, therefore at most 2r2 − r different partial
configurations consisting of state, symbols read by the heads and the position
on the segment are possible before one of the following happens:

– The head leaves the current block causing an event.
– The head leaves the segment around the initial position of the head.
– The automaton gets into a loop repeating partial configurations within the

segment.

In the two former cases the boundary at which the next event is possibly caused
by the head under consideration is easily determined. In the first case the event
obviously occurs, since a different symbol is read by the head. In the second case
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a state has been repeated while the head under consideration has moved and all
input symbols read have been equal (otherwise there would have been an event).
Therefore the head will continue to move towards one of the boundaries until an
event occurs. In the latter case the head cannot cause the next event. &"
Theorem 1. Deterministic multi-head automata with k two-way heads and de-
terministic bounded counter machines with k − 1 counters are equivalent over
strictly bounded languages.

Proof. Any bounded counter machine with k−1 counters can easily be simulated
by a k-head automaton, independently of the structure of the input string. The
multi-head automaton simulates the input head of the counter machine with one
of its heads and encodes the values stored by the counters as the distances of
the remaining head positions from the left end-marker.

For the converse direction we will describe the simulation of a deterministic
multi-head automatonM by a deterministic bounded counter machine C and call
C’s single input head its pointer, thus avoiding some ambiguities. The counters
and the pointer of C are assigned to the heads of M , this assignment varies
during the simulation.

The counters will store distances between head positions and boundaries of
blocks of the input, where distances to left or right boundaries may occur in
the course of the simulation. The finite amount of information consisting of
the assignment and the type of distance for each counter is stored in C’s finite
control. Depending on the type of distance stored for a head, movements of M ’s
heads are translated into the corresponding increment and decrement operations.
If a distance to a left boundary is stored, a left movement causes a decrement
and a right movement an increment operation on the counter. For distances to
a right boundary the operations are reversed.

We divide the computation of the multi-head automaton M into intervals.
Each interval starts with a configuration in which at least one head is next to a
boundary (i.e., on one of the two positions left or right of the boundary between
blocks), one of these heads being represented by C’s pointer. Notice that the
initial configuration satisfies this requirement. Each interval except the last one
ends when the next event occurs. After this event the machine is again in a
configuration suitable for a new interval.

Counter machine C always updates the symbols read by the heads of M (ini-
tially the first input symbol or the right end-marker) and keeps this information
in its finite control. A counter assigned to a head encodes the number of symbols
within the block that are to the left resp. right of the head position. The counter
machine also maintains the information which of these two numbers is stored.

We start our description of the algorithm that C executes in a configuration
with the property that at least one head ofM is next to a boundary. One of these
heads is represented by the single pointer of C. First C moves its pointer to every
block that is read by some head of M . It can determine these blocks uniquely
from the symbols stored in the finite control. It moves its pointer next to the
boundary that is indicated by the type of distance stored on the counter assigned
to the head under consideration. While the counter is not zero it decrements the
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counter and moves the pointer towards the head position. Then it determines
whether this head could cause the next event, provided that no other head
does, by applying Lemma 1. For this purpose the pointer reads the surrounding
segment of fixed length without losing the head position. Then the test is carried
out in C’s finite control.

Suppose the head could cause the next event at some boundary. Then C
updates the contents of the counter to reflect the distance of M ’s head from
that boundary. If the block has the form axi

i and the head is on position n ≥ 1
in this block, then the counter machine moves its pointer towards the boundary
where the event possibly occurs and measures the distance with the help of
the counter. Thus C updates the contents of the counter with either n − 1 or
xi − n, respectively, depending on whether the event can occur at the left or
right boundary. If no event can be caused by the head currently considered, one
of the distances is stored, say to the left boundary.

These operations are carried out for every head. Finally C moves its pointer
back to the initial position, which is possible since it is next to a boundary. Then
it starts to simulate M step by step, translating head movements into counter
operations according to the distance represented by the counter contents. If M
gets into an accepting state, C accepts. If the pointer leaves its block the next
interval starts. If a counter is about to be decremented from zero this operation
is not carried out. Instead the current pointer position is recorded in this counter
and the roles of pointer and counter are interchanged. The symbols read by the
heads that pointer and counter are now assigned to, as well as the internal state
of M are updated. This information can clearly be kept in C’s finite control. A
new interval starts.

The initial configuration of C has all counters set to zero with the pointer and
all simulated heads reading the first input symbol. The assignment of heads to
counters is arbitrary, all counters store the distance to the left boundary. &"
Remark 1. One of the referees asked why the equivalence is not stated for the
general bounded language case. The difficulty in adapting the proof is, that
the detection of borders of blocks in the general case is more difficult than
suggested by the definition. If the bound is a∗(ba)∗b∗(ab)∗ (with w1 = a, w2 = ba,
w3 = b, and w4 = ab), then strings of the form (ab)i with i ≥ 1 can be written
(ab)i = w1w

i−1
2 w3 = wi

4. In contrast (ab)ib = w1w
i−1
2 w2

3 is unique and no finite
look-ahead suffices for a distinction of the cases when parsing a prefix of the
input.

The equivalence of heads and counters implies that the intermediate concept of
simple heads — two-way heads that cannot distinguish different input symbols —
also coincides in power with counters over strictly bounded languages. It is open
whether the analogous equivalence holds over arbitrary input or, as conjectured
in [10,11], simple heads are more powerful than counters. 2 Finding a candidate

2 The n-bounded counters of [10,16] can count from 0 up to n and can be tested for
these values. They are easily seen to be equivalent to simple heads. The class of
deterministic two-way machines equipped with k such counters is denoted C(k) in
[10,16], while machines with k unbounded counters are denoted by D(k).
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for the separation even of one simple head from a counter seems to be difficult.
In recognizing their language L4 = {ww | w ∈ {0, 1}∗} the full power of a simple
head was used in [16], but this is not necessary. A counter machine without the
the ability to compare its counter to the input length can first check that the
input contains an even number of symbols. Starting with the first symbol it then
stores the distance of the current symbol to the left end-marker on the counter.
Sweeping its head over the entire input it increments the counter in every second
step and thus computes the offset of the corresponding symbol, moves its head
to this position and compares the symbols. Then it reverses the computation
to return to the initial position and moves its head to the next symbol. If all
corresponding symbols are equal it accepts.

Finally we compare the power of register machines and multi-head automata
over a single letter alphabet. For the simulation we will identify lengths of input
strings and input numbers. In Lemma 5 of [9] a simulation of k-head automata
over a single letter alphabet by k+ 1 register machines is given. The simulation
is rather specialized, since it applies only to subsets of words that have a length
which is a power of two. We will generalize this simulation to arbitrary languages
over a single letter alphabet.

Theorem 2. Every deterministic (nondeterministic) k-head automaton over a
single letter alphabet can be simulated by a deterministic (nondeterministic) k+1
register machine. The heads of the automata being simulated may even be sensing
(they can see each others).

Proof. First we normalize multi-head automata that can detect heads scanning
the same square such that the heads appear in a fixed left-to-right sequence
on the tape (if some heads are on the same square we allow any sequence,
which includes this fixed one). This is easily achieved because the automata can
internally switch the roles of two heads which are about to be transposed.

The register machine simulating a k-head automaton with the help of k + 1
registers stores in its registers the distances between neighboring heads or the
end-marker, where the distance is the number of steps to the right a head would
have to carry out in order to reach the next head or end-marker. Register 1
represents the distance of the last head to the right end-marker. Whenever a
head moves the register machine updates the two related distances. A small
technical problem is the distance to the left end-marker, which formally should
be −1 in the initial configuration. The register machine stores the information
whether the left-most heads scan the left end-marker in its finite control. In this
way all distances can be bounded by the input length. &"

4 Time-Bounds for Counter Machines

The purpose of this section is to establish lower and upper time-bounds on
counter machines for concrete recognition problems.
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Theorem 3. The recognition of the language L′ of marked palindromes with
desert requires

n2 − 16n log2 n− dn

8(log2 n+ 2 log2 s+ 1)

steps for input strings of length n on 1-counter machines and

n2 − 16n log2 n− dn

8(2k log2 n+ log2 s)

steps on k-counter machines in the worst case and for n sufficiently large, where
s and d are constants depending on the specific counter machine.

Proof. LetM be a 1-counter machine with s ≥ 2 states accepting L′ and let x be
an incompressible string with |x| = m ≥ 1. Consider the accepting computation
of M on x0|x|$0|x|xR and choose position i adjacent to or within the central
portion 0|x|$0|x| with a crossing sequence c having � entries of minimum length.
Notice that for 1-counter machines the counter is bounded from above by s(n+
2) < 2sn, since n ≥ 2m+ 1.

String x can be reconstructed from the following information:

– A description of M (O(1) bits).
– A self-delimiting encoding of the length of x (2 log2 n bits).
– Position i of c (log2 n bits).
– Length � of c (log2(4s

2n) bits).
– Crossing sequence c recording the counter contents and the state M enters

when crossing position i (�(log2 n+ 2 log2 s+ 1) bits).
– A formalized description of the reconstruction procedure outlined below

(O(1) bits).

For reconstructing x from the above data, a simulator sets up a section of length
|x| followed by all symbols (0 or $) up to position i. Then the simulator cycles
through all strings y of length |x| and simulates M step by step. Whenever
position i is reached, it is checked that the current entry of the crossing sequence
matches state and counter contents. If not, the current y is discarded and the
next string is set up. If it matches, the simulation continues from state and
counter contents of the next entry of the crossing sequence. If M accepts, the
encoded x has been found and the simulation terminates.

Since x is incompressible, for some constant d compensating the O(1) contri-
butions we must have:

|x| = (n− 1)/4 ≤ �(log2 n+ 2 log2 s+ 1) + 4 log2 n+ d/4− 1/4

and thus

� ≥ n− 16 log2 n− d

4(log2 n+ 2 log2 s+ 1)
.

There are (n − 1)/2 + 2 ≥ n/2 positions of crossing sequences with length at
least �, thus we get

T (n) ≥ n2 − 16n log2 n− dn

8(log2 n+ 2 log2 s+ 1)
.
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For machines with k ≥ 2 counters we bound the counter contents by the coarse
upper bound n2 (since the asymptotical bound grows more slowly, this bound
suffices). This increases the bound on the length of the encoding of crossing
sequences to �(2k log2 n+ log2 s) bits. The time bound becomes:

T (n) ≥ n2 − 16n log2 n− dn

8(2k log2 n+ log2 s)
.

&"

Next we present an upper bound for the full language L and give an algorithm
that uses only two counters in comparison to at least three in [4]. We conjecture
that this cannot be reduced to one counter for subquadratic algorithms.

Theorem 4. Language L of marked palindromes can be accepted in O(n2/ logn)
steps by a two-counter machine.

Proof. We describe informally the work of a machine M accepting L on an input
of length n ≥ 1. The idea is to encode segments of length log2 n and iteratively
compare segment by segment.

First M scans the input and counts the symbols before the $ (if no $ is found,
M rejects). After the $ the counter is decremented and the input is rejected, if
zero is not reached on the right end-marker or a second $ is encountered. The
first scan takes n steps if M starts on the leftmost input-symbol as defined in
[4].

First M puts 1 on counter 1, repeatedly reads a symbol, doubles the counter
contents (exchanging roles for each bit read), and adds 1 if the symbol read was
1. Notice that after such a doubling one of the counter contents is zero. Then M
makes excursions to the left and to the right counting up on the empty counter
and down on the counter holding the encoding until the latter counter becomes
empty or $ resp. an end-marker is reached. The net effect is an (attempted)
subtraction of n/2 from the encoding. If the counter becomes zero, the initial
encoding was less than n/2. After each of the excursions, the other counter is
used for returning to the initial position and the encoding is restored. If the
encoding exceeds n/2, the process stops and the segment is compared to the
corresponding portion to the right of $. Using the empty counter, M moves to
the corresponding portion and in a symmetrical way as for the encoding decodes
the segment. Since the encoding has a 1 as its most significant bit, no excursions
are necessary. In order to return to the last position in the segment, M repeats
the encoding process. Then it continues with the next segment. The iterations
stop if the marker $ is reached.

For the time analysis we omit constant and linear contributions to the number
of steps, these are accounted for by an appropriately chosen constant factor of
the leading term. The initial scan is clearly linear. By the doubling procedure
the amortized cost of encoding and decoding is linear per segment. Notice that
the excusions are aborted if the counter holding the encoding is empty and thus
also the excursions have linear complexity per segment. Since the number of
segments is O(n/ logn), the bound follows. &"
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Theorem 5. For k-counter machines with fixed k ≥ 2 accepting L in O(n2/
logn) steps there is no linear speed-up.

Proof. The lower bounds for a subset of L in Theorem 3 carry over to the full
language, since running times on input strings from the subset are also under
consideration for time bounds on L. These lower bounds show that the algorithm
from Theorem 4 cannot be accelerated by an arbitrary factor. &"

Remark 2. By adding counters and encoding larger segments of the input a
speed-up for the recognition of L is possible.

We now adapt the witness language to the bounds considered in [5, p. 273]. There
speed-up results for deterministic and nondeterministic two-way machines with
r counters and time bounds of the form pnk with p > 1 and k ≥ 1 are stated. No
formal proofs are given, but the preceding section contains a reference to [4]. We
note here that the speed-up results in [4, Section 5.2] are based on Theorem 1.1
and 1.2 of [4] , which appear before the definition of two-way machines and
therefore applys to one-way models only.

In the special case of linear time bounds we will disprove the claimed speed-
up. For at least quadratic bounds the technique does not apply, since the type
of languages considered can be accepted in quadratic time comparing bit by bit
and constant speed-up by forming blocks of constant size can clearly be achieved.
Whether a general linear speed-up is possible is open, since there seems to be
no efficient way to compress the contents of the input tape.

Theorem 6. The recognition of the language Lm requires (m/13)n steps on
4-counter machines in the worst case and for n sufficiently large.

Proof. The proof is adapted from the one given for Theorem 3 and we only
describe the differences.

We assume |x| > m log2 |x| in the following. Since the part x is now only a
logarithmic portion of the input, 2 log2 log2 n bits suffice for encoding the length.
The time bound is the linear function pn, therefore the crossing sequence can be
described in �(4(log2 n+ log2 p) + log2 s) bits.

