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Abstract. Solving instances of the propositional satisfiability problem
(SAT) in parallel has received a significant amount of attention as the
number of cores in a typical workstation is steadily increasing. With
the increase of the number of cores, in particular the scalability of such
approaches becomes essential for fully harnessing the potential of modern
architectures. The best parallel SAT solvers have, until recently, been
based on algorithm portfolios, while search-space partitioning approaches
have been less successful. We prove, under certain natural assumptions
on the partitioning function, that search-space partitioning can always
result in an increased expected run time, justifying the success of the
portfolio approaches. Furthermore, we give first controlled experiments
showing that an approach combining elements from partitioning and
portfolios scales better than either of the two approaches and succeeds
in solving instances not solved in a recent solver competition.

1 Introduction

The satisfiability problem (SAT) of determining whether a given propositional
formula has a satisfying truth assignment has been a target of intense research ef-
forts due to its theoretical significance [I] and the numerous applications, such as
scheduling [2], termination analysis [3], configuration [4], and bioinformatics [5],
where SAT solvers have proven successful. Parallelism seems now to dominate
the performance of future computer systems, as already current computers pro-
vide more than ten CPU cores. As a result, the research on how to parallelize
SAT solvers for an increasing number of cores is of high practical relevance.
This paper uses rigorous analysis and experiments to find a novel explanation
to the effects certain well-known parallelization techniques have on the expected
run time of solving SAT instances. The time a SAT solver S requires to solve
a given formula ¢ is known to be highly erratic and might vary significantly as
the formula or the solver is modified even slightly. Hence, given a solver & and
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a formula ¢, the run time is a random variable. The variance in run times has
two important implications in parallel solving of formulas. Firstly, assume that
the run time of S on ¢ is one second with probability 0.8 and ten seconds with
probability 0.2. The expected run time of the solver S is then 1-0.84+10-0.2 = 2.8
seconds. Running ten (randomized) solvers in parallel gives the solution in the
expected time (1 — 0.2'%) -1 +0.2'% .10 ~ 1.000001 seconds. Hence the use
of this approach results in speed-up of 2.8. Secondly, assume there is a way
of partitioning ¢’s search space into ten separately in parallel solvable, equally
difficult parts. It is reasonable to assume that such a partitioning is not perfect so
that the run time of each partition is, say, half of the original formula instead of
tenth. Proving unsatisfiability of the formula would in this case require ensuring
that there are no solutions in any of the partitions, and the expected run time
with the partitioning approach is thus 0.81°-1-1/2 + (1 — 0.81%).10-1/2 ~
4.5 seconds, resulting in speedup of 0.6. This artificial example provides some
insight to why the portfolio solvers, corresponding to the first case, perform often
better than the search space partitioning solvers which correspond to the second
case. The portfolio approach provides a substantially better speed-up, while the
partitioning approach results in fact in a higher expected run time than solving
with the underlying solver S.

In this paper we prove, under reasonable assumptions, that there is always
a distribution which results in a similar increased expected run time as in the
example above, unless the process of constructing partitions is ideal in the sense
described later. Earlier it has been shown that by organizing the partitioning as
a partition tree it can be guaranteed that not only the expected run time does
not increase above that of S, but that increasing the number of parallel resources
never increases the expected run time [6]. We experimentally confirm this us-
ing realistic and comparable implementations by showing that the partition tree
based iterative partitioning approach scales better than either the portfolio ap-
proach or the partitioning approach. The implementation is able to solve four
instances that were not solved in the SAT Competition 2011.

The run times of randomized tree-based searches have been studied analyti-
cally both for sequential solving [7] and in parallel cases [S9UTOJTT]. Our analytic
discussion differs from these by studying unsatisfiability proofs with a model
of partitioning function that is an extension of [II]. Much work has been in-
vested in studying search space partitioning solvers [I2IT3IT4T5] and algorithm
portfolios [I6/I7]. In this work our aim is to build understanding between the
two approaches by implementing similar systems in as comparable manner as
possible, omitting for instance the most sophisticated clause sharing mecha-
nisms [I8T9/20]. The iterative partitioning approach discussed in this work is
introduced in [2I] and further developed in [6] and [22]. We extend these studies
by implementing the approach for multi-core architectures instead of computa-
tional grids, which enables us to provide a much more reliable comparison of the
iterative partitioning approach to the portfolio and partitioning approaches.



