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Abstract. In incremental SAT solving, assumptions are propositions
that hold solely for one specific invocation of the solver. Effective prop-
agation of assumptions is vital for ensuring SAT solving efficiency in a
variety of applications. We propose algorithms to handle assumptions.
In our approach, assumptions are modeled as unit clauses, in contrast
to the current state-of-the-art approach that models assumptions as first
decision variables. We show that a notable advantage of our approach is
that it can make preprocessing algorithms much more effective. However,
our initial scheme renders assumption-dependent (or temporary) conflict
clauses unusable in subsequent invocations. To resolve the resulting prob-
lem of reduced learning power, we introduce an algorithm that transforms
such temporary clauses into assumption-independent pervasive clauses.
In addition, we show that our approach can be enhanced further when
a limited form of look-ahead information is available. We demonstrate
that our approach results in a considerable performance boost of the
SAT solver on instances generated by a prominent industrial application
in hardware validation.

1 Introduction

A variety of SAT applications require the ability to solve incrementally generated
SAT instances online [1–7]. In such settings the solver is expected to be invoked
multiple times. Each time it is asked to check the satisfiability status of all the
available clauses under assumptions that hold solely for one specific invocation.
The näıve algorithm which solves the instances independently is inefficient, since
all learning is lost [1–4].

The current state-of-the-art approach to this problem was proposed in [4] and
implemented in the MiniSat SAT solver [8]. MiniSat reuses a single SAT solver
instance for all the invocations. Each time after solving is completed, the user
can add new clauses to the solver and reinvoke it. The user is also allowed to
provide the solver a set of assumption literals, that is, literals that are always
picked as the first decision literals by the solver. In this scheme, all the conflict
clauses generated are pervasive, that is, assumption-independent. We call this
approach to the problem of incremental SAT solving under assumptions the
Literal-based Single instance (LS) approach, since it reuses a single SAT solver
instance and models assumptions as decision literals. The approach of [1] to our
problem would use a separate SAT solver instance for each invocation, where
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each assumption would be encoded as a unit clause. To increase the efficiency of
learning, it would store and reuse the set of assumption-independent pervasive
conflict clauses throughout all the SAT invocations. We call this approach the
Clause-based Multiple instances (CM) approach, since it uses multiple SAT solver
instances and models assumptions as unit clauses.

It was shown in [4] that LS outperforms CM in the context of model checking.
As a result, LS is currently widely applied in practice (e.g. [5–7]). The goal of this
paper is to demonstrate its limitations and to propose an efficient alternative.

This study springs from the authors’ experiences, described herein, in tuning
Intel’s formal verification flow. Verification engineers reported to us that a criti-
cal property could not be solved by the SAT solver within two days. Our default
flow used the LS approach, where to check a property the property’s negation is
provided as an assumption. The property holds iff the instance is unsatisfiable.
Surprisingly, we discovered that providing the negation of the property as a unit
clause, rather than as an assumption, rendered the property solvable within 30
minutes. The reason for this was that the unit clause triggered a huge simplifi-
cation chain for our SatELite [9]-like preprocessor that drastically reduced the
number of clauses in the formula.

Our experience highlights a drawback of LS: preprocessing techniques can-
not propagate assumptions in LS, since they are modeled as decision variables,
while assumptions can be propagated in CM, where they are modeled as unit
clauses. Section 3 of this work demonstrates how to incorporate the SatELite
algorithm within CM and shows why the applicability of SatELite for LS is an
open problem.

LS has important advantages over CM related to the efficiency of learning.
First, in LS all the conflict clauses are pervasive and can be reused, while CM
cannot reuse temporary conflict clauses, that is, clauses that depend on assump-
tions. Second, LS reuses all the information relevant to guiding the SAT solver’s
heuristics, while CM has to gather relevant information from scratch for each
new incremental invocation of the solver. Section 4 of this paper proposes an
algorithm that overcomes the first of the above-mentioned drawbacks of CM:
our algorithm transforms temporary clauses into pervasive clauses as a post-
processing step. Section 5 introduces an algorithm that mitigates the second of
the above-mentioned advantages of plain LS over CM, given that limited look-
ahead information is available to the solver. In fact, we propose an algorithm
that combines LS and CM to achieve the most efficient results.