For an incompressible x we obtain:

m log2 n− 2m ≤ |x| = m log2((n− 1)/2)

≤ �(4(log2 n+ log2 p) + log2 s) + 2 log2 n+ d

= �(6 log2 n) + d′

with constants d, d′ and � ≥ m/6− o(1). Since the desert is at least n/2 symbols
long for |x| > m log2 |x| we get the time bound T (n) ≥ (m/12)n− o(n). &"

We now have to show that there is a linear recognition algorithm for Lm.

Theorem 7. The language Lm can be accepted in (2m+ 3)n+ o(n) steps by a
4-counter machine.
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Proof. In a first left-to-right scan, an acceptorMm for Lm determines the length
of the part of the input before the $, compares it to the part after $ and at the
same time counts that length again in another counter. By repeatedly dividing
by two, it computes |x|/m in at most n steps and checks in a right-to left scan,
whether the middle portion of the input contains only 0’s. While doing so, Mm

preserves |x|/m and computes 2|x|/m− |x| for checking the left half of the input.
Then Mm starts to encode blocks of |x|/2m bits on two counters while using

the other two counters for checking the length of the block. Since |x| ≤ m log2 n,
the encoding can be done in O(

√
n) steps. Then Mm moves its input head to

the other half of the input, decodes the stored information, and contiues with
the next iteration. The number of 2m iterations of n + o(n) steps each can be
counted in the finite control. &"

As an example take L39, which can be accepted in 82n steps by Theorem 7 for
sufficiently large n, but a linear speed-up to 2n is impossible by Theorem 6.

5 Speed-Up for Counter Machines on Bounded Input

In Section 4 we have shown that linear speed-up for certain recognition problems
on counter machines can only be achieved by adding counters. If the input is
compressible, the situation is different and a fixed number of counters depending
on the structure of the language suffices for speeding up by any constant factor.

We will apply the classical result of Fine and Wilf on periodicity of sequences:

Theorem 8 ([3]). Let (fn)n≥0 and (gn)n≥0 be two periodic sequences of period
h and k, respectively. If fn = gn for h+ k − gcd(h, k) consecutive integers, then
fn = gn for all n.

Theorem 9. For every k-counter machine accepting a bounded language with
m blocks and operating in time t(n) there is an equivalent counter machine with
k +m counters operating in time n+ ct(n) for any constant c > 0.

Proof. The strategy is to encode the input of a counter machine M with k
counters on m counters of a simulator M ′ in a first stage and simulate the two-
way machine M with speed-up using the method suitable for one-way machines
from the proofs of Theorems 1.1, 1.2, and 5.2 of [4] (the speed-up is stated in
Theorem 5.2, but the compression technique is sketched in the proofs of the
other results) .

For nondeterministic machines the encoding can be based on guessing the
distribution of input segments on blocks. We describe in the following a method
that works in the deterministiccase as well.

Let the accepted language be a subset of w∗
1w

∗
2 · · ·w∗

m. Note that in general the
exponents k1, . . . , km of w1, . . . , wm for a given input are not easily recognizable,
since the borders between the factors might not be evident. We will show that
an encoding of the input is nevertheless possible.
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The encoding of the input will work in stages. At the end of stage i the
encoding covers at least the first i blocks. Let μ = max{|wj | | 1 ≤ j ≤ m}. At
the start of stage i simulator M ′ reads 2μ additional input symbols if possible
(if the end of the input is reached, the suffix is recorded in the finite control).
Machine M ′ records this string y in the finite control. Then for each conjugate
vu of wi = uv the input segment y is compared to a prefix of length 2μ of (vu)ω .
If no match is found, the segment y and its position is stored in the finite control
and the next stage starts. If a match to some vu is found, M ′ assigns a counter
to this vu, stores the number of copies of vu within y (including a trailing prefix
of vu if necessary) are recorded in the finite control, and then M ′ continues to
count the number of copies of vu found in the input until the end of the input is
reached or the next |vu| symbols do not match vu. These |vu| symbols are stored
in the finite control. The process ends when the input is exhausted. Then M ′

has stored an encoding of the input, which can be recovered by concatenating
the segments stored in the finite control and the copies of the conjugates of the
wi.

We now argue that at the end of stage i the encoding has reached the end of
block i. Initially the claim holds vacuously. Suppose by induction that the claim
holds for stage i − 1. The next 2μ symbols are beyond block i − 1 and if they
do not match a power of a conjugate, then the string is not embedded into a
block. Thus it extends over the end of block i and the claim holds. Otherwise
a match between some vu and y is found. String y is a factor of some wω

j and
by the Fine and Wilf Result (Theorem 8) both are powers of the same z since
2μ ≥ h + k − gcd(h, k) with h = |vu| and k = |wj |. Therefore M ′ is able to
encode all of the copies of wj on the counter. Notice that vu is not necessarily a
conjugate of wj . Thus the claim also holds in this case.

Since each stage requires at most one counter, the m additional counters
suffice.

After encoding the input, the two-way input-head of M is simulated by M ′

with the help of m counters and its input-head, which is used as an initially
empty counter measuring the distance to the right end-marker. Whenever the
simulated head enters a block i, the simulator starts to decrement the corre-
sponding counter and increment a counter available (since it has just been zero).
The input head is simulated on wi, where the position of the input head position
modulo |wi| is kept in the finite control of M ′. Also the assignment of counters
to blocks is dynamic and stored in the finite control.

Now M ′ is replaced by M ′′ with compressed counter contents and operating
with speed-up according to the proof of Theorem 5.2 from [4]. For completeness
we include a sketch here. In order to obtain a compression by a factor c, a
counter value m is split into a portion r < 2c stored in the finite control and
m′ = (m − r)//c stored on a counter. A decrement operation on the counter is
applied to r if r > 0, otherwise m′ is decremented and r is set to c− 1. Similarly
an increment operation is applied to r if r < 2c, otherwise m′ is incremented
and r is set to c. Notice that at least another c operations are carried out before
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the next update on m′. Finally c consecutive operations are combined into a
“macro” step. &"

6 Discussion

The results presented have some technical consequences, that we outline in this
section. Special cases of strictly bounded languages are languages over a single
letter alphabet. Our simulation of heads by counters thus eliminates the need
for hierarchy results separating k+1 bounded counters from k bounded counters
for deterministic devices with the help of single letter alphabet languages; the
hierarchy for deterministic devices stated in Theorem 3 of [9] follows from the
corresponding result for multi-head automata in Theorem 1 of [9].

In comparison with multi-head automata, counter machines appear to be
affected by slight technical changes of the definition. There are, e.g., several
natural ways to define counter machines with counters bounded by the input
length [13]. One could simply require that the counters never overflow, with
the drawback that this property is undecidable in general. Alternatively the
machine could block in the case of overflow, acceptance then being based on
the current state, a specific error condition could be signaled to the machine,
with the counter being void, or the counter could simply remain unchanged. The
latter model is clearly equivalent to the known concept of a simple multi-head
automaton. All these variants, which seem to be slightly different in power, can
easily be simulated with the help of heads and therefore coincide, at least for
strictly bounded input.

Acknowledgments. I would like to thank Amir Ben-Amram and the anony-
mous referees for many helpful remarks. Thanks are due to A. C. Cem Say for
a stimulating discussion about the time complexity of counter machines and
bringing references [14,17] to my attention.
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Abstract. We consider projection and quotient operations on unranked
tree languages, and investigate their state complexities on deterministic
unranked tree automata. We give a tight upper bound on the number
of vertical states which is different than the known state complexity
of projection for string language. Since there are two ways to define
concatenation on trees, we define four different quotient operations on
trees and obtain tight bounds for each operation. The state complexity of
sequential bottom-quotient differs by a multiplicative factor (n+1) from
the corresponding result of left-quotient on ordinary finite automata.

Keywords: unranked trees, deterministic tree automata, projection,
sequential (or parallel) bottom-quotient (or top-quotient), operational
state complexity.

1 Introduction

In recent years, a lot of work has been done on the descriptional state complexity
of finite automata and related structures [6–8, 24, 25]. While the corresponding
results for string languages are well known [24, 26], very few results have been
obtained for tree automata. Modern applications of tree automata, such as XML
processing, use unranked trees where the label of a node does not determine the
number of children [3, 12, 21]. Due to this reason, many problems turn out
to be essentially different than the corresponding problems for finite automata
operating on strings [24] or for tree automata operating on ranked trees [3, 5].
An early reference on regular unranked tree languages is [2].

Since there is no a priori restriction on the number of children of a node in un-
ranked trees, the set of transitions of an unranked tree automaton is, in general,
infinite and the transitions are usually specified in terms of a regular language,
which is called a horizontal language. Thus, in addition to the finite set of ver-
tical states used in the bottom-up computation, an unranked tree automaton
needs for each vertical state q and input symbol σ a finite string automaton to
recognize the horizontal language consisting of strings of states defining the tran-
sitions associated with q and σ [3]. The states of the finite string automata used
to recognize the horizontal languages are collectively called horizontal states.
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A deterministic unranked tree automaton where the horizontal languages are
specified by deterministic finite automata is called a DTA(DFA), for short. It
is possible that by adding redundant vertical states to a DTA(DFA) the total
size of the automaton can be reduced. The above phenomenon is called a state
trade-off and state trade-offs can be viewed as the cause for the hardness of
DTA(DFA) minimization [11], and they make it hard to prove lower bounds for
the total size of a DTA(DFA) recognizing a given regular tree language [15, 17].
It should be mentioned that, although the model discussed here is perhaps the
commonly used definition of determinism for unranked tree automata [3], there
are two alternative definitions of determinism that guarantee the uniqueness of
the minimal automaton, the syntactically deterministic tree automata of [4, 19]
and the step-wise tree automata considered in [3, 11]. The state complexity of
transformations between different unranked tree automaton models has been
studied in [11, 15].

The natural projection on strings is a mapping that erases from the string all
unobservable symbols . The underlying alphabet Σ is considered to be a disjoint
union of observable and unobservable symbols. The natural projection could be
extended to trees in (at least) two different ways. The first possibility is to delete
from a given tree all subtrees where the root is labeled by an unobservable sym-
bol. The second possible way is to delete each node u labeled by an unobservable
symbol and then “attach” the children of u as the children of the parent of u (the
children will be listed after the left sibling of u and before the right sibling of
u). Note that both variants of the definition rely on the fact that we are dealing
with unranked trees, i.e., the label of a node does not need to fix the number of
children.

As will be illustrated later in Example 1 the latter definition of natural pro-
jection does not preserve regularity of tree languages. Hence we concentrate on
the first mentioned variant of natural projection on trees. We give a tight upper
bound on the number of vertical states that is different than the known state
complexity 3 · 2n−2 − 1 of projection for string languages [9, 23]. We also give
an exponential lower bound on the number of horizontal states by relying on
existing bounds for the size of unambiguous finite automata [10]. Note that due
to the existence of state trade-offs it is, in general, hard to prove lower bounds
for the number of horizontal states and we need specialized techniques for this
purpose.

As it is possible to extend the concatenation operation from strings to trees
either as a sequential concatenation operation, where one occurrence of a leaf of
t2 with a designated label is replaced by t1, or a parallel concatenation opera-
tion, where all occurrences of leaves of t2 with a designated label are replaced by
t1 [16] (the tree concatenation considered in [3, 5] is the parallel concatenation),
we can define sequential (respectively, parallel) top-quotient and sequential (re-
spectively, parallel) bottom-quotient operations on trees. The operations corre-
spond, respectively, to right- and left-quotient of string languages, when dealing
with automata that process the input tree from the leaves to the root.
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We investigate the state complexity of these four operations on deterministic
unranked tree automata and obtain tight upper bounds for each operation. For
a tree language T recognized by an n vertical state deterministic unranked tree
automaton, the tight state complexity bound for the sequential bottom-quotient
operation is (n + 1)2n − 1 which is of a different order of magnitude than the
state complexity of left-quotient for automata operating on strings. Recall that
the state complexity of left-quotient is 2n−1 [24]. The upper bounds of the other
three operations coincide with the corresponding bounds for string languages.
To obtain tight upper bounds for the number of horizontal states will be a topic
for future research.

2 Preliminaries

Here we recall some notations on unranked trees. For more information on tree
automata see the electronic book by Comon et al. [3] or the handbook article by
Gécseg and Steinby [5].

A tree domain is a prefix-closed subsetD of IN∗ such that always when ui ∈ D,
u ∈ IN∗, i ∈ IN and 1 ≤ j < i, then also uj ∈ D. The set of nodes of a tree t is
represented in the well-known way as a tree domain dom(t) and when the nodes
are labeled by elements of alphabet Σ the tree t can be viewed as a mapping
dom(t) → Σ. We consider unranked trees and hence the node label does not
determine the number of children of the node. The set of unranked trees over
an alphabet Σ is TΣ. For t, r1, . . . , rm ∈ TΣ and u1, . . . , um ∈ dom(t), m ≥ 1,
t(u1 ← r1, . . . , um ← rm) is the tree obtained from t by replacing the subtree at
node ui by ri, i = 1, . . . ,m. For L ⊆ TΣ, the Nerode-congruence of L is defined
by setting, for t1, t2 ∈ TΣ,

t1 ∼=L t2 iff [(∀t ∈ TΣ)(∀u ∈ dom(t))t(u ← t1) ∈ L ⇔ t(u ← t2) ∈ L].

We introduce the following notation for trees. For i ≥ 0, a ∈ Σ and t ∈ TΣ, we
denote by ai(t) = a(a(...a(t)...)) a tree where on top of subtree t there is a unary
branch labeled by a’s. When a ∈ Σ, w = b1b2...bn ∈ Σ∗, we use a(w) to denote
a tree a(b1, b2, ..., bn) . When L is a set of strings, a(L) = {a(w) | w ∈ L}.
The set of all Σ-trees, where exactly one leaf is labeled by a special symbol x
(x �∈ Σ) is TΣ[x]. For t ∈ TΣ[x] and t′ ∈ TΣ, t(x ← t′) denotes the tree obtained
from t by replacing the unique occurrence of variable x by t′.

A nondeterministic unranked tree automaton is a tuple A = (Q,Σ, δ, F ),
where Q is the finite set of states, Σ is the alphabet labeling nodes of input
trees, F ⊆ Q is the set of final states, and δ is a mapping from Q × Σ to the
subsets of Q∗ which satisfies the condition that, for each q ∈ Q, σ ∈ Σ, δ(q, σ)
is a regular language. The language δ(q, σ) is called the horizontal language as-
sociated with q and σ.