216 A.E.J. Hyvéarinen and N. Manthey

The work is organized as follows: Section 2] defines our notation. Section [
presents the proof for increasing run times, and formalizes the three parallelization
approaches. Section ] provides the multi-core implementations of the approaches
and discusses how clause sharing is implemented in them. The implementations
are experimentally evaluated in Sect. Bl and conclusions are given in Sect.

2 Preliminaries

Let V be a finite set of Boolean variables. The set of literals {x, -z | z € V'} con-
sists of negative and positive Boolean variables, a clause is a disjunction of literals
and a formula (in conjunctive normal form) is a conjunction of clauses. Whenever
convenient, we denote clauses by sets of literals and formulas by sets of clauses.
Clauses of size one are called unit clauses. An assignment o is a set of literals, is
consistent if for no variable x both x € o and —x € o, and is inconsistent other-
wise. If an assignment o does not contain a literal [ for each variable v € V| it is
called partial. A consistent assignment o satisfies a clause C if C' contains a literal
in o, and satisfies a formula if it satisfies all its clauses. A formula is satisfiable
if there is a consistent truth assignment satisfying it, and unsatisfiable otherwise.
A formula ¢ is a logical consequence of ¢, denoted ¢ |= 1, if 1) is satisfied by all
satisfying assignments of ¢. The formulas are logically equivalent, denoted ¢ = ),
if they are logical consequences of each other.

3 Parallel Solving Approaches

This work studies the parallel SAT solver designs that have recently proved suc-
cessful. In particular, we will discuss

— the Simple Parallel SAT Solving (SPSAT) approach, which is a simplified vari-
ant of the portfolio approach;

— the plain partitioning approach, which again is a simplified version of the search
space partitioning approaches such as those based on guiding paths [23]; and

— the iterative partitioning approach, again a simple approach where partition-
ing is recursive and the solving is attempted on the search spaces related to
all recursive levels until satisfiability is proved.

In the following, we describe the approaches and the concepts related to them in
more detail.

The SPSAT Approach is based on solving a given formula ¢ with several SAT
solvers in parallel. As all solvers are working on the same instance, the solution
is obtained from the solver finishing first. The underlying solvers are slightly ran-
domized so that they correspond to a straightforward portfolio of seemingly infi-
nite different algorithms. The approach is known to be efficient for a wide range
of application originated formulas, in particular if they are satisfiable and have
several solutions [T1].
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The Plain Partitioning Approach first divides the search space of the formula,
and then solves the resulting partitions separately in parallel. The search space is
divided using a partitioning function P(¢p,n), which maps a formula ¢ to n parti-
tioning constraints K1 . .., ky, such that (1) d = (¢ A k1) V...V (¢ A ky), and (ii)
ki N\ Kj A\ ¢ is unsatisfiable when ¢ # j. The formulas ¢; = ¢ A k;, 1 < i@ < n,
are called the derived formulas of ¢. The satisfiability of ¢ can be determined by
either showing all derived formulas unsatisfiable or showing ¢; satisfiable for some
1 <4 < n. By (i), in the former case also ¢ is unsatisfiable, and in the latter case
the assignment satisfying ¢; satisfies also ¢.

The Iterative Partitioning Approach is based on solving a hierarchical partition
tree in a breadth-first order. Given a formula ¢, iteratively constructed derived
formulas can be presented by a partition tree Ty. Each node v; is labeled with a
set of clauses Co(v;) so that the root vy is labeled with Co(vy) = ¢, and given a
node v, and arooted path vy, ..., vg_1 to its parent, the label of vy is Co(vy) = &,
where k; is one of the constraints given by P( /\5;3 Co(v;),n). Each node vy, with

arooted path vy, ..., v represents the formula ¢,, = /\f:O Co(v;). Solving is at-
tempted for each ¢,, in the tree in a breadth-first order. The approach terminates
if a satisfying assignment is found, or all rooted paths to the leaves contain a node
vj such that ¢,, is shown unsatisfiable. In practice, we also limit the run time of
each solving attempt to ensure that a reasonably large portion of the search tree
will be covered.

