
Improvements to Core-Guided
Binary Search for MaxSAT

Antonio Morgado1, Federico Heras1, and Joao Marques-Silva1,2
�

1 CASL, University College Dublin, Ireland
2 IST/INESC-ID, Lisbon, Portugal

Abstract. Maximum Satisfiability (MaxSAT) and its weighted variants are well-
known optimization formulations of Boolean Satisfiability (SAT). Motivated by
practical applications, recent years have seen the development of core-guided
algorithms for MaxSAT. Among these, core-guided binary search with disjoint
cores (BCD) represents a recent robust solution. This paper identifies a number
of inefficiencies in the original BCD algorithm, related with the computation of
lower and upper bounds during the execution of the algorithm, and develops so-
lutions for them. In addition, the paper proposes two additional novel techniques,
which can be implemented on top of core-guided MaxSAT algorithms that main-
tain both lower and upper bounds. Experimental results, obtained on representa-
tive problem instances, indicate that the proposed optimizations yield significant
performance gains, and allow solving more problem instances.

1 Introduction

Maximum Satisfiability (MaxSAT) and its variants, namely (Weighted) (Partial)
MaxSAT, find a growing number of practical applications. Concrete recent examples
include hardware design debugging [19] and fault localization in C code [9]. In addi-
tion, reference applications that use Pseudo-Boolean Optimization (PBO) can be cast as
MaxSAT [7,4]. Another major application of MaxSAT is in algorithms for Minimal Un-
satisfiable Subset (MUS) enumeration [13]. Indeed, the most efficient MUS enumera-
tion algorithms build on MaxSAT algorithms for computing all Maximal
Satisfiable Subsets (MSSes) and, from these, MUSes can be enumerated using a stan-
dard hitting set approach [13,18]. The variety of relevant applications of MUS enu-
meration (e.g. [13,1]), further highlights the practical significance of efficient MaxSAT
algorithms.

Motivated by the practical applications of MaxSAT, recent years have witnessed a
large number of MaxSAT algorithms being proposed. MaxSAT approaches for solv-
ing practical problem instances differ significantly from early work on MaxSAT [12,7].
These approaches are characterized by guiding the search with unsatisfiable subformu-
las [20] and are referred to as core-guided MaxSAT algorithms [6,16,14,2,3]. Recent
work has proposed two core-guided versions of binary search for MaxSAT [8]. These

� This work is partially supported by SFI grant BEACON (09/IN.1/I2618), and by FCT grants
ATTEST (CMU-PT/ELE/0009/2009) and POLARIS (PTDC/EIA-CCO/123051/2010).

A. Cimatti and R. Sebastiani (Eds.): SAT 2012, LNCS 7317, pp. 284–297, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Improvements to Core-Guided Binary Search for MaxSAT 285

include a basic version (BC) and a version that maintains a set of disjoint unsatisfiable
cores (BCD). The BCD algorithm was shown to be one of the most efficient on a compre-
hensive set of problem instances from recent MaxSAT evaluations. Nevertheless, recent
detailed analysis of BCD revealed a number of possible inefficiencies, that result from
relaxed and conservative maintenance of lower and upper bounds.

This paper addresses the inefficiencies in the original BCD algorithm, and develops
a number of key optimizations. These optimizations can be categorized as: (i) modi-
fications to how the upper bound of each disjoint core is initialized, updated, and an
associated maintenance of a global upper bound; (ii) modifications on how the lower
bounds are updated when disjoint cores are merged; and (iii) techniques for refining the
lower bound so that it reflects a feasible sum of weights. The previous optimizations
are implemented in a new algorithm, BCD2, that often requires fewer SAT solver calls
than BCD. The paper also proves the correctness of BCD2 and shows that BCD2 is sig-
nificantly more efficient than BCD on a comprehensive set of benchmarks from recent
MaxSAT Evaluations.

In addition, the paper proposes two novel techniques, that can be implemented on top
of any core-guided MaxSAT algorithm that maintains both lower and upper bounds,
namely the hardening rule and biased search. The hardening rule, which has been
extensively used in branch and bound algorithms [5,12,11,7], is adapted for core-guided
binary search algorithms. As a result, many soft clauses can be declared hard. Binary
search algorithms always compute the middle value between a lower bound and an
upper bound. The biased search technique allows biasing the search with the outcomes
of the previous iterations and compute a value between the lower and upper bounds,
though not necessarily the middle one.

The remainder of the paper is organized as follows. Section 2 introduces the MaxSAT
problem and core-guided binary search MaxSAT algorithms. Section 3 details the in-
efficiencies of BCD, and develops a new improved algorithm for core-guided binary
search with disjoint cores (BCD2). Section 4 presents the hardening rule and biased
search techniques for core-guided MaxSAT. Section 5 evaluates the performance of the
algorithms with the proposed techniques. Section 6 presents some concluding remarks.

