

Lecture Notes in Computer Science 7381
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Nelma Moreira Rogério Reis (Eds.)

Implementation
and Application
of Automata

17th International Conference, CIAA 2012
Porto, Portugal, July 17-20, 2012
Proceedings

13

Volume Editors

Nelma Moreira
Universidade do Porto
Faculdade de Ciências
Departamento de Ciência de Computadores
Rua do Campo Alegre 1021-1055
4169-007 Porto, Portugal
E-mail: nam@dcc.fc.up.pt

Rogério Reis
Universidade do Porto
Faculdade de Ciências
Departamento de Ciência de Computadores
Rua do Campo Alegre 1021-1055
4169-007 Porto, Portugal
E-mail: rvr@dcc.fc.up.pt

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31605-0 e-ISBN 978-3-642-31606-7
DOI 10.1007/978-3-642-31606-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012940849

CR Subject Classification (1998): F.1.1-2, F.1, F.2, F.4, E.1, H.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 17th International Conference on Implementation and Application of
Automata (CIAA 2012) was held at the Faculdade de Ciências da Universidade
do Porto, in Porto, Portugal during July 17–20, 2012.

The CIAA conference series is one of the major annual conferences for re-
searchers, application developers, and users of automata-based systems. The
topics of the conference include automata applications in, for example, formal
verification methods, natural language processing, pattern matching, data stor-
age and retrieval, and bioinformatics, as well as theoretical work on automata
theory. Sixteen previous CIAA conferences took place in: Blois (2011), Winnipeg
(2010), Sydney (2009), San Francisco (2008), Prague (2007), Taipei (2006), Nice
(2005), Kingston (2004), Santa Barbara (2003), Tours (2002), Pretoria (2001),
London Ontario (2000), Potsdam (WIA 1999), Rouen (WIA 1998), London
Ontario (WIA 1997), London Ontario (WIA 1996).

For the editors, the CIAA was always synonymous with Sheng Yu’s presence,
commitment, and enthusiasm. He was in great part responsible for the idea
of having the conference in Porto, and when he unexpectedly passed away, this
year, it was naturally a great shock. The CIAA community will miss his profound
knowledge, and his invaluable and innovative contribution to the area. We will
miss also his friendship and immense kindness.

This volume of Lecture Notes in Computer Science contains the invited con-
tributions and the accepted papers presented at CIAA 2012. The submission
and refereeing process was supported by the EasyChair conference management
system. The 53 papers submitted to CIAA 2012 were from 21 countries all over
the world, including Algeria, Canada, China, Czech Republic, France, Germany,
Greece, Iran, Italy, Japan, The Netherlands, Poland, Portugal, Russian Feder-
ation, Slovakia, South Africa, Spain, Thailand, Turkey, UK, and USA. Each
submission was reviewed by at least three referees and discussed by the mem-
bers of the Program Committee. A total of 21 regular papers and seven short
papers were selected for presentation at the conference. There were five invited
talks presented by Janusz Brzozowski, Paul Gastin, José Nuno Oliveira, Grze-
gorz Rozenberg, and Kai Salomaa. We warmly thank the invited speakers and all
the authors of the submitted papers. Their efforts were the basis for the success
of the conference.

We would like to thank all the members of the Program Committee and
the external referees, for their work in evaluating the papers and their valuable
comments that led to the selection of the contributed papers.

We thank Alfred Hofmann and Elke Werner from Springer for their help in
making this volume available before the conference.

We are grateful to all the members of the Organizing Committee for their
efforts in the preparation of the scientific sessions and social events. A special

VI Preface

thank goes to José Pedro Rodrigues for his help in the graphic design for all the
conference materials. Thanks also go to the staff, our colleagues, and the students
Ivone Amorim, Rizó Isrfov, Eva Maia, Davide Nabais, and David Pereira, among
others, of the Department of Computer Science of FCUP.

We want to thank the European Association for Theoretical Computer Sci-
ence (EATCS) for the scientific sponsorship, and Universidade do Porto (UP),
Universidade da Beira Interior (UBI), Centro de Matemática da Universidade
do Porto (CMUP), Laboratório de Inteligência Artificial e Ciência de Computa-
dores (LIACC), Câmara Municipal do Porto, Multicert, and iTech-ON for their
kind financial support. Finally, we would like to thank all the participants of
CIAA 2012. Looking forward to CIAA 2013 in Halifax, Nova Scotia, Canada.

July 2012 Nelma Moreira
Rogério Reis

Organization

CIAA 2012 was organized by Faculdade de Ciências da Universidade do Porto
with the support of Universidade da Beira Interior.

Invited Speakers

Janusz Brzozowski University of Waterloo, Canada
Paul Gastin ENS de Cachan, France
José Nuno Oliveira Universidade do Minho, Portugal
Grzegorz Rozenberg Leiden Center for Natural Computing,

The Netherlands
Kai Salomaa Queen’s University, Kingston, Canada

Program Committee

Marie-Pierre Béal Université Paris Est, France
Béatrice Bouchou-Markhoff Université François Rabelais, Tours, France
Patricia Bouyer ENS de Cachan, France
Cezar Câmpeanu University of Prince Edward Island, Canada
Pascal Caron Université de Rouen, France
Jean-Marc Champarnaud Université de Rouen, France
Jan Daciuk Gdańsk University of Technology, Poland
Michael Domaratzki Manitoba University, Canada
Yo-Sub Han Yonsei University, South Korea
Tero Harju University of Turku, Finland
Markus Holzer Justus-Liebig-Universität Giessen, Germany
Oscar Ibarra University of California, Santa Barbara, USA
Masami Ito Kyoto Sangyo University, Japan
Joost-Pieter Katoen RWTH Aachen University, Germany
Stavros Konstantinidis University of Halifax, Canada
Andreas Maletti University of Stuttgart, Germany
Sebastian Maneth University of New South Wales, Australia
Denis Maurel Université Francois Rabelais, Tours, France
Ian Mcquillan University of Saskatoon, Canada
Mehryar Mohri New York University, USA
Nelma Moreira (co-chair) Universidade do Porto, Portugal
Alexander Okhotin University of Turku, Finland
Giovanni Pighizzini Università degli Studi di Milano, Italy
Bala Ravikumar Sonoma State University, USA
Rogério Reis (co-chair) Universidade do Porto, Portugal
Kai Salomaa Queen’s University, Kingston, Canada

VIII Organization

Colin Stirling Edinbourgh University, UK
Mikhail Volkov Ural State University, Russia
Bruce Watson University of Pretoria, South Africa
Hsu-Chun Yen National Taiwan University, Taiwan
Sheng Yu University of Western Ontario, Canada

Additional Referees

Cyril Allauzen
Rajeev Alur
Ivone Amorim
Nathalie Aubrun
Franziska Biegler
Fabienne Braune
Sabine Broda
Arturo Carpi
Jeong-Won Cha
Alessandra Cherubini
Salimur Choudhury
Loek Cleophas
Flavio D’Alessandro
Manfred Droste
Krystian Dudzinski
Szilard Zsolt Fazekas
Francesca Fiorenzi
Mário Florido
Marianne Flouret
Nathalie Friburger

Szymon Grabowski
Hermann Gruber
Peter Habermehl
Brent Heeringa
Lucian Ilie
Christina Jansen
Hadrien Jeanne
Artur Jeż
Derrick Kourie
Yoshiyuki Kunimochi
Giuseppe Lami
António Machiavelo
Kalpana Mahalingam
Eva Maia
Katja Meckel
Ludovic Mignot
Benjamin Monmege
Frantǐsek Mráz
Kim Nguyen
Thomas Noll

Damien Nouvel
Scott Owens
Beatrice Palano
Xiaoxue Piao
Elena Pribavkina
Daniel Quernheim
Narad Rampersad
Klaus Reinhardt
Pierre Rety
Michael Riley
Abiel Roche-Lima
Emanuele Rodaro
Mathieu Sablik
Shinnosuke Seki
Tinus Strauss
Jean-Marc Talbot
Marco Trubian
Bianca Truthe
Sabrina von Styp

Steering Committee

Jean-Marc Champarnaud Université de Rouen, France
Oscar Ibarra University of California, Santa Barbara, USA
Denis Maurel Université François Rabelais, Tours, France
Kai Salomaa Queen’s University, Kingston, Canada
Sheng Yu University of Western Ontario, Canada (Chair)

Organizing Committee

Sabine Broda Universidade do Porto, Portugal
António Machiavelo Universidade do Porto, Portugal
Nelma Moreira Universidade do Porto, Portugal
Rogério Reis Universidade do Porto, Portugal
Simão Melo de Sousa Universidade da Beira Interior, Portugal

Organization IX

Sponsors

Table of Contents

Invited Talks

In Memoriam Sheng Yu . 1
Yuan Gao and Kai Salomaa

In Search of Most Complex Regular Languages . 5
Janusz Brzozowski

A Formal Framework for Processes Inspired by the Functioning
of Living Cells . 25

Andrzej Ehrenfeucht and Grzegorz Rozenberg

Adding Pebbles to Weighted Automata . 28
Paul Gastin and Benjamin Monmege

Typed Linear Algebra for Weigthed (Probabilistic) Automata 52
José N. Oliveira

Regular Papers

A Pushdown Transducer Extension for the OpenFst Library 66
Cyril Allauzen and Michael Riley

Weak Inclusion for Recursive XML Types . 78
Joshua Amavi, Jacques Chabin, and Pierre Réty

Synchronizing Automata on Quasi-Eulerian Digraph 90
Mikhail V. Berlinkov

Cellular Automata on Regular Rooted Trees . 101
Tullio Ceccherini-Silberstein, Michel Coornaert,
Francesca Fiorenzi, and Zoran Šunić

Strict Local Testability with Consensus Equals Regularity 113
Stefano Crespi Reghizzi and Pierluigi L. San Pietro

Nominal Automata for Resource Usage Control . 125
Pierpaolo Degano, Gian-Luigi Ferrari, and Gianluca Mezzetti

Weighted Nested Word Automata and Logics over Strong Bimonoids . . . 138
Manfred Droste and Bundit Pibaljommee

A Fast Suffix Automata Based Algorithm for Exact Online String
Matching . 149

Simone Faro and Thierry Lecroq

XII Table of Contents

P(l)aying for Synchronization . 159
Fedor Fominykh and Mikhail Volkov

Synchronizing Automata of Bounded Rank . 171
Vladimir V. Gusev

Automatic Theorem-Proving in Combinatorics on Words 180
Daniel Goč, Dane Henshall, and Jeffrey Shallit

How to Synchronize the Heads of a Multitape Automaton 192
Oscar H. Ibarra and Nicholas Q. Tran

Regular Ideal Languages and Their Boolean Combinations 205
Franz Jahn, Manfred Kufleitner, and Alexander Lauser

Hyper-minimization for Deterministic Tree Automata 217
Artur Jeż and Andreas Maletti

On the State and Computational Complexity of the Reverse of Acyclic
Minimal DFAs . 229

Galina Jirásková and Tomáš Masopust

Implementing Computations in Automaton (Semi)groups 240
Ines Klimann, Jean Mairesse, and Matthieu Picantin

On the Descriptional Complexity of the Window Size for Deterministic
Restarting Automata . 253

Martin Kutrib and Friedrich Otto

A Disambiguation Algorithm for Finite Automata and Functional
Transducers . 265

Mehryar Mohri

Synchronization of Automata with One Undefined or Ambiguous
Transition . 278

Pavel V. Martyugin

Restarting Tiling Automata . 289
Daniel Pr̊uša and Frantǐsek Mráz

Crossing the Syntactic Barrier: Hom-Disequalities for H1-Clauses 301
Andreas Reuß and Helmut Seidl

Short Papers

Factor and Subsequence Kernels and Signatures of Rational
Languages . 313

Ahmed Amarni and Sylvain Lombardy

Table of Contents XIII

Multi-Tilde-Bar Derivatives . 321
Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot

On Positive TAGED with a Bounded Number of Constraints 329
Pierre-Cyrille Héam, Vincent Hugot, and Olga Kouchnarenko

SDFA: Series DFA for Memory-Efficient Regular Expression
Matching . 337

Tingwen Liu, Yong Sun, Li Guo, and Binxing Fang

The Removal of Weighted ε-Transitions . 345
Sylvain Lombardy and Jacques Sakarovitch

Weighted LTL with Discounting . 353
Eleni Mandrali

Automata with Modulo Counters and Nondeterministic Counter
Bounds . 361

Daniel Reidenbach and Markus L. Schmid

Author Index . 369

In Memoriam Sheng Yu

Yuan Gao1 and Kai Salomaa2

1 Department of Computer Science, The University of Western Ontario, London,
Ontario N6A 5B7, Canada

ygao72@csd.uwo.ca
2 School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada

ksalomaa@cs.queensu.ca

Professor Sheng Yu passed away unexpectedly in London, Canada on January
23, 2012, one day before his 62nd birthday. Sheng was one of the world leading
theoretical computer scientists. His strong commitment to excellence in scholar-
ship has touched everyone who has worked or studied with him. This includes a
large segment of the “CIAA community” and, in particular, the authors of the
current article. Sheng Yu’s work will continue to influence and inspire automata
theory research for a long time to come.

Sheng’s undergraduate studies were delayed by China’s cultural revolution,
however, this did not prevent him from achieving a brilliant academic career.
He completed his Ph.D. in 1986 in Waterloo, Canada, under the guidance of
Karel Culik II. In the late 1980’s Sheng taught for a few years at Kent State

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 1–4, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 Y. Gao and K. Salomaa

University and after that has been with the Computer Science Department at
the University of Western Ontario in London, Canada.

Sheng’s research is reflected in more than 150 refereed publications and he
has given invited plenary lectures at numerous international conferences. He
collaborated with a wide range of scientists and has more than 70 co-authors in
publications in a wide range of areas. Sheng supervised 9 Ph.D. students and
numerous M.Sc. students. He was always remarkably dedicated to his students
and willing to help at any time of the day. Many of Sheng’s former students have
leading positions in academia and industry.

Sheng is most widely known for his work on automata theory and formal
languages, where his major contributions include giving a new classification of
cellular automata, introducing synchronization expressions and languages and
establishing their fundamental properties and, in particular, he made signifi-
cant contributions and opened up new avenues of research in the area of state
complexity of regular languages on which we will elaborate below. Sheng’s com-
prehensive survey on regular languages [12] has become a standard reference
in this area. Also, Sheng (together with co-authors) proved that the inclusion
problem for pattern languages is unsolvable. The latter was a long-standing open
problem and researchers working in the area had expected the opposite result.

In addition to his work on formal languages, Sheng carried out research on a
broad front and made significant contributions in a wide range of areas, including
object oriented programming and parallel processing. A fairly up to date list of
his publications can be found in the special issue of Theoretical Computer Science
[6] published in honor of Sheng’s 60th birthday. Independently of what he was
working on, Sheng always developed his own original ideas while paying careful
attention to the work of others.

One of Sheng’s major contributions to theoretical computer science is in the
area of descriptional complexity of regular languages. In the early 1990’s he
initiated a systematic study of the state complexity of finite automata, which
has during the last 20 years developed into a very active research area. At the
University of Western Ontario Sheng was the leader of a group consisting of
several graduate students, postdocs and other research collaborators.

Sheng’s work was especially focused on aspects that connect automata theory
to new applications in current computer science and on the implementation of
automata. He introduced notions like cover automata, new variants of regular
expressions, and approximation methods for state complexity. Just a few refer-
ences on these topics include [1,2,3,7,8,9,14,15], and the reader can find in [6]
a bibliography of Sheng’s work. Sheng was one of the first automata theory
researchers to effectively use software tools for state complexity lower bound
constructions [13,16]. At the same time Sheng continued to work on deep ab-
stract questions of automata theory and, recently, proved together with Arto
Salomaa that determining the state complexity of combined language oper-
ations is undecidable [10]. Complementing the general undecidability result,
the work of Sheng’s state complexity research group has culminated in the

In Memoriam Sheng Yu 3

determination of the precise worst-case state complexity of all combinations of
two basic language operations [4].

In the year 2000 Sheng chaired at the University of Western Ontario the
conference titled A Half-Century of Automata Theory with many famous early
pioneers of the field as plenary speakers [11]. In his opening remarks to the
conference, Sheng emphasized that the best days of automata theory still lay
ahead of us and, indeed, in the last decade there has been much renewed in-
terest in this area, as evidenced by the success of conferences like CIAA, DLT
and DCFS. Again in 2010, the world’s leading automata theory and formal lan-
guages researchers gathered in London, Ontario when Sheng chaired the 14th
International Conference on Developments in Language Theory [5].

In 1996, together with Derick Wood, Sheng founded the conference series
Implementation and Application of Automata, CIAA (originally the meetings
were called Workshop on Implementing Automata, WIA). The CIAA conference
series has become a leading venue for research on new applications of automata
theory and the conferences have attracted many new researchers to this area.
During Sheng’s tenure as CIAA steering committee chair starting from 2001, the
conferences have been held on five different continents.

We conclude with a few personal remarks. Both of the authors have been
working in Sheng’s group for extended periods of time, as a Ph.D. student and a
postdoc, respectively. We have benefited greatly from Sheng’s research expertise
and from being part of his group. We have always admired Sheng’s insight and
vision in science and he has been a role model in research for us. Deep inside
us we keep a high esteem and gratitude for him. Personally Sheng was warm
hearted, easy-going and a great friend for both of us. We will always remember
him.

Sheng was accompanied for a large part of his life by his wife Lizhen. We
extend our deep sympathy to Lizhen and to Sheng’s family in China.

Yuan Gao and Kai Salomaa
London and Kingston, April 2012

Acknowledgement. We thank the CIAA 2012 organizers for hosting a spe-
cial session in memory of Professor Sheng Yu. The photograph has been kindly
provided by Rogério Reis.

References

1. Câmpeanu, C., Pǎun, A., Yu, S.: An efficient algorithm for constructing minimal
cover automata for finite languages. Int. J. Found. Comput. Sci. 13(1), 83–97 (2002)

2. Câmpeanu, C., Santean, N., Yu, S.: Minimal cover-automata for finite languages.
Theor. Comput. Sci. 267(1-2), 3–16 (2001)

3. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.
Int. J. Found. Comput. Sci. 14(6), 1007–1018 (2003)

4. Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of combined operations with
two basic operations. Theoret. Comput. Sci. (2012), doi:10.1016/j.tcs.2012.02.030

4 Y. Gao and K. Salomaa

5. Gao, Y., Lu, H., Seki, S., Yu, S. (eds.): DLT 2010. LNCS, vol. 6224. Springer,
Heidelberg (2010)

6. Ilie, L., Rozenberg, G., Salomaa, A., Salomaa, K. (eds.): Formal Languages and
Applications: A Collection of Papers in Honor of Sheng Yu. Theoret. Comput. Sci.,
vol. 410(24-25) (2009)

7. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)
8. Ilie, L., Yu, S., Zhang, K.: Word complexity and repetitions in words. Int. J. Found.

Comput. Sci. 15(1), 41–55 (2004)
9. Konstantinidis, S., Santean, N., Yu, S.: On implementing recognizable transduc-

tions. Int. J. Comput. Math. 87(2), 260–277 (2010)
10. Salomaa, A., Salomaa, K., Yu, S.: Undecidability of the State Complexity of Com-

posed Regular Operations. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.)
LATA 2011. LNCS, vol. 6638, pp. 489–498. Springer, Heidelberg (2011)

11. Salomaa, A., Wood, D., Yu, S. (eds.): A Half-Century of Automata Theory: Cele-
bration and Inspiration. World Scientific (2001)

12. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, pp. 41–110. Springer (1997)

13. Yu, S.: Grail+: A symbolic computation environment for finite-state machines,
regular expressions and finite languages (2002),
http://www.csd.uwo.ca/Research/grail

14. Yu, S., Gao, Y.: State Complexity Research and Approximation. In: Mauri, G.,
Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 46–57. Springer, Heidelberg
(2011)

15. Yu, S., Păun, A. (eds.): CIAA 2000. LNCS, vol. 2088. Springer, Heidelberg (2001)
16. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations

on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

http://www.csd.uwo.ca/Research/grail

In Search of Most Complex Regular Languages�

Janusz Brzozowski

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada N2L 3G1

brzozo@uwaterloo.ca

Abstract. Regular languages that are most complex under common
complexity measures are studied. In particular, certain ternary languages
Un(a, b, c), n � 3, over the alphabet {a, b, c} are examined. It is proved
that the state complexity bounds that hold for arbitrary regular lan-
guages are also met by the languages Un(a, b, c) for union, intersection,
difference, symmetric difference, product (concatenation) and star. Max-
imal bounds are also met by Un(a, b, c) for the number of atoms, the quo-
tient complexity of atoms, the size of the syntactic semigroup, reversal,
and 22 combined operations, 5 of which require slightly modified ver-
sions. The language Un(a, b, c, d) is an extension of Un(a, b, c), obtained
by adding an identity input to the minimal DFA of Un(a, b, c). The wit-
ness Un(a, b, c, d) and its modified versions work for 14 more combined
operations. Thus Un(a, b, c) and Un(a, b, c, d) appear to be universal wit-
nesses for alphabets of size 3 and 4, respectively.

Keywords: combined operation, finite automaton, operation, regular
language, state complexity, syntactic semigroup, witness.

I dedicate this work to the memory of Sheng Yu whose extensive research
on state complexity led to many questions studied in this paper.

1 Introduction

State complexity is currently an active area of research in the theory of formal
languages; for references, see the surveys in [1,30] and the bibliography at the
end of this paper. The state complexity of a regular language [30] L over a finite
alphabet Σ is the number of states in the minimal (complete) deterministic
finite automaton (DFA) recognizing the language. An equivalent notion is that
of quotient complexity [1] of L, which is the number of distinct left quotients of
L, where the quotient of L ⊆ Σ∗ by a word w ∈ Σ∗ is the language w−1L =
{x ∈ Σ∗ | wx ∈ L}. This paper uses complexity for both of these equivalent
notions, and this term will not be used for any other property here.

The (state/quotient) complexity of an operation on regular languages is the
maximal complexity of the language resulting from the operation as a function of

� This work was supported by the Natural Sciences and Engineering Research Council
of Canada under grant No. OGP0000871.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 5–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

6 J. Brzozowski

the complexities of the arguments. For example, forK,L ⊆ Σ∗, the complexity of
the union K∪L is mn, if the complexities of K and L are m and n, respectively.

There are two parts to the process of establishing the complexity of an op-
eration. First, one must find an upper bound on the complexity of the result of
the operation by using quotient computations or automaton constructions. Sec-
ond, one must find witnesses that meet this upper bound. One usually defines
a sequence (Ln | n � k) of languages, where k is some small positive integer.
This sequence will be called a stream. The languages in a stream differ only in
the parameter n. For example, one might study unary languages ({an}∗ | n � 1)
that have zero a’s modulo n. A unary operation then takes its argument from a
stream (Ln | n � k). For a binary operation, one adds as the second argument a
stream (Kn | n � k), usually different from the first. Also, the witness streams
are normally different for different operations.

In this paper I pose the question: Is it possible to use the same stream for
all the operations? In other words, is there a universal witness? The answer is
“yes” for all of the common operations.

Section 2 describes common conditions that make a language difficult to han-
dle, introduces the main witness stream (Un(a, b, c) | n � 3) (U for “universal”),
and states the main theorem. Properties of a single language, unary operations,
and binary operations are discussed in Sections 3–5, respectively. It is shown
in Sections 6 and 7 that the bounds for several combined operations are also
met by Un(a, b, c), or by other streams closely related to Un(a, b, c). Section 8
deals with combined operations that (seem to) require witnesses over four-letter
alphabets. The witness Un(a, b, c) is then extended to Un(a, b, c, d), where d is
an added identity input in the minimal DFA of Un(a, b, c).

If K and L are regular languages, let K ∪L, K ∩L, K \L and K⊕L be their
union, intersection, difference, and symmetric difference, let LR be the reverse
of L, and let M be another regular language. Witnesses derived from Un(a, b, c)
and Un(a, b, c, d) are presented for the following 36 combined operations:

K ∪ LR, K ∩ LR, K \ LR, K ⊕ LR, LR \K,
KR ∪ LR, KR ∩ LR, KLR, KRL, (KL)R, (LR)∗,
K ∪ L∗, K ∩ L∗, K \ L∗, K ⊕ L∗, L∗ \K,
K∗ ∪ L∗, K∗ ∩ L∗, KL∗, K∗L, (KL)∗, (K ∪ L)∗,
K2 ∪ L2, K2 ∩ L2, K2 \ L2, K2 ⊕ L2,
(KL) ∪M , (KL) ∩M , (KL) \M , (KL)⊕M , M \ (KL),
(K ∪ L)M , (K ∩ L)M , K(L ∪M), K(L ∩M) and K(L \M).

Section 9 concludes the paper.

2 Conditions for the Complexity of Languages

If a language Ln is most difficult, what properties should it have? Below are
some suggestions to help answer this question.

In Search of Most Complex Regular Languages 7

2.1 Properties of a Single Language

Properties that make a single language Ln difficult to handle are discussed first.

A0: The (state/quotient) complexity of Ln ⊆ Σ∗ should be n. It is
assumed that the complexity of the language is fixed at some integer n � 1, and
all the other properties are expressed in terms of n.

A1: The complexity of each quotient of Ln should be n. The complexity of
each quotient is bounded from above by n, because the DFA D = (Q,Σ, δ, q0, F)
that defines Ln also defines w−1Ln for any word w ∈ Σ∗, if its initial state
is changed to δ(q0, w). This requirement is easy to meet, since every strongly
connected DFA defines a language satisfying this condition.

A2: The number of atoms of Ln should be 2n. Atoms of regular languages
were introduced in 2011 by Brzozowski and Tamm [4], and the theory was slightly
modified in [5]. The newer model, which admits up to 2n atoms, is used here.

An atom of a regular language with quotients K0, . . . ,Kn−1 is a non-empty

intersection of the form K̃0 ∩ · · · ∩ K̃n−1, where K̃i is either Ki or Ki, Ki being
the complement of Ki with respect to Σ∗. Thus the number of atoms is bounded
from above by 2n, and it was proved in [5] that this bound is tight. Since every
quotient of Ln (including Ln itself) is a union of atoms, the atoms of Ln are
its basic building blocks. So it is reasonable that Ln should have the maximal
number of atoms.

A3: The complexity of each atom of Ln should be maximal. It was
shown in [5] that the complexity of the atoms with 0 or n complemented quo-
tients is bounded from above by 2n − 1, and the complexity of any atom with r
complemented quotients, where 1 � r � n− 1, by

f(n, r) = 1 +

r∑
k=1

n−r+k∑
h=k+1

Cn
h · Ch

k ,

where Ci
j is the binomial coefficient i choose j. It was also shown in [5] that

these bounds are tight. It is reasonable to expect that the building blocks of a
language should be as complex as possible.

A4: The syntactic semigroup of Ln should have cardinality nn. The
Myhill congruence [22] ≈L of L ⊆ Σ∗ is defined as follows: For x, y ∈ Σ∗,

x ≈L y if and only if uxv ∈ L⇔ uyv ∈ L for all u, v ∈ Σ∗.

The syntactic semigroup [20,24] of L is the quotient semigroup Σ+/ ≈L. It is iso-
morphic to the semigroup of transformations by non-empty words in the minimal
DFA of L [20]. The semigroup of transformations is normally used to represent
the syntactic semigroup.

Since there are nn possible transformations of a set of n elements, nn is an up-
per bound on the size of the syntactic semigroup of Ln. That the bound is tight
follows from the 1935 theorem of Piccard [23] who proved that three transforma-
tions of a set of n elements are sufficient to generate all nn transformations. Also

8 J. Brzozowski

in 1935, Eilenberg showed that fewer than three generators are not possible [28].
In the context of automata, it was first noted without proof by Maslov [19] in
1970 that nn is a tight bound.

2.2 Unary Operations

B1: The complexity of the reverse of Ln should be 2n. It follows from
the 1959 subset construction of Rabin and Scott [25] that the upper bound is
2n. It was first shown by Mirkin [21] in 1966 that this bound can be met.

B2: The complexity of the star of Ln should be 2n−1 + 2n−2. It was first
noted without proof by Maslov [19] in 1970 that this is a tight upper bound.
A proof was provided by Yu, Zhuang and Salomaa [29] in 1994.

2.3 Binary Operations

Two types of binary operations are examined next: boolean operations and prod-
uct (concatenation or catenation). Four boolean operations union (∪), symmetric
difference (⊕), intersection (∩) and difference (\) are considered; they are chosen
because the complexity of every other binary boolean operation can be obtained
from the complexities of these four. Denote by Km ◦ Ln any one of these four
operations.

C1: The complexity of Km ◦ Ln should be mn. The upper bound for the
boolean operations is mn, since w−1(Km ◦Ln) = (w−1Km)◦ (w−1Ln). That the
bound is tight for union was noted without proof by Maslov [19] in 1970, and
proved for both union and intersection by Yu, Zhuang and Salomaa [29] in 1994.
Symmetric difference and difference were treated by Brzozowski [1] in 2010.

C2: The complexity of the product KmLn should be (m − 1)2n + 2n−1.
Maslov [19] stated without proof in 1970 that this bound is tight, and Yu, Zhuang
and Salomaa [29] provided a proof in 1994.

2.4 The Witness

The language stream that turns out to be the universal witness for all the oper-
ations listed above is defined as follows:

Definition 1. For n � 3, let Un = Un(a, b, c) = (Q,Σ, δ, q0, F), where Q =
{0, . . . , n − 1} is the set of states1, Σ = {a, b, c} is the alphabet, q0 = 0 is the
initial state, F = {n − 1} is the set of final states, δ(q, a) = q + 1 mod n,
δ(0, b) = 1, δ(1, b) = 0, δ(q, b) = q for q
∈ {0, 1}, δ(n− 1, c) = 0, and δ(q, c) = q
for q
= n− 1. Let Un = Un(a, b, c) be the language accepted by Un.

The structure of the DFA Un(a, b, c) is shown in Fig. 1.

1 AlthoughQ, δ, and F depend on n, this dependence is not shown to keep the notation
as simple as possible.

In Search of Most Complex Regular Languages 9

Un 0 1 2
a a aa, b

n − 2· · ·
a

b

a, c

n − 1

b, c
b

b, ccc

Fig. 1. DFA Un of witness language Un

A language K ⊆ Σ∗ is permutationally equivalent to a language L ⊆ Σ∗

if K can be obtained from L by permuting the letters of Σ. For example, let
π be the permutation π(a) = b, π(b) = c and π(c) = a; then π(a(b∗ ∪ cc)) =
b(c∗ ∪ aa). Similarly, let K = L(π(a), π(b), π(c)) be the DFA obtained from
L(a, b, c) by changing the roles of the inputs according to permutation π. Then
K is permutationally equivalent to L. In such cases,K (K) is essentially the same
language (DFA) as L (L), except that its inputs have been renamed. Obviously,
if two languages are permutationally equivalent, then they have the same one-
language complexity properties, and the same complexities of unary operations.

Specifically, for this paper let Un(b, a, c) be the DFA obtained from Un(a, b, c)
by interchanging the roles of the inputs a and b. For some operations input c is
not needed; then let Un(a, b, ∅) be the DFA of Definition 1 restricted to inputs a
and b, and let Un(a, b, ∅) be the language recognized by this binary DFA. Also,
Un(a, ∅, ∅) and Un(a, ∅, ∅) are Un(a, b, c) and Un(a, b, c) restricted to a.

Theorem 1 (Main Theorem). The stream (Un(a, b, c) | n � 3) meets condi-
tions A0–A4, B1,B2 and C2, whereas C1 is met by two closely related streams
(Um(a, b, c) | m � 3) and (Un(b, a, c) | n � 3). Moreover,

– A0 and A1 are met by (Un(a, ∅, ∅) | n � 3).
– B2 is met by (Un(a, b, ∅) | n � 3).
– C1 is met by (Um(a, b, ∅) | m � 3) and Un(b, a, ∅) | n � 3).

3 Properties of a Single Language

Conditions A0–A4 are now briefly discussed for the language Un.

A0 Complexity of the Language: Un(a, ∅, ∅) has n quotients because DFA
Un(a, ∅, ∅) is minimal. This holds since state i accepts an−1−i and no other state
accepts this word, for 0 � i � n− 1; hence no two states are equivalent.

A1 Complexity of Quotients: Each quotient of Un(a, ∅, ∅) has complexity n,
since DFA Un(a, ∅, ∅) is strongly connected.

A2 Number of Atoms: It was proved in [5] that Un has 2n atoms. This is
discussed further below, in connection with B1 Reversal.

A3 Complexity of Atoms: The bounds given in the previous section were
derived in [5].

Some background is needed before the next property can be discussed. A trans-
formation of a set Q = {0, . . . , n− 1} is a mapping of Q into itself [11]. If t is a

10 J. Brzozowski

transformation of Q and i ∈ Q, then it is the image of i under t. An arbitrary
transformation of Q can be represented by

t =

(
0 1 · · · n− 2 n− 1
i0 i1 · · · in−2 in−1

)
,

where ik = kt, 0 � k � n − 1, and ik ∈ Q. The notation t = [i0, i1, . . . , in−1] is
also used for the transformation t above.

A permutation of Q is a mapping of Q onto itself. For 2 � k � n, a permu-
tation t is a cycle of length k, if there exist pairwise different elements i1, . . . , ik
such that i1t = i2, i2t = i3, . . . , ik−1t = ik, and ikt = i1. A cycle is denoted by
(i1, i2, . . . , ik). A transposition is the cycle (i, j) of length 2 that interchanges i
and j and does not affect any other elements. A singular transformation, de-
noted by

(
i
j

)
, has it = j and ht = h for all h
= i. The identity transformation of

Q is denoted by 1Q.
The set of all permutations of n elements is isomorphic to the symmetric group

of degree n and has n! elements. The following result is due to Piccard [23]:

Theorem 2 (Permutations). For n � 3, the set of all n! permutations of the
set {0, . . . , n− 1} is generated by a cycle of length n and a transposition (i, j).

The set of all transformations of a finite set Q is a semigroup under composition,
in fact, a monoid TQ of nn elements. In 1935 Piccard [23] proved that three
transformations of Q are sufficient to generate TQ. Dénes [10] studied more
general generators; his formulation is used here:

Theorem 3 (Transformations). For n � 3, the set of all nn transformations
of the set {0, . . . , n−1} is generated by a cycle of length n, a transposition (i, j),
and a singular transformation

(
k
�

)
.

Every word w in Σ+ performs a transformation of the set of states of a DFA
defined by q → δ(q, w). The set of all such transformations is the semigroup of
transformations also called the transition semigroup of the DFA [24].

A4 Cardinality of Syntactic Semigroup: By Theorem 3, the syntactic semi-
group of Un(a, b, c) has cardinality nn, since the transformations performed by
inputs a, b and c generate all possible transformations of Q.

4 Unary Operations

B1 Reversal: In 1966 Mirkin [21] used a DFA very similar to Un(a, b, c) to
meet the 2n bound for reversal. It is defined by inputs a : (0, 1, . . . , n − 1),
b : (0, n − 2) and c :

(
0

n−1

)
, with initial state 0 and final state 0. The syntactic

semigroup of the language of this DFA has size nn. Another similar DFA with
inputs a : (0, 1, . . . , n − 1), b : (0, 1) and c :

(
0

n−1

)
and initial state 0 and final

state 0 was used by Leiss [18] in 1981; the semigroup is also of size nn.
Salomaa, Wood, and Yu [27] showed the following result:

In Search of Most Complex Regular Languages 11

Theorem 4 (Transformations and Reversal). Let D be a minimal DFA
with n states accepting a language L. If the transformation semigroup of D has
nn elements, then the quotient complexity of LR is 2n.

From this and A4 it follows that UR
n has 2n quotients. In view of the following

result proved by Brzozowski and Tamm [5], Un has 2n atoms.

Theorem 5 (Atoms). The number of atoms of a regular language L is equal
to the complexity of LR.

There are also binary witnesses that reach the bound 2n for LR. For a detailed
discussion see the recent paper by Jirásková and Šebej [17]. Their witness has
input a that performs the cycles (0, 1, 2) and (3, 4, . . . , n− 1), and input b that
has the cycles (0, 1) and (2, 3) and is an identity on the remaining states.

Is there a close relation between the size of the syntactic semigroup and the
quotient complexity of reversal? Besides the result for regular languages in The-
orem 4, there are other examples where the languages that have maximal syn-
tactic semigroups also meet the maximal bound for reversal. This is the case for
right ideals [6] and prefix-free languages [3]. For left and two-sided ideals [6] and
for suffix-, bifix-, and factor-free languages [3] there are only conjectured upper
bounds on the size of the syntactic semigroup, but the languages that meet these
bounds also meet the maximal bounds for reversal.

The witness of Jirásková and Šebej [17] shows that it is possible for a language
to reach the bound 2n for reversal without having syntactic complexity of nn.
It is also possible for a language to have the maximal syntactic complexity for
its class and not reach the bound for reversal. For example, it was shown by
Brzozowski and Li [2] that the star-free language defined by the 3-state DFA
with inputs a : [0, 0, 1], b : [1, 1, 2], c : [0, 2, 2] and d : [0, 1, 2] and final state 0
meets the maximal bound 10 for the size of the syntactic semigroup. But it does
not meet the conjectured upper bound 7 for reversal. However, that bound is
met if the final states are 0 and 2.

Does there always exists a language that meets both bounds?

B2 Star: The tightness of the bound for star is now proved. The language
(Un(a, b, ∅))∗ is accepted by the ε-NFA Sn = (QS , {a, b}, δS, {s}, {s, n − 1}),
where QS = Q ∪ {s}, s
∈ Q, δS(s, a) = δS(s, b) = {1}, δS(q, x) = {δ(q, x)} for
all q ∈ Q, x ∈ Σ, and δS(n− 1, ε) = {0}. The ε-NFA S4 is shown in Figure 2.

Theorem 6 (Star). For n � 3, the complexity of (Un(a, b, ∅))∗ is 2n−1+2n−2.

Proof. It will be proved that {s}, all 2n−1 subsets of Q containing 0, and all
2n−2 − 1 non-empty subsets of {1, . . . , n− 2} are reachable and pairwise distin-
guishable, giving the DFA of (Un(a, b, ∅))∗ a total of 2n−1 + 2n−2 states.

Since s is the initial state, {s} is reachable by ε, and {0} by ab. It will be
shown how to reach the remaining sets from {0}. Note that any subset containing
n− 1 must also contain 0.

First it is proved that all 2n−1 subsets of Q containing 0 are reachable. Since

{0} an−1

−→ {0, n− 1} a−→ {0, 1} (ab)i−1

−→ {0, i},
for 2 � i � n− 2, all two-element subsets of Q containing 0 are reachable.

12 J. Brzozowski

a, ε

a

b

a, b a

0 21

b ba, b

3

s

S4(a, b)

Fig. 2. NFA for (U4(a, b, ∅))∗

For k � 2, if any k-element set containing 0 can be reached, then so can be
any (k + 1)-element set containing 0 and n− 1, for if i1 < i2 < · · · < ik, then

{0, i2 − i1, . . . , ik−1 − i1, n− 1− i1} ai1

−→ {0, i1, i2, . . . , ik−1, n− 1}.

For k � 3, if any k-element set containing 0 and n − 1 can be reached, then so
can be any k-element set containing 0. This holds because

{0, i2 − i1, . . . , ik−1 − i1, n− 1} a(ab)i1−1

−→ {0, i1, . . . , ik−1}.

It follows now that all 2n−1 subsets of Q containing 0 are reachable. Since also

{0, i2 − i1, . . . , ik − i1} ai1−1

−→ {i1, i2, . . . , ik},

all the 2n−2 − 1 non-empty subsets of {1, . . . , n− 2} are reachable.
It remains to prove that all subsets are pairwise distinguishable. Set {s} and

any subset of Q containing n − 1 differ from any subset of Q not containing
n − 1, because they accept the empty word. Also, {s} differs from any subset
of Q containing n − 1, because the latter accepts b. Finally, if set P contains
0 � i < n− 1 but set R does not, then P accepts an−1−i, and R does not. �

Since the required number of subsets can be reached by words in {a, b}∗, and they
are pairwise distinguishable by words in {a, b}∗, it follows that the complexity
of (Un(a, b, c))

∗ with the added input c is also 2n−1 + 2n−2.

Discussion: For n = 1, there are only two languages, ∅ and Σ∗. The complexity
of ∅∗ = ε is 2, and that of (Σ∗)∗ = Σ∗ is 1; the bound does not apply here.
For n = 2, the language of Definition 1 is well defined, but inputs a and b
coincide. The star of U2 has complexity 2 only; hence U2(a, ∅, c) is not most
complex here. However, the bound 21+20 = 3 is met by the language over {a, b}
of all the words with an odd number of a’s [29].

In Search of Most Complex Regular Languages 13

5 Binary Operations

5.1 Boolean Operations

Since Kn ∪Kn = Kn ∩Kn = Kn, and Kn \Kn = Kn ⊕Kn = ∅, two different
languages have to be used to reach the bound mn if m = n. Figure 3 shows the
DFA U4(a, b, ∅) and the DFA U5(b, a, ∅) permutationally equivalent to U5(a, b, ∅).
The direct product of U4(a, b, ∅) and U5(b, a, ∅) is in Figure 4.

U5(b, a, ∅)

a

b 0 1 2 3 4

a, b
a

b b b

a

bb

a

a

a

b

1 2 30

a

a, b

U4(a, b, ∅)

Fig. 3. DFA’s of U4(a, b, ∅) and U5(b, a, ∅)

V

0, 1 0, 2 0, 3 0, 4

1, 2 1, 3 1, 41, 1

2, 1 2, 2 2, 3 2, 4

3, 1 3, 2 3, 3 3, 4

0, 0

2, 0

3, 0

1, 0

ba b b

a

a

b

b

b

bbbb

b bb

a

a

a a

a

a aa

a

a

a

a

b

b

a a a

b

b

a

a

bbb

H

Fig. 4. Direct product of U4(a, b, ∅) with U5(b, a, ∅)

Theorem 7 (Boolean Operations). The complexity of Um(a, b, ∅)◦Un(b, a, ∅)
is mn for m,n � 3.

Proof. In the direct product, state (0, 0) is the initial state, and state (1, 1) is
reached by a. From (1, 1), state (2, 0) is reached by a, and state (0, 2), by b. From
(0, 2), state (i, 2) is reached by ai; hence all the states in column 2 are reachable.
From (1, 2), state (0, 3) is reached by b and the states in column 3 are reached
by words in a∗. This repeats until state (0, n− 1) is reached by b from (1, n− 2),

14 J. Brzozowski

and other states in column n− 1 are then reached by words in a∗. Thus all the
states in columns 2, . . . , n− 1 are reachable.

Next, (1, 0) is reached from (0, n − 1) by b, and (0, 1) from (1, 0) by b. The
remaining states (i, 0), i � 2, are reached from (1, 1) by a(ba)i−2 and states
(i, 1), by (ab)i−1. Thus all the states in columns 0 and 1 are also reachable.

It remains to prove that all the states are pairwise distinguishable. Let H (for
horizontal) be the set H = {(m − 1, 0), (m − 1, 1), . . . , (m − 1, n − 2)}, and let
V (for vertical) be V = {(0, n− 1), (1, n− 1), . . . , (m− 2, n− 1)}. The boolean
operations are now considered one by one.

Union: The final states are H ∪ V ∪ {(m− 1, n− 1)}.
Consider the final states in V ′ = V ∪ {(m − 1, n− 1)}. First, (0, n− 1) goes

to (m− 1,m mod 2) by bam−2, and all other states in V ′ go to non-final states.
Second, (1, n− 1) goes to (m− 1, (m− 1) mod 2) by bam−1, and all other states
in V ′ reject this word. For i > 1, (i, n − 1) goes to (m − 1, (m− 1 − i) mod 2)
by bam−1−i, and all other states in V ′ reject this word. Thus all the states in
column n− 1 are distinguishable.

Next, take the final states in H ′ = H ∪ {(m − 1, n − 1)}. By an argument
symmetric to the one above, interchanging m and n and a and b, one concludes
that all the states in row m− 1 are distinguishable.

Each state in V accepts a but not b, each state in H accepts b but not a, and
(m−1, n−1) accepts both. Hence every state in V is distinguishable from every
state in H , and all these states are distinguishable from (m−1, n−1). Therefore
all final states are pairwise distinguishable.

Any non-final state (i, j) accepts am−1−i and bn−1−j, but no other non-final
state accepts both of these words. So all non-final states are also distinguishable.

Symmetric Difference: The final states are those in H ∪ V .
The final states are all distinguishable by the argument used for union. The

non-final states other than (m− 1, n− 1) are distinguishable by the same words
as for union. State (m− 1, n− 1) accepts both abn and bam, and no state other
than (m− 2, n− 2) accepts both of these words. But (m− 1, n− 1) rejects aba,
while (m− 2, n− 2) accepts it. So all non-final states are also distinguishable.

Intersection: For intersection, there is only one final state (m− 1, n− 1). The
non-final states q and words wq accepted only by those states are listed below:

1. q = (0, j) with n− 1− j even, wq = bn−1−jam−1,
2. q = (0, j) with n− 1− j odd, wq = bn−1−jam−2,
3. q = (1, j) with n− 1− j even, wq = bn−1−jam−2,
4. q = (1, j) with n− 1− j odd, wq = bn−1−jam−1,
5. for i � 2, q = (i, j), wq = bn−1−jam−1−i.

Difference: For difference, the final states areH . State (m−1, j) rejects bn−1−j ,
but other final states accept it. So all final states are distinguishable.

In Search of Most Complex Regular Languages 15

For non-final states q = (i, j) and (h, l), other than (m− 1, n− 1):

1. If i = h and j
= l, then q rejects wq, while (h, l) accepts it, where wq is
defined as for intersection. Thus all the non-final states in the same row are
distinguishable.

2. Two non-final states q = (i, j) and (h, j) in the same column, with j < n− 1
and i
= h, are distinguishable by am−1−i.

3. If j = l = n− 1 and i
= h, then q accepts am−1−ib, while (h, l) rejects it.

Any non-final state (i, j) with j < n− 1 is distinguished from (m− 1, n− 1) by
am−1−i. State (0, n− 1) accepts bam−2, while (m− 1, n− 1) rejects it. Similarly,
(1, n − 1) accepts bam−1, while (m − 1, n − 1) rejects it. For 2 � i � n − 2,
(i, n− 1) accepts bam−1−i, but (m− 1, n− 1) rejects it. �

Although it is impossible for the stream (Un(a, b, ∅), n � 3) to meet the bound for
boolean operations when m = n, this stream is as complex as it could possibly
be in view of the following:

Conjecture 1 (Km ◦ Ln,m
= n)
If m
= n, the complexity of Um(a, b, ∅) ◦ Un(a, b, ∅) is mn.
(Verified for 3 � m,n � 10 and some higher values.)

Note about Conjectures: The 19 conjectures in this paper have 35 different
claims. The proofs are not trivial; sometimes two such proofs constitute an entire
paper, for example, in [7,9,16,26]. Because of the limitations of time, space, and
the author’s energy, the proofs are omitted, although some of the claims have
been verified. The conjectures are supported by Grail and GAP computations.

