
Automatic Theorem-Proving

in Combinatorics on Words

Daniel Goč, Dane Henshall, and Jeffrey Shallit

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1 Canada
{dhenshall,dgoc,shallit}@uwaterloo.ca

Abstract. We describe a technique for mechanically proving certain
kinds of theorems in combinatorics on words, using finite automata and a
package for manipulating them. We illustrate our technique by applying
it to (a) solve an open problem of Currie and Saari on the lengths of
unbordered factors in the Thue-Morse sequence; (b) verify an old result
of Prodinger and Urbanek on the paperfolding sequence and (c) find
an explicit expression for the recurrence function for the Rudin-Shapiro
sequence. All results were obtained by machine computations.

Dedicated to the memory of Sheng Yu (1950–2012): friend and colleague

1 Introduction

The title of this paper is a bit of a pun. On the one hand, we are concerned
with certain natural questions about automatic sequences: sequences over a finite
alphabet where the n’th term of the sequence is expressible as a finite-state
function of the base-k representation of n. On the other hand, we are interested
in answering these questions purely mechanically, in an automated fashion.

Letx = (a(n))n≥0 be an infinite sequence over a finite alphabetΔ. Thenx is said
to be k-automatic if there is a deterministic finite automatonM taking as input the
base-k representation of n, and having a(n) as the output associated with the last
state encountered [2]. In this case, we say thatM generates the sequence x.

We write x[i] = a(i), and we let x[i..i + n− 1] denote the factor of length n
beginning at position i in x. A sequence is said to be squarefree if it contains no
factor of the form xx, where x is a nonempty word, and is said to overlapfree
if it contains no factor of the form ayaya, where a is a single letter and y is a
possibly empty word.

In Figure 1, we give, as an example, an automaton generating the well-known
Thue-Morse sequence t = t(0)t(1)t(2) · · · = 011010011001 · · · [3]. The input is
n, expressed in base 2, and the output is the number contained in the state last
reached. Thus t(n) is the sum, modulo 2, of the binary digits of n. In a celebrated
result, Thue proved [27,28,4] that the sequence t is overlapfree.

For at least 25 years, researchers have been interested in the algorithmic de-
cidability of assertions about automatic sequences. For example, in one of the
earliest results, Honkala [19] showed that, given an automaton M , it is decidable
if the sequence generated by M is ultimately periodic.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 180–191, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automatic Theorem-Proving in Combinatorics on Words 181

0

0 1

0
1

1

Fig. 1. A finite automaton generating the Thue-Morse sequence

Recently, Allouche et al. [1] found a different proof of Honkala’s result using a
more general technique. Using this technique, they were able to give algorithmic
solutions to many classical problems from combinatorics on words such as

Given an automaton, is the generated sequence squarefree? Or overlapfree?
The technique of Allouche et al. is at its core, very similar to work of Büchi,

Bruyère, Michaux, Villemaire, and others, involving formal logic; see, e.g., [5].
The basic idea is as follows: given the automatonM , and some predicate P (n) we
want to check, we alter M by a series of transformations to a new automaton M ′

that accepts the base-k representations of those integers n for which P (n) is true.
Then we can check the assertion “∃n P (n)” simply by checking if M ′ accepts
anything (which can be done by a standard depth-first search on the underlying
directed graph of the automaton). We can check the assertion “∀n P (n)” by
checking if M ′ accepts everything. And we can check assertions like “P (n) holds
for infinitely many n” by checking if M ′ has a reachable cycle from which a final
state is reachable.

Using this idea, Allouche et al. were able to show to reprove, purely mechan-
ically using a computer program, Thue’s classic result on the overlapfreeness of
the the Thue-Morse sequence.

Later, the technique was applied to give decision procedures for other proper-
ties of automatic sequences. For example, Charlier et al. [6] showed that it can
be used to decide if a given k-automatic sequence

– contains powers of arbitrarily large exponent;
– is recurrent;
– is uniformly recurrent.

A sequence is said to be recurrent if every factor that occurs, occurs infinitely
often. A sequence x is said to be uniformly recurrent if it is recurrent and fur-
thermore for each finite factor w occurring in x, there is a constant c(w) such
that two consecutive occurrences of w are separated by at most c(w) positions.

More recently, variations of the technique have been used to

– compute the critical exponent;
– compute the initial critical exponent;
– decide if a sequence is linearly recurrent;
– compute the Diophantine exponent.

(For definitions of these terms see [25].)