We study the performance of algorithms for incremental SAT solving under
assumptions on instances generated by a prominent industrial application in
hardware validation, detailed in Section 2. Section 2 also provides some defintions
and background information. Experimental results demonstrating the efficiency
of our algorithms are provided in Section 6. We would like to emphasize that
all the SAT instances used in this paper are publicly available from the authors.
Section 7 concludes our work.
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2 Background

An incremental SAT solver is provided with the input {Fi, Ai} at each invocation
i , where for each i , Fi is a formula in Conjunctive Normal Form (CNF) and
Ai = {l1, l2, . . . , ln} is a set (conjunction) of assumptions, where each assumption
lj is a unit clause (it is also a literal). Invocation i of the solver decides the

satisfiability of (
∧i

j=1 Fj) ∧ Ai. Intuitively, before each invocation the solver
is provided with a new block of clauses and a set of assumptions. It is asked
to solve a problem comprising all the clauses it has been provided with up to
that moment under the set of assumptions relevant only to a single invocation
of the solver. Modern SAT solvers generate conflict clauses by resolution over
input clauses and previously generated conflict clauses. A clause α is pervasive
if (

∧i
j=1 Fj) → α, otherwise it is temporary.

The Clause-based Multiple instances (CM) approach [1] to incremental SAT
solving under assumptions operates as follows. CM creates a new instance of
a SAT solver for each invocation. Each invocation decides the satisfiability of
(
∧i

j=1 Fj) ∧ (
∧i−1

l=1 Pl) ∧Ai, where Pl is the set of pervasive conflict clauses gen-
erated at invocation l of the solver. To keep track of temporary and pervasive
conflict clauses, the algorithm marks all the assumptions as temporary clauses
and marks a newly generated conflict clause as temporary iff one or more tem-
porary clauses participated in its resolution derivation.

The Literal-based Single instance (LS) approach [4] to incremental SAT solv-
ing under assumptions reuses the same SAT instance for all the invocations.
The instance is always updated with a new block of clauses. The key idea is in
providing the assumptions as assumption literals, that is, literals that are always
picked as the first decision literals by the solver. Conflict-clause learning algo-
rithms ensure that any conflict clause that depends on a set of assumptions will
contain the negation of these assumptions. Hence, in LS all the conflict clauses
are pervasive.

While all the algorithms for incremental SAT solving under assumptions dis-
cussed in this paper are application-independent, the experimental results sec-
tion studies the performance of various algorithms on instances generated by the
following prominent industrial application in hardware validation.

Assume that a verification engineer needs to formally verify a set of properties
in some circuit up to a certain bound. Formal verification techniques cannot
scale to large modern circuits, hence the engineer needs to select a sub-circuit
and mimic the environment of the larger circuit by imposing assumptions (also
called constraints) [10]. The engineer then invokes SAT-based Bounded Model
Checking (BMC) [11] to verify a property under the assumptions. If the result is
satisfiable, then either the environment is not set correctly, that is, assumptions
are incorrect or missing, or there is a real bug. In practice the first reason is
much more common than the second. To discover which of the possibilities is
the correct one, the engineer needs to analyze the counter-example. If the reason
for satisfiability lies in incorrect modeling of the environment, the assumptions
must be modified and BMC invoked again. When one property has been verified,
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the engineer can move on to another. Practice shows that most of the validation
time is spent in this process, which is known as the debug loop.

In the standard industrial BMC-based formal validation flow the model checker
instance is built from scratch for each iteration of the debug loop. The key idea
behind our solution is to take advantage of incremental SAT solving under as-
sumptions across multiple invocations of the model checker. We keep only one
instance of the model checker. For each invocation of BMC, given a transition
system Ψ , a safety property Δ, and a set of assumptions Λ, we check whether Ψ
satisfies Δ given Λ at each bound up to a given bound k using incremental SAT
solving under assumptions, as follows. At each bound i , the transition system
Ψ unrolled to i is translated to CNF and comprises the formula, while the set
comprising the negation of Δ unrolled to i and the assumptions Λ unrolled to i
is the set of assumptions provided to the SAT solver. We call our model checking
algorithm incremental Bounded Model Checking (BMC) under assumptions.

