
Azucar: A SAT-Based CSP Solver

Using Compact Order Encoding
(Tool Presentation)

Tomoya Tanjo1, Naoyuki Tamura2, and Mutsunori Banbara2

1 Transdisciplinary Research Integration Center, Japan
2 Information Science and Technology Center, Kobe University, Japan

tanjo@nii.ac.jp, {tamura,banbara}@kobe-u.ac.jp

Abstract. This paper describes a SAT-based CSP solver Azucar. Azucar
solves a finite CSP by encoding it into a SAT instance using the com-
pact order encoding and then solving the encoded SAT instance with an
external SAT solver. In the compact order encoding, each integer vari-
able is represented by using a numeral system of base B ≥ 2 and each
digit is encoded by using the order encoding. Azucar is developed as a
new version of an award-winning SAT-based CSP solver Sugar. Through
some experiments, we confirmed Azucar can encode and solve very large
domain sized CSP instances which Sugar can not encode, and shows
better performance for Open-shop scheduling problems and the Cabinet
problems of the CSP Solver Competition benchmark.

1 Introduction

A (finite) Constraint Satisfaction Problem (CSP) is a combinatorial problem to
find an assignment which satisfies all given constraints on finite domain vari-
ables [1]. A SAT-based CSP solver is a program which solves a CSP by encoding
it to SAT [2] and searching solutions by SAT solvers.

There have been several SAT-based CSP solvers developed, such as Sugar 1 [3],
FznTini [4], SAT4J CSP [5], and others. Especially, Sugar became a winner of
several categories at the recent International CSP Solver Competitions in two
consecutive years. It uses order encoding [6] which shows good performance
on various applications [6–8] and is known as the only SAT encoding reducing
tractable CSP to tractable SAT [9]. In the order encoding, the Unit Propagation
in SAT solvers corresponds to the Bounds Propagation in CSP solvers.

In this paper, we describe a SAT-based CSP solver Azucar 2. It uses a new
SAT encoding method named compact order encoding [10–12], in which each
integer variable is divided into digits by using a numeral system of base B ≥ 2
and each digit is encoded by using the order encoding. Therefore, it is equivalent
to the order encoding [6] when B ≥ d and it is equivalent to the log encoding [13]

1 http://bach.istc.kobe-u.ac.jp/sugar/
2 http://code.google.com/p/azucar-solver/

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 456–462, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Azucar: A SAT-Based CSP Solver Using Compact Order Encoding 457

when B = 2 where d is the maximum domain size. In that sense, the compact
order encoding is the generalization and integration of both encodings.

Size of generated SAT instances by the compact order encoding using two or
more digits are much smaller than those by the direct [14], support [15], and
order encodings. Therefore, it is another encoding applicable to large domain
sized CSPs besides the log and log-support [16] encodings. In the compact or-
der encoding, the Unit Propagation in SAT solvers corresponds to the Bounds
Propagation in the most significant digit in CSP solvers. Therefore, the conflicts
are likely to be detected with fewer decisions than the log and log-support en-
codings. These observations are confirmed through the experimental results on
Open-Shop Scheduling problems with large domain sizes in which the compact
order encoding is about 5 times faster than the log encoding on average.

Azucar is a first implementation of the compact order encoding and it is de-
veloped as an enhancement version of Sugar. User can specify either the number
of digits m or the base B as the command line option of Azucar. When m = 1 is
specified, Azucar uses the order encoding to encode the given CSP. The log en-
coding is used when B = 2 is specified. If user specifies neither m nor B, Azucar
uses m = 2 by default. In various problems, Azucar with m ∈ {2, 3} shows the
better performance than Sugar especially for large domain sized CSP.

2 Compact Order Encoding

The basic idea of the compact order encoding is the use of a numeral system
of base B ≥ 2 [10–12]. That is, each integer variable x is represented by a

summation
∑m−1

i=0 Bix(i) where m = �logB d� and 0 ≤ x(i) < B for all integer
variables x(i), and each x(i) is encoded by using the order encoding. As described
in Section 1, the compact order encoding is equivalent to the order encoding [6]
when B ≥ d and it is equivalent to the log encoding [13] when B = 2.