182 D. Goč, D. Henshall, and J. Shallit

2 The Decision Procedure

In [6] we have the following theorem:

Theorem 1. If we can express a property of a k-automatic sequence x using
quantifiers, logical operations, integer variables, the operations of addition, sub-
traction, indexing into x, and comparison of integers or elements of x, then this
property is algorithmically decidable.

Let us outline how the decision procedure works. First, the input to the decision
procedure: an automaton M = (Q,Σk, Δ, δ, q0, τ) generating the k-automatic
sequence x. Here

– Q is a nonempty set of states;
– Σk := {0, 1, . . . , k − 1};
– Δ is the output alphabet;
– δ : Q×Σ → Q is the transition function;
– q0 is the initial state; and
– τ : Q → Δ is the output mapping.

In this paper, we assume that the automaton takes as input the representation
of n in base k, starting with the least significant digit; we call this the reversed
representation of n and write it as (n)k. We allow leading zeroes in the repre-
sentation (which, because of our convention, are actually trailing zeroes). Thus,
for example, 011 and 01100 are both acceptable representations for 6 in base 2.

We might also need to encode pairs, triples, or r-tuples of integers. We handle
these by first padding the reversed representation of the smaller integer with
trailing zeroes, and then coding the r-tuple as a word over Σr

k. For example, the
pair (20, 13) could be represented in base-2 as

[0, 1][0, 0][1, 1][0, 1][1, 0],

where the first components spell out 00101 and the second components spell out
10110. Of course, there are other possible representations, such as

[0, 1][0, 0][1, 1][0, 1][1, 0][0, 0],

which correspond to non-canonical representations having trailing zeroes; these
are also permitted.

Rather than present a detailed proof, we illustrate the idea of the decision
procedure in the proof of the following new result:

Theorem 2. The following problem is algorithmically decidable: given two k-
automatic sequences x and y, generated by automata M1 and M2, respectively,
decide if x is a shift of y (that is, decide if there exists a constant c such that
x[n] = y[n+ c] for all n ≥ 0).

Proof. We first create an NFA M that accepts the language

{(c)k : ∃ n such that x[n] �= y[n+ c]}.
To do so, on input (c)k, M

Automatic Theorem-Proving in Combinatorics on Words 183

– guesses w1 = (n)k nondeterministically (perhaps with trailing zeroes ap-
pended),

– simulates M1 on w1,
– adds n to c and computes the base-k representation of w2 = (n+ c)k digit-

by-digit “on the fly”, keeping track of carries, as necessary, and simulates
M2 on w2, and

– accepts if the outputs of both machine differ.

We now convert M to a DFA M ′, and change final states to non-final (and vice
versa). Then M ′ accepts the language

{(c)k : x[n] = y[n+ c] for all n ≥ 0}.
Thus, x is a shift of y if and only if M ′ accepts any word, which is easily checked
through depth-first search. ��
Remark 1. As we can see, the size of the automata involved depends, in an un-
pleasant way, on the number of quantifiers needed to state the logical expression
characterizing the property being checked, because existential quantifiers are im-
plemented through nondeterminism, and universal quantifiers are implemented
through nondeterminism and complementation (which is implemented in a DFA
by exchange of the role final and non-final states). Thus each new quantifier
could increase the current number of states, say n, to 2n using the subset con-
struction. If the original automata have at most N states, it follows that the
running time is bounded by an expression of the form

22
. .
.2p(N)

where p is a polynomial and the number of exponents in the tower is one less
than the number of quantifiers in the logical formula characterizing the property
being checked.

This extraordinary computational complexity raises the natural question of
whether the decision procedure could actually be implemented for anything but
toy examples. Luckily the answer seems to be yes — at least in some cases —
as we will see below.

The algorithms we discuss were implemented by the first two authors, inde-
pendently, using two different programs. The results in Sections 3 and 4 have
been double-checked with these separate implementations, which should give
some confidence about the results.

Remark 2. Prior art: as a referee points out, very similar ideas are contained in
the work of Glenn and Gasarch [14,15] on implementing a decision procedure
for WS1S, the weak second-order theory of one successor. The main differences
between their work and ours are (a) we work with base-k encodings of integers,
instead of unary encodings, and (b) we apply our ideas to solve some interest-
ing open problems about automatic sequences, instead of checking randomly-
generated sentences.

184 D. Goč, D. Henshall, and J. Shallit

3 Borders

A word w is bordered if it begins and ends with the same word x with 0 <
|x| ≤ |w|/2; Otherwise it is unbordered. An example in English of a bordered
word is entanglement. A bordered word is also called bifix in the literature, and
unbordered words are also called bifix-free or primary.