Some recent works dedicated to BMC propose taking advantage of look-ahead
information that is available, since the instance can be unrolled beyond the cur-
rent bound [12, 13]. In particular, it is proposed in [13] to apply preprocessing,
including SatELite [9], for LS-based BMC, where complete look-ahead informa-
tion is required to ensure soundness, as variables that are expected to appear in
the future must not be eliminated. The technique of [13] cannot be applied in our
application, since it is unknown a priori how the user would update the formula
before subsequent invocations of the incremental model checker. The in-depth
BMC algorithm of [12], which uses a limited form of look-ahead to boost BMC,
served as an inspiration for our algorithm for incremental SAT solving under
assumptions with step look-ahead, presented in Section 5.

3 Preprocessing under Assumptions

Preprocessing refers to a family of algorithms whose goal is to simplify the input
CNF formula prior to the CDCL-based search in SAT. Preprocessing has com-
monly been applied in modern SAT solvers since the introduction of the SatELite
preprocessor [9]. This section first explains why even a rather straightforward
form of preprocessing, known as database simplification, is expected to be much
more effective when used with CM as compared to LS. We then show that, un-
modified, SatELite cannot be used with either CM or LS, and demonstrate how
it can be modified so as to be safely used with CM.

Consider the following algorithm, which we call database simplification follow-
ing MiniSat [8] notation: First, propagate unit clauses with Boolean Constraint
Propagation (BCP). Second, eliminate satisfied clauses and falsified literals.

Database simplification is applied as an inprocessing step (that is, as an on-
the-fly simplification procedure, applied at the global decision level) in modern
SAT solvers [8, 14, 15]. It can be applied during preprocessing and inprocessing
with either LS or CM without further modification. A key observation is that the
efficiency of the first application of database simplification after a new portion
of the incremental problem becomes available can be dramatically higher when
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assumptions are modeled as unit clauses (as in CM) rather than as assumption
literals (as in LS). Indeed, database simplification takes full advantage of unit
clauses by propagating them and eliminating resulting redundancies, while it
does not take any advantage of assumption literals. In addition, variables rep-
resenting assumptions are eliminated by database simplification with CM, but
not with LS. Our experimental data, presented in Section 6, demonstrates that
database simplification eliminates significantly more clauses for CM than for LS,
and that the average conflict clause length for LS is much greater than it is for
CM. These two factors favor CM as compared to LS as they have a significant
impact on the efficiency of BCP and the overall efficiency of SAT solving.

Consider now the preprocessing algorithm of SatELite [9]. SatELite is a highly
efficient algorithm used in leading SAT solvers [8, 14, 15]. SatELite is composed
of the following three techniques:

1. Variable elimination: for each variable v , the algorithm performs resolution
between clauses containing v (denoted by V +) and ¬v (denoted by V −). Let
U be the set of resulting clauses. If the number of clauses in U is less than
or equal to the number of clauses in V +∪V −, then the algorithm eliminates
v by replacing V + ∪ V − by U .

2. Subsumption: if a clause α is subsumed by the clause β, that is, β ⊆ α, α is
removed.

3. Self-subsuming resolution: if α = α1∨l and β = β1∨¬l, where α1 is subsumed
by β1, then α is replaced by α1.

It is unclear how to apply SatELite with LS, let alone make its performance
efficient. It is currently unknown how to apply SatELite for incremental SAT
solving, since eliminated variables may be reintroduced (unless full look-ahead
information is available [13], which is not always the case). However, even if the
problem of incremental SatELite is solved, it is still unclear how to efficiently
propagate assumptions when SatELite is applied with LS. One cannot apply
SatELite as is, since eliminating assumption literals would render the algorithm
unsound. A simple solution for ensuring soundness would be freezing the as-
sumption literals [4, 13], that is, not carrying out variable elimination for them.
However, this solution has the same potential severe performance drawback as
database simplification applied with LS as compared to CM: freezing assump-
tions is expected to have a significant negative impact on the preprocessor’s
ability to simplify the instance.