5.2 Product

It is shown next that the complexity of the product of Um(a, b, c) with Un(a, b, c)
reaches the maximal possible bound.

To avoid confusion of states, let Um = Um(a, b, c) = (Qm, Σ, δm, q0, {qm−1}),
where Qm = {q0, . . . , qm−1}, and let Un = Un(a, b, c), as in Definition 1. Define
the ε-NFA P = (Qm ∪ Qn, Σ, δP , {q0}, {n− 1}), where δP(q, a) = {δm(q, a)} if
q ∈ Qm, a ∈ Σ, δP(q, a) = {δn(q, a)} if q ∈ Qn, a ∈ Σ, and δP(qm−1, ε) = {0}.
This ε-NFA accepts UmUn, and is illustrated in Figure 5 for m = 4 and n = 5.

Theorem 8 (Product). For m,n � 2, the complexity of Um(a, b, c)Un(a, b, c)
is (m− 1)2n + 2n−1.

Proof. It will be shown that all (m − 1)2n subsets of states of P of the form
{qi}∪S, where i < m− 1 and S is any subset of Qn, are reachable, as well as all
2n−1 subsets of the form {qm−1, 0} ∪ S, where S is any subset of {1, . . . , n− 1}.
All the arithmetic below is modulo n.

First, study how states of the form {q0}∪S can be reached. Since {q0} is the
initial set of states, it is reached by ε. Sets {qi} are reached from {q0} by ai, for
i = 1, . . . ,m− 2, and {qm−1, 0}, by am−1.

16 J. Brzozowski

U5(a, b, c)

q0 q1 q2

c

a, c

a

b

bc b, c

q3

a, b a

a, c

ε
0 1 2 3 4

c
a, b

c b, c b, c b
a a a

b

U4(a, b, c)

Fig. 5. ε-NFA P of U4(a, b, c)U5(a, b, c)

From {qm−1, 0}, {q0, 0} is reached by c, and {q0, 1} by a. From {q0, 1}, {q0, i}
is reached by (ab)i−1, for i = 2, . . . , n−1. Hence all the sets of the form {q0}∪S,
where |S| � 1 are reachable.

Second, it will be shown that, if {qm−1, 0} ∪ S can be reached for all sets
S ⊆ {1, . . . , n − 1} with |S| = k � 0, then {q0} ∪ T can be reached for all
T = {t0, t1, . . . , tk} ⊆ {0, . . . , n− 1} with 0 � t0 < t1 < · · · < tk � n− 1. There
are three cases to consider:

1. t0 = 0: Use {qm−1, 0, t2 − t1, . . . , tk − t1, n− 1} a(ab)t1−1

−→ {q0, t1, t2, . . . , tk, 0}.
2. t0 = 1: Use {qm−1, 0, t1 − 1, . . . , tk − 1} a−→ {q0, 1, t1, . . . , tk}.
3. t0 > 1: Use {qm−1, 0, t1−(t0−1), . . . , tk−(t0−1)}

bc(ab)t0−1

−→ {q0, t0, t1, . . . , tk}.

Third, consider sets {qm−1, 0} ∪ S, S ⊆ {1, . . . , n − 1}. It has already been
shown that {qm−1, 0} is reachable. Suppose that all the sets of the form {q0}∪S
with |S| = k � 1, 0
∈ S can be reached. Then to reach {qm−1, 0, t1, . . . , tk}
with 1 � t1 < · · · < tk � n − 1, use {q0, t1 − (m − 1), . . . , tk − (m − 1)} am−1

−→
{qm−1, 0, t1, . . . , tk}.

Finally, for 0 < i < m − 1, {qi, t1, . . . , tk} is reached by ai from {q0, t1 −
i, . . . , tk − i}, where 0 � t1 < · · · < tk � n− 1. Hence all the required states can
be reached.

It will now be proved that all these subsets are pairwise distinguishable.
Consider s = {qi} ∪ S and t = {qj} ∪ T , where 0 � i, j � m − 1 and S
= T ,

S, T ⊆ Qn. If k is in S ⊕ T , then an−1−k distinguishes s and t.
Next suppose s = {qi} ∪ S and t = {qj} ∪ S with i < j < m − 1. Applying

(ca)m−1−j sends t = {qj}∪S to t′ = {qm−1, 0}∪S′ for some S′ ⊆ {1, . . . , n−1},
but sends s = {qi}∪S to s′ = {qi+m−1−j}∪S′, and this pair can be distinguished
since the subsets of Qn are different. If i > 0 and j = m− 1, apply (ca)m−1−i.
Then s = {qi} ∪ S is sent to s′ = {qm−1, 0} ∪ S′, and t = {qm−1} ∪ S is sent to
t′ = {qk} ∪ S′ for some S′ ⊆ {1, . . . , n− 1} and k < m− 1.

This leaves the case where i = 0 and j = m−1. Then use ba to send t = {qj}∪S
to t′ = {q0}∪S′ and s = {qi}∪S to s′ = {q2}∪S′. Now (ca)m−3 can be applied
to make the subsets of Qn different.

Since all reachable sets are pairwise distinguishable, the bound is met. �

In Search of Most Complex Regular Languages 17

Discussion. The restrictions of Un to two letters do not meet the bound for
product. This is a defect of Un, since there exist binary witnesses for product.
Maslov [19] used the DFA Km with input a performing the cycle (0, . . . ,m− 1),
with b being the identity, and a DFA Ln with a performing the transposition
(n − 2, n− 1), and b mapping i to i + 1 for i < n − 1, and n − 1 to n − 1. Yu,
Zhuang and Salomaa [29] used ternary languages.

6 Combined Operations with Um(a, b, c) and Un(b, a, c)

To simplify the notation, denote Un(b, a, c) by Ũn.
Gao and Yu [15] studied the complexities of Km ∪ LR

n and Km ∩ LR
n , and

showed that they are both m2n − (m − 1), and are met using a quaternary
alphabet. Their results can be improved and extended as follows: (1) ternary
alphabets suffice, (2) the same language stream can be used for Km and Ln

for both union and intersection, (2) the same language stream is also a witness
for two difference operations and symmetric difference, and (4) the bound for
symmetric difference is m2n.

Conjecture 2 (Km ◦ LR
n and LR

n \Km)
For m,n � 3, the complexities of Um ∪UR

n , Um ∩UR
n , Um \UR

n , UR
n \Um are all

m2n − (m− 1), whereas that of Um ⊕ UR
n is m2n. (Verified for 3 � m,n � 10.)

It was shown in [12] by Gao, Kari, and Yu that the complexities of KR
m ∪ LR

n

and KR
m ∩LR

n are (2m− 1)(2n− 1)+ 1 with witnesses over a six-letter alphabet.
The bound can also be met by ternary languages:

Conjecture 3 (KR
m ∪ LR

n and KR
m ∩ LR

n)
For m,n � 3, the complexities of UR

m∪ ŨR
n and UR

m∩ ŨR
n are (2m−1)(2n−1)+1.

(Verified for 3 � m,n � 7.)

Incidentally, the same bound can be reached by these witnesses for difference.
It was shown in [9] by Cui, Gao, Kari, and Yu that the complexity of KmL

R
n

is (m − 1)2n + 2n−1 − (m − 1) with ternary witnesses. Two permutationally
equivalent witnesses also work:

Conjecture 4 (KmL
R
n)

For m,n � 3, the complexity of UmU
R
n is (m− 1)2n + 2n−1 − (m− 1).

(Verified for 3 � m � 7 and 3 � n � 6.)

If the complexities of Km, Ln andMp arem, n and p, Cui, Gau, Kari, and Yu [8]
showed that the complexity of (KmLn) ∩Mp is ((m − 1)2n + 2n−1)p; here the
complexity of the result is the composition of the complexities of product and
intersection. They also showed that the same bound holds for (KmLn) ∪Mp.
This can be generalized to all binary boolean operations:

Conjecture 5 ((KmLn) ◦Mp and Mp \ (KmLn))

The complexities of (UmUn) ◦ Ũp and Ũp \ (UmUn) are all ((m− 1)2n + 2n−1)p
for m,n, p � 3. (Verified for various values of m, n, and p.)

18 J. Brzozowski

Cui, Gao, Kari, and Yu [8] also proved that the complexity of (Km ∩ Ln)Mp is
the composition of complexities of intersection and product, (mn− 1)2p +2p−1.
They used quaternary witnesses, but there are ternary witnesses:

Conjecture 6 ((Km ∩ Ln)Mp)

The complexity of (Um ∩ Ũn)Up is (mn− 1)2p + 2p−1 for m,n, p � 3.
(Verified for various values of m, n, and p.)

In the case of (Km∩Ln)Σ
∗, the languagesKm = Um(a, b, ∅) and Ln = Un(b, a, ∅)

also reach the bound mn.
Gao and Yu [15] showed that the complexity of Km∪L∗

n is 3m2n−2− (m−1).
These results are extended here to symmetric difference and to one difference
operation. For the remaining boolean operations see Conjecture 9.

Conjecture 7 (Km ∪ L∗
n, Km ⊕ L∗

n, and L∗
n \Km)

The complexities of the operations Um ∪ Ũ∗
n, Um ⊕ Ũ∗

n and Ũ∗
n \ Um are all

3m2n−2 − (m− 1) for m,n � 3. (Verified for 3 � m,n � 10.)

7 Combined Operations with “Dialects” of Un(a, b, c)

For the combined operations in this section, the witness Un(a, b, c) no longer
works. However, the class of witnesses can be extended beyond those permuta-
tionally equivalent to Un(a, b, c).

Definition 2. A dialect of the language Un(a, b, c) is any ternary language
Vn(a, b, c) of complexity n, in which one input a : (0, . . . , n − 1) performs a
cyclic permutation of the n states in the minimal DFA of Vn, a second input
b : (i, j) performs a transposition of two states, and the third input is a singular
transformation c :

(
k
�

)
.

Clearly, a dialect Vn(a, b, c) of Un(a, b, c) satisfies A0 and A1. By Theorem 3,
its syntactic semigroup is of size nn, and so it satisfies A4. By Theorem 5, it
satisfies A2. I conjecture that it satisfies A3. By Theorem 4, it satisfies B1. So
it seems that dialects have many desirable single-language properties.

A Combined Operation with Binary Witnesses: In 2007 A. Salomaa, K.
Salomaa, and S. Yu [26] showed that the complexity of (Km ∪Ln)

∗ is 2m+n−1−
(2m−1+2n−1−1) with ternary witnesses. Jirásková and Okhotin [16] used binary
witnesses. It is shown below that permutationally equivalent binary dialects of
Un(a, b, c) can also be used.

Let Sn = Sn(a, b) = (Q,Σ, δS, 0, {0}), where a : (0, 1, . . . , n− 1), and b :
(
0
1

)
.

In this dialect, both the final state and the singular transformation have been
changed. Let Sn be the language of Sn, and let S̃n = Sn(b, a).

Theorem 9 ((Km ∪ Ln)
∗)

For m,n � 3, the complexity of (Sm ∪ S̃n)
∗ is 2m+n−1 − (2m−1 + 2n−1 − 1).

Proof The proof follows closely that of [16]. The DFA’s of languages S4(a, b) and
S5(b, a) are shown in Fig. 6. If the dotted transitions are added, the resulting

In Search of Most Complex Regular Languages 19

S5(b, a)

a

bb

a

a

b b b
a

b

a

p2 p3p1p0

q4q3q0 q1 q2

b

a

a, b

a, b

a

b

a

S4(a, b)

Fig. 6. DFA’s of S4(a, b, ∅) and S5(b, a, ∅)

NFA N = (QN , Σ, δN , {p0, q0}, {p0, q0}) in the general case accepts (Sm ∪ S̃n)
∗.

Note that all the reachable subsets of QN always contain at least one state from
Sm(a, b) and at least one state from Sn(b, a). The reachable sets are (a) those
consisting of a non-empty subset of P \{p0} together with a non-empty subset of
Q \ {q0} and (b), those consisting of {p0, q0} together with any subset of P ∪Q.
The number of reachable states is precisely the bound.

Any subset of cardinality 2 is reached as follows: {p0, q0} is the initial state,
and {pi, qj}, for 1 � i, j, is reached by bai−1bj−1. Next, use induction on the size
of the set in several cases. To reach {pi1 , . . . , pik , qj1 , . . . , qjl}, proceed as follows:

1. If i1 = j1 = 0 and (i2 > 1 or k = 1), start with the set (of size k + l − 1)
{pm−1, pi2−1 . . . , pik−1, qj2 , . . . , qjl} and apply a.

2. If i1 = j1 = 0 and (j2 > 1 or l = 1), this is symmetric to Case 1.
3. If i1 = j1 = 0 and i2 = j2 = 1, start with the set (of size k + l − 1)
{pm−1, p0, pi3−1, . . . , pik−1, q0, qj3 , . . . , qjl} and apply a.

4. If i1 � 1 and j1 � 1, start with set S of size k + l, reachable by 1–3, where
S = {p0, pi2−i1 , . . . , pik−i1 , q0, qj2−(j1−1), . . . , qjl−(j1−1)}, and apply ai1bj1−1.

Hence all the required states are reachable. Since only state pi accepts am−i,
and only pj accepts bn−j, all subsets are pairwise distinguishable. �

Incidentally, (Sm ⊕ S̃n)
∗ also reaches the bound 2m+n−1 − (2m−1 + 2n−1 − 1).

The star of the reverse was studied by Gao, Salomaa, and Yu [14], who showed
that the complexity of this operation is 2n with a ternary witness. Here, a dialect
U{0},n(a, b, c) of Un(a, b, c) with final state changed to 0 can be used:

Conjecture 8 ((LR
n)

∗)
For n � 3, the complexity of (UR

{0},n)
∗ is 2n. (Verified for 3 � n � 7.)

Gao and Yu [15] studied the intersection Km∩L∗
n; this result is extended here to

a difference operation. The dialect which is the complement of Um(a, b, c) applies
here.

Conjecture 9 (Km ∩ L∗
n and Km \ L∗

n)
Form,n � 3, the complexities of Um∩Ũ∗

n and Um\Ũ∗
n are both 3m2n−2−(m−1).

(Verified for 3 � m,n � 10.)

20 J. Brzozowski

The language KmL
∗
n was studied by Cui, Gao, Kari, and Yu [9]. If the only

final quotient of Ln is Ln itself, then Ln = L∗
n. The complexity of KmL

∗
n is

then that of KmLn; by Theorem 8, Um(a, b, c) and Un(a, b, c) meet this bound.
Hence assume that there is at least one final quotient of Ln other than Ln. In
that case, it was proved in [9] that the quotient complexity of KmL

∗
n is at most

(3m− 1)2n−2, and that this bound is tight with ternary witnesses.
Here one can use a dialect of Un(a, b, c) with a different singular transforma-

tion. Let Tn = Tn(a, b, c) = (Q,Σ, δT , 0, {n − 1}), where Q = {0, . . . , n − 1},
Σ = {a, b, c}, a : (0, 1, . . . , n− 1), b : (0, 1), and c :

(
1
0

)
. Let Tn be the language

of Tn and let T̃n(a, b, c) = Tn(b, a, c).

Conjecture 10 (KmL
∗
n)

For m,n � 3, the complexity of TmT̃
∗
n is (3m− 1)2n−2.

(Verified for 3 � m,n � 6.)

8 Witnesses Over Quaternary Alphabets

Operations that (appear to) require an alphabet of four letters are treated next.

8.1 Witnesses Un(a, b, c, d) and Ûn(a, b, c, d)

Let Un(a, b, c, d) = (Q,Σ, δU , 0, {n − 1}), where a : (0, 1, . . . , n − 1), b : (0, 1),
c :
(
n−1
0

)
, and d : 1Q. Thus Un(a, b, c) = Un(a, b, c, ∅). Let Un(a, b, c, d) be the

language of Un(a, b, c, d). Also let Ûn(a, b, c, d) = Un(d, c, b, a); then Ûn(a, b, c, d)
and Un(a, b, c, d) are permutationally equivalent.

From now on, the symbols Un and Un stand for Un(a, b, c, d) and Un(a, b, c, d),
and the same applies to the versions with the “hat”.

It was shown by Cui, Gao, Kari, and Yu [8] that quaternary witnesses meet

the bound 3 · 2m+n−2 − 2n + 1 for (KmLn)
R. Here Un and Ûn also work:

Conjecture 11 ((KmLn)
R)

For m,n � 3, the complexity of (UmÛn)
R is 3 · 2m+n−2 − 2n + 1.

(Verified for 3 � m,n � 7.)

It was shown in [8] by Cui, Gao, Kari, and Yu that quaternary witnesses meet
the bound 5 · 2m+n−3 − (2m−1 + 2n − 1) for K∗

mLn. Here, one can also use Un

and Ûn:

Conjecture 12 (K∗
mLn)

For m,n � 3, the complexity of U∗
mÛn is 5 · 2m+n−3 − (2m−1 + 2n − 1).

(Verified for 3 � m,n � 7.)

It was shown Cui, Gao, Kari, and Yu in [8] that quaternary witnesses meet the

bound mn2p − (m+ n− 1)2p−1 for (Km ∪ Ln)Mp. Here Un and Ûn also work:

Conjecture 13 ((Km ∪ Ln)Mp)

For m,n, p � 3, the complexity of (Um ∪ Ûn)Up is mn2p − (m + n − 1)2p−1.
(Verified for some values of m, n and p.)

In Search of Most Complex Regular Languages 21

The definition of “dialect” is extended to four inputs: Vn(a, b, c, d) is a dialect of
Un(a, b, c, d) if Vn(a, b, c, ∅) is a dialect of Un(a, b, c, ∅) and d : 1Q.

8.2 Witnesses Vn(a, b, c, d) and V̂n(a, b, c, d)

Let Vn = Vn(a, b, c, d) = (Q,Σ, δV , 0, {n − 1}), where a : (0, 1, . . . , n − 1), b :
(n−2, n−1), c :

(
n−1
n−2

)
, and d : 1Q. Let Vn = Vn(a, b, c, d) be the language of Vn;

so Vn(a, b, c, d) is a dialect of Un(a, b, c, d). Also let V̂n(a, b, c, d) = Vn(d, c, b, a);
then V̂n and Vn are permutationally equivalent.

It was shown in [8] by Cui, Gao, Kari and Yu that quaternary witnesses meet

the bound 3 · 2m+n−2 for KR
mLn. Here Vn and V̂n can be used:

Conjecture 14 (KR
mLn)

The complexity of V R
m V̂n is 3 · 2m+n−2 for m,n � 3. (Verified for 3 � m,n � 7.)

8.3 Witnesses Wn(a, b, c, d) and Ŵn(a, b, c, d)

Let Wn = Wn(a, b, c, d) = (Q,Σ, δW , 0, {n− 1}), where a : (0, 1, . . . , n − 1), b :
(n−2, n−1), c :

(
1
0

)
, and d : 1Q. Let Wn = Wn(a, b, c, d) be the language ofWn;

soWn(a, b, c, d) is a dialect of Un(a, b, c, d). Also let Ŵn(a, b, c, d) =Wn(d, c, b, a);

then Ŵn and Wn are permutationally equivalent.

It was shown in [13] by Gao, Kari and Yu that quaternary witnesses meet the
bound 9 · 2m+n−4 − (3 · 2m−2 + 3 · 2n−2 − 2) for K∗

m ∪ L∗
n and K∗

m ∩ L∗
n. Here

Wn and Ŵn apply:

Conjecture 15 (K∗
m ∪ L∗

n and K∗
m ∩ L∗

n)

The complexities ofW ∗
m∪Ŵ ∗

n andW ∗
m∩Ŵ ∗

n are 9·2m+n−4−(3·2m−2+3·2n−2−2)
for m,n � 3. (Verified for 3 � m,n � 7.)

It was shown in [12] by Gao, Kari and Yu that quaternary witnesses meet the
bound [(m− 1)2m + 2m−1] · [(n− 1)2n + 2n−1] for K2

m ∪L2
n and K2

m ∩L2
n. This

is extended here to all four boolean operations:

Conjecture 16 (K2
m ◦ L2

n)

The complexity ofW 2
m◦Ŵ 2

n is [(m−1)2m+2m−1]·[(n−1)2n+2n−1] form,n � 3.
(Verified for 3 � m,n � 5.)

It was shown in [14] by Gao, Salomaa and Yu that quaternary witnesses meet
the bound 2m+n−1 + 2m+n−4 − (2m−1 + 2n−1 −m− 1) for (KmLn)

∗. Here Wn

and Ŵn can also be used:

Conjecture 17 ((KmLn)
∗)

The complexity of (WmŴn)
∗ is 2m+n−1 + 2m+n−4 − (2m−1 + 2n−1 −m− 1) for

m,n � 3. (Verified for 3 � m,n � 5.)

It was shown in [7] by Cui, Gao, Salomaa and Yu that quinary witnesses meet
the bound (m − 1)(2n+p − 2n − 2p + 2) + 2n+p−2 for Km(Ln ∪Mp). Here the
alphabet size is reduced to 4:

22 J. Brzozowski

Conjecture 18 (Km(Ln ∪Mp))

The complexity of Wm(Wn ∪ Ŵp) is (m− 1)(2n+p − 2n − 2p + 2) + 2n+p−2, for
m,n, p � 3. (Verified for 3 � m,n, p � 4 and several larger values.)

It was shown in [7] by Cui, Gao, Salomaa and Yu that quaternary witnesses
meet the bound (m − 1)2np + 2np−1 for Km(Ln ∩Mp). This result is extended
here also to Km(Ln \Mp):

Conjecture 19 (Km(Ln ∩Mp) and Km(Ln \Mp))

The complexities of Wm(Wn ∩ Ŵp) and Wm(Wn \ Ŵp) are (m− 1)2np + 2np−1

for m,n, p � 3. (Verified for 3 � m,n, p � 4 and several larger values.)

9 Conclusions

It is clear that a witness over an alphabet of three or four letters cannot be a wit-
ness when a larger alphabet is required. Also, Un(a, b, c) and Un(a, b, c, d) cannot
be witnesses in a proper subclass of regular languages, since they do not possess
the special properties of that class. However, in several cases it was possible to
use Un(a, b, c) by “embedding” it in larger witnesses. For example, the DFA of a
right ideal—a language Ln satisfying LnΣ

∗ = Ln—can be constructed as shown
in Fig. 7 to meet the upper bound on the size of the syntactic semigroup [6].
Similar constructions have been used for left ideals, and two-sided ideals [6], and
for prefix-free, suffix-free, bifix-free and factor-free languages [3].

b

0 1 2 n − 1n − 2
a a aa, b

n − 3

c, d c, d b, c, d b, c, d a, b, c, d

· · ·
a

b

d

a, c

Fig. 7. Right ideal with nn−1 transformations

Although Un(a, b, c) and Un(a, b, c, d) succeed in all the cases I tried, they do
have some shortcomings:

1. No binary language related to Un(a, b, c) seems to satisfy the reversal bound.
2. No binary languages related to Un(a, b, c) seem to satisfy the product bound.
3. Dialects of Un(a, b, c) and Un(a, b, c, d) had to be used for some operations.

In spite of these shortcomings, the results presented here strongly suggest that
these witnesses ought to be considered when one is looking at new operations.
The main remaining open questions are:

In Search of Most Complex Regular Languages 23

1. Does there exist a better ternary (quaternary) witness that would overcome
the shortcomings listed above?

2. In general, does there exist a universal n-ary witness for operations that
require witnesses over alphabets of n letters?

Finally, I remark that this paper must surely have a record number of conjec-
tures! This would not have been possible without computer programs.

Acknowledgment. I am very grateful to Baiyu Li for helping me debug sev-
eral proofs, for carrying out some computations, and for multiple proofreadings.
I thank David Liu and Hellis Tamm for proofreading, and Lila Kari for providing
references to work on combined operations.

References

1. Brzozowski, J.: Quotient complexity of regular languages. J. Autom. Lang.
Comb. 15(1/2), 71–89 (2010)

2. Brzozowski, J., Li, B.: Syntactic complexities of some classes of star-free languages.
In: Proceedings of the 14th International Workshop on Descriptional Complexity
of Formal Systems (DCFS). LNCS. Springer, Heidelberg (to appear, 2012)

3. Brzozowski, J., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and
factor-free regular languages. Theoret. Comput. Sci. (in press, 2012)

4. Brzozowski, J., Tamm, H.: Theory of Átomata. In: Mauri, G., Leporati, A. (eds.)
DLT 2011. LNCS, vol. 6795, pp. 105–116. Springer, Heidelberg (2011)

5. Brzozowski, J., Tamm, H.: Quotient complexity of atoms of regular languages. In:
Proceedings of the 16th International Conference on Developments in Language
Theory (DLT). LNCS. Springer, Heidelberg (to appear, 2012)

6. Brzozowski, J., Ye, Y.: Syntactic Complexity of Ideal and Closed Languages. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer,
Heidelberg (2011)

7. Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations:
catenation-union and catenation-intersection. Int. J. Found. Comput. Sc. 22(8),
1797–1812 (2011)

8. Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of combined operations with
two basic operations. Theoret. Comput. Sci. 437, 82–102 (2012)

9. Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations:
catenation-star and catenation-reversal. Int. J. Found. Comput. Sc. 23(1), 51–66
(2012)

10. Dénes, J.: On transformations, transformation semigroups and graphs. In: Erdös,
P., Katona, G. (eds.) Theory of Graphs. Proceedings of the Colloquium on Graph
Theory held at Tihany 1966, pp. 65–75. Akadémiai Kiado (1968)

11. Ganyushkin, O., Mazorchuk, V.: Classical Finite Transformation Semigroups: An
Introduction. Springer (2009)

12. Gao, Y., Kari, L., Yu, S.: State complexity of union and intersection of square and
reversal on k regular languages. Theoret. Comput. Sci. (in press, 2012)

13. Gao, Y., Kari, L., Yu, S.: State complexity of union and intersection of star on k
regular languages. Theoret. Comput. Sci. 429, 98–107 (2012)

24 J. Brzozowski

14. Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:
star of catenation and star of reversal. Fund. Inform. 83(1-2), 75–89 (2008)

15. Gao, Y., Yu, S.: State complexity of combined operations with union, intersection,
star, and reversal. Fund. Inform. 116, 1–12 (2012)

16. Jirásková, G., Okhotin, A.: On the state complexity of star of union and star of
intersection. Fund. Inform. 109, 1–18 (2011)

17. Jirásková, G., Šebej, J.: Note on Reversal of Binary Regular Languages. In: Holzer,
M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 212–221.
Springer, Heidelberg (2011)

18. Leiss, E.: Succinct representation of regular languages by boolean automata. The-
oret. Comput. Sci. 13, 323–330 (1981)

19. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (1970) (Russian); English translation: Soviet Math.
Dokl. 11, 1373–1375 (1970)

20. McNaughton, R., Papert, S.A.: Counter-Free Automata. M.I.T. Research Mono-
graphs, vol. 65. The MIT Press (1971)

21. Mirkin, B.G.: On dual automata. Kibernetika (Kiev) 2, 7–10 (1966) (Russian);
English translation: Cybernetics 2, 6–9 (1966)

22. Myhill, J.: Finite automata and representation of events. Wright Air Development
Center Technical Report 57–624 (1957)

23. Piccard, S.: Sur les fonctions définies dans les ensembles finis quelconques. Fund.
Math. 24, 298–301 (1935)

24. Pin, J.E.: Syntactic semigroups. In: Handbook of Formal Languages. Word, Lan-
guage, Grammar, vol. 1, pp. 679–746. Springer, New York (1997)

25. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
and Dev. 3, 114–129 (1959)

26. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. The-
oret. Comput. Sci. 383, 140–152 (2007)

27. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theoret. Comput. Sci. 320, 315–329 (2004)

28. Sierpiński, W.: Sur les suites infinies de fonctions définies dans les ensembles quel-
conques. Fund. Math. 24, 209–212 (1935)

29. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

30. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

A Formal Framework for Processes Inspired

by the Functioning of Living Cells

Andrzej Ehrenfeucht1 and Grzegorz Rozenberg1,2

1 Department of Computer Science,
University of Colorado at Boulder,

Boulder, CO 80309, U.S.A.
2 Leiden Institute of Advanced Computer Science (LIACS),

Leiden University,
Niels Bohrweg 1, 2300 RA Leiden, The Netherlands

rozenber@liacs.nl

Natural Computing is concerned with both human–designed computing inspired
by nature and computing taking place in nature. The former research strand in-
vestigates computational techniques, models of computation and computational
devices inspired by nature. The latter research strand investigates, in terms of
information processing, processes taking place in nature.

“Standard” examples of the first research strand include evolutionary computa-
tion with paradigms inspired by Darwinian evolution of species, neural computa-
tionwithparadigms inspiredby the functioning of thebrain, quantumcomputation
with paradigms inspired by quantummechanics, and molecular computation with
paradigms inspired by molecular biology.

Representative examples of the second research strand are investigations into
the computational nature of self-assembly, the computational nature of develop-
mental processes, the computational nature of brain processes, the system biol-
ogy approach to bionetworks where cellular processes are investigated in terms
of communication and interaction, and the computational nature of biochemical
reactions.

The second strand of research (which grows “explosively” now) underscores
the fact that computer science is also the fundamental science of information
processing, and as such a basic science for other scientific disciplines, such as,
e.g., biology. This point of view is shared by both computer scientists and by
scientists from natural sciences, e.g., by biologists.

We refer the reader to [8] and [10] for an insight into the fascinating, fast
growing, and genuinly interdisciplinary area of natural computing.

Formal/computational understanding of the functioning of the living cell is
one of the goals of natural computing – in the terminology presented above it
belongs to the second strand of research of natural computing. In the framework
of reaction systems one views the functioning of the living cell in terms of in-
teractions between biochemical reactions. On the level of abstraction assumed
by this framework the functioning of the living cell is determined by the pat-
tern of interactions between biochemical reactions taking place in the living cell
rather than by the specific tasks of each individual reaction. The second basic

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 25–27, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 A. Ehrenfeucht and G. Rozenberg

assumption of this framework is that the interactions between biochemical reac-
tions are driven by two main mechanisms, facilitation and inhibition: reactions
may facilitate or inhibit each other.

Reaction system is the central technical construct/model of the framework
of reaction systems. Its formulation/definition follows the philosophy outlined
above. The level of abstraction assumed for this model makes it a qualitative
rather than a quantitative model. However, it still takes into account the basic
bioenergietics of the living cell, and it takes into account the essential fact that
the living cell is an open system and thus its behaviour is influenced by its
environment.

Research topics in the framework of reaction systems are motivated either by
biological considerations or by the need to understand the underlying computa-
tions. Examples of research topics are:

(1) Relationships to various models of computation such as finite transition
systems ([2]), switching circuits ([2], boolean vector functions ([6]), and Petri
nets ([9]).

(2) Formation of modules in biochemical/developmental processes ([5]).
(3) Causalities between entities in reaction systems ([1]).
(4) The role and nature of biochemical decay ([3]).
(5) The issue of time in processes of reaction systems ([7]).
(6) Adding quantitative/numerical parameters to (the qualitative model of) re-

action systems ([4]).

We close this extended abstract by pointing out that reaction systems, which
originated as a model for investigating the functioning of the living cell, are by
now also attractive as a basic/novel model of computation.

References

1. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: A note on Causalities in Reaction
Systems. Electronic Communications of EASST 30 (2010)

2. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: A Tour of Reaction Systems. Interna-
tional Journal of Foundations of Computer Science 22(7), 1499–1517 (2011)

3. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction Systems with Duration. In:
Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS,
vol. 6610, pp. 191–202. Springer, Heidelberg (2011)

4. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Qualitative and Quanti-
tative Aspects of a Model for Processes Inspired by the Functioning of the Living
Cell. In: Katz, E. (ed.) Biomolecular Information Processing. From Logic Systems
to Smart Sensors and Actuators (to appear)

5. Ehrenfeucht, A., Rozenberg, G.: Events and Modules in Reaction Systems. Theo-
retical Computer Science 376, 3–16 (2007)

6. Ehrenfeucht, A., Rozenberg, G.: Reaction Systems. Fundamenta Informaticae 75,
263–280 (2007)

7. Ehrenfeucht, A., Rozenberg, G.: Introducing Time in Reaction Systems. Theoret-
ical Computer Science 410, 310–322 (2009)

A Formal Framework for Processes Inspired 27

8. Kari, L., Rozenberg, G.: The Many Facets of Natural Computing. Communications
of ACM 51, 72–83 (2008)

9. Kleijn, J., Koutny, M., Rozenberg, G.: Modelling Reaction Systems with Petri
Nets. In: Proceedings of BIOPPN 2011, vol. 724, pp. 36–52. CEUR-WS (2011)

10. Rozenberg, G., Bäck, T., Kok, J.: Handbook of Natural Computing. Springer,
Heidelberg (2012)

Adding Pebbles to Weighted Automata�

Paul Gastin and Benjamin Monmege

LSV, ENS Cachan, CNRS, Inria, France
firstname.lastname@lsv.ens-cachan.fr

Abstract. We extend weighted automata and weighted rational expres-
sions with 2-way moves and (reusable) pebbles. We show with examples
from natural language modeling and quantitative model-checking that
weighted expressions and automata with pebbles are more expressive
and allow much more natural and intuitive specifications than classical
ones. We extend Kleene-Schützenberger theorem showing that weighted
expressions and automata with pebbles have the same expressive power.
We focus on an efficient translation from expressions to automata. We
also prove that the evaluation problem for weighted automata can be
done very efficiently if the number of (reusable) pebbles is low.

1 Introduction

Regular expressions have always been used to specify patterns. Popular because
they propose a concise and intuitive way of denoting such patterns, they have
also a long history in the formal language community. A seminal result, known
as Kleene’s theorem, establish that the (denotational) regular expressions have
the same expressive power as the (operational) finite state automata. Efficient
translation algorithms of regular expressions into finite automata are crucial
since expressions are convenient to denote patterns and automata are amenable
to efficient algorithms. Regular expressions and finite automata have been ex-
tended in several directions, e.g., tree (walking) automata, (regular) XPath, etc.

Nowadays, quantitative models and quantitative analysis are intensively stud-
ied, resulting in a revision of the foundation of computer science where classical
yes/no answers are replaced by quantities such as probability, energy consump-
tion, reliability, cost, etc. In the 60s, Schützenberger provided a generic way of
turning qualitative into quantitative systems, starting the theory of weighted au-
tomata [31] (see [18,16,3] for recent books on this theory). Indeed, probabilistic
automata and word transducers appear as instances of that framework, which
found its way into numerous application areas such as natural language pro-
cessing, speech recognition or digital image compression. Schützenberger proved
the equivalence between weighted automata and weighted regular expressions,
extending Kleene’s theorem. Various translation algorithms can be extended
from the Boolean framework to the weighted case, see [27,29] for surveys about
these methods, and [22] which obtains Schützenberger’s theorem as a corollary
of Kleene’s theorem.
� Supported by LIA INFORMEL.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 28–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Adding Pebbles to Weighted Automata 29

In Sections 4 and 5, we extend weighted expressions and automata with 2-way
moves and pebbles. There are several motivations for these extensions. First, as
shown in Section 2 for applications in natural language processing and quanti-
tative model-checking, 2-way moves and pebbles allow more natural and more
concise descriptions of the quantitative expressions we need to evaluate. Second,
in the weighted case, 2-way and pebbles do increase the expressive power as
already observed in [8] in relation with weighted logics or in [26] in the prob-
abilistic setting. This is indeed in contrast with the Boolean case where 2-way
and pebbles do not add expressive power over words (see, e.g., [19]) even though
they allow more succinct descriptions (see, e.g., [4]). Our work is also inspired by
pebble tree-walking automata and in particular their links with powerful logics,
XPath formalisms and caterpillar expressions on trees [17,10,6,30,5].

In Sections 6 and 7, we generalize Kleene and Schützenberger theorems to
weighted expressions and automata with 2-way moves and pebbles. We establish
their expressive power equivalence by providing effective translations in both
directions. Showing how to transform an operational automaton into an equiv-
alent denotational expression is indeed very interesting from a theoretical point
of view, but is less useful in practice. On the other hand, we need highly efficient
translations from the convenient denotational formalism of expressions to oper-
ational automata which, as stated above, are amenable to efficient algorithms.
Efficiency is measured both wrt. the size of the resulting automaton and wrt. the
space and time complexities of the translation. We show that, Glushkov’s [20] or
Berry-Sethi [2] translations, which are among the best ones in the Boolean case,
can be extended to weighted expressions with 2-may moves and pebbles. The
constructions for the rational operations (sum, product, star) can be adapted
easily to cope with 2-way moves, even though the correctness proofs are more
involved and require new theoretical grounds such as series over a partial monoid
as explained in Section 4.1. The main novelty in Sections 6 and 7 is indeed the
treatment of pebbles in the translations between expressions and automata.

To complete the picture, we study in Section 8 the evaluation problem of a
weighted automaton with 2-way moves and reusable pebbles over a given word.
The algorithm is polynomial in the size of the word, where the degree is 1 plus
the number of reusable pebbles. We can even decrease the degree by 1 for strongly
layered automata. This applies when we only have one reusable pebble, and we
obtain an algorithm which is linear in the size of the input word. This is in
particular the case for automata derived from weighted LTL.

The paper focuses on intuitive explanations and examples for a better un-
derstanding of weighted expressions with 2-way moves and pebbles, and of the
translations between automata and expressions. Most proofs are omitted and
will appear in a longer version.

2 Motivations

We give in this section two motivating examples for studying weighted expres-
sions and automata with 2-way moves and pebbles.

30 P. Gastin and B. Monmege

2.1 Language Modeling

Since decades, weighted automata have been extensively used in Natural Lan-
guage Processing (see [21]), in particular for automatic translation, speech recog-
nition or transliteration. All these tasks have in common to split the problem
into independent parts, certain directly related to the specific task and others
related to the knowledge of the current language. For example, in the trans-
lation task from French sentences to English sentences, one splits the problem
into first knowing translation of single words and then modeling English sen-
tences (knowledge which is independent from the translation task). The second
part, namely to know whether a sequence of words is a good English sentence,
is known as language modeling. Often this knowledge is learned from a large
corpus of English texts, and stored into a formal model, e.g., a weighted finite
state automaton representing the probability distribution P of well-formed En-
glish sentences. The translation task is then resolved by first generating several
English sentences from the original French one (due to ambiguity of the word-
by-word translation task), and then choosing among this set of sentences the
ones with highest probability.

One broadly used language model is the n-gram model, where the probability
of a word in a sentence depends only on the previous n− 1 words: for example
in a 1-gram model, only the individual word frequencies are relevant to generate
well-formed English sentences, whereas in a 2-gram model, the probability of
a word depends on the very same frequency distribution and also the previous
word. To formally describe these models, and further study them, let us define
them using regular expressions. Let D denote the dictionary of words in the
language. Suppose we are given the conditional probability distributions P(un |
u1, . . . , un−1) in the n-gram model (with ui ∈ D for all i). The probability of
a sentence (ui)1≤i≤m ∈ Dm can be given by the following weighted regular
expression in a 1-gram model and a 3-gram model:

E1 =
(∑

u∈D

uP(u)
)∗

E3 =→→
(∑

u,v,w∈D

←←uvwP(w | u, v)
)∗

where symbols → and ← denote a right or left move, respectively, no matter
what word it is reading. Expression E1 is a classical weighted regular expression
where the Kleene star iterates the computation of the inner expression, which
here computes the probability of the current word u. Expression E3 has the
opportunity to move forward and backward: this allows to easily recover the
context whereas a 1-way automaton would have to store the context in its states.
Notice that expression E3 is quite readable and intuitive. One could write an
equivalent 1-way expression, but imagine how intricate it would be since positions
would have to encode the context, i.e., the last two words. This is an important
motivation for studying 2-way expressions and automata.

Actually, expression E3 is not small since the sum hides the very big set
D3: for a dictionary of size 1 million, this seems already unpracticable. But in
practice, a much smaller expression could be sufficient. First, for many words,
the frequency distribution of the word w is a sufficiently good approximation of

Adding Pebbles to Weighted Automata 31

English? French?

OK KO OK KOTaskEn TaskFr

↓
x

↓
x↑ ↑ ↑ ↑

→

→ → →

Fig. 1. Pebble automaton for the multi-language modeling task

the conditional probability P(w | u, v). Let us denote D0 this set of words. For
instance, the probability of observing the word the may not really depend on
the previous words. Then, let D1 be the set of words (disjoint from D0) such
that only the previous word is necessary to describe the probability. Finally, let
D2 be the rest of the dictionary. Now, we may replace expression E3 by the
following expression, whose size is much smaller if D0 and D1 contain enough
words:(∑

w∈D0

wP(w) +
∑

w∈D1,v∈D

←vwP(w | v) +
∑

w∈D2,u,v∈D

←←uvwP(w | u, v)
)∗

To motivate the introduction of pebbles, let us add internationalization, which
means that the user has the ability to write/speak alternately in two or more
languages, e.g., English and French. All tasks such as automatic translation or
speech recognition are now more complex since there is no a priori knowledge of
the current language of the speaker. Again, splitting the problem into indepen-
dent parts, we have to know the probability distributions PL for every involved
language L, and, assuming a current language L, we should be able to solve the
language processing task with a procedure TaskL. Then, before processing the
next word, we start a computation which re-reads the current prefix of the text
in order to compute using PL the probability that the current language L is still
valid. The next word is then processed with the current or the alternate language
(see Figure 1). In order to compute the probability that the current language is
still valid, we mark the current position with a pebble (↓x) and read the current
prefix of the text with the automaton modeling the current language. Then we
return to the marked position and lift the pebble (↑) in order to resume the top
level computation.

2.2 Weighted Linear Temporal Logic

Whereas weighted automata and weighted expressions have been extensively
studied, logical formalisms adapted to the weighted case still need deeper under-
standing. This is especially true for weighted linear temporal logics [23], whereas
weighted branching temporal logics have received more attention [13,12,25,7].

32 P. Gastin and B. Monmege

We would like to illustrate that using pebbles in weighted expressions or
automata is a natural and powerful way to deal with nesting in LTL formulas.
For this motivating example, we only consider finite words and the probabilistic
setting. Temporal logics implicitly use a free variable to denote the position where
the formula has to be evaluated. We will mark this position with a pebble, say
x, in expressions Eϕ(x) or automata Aϕ(x) associated with an LTL formula ϕ.

Consider an LTL formula Fϕ, for Finally ϕ. Given a word u and a position
i in the word, we want to compute the probability P(Fϕ, u, i) that ϕ holds on
u at position i. For instance, with ϕ = 1

3a, we should compute P(Fϕ, abba, 0) =
1
3 +

2
3 (0+

2
3 (0+

2
3 (

1
3 +0))): either ϕ is satisfied immediately with probability 1

3 or
it is not (probability 2

3) and (product) it should be satisfied later. More generally,
we have

P(Fϕ, u, i) = P(ϕ, u, i) + P(¬ϕ, u, i)
(
P(ϕ, u, i+ 1)

+ P(¬ϕ, u, i + 1)
(
P(ϕ, u, i+ 2) + · · ·

))
.

For every LTL formula ϕ, we want to give an equivalent expression Eϕ(x) which
evaluates to P(ϕ, u, i) over word u when pebble x marks position i. For Finally
ϕ, we set

EFϕ(x) = �?→∗x?
(
(y!E¬ϕ(y))→

)∗
(y!Eϕ(y))→∗�?

= �?→∗x?
∑
n≥0

(
(y!E¬ϕ(y))→

)n
(y!Eϕ(y))→∗�? .

The expression starts at the beginning of the word (�?), moves right (→∗) until
it sees the marked position (x?), for each possible n ≥ 0 it iterates n times
the computation of ¬ϕ with the current position marked with y (y!E¬ϕ(y)) and
moving right between two computations, and it finally computes ϕ with y!Eϕ(y)
before moving to the end of the word (→∗�?).

Similarly, for Globally ϕ (Gϕ), we have P(Gϕ, u, i) =
∏

j≥i P(ϕ, u, j), leading
to the simpler expression

EGϕ(x) = �?→∗x?
(
(y!Eϕ(y))→

)∗
�? .

Finally, based on the equivalence ϕUψ ≡ (¬ψ ∧ ϕ)Uψ, the expression for the
Until modality is

EϕUψ(x) = �?→∗x?
(
(y!(E¬ψ(y)←∗Eϕ(y)))→

)∗
(y!Eψ(y))→∗�? .

In terms of automata, let us assume that for every formula ϕ, there is an au-
tomaton Aϕ with 2 designated terminal states {OK,KO}, such that runs ending
in OK computes expression Eϕ and those ending in KO computes expression
E¬ϕ. We have depicted below automata for the modalities Finally and Globally.

Adding Pebbles to Weighted Automata 33

�?

Aϕ(y)
OK

KO

→

x? →

↓
y

�?↑

�?↑

→

�?

Aϕ(y)
OK

KO

→

x? →

↓
y

�?↑

3 Preliminaries

Words. The set of non-empty words over a finite alphabet A is denoted A+. We
write u = u0 · · ·un−1 ∈ A+ a non-empty word of length |u| = n ≥ 1 with ui ∈ A
for 0 ≤ i < |u|. The set of positions of u is pos(u) = {0, 1, . . . , |u|}. In particular,
we include |u| in pos(u) even though the last letter is on position |u| − 1.

Semirings. A semiring is a set S equipped with two binary internal operations
denoted + and ×, and two neutral elements 0 and 1 such that (S,+, 0) is a
commutative monoid, (S,×, 1) is a monoid, × distributes over + and 0 × s =
s × 0 = 0 for every s ∈ S. If the monoid (S,×, 1) is commutative, the semiring
itself is called commutative. See [15,27] for more discussions about semirings,
especially complete and continuous ones, as we describe now.

A semiring S is complete if every family (si)i∈I of elements of S over an
arbitrary indexed set I is summable to some element in S denoted

∑
i∈I si and

called sum of the family, such that the following conditions are satisfied:

–
∑

i∈∅ si = 0,
∑

i∈{1} si = s1 and
∑

i∈{1,2} si = s1 + s2;

– if I =
⋃

j∈J Ij is a partition,
∑

j∈J

(∑
i∈Ij

si
)
=
∑

i∈I si;

–
(∑

i∈I si
)
×
(∑

j∈J tj
)
=
∑

(i,j)∈I×J (si × tj).

Intuitively, this means that it is possible to define infinite sums that extends the
binary addition and satisfies infinite versions of associativity and distributivity.

In a complete semiring, for every s ∈ S, the element s∗ =
∑

i∈N
si exists

(where si is defined recursively by s0 = 1 and si+1 = si × s). Here are some
examples of complete semirings.

– The Boolean semiring ({0, 1},∨,∧, 0, 1) with
∑

defined as an infinite dis-
junction.

– (R≥0 ∪ {∞},+,×, 0, 1) with
∑

defined as usual for positive (not necessarily
convergent) series: in particular, s∗ = ∞ if s ≥ 1 and s∗ = 1/(1 − s) if
0 ≤ s < 1.