The Partitioning Function Model. A partitioning function P(¢,n) should pro-
duce derived formulas ¢; which are increasingly faster to solve as the number of
derived formulas n increases. We will use an efficiency function to formalize how
well P accomplishes this. Assume that the solver S performs with the same proba-
bility a given search that takes time ¢4 in the formula ¢ but, due to the partitioning
constraints, a shorter time ¢4, in the derived formulas ¢;. The efficiency function
€(n) depends on the number n of derived formulas and gives the ratio of the two
times, that is, e(n) =t /ty,.

We use a cumulative run time distribution gs 4(t) to describe the probability
that a solver S determines the satisfiability of a formula ¢ in time ¢. This rea-
soning results in a model where, given a formula ¢ with the run time distribu-
tion gs,¢(t) on a solver S, the n derived formulas ¢; all have the distributions
45,6, (1) = 4.6 (e(M)L).

We will only consider efficiency functions of the form e¢(n) = n® where 0 < a <
1 is a constant depending on the partitioning function. The function satisfies the
following natural properties:

(1) 1 <e(n) <mn,
(2) e(n) < e(n+1), and
(3) e(n)P = e(nP) for allp € N

The first condition states that the partitioning function should not make a par-
ticular search of S super-linearly faster or slow the search down. The second con-
dition requires that the efficiency does not decrease as more derived formulas are
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created. The last condition states that if a partitioning function P(¢,n) is used
to produce n? derived formulas recursively, the resulting efficiency must equal the
efficiency of P(¢, nP) where the derived formulas are all generated at once. Hence,
given a partitioning function P with efficiency e(n) = n®, the cumulative run time
distributions for the derived formulas ¢; of ¢ are

4s.4:(t) = gs,¢(n“t) for some o in the range 0 < o < 1, (1)

where the partitioning function is called ideal if « = 1, that is, €(n) = n.

3.1 Plain Partitioning Can Increase Expected Run Time

A run time distribution ¢s 4(¢) for an unsatisfiable ¢ completely determines the
run time distribution qglain_Part(a)’ ¢(t) for the plain partitioning approach with a
partitioning function P with efficiency e¢(n) = n®. In particular, since the formula
¢ is shown unsatisfiable once all derived formulas have been shown unsatisfiable,
by () we have

qglain—Part(a)@(t) = qg,q&l (t) = qg,¢(nat) (2)

In this section we are interested in studying the expected value of the random
variables Ts 4 and T; {flain_Part(a)’ ¢> describing the times required to solve ¢ with
the solver S and the plain partitioning approach using n derived formulas, respec-
tively. In particular, we wish to prove the somewhat surprising claim that for non-
ideal partitioning functions there are distributions for unsatisfiable formulas such
that the expected run time of the solver S is less than the expected run time of

the plain partitioning approach, stated more formally as follows:

Proposition 1. Let ¢ be unsatisfiable, P(¢,n) a partitioning function with effi-
ciency €e(n) = n%, and S a SAT solver. Then for sufficiently large n and every
0 < o < 1 there exists a distribution g5 4(t) such that the expected run time ETs 4
of § is lower than the expected run time ETglam_Pwt(a)@ of the plain partitioning
approach.