Bordered and unbordered words have been actively studied in the literature,
particularly with regard to the Ehrenfeucht-Silberger problem; see, for example,
[13,20,10,11,16,17,7,18,22,12], just to name a few.

Currie and Saari [8] studied the unbordered factors of the Thue-Morse se-
quence t. They proved that if n �≡ 1 (mod 6), then t has an unbordered factor
of length n. (Also see [24, Lemma 4.10 and Problem 4.1].) However, this is not
a necessary condition, as

t[39..69] = 0011010010110100110010110100101,

which is an unbordered factor of length 31. Currie and Saari left it as an open
problem to give a complete characterization of the integers n for which t has an
unbordered factor of length n.

The following theorem and proof, quoted practically verbatim from [6], shows
that, more generally, the characteristic sequence of n for which a given k-
automatic sequence has an unbordered factor of length n, is itself k-automatic:

Theorem 3. Let x = a(0)a(1)a(2) · · · be a k-automatic sequence. Then the
associated infinite sequence b = b(0)b(1)b(2) · · · defined by

b(n) =

{
1, if x has an unbordered factor of length n;

0, otherwise;

is k-automatic.

Proof. The sequence x has an unbordered factor of length n

iff

∃ j ≥ 0 such that the factor of length n beginning at position j of x is unbordered

iff

there exists an integer j ≥ 0 such that for all possible lengths l with 1 ≤ l ≤ n/2,
there is an integer i with 0 ≤ i < l such that the supposed border of length l
beginning and ending the factor of length n beginning at position j of x actually
differs in the i’th position

iff

there exists an integer j ≥ 0 such that for all integers l with 1 ≤ l ≤ n/2 there
exists an integer i with 0 ≤ i < l such that x[j + i] �= x[j + n− l+ i].

Now assume x is a k-automatic sequence, generated by some finite automaton.
We show how to implement the characterization given above with an automaton.

We first create an NFA that given the (j, l, n)k guesses the base-k representa-
tion of i, digit-by-digit, checks that i < l, computes j+ i and j+n− l+ i on the

Automatic Theorem-Proving in Combinatorics on Words 185

fly, and checks that x[j + i] �= x[j + n− l + i]. If such an i is found, it accepts.
We then convert this to a DFA, and interchange accepting and nonaccepting
states. This DFA M1 accepts (j, l, n)k such that there is no i, 0 ≤ i < l such
that x[j+ i] = x[j+n− l+ i]. We then use M1 as a subroutine to build an NFA
M2 that on input (j, n)k guesses l, checks that 1 ≤ l ≤ n/2, and calls M1 on the
result. We convert this to a DFA and interchange accepting and nonaccepting
states to get M3. Finally, this M3 is used as a subroutine to build an NFA M4

that on input n guesses j and calls M3.
The characteristic sequence of these integers n is therefore k-automatic. ��

Since the proof is constructive, one can, in principle, carry out the construction
to get an explicit description of the lengths for which the Thue-Morse sequence
has an unbordered factor.

Doing so results in the following theorem:

Theorem 4. There is an unbordered factor of length n in t if and only if the
base-2 representation of n (starting with the most significant digit) is not of the
form 1(01∗0)∗10∗1.

Proof. The proof of this theorem is purely mechanical, and it involves performing
a sequence of operations on finite automata. The second author wrote a program
in C++, using his own automata package, to perform these operations. There
are four stages to the computation, which are described in detail below.

Stage 1

Let T be the automaton of Figure 1 generating the Thue-Morse sequence t.
Stage 1 takes T as input and outputs an automaton M1, where M1 accepts
w ∈ ({0, 1}4)∗ if and only if w is the base-2 representation of some (n, j, l, i) ∈ S1,
where

S1 = {(n, j, l, i) : 0 < l ≤ n/2 and i < j and t[j + i] �= t[n+ j − l + i]}. (1)

The size of M1 was only 102 states. However, since the input alphabet for M1

is of size 24 = 16, a considerable amount of complexity is being stored in the
transition matrix. Stage 1 passed all 1.3 million tests meant to ensure that M1

corresponds to S1.