– (N ∪ {∞},+,×, 0, 1) as a complete subsemiring of the previous one.
– (R∪ {−∞},min,+,−∞, 0) with

∑
= inf and (R ∪ {∞},max,+,∞, 0) with∑

= sup.
– Complete lattices such as ([0, 1],min,max, 0, 1).
– The semiring of languages over an alphabet A: (2A

∗
,∪,+, ∅, {ε}) with

∑
defined as (infinite) union.

34 P. Gastin and B. Monmege

In this paper, we consider continuous semirings which are complete semirings
in which infinite sums can be approximated by finite partial sums. Formally, a
complete semiring S is continuous if the relation ≤ defined over S by a ≤ b if
b = a + c for some c ∈ S is an order relation; and for every family (si)i∈I in S,
the sum

∑
i∈I si is the least upper bound of the finite sums

∑
i∈J si for J ⊆ I

finite. All the above complete semirings are also continuous.

Series and Polynomials. Let Z be a set. A series f over Z is a map f : Z → S.
We denote by S〈〈Z〉〉 the set of series over Z with coefficients in S. The support
of a series f ∈ S〈〈Z〉〉 is the set {z ∈ Z | f(z)
= 0}. A series with a finite support
is called a polynomial. We denote by S〈Z〉 the set of polynomials over Z with
coefficients in S.

We can lift addition from S to S〈〈Z〉〉 pointwise by (f + g)(z) = f(z) + g(z)
for all z ∈ Z. Then, (S〈〈Z〉〉,+, 0) is a commutative monoid where 0 is the
series mapping every element z ∈ Z to 0. If Z is a monoid and the semiring is
complete, we can also define the (Cauchy) product of two series by (f × g)(z) =∑

z=xy f(x)g(y) for all z ∈ Z. This sum may be infinite, but is well-defined
since the semiring is complete. The Cauchy product is associative and admits as
unit the characteristic function (denoted 1) of the neutral element of Z. Hence,
(S〈〈Z〉〉,+,×, 0, 1) is a semiring. When S is continuous, we can also lift infinite
sums pointwise to S〈〈Z〉〉 which becomes a continuous semiring.

4 Weighted Expressions with Pebbles

The syntax of our weighted expressions is carefully chosen so that an effi-
cient translation to weighted automata can be obtained, essentially based on
Glushkov’s construction as we will see in Section 7. Formally, for a (continuous)
semiring S, an alphabet A and a set Peb of pebbles, the syntax is given by the
grammar:

E ::= s | ϕ | → | ← | x!E | E + E | E ·E | E+

ϕ ::= a? | �? | �? | x? | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

with s ∈ S, a ∈ A, x ∈ Peb. We denote by Test the set of test formulas ϕ defined
by the second line of the grammar above. For instance, one can check with �?
and �? whether we are at the beginning or at the end of the word. This is indeed
useful since we have 2-way expressions. We denote by pebWE the set of weighted
expressions with pebbles. Below, we give the intuitive meaning of our weighted
expressions. We start without pebbles (i.e., without x!E). Then, we introduce
pebbles. The formal semantics is given in Table 1.

Notice that from the irreflexive iteration E+ =
∑

n>0E
n, we get also the

classical Kleene star: E∗ def
= 1 + E+. Indeed, we also have E+ = E · E∗ but if

we apply Glushkov’s construction (blindly) to E ·E∗ we get an automaton with
twice the number of states needed for E+. This is basically why we prefer to
have E+ as a primary construct.

Adding Pebbles to Weighted Automata 35

We have chosen to distinguish between checking the current position with
some test ϕ and moving to the right or left position with → and ←. This is
in the spirit of XPath in trees. This allows to write concise expressions, e.g.,
E = →+a?←+b?→+c?←+d?→+ to describe patterns consisting of an a having
in its past a b, having in its future a c, having in its past a d. In the Boolean
semantics, this expression defines words having this pattern. In the semiring
N of natural numbers, the expression counts the number of occurrences of the
pattern, e.g., [[E]](cabcdbadcbab) = 8. Indeed we may write an equivalent 1-way
expression for this pattern but it would be less concise and harder to decipher
(see e.g., [4] for succinctness results in the Boolean case).

Let u = u0u1 · · ·u|u|−1 ∈ A+. A test ϕ will be evaluated at a position i ∈
pos(u): �? holds if i = 0, �? holds if i = |u| and a? holds if i < |u| and ui = a.

With the 2-way mechanism, a sub-expression such as a?←+b?→+c?←+d? may
start from position i, end in position j and still visit the whole word. In order
to inductively define the semantics of expressions, we assign to triples (u, i, j) a
value [[E]](u, i, j) ∈ S.

It is also convenient to check-and-move so we introduce the macros a
def
= a?→

and a
def
= a?←. Then, we can write →∗ blue←+ �?→∗ black→∗ to define words

having both blue and black as subwords. This allows to write classical (1-way)
regular expressions such as (ab)+aa. In order to get the classical semantics for
usual 1-way expressions, the evaluation of an expression on a whole word is
defined as [[E]](u) = [[E]](u, 0, |u|). For instance, [[a]](a) = [[a?→]](a, 0, 1) = 1,
[[→∗a→∗]](baaba) = [[→∗a?→→∗]](baaba, 0, 5) = 3, and [[(2→)+]](u) = 2|u|.

Our 2-way expressions are uncomparable with expressions over the free group.
Indeed, the expression aāb always evaluates to 0 in our setting, whereas over the
free group it would evaluate to 1 on b = aab.

Notice that with the 2-way mechanism we may write E = E1 �?←∗ �?E2

to compute the product (intersection in the boolean semantics) of the values
computed by E1 and E2: [[E]](u) = [[E1]](u)× [[E2]](u).

The 2-way mechanism together with iteration gives rise to infinite sums. This
may be useful for probabilistic systems. For instance, in the continuous semiring
(R∞

≥0,+,×, 0, 1), consider the expression E = (¬�?(s→+(1−s)¬�?←))∗ �? with

0 < s < 1 some probability. Expression E describes a random walk1 and it will
be used again in Section 5. Let F = ¬�?(s→+(1− s)¬�?←) so that E = F ∗ �?.
Let u be a word of length m ≥ 2. We can easily see that for all i, j ∈ pos(u)
and all n > |j − i|, the expression Fn computes a positive value on (u, i, j).
Therefore, the expression F ∗ computes an infinite sum on (u, i, j). In the present
case (0 < s < 1), the series

∑
n≥0[[F

n]](u, i, j) converges and [[F ∗]](u, i, j) ∈ R≥0.
On the other hand, for the expression G = ¬�?→ + ¬�?←, we can check that
the series

∑
n≥0[[G

n]](u, i, j) diverges and we get [[G∗]](u, i, j) = ∞. Since we
are considering complete semirings, infinite sums exist and the semantics of an
iteration E∗ or E+ is always well-defined.

1 With α = 1−s
s

, one can show that [[E]](u, 0, |u|) = 1

1+α+...+α|u| .

36 P. Gastin and B. Monmege

Table 1. Semantics of weighted expressions

[[s]](u, σ, i, j) =

{
s if j = i

0 otherwise
[[ϕ]](u, σ, i, j) =

{
1 if j = i ∧ u, σ, i |= ϕ

0 otherwise

[[→]](u, σ, i, j) =

{
1 if j = i+ 1

0 otherwise
[[←]](u, σ, i, j) =

{
1 if j = i− 1

0 otherwise

[[x!E]](u, σ, i, j) =

{
[[E]](u, σ[x �→ i], 0, |u|) if j = i < |u|
0 otherwise

[[E + F]](u, σ, i, j) = [[E]](u, σ, i, j) + [[F]](u, σ, i, j)

[[E · F]](u, σ, i, j) =
∑

k∈pos(u)

[[E]](u, σ, i, k)× [[F]](u, σ, k, j)

[[E+]](u, σ, i, j) =
∑
n>0

[[En]](u, σ, i, j)

We explain now the pebble mechanism used in our expressions. The construct
x!E marks with x the current position in u and evaluates E on the marked word,
from beginning to end. Indeed, we can use x? in E to test whether the current
position is marked. For instance, consider

E =→+ a?x!
(
(¬x?→)∗ b? (¬x?→)+ c?←+ d?→+

)
→∗

which is a variant of our first example. Here the pattern consists of an a for
which the corresponding prefix contains a b, having in its future a c, having in
its past a d. In particular, the c must be on the left of the current a which is
marked with x. Hence, we get [[E]](cabcdbadcbab) = 4.

As another example, on a word u, the expression (x!((2→)+)→)+ computes

2|u|
2

over the natural semiring2. Actually, the pebble is not tested in this expres-
sion: it is only used to restart the computation |u| times.

We give now the formal semantics of tests and of pebWE. For each word
u ∈ A+, valuation σ : Peb → pos(u) and position i ∈ pos(u), the semantics
u, σ, i |= ϕ of tests is defined inductively. The Boolean connectives are as usual.
For the atoms, �? holds if i = 0, �? holds if i = |u|, a? holds if i < |u| and ui = a
and x? holds if σ(x) = i < |u| (the last position |u| cannot be marked).

A marked word is a tuple (u, σ, i, j) where u ∈ A+ is a word, σ : Peb→ pos(u)
is a valuation and i, j ∈ pos(u) are positions. We denote by Mk(A+) the set of
marked words (we will see below that it forms a partial monoid).

The semantics3 of a pebWE E is a map [[E]] : Mk(A+) → S, i.e., a series
over marked words: [[E]] ∈ S〈〈Mk(A+)〉〉. It is is defined in Table 1. Note that,

2 This function cannot be computed without pebble by a classical 1-way weighted
expression. We can see this using Schützenberger’s theorem since weighted automata
only compute values in 2O(|u|).

3 We may also define the semantics [[E]]V of an expression E using valuations over a
subset V ⊆ Peb, provided it contains the free pebbles of E.

Adding Pebbles to Weighted Automata 37

since we are considering complete semirings, the infinite sum in the semantics
of E+ is always well-defined. If the expression has no free pebbles then we omit
the valuation and simply write [[E]](u, i, j). For whole words we let [[E]](u, σ) =
[[E]](u, σ, 0, |u|) and [[E]](u) = [[E]](u, 0, |u|) as explained above.

Notice that for tests ϕ1 and ϕ2, the expressions ϕ1 ∧ ϕ2 and ϕ1 · ϕ2 are
equivalent, but ϕ1∨ϕ2 and ϕ1+ϕ2 are not equivalent in general. One can check
that ϕ1 + ¬ϕ1 · ϕ2 is equivalent to the disjunction ϕ1 ∨ ϕ2. Hence, conjunctions
and disjunctions in tests are not necessary for the expressive power of pebWE
and they could have been defined as macros.

Similar to the star-height of an expression, we define the pebble-depth:

pebd(s) = pebd(ϕ) = pebd(←) = pebd(→) = 0

pebd(E + F) = pebd(E · F) = max(pebd(E), pebd(F))

pebd(E+) = pebd(E) pebd(x!E) = 1 + pebd(E) .

4.1 Series Over a Partial Monoid

We show in this subsection that the set of marked words can be endowed with
a partial monoid structure which allows to define a Cauchy product on series in
S〈〈Mk(A+)〉〉. Since the sums can be lifted pointwise from S to series over S, we
show that S〈〈Mk(A+)〉〉 is actually a continuous semiring. Indeed, the semantics
defined for sum, product and iteration of pebWE in Table 1 corresponds to sum,
Cauchy product and star in the continuous semiring S〈〈Mk(A+)〉〉. This more
formal view of the semantics of pebWE is especially useful for proofs, but since
proofs are omitted in this paper this section may be skipped in a first reading.

Pebble weighted expressions and pebble weighted automata introduce two new
difficulties. The first one comes from the 2-way navigation mechanism which pre-
vents the computation of the behavior of an expression (or an automaton) using
the concatenation of words in the underlying monoid, here the free monoid A+.
The second one comes indeed from pebbles which allow to restart the compu-
tation. To address both problems, we had to fix the word when defining the
semantics and we no more use the monoid structure of A+. Here, we define a
partial monoid structure on the marked words and show how this allows us to
reuse existing results from the classical theory of rational series.

A partial monoid is a triple (Z, ·, Y) where Z is the set of elements, · : Z2 → Z
is a partially defined associative concatenation4 and Y ⊆ Z is a set of partial
units satisfying:

∀x, z ∈ Z ∀y ∈ Y x · y = z =⇒ x = z

∀x, z ∈ Z ∀y ∈ Y y · x = z =⇒ x = z

∀z ∈ Z ∃!y ∈ Y y · z = z

∀z ∈ Z ∃!y ∈ Y z · y = z .

4 For all x, y, z ∈ Z, (x · y) · z is defined iff x · (y · z) is defined, and in this case
(x · y) · z = x · (y · z).

38 P. Gastin and B. Monmege

Indeed, a classical monoid is a partial monoid with the concatenation being
totally defined and with the set of partial units being the singleton set consisting
of the (real) unit.

We are especially interested in the partial monoid (Mk(A+), ·,Unit(A+)) of
marked words over A+ where

Mk(A+) = {(u, σ, i, j) | u ∈ A+, σ : Peb→ pos(u), i, j ∈ pos(u)}
Unit(A+) = {(u, σ, i, i) | u ∈ A+, σ : Peb→ pos(u), i ∈ pos(u)}

and the partial concatenation is defined for all u ∈ A+, σ : Peb → pos(u) and
i, j, k ∈ pos(u) by (u, σ, i, k) · (u, σ, k, j) = (u, σ, i, j) and it is undefined in all
other cases. We can see that this partial concatenation is associative and that
the above requirements for partial units are satisfied.

Note that a partial monoid needs not be graded and in particular, the partial
monoid of marked words defined above is not graded. Hence, we cannot apply
directly the theory of rational series over graded monoids as developed e.g. in
[28]. Instead, we will use the theory of rational series over a continuous semiring
S (see e.g., [27, III.5]). We first show that, even if the monoid Z, and more
specifically Mk(A+), is only partial, we can define (infinite) sums and (Cauchy)
product on series over Z so that S〈〈Z〉〉 forms a continuous semiring.

Let S be a continuous semiring and (Z, ·, Y) be a partial monoid. As described
in Section 3, infinite sums may be lifted from S to series in S〈〈Z〉〉. We may also
define the Cauchy product as usual. Note that, even though the concatenation
in Z may be partially defined, the Cauchy product in S〈〈Z〉〉 is always defined
by (f × g)(z) =

∑
x,y∈Z,z=x·y f(x) × g(y) for f, g ∈ S〈〈Z〉〉 and z ∈ Z. The sum

ranges over all pairs (x, y) for which the concatenation is defined and such that
x · y = z. The sum may be finite or infinite but it must be nonempty since we
have the left and right partial units for z. Finally, we let 1Y be the characteristic
function of the set Y of partial units of Z and we can easily check that it is a
unit for the Cauchy product. Mimicking the proof for classical monoids, we can
show the following.

Proposition 1. If S is a continuous semiring and (Z, ·, Y) is a partial monoid
then the series S〈〈Z〉〉 forms a continuous semiring (S〈〈Z〉〉,+,×, 0, 1Y).

This allows to apply the theory of rational series over continuous semirings (see
e.g., [27, III.5]). In particular, a star operation may be defined.

We can check that the semantics of pebWE in the continuous semiring
S〈〈Mk(A+)〉〉 as defined in Table 1 satisfies

[[E + F]] = [[E]] + [[F]] [[E∗]] = [[E]]∗

[[E · F]] = [[E]]× [[F]] [[E+]] = [[E]]+ .

Adding Pebbles to Weighted Automata 39

1
�?

5

2 3

4

(2a? + 3b?)→

c? ↓
x

¬x?→

7→

↑

→

I =
(
5 0 0 0

)

M =

⎛
⎜⎜⎝

(2a? + 3b?)→ c? ↓x 0 0
0 ¬x?→ 7→ 0
0 0 0 ↑
→ 0 0 0

⎞
⎟⎟⎠

T =

⎛
⎜⎜⎝

�?
0
0
0

⎞
⎟⎟⎠

Fig. 2. A pebWA and its matrix representation

5 Weighted Automata with Pebbles

We fix a finite set Peb of pebbles and a (continuous) semiring S. We denote by
Move = {←,→, ↑} ∪ {↓x | x ∈ Peb} the set of possible moves of an automaton.

A pebble weighted automaton (pebWA) is a tuple A = (Q,A, I,M, T) with Q
a finite set of states, A a finite alphabet, I ∈ SQ a row vector assigning an initial
weight to each state, T ∈ S〈Test〉Q a column vector assigning to each state a
polynomial over tests, and M ∈ (S〈Test〉〈Move〉)Q×Q the transition matrix.

We explain first the semantics of a pebWA on the automaton A1 represented
in Figure 2 with its matrix representation on the right.

Intuitively, we enter state 1 with weight 5. We can loop on state 1 if the
current letter is either an a or a b, in which case we move right in the word. The
weight of this loop is 2 or 3 depending on the current letter. If A1 reads letter
c while being in state 1, then it drops pebble x and restarts at the beginning of
the word in state 2. There, it moves right in the word, either staying in state 2
with weight 1 (provided the current position does not carry the pebble), or going
to state 3 with weight 7. Once we reach state 3, we must lift the pebble and go
to state 4. Then, we move right coming back to state 1.

An accepting run of A1 must start in state 1 and end in state 1. The weight of
a run is the product of the weights of its transitions. Over the natural semiring
(N∞,+,×, 0, 1), each accepting run of A1 has weight 5 × 2|u|a × 3|u|b × 7|u|c .
The non-deterministic choice in state 2 induces several runs. The semantics of
the automaton is as usual the sum of the weights of all accepting runs. In our
example,

[[A1]](u) = 5× 2|u|a × 3|u|b × 7|u|c ×
∏

i∈pos(u)
ui=c

(i + 1) .

Consider also the 2-way automaton A2 over the semiring (R∞
≥0,+,×, 0, 1), with

0 < s < 1. The matrix M of A2 admits as unique coefficient the polynomial
s¬�?→ + (1 − s) (¬�? ∧ ¬�?)←, which, for clarity, we preferred to draw with

40 P. Gastin and B. Monmege

A2 =

s¬�?→

(1− s) (¬�? ∧ ¬�?)←

�?
0 1 2 n− 2 n− 1 n

s

1− s

s

1− s

. . .
s

1− s

s

Fig. 3. Markov Chain obtained by synchronizing A2 with a word of length n

two loops in Figure 3. This is a compact and elegant way of representing a
Markov chain describing a random walk, see Figure 3. The same example was
described with a pebWE in Section 4.

As for expressions, we allow macros in M and T : for a ∈ A, we use a def
= a? ·→

and a
def
= a? · ←, for d ∈ Move, we write d instead of tt? · d. For instance, the

label of the loop on state 1 of A1 could be written 2a+ 3b.
For each p, q ∈ Q and d ∈ Move, we denote by Md

p,q ∈ S〈Test〉 the coefficient

of move d in Mp,q. For instance, M
↓x
1,2 = c? in A1. We collect these coefficients

in matrices Md = (Md
p,q) ∈ (S〈Test〉)Q×Q.

We turn now to the formal definition of the semantics of pebWA. A config-
uration of A is a tuple (u, σ, q, i, π) with u ∈ A+ a word, σ : Peb → pos(u)
a valuation, q ∈ Q the current state, i ∈ pos(u) the current position, and
π ∈ (Peb × pos(u))∗ the stack of pebbles currently dropped. Since pebbles are
reusable, the stack of pebbles may contain several occurrences of the same peb-
ble dropped on different positions. In this case, only the last occurrence of each
pebble is still visible for the automaton, older occurrences being hidden. This
mechanism mimics the ability in pebWE to reuse the same pebble x in nested
expressions x!E. We extract the visible pebbles from the stack π of dropped peb-
bles and the underlying valuation σ, hence defining a valuation σπ by induction
over π by σε = σ and σπ(x,i) = σπ [x �→ i].

We define the semantics of pebWA in terms of a weighted transition system
TS(A) whose locations are the configurations of the automaton. The weight of
(u, σ, p, i, π) � (u, σ, q, j, π′) is defined by

[[M→
p,q]](u, σπ, i, i) if j = i+ 1 and π′ = π (S1)

[[M←
p,q]](u, σπ, i, i) if j = i− 1 and π′ = π (S2)

[[M↓x
p,q]](u, σπ, i, i) if j = 0, i < |u| and π′ = π(x, i) (S3)

[[M↑
p,q]](u, σπ, i, i) if π = π′(y, j) for some y ∈ Peb (S4)

where [[Md
p,q]] is the semantics of Md

p,q ∈ S〈Test〉, seen as a pebWE. Note from
(S3) that a pebble cannot be dropped on position |u| in agreement with the
convention adopted for weighted expressions.

Adding Pebbles to Weighted Automata 41

The set of transitions of TS(A) consists of those (u, σ, p, i, π) � (u, σ, q, j, π′)
with a non-zero weight: hence TS(A) is a disjoint union of transition systems
depending on the pair (u, σ) considered. A run of A is a path ρ in TS(A). Its
weight is the product of the weights of its transitions from left to right.

Given a marked word (u, σ, i, j) ∈Mk(A+) and two states p, q ∈ Q, we define
[[Ap,q]](u, σ, i, j) =

∑
ρ weight(ρ) where the sum ranges over all runs ρ from con-

figuration (u, σ, p, i, ε) to configuration (u, σ, q, j, ε). This sum could be infinite,
but is well defined since the semiring is complete. The semantics of A also use
the initial and terminal weights:

[[A]](u, σ, i, j) =
∑

p,q∈Q

Ip × [[Ap,q]](u, σ, i, j)× [[Tq]](u, σ, j, j) .

When reading the whole word, we simply write [[A]](u, σ) for [[A]](u, σ, 0, |u|).
Note that we can compute the set of free pebbles of an automaton, i.e., the set
of pebbles x that may be tested with x? before being dropped with ↓x. If the
automaton has no free pebble, then the underlying valuation σ is not necessary
and we simply write [[A]](u) for the semantics.

Layered automata. As observed in automaton A1, it is handy, if possible, to
visualize a pebWA in terms of layers, where each layer contains subruns where
no pebble is dropped or lifted. We will require in the following that there are a
finite number of such layers: intuitively, this means that the depth of the current
stack of pebbles is bounded by a fixed parameter K. Remark however that the
stack may contain several occurrences of the same pebble. Also, due to the 2-way
mechanism, runs may still be of unbounded size. More formally, we assume given
a function � : Q → {0, . . . ,K} mapping each state to its layer. The top layer is
K so �(q) is the number of pebbles that can still be dropped on top of the stack.
We want to start and end the computation at the top layer so we suppose that
for all q ∈ Q, if Iq
= 0 or Tq
= 0 then �(q) = K. To maintain syntactically
the condition along every possible run, we also suppose for all p, q ∈ Q that if
M←

p,q
= 0 or M→
p,q
= 0 then �(q) = �(p); if M↑

p,q
= 0 then �(q) = �(p) + 1; and

for all x ∈ Peb, if M
↓x
p,q
= 0 then �(q) = �(p) − 1. An automaton A verifying

these conditions will be called K-layered in the following. If we order states
by decreasing layers, a 2-layered automaton A = (Q,A, I,M, T) is thus of the
form

I =
(

I(2) 0 0

)
, M =

⎛⎜⎜⎜⎜⎜⎜⎝
N (2) D(2) 0

L(1) N (1) D(1)

0 L(0) N (0)

⎞⎟⎟⎟⎟⎟⎟⎠ , T =

⎛⎜⎜⎜⎜⎜⎜⎝
T (2)

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ (1)

42 P. Gastin and B. Monmege

↓
x

2→
2→

�? ↑

→

↓
x

(2→)+
�? ↑

→

x!(2→)+

→

Fig. 4. A pebWA and two equivalent generalized pebWA

where entries in N (i) are in S〈Test〉〈{←,→}〉, entries in L(i) are in S〈Test〉〈{↑}〉,
and entries in D(i) are in S〈Test〉〈{↓x | x ∈ Peb}〉. The entries of I(2) and T (2)

are as usual in S and S〈Test〉 respectively.

6 From Automata to Expressions

In this section, we prove that everyK-layered pebble weighted automaton admits
an equivalent pebble weighted expression. We first show that, for 2-way weighted
automata (or 0-layered pebWA), we can use the classical constructions, e.g., the
state elimination method of Brzozowski and McCluskey [11], the procedure of
McNaughton and Yamada [24] and the recursive algorithm [14]. We refer to the
survey of Sakarovitch [29, Section 6.2] where these methods are presented and
compared for 1-way weighted automata.

In the state elimination method, states are progressively suppressed and tran-
sitions are labeled with (weighted) rational expressions. To deal with pebbles,
we will also eliminate the lower layers and subsume their computations with
expressions of the form x!E. Therefore, it is convenient to consider automata
allowing pebWE in the labels of transitions.

We first introduce these generalized pebWA. Then, we show how to compute
pebWE equivalent to the behaviors of 0-layered generalized pebWA. Finally, we
explain how to deal with drop and lift moves of K-layered automata.

6.1 Generalized Pebble Automata

We start with an example presented in Figure 4. The loop of the left automa-
ton gives rise to the iteration (2→)+ on the middle automaton. Moreover, the
drop/lift process has even been replaced with the x!− feature of pebWE in the
right automaton. This gives already the intuition of the construction of a pebWE
equivalent to a pebWA. Note that the right automaton has a single layer whereas
the left and middle ones have 2 layers.

Formally, a generalized pebWA (GpebWA) is a tuple A = (Q,A, I,M, T)
with I ∈ SQ, T ∈ S〈Test〉Q and M ∈ (pebWE + S〈Test〉〈Move \ {←,→}〉)Q×Q.
Intuitively, the entries M←

p,q · ← + M→
p,q · → have been extended to arbitrary

pebWE MpebWE
p,q . The semantics of pebWA is easily extended to GpebWA. In

fact, we only have to replace (S1-S2) by (G1-2) below:

[[MpebWE
p,q]](u, σπ , i, j) if π′ = π (G1-2)

Adding Pebbles to Weighted Automata 43

The definition of K-layered automata can easily be extended to GpebWA. Lay-
ered automata are still of the form given in (1), the only difference being that
the entries of matrices N (i) are now pebWE instead of simple polynomials in
S〈Test〉〈{←,→}〉. It is clear from the definition that every (K-layered) pebWA
can be seen as a (K-layered) GpebWA.

6.2 Automata to Expressions: 0-layered Generalized pebWA

We deal in this section with GpebWA A = (Q,A, I,M, T) with no drop or lift
transitions, i.e., 0-layered GpebWA where the entries of the transition matrix
M are all pebWE.

Theorem 2. Let A = (Q,A, I,M, T) be a 0-layered GpebWA. We can construct
a matrix Φ(M) ∈ pebWEQ×Q which is equivalent to the automaton: for all
p, q ∈ Q, we have [[Φ(M)p,q]] = [[Ap,q]], i.e., for all (u, σ, i, j) ∈ Mk(A+)

[[Φ(M)p,q]](u, σ, i, j) = [[Ap,q]](u, σ, i, j) .

Moreover, the entries of Φ(M) are in the rational closure5 of the entries of M .

The matrix Φ(M) can be constructed from M using one of the classical algo-
rithm, e.g., the recursive algorithm or McNaughton-Yamada algorithm. We can
also apply the state elimination method or the system resolution method starting
from any initial state p and final state q.

We quickly justify below the correctness of the construction based on the
partial monoid structure of marked words introduced in Section 4.1. In a first
reading, one may go directly to the next subsection.

Recall that K = S〈〈Mk(A+)〉〉 is a continuous semiring by Proposition 1. For
each finite set Q, the semiring of matrices KQ×Q is also continuous and, given
a matrix H in KQ×Q, the entries of the matrix H∗ =

∑
n≥0H

n ∈ KQ×Q are in
the rational closure of the entries of H . Moreover, H∗ can be computed induc-

tively: if H =

(
A B
C D

)
is a block decomposition, with A and D square matrices,

then ([14])

H∗ =

(
(A+BD∗C)∗ A∗B(D + CA∗B)∗

D∗C(A+BD∗C)∗ (D + CA∗B)∗

)
. (2)

We apply the above to H = [[M]] = ([[Mp,q]])p,q∈Q ∈ KQ×Q. As usual, the
matrix Mn describes the paths of length n of the automaton A and the matrix
Hn = [[M]]n gives the semantics restricted to paths of length n. Summing over
all paths, we obtain the full semantics:

[[Ap,q]] =
∑
n≥0

([[M]]n)p,q = ([[M]]∗)p,q

Using recursively (2) on the matrix M , we obtain a matrix Φ(M) whose entries
are in the rational closure of the entries of M and such that [[Φ(M)]] = [[M]]∗.

5 The rational closure is the closure under sum (+) concatenation (·) and star (∗).

44 P. Gastin and B. Monmege

6.3 Automata to Expressions: Generalized pebWA

We will now extend Theorem 2 to any K-layered GpebWA A = (Q,A, I,M, T).
For i ≤ K, we let Q(i) = �−1(i) be the set of states in layer i.

Proposition 3. Let A = (Q,A, I,M, T) be a 1-layered GpebWA. We can con-
struct a 0-layered GpebWA A(1) = (Q(1), A, I(1),M (1), T (1)) which is equivalent

to A: [[Ap,q]] = [[A(1)
p,q]] for all p, q ∈ Q(1).

We use the layered decomposition given in Section 5 (1). To simplify the notation,
we write N = N (1), D = D(1), L = L(0) and P = N (0) so that

M =

⎛⎜⎜⎝ N D

L P

⎞⎟⎟⎠ =

⎛⎜⎜⎝ N 0

0 0

⎞⎟⎟⎠+

⎛⎜⎜⎝ 0 D

L P

⎞⎟⎟⎠ .

Let p, q ∈ Q(1) be in layer 1 and p′, q′ ∈ Q(0) be in layer 0. Then, D is a drop-
matrix whose (p, p′)-entry can be written

∑
x∈Peb d

x
p,p′ · ↓x with dxp,p′ ∈ S〈Test〉.

The (q′, q)-entry of the lift -matrix L can be written eq′,q · ↑ with eq′,q ∈ S〈Test〉.
Now, P is a Q(0) × Q(0) matrix of pebWE and we may apply Theorem 2 in
order to get a matrix Φ(P) of pebWE which is equivalent to the iteration of P :
[[Φ(P)]] = [[P]]∗. From (D,P, L), we define the Q(1) ×Q(1) pebWE-matrix G by

Gp,q =
∑
p′,q′

∑
x∈Peb

dxp,p′ · x!
(
Φ(P)p′,q′ · eq′,q · →∗) .

The matrix G is also denoted C(D,P, L) below. Note that the maximal pebble-
depth of the entries of G is at most 1 plus the maximal pebble-depth of the
entries of P since the construction Φ(P) does not increase the pebble-depth.

Lemma 4. For all p, q ∈ Q(1) and all (u, σ, i, j) ∈Mk(A+), we have

[[Gp,q]](u, σ, i, j) =
∑

ρ weight(ρ)

where the sum ranges over all runs ρ on (u, σ) from configuration (p, i, ε) to
configuration (q, j, ε) and using only intermediate states in layer 0.

To conclude the proof of Proposition 3, we simply set

M (1) = N +G = N + C(D,P, L)

and we can check using Lemma 4 that [[Ap,q]] = [[A(1)
p,q]] for all p, q ∈ Q(1).

Proposition 5. Let A = (Q,A, I,M, T) be a K-layered GpebWA. We can con-
struct a 0-layered GpebWA A(K) = (Q(K), A, I(K),M (K), T (K)) which is equiv-

alent to A: [[Ap,q]] = [[A(K)
p,q]] for all p, q ∈ Q(K).

Adding Pebbles to Weighted Automata 45

We use again the notation of the layered decomposition. The proof is by in-
duction on K. When K = 0 we simply have A(0) = A, i.e., M (0) = N (0). For
K > 0, we set M (K) = N (K) + C(D(K),M (K−1), L(K−1)) where the matrix
M (K−1) is obtained by induction. The correctness follows from Proposition 3.
From Theorem 2 and Proposition 5 we deduce:

Theorem 6. Let A = (Q,A, I,M, T) be a K-layered GpebWA. The matrix
H = Φ(M (K)) of pebWE satisfies [[Hp,q]] = [[Ap,q]] for all p, q ∈ Q(K).
Therefore, the pebWE E(A) = I × H × T is equivalent to A: [[E(A)]] = [[A]].
Moreover, the pebble-depth of E(A) is at most K if A is a K-layered pebWA.

7 From Expressions to Automata

We describe in this section how to transform a weighted expression with pebbles
to an equivalent weighted automaton with pebbles. Expressions are very conve-
nient to denote in a rather clear and intuitive way the quantitative functions that
we want to compute. On the other hand, automata are much more amenable to
efficient algorithms, e.g., for evaluation as shown in Section 8. Hence, we need
efficient translations from expressions to automata. Such translations have been
well-studied both in the boolean and in the weighted (1-way) cases. Glushkov’s
translation (or Berry-Sethi) is acknowledged to be among the best ones. The
good news is that this construction can be adapted to cope with 2-way moves
and pebbles as we will show in this section. The construction is by structural
induction on the expression.

Theorem 7. For each pebWE E we can construct a layered pebWA A(E) such
that [[A(E)]] = [[E]], i.e., for all (u, σ, i, j) ∈Mk(A+) we have

[[A(E)]](u, σ, i, j) = [[E]](u, σ, i, j) .

Moreover, the number of layers in A(E) is the pebble-depth of E.

We define the literal-length ��(E) of an expression as the number of occurrences
of moves (← or →) plus twice the number of occurrences of ! (in x!−). We will
see that the number of states of A(E) will be 1+��(E). For a 2-way expression E
of pebble-depth 0 (2-way-WE) the literal-length is simply the number of moves,
which are the positions to be marked for Glushkov’s construction.

For the rational operations (+, ·, ∗, and +), we can still use the classical
constructions even though we are working with pebWA. We recall these con-
structions below for the sake of completeness. The main novelty is indeed the
treatment of pebbles.

We adopt the presentation of standard automata by Sakarovitch [29]. A stan-
dard automaton A = (Q,A, I,M, T) has a single initial state ι with (initial)
weight 1, all other states have initial weight 0. Moreover, the initial state ι has
no ingoing transition. We use both the graphical representation and the matrix
representation of an automaton:

46 P. Gastin and B. Monmege

A = ι

c
NJ U A =

(
1 0

)⎛⎜⎝ 0 J

0 N

⎞⎟⎠
⎛⎝ c

U

⎞⎠
Since terminal weights allow polynomials over Test with the mapping T : Q →
S〈Test〉, we will be able to cope with expressions of the form E · ϕ? and E · s
without adding unnecessary states. For s ∈ S and ϕ ∈ Test, we simply write s
for stt? and ϕ for 1ϕ, and also → for 1tt?→ and ← for 1tt?←.

We start with atoms. Compared to the classical (1-way) translation, a slight
difference is that we are using tests (ϕ) and moves (←,→) instead of letters
(a = a?→) for the atoms. The automata for the atoms are defined as

A(s) = ι
s A(→) = ι

→ 1

A(ϕ) = ι
ϕ

A(←) = ι
← 1

and we can easily see that they are equivalent to the corresponding atoms: if E
is an atom then [[E]](u, σ, i, j) = [[A(E)]](u, σ, i, j) for all (u, σ, i, j) ∈ Mk(A+).

The constructions for sum and concatenation are as usual.

A1 +A2 = ι

c1 + c2

N1J1 U1

N2J2 U2

A1 · A2 = ι

c1c2

N1J1 U1c2

N2
c1J2 U2

U1J2

In the concatenation,we are overloading the product notation as follows.The prod-
uct of two monomials s1ϕ1 and s2ϕ2 from S〈Test〉 should be understood as
(s1s2)(ϕ1∧ϕ2) to stay in S〈Test〉. Hence c1c2 and the entries ofU1c2 are in S〈Test〉.
Similarly, in U1J2, the product of a monomial s1ϕ1 ∈ S〈Test〉 and a monomial
s2ϕ2d (with d ∈ Move) is defined as (s1s2)(ϕ1∧ϕ2)d. Hence, the entries of the ma-
trices c1J2 andU1J2 are in S〈Test〉〈Move〉. The matrix representation is therefore:

A1 · A2 =
(
1 0 0

)
⎛⎜⎜⎜⎜⎜⎝

0 J1 c1J2

0 N1 U1J2

0 0 N2

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
c1c2

U1c2

U2

⎞⎟⎟⎟⎟⎟⎠
For instance, the automaton for 2a = 2 · a? · → is computed as follows:

ι

2

· ι

a?

· ι
→

1

= ι
2a

1

Adding Pebbles to Weighted Automata 47

Similarly, for the expression E = (2a? + b?)→(2b? + 3c?) we compute the con-
catenation of 3 automata as follows:

ι

2a? + b?

· ι
→

1

· ι

2b? + 3c?

= ι
2a+ b

2b? + 3c?

Finally, the star is also computed as usual with the following construction.

A∗ = ι

c∗
N + Uc∗Jc∗J Uc∗

A∗ =
(
1 0

)⎛⎜⎝ 0 c∗J

0 N + Uc∗J

⎞⎟⎠
⎛⎝ c∗

Uc∗

⎞⎠
Notice that c∗ ∈ S is well-defined since the semiring is complete. As for the
concatenation, we can check that the entries of Uc∗ are in S〈Test〉 and the entries
of Uc∗J are in S〈Test〉〈Move〉. The strict iteration A+ is computed similarly by
simply changing the final weight of ι to c+ (note that 0+ = 0), but keeping the
other occurrences of c∗ in c∗J , Uc∗J and Uc∗.

For instance, for expression E = →+a?←+b?→+c?←+d?→+ introduced in
Section 4, we can compute the automaton as follows:

A(→+) = ι

→

→ 1 A(→+ · a?) = ι

→

→ a?

A(E) = ι

→

→

←

a?←

→

b?→

←

c?←

→

d?→ 1

Finally, we give the construction for x!E which should drop the pebble on the
current position, evaluate E from beginning to end (�?) of the word and finally
lift the pebble. From a standard automaton A equivalent to E, we construct the
following standard automaton x!A :

x!A = ι

ι′

↓
x

τ

NJ U�?↑

x!A =
(
1 0 0 0

)
⎛⎜⎜⎜⎜⎜⎝

0 0 ↓x 0

0 0 0 0

0 0 0 J

0 U�?↑ 0 N

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
0

1

0

0

⎞⎟⎟⎟⎟⎟⎠

48 P. Gastin and B. Monmege

The correctness of this construction follows easily from Proposition 3. Assume
for simplicity that A is a 0-layered automaton, then x!A is a 1-layered automa-
ton and it’s layer decomposition is shown both in the graphical and matricial
representations above. Let Q = {ι, τ, ι′}�Q′ be the set of states of x!A where Q′

are the non-initial states of A. Using the notation of Section 6.3, the drop-matrix
D of x!A contains a single non-zero entry which is Dι,ι′ = ↓x, the non-zero en-
tries of the lift-matrix L are in the Q′× τ column U�?↑, and F is the transition
matrix of A. Therefore, the matrix G = C(D,F, L) has a single non-zero entry
which is

Gι,τ =
∑
q′∈Q′

x!
(
(Φ(F)ι′,q′Uq′)�?→∗) ≡ x!

(∑
q′∈Q′

Φ(F)ι′,q′Uq′
)
≡ x!E .

As last example, consider again expression E below used in Section 4:

E =→+ a?x!
(
(¬x?→)∗ b? (¬x?→)+ c?←+ d?→+

)
→∗ .

The construction applied to E gives the following pebWA.

ι
→

→

a?↓
x

¬x?→

¬x?→

(b? ∧ ¬x?)→

(b? ∧ ¬x?)→

¬x?→ ←

c?←

→

d?→ �?↑

τ
→

→

1

To close this section, we briefly discuss the complexity of our translation. Clearly,
the number of states of the automaton A(E) is the literal-length ��(E) of expres-
sion E. The time complexity is cubic in the length of E. It should be possible
to get a quadratic algorithm by generalizing the notion of star normal form in-
troduced in [9] for word languages or the algorithm presented in [1] for classical
weighted expressions and automata.

8 Evaluation of Pebble Weighted Automata

In this section, we study the evaluation problem of a K-layered pebWA A with
reusable pebbles: given a word u and a valuation σ : Peb → pos(u), compute
[[A]](u, σ). The challenge is important since, even if the word is fixed, the number
of accepting runs may be infinite.

Let A = (Q,A, I,M, T) be a K-layered pebWA. As in Section 6.3, for i ≤ K,
we let Q(i) = �−1(i) be the set of states in layer i.

Theorem 8. Given a K-layered pebWA with p pebbles and a word w ∈ A+, we
can compute with O((K + 1)|w|p+1) matrix operations (sum, product, iteration)
the values [[Ap,q]](w, σ) for all p, q ∈ Q(K) and valuations σ : Peb→ pos(w).

Adding Pebbles to Weighted Automata 49

It is important to notice that the complexity only linearly depends on the num-
ber K of layers. The number of pebbles occurs in the exponent but since we
allow reusable pebbles, this number may be much smaller than the number of
layers. This is in the same vein as restricting the number of variable names,
e.g., in first-order logic, without restricting the quantifier depth. Restricting the
number of variable names often results in much lower complexity. For instance,
the complexity of the evaluation (model-checking) problem of first-order logic
over relational structures drops from PSPACE to PTIME when the number of
variable names is bounded [32,33].

We have seen in Section 2.2 that weighted LTL formulas can be described
with pebWE using two pebbles x and y. Actually, the same constructions are
valid if we reuse pebble x instead of y. For instance, until may be described with

EϕUψ(x) = �?→∗x?
(
(x!(E¬ψ(x)←∗Eϕ(x)))→

)∗
(x!Eψ(x))→∗�? .

Therefore, any weighted LTL formula ϕ may be described with a pebWE Eϕ

using a single pebble x. The pebble-depth of Eϕ being the nesting depth of
modalities in ϕ. Using Theorem 7 we obtain a layered pebWA Aϕ equivalent to
Eϕ. The number K of layers in Aϕ is the pebble-depth of Eϕ, i.e., the nesting
depth of ϕ. Moreover, Aϕ uses only one pebble. Theorem 8 yields an evaluation
algorithms using O((K + 1)|w|2) matrix operations. We see below that there is
an algorithm which is also linear in |w|.

We say that a K-layered pebWA A = (Q,A, I,M, T) is strongly K-layered
if in each layer only a fixed pebble may be dropped: for all i ≤ K, there is a
pebble xi ∈ Peb such that for all q, q′ ∈ Q and x ∈ Peb, if �(q) = i and x
= xi
then M

↓x

q,q′ = 0.

Theorem 9. Given a strongly K-layered pebWA with p pebbles and a word
w ∈ A+, we can compute with O((K + 1)|w|max(1,p)) matrix operations (sum,
product, iteration) the values [[Ap,q]](w, σ) for all states p, q ∈ Q(K) and valua-
tions σ : Peb→ pos(w).

Notice that if p ≤ 1 then any K-layered pebWA is strongly K-layered. In this
case, we get an evaluation algorithm using O((K + 1)|w|) matrix operations.
This is in particular the case for pebWA arising from weighted LTL formulas.

9 Discussion

To conclude, let us briefly mention some interesting topics that could be studied
in the future. As already stated in Section 7, one should try to obtain a quadratic
algorithm for the translation of pebWE to pebWA. Next, as in Section 8 for
the evaluation problem, one should develop efficient algorithms for quantitative
model-checking, emptiness, containment, etc.

We have no restriction over the syntax of expressions or automata. In partic-
ular, 2-way moves may give rise to unbounded loops which is why we considered
continuous semirings. We believe that continuous semirings are suitable for most

50 P. Gastin and B. Monmege

applications. But in case one needs to work without this hypothesis, it is possible
to put restrictions on the syntax of expressions and automata in order to rule
out unbounded loops and have a well-defined semantics in arbitrary semirings.
For instance, one may restrict iterations to forward proper or backward proper
expressions.

The correctness of our translations between pebWE and pebWA relies on the
partial monoid structure of marked words, which does not use concatenation of
words. We can also endow marked trees with such a partial monoid structure.
Therefore, pebWE can be extended to trees with a semantics in the contin-
uous semiring of series over marked trees. We obtain in this way a weighted
extension of caterpillar expressions or Regular XPath. Similarly, one may define
tree-walking pebWA. We believe that the translations presented in this paper
also apply to pebWE over trees and tree-walking pebWA.

A more prospective problem is to replace the x!− construction of pebWE with
a chop product E;F which evaluates E on the current prefix and F on the current
suffix. We can easily simulate this relativization mechanism using a pebble to
mark the current position. The converse is an interesting problem which needs
to be investigated: is it possible to simulate pebbles with chop products?

Acknowledgements. The authors would like to thank Benedikt Bollig and
Jacques Sakarovitch for helpful discussions.