Proof. The family of distributions g3 ,(¢) we will use in the proof is

0 ift<t,
a5 4(t) =9 1— }L ifty <t <ty,and (3)
1 it > b,

where t; < t9. Thus the probabilities that the formula is solved by S exactly in
time ¢ is 1 —1/n and exactly in time to is 1 /n. The expected run time for a formula
following the distribution is

1 1
ET. = (11— t to. 4
S0 =( n)1+n2 (4)

The expected run time of the plain partitioning approach using the partition func-
tion €(n) = n® can be derived by noting that all derived formulas need to be solved
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before the result can be determined. This means that either all solvers are “lucky”,
and determine the unsatisfiability in time ¢ /n®, or at least one of the solvers runs
for time to /n®, which will then become the run time of the approach. This results in

. " t, 1., 6
ETPlain—Part(a),¢ = (1 - ’I’L) ne + <1 - (1 - n) ) ne’ (5)

We claim that for every «, there are values for n, t; and ¢, such that ETs 4 <

ETP inp art(a),¢" Dividing both sides of the resulting inequality by t2 and setting
k = t1/ts results in
1— )k < "k my
( n) + n n< + ne

which can be reordered to

1. (a=1 1-(1-5m 1
NS P
n« n
We note that (1 — ) > (1 — 1)"/n® when n > 2, and therefore the left side
of the inequality is positive and can be made arbitrarily small by setting k& small.
It remains to show that the right side of the inequality is positive for sufficiently
large n, i.e.,
1
n—(1-,)"n—n"

e > 0.

Since n®*! is always positive, we may simplify this and factor n from the nomi-

nator, resulting in

1—(1—711)"7na—1>0. (6)
Noting that lim, e (1 — }L)” = i ~ 0.3, and that lim,,,oc 1 —n® ' =1ifa < 1,
we get the desired result, that is, for sufficiently large n, there are values ¢t and to
such that t; <ty and ETs 4 < ]ETIZ,LIam_Part(a)@.

Note that the proof does not hold if the partitioning function is ideal, since
the left hand side of the inequality (@) is negative if & = 1. In fact, we have the
following proposition proved in [I1]:

Proposition 2. Letn > 1,¢(n) = n' = n be the efficiency of an ideal partitioning

function, and qp(t) be the run time distribution of an unsatisfiable formula ¢ with

. +1
a randomized solver. Then ET}QLlam_PaN(l)@ > Engam-Pmtu),q&'

The distribution g3 ,(t) used in proof of Prop. [lis clearly not a common distri-
bution for any solver and unsatisfiable formula. Furthermore, many search space
partitioning solvers are based on guiding paths, an approach designed to increase
dynamically the number of derived formulas as the instance is being solved. Nev-
ertheless we believe that the observation helps to understand the performance of
parallel SAT solvers and thereby gives guidelines how to design better
parallel solvers. To further evaluate the effect in practice, we compare the plain
partitioning approach against the SPSAT approach and the iterative partitioning
approach, both of which provably do not suffer from the increasing expected run
times (see [11] and [24], respectively, for proofs).
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4 Multi-core Implementations

The partitioning approaches discussed in Sect. 3] can be implemented in a rela-
tively straightforward manner using the efficient off-the-shelf SAT solvers that
are readily available. Our implementations use the POSIX threads library to en-
able multi-threaded computing. The SPSAT implementation is straightforward,
and the plain partitioning approach can be seen as a special case of the iterative
partitioning, where only the original formula is partitioned, and only the derived
formulas are solved. Hence this section concentrates on describing the iterative
partitioning approach. In interpreting the experimental results it is useful to keep
in mind that the low-level SAT solving, corresponding to the underlying solver &
in the analytical model, is performed by the same code in all three approach. This
allows us to compare the results more reliably.

4.1 The Iterative Partitioning Approach

The iterative partitioning approach is implemented as a master-worker architec-
ture, where the master maintains a tree of derived formulas and the workers both
compute the partitioning function and run the underlying solvers. Communica-
tion is handled via shared memory and the locking primitives available from the
library. The master thread takes care of the following tasks:

Maintaining the partition tree

Maintaining the queue of nodes to partition
Submitting partitioning tasks

Submitting solving tasks

Determining whether the search can be terminated

G Lo

There are two kinds of workers: the partitioner and the solver. The maximum run
times of both workers are limited. The partitioner takes as input a node v; in the
partition tree and a number n, and produces the derived formulas computed by the
partitioning function P(¢,,,n) upon reaching the time limit. The solver receives a
node v; from the partition tree and tries to solve the corresponding formula ¢,,. At
success, the solver returns either a satisfying truth assignment or concludes that
¢, is unsatisfiable. Otherwise, if the run time limit is reached, no solution is re-
turned and the corresponding node is marked unknown. Such nodes are subject to
at most one partitioning and their satisfiability will be determined by attempting
to solve recursively the formulas corresponding to child nodes.