It is also unknown how SatELite can be applied with CM. The problem is
that one has to keep track of pervasive and temporary clauses. Fortunately, we
can propose a simple solution for this problem, based on the observation that
SatELite uses nothing but resolution. SatELite can be updated as follows to
keep track of pervasive and temporary clauses. If a variable is eliminated, each
new clause α = β1 ⊗ β2 is marked as temporary iff one of the clauses β1 or
β2 is temporary (where ⊗ corresponds to an application of the resolution rule).
Whenever self-subsuming resolution is applied, the new clause α1 is temporary
iff either α or β is temporary (this operation is sound since α1 is a resolvent of
α and β). No changes are required for subsumption.
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4 Transforming Temporary Clauses to Pervasive Clauses

We saw in Section 3 that CM has an important advantage over LS: prepro-
cessing is expected to be much more efficient for CM. However, LS has its own
advantages. An important advantage is efficiency of learning: all the conflict
clauses learned by LS are pervasive, hence they can always be reused. In CM, all
the temporary conflict clauses are lost. In this section we propose an algorithm
that converts temporary clauses to pervasive clauses as a post-processing step
after the SAT solver is invoked. Our algorithm overcomes the above-mentioned
disadvantage of CM as compared to LS.

We start by providing some resolution-related definitions. The resolution rule
states that given clauses α1 = β1 ∨ v and α2 = β2 ∨ ¬v, where β1 and β2

are also clauses, one can derive the clause α3 = β1 ∨ β2. The resolution rule
application is denoted by α3 = α1 ⊗v α2. A resolution derivation of a tar-
get clause α from a CNF formula G = {α1, α2, . . . , αq} is a sequence π =
(α1, α2, . . . , αq, αq+1, αq+2, . . . , αp ≡ α), where each clause αi for i ≤ q is ini-
tial and αi for i > q is derived by applying the resolution rule to αj and αk,
where j, k < i.1 A resolution refutation is a resolution derivation of the empty
clause �. Modern SAT solvers are able to generate resolution refutations given
an unsatisfiable formula.

A resolution derivation π can naturally be considered as a directed acyclic
graph (dag) whose vertices correspond to all the clauses of π and in which there
is an edge from a clause αj to a clause αi iff αi = αj ⊗αk (an example of such a
dag appears in Fig. 1). A clause β ∈ π is backward reachable from γ ∈ π if there
is a path (of 0 or more edges) from β to γ.

Assume now that the SAT solver is invoked over the CNF formula A =
{α1 = l1, . . . , αn = ln} ∧F = {αn+1, . . . , αr} (where the first n clauses are tem-
porary unit clauses corresponding to assumptions and the rest of the clauses are
pervasive). Assume that the solver generated a resolution refutation π of A∧F .
Let β ∈ π be a clause. We denote by Γ (π, β) the conjunction (set) of all the
backward reachable assumptions from β, that is, the conjunction (set) of all the
assumptions whose associated unit clauses are backward reachable from β ∈ π.
Let Γ (β) be short for Γ (π, β). To transform any clause β ∈ π \A to a pervasive
clause we propose applying the following operation:

T2P(β) = β ∨ ¬Γ (β)

That is to say, we propose to update each temporary derived clause with the
negations of the assumptions that were required for its derivation, while perva-
sive clauses are left untouched. Consider the example in Fig. 1. The proposed
operation would transform α7 to c∨d∨¬a; α8 to ¬d∨¬b; α10 to c∨¬a∨¬b; and
α11 to ¬a∨¬b. The pervasive clauses α3, α4, α5, α6, and α9 are left untouched.

Alg. 1 shows how to transform a resolution refutation π of A∧F to a resolution
derivation T2P(π) from F , such that every clause β ∈ π\A is mapped to a clause
T2P (β) = β ∨ ¬Γ (β) ∈ T2P (π). The pre- and post-conditions that must hold

1 We force the resolution derivation to start with all the initial clauses, since such a
convention is more convenient for the subsequent discussion.
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for Alg. 1 appear at the beginning of its text. The second pre-condition is not
necessary, but it makes the algorithm’s formulation and correctness proof easier.
The algorithm’s correctness is proved below.

Algorithm 1. Transform π to T2P (π)

Require: π = (A = {α1 = l1, . . . , αn = ln} , F = {αn+1, . . . , αr} , αr+1, . . . , αp) is a
resolution refutation of A ∧ F

Require: All the assumptions in A are distinct and non-contradictory
Ensure: T2P(π) = (T2P(αn+1),T2P(αn+2), . . . ,T2P(αr),T2P(αr+1), . . . ,T2P(αp))

is a resolution derivation from F
Ensure: For each i ∈ {n+ 1, n+ 2, . . . , r, . . . , p}: T2P(αi) = αi ∨ ¬Γ (αi)
1: for i ∈ {n+ 1, n+ 2, . . . , p} do
2: if αi ∈ F then
3: T2P(αi) := αi

4: else
5: Assume αi = αj ⊗v αk

6: if αj or αk is an assumption then
7: Assume without limiting the generality that αj is the assumption
8: T2P(αi) := T2P(αk)
9: else
10: T2P(αi) := T2P(αj)⊗v T2P(αk)
11: Append T2P(αi) to T2P(π)

Proposition 1. Algorithm 1 is sound, that is, its pre-conditions imply its post-
conditions.