Intuitively, if a computation of A has reached the children of a σ-labeled node
u in a sequence of states q1, q2, . . . , qm, the computation may nondeterminis-
tically assign a state q to the node u provided that q1q2 · · · qm ∈ δ(q, σ). For
t ∈ TΣ, t

A ⊆ Q denotes the set of states that in some bottom-up computation
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A may reach at the root of t. The tree language recognized by A is defined as
L(A) = {t ∈ TΣ | tA ∩ F �= ∅}.

For a tree automaton A = (Q,Σ, δ, F ), we denote by HA
q,σ, q ∈ Q, σ ∈ Σ, a

nondeterministic finite automaton (NFA) on strings recognizing the horizontal
language δ(q, σ). The NFAHA

q,σ is called a horizontal NFA, and states of different
horizontal automata are called collectively horizontal states. We refer to the
states of Q that are used in the bottom-up computation as vertical states.

We define the (state) size of A, size(A), as a pair of integers [|Q|;n], where n
is the sum of the sizes of all horizontal automataHA

q,σ that recognize a nonempty
language. When comparing sizes of automata, [m1;m2] ≥ [n1;n2] means mi ≥
ni, i = 1, 2.

A tree automaton A = (Q,Σ, δ, F ) is said to be deterministic if for σ ∈ Σ and
any two states q1 �= q2, δ(q1, σ) ∩ δ(q2, σ) = ∅. The above condition guarantees
that the state assigned by A to a node u of an input tree is unique (but A need
not assign any state to u if the computation becomes blocked below u). We
use DTA(DFA) (respectively, NTA(NFA)) to denote the class of deterministic
(respectively, nondeterministic) tree automata where each horizontal language
is specified by a DFA (respectively, an NFA).

We denote by t(u ← q) the tree over alphabet Σ ∪ Q that is obtained from
t by labeling the node u by q. We say that states q1 and q2 of a DTA(DFA)
A are equivalent if for any t ∈ TΣ and any leaf u of t, the computation of A
accepts t(u ← q1) if and only if it accepts t(u ← q2). The condition means that
the states q1 and q2 are equivalent in terms of the vertical computation of A,
however, the horizontal languages associated with q1 and q2 need not coincide.

The extension of the Nerode congruence is called the top-congruence in [2],
and the corresponding definition for tree languages over ranked alphabets can
be found in [5].

2.1 Projection on Unranked Trees

To begin with we recall the definition of the projection operation on strings as
studied in [9, 23]. For an alphabet Σ, ΣP ⊆ Σ, and a string w = σ0σ1 . . . σn ∈
Σ∗, a natural projection PΣ→ΣP is defined as: PΣ→ΣP (w) = σ′

0σ
′
1 . . . σ

′
n such

that

σ′
i =

{
σi, if σi ∈ ΣP ;
ε, otherwise.

Now we define projection operation on trees. For alphabets Σ and ΣP ⊆ Σ,
all Σ-labeled (ΣP -labeled respectively) trees are denoted TΣ (TΣP respectively).
Symbols in Σ\ΣP are called unobservable symbols. A projection on trees is
a mapping MΣ→ΣP : TΣ → TΣP . When Σ and ΣP are understood from the
context, we denote MΣ→ΣP simply by M. M is inductively defined as below.

– For a tree σ ∈ TΣ of height zero1,

M(σ) =

{
σ, if σ ∈ ΣP ;
undefined, if σ ∈ Σ\ΣP .

1 We use the convention that the height of a leaf node is zero.
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– For a tree t = σ(t1, . . . , tn), let the sequence ti1 , . . . , tik , 1 ≤ i1 < i2 < . . . <
ik ≤ n, consist of trees tj , where M(tj) is defined.

M(t) =

{
σ(M(ti1 ), . . . ,M(tik)), if σ ∈ ΣP ;
undefined, otherwise.

The projection operation is extended to trees by deleting from a given tree all
subtrees where the root is labeled by an unobservable symbol, and the definition
relies on the fact that we are dealing with unranked trees.

We note that it is also possible to define the projection on trees in another
way as follows, denoted by M′

Σ→ΣP
.

– For a tree σ ∈ TΣ of height zero,

M′(σ) =
{
σ, if σ ∈ ΣP ;
undefined, if σ ∈ Σ\ΣP ;

– For a tree t = σ(t1, . . . , tn), let the sequence ti1 , . . . , tik , 1 ≤ i1 < i2 < . . . <
ik ≤ n, consist of trees tj , where M′(tj) is defined,

M′(t) =
{
σ(M′(ti1 ), . . . ,M′(tik )), if σ ∈ ΣP ;
M′(ti1), . . . ,M′(tik), otherwise.

When the root node of t is labeled by a symbol that is not in ΣP , by the definition
of M′

Σ→ΣP
, the root node labeled by σ of t is deleted and the children of t are

kept as a sequence of trees M′(ti1), . . . ,M′(tik). This sequence of trees become
the children of t’s parent, and are listed between the left sibling and the right
sibling of t. However, this definition does not preserve regularity as shown in
Example 1.

Example 1. Consider Σ = {a, b, c, d}, ΣP = {a, b, d}, and T =
⋃

i≥0 fi is induc-
tively defined as,

– t0 = c(a, c, b),
– for i ≥ 1, ti+1 = c(a, ti, b),
– for i ≥ 0, fi = d(ti).

We get M′
Σ→ΣP

(T ) = {d(aibi) | i ≥ 1}, which is not regular.

2.2 Quotient

We need to define concatenation for unranked trees before we can define quotient
operation. Concatenation of strings can be extended to trees as a sequential
operation, where one occurrence of a leaf with a given label is replaced by a
tree, or as a parallel operation, where all occurrences of a leaf with a given label
are replaced [14, 16]. For σ ∈ Σ and T1 ⊆ TΣ, t2 ∈ TΣ, we define their sequential
σ-concatenation

T1 ·sσ t2 = { t2(u ← t1) | u ∈ leaf(t2, σ), t1 ∈ T1 }. (1)
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That is, T1 ·sσ t2 is the set of trees obtained from t2 by replacing one occurrence
of a leaf labeled by σ with some tree of T1. In order to get concatenation of
individual trees we can choose T1 as a singleton set.

The parallel σ-concatenation of T1 and t2 is

T1 ·pσ t2 = t2(leaf(t2, σ) ← T1). (2)

That is, T1 ·pσ t2 is the set of trees obtained from t2 by replacing every occurrence
of a leaf labeled by σ with some tree of T1. Note that when T1 = {t1} consists
of one tree, t1 ·pσ t2 is an individual tree while t1 ·sσ t2 is a set of trees. In the case
where no leaf of t2 is labeled by σ, t1 ·sσ t2 = ∅ and t1 ·pσ t2 = t2.

Note that in both definitions T1 ·sσ t2 and T1 ·pσ t2, the resulting trees are
obtained from t2 by replacing a leaf node (leaf nodes) with some tree in T1.
This is done so to keep the correspondence with strings. A string automaton
processing concatenation of L1 · L2 reads a string in L1 first and then a string
in L2. When processing a tree t1 ·pσ t2 (or t1 ·sσ t2), a bottom-up tree automaton
processes first t1 and then t2.

Based on parallel and sequential concatenation, we define four different quo-
tient operations on unranked trees.

Definition 1 (Sequential σ-top-quotient). The sequential σ-top-quotient of
a tree language T with respect to a tree language T ′ is defined as:

T ′�s
σT = {t | ∃t′ ∈ T ′, t ·sσ t′ ∈ T }.

Definition 2 (Sequential σ-bottom-quotient). The sequential σ-bottom-
quotient of a tree language T with respect to a tree language T ′ is defined as:

T⊥s
σT

′ = {t | ∃t′ ∈ T ′, t′ ·sσ t ∈ T }.

Before we introduce the definition of parallel σ-top-quotient, we define
tuples(t′�p

σT ) to consist of all m-tuples of trees (r1, . . . , rm) such that

t′(u1 ← r1, . . . , um ← rm) ∈ T where leaf(t′, σ) = {u1, . . . , um}.

The parallel σ-top-quotient of a tree language T with respect to a single tree t′,
denoted t′�p

σT , is defined to consist of all trees that occur as a component in
some m-tuple in tuples(t′�p

σT ). The definition is extended to a set of trees as
below:

Definition 3 (Parallel σ-top-quotient). The parallel σ-top-quotient of a tree
language T with respect to a tree language T ′ is defined as:

T ′�p
σT =

⋃
t′∈T ′

t′�p
σT.

Definition 4 (Parallel σ-bottom-quotient). The parallel σ-bottom-quotient
of a tree language T with respect to a tree language T ′ is defined as:

T⊥p
σT

′ = {t ∈ TΣ | T ′ ·pσ t ∩ T �= ∅}.
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When considering computations that process a tree in the bottom-up direc-
tion, the top-quotient can be viewed as an extension of right-quotient from
strings to trees, and similarly, the bottom-quotient extends the left-quotient
operation from strings to trees. When σ ∈ Σ and the method of concatenation
are understood from the context, we simply call the operations top-quotient and
bottom-quotient and write T ′�T (respectively T⊥T ′) in place of T ′�p

σT and
T ′�s

σT (respectively T⊥p
σT

′ and T⊥s
σT

′).

2.3 Auxiliary Results on String Languages

We present the following technical lemma on string languages that will be used
to establish the upper bound for the state complexity of projection.

Let A = (Q,Σ, δ, s, F ) be a DFA. We say that an NFA B with ε-transitions is
an ε-variant of A if B is obtained from A by adding an ε-transition between some
pairs of states si and sj that are connected by a real transition on input symbol
σ in A. The NFA B retains all the transitions of the DFA A and has additional
ε-transitions as described above. The set of all ε-variants of A is denoted E(A).

Lemma 1. If a DFA C has n states, then any NFA in E(C) has an equivalent
DFA with at most 3

42
n − 1 states and this upper bound is tight.

2.4 Lower Bound Technique

We introduce the following technique for establishing lower bounds on the num-
ber of horizontal states in tree automata. Lower bounds for the number of hori-
zontal states that rely on the size of unambiguous NFAs were used also in [18],
however, the details of Lemma 2 below differ from the technique used in [18]. Be-
fore we start, recall that an NFA is unambiguous if it has at most one accepting
computation on any string [10, 13].

Let L be a regular tree language over Σ. We say that σ ∈ Σ is a unique
height-one label for L if

(i) in trees of L, σ occurs only as a label of nodes of height one, and,
(ii) for any τ1, τ2 ∈ Σ, τ1 �= τ2, that label leaves below a height one node u labeled

by σ, τ1 and τ2 are inequivalent with respect to the Nerode congruence of
the tree language L.

Lemma 2. Let A = (QA, Σ, δA, FA) be a DTA(DFA) with minimal number of
vertical states for tree language L and let B = (QB, Σ, δB, FB) be an arbitrary
DTA(DFA) for L.

Suppose that σ ∈ Σ is a unique height-one label for L. Then for any q ∈ QA,∑
p∈[q]B

|HB
p,σ|

is greater or equal than the size of the smallest unambiguous NFA for L(HA
q,σ).

(Following [10] we allow here an NFA to have multiple initial states.)
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Proof. Since σ is a unique height-one label for L, both A and B assign a unique
state to any leaf labeled by τ that in some tree of L may occur below a height-
one node labeled by σ. Denote by Ωσ the set of symbols that in trees of L may
label a leaf occurring below a node labeled by σ. Let fσ be the bijection

Pstates below σ =

{s ∈ QB | ε ∈ δB(s, τ), τ ∈ Ωσ} → {r ∈ QA | ε ∈ δA(r, τ), τ ∈ Ωσ}
that for each τ ∈ Ωσ, maps the unique s ∈ QB such that ε ∈ δB(s, τ) to the
unique r ∈ QA such that ε ∈ δA(r, τ).

The DTA(DFA) of a regular tree language with a minimal number of vertical
states is unique. By considering the usual equivalence relation among vertical
states of B, as defined in Section 2, we see that the states of B can be partitioned
into equivalence classes, each consisting pairwise equivalent states (in terms of
the vertical computation) that were used to replace one vertical state of A. For
a state q of A, we denote by [q]B the set of states of B that correspond to q in
this way.

Let q ∈ QA be arbitrary (such that δA(q, σ) �= ∅). Let t = σ(τ1, . . . , τm) be a
tree of height one with root labeled by σ. For any p ∈ [q]B, if B reaches the root
of t in state p then A reaches the root of t in state q, and conversely if A reaches
the root of t in state q then B reaches the root of t in some of the states of [q]B .
This means that from the DFAs HB

p,σ, p ∈ [q]B, we can construct for the language
δA(q, σ) a DFA C with multiple initial states simply by taking their disjoint union
and replacing each transition labeled by s ∈ Pstates below σ by fσ(s). Since B is
deterministic, the languages L(HB

p1,σ) and L(HB
p2,σ), p1, p2 ∈ [q]B , p1 �= p2, are

disjoint. This means that for w ∈ Q∗
A, C has at most one accepting computation

on w and C is an unambiguous NFA (with multiple initial states). &"
Here we develop a lower bound criterion that, roughly speaking, from the hori-
zontal languages associated with an input symbol σ and q1, . . . , qk constructs an
unambiguous finite automaton for the horizontal language of A associated with
q and σ. Then if A is chosen to be the DTA(DFA) with the minimal number
of vertical states (which is unique), we get a lower bound for the total size of
horizontal DFAs associated, respectively, with σ and qi, i = 1, . . . , k.

Lemma 2 gives a lower bound condition for the number horizontal states in
terms of the size of a smallest unambiguous NFA for the horizontal language. A
useful lower bound condition for the size of unambiguous NFAs has been given
by [22], for a good presentation of this result see also [10]. We denote the rank
of a (square) matrix M as rank(M).

Theorem 1. [22] Given a regular language L and strings xi, yi for i = 1, . . . , n,
let M be an n × n matrix such that M [xi, yi] = 1 if xiyi ∈ L, and 0 otherwise.
Then any unambiguous NFA for L has at least rank(M) states.

3 State Complexity of Projection on Unranked Trees

In this section we present a lower bound for the vertical and horizontal state
complexity of the projection operation on unranked tree languages. The lower
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bound for the number of vertical states coincides with the upper bound and is
different than the known state complexity of projection of string languages [9,
23]. The lower bound for the number of horizontal states is exponential, however,
it does not coincide with the known upper bound.