Stage 2

The purpose of Stage 2 is to remove the variable i by simulating it. The resulting
machine, after being negated, accepts (n, j, l) iff the length n factor of t starting
at index j has a border of length l. So Stage 2 produces the automatonM2, which
is the negation of the result of simulating i. More formally, M2 accepts a word
w ∈ ({0, 1}3)∗ if and only if w is the base-2 representation of some (n, j, l) ∈ S2,
where

S2 = {(n, j, l) :� ∃ i for which (n, j, l, i) ∈ S1} (2)

186 D. Goč, D. Henshall, and J. Shallit

The size of M2 after subset construction was 8689 states, and it minimized down
to 127 states. The output of Stage 2 passed all 1.6 million tests meant to ensure
that M2 corresponds to S2.

Stage 3

The purpose of Stage 3 is to remove l by simulating it. By the end of Stage 3,
most of the work has already been done. The output of Stage 3, M3, accepts an
input word w ∈ ({0, 1}2)∗ if and only if w is the base-2 representation of some
(n, j) ∈ S3, where

S3 = {(n, j) :� ∃ l such that (n, j, l) ∈ S2} (3)

or, in other words

S3 = {(n, j) : t has an unbordered factor of length n at index j}. (4)

The size of M3 after subset construction was 1987 states, and it minimized down
to 263 states. The output of Stage 3 passed all 1.9 million tests meant to ensure
that M3 corresponds to S3.

Stage 4

Finally, Stage 4 simulates j on M3 and negates the result. So the output of
Stage 3 is an automaton that accepts the binary representation of a positive
integer n > 1 if and only if the Thue-Morse word has no unbordered factor of
length n. Formally put, the automaton M4 produced by Stage 4 accepts a word
w ∈ {0, 1}∗ if and only if w is the base-2 representation of some n ∈ S4, where

S4 = {n ∈ N : n > 1, � ∃ j for which (n, j) ∈ S3}. (5)

The size of M4 after subset construction is 2734 states, and it minimized to 7
states. M4 accepts the reverse of 1(01∗0)∗10∗1. Therefore the Thue-Morse word
has an unbordered factor of length n if and only if the base-2 representation of
n (starting with the most significant digit) is not of the form 1(01∗0)∗10∗1.

The total computation took 9 seconds of CPU time on a 2.9GHz Dell XPS
laptop. ��
Remark 3. Here are some additional implementation details.
In order to implement the needed operations on automata, we must decide on
an encoding of elements of (Σn

k)
∗. We could do this by performing a perfect

shuffle of each individual word over Σ∗
k , or by letting the alphabet itself be

represented by k-tuples. The decision represents a tradeoff between state size
and alphabet size. We used the latter representation, since (a) it makes the
algorithms considerably easier to implement and understand and (b) decreases
the number of states needed.

It was mentioned earlier how many tests were passed in each stage. In order
to make sure that the final automaton is what we expect, a number of tests are
run after each stage on the output of that stage.

Automatic Theorem-Proving in Combinatorics on Words 187

For example, let x be an automatic sequence. The testing framework requires
a C++ function which given n computes x[n]. Before any operations are done,
the automaton given for x is tested against the C++ function to make sure that
they match for the first 10,000 elements. Then, at each stage before Stage 4
the resulting automaton is tested to give confidence that the operations on the
automata are giving the desired results.

For example, after Stage 2 of computing the set of lengths for which there
exists an unbordered factor of an automatic sequence x, we expect the machine
M2 to accept the language S2, where

S2 = {(n, j, l) : � ∃ i for which x[j + i] = x[n+ j − l+ i]} (6)

This is then tested by making sureM2 accepts (n, j, l)k if and only if (n, j, l) ∈ S2

for all n, j, l ≤ 1400. These tests were invaluable to debugging, and provide
confidence in the final result of the computation.

Finally, we have to address the issue of multiple representations. It is easy
to forget that automata accept words in Σk

∗, and not integers. For some op-
erations, such as complement and intersection, it is crucial that if one binary
representation is accepted by the automaton, then all binary representations
must be accepted.

4 Additional Results on Unbordered Words

We also applied our decision procedure above to two other famous sequences:
the Rudin-Shapiro sequence [23,26] and the paperfolding sequence [9].

For a word w ∈ 1(0 + 1)∗, we define aw(n) to be the number of (possibly
overlapping) occurrences of w in the (ordinary, unreversed) base-2 representation
of n. Thus, for example, a11(7) = 2.

The Rudin-Shapiro sequence r = r(0)r(1)r(2) · · · is then defined to be r(n) =
(−1)a11(n). It is a 2-automatic sequence generated by an automaton of four
states.

The paperfolding sequence p = p(0)p(1)p(2) · · · is defined as follows: writing
(n)200 as 1i0aw for some i ≥ 0 some a ∈ {0, 1}, and some w ∈ {0, 1}∗, we have
p(n) = (−1)a. It is a 2-automatic sequence generated by an automaton of four
states.