2 Preliminaries

Let X = {x1, x2, . . . , xn} be a set of Boolean variables. A literal l is either a vari-
able xi or its negation x̄i. A clause c is a disjunction of literals. A clause may also be
regarded as a set of literals. An assignment A is a mapping A : X → {0, 1} which
satisfies (unsatisfies) a Boolean variable x if A(x) = 1 (A(x) = 0). Assignments can
be extended in a natural way for literals (l) and clauses (c):

A(l) =
{A(x), if l = x
1−A(x), if l = ¬x A(c) = max{A(l) | l ∈ c}

Assignments can also be regarded as set of literals, in which case the assignment A
satisfies (unsatisfies) a variable x if x ∈ A (x̄ ∈ A). A complete assignment contains
a literal for each variable, otherwise is a partial assignment. A CNF formula ϕ is a set
of clauses. A model is a complete assignment that satisfies all the clauses in a CNF

286 A. Morgado, F. Heras, and J. Marques-Silva

formula ϕ. The Propositional Satisfiability Problem (SAT) is the problem of deciding
whether there exists a model for a given formula. Given an unsatisfiable formula ϕ, a
subset of clauses ϕC (i.e. ϕC ⊆ ϕ) whose conjunction is still unsatisfiable is called
an unsatisfiable core of the original formula. Modern SAT solvers can be instructed
to generate an unsatisfiable core for unsatisfiable formulas [20]. A weighted clause is
a pair (c, w), where c is a clause and w is the cost of its falsification, also called its
weight. Many real problems contain clauses that must be satisfied. Such clauses are
called mandatory (or hard) and are associated with a special weight�. Non-mandatory
clauses are also called soft clauses. A weighted formula in conjunctive normal form
(WCNF) ϕ is a set of weighted clauses. For MaxSAT, a model is a complete assignment
A that satisfies all mandatory clauses. The cost of a model is the sum of weights of the
soft clauses that it falsifies. Given a WCNF formula, Weighted Partial MaxSAT is the
problem of finding a model of minimum cost.

Core-Guided Binary Search Algorithms for MaxSAT. Several MaxSAT solvers in
the literature are based on iteratively calling a SAT solver and refining a lower bound,
an upper bound or both [6,2,3,16,14,8,10]. Core-guided MaxSAT algorithms are those
that additionally take advantage of unsatisfiable cores computed at each unsatisfiable
iteration to guide the search [6,2,3,16,14,8], (some of which use binary search [8]).

Auxiliary notation is introduced to describe core-guided binary search MaxSAT al-
gorithms. The remainder of the paper assumes a WCNF formula ϕ withm soft clauses.
Core-guided algorithms use relaxation variables, which are fresh Boolean variables.
The algorithms described add at most one relaxation variable to each soft clause. The
process of adding a relaxation variable to a clause, is referred to as relaxing the clause.
Relaxation variables are maintained in a set R, and it is assumed that relaxation vari-
able ri is associated to the soft clause ci with weight wi, 1 ≤ i ≤ m. In order to
add relaxation variables to soft clauses, the algorithms use the functionRelax(R,ϕ, ψ)
which receives a set of existing relaxation variables R, a WCNF formula ϕ and a set
of soft clauses ψ and returns the pair (Ro, ϕo). ϕo corresponds to ϕ whose soft clauses
included in ψ have been augmented with fresh relaxation variables. Ro corresponds
to R augmented with the relaxation variables added in ϕo. Given the set of relax-
ation variables in R, the algorithms add cardinality / pseudo-Boolean constraints [4]
and translate them to hard clauses. Such constraints usually state that the sum of the
weights of the relaxed clauses is less than or equal to a specific value K (AtMostK
with

∑m
i=1 wiri ≤ K). The algorithms use the following functions:

– Soft(ϕ) returns the set of all soft clauses in ϕ.
– SATSolver(ϕ)makes a call to the SAT solver and returns a triple (st, ϕC ,A), where
st is the status of the formula ϕ, that is whether ϕ is satisfiable (SAT or UNSAT).
If st =UNSAT, then ϕC contains an unsatisfiable core of ϕ, and if st =SAT, then
A corresponds to a complete satisfying assignment of ϕ. Throughout the paper, by
abuse of notation, st is referred to as the outcome of the SAT solver.

– CNF(c) returns a set of clauses that encode the constraint c into CNF.

Core-guided binary search (BC) and its extension with disjoint cores (BCD) [8] com-
pute both a lower bound and an upper bound and have been shown to be very robust

Improvements to Core-Guided Binary Search for MaxSAT 287

Algorithm 1. BCD
Input: ϕ

1 (ϕW , ϕS, C, lastA) ← (ϕ, Soft(ϕ), ∅, ∅) // C - set of disj. core’s information
2 repeat
3 ∀Ci∈C , νi ← (λi + 1 = μi) ? μi : �μi+λi

2 �
4 (st, ϕC ,A)← SATSolver(ϕW ∪

⋃
Ci∈CCNF(

∑
rj∈Ri

wj · rj ≤ νi))

5 if st = SAT then
6 lastA ← A
7 ∀Ci∈C , μi ←

∑
rj∈Ri

wj · A(rj)

8 else
9 subC ← Intersect(ϕC, C) // subC - set of disj. cores that intersect ϕC

10 if ϕC ∩ ϕS = ∅ and |subC| = |{< Rs, λs, νs, μs >}| = 1 then
11 λs ← νs
12 else
13 (Rs, ϕW)← Relax(∅, ϕW , ϕC ∩ ϕS)
14 (λs, μs)← (0,

∑
rj∈Rs

wj + 1)

15 ∀Ci∈subC , (Rs, λs, μs)← (Rs ∪ Ri, λs + λi, μs + μi)

16 C ← C \ subC ∪ {< Rs, λs, 0, μs >}
17 end
18 end
19 until ∀Ci∈C λi + 1 ≥ μi

20 return lastA

approaches for MaxSAT solving (in terms of number of solved instances). In what fol-
lows, the most sophisticated version (BCD) is briefly overviewed.