In this paper, we will show some examples to encode an integer variable and a
constraint by using the compact order encoding. More details about the compact
order encoding are described in [10–12].

For example, when we choose B = 3, the integer variable x ∈ {0..8} is di-
vided into two digits as follows. Each x(i) represents the i-th digit of x and x(1)

represents the most significant digit.

x(1), x(0) ∈ {0..2}
By using the order encoding, these propositional variables are introduced where
p(x(i) ≤ a) is defined as true if and only if the comparison x(i) ≤ a holds.
p(x(1) ≤ 2) is not necessary since x(1) ≤ 2 is always true.

p(x(1) ≤ 0) p(x(1) ≤ 1)

p(x(0) ≤ 0) p(x(0) ≤ 1)

To represents the order of propositional variables, these two clauses are required.
For instance, ¬p(x(1) ≤ 0) ∨ p(x(1) ≤ 1) represents x(1) ≤ 0 ⇒ x(1) ≤ 1.

¬p(x(1) ≤ 0) ∨ p(x(1) ≤ 1) ¬p(x(0) ≤ 0) ∨ p(x(0) ≤ 1)

458 T. Tanjo, N. Tamura, and M. Banbara

Order Compact Order Log
Constraint Encoding Encoding Encoding

x ≤ a O(1) O(m) O(log2 d)
x ≤ y O(d) O(mB) O(log2 d)

z = x+ a O(d) O(mB) O(log2 d)
z = x+ y O(d2) O(mB2) O(log2 d)
z = xy O(d2) O(mB3 +m2B2) O(log2

2 d)

Fig. 1. Comparison of different encodings on the number of SAT-encoded clauses

Each constraint is divided into digit-wise constraints and then encoded by using
the order encoding. For example, a constraint x ≤ y (x, y ∈ {0..8}) is encoded
into the following clauses where p is a new propositional variable which represents
¬(x(0) ≤ y(0)). C0 and C1 represent x(1) ≤ y(1), C2, C3 and C4 represent p →
x(1) ≤ y(1) − 1, and C5 and C6 represent ¬(x(0) ≤ y(0)) → p.

C0 : p(x(1) ≤ 0) ∨ ¬p(y(1) ≤ 0)

C1 : p(x(1) ≤ 1) ∨ ¬p(y(1) ≤ 1)

C2 : ¬p ∨ ¬p(y(1) ≤ 0)

C3 : ¬p ∨ p(x(1) ≤ 0) ∨ ¬p(y(1) ≤ 1)

C4 : ¬p ∨ p(x(1) ≤ 1)

C5 : p ∨ p(x(0) ≤ 0) ∨ ¬p(y(0) ≤ 0)

C6 : p ∨ p(x(0) ≤ 1) ∨ ¬p(y(0) ≤ 1)

Let d be the domain size of integer variables, B be the base and m = �logB d�
be the number of digits. Fig. 1 shows the number of clauses required to encode
each constraint. In the compact order encoding, each addition z = x + y and
multiplication z = xy are encoded into O(mB2) and O(mB3 + m2B2) clauses
respectively. It is much less than O(d2) clauses of the order encoding and thus
it can be applicable to large domain CSP.

We also show the relations between the Unit Propagation in SAT solvers in
each encodings and the constraint propagation in CSP solvers. In the order en-
coding, the Unit Propagation in SAT solvers corresponds to the Bounds Prop-
agation in CSP solvers. The compact order encoding can achieve the Bounds
Propagation in the most significant digit while the log encoding achieves the
Bounds Propagation in the most significant bit. Therefore the compact order
encoding can detect the conflicts earlier and thus it can solve CSP faster than
the log encoding.