References

1. Allauzen, C., Mohri, M.: A Unified Construction of the Glushkov, Follow, and
Antimirov Automata. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 110–121. Springer, Heidelberg (2006)

2. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theo-
retical Computer Science 48, 117–126 (1986)

3. Berstel, J., Reutenauer, C.: Noncommutative rational series with applications,
Cambridge. Encyclopedia of Mathematics & Its Applications, vol. 137 (2011)

4. Birget, J.-C.: State-complexity of finite-state devices, state compressibility and
incompressibility. Theory of Computing Systems 26, 237–269 (1993)

5. Bojańczyk, M.: Tree-Walking Automata. In: Mart́ın-Vide, C., Otto, F., Fernau,
H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 1–2. Springer, Heidelberg (2008)

6. Bojańczyk, M., Samuelides, M., Schwentick, T., Segoufin, L.: Expressive Power
of Pebble Automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4051, pp. 157–168. Springer, Heidelberg (2006)

7. Bollig, B., Gastin, P.: Weighted versus Probabilistic Logics. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 18–38. Springer, Heidelberg
(2009)

8. Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble Weighted Automata and
Transitive Closure Logics. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 587–598.
Springer, Heidelberg (2010)

9. Brüggeman-Klein, A.: Regular expressions into finite automata. Theoretical Com-
puter Science 120, 197–213 (1993)

Adding Pebbles to Weighted Automata 51

10. Brüggeman-Klein, A., Wood, D.: Caterpillars: A context specification technique.
Markup Languages 2(1), 81–106 (2000)

11. Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. on Electronic Computers 12(9), 67–76 (1963)

12. Buchholz, P., Kemper, P.: Model checking for a class of weighted automata. Dis-
crete Event Dynamic Systems 20(1), 103–137 (2009)

13. Ciesinski, F., Größer, M.: On Probabilistic Computation Tree Logic. In: Baier,
C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004)

14. Conway, J.: Regular Algebra and Finite Machines. Chapman & Hall (1971)
15. Droste, M., Kuich, W.: Semirings and formal power series. In: Handbook of

Weighted Automata [16], ch. 1, pp. 3–27
16. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. EATCS

Monographs in Theoretical Computer Science. Springer (2009)
17. Engelfriet, J., Hoogeboom, H.J.: Tree-walking pebble automata. In: Jewels are

Forever, pp. 72–83. Springer (1999)
18. Ésik, Z., Kuich, W.: Modern Automata Theory. Electronic book (2007),

http://dmg.tuwien.ac.at/kuich

19. Globerman, N., Harel, D.: Complexity results for two-way and multi-pebble au-
tomata and their logics. Theoretical Computer Science 169, 161–184 (1996)

20. Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16,
1–53 (1961)

21. Knight, K., May, J.: Applications of weighted automata in natural language pro-
cessing. In: Handbook of Weighted Automata [16], ch. 14, pp. 555–579

22. Kuske, D.: Schützenberger’s theorem on formal power series follows from kleene’s
theorem. Theoretical Computer Science 401(1-3), 243–248 (2008)

23. Mandrali, E.: Weighted LTL with Discounting. In: Moreira, N., Reis, R. (eds.)
CIAA 2012. LNCS, vol. 7381, pp. 353–360. Springer, Heidelberg (2012)

24. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE Trans. on Electronic Computers 9(1), 39–47 (1960)

25. Meinecke, I.: A Weighted μ-Calculus on Words. In: Diekert, V., Nowotka, D. (eds.)
DLT 2009. LNCS, vol. 5583, pp. 384–395. Springer, Heidelberg (2009)

26. Ravikumar, B.: On some variations of two-way probabilistic finite automata mod-
els. Theoretical Computer Science 376(1-2), 127–136 (2007)

27. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press
(2009)

28. Sakarovitch, J.: Rational and recognisable power series. In: Handbook of Weighted
Automata [16], ch. 4, pp. 103–172

29. Sakarovitch, J.: Automata and expressions. In: AutoMathA Handbook (to appear,
2012)

30. Samuelides, M., Segoufin, L.: Complexity of Pebble Tree-Walking Automata.
In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 458–469.
Springer, Heidelberg (2007)

31. Schützenberger, M.-P.: On the definition of a family of automata. Information
and Control 4, 245–270 (1961)

32. Vardi, M.: The complexity of relational query languages. In: Proceedings of STOC
1982, pp. 137–146. ACM Press (1982)

33. Vardi, M.: On the complexity of bounded-variable queries. In: Proceedings of
PODS 1995, pp. 266–276. ACM Press (1995)

http://dmg.tuwien.ac.at/kuich

Typed Linear Algebra for Weigthed

(Probabilistic) Automata

José N. Oliveira

High Assurance Software Laboratory,
INESC TEC and University of Minho,

Braga, Portugal
jno@di.uminho.pt

Abstract. There is a need for a language able to reconcile the recent
upsurge of interest in quantitative methods in the software sciences with
logic and set theory that have been used for so many years in capturing
the qualitative aspects of the same body of knowledge. Such a lingua
franca should be typed, polymorphic, diagrammatic, calculational and
easy to blend with traditional notation.

This paper puts forward typed linear algebra (LA) as a candidate
notation for such a role. Typed LA emerges from regarding matrices as
morphisms of suitable categories whereby traditional linear algebra is
equipped with a type system.

In this paper we show typed LA at work in describing weighted (prob-
abilistic) automata. Some attention is paid to the interface between the
index-free language of matrix combinators and the corresponding index-
wise notation, so as to blend with traditional set theoretic notation.

Keywords: Weighted automata, linear algebra, categories of matrices.

“Quantitative Formal Methods deals with systems whose
behaviour of interest is more than the traditional Boolean
“correct” or “incorrect” judgment. (...) The aim of the
workshop was to create a new forum where current and
novel theories and application areas of quantitative meth-
ods could be discussed, together with the verification tech-
niques that might apply to them.

Andova et al. [2]

1 Introduction

There is a trend towards quantitative methods in computing. Further to pre-
dicting that something “may happen”, going quantitative should allow one to
anticipate “how often or costly it will happen”. Or, looking from the negative
side of things, if something bad can take place one wishes to know how likely is
it to occur.

As happened with other sciences in the past (eg. physics), computer science
is in some sense becoming probabilistic. However, traditional notation for proba-
bilities is too descriptive and not meant for proving and calculating software as
we understand this activity today. Quoting Hehner [14]:

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 52–65, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Typed Linear Algebra for Weigthed (Probabilistic) Automata 53

Perhaps a thousand years ago the philosophers of the time [might give] reasons
why their answer is right. Now we don’t argue; we formalize, calculate, and
unformalize.

There has been work on tuning probabilistic notation and reasoning to soft-
ware design. McIver and Morgan [22] develop a method for rigorous reasoning
about probabilistic programs that includes a calculus which, in the Hoare style,
operates at the level of the program text. At programming level, Erwig and Koll-
mansberger [11] give a collection of modules that make up a probabilistic func-
tional programming library in Haskell based on the (finite) distribution monad.
More recently, Gibbons and Hinze [13] have shown how to perform equational
reasoning about programs that exploit both nondeterministic and probabilistic
choice as part of a more ambitious plan to reason about effectful computations
in general.

Sokolova [26] presents a coalgebraic analysis of probabilistic systems in a way
that connects two main-stream research areas: coalgebraic reasoning and prob-
abilistic modeling and verification. This work builds upon foundational work
by Larsen and Skou [15] on probabilistic bisimulation. Broadening scope, re-
cent work by Bonchi et al. [8] gives a coalgebraic perspective on so-called linear
weighted automata, which generalize the probabilistic ones.

Weighted Automata. Weighted automata [9, 10, 8] are a generalisation of finite
state, non-deterministic automata where each state transition, in addition to
some input, involves a quantity indicative of the weight (expressing eg. cost or
probability) of its execution. The minimal structure for expressing weights is
a semiring (S; +,×, 0, 1) where (S; +, 0) is a commutative monoid, (S;×, 1) is a
monoid, multiplication distributes over addition and 0 annihilates multiplication
(0× s = s× 0 = 0).

Following [10], a weighted finite automaton W = (A,Q;λ, μ, γ) consists of an
input alphabet A, a finite set of states Q and three functions: λ, γ : Q → S are
weight functions for entering and leaving a state, respectively, and μ : A→ SQ×Q

is such that μ(a)(p, q) indicates the cost of transition p
a �� q . Cost 0 means

that there is no transition from p to q labelled a.
For S the Boolean algebra B of truth values, a weighted automaton becomes a

(non-deterministic) labelled transition system (LTS), or non-deterministic finite-
state automaton (FSA): μ(a) ∈ BQ×Q is the state-transition relation associated
to input a, λ is the set of initial states and γ the set of terminal states. For S
the interval [0, 1] of the real numbers (R) W can be regarded as a probabilistic
automaton under certain conditions 1. Bonchi et al. [8] only consider μ and
the output function γ. Their coalgebraic perspective twists the type of μ into

Q → (SQ)
A

and then amalgamates γ and μ into a coalgebra of functor FX =

S× (SX)
A
.

State Transition Matrices. For each a ∈ A, μ(a) ∈ SQ×Q can be regarded as a
Q-indexed matrix expressing the cost of each state transition in which input a

1 For a comprehensive analysis and taxonomy of probabilistic systems see eg. [26].

54 J.N. Oliveira

participates. In the same way, λ and γ can be regarded as Q-indexed vectors. It is
therefore no wonder that the work on weighted automata often resorts to matrix
terminology and operations such as matrix-matrix multiplication and matrix-
vector multiplication. However, linear algebra (LA) is seldom assumed explicitly
as the central notation and calculus — such reasoning takes place episodically,
where convenient, conventional set theory doing the main job. This means that
the main advantage of LA — the conciseness of blocked, index-free notation
and its powerful algebra — is (partially) lost. There are, however, approaches in
which LA is the main notational device, see eg. references [9, 28] which follow the
tradition of Bloom et al. [7]. But such notation is untyped and therefore hard to
combine with that of the relations, predicates and functions which are around.

Typed versus Untyped Mathematics. What does (un)typed mean in the previous
sentence? It is a commonplace in mathematics to regard functions as special
cases of relations (the deterministic, total ones) and relations as special cases of
matrices (the Boolean ones, provided addition is trimmed to 1). Yet the three
classes of object are treated in disparate ways, unrelatedly and with incompatible
(if not contradictory) notation.

For instance, one writes y = f(x) to define a function and (x, y) ∈ Graph(f)
— note how x and y swap position — to express the input/output pairs of the
graph of function f , which is a relation. As far as typing is concerned, most
people accept notation f : A→ B for defining the signature of a function (as we
have seen above) but only reluctantly will accept the same notation R : A→ B
to define the type of relation R, writing R ⊆ A× B instead. As far as matrices
are concerned, writing M : m → n to declare the type of a matrix with m
columns and n rows will look surprising — textbooks simply tell that M is of
order m × n (or is it n × m?), with loose typing rules. As for type checking,
results are stated as “valid only for matrices of the same order” [1] and the like.
Polymorphic functions are well-accepted. But telling that the identity matrix is
as polymorphic as the identity function will sound odd to many people.

Relational mathematics [24] is a step forward towards conceptual unification
between relations and matrices. But it is first and foremost category theory [20]
which provides for successful unification, by regarding functions, relations and
matrices as morphisms (arrows) of suitable categories. The category of functions
is well known, that of relations less known and those of matrices by and large
ignored.

In the sequel we will show how weighted automata can be described and
reasoned about in the typed LA which emerges from regarding matrices as mor-
phisms (rather than objects) of suitable categories, as pioneered by MacLane [20]
and MacLane and Birkhoff [21]. This is part of a research line which started in
[16] and whose aim is to provide evidence of the usefulness of changing notation
(and reasoning style) and adopting typed LA as the lingua franca of quantitative
methods in computer science.

Typed Linear Algebra for Weigthed (Probabilistic) Automata 55

2 Typed Linear Algebra

Computer scientists tend to regard matrices as rectangular shaped data struc-
tures implemented as bidimensional arrays, lists of lists and the like. Mathemati-
cians tend to regard them as linear transforms, i.e. vector-to-vector operations.
Yet matrices are abstract entities independent of either such views: they can be
regarded as arrows of particular categories, whereby they become typed. This
answers questions such as: what is the type of a matrix? What are their basic
constructors? In what measure are these related to standard matrix operations
and algebra?

By studying the categories of matrices of [20], the authors of [16] have iden-
tified typed, algebraically rich constructors aiming to repair the lack just men-
tioned. Backhouse [4] regards matrices as a way of compacting sets of equations
into single equations which is a tremendous improvement in concision that does
not incur any loss of precision! Reference [16] furthermore show how the very
general concept of a biproduct [21] promotes individual values to blocks and
value-level operations to block-level operations, in fact the great conceptual ad-
vantage offered by matrix notation.

Matrices as Arrows. A matrix M with n rows and m columns is a function
which tells the value occupying each cell (r, c), for 1 ≤ r ≤ n, 1 ≤ c ≤ m. The
type of such cell-values varies, but the minimal algebraic structure of semirings
is required for matrix operations to make sense. Standard linear algebra operates
over the richer structure of a field (further offering additive and multiplicative
inverses) and the field of real numbers (R) is often taken by default.

Interestingly, what is meant by the type of a matrix in the sequel does not
bear a direct relationship to such algebraic structures: it rather provides (as
in programming) a way of interfacing matrices with each other. The type of a
matrix M with m columns and n rows will be denoted by the arrow m �� n

between the number of columns and the number of rows. By writing m
M �� n

(or the equivalent n m
M��) one declares matrix M and its type.

The most interesting matrix combinator is composition, commonly referred to
asmatrix multiplication. Denoting the (r, c)-th cell of a given matrixM by rMc 2,
the (r, c)-th cell of composite matrixM ·N is given by

r(M ·N)c = 〈
∑

x :: (rMx)× (xNc)〉 (1)

where × is the cell-level semiring multiplicative operation and
∑

is the finite
iteration of its additive operation.

What is x in (1) and what is its range? This will be easy to answer by in-
specting the types of both M and N :

n m
M�� k

N��

M·N

�� (2)

2 Rather than the more conventional M(r, c) — we will explain later why we propose a
different notation.

56 J.N. Oliveira

Thus 1 ≤ x ≤ m and matrix multiplication can be abstracted by arrow compo-
sition.

For every n there is a matrix of type n n�� which is the unit of com-
position. This is nothing but the identity matrix of size n, indistinguishably

denoted by n n
idn�� or n n

1�� . This is the diagonal of size n, that is 3,

r(id)c � r = c under the {0, 1} encoding of the Booleans:

idn =

⎛⎜⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1

⎞⎟⎟⎟⎠ n n
idn��

Therefore,

idn ·M = M = M · idm m

M

��

m
idm��

M

��M����
��
��
��

n n
idn

��

(3)

where the subscripts m and n can be omitted wherever the underlying type
diagrams are assumed.

Equipped with composition (2) and identity (3), matrices form a category

whose objects are matrix dimensions and whose morphisms (m n
M�� etc) are

the matrices themselves [20, 21]. Strictly speaking, there is one such category per
matrix cell-level algebra. Notation MatS will be used to denote such a category,
parametric on semiring S or any other (richer) algebraic structure.

Vectors as Arrows. Vectors are special cases of matrices in which one of the
dimensions is 1, for instance

v =

⎛⎜⎝ v1
...
vm

⎞⎟⎠ and w =
(
w1 . . . wn

)
Column vector v is of type m 1�� (m rows, one column) and row vector w is

of type 1 n�� (one row, n columns). Our convention is that lowercase letters
(eg. v, w) denote vectors and uppercase letters (eg. M , N) denote arbitrary
matrices.

Converse of a Matrix. One of the kernel operations of linear algebra is transposi-
tion, whereby a given matrix changes shape by turning its rows into columns and

vice-versa. Given matrix n m
M�� , notation m n

M◦
�� denotes its transpose,

or converse. The following idempotence and contravariance laws hold:

3 Notation x � y means x = y by definition.

Typed Linear Algebra for Weigthed (Probabilistic) Automata 57

(M◦)◦ = M (4)

(M ·N)◦ = N◦ ·M◦ (5)

Bilinearity. Given two matrices of the same type n m
M,N�� it makes sense to

add them up index-wise, leading to matrixM+N where symbol + promotes the
underlying semiring additive operator to matrix-level. Likewise, additive unit cell
value 0 is promoted to matrix 0 wholly filled with 0s, the unit of matrix addition
and zero of matrix composition:

M + 0 = M = 0 +M (6)

M · 0 = 0 = 0 ·M (7)

Composition is bilinear relative to +:

M · (N + P) = M ·N +M · C (8)

(N + P) ·M = N ·M + P ·M (9)

In the same way M + N denotes the promotion of addition of matrix cells to
matrix addition, the same promotion can take place with respect to the whole
semiring algebra. For instance, cell value multiplication leads to matrix multi-
plication, denoted M × N or simply MN (for M and N of the same type),
also known as the Hadamard product, which is commutative, associative and
distributive over addition (ie. bilinear). Clearly,

M ×� = �×M =M (10)

where matrix � is of the same type as M and is wholly filled with 1s.

Type Generalization. Matrix types (the end points of arrows) can be generalized
to arbitrary, denumerable sets since addition in S is commutative, that is, the
summation of (1) can be evaluated in arbitrary order.

In fact, and as is standard in relational mathematics [24], objects in categories
of matrices can be generalized from numeric dimensions (n,m ∈ N0) to arbitrary
denumerable types (A, B), taking disjoint union A + B for m + n, Cartesian
product A × B for mn, unit type 1 for number 1, the empty set ∅ for 0, etc.
Conversely, dimension n corresponds to the type made of the initial segment of
the natural numbers up to n. Our convention is that lowercase letters (eg. n,
m) denote the traditional dimension types (natural numbers), letting uppercase
letters denote arbitrary other types.

3 Weighted Automata as MatS Arrows

Following [8], we consider in the sequel a simpler notion of weighted automaton
W = (Q,A;μ, γ) which deals without the input weight function λ. This facili-
tates the comparison between the coalgebraic approach of [8] and our own and

58 J.N. Oliveira

helps in staying with the binary matrix block combinators of [16], to be presented

shortly. For this purpose, we assign the type Q �� 1 to output function γ,
which is therefore regarded as a row vector in MatS. Concerning μ, it can either
be regarded as a matrix of type Q×A �� Q or of type Q �� Q×A , as

these types are isomorphic in MatS
4. We prefer the second (coalgebraic) alter-

native and therefore regard the following diagram as representation of weighted
automaton W = (Q,A;μ, γ):

Q×A Q
μ�� γ �� 1 (11)

Clearly, both μ and γ can be packaged into a single coalgebra (matrix) of type

(Q×A) + 1 Q
W�� and made of two blocks

W =

[
μ

γ

]
(12)

provided we explain what the meaning of combinator
[]

is. This leads into
matrix block notation and its algebra.

Block Notation. Two basic binary combinators are available for building matrices
out of other matrices, say M and N :

– [M |N] — M and N side by side (read [M |N] as “M juncN”)
–
[
M
N

]
— M on top of N (read

[
M
N

]
as “M splitN”).

That is, matrices are stacked either vertically (
[
M
N

]
) or horizontally ([M |N]).

Dimensions should agree, as shown in the diagram below, taken from [16], where
m, n, p and t are types:

m

n

M

������������

i1
�� n+ p

[M|N]

��

π1�� π2 ��
p

i2
��

N

		����������

t

P

		����������

[
P
Q

]
��

Q

������������

[M |N] = M · π1 +N · π2 (13)

[
P

Q

]
= i1 · P + i2 ·Q (14)

The special matrices i1, i2, π1 and π2 are fragments of the identity matrix as
given by the so-called reflexion laws,

[i1|i2] = id[
π1
π2

]
= id

4 This follows from a self-adjunction in MatS which is studied in detail in [19]. The
isomorphism reshapes matrices by reducing the number of columns by the same fac-
tor the number of rows increases, keeping the “rectangular area” and its information
intact.

Typed Linear Algebra for Weigthed (Probabilistic) Automata 59

which play an important role in explaining the semantics of the two combinators.
In brief, junc (13) and split (14) form a so-called biproduct [20]. The details of
this, however, can be skipped for the purposes of this presentation, sufficing to
be aware of the rich algebra of such combinators of which we single out two
“fusion”-laws,

R · [M |N] = [R ·M |R ·N] (15)[
M

N

]
· R =

[
M · R
N ·R

]
(16)

two structural equality laws,

[A|B] = [C|D] ≡ A = C ∧B = D (17)[
A

B

]
=

[
C

D

]
≡ A = C ∧B = D (18)

and two absorption laws:

[A|B] · (C ⊕D) = [A · C|B ·D] (19)

(C ⊕D) ·
[
A

B

]
=

[
C · A
D ·B

]
(20)

All these laws emerge as corollaries of the universal properties of biproducts.
Mind the types: the laws are only valid for matrices which typecheck and types
are obtained by unification, as explained in [16].

Weighted Automata as Matricial Coalgebras. As suggested by (12) above,
weighted automaton W can be regarded as a coalgebra for MatS endofunctor
FX = (X ⊗ id)⊕ id, where ⊕ and ⊗ are the so-called direct sum and Kronecker
bifunctors. The former,

M ⊕N = [i1 ·M |i2 ·N]

is of type

n

M

��

m

N

��

n+m

M⊕N

��
k j k + j

and the latter is of type

n

M

��

m

N

��

n×m

M⊗N

��
k j k × j

60 J.N. Oliveira

Fusion laws

[M |N]⊗ C = [M ⊗ C|N ⊗ C][
M

N

]
⊗ C =

[
M ⊗ C

N ⊗ C

]
capture the meaning of Kronecker product block-wise. Index-wise, one has:

(y, x)(M ⊗N)(b, a) = (yMb)× (xNa)

4 Weighted Automata Homomorphisms

A homomorphism between two weighted automata W and W ′ is a function h
making the following MatS-diagram commute,

FQ

Fh

��

Q

h

��

W��

FQ′ Q′
W ′

��

(21)

for FX = (X ⊗ id)⊕ id (F-coalgebra homomorphism). The reader may wonder
about how does h (a function) fit into a diagram of matrices. The explanation

is easy: every function A
f �� B can be represented in MatS by a matrix [[f]]

of the same type defined by

b[[f]]a � (b =S f a)

where, in general, y =S x is the unit 1 of S if y = x and 0 otherwise. Thus [[f]]
is the matrix which represents the graph of f : there is a 1 in every entry of [[f]]
addressed by (f(a), a) and 0s everywhere else. As S is always implicit and all
diagrams are drawn in MatS unless otherwise specified, subscript S in =S and
the parentheses in [[f]] can be safely dropped.

Below we show how diagram (21) unfolds into the usual definition of weighted
automata homomorphism [8], which is termed functional simulation in [9]. For
this we will rely on typed, blocked linear algebra:

(Fh) ·W = W ′ · h
≡ { unfold Fh ; W and W ′ are splits defined by (12) }

((h⊗ id)⊕ id) ·
[
μ

γ

]
=

[
μ′

γ′

]
· h

≡ { absorption (20), identity (3) and fusion (16) }[
(h⊗ id) · μ

γ

]
=

[
μ′ · h
γ′ · h

]

Typed Linear Algebra for Weigthed (Probabilistic) Automata 61

≡ { equality (18) }{
(h⊗ id) · μ = μ′ · h
γ = γ′ · h (22)

The reader wishing to convert the equalities of (22) into index-wise formulas for
cross-checking with other sources is invited to do so based on the following rules
interfacing index-free and index-wise matrix notation, where N is an arbitrary
matrix and f , g are functional matrices:

y(f ·N)x = 〈
∑

z : y = f(z) : zNx〉 (23)

y(g◦ ·N · f)x = (g(y))N(f(x)) (24)

These rules are expressed in the style of the Eindhoven quantifier calculus [3].
Their calculation (deferred to the appendix) provides evidence of the safe mix
among matrix, predicate and function notation in typed LA.

We start by unfolding the first equality of (22):

(h⊗ id) · μ = μ′ · h
≡ { index-wise equality on matrices of type Q′ × A Q�� }

(q′, a)((h⊗ id) · μ)q = (q′, a)(μ′ · h)q
≡ { (24) on the right hand side, for g,N, f := id, μ′, h }

(q′, a)((h⊗ id) · μ)q = (q′, a)μ′(h(q))

≡ { (23) for f, N := h⊗ id, μ }

〈
∑

(p, b) : (q′, a) = (h⊗ id)(p, b) : (p, b)μq〉 = (q′, a)μ′(h(q))

≡ { since (h⊗ id)(p, b) = (h(p), b); one-point rule [3] over a = b }

〈
∑

p : q′ = h(p) : (p, a)μq〉 = (q′, a)μ′(h(q))

≡ { liberally writing p q
a�� for the weight of the corresponding transition }

〈
∑

p : q′ = h(p) : p q
a�� 〉 = q′ h(q)

a��

In words: the weight associated to transition q′ h(q)
a�� in the target au-

tomaton is the accumulation of the weights of all transitions p q
a�� in the

source automaton for all p which h maps to q′.
Unfolding the other matrix equality in (22) is simpler: as γ, γ′ are row vectors,

we get, for all q ∈ Q, 1γq = 1(γ′ · h)q, since there is only one row. By (24) this
becomes 1γq = 1γ′(h(q)), that is γ(q) = γ′(h(q)) once γ, γ′ are regarded back
as functions.

Summing up, both calculations show that weighted automata homomorphisms
defined in a category of matrices coincide with those defined by Bonchi et al.

62 J.N. Oliveira

[8] in the category of sets. We regard this as just the beginning of a typed LA
approach to weighted automata to be developed comprehensively in the near
future.

5 Summary

This abstract addresses on-going work. Since the research presented in [16, 19],
typed LA calculational techniques have been successfully applied to data mining
[17] and probabilistic program calculation [23], the latter extending the algebra
of programming of Bird and de Moor [6].

In the case of weighted automata, LA is a natural choice already identified by
other researchers. Buchholz [9], for instance, praises matrix notation because it
allows an elegant and compact formulation of the theory. Trčka [28] writes that
matrices (...) increase clarity and compactness, simplify proofs, make known
results from linear algebra directly applicable and also mentions their didactic
advantage.

In broad terms, the approach put forward in this abstract proposes that LA be
typed on the basis of a categorial approach in which index-free matrix terms form
the main notation, diagrammatic representations and proofs included. That is to
say, rather than accepting LA arguments embedded in ordinary set-theoretical
reasoning, we propose that typed LA be regarded as a lingua franca for com-
puting, the other approaches coming as suitable instantiations 5.

We should say we are not the first proposing this strategy. The acronym
LAoP, for “linear algebra of programming” has been put forward already, al-
beit in a somewhat different setting, by Sernadas et al. [25], the key idea being
“to adopt linear algebra as the lingua franca of software verification” [27]. Our
contribution is the emphasis on LA polymorphic types. For this to work in prac-
tice, we believe the interfaces with standard logic, set theory and relation algebra
should not be neglected. Schmidt [24] already relies on matrix notation for do-
ing relation algebra. Our experiments eg. with the Eindhoven quantifier notation
show that the interface between functions, relations, predicates and matrices is
(at least pedagogically) relevant. The infix notation we adopt for matrix entries
— yMx rather than M(y, x) — intends to bridge with that commonly used for
binary relations. For instance, y ≤ x is preferred to ≤ (y, x).

6 Current and Related Work

One of our targets is the linear algebra of components which, anticipated in [18],
promises a quantitative expansion of the coalgebraic approach of Barbosa [5] on
software components.

The work by Bonchi et al. [8] on a coalgebraic perspective on weighted au-
tomata promises a similar outcome but their use of linear algebra is on a different

5 Even so general a framework as that of an allegory [12] arises from matrices whose
data values form locales.

Typed Linear Algebra for Weigthed (Probabilistic) Automata 63

plan: triggered by the need to extend the powerset functor quantitatively, they
introduce a vector space which weights (quantifies) multi-way state evolution.
(In a sense, powersets become “metric”.) Because this is carried in the category
of sets, their coalgebras involve functor W = K×(K−

ω)
A over a field K, where K−

ω

is the so-called field valuation (exponential) functor. Our approach flattens such
exponentials by changing category: the category of sets and functions gives room
to the category of matrices built on top of K. Thus ()A within sets becomes
()×A within matrices. In this way, weights no longer need to be taken explicitly
into account, as the underlying matrix algebra circumspectly takes care of them.

Much remains to be done, in particular calling for the unification with related
work. For instance, we would like to relate our ideas with those of Trčka [28],
who presents a matrix approach to the notions of strong, weak and branching
bisimulation ranging from labeled transition systems to Markov reward chains.
This already is the aim of Buchholz [9], who targets at a universal definition of
bisimulation which can be applied to a wide class of model types such that the
different forms of bisimulation can all be seen as specific cases, helping to unify
system analysis.

We believe matrix types will improve the approaches of both [9] and [28] in
a significant way. But, above all, in its use of matrix categories our strategy is
close to the iteration theory MatL(X∗) of Bloom et al. [7] whose morphisms are
matrices with entries in the semiring of languages. We intend to investigate the
relationship between both approaches in a thorough way.

Acknowledgements. The author is indebted to Nelma Moreira for her com-
ments on an earlier draft of this extended abstract. This research was carried out
in the context of the QAIS (Quantitative analysis of interacting systems: foun-
dations and algorithms) project funded by the ERDF through the Programme
COMPETE and by the Portuguese Government through FCT (Foundation for
Science and Technology) contract PTDC/EIA-CCO/122240/2010.

Appendix

To calculate (23) we let M := f in (1):

y(f ·N)x

= { definition (1) }

〈
∑

z :: (y = f(z))× (zNx)〉

= { rule (25) below }

〈
∑

z : y = f(z) : zNx〉

The rule used above,

〈
∑

x : p(x) : e(x)〉 = 〈
∑

x :: (p(x)) × (e(x))〉 (25)

64 J.N. Oliveira

is illustrative of the interface between predicate logic and the semiring algebra
underneath: on the left hand side, p(x) is a predicate expressing the range of
a summation; on the right hand side it is encoded into S: 1 if p(x) holds, 0
otherwise. Since 0× s = 0, all terms such that p(x) doesn’t hold boil down to 0
and don’t affect the summation 6.

Similarly, for M := g◦ in (1):

y(g◦ ·N)x

= { definition (1) ; y(g◦)z = z =S g(y) }

〈
∑

z :: (z = g(y))× (zNx)〉

= { rule (25) }

〈
∑

z : z = g(y) : zNx〉

= { one-point rule [3] }

(g(y))Nx

Thus y(g◦ · N)x = (g(y))Nx. The calculation of y(N · f)x = yN(f(x)) follows
the same steps. Rule (24) puts these two equalities together.

References

1. Abadir, K., Magnus, J.: Matrix algebra. Econometric exercises, vol. 1. Cambridge
University Press (2005)

2. Andova, S., McIver, A., D’Argenio, P.R., Cuijpers, P.J.L., Markovski, J., Mor-
gan, C., Núñez, M. (eds.): Proceedings First Workshop on Quantitative Formal
Methods: Theory and Applications. EPTCS, vol. 13 (2009)

3. Backhouse, R., Michaelis, D.: Exercises in Quantifier Manipulation. In: Uustalu,
T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 69–81. Springer, Heidelberg (2006)

4. Backhouse, R.: Mathematics of Program Construction, 608 pages. Univ. of Not-
tingham (2004), draft of book in preparation

5. Barbosa, L.: Towards a Calculus of State-based Software Components. Journal of
Universal Computer Science 9(8), 891–909 (2003)

6. Bird, R., de Moor, O.: Algebra of Programming. Series in Computer Science.
Prentice-Hall International (1997)

7. Bloom, S., Sabadini, N., Walters, R.: Matrices, machines and behaviors. Applied
Categorical Structures 4(4), 343–360 (1996)

8. Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J., Silva, A.: A coalgebraic per-
spective on linear weighted automata. Information and Computation 211, 77–105
(2012)

9. Buchholz, P.: Bisimulation relations for weighted automata. Theoretical Computer
Science 393(1-3), 109–123 (2008)

6 For S the Boolean semiring,
∑

is existential quantification, × is conjunction and
equality (25) becomes an instance of the trading rule of existential quantification [3].

Typed Linear Algebra for Weigthed (Probabilistic) Automata 65

10. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Kuich, W.,
Vogler, H., Droste, M. (eds.) Handbook of Weighted Automata. EATCS Mono-
graphs in Theoretical Computer Science, ch. 5, pp. 175–211. Springer (2009)

11. Erwig, M., Kollmansberger, S.: Functional pearls: Probabilistic functional pro-
gramming in Haskell. J. Funct. Program. 16, 21–34 (2006)

12. Freyd, P., Scedrov, A.: Categories, Allegories, Mathematical Library, vol. 39.
North-Holland (1990)

13. Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In: Pro-
ceedings of the 16th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2011, pp. 2–14. ACM, New York (2011)

14. Hehner, E.: A probability perspective. Formal Aspects of Computing 23, 391–419
(2011)

15. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Com-
put. 94(1), 1–28 (1991)

16. Macedo, H.D., Oliveira, J.N.: Matrices As Arrows! A Biproduct Approach to Typed
Linear Algebra. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS,
vol. 6120, pp. 271–287. Springer, Heidelberg (2010)

17. Macedo, H.D., Oliveira, J.N.: Do the middle letters of “OLAP” stand for linear
algebra (“LA”)? Technical Report TR-HASLab:04:2011, INESC TEC and Univer-
sity of Minho, Gualtar Campus, Braga (2011)

18. Macedo, H.D., Oliveira, J.N.: Towards Linear Algebras of Components. In: Bar-
bosa, L.S. (ed.) FACS 2010. LNCS, vol. 6921, pp. 300–303. Springer, Heidelberg
(2010)

19. Macedo, H.D., Oliveira, J.N.: Typing linear algebra: A biproduct-oriented approach
(2011) (accepted for publication in SCP)

20. MacLane, S.: Categories for the Working Mathematician. Springer, New-York
(1971)

21. MacLane, S., Birkhoff, G.: Algebra. AMS Chelsea (1999)
22. McIver, A., Morgan, C.: Abstraction, Refinement and Proof For Probabilistic Sys-

tems. Monographs in Computer Science. Springer (2005)
23. Oliveira, J.: Towards a linear algebra of programming. Accepted for publication in

Formal Aspects of Computing (2012)
24. Schmidt, G.: Relational Mathematics. Encyclopedia of Mathematics and its Ap-

plications, vol. 132. Cambridge University Press (November 2010)
25. Sernadas, A., Ramos, J., Mateus, P.: Linear algebra techniques for deciding the

correctness of probabilistic programs with bounded resources. Tech. rep., SQIG -
IT and IST - TU Lisbon, 1049-001 Lisboa, Portugal (2008), short paper presented
at LPAR 2008, Doha, Qatar, November 22-27

26. Sokolova, A.: Coalgebraic Analysis of Probabilistic Systems. Ph.D. dissertation,
Tech. Univ. Eindhoven, Eindhoven, The Netherlands (2005)

27. SQIG-Group: LAP: Linear algebra of bounded resources programs, iT & Tech.
Univ. Lisbon (2011), http://sqig.math.ist.utl.pt/work/LAP

28. Trčka, N.: Strong, weak and branching bisimulation for transition systems and
Markov reward chains: A unifying matrix approach. In: [2], pp. 55–65

http://sqig.math.ist.utl.pt/work/LAP

A Pushdown Transducer Extension

for the OpenFst Library

Cyril Allauzen and Michael Riley

Google Research, 76 Ninth Avenue, New York, NY 10011, USA
{allauzen,riley}@google.com

Abstract. Pushdown automata are devices that can efficiently repre-
sent context-free languages, have natural weighted versions, and combine
naturally with finite automata. We describe a pushdown transducer ex-
tension to OpenFst, a weighted finite-state transducer library. We present
several weighted pushdown algorithms, some with clear finite-state ana-
logues, describe their library usage and give some applications of these
methods to recognition, parsing and translation.

1 Introduction

OpenFst is an open-source C++ software library for creating, combining, search-
ing and optimizing finite-state transducers (FSTs) [4]. Weighted FSTs have many
applications in speech and language processing, computational biology and other
areas and the availability of flexible, large-scale algorithms libraries allows rapid
experimentation and development [17]. However, there are problems that are not
well-represented by finite automata such as aspects of natural language parsing
or translation. In particular, a context-free representation may be better suited
either because the language considered is not regular or is more compactly rep-
resented in a recursive manner.

In these cases, a common approach is to use a weighted context-free grammar
as the representation. However, weighted pushdown automata offer an attractive
alternative. As automata, they are more closely tied to computation and can
share and mix with finite automata in a natural way [7]. Our goal here is to
present several weighted pushdown algorithms, some with clear finite-state ana-
logues, to describe their realization in a pushdown transducer extension to the
OpenFst library and to give some applications of these methods and the library.

2 Definitions

Informally, pushdown transducers are finite-state transducers that have been
augmented with a stack. Typically this is done by adding a stack alphabet and
labeling each transition with a stack operation (a stack symbol to be pushed
onto, popped or read from the stack) in additon to the usual input and output
labels [1,6] and weight [12,20]. Our equivalent representation allows a transition
to be labeled by a stack operation or regular input/output symbols but not both.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 66–77, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Pushdown Transducer Extension for the OpenFst Library 67

0

1a

2
ε
(

3)
b

0
1

a

2

ε

(
ε

3

)
ε
b

0

1
(

3

ε

2
a

4(

)

5
b

)

0,ε

1,(
ε

3,ε

ε

2,(
a

4,(ε

ε

5,(
b

ε

(a) (b) (c) (d)

Fig. 1. PDA Examples: (a) Non-rational PDA A1 accepting {anbn|n ∈ N}. (b) Ra-
tional (but not bounded-stack) PDA A2 accepting a∗b∗. (c) Bounded-stack PDA A3

accepting a∗b∗ and (d) its expansion A4 as an FSA.

Stack operations are represented by pairs of open and close parentheses (pushing
a symbol on and popping it from the stack). The advantage of this representation
is that it is identical to the finite-state transducer representation except that
certain symbols (the parentheses) have special semantics. As such, several finite-
state algorithms either immediately generalize to this PDT representation or do
so with minimal changes.

2.1 Dyck Languages

A (restricted) Dyck language consists of “well-formed” or “balanced” strings over
a finite number of pairs of parentheses. Thus the string ([() ()] { } []) () is
in the Dyck language over three pairs of parentheses (following [6]).

More formally, let A and A be two finite alphabets such that there exists
a bijection f from A to A. Intuitively, f maps an opening parenthesis to its
corresponding closing parenthesis. Let ā denote f(a) if a∈A and f−1(a) if a∈A.
The Dyck language DA over the alphabet Â=A∪A is then the language defined
by the following context-free grammar: S → ε, S → SS and S → aSā for all
a ∈ A. We define the mapping cA : Â∗ → Â∗ as follows. cA(x) is the string
obtained by iteratively deleting from x all factors of the form aā with a ∈ A.
Observe that DA=c−1

A (ε).
Let A and B be two finite alphabets such that B ⊆ A, we define the mapping

rB : A∗ → B∗ by rB(x1 . . . xn) = y1 . . . yn with yi = xi if xi ∈ B and yi = ε
otherwise.

2.2 Pushdown Automata and Transducers

Formally, a weighted pushdown transducer (PDT) T over the tropical semiring
(R ∪ {∞},min,+,∞, 0) is a 9-tuple (Σ,Δ,Π,Π,Q,E, I, F, ρ) where Σ and Δ
are the finite input and output alphabets, Π and Π are the finite open and close
parenthesis alphabets, Q is a finite set of states, I ∈Q the initial state, F ⊆ Q
the set of final states, E ⊆ Q× (Σ ∪ Π̂ ∪ {ε})× (Δ∪ Π̂ ∪ {ε})× (R∪ {∞})×Q
a finite set of transitions, and ρ : F → R ∪ {∞} the final weight function. Let

e=(p[e], i[e], o[e], w[e], n[e]) denote a transition in E we require that if i[e]∈ Π̂
or o[e]∈Π̂ , then i[e]=o[e]. We define the size of T as |T |= |Q|+|E|.

68 C. Allauzen and M. Riley

A path π is a sequence of transitions π = e1 . . . en such that n[ei] = p[ei+1]
for 1 ≤ i < n. We then define p[π] = p[e1], n[π] = n[en], i[π] = i[e1] · · · i[en],
o[π]=o[e1] · · · o[en] and w[π]=w[e1] + . . .+ w[en].

A path π is accepting if p[π] = I and n[π] ∈ F . A path π is balanced if
rΠ̂(i[π]) ∈DΠ . A balanced path π accepts the pair (x, y) ∈ Σ∗ × Δ∗ if it is a
balanced accepting path such that rΣ(i[π])=x and rΔ(o[π])=y.

The weight associated by T to a pair of strings (x, y)∈Σ∗ ×Δ∗ is

T (x, y)= min
π∈P (x,y)

w[π]+ρ(n[π])

where P (x, y) denotes the set of balanced paths accepting (x, y). A weighted
transduction is recognizable by a weighted pushdown transducer iff it is algebraic
[20] or equivalently iff it is recognizable by a weighted simple syntax-directed
translation [1,14].

A weighted pushdown automaton (PDA) is a pushdown transducer where i[e]=
o[e] for all transition e∈E. A weighted language is recognizable by a weighted
pushdown automaton iff it is context-free [1,12].

A pushdown transducer T has bounded stack if there exists K ∈ N such that
for any path π from I such that cΠ(rΠ̂(i[π])) ∈ Π∗:

|cΠ(rΠ̂(i[π]))| ≤ K. (1)

If T has bounded stack, then it represents a rational transduction (see
Section 4.1). Figure 1a-c gives examples of non-rational, rational and bounded-
stack PDAs.

A pushdown transducer is deterministic if at any state with at least two
outgoing transitions the input labels of the outgoing transitions are distinct and
are either all input symbols (in Σ) or all close parentheses (in Π).

A weighted finite-state transducer or automaton (FST or FSA) can be viewed
as a PDT or PDA where the open and close parentheses alphabets are empty;
see [16] for a stand-alone definition.

3 Implementation

The benefit of this definition of PDTs is that a PDT T can be represented as
a pair of a FST specification, with input alphabet Σ ∪ Π̂ and output alphabet
Δ ∪ Π̂ , and a parentheses mapping f : Π → Π, a �→ a. This allows us to fully
leverage the OpenFst library [4] for representing and manipulating the FST
specifications of PDTs.

The PDA A1 given in Figure 1a can be generated from the three text files given
Figure 2. The pda.txt file is the textual description of the FSA specification of
A1 in the OpenFst format. The symbols file maps each symbol to an integer value
used for the internal memory representation. Finally, the parens file describes
the pair of open and close parentheses. The fstcompile binary command can be
used to generate a binary file for the FSA specification of A1:

fstcompile --acceptor --isymbols=symbols pda.txt > pda.fst

A Pushdown Transducer Extension for the OpenFst Library 69

pda.txt symbols parens

0 1 a eps 0 3 4
0 2 eps a 1
1 0 (b 2
2 3) (3
2) 4
3 2 b

Fig. 2. Text files representing the PDA from Figure 1a

The pair of files (pda.fst, parens) is then the file representation of the PDA for
the purposes of the library. For instance, the reverse of A1 can then be computed
by invoking the following command:

pdtreverse --pdt parentheses=parens pda.fst > reverse-pda.fst

Using the C++ interface, a PDT is similarly represented by a pair consisting of
an object of type StdFst and a vector<pair<int, int> > object representing the
set of open and close parenthesis pairs. The following C++ code is equivalent
to the command given above:

StdFst *pda = StdFst::Read("pda.fst");

vector<pair<int, int> > parens(1, make_pair(3,4));

StdVectorFst reverse_pda;

Reverse(*pda, parens, &reverse_pda);

Table 1 shows the operations available in the PDT library extension [2]. The
shared file and memory representations for FSTs and PDTs allows some oper-
ations from the OpenFst library, such as Union or Invert for instance, to be
applied to PDTs unmodified. Other operations can be implemented with min-
imal work by leveraging the corresponding FST operation. For instance, PDT
reversal can be implemented by first calling the Reverse operation of OpenFst
followed by replacing every occurence of a parenthesis a ∈ Π̂ by its matching
parenthesis a in the resulting machine.

4 Algorithms

In this section, we present PDT algorithms that are not trivially derived from
FST analogues. The algorithms that we chose were motivated by analogy to
the finite automata or context-free grammar case, by their applications (see
Section 5), and by their tractability.

4.1 Expansion

Given a bounded-stack PDT T , the expansion of T is the FST T ′ equivalent to
T defined as follows.

A state in T ′ is a pair (q, z) where q is a state in T and z∈Π∗. A transition
(q, a, b, w, q′) in T results in a transition ((q, z), a′, b′, w, (q′, z′)) in T ′ only when
one of the following conditions hold: (a) a∈Σ ∪ {ε}, z′=z, a′=a and b′=b, (b)

70 C. Allauzen and M. Riley

Table 1. Algorithms for manipulating pushdown transducers and the corresponding
binary commands

Operation Algorithm Section Command

Union FST alg. fstunion

Concatenation FST alg.� fstconcat

Closure FST alg.� fstclosure

Reversal trivial changes to FST alg. pdtreverse

Inversion FST alg. fstinvert

Projection FST alg. fstproject

Expansion PDT-specific alg.� 4.1 pdtexpand

Replacement PDT-specific alg. 4.5 pdtreplace

Composition non-trivial changes to FST alg. 4.2 pdtcompose

Determinization FST alg. useful† fstdeterminize

Epsilon removal FST alg. fstrmepsilon

Minimization FST alg. useful‡ fstminimize

Shortest distance PDT-specific alg.� 4.3 N/A
Shortest path PDT-specific alg.� 4.3 pdtshortestpath

Pruned expansion PDT-specific alg.� 4.4 pdtexpand

Pruning PDT-specific alg. required 4.6 N/A
Connection PDT-specific alg. required 4.6 N/A
�Assumes the presence of distinguished initial and final parentheses.
�Requires bounded-stack input.
†Reduces the redundancy but does not produce a deterministic PDT.
‡Reduces the size but does not perform PDT minimization.

a∈Π , z′=za, a′=ε and b′=ε, or (c) a∈Π , z=z′a, a′=ε and b′=ε. The initial
state of T ′ is I ′ =(I, ε). A state (q, z) in T ′ is final iff q is final in T and z= ε.
We have ρ′((q, ε))=ρ(q). The set of states of T ′ is the set of pairs (q, z) that can
be reached from an initial state by transitions defined as above. The condition
that T has bounded stack ensures that this set is finite (since it implies that for
any such pair (q, z), |z| ≤ K).

The complexity of the algorithm is linear in O(|T ′|) = O(e|T |). Figure 1d
shows the result of the algorithm when applied to the PDA of Figure 1c.

4.2 Composition

The class of weighted pushdown transducers is closed under composition with
weighted finite-state transducers [5,18]. Considering a pair (T1, T2) where one
element is an FST and the other element a PDT and such that T1 has input and
output alphabets Σ and Δ and T2 has input and output alphabets Δ and Γ ,
then there exists a PDT T1◦T2, the composition of T1 and T2, such that for all
(x, y)∈Σ∗ × Γ ∗: (T1◦T2)(x, y)=minz∈Δ∗(T1(x, z)+T2(z, y)). We assume in the
following that T2 is an FST. We also assume that T2 has no input-ε transitions.
When T2 has input-ε transitions, an epsilon filter [16,3] generalized to handle
parentheses can be used.

A Pushdown Transducer Extension for the OpenFst Library 71

ShortestDistance(T)

1 for each q ∈ Q and a ∈ Π do
2 B[q, a] ← ∅
3 GetDistance(T, I)
4 return d[f, I]

Relax(q, s, w,S)

1 if d[q, s] > w then
2 d[q, s] ← w
3 if q �∈ S then
4 Enqueue(S, q)

GetDistance(T, s)

1 for each q ∈ Q do
2 d[q, s] ← ∞
3 d[s, s] ← 0
4 Ss ← s
5 while Ss �=∅ do
6 q ← Head(Ss)
7 Dequeue(Ss)
8 for each e ∈ E[q] do
9 if i[e] ∈ Σ ∪ {ε} then � i[e] is a regular symbol

10 Relax(n[e], s, d[q, s] + w[e],Ss)

11 elseif i[e] ∈ Π then � i[e] is a close parenthesis

12 B[s, i[e]] ← B[s, i[e]] ∪ {e}
13 elseif i[e] ∈ Π then � i[e] is an open parenthesis
14 if d[n[e], n[e]] is undefined then
15 GetDistance(T, n[e])
16 for each e′ ∈ B[n[e], i[e]] do
17 w ← d[q, s] + w[e] + d[p[e′], n[e]] + w[e′]
18 Relax(n[e′], s, w,Ss)

Fig. 3. PDT shortest distance algorithm. We assume that F = {f} and ρ(f) = 0 to
simplify the presentation

A state in T =T1◦T2 is a pair (q1, q2) where q1 is a state of T1 and q2 a state
of T2. The initial state is I =(I1, I2). Given a transition e1=(q1, a, b, w1, q

′
1) in

T1, transitions out of (q1, q2) in T are obtained using the following rules.
If b ∈ Δ, then e1 can be matched with a transition (q2, b, c, w2, q

′
2) in T2

resulting a transition ((q1, q2), a, c, w1+w2, (q
′
1, q

′
2)) in T . If b = ε, then e1 is

handled by staying in q2 resulting in a transition ((q1, q2), a, ε, w1, (q
′
1, q2)). Fi-

nally, if b= a ∈ Π̂, e1 is also handled by staying in q2, resulting in a transition
((q1, q2), a, a, w1, (q

′
1, q2)) in T .