The pseudo-code of BCD is shown in Algorithm 1. BCD maintains information about
disjoint cores in a set C (initially empty). Whenever a new core is found, a new entryCs

in C is created, that contains the set of relaxation variablesRs in the core (after relaxing
required soft clauses), a lower bound λs, an upper bound μs, and the current middle
value νs, i.e. Cs =< Rs, λs, νs, μs >. The algorithm iterates while there exists a Ci

for which λi + 1 < μi (line 19). Before calling the SAT solver, for each Ci ∈ C, the
middle value νi is computed with the current bounds and an AtMostK constraint is
added to the working formula (lines 3-4). If the SAT solver returns SAT, the algorithm
iterates over each core Ci ∈ C and its upper bound μi is updated according to the
satisfying assignment A (lines 6-7). If the SAT solver returns UNSAT, then the set
subC is computed which contains every Ci in C that intersects the current core (i.e.
subC ⊆ C, line 9). If no soft clause needs to be relaxed and |subC| = 1, then subC =
{< Rs, λs, νs, μs >} and λs is updated to νs (line 11). Otherwise, all the required soft
clauses are relaxed, an entry for the new core Cs is added to C, which aggregates the
information of the previous cores in subC, and each Ci ∈ subC is removed from C
(lines 13-16).

A concept similar to disjoint cores (namely covers) is used by the core-guided (non
binary search) algorithm WPM2 [3] coupled with the constraints to add in each iteration.

3 Improving BCD

Detailed analysis of BCD has revealed two key inefficiencies, both related with how the
lower and upper bounds are computed and updated. The first observation is that BCD
does not maintain a global upper bound. When the SAT solver outcome is satisfiable

288 A. Morgado, F. Heras, and J. Marques-Silva

Algorithm 2. BCD2
Input: ϕ

1 (ϕW , ϕS)← (ϕ,Soft(ϕ))
2 ∀cj∈ϕS

, σj ← wj

3 (C,Aμ, μ)← (∅, ∅, 1 +
∑

cj∈ϕS
σj)

4 repeat
5 ∀Ci∈C , νi ← �λi+εi

2 �
6 (st, ϕC ,A)← SATSolver(ϕW ∪ ⋃

Ci∈CCNF(
∑

rj∈Ri
wj · rj ≤ νi))

7 if st = SAT then
8 ∀cj∈ϕS

, σj ← 0

9 ∀Ci∈C∀rj∈Ri
, σj ← wj · (1−A(cj \ {rj})) // cj ∈ ϕW and rj ∈ cj

10 ∀Ci∈C , εi ←
∑

rj∈Ri
σj

11 (μ,Aμ)← (
∑

Ci∈C
∑

rj∈Ri
σj ,A)

12 else
13 subC ← Intersect(ϕC, C)
14 if ϕC ∩ ϕS = ∅ and |subC| = |{< Rs, λs, νs, εs >}| = 1 then
15 λs ← Refine({wj}rj∈RS

, νs)

16 else
17 (Rs, ϕW)← Relax(

⋃
Ci∈subC Ri, ϕW , ϕC ∩ ϕS)

18 Δ← min
{
1 + min{νi − λi | Ci ∈ subC},min{wj | rj is a new relax. var.}}

19 λs ←Refine({wj}rj∈Rs ,
∑

Ci∈subC λi + Δ− 1)

20 εs ← ((Aμ = ∅) ? 1 : 0) +
∑

rj∈Rs
σj

21 C ← C \ subC ∪ {< Rs, λs, 0, εs >}
22 end
23 end
24 until

∑
Ci∈C λi =

∑
Ci∈C εi = μ

25 returnAμ

(SAT), each μi value is updated for each disjoint core Ci ∈ C, with an overall sum
given by K1 =

∑
Ci∈C μi. However, after merging disjoint cores, if the SAT solver

outcome is again SAT, it can happen that K2 =
∑

Ci∈C μi > K1. Although this issue
does not affect the correctness of the algorithm, it can result in a number of iterations
higher than needed to compute the optimum. The second observation is that the lower
bound updates for each disjoint core are conservative. A more careful analysis of how
the algorithm works allows devising significantly more aggressive lower bound updates.
Again, the main consequence of using conservative lower bounds is that this can result
in a number of iterations higher than needed to compute the optimum.

This section presents the new algorithm BCD2. Although similar to BCD, BCD2 pro-
poses key optimizations that address the inefficiencies described above. As the experi-
mental results demonstrate, these optimizations lead to significant performance gains,
that can be explained by a reduced number of iterations.

The pseudo-code of BCD2 is shown in Algorithm 2. The organization of BCD2 is
similar to the organization of BCD but with important differences. The first difference
between BCD and BCD2 is the way the algorithms use the information of the upper
bounds. As stated before, BCD does not maintain a global upper bound, and as such,
whenever an upper bound is needed, then the worst case scenario is used. Concretely in
line 14 of BCD, the upper bound is updated with the weights of the new relaxed clauses.

On the other hand, BCD2 keeps a global upper bound μ and its corresponding as-
signmentAμ. More importantly it maintains the cost of each soft clause for the current

Improvements to Core-Guided Binary Search for MaxSAT 289

global upper bound. In order to achieve this, BCD2 associates with each soft clause j
a variable σj that represents the contribution of the clause to the overall cost of the
global upper bound. σj can take as value either 0 or wj (the weight of the soft clause
j) depending on whether Aμ unsatisfies the clause or not. In contrast to BCD, the con-
tribution of soft clauses is with respect to the original variables. As such in line 9 of
BCD2, the update of σj considers the satisfiability of the clause cj without the relax-
ation variable (wj · (1 − A(cj \ {rj}))), rather than the satisfiability of the relaxation
variable (wj · A(rj)) as in BCD (line 7). Considering the satisfiability of the original
soft clause instead of the associated relaxation variable, has the benefit of tightening the
upper bound on assignments that satisfy the clause without the relaxation variable but
still satisfy the relaxation variable.