A node v; is solved by first constructing the corresponding formula ¢,,. After
successful solving of ¢,,, the master either updates the state of v; to unsatisfiable
or receives the satisfying truth assignment depending on the outcome of the solver.
Otherwise, if the solving of ¢,, failed due to a timeout, the state of v; remains
unknown.

In case of receiving an unsatisfiable result on a node v;, the master checks the
states of the sibling nodes. In case they all are already in the state unsatisfiable,
also the parent of v;, if one exists, is marked unsatisfiable. This process is repeated
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recursively upwards. This way a node in the tree is marked unsatisfiable if and
only if all paths from the node to the leaves pass through a node corresponding to
a formula that is shown unsatisfiable with the solver.

The partitioner implements the vsids scattering function [21], where the parti-
tioning constraints are in general clauses consisting of literals with a high vsids [25]
score.

4.2 Clause Learning

To keep the discussion and the results generalizable, the underlying solvers of the
approaches are only allowed a limited form of learned clause sharing. In particular,
the sharing of only unit clauses is allowed, since sharing longer clauses might have
negative impact on the overall performance [20/22].

The SPSAT implementation synchronizes its units with a centralized database
at every restart and when learning a new unit clause. This operation can be
performed with no locks with a Compare-and-Swap instruction, and has no no-
ticeable negative performance effect. Clause sharing is less straightforward in the
partitioning approaches. A clause learned in one derived formula is not, in general,
a logical consequence of another derived formula, and hence the learned clauses
are not transferred between derived formulas. The iterative partitioning approach
shares the unit clauses only “downwards”, that is, clauses learned in a node are
shared with the formulas in the subtree rooted at that node, by storing the units
learned while solving a formula ¢,, to the constraints Co(v;). In plain partitioning,
the unit clauses are similarly saved to the constraints of the derived formula from
which they are learned, and are hence shared between two consecutive solvers if
the first solver fails.

It is possible to maintain more complicated data structures which allow track-
ing to some extent from which constraints a given clause depends. This usually
involves an overhead some times high enough to completely ruin the speed-up ob-
tained from the parallelization [22]. For simplicity and to help in interpreting the
comparison, such data structures are not implemented in our experiments.

5 Results

This section analyzes the performance of the SPSAT, the plain partitioning and
the iterative partitioning approaches using the application category instances from
the 2009 and 2011 SAT competition. We first compare the wall clock run time
of each solving approach to that of the underlying solver, and then study the scal-
ability of the approaches with four and 12 cores. We continue by comparing the
plain and iterative partitioning approaches, by showing how the iterative parti-
tioning approach scales when moving to a grid-based system, and finally report
on solving the instances that were not solved in SAT competition 2011. The reli-
ability of the results is addressed shortly by solving repeatedly certain randomly
chosen instances.

! Seelhttp://www.satcompetition.org/
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5.1 Experimental Setup

All three approaches use MINISAT 2.2.0 [26] as the underlying solverld. We use
preprocessing only in the last experiment. The experiments are run on a cluster
consisting of nodes with two six-core AMD Opteron 2435 processors. Each in-
stance was solved on an exclusively reserved computing node. The memory usage
for each instance was limited to 30 GB and the duration to four hours of wall clock
time. Each thread was allocated an equal amount of memory, that depended on
the number of threads used. For instance, when running 12 threads, each thread
had approximately 2.5 GB of memory. If the thread ran out of memory, the unit
clauses learned by the thread were collected and, in case of the SPSAT and plain
partitioning approaches, the thread was restarted with the same formula.

The measurement of memory usage is always an estimate, and therefore the
system may nevertheless run out of memory resulting in an early termination of
the search. The run time of each solver thread in the SPSAT and the plain parti-
tioning approaches was limited to four hours, while run times of the solver threads
in the iterative partitioning approach was limited to 2400 seconds wall clock time
(however, the master thread still had the time limit of four hours).