Proof. The proof is by induction on i , starting with i = r + 1. Both post-
conditions hold when the ”for” loop condition is reached when i = r + 1, since
T2P (π) comprises precisely the clauses of F at that stage. Indeed, every clause αi

visited until that point is initial and is mapped to T2P (αi) = αi by construction.
It is left to prove that both post-conditions hold each time after a derived clause
αi ∈ π is translated to T2P (αi) and T2P (αi) is appended to T2P (π). We divide
the proof into three cases depending on the status of αi.

When αi is a pervasive derived clause, its sources αj and αk must also be
pervasive by definition. By induction, we haveT2P (αj) = αj and T2P (αk) = αk,
since Γ (αj) and Γ (αk) are empty. Hence, T2P(αi) = T2P (αj) ⊗v T2P(αk) =
αj ⊗v αk. Thus, it holds that T2P (αi) is derived from F by resolution, so the
first post-condition holds. We also have the second post-condition, since we have
seen that T2P (αi) = αj ⊗v αk = αi, while Γ (αi) is empty.

Consider the case where αi is temporary and αj is an assumption. The second
pre-condition of the algorithm ensures that αk will not be an assumption. The
algorithm’s flow ensures that T2P(αi) = T2P (αk). By induction, T2P(αk) is
derived from F by resolution, hence T2P (αi) is also derived from F by reso-
lution and the first post-condition holds. The induction hypothesis yields that
T2P (αi) = T2P (αk) = αk ∨ ¬Γ (αk). It must hold that αk = αi ∨ ¬lj , oth-
erwise the resolution rule application αi = (αj = lj) ⊗v αk would not be cor-
rect. Substituting the equation αk = αi ∨ ¬lj into T2P (αi) = αk ∨ ¬Γ (αk)
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α11 = �

α10 = c

α7 = c ∨ d α8 = ¬d α9 = ¬c
α1 = a α2 = b α3 = ¬a ∨ c ∨ d α4 = ¬b ∨ ¬d α5 = ¬c ∨ e α6 = ¬c ∨ ¬e
Fig. 1. An example of a resolution refutation for illustrating the T2P transformation.
The pervasive input clauses are F = α3 ∧ α4 ∧ α5 ∧ α6; the assumptions are α1 = a
and α2 = b. The only pervasive derived clause is α9; the rest of the derived clauses are
temporary.

gives us T2P (αi) = αi ∨ ¬lj ∨ ¬Γ (αk) = αi ∨ ¬(lj ∧ Γ (αk)). It must hold that
Γ (αi) = lj ∧ Γ (αk) by resolution derivation construction. Substituting the lat-
ter equation into T2P (αi) = αi ∨ ¬(lj ∧ Γ (αk)) gives us precisely the second
post-condition.

Finally consider the case where αi is temporary and neither αj nor αk is an
assumption. The first post-condition still holds after T2P(π) is updated with
T2P (αi), since T2P(αi) = T2P (αj) ⊗v T2P (αk) by construction and both
T2P (αj) and T2P (αk) are derived from F by resolution by the induction hypoth-
esis. The induction hypothesis yields that T2P (αi) = T2P (αj) ⊗v T2P (αk) =
(αj ∨ ¬Γ (αj)) ⊗v (αk ∨ ¬Γ (αk)). We have αi = αj ⊗v αk. Hence, it holds that
T2P (αi) = (αj ⊗v αk) ∨ ¬Γ (αj) ∨ ¬Γ (αk) = αi ∨ ¬Γ (αj) ∨ ¬Γ (αk). By res-
olution derivation construction, it holds that Γ (αi) = Γ (αj) ∧ Γ (αk). Hence,
T2P (αi) = αi ∨ ¬Γ (αi) and we have proved the second post-condition. ��

We implemented our method as follows. After SAT solving is completed, we go
over the derived clauses in the generated resolution refutation π and associate
each derived clause α with the set Γ (α). This operation can be applied indepen-
dently of the SAT solving result, even if the problem is satisfiable. After that,
we update each remaining temporary conflict clause α with ¬Γ (α) and mark
the resulting clause as pervasive. In practice, there is no need to create a new
resolution derivation T2P (π).