Unlike BCD, BCD2 does not maintain upper bounds in the disjoint cores. Instead,
each disjoint core Ci maintains an estimate εi that represents the contribution of the
disjoint core to the cost of the global upper bound. Each εi takes the role of the upper
bounds μi in BCD, with updates that respect the last satisfying assignment. The differ-
ence is that in BCD2, the updates of the estimates, done in lines 10 and 20, include the
contribution of the soft clauses to the global upper bound (stored in the σj variables).

The use of σj variables in the computation of estimates εi, allow BCD2 to use the in-
formation of the current upper bound assignment for a tighter bound, specifically, when
merging cores with soft clauses not previously relaxed. The contribution of the newly
relaxed clauses in the update of εi in line 20, is dependent on a previous discovery of a
satisfying assignment. Before the first satisfying assignment is found, the contribution
is the same as in BCD, that is the weight of the soft clause (σj = wj , initialization of σj
in line 2 of BCD2), whereas after the first satisfying assignment, newly relaxed clauses
are satisfied by Aμ (thus σj = 0 from line 8) and its contribution to εi is 0.

The reason why the εi variables are called estimates is that, unlike the upper boundμi

of BCD, the εi variables are allowed to have a value lower than the cost of the optimum
model restricted to the clauses associated to the disjoint core. In such situations εi is
said to be optimistic and represents a local optimum of a MaxSAT model. BCD2 can
shift εi away from the local optimum by merging with different cores as needed.

Example 1. Consider an execution of the algorithm with the current working formula
ϕW = ϕS ∪ϕH , where ϕS = {(x1 ∨ r1, 5), (x2 ∨ r2, 10), (x3 ∨ r3, 30), (x4 ∨ r4, 10)} and
ϕH = {(¬x1 ∨ ¬x2), (¬x2 ∨ ¬x3), (¬x3 ∨ ¬x4)}. Consider the upper bound assignment
Aμ = {x1 = x3 = r2 = r4 = 0, x2 = x4 = r1 = r3 = 1} with a cost of 35, and two dis-
joint cores C1 =< R1 = {r1, r2}, λ1 = 5, ν1 = 5, ε1 = 5 >, C2 =< {r3, r4}, 10, 20, 30 >.

The optimum cost of ϕ is 20. Considering the optimum model, the contribution of
the clauses associated to C1 is 10 which is lower than ε1, thus ε1 is optimistic. The next
core returned by the SAT solver merges C1 and C2 into a new disjoint core C3 with
ε3 = 35.

Another improvement in BCD2 is the way the lower bound is computed when merging
cores. In this case, BCD2 proposes a stronger update in lines 18 and 19, which corre-
sponds to the expression in Equation 1.

∑

Ci∈subC
λi + min

{
1 + min{νi − λi|Ci ∈ subC}, min{wj |rj new relax. var.}} (1)

290 A. Morgado, F. Heras, and J. Marques-Silva

The update of the lower bound of the merged disjoint cores in Equation 1, is obtained
by summing all the previous lower bounds, as is done by BCD in line 15, but also by
adding an increment Δ (line 18 in BCD2). The rationale for the increment Δ comes as
a justification for obtaining the current core. At this point of the algorithm, there are
three possible reasons why the current core was obtained: (i) one or more of the newly
relaxed soft clauses has a non-zero contribution to the cost of the final optimum model;
(ii) one or more of the disjoint cores is unable to satisfy the corresponding constraint∑

rj∈Ri
wj · rj ≤ νi; (iii) a combination of the previous two.

Suppose that the reason for obtaining the current core is as stated in (i). Since the
number of newly relaxed soft clauses with a non-zero contribution is unknown, then Δ
corresponds to the weight of the relaxation variable with the lowest weight, that is, in
this case Δ = min{wj |rj new relax. var.}.

Consider now that the reason for obtaining the current core is as stated in (ii). Then
at least one of the disjoint cores merged, requires its lower bound to be increased from
λi to νi + 1 (an increment of 1 + νi − λi). Since it is unknown which disjoint cores
require to be increased, then in Δ is only considered the disjoint core with the lowest
increment, that is Δ = 1 +min{νi − λi|Ci ∈ subC}.

Finally, in the case of reason (iii), the incrementΔ can be obtained by summing the
increments corresponding to the previous reasons. Nevertheless, it is unknown exactly
which of the three reasons explains the current core, then BCD2 uses as increment the
minimum of the previous increments, thus obtaining the expression in Equation 1.

An additional difference between the algorithms is the use of the Refine() function to
further improve the update of the lower bound in lines 15 and 19 of BCD2. The result of
Refine({wj}, λ) is the smallest integer greater than λ that can be obtained by summing
a subset of the input weights {wj}. In BCD2, Refine({wj}, λ) starts by searching if
all weights are equal, in which case the minimum sum of weights greater than λ is
returned, otherwise, subsetsum({wj}, λ) is computed as used by WPM2 [3].

Finally, the last difference between BCD and BCD2 is the stopping criteria. Given the
new bounds, BCD2 stops when the sum the lower bounds of each disjoint core is the
same as the global upper bound.

3.1 Proof of Correctness

This subsection proves the correctness of the BCD2 algorithm. First, the correctness
of the updates of the lower bound are proven, followed by a proof of the invariant of
BCD2. The section ends with a proof of the correctness of BCD2.