A state (q1, q2) in T is final when both q1 and q2 are final, and then ρ((q1, q2))=
ρ1(q1)+ρ2(q2). The complexity of the algorithm is O(|T1| |T2|) in the worst case.

4.3 Shortest Distance and Shortest Path

A shortest path in a PDT T is a balanced accepting path with minimal weight
and the shortest distance in T is the weight of such a path. We show that when
T has bounded stack, the shortest distance and shortest path can be computed
in O(|T |3 log |T |) time (assuming T has no negative weights) and O(|T |2) space.

Given a state s in T with at least one incoming open parenthesis transition,
we denote by Cs the set of states that can be reached from s by a balanced path.
If s has several incoming open parenthesis transitions, a naive implementation
might lead to the states in Cs being visited up to exponentially many times. The
basic idea of the algorithm is to memoize the shortest distance from s to states
in Cs. The pseudo-code is given in Figure 3.

GetDistance(T, s) starts a new instance of the shortest-distance algorithm
from s using the queue Ss, initially containing s. While the queue is not empty,
a state is dequeued and its outgoing transitions examined (line 5-9). Transitions
labeled by non-parenthesis are treated as in Mohri [16] (line 9-10). When the

72 C. Allauzen and M. Riley

considered transition e is labeled by a close parenthesis, all balancing incoming
open parentheses in s labeled by i[e] are remembered by adding e to B[s, i[e]]
(line 11-12). Finally, when e is labeled with an open parenthesis, if its destination
has not already been visited, a new instance is started from n[e] (line 14-15).
The destination states of all transitions balancing e are then relaxed (line 16-18).

The space complexity of the algorithm is quadratic for two reasons. First, the
number of non-infinite d[q, s] is |Q|2. Second, the space required for storing B
is at most in O(|E|2) since for each open parenthesis transition e, the size of
|B[n[e], i[e]]| is O(|E|) in the worst case. This last observation also implies that
the accumulated number of transitions examined at line 16 is in O(N |Q| |E|2)
in the worst case, where N denotes the maximal number of times a state is
inserted in the queue for a given call of GetDistance. Assuming the cost of
a queue operation is Γ (n) for a queue containing n elements, the worst-case
time complexity of the algorithm can then be expressed as O(N |T |3 Γ (|T |)).
When T contains no negative weights, using a shortest-first queue discipline
leads to a time complexity in O(|T |3 log |T |). When all the Cs’s are acyclic,
using a topological order queue discipline leads to a O(|T |3) time complexity.

When T has been obtained by converting an RTN into a PDA (see Sec-
tion 4.5), the polynomial dependency in |T | becomes a linear dependency both
for the time and space complexities. Indeed, for each q in T , there exists a unique
s such that d[q, s] is non-infinite. Moreover, for each open parenthesis transition
e, there exists a unique close parenthesis transition e′ such that e′∈B[n[e], i[e]].
When each component of the RTN is acyclic, the complexity of the algorithm is
hence in O(|T |) in time and space.

Similarly, when T = T1 ◦ T2 and T1 was obtained by converting an RTN into
a PDA, the complexity becomes O(N |T1||T2|3 Γ (|T |)) in time and O(|T1||T2|2)
in space. This follows since for each (q1, q2) there exists a unique s1 such that
d[(q1, q2), (s1, s2)] is non-infinite. Also, for each open parenthesis transition e,
there exist at most |T2| close parenthesis transition e′ such that e′∈B[n[e], i[e]].

The algorithm can be modified (without changing the complexity) to compute
the shortest path through T by keeping track of parent pointers.

4.4 Pruned Expansion

Given a bounded-stack PDT T , the pruned expansion of T with threshold β is
an FST T ′

β obtained by deleting from T ′ all states and transitions that belong to
no accepting path π in T ′ such that λ′(p[π])+w[π]+ ρ′(n[π]) ≤ d+β where d is
the shortest distance in T . A naive implementation consisting of fully expanding
T and then applying the FST pruning algorithm would lead to a complexity in
O(|T ′| log |T ′|)=O(e|T ||T |).

Assuming that the reverse TR of T is also bounded-stack, an algorithm whose
complexity is in O(|T | |T ′

β| + |T |3 log |T |) can be obtained by first applying the

shortest distance algorithm from the previous section to TR and then using
this to prune the expansion as it is generated. When invoking the pdtexpand

command, the --weight flag can be used to specify the threshold β and trigger
a pruned expansion of the input PDT.

A Pushdown Transducer Extension for the OpenFst Library 73

4.5 Replacement

A recursive transitive network (RTN) R is specified by (N,Σ,Δ, (Tν)ν∈N , S)
where N is an alphabet of nonterminals, Σ and Δ are the input and output
alphabets, (Tν)ν∈N is a family of FSTs with input alphabet Σ ∪N and output
alphabet Δ, and S∈N is the root nonterminal.

A pair (x, y)∈Σ∗×Δ∗ is accepted by R if there exists an accepting path π in
TS such that recursively replacing any transition with input label ν ∈N by an
accepting path in Tν leads to a path π∗ with input x and output y. The weight
associated by R is the minimum over all such π∗ of w[π∗]+ρS(n[π

∗]).
Given an RTN R, the replacement of R is the PDT T equivalent to R defined

by the 10-tuple (Σ,Δ,Π,Π,Q,E, I, F, σ, ρ) with Π = Q =
⋃

ν∈N Qν , I = IS ,
F =FS , ρ=ρS , and E=

⋃
ν∈N

⋃
e∈Eν

Ee where Ee={e} if i[e]
∈ N and otherwise

Ee={(p[e], n[e], ε, w[e], Iμ), (f, n[e], ε, ρμ(f), n[e])|f ∈Fμ} with μ= i[e]∈N .
The complexity of the construction is in O(|T |). If |Fν | = 1, then |T | =

O(
∑

ν∈N |Tν |)=O(|R|). Creating a superfinal state for each Tν would lead to a
T whose size is always linear in the size of R.

4.6 Discussion

The PDT expansion algorithm can result in an FST that is not trim: it may
contain useless states or transitions not on accepting paths. OpenFst provides
the Connect operation that performs classical finite-automata trimming (using
a depth-first search). By analogy, a PDT can be defined trim if each state and
transition lies on a balanced, accepting path. Similarly, a PDT can be defined
pruned with threshold β if each state and transition lies on a balanced, accepting
path with weight w ≤ d+ β where d is the shortest distance in the PDT. In the
future, we wish to add algorithms Connect to trim a bounded-stack PDT and
Prune to prune a bounded-stack PDT within threshold β. Note these algorithms
are different from the connected or pruned expansion of a PDT, since the results
here, in general, are PDTs not FSTs.

5 Applications

5.1 Recognition

Suppose we have an acyclic weighted finite automaton L that represents the like-
lihood Pr[x|s] of some observation x given a sentence s ∈ L. For example, x could
be spoken or written words with Pr[x|s] being acoustically or optically-derived
likelihoods from an automatic speech recognition (ASR) or optical character
recognition (OCR) system. Further, suppose we have a weighted context-free
grammar G that represents the a priori probability Pr[s] of each sentence in the
grammar. We wish to compute the maximum a posteriori probability sentence,
argmax

s
Pr[x|s]Pr[s], given L and G.

To do so, we will first represent G as a pushdown automaton. A weighted
context-free grammar (CFG) can be specified by (N,Σ, P, S) where N is an

74 C. Allauzen and M. Riley

S

0
1a

6
a

2b

7c

3X 4d 5g

8X 9f
10

g 0
1a

6
a

2b

7c
11

(
12b

3 4d 5g

[
8 9f 10g

13c
)

]

(b) PDA

X
11 12b 13c

0,ε
1,εa

6,ε
a

2,εb

7,εc

11,(ε

11,[ε

12,(b

12,[b

13,(c

13,[c

3,εε

8,εε

4,εd

9,εf

5,εg

10,εg

(a) RTN (c) FSA

Fig. 4. Automata representations

alphabet of nonterminals, Σ is an alphabet of terminals, P ⊆ N × (N ∪ Σ)∗ ×
(R ∪ {∞}) are productions and S is the start symbol. A production (ν, α, w) is
sometimes written as ν → α/w.

To create a PDA that represents G, use each production (ν, α, w) to create the
linear FSA Aν,α,w that accepts α with weight w. Then for each non-terminal ν,
form the finite-state union Tν = ∪(ν,α,w)∈PAν,α,w. Then (N,Σ,Σ, (Tν)ν∈N , S)
is an RTN RG for which each accepting path π is in 1 : 1 correspondence with a
leftmost derivation of i(π) in G [15]. Finally, use the construction in Section 4.5
to represent RG as a PDA TG.

For example, consider the context-free grammar: S→abXdg, S→acXfg and
X→bc. Figure 4 shows several automata representations of this grammar. Fig-
ure 4a shows the RTN representation of this grammar with a 1:1 correspondence
between each production in the CFG and each accepting path in the RTN com-
ponents. Figure 4b shows the pushdown automaton representation generated
from the RTN with the replacement algorithm of Section 4.5. Since this gram-
mar’s productions have no cyclic dependencies, the PDA has bounded stack and
represents a regular language. Figure 4c shows the finite-state automaton repre-
sentation of this grammar generated by the PDA using the expansion algorithm
of Section 4.1.

For the probabilistic recognition example, we use negative log probabilities in
the weighted finite automaton L and in the construction of the PDT TG that
represents CFG G. Then, the maximum a posteriori sentence can be found with
ShortestPath(L ∩ TG). With the command line operations, this becomes:

pdtcompose --pdt parentheses=parens G.pda L.fsa |

pdtshortestpath --pdt parentheses=parens > Map.fsa

since composition between acceptors is intersection.1 The recognition has time
complexity in O(|L|3|TG|) and space complexity in O(|L|2|TG|) since TG has
bounded stack and is derived from an RTN.

An advantage of the RTN, PDA, and FSA representations is that they can ben-
efit from FSA epsilon removal, determinization and minimization algorithms ap-
plied to their components (for RTNs andPDAs) or their entirety (for FSAs). These
steps could improve the time and space requirements of the recognition example.

1 The compostion flag --left pdt=false would be required if the arguments were
exchanged.

A Pushdown Transducer Extension for the OpenFst Library 75

0 1(S

2
)S

3
)A

4)B

5

)C

6
(B

a

b

7(S

(C

(A

(A

0

1
a

2b

3

]S

4

]B

[A

[B

5]A

6

]A

]C

[C

[S

0

1

a

2

b

3
)A

4

)B
5]S

6

]A

7

]C

[A

[B

a

b

9

)S

[S

8

)C
[C

)S

[S

(B

(S

(a) left parser (b) right parser (c) left corner parser

Fig. 5. Different parsing strategies using PDTs

In a real-world example, this approach essentially is used to identify voice
action queries in the Google Android speech platform. For example, a production
could be S → send a message from X to Y where the non-terminals X and Y ,
for the sender and recipient, are rewritten as people’s names. A match identifies
a voice query as a messaging action.

5.2 Parsing

In the final example in the last section, we might not only wish to identify
a messaging action in a voice query but also want to parse the input to find
where the sender and recipient names are located. This is very similar to CFG
recognition but with the output augmented with the parse bracketing. A classical
approach is to augment the output tape of the PDT to include an index for each
production [1]. We take another approach here: the parentheses are chosen to
identify the production (or non-terminal) and the parentheses are retained in
the shortest path output. With the command line operations, this is done with
the flag --keep parentheses. This does not increase the time or space complexity
over recognition.

It has long been known that PDTs can be used to parse and that different pars-
ing strategies can be achieved by compiling the CFG into different PDTs [1,13].
For example, the CFG: S → AB, S → CB, C → AS, A→ a and B → bcan be
left parsed (‘top-down’) by the PDT in Figure 5a, right parsed (‘bottom-up’) by
the PDT in Figure 5b, and left-corner parsed by the PDT in Figure 5c [1]. Note
an equivalent right parser can be obtained from the left parser by first reversing
the right-hand side of the productions and then reversing the transducer.

The classical method to apply these parsers is equivalent to intersecting the
PDT with the input string followed by the exponential expansion algorithm

76 C. Allauzen and M. Riley

of Section 4.1. Lang [13] showed that the cubic tabular method of Earley can
be naturally applied to PDTs; others give the weighted generalizations [21,19].
These approaches are closely related to intersecting the PDT with the input
string followed by the shortest path algorithm of Section 4.3.

5.3 Translation

Hierarchical phrase-based translation, using a synchronous context-free transla-
tion grammar (SCFG) G together with an n-gram target language modelM , is a
popular approach in machine translation [8]. The productions of the SCFG are of
the form S → 〈uAvBw, xByAz〉. This production says that uAvBw translates to
xByAz where u, v, w, x, y, z are terminal strings and A and B are non-terminals
that must be in 1 : 1 correspondence in the source and target of the translation
but not necessarily in the same order. If all the productions preserved this or-
der, it would be possible to represent the translation grammar as a pushdown
transducer but for a general SCFG this is not possible [1].

However, the result of the application of the input source string s to the
probabilistic translation grammar G, which represents all possible translations
of s by G, is compactly represented by a weighted RTN or PDA Ts,G [11] 2. It
has bounded-stack, since the input s has already been applied to the SCFG.

Applying the n-gram language model M to Ts,G and searching for the best
resulting translation, typically the computationally expensive steps in transla-
tion, becomes ShortestPath(Ts,G∩M). It has time complexity in O(|Ts,G||M |3)
and space complexity in O(|Ts,G||M |2) since Ts,G has bounded stack and is de-
rived from an RTN. An alternative approach first expands Ts,G to an FSA Fs,G

and then applies finite-state intersection and shortest path to give a time and
space complexity of O(|e|Fs,G||M |). Gonzalo, et al [11] give experimental results
comparing these two approaches on a range of grammar and n-gram language
model sizes in a large-scale English-Chinese translation system.

5.4 Discussion

For each of these tasks - recognition, parsing, or translation - real-world prob-
lems might involve very large CFGs. In these cases, the cubic complexity of the
shortest path algorithm may be prohibitive and inadmissable or inexact methods
may be used that are not guaranteed to return the shortest path. One general
approach is to prune away unpromising paths [8,10]. Another approach is to use
a weaker, smaller grammar in a first pass, output a hypothesis set, and rescore
that with the full grammar. For the latter method, the pruned expansion of
Section 4.4 can be used to output the hypothesis sets.

Acknowledgments. We thankMehryarMohri for suggesting a PDT algorithms
library and discussions and thank Bill Byrne, Adrià de Gispert and Gonzalo Igle-
sias for working with us to adapt their pioneering automata approach for machine
translation to PDTs along with their comprehensive evaluations of these methods.

2 Another related representation, hypergraphs, are also often used for this purpose [11].

A Pushdown Transducer Extension for the OpenFst Library 77

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation and Compiling,
vol. 1-2. Prentice-Hall (1972)

2. Allauzen, C., Riley, M.: Pushdown Transducers (2011), http://pdt.openfst.org
3. Allauzen, C., Riley, M., Schalkwyk, J.: Filters for Efficient Composition of Weighted

Finite-State Transducers. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010.
LNCS, vol. 6482, pp. 28–38. Springer, Heidelberg (2011)

4. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: A General
and Efficient Weighted Finite-State Transducer Library. In: Holub, J., Žďárek, J.
(eds.) CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007),
http://www.openfst.org

5. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. In: Bar-Hillel, Y. (ed.) Language and Information: Selected Essays
on their Theory and Application, pp. 116–150. Addison-Wesley (1964)

6. Berstel, J.: Transductions and Context-Free Languages. Teubner (1979)
7. Chen, S.F.: Designing a non-finite-state weighted transducer toolkit. Technical Re-

port RC 24829, IBM Research Division (2009)
8. Chiang, D.: Hierarchical phrase-based translation. Computational Linguis-

tics 33(2), 201–228 (2007)
9. Drosde, M., Kuick, W., Vogler, H. (eds.): Handbook of Weighted Automata.

Springer (2009)
10. Hall, K., Johnson, M.: Language modeling using efficient best-first bottom-up pars-

ing. In: Proceedings of ASRU (2003)
11. Iglesias, G., Allauzen, C., Byrne, W., de Gispert, A., Riley, M.: Hierarchical phrase-

based translation representations. In: Proc. EMNLP, pp. 1373–1383 (2011)
12. Kuich, W., Salomaa, A.: Semirings, automata, languages. Springer (1986)
13. Lang, B.: Deterministic Techniques for Efficient Non-Deterministic Parsers. In:

Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14, pp. 255–269. Springer, Heidelberg
(1974)

14. Maryanski, F.J., Thomason, M.G.: Properties of stochastic syntax-directed trans-
lation schemata. International Journal of Computer and Information Sciences 8(2),
89–110 (1979)

15. Mohri, M.: Weighted grammar tools: the GRM library. In: Robustness in Language
and Speech Technology, pp. 165–186. Kluwer (2001)

16. Mohri, M.: Weighted automata algorithms. In: Drosde, et al. [9], ch. 6, pp. 213–254
17. Mohri, M., Pereira, F.C.N., Riley, M.: Weighted finite-state transducers in speech

recognition. Computer Speech and Language 16(1), 69–88 (2002)
18. Nederhof, M.-J., Satta, G.: Probabilistic parsing as intersection. In: Proceedings of

8th International Workshop on Parsing Technologies, pp. 137–148 (2003)
19. Nederhof, M.J., Satta, G.: Probabilistic parsing strategies. Journal of the

ACM 53(3), 406–436 (2006)
20. Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Drosde, et

al [9], ch. 7, pp. 257–289
21. Stolcke, A.: An efficient probabilistic context-free parsing algorithm that computes

prefix probabilities. Computational Linguistics 21(2), 165–201 (1995)

http://pdt.openfst.org
http://www.openfst.org

Weak Inclusion for Recursive XML Types

Joshua Amavi, Jacques Chabin, and Pierre Réty

LIFO - Université d’Orléans, B.P. 6759, 45067 Orléans cedex 2, France
{joshua.amavi,jacques.chabin,pierre.rety}@univ-orleans.fr

Abstract. Considering that the unranked tree languages L(G) and
L(G′) are those defined by given possibly-recursive XML types G and
G′, this paper proposes a method to verify whether L(G) is “approxima-
tively” included in L(G′). The approximation consists in weakening the
father-children relationships. Experimental results are discussed, show-
ing the efficiency of our method in many situations.

Keywords: XML type, regular unranked-tree grammar, approximative
inclusion.

1 Introduction

In database area, an important problem is schema evolution, particularly when
considering XML types. XML is also used for exchanging data on the web. In this
setting, we want to compare XML types in a loose way. To do it, we address the
more general problem of approximative comparison of unranked-tree languages
defined by regular grammars.

Example 1. Suppose an application where we want to replace an XML type G by
a new type G′ (eg., a web service composition where a service replaces another,
each of them being associated to its own XML message type). We want to analyse
whether the XML messages supported by G′ contains (in an approximate way)
those supported by G. XML types are regular tree grammars where we just
consider the structural part of the XML documents, disregarding data attached
to leaves. Thus, to define leaves we consider rules of the form A → a[ε].
Suppose that G and G′ contain the following rules:

F → firstName[ε], L → lastName[ε] , T → title[ε] and Y → year[ε].

P defines a publication, and B is the bibliography.
In G : P → publi[(F.L)+.T.B?], B → biblio[P+].
In G′ : P → publi[A∗.Pa], A → author[F.L], Pa → paper[T.Y.B?], B → biblio[P+]

We want to know whether messages valid with respect to G can be accepted
(in an approximate way) by G′. Notice that G accepts trees such as t in Figure 1
that are not valid with respect to schema G′ but that represent the same kind
of information G′ deals with. Indeed, in G′, the same information would be
organized as the tree t′ in Figure 1. �

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 78–89, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Weak Inclusion for Recursive XML Types 79

biblio

title year biblio

paper

title year

Joshua Amavi Inclusion 2011

Jacques Chabin XML 2010

title

title

Jacques Chabin XML

Joshua Amavi Inclusion

ε ε

1.2.0.1

0.0 0.1 1.0 1.1 1.2

1.2.0

1.2.0.0

1.2.0.1.11.2.0.1.01.2.0.0.11.2.0.0.0

0 1

3.0

3210

3.0.23.0.13.0.0

firstName lastName

firstName lastName

firstName lastName

firstName lastName

author paper

author

t = t’ =

publi

publipubli

publi

Fig. 1. Examples of trees t and t′ valid with respect to G and G′, respectively

The approximative criterion for comparing trees that is commonly used consists
in weakening the father-children relationships (i.e., they are implicitly reflected
in the data tree as only ancestor-descendant). In this paper, we consider this
criterion in the context of tree languages. We denote this relation weak inclusion
to avoid confusion with the usual inclusion of languages (i.e., the inclusion of a
set of trees in another one).

Given two types G and G′, we call L(G) and L(G′) the sets (also called
languages) of XML documents valid with respect to G and G′, respectively. Our
paper proposes a method for deciding whether L(G) is weakly included in L(G′),
in order to know if the substitution of G by G′ can be envisaged. The unranked-
tree language L(G) is weakly included in L(G′) if for each tree t ∈ L(G) there
is a tree t′ ∈ L(G′) such that t is weakly included in t′. Intuitively, t is weakly
included in t′ (denoted t � t′) if we can obtain t by removing nodes from t′ (a
removed node is replaced by its children, if any). For instance, in Figure 1, t can
be obtained by removing nodes author, paper, year from t′, i.e. we have t � t′.

To decide whether L(G) is weakly included in L(G′), we consider the set of
trees WI(L(G′)) = {t | ∃t′ ∈ L(G′), t � t′}. Note that1 L(G) is weakly included
in L(G′) iff L(G) ⊆ WI(L(G′)).

To compute WI(L(G′)), we have already proposed [3] a direct and simple
approach using regular unranked-tree grammars (hedge grammars), assuming
that L(G′) is bounded in depth, i.e. G′ is not recursive. Given a hedge grammar
G′, the idea consists in replacing each non-terminal occurring in a right-hand-
side of a production rule, by itself or its children. For example, if G′ contains
the rules A → a[B], B → b[C], C → c[ε], we get the grammar G′′ = {C →
c[ε], B → b[C|ε], A → a[B|(C|ε)]}. This grammar generates WI(L(G′)), because
in each regular expression, whenever we have a non-terminal X (X ∈ {A, B, C})

1 If L(G) is weakly included in L(G′), for t ∈ L(G) there exists t′ ∈ L(G′) s.t. t � t′.
Then t ∈ WI(L(G′)), hence L(G) ⊆ WI(L(G′)).

Conversely if L(G) ⊆ WI(L(G′)), for t ∈ L(G) we have t ∈ WI(L(G′)). Thus
there exists t′ ∈ L(G′) s.t. t � t′. Therefore L(G) is weakly included in L(G′).

80 J. Amavi, J. Chabin, and P. Réty

that generates x (x ∈ {a, b, c}), we can also directly generate the children of x
(instead of x), and more generally the successors of x.

Unfortunately, it does not work if G′ is recursive. Consider G′
1 = {A →

a[B.(A|ε).C], B → b[ε], C → c[ε]}. If we work as previously, we get the rule A →
a[B.(A|(B.(A|ε).C)|ε).C]. However, a new occurrence of A has appeared in the
rhs, and if we replace it again, this process does not terminate. If we stop at some
step, the resulting grammar does not generate WI(L(G′)). In this very simple
example, it is easy to see that G′′

1 = {A → a[B∗.(A|ε).C∗], B → b[ε], C → c[ε]}
generates WI(L(G′

1)). But if we now consider G′
2 = {A → a[B.(A.A | ε).C], B →

b[ε], C → c[ε]}, then in WI(L(G′
2)), a may be the left-sibling of b (which was not

possible in L(G′
2) nor in WI(L(G′

1))). Actually, WI(L(G′
2)) can be generated by

the grammar G′′
2 = {A → a[(A|B|C)∗], B → b[ε], C → c[ε]}. In other words, the

recursive case is much more difficult.
In this paper, we address the general case: some symbols may be recursive,

and some others may not. Given an arbitrary regular unranked-tree grammar
G′, we present a direct approach that computes a regular grammar, denoted
WI(G′), that generates the language WI(L(G′)). To do it, terminal-symbols are
divided into 3 categories: non-recursive, 1-recursive, 2-recursive. For n > 2, n-
recursivity is equivalent to 2-recursivity. Surprisingly, the most difficult situation
is 1-recursivity. We prove that our algorithm for computing WI(G′) is correct
and complete. An implementation has been done in Java, and experiments are
presented.

Consequently, for arbitrary regular grammars G and G′, checking that L(G) is
weakly included into L(G′), i.e. checking that L(G) ⊆ WI(L(G′)), is equivalent
to check that L(G) ⊆ L(WI(G′)), which is decidable since G and WI(G′) are
regular grammars.

Paper Organisation: Section 2 gives some theoretical background. Section 3
presents how to compute WI(G) for a given possibly-recursive regular grammar
G, while Section 4 analyses some experimental results. Related work and other
possible methods are addressed in Section 5. Due to the lack of space, missing
proofs are given in [4].

2 Preliminaries

An XML document is an unranked tree, defined in the usual way as a mapping
t from a set of positions Pos(t) to an alphabet Σ. The set of the trees over Σ
is denoted by TΣ. For v ∈ Pos(t), t(v) is the label of t at the position v, and
t|v denotes the sub-tree of t at position v. Positions are sequences of integers in
IN∗ and Pos(t) satisfies: ∀u, i, j (j ≥ 0, u.j ∈ Pos(t), 0 ≤ i ≤ j) ⇒ u.i ∈ Pos(t)
(char “.” denotes the concatenation). The size of t (denoted |t|) is the cardinal of
Pos(t). As usual, ε denotes the empty sequence of integers, i.e. the root position.
t, t′ will denote trees.

Figure 1 illustrates trees with positions and labels: we have, for instance,
t(1) = lastName and t′(1) = paper. The sub-tree t′|1.2 is the one whose root is
biblio.

Weak Inclusion for Recursive XML Types 81

Definition 1. Position comparison: Let p, q ∈ Pos(t). Position p is an an-
cestor of q (denoted p < q) if there is a non-empty sequence of integers r such
that q = p.r. Position p is to the left of q (denoted p ≺ q) if there are sequences of
integers u, v, w, and i, j ∈ IN such that p = u.i.v, q = u.j.w, and i < j. Position
p is parallel to q (denoted p ‖ q) if ¬(p < q) ∧ ¬(q < p). �

Definition 2. Resulting tree after node deletion: For a tree t′ and a non-
empty position q of t′, let us note Remq(t′) = t the tree t obtained from t′ by
removing the node at position q (a removed node is replaced by its children, if
any). We have:

1. t(ε) = t′(ε),
2. ∀p ∈ Pos(t′) such that p < q: t(p) = t′(p),
3. ∀p ∈ Pos(t′) such that p ≺ q : t|p = t′|p,
4. Let q.0, q.1..., q.n ∈ Pos(t′) be the positions of the children of position q, if
q has no child, let n = −1. Now suppose q = s.k where s ∈ IN∗ and k ∈ IN.
We have:
– t|s.(k+n+i) = t′|s.(k+i) for all i such that i > 0 and s.(k + i) ∈ Pos(t′)

(the siblings located to the right of q shift),
– t|s.(k+i) = t′|s.k.i for all i such that 0 ≤ i ≤ n (the children go up). �

Definition 3. Weak Inclusion for Unranked Trees: The tree t is weakly
included in t′ (denoted t � t′) if there exists a series of positions q1 . . . qn such
that t = Remqn(· · ·Remq1(t′)). �

Example 2.
In Figure 1, t = Rem0(Rem1(Rem1.1(Rem1.2.0.0(Rem1.2.0.1(Rem1.2.0.1.1(t′)))))),
then t � t′. Notice that for each node of t, there is a node in t′ with the same
label, and this mapping preserves vertical order and left-right order. However
the tree t1 = paper(biblio, year) is not weakly included in t′ since biblio should
appear to the right of year. �

Definition 4. Regular Tree Grammar: A regular tree grammar (RTG) (also
called hedge grammar) is a 4-tuple G = (NT, Σ, S, P), where NT is a finite set
of non-terminal symbols; Σ is a finite set of terminal symbols ; S is a set of start
symbols, where S ⊆ NT and P is a finite set of production rules of the form
X → a [R], where X ∈ NT , a ∈ Σ, and R is a regular expression over NT . We
recall that the set of regular expressions over NT = {A1, . . . , An} is inductively
defined by: R ::= ε | Ai | R|R | R.R | R+ | R∗ | R? | (R) �

Grammar in Normal Form: As usual, in this paper, we only consider reg-
ular tree grammars such that (i) every non-terminal generates at least one tree
containing only terminal symbols and (ii) distinct production rules have distinct
left-hand-sides (i.e., tree grammars in normal form [13]).

Thus, given an RTG G = (NT, Σ, S, P), for each A ∈ NT there exists in P
exactly one rule of the form A → a[E], i.e. whose left-hand-side is A. �

82 J. Amavi, J. Chabin, and P. Réty

Example 3. The grammar G0 = (NT0, Σ, S, P0), where NT0 = {X, A, B}, Σ =
{f, a, c}, S = {X}, and P0 = {X → f [A.B], A → a[ε], B → a[ε], A → c[ε]}, is
not in normal form. The conversion of G0 into normal form gives the sets NT1 =
{X, A, B, C} and P1 = {X → f [(A|C).B], A → a[ε], B → a[ε], C → c[ε]}.

Definition 5. Let G = (NT, Σ, S, P) be an RTG (in normal form). Consider a
non-terminal A ∈ NT , and let A → a[E] be the unique production of P whose
left-hande-side is A.
Lw(E) denotes the set of words (over non-terminals) generated by E.

The set LG(A) of trees generated by A is defined recursively by:
LG(A) = {a(t1, . . . , tn) | ∃u ∈ Lw(E), u = A1 . . . An, ∀i, ti ∈ LG(Ai)}

The language L(G) generated by G is : L(G) = {t ∈ TΣ | ∃A ∈ S, t ∈ LG(A)}.
A nt-tree is a tree whose labels are non-terminals. The set Lnt

G (A) of nt-trees
generated by A is defined recursively by:
Lnt

G (A) = {A(t1, . . . , tn) | ∃u ∈ Lw(E), u=A1 . . . An, ∀i (ti ∈ Lnt
G (Ai) ∨ ti =Ai)}

3 Weak Inclusion for Possibly-Recursive Tree Grammars

First, we need to compute the recursivity types of non-terminals. Intuitively,
the non-terminal A of a grammar G is 2-recursive if there exists t ∈ Lnt

G (A)
and A occurs in t at (at least) two non-empty positions p, q ∈ Pos(t) s.t. p ‖ q.
A is 1-recursive if A is not 2-recursive, and A occurs in some t ∈ Lnt

G (A) at a
non-empty position. A is not recursive, if A is neither 2-recursive nor 1-recursive.

Example 4. Consider the grammar G of Example 1. P is 2-recursive since P may
generate B, and B may generate the tree biblio(P, P). B is also 2-recursive. On
the other hand F , L, T , Y are not recursive. No non-terminal of G is 1-recursive.

Definition 6. Let G = (NT, Σ, S, P) be an RTG in normal form. For a regular
expression E, NT (E) denotes the set of non-terminals occurring in E.

- We define the relation > over non-terminals by:
A > B if ∃A → a[E] ∈ P s.t. B ∈ NT (E).

- We define > over multisets2 of non-terminals, whose size is at most 2, by:
- {A} > {B} if A > B,
- {A, B} > {C, D} if A = C and B > D,
- {A} > {C, D} if there exists a production A → a[E] in G and a word

u ∈ L(E) of the form u = u1Cu2Du3.

Remark 1. To check whether {A} > {C, D}, i.e. ∃u ∈ L(E), u = u1Cu2Du3, we
can use the recursive function ”in” defined by in(C, D, E) =
- if E = E1|E2, return in(C, D, E1) ∨ in(C, D, E2),
- if E=E1.E2, return (C∈NT (E1)∧D∈NT (E2))∨(C∈NT (E2)∧D∈NT (E1))
∨ in(C, D, E1) ∨ in(C, D, E2),

2 Since we consider multisets, note that {A, B} = {B, A} and {C, D} = {D, C}.

Weak Inclusion for Recursive XML Types 83

- if E = E∗
1 or E = E+

1 , return (C∈NT (E1)) ∧ (D∈NT (E1)),
- if E = E?

1 , return in(C, D, E1),
- if E is a non-terminal or E = ε, return false.

This function terminates since recursive calls are always on regular expressions
smaller than E. The runtime is O(|E|), where |E| is the size of E.

Definition 7. Let >+ be the transitive closure of >

- The non-terminal A is 2-recursive iff {A} >+ {A, A}.
- A is 1-recursive iff A >+ A and A is not 2-recursive.
- A is not recursive iff A is neither 2-recursive nor 1-recursive.

Remark 2. The transitive closure of > can be computed using Warshall algo-
rithm. If there are n non-terminals in G, there are p = n + n.(n+1)

2 multisets of
size at most 2. Then a boolean matrix p × p can represent >, consequently the
runtime for computing >+ is O(p3) = O(n6), which is polynomial.

Example 5. Using grammar G of Example 1, we have {P} > {B} > {P, P}.
Therefore P is 2-recursive.
We have ¬({F} >+ {F, F}) and ¬(F >+ F), therefore F is not recursive.

Now, to define an RTG that generates WI(L(G)), we need additional notions.

Definition 8. Let G = (NT, Σ, S, P) be an RTG in normal form.
- ≡ is the relation over non-terminals defined by A ≡ B if A >∗ B ∧ B >∗ A,
where >∗ denotes the reflexive-transitive closure of >.
Note that ≡ is an equivalence relation, and if A ≡ B then A and B have the
same recursivity type. Â will denote the equivalence class of A.

- Succ(A) is the set of non-terminals s.t. Succ(A) = {X ∈ NT | A >∗ X}.
- For a set Q = {A1, . . . , An} of non-terminals, Succ(Q) = Succ(A1) ∪ · · · ∪
Succ(An).

- Left(A) is the set of non-terminals defined by Left(A) = {X ∈ NT | ∃B, C ∈
Â, ∃B → b[E] ∈ P, ∃u ∈ Lw(E), u = u1Xu2Cu3}.

- Similarly, Right(A) is the set of non-terminals defined by Right(A) = {X ∈
NT | ∃B, C ∈ Â, ∃B → b[E] ∈ P, ∃u ∈ Lw(E), u = u1Cu2Xu3}.

- RE(A) is the regular expression E, assuming A → a[E] is the production
rule of G whose left-hand-side is A.

- R̂E(A) = RE(A)|RE(B1)| · · · |RE(Bn) where Â = {A, B1, . . . , Bn}.

Example 6. With the grammar G′ of Example 1, we have :
- P ≡ B, because P > Pa > B and B > P .
- P̂ = {P, Pa, B}.
- Succ(A) = {A, F, L}.
- Left(P) is defined using non-terminals equivalent (≡) to P , i.e. B, P , Pa,
and grammar G′, which contains rules (among others):
B → biblio[P+], P → publi[A∗.Pa], Pa → paper[T.Y.B?].

84 J. Amavi, J. Chabin, and P. Réty

P+ may generate P.P , therefore Left(P) = {P}∪{A}∪{T, Y } = {P, A, T, Y }.
- RE(P) = A∗.Pa

- R̂E(P) = RE(P)|RE(Pa)|RE(B) = (A∗.Pa)|(T.Y.B?)|P+.

Lemma 1. Let A, B be non-terminals.
- If A ≡ B then Succ(A) = Succ(B), Left(A) = Left(B), Right(A) = Right(B),
R̂E(A) = R̂E(B).

- If A, B are not recursive, then A �= B implies A �≡ B, therefore Â = {A}
and B̂ = {B}, i.e. equivalence classes of non-recursive non-terminals are
singletons.

Proof. The first part is obvious.
(A >+ A) =⇒ (A>+ A ∧ ¬({A}>+ {A, A})) ∨ ({A}>+ {A, A}) which implies
that A is (1 or 2)-recursive. Consequently, if A is not recursive, then A �>+ A.
Now, if A, B are not recursive, A �= B and A ≡ B, then A >+ B ∧ B >+ A,
therefore A >+ A, which is impossible as shown above. �

To take all cases into account, the following definition is a bit intricate. To
give intuition, consider the following very simple situations:

- If the initial grammar G contains production rules A → a[B], B → b[ε] (here
A and B are not recursive), we replace these rules by A → a[B|ε], B → b[ε]
to generate WI(L(G)). Intuitively, b may be generated or removed (replaced
by ε). See Example 7 below for a more general situation.

- If G contains A → a[(A.A.B)|ε], B → b[ε] (here A is 2-recursive and B
is not recursive), we replace these rules by A → a[(A|B)∗], B → b[ε] to
generate WI(L(G)). Actually the regular expression (A|B)∗ generates all
words composed of elements of Succ(A). See Example 8 for more intuition.

- The 1-recursive case is more complicated and is illustrated by Examples 9
and 10.

Definition 9. For each non-terminal A, we recursively define a regular expres-
sion Ch(A) (Ch for children). Here, any set of non-terminals, like {A1, . . . , An},
is also considered as being the regular expression (A1| · · · |An).

- if A is 2-recursive, Ch(A) = (Succ(A))∗

- if A is 1-rec, Ch(A) = (Succ(Left(A)))∗.Chrex
Â

(R̂E(A)).(Succ(Right(A)))∗

- if A is not recursive, Ch(A) = Chrex
Â

(RE(A))

and Chrex
Â

(E) is the regular expression obtained from E by replacing each non-
terminal B occurring in E by ChÂ(B), where

ChÂ(B) =
- B̂|ε if B is 1-recursive and B ∈ Â

- Ch(B) if (B is 2 recursive) or (B is 1-recursive and B �∈ Â)
- B|Ch(B) if B is not recursive

By convention Chrex
Â

(ε) = ε and Ch(ε) = ε.

Weak Inclusion for Recursive XML Types 85

Algorithm. Input: let G = (NT, T, S, P) be a regular grammar in normal form.
Output: grammar G′ = (NT, T, S, P ′) obtained from G by replacing each pro-
duction A → a[E] of G by A → a[Ch(A)].

Theorem 1. The computation of Ch always terminate, and L(G′) = WI(L(G)).

The proof is given in [4]. Let us now consider several examples to give more
intuition about the algorithm and show various situations.

Example 7. Consider grammar G = {A → a[B], B → b[C], C → c[ε]}.
A is the start symbol. Note that A, B, C are not recursive.
Ch(C) = Chrex

Ĉ
(RE(C)) = Chrex

Ĉ
(ε) = ε.

Ch(B) = Chrex
B̂

(RE(B)) = Chrex
B̂

(C) = ChB̂(C) = C|Ch(C) = C|ε.
Ch(A) = Chrex

Â
(RE(A)) = Chrex

Â
(B) = ChÂ(B) = B|Ch(B) = B|(C|ε).

Thus, we get the grammar G′ = {A → a[B|(C|ε)], B → b[C|ε], C → c[ε]} that
generates WI(L(G)) indeed. In this particular case, where no non-terminal is
recursive, we get the same grammar as in our previous work [3], though the
algorithm was formalized in a different way.

Example 8. Consider grammar G that contains the rules:
A → a[(C.A.A?)|F |ε], C → c[D], D → d[ε], F → f [ε]

A is 2-recursive; C, D, F are not recursive. Ch(D) = Ch(F) = ε. Ch(C) = D|ε.
Succ(A) = {A, C, D, F}. Considered as a regular expression,Succ(A) = A|C|D|F .
Therefore Ch(A) = (A|C|D|F)∗. We get the grammar G′:

A → a[(A|C|D|F)∗], C → c[D|ε], D → d[ε], F → f [ε]

The tree t below is generated by G. By removing underlined symbols, we get
t′ � t, and t′ is generated by G′ indeed. Note that a is a left-sibling of c in t′,
which is impossible in a tree generated by G.

t = a

c

d

a

f

a

c

d

a

t′ = a

d a c

d

Example 9. Consider grammar G that contains the rules (A is the start symbol):
A → a[(B.C.A?.H)|F], B → b[ε], C → c[D], D → d[ε], H → h[ε], F → f [ε]

A is 1-recursive; B, C, D, H , F are not recursive. Ch(B) = Ch(D) = Ch(H) =
Ch(F) = ε. Ch(C) = D|ε. Â = {A}, then R̂E(A) = RE(A) = (B.C.A?.H)|F .
Chrex

Â
(R̂E(A)) = Chrex

Â
((B.C.A?.H)|F) = (ChÂ(B).ChÂ(C).ChÂ(A)?.ChÂ(H))|ChÂ(F)

= ((B|Ch(B)).(C|Ch(C)).(A|ε)?.(H |Ch(H)))|(F |Ch(F))
= ((B|ε).(C|(D|ε)).(A|ε)?.(H |ε))|(F |ε), simplified into (B?.(C|D|ε).A?.H?)|F ? .
Left(A) = {B, C}, then Succ(Left(A)) = {B, C, D}.
Right(A) = {H}, then Succ(Right(A)) = {H}.

86 J. Amavi, J. Chabin, and P. Réty

Considered as regular expressions (instead of sets), Succ(Left(A)) = B|C|D and
Succ(Right(A)) = H .
Therefore Ch(A) = (Succ(Left(A)))∗.Chrex

Â
(R̂E(A)).(Succ(Right(A)))∗ =

(B|C|D)∗.[(B?.(C|D|ε).A?.H?)|F ?].H∗, which could be simplified into
(B|C|D)∗.(A?|F ?).H∗; we get the grammar G′:
A → a[(B|C|D)∗.(A?|F ?).H∗], B → b[ε], C → c[D|ε], D → d[ε], H → h[ε], F → f [ε]

The tree t below is generated by G. By removing underlined symbols, we get
t′ � t, and t′ is generated by G′ indeed. Note that c is a left-sibling of b in t′,
which is impossible for a tree generated by the initial grammar G. On the other
hand, b, c, d are necessarily to the left of h in t′.
t = a

b c

d

a

b c

d

a

f

h

h

t′ = a

c b d a

f

h h

Example 10. The previous example does not show the role of equivalence classes.
Consider G = {A → a[B?], B → b[A]}. A and B are 1-recursive.
A ≡ B then Â = B̂ = {A, B}. Left(A)=Left(B)=Right(A)=Right(B)=∅.
Therefore Ch(A) = Chrex

Â
(R̂E(A)) = Chrex

Â
(B?|A) = (ChÂ(B))?|(ChÂ(A)) =

(B̂|ε)?|(Â|ε) = (A|B|ε)?|(A|B|ε). Note that Â and B̂ have been replaced by
A|B, which is needed as shown by trees t and t′ below. Ch(A) can be simplified
into A|B|ε. Since A ≡ B, Ch(B) = Ch(A).
Then we get the grammar G′ = {A → a[A|B|ε], B → b[A|B|ε]}.
The tree t = a(b(a)) is generated by G. By removing b, we get t′ = a(a) which
is generated by G′ indeed.

4 Implementation and Experiments

Our prototype is implemented in Java and the experiments are done on an Intel
Quad Core i3-2310M with 2.10GHz and 8GB of memory. The only step that takes
time is the computation of recursivity types of non-terminals. The difficulty is
for deciding whether a recursive non-terminal is 2- or 1-recursive. To do it, we
have implemented two algorithms: one using Warshall algorithm for computing
>+, whose runtime is O(n6) where n is the number of non-terminals3, and
another based on comparison of cycles in a graph representing relation > (over
non-terminals, not over multisets). In the worst case, the runtime of the second
algorithm is at least exponential, since all cycles should be detected. Actually,
the runtime of the first algorithm depends on the number n of non-terminals,
whereas the runtime of the second one depends on the number of cycles in the
graph.

3 Since grammars are in normal form, n is also the number of production rules.

Weak Inclusion for Recursive XML Types 87

In Table 1, #1-rec denotes the number of 1-recursive non-terminals (idem for
#0-rec and #2-rec), #Cycles is the number of cycles, and |G| (resp. |WI(G)|)
denotes the sum of the sizes of the regular expressions4 occurring in the initial
grammar G (resp. in the resulting grammar WI(G)). Results in lines 1 to 4
concern synthetic DTDs, while those in lines 5 to 6 correspond to real DTDs.
The experiments show: if n < 50, the Warshall-based algorithm takes less than
6 seconds. Most often, the cycle-based algorithm runs faster than the Warshall-
based algorithm. An example with n = 111 (line 3) took 7 minutes with the first
algorithm, and was immediate with the second one. When the number of cycles
is less than 100, the second algorithm is immediate, even if the runtime in the
worst case is bad.

Now, consider the DTD (line 5) specifying the linguistic annotations of named
entities performed within the National Corpus of Polish project [2, page 22].
After transforming this DTD into a grammar, we get 17 rules and some non-
terminals are recursive. Both algorithms are immediate (few rules and few cy-
cles). The example of line 6 specifies XHTML DTD5 (with n = 85 and #Cycles =
9620). The Warshall-based algorithm and the cycle-based algorithm respond in
2 minutes.

Table 1. Runtimes in seconds for the Warshall-based and the Cycle-comparison algo-
rithms

Unranked grammars Runtime (s) Sizes

#0-rec #1-rec #2-rec #Cycles Warshall Cycle-compar. |G| |WI(G)|
1 9 2 38 410 5.48 0.82 183 1900
2 34 4 12 16 5.51 0.08 126 1317
3 78 12 21 30 445 0.2 293 4590
4 8 2 16 788 0.38 1.51 276 397

5 14 0 2 1 0.08 0.01 30 76
6 30 0 55 9620 136.63 113.91 1879 22963

5 Related Work and Discussion

The (weak) tree inclusion problem was first studied in [12], and improved in
[5,7,15]. Our proposal differs from these approaches because we consider the
weak inclusion with respect to tree languages (and not only with respect to
trees). Testing precise inclusion of XML types is considered in [6,8,9,14]. In [14],
the authors study the complexity, identifying efficient cases. In [6] a polynomial
algorithm for checking whether L(A) ⊆ L(D) is given, where A is an automaton
for unranked trees and D is a deterministic DTD.

In this paper, given a regular unranked-tree grammar G (hedge grammar),
we have presented a direct method to compute a grammar G′ that generates the
set of trees (denoted WI(L(G))) weakly included in trees generated by G.

4 The size of a regular expression E is the number of non-terminal occurrences in E.
5 http://www.w3.org/TR/xhtml1/dtds.html

http://www.w3.org/TR/xhtml1/dtds.html

88 J. Amavi, J. Chabin, and P. Réty

In [1], we have computed G′ by transforming unranked-tree languages into
binary-tree ones, using first-child next-sibling encoding. Then the weak-inclusion
relation � is expressed by a context-free synchronized ranked-tree language, and
using join and projection, we get G1. By transforming G1 into an unranked-tree
grammar, we get G′. This method is complex, and gives complex grammars.