Note that one needs to store and maintain the resolution derivation in order to
apply our transformation. This may have a negative impact on performance. To
mitigate this problem, we store only a subset of the resolution derivation, where
each clause’s associated set of backward reachable assumptions is non-empty.
The idea of holding and maintaining only the relevant parts of the resolution
derivation was proposed and proved useful in [16].

Finally, when the number of assumptions is large, our transformation might
create pervasive clauses which are too large. To cope with this problem we use
a user-given threshold n. Whenever the number of backward reachable assump-
tions for a clause is higher than n, that clause is not transformed into a pervasive
clause, and thus is not reused in subsequent SAT invocations.
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5 Incremental SAT Solving under Assumptions with Step
Look-Ahead

In some applications of incremental SAT solving under assumptions, look-ahead
information is available. Specifically, before invocation number i , the solver may
already know the clauses Fj and assumptions Aj for some or all future invoca-
tions j > i. In this section, we propose an algorithm for incremental SAT solving
under assumptions given a limited form of look-ahead, which we call step look-
ahead. The reason for choosing this form of look-ahead is inspired by step-based
approaches to BMC [12].

Given an integer step s > 1, an invocation i is step-relevant iff i modulo s = 0
(invocations are numbered starting with 0). Given an invocation q, its step inter-
val is a set of successive invocations SI (q) = [n ∗ s, . . . , q, . . . , ((n+ 1) ∗ s)− 1],
where n ∗ s is the largest step-relevant invocation smaller than or equal to
q. For example, for s = 3, invocations 0, 3, 6, 9, 12, . . . are step-relevant; and
SI (3) = SI (4) = SI (5) = [3, 4, 5]. In step look-ahead, at each step-relevant invo-
cation i , the solver can access all the clauses and assumptions associated with
invocations within SI (i). In addition, in step look-ahead, given a step-relevant
invocation i , it holds that Fj ∧Aj is satisfiable iff Fj ∧Aj ∧ Fk is satisfiable for
every j, k ∈ SI (i). That is to say, we assume that all the clauses available within
the step interval hold for every invocation within that step interval.

One can adjust LS to take advantage of the fact that the solver has a wider
view of the problem as follows. At a step-relevant invocation i , LS can be pro-
vided the problem

∧i+s−1
j=i Fj and solve it s times, each time under a new set of

assumptions Aj for each j ∈ SI (i) (in this scheme non-step-relevant invocations
are ignored). We call this approach the Single instance Literal-based with Step
look-ahead (LSS) approach. LSS was proved to have advantages over the plain
LS algorithm (which has a narrower view of the problem) in the context of stan-
dard BMC [12]. However, it suffers from the same major drawback as plain LS:
preprocessing does not take advantage of assumptions.

We need to refine the semantics of the problem before proposing our solution.
Given a step-relevant invocation i , an assumption l ∈ Ai is invocation-generic
iff l ∈ Aj for every j ∈ SI (i). Any assumption that is not invocation-generic
is invocation-specific. That is, an assumption is invocation-generic iff it can be
assumed for every invocation within the given step interval. In our application
of incremental BMC under assumptions, described in Section 2, the negation of
the property for each bound is invocation-specific, while the unrolled temporal
assumptions are invocation-generic.

We propose an algorithm, called Multiple instances Clause/Literal-based with
Step look-ahead (CLMS) (shown in Alg. 2), that combines LS and CM. The
algorithm is applied at each step-relevant invocation. It creates the instance∧i+s−1

j=i Fj once as in LS. The key idea is that invocation-generic assumptions
can be provided as unit clauses, since assuming them does not change the satisfi-
ability status of the problem for any invocation within the current step interval.
To ensure the soundness of solving subsequent step intervals, the unit clauses
corresponding to invocation-generic assumptions must be temporary as in CM.
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After creating the instance the solver is invoked s times for each invocation in
the step interval, each time under the corresponding invocation-specific assump-
tions. To combine SatELite with Alg. 2 in a sound manner, all the invocation-
specific assumptions must be frozen. Finally, note that our T2P transformation
is applicable for CLMS.