3.1 Upper Bound for Projection on Unranked Trees

Given a DTA(DFA) A we construct an NTA(NFA) C recognizing the language
M(L(A)) and determinizing C then gives an upper bound for the state com-
plexity of projection. For readability it is useful to give the construction in two
stages. First we construct an DTA(DFA) B that has two copies of each state of
A, and after that construct C. Note that half of the states of B can be omitted.

Given ΣP ⊆ Σ and a DTA(DFA) A = (Q,Σ, δ, F ), where the horizontal
language associated with σ ∈ Σ and q ∈ Q is recognized by a DFA HA

σ,q with size
mq,σ, we can construct an equivalent DTA(DFA) B = (P,ΣP , γ, E) as follows.
As the set of state of B we choose

P = {qΣ\ΣP , qΣP | q ∈ Q}.

Define a finite substitution h: Q∗ → P ∗ by setting h(q) = {qΣ\ΣP , qΣP }. Now
we define the horizontal languages of B by setting, for q ∈ Q and σ ∈ ΣP :

– γ(qΣP , σ) = h(δ(q, σ)),
– γ(qΣ\ΣP , σ) = ∅.

Similarly for q ∈ Q and σ ∈ Σ\ΣP we set

– γ(qΣ\ΣP , σ) = h(δ(q, σ)),
– γ(qΣP , σ) = ∅.

States qΣ\ΣP , qΣP are final if q ∈ F .
The DTA(DFA) B is obtained from A by doubling the number of states.

The computation of B simply simulates the computation of A and “remembers”
(using the superscript of the states) whether the current node is labeled by a
symbol of ΣP or of Σ\ΣP .

The horizontal language in B can be recognized by a DFA constructed from
HA

σ,q by replacing each transition labeled with q by a transition labeled by qΣP

and qΣ\ΣP . Thus, the size of the horizontal DFA associated with qΣP , σ is the
same as the DFA associated with q, σ. That is mq,σ.

Now we construct an NTA(NFA) C recognizing M(L(A)) from B as follows.

Step 1 Delete all the horizontal languages associated with qΣ\ΣP ,
Step 2 Replace by ε each occurrence of qΣ\ΣP in the remaining horizontal lan-

guages.

Since all the horizontal languages associated with qΣ\ΣP are deleted, C has |Q|
vertical states. Since each horizontal NFA in C is an ε-variant of a horizontal
DFA in B, according to Lemma 1, each horizontal NFA in C has an equivalent
DFA with at most 3

42
mσ,q − 1 states.
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To convert the NTA(NFA) C to a DTA(DFA) D, a powerset construction is
applied to the vertical states of C and P(Q) is the set of states in D. As we do
not require tree automata to be complete, ∅ is omitted from the set of states
in D. For the horizontal states, the horizontal DFA in D must simulate all the
NFAs in C to get disjoint horizontal languages. (The details of determinizing
an NTA(NFA) please refer to Lemma 4.4 in [15].) The size of a horizontal DFA
associated with a state in P(Q) and β ∈ ΣP in D is at most

∏
q∈Q(

3
42

mβ,q − 1).
Thus, we have the following lemma.

Lemma 3. Given ΣP ⊆ Σ and a DTA(DFA) A = (Q,Σ, δ, F ), where the hor-
izontal language associated with σ ∈ Σ and q ∈ Q is recognized by a DFA with
size mq,σ, we can construct a DTA(DFA) D recognizing M(L(A)) with size at
most

size(D) ≤ [ 2|Q| − 1; 2|Q| · (
∑

β∈ΣP

∏
q∈Q

(
3

4
2mβ,q − 1)) ]. (3)

3.2 A Lower Bound Construction

We present a tree language whose projection needs exactly the claimed number
of vertical states in equation (3). The lower bound for the number of horizontal
states is also exponential but does not exactly match the numbers in (3).

Let Σ = {a, b, c, d, e, f, g} and ΣP = {a, b, d, e, g}. Consider the tree language

T = {k(g(cif jl)) | 1 ≤ i ≤ n, 1 ≤ j ≤ m, k ∈ Ki, l ∈ Lj}, (4)

where Ki and Lj are the string languages recognized by the DFAs Ci and Mj

shown in Figure 1(a) and 1(b), respectively. The final states are the odd num-
bered states. All the Mj ’s (Ci, respectively) are the same except that each Mj

(Ci, respectively) has a unique initial state j (i, respectively). In a tree of T , the
nodes of height one are always labeled by g. The sequence k of labels of nodes
from height two to the root forms a string in Ki, if the number of leading c’s in
the sequence of leaves is i. The sequence of leaves of a tree of T contains after
the initial c’s some number j of symbols f and after that a sequence in {e, d}∗
that is accepted by the DFA Mj determined by j.

(a) DFA Ci for string language Ki (b) DFA Mj for string language Lj

Fig. 1. DFAs Ci and Mj (final states not shown)

Lemma 4. T can be recognized by a DTA(DFA) A with size(A) = [ n+4; 2m+
5n+ 5 ].
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Proof. Choose the DTA(DFA) A = ({q1, . . . , qn, qc, qd, qe, qf}, Σ, δ, F ) where δ
is defined as follows.

– δ(qc, c) = ε, δ(qd, d) = ε, δ(qe, e) = ε, δ(qf , f) = ε,

– δ(qi, g) = qicq
j
fφ(Lj), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

– δ(qi+1, a) = qi , 1 ≤ i ≤ n− 1, δ(q1, a) = qn,
– δ(qi, b) = qi, 2 ≤ i ≤ n, δ(q2, b) = q1.

Above φ is a mapping φ : (d, e)∗ → (qd, qe)
∗ defined as φ(d) = qd and φ(e) = qe.

The set of final states contains all the odd numbered states. A DFA for the
horizontal language needs n+1 states to count c’s, m states to count f ’s and m
states to check whether the sequences of leaf nodes belong to Lj. Two states are
needed for each horizontal language {qi}. Additionally A needs four horizontal
states to recognize the four horizontal languages each consisting only of the
empty string ε. &"

The prefixes qic in the horizontal languages are used to make the vertical compu-
tation deterministic. The prefixes qjf are used to make the horizontal languages
disjoint. After the projection, all nodes labeled by c and f are deleted, and we
note that

M(T ) = {k(g(l)) | k ∈
n⋃

i=1

Ki, l ∈
m⋃
j=1

Lj}, (5)

In trees of M(T ), the sequence k of labels of nodes from height two to the root
forms a string in

⋃n
i=1Ki, and the sequence l of leaf nodes forms a string in⋃m

j=1 Lj. The NFAs C and M recognizing
⋃n

i=1Ki and
⋃m

j=1 Lj are shown in
Figure 2(a) and 2(b), respectively. Final states are the odd numbered states.

(a) NFA C for string language
⋃n

i=1 Ki (b) NFA M for string language
⋃m

j=1 Lj

Fig. 2. NFAs C and M with multiple initial states (final states not shown)

Note that the automata of Figure 2 are the known examples of NFAs where
any equivalent unambiguous NFA needs an exponential number of states [10].
The tree language T was “designed” in such a way that in trees of the projected
language M(T ) both the set of strings labeling the vertical branch and the
sequences of leaves defining the horizontal language have a small NFA while
requiring a large unambiguous NFA.

Lemma 5. For any DTA(DFA) B recognizing the tree language M(T ) we have

size(B) ≥ [2n − 1; 2m − 1].
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Proof. Using Theorem 1, Leung [10] shows that any unambiguous NFA recog-
nizing L(M) (L(C), respectively) has at least 2m−1 (2n−1, respectively) states.
This means any DFA for L(C) has at least 2n − 1 states. Thus, B has at least
2n − 1 vertical states. Now consider the number of horizontal states required by
B. Since the symbol g always labels a node of height one, it is obvious that g
is a unique height-one label. The leaves below g spell out a word in

⋃m
j=1 Lj .

According to Lemma 2, the total size of all horizontal DFAs associated with g
in B is greater or equal than the size of the smallest unambiguous NFA for the
horizontal language

⋃m
j=1 Lj, which is L(C). This means B needs at least 2m−1

horizontal states. &"

From Lemma 3, 5 and 4, we have the following theorem.

Theorem 2. There exist tree languages Tm,n that can be recognized by a
DTA(DFA) A with size(A) = [ n + 4; 2m + 5n + 5 ], and for any DTA(DFA)
B recognizing M(Tm,n), size(B) ≥ [ 2n − 1; 2m − 1].

The lower bound above gives an exponential blow-up for both the number of
vertical states and of horizontal states. Furthermore, the lower bound on the
number of vertical states coincide with the upper bound.

Next we present another lower bound construction for the state complexity of
projection that is a consequence of results from [15]. The estimates for the sums
and products of the first n primes can be found in [1].

Proposition 1. Let p1, . . . , pn be prime numbers. There exist tree languages Tn

that can be recognized by a DTA(DFA) A with

size(A) =

[
n+ 2; (

n∑
i=1

pi) + n2 + 2n− 1

]
,

and for any DTA(DFA) B recognizing M(Tn),

size(B) ≥
[
2n − 1; (2n − 1) ·

n∏
i=1

pi

]
.

Note that especially when the horizontal size of the original DFA is much larger
than the number of vertical states, that is, in the statement of Theorem 2 m >>
n, the lower bound for the number of horizontal states given by Theorem 2 is
considerably better than the corresponding bound given by Proposition 1. When
in the original DTA(DFA) the size of the horizontal DFA associated with each
vertical state is small (compared to n), the lower bound from Proposition 1 is
often better.

Note that due to the possibility of having state trade-offs, it is, in general,
hard to prove lower bounds for the number of horizontal states in a DTA(DFA).
The specialized techniques in Proposition 1 (actually Theorem 4.1 of [15]) and
here in Lemma 5 were needed to establish that the number of horizontal states
cannot be reduced by introducing additional vertical states.
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4 State Complexity of Quotient Operations

In this section we establish upper bounds for the state complexity of sequen-
tial (parallel) top-quotient and sequential (parallel) bottom-quotient operations
that are tight for the numbers of vertical states. The state complexity bound for
sequential bottom-quotient is of a different order of magnitude than the corre-
sponding state complexity bound for left-quotient of string languages.

We start with sequential bottom-quotient operation.

Theorem 3. For any integer n ≥ 1, (n+ 1)2n − 1 vertical states are necessary
and sufficient in the worst case for a deterministic unranked tree automaton to
accept sequential bottom-quotient of the tree language recognized by an n vertical
states deterministic unranked tree automaton w.r.t. an arbitrary tree language
T ′.

Note that the bound for sequential bottom-quotient differs, roughly, by a multi-
plicative factor n+1 from the corresponding result for ordinary finite automata.
The precise state complexity of left-quotient for ordinary finite automata is
2n − 1 [26].

We present the following theorem for sequential top-quotient operation on
unranked tree automata.

Theorem 4. For any integer n ≥ 1, n vertical states are necessary and suffi-
cient in the worst case for a deterministic unranked tree automaton to accept the
sequential top-quotient of the tree language recognized by an n vertical states de-
terministic unranked tree automaton A with respect to an arbitrary tree language
T ′, T ′�σL(A), σ ∈ Σ.

It is easy to see that the upper bound and the lower bound in Theorem 4 also
work for parallel top-quotient on trees. Here we only present a theorem for
parallel bottom-quotient.

Theorem 5. For any integer n ≥ 1, 2n − 1 vertical states are necessary and
sufficient in the worst case for a deterministic unranked tree automaton to accept
parallel bottom-quotient of the tree language recognized by an n vertical states
deterministic unranked tree automaton w.r.t. an arbitrary tree language T ′.
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Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007), elec-
tronic book, tata.gforge.inria.fr
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P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 556–567. Springer, Heidel-
berg (2010)

14. Piao, X.: State complexity of tree automata. PhD thesis, School of Computing,
Queen’s University (2011)

15. Piao, X., Salomaa, K.: Transformations between different models of unranked
bottom-up tree automata. Fundamenta Informaticae (109), 405–424 (2011)

16. Piao, X., Salomaa, K.: State complexity of concatenation of regular tree languages.
Theoretical Computer Science (accepted for publication),
doi:10.1016/j.tcs.2011.12.048

17. Piao, X., Salomaa, K.: State trade-offs in unranked tree automata. In: Holzer,
M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 261–274.
Springer, Heidelberg (2011)

18. Piao, X., Salomaa, K.: Lower bounds for the size of deterministic unranked tree
automata. Theoretical Computer Science, doi:10.1016/j.tcs.2012.03.043

19. Raeymaekers, S., Bruynooghe, M.: Minimization of finite unranked tree automata
(2004) (manuscript)

20. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. I–III. Springer
(1997)

21. Schwentick, T.: Automata for XML. J. Comput. System Sci. (73), 289–315 (2007)
22. Schmidt, E.M.: Succinctness of descriptions of context-free, regular and finite lan-

guages. PhD thesis, Cornell University (1978)
23. Wong, K.: On the complexity of projections of discrete-event systems. In: Proc. of

WSDES, Cagliari, Italy, pp. 201–206 (1998)
24. Yu, S.: Regular languages. In: [20], vol. I, pp. 41–110 (1997)
25. Yu, S.: State complexity: Recent results and open problems. Fundamenta Infor-

maticae (64), 471–481 (2005)
26. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations

on regular languages. Theoretical Computer Science (125), 315–328 (1994)



Iterating Invertible Binary Transducers

Klaus Sutner1 and Kevin Lewi2,�

1 Carnegie Mellon University,
Pittsburgh, PA 15213

sutner@cmu.edu
2 Stanford University,
Stanford, CA 94305

klewi@cs.standford.edu

Abstract. We study iterated transductions defined by a class of invert-
ible transducers over the binary alphabet. The transduction semigroups
of these automata turn out to be free Abelian groups and the orbits of
finite words can be described as affine subspaces in a suitable geome-
try defined by the generators of these groups. We show that iterated
transductions are rational for a subclass of our automata.