Another way to compute G′ could be the following. For each rule A → a[E]
in G we add the collapsing rule A → E. The resulting grammar G1 generates
WI(L(G)) indeed, but is not a hedge grammar: it is called extended grammar6

in [11], and can be transformed into a context-free hedge grammar G2 (without
collapsing rules). Each hedge H of G2 is a context-free word language over
non-terminals defined by a word grammar, and if we consider its closure by sub-
word7, we get a regular word language H ′ defined by a regular expression [10]. Let
G′ be the grammar obtained from G2 by transforming every hedge in this way.
Then G′ is a regular hedge grammar, and the language generated by G′ satisfies
L(G′) = L(G2) ∪ L2 where L2 ⊆ WI(L(G2)) (because of sub-word closure
of hedges). Moreover L(G2) = L(G1) = WI(L(G)). Then L2 ⊆ WI(L(G2)) =
WI(WI(L(G))) = WI(L(G)). Therefore L(G′) = WI(L(G))∪L2 = WI(L(G)).

References

1. Amavi, J.: Comparaison des langages d’arbres pour la substitution de services web
(in French). Tech. Rep. RR-2010-13, LIFO, Université d’Orléans (2010)

2. Amavi, J., Bouchou, B., Savary, A.: On correcting XML documents with respect
to a schema. Tech. Rep. 301, LI, Université de Tours (2012)

3. Amavi, J., Chabin, J., Halfeld Ferrari, M., Réty, P.: Weak Inclusion for XML Types.
In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA
2011. LNCS, vol. 6807, pp. 30–41. Springer, Heidelberg (2011)

4. Amavi, J., Chabin, J., Réty, P.: Weak inclusion for recursive XML types
(full version). Tech. Rep. RR-2012-02, LIFO, Université d’Orléans (2012),
http://www.univ-orleans.fr/lifo/prodsci/rapports/RR/RR2012/

RR-2012-02.pdf

5. Bille, P., Li Gørtz, I.: The Tree Inclusion Problem: In Optimal Space and Faster.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 66–77. Springer, Heidelberg (2005)

6. Champavère, J., Gilleron, R., Lemay, A., Niehren, J.: Efficient Inclusion Checking
for Deterministic Tree Automata and DTDs. In: Mart́ın-Vide, C., Otto, F., Fernau,
H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 184–195. Springer, Heidelberg (2008)

7. Chen, Y., Shi, Y., Chen, Y.: Tree inclusion algorithm, signatures and evaluation
of path-oriented queries. In: Symp. on Applied Computing, pp. 1020–1025 (2006)

8. Colazzo, D., Ghelli, G., Pardini, L., Sartiani, C.: Linear inclusion for XML regular
expression types. In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management, CIKM, pp. 137–146. ACM Digital Library (2009)

9. Colazzo, D., Ghelli, G., Sartiani, C.: Efficient asymmetric inclusion between regular
expression types. In: Proceeding of International Conference of Database Theory,
ICDT, pp. 174–182. ACM Digital Library (2009)

6 In [11], they consider automata, but by reversing arrows, we can get grammars.
7 A sub-word of a word w is obtained by removing symbols from w. For example, abeg

is a sub-word of abcdefgh.

http://www.univ-orleans.fr/lifo/prodsci/rapports/RR/RR2012/RR-2012-02.pdf
http://www.univ-orleans.fr/lifo/prodsci/rapports/RR/RR2012/RR-2012-02.pdf

Weak Inclusion for Recursive XML Types 89

10. Courcelle, B.: On constructing obstruction sets of words. Bulletin of the EATCS 44,
178–185 (1991)

11. Jacquemard, F., Rusinowitch, M.: Closure of Hedge-Automata Languages by Hedge
Rewriting. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 157–171.
Springer, Heidelberg (2008)

12. Kilpeläinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM J. Com-
put. 24(2), 340–356 (1995)

13. Mani, M., Lee, D.: XML to Relational Conversion Using Theory of Regular Tree
Grammars. In: Bressan, S., Chaudhri, A.B., Li Lee, M., Yu, J.X., Lacroix, Z.
(eds.) EEXTT and DIWeb 2002. LNCS, vol. 2590, pp. 81–103. Springer, Heidelberg
(2003)

14. Martens, W., Neven, F., Schwentick, T.: Complexity of Decision Problems for Sim-
ple Regular Expressions. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004.
LNCS, vol. 3153, pp. 889–900. Springer, Heidelberg (2004)

15. Richter, T.: A New Algorithm for the Ordered Tree Inclusion Problem. In: Hein,
J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp. 150–166. Springer, Hei-
delberg (1997)

Synchronizing Automata

on Quasi-Eulerian Digraph�

Mikhail V. Berlinkov

Institute of Mathematics and Computer Science,
Ural Federal University 620083 Ekaterinburg, Russia

m.berlinkov@gmail.com

Abstract. We describe a new version of the so-called extension method
that was used to prove quadratic upper bounds on the minimum length
of reset words for various important classes of synchronizing automata.
Our approach is formulated in terms of Markov chains; it is in a sense
dual to the usual extension method and improves on a recent result by
Jungers. As an application, we obtain a quadratic upper bound on the
minimum length of reset words for a generalization of Eulerian automata.

1 Synchronizing Automata and the Černý Conjecture

Suppose A is a complete deterministic finite automaton whose input alphabet
is A and whose state set is Q. The automaton A is called synchronizing if there
exists a word w ∈ A∗ whose action resets A , that is, w leaves the automaton in
one particular state no matter at which state in Q it is applied: q.w = q′.w for all
q, q′ ∈ Q. Any such word w is called reset (or synchronizing) for the automaton.
The minimum length of reset words for a given automaton A is called the reset
length of A and is denoted by C(A).

Synchronizing automata serve as transparent and natural models of error-
resistant systems in many applications (coding theory, robotics, testing of reac-
tive systems) and also reveal interesting connections with symbolic dynamics and
other parts of mathematics. For a brief introduction to the theory of synchro-
nizing automata we refer the reader to the recent survey [15]. Here we discuss
one of the main problems in this theory: proving an upper bound of magnitude
O(n2) for the reset length of n-state synchronizing automata.

In 1964 Černý [3] constructed for each n > 1 a synchronizing automaton Cn

with n states and 2 input letters whose reset length is (n− 1)2. The automaton
C4 is shown in Fig. 1(left). Soon after that he conjectured that those automata
represent the worst possible case, thus formulating the following hypothesis:

Conjecture 1 (Černý). Each synchronizing automaton A with n states has
a reset word of length at most (n− 1)2, i.e. C(A) ≤ (n− 1)2.

� Supported by the Russian Foundation for Basic Research, grant 10-01-00793, and
by the Presidential Program for young researchers, grant MK-266.2012.1.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 90–100, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Synchronizing Automata on Quasi-Eulerian Digraph 91

By now this simply looking conjecture is arguably the most longstanding open
problem in the combinatorial theory of finite automata. Moreover, the best upper
bound for the reset length of n-state synchronizing automata known so far is

equal to n3−n
6 and so is cubic1 in n. This bound is due to Pin [11] and is based

upon a combinatorial theorem conjectured by Pin and then proved by Frankl [6].
Since the Černý conjecture claims a quadratic value, it is of certain importance
to prove quadratic upper bounds for some classes of synchronizing automata.

1 2

34

b b

b

a

a

a

b a

1 2

34

Fig. 1. The automaton C4 and its underlying graph

Several results of this sort have been obtained via a so-called extension method.
In this method one constructs a reset word ‘backwards’, starting with a letter a
such that the preimage of a certain state under the action of a is a non-singleton
set P1, then looking for a word w1 such that the preimage of P1 under the action
of w1 is a P2 with |P2| > |P1|, then looking for a word w2 such that the preim-
age of P2 under the action of w2 is a P3 with |P3| > |P2|, and so on. One keeps
climbing this way until one reaches the set Q of all states, and the resulting reset
word is then wd · · ·w1a for some d ≤ |Q| − 2. A crucial problem here is how to
bound from above the lengths of the extending words w1, w2, . . . , wd. For some
classes of synchronizing automata including circular automata [4], Eulerian au-
tomata [8] and one-cluster automata with prime length cycle [12], it is possible
to bound these lengths from above by |Q| and this suffices to prove the Černý
conjecture for these classes. However, it is known [2] that in general no upper
bound of the form c|Q| with c < 2 may hold.

Recently Jungers [7] has used ideas of linear programming to develop an
approach which is in a sense dual to the standard form of the extension method
outlined in the preceding paragraph. In Section 3 we present a simplified and
improved version of Jungers’s result. Our proofs do not use linear programming
but instead rely on a few basic facts from the theory of Markov chains. In
Section 4 we apply our extension method to a class of synchronizing automata
obtaining a quadratic upper bound on the reset length of automata in this class.
Section 2 contains some preliminaries.

1 A slightly better though still cubic upper bound n(7n2+6n−16)
48

has been claimed in
[14] but the published proof of this result contains an unclear part.

92 M.V. Berlinkov

2 Exponents of Primitive Matrices vs. Reset Lengths

A real matrix is called non-negative (positive) if all its entries are non-negative
(positive). A non-negative square matrix M = (Mi,j) is primitive if for some
positive integer m the matrix Mm is positive. The least number m with this
property is called the exponent of M and is denoted by exp(M). We also define
the weak exponent of a matrix M (denoted wexp(M)) as the minimum number
m such that Mm has a positive row. Notice that the (weak) exponent depends
only on the set Supp(M) = {(i, j) | Mi,j > 0} of indices of the positive entries
and does not depend on values of these entries. In other words, if we assign to
each primitive n × n-matrix M its directed graph G(M) with the vertex set
{1, 2, . . . , n} and the edge set Supp(M), we conclude that the (weak) exponent
depends only on G(M) (or on its adjacency matrix which is a 0-1 matrix).
Observe that for a 0-1 matrix M , the entry M t

i,j of the matrix M t is equal to
the number of directed paths of length exactly t from i to j in the graph G(M).
Therefore, in terms of the graph G(M), the exponent ofM is the least numberm
such that between every two vertices of G(M) there is a directed path of length
exactly m. In particular, the graph of a primitive matrix is strongly connected.

A primitive matrix M is said to be a Wielandt matrix if the graph G(M) is
isomorphic to the graph of the matrix⎛⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
.
0 0 0 . . . 0 1
1 1 0 . . . 0 0

⎞⎟⎟⎟⎟⎠ .

The following proposition collects some basic properties of primitive matrices.

Proposition 1. Let M be a primitive n× n-matrix. Then:

1. wexp(M) ≤ exp(M) ≤ wexp(M) + n− 1;
2. exp(M) ≤ (n− 1)2 + 1 and the equality holds only for Wielandt matrices;
3. wexp(M) ≤ (n− 1)2.

Proof. The first inequality in claim 1 holds true by the definitions. The second
inequality can be easily proved in terms of the graph G(M). Indeed, let i be the
index of a positive row in Mwexp(M). Then in G(M) there is a path of length
d(i, t) ≤ n− 1 from the vertex i to any fixed vertex t. Further, for each vertex s
there is a path to some vertex q of length n− 1 − d(i, t), and by the definition
of the weak exponent, there is a path of length wexp(M) from q to i. Thus,
between any two vertices s and t, there is a path s→ q → i→ t of length

n− 1− d(i, t) + wexp(M) + d(i, t) = wexp(M) + n− 1,

and the claim is proved.
The inequality in claim 2 was discovered by Wielandt [16]. The second state-

ment in this claim is due to Dulmage and Mendelsohn [5].

Synchronizing Automata on Quasi-Eulerian Digraph 93

Claim 3 follows from claim 2 combined with the fact that the equality
exp(M) = (n − 1)2 + 1 only occurs when M is a Wielandt matrix (claim 2)
in which case it is easy to see that wexp(M) = n2 − 3n+ 3 ≤ (n− 1)2.

In the rest of the paper, we assume that A is a synchronizing n-state automaton
whose state set is Q and whose input alphabet is A = {a1, a2, . . . , ak}. We
also assume that n, k > 1. The underlying graph UG(A) of A is the directed
multigraph obtained from A by removing all edge labels. Fig. 1(right) shows the
underlying graph of the Černý automaton C4. We freely transfer graph-theoretic
terminology from underlying graphs of automata to automata themselves; in
particular, we speak about strongly connected automata, Eulerian automata
etc. Further we assume that the automaton A under consideration is strongly
connected because the problem of finding a quadratic upper bound for the reset
length of n-state synchronizing automata can be easily reduced to this case (see
[10] for example).

Now we consider relations between primitive matrices and synchronizing au-
tomata. The proof of the following proposition can be found in [1] but we repro-
duce it here for the reader’s convenience.

Proposition 2. Let M denote the adjacency matrix of the underlying graph of
the automaton A . Then

1. M is a primitive matrix;
2. wexp(M) ≤ C(A).

Proof. Since A is a synchronizing automaton, there exists a reset word w of
length � = C(A) which takes all the states of the automaton to some state i.
This means that the i-th row of M � is positive, so claim 2 is proved. Since A is
strongly connected, claim 1 holds true as well.

It follows from the above propositions that the weak exponent of the under-
lying graph of A is at most (n − 1)2. This means that there are (unlabeled)
directed paths of equal length � ≤ (n − 1)2 from every state of the automaton
A to some particular state. The Černý conjecture asserts additionally that such
paths can be chosen to be labeled by some fixed word. It seems that this ad-
ditional requirement should increase significantly the minimum length of such
paths. Indeed, for many synchronizing automata the reset length by far exceeds
the weak exponent of their underlying graphs. For instance, if synchronizing au-
tomata contains a loop then its weak exponent is at most n − 1 but its reset
length can be equal to (n−1)2 (the automata Cn in the Černý series can serve as
examples here). However, in order to prove the Černý conjecture we only need
a bound in the worst case, and in [1] strong connections between distributions
of reset lengths of synchronizing automata and of exponents of primitive graphs
have been observed. Thus, we believe that a deeper study of these connections
may be useful.

94 M.V. Berlinkov

3 Markov Chains and a New Extension Method

The aim of this paper is to obtain upper bounds on reset lengths by utilizing their
connection with exponents of primitive graphs. For this, we associate a natural
linear structure with the automaton A = (Q,A). Let Rn stand for the real n-
dimensional linear space of column vectors. We assume that Q = {1, 2, . . . , n}
and then assign to each subset K ⊆ Q its characteristic vector [K] ∈ Rn defined
as follows: the i-th entry of [K] is 1 if i ∈ K, otherwise the entry is 0. For q ∈ Q
we write [q] instead of [{q}] to simplify notation.

For each word w ∈ A∗, the action of w on Q gives rise to a linear trans-
formation of Rn; we denote by [w] the matrix of this transformations in the
standard basis [1], . . . , [n] of Rn. For instance, if A = C4, that is, the automaton

in Fig. 1(left), then [ba] =

(
0 0 0 0
1 0 0 1
0 1 0 0
0 0 1 0

)
. Clearly, the matrix [w] has exactly one

non-zero entry in each column and this entry is equal to 1, in particular, [w]
is column stochastic (that is, each column sum is equal to 1). Observe that if
w = uv, then [w] = [v][u].

For K ⊆ Q and v ∈ A∗ we denote by K.v−1 the preimage of the subset K
under the action of the word v, that is,

K.v−1 = {q | q.v ∈ K}.

One can easily check that [K.v−1] = [v]T [K], where [v]T stands for the usual
transpose of the matrix [v]. Recall that a word w is a reset word for A if and
only if q.w−1 = Q for some state q. Thus, in the language of linear algebra, we
can rewrite the fact that w is a reset word as [w]T [q] = [Q].

For vectors g1, g2 ∈ Rn, we denote their usual inner product by (g1, g2). Denote
by Rn

+ set of all positive vectors from Rn. Let p ∈ Rn
+ be a positive stochastic

vector, that is, a positive vector whose entries sum up to 1. Then w is a reset word
if and only if ([q.w−1], p) = ([w]T [q], p) = 1. This condition is clearly necessary;
its sufficiency follows from the fact that [w]T [q] is a 0-1 vector and from the
condition that p is positive.

Recall that we have assumed that A = {a1, a2, . . . , ak}. Each positive stochas-
tic vector π ∈ Rk

+ defines a probability distribution on A in which the probability
p(aj) is defined as the j-th entry of the vector π. For a word v ∈ A∗, let �(v)
denote the length of v and let v(i) stand for the i-th letter of v, i = 1, . . . , �(v).
We define the probability of a word v under the distribution π as

p(v) =

�(v)∏
i=1

p(v(i)).

Consider a process in which an agent randomly walks on the underlying graph
of A , choosing for each move an edge labeled ai with probability p(ai). This is

a Markov chain and the matrix S(A , π) =
∑k

i=1 p(ai)[ai] is called the transition
matrix of this Markov chain. Observe that Supp(S(A , π)) = Supp(M) where
M is the adjacency matrix of UG(A). By Proposition 2 we conclude that the
matrix S(A , π) is primitive. Also, S(A , π) is easily seen to be column stochastic.

Synchronizing Automata on Quasi-Eulerian Digraph 95

The following proposition summarizes a few properties of Markov chains that
we need. They are, of course, well-known but we provide their proofs as we do
not assume the reader’s acquaintance with the theory of Markov chains. We
denote by 1n the uniform stochastic vector in Rn, that is, the vector with all
entries equal to 1

n .

Proposition 3. Let S be a column stochastic n× n primitive matrix. Then:

1. 1n is a left eigenvector of S corresponding to the eigenvalue 1, that is,
ST 1n = 1n;

2. there exists a unique stationary distribution α ∈ Rn
+, that is, a positive

stochastic vector satisfying Sα = α;
3. 1 is a unique eigenvalue of S with maximum absolute value and the corre-

sponding eigenspace is one-dimensional.

Proof. Since S is a column stochastic matrix, we have ST 1n = 1n. Thus 1 is
an eigenvalue of S and the corresponding left eigenvector 1n is positive. Since S
also is primitive, by the Perron-Frobenius theorem [9, Section 8.3] 1 is a unique
eigenvalue of S with maximum absolute value and there is also a unique (up to a
positive scalar) right positive eigenvector, that is, a vector α satisfying Sα = α.
Clearly, α can be chosen to be stochastic. Also by the Perron-Frobenius theorem
the left and the right eigenspaces corresponding to the eigenvalue 1 are one-
dimensional and equal to the linear spans 〈1n〉 and 〈α〉 of 1n and α respectively.

As discussed in Section 1, one of the most fruitful ways for finding quadratic
upper bounds on the reset lengths of synchronizing automata is the extension
method. Using the language of linear algebra, we can reformulate the method
as follows. We choose some state q and find a letter a and a finite sequence of
words w1, w2, . . . , wd such that

1

n
= ([q], 1n) < ([a]T [q], 1n) < ([w1a]

T [q], 1n) < . . .

· · · < ([wd · · ·w2w1a]
T [q], 1n) = 1. (1)

It is clear that such a sequence can be constructed for any synchronizing au-
tomaton and that d ≤ n− 2 because each inner product in the sequence exceeds
the previous one by at least 1

n . Thus a quadratic upper bound on the reset
length will be established as soon as one manages to prove that the lengths of
w1, w2, . . . , wd in (1) can be bounded by a linear (in n) function. For instance, if
our automaton A is such that one can prove that �(wi) ≤ n for all i = 1, . . . , d,
then it can be easily shown that the Černý conjecture holds true for A .

However, it is shown in [2] that there is a series of synchronizing automata
with n states for which �(wi) cannot be bounded by cn for any c < 2 and for
any sequence (1). This means that for some proper subset X ⊂ Q, the inequality
([v]T [X], 1n) ≤ ([X], 1n) holds true for each word v of length at most cn. There-
fore the Černý conjecture cannot be always achieved in this way. Thus, we have
to change something. Jungers [7] has suggested an interesting idea that in our no-
tation can be described as follows: one should substitute the uniform stochastic

96 M.V. Berlinkov

vector 1n by an adaptive positive stochastic vector p which can depend on both
the automaton A = (Q,A) and the proper subset X ⊂ Q but has the property
that there exists a word v of length at most n such that ([v]T [X], p) > ([X], p).
Jungers has explored this idea using techniques from linear programming and
has proved that positive stochastic vectors with desired properties indeed exist
for every synchronizing automaton and every proper subset of its states.

Our main contribution is the following result which shows that for every
synchronizing automaton A = (Q,A) there is a positive stochastic vector p
such that for each X ⊂ Q there exists a word v of length at most n satisfy-
ing ([v]T [X], p) > ([X], p). Thus, given a synchronizing automaton A , a single
vector serves all proper subsets of Q. Moreover, it turns out that the stationary
distribution of any random walk on A satisfies the desired property.

For a positive integer r, denote by Ar the set of all words over A of length r.

Theorem 1. Let A = (Q,A) be a synchronizing automaton with |Q| = n and
A = {a1, a2, . . . , ak}. Let a stochastic vector π ∈ Rk

+ define a probability distri-
bution on A, and let α ∈ Rn

+ be the stationary distribution of the Markov chain

with the transition matrix S(A , π) =
∑k

i=1 p(ai)[ai]. Take a vector x ∈ Rn with
(x, α) = 0 and let v ∈ A∗ be a word of minimum length such that ([v]Tx, α) > 0.
Then

1.
∑

u∈Ar p(u)([u]Tx, α) = 0 for every positive integer r;
2. if u ∈ A∗ is a word with �(u) < �(v) then ([u]Tx, α) = 0;
3. �(v) ≤ dim〈[u]α | �(u) ≤ n− 1〉 − 1 ≤ n− 1.

Proof. Denote S = S(A , π). Since Sα = α, we have Srα = α for every positive
integer r. It easy to see that

Sr =
∑
u∈Ar

p(u)[u],

whence
∑

u∈Ar p(u)[u]α = α. Multiplying through by the vector x, we obtain

∑
u∈Ar

p(u)([u]Tx, α) =
∑
u∈Ar

p(u)([u]α, x) =

(∑
u∈Ar

p(u)[u]α, x

)
= (α, x) = 0.

This proves claim 1.
The equality in claim 1 immediately implies that if ([u]Tx, α)
= 0 for some

word u, then there exists a word w such that �(w) = �(u) and ([w]T x, α) > 0.
Thus, claim 2 follows from the choice of v as a word of minimum length with
([v]Tx, α) > 0.

To prove claim 3, suppose that �(v) ≥ dim〈[u]α | �(u) ≤ n − 1〉. Then
claim 2 implies that ([u]Tx, α) = (x, [u]α) = 0 for every word u such that
�(u) < dim〈[u]α | �(u) ≤ n − 1〉. For i ∈ {1, 2, . . . , n}, let Ui be the subspace
spanned by all vectors [u]α with �(u) ≤ i− 1. Then the chain

〈α〉 = U1 ⊆ U2 ⊆ · · · ⊆ Un = 〈[u]α | �(u) ≤ n− 1〉

Synchronizing Automata on Quasi-Eulerian Digraph 97

of non-zero subspaces in the n-dimensional space Rn must become constant at
some j ≤ dim(Un) ≤ �(v), i.e.

U1 ⊂ U2 ⊂ · · · ⊂ Uj = Uj+1 = · · · = Un.

Observe that this implies that the subspace Uj is invariant with respect to all
transformations induced by the letters in A, whence, in particular, [v]α belongs to
Uj . Since (x, [u]α) = 0 for every u with �(u) ≤ dim(Un) = dim(Uj), we conclude
that (x, g) = 0 for each g ∈ Udim(Uj). By the choice of j we have dim(Uj) ≥ j,
whence Uj ⊆ Udim(Uj). So (x, g) = 0 for each g ∈ Uj . As mentioned, [v]α

belongs to Uj, hence (x, [v]α) = ([v]Tx, α) = 0, and this contradicts the condition
([v]Tx, α) > 0.

4 Quasi-Eulerian Automata

In view of Theorem 1, the lengths of all words wi in the sequence

([q], α) < ([w1]
T [q], α) < ([w1w2]

T [q], α) < · · · < ([wd · · ·w2w1]
T [q], α) = 1, (2)

where α is the stationary distribution of the Markov chain with the transition
matrix S(A , π), are bounded by n − 1. Unfortunately, here we encounter a
‘complementary’ difficulty: in general, it is quite hard to estimate the length of
such a sequence because the increment on each step of (2) may be less than 1

n .
However, Theorem 1 can be applied for some classes of synchronizing automata.
To start with, we register the following observation.

Corollary 1. Let α be the stationary distribution of the Markov chain with the
transition matrix S(A , π) for some synchronizing automaton A = (Q,A) and
some probability distribution π on A. If L is the least common multiple of the
denominators of the entries of α, then C(A) ≤ 1 + (n− 1)(L− 2).

Proof. Observe that if x1, x2 ∈ Rn are 0-1 vectors and (x2, α) > (x1, α), then
(x2, α) ≥ (x1, α) +

1
L . Since A is synchronizing, there exists a state q ∈ Q and

a letter a ∈ A such that |q.a−1| > 1. Set w1 = a, then

([w1]
T [q], α) ≥ ([q], α) +

1

L
≥ 2

L
.

Suppose ([w1]
T [q], α) < 1. Set x1 = [w1]

T [q] − |[w1]
T [q]|1n, then (x1, α) = 0,

and let w2 be a word of minimum length with ([w2]
Tx1, α) > 0. Such a word w2

exists because for any reset word u, we have

([u]Tx1, α) = ([Q]− |[w1]
T [q]|1n, α) = 1− 1

n
|[w1]

T [q]| > 0

since |[w1]
T [q]| < n in view of ([w1]

T [q], α) < 1. By Theorem 1, �(w2) ≤ n − 1
and

([w2]
T [w1]

T [q], α) ≥ (|[w1]
T [q]|1n, α) +

1

L
≥ 3

L
.

98 M.V. Berlinkov

Repeating this argument, we build a reset word wdwd−1 · · ·w1 where �(w1) = 1
and �(wi) ≤ n− 1 for i = 2, . . . , d. Since we start from 2

L and add at least 1
L on

each step, we have d− 1 ≤ (1− 2
L)

1
L

= L− 2. Hence

C(A) ≤ 1 + (n− 1)(d− 1) ≤ 1 + (n− 1)(L− 2).

An automaton is said to be Eulerian if its underlying graph is Eulerian, or
equivalently, if it is strongly connected and the in-degree and the out-degree of
every vertex are equal (and hence they both are equal to the alphabet size). It is
clear that A is Eulerian if and only if the matrix S(A , 1n) is doubly stochastic.
Following [13] we say that an automaton is A = (Q,A) is pseudo-Eulerian if
we can find a probability distribution π on A such that the matrix S(A , π) is
doubly stochastic.

Corollary 2. If a synchronizing automaton A is pseudo-Eulerian, then

C(A) ≤ 1 + (n− 1)(n− 2).

Proof. Choose a probability distribution π onA such that S(A , π) is row stochas-
tic. Then the stationary distribution of the corresponding Markov chain is equal
to 1n, and Corollary 1 applies.

The bound of Corollary 2 was found by Kari [8] for Eulerian synchronizing au-
tomata and extended to pseudo-Eulerian automata by Steinberg [13]. Corollary 1
can be considered as a generalization of these results.

Proposition 4. Let α be the stationary distribution of the Markov chain with
the transition matrix S(A , π) for some synchronizing automaton A = (Q,A)
and some probability distribution π on A. Suppose that for some positive integer
c the vector α has n− c equal entries. Then C(A) ≤ 2c(n− c+ 1)(n− 1).

Proof. Without any loss we may assume that α = (r1, r2, . . . , rc, r, r, . . . , r)
T .

For K ⊂ Q, let Ki be the i-th entry of the vector [K] and let f be the number
of indices i such that c < i ≤ n and Ki = 1. Then ([K], α) =

∑c
i=1Kiri + fr

whence this value is determined by the vector f(K) = (K1,K2, . . . ,Kc, f), where
f ∈ {0, . . . , n− c}. Hence there are at most 2c(n− c+1) possible different values
of ([K], α) and the length d of any sequence of the form (2) does not exceed
2c(n − c + 1). By Theorem 1, we can choose the words wi in (2) such that
�(wi) ≤ n − 1 for all i = 1, . . . , d whence the length of the reset word wd · · ·w1

does not exceed 2c(n− c+ 1)(n− 1).

As an application of Proposition 4, we prove a quadratic upper bound on the
reset length for a new class of synchronizing automata. We call an automaton
A = (Q,A) quasi-Eulerian with respect to a positive integer c if it has a ‘pseudo-
Eulerian part’ Ec ⊂ Q containing n − c states only one of which can have
incoming edges from the set Q \Ec. If s is this ‘entering’ state, the condition on
the component Ec amounts to saying that for some probability distribution π on
A, the rows of the matrix S(A , π) that correspond to the states from Ec \ {s}
sum up to 1.

Synchronizing Automata on Quasi-Eulerian Digraph 99

Theorem 2. If a synchronizing automaton A is quasi-Eulerian with respect to
a positive integer c, then C(A) ≤ 2c(n− c+ 1)(n− 1).

Proof. Choose a probability distribution π on A such that the rows of the matrix
S(A , π) corresponding to the states from Ec \ {s} sum up to 1. By Theorem 1
the stationary distribution α of the Markov chain with the transition matrix
S(A , π) is a unique positive solution of the equation (S − E)x = 0. It is easy
to show that all entries of α that correspond to the states from Ec are equal,
whence Proposition 4 applies to α.

It is fairly easy to exhibit examples of quasi-Eulerian synchronizing automata.
For instance, it can be shown that the automata Cn from the Černý series are
quasi-Eulerian for c = 1. We hope that the ideas suggested in this paper may
be used to attack the general problem of mastering a quadratic upper bound for
the reset length of synchronizing automata.

Acknowledgement. The author thanks the anonymous referees for their useful
remarks and suggestions.

References

1. Ananichev, D., Gusev, V., Volkov, M.: Slowly Synchronizing Automata and Di-
graphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65.
Springer, Heidelberg (2010)

2. Berlinkov, M.: On a conjecture by Carpi and D’Alessandro. Int. J. Found. Comput.
Sci. 22(7), 1565–1576 (2011)

3. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikalny Časopis Slovensk. Akad. Vied 14(3), 208–216 (1964) (in
Slovak)

4. Dubuc, L.: Sur les automates circulaires et la conjecture de Černý. RAIRO Inform.
Théor. Appl. 32, 21–34 (1998) (in French)

5. Dulmage, A.L., Mendelsohn, N.S.: Gaps in the exponent set of primitive matrices.
Ill. J. Math. 8, 642–656 (1964)

6. Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3, 125–127
(1982)

7. Jungers, M.: The synchronizing probability function of an automaton. SIAM J.
Discrete Math. 26, 177–192 (2011)

8. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. Comput.
Sci. 295, 223–232 (2003)

9. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia
(2000)

10. Pin, J.-E.: Le problème de la synchronization et la conjecture de Cerny, Thèse de
3ème cycle. Université de Paris 6 (1978)

11. Pin, J.-E.: On two combinatorial problems arising from automata theory. Ann.
Discrete Math. 17, 535–548 (1983)

12. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length
cycle. Theoret. Comput. Sci. 412(39), 5487–5491 (2011)

100 M.V. Berlinkov

13. Steinberg, B.: The averaging trick and the Černý conjecture. Int. J. Found. Com-
put. Sci. 22(7), 1697–1706 (2011)

14. Trahtman, A.N.: Modifying the Upper Bound on the Length of Minimal Synchro-
nizing Word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 173–180. Springer, Heidelberg (2011)

15. Volkov, M.V.: Synchronizing Automata and the Černý Conjecture. In: Mart́ın-
Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27.
Springer, Heidelberg (2008)

16. Wielandt, H.: Unzerlegbare, nicht negative Matrizen. Math. Z 52, 642–648 (1950)
(in German)

Cellular Automata on Regular Rooted Trees

Tullio Ceccherini-Silberstein1, Michel Coornaert2, Francesca Fiorenzi3,
and Zoran Šunić4

1 Dipartimento di Ingegneria, Università del Sannio
C.so Garibaldi 107, 82100 Benevento, Italy

tceccher@mat.uniroma3.it
2 Institut de Recherche Mathématique Avancée, UMR 7501, Univ. Strasbourg

7 rue René Descartes, 67084 Strasbourg Cedex, France
coornaert@math.unistra.fr

3 Laboratoire de Recherche en Informatique, UMR 8623, Bât 650 Univ. Paris-Sud 11
91405 Orsay Cedex France 91405 Orsay, France

fiorenzi@lri.fr
4 Department of Mathematics, Texas A&M University

MS-3368, College Station, TX 77843-3368, USA
sunic@math.tamu.edu

Abstract. We study cellular automata on regular rooted trees. This in-
cludes the characterization of sofic tree shifts in terms of unrestricted
Rabin automata and the decidability of the surjectivity problem for cel-
lular automata between sofic tree shifts.

Keywords: Free monoid, sofic tree shift, unrestricted Rabin automaton,
finite tree automaton, cellular automaton, surjectivity problem.

1 Introduction
In this paper, we study cellular automata between subshifts of AΣ∗ (also called
tree shifts), where A is a finite nonempty set and Σ∗ is a finitely generated free
monoid identified with the |Σ|-regular rooted tree. We investigate, in particular,
the decidability of the surjectivity problem for these cellular automata.

Amoroso and Patt [1] proved that the surjectivity and the injectivity problems
have a positive answer in the one-dimensional case (i.e. when Σ∗ is replaced by
Z or N). On the other hand, Kari [8] proved that these problems fail to be
decidable in dimension d ≥ 2 (i.e. for cellular automata defined on AZ

d). There
are more general algorithms to decide the surjectivity of a cellular automaton
on a finitely generated free monoid (which are deducible combining the results
of Rabin [11], Muller and Schupp [10] and Thatcher and Wright [12]), but they
are not practical. We have worked out the details in a limited setting of interest,
namely when we start with an unrestricted Rabin automaton.

Tree shifts have been extensively studied by Aubrun and Béal in [2], [3] and
[4]. In the present work we use a slightly different (but equivalent) setting.

A tree shift is said to be of finite type if it can be described as the set of con-
figurations avoiding a finite number of forbidden patterns. Sofic tree shifts are de-
fined as the images of tree shifts of finite type under cellular automata. In the

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 101–112, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

102 T. Ceccherini-Silberstein et al.

one-dimensional case, a sofic subshift of AN may be characterized as the set of all
right-infinite words accepted by some finite-state automaton. In our setting, we
use the notion of an unrestricted Rabin automaton (see [11], [12], [6]), as well as
a related notion of acceptance, in order to provide the analogous characterization
of sofic tree shifts.

Let us now illustrate our decidability results. It is easy to decide the empti-
ness of a sofic tree shift accepted by a given unrestricted Rabin automaton. An
idea to decide the surjectivity of a cellular automaton τ : AΣ∗ → AΣ∗ could
be to establish the emptiness of the tree language AΣ∗ \ τ(AΣ∗). But given a
nontrivial tree shift, its complement always fails to be a subshift (nevertheless,
Rabin theory guarantees that this tree language is still recognizable by a gen-
eral Rabin automaton). In order to avoid this obstacle, we introduce the set of
full-tree-patterns of a tree shift which is a finite tree language that characterizes
the shift. Moreover, the full-tree-patterns of a sofic tree shift are recognizable by
a suitably defined finite-tree automaton.

We prove that the recognizable sets of full-tree-patterns form a class which is
closed under complementation and for which the emptiness problem is decidable.
This allows us to find algorithms establishing both the surjectivity of a cellular
automaton τ : AΣ∗ → AΣ∗ and the equality of two sofic-tree shifts presented by
unrestricted Rabin automata. With this latter result we can provide a general
algorithm establishing the surjectivity of a cellular automaton defined between
sofic tree shifts.

In this paper we just detail the decision procedures we mentioned above. The
proofs of the results leading to these algorithms are omitted.

2 Definitions and Background

In the sequel, we denote by Σ and A two nonempty finite sets. In particular, the
set A is called alphabet and its elements are called labels or colors.

2.1 The Free Monoid Σ∗

For n ∈ N, we denote by Σn the set of all words w = σ1σ2 · · · σn of length n
(where σi ∈ Σ for i = 1, 2, . . . , n) over Σ. In particular ε ∈ Σ0 indicates the
only word of length 0 called the empty word. For n ≥ 1, we denote by Δn the
set

⋃n−1
i=0 Σi (that is, the set of all words of length ≤ n − 1).

The concatenation of two words w = σ1σ2 · · · σn ∈ Σn and w′ = σ′
1σ′

2 · · · σ′
m ∈

Σm is the word ww′ = σ1σ2 · · · σnσ′
1σ′

2 · · · σ′
m ∈ Σm+n. Then the set Σ∗ =⋃

n∈N
Σn, equipped with the multiplication given by concatenation, is a monoid

with identity element the empty word ε. It is called the free monoid over Σ.
From the graph theoretical point of view, Σ∗ is the vertex set of the |Σ|-

regular rooted tree. The empty word ε is its root and, for every vertex w ∈ Σ∗,
the vertices wσ ∈ Σ∗ (with σ ∈ Σ) are called the children of w. Each vertex is
connected by an edge to each of its children.

Cellular Automata on Regular Rooted Trees 103

2.2 Configurations and Tree Shifts

We denote by AΣ∗ the set of all maps f : Σ∗ → A. It is called the space of
configurations of Σ∗ over the alphabet A. When equipped with the prodiscrete
topology (that is, with the product topology where each factor A of AΣ∗ =∏

w∈Σ∗ A is endowed with the discrete topology), the configuration space is a
compact, totally disconnected, metrizable space. Also, the free monoid Σ∗ has
a right action on AΣ∗ defined as follows: for every w ∈ Σ∗ and f ∈ AΣ∗ the
configuration fw ∈ AΣ∗ is defined by setting fw(w′) = f(ww′) for all w′ ∈ Σ∗.
This action, called the shift action, is continuous with respect to the prodiscrete
topology.

Recall that a neighborhood basis of a configuration f ∈ AΣ∗ is given by the
sets N (f, n) = {g ∈ AΣ∗ : g|Δn = f |Δn} where n ≥ 1 (as usual, for M ⊂ Σ∗,
we denote by f |M the restriction of f to M).

A subset X ⊂ AΣ∗ is called a subshift (or tree shift, or simply shift) provided
that X is closed (with respect to the prodiscrete topology) and shift-invariant
(that is, fw ∈ X for all f ∈ X and w ∈ Σ∗).

2.3 Forbidden Blocks and Shifts of Finite Type

Let M ⊂ Σ∗ be a finite set. A pattern is a map p : M → A. The set M is called
the support of p and it is denoted by supp(p). We denote by AM the set of all
patterns with support M . A block is a pattern p : Δn → A. The integer n is
called the size of the block. The set of all blocks is denoted by B(AΣ∗).

If X is a subset of AΣ∗ and M ⊂ Σ∗ is finite, the set of patterns {f |M : f ∈ X}
is denoted by XM . For n ≥ 1, the notation Xn is an abbreviation for XΔn (that
is, the set of all blocks of size n which are restrictions to Δn of some configuration
in X). We denote by B(X) the set of all blocks of X (that is, B(X) =

⋃
n≥1 Xn).

Given a block p ∈ B(AΣ∗) and a configuration f ∈ AΣ∗ , we say that p
appears in f if there exists w ∈ Σ∗ such that (fw)|supp(p) = p. If p does not
appear in f , we say that f avoids p. Let F be a set of blocks. We denote by
X(F) the set of all configurations in AΣ∗ avoiding each block of F , in symbols
X(F) = {f ∈ AΣ∗ : (fw)|Δn /∈ F , for all w ∈ Σ∗ and n ≥ 1}.

In analogy with the one-dimensional case (see for example [9, Theorem 6.1.21]),
we have the following combinatorial characterization of subshifts: a subset
X ⊂ AΣ∗ is a subshift if and only if there exists a set F ⊂ B(AΣ∗) of blocks
such that X = X(F).

Let X ⊂ AΣ∗ be a subshift. A set F of blocks as above is called a defining set
of forbidden blocks for X . A subshift is of finite type if it admits a finite defining
set of forbidden blocks.

Remark 1. We can always suppose that the forbidden blocks of a defining set
of a given subshift of finite type all have the same support. This motivates the
following definition: a shift of finite type has memory n if it admits a defining
set of forbidden blocks of size n. Notice that a shift with memory n, also has
memory m for all m ≥ n.

104 T. Ceccherini-Silberstein et al.

Example 1 (Monochromatic children). Since Δ2 = {ε} ∪ Σ, we can identify AΔ2

with A × AΣ . Consider the set of blocks

F =
{

(a, (aσ)σ∈Σ) ∈ A × AΣ : aσ �= aσ′ for some σ, σ′ ∈ Σ
}

.

The tree shift X(F) ⊂ AΣ∗ is of finite type and exactly consists of those config-
urations for which every vertex in Σ∗ has monochromatic children. If |Σ| = 2
and A = {0, 1} an example of a configuration in X(F) is given in Figure 1.

0

1

0

0

.

0

.

0

1

.

1

.

1

1

1

.

1

.

1

1

.

1

.

Fig. 1. A configuration of the tree shift presented in Example 1

2.4 Cellular Automata and Sofic Tree Shifts

Let X ⊂ AΣ∗ be a tree shift. A map τ : X → AΣ∗ is called a cellular automaton
if it satisfies the following condition: there exists a finite subset M ⊂ Σ∗ and a
map μ : AM → A such that τ(f)(w) = μ((fw)|M) for all f ∈ X and w ∈ Σ∗.
The set M is called a memory set for τ and μ is the associated local defining
map. We assume in the sequel (without loss of generality), that a memory set
has the form M = Δn, for a suitable n ≥ 1.

The Curtis-Hedlund-Lyndon theorem gives a topologically characterization of
cellular automata: a map τ : X → AΣ∗ is a cellular automaton if and only if
it commutes with the shift action (that is, (τ(f))w = τ(fw) for all f ∈ X and
w ∈ Σ∗), and is continuous (with respect to the prodiscrete topology on X). For
a proof in the one-dimensional case, see [9, Theorem 6.2.9]. See also [5, Theorem
1.8.1] and [7], for a more general setting. It immediately follows that the image
of a tree shift under a cellular automaton is still a tree shift.

Remark 2. In the definition of a cellular automaton we have assumed that the
alphabet of the shift X is the same as the alphabet of its image τ(X). In this
assumption there is no loss of generality because if τ : X → BΣ∗ , one can always
consider X as a subshifts of (A ∪ B)Σ∗ . Classically, a cellular automaton is also
a selfmapping τ : X → X . By dropping this hypothesis, we deal with a more
general notion that, in the one-dimensional case, corresponds to that of sliding
block code as defined in [9].

A subshift X ⊂ AΣ∗ is called sofic provided there exist a subshift of finite type
Y ⊂ AΣ∗ and a cellular automaton τ : Y → AΣ∗ such that X = τ(Y).

Cellular Automata on Regular Rooted Trees 105

Remark 3. Every subshift of finite type is sofic but there are examples of sofic
subshifts which are not of finite type (see [9, Example 2.1.5, Example 2.1.9]).

3 Unrestricted Rabin Graphs and Automata

An unrestricted Rabin graph, is a 4-tuple G = (S, Σ, A, T), where S is a nonempty
set, called the set of states (or vertices) of G and T is a subset of S × A × SΣ

whose elements are called transition bundles. When the state set S is finite
G = (S, Σ, A, T) is called an unrestricted Rabin automaton.

Given a transition bundle t = (s; a; (sσ)σ∈Σ) ∈ T we denote by i(t) := s ∈ S
its initial state, by λ(t) := a ∈ A its label, by t(t) := (sσ)σ∈Σ ∈ SΣ its terminal
sequence and by tσ(t) := sσ ∈ S its σ-terminal state. A bundle loop on s ∈ S is
a transition bundle t ∈ T such that i(t) = tσ(t) = s for all σ ∈ Σ.

An unrestricted Rabin graph G = (S, Σ, A, T) is said to be essential provided
that for each state s ∈ S there is a transition bundle starting at s.

Definition 1 (Unrestricted Rabin graph of a configuration). The unre-
stricted Rabin graph of a configuration f ∈ AΣ∗ is defined by Gf = (Σ∗, Σ, A, Tf)
where Tf = {(w; f(w); (wσ)σ∈Σ) : w ∈ Σ∗}.

Definition 2 (Homomorphism). A homomorphism from G1 = (S1, Σ, A, T1)
to G2 = (S2, Σ, A, T2) is a map α : S1 → S2 such that (α(s); a; (α(sσ))σ∈Σ) ∈ T2
for all (s; a; (sσ)σ∈Σ) ∈ T1. By abuse of language/notation, we also denote by
α : G1 → G2 such a homomorphism.

Definition 3 (Acceptance). Let A = (S, Σ, A, T) be an unrestricted Rabin
automaton. We say that a configuration f ∈ AΣ∗ is accepted (or recognized) by A,
if there exists a homomorphism α : Gf → A. In this case, we say that f is accepted
by A via α. We denote by XA the set consisting of all those configurations f ∈
AΣ∗ accepted by A. An unrestricted Rabin automaton A is called a presentation
for X ⊂ AΣ∗ provided that X = XA.

Remark 4. In the sequel, we shall always consider essential unrestricted Rabin
automata. This is not restrictive since, by recursively removing all states that
are source of no transition bundles, we can transform any unrestricted Rabin
automaton A into an essential one A′ which accepts the same subset, i.e. such
that XA = XA′ .

Remark 5. Explicitly, a configuration f ∈ AΣ∗ is accepted by an unrestricted
Rabin automaton A = (S, Σ, A, T) if there exists a map α : Σ∗ → S such that
(α(w); f(w); (α(wσ))σ∈Σ) ∈ T for all w ∈ Σ∗.

3.1 Graphical Representation

Let |Σ| = k. We identify Σ with the set {0, 1, . . . , k − 1}. Hence, a transition
bundle of an unrestricted Rabin automaton A = (S, Σ, A, T) is a (k + 2)-tuple

106 T. Ceccherini-Silberstein et al.

s

sk−1

...
si

...
s0

a

k−1

i

0

(a) A general labeled transition bun-
dle.

s

s1

s0

a

(b) A labeled transition bundle of
an unrestricted Rabin automaton in
which Σ = {0, 1}.

Fig. 2. Representations of a transition bundle

t = (s; a; s0, . . . , sk−1) and it can be visualized as in Figure 2(a). If |Σ| = 2
and (s; a; s0, s1) is a transition bundle, we represent the edge from s to s0 by a
broken line and the edge from s to s1 by a full line. This makes unnecessary to
label the corresponding edges by 0 and 1, respectively (see Figure 2(b)).

Example 2. Consider the unrestricted Rabin automaton A = (A, Σ, A, T) where
the bundle set is given by

T = {(a; a; (aσ)σ∈Σ) ∈ A × A × AΣ : aσ = aσ′ for all σ, σ′ ∈ Σ}.