Theorem 5. The Rudin-Shapiro sequence has an unbordered factor of every
length.

Proof. We applied the same technique discussed previously for the Thue-Morse
sequence.

Here is a summary of the computation:

Stage 1: 269 states
Stage 2: 85313 states minimized to 1974
Stage 3: 48488 states minimized to 6465
Stage 4: 6234 states.

188 D. Goč, D. Henshall, and J. Shallit

The Stage 4 NFA has 6234 states. We were unable to determinize this automa-
ton directly (using two different programs) due to an explosion in the number
of states created. Instead, we reversed the NFA (creating an NFA for LR) and
determinized this instead. The resulting DFA has 30 states, and upon minimiza-
tion, gives a 1-state automaton accepting all strings. ��
Theorem 6. The paperfolding sequence has an unbordered factor of length n if
and only if the reversed representation (n)2 is rejected by the automaton given
in Figure 4.

49

1213

12

0

1

1

1

8

3

1

1

0

0

10

6

14

7

5

0

1

0

0

11

0

0

0
15

0,1

0 1

1
16

1

0
1

11

1

1

0

0

0

0

1

0,10

Fig. 2. A finite automaton for unbordered factors in the paperfolding word

Proof. We applied the same technique discussed previously for the Thue-Morse
sequence.

Here is a summary of the computation: 6 seconds cpu time on a 2.9GHz Dell
XPS laptop.

Stage 1, 159 states
Stage 2, 1751 minimized down to 89 states
Stage 3, 178 minimized down to 75 states
Stage 4, 132 minimize down to 17 states . ��

5 Other Problems

We applied our technique to some other problems. First, we considered the
squares in the paperfolding sequence. In 1979, Prodinger and Urbanek [21] char-
acterized the squares in the paperfolding sequence, using a case analysis. We
verified this by creating an automaton to accept the language

{(n)2 : ∃ i p[i..i+ n− 1] = p[i + n..i+ 2n− 1]}.

Automatic Theorem-Proving in Combinatorics on Words 189

The resulting automaton (most significant-digit first) is depicted below, from
which we recover the Prodinger-Urbanek result that the only squares xx in x
have lengths |x| = 1, 3, or 5.

0

10

11

Fig. 3. Lengths of squares in the paperfolding sequence

Next, we computed a new explicit expression for the recurrence function Rr(n)
and recurrence quotient for the Rudin-Shapiro sequence r. Here Rr(n) is the
smallest integer m such that every factor of r of length m contains as a factor
all the factors of length n. Allouche and Bousquet-Mélou gave the estimate
Rr(n + 1) < 172n for n ≥ 1. (Actually, their result was more general, as it
applies to any “generalized” Rudin-Shapiro sequence.) We used our method to
prove the following result:

Theorem 7. Let r = (r(n))n≥0 be the Rudin-Shapiro sequence. Then

Rr(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
5, if n = 1;

19, if n = 2;

25, if n = 3;

20 · 2t + n− 1, if n ≥ 4 and t = �log2(n− 1).

Furthermore, the recurrence quotient

sup
n≥1

Rr(n)

n

is equal to 41; it is not attained.

Proof. We created a DFA to accept

{(m,n)2 : (m−20 ·2t−n+1, n) : n ≥ 4 and m = R(n) and t = �log2(n−1)}.

We then verified that the resulting DFA accepted only pairs of the form (0, n)2
for n ≥ 4.

For the recurrence quotient, the local maximum is evidently achieved when
n = 2r + 2 for some r ≥ 1; here it is equal to (41 · 2r + 2)/(2r + 2). As r → ∞,
this clearly approaches 41 from below. ��

190 D. Goč, D. Henshall, and J. Shallit

6 Open Problems

Which of the problems mentioned in § 1 are algorithmically decidable for the
more general class of morphic sequences?

Can the techniques be applied to detect abelian powers in automatic sequences?