1 Motivation

An invertible transducer is a type of Mealy automaton where all transitions are

of the form p
a/π(a)−−−−→ q; here π is a permutation of the alphabet depending on the

source state p. We only consider 2 = {0, 1} as input and output alphabet. Select-
ing an arbitrary state p as the initial state, we obtain a transduction A(p) from
2∗ to 2∗. These transductions can be viewed as automorphisms of the complete
binary tree 2∗ and the collection of all transductions generates a subsemigroup
S(A) of the full automorphism group Aut(2∗). Similarly one can associate a
group G(A) with A by including the inverses of all transductions. These groups
are called automata groups or self-similar groups and have been studied in great
detail in group theory and symbolic dynamics, see [9,15] for extensive pointers to
the literature. Automata groups have many interesting properties and have lead
to elegant solutions to several outstanding problems. For example, Grigorchuk’s
well-known example of a group of intermediate growth has a description in terms
of a 5-state invertible transducer. Automata groups should not be confused with
automatic groups as introduced in [6] or automatic structures, see [11,13]. The
former are characterized by the group operations being described directly by
finite state machines operating on words over the generators. The latter are
first-order structures whose carrier sets and relations are represented by finite
state machines. A comparison of the two models can be found in [10].

We are here interested in both connections between automata theory and
group theory as discussed in [1]. More precisely, we study the effect of itera-
tion on transductions: given a transduction f ∈ S(A), write f∗ ⊆ 2∗ × 2∗ for
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the binary relation obtained by iterating f . Note that f∗ is a length-preserving
equivalence relation on 2∗. While the first-order structure 〈2∗, f 〉 is clearly au-
tomatic and thus has decidable first-order theory, it is difficult to determine
when 〈2∗, f, f∗ 〉 is automatic. We introduce a class of invertible transducers
called cycle-cum-chord (CCC) transducers in section 2 and characterize their
transduction semigroups as free Abelian groups. Moreover, for some CCC trans-
ducers the orbit relations f∗ turn out to be automatic for all transductions f in
the semigroup. Since f∗ is length-preserving, it follows from a result by Elgot
and Mezei, [5] that this is equivalent to f being rational. To show that f∗ is
automatic we construct a canonical transition system, which turns out to be
finite for some of the automata under consideration. This scenario is somewhat
similar to the discussion of digital circuits computing functions on the dyadic
numbers in [22]; note that we are dealing with relations rather than functions,
though.

The construction of the transition system is based on a normal form for trans-
ductions proposed by Knuth [14] that allows one to show that S(A) is in fact
a free Abelian group. The normal form is also useful to define a natural geom-
etry on 2∗ that describes the orbits of words under f as affine subspaces. As
a consequence, it is polynomial-time decidable whether two transductions give
rise to the same equivalence relation and we can in fact construct the minimal
transition system for f∗ in the sense of Eilenberg [4]. In addition, we obtain fast
algorithms to compute x f t, to test whether two words belong to the same orbit
under f and the calculate coordinates in the geometry introduced below.

This paper is organized as follows. In section 2 we introduce invertible trans-
ducers and define cycle-cum-chord transducers. We also show how to construct
the canonical transition system that tests orbit equivalence. In the next section,
we discuss Knuth normal form, characterizes the transduction semigroups of
CCC transducers and determine the rationality of orbits of some of these ma-
chines. Section 4 contains comments on related decision problems and mentions
open problems.

2 Invertible Transducers

2.1 Transduction Semigroups

We consider Mealy machines of the form A = 〈Q,2, δ, λ 〉 where Q is a finite
set, 2 = {0, 1} is the input and output alphabet, δ : Q× 2 → Q the transition
function and λ : Q× 2 → 2 the output function. We can think of 2∗ as acting
on Q via δ, see [2,18,12] for background. We are here only interested in invertible
transducers where λ(p, .) : 2 → 2 is a permutation for each state p. When this
permutation is the transposition in the symmetric group S2 on two letters, we
refer to p as a toggle state and as a copy state, otherwise. Fixing a state p as
initial state we obtain a transduction A(p) : 2∗ → 2∗ that is easily seen to be a
length-preserving permutation. If the automaton is clear from context we write
p for this functions; S(A) denotes the semigroup and G(A) denotes the group
generated by all these functions.
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If we think of 2∗ as an infinite, complete binary tree in the spirit of [19],
we can interpret our transductions as automorphisms of this tree, see [15,20].
Clearly any automorphism f of 2∗ can be written in the form f = (f0, f1)s where
s ∈ S2: s describes the action of f on 2, and f0 and f1 are the automorphisms
induced by f on the two subtrees of the root. The automorphisms f such that
f = (f0, f1)σ are odd, the others even. The whole automorphism group can be
described in terms of wreath products thus:

Aut(2∗) / Aut(2∗) 1S2 = (Aut(2∗)× Aut(2∗))�S2

The components fi arise naturally as the left residuals of f , first introduced by
Raney [17]. It was shown by Gluškov that the residuals of a sequential map are
sufficient to construct a corresponding Mealy automaton, see [7] and [15]. More
precisely, for any word x, define the function ∂xf by (x f) (z ∂xf) = (xz) f for
all words z (for transductions, we write function application on the right and
use diagrammatic composition for consistency with relational composition). It
follows that

∂xyf = ∂y∂xf

∂xfg = ∂xf ∂f(x)g

The transduction semigroup S(A) is naturally closed under residuals. In fact,
we can describe the behavior of all the transductions by a transition system C,
much the way A describes the basic transductions: the states are S(A) and the

transitions are f
s/f(s)−→ ∂sf . Thus C contains A as a subautomaton. Of course,

this system is infinite in general; it is referred to as the complete automaton in
[15]. Also note that, in terms of residuals, the group operation in the wreath
product has the form

(f0, f1)s (g0, g1)t = (f0gs(0), f1gs(1)) st

This provides a convenient notation system for invertible transducers. For exam-
ple, writing σ for the transposition in S2, α = (I, α)σ and I = (I, I) specifies
an automaton A known as the “adding machine,” see [15]. The transduction
semigroup generated by A is isomorphic to N, and the group is isomorphic to Z.
If we think of automorphism α as a map on Z2, the ring of dyadic numbers, as
in [22], we have xα = x+ 1 and the orbit of 0ω under α is dense in Z2.

2.2 Orbit Equivalence and the Orbit Automaton

Consider an automorphism f in Aut(2∗). The iterate f∗ is an equivalence relation
on 2∗, the orbit relation of f , written ≡f . Two automorphism f and g are star
equivalent if they have the same orbit relation. It is easy to see that any orbit
xa f∗ either has the same length as x f∗, or twice that length. We will say
correspondingly that x splits or doubles under f : in the first case the orbits of
x0 and x1 are distinct, in the second case they coincide (as sets). Hence, any
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orbit has length 2k for some k ≥ 0 and it follows that for any odd integer r the
maps f and f r are star equivalent.

In order to show that some orbit relations are rational, it is useful to generalize
the notion of orbit slightly. Given two automorphisms f and h and a word u,
define the orbit of u under f with translation h to be u f∗h = { u f ih | i ≥ 0 }.
Correspondingly, the relation R(f, h) holds on u and v if v ∈ u f∗h. When h is
the identity then R(f, I) is simply the orbit relation of f . In general, R(f, h)
fails to be an equivalence relation (and even to be reflexive), but, as we will show
in the following lemma, orbits with translation are closed under Brzozowski [3]
quotients. Here we interpret R(f, h) as a language over (2× 2)

∗
.

Lemma 1. Quotient Lemma
Let f and h be two automorphisms and set b = a h. For f = (f0, f1) we have

(a:b)−1 R(f, h) = R(fa, ha)

Otherwise, for f = (f0, f1) σ, we have

(a:b)−1 R(f, h) = R(fafa, ha)

(a:b)−1 R(f, h) = R(fafa, faha)

All other quotients are empty.

Proof. In the first case we get ax f∗h = b (x fa
∗ha). In the second case note

that f2 = (f0f1, f1f0). Since the first bit alternates along the orbit of ax under
f , it follows that ax f∗ = a (x (fafa)

∗
) ∪ a (x (fafa)

∗
fa). Our claim follows by

applying the translation h to this equation. &"
The lemma provides a way to construct a transition system over the alphabet

2×2 that decides the orbit relation ≡f of an automorphism f : starting at (f, I),

generate all quotients according to the lemma and record transitionsR(f, h)
a/b−−→

(a:b)−1 R(f, h). The initial state is (f, I) and all states other than ∅ are accepting.
Clearly, the system accepts the convolution x:y of two words x and y of equal
length if, and only if, x ≡f y. To obtain a minimal transition system Mf in the
sense of Eilenberg [4], we have to adjust the notion of star equivalence to pairs:
(f, h) and (g, h′) are star equivalent if R(f, h) = R(g, h′). We write (f, h) ≈
(g, h′) to indicate star equivalence. From the definitions we have the following
sufficient condition for star equivalence.

Proposition 1. Let f and h be automorphisms. Then for any odd r and any
integer s: (f, h) ≈ (f r, f sh).

Of course, in general Mf will be infinite. For some automorphisms given by an
invertible transducer, Mf turns out to be finite, so that the orbit relation of f
is rational. One well-known example are the so-called “sausage automata” SAn

in [15], generalizations of the adding machine from above. In wreath notation
they are given by

1 = (0, n)σ and k = (k − 1, k − 1), 2 ≤ k ≤ n
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1

5

4

3

2

0

0/1

a/a

a/a

a/a

a/a

1/0

a/a

Fig. 1. The “sausage automaton” A5, an invertible transducer that generates Z5

where we ignore the identity I, as customary. Figure 1 shows A5.
The group generated by An is Zn and the basic transductions are given by

a combination of the successor function of the adding machine and a polyadic
version of perfect shuffle. Let xi ∈ 2r, 1 ≤ i ≤ n, and 1 ≤ k ≤ n. Then

k (shf(x1, x2, . . . , xn)) = shf(x1, . . . , xkα, . . . , xn)

Here α is again the successor operation defined by the adding machine from
section 2.1 and shf is the generalization of binary perfect shuffle to a variable
number of arguments of the same length:

shf(x1, x2, . . . , xs) = x11x
2
1 . . . x

s
1 x

1
2x

2
2 . . . x

s
2 . . . x

1
rx

2
r . . . x

s
r.

Note that automatic relations are closed under perfect shuffle. With a little bit of
effort one can show that the orbit relation ≡f is automatic for any transduction
f in S(An)

2.3 Cycle-Cum-Chord Transducers

We now introduce a simple class of invertible transducers whose associated semi-
groups will turn out to be free Abelian groups. Unlike with the sausage automata
from above, the orbits of words under the corresponding transductions are fairly
complicated. A cycle-cum-chord (CCC) transducer has state set {0, 1, . . . , n− 1}
and transitions

p
a/a−→ p− 1, p > 0 and 0

0/1−→ n− 1, 0
1/0−→ m− 1

where 1 ≤ m ≤ n. We will write An
m for this transducer. The diagram of A5

3 is
shown in figure 2. The source node of the chord is the sole toggle state in these
transducers. As we will see shortly, S(An

m) = G(An
m).

Using wreath representations it is easy to verify algebraically that S(An
m) is

an Abelian group. More precisely, we can establish the following two lemmata.

Lemma 2. The transduction semigroup of An
m is Abelian.
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0

1

2 3

4

0/1

1/0

a/a

a/a

a/a

a/a

0 = (4, 2)σ

k = (k − 1, k − 1) 0 < k < 5

Fig. 2. The cycle-cum-chord transducer A5
3, an invertible transducer on 5 states with

one toggle state

Proof. Let 0 ≤ r, s < n− 1. Then

0 r + 1 = (n− 1,m− 1) σ (r, r) = (n− 1 r,m− 1 r) σ

r + 1 0 = (r, r) (n− 1,m− 1) σ = (r n− 1, r m− 1) σ

r + 1 s+ 1 = (r, r) (s, s) = (r s, r s)

s+ 1 r + 1 = (s, s) (r, r) = (s r, s r)

and we are done by induction. &"

Lemma 3. Cancellation Identities
Consider An

m where 1 ≤ m ≤ n and let s = gcd(n,m), r = m/s. Then the
following identities hold in the transduction semigroup of An

m, for 0 ≤ i < s:

i2 (s+ i)2 . . . ((r−1)s+ i)2 m+ i m+ s+ i . . . n− s+ i = I

Proof. For i = 0 we have

∂a0
2 (s)2 . . . ((r−1)s)2 m m+ s . . . n− s =

s− 12 (2s− 1)2 . . . ((r−1)s− 1)2 m+ s . . . n− s− 1 n− 1

Noting that, for i > 0, each term r in the equation is replaced by r − 1 under
residuation we are done by induction. &"

3 Orbit Rationality

3.1 Knuth Normal Form

From the two lemmata it follows that S(An
m) = G(An

m) is an Abelian group: by
the cancellation identities the inverse of each monoid generator lies already in
S(An

m). Also, by the cancellation identities, the resulting group is a quotient of
Zn−s. To show that the group is in fact isomorphic to Zn−s we use a method
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suggested by D. Knuth [14]: we add a new state n to the transducer with tran-

sitions n
a/a−→ n− 1 for a ∈ 2. By repeating this extension step, we can enlarge

the state set to N where for all i > 0 we have i = (i−1, i−1). We write Kn
m for

the new transducer.

Lemma 4. Shift Identities
In the transduction semigroup of Kn

m we have, for m < n and all k ≥ 0, the
identities

k2 = k +m k + n

Proof. It suffices to prove the result for k = 0. Both 02 and m n are even and
we have residuals m− 1 n− 1. &"
According to the shift identities, the transduction semigroups of An

m and Kn
m

coincide. Likewise, the cancellation identities generalize to all transductions in
Kn

m. Since S(An
m) = S(Kn

m) we have an alternative representation as f =
k1

e1 k2
e2 . . . kr

er where k1 < k2 < . . . < kr and ei ≥ 1. We allow r = 0
for the identity map. Of particular interest is the case where ei = 1 for all
i; we will refer to this flat representation f = k1 k2 . . . kr as the Knuth nor-
mal form (KNF) of f . To generate the KNF of f we interpret the identities
from lemma 4 as rewrite rules. For example, in K3

2 we have the shift rule
k2 → k + 2 k + 3. Alas, application of the shift rule alone can lead to infi-
nite loops as in 02 12 2 → 12 22 3 → 22 32 4 → . . . However, in this case, a single
application of the cancellation identity from lemma 3 immediately terminates
the process. Thus, the rewrite system is weakly terminating.

Theorem 1. Knuth Normal Form
Every transduction over An

m has a unique Knuth normal form.