We then have that XA is the tree shift described in Example 1. If |Σ| = 2 and
A = {0, 1} the corresponding automaton is represented in Figure 3.

s0 s1
0

0
1

1

Fig. 3. The unrestricted Rabin automaton accepting the tree shift of Example 1

3.2 Unrestricted Rabin Automata and Sofic Shifts

Proposition 1. Let A = (S, Σ, A, T) be an unrestricted Rabin automaton.
Then XA is a sofic tree shift. Actually, up to a suitable extension of the al-
phabet A, there is an effective procedure to construct a tree shift of finite type
Y ⊂ AΣ∗ and a cellular automaton τ : Y → AΣ∗ such that XA = τ(Y).

Let M ⊂ Σ∗ be a nonempty subset and p ∈ AM a pattern with support M .
Given a word w ∈ Σ∗ we set wM = {wm : m ∈ M} ⊂ Σ∗ and denote by
wp ∈ AwM the pattern with support wM defined by (wp)(wm) = p(m) for all
m ∈ M .

Cellular Automata on Regular Rooted Trees 107

Definition 4 (Unrestricted Rabin automaton associated with a cellu-
lar automaton). Let X ⊂ AΣ∗ be a tree shift of finite type and let τ : X → AΣ∗

be a cellular automaton. Let M = Δn ⊂ Σ∗ be a memory set for τ such that
n ≥ 2 and denote by μ : AM → A the corresponding local defining map. Fix
M ′ = Δn−1. The unrestricted Rabin automaton A(τ, M, X) associated with τ is
defined by A(τ, M, X) = (XM ′ , Σ, A, T), where T ⊂ XM ′ × A × (XM ′)Σ con-
sists of the bundles (p; b; (pσ)σ∈Σ) such that (i.) p|σM ′∩M ′ equals (σpσ)|σM ′∩M ′

for all σ ∈ Σ (that is, p(σm) = pσ(m) whenever σm ∈ σM ′ ∩ M ′); (ii.) the
block p̄ : M → A coinciding with p on M ′ and with σpσ on σM ′ belongs to
XM for all σ ∈ Σ (such a block p̄ ∈ XM is denoted by (p; (pσ)σ∈Σ)); (iii.)
b = μ

(
(p; (pσ)σ∈Σ)

)
.

A transition bundle of A(τ, M, X) is illustrated in Figure 4 for |Σ| = 2.

μ

•
• •
p0 p1• • • •

• •• ••
• •
p0 p1

• • • •

•
p0• •

• •

•
p1• •

• •

Fig. 4. A transition bundle of A(τ, M, X) when |Σ| = 2

Proposition 2. Let X ⊂ AΣ∗ be a tree shift of finite type with memory n−1 and
τ : X → AΣ∗ be a cellular automaton with memory set Δn. Then XA(τ,Δn,X) =
τ(X).

Remark 6. Conditions on Δn in Proposition 2 are not restrictive. Proposition 2
says that A(τ, Δn, X) is a presentation of τ(X). In fact, we can actually show
how to construct a pre-image of a configuration in XA(τ,Δn,X). This leads in
particular to a presentation of X as well.

Proposition 1 and Proposition 2 imply the following result. The bottom-up ver-
sion of it has been proved by Béal and Aubrun in [4].

Corollary 1. A tree shift X ⊂ AΣ∗ is sofic if and only if it is accepted by some
unrestricted Rabin automaton.

3.3 Deterministic and Co-deterministic Presentations

An unrestricted Rabin automaton A = (S, Σ, A, T) is deterministic if, for each
state s ∈ S, the transition bundles starting at s carry different labels. Analo-
gously, A is co-deterministic if, for each sequence s ∈ SΣ, the transition bundles
terminating at s (if there are any) carry different labels.

108 T. Ceccherini-Silberstein et al.

As stated below, for each unrestricted Rabin automaton A there exists a
co-deterministic unrestricted Rabin automaton accepting the same shift.

Theorem 1 (Subset construction). Let A = (S, Σ, A, T) be an unrestricted
Rabin automaton. There exists a co-deterministic unrestricted Rabin automaton
Acod such that XA = XAcod .

The statement of the above theorem fails to hold, in general, for deterministic
unrestricted Rabin automata, as shown in the following counterexample.

Example 3 (A sofic shift not admitting a deterministic presentation). Consider
the tree shift X presented in Example 1. A non-deterministic presentation of
X is given in Example 2. Suppose that X admits a deterministic presentation
A = (S, Σ, A, T). First observe that, in this case, each accessible state (that
is, each state that can be reached by a transition bundle), admits exactly one
transition bundle starting at it. Thus for every accessible state s ∈ S there exists
exactly one configuration fs ∈ X accepted by a homomorphism αs : Σ∗ → S
starting at s, that is, such that αs(ε) = s. This implies that any state determines
at most |A| configurations (indeed, for a state s that is not accessible, there are
at most |A| bundles that start at s and all of these bundles end in accessible
states). Therefore A accepts only finitely many different configurations, which
contradicts the fact that X is infinite.

4 Full-Tree-Patterns and Finite-Tree Automata

Recall that a k-ary rooted tree is a rooted tree in which each vertex has at most
k children. A leaf is a vertex without children. A full k-ary rooted tree is a
rooted tree in which every vertex other than the leaves has k children. Hence
Σ∗ is the full k-ary rooted tree with no leaves, where k = |Σ|. A subtree of Σ∗

is a connected subgraph of Σ∗. We shall always suppose that a subtree of Σ∗

contains the root ε. If T ⊂ Σ∗ is a subtree and w ∈ T , we denote by ΣT (w) the
set {σ ∈ Σ : wσ ∈ T }. Hence w ∈ T is a leaf if and only if ΣT (w) = ∅.

Given a subtree T , we denote by T + the subtree T ∪ {wσ : w ∈ T, σ ∈ Σ}.
Notice that T + is always a full subtree. If T is a full subtree, then T + is obtained
by adding all the k children of each leaf in T .

Notice that for each n ≥ 1 the set Δn is a full subtree whose leaves are the
elements in Σn−1. Moreover, Δ+

n = Δn+1.
Finite full subtrees correspond to finite and complete prefix codes in [2].
A pattern defined on a finite full subtree T is called full-tree-pattern. The set

of all full-tree-patterns is denoted by T(AΣ∗). Given a shift X ⊂ AΣ∗ , we denote
by T(X) the set of all full-tree-patterns of X (that is, T(X) =

⋃
T ⊂Σ∗ XT , where

the union ranges over all finite full subtrees T of Σ∗).

Definition 5 (Sub-bundle). Let A = (S, Σ, A, T) be an unrestricted Rabin
automaton. Let M ⊂ Σ be a subset. A tuple (s; a; (sσ)σ∈M) ∈ S × A × SM is
called a sub-bundle of a transition bundle (s̄; ā; (s̄σ)σ∈Σ) ∈ T provided s = s̄,
a = ā, and sσ = s̄σ for each σ ∈ M .

Cellular Automata on Regular Rooted Trees 109

Definition 6. Let A = (S, Σ, A, T) be an unrestricted Rabin automaton. Let
T ⊂ Σ∗ be a subtree and let f : T → A be a map. One says that f is ac-
cepted by A if there exists a map α : T → S such that, for each w ∈ T ,
(α(w); f(w); (α(wσ))σ∈ΣT (w)) is a sub-bundle of some t ∈ T . In this case we
say that f is accepted by A via α.

Note that, for a leaf w ∈ T , this latter acceptance condition reduces to saying
that there exists a transition bundle starting at α(w) with label f(w) (in fact,
α is not defined on wσ for any σ ∈ Σ).

Proposition 3. Let A = (S, Σ, A, T) be an unrestricted Rabin automaton. Let
T ⊂ Σ∗ be a subtree and suppose that f ∈ AT is accepted by A. Then there exists
a configuration f̄ ∈ XA such that f = f̄ |T .

We have the following characterization of acceptance which immediately results
from Definition 6.

Proposition 4. Let A = (S, Σ, A, T) be an unrestricted Rabin automaton. Let
T ⊂ Σ∗ be a finite full subtree. A full-tree-pattern p ∈ AT is accepted by A if and
only if there exists a map α : T + → S such that (α(w); p(w); (α(wσ))σ∈Σ) ∈ T
for each w ∈ T .

By abuse of language, if this acceptance condition holds and there is no am-
biguity, we say that the full-tree-pattern p is accepted by A via α. Obviously,
Proposition 4 applies whenever T = Δn for some n ≥ 1 (recall that in this case
T + = Δn+1).

The following result follows from Proposition 3.

Corollary 2. Let A = (S, Σ, A, T) be an unrestricted Rabin automaton. Let
p ∈ T(AΣ∗) be a full-tree-pattern. Then p ∈ T(XA) if and only if p is accepted
by A.

Remark 7. The blocks of a subshift determine the subshift. In fact, given two
subshifts X, Y ⊂ AΣ∗ , we have X = X(B(AΣ∗) \ B(X)) so that X = Y if and
only if B(X) = B(Y). This fact obviously generalizes to full-tree-patters: X = Y
if and only if T(X) = T(Y).

4.1 Finite-Tree Automata

A finite-tree automaton is an unrestricted Rabin automaton A = (S, Σ, A, T) for
which a subset I ⊂ S of initial states and a state F ∈ S, called final state, are
specified. We shall denote it by A(I, F). We say that a full-tree-pattern p ∈ AT is
accepted by A(I, F) if there exists a map α : T + → S such that (i.) p is accepted
by A via α (see Proposition 4); (ii.) α(ε) ∈ I; (iii.) α(w) = F if w ∈ T + \ T .
We denote by T(A(I, F)) the set of all full-tree-patterns accepted by A(I, F).
A set of full-tree-patterns is called recognizable if it is of the form T(A(I, F)),
for some finite-tree automaton A(I, F). A finite-tree automaton A(I, F) is co-
deterministic if the unrestricted Rabin automaton A is co-deterministic.

110 T. Ceccherini-Silberstein et al.

Remark 8. As explained in Section 4, we only consider essential unrestricted
Rabin automata. As far as finite-tree automata are concerned, we relax this
assumption: each non final state is the source of some transition bundle, but no
condition is required for the final state.

An unrestricted Rabin automaton A = (S, Σ, A, T) is called co-complete if for
each s ∈ SΣ and a ∈ A, there exists a transition bundle in T labeled by a and
ending at s. A finite-tree automaton A(I, F) is co-complete if the unrestricted
Rabin automaton A is co-complete.

A slight adaptation in the proof of Theorem 1 leads to the following result.

Theorem 2. Let A be an unrestricted Rabin automaton. Then there is an effec-
tive procedure to construct a co-deterministic finite-tree automaton Acod(I, F)
such that T(XA) = T(Acod(I, F)).

The recognizable sets of full-tree-patterns form a class which is closed under
complementation, as stated in the following theorem.

Theorem 3. Let A(I, F) be a co-deterministic finite-tree automaton. Then there
exists a co-complete and co-deterministic finite-tree automaton A�(I�, F�) such
that T(AΣ∗) \ T(A(I, F)) = T(A�(I�, F�)).

Corollary 3. Let A be an unrestricted Rabin automaton. Then there is an ef-
fective procedure to construct a co-complete and co-deterministic finite-tree au-
tomaton A�(I, F) (with a single initial state) which accepts the complement
of the set of all full-tree-patterns accepted by A, in formulæ, T(A�(I, F)) =
T(AΣ∗) \ T(XA).

Corollary 4. Let A be an unrestricted Rabin automaton. Let A�(I, F) be as in
Corollary 3. Then XA = AΣ∗ if and only if T(A�(I, F)) = ∅.

The Emptiness Problem for Finite-Tree Automata. The emptiness prob-
lem for an unrestricted Rabin automaton is trivial (every nonempty essential au-
tomaton accepts at least a configuration), but this argument does not apply to
the case of finite-tree automata. In this section we present an effective procedure
to establish the emptiness of recognizable set of full-tree-patterns.

First, we define the height of a finite subtree T ⊂ Σ∗ as the minimal n ∈ N
such that T ⊂ Δn. The height of a full-tree-pattern p ∈ AT is the height of the
(finite full) subtree T .

Let A(I, F) be a finite-tree-automaton and let us show that there is an
algorithm which establishes whether or not T(A(I, F)) = ∅. Observe that
T(A(I, F)) is nonempty if and only if it contains a pattern of height ≤ |S|,
where S is the state set of A (we do not prove this fact in detail). Since there are
finitely many full-tree-patterns of height ≤ |S| one can effectively check whether
or not they are accepted by A(I, F).

Since in principle we have to check all possible maps α : Δ|S|+1 → S, this
algorithm has exponential complexity in the size of S.

Cellular Automata on Regular Rooted Trees 111

An Algorithm Establishing Whether Two Sofic Shifts Coincide. The
join of A1 = (S1, Σ, A, T1) and A2 = (S2, Σ, A, T2) is the unrestricted Rabin
automaton A1 ∗ A2 = (S1 × S2, Σ, A, T×) where ((s1, s2); a; (s′

σ, s′′
σ)σ∈Σ) ∈ T× if

and only if (s1; a; (s′
σ)σ∈Σ) ∈ T1 and (s2; a; (s′′

σ)σ∈Σ) ∈ T2. Notice that XA1∗A2 =
XA1 ∩ XA2 . Moreover, A1 ∗ A2 is co-complete (respectively, co-deterministic), if
A1 and A2 are co-complete (resp., co-deterministic).

We are now in position to describe our algorithm: let A1 = (S1, Σ, A, T1)
and A2 = (S2, Σ, A, T2) be two unrestricted Rabin automata. Note that, by
Remark 7, it suffices to establish whether or not

T(XA1) \ T(XA2) = ∅ = T(XA2) \ T(XA1). (1)

First construct the co-complete and co-deterministic finite-tree automata
A′

1(I1, F1) and A′
2(I2, F2) as in Corollary 3, associated with A1 and A2, re-

spectively. Consider the finite-tree automaton (A′
1 ∗ A′

2)(I1, F), where I1 =
(S1 \ {I1}) × {I2} and F = (F1, F2). It can be seen that T((A′

1 ∗ A′
2)(I1, F)) =

T(XA1) \ T(XA2). Analogously, by defining I2 = {I1} × (S1 \ {I2}) one has
T((A′

1 ∗ A′
2)(I2, F)) = T(XA2) \ T(XA1).

Thus (1) holds if and only if T((A′
1 ∗ A′

2)(I1, F))
⋃
T((A′

1 ∗ A′
2)(I2, F)) = ∅.

An effective procedure to establish this latter equality is then provided by the
solution to the emptiness problem.

Remark 9. The algorithm above has exponential complexity in the maximal size
of the state sets of the unrestricted Rabin automata. A different procedure can
be applied to the class of irreducible unrestricted Rabin automata by using a
minimization process. Actually, in [3] it is shown that there exists a canoni-
cal minimal co-deterministic presentation of an irreducible sofic tree shift. Thus
another possible decision algorithm consists in computing the minimal presen-
tations of the two shifts and checking whether they coincide or not. In this
case Theorem 1 is needed while the procedure for the emptiness problem is not
required. Hence this algorithm has in general an exponential complexity. The
complexity can be reduced to be polynomial by only considering the class of
co-deterministic irreducible tree shifts.

An Algorithm Establishing the Surjectivity of Cellular Automata. Ob-
serve first that giving a sofic shift X ⊂ AΣ∗ corresponds, equivalently to giving
a shift of finite type Z ⊂ AΣ∗ and a surjective cellular automaton τ ′ : Z → X ,
or an unrestricted Rabin automaton A such that X = XA. Propositions 1 and 2
provide an effective procedure to switch from one representation to the other.

Let X, Y ⊂ AΣ∗ be two sofic shifts and τ : X → Y a cellular automaton. Let
us show that it is decidable whether τ is surjective or not. Let Z ⊂ AΣ∗ and
τ ′ : Z → : X as above. Now the cellular automaton τ : X → Y is surjective if
and only if the composite cellular automaton τ ◦ τ ′ : Z → Y is surjective. Let
n ∈ N be large enough so that the cellular automaton τ ◦ τ ′ has memory set Δn

and that n − 1 is the memory of Z. By Proposition 2, the unrestricted Rabin

112 T. Ceccherini-Silberstein et al.

automaton A(τ ◦ τ ′, Δn, Z) having state set Zn−1 is a presentation of τ(X).
Then, it suffices to apply the algorithm in previous section to establish whether
Y = τ(X).

Remark 10. If X = Y = AΣ∗ , then the algorithm becomes much simpler. Indeed,
it can be proved by virtue of Corollary 4, Corollary 3 and by using the emptiness
algorithm.

References

1. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of
parallel maps for tessellation structures. J. Comput. System Sci. 6, 448–464 (1972)

2. Aubrun, N.: Dynamique symbolique des systèmes 2D et des arbres infinis. Ph.D.
thesis, Universitè Paris-Est (2011)

3. Aubrun, N., Béal, M.-P.: Sofic and Almost of Finite Type Tree-Shifts. In: Ablayev,
F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 12–24. Springer, Heidelberg
(2010)

4. Aubrun, N., Béal, M.P.: Sofic tree-shifts (to appear, 2012)
5. Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups. Springer

Monographs in Mathematics, Berlin (2010)
6. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,

Tison, S., Tommasi, M.: Tree automata techniques and applications (2007),
http://www.grappa.univ-lille3.fr/tata

7. Fiorenzi, F.: Cellular automata and strongly irreducible shifts of finite type. The-
oret. Comput. Sci. 299(1-3), 477–493 (2003)

8. Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput.
System Sci. 48(1), 149–182 (1994)

9. Lind, D.A., Marcus, B.H.: An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, Cambridge (1995)

10. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-
order logic. Theoret. Comput. Sci. 37(1), 51–75 (1985)

11. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Am. Math. Soc. 141, 1–35 (1969)

12. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application
to a decision problem of second-order logic. Math. Syst. Theory

http://www.grappa.univ-lille3.fr/tata

Strict Local Testability

with Consensus Equals Regularity

Stefano Crespi Reghizzi and Pierluigi L. San Pietro

Politecnico di Milano - DEI, Milano I-20133
{stefano.crespireghizzi,pierluigi.sanpietro}@polimi.it

Abstract. A recent language definition device named consensual is
based on agreement between similar words. Considering, say, a regular set
of words over a bipartite alphabet made by pairs of unmarked/marked
letters, the match relation specifies when such words agree. Therefore
a regular set (the “base”) over the bipartite alphabet specifies another
language over the unmarked alphabet, called the consensual language.
A word is in the consensual language if a set of corresponding match-
ing words is in the base. From previous results, the family of consensual
languages based on regular sets have an NLOGSPACE word problem, in-
clude non-semilinear languages, and are incomparable with the context-
free (CF) ones; moreover the size of a consensual specification can be
in a logarithmic ratio with respect to a NFA for the same language. We
study the consensual languages that are produced by other language fam-
ilies: the Strictly Locally Testable of McNaughton and Papert and the
context-free/sensitive ones. Using a recent generalization of Medvedev’s
homomorphic characterization of regular languages, we prove that reg-
ular languages are exactly the consensual languages based on strictly
locally testable sets, a result that hints at a novel parallel decomposition
of finite automata into locally testable components. The consensual fam-
ily based on context-free sets strictly includes the CF family, while the
consensual and the base families collapse together if the context-sensitive
languages are chosen instead of the CF.

Keywords: formal languages, strict local testability, local language,
non-counting, consensual language, counter machine, sliding-window,
regular language, Medvedev theorem, homomorphic characterization,
context-free, context-sensitive.

1 Introduction

A recently introduced language definition model, named consensual [5,6], is based
on agreement or consensus between similar words. Consider a set of words from
a, say, regular language over a bipartite alphabet qualified as internal, made by
pairs of unmarked/marked terminals. A so called match relation specifies when
two or more words over the internal alphabet agree: for that, the words must
coincide when the marks are ignored, and in each position exactly one character
is marked. This model was loosely inspired by current ideas about language

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 113–124, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

114 S. Crespi Reghizzi and P.L. San Pietro

processing in the brain (see e.g. [3,11]) by simultaneous processes that interact
and re-enforce each other.

Thus a, say, regular set – the base – over the internal alphabet specifies another
language over the unmarked alphabet, called the consensual language: a word
is in the consensual language if a corresponding set of matching words is in the
base.

The family of consensual languages based on regular sets is known to be
in NLOGSPACE, to include non-semilinear languages, and to be incomparable
with the family of context-free (CF) languages; moreover, a DFA recognizing
the base language needed to specify a regular language L can be exponentially
smaller than the minimal NFA of L.

Here we proceed in the study of consensual languages that are produced using
various language families as base: the subregular families of Local, Strictly Lo-
cally Testable (SLT), and the context-free/sensitive languages. Using a recent
generalization [7] of the old Medvedev’s homomorphic characterization [12,10] of
regular languages, we prove the main result, that regular languages are exactly
the consensual languages based on SLT ; this result hints to an unusual paral-
lel decomposition of finite automata into elementary sliding-window component
machines.

In general, the consensual family obtained taking the base language from a
given family always include the latter; for CF bases we find that the inclusion
is strict (as for regular bases), whereas for context-sensitive bases the inclusion
becomes identity.

The paper starts with the basic definitions and relevant properties of consen-
sual languages (Sect. 2), then it reports new results on the use of the subregular
families as base (Sect. 3), and, lastly, it considers the use of context-free/sensitive
bases (Sect. 4). The conclusion mentions directions for continuation.

2 First Definitions and Properties

The terminal alphabet is denoted by Σ and the empty word by ε. For a word
x, the length is denoted by |x| and the i-th letter by x(i), 1 ≤ i ≤ |x|. A
deterministic finite automaton (DFA) is specified as A = (Δ,Q, δ, q0, F) where:
Δ is a finite alphabet; Q is a finite set of states; δ : Q × Δ → Q is the state-
transition function (or graph), always assumed to be total; q0 is the initial state,
and F ⊆ Q is the set of final states.

The family of strictly locally testable languages ofMcNaughton andPapert [9], is
next defined followingmainly [4]. For simplicity we deal only with ε-free languages.
For every word w ∈ Σ+, for all k ≥ 2, let ik(w) and tk(w) denote the prefix and,
resp., the suffix of w of length k if |w| ≥ k, or w itself if |w| < k. Let fk(w) denote
the set of factors of w of length k. Extend ik, tk, fk to languages as usual.

Definition 1. A language L is k-strictly locally testable, shortly k-slt, if there
exist finite sets Ik−1, Tk−1 ⊆ Σk−1 and Fk ⊆ Σk such that, for every x ∈ Σk ·Σ∗,
the following condition holds: x ∈ L ⇐⇒ ik−1(x) ∈ Ik−1 ∧ tk−1(x) ∈ Tk−1 ∧
fk(x) ⊆ Fk.

Strict Local Testability with Consensus Equals Regularity 115

A language is strictly locally testable (slt) if it is k-slt for some k, to be called
the width.

Words shorter than k−1 are ignored, but can be separately listed, if needed. The
family SLT of slt languages is strictly included in the family REG of regular
languages, and is a strict hierarchy ordered by the width value. The family
obtained closing SLT by Boolean operations and concatenation is known as
Non-Counting or star-free NC [9].

The above definition of k-slt language is equivalent to the one in [1], which
is different from the one in [9]. The two definitions, however, produce the same
family SLT . Value k = 2 yields the well known family of local languages LOC
(e.g., [12,2]).

Consensual languages. Here we formalize a simple mechanism to express agree-
ment between strings belonging to a regular language, by means of an elementary
letter by letter matching. Consider a bipartite alphabet Σ̃, made by pairs of un-
marked/marked characters of Σ and formalize the agreement by a k-ary relation,
called match, that is satisfied by a set of k equally long strings if, in each position,
exactly one word has an unmarked letter and the other strings have the same
letter but marked. In our metaphor we view such strings as providing mutual
consensus on the validity of the corresponding unmarked string. This justifies
the name “consensual” proposed for the new family, which strictly includes the
regular one. Formal definitions follow; more details are available in [6].

Let Σ be the alphabet obtained by marking each letter a ∈ Σ as a. The
union Σ ∪Σ is named the internal alphabet (because its use is restricted to the

technical device of consensual definitions) and denoted by Σ̃.

We also use the marking function, denoted by : Σ̃ → Σ, defined as x = x if
x ∈ Σ, and as x = a if x = a ∈ Σ; the function is then naturally extended from
letters to words.

The notion that two or more words over the internal alphabet are in agreement
is formalized next.

Definition 2. The partial, symmetrical, and associative binary operator, called

match, @ : Σ̃×Σ̃ → Σ̃, is, for all a ∈ Σ :

⎧⎨⎩
a@a = a@a = a ;
a@a = a ;
undefined, in every other case.

The operator is naturally extended to words of equal length, by positing ε@ε = ε
and, for all w,w′ ∈ Σ̃∗, with |w| = |w′|, and for all a, b ∈ Σ̃, aw @ bw′ =
(a@b)(w@w′).

In words, the match is undefined if |w|
= |w′|, or in the case that, in some
position i, w(i)@w′(i) is undefined, which happens when both characters are in
Σ, when both are in Σ and differ, and when either one is marked but is not the
marked copy of the other.

For instance, aabb @ aabb = aabb while aabb @ aabb is undefined.
Givenm > 0 wordsw1, . . . , wm ∈ Σ̃∗, if w = w1@w2@ . . .@wm is defined, then

it is called the match of w1, w2, . . . , wm, further qualified as strong if w ∈ Σ∗ or

116 S. Crespi Reghizzi and P.L. San Pietro

as weak otherwise. We also write @{w1, w2, . . . , wm}. The cardinality m is called
the degree of the match. By Def. 2, if w is a strong match, for each position
1 ≤ i ≤ n, exactly one word, say wk, is unmarked, i.e., wk(i) ∈ Σ and wj(i) ∈ Σ
for all j
= k. We say that word wk places the letter into position i and the other
words consent to it.

The match operator is extended to two (or more) languages L′, L′′ ⊆ Σ̃∗ by
means of L′@L′′ = {w′@w′′ | w′ ∈ L′, w′′ ∈ L′′}.

To define the consensual language we use the repeated application of the
match to a language. Let L1@ = L, Li@ = L@L(i−1)@, i ≥ 2. (Notice that in
general L(i−1)@
⊆ Li@).

Definition 3. The closure under match, or @-closure, of a language L ⊆ Σ̃∗

is L@ =
⋃

i≥1 L
i@. Let B ⊆ Σ̃+ be a language over the internal alphabet. The

consensual language with base B is defined as C(B) = B@ ∩Σ∗.
Let F denote a language family; the family of consensual languages based on

F , written CF , is the collection of all languages C(B) with B ∈ F .
Therefore, a consensual language with base B includes all and only the strongly
matches of the match closure.

To give an idea of the generative capacity of CREG we list some typical exam-
ples.

Example 1. The consensual definitions of the following languages, or of some
variations thereof, are in [6]:

CF language: L1 = {anbn | n ≥ 1}
non-semilinear CS languages:
series of identical unary numbers L2 = {anbanbanb . . . anb | n > 0}
enumeration of unary numbers L3 = {baba2b . . . banb | n ≥ 0}
enumeration of exponential unary num-
bers

L4 = {aba2 ba4ba8b . . . a2
m

b | m ≥ 1}

We describe just two cases. Language L1 = C(R), where R = a∗aa∗b∗bb∗. Clearly
every word anbn, n ≥ 1, is a strong match of n words in R; each word places one
letter a and one letter b and consents to any number of a’s and b’s.

Language L4 is defined by C (B1 ∪B2), where:

B1 = Σ∗aa(a a)∗b a∗aaa(a a)∗bΣ∗, B2 = abaa(ba+)∗b(aa)+b

We explain how each word w = aba2b . . . ba2
h

b . . . ba2
m

b, m ≥ 2 is the match of
many words in B1 and one word in B2. Call the h-th segment of w each factor,

bordered by two b’s, of the form a2
h

, 0 ≤ h ≤ m. B1 ensures that in every h-th
segment, 1 ≤ h ≤ m− 1, for every a occurring in an odd position from the right
edge of the segment, there are two occurrences of a in the h + 1-th segment in
consecutive even positions (from the right edge). Hence, each segment is exactly
twice as long as the previous segment. B2 places every b, allows the correct
“initialization” of the first and second segment, and the correct completion of
the odd-positioned a’s in the last segment, while ignoring other segments. Hence,
w ∈ C(B1 ∪B2). The converse is analogous.

Strict Local Testability with Consensus Equals Regularity 117

The reader will notice that the above sample of languages is not included in
the families of REG, CF , and tree adjoining languages. On the other hand, the
language of palindromes is not in CREG [6], thus proving incomparability of CREG

and CF .
Consider now the DFA recognizing the base language R and a word in C(R),

which is the strong match of some words in R. The matching words correspond
to as many DFA computations, to be next formalized by means of multisets of
states: the multiplicity of a state in the multiset equals the number of computa-
tions that have reached that state. A multiset can be represented by multiplicity
counters, (one counter per DFA state). Since the cardinality of the multiset is
bounded by the length of the input word, using a binary encoding of counters,
the word membership can be computed by a nondeterministic counter machine
operating in logarithmic space, hence in deterministic polinomial time.

Clearly, if there is a bound i such that Ri@ = R(i+1)@, i.e., R@ has bounded
degree, the cardinality of the multiset is bounded and language C(R) is regular;
but, of course, this is is not a necessary condition for regularity.

To define a transition relation for the counter machine, we need some notation
for multisets.

Notation for Multisets. Given a set Q, in particular the set of states of a DFA,
a multiset over Q is a total mapping Z : Q → N. The cardinality of multi-
set Z is |Z| =

∑
q∈Q Z(q). For q ∈ Q, if Z(q) > 0 then we say that q ∈ Z

with multiplicity Z(q). The notation to represent a finite multiset is similar
to the one for a set, but representing the multiplicity of an element with an
exponent or by repetitions of the element. For example, the multiset Z over
Q = {p, q, r}, characterized by Z(p) = 3, Z(q) = 0, Z(r) = 5, is also represented
by {p3, r5} or {p, p, p, r, r, r, r, r}.

Given two multisets Z,Z ′ over Q, the sum Z�Z ′ and the difference Z−Z ′ are
the multisets specified by the following characteristic functions, for every q ∈ Q:

(Z � Z ′) (q) = Z(q) + Z ′(q), (Z − Z ′) (q) = max (0, Z (q)− Z ′ (q))

If f : Q → NQ is a total mapping, associating each element q ∈ Q with a
multiset f(q) and Z : Q → N is a multiset {q1, . . . , qm}, where m = |Z| and
the qi’s are not necessarily distinct, then let the generalized sum

⊎
q∈Z

f(q) be

f(q1) � · · · � f(qm).
Finally, for amultisetZ overQ, the underlying set is �Z� = {q ∈ Q | Z(q) > 0} .
Given a DFA A = (Σ̃, Q, δ, q0, F), where δ is a total function, the function is

naturally extended to a multiset Z over Q, positing δ(Z, a) =
⊎
q∈Z

{δ(q, a)}. From

this we define a transition relation on multisets of states.

Definition 4. The consensual transition relation of A, denoted by �A⊆ NQ ×
Σ × NQ, is defined, for a ∈ Σ and for multisets Z,Z ′ over Q as:

Z
a�A Z ′ if ∃q ∈ Z : Z ′ = {δ(q, a)} � δ(Z − {q}, a) .

118 S. Crespi Reghizzi and P.L. San Pietro

Relation
a�A can be extended as usual from a letter a to a word w ∈ Σ∗ via the

inductive definition:{
Z

ε�A Z

Z
wa�A Z ′′, if ∃Z ′such that Z

w�A Z ′ a�A Z ′′.

It is evident that if Z
a�A Z ′ then |Z| = |Z ′|, i.e., the cardinality does not

change.
Two types of multisets have a special role: the initial multisets {(q0)k}, for

every k > 0, and the final multisets Z such that �Z� ⊆ F .
The following crisp definition of consensual languages is obtained.

Proposition 1. [6] Let R ⊆ Σ̃∗ and let A = (Σ̃, Q, δ, q0, F) be a DFA accepting
R.

Then C(R) = {w | ∃k > 0 and a final multiset Z such that {(q0)k}
w�A Z}.

Moreover, |Z| = k.

Example 2. Consider language of Ex. 1: L1 = {anbn | n ≥ 1} = C(R), where
R = a∗aa∗b∗bb∗, is recognized by the DFA below. The consensual transition
relation accepting aaabbb is also shown:

q1 q2 q4

q3

→
↓

a b

b
b

a a b

b

{q1, q1, q1}
a�A {q1, q1, q2}

a�A

{q1, q2, q2}
a�A {q2, q2, q2}

b�A

{q3, q3, q4}
b�A {q3, q4, q4}

b�A {q4, q4, q4}

From the fact that a word over Σ is the trivial strong match of itself, we have:

Proposition 2. Monotonicity
Every language family F is included in the consensual family CF . For any lan-
guage families F ′ and F ′′ such that F ′ ⊆ F ′′ the inclusion CF ′ ⊆ CF ′′ holds.

We are going to refine the above inclusions for various language families.

3 Consensual Languages with Regular and Subregular
Bases

As the consensual languages on regular bases can be non-regular, it is natural
to investigate if any base smaller than REG would produce all and only the
regular languages. Clearly the subfamily of finite languages does not deserve
consideration, since it is immediate that FIN coincides with CFIN .

A very simple subfamily is LOC, the local (i.e., 2-slt) languages, but a reason-
ing, to be postponed after the main result, shows that CLOC is strictly included
into REG. We are going to prove a rather surprising property: that all and only
the regular languages can be consensually defined by means of a slt base. For

Strict Local Testability with Consensus Equals Regularity 119

that we need a recent generalization [7] of Medvedev’s theorem [12] for regular
languages and some definitions.

Given a finite alphabet Δ, an (alphabetic) homomorphism is a mapping π :
Δ → Σ. For a language L′ ⊆ Δ+, its (homomorphic) image under π is the
language L = {π(x) | x ∈ L′}.

Medvedev’s theorem states that every regular language, called source, is the
image of a 2-slt, i.e., local language whose alphabet size may be much larger
than the one of the source. To talk precisely about the width of the slt language
and about the ratio of the alphabet size of the slt and source languages, we need
a definition.

Definition 5. [7] For k ≥ 2,m ≥ 1, a language L ⊆ Σ+ is (m, k)-homomorphic
if there exist an alphabet Δ (called local) of cardinality m, a k-slt language
L′ ⊆ B+, and a homomorphism π : Δ→ Σ such that L = π(L′).

Clearly, if L ⊆ Σ+ is k-slt then L is trivially (|Σ|, k)-homomorphic. Otherwise, a
local alphabet larger than Σ is needed. For instance, the language L = (aa)+ ∪
(bb)+ is not slt but the language L′ = (a′a)+ ∪ (b′b)+ is 2-slt. By defining
π : {a, a′, b, b′} → {a, b} as π(a) = π(a′) = a, π(b) = π(b′) = b, then L = π(L′)
and hence L is (4, 2)-homomorphic. The alphabetic ratio of L′ and L is 4/2 = 2.

The traditional construction (e.g., in [12]) of a 2-slt language L′ considers an
NFA for L and uses the set of edges of the transition graph as local alphabet,
i.e., up to n2 · |Σ| elements. Hence we can restate Medvedev’s property saying
that every regular language on Σ is (n2 · |Σ|, 2)-homomorphic (the alphabetic
ratio is n2).

If one allows a width k ≥ 2, it is possible to set a constant bound on the
alphabetic ratio; however in general the ratio cannot be smaller than two [7].

Tayloring to the needs of consensual languages, we simplify the main result
in [7] freezing the alphabetic ratio to value 2.

Theorem 1. Given a finite alphabet Σ, if a regular language L ⊆ Σ+ is accepted
by a NFA with n states, then L is (2 · |Σ|, O(lg n))-homomorphic, i.e., there
exists a slt language B with alphabet size 2 · |Σ| and a homomorphism π such
that π(B) = L.

Moreover, the width of the slt language cannot be smaller than a logarithmic
function of the size of the source language recognizer.
We are ready to state and prove the first part of our main result.

Lemma 1. Every regular language L ⊆ Σ+ can consensually be defined using a
strictly locally testable base.

Proof. We take as base the k-slt language B ⊆ Σ̃+ resulting from the application
of Th. 1 to L. Let Ik−1, Tk−1 ⊆ Σ̃k−1 and Fk ⊆ Σ̃k be the sets defining B
(Def. 1).

Denote by ˆ : Σ̃ → Σ̃ the mapping, named complementary, ĉ = d | c@d ∈ Σ,
i.e., c and d make a strong match. Let B̂ = {y | ∀x ∈ B, 1 ≤ i ≤ |x| : y(i)@x(i) ∈
Σ} be the “complementary” language.

120 S. Crespi Reghizzi and P.L. San Pietro

Clearly, B̂ too is a k-slt language defined by the sets I ′k−1, T
′
k−1 ⊆ Σ̃k−1 and

F ′
k ⊆ Σ̃k obtained by respectively applying the complementary mapping to Ik−1,

Tk−1 and Fk.

The inclusion C
(
B ∪ B̂

)
⊆ L follows from Th. 1, since π(B) = π(B̂) = L.

To prove the converse inclusion L ⊆ C(B ∪ B̂), observe that, by Th. 1, every
word x ∈ L is the homomorphic image of a word in B which, by construction,
strongly matches with a word in B̂. �

The converse property is stated next.

Lemma 2. Let B be a strictly locally testable language. Then C(B) is regular.

Proof. Let B be defined by the sets Ik−1, Tk−1 ⊆ Σ̃k−1, and Fk ⊆ Σ̃k. By [4],
B is recognized by a DFA A such that its states are suffixes of length at most
k of words in Σ̃+. In particular, the initial state is denoted by ε. Formally, let
A = (Σ̃, Q, δ, ε, F) with Q ⊆ {ε} ∪ Fk ∪ Ik−1, F = {q ∈ Q | tk−1(q) ∈ Tk−1}.
The transition relation δ can be defined so that for w ∈ Σ̃+, δ(ε, w) = tk(w),
i.e., states are just suffixes of length k of the input word.

Consider the consensual transition relation �A on multisets of Q.
For every y ∈ Σ∗, for every multiplicity j ≥ k + 1, for every Z : Q → N, if

{(ε)j} y�A Z (i.e., Z is reached from initial multiset {(ε)j}), then we claim that
there exists Z̊ ⊆ Q such that:

(I) Z = Z̊ ∪ {tk(y)j−|Z̊|},
(II) if y
= ε, @(Z̊) = tk(y),
(III) |Z̊| ≤ k, and if |y| > 0 then |Z̊| > 0;

Consider the set Y = {y′ ∈ Σ̃+ | y′ = y, δ(ε, y′) ∈ Z}. Since δ(ε, y′) = tk(y
′),

Z =
⊎

y′∈Y {tk(y′)}. But clearly @(Y) = y, hence if y′, y′′ ∈ Y and y′
= y′′,
then tk(y

′)@tk(y
′′) is defined. This means that tk(y

′)
= tk(y
′′), unless tk(y

′) =
tk(y

′′) = tk(y). Hence, in Z no state, other than tk(y), may occur more than

once. Let Z̊ = {q ∈ Z | q
= tk(y)}.
Claim (I) follows, since by the above definition of Z̊, Z = Z̊ ∪ {tk(y)|Z|−|Z̊|}:

from Prop. 1, width j is constant in a computation, i.e., |Z| = j.
Claim (II) follows since @(Z̊) = @{tk(y′) | y′ ∈ Y } = tk(y).
Claim (III) also follows. When y
= ε, |Z̊| is equal to the number of words in

Y whose suffix of length k has at least one unmarked letter. But this number
is at most k, since @(Y) is defined, and it is at least one: there exists one word
y′ ∈ Y ending with an unmarked symbol (since @(Y) = y), hence tk(y

′)
= tk(y),

therefore tk(y
′) ∈ Z̊.

We also claim that, for every a ∈ Σ, y ∈ Σ∗, for every j > 0, for every
Z1, Z : Q→ N:

if {(ε)j} y�A Z1
a�A Z then − 1 ≤ |Z̊1| − |Z̊| ≤ 1. (1)

By definition of �A, there exists q ∈ Z1, such that Z = {δ(q, a)}�δ(Z1−{q}, a).

Strict Local Testability with Consensus Equals Regularity 121

Clearly, δ(q, a) ∈ Z̊, since δ(q, a) cannot be in tk(ya). The only case where

|Z̊| > |Z̊1|may occur when the above state is q = tk(y) : δ(q, a) ∈ Z̊, but δ(q, a) =
tk(ya), hence Z̊ may have at most one state more than Z̊1: |Z̊1|−|Z̊| ≥ −1. Also,
there exists at most one state p ∈ Z̊1 such that δ(p, a)
∈ Z̊: by contradiction,
if for some r ∈ Z̊1, r
= p, also δ(r, a)
∈ Z̊ holds, then both r, p ∈ ΣΣk−1,
hence r@p is undefined (both p and r start with an unmarked symbol), which is
impossible by Claim (I) above. Therefore, |Z̊| ≥ |Z̊1| − 1, which completes the
proof of Claim (1).

To prove the statement of the lemma, we also claim that:

∀y ∈ Σ∗, ∀j ≥ k + 1, ∀Z : Q→ N, if {(ε)j} y�A Z, (2)

then there exists Z ′ : Q→ N such that {(ε)k+1} y�A Z ′, with �Z ′� = �Z�.

The proof is by induction on |y| ≥ 0. The base case y = ε is obvious, since
in this case Z̊ = ∅ and Z ′ = {(ε)k+1}. Assume y = xa, for a ∈ Σ, x ∈
Σ∗, with {(ε)j} x�A Z1

a�A Z for some Z1 : Q → N. Since Z1
a�A Z,

Z̊1 ∪{tk(x)j−|Z̊1|} a�A Z̊ ∪{tk(xa)j−|Z̊|}. Let i = |Z̊1| − |Z̊|, with −1 ≤ i ≤ 1 by
Claim (1). Hence, for every h ≥ 1 the following property also holds:

Z̊1 ∪ {tk(x)h}
a�A Z̊ ∪ {tk(xa)h+i}, with h+ i > 0. (3)

The induction hypothesis holds for Z1: there exists Z ′
1 such that {(ε)k+1} x�A

Z ′
1, with �Z ′

1� = �Z1�. But Z
′
1 = Z̊ ′

1 ∪ {tk(x)k+1−|Z̊′
1|}, hence Z̊ ′

1 = Z̊1. Let

h = k + 1 − |Z̊1| ≥ 1 and apply Property (3) above: Z ′
1 = Z̊1 ∪ {tk(x)h}

a�A

Z̊ ∪ {tk(x)h+i}. Hence, let Z ′ = Z̊ ∪ {tk(x)k+1−|Z̊|}: then, �Z ′� = �Z� (since

Z̊ ′
1 = Z̊1 and tk(x) is in both Z ′ and Z), and {(ε)k+1} x�A Z ′

1
a�A Z ′, which is

the induction hypothesis for Z.
From Claim (2) above, the statement of the lemma holds, since Z and Z ′

are both final or both non-final multisets, and Z ′ has size at most k + 1: B@ =
B ∪ B2@ ∪ · · · ∪ B(k+1)@, which is regular since k is a constant. Hence, also
C(B) = B@ ∩Σ+ is regular. �
Theorem 2. The family of regular languages coincides with the family CSLT .

We observe that, in general, the width k of the base language cannot be bounded,
since in the worst case it logarithmically depends on the complexity of L, mea-
sured in terms of states of a minimal NFA of L [7]. In particular, from the case
k = 2 it follows that local languages are not sufficient to generate all regular
languages.

Corollary 1. The family CLOC is strictly included into REG.
We briefly examine the effect of taking as base a language from the non-counting
family NC. From the monotonicity property, it is CNC ⊇ CSLT , and from Th. 2
the inclusion is strict because the language {anbn | n ≥ 1} is defined by the
non-counting base shown in Ex. 2. Also non-context-free languages are included
in the family, e.g., language L2 of Ex. 1 may be defined by the non-counting
base (a∗aa∗b)+ ∪ (a+b)+

122 S. Crespi Reghizzi and P.L. San Pietro

4 Consensual Languages over Non-regular Bases

The notions of match function and consensual computation apply without change
to any language families, in particular Chomsky’s CF and context-sensitive (CS)
classes. The two cases are now considered obtaining rather diverse properties.

We first address the question of the language generative capacity of consensual
computation on a CF base.

Proposition 3. The family CCF strictly includes both families CREG and CF .

Proof. The strict inclusion of CREG into CCF follows by monotonicity and since
language {ucur | u ∈ {a, b}+} ∈ CF ⊆ CCF is not in CREG. The strict inclusion of
the CF into CCF follows by monotonicity and by the existence of non-context-free
languages (e.g., Ex. 1) in CREG ⊆ CCF .

The situation of CS languages is entirely different.

Theorem 3. Let B be a context-sensitive language on alphabet Σ̃. Then C(B)
is a context-sensitive language.

Sketch of the proof. Consider a nondeterministic Turing machine M accepting
B, with one input tape and k > 0 memory tapes. Since B is CS, M can be
assumed to be linearly-bounded, i.e., given an input x the memory space is at
most O(|x|).

Define another nondeterministic Turing machine M ′ with two more memory
tapes, called tape k + 1 and tape k + 2, of alphabet Σ̃.

Call INITh, h = k + 1 or h = k + 2, a state of M ′ such that M ′ copies the
marked version x of the input x into the h-th tape.M ′ starts in INITk+1 and then
goes to state INITk+2. When finished, it enters a state called UNMARKING.

In state UNMARKING, M ′ starts the following procedure: if all symbols of
tape k + 1 are unmarked, then M ′ accepts. Otherwise, M ′ nondeterministically
selects one or more tape positions corresponding to marked symbol on tape
k+1 and “unmarks“ them on both tapes k+1 and k+2. M ′ then goes to state
SIMULATE.

In state SIMULATE, M ′ performs a simulation of M using the first k tapes
of M ′ as memory tapes and the k+2-th tape as input tape. If the simulation of
M rejects, M ′ rejects too, otherwise M ′ re-enters state INITk+2.

Given an input word x,M ′ always halts, either rejecting when in state SIMU-
LATE or accepting when in state UNMARKING (when all symbols of tape k+1
are unmarked): each time M ′ enters UNMARKING state, it always ”unmarks”
at least one symbol on tape k+ 1, and it never marks again any symbol of tape
k + 1 after initialization, so it can enter UNMARKING at most |x| + 1 times.
Clearly, M ′ accepts x if, and only if, there exist matching words in B whose
strong match is x; M ′ guesses these words in the UNMARKING state. Also,
M ′ is still linearly-bounded, since the two additional tapes only consume 2 · |x|
memory cells. �

Strict Local Testability with Consensus Equals Regularity 123

5 Conclusion

The consensual approach proposes a new way of looking at finite-state or other
language devices as recognizers of sets of matching words, thus shifting the per-
spective from one word at a time to a parallel view of language recognition.

The characterization of the regular languages as consensual languages based
on strictly locally testable sets is rather surprising and stimulating. It strengthens
the idea that the use of multiple computations permits to simplify the devices
used as individual computational units. Sciences such as linguistics, brain theory,
and biology that make use of formal language models have an enduring interest
for languages characterized by some form of local testability: for instance, [8]
argues that certain DNA sequences are slt. It is hoped that our result will be of
interest in such domains.