Algorithm 2. CLMS Algorithm

1: if i is step-relevant then
2: Let G =

⋂i+s−1
j=i Aj be the set of all invocation-generic assumptions

3: Create a SAT solver instance with pervasive clauses
∧i+s−1

j=i Fj and temporary
clauses G

4: Optionally, apply SatELite, where all the invocation-specific assumptions in⋃i+s−1
j=i Aj must be frozen

5: for j ∈ {i, i+ 1, . . . , i+ s− 1} do
6: Invoke the SAT solver under the assumptions Aj \G
7: Optionally, transform temporary clauses to pervasive clauses using T2P
8: Store the pervasive clauses and delete the SAT instance

6 Experimental Results

This section analyzes the performance of various algorithms for incremental SAT
solving under assumptions on instances generated by incremental BMC under
assumptions. In our analysis, we consider an instance satisfiable iff a certain
invocation over that instance by one of the algorithms under consideration was
satisfiable within a time-out of one hour. We picked instances from three sat-
isfiable families comprising satitisfiable instances only (128 instances) and four
unsatisfiable families comprising unsatisfiable instances only (81 instances). We
measured the number of completed incremental invocations for unsatisfiable fam-
ilies and the solving time until the first time an invocation was proved to be sat-
isfiable for satisfiable families (the time-out was used as the solving time when
an algorithm could not prove the satisfiability of a satisfiable instance). Each
pair of invocations corresponds to a BMC bound (a clock transition and a real
bound), where the complexity of SAT invocations in BMC grows exponentially
with the bound. We implemented the algorithms in Intel’s internal state-of-the-
art Eureka SAT solver and used machines with Intel� Xeon� processors with
3Ghz CPU frequency and 32Gb of memory for the experiments.

We checked the performance of LS and CM as well as of LSS and CLMS
with steps 10 and 50. We tested CM and CLMS with and without SatELite and
with different thresholds for applying T2P transformation (0, 100, 100000). Our
solver uses database minimization during inprocessing by default.

The graph on the left-hand side of Fig. 2 provides information about the num-
ber of variables and assumptions (satisfiable and unsatisfiable instances appear
separately). For each instance we measured these numbers at the last invocation
completed by both CM and LS (the basic algorithms). Note that the distribu-
tion of variables and assumptions for the satisfiable instances is more diverse.
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This is explained by the fact that for satisfiable instances, the last invocation is
sometimes very low or very high, while for unsatisfiable instances it is moderate.
Overall, our satisfiable instances are easier to solve.
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Fig. 2. Left-hand side: variables to assumptions ratio; Right-hand side: a comparison
between plain LS and CLMS 10+T2P 100+SatELite with respect to the number of
satisfiable instances solved within a given time.

Table 1. The number of invocations completed within an hour for the unsatisfiable
instances from four families. The algorithms are sorted by the sum of completed invo-
cations in decreasing order.

Algorithms Completed Invocations
LS? SatELite? Step T2P Thr. Overall Fam. 1 Fam. 2 Fam. 3 Fam. 4
- + 50 0 2967 1443 470 562 492
- + 10 100 2934 1413 472 563 486
- + 10 0 2932 1408 474 568 482
- + 50 100 2927 1427 462 552 486
- + 50 100000 2927 1427 462 552 486
- + 1 0 2828 1365 468 539 456
- + 1 100 2813 1363 462 535 453
- - 10 100000 2806 1378 442 528 458
- - 50 0 2801 1375 444 526 456
- - 50 100 2795 1373 442 522 458
- - 50 100000 2795 1373 442 522 458
- - 10 100 2779 1357 440 528 454
- - 10 0 2775 1353 438 530 454
- - 1 100000 2736 1335 432 537 432
- - 1 100 2734 1339 436 526 433
- - 1 0 2732 1339 436 524 433
+ - 10 N/A 2579 1295 380 494 410
+ - 1 N/A 2575 1295 378 494 408
+ - 50 N/A 2563 1291 376 488 408
- + 10 100000 2525 1245 390 507 383
- + 1 100000 2250 1133 296 493 328