Proof. For n = m the cancellation identities have the form k2 = I and it follows
immediately that every transduction can be written uniquely in the required
form. So assume m < n. For any transduction f in S(An

m) consider the standard
semigroup representation

f = k1
ek1 k2

ek2 . . . kr
ekr

where eki ≥ 1 and 0 ≤ ki < ki+1 < n. If all exponents are equal 1, or if r = 0, we
are done. Otherwise rewrite the expression as follows. First, apply cancellation
according to the identities from lemma 3 in the first place possible. If none of
these identities apply, use the shift rule derived from lemma 4, again in the
leftmost possible position. Thus we obtain a sequence of expressions (fi) with
f0 = f that all denote f . We claim that the sequence is finite and thus ends in
the desired flat representation.

Define the weight of f to be
∑

ei. Note that the shift rule preserves weight
whereas a reduction reduces weight. Suppose for the sake of a contradiction that
our rewrite process continues indefinitely for some initial f . Since weights are
non-negative we may safely assume that the weight remains constant. Thus, no
reductions apply and we only use shift rules. For the sake of simplicity let us
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assume that s = gcd(n,m) = 1 so there is only a single reduction to deal with.
The general argument is more tedious but entirely similar.

Observe that there must be a minimal critical index c such that ec > 1.
Define the essential weight of the expression as the sum

∑
i≥c ei. Again we may

assume that the essential weight of the expression is non-decreasing. Hence ec
must always be even and the shift operation adds ec/2 to ec+m and ec+n. But
then, after a sufficiently large number of steps, there will be a critical block of
exponents ec, ec+1, . . . , ec+n−1 with the property that ei ≤ 1 for i < c and ei = 0
for i ≥ c + n; c increases by 1 at each step. Since ec is even we are essentially
operating on an n-tuple of natural numbers:

(a0, . . . , an−1) !→ (a1, a2, . . . , am + a0/2, . . . , an−1, a0/2)

We may safely assume a0 to be positive. Since n and m are coprime all entries
in the vector will be positive after at most m(n− 1)+1 steps. But note that the
leftmost m − 1 entries in the vector must then all be even and positive. Hence
we can apply cancellation and we have the desired contradiction. Uniqueness is
clear from the construction. &"
We can now pin down the structure of the transductions semigroups S(An

m).

Corollary 1. The transduction semigroup of An
n is isomorphic to the Boolean

group 2n. For m < n, the transduction semigroup of An
m is isomorphic to

Zn−gcd(n,m).

Knuth normal form can be used to establish other properties of the group of
An

m. For example, the group can be shown to act transitively on all the level sets
2�, � ≥ 0. Here is another important property of the transduction group.

Lemma 5. Let f �= I be a transduction over a CCC transducer An
m and r the

first term in the KNF of f . Then exactly all words of length r +mN double for
m < n. For n = m, only words of length r double.

Proof. For m = n the orbit of a word x has length 1 when |x| ≤ r and length 2
otherwise: letting f = k1 k2 . . . ks where r = k1, 0 ≤ ki < ki+1 < n, we can see
that f toggles exactly the bits in positions ki +mN.

Suppose m < n and consider the case r = 0. Assume by induction that x is a
word of length � = km such that the f -orbit of x has length 2k. Then the first

term in the KNF of f2k is km so that xa f2k = xa. Similarly xv f2k+1

= xv for
all v ∈ 2m and our claim follows. Lastly, for r > 0, note that f is the identity
on all words up to length r and, for x = uv where |u| = r, we have x f = u(v g)
where g = ∂uf and g is odd. &"

Lemma 6. For any CCC transducer An
m let H be the group of transductions

generated by i, 0 ≤ i < m. Then H acts transitively on the level sets 2�. For

� = km the quotient group H ′ obtained by factoring with respect to i2
k

acts
simply transitively on 2�.
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Proof. Since our transductions are sequential it suffices to consider only levels
� = km. Consider two words x and y of length �. Suppose by induction that
x f = y for some transduction f and consider arbitrary bits a0, . . . , am−1 and
b0, . . . , bm−1. Note that xa0 f0

e0 = yb0 for e0 = 0 or e0 = 2k. Proceeding
inductively, we can find ei ∈

{
0, 2k

}
such that xa0 . . . am−1 f0

e0 . . .m−1em−1 =
yb0 . . . bm−1.

Since the coefficients are uniquely determined modulo 2k+1, the second claim
also follows. &"

3.2 Orbit Geometry and Rationality

One important consequence of the last lemma is that it provides a natural coor-
dinate system for the level set 2km: for every � = km there is a coordinate map,
a bijection

2� → Z/(2k)× . . .× Z/(2k)

where the product on the right has m terms. We will write 〈w 〉� ∈ (Z/(2k))m

for the coordinates of a word w: 〈w 〉� = (a0, . . . , am−1) if, and only if, w =
0� 0a01a1 . . .m−1am−1 . In terms of this coordinate system, orbits can be de-
scribed as affine subspaces of (Z/(2k))m:

〈w f∗ 〉� = 〈w 〉� + N · 〈 f 〉� (mod 2k)

In fact, all these orbits are translations of the basic linear subspace 0� f∗. But
then two transductions f and g are star equivalent for words of length � = km
if, and only if, for some odd integer z depending on � we have 〈 f 〉� = z · 〈 g 〉�
(mod 2k). Thus, for fixed �, simple modular arithmetic suffices to determine star
equivalence, given the coordinates. To deal with the general case, recall that
a sequence (ai) of integers is coherent if ai = ai+1 (mod 2i), and likewise for
vectors of integers, see [8]. For any word x let x[i] be the prefix of x of length i. It
is easy to check that the sequence (〈 f 〉�) is coherent. Thus, the local coordinates
〈w f 〉km define a vector 〈 f 〉 ∈ Zm

2 of m dyadic numbers. For example, in A3
2,

letting f = 0−113 we get

〈 f 〉 = (0.1111 . . . , 0.11000 . . .) ∈ Z2
2

using the standard digit notation for Z2. Note, though, that for A3
2 the dimen-

sion of the coordinate system coincides with the number of generators of the
transduction group; in general the situation is more complicated. Write ν2(x)
for the dyadic valuation of x in Z2.

Theorem 2. Let A be a cycle-cum-chord transducer and f and g two transduc-
tions in S(A). Then f and g are star equivalent if, and only if, the following
two conditions hold:

1. ν2(〈 f 〉) = ν2(〈 g 〉), and
2. 〈 f 〉 = ζ 〈 g 〉 for some unit ζ ∈ Z2.
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Likewise, (f, h1) and (g, h2) are star equivalent if, and only if, the following two
conditions hold:

1. f and g are star equivalent, and

2.
〈
h−1
1 h2

〉
= ζ 〈 f 〉 for some ζ ∈ Z2.

There is an interesting special case where we can obtain a better description.
Call a CCC transducer An

m amenable if the dimension of the coordinate system
for words coincides with the number of free generators. In other words, the
transduction group is isomorphic to Zm, which is equivalent n− gcd(n,m) = m.
It is easy to see that An

m is amenable if, and only if, m = n − d where d < n
divides n.

Corollary 2. For amenable cycle-cum-chord transducers, star equivalence is de-
cidable in polynomial time.

For any odd integer s and a transduction f , define the fractional power f1/s as
follows: x f1/s = y iff x = y fs. This yields the following characterization of star
equivalence for CCC transducers.

Corollary 3. In any amenable cycle-cum-chord transducer, the following are
equivalent for transductions f and g:

– f and g are star equivalent,

– there are odd integers r and s such that f r/s = g,

– there are odd integers r and s and a transduction h such that f = hr and
g = hs.

Call an invertible transducer A orbit rational if f∗ is rational for all f in S(A).
To simplify the discussion, consider An

m and let s = gcd(n,m) and n′ = n/s,
m′ = m/s. We refer to An′

m′ as the reduct of An
m. The transition diagram of the

reduct is s-partite and the orbits can be described via shuffle as follows.

Lemma 7. Let An
m be a CCC transducer, s = gcd(n,m) and An′

m′ its reduct;

write f = An
m(0) and g = An′

m′(0). Then for words xi ∈ 2k we have

f(shf(x1, x2, . . . , xs)) = shf(g(x1), x2, . . . , xs)

As a consequence it suffices to determine orbit rationality for reducts only.

Lemma 8. A transducer An
m is orbit rational if, and only if, its reduct An′

m′ is
orbit rational.

3.3 Rational Orbit Relations

Theorem 3. All transducers An
1 and An

n are orbit rational, n ≥ 1.
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Proof. First consider An
1 . We have seen that 0 acts transitively on all level sets,

so ≡0 is universal in the sense that two words are equivalent iff they have the
same length. In the general case, our claim follows similarly from lemma 5: let k
be the leading term of the KNF of f , then x ≡f y iff x[k] = y[k]. Hence, ≡f can
be decided by a finite state machine of size 1 when k = 0, and k + 2 otherwise.

For transducers of the form An
n recall that every transduction in S(An

n) can
be written uniquely in the form f = k1 k2 . . . kr where 0 ≤ ki < ki+1 < n. Thus,
f toggles exactly the bits in positions ki+nN and the orbit of any word of length
at least k1 is a 2-cycle. Clearly, ≡f can be decided by a finite state machine of
size at most n. &"
Corollary 4. Every transducer of the form Amt

m is orbit rational for m, t ≥ 1.

By using lemma 1 and corollary 2 one can construct a minimal finite state
machine on 36 states decides orbit equivalence of 0 for A3

2. The following theorem
explains why this construction terminates; a similar argument also provides a
plausibility argument for the state complexity of the machine.

Theorem 4. Every transducer of the form A3t
2t is orbit rational for t ≥ 1.

Proof. It suffices to show that the common reduct A = A3
2 is orbit rational. As

we have seen, the transduction group of A is isomorphic to Z2. Consider the set
Q ⊆ Z2 obtained by closing (f, I) under quotients as in lemma 1. For the time
being, let us focus on Q0, the projection on the first component. Note that Q0

is the orbit of f under the map π(g) = ∂0g when g is even and π(g) = ∂0g
2

otherwise. It is not hard to see that the orbit of f must contain on odd function,
say, πr(f) = (a, b) ∈ Z2. Then the π-orbit of (a, b), modulo star equivalence, is

(a, b), (2b− 2a,−a), (a− 2b, a− b), (2b, 2b− a), (−a,−b) ≈ (a, b)

Here odd and even steps alternate. At any rate, Q0 is finite.
To see that the second component of Q is also finite note that, using the group

representation, we can compute residuals like so:

∂su =

{
A · u if u is even,

A · u− (−1)sa otherwise.

where

A =

(
−1 1

−1/2 0

)
and a = (1, 3/2)

The rational matrix A has complex eigenvalues of norm 1/
√
2 < 1 and gives rise

to a contraction Q2 → Q2. We can over-approximate the operations required for
the second components of Q by a map Φ : Q2 → P(Q2) defined by

Φ(u) = {A · u+ ca+w | c ∈ {0,±1} ,w ∈ W }.

Here W is a set of residuals obtained from the transductions in Q0. Since A is
a contraction the closure of h under Φ is a bounded set in Q2, containing only
finitely many integral points. &"
A careful discussion of so-called 1/2-homomorphisms can be found in [16].
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4 Summary and Open Problems

We have characterized the transduction semigroups associated with a class of
invertible transducers over the binary alphabet as free Abelian groups. For a sub-
class of these transducers we can show that the iterates f∗ of any transduction
is rational and hence automatic. We do not know how to decide rationality in
general, and, in fact, not even for the class of amenable cycle-cum-chord trans-
ducers. As a concrete example, consider the transducers A4

m. It follows from
our results that they are orbit rational for m = 1, 2, 4. In the case m = 3 the
transducer is amenable and reduced. We are able to show that A4

3 indeed fails to
be orbit rational, but the proof uses field theory in combination with symbolic
computation and does not easily generalize to any other situation. In view of
the quotient algorithm from above, it would be interesting to know whether star
equivalence is decidable in general. As a special case, one can consider transduc-
tion that produce only orbits of bounded size. Again, we are currently unable to
answer these questions even for non-amenable cycle-cum-chord transducers.

It is straightforward to check whether S(A) is commutative, using standard
automata-theoretic methods. Similarly it is semidecidable whether S(A) is a
group, though the exponential growth in the size of the corresponding automata
makes it difficult to investigate even fairly small transducers. We do not know
whether it is decidable whether S(A) is a group. Unsurprisingly, many other
decidability questions regarding transduction semigroups or groups of invertible
transducers are also open, see [9, chap. 7] for an extensive list.

Lastly, there are several computational problems that arise naturally in the
context of S(A). The most basic one is the Iteration Problem: for a given trans-
duction f ∈ S(A), compute x f for a word x. For example, in the case of A3

2

the complete automaton mentioned in section 2.1 has 8 non-trivial strongly con-
nected components that are all finite. As a consequence, we can compute x f
in time O(|x| log2 w) where w is the weight of f . As we have seen, for A3

2 the
elementary decision problem of determining orbit equivalence can be handled
by a finite state machine. A slightly stronger version of the decision problem is
the Timestamp Problem: given two words x, y ∈ 2k, find a witness t such that
x f t = y or determine that they are not on the same f -orbit. Surprisingly, for
A3

2, there is a finite transducer that computes the minimal t given input x:y.
Knuth normal form is a critical tool in the corresponding correctness proofs.
Lastly, in light of the description of orbits in terms of the coordinate system
introduced in section 3.2, it is natural to ask how difficult it is to compute the
coordinates of a given word. Again for A3

2, there is a finite transducer that solves
the Coordinate Problem: given x ∈ 22k as input, outputs the coordinates (s, t)
of x, where 0 ≤ s, t < 2k, see [21]. Note that based on the geometric descrip-
tion of orbits from section 3.2 the Timestamp Problem can be reduced to the
Coordinate Problem. We do not know whether these problems can be solved in
polynomial time in general for cycle-cum-chord transducers.
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Abstract. Recently, a characterization of the class of nondeterministic
finite automata (NFAs) for which determinization results in a minimal
deterministic finite automaton (DFA), was given in [2]. We present a
similar result for the case of symmetric difference NFAs. Also, we show
that determinization of any minimal symmetric difference NFA produces
a minimal DFA.

1 Introduction

Regular languages, and more specifically compact representations of regular lan-
guages, are important in many areas in computer science. The state minimization
of deterministic finite automata (DFAs) is well-known [1,8], but the state mini-
mization of nondeterministic finite automata (NFAs) is more complicated [9,10].
Symmetric difference NFAs (⊕-NFAs) are of interest for their ability to succinctly
describe regular languages [16].