The other result, that context-sensitive languages do not gain power by con-
sensual computation, sets an upper frontier on the base language families that
are worth considering in a consensual setting.

Since the consensual model is fairly new, many questions are open for in-
vestigation. Concerning language family inclusion, we mention the questions

CNC
?
= CREG and CCF ?

= CCS . In addition there are open classical questions
about minimality, properties of unary languages, decidability of equivalence, de-
terminism of the counter (or multi-set) machine, as well as the study of closure
properties beyond the basic ones considered in [6].

References

1. de Luca, A., Restivo, A.: A characterization of strictly locally testable languages
and its applications to subsemigroups of a free semigroup. Information and Con-
trol 44(3), 300–319 (1980)

2. Berstel, J., Pin, J.-E.: Local languages and the Berry-Sethi algorithm. Theor.
Comp. Sci. 155 (1996)

3. Braitenberg, V., Pulvermüller, F.: Entwurf einer neurologischen Theorie der
Sprache. Naturwissenschaften 79, 103–117 (1992)

4. Caron, P.: Families of locally testable languages. Theor. Comp. Sci. 242(1-2), 361–376
(2000)

5. Crespi Reghizzi, S., San Pietro, P.: Consensual Definition of Languages by Reg-
ular Sets. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS,
vol. 5196, pp. 196–208. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/
978-3-540-88282-4 19

6. Crespi Reghizzi, S., San Pietro, P.: Consensual languages and matching finite-
state computations. RAIRO - Theor. Inf. and Applic. 45(1), 77–97 (2011),
http://dx.doi.org/10.1051/ita/2011012

7. Crespi Reghizzi, S., San Pietro, P.: From regular to strictly locally testable lan-
guages. In: Ambroz, P., Holub, S., Masáková, Z. (eds.) WORDS, Proc. 8th Int.
Conf. Words 2011. EPTCS, vol. 63, pp. 103–111 (2011), http://dx.doi.org/
10.4204/EPTCS.63

8. Head, T.: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors. Bull. Math. Biology 49, 737–759 (1987)

http://dx.doi.org/10.1007/978-3-540-88282-4_19
http://dx.doi.org/10.1007/978-3-540-88282-4_19
http://dx.doi.org/10.1051/ita/2011012
http://dx.doi.org/10.4204/EPTCS.63
http://dx.doi.org/10.4204/EPTCS.63

124 S. Crespi Reghizzi and P.L. San Pietro

9. McNaughton, R., Papert, S.: Counter-free Automata. MIT Press, Cambridge
(1971)

10. Medvedev, Y.T.: On the class of events representable in a finite automaton. In:
Moore, E.F. (ed.) Sequential Machines – Selected Papers (translated from Russian),
pp. 215–227. Addison-Wesley, New York (1964)

11. Pulvermüller, F.: Sequence detectors as a basis of grammar in the brain. Theory in
Biosciences 122, 87–104 (2003), http://dx.doi.org/10.1007/s12064-003-0039-6

12. Eilenberg, S.: Automata, Languages, and Machines. Academic Press (1974)

http://dx.doi.org/10.1007/s12064-003-0039-6

Nominal Automata for Resource Usage Control�

Pierpaolo Degano, Gian-Luigi Ferrari, and Gianluca Mezzetti

Dipartimento di Informatica — Universitá di Pisa
{degano,giangi,mezzetti}@di.unipi.it

Abstract. Two classes of nominal automata, namely Usage Automata
(UAs) and Variable Finite Automata (VFAs) are considered to express
resource control policies over program execution traces expressed by a
nominal calculus (Usages). We first analyse closure properties of UAs,
and then show UAs less expressive than VFAs. We finally carry over to
VFAs the symbolic technique for model checking Usages against UAs, so
making it possible to verify the compliance of a program with a larger
class of security properties.

Introduction

Computational models based on finite alphabets seem insufficient to accurately
describe programs that adapt their behaviour when plugged inside mutable oper-
ational environments, and that therefore offer a multiplicity of dynamic entities.
Ubiquitous computing is an illustrative example of these phenomena. Since we
cannot predict the actual identities of all the entities that programs may plug
in, we can abstractly represent such mutable operational environments as issu-
ing stimuli taken from infinite alphabets. The challenge is therefore developing
structures to formally manage infinite alphabets.

In this paper, we exploit nominal techniques [14] to deal with these alphabets,
the elements of which are called urelements. Urelements are atomic objects that
are indistinguishable: we can always substitute one for another. The only thing
that characterises an object made of urelements is its shape, rather than the
actual urelements it is made of. There are many instances of nominal models in
the real word. E.g. XML files may contain URL links coming from the web but,
roughly, an XML Schema Definition can validate XML files ignoring the specific
actual content of these links.

Nominal techniques have been fruitful considered in several fields. Nominal
process calculi, namely calculi with dynamic name creations and name-passing,
have been shown effective to deal with security and mobility [15]. Nominal au-
tomata, that recognise languages over an infinite alphabet, have been devel-
oped over the years [9,5,16,18,8,24,11,10]. Some of these formalisms, among
which [9,8,7], operate on data words, i.e. strings of operations acting on data
objects, e.g. reading a file or invoking a remote server. We refer to [22,20] for
� This work has been partially supported by IST-FP7-FET open-IP project ASCENS

and Regione Autonoma Sardegna, L.R. 7/2007, project TESLA.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 125–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

126 P. Degano, G.-L. Ferrari, and G. Mezzetti

a detailed survey and some comparisons. The motivating application of some
nominal automata, for example Finite Memory Automata (FMA) [18] and Vari-
able Finite Automata (VFAs) [16], is to express properties of XML and Datalog
data. Also, HD-Automata [19] and Fresh Register Automata [24] can decide
bisimulation properties of a finite control restriction of the π-calculus [21].

This paper builds over the nominal technique of [6]. There, a basic nomi-
nal process calculus, now called Usages, is proposed to abstractly represent the
behaviour of programs that dynamically generate and operate over resources,
through actions, so generating data words. Usages encompass full sequential-
ization, general recursive definitions, and a dynamic name generation operator,
much like the π-calculus. Instead, Usages do not include name passing facilities.

Usage Automata, UAs for short, have been introduced [5,6] to specify and
enforce security policies of a system, the behaviour of which is abstractly repre-
sented by the language of a usage. The security policies considered are actually
safety properties, expressing that nothing bad will occur during an execution.
To show that a usage U respects a policy ϕ, represented by a UA, [5] resorted
to model checking, in spite of the possible infinite resources the usage U can
generate. The verification of security is reduced to the emptiness problem of the
intersection between a pushdown and a finite state automaton. The first, i.e. the
model, comes from U , the second, i.e. the property, from the UA ϕ. Indeed, this is
the classical automata based model checking technique by Vardi and Volper [25].

This paper aims at a further development of nominal models. In particular
we show that classical automata techniques can contribute to assess and better
evaluate the expressiveness and the exploitation of nominal models in practice.
To this purpose we compare the expressivity of the Usages with other nominal
models considered in the literature (Section 2). We will show Usages to have an
expressivity never considered before.

Then we establish some closure properties of the UAs, by studying them as
nominal automata from a language theoretic viewpoint (Section 2). In particular,
we show that UAs are closed under intersection and union, but not under com-
plement and Kleene star. When seen as policies, this result amounts to saying
that we can impose two policies together or be happy if one out of two is obeyed.
Instead, to consider secure only those traces that violate a given policy, one has
to explicitly build a new UA, which is not guaranteed to exist at all.

Next we consider VFAs. We conservatively extend VFAs to deal with data
words. We also show that this smooth extension of VFAs yields automata that
are more expressive than UAs (in the spirit of the taxonomy of nominal automata
developed in [22,20].

To conclude the paper, we express through VFAs a larger class of security
policies on Usages. The crucial point is whether a usage U can be model checked
against a VFA (Section 3). We face this problem by rephrasing the technique
of [5] and by defining symbolic VFAs, that represent the languages of VFAs
under collapsing. In this way, VFAs become standard Finite State Automata,
thus making model checking possible.

Nominal Automata for Resource Usage Control 127

We omit the proofs because of lack of space; they can be found in [12]. Occa-
sionally, we will sketch our arguments to give some insights on our results.

1 Preliminaries

We recall the notion of Usages [6,2,5,3] and Usage Automata [5] and extend
VFAs [16] to work on data words. These formalisms will be used to represent
execution traces of programs that dynamically generate new resources, and to
express properties of sets of traces.

We assume hereafter a finite set Act of actions that operate on a given infinite
set Res of resources. The actions comprise a special action new that represent
the generation of a fresh resource. An event is a pair α(r) with α ∈ Act and
r ∈ Res, that represents the firing of the action α on the resource r. Then, an
execution trace is a sequence of events, i.e. a data word. We only consider here
Usages and Usage Automata with actions on a single resource and we refer the
interested reader to [5] for the polyadic version.

The set of resources Res is partitioned into two subsets: Ress and Resd.
Ress is a finite set of static resources, typically the one that are hard-coded
in the program. Instead, Resd is a countable infinite set of dynamic resources,
i.e. the urelements, that are dynamically created. Indeed, whenever a program
can generate an execution trace α(a)β(d)α(d)α(d′)β(a) with a ∈ Ress, d, d′ ∈
Resd it can also generate α(a)β(d′)α(d′)α(d)β(a), since they only differ on the
urelements d, d′ that appear in them. Indeed, d and d′ are simply exchanged
without confusing their identities.

1.1 Usages

Usages are a simple nominal calculus designed to abstractly represent the be-
haviour of programs that create and use resources dynamically [23,4]. In [4], e.g.,
these safe approximations are mechanically derived by a type and effect system
from the expressions of a λ-calculus suitably extended to specify web services in
a secure manner (e.g. featuring a call-by-contract primitive and security policies).
For more details and examples the reader is referred to [6].

The syntax of Usages follows.

Definition 1.1 (Usages). Let Nam be a countable set of names such that Nam∩
Res = ∅. Usages are inductively defined as follows:

U, V ::= ε empty
h recursion variable
α(r) α(r) ∈ Act × (Res ∪ Nam), α �= new
U · V sequence
U + V choice
μh.U recursion
νn.U resource creation, n ∈ Nam

128 P. Degano, G.-L. Ferrari, and G. Mezzetti

Table 1. Operational semantics of Usages

ε · U, R ε−→ U, R α(r), R α(r)−−−→ ε, R μh.U, R ε−→ U{μh.U/h}, R

U, R α(r)−−−→ U ′, R′

U · V, R α(r)−−−→ U ′ · V, R′

U, R α(r)−−−→ U ′, R′

U + V, R α(r)−−−→ U ′, R′

V, R α(r)−−−→ V ′, R′

U + V, R α(r)−−−→ V ′, R′

νn.U, R new(r)−−−−→ U{r/n}, R ∪ {r}
if r ∈ Resd \ R

The operators of the calculus are similar to those of the π-calculus, but we have
full sequentialization, general recursion and no parallel operator; μh and νn are
binders, the first one on recursion variables, the second on names.

A usage is closed when it has no free names and no free variables; it is initial
when it is closed and with no dynamic resources, i.e. it is never the case that a
resource r ∈ Resd appear as parameter of an action.

The semantics of Usages is specified by the labelled transition system in
Table 1. We associate with a usage the language consisting of all the prefixes
of the traces labelling its computations. The configurations of the transition
system are pairs (U, R), where U is a usage and R ⊆ Resd is the set of dynamic
resources generated so far.

Definition 1.2 (Semantics of Usages). Given a closed usage U let �U� be the
set of traces η = w1 . . . wn(wi ∈ (Act × Res) ∪ {ε}, 1 ≤ i ≤ n) such that:

∃U ′, R′. U, ∅ w1−−→ · · · wn−−→ U ′, R′

The following definition is technical and will be used in Section 3.
Definition 1.3 (Well formed traces). A trace η is well-formed if it is never
the case that:
1. η = η′new(r)η′′ for some η′, η′′ with r ∈ Ress or
2. η = η′new(r)η′′new(r)η′′′ for some η′, η′′, η′′′, r or
3. η = η′α(r)η′′new(r)η′′′ for some η′, η′′, η′′′, α

1.2 Usage Automata

Usage Automata (UAs) [5] are nominal automata over data words. The mo-
tivating application of UAs is to express policies for controlling the usage of
resources. Policies are regular sets of traces [17]. The UAs express security poli-
cies relying on the so-called default-accept approach thus recognizing unwanted
traces. Before going into the formal definitions of UAs, consider the example
in Fig. 1. The automaton describes the usage policy for opening, reading and
writing files. Essentially, it amounts to saying that a file f must be opened be-
fore being used (f is a variable standing for a generic file). Starting from q0,
performing the action open on f brings the automaton to q1, so allowing the file
f to be read and written. Instead, an attempt of reading or writing a different

Nominal Automata for Resource Usage Control 129

q0 q1 q2
open(f)

read(f), write(f)

read(f), write(f)

read(f ′), f 	= f ′

Fig. 1. An example of UA that describe the usage policy for opening, reading and
writing files

file f ′ or an un-opened file brings to the offending state q2. For instance, the
string open(foo.txt) read(bar.txt) is offending, while open(foo.txt) read(foo.txt) is
legal. We assume that a UA remains in the same state by recognising an action
that does not match any of the labels of the outgoing edges. E.g. in Fig. 1, the
self-loops in q1 are redundant and are only displayed for readability.

To define UAs, it is convenient to assume a countable set of variables Var;
from now onwards, let V ⊂ Var. We start with a couple of auxiliary definitions.

Definition 1.4 (Substitution). A substitution for V is a function σ : V →
R, R ⊆ Res.

Hereafter a substitution σ is considered to be trivially extended on Ress so that
σ(a) = a for all a ∈ Ress. Hence, if σ : V → R, the set R contains at least Ress.

Below, we recall the syntax and the semantics of guards.

Definition 1.5 (Guards). Given a set V of variables we inductively define the
set G of guards on Ress ∪ V , ranged over by ζ, ζ′, as follows:

G1, G2 := true | ζ = ζ′ | ¬G1 | G1 ∧ G2

A given substitution σ : V → R satisfies a guard g, in symbols σ � g,
if and only if: (g = true) or (g = (ζ = ζ′) and σ(ζ) = σ(ζ′)) or (g =
¬g′ and it is not the case that σ � g′) or (g = g′ ∧ g′′ and σ � g′ and σ � g′′).

Definition 1.6 (Usage Automata). A Usage Automaton (UA) ϕ is
〈S, Q, q0, F, E〉. The finite set S ⊆ Act × (Ress ∪ V ar) is its alphabet; Q is
its finite set of states; q0 its initial state; F ⊆ Q the set of its final states;
E ⊆ Q × S × G × Q is its finite set of edges with G set of guards on resources
and variables in S.

Given a UA ϕ, we will refer to the variables occurring in S with V ar(ϕ).

Definition 1.7 (Instantiation of UAs). Let ϕ = 〈S, Q, q0, F, E〉 be a UA
and σ : V ar(ϕ) → R be a substitution. The instantiation of ϕ under σ is the
automaton ϕσ = 〈R, Q, q0, F, δσ〉, where δσ = Xσ ∪ Compσ(Xσ) with

Xσ = {(q, α (σ(v)) , q′) | (q, α(v), g, q′) ∈ E and σ � g}
Compσ (Xσ) = {(q, α(r), q) | α ∈ Act, r ∈ R and �q′ ∈ Q.(q, α(r), q′) ∈ Xσ}

130 P. Degano, G.-L. Ferrari, and G. Mezzetti

Note that the completion Compσ (Xσ) may possibly contain infinitely many self-
loops of the form (q, α(r), q) when r ∈ Resd.

Language recognizability by an automaton with infinitely many edges is de-
fined much like that for standard Finite State Automata (FSA, for short): η ∈
L(ϕσ) if there exists a finite path in ϕσ from q0 to a q′ ∈ F labelled with η.

Definition 1.8 (Language of UAs). The string η ∈ L(ϕ) iff there exists a
substitution σ : V ar(ϕ) → R for some R ⊆ Res such that η ∈ L(ϕσ).

1.3 Variable Finite Automata on Data Words

Now we conservatively extend Variable Finite Automata [16] to work over data
words. To simplify notation we overload Act to also denote the actions of VFA.

Definition 1.9 (Variable Finite Automata). The tuple A = 〈Act, Ω, Ωs, X∪
{y}, A〉 is a Variable Finite Automaton (VFA), where X is a finite set of vari-
ables; Act is a finite set of actions; and Ω is a possibly infinite alphabet with
Ωs ⊆ Ω finite subset, Ω ∩ X = ∅. A = 〈Γ, Q, q0, F, δ〉 is a NFA with alphabet
Γ = Act × (Ωs ∪ X ∪ {y}) and y /∈ (Ω ∪ X) is a distinguished placeholder.

Given a function m : Ω → (Ωs ∪ X ∪ {y}), let m(α(a)) = α(m(a)). When
unambiguous, we will write m(η) for m homomorphically applied to η.

Definition 1.10 (Language of VFAs). A string η ∈ (Act × Ω)∗ is a legal
instance of w ∈ Γ ∗ and w is a witnessing pattern of η, if there exists a function
m : Ω → (Ωs ∪ X ∪ {y}) such that m(η) = w and m is a correspondence, i.e.
1. ∀a ∈ Ωs.m(a) = a
2. ∀x ∈ X. if (∃a, b ∈ Ω.m(a) = x and m(b) = x) then a = b and a, b /∈ Ωs

A string η ∈ L(A) iff there exists w ∈ L(A) such that η is a legal instance of w.

Note that here we explicitly present the correspondence between strings and
witnessing patterns as a function. Our definition is equivalent to that of [16]
when actions are ignored.

Of course, we are interested in the behaviour of VFAs with infinite alphabets,
typically when Ω = Res, Ωs = Ress, Ω \ Ωs = Resd.

2 Properties of Usages and UA

This section studies Usages and UAs from a formal languages point of view.

Usages: Usages are a process algebra whose semantics is given in term of set of
traces. Hence, they can be also regarded as suitable grammar defining a language.
Although we found in the literature no widely accepted notion of regular/context-
free nominal language, we argue that the recursion operator μ of Usages makes
the generated languages context-free and non-regular. This is justified by the fact
that the language generated by νn.μh.(α(n) ·h ·α(n)+hh+ ε) (miming balanced

Nominal Automata for Resource Usage Control 131

parenthesis) is not recognised by any of the following regular nominal automata:
HD-Automata [19], Fresh Register Automata [24], Register Automata [18], VFAs
and UAs. To the best of our knowledge, context-free nominal models have been
studied only in [10], that introduces the class of quasi context-free languages (we
refer the reader to Def. 1 of the original paper).

It turns out that the class of languages defined by Usages and that of quasi
context-free languages have a non empty intersection, and that neither includes
the other, as stated in Property 2.1 below. Our comparison takes care of the fact
that quasi context-free languages are not defined on data words, i.e. they have
no actions on resources, while UAs do. The strings generated by UAs belong
to (Act × Res)∗, with the additional constraint that an action on a dynamic
resource r must be proceeded by new(r). Instead, quasi context-free languages
have no actions on resources. Thus, we will ignore actions, only considering the
resources accessed when talking of Usages, so fixing Res to be the alphabet
of both.

Property 2.1. There exists
1. a language generated by a usage U that is not quasi context-free;
2. a quasi context-free language that can be generated by no usage U .

For showing statement (1) above, consider the usage U = μh.(νn.α(n)) · h. As a
matter of fact, there is no bound on the number of fresh resources that can oc-
cur in a string generated by U , while in a quasi context-free language the bound
is given by the number of the registers, that are a characterizating feature of
the models for generating/recognising these languages (for details, see [10]). The
second statement holds because there is no usage U such that �U� = Res∗,
that is a quasi context-free language. We conjecture that this lack of expressiv-
ity of Usages comes from the absence of an explicit mechanism for disposing
and reusing resources. In contrast, quasi context-free models can overwrite the
content of a register, so forgetting that the resource previous contained therein
already appear previously in the generated string.

Usage Automata: Logical connectives between policies have a counterpart as lan-
guage operators. The complement of a language recognised by a UA ϕ is the set of
traces that violates the negation of policy expressed by ϕ. The union/intersection
of the languages recognised by two UAs ϕ, ψ is the set of traces violating the
conjunction/disjunction of the two policies expressed by ϕ and ψ. Hence, closure
properties are not only interesting from a theoretical viewpoint, but also deeply
connected with the intended applications of UAs.

Theorem 2.1. The set of languages accepted by UAs is closed under union and
intersection. but it is not closed under complement and Kleene star.

Below, we give an intuition on the proofs of non closedness, as they give some
additional insight on the expressivity of UAs (see [12]). To see that UAs are
not closed by complement, consider an UA that recognises the strings contain-
ing at least two occurrences of α(r) for some r ∈ Res. The complement of this

132 P. Degano, G.-L. Ferrari, and G. Mezzetti

q0

α(a)α(y)

α(a), α(y)

α(y)

α(a)

α(a), α(y)

Fig. 2. A VFA the language of which is not accepted by any UA. The alphabet is
Ω = Resd ∪ {a} with Act = {α}.

language contains those strings where all resources mentioned are pairwise dis-
tinct. This is a non-regular property, because an automaton should store all
previously used resources. To show that UAs are not closed under Kleene star,
consider a UA recognising the strings containing one α(a) followed by α(r) for
some r ∈ Res, r �= a. Now consider the Kleene star of the language L(ϕ) and,
by contradiction, let ψ be the UA recognising it. We can take arbitrary long
strings s ∈ L(ψ) of the form s = α(a)α(d1) . . . α(a)α(dn). Since variables in ψ
are finite not all di can be bound to a variable, this implies that some self-loop
labelled α(dk) obtained by completion is traversed in recognising s. Then also
s′ = α(a)α(d1) . . . α(a) . . . α(a)α(dn) obtained from s removing α(dk) is recog-
nised by ϕ, this is a contradiction because s′ /∈ L(ψ)∗.

The last fact does not however reduce the power of UAs in expressing security
policies. Consider a language of the form L(ϕ)∗ and let η be a trace in the
semantics �U� of a usage U . For any η ∈ L(ϕ)∗ there exists also a prefix η′ ∈ L(ϕ)
with η′ ∈ �U� by Definition 1.2. This means that checking U against L(ϕ)∗ is the
same as checking it against L(ϕ). However, there exists a safety property that is
not expressible by a UAs. Informally this safety policy requires to take a token
α(a) before performing any other kind of action, while if two tokens are taken,
any sequence of actions is then allowed. The above sketched safety property is
expressed by the VFA in Fig. 2. In general, the following theorem holds.

Theorem 2.2. UAs are less expressive than VFAs.

It would also be interesting to formally compare the expressive power of some
variants of UAs and of VFAs. We have a couple of preliminary results. First,
consider the restriction of VFAs obtained by only permitting the distinguished
placeholder y to occur in self-loops. We conjecture that this variant of VFAs has
the same expressive power of UAs. Now, consider the extension of UAs with a
wild-card, introduced in [3]. A wild-card can stand for any resource, and so it
plays the role of the placeholder y in a VFA. Not surprisingly UAs extended in
this way are just as expressive as VFAs.

3 Model Checking

As mentioned above, UAs have been introduced to specify and enforce secu-
rity policies of systems, the behaviour of which is abstractly represented by the

Nominal Automata for Resource Usage Control 133

language of a usage U . The security policies considered are actually safety prop-
erties, expressing that nothing bad will occur during a computation, abstractly
represented by the string η [17]. The approach taken in [5] follows the default-
accept paradigm, i.e. only the unwanted behaviour is explicitly mentioned —
this assumption justifies the way UAs are instantiated, and in particular the
completion step made therein. Consequently, the language of ϕ is the set of un-
wanted traces, and an accepting state is considered offending. Then U respects
the property ϕ, in symbols U � ϕ, if and only if η ∈ �U� ⇒ η /∈ L(ϕ).

To show that a usage U respects a policy ϕ, the authors of [5] resorted to
model-checking, in spite of the possible infinite resources a usage can generate.
This is done by carefully collapsing the verification to a well-known problem: the
emptiness of the intersection between a pushdown and a finite state automata,
that is decidable [13]. The first, i.e. the model, comes from U , the second, i.e.
the property, from the UA ϕ. Indeed, this is the classical automata based model
checking technique [25] with ϕ expressing unwanted traces, instead.

Since VFAs are more expressive than UA, the question arises whether the
same checking technique of [5] can be used to model check a usage against more
expressive policies, expressed by VFAs. The answer is positive and one can model
check a usage U against a VFAs, defining policy compliance in the obvious way:
U � A if and only if η ∈ �U� ⇒ η /∈ L(A).

To do this we introduce symbolic VFAs. Following [5], we let their alphabet
be the finite set of witnesses W ⊂ {#i}i∈N, where {#i}i∈N ∩ Res = ∅. We also
need a distinguished symbol _ /∈ Res ∪ {#i}i∈N.

We recall from [5] the crucial notion of collapsing mapping, that is the link
between Usages, VFAs and their symbolic counterparts. As a matter of fact, this
is the technical machinery that deals with urelements, and it permits to abstract
from their actual identity.

Definition 3.1 (Collapsing). Given a finite set of witnesses W, a collapsing
mapping κ : Res → Ress ∪ W ∪ {_} of R ⊂ Resd onto W is a function such
that:

1. κ(r ∈ Ress) = r 2. κ(R) = W and it is injective 3. κ(Resd\R) = {_}

We write κ(α(a)) for α(κ(a)) and κ(η) for the homomorphic extension of κ to η.

The following property is very technical, and simplifies the procedure for model
checking Usages against UAs and VFAs. Roughly, it states that well-formedness
of traces can be checked by the so-called unique-witness automaton.

Property 3.1 (Unique-witness). Given a finite set of witnesses W and an initial
usage U , there exists a unique-witness FSA NW such that:

– η /∈ NW =⇒ ∀#i ∈ W. there is a single new(#i) in η
– η ∈ �U� =⇒ η /∈ L(NW)

By exploiting the construction given in [5], we can now associate with a usage
U a symbolic pushdown automaton BW(U), the language of which is denoted by
L(BW(U)). The following theorem puts together some results proved in [5].

134 P. Degano, G.-L. Ferrari, and G. Mezzetti

Theorem 3.1. Given an initial usage U , there exist a finite set W of witnesses
and a pushdown automaton BW(U) on the finite alphabet Act× (Ress ∪W ∪{_})
such that:

– Given a collapsing κ such that κ(Resd) ⊆ W ∪ {_} then:
∀η. η ∈ �U� ⇒ κ(η) ∈ L(BW(U))

– Given a collapsing κ such that κ(Resd) ⊇ W, then:
∀η′. (η′ ∈ L(BW(U)) ∧ η′ /∈ NW) ⇒ (∃η. η ∈ �U� ∧ η′ = κ(η))

Definition 3.2 (Symbolic VFAs). Let A = 〈Act, Res, Ress, X ∪ {y}, A〉 be a
VFA. Given a finite set of witnesses W, let ResW = Ress ∪ W ∪ {_}.
The symbolic VFA on W is AW = 〈Act, ResW, Ress, X ∪ {y}, A〉. Language
recognition for symbolic VFAs additionally requires the correspondence m to be
such that m(_) = y.

The following theorem makes clear the links between the language of a VFA and
that of its symbolic automaton.

Theorem 3.2. Let A = 〈Act, Res, Ress, X ∪ {y}, A〉 be a VFA, and let W be a
set of witnesses such that |W| = |X |, AW as in Definition 3.2 and let K be the
set of the collapsing κ such that κ(Resd) = W ∪ {_}, then:

– ∀η.(η ∈ A ⇒ ∃κ ∈ K.κ(η) ∈ AW)
– ∀κ ∈ K, η.(κ(η) ∈ AW ⇒ η ∈ A)

We carry over VFAs the notions of substitution and instantiation, which trans-
forms a VFA into a Finite State Automaton. The language recognised by any
VFA can then be represented under collapsing by a finite class of its instantia-
tions.

Definition 3.3 (Instantiation of VFAs). Let AW = 〈Act, ResW, Ress, X ∪
{y}, A〉 be a symbolic VFA with A = 〈Γ, Q, q0, F, δ〉, Γ = Act × (Ress ∪X ∪ {y}).
Given a function m : X ∪ Ress → Ress ∪ W it is a substitution for A if it is the
identity on Ress and it is injective on X.
Given a substitution m the instantiation of A is Am = 〈ResW, Q, q0, F, δ∗〉, where

δ∗ ={(q, α(m(v)), q′) | (q, α(v), q′) ∈ δ, v �= y}∪
{(q, α(d), q′) | (q, α(y), q′) ∈ δ, d ∈ (ResW \ (Ress ∪ Image(m))}

Note that, by the finiteness of W, Am is a standard FSA on a finite alphabet.

Theorem 3.3. Let A = 〈Act, ResW, Ress, X ∪ {y}, A〉 be a symbolic VFA:

η ∈ L(A) ⇔ ∃ substitution m.η ∈ L(Am)

To simplify the technical development, we find convenient to resort to the well-
known weak-until operator A W B between automata, meaning that A holds
until B holds or B always holds. We refer to a standard book on model checking,
e.g. [1], or to [5] for more details.

Nominal Automata for Resource Usage Control 135

Theorem 3.4 (Model checking). Let U be an initial usage on the resources
Res = Resd ∪ Ress; let A = 〈Act, Res, Ress, X ∪ {y}, A〉 be a VFA; and let W
be a set of witnesses such that |W| = |X |. Then U � A if and only if:

∀ substitution m : X ∪ Ress → Ress ∪ W. L(BW(U)) ∩ L(Am
W W NW) = ∅

This theorem gives us the means for an efficient model checking proce-
dure. Given a substitution m, it is indeed decidable to check whether
L(BW) ∩ L(Am

W W NW) = ∅ and there are finitely many substitutions m,
because Ress, X and W are finite.

We can then re-use the model checker LocUsT [2] for verifying Usages against
VFAs. As for complexity issues, we can restate the theorem established in [5]
for VFAs. The proof is mostly the same with only minor changes regarding the
number of instantiations of VFAs.
Theorem 3.5. The worst-case asymptotic behaviour of model-checking an usage
U against an automaton ϕ with n variables is O(|U ||n|+1).

Conclusions

We have first studied two classes of nominal automata, namely Usage Automata
(UAs) [5] and Variable Finite Automata (VFAs) [16], aiming at using them to ex-
press resource control policies. We analysed closure properties of the languages
recognized by UAs, and showed that the expressive power of UAs is weaker
that the one of VFAs. Then, we considered Usages [5], a nominal process calcu-
lus for modelling the (abstract) behaviour of programs with dynamic creation
of resources. The class of languages defined by Usages is neither included nor
contains the class of quasi context-free languages [10].

We slightly extended the symbolic technique of [5], that is based on collaps-
ing and that reduces the two nominal automata mentioned above to standard
Finite State Automata. Also the execution traces of a nominal calculus can be
collapsed to traces of standard pushdown automata. This enables us to model
check the compliance of execution traces against a property expressed in terms
of a VFA. Indeed the collapsing above brings back us to the classical problem
of verifying the emptiness of the intersection between a pushdown and a finite
state automaton. Our results guarantee the correctness and the completeness of
our proposal.

We plan to study whether the symbolic technique used here can be extended
and applied to other classes of nominal automata (e.g. Finite Memory Automata)
and to more expressive nominal process calculi to specify systems (e.g. with re-
sources garbaging). It would be also interesting to further develop the taxonomy
about nominal automata by placing UAs and VFAs into the expressivity hierar-
chy of [22]. A co-algebraic presentation of these automata could help, especially
for investigating their relation with functors on nominal sets possibly with fu-
sion of names. The operational approach to express properties based on nominal
automata is deeply connected with the logical approach. It would then be impor-
tant to exactly relate the expressive power of different kinds of nominal automata
with that of various logics, e.g. EMSO [8,7] or LTL [1].

136 P. Degano, G.-L. Ferrari, and G. Mezzetti

Acknowledgments. We would like to thank the anonymous referees for their
comments that greatly helped us to improve the quality of our paper.

References

1. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
2. Bartoletti, M., Zunino, R.: LocUsT: a tool for checking usage policies. Tech. Rep.

TR08-07, University of Pisa (2008)
3. Bartoletti, M., Costa, G., Degano, P., Martinelli, F., Zunino, R.: Securing Java

with local policies. Journal of Object Technology 8(4), 5–32 (2009)
4. Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and verifying service composi-

tion. Journal of Computer Security 17(5), 799–837 (2009)
5. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model Checking Usage Poli-

cies. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 19–35.
Springer, Heidelberg (2009); Extended version to appear in Math. Stuct. Comp.
Sci.

6. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource
usage analysis. ACM Trans. Program. Lang. Syst. 31(6) (2009)

7. Benedikt, M., Ley, C., Puppis, G.: Automata vs. Logics on Data Words. In: Dawar,
A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 110–124. Springer, Heidelberg
(2010)

8. Bollig, B.: An Automaton over Data Words That Captures EMSO Logic. In:
Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 171–186.
Springer, Heidelberg (2011)

9. Bouyer, P.: A logical characterization of data languages. Information Processing
Letters 84(2), 75–85 (2002)

10. Cheng, E.Y.C., Kaminski, M.: Context-free languages over infinite alphabets. Acta
Inf. 35(3), 245–267 (1998)

11. Ciancia, V., Tuosto, E.: A novel class of automata for languages on infinite alpha-
bets. Tech. rep., CS-09-003, University of Leicester, UK (2009)

12. Degano, P., Mezzetti, G., Ferrari, G.L.: Nominal models and resource usage control.
Tech. Rep. TR-11-09, Dipartimento di Informatica, Università di Pisa (2011)

13. Esparza, J.: On the Decidability of Model Checking for Several μ-calculi and Petri
Nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Hei-
delberg (1994)

14. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects of Computing 13(3), 341–363 (2002)

15. Gordon, A.D.: Notes on Nominal Calculi for Security and Mobility. In: Focardi, R.,
Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 262–330. Springer, Heidel-
berg (2001)

16. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable Automata over Infinite Al-
phabets. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS,
vol. 6031, pp. 561–572. Springer, Heidelberg (2010)

17. Hamlen, K.W., Morrisett, J.G., Schneider, F.B.: Computability classes for enforce-
ment mechanisms. ACM Trans. on Programming Languages and Systems 28(1),
175–205 (2006)

18. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 134(2), 329–363 (1994)

Nominal Automata for Resource Usage Control 137

19. Montanari, U., Pistore, M.: π-Calculus, Structured Coalgebras and Minimal HD-
Automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893,
pp. 569–578. Springer, Heidelberg (2000)

20. Neven, F., Schwentick, T., Vianu, V.: Towards Regular Languages over Infinite
Alphabets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136,
pp. 560–572. Springer, Heidelberg (2001)

21. Sangiorgi, D., Walker, D.: The Pi-Calculus - a theory of mobile processes. Cam-
bridge University Press (2001)

22. Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet.
In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg
(2006)

23. Skalka, C., Smith, S., Horn, D.V.: Types and trace effects of higher order programs.
Journal of Functional Programming 18(2), 179–249 (2008)

24. Tzevelekos, N.: Fresh-register automata. ACM SIGPLAN Notices 46(1), 295–306
(2011)

25. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: LICS, pp. 332–344. IEEE Computer Society
(1986)

Weighted Nested Word Automata

and Logics over Strong Bimonoids�

Manfred Droste1 and Bundit Pibaljommee2

1 Institut für Informatik, Universität Leipzig
D-04009 Leipzig, Germany

droste@informatik.uni-leipzig.de
2 Department of Mathematics, Faculty of Science, Khon Kaen University,

Khon Kaen 40002, Thailand
banpib@kku.ac.th

Abstract. Nested words have been introduced by Alur and Madhusu-
dan as a model for e.g. recursive programs or XML documents and have
received much recent interest. In this paper, we investigate a quantitative
automaton model and a quantitative logic for nested words. The behavior
resp. the semantics map nested words to weights taken from a strong bi-
monoid. Strong bimonoids can be viewed as semirings without requiring
the distributivity assumption which was essential in the classical theory
of formal power series; strong bimonoids include e.g. all bounded lattices
and many other structures from multi-valued logics. Our main results
show that weighted nested word automata and suitable weighted MSO
logics are expressively equivalent. This extends the classical Büchi-Elgot
result from words to a weighted setting for nested words.

1 Introduction

Nested words capture models with both a natural sequencing of positions and
a hierarchical nested matching of these positions, as, e.g., in executions of re-
cursively structured programs or in XML documents. They were introduced by
Alur and Madhusudan [2] and are receiving much interest in the community. The
interplay between automata on nested words, logical descriptions of their prop-
erties, and the accepted languages of nested words has been intensively studied
(cf. [2] for a survey). It is the goal of this paper to develop for quantitative
properties a weighted model of nested word automata and their logics.

Weighted automata on words were introduced and investigated already by
Schützenberger [24]. Assuming for calculations that the weights form the al-
gebraic structure of a semiring (e.g., like the natural numbers (N,+, ·, 0, 1)),
semiring-weighted automata soon developed a rich theory, as demonstrated by
the books [12,25,15,5] and the recent handbook [9]. A suitable weighted MSO
logic with the same expressive power as weighted word automata was developed
in Droste and Gastin [7,8]. For nested words, a semiring-weighted automaton
and an equivalent weighted logic were developed by Mathissen [19].

� This work has been supported by DFG-NRCT.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 138–148, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Weighted Nested Word Automata and Logics over Strong Bimonoids 139

Logics with values in non-distributive lattices (unlike semirings, where mul-
tiplication distributes over addition) were proposed already by Birkhoff and
von Neumann [3] as the logic of quantum mechanics. Recently, quantum au-
tomata and quantum logics in non-distributive lattices were investigated in
[17,22,23,26,27]. For multi-valued model checking, non-distributive De Morgan
algebras were employed in [18]. Recently, weighted automata and expressively
equivalent weighted logics with values in strong bimonoids were studied in [11].
Strong bimonoids can be viewed as semirings without requiring the distributiv-
ity properties, and they comprise all bounded lattices.

In this paper, we will investigate weighted nested word automata and suit-
able weighted logics where the weights are taken from a strong bimonoid. We
will prove an equivalence result for the expressive powers of the automata resp.
the logics. For the nested word automata, we assume that their transitions are
equipped with weights indicating, e.g., their use of resources or their probability
of success. The behavior of such an automaton is a function from Σ+ to the
strong bimonoid K. The classical model is obtained by letting K be the Boolean
semiring {0, 1}. Our weighted MSO-logic consists of all usual monadic second
order formulas for nested words and all elements from the bimonoid K as con-
stants. In order to define the semantics of negations of formulas, we assume that
the bimonoid is equipped with a complement function interchanging 0 and 1.
Such non-standard operations for the semantics of the logical connectives often
occur in multi-valued logics, like Gödel logics, Lukasiewicz logics, Post logics, cf.
[13]. Then the semantics of weighted sentences is again a function from Σ+ to
K. In our first main result, we show that for arbitrary strong bimonoids with
complement functions, weighted nested word automata and a suitably restricted
weighted existential MSO logic have the same expressive power. This logic is
(fortunately) essentially the same as the one in the original work of [7,8] for
semiring-weighted logics over words. Our result extends the result of [19] who
considered commutative semirings. In his proofs, Mathissen employed a transfer
result from nested words to other structures like trees, which heavily employs
both the commutativity and the distributivity assumptions of the underlying
semiring. Since in our setting commutativity and distributivity typically fail, we
have to give different proofs, using direct automata-theoretic constructions. In
comparison to the setting of [11] for words, we have to deal with the more com-
plicated structure of nested words and, correspondingly, the different transitions
of nested word automata in a weighted setting.

In our second main result, we show that weighted nested word automata are
expressively equivalent to the full weighted EMSO logic (without restriction), if
the operations of the underlying strong bimonoid satisfy a local finiteness condi-
tion. For instance, the unit interval [0, 1] with Lukasiewicz t-norm and t-conorm
forms a non-distributive strong bimonoid satisfying these local finiteness assump-
tions. Our assumptions are also satisfied by all bounded lattices; therefore our
equivalence result applies to all nested word automata and logics with values
in bounded lattices (with complement function). Since all our constructions are
effective, we obtain that e.g. the lattice-valued implication problem is decidable.

140 M. Droste and B. Pibaljommee

2 Strong Bimonoids

In this section, we recall the notion and examples of strong bimonoids. A strong
bimonoid is a structure K = (K,+, ·, 0, 1) such that (K,+, 0) is a commutative
monoid, (K, ·, 1) is a monoid and k · 0 = 0 = 0 · k for every k ∈ K. We say that
K is distributive, if it satisfies (a+ b) · c = a · c+ b · c and c · (a+ b) = c · a+ c · b
for every a, b, c ∈ K. Then a semiring is a distributive strong bimonoid.

Example 1. (cf. [10])

1. The Boolean semiring is the semiring (B,∨,∧, 0, 1) with B = {0, 1}, and
disjunction and conjunction as operations.

2. Bounded lattices (lattices containing a greatest element 1 and a smallest
element 0) are strong bimonoids. As is well-known, there are large classes of
lattices that are not distributive (cf. [14]).

3. The algebra ([0, 1],⊕, ·, 0, 1) with the usual multiplication · of real numbers
and either a ⊕ b = a + b − a · b (algebraic sum) or a ⊕ b = min{a + b, 1}
(bounded sum), cf. [13], is a strong bimonoid.

4. Let X be an alphabet with |X | ≥ 2. Consider the strong bimonoid (X∗ ∪
{∞},∧, ·,∞, ε) where ∧ is the longest common prefix operation, · is the
usual concatenation of words, and ∞ is a new element acting as zero. This
bimonoid occurs in investigations for natural language processing, see [20].

5. Let N ∗ = (N∞ ∪ {0∗, 1∗},⊕,$, 0∗, 1∗) where N∞ = N ∪ {∞}, the operation
⊕ and $ are both the usual addition operation on N∞, 0∗ acts as zero, 1∗ as
one and 1∗ ⊕ x = x = x⊕ 1∗ if x
= 0∗. Then N ∗ is a strong bimonoid ([11])
but not a semiring.

The strong bimonoid (K,+, ·, 0, 1) is called bi-locally finite if each finitely gen-
erated submonoid of both (K,+, 0) and (K, ·, 1) is finite. Clearly, any bounded
lattice (L,∨,∧, 0, 1) is a bi-locally finite strong bimonoid. There are further ex-
amples:

Example 2. The strong bimonoid ({0}∪ [λ, 1],⊕,$, 0, 1) for λ < 1
2 , with a⊕ b =

min{a+ b, 1} and a$ b = a · b if a · b ≥ λ, and 0 if a · b < λ, is bi-locally finite.

In all of this paper, K will be a strong bimonoid.

3 Nested Words and Weighted Nested Word Automata

In this section we recall the notion of nested words and nested word automata
introduced by Alur and Madhusudan [2], and we extend the notion of weighted
nested word automata over an alphabet and a semiring introduced by Mathissen
[19] to strong bimonoids. Let Δ be a finite alphabet and let Δ+ be the free semi-
group of finite non-empty words over Δ. If w = a1 . . . an ∈ Δ+ with a1, . . . , an ∈
Δ, then we denote by |w| = n the length of w and we let dom(w) = {1, . . . , n}. A
nested word of length n over Δ is a pair (w, ν) consisting of a word w ∈ Δ+ with
|w| = n and a binary nesting relation ν on dom(w) such that for all 1 ≤ i, j ≤ n:

Weighted Nested Word Automata and Logics over Strong Bimonoids 141

(1) if ν(i, j) then i < j;
(2) if ν(i, j) and ν(i, j′) then j = j′, and if ν(i, j) and ν(i′, j) then i = i′;
(3) if ν(i, j) and ν(i′, j′) and i < i′ then either j < i′ or j′ < j.

If ν(i, j), i is a call position and j is a return position. All other positions are
called internal positions. We denote by NW (Δ) the collection of all nested words
over Δ. Any subset of NW (Δ) is called a language of nested words.

Definition 1. ([2]) A nested word automaton (NWA) over Δ is a quadruple
A = (Q,Qin, δ, Qf) consisting of

(1) a finite set Q of states,
(2) a set of initial states Qin ⊆ Q,
(3) a set of final states Qf ⊆ Q,
(4) a set of transition δ = (δcall, δint, δret), where

• δcall ⊆ Q×Δ×Q is a transition relation for call positions,
• δint ⊆ Q ×Δ×Q is a transition relation for internal positions, and
• δret ⊆ Q×Q×Δ×Q is a transition relation for return positions.

A run r of the automaton A over a nested word nw = (a1 . . . an, ν) is a sequence
(q0, q1, . . . , qn) on Q such that q0 ∈ Qin and for each 1 ≤ i ≤ k,

if i is a call position of ν, then (qi−1, ai, qi) ∈ δcall,
if i is a internal position of ν, then (qi−1, ai, qi) ∈ δint and
if i is a return position of ν with call-predecessor j, then (qi−1, qj−1, ai, qi) ∈
δret.

The automaton A accepts the nested word nw if it has a run (q0, . . . , qn) such
that qn ∈ Qf . The language L(A) is the set of nested words accepted by A.

A language L of nested words over Δ is regular if there exists a nested word
automaton A over Δ such that L = L(A). As shown in [2], the class of regular
languages of nested words is closed under set theoretical operations like union,
intersection, and complement.

Next we define weighted nested word automata.

Definition 2. Let K be a strong bimonoid. A weighted nested word automaton
(WNWA for short) is a quadruple A = (Q, ι, δ, κ) where δ = (δcall, δint, δret)
such that

(1) Q is a finite set of states,
(2) δcall, δint : Q×Δ×Q→ K are the call resp. internal transition functions,
(3) δret : Q ×Q×Δ×Q→ K is the return transition function, and
(4) ι, κ : Q→ K are the initial resp. final distributions.

A run of A on nw = (a1 . . . an, ν) is a sequence r = (q0, . . . , qn) ∈ Qn+1 of states.
The weight of r for nw at position 1 ≤ i ≤ n is given by

142 M. Droste and B. Pibaljommee

wtA(r, nw, i) =

⎧⎨⎩
δcall(qi−1, ai, qi) if ν(i, j) for some i < j ≤ n
δint(qi−1, ai, qi) if i is an internal position
δret(qi−1, qj−1, ai, qi) if ν(j, i) for some 1 ≤ j < i.

Now, the weight of r for nw is wtA(r, nw) =
∏

1≤i≤n

wtA(r, nw, i).

The behavior ‖A‖ : NW(Δ)→ K of A is defined by

(‖A‖, nw) =
∑

r∈Qn+1

ι(q0) · wtA(r, nw) · κ(qn).

For K = B the Boolean semiring, we can consider the functions δcall, δint as
subsets of Q×Δ×Q and δret as a subset of Q×Q×Δ×Q and we obtain nested
word automata as described in Definition 1. Conversely, nested word automata
can be considered as weighted nested word automata over the Boolean semiring.
Therefore, weighted nested word automata form a generalization of nested word
automata.

Example 3. 1. The following is a nondeterministic version of a similar example
of Mathissen ([19]). Consider the randomized recursive pseudo-procedure bar

where flip(YY′) means flipping a fair coin Y and an unfair coin