Proposition 1. Consider a disjoint core Cs in the conditions of the update of λs in
line 15. There is no MaxSAT model for which the clauses associated to Cs contribute to
the cost with a value smaller than Refine({wj}rj∈Rs , νs).

Proof. Consider an iteration where the SAT solver returned a core which only contains
clauses previously relaxed, and that these clauses belong to the same disjoint core Cs.

For the purpose of contradiction, assume there is a model for which the clauses of
Cs contribute with a cost lower than νs + 1. Then the assignment of the model can
be augmented with assignments to the relaxation variables, such that, each relaxation

Improvements to Core-Guided Binary Search for MaxSAT 291

variable ri ∈ Rs is assigned true iff the assignment of the model does not satisfy the
corresponding clause ci. The augmented assignment is able to satisfy the constraint∑

ri∈Rs
wi · ri ≤ νs, all the hard clauses (because it is a MaxSAT model), and all the

soft clauses (due to the assignments to the relaxation variables). Then the core returned
by the SAT solver is not an unsatisfiable subformula, which is a contradiction, thus the
update λs ← νs + 1 is correct.

Since there is no model with λs ≤ νs, then the next value to consider for
∑

ri∈Rs
wi ·

ri is the minimum sum of subsets of {wj}rj∈Rs that is greater than νs. This corresponds
to the value returned byRefine({wj}rj∈Rs , νs). Thus the update on line 15 is correct.

Proposition 2. Consider the subset of disjoint cores subC = {C1, . . . , Cm} and a new
set of relaxation variables andΔ as in the conditions of line 19, then there is no MaxSAT
model for which the clauses associated to the resulting disjoint core Cs contribute to
the cost with a value smaller than Refine({wj}rj∈Rs ,

∑
Ci∈subC λi +Δ− 1).

Proof. There is no model with cost lower than
∑

Ci∈subC λi because at this point of
the algorithm, each disjoint core Ci ∈ subC has been proved to have a lower bound of
at least λi. Then the union of disjoint sets of the clauses of each Ci together with the
clauses that just got relaxed have a cost of at least

∑
Ci
λi in any MaxSAT model.

Consider by contradiction, that there is a model, for which the clauses associated to
the resulting disjoint core Cs, have a cost costSol ∈ [

∑
Ci∈subC λi,

∑
Ci∈subC λi +Δ[.

Two cases are considered.
1) In the first case, suppose that the model assigns to true at least one of the new

relaxation variables (of the soft clauses that just got relaxed), and that the cost associated
to that relaxation variable is wnewRV . Then,

wnewRV ≥ min{wj |rj is a new relax. var.} ≥ Δ

Consider the contribution of all the clauses without the newly relaxed clause:

costSol − wnewRV ≤ costSol −Δ

but by contradiction costSol <
∑

Ci∈subC λi +Δ and then

costSol − wnewRV ≤ costSol −Δ <
∑

Ci∈subC
λi

which means that the contribution of the remaining clauses is lower than
∑

Ci∈subC λi;
but this is a contradiction (previously the cost of the union of clauses of Ci ∈ subC was
proven to be at least

∑
Ci∈subC λi).

2) In the second case suppose that the model assigns all newly relaxed clauses to
false, then the contribution of the newly relaxed clauses is 0. Since by contradiction

costSol <
∑

Ci∈subC
λi +Δ ≤

∑

Ci∈subC
λi + 1 +min{νi − λi|Ci ∈ subC}

then
costSol −

∑

Ci∈subC\{C1}
λi ≤ λ1 +min{νi − λi|Ci ∈ subC} ≤ ν1

292 A. Morgado, F. Heras, and J. Marques-Silva

Let costSol〈Ci〉 be the contribution of the clauses of Ci to the cost of the model.
Previously, was proven that costSol〈Ci〉 ≥ λi, then

costSol〈C1〉 = costSol −
∑

Ci∈subC\{C1}
costSol〈Ci〉 ≤ costSol −

∑

Ci∈subC\{C1}
λi ≤ ν1

By analogy, for each of the disjoint cores merged Ci ∈ subC, costSol〈Ci〉 ≤ νi Then
the model is able to satisfy all the new soft clauses and the constraints

∑
rj∈Ri

wj ·rj ≤
νi. Since the model is a MaxSAT model, then it is also able satisfy all the hard clauses,
meaning that the model is able to satisfy all the clauses in the core; but this is again a
contradiction.

Since there is no model with λs <
∑

Ci∈subC λi+Δ, then the next value to consider
for

∑
ri∈Rs

wi · ri is the minimum sum of subsets of {wj}rj∈Rs that is greater than∑
Ci∈subC λi +Δ− 1. This corresponds to the value returned by

Refine({wj}rj∈Rs ,
∑

Ci∈subC λi +Δ− 1). Thus the update on line 19 is correct.

Proposition 3 (Invariant of BCD2). Let opt be cost of the optimum model of a MaxSAT
instance. During the execution of BCD2, the invariant

∑
Ci∈C λi ≤ opt ≤ μ holds.

Proof. Initially C is empty, and
∑

Ci∈C λi is 0. On the other hand, μ is initialized to∑
(cj,wj)∈Soft(ϕ)wj + 1. Since 0 ≤ opt ≤ ∑

(cj,wj)∈Soft(ϕ)wj , then initially the
invariant holds.