The partitioning function used in the iterative partitioning approach
constructed eight derived instances, that is, it was the function P(-,8). The plain
partitioning used the function P(-,1000) to obtain roughly the same amount of
formulas in total for both approaches. Increasing the number of derived formulas
increases the probability that some of them are trivially unsatisfiable. In 50% of
the 2009 benchmark formulas the number of non-trivial derived formulas was over
200, and in 25% of the formulas the number was over 600. In total 70 seconds were
allocated for computing the partitioning function in both cases.

In most of the experiments, we illustrate the results with scatter plots with two
solving approaches on the axis. Satisfiable instances are denoted by x and unsat-
isfiable instances by 0. The instances that timed out are plotted on the lines on
the top and the right of the graphs, whereas the instances that ran out of memory
despite the restart-forcing limitations are drawn at the edges of the graph. The
dashed line in the figures correspond to the linear speedup.

5.2 Scalability of the Multi-core Implementation

Figure [Il shows scatter plots of the SPSAT approach, the iterative partitioning
(Iter-Part) approach and the plain partitioning ( Plain-Part) approach against the
underlying solver. All three approaches are able to solve more formulas and are
usually faster than MINISAT 2.2.0. The SPSAT approach does not reach a linear
speedup for unsatisfiable formulas, but works well for many of the satisfiable in-
stances. The plain partitioning approach shows a noticeable slowdown for many
of the instances where the run time is between hundred and thousand seconds.
This could result from two factors; firstly, in multi-core computing the threads
interfere between each other causing a slowdown. Secondly, as shown in Prop.[I]
it is possible that the slowdown results from the shape of the distributions of the

2 Solvers and data are available at http://tools.computational-logic.org/
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original and the derived instances. Interestingly, the wall clock run time of plain
partitioning for unsatisfiable instances is in 41 cases higher than that of the under-
lying solver, and lower in 69 cases (excluding instances not solved by both plain
partitioning and the underlying solver). The corresponding numbers for iterative
partitioning are substantially more convincing, 18 and 94.

As discussed in Sect. B the run time of a solver given a formula is essentially
a random variable, and therefore a single run time pair on a single instance is in-
herently unreliable in comparing the performance of two algorithms. To estimate
the quality of the results, we randomly selected ten unsatisfiable and ten satisfi-
able instances and repeated their solving with the iterative partitioning approach
ten times. The average variation coefficient ¢,,, that is, the ratio of the standard
deviation to the mean, itself averaged over the ten instances, is ¢, = 0.10 for the
unsatisfiable instances and ¢, = 0.31 for the satisfiable instances.

5.3 Selecting a Scalable Algorithm

The use of more cores increases the memory access times and causes memory outs
in the solvers as the data structures are replicated for each thread. A parallel solv-
ing approach should provide speed-up despite these adverse effects. Table [I] sum-
marizes scalability using the instances that the approach solved both with four and
12 cores. In Fig.[2lwe concentrate more on studying the run times of the unsatisfi-
able instances. The table distinguishes the results for satisfiable and unsatisfiable
instances; the columns slower and faster denote the number of instances solved
slower and faster, respectively, with 12 cores than with four cores. Hence if the
number under slower is lower than the number under faster, this indicator shows
that the approach scales. We also report the sum of the wall-clock run times for
the approaches on the last four columns.

Based on the results we can make several interesting observations. Firstly, the
wall-clock solving time for most instances in nearly all cases increases when the
number of cores increases. The only exception is the iterative partitioning when
solving satisfiable instances. Secondly, the total wall clock run time required to
solve the instances decreases for almost all the approaches, here the exception
being the SPSAT approach in unsatisfiable instances. The SPSAT approach scales
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Fig. 2. The scalability of the parallel approaches

badly in unsatisfiable instances, while the plain and iterative partitioning
approaches show better scalability, the iterative partitioning being clearly the best
as it reduces the run time by 15% and almost never slows down the solving of an
instance. As shown in Fig.[2] increasing the number of cores results in solving more
instances in iterative partitioning, whereas in the other two approaches the num-
ber of solved instances either decreases or stays the same.