References

1. Allouche, J.P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of an
automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)

2. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press (2003)

3. Allouche, J.P., Shallit, J.O.: The ubiquitous Prouhet-Thue-Morse sequence. In:
Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications,
Proceedings of SETA 1998, pp. 1–16. Springer, Heidelberg (1999)

4. Berstel, J.: Axel Thue’s Papers on Repetitions in Words: a Translation, vol. 20.
Publications du Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal (February 1995)

5. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bull. Belgian Math. Soc. 1, 191–238 (1994); Corrigendum, Bull. Belg.
Math. Soc. 1, 577 (1994)

6. Charlier, É., Rampersad, N., Shallit, J.: Enumeration and Decidable Properties
of Automatic Sequences. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS,
vol. 6795, pp. 165–179. Springer, Heidelberg (2011)

7. Costa, J.C.: Biinfinite words with maximal recurrent unbordered factors. Theoret.
Comput. Sci. 290, 2053–2061 (2003)

8. Currie, J.D., Saari, K.: Least periods of factors of infinite words. RAIRO Inform.
Théor. App. 43, 165–178 (2009)

9. Dekking, F.M., Mendès France, M., van der Poorten, A.J.: Folds! Math. Intelli-
gencer 4, 130–138, 173–181, 190–195 (1982), erratum 5 (1983)

10. Duval, J.P.: Une caractérisation de la période d’un mot fini par la longueur de ses
facteurs primaires. C. R. Acad. Sci. Paris 290, A359–A361 (1980)

11. Duval, J.P.: Relationship between the period of a finite word and the length of its
unbordered segments. Discrete Math. 40, 31–44 (1982)

12. Duval, J.P., Harju, T., Nowotka, D.: Unbordered factors and Lyndon words. Dis-
crete Math. 308, 2261–2264 (2008)

13. Ehrenfeucht, A., Silberger, D.M.: Periodicity and unbordered segments of words.
Discrete Math. 26, 101–109 (1979)

14. Glenn, J., Gasarch, W.I.: Implementing WS1S Via Finite Automata. In: Raymond,
D.R., Yu, S., Wood, D. (eds.) WIA 1996. LNCS, vol. 1260, pp. 50–63. Springer,
Heidelberg (1997)

15. Glenn, J., Gasarch, W.I.: Implementing WS1S Via Finite Automata: Performance
Issues. In: Wood, D., Yu, S. (eds.) WIA 1997. LNCS, vol. 1436, pp. 75–86. Springer,
Heidelberg (1998)

16. Harju, T., Nowotka, D.: Periodicity and unbordered words: a proof of the extended
duval conjecture. J. Assoc. Comput. Mach. 54, 1–20 (2007)

17. Holub, S.: A proof of the extended Duval’s conjecture. Theoret. Comput. Sci. 339,
61–67 (2005)

Automatic Theorem-Proving in Combinatorics on Words 191

18. Holub, S., Nowotka, D.: On the relation between periodicity and unbordered factors
of finite words. Internat. J. Found. Comp. Sci. 21, 633–645 (2010)

19. Honkala, J.: A decision method for the recognizability of sets defined by number
systems. RAIRO Inform. Théor. App. 20, 395–403 (1986)

20. Nielsen, P.T.: A note on bifix-free sequences. IEEE Trans. Inform. Theory IT-19,
704–706 (1973)

21. Prodinger, H., Urbanek, F.J.: Infinite 0–1-sequences without long adjacent identical
blocks. Discrete Math. 28, 277–289 (1979)

22. Rampersad, N., Shallit, J., Wang, M.W.: Inverse star, borders, and palstars. In-
form. Process. Lett. 111, 420–422 (2011)

23. Rudin, W.: Some theorems on Fourier coefficients. Proc. Amer. Math. Soc. 10,
855–859 (1959)

24. Saari, K.: On the Frequency and Periodicity of Infinite Words. Ph.D. thesis, Uni-
versity of Turku, Finland (2008)

25. Shallit, J.: The critical exponent is computable for automatic sequences. In: Am-
brož, P., Holub, S., Masáková, Z. (eds.) WORDS 2011: 8th International Confer-
ence. Elect. Proc. Theor. Comput. Sci., pp. 231–239 (2011), revised version, with
L. Schaeffer, http://arxiv.org/abs/1104.2303v2

26. Shapiro, H.S.: Extremal problems for polynomials and power series. Master’s thesis,
MIT (1952)

27. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906); reprinted in Nagell, T. (ed.) Selected Mathematical Papers of Axel
Thue, pp. 139–158. Universitetsforlaget, Oslo (1977)

28. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67 (1912); reprinted in Nagell, T. (ed.) Selected
Mathematical Papers of Axel Thue, pp. 413–478. Universitetsforlaget, Oslo (1977)

http://arxiv.org/abs/1104.2303v2

	Automatic Theorem-Proving in Combinatorics on Words
	Introduction
	The Decision Procedure
	Borders
	Additional Results on Unbordered Words
	Other Problems
	Open Problems
	References