Each λi is only updated on unsatisfiable iterations in lines 15 and 19 and each update
was proved to be correct in Propositions 1 and 2, respectively. Then after the updates
we are guaranteed that

∑
Ci∈C λi ≤ opt.

Consider now a satisfiable iteration. Assume for the sake of contradiction that μ is
updated such that μ < opt. Then the assignment returned by the SAT solver can be
extended with assignments to new relaxation variables (one for each clause not yet
relaxed). In particular, these variables can be assigned value false. Then, the sum of
the weights of the relaxation variables assigned value true is lower than opt which is
a contradiction since, by definition, the sum of weights of relaxed clauses is an upper
bound on the optimum MaxSAT model.

Proposition 4. For any disjoint core Cs, the invariant λs ≤ εs holds.

Proof. The values of variables εi are only updated in lines 10 and 20 (see Algorithm 2).
The updates are due to assignments that are models to the MaxSAT formula, and repre-
sent the cost of the model with respect to the clauses associated to the disjoint core Ci.
Line 20 also considers the case where no model has been found yet, and updates εi to
one plus the sum of all the weights of the soft clauses considered.

On the other hand, the values of variables λi are only updated in lines 15 and 19. In
Propositions 1 and 2, was proven that there is no MaxSAT model with a cost smaller
than the update of the lower bound in lines 15 and 19 (with respect to the clauses
associated with the resulting core Cs). Hence, λs ≤ εs for each disjoint core Cs.

Proposition 5. BCD2 is correct and returns the optimum model for any WCNF for-
mula.

Improvements to Core-Guided Binary Search for MaxSAT 293

Proof. The algorithm performs binary search on the range of values {∑Ci∈C λi, . . . , μ}.
In each iteration the algorithm asks for a model with a cost at most

∑
Ci∈C νi. Due to

the assignment of each νi in line 5 and Proposition 4, then
∑

Ci∈C λi ≤ ∑
Ci∈C νi ≤ μ.

If the SAT solver returns with a satisfiable answer, then μ is updated to a lower value
than the current upper bound (due to the added constraints). If the SAT solver returns
with an unsatisfiable answer, then either

∑
Ci∈C λi increases or more than one of the

disjoint cores are merged. Since the number of clauses to be relaxed is bounded by
the number of soft clauses, then the maximum number of merges of disjoint cores is
also bounded (disjoint cores only contain clauses that are relaxed). Thus the number of
iterations where the algorithm does not increase the sum

∑
Ci∈C λi, is bounded.

Finally, Proposition 3 proves that during the execution of the algorithm, there is
always an optimum MaxSAT model between the bounds. Since the bounds are integer
numbers, then the algorithm is guaranteed to stop with the optimum MaxSAT model.

4 Additional Techniques

This section introduces two additional techniques to improve the performance of core-
guided binary search algorithms, namely, the hardening rule and biased search.

4.1 Hardening Rule

The hardening rule is widely used in branch and bound (BB) algorithms for MaxSAT
[12,11,7] which are based on a systematic enumeration of all possible assignments,
where large subsets of useless assignments are discarded by computing upper and lower
bounds on the cost of the optimum model. Whenever the weight of a soft clause plus
the lower bound reaches the upper bound, the clause can be made hard. Indeed, the
hardening rule was introduced in the most primitive BB algorithm for MaxSAT in the
literature [5], but nowadays is still not used in core-guided MaxSAT algorithms. In what
follows, a first integration of the hardening rule is proposed for core-guided MaxSAT
algorithms that maintain both a lower bound and upper bound. To explain the idea, each
soft clause (c, w) is extended with two weights (c, w, w′) wherew is the original weight
andw′ represents the weight of the clause after its contributions to the lower bound have
been deducted.w′ will be referred as the deducted weight. Letϕd be a set of soft clauses
involved in an increment d of the global lower bound. Then, the deducted weight of all
the soft clauses in ϕd needs to be decreased by d. As a result, the hardening rule is
applied taking into account the deducted weight rather than the original one. Hence, the
hardening rule is shown in Equation 2

if w′ + λ ≥ μ then (c, w,w′) can be replaced by (c,�,�) (2)

Let (c, w, w′) be a soft clause that is made hard due to the hardening rule. There are
two situations. If the soft clause has no relaxation variable, the weight of the clause is
just replaced by �. If the soft clause has a relaxation variable, the weight is updated to
� and additionally, the relaxation variable is removed.

Example 2. Consider the formula {(x, 3, 3), (x̄, 4, 4), (y, 3, 3), . . .}. An initial upper
bound μ = 5 is obtained using any heuristic [8]. An initial lower bound λ = 3 can

294 A. Morgado, F. Heras, and J. Marques-Silva

be obtained due to an unsatisfiable core between the two first clauses. The minimum
weight for the conflicting clauses (x, 3, 3) and (x̄, 4, 4) is 3. The resulting formula is
{(x, 3, 0), (x̄, 4, 1), (y, 3, 3), . . .} with λ = 3. Then, the hardening rule can be applied
to the clause (y, 3, 3) given that 3 + 3 ≥ 5 . Hence, (y, 3, 3) is replaced by (y,�,�).
The current formula is {(x, 3, 0), (x̄, 4, 1), (y,�,�), . . .} with λ = 3 and μ = 5.

The integration of the hardening rule in BCD2 is as follows. Assume BCD2 maintains
internally the deducted weight of each soft clause, then any of the initial lower bounds
introduced in [8] can be used. Such lower bounds iteratively compute unsatisfiable cores
until a satisfiable instance is reached. For each unsatisfiable core, the minimum weight
is subtracted to the deducted weight of each soft clause in the core.