Consider Table 1, which compares the number of completed invocations for
unsatisfiable instances. Compare basic CM and LS (configurations [-,-,1,0] and
[+,-,1], respectively). CM significantly outperforms LS. As we discussed in Sec-
tion 3, the reasons for this are related to the relative efficiency of database
simplification and the average clause length for both algorithms. Fig. 3 demon-
strates the huge difference between the two algorithms in these parameters in
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favor of CM. Note that when SatELite is not applied, the best performance
is achieved by CLMS 10 (CLMS with step 10) with T2P 100000 (T2P with
threshold 100000). Hence, without SatELite, both CLMS and T2P are helpful.
SatELite increases the number of completed invocations considerably, while the
absolutely best result is achieved by combining SatELite with CLMS 50 when
T2P is turned off. Fig. 4 demonstrates that the reason for the inefficiency of the
combination of T2P and SatELite is related to the fact that the time spent in
preprocessing increases drastically when T2P is applied with threshold 100000.
The degradation still exists, but is not that critical when the threshold is 100.
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Fig. 3. Comparison of CM and LS with respect to average conflict cause length (left-
hand side) and the percent of clauses removed by database simplification (right-hand
side). Note the difference in the scales of the axes.
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Fig. 4. Comparison between CM and CM+T2P 100000 (left-hand side) and between
CM and CM+T2P 100 (right-hand side) in terms of time in seconds spent in SatELite

Consider now Table 2, which compares the run-time for satisfiable instances.
Note that, unlike in the case of unsatisfiable instances, the default LS is one of
the best algorithms. The advantage of LS over CM-based algorithms is that it
maintains all the information relevant to the decision heuristic. This advantage
proves to be very important in the context of relatively easy falsifiable instances.
Still, the absolutely best configuration is the combination of CLMS 10 with
SatELite and T2P 100, which uses all the algorithms proposed in this paper.
The graph on the right-hand side of Fig. 2 shows that the advantage of our
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approach over LS becomes apparent as the run-time increases, while LS is still
preferable for easier instances.

One can also see that the combination of CLMS 10 with SatELite and T2P 100
([-,+,10,100]) is the most robust approach overall: it is the second best for un-
satisfiable instances and the absolute best for satisfiable instances.

Table 2. Solving time in seconds for instances from three falsifiable families. The
algorithms are sorted by overall solving time in increasing order.

Algorithms Time
LS? SatELite? Step T2P Thr. Overall Fam. 1 Fam. 2 Fam. 3
- + 10 100 104845 10843 35083 58919
+ - 1 N/A 118954 18005 41624 59325
- + 10 0 134917 16886 40965 77067
+ - 10 N/A 139787 21726 53304 64757
- + 10 100000 154437 22280 53436 78721
- + 50 0 172104 10496 56087 105521
- + 50 100 189965 11649 69373 108943
- + 50 100000 192790 15220 68475 109096
- - 10 100000 196784 12521 126153 58110
+ - 50 N/A 200261 22832 93635 83794
- - 10 100 205124 16133 125529 63462
- - 10 0 206390 14991 125400 65999
- + 1 100 213278 31628 83009 98641
- - 1 100 216714 20889 118703 77122
- - 1 100000 220054 20639 128871 70545
- + 1 0 219346 34447 89040 95859
- - 1 0 228404 23642 121608 83154
- - 50 0 244202 18996 138971 86235
- + 1 100000 244826 34735 111862 98229
- - 50 100000 247347 18514 138552 90281
- - 50 100 250937 18897 141524 90516

7 Conclusion

This paper introduced efficient algorithms for incremental SAT solving under
assumptions. While the currently widely-used approach (which we called LS)
models assumptions as first decision variables, we proposed modeling assump-
tions as unit clauses. The advantage of our approach is that we allow the pre-
processor to use assumptions while simplifying the formula. In particular, we
demonstrated that the efficient SatELite preprocessor can easily be modified for
use in our scheme, while it cannot be used with LS. Furthermore, we proposed an
enhancement to our algorithm that transforms temporary clauses into pervasive
clauses as a post-processing step, thus improving learning efficiency. In addition,
we developed an algorithm which improves the performance further by taking
advantage of a limited form of look-ahead information, which we called step
look-ahead, when available. We showed that the combination of our algorithms
outperforms LS on instances generated by a prominent industrial application.
The empirical gap is especially significant for difficult unsatisfiable instances.
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