The scalability above suggest that the partitioning approaches scale better than
SPSAT. Our three approaches are deliberately as simple as possible while still
being interesting from the practical point of view, and hence none of the parallel
solvers competing in the recent SAT competitions correspond exactly to any of
the approaches. Nevertheless it is interesting to try to relate the observations here
to the recent competitions. Of the four solvers competing in the 32 core track in
2011, three were variants of the SPSAT approach, one being implemented with
the guiding path approach [23] related to the plain partitioning.

As can be seen in the comparisons in Figs.[[land 2] the partitioning approaches
are especially advantageous for the harder instances. We will next give some more
insight into this. First, we show in left of Fig. Bl that the iterative partitioning
approach compares favorably to the plain partitioning on unsatisfiable instances
except for a handful of instances. The iterative partitioning approach also solves
a significantly larger number of formulas than the plain partitioning approach.
Again, there are two reasons for this. Firstly, in the light of the propositions[land[2]
and results in [I1], it is unlikely that the plain partitioning approach would obtain
even close to linear speed-up. The iterative partitioning behaves analytically much

Table 1. Comparison on instances that the respective approaches could solve both with
four and 12 cores. Column slower (resp. faster) denotes the number of instances solved
slower (resp. faster) with 12 cores than with four cores.

SAT UNSAT  SAT runtime UNSAT runtime
Approach slower faster slower faster 4-core 12-core 4-core 12-core

SPSAT 47 36 93 23 61784 57380 111152 127462
Plain-Part 45 34 77 39 61681 60934 121432 119925
Iter-Part 33 45 61 58 53918 50642 153726 131521



Designing Scalable Parallel SAT Solvers 225

Table 2. Instances not solved in SAT 2011 competition

Name Solution w/ preproc w/o preproc
aes 32 4 keyfind 1 SAT — 6299
gus-md5-12 UNSAT 4367 6022
rbcl xits 09 UNKNOWN UNSAT — 9635
smitlib-qfbv-aigs- VS3-benchmark-S2-tseitin UNSAT 4732 8163
UNSAT only
w w SORE S
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12-core Plain-Part run time (in s) Grid Iter-Part run time (in s)

Fig. 3. Iterative partitioning in grid using at most 64 cores [22], and in multi-core ap-
proach using 12 cores

nicer [24]. Secondly, the iterative partitioning approach is able to adjust to the
problem difficulty due to the dynamic construction of the partition tree.

We also give some insight into how the iterative partitioning approach scales
beyond 12 cores in right of Fig. [3] by using a computing grid based implementa-
tion running on at most 64 cores. In this system the communication latencies are
several orders of magnitude higher and the hardware is older than in the multi-
core environment, rendering the results not directly comparable. We still note that
increasing the number of cores helps in many hard unsatisfiable instances and re-
sults in solving roughly ten more instances.

Finally, we ran the iterative partitioning approach on the 2011 competition in-
stances on 12 cores with and without the SatElite preprocessing techniques. The
wall-clock run times are reported in Table 2l We only report the four instances
that we could solve but were not solved by any solver in the competition.

6 Conclusions and Future Work

This work addresses some of the central questions in designing scalable paral-
lel SAT solvers using a novel analysis based on a realistic model of search-space
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partitioning and an efficient uniform implementation based on widely used tech-
niques. The analysis shows that partitioning inherently involves a risk that the
expected run time increases compared to sequential solving. An earlier result [24],
showing that organizing the search spaces as a tree instead of a set avoids this prob-
lem, motivates the experimental comparison of these approaches as well as the
widely used portfolio approach. Our results confirm that the partition tree based
iterative partitioning approach performs well compared to the set-based plain par-
titioning, both of which perform better in the unsatisfiable formulas than the port-
folio approach. Surprisingly, the iterative partitioning approach over-performs
portfolio also in satisfiable formulas. Finally we demonstrate the performance of
the iterative partitioning approach by solving four instances that could not be
solved in the SAT competition 2011.
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