In practical applications, it is often required to find the DFA equivalent to
a given NFA (that is, to determinize the NFA). This is accomplished by the
so-called subset construction, employing the union set operation for NFAs and
the symmetric difference set operation for ⊕-NFAs. It is however quite possible
that the equivalent DFA may have exponentially more states than the NFA or
⊕-NFA, and would need further minimization to reduce its number of states.
It is therefore a notable advantage to be able to test in advance whether the
determinization of a given NFA or ⊕-NFA would result in a minimal DFA. This
issue was investigated by Brzozowski and Tamm [2] for the case of NFAs. They
introduced so-called atoms of a regular language as non-empty intersections of
uncomplemented or complemented left quotients of the language, and atomic
NFAs in which the right language of every state is a union of atoms. It was
shown in [2] that determinization of an NFA results in a minimal DFA if and
only if the reverse of the given NFA is atomic.
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In this work we show that the same characterization of when determinization
leads to a minimal DFA, holds in the case of ⊕-NFAs. Also, we show that it is
sufficient to require that a ⊕-NFA be minimal in order to obtain a minimal DFA
by determinization.

The layout of the article is as follows. In Section 2 we define ⊕-NFAs and
give some basic examples. Some properties of minimal ⊕-NFAs, that are used to
obtain one of our main results, are given in Section 3. In Section 4, the notions
of atomic and ⊕-atomic ⊕-NFAs are introduced. The main results, specifying
conditions to obtain a minimal DFA on determinizing a ⊕-NFA, are presented
in Section 5, followed by conclusions in Section 6.

2 Symmetric Difference NFA Definitions

⊕-NFAs are typically defined by using the symmetric difference set operation, in
contrast to the union set operation as in the case of NFAs. We give this definition,
in order to be consistent with previous literature, but also equivalently consider
⊕-NFAs as weighted automata over the semiring Z2 (the Galois field with two
elements).

We begin this section by recalling the definitions for a semiring and for
weighted automata.

Definition 1. (from [6], [7]) A tuple (S,⊕,⊗, 0̄, 1̄) is a semiring if (S,⊕, 0̄) is a
commutative monoid with identity element 0̄, (S,⊗, 1̄) is a monoid with identity
element 1̄, ⊗ distributes over ⊕, and 0̄ is an annihilator for ⊗: for all a ∈ S,
a⊗ 0̄ = 0̄⊗ a = 0̄.

Example 1
a) The Boolean semiring is the two element semiring over true (true being 1̄)

and false (false being 0̄) using and as ⊗ and or as ⊕.
b) The symmetric difference semiring (Z2), is obtained by replacing or with

exclusive or in the definition of the Boolean semiring.
c) The tropical semiring is the semiring (N∪{+∞},min,+,+∞, 0), also known

as the min-plus semiring, with min and + extended to N ∪ {+∞} in the
natural way (N denotes the natural numbers, including 0).

Definition 2. (from [6], [7]) A weighted automaton (without ε-transitions)
over a semiring (S,⊕,⊗, 0̄, 1̄) is a 5-tuple A = (Q,Σ, δ, I, F ), where Q is a
finite set of states, Σ is the finite input alphabet, δ : Σ → SQ×Q the transition
function, I : Q → S an initial weight function and F : Q → S the final weight
function.

Note that δ(a) is a Q×Q-matrix whose (p, q)-th entry δ(a)p,q ∈ S indicates the
weight of the transition from p to q on the symbol a.
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Let A be a weighted automaton over the semiring (S,⊕,⊗, 0̄, 1̄). A path in A
is an alternating sequence P = q0a1q1 . . . qn−1anqn ∈ Q(ΣQ)∗. Its run weight is
the product rw(P ) = I(q0)⊗ δ(a1)q0,q1 ⊗ δ(a2)q1,q2 ⊗ . . .⊗ δ(an)qn−1,qn ⊗ F (qn).
The label of path P = q0a1q1 . . . qn−1anqn, denoted by label(P ), is the word
a1 . . . an ∈ Σ∗. The behaviour of a weighted automaton A is the function ‖A‖ :
Σ∗ → S defined by ‖A‖(w) = ⊕label(P )=wrw(P ). One can easily verify that

‖A‖(a1 . . . an) = Iδ(a1) . . . δ(an)F
T

, with usual matrix multiplication, consider-

ing I and F as row vectors and denoting by F
T

the column vector obtained by
transposing F .

Note that the Boolean semiring and Z2 are the only semirings with two el-
ements. In the case of two element semirings, we can interpret weights as ac-
ceptance and rejection (words with weight 1 are accepted). Also, weighted au-
tomata over the Boolean semiring and over Z2 accept the same class of languages,
namely, the regular languages.

⊕-NFAs are in fact precisely weighted automata over Z2, but in order to stay
consistent with previous work on the topic, we next give the standard definition
for ⊕-NFAs.

Definition 3. A ⊕-NFA N is a 5-tuple (Q,Σ, δ, I, F ), where Q is the finite
non-empty set of states, Σ is the finite non-empty input alphabet, I ⊆ Q is
the set of initial states, F ⊆ Q is the set of final states and δ is the transition
function such that δ : Q×Σ → 2Q. &"
The transition function δ can be extended to δ : 2Q ×Σ → 2Q by defining

δ(P, a) =
⊕
q∈P

δ(q, a)

for any a ∈ Σ and P ∈ 2Q. We define δ∗ : 2Q × Σ∗ → 2Q by δ∗(P, ε) = P and
δ∗(P, aw) = δ∗(δ(P, a), w) for any a ∈ Σ, w ∈ Σ∗ and P ∈ 2Q. We will denote
δ∗ also by δ.

LetN = (Q,Σ, δ, I, F ) be a⊕-NFA and let w be a word inΣ∗. ThenN accepts
w if and only if |F ∩δ(I, w)| mod 2 �= 0. In other words, a ⊕-NFA accepts a word
w by parity – if there is an odd number of accepting paths for w in the execution
tree, then w is accepted; else it is rejected. Note that acceptance for ⊕-NFAs is in
accordance with how acceptance is defined for weighted automata. The language
accepted by N , indicated by L(N ), is the set of all words accepted by N . Given
any two subsets of states G,H ⊆ Q of N , we define the language from G to H
as the set of words LG,H(N ) = {w ∈ Σ∗ | |H ∩δ(G,w)| mod 2 �= 0}. If G = {q},
we will use the notation Lq,H , and similarly if H (or both G and H) consists
of a single state. Then the left language of a state q of N is LI,q(N ), and the
right language of q is Lq,F (N ). Note that L(N ) = LI,F (N ). Two ⊕-NFAs are
equivalent if they accept the same language. A ⊕-NFA is minimal if it has the
minimum number of states among all equivalent ⊕-NFAs.

By determinizing N , we get a complete DFA ND, which is defined as follows:

Definition 4. Let N = (Q,Σ, δ, I, F ) be a ⊕-NFA. Then the complete DFA
ND = (QD, Σ, δD, q0, F

D), obtained by determinizing N , is defined as follows:
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q1 q2 q3

a

a a

a

q1 q2 q3 q1q3

q1q2q3q1q2q2q3

a a a

a

aa

a

Fig. 1. The ⊕-NFA and corresponding DFA for Example 2

- QD = {δ(I, w) | w ∈ Σ∗};
- for J ∈ QD ⊆ 2Q, and a ∈ Σ, δD(J, a) = ⊕q∈Jδ(q, a), with δD(∅, a) = ∅ for
all a ∈ Σ, if ∅ ∈ QD;

- the start state q0 of ND is the set I;
- the set of final states FD of ND is {K ∈ QD | |K ∩ F | mod 2 �= 0}.

It was shown in [15] that ND is indeed equivalent to N .

Example 2. Let N = ({q1, q2, q3}, {a}, δ, {q1}, {q3}) be a ⊕-NFA where δ is given
by δ(q1) = {q2}, δ(q2) = {q3}, and δ(q3) = {q1, q3}.

Figure 1 shows a graphical representation of N ; note that there is no visual
difference from a traditional NFA. To find the DFA ND equivalent to N , we
apply the subset construction using the symmetric difference operation instead
of union. The transition function δD of ND is given by

{q1} →δD {q2} →δD {q3} →δD {q1, q3} →δD

{q1, q2, q3} →δD {q1, q2} →δD {q2, q3} →δD {q1} ,

and the final states by {{q3}, {q1, q3}, {q1, q2, q3}, {q2, q3}}.

As is the case for weighted automata in general, one can encode the transition
table of a unary ⊕-NFA N as a binary matrix m(δ(a)):

m(δ(a))ij =

{
1 if qj ∈ δ(qi, a)
0 otherwise,

and successive matrix multiplications in the Galois field Z2 reflect the subset
construction on N .

We call m(δ(a)) the characteristic matrix of N , and c(x) = det(m(δ(a))−xI),
where I is the identity matrix of the appropriate size, is known as its character-
istic polynomial.

Similarly, we can encode any set of states B ⊆ Q as an n-entry row vector
v(B) by defining

v(B)i =

{
1 if qi ∈ B
0 otherwise .

We place an arbitrary but fixed order on the elements of Q. We refer to v(B)
as the vector encoding of B, and to B as the set encoding of v(B). Note that
v(B1) + v(B2) = v(B1 ⊕B2).
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The matrix product v(I)m(δ(a)) encodes the states reachable from the initial
states after reading one letter, v(I)m(δ(a))2 encodes the states reachable after
two letters, and in general v(I)m(δ(a))k encodes the states reachable after k
letters. Standard linear algebra shows the following:

N accepts ak if and only if v(I)m(δ(a))kv(F )T = 1,

where v(F )T denotes the transpose of the row vector v(F ). In the general case
where we consider also non-unary symmetric difference automata, one can asso-
ciate a matrix m(δ(a)) to each symbol a ∈ Σ. Then a word w = a1 . . . ak, with
ai ∈ Σ, is accepted if and only if:

v(I)m(δ(a1)) . . .m(δ(ak))v(F )T = 1.

Note that if N is an n-state ⊕-NFA with initial vector v(I), final vector v(F ) and
transition matrices m(δ(a)), and A is a n× n non-singular matrix with inverse
A−1, then the ⊕-NFA NA with initial vector v(I)A, final vector A−1v(F ) and
transition matrices A−1m(δ(a))A, accepts the same language as N , since:

v(I)m(δ(a1)) . . .m(δ(ak))v(F )T

= v(I)AA−1m(δ(a1))A . . . A−1m(δ(ak))AA
−1v(F )T.

It is shown in [17] that if N and N ′ are minimal ⊕-NFAs for the same language
L, then we can find a non-singular matrix A such that N ′ = NA. We will refer
to the process of changing from N to NA as making a change of basis by using
A.

Definition 5. The mirror image or reverse of a string w = a1 . . . an is the string
wR = an . . . a1. The reverse LR of a language L is defined to be {wR | w ∈ L}.

Given a ⊕-NFA N = (Q,Σ, δ, I, F ), its reverse is NR = (Q,Σ, δR, F, I), where
q ∈ δR(p, a) if and only if p ∈ δ(q, a). In terms of vectors and matrices, the initial
and final vectors are exchanged, and the transpose (that is, exchanging rows and
columns) of the transition matrices of N is taken, in order to obtain the initial
and final vectors and transition matrices of NR. Note that

v(I)m(δ(a1)) . . .m(δ(ak))v(F )T = v(F )m(δ(ak))
T . . .m(δ(a1))

Tv(I)T .

Thus L(NR) = (L(N ))R.

Example 3. Consider the ⊕-NFA N in Example 2. Its characteristic matrix is

m(δ(a)) =

⎡⎣0 1 0
0 0 1
1 0 1

⎤⎦
and its characteristic polynomial is c(x) = x3 + x2 + 1. Interested readers may
note that c(x) is a primitive polynomial in Z2. The fact that c(x) is primitive
implies that we obtain 23 − 1 = 7 states when determinizing the given ⊕-NFA
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N (see [16]). It can be shown that N is minimal, and that ND is a minimal DFA
([16]), which is always the case when determinizing a minimal ⊕-NFA, as we
will show later in Theorem 4. If we encode the start state as a row vector v(I),
with only the first component of v(I) equal to one, and compute v(I)m(δ(a))k ,
we end up with the k-th entry in the on-the-fly subset construction on N . For
example, with the start state q1 encoded as v(I) = [ 1 0 0 ], we see that

m(δ(a))4 =

⎡⎣1 1 1
1 1 0
0 1 1

⎤⎦ ,
and hence v(I)m(δ(a))4 is given by [ 1 1 1 ]. This corresponds to the state
{q1, q2, q3}, which is reached after four applications of the subset construction
on N . Similarly, v(I)m(δ(a))6 is given by [ 0 1 1 ], which corresponds to {q2, q3}.

In [15] we formally showed that the state behaviour of a unary⊕-NFA is the same
as that of a linear feedback shift register (LFSR). The similarity is intuitively
straightforward, as an LFSR is a linear machine over Z2, and we can encode a
unary ⊕-NFA as a linear machine over Z2 as shown above. This correspondence
means that we can exploit the literature on LFSRs to analyse the behaviour of
unary ⊕-NFAs, and in particular their cyclic behaviour (see, for example, [5]
or [13]). For ⊕-NFAs in general (whether unary or non-unary), standard tech-
niques in linear algebra are often used. For example, to obtain a more convenient
form of transition matrices, a change of basis can be performed [14].

3 Properties of Minimal ⊕-NFAs

In this section we study properties of minimal ⊕-NFAs, which are used to obtain
one of our main results that determinization of a minimal ⊕-NFA leads to a
minimal DFA.

Proposition 1. A ⊕-NFA N is minimal if and only if NR is minimal.

Proof. Suppose N is a minimal ⊕-NFA. Then NR is obtained from N by in-
terchanging the initial and the final states and by taking the transpose of the
transition matrices for each letter in Σ. If NR is not minimal, we can rewrite its
transition matrices with fewer rows and columns to obtain N ′, where N ′ accepts
the same language as NR. If we now reverse N ′ by transposing its transition
matrices, we obtain a ⊕-NFA which accepts (L(NR))R, that is, L(N ). This is a
contradiction, as N is minimal. The converse holds by the same argument. &"

For a ⊕-NFA N = (Q,Σ, δ, I, F ), the kernel of N is defined as the set of subsets
I ′ ⊆ Q, such that if we obtainN ′ fromN by replacing I with I ′, then L(N ′) = ∅.