Assume any arbitrary iteration of the main loop of BCD2. Let λ =
∑

Ci∈C λi be the
global lower bound and let μ =

∑
Ci∈C εi be the global upper bound, before the call

to the SAT solver (line 6). After the call to the SAT solver, there are two possibilities:

– The SAT solver returns satisfiable (SAT). The global upper bound μ is updated and
the hardening rule is checked with the new global upper bound.

– The SAT solver returns unsatisfiable (UNSAT) and the global lower bound is in-
creased. Let λ′ =

∑
Ci∈C λi be the new global lower bound in line 23. Let d

be the difference between the previous and the current global lower bounds, i.e.,
d = λ′ − λ. Such increment d is due to the disjoint core Cs in line 15 or in line
21. Hence, the deducted weight of each soft clause in the proper disjoint core Cs is
decreased by d. Afterwards, the hardening rule is checked.

4.2 Biased Search

At each iteration, binary search algorithms compute a middle value ν between an upper
boundμ and a lower boundλ (i.e. ν ← �μ+λ

2). However, when the cost of the optimum
model is close to one of the bounds, binary search can make several iterations before
realizing that. In fact, QMAXSAT (0.4 version) solver [10] alternates iterations which
compute the middle value between the bounds, and iterations which use the value of the
upper bound. As such, QMAXSAT favors the discovery of models with a cost closer
to the upper bound. Note that QMAXSAT was the best performing solver on recent
MaxSAT Evaluations in the partial MaxSAT industrial category.

This paper proposes to compute a value between the lower bound and upper bound
(i.e. ν ∈ [λ, μ]) based on the previous iterations. Two counters are maintained. A
counter of the iterations that returned satisfiable (SAT) nsat, and a counter of the iter-
ations that returned unsatisfiable (UNSAT) nunsat. Both counters are initialized to 1.
At each iteration of the binary search algorithm the following percentage is computed:

p = nunsat/(nunsat+ nsat)

The expression compares the number of unsatisfiable iterations against the total number
of iterations, and gives a value closer to the bound with fewer outcomes in terms of a
percentage. The value ν to be considered at each iteration is ν = λ+ p× (μ− λ).

Note that the QMAXSAT approach is similar to always alternating the percentage
p between 50% (middle value) and 100% (upper bound). The integration in BCD2 is
straightforward. For each disjoint coreCi with estimate of the upper bound εi and lower
bound λi, BCD2 computes the value νi as νi = λi + p× (εi − λi).

Improvements to Core-Guided Binary Search for MaxSAT 295

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200 1400 1600 1800

B
C

D

BCD2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1500 1550 1600 1650 1700 1750 1800

C
PU

 ti
m

e

Instances

BC
BCD

BCD2
BCD2-B
BCD2-H

BCD2-B-H

(a) (b)

Fig. 1. (a) Scatter plot of BCD vs BCD2, (b) Cactus plot of BC, BCD, BCD2 and BCD2 with
additional techniques

5 Experimental Evaluation

Experiments were conducted on a HPC cluster with 50 nodes, each node is a CPU
Xeon E5450 3GHz, 32GB RAM and Linux. For each run, the time limit was set to
1800 seconds and the memory limit to 4GB. BCD2 and the additional techniques were
implemented in the MSUNCORE [17] system, and compared against BC and BCD1.

Figure 1 presents results on the performance of BCD2 (from Section 3) and the
new techniques (from Section 4) in all of the non-random instances from 2009-2011
MaxSAT Evaluations (for a total of 2615 instances). The scatter plot (Figure 1.a) shows
a comparison of the original BCD [8] with BCD2 (as described in Section 3). Note that
BCD2 (1813) solves 12 more instances than BCD (1801). The scatter plot indicates that
in general BCD requires larger run times than BCD2. A more detailed analysis indicates
that, out of 1305 instances where the performance difference between BCD and BCD2
exceeds 20%, BCD2 outperforms BCD in 918, whereas BCD outperforms BCD2 in 387.
Moreover, over the 1793 instances solved by both BCD and BCD2, the total number of
SAT solver calls for BCD is 124907 and for BCD2 is 68690. This represents an average
of 31.5 fewer SAT solver calls per instance for BCD2 (from 69.7 to 38.3), i.e. close to
50% fewer calls in BCD2 than in BCD on average. The difference is quite significant;
it demonstrates the effectiveness of the new algorithm, but also indirectly suggests that
some of the SAT solver calls, being closer to the optimum, may be harder for BCD2
than for BCD. Nevertheless, BCD2 consistently outperforms BCD overall.

The cactus plot (Figure 1.b) shows the run times for BCD, BCD2, BCD2 with hard-
ening rule (BCD2-H), BCD2 with biased search (BCD2-B) and BCD2 with both tech-
niques (BCD2-B-H). The original core-guided binary search algorithm [8] (BC) is also
included. The performance difference between BCD and BCD2 is conclusive, and con-
firmed by the area below each plot. For the vast majority of instances, BCD2 outper-
forms BCD. The hardening rule (BCD2-H) allows solving 3 additional instances than
BCD2, whereas biased search (BCD2-B) allows solving one more instance. However,