3 Azucar Implementation

Azucar is an open-source SAT-based CSP solver distributed under the BSD 3-
clause license. Azucar encodes a CSP into SAT by using the compact order

Azucar: A SAT-Based CSP Solver Using Compact Order Encoding 459

encoding, and then the SAT-encoded instance are solved by an external SAT
solver such as MiniSat [17], SAT4J [18] or GlueMiniSat 3. Azucar can handle finite
CSP over integers written in Lisp-like input format or XCSP 2.1 format 4 which
is used in the 2009 International CSP Solver Competition. Azucar can receive
one of these options where d is the maximum domain size of integer variables.

– -b B: Azucar uses the numeral system of base B (i.e. m = �logB d�).
– -m m: Azucar divides each integer variable into at most m digits (i.e. B =

� m
√
d�).

The encoder and decoder are written in Java, and the frontend of Azucar is
written in Perl.

4 Performance Evaluation

To evaluate the scalability and efficiency of our encoding used in Azucar, we
used 85 Open-Shop Scheduling problems with very large domain sizes, which are
generated from “j7” and “j8” by Brucker et al. by multiplying the process times
by some constant factor c. The factor c is varied within 10i (i ∈ {0, 1, 2, 3, 4}).
For example, when c = 104, the maximum domain size d becomes about 107.

We compare four different encodings: the order encoding which is used in
Sugar, the compact order encoding with m ∈ {2, 3}, and the log encoding. For
each instance, we set its makespan to the optimum value minus one and then
encode it into SAT. Such SAT-encoded instances are unsatisfiable. We use the
MiniSat solver [17] as a backend SAT solver.

Domain Order Compact Order Log
Factor c Size d #Instances Encoding Encoding Encoding

m = 2 m = 3

1 103 17 13 14 14 14
10 104 17 12 13 13 13
102 105 17 8 13 13 12
103 106 17 0 14 13 12
104 107 17 0 12 13 13

Total 85 34 66 66 63

Fig. 2. Benchmark results of different encodings on the number of solved instances for
OSS benchmark set by Brucker et al. with multiplication factor c

Fig. 2 shows the number of solved instances within 3600 seconds by four
solvers. All times were collected on a Linux machine with Intel Xeon 3.0 GHz,
16GB Memory. “Domain size d” indicates the approximate average of domain
size of integer variables. We highlight the best number of solved instances.

The compact order encoding solved the most instances for any factor c and
totally 66 out of 85 instances rather than 63 by the log encoding and 34 by the

3 http://glueminisat.nabelab.org/
4 http://www.cril.univ-artois.fr/CPAI08/XCSP2 1.pdf

460 T. Tanjo, N. Tamura, and M. Banbara

order encoding. The compact order encoding with m = 3 can be highly scalable
with the growth of c compared with the order encoding. For example, when
c = 1000, it solved 13 out of 17 instances (76%), while none (0%) by the order
encoding due to the memory limitation. Moreover, it is fastest on average when
c ≥ 10. For example, it solved about 5 times faster than the log encoding when
d ≈ 107.

Fig. 3 shows the cactus plot of benchmark results in which the number of
solved instances is on the x-axis and the CPU time is on the y-axis. The compact
order encoding solved the most instances for almost any CPU time limit. For
example, the compact order encoding with m = 3 solved 61 instances within
600 seconds while the order encoding was 25, the compact order encoding with
m = 2 was 56, and the log encoding was 53.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80

C
P

U
 ti

m
e

Number of solved instances

Order encoding
C.O.E. (m=2)
C.O.E. (m=3)
Log encoding

Fig. 3. Cactus plot of various encodings for 85 OSS instances

To evaluate the efficiency of our encoding for smaller domain CSP, we also
used graph coloring problems published in Computational Symposium on Graph
Coloring and its Generalizations 5 and we confirmed that the compact order
encoding can solve the almost same number of instances compared with the
order encoding even when the domain size is less than 102.

Finally, to evaluate the efficiency of Azucar for large domain CSP, we also used
the Cabinet problems in GLOBAL category in the CSP Solver Competitions and
we confirmed that Azucaris over 1.7 times faster than Sugar on average.