Definition 6. The kernel K(N ) of a ⊕-NFA N = (Q,Σ, δ, I, F ) is the set
{I ′ ⊆ Q | LI′,F (N ) = ∅}.

Note that we always have ∅ ∈ K(N ).
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The range of a ⊕-NFA N = (Q,Σ, δ, I, F ) is defined as the linear subspace of
2Q generated by subsets of the form δ(I, w).

Definition 7. The range R(N ) of a ⊕-NFA N = (Q,Σ, δ, I, F ) is the set of
subsets of Q of the form δ(I, w1)⊕ . . .⊕ δ(I, wk), with w1, . . . , wk ∈ Σ∗, k ≥ 0,
where we assume that for k = 0 we obtain the empty set.

A ⊕-NFA is trim if there are no states that are unreachable from start states.
Instead of also removing states from which final states can not be reached, as in
the case of trim (union) NFAs, we rather consider these as states that should be
trimmed from NR.

Definition 8. A ⊕-NFA N is trim if R(N ) = 2Q.

Let N be the single state ⊕-NFA with no transitions, and with the single state
not an initial or a final state. ThenN is a minimal ⊕-NFA for ∅, but R(N ) = {∅}.
For the remainder of this paper, we either have to assume that the minimal ⊕-
NFA for the empty language is the empty ⊕-NFA, or we should exclude the
empty language from our discussions. To avoid technical complications, we thus
do not consider the empty language in the remainder of this paper.

Next we show that ⊕-NFAs can be trimmed by making a change of basis.

Proposition 2. Let N be a ⊕-NFA. Then there is a change of basis from N to
NA, such that the ⊕-NFA obtained from NA by removing all unreachable states
from the initial states (in the usual graph theoretic sense), is trim.

Proof. Assume thatN = (Q,Σ, δ, I, F ). The proposition follows from the follow-
ing standard fact from linear algebra. Let V be a k-dimensional linear subspace
of the n-dimensional vector space Zn

2 . Then there exists a n × n non-singular
matrix A over Z2, such that {vA | v ∈ V } is equal to {(v1, . . . , vk, 0, . . . , 0) ∈
(Z2)

n | vi ∈ Z2}. Thus we can find a non-singular matrix A such that the vec-
tors v(I)m(δ(a1)) . . .m(δ(al))A, for all w = a1 . . . al ∈ Σ∗, which is also equal
to v(I)AA−1m(δ(a1)) . . . AA

−1m(δ(al))A, generate (by using ⊕) precisely all 2k

vectors with all components from the (k+1)-th component onwards being zero.
Thus by removing states qk+1, . . . , qn from NA, we obtain a trim ⊕-NFA. &"

Proposition 3. Let N = (Q,Σ, δ, I, F ). Then K(N ) = {∅} if and only if
R(NR) = 2Q.

Proof. Assume that K(N ) �= {∅} and let ∅ �= J ∈ K(N ). Then from the defi-
nition of K(N ) we have that LJ,F (N ) = ∅, and thus LF,J(NR) = ∅. But note
that LF,J(NR) = ∅ implies that R(NR) �= 2Q. The converse can be proved in a
similar way. &"

Theorem 1. Assume that the ⊕-NFA N = (Q,Σ, δ, I, F ) is minimal. Then
K(N ) = {∅}, K(NR) = {∅}, R(N ) = 2Q and R(NR) = 2Q.

Proof. Follows from Propositions 1, 2 and 3. &"
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Remark 1. It can be shown that ifK(N ) = {∅} andK(NR) = {∅} (or ifK(N ) =
{∅} and R(N ) = 2Q), then N is minimal, but this result is not required in the
remainder of this paper.

Definition 9. Let L be a (regular) language. The left quotient, or simply quo-
tient, of L by a word w ∈ Σ∗ is the language w−1L = {x ∈ Σ∗ | wx ∈ L}.

Note that, if D is a minimal DFA accepting L, then the right language of every
state of D is some quotient of L.

Similar to residual NFAs (as introduced in [4]), we define residual ⊕-NFAs.
We will see in the next two sections of the paper that the more general class of
automata, where the right languages of ⊕-NFAs are the symmetric difference of
quotients, is in fact the more interesting class of ⊕-NFAs in our case.

Definition 10. A residual ⊕-NFA (⊕-RFSA) is a ⊕-NFA N = (Q,Σ, δ, I, F ),
such that for all q ∈ Q there exists wq ∈ Σ∗ with Lq,F (N ) = w−1

q L.

The ⊕-NFA given in Example 2 is a ⊕-RFSA, since by reading ε, a and aa, each
of the three states are reached respectively.

Theorem 2. For any regular language L, there exists a minimal ⊕-NFA N ,
which is also a ⊕-RFSA, with L(N ) = L.

Proof. Let N = (Q,Σ, δ, I, F ) be a minimal ⊕-NFA accepting L, with Q =
{q1, . . . , qn}. Since N is minimal, it is implied by Theorem 1 that R(N ) =
2Q. Thus we can find words w1, . . . , wn so that δ(I, w1), . . . , δ(I, wn) are lin-
early independent. We can now make a change of basis on N to obtain an
equivalent minimal ⊕-NFA N ′ = (Q′, Σ, δ′, I ′, F ′), with Q′ = {q′1, . . . , q′n} and
δ′(I ′, wi) = {q′i} for 1 ≤ i ≤ n. In fact, it is fairly straightforward to verify that
the matrix B, with B = A−1, where A is a matrix with rows given by vectors
v(δ(I, w1)), . . . , v(δ(I, wn)), will provide the change of basis with the appropri-
ate properties, since v(δ(I, wi))B, which is the vector of states in N ′ reached
after reading wi, is a vector with a 1 in the ith position and zeros in all other
positions. Thus N ′ is residual. &"

Example 4. In Figure 2(a) we give an example of a ⊕-NFA N , with the states
Q = {q1, q2, q3, q4, q5}, and the initial states I = {q1, q5}. Note that ND, given in
Figure 2(b), is not minimal. Also, K(N ) = {∅, {q2, q4}}, and R(N ) is the sym-
metric difference (or union) of any subset of the set {{q1, q5}, {q2}, {q3}, {q4}},
and therefore properly contained in 2Q. Thus, N is not minimal, and it is easy
to see that L(N ) can be recognized by a three state minimal ⊕-NFA. If we use
the 5 × 5 non-singular matrix A = [aij ] with aii = 1 for i = 1, . . . , 5, a15 = 1,
and aij = 0 at all other positions (i.e. A has ones on the diagonal and in the
fifth column of the first row, but zeros elsewhere), then we obtain the ⊕-NFA
NA in Figure 2(c), which can be trimmed by removing state q5.
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q1 q2 q3 q4 q5

(a)

a, b

b a, b a, b a, b

q1, q5 q4

q2, q4

q3

∅

(b)

a, b

a, b

a

b

a, b

a, b

q1 q2 q3 q4 q5

(c)

a, b

a, b

b a, b a, b a, b

Fig. 2. (a) N , (b) N D, and (c) NA for Example 4

4 Atomic and ⊕-Atomic ⊕-NFAs

Atoms of regular languages were recently introduced in [2].

Definition 11. Let L be a regular language and let L1, . . . , Ln be the quotients
of L. An atom of L is any non-empty language of the form L̃1 ∩ · · · ∩ L̃n, where
L̃i is either Li or Li, and Li is the complement of Li with respect to Σ∗ 1.

A language has at most 2n atoms. It is easy to see from the definition of an atom
that any two atoms are disjoint from each other, and every quotient is a union
of atoms.

Definition 12. Let N = (Q,Σ, δ, I, F ) be a ⊕-NFA. We say that N is atomic
if for every state q ∈ Q, the right language Lq,F (N ) of q is a union of some
atoms (or the empty set). Similarly, N is ⊕-atomic if for every state q ∈ Q,
the right language Lq,F (N ) of q is a symmetric difference of some quotients of
L(N ) (or the empty set).

Example 5. In Figure 3, the minimal DFA D and a ⊕-NFA N accepting the
language L = (a+b)a∗ are shown. The quotients of L are L1 = (a+b)a∗, L2 = a∗,
L3 = ∅. The atoms of L are A1 = L1 ∩ L2 ∩ L3 = aa∗, A2 = L1 ∩ L2 ∩ L3 =
{ε}, A3 = L1 ∩ L2 ∩ L3 = ba∗, A4 = L1 ∩ L2 ∩ L3 = (a + b)∗(a + b)ba∗. By
determinization it can be verified that the right languages of the states of N are

1 The definition in [2] does not consider L1 ∩ L2 ∩ · · · ∩ Ln to be an atom. In [3], the
definition of an atom was changed to read as presented here.
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q1 q2 ∅

(a)

a a, b

a, b b

q1 q2

q3 q4

(b)

a, b

a, b

a, b b
b

b
a, b

a, b

Fig. 3. (a) minimal DFA D, (b) ⊕-NFA N for Example 5

as follows: A1 ∪ A3 for q1 (note that A1 ∪ A3 = L1), A2 for q2, A3 for q3, and
A4 for q4. Thus N is atomic, but not ⊕-atomic, since none of A2, A3 or A4 can
be expressed as a symmetric difference of any combination of quotients.

Proposition 4. Let N be a ⊕-NFA. If N is ⊕-atomic, then N is also atomic.

Proof. From the definition of an atom it follows that a quotient of a language L
is a (disjoint) union of atoms of L. It thus follows that the symmetric difference
of quotients is a union of atoms. Thus if a ⊕-NFA is ⊕-atomic, it is also atomic.

&"
Proposition 5. A minimal ⊕-NFA is ⊕-atomic.

Proof. From [17] we have that if N and N ′ are minimal ⊕-NFAs with L(N ) =
L(N ′), then we can obtain N ′ from N by making a change of basis. Also, by
Theorem 2, there exists a minimal ⊕-NFA N for any language L, that is also
a ⊕-RFSA. The result now follows from the observation that if NA is obtained
from N by a change of basis by using the non-singular matrix A, then the right
language of a state of NA is the symmetric difference of the right languages of
some of the states of N . To see this, note that from the equation

A−1m(δ(a1)) . . .m(δ(ak))v(F )T

=A−1m(δ(a1))A . . . A−1m(δ(ak))AA
−1v(F )T,

it follows that if we take the symmetric difference of the right languages of states
of N corresponding to the positions of the ith row of A−1 having 1’s, then we
obtain the right language of the ith state of NA. &"

5 Getting a Minimal DFA by Determinization

Let L be a regular language. Let the set of atoms of the reverse language LR be
B = {B1, . . . , Br}. The results in [2] and [3] imply the following proposition:

Proposition 6. Let D = (Q,Σ, δ, q0, F ) be the complete minimal DFA accepting
L. Then there is a one-to-one correspondence between the sets Q and B, mapping
a state q ∈ Q to some atom Bi so that Lq0,q(D) = BR

i holds.
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Corollary 1. Let D = (Q,Σ, δ, q0, F ) be any DFA accepting L. Then for every
state q ∈ Q there is some i ∈ {1, . . . , r}, such that Lq0,q(D) ⊆ BR

i holds.

The following theorem is similar to the result obtained in [2] for (union) NFAs.
Also, the proof we present here for ⊕-NFAs is essentially the same as it was for
NFAs in [2].

Theorem 3. For any ⊕-NFA N , ND is minimal if and only if NR is atomic.

Proof. Let N = (Q,Σ, δ, I, F ) be a ⊕-NFA and assume that ND is minimal,
but suppose that NR is not atomic. Then there is a state q of NR that is not
a union of atoms. That is, there is a word u ∈ Lq,I(NR) such that u ∈ Bi for
some i ∈ {1, . . . , r}, but for some other word v ∈ Bi, v �∈ Lq,I(NR). It is implied
that uR ∈ LI,q(N ) and vR �∈ LI,q(N ). Since we assumed that ND is a minimal
DFA, by Proposition 6 there is a state s of ND such that LI,s(ND) = BR

i . It is
implied that uR, vR ∈ LI,s(ND). Since we had uR ∈ LI,q(N ), we get that q ∈ s.
On the other hand, because vR �∈ LI,q(N ) holds, we get q �∈ s, a contradiction.

Conversely, assume that NR is atomic. Then for every state q of NR, there is
a set Hq ⊆ {1, . . . , r} such that Lq,I(NR) =

⋃
i∈Hq

Bi. This implies LI,q(N ) =⋃
i∈Hq

BR
i for every state q of N . Consider any state s of the DFA ND. Then

for any word u, u ∈ LI,s(ND) if and only if u ∈ LI,q(N ) for every q ∈ s,
and u �∈ LI,q′(N ) for any q′ �∈ s. That is, LI,s(ND) = (

⋂
q∈s

⋃
i∈Hq

BR
i ) \

(
⋃

q′ 
∈s

⋃
i∈Hq′

BR
i ). On the other hand, by Corollary 1, LI,s(ND) ⊆ BR

k for

some atom Bk. Since atoms are disjoint, any boolean combination of sets BR
i

cannot be a proper subset of any BR
k . Thus, LI,s(ND) = BR

k . If we suppose that
ND is not minimal, then there are some states s′ and s′′ of ND, and a state t
of the corresponding minimal DFA, such that s′, s′′ and t have the same right
language. Then it is easy to see by Proposition 6 that there is some Bi, such
that LI,s′(ND) ⊂ BR

i and LI,s′′(ND) ⊂ BR
i , a contradiction. &"

Theorem 4. If N is a minimal ⊕-NFA, then ND is a minimal DFA.

Proof. The result follows from Propositions 1, 4, 5 and Theorem 3. &"

6 Conclusions and Future Work

In this paper and in [2] the problem of when determinization of a weighted
automaton leads to minimal DFA was considered, for the case where the weights
are taken from the Boolean semiring and from the semiring Z2. We would also like
to consider this problem for weighted automata over other semirings, keeping in
mind that determinization is not always possible for arbitrary weighted automata
(see [11], [12]).
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Salomaa, Kai 252, 280
Silva, Pedro V. 50
Simmons, Sean 103
Sutner, Klaus 294

Tamm, Hellis 307
Truthe, Bianca 222

van der Merwe, Brink 307
van Zijl, Lynette 307
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