1 Observe that in [8], BCD was shown to solve more instances than a representative sample of
MaxSAT solvers.

296 A. Morgado, F. Heras, and J. Marques-Silva

Set #I. BC BCD BCD2 BCD2-B BCD-H BCD-B-H
Upgrade 100 65 100 100 100 100 100
TimeT 32 11 12 12 13 13 13
Pedi-A 45 37 38 39 39 41 44
Pedi-B 45 45 44 44 44 45 45
Pedi-C 90 68 73 77 76 84 83
Pedi-D 50 44 44 43 43 45 45
Pedi-E 90 42 50 57 59 66 67
Pedi-F 90 49 59 63 62 73 74
Pedi-G 90 20 30 39 40 47 50
Total 632 381 450 474 476 514 521

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 200 250 300 350 400 450 500

C
PU

 T
im

e

Instances

BC
BCD

BCD2
BCD2-B
BCD2-H

BCD2-B-H

(a) (b)

Fig. 2. (a) Table number of solved instances per algorithm (b) Cactus plot with the different
algorithms

the integration of both techniques (BCD2-B-H) allows solving 1832 instances, i.e. 19
more instances than BCD2 and 31 more than the original BCD. As expected, BC is the
worst performing algorithm (solves 1730 instances), and indirectly demonstrates that
maintaining disjoint cores is essential to obtain a more robust algorithm.

The effect of the more accurate bounds maintained by BCD2 and the additional tech-
niques is even more significant on weighted partial MaxSAT industrial instances. A
second experiment, see Figure 2, shows the results for 100 upgradeability instances, 32
timetabling instances [3] and 500 haplotyping with pedigrees instances [15]. Observe
that the haplotyping with pedigrees instances are divided in 7 sets (A, B, C, D, E, F, G).
The results are summarized in the table of Figure 2.a. The first column shows the name
of benchmark set. The second column shows the total number of instances in the set.
The remaining columns show the total number of solved instances within the time and
memory limits by BC, BCD and the different versions of BCD2. The same results are
presented with a cactus plot in Figure 2.b to highlight the runtimes.
BC is again the worst performing algorithm, and is the only approach unable to solve

the 100 upgradeability problems. BCD outperforms BC and solves 69 more instances.
BCD2 is clearly better than BCD, being able to solve 26 more instances. Biased search
(BCD2-B) has small effect and solves 2 more instances than BCD2. The hardening rule
(BCD2-H) is quite helpful on these instances and solves 40 more instances than BCD2.
Finally, the integration of the two new techniques (BCD2-B-H) allows solving 521 in-
stances, i.e. 47 more instances than BCD2 and 71 more than the original BCD.

6 Conclusions

This paper proposes a number of improvements to a recently proposed MaxSAT algo-
rithm [8] that implements core-guided binary search. The first improvement addresses
the organization of the original algorithm, and modifies the algorithm to (i) maintain
a global upper bound, that results in tighter local upper bounds for each disjoint core;
and (ii) use of more aggressive lower bounding techniques. The improvements to the
upper and lower bound result in significant reduction in the number of SAT solver calls

Improvements to Core-Guided Binary Search for MaxSAT 297

made by the algorithm. The second improvement consists of two techniques that can
be implemented on top of any core-guided algorithm that uses lower and upper bounds.
One of the techniques is referred to as the hardening rule and has been extensively
used in branch-and-bound algorithms [5,12,11,7], but not in core-guided algorithms.
The second technique is referred to as biased search, and is shown to work effectively
with the hardening rule. Experimental results, obtained on a comprehensive set of in-
stances from past MaxSAT Evaluations, demonstrates that the new algorithm BCD2
significantly outperforms (an already quite robust) BCD.

References
1. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Reveal: A Formal Verification Tool for Ver-

ilog Designs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI),
vol. 5330, pp. 343–352. Springer, Heidelberg (2008)

2. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) Partial MaxSAT through Satisfia-
bility Testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer,
Heidelberg (2009)

3. Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial maxsat. In: AAAI
Conference on Artificial Intelligence. AAAI (2010)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability (2009)
5. Borchers, B., Furman, J.: A two-phase exact algorithm for max-sat and weighted max-sat

problems. J. Comb. Optim. 2(4), 299–306 (1998)
6. Fu, Z., Malik, S.: On Solving the Partial MAX-SAT Problem. In: Biere, A., Gomes, C.P.

(eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)
7. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: An efficient weighted Max-SAT solver.

JAIR 31, 1–32 (2008)
8. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maxi-

mum satisfiability. In: AAAI (2011)
9. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability.

In: PLDI, pp. 437–446 (2011)
10. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A partial Max-SAT solver.

JSAT, 95–100 (2012)
11. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artifi-

cial Intelligence 172(2-3), 204–233 (2008)
12. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. Journal of Artificial In-

telligence Research 30, 321–359 (2007)
13. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of

constraints. J. Autom. Reasoning 40(1), 1–33 (2008)
14. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for Weighted Boolean Optimiza-

tion. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg
(2009)

15. Marques-Silva, J., Argelich, J., Graca, A., Lynce, I.: Boolean lexicographic optimization:
Algorithms and applications. Annals of Mathematics and A. I., 1–27 (2011)

16. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable
cores. In: DATE, pp. 408–413 (2008)

17. Morgado, A., Heras, F., Marques-Silva, J.: The MSUnCore MaxSAT solver. In: POS (2011)
18. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
19. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A.: Improved design

debugging using maximum satisfiability. In: FMCAD (2007)
20. Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based checker:

Practical implementations and other applications. In: DATE, pp. 10880–10885 (2003)

	Improvements to Core-Guided Binary Search for MaxSAT
	Introduction
	Preliminaries
	Improving BCD
	Proof of Correctness

	Additional Techniques
	Hardening Rule
	Biased Search

	Experimental Evaluation
	Conclusions
	References