5 Conclusion

In this paper, we described a SAT-based CSP solver Azucar. Through some ex-
periments, Azucar with m ∈ {2, 3} shows the better performance than Sugar

5 http://mat.gsia.cmu.edu/COLOR04/

Azucar: A SAT-Based CSP Solver Using Compact Order Encoding 461

especially for large domain sized CSP. Finally, although the compact order en-
coding used in Azucar is developed to encode CSP, it can be applicable to other
problems dealing with the arithmetic constraints.

Acknowledgment. The authors would like to thank Prof. K. Inoue from the
National Institute of Informatics for his valuable comments. This work is sup-
ported in part by Grant-in-Aid for Scientific Research (B) 2430000.

References

1. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier
Science Inc. (2006)

2. Prestwich, S.D.: CNF encodings. In: Handbook of Satisfiability, pp. 75–97. IOS
Press (2009)

3. Tamura, N., Tanjo, T., Banbara, M.: System description of a SAT-based CSP solver
Sugar. In: Proceedings of the 3rd International CSP Solver Competition, pp. 71–75
(2008)

4. Huang, J.: Universal Booleanization of Constraint Models. In: Stuckey, P.J. (ed.)
CP 2008. LNCS, vol. 5202, pp. 144–158. Springer, Heidelberg (2008)

5. Le Berre, D., Lynce, I.: CSP2SAT4J: A simple CSP to SAT translator. In: Pro-
ceedings of the 2nd International CSP Solver Competition, pp. 43–54 (2008)

6. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints 14(2), 254–272 (2009)

7. Soh, T., Inoue, K., Tamura, N., Banbara, M., Nabeshima, H.: A SAT-based method
for solving the two-dimensional strip packing problem. Fundamenta Informati-
cae 102(3-4), 467–487 (2010)

8. Banbara, M., Matsunaka, H., Tamura, N., Inoue, K.: Generating Combinato-
rial Test Cases by Efficient SAT Encodings Suitable for CDCL SAT Solvers. In:
Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 112–126.
Springer, Heidelberg (2010)

9. Petke, J., Jeavons, P.: The Order Encoding: From Tractable CSP to Tractable
SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 371–
372. Springer, Heidelberg (2011)

10. Tanjo, T., Tamura, N., Banbara, M.: A Compact and Efficient SAT-Encoding
of Finite Domain CSP. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS,
vol. 6695, pp. 375–376. Springer, Heidelberg (2011)

11. Tanjo, T., Tamura, N., Banbara, M.: Proposal of a compact and efficient SAT en-
coding using a numeral system of any base. In: Proceedings of the 1st International
Workshop on the Cross-Fertilization Between CSP and SAT, CSPSAT 2011 (2011)

12. Tanjo, T., Tamura, N., Banbara, M.: Towards a compact and efficient SAT-
encoding of finite linear CSP. In: Proceedings of the 9th International Workshop
on Constraint Modelling and Reformulation, ModRef 2010 (2010)

13. Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems.
In: Proceedings of the IFIP 13th World Computer Congress, pp. 253–258 (1994)

14. de Kleer, J.: A comparison of ATMS and CSP techniques. In: Proceedings of the
11th International Joint Conference on Artificial Intelligence (IJCAI 1989), pp.
290–296 (1989)

462 T. Tanjo, N. Tamura, and M. Banbara

15. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence 45(3), 275–286 (1990)

16. Gavanelli, M.: The Log-Support Encoding of CSP into SAT. In: Bessière, C. (ed.)
CP 2007. LNCS, vol. 4741, pp. 815–822. Springer, Heidelberg (2007)

17. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

18. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7(2–3), 56–64 (2010)

	Azucar: A SAT-Based CSP Solver Using Compact Order Encoding (Tool Presentation)
	Introduction
	Compact Order Encoding
	Azucar Implementation
	Performance Evaluation
	Conclusion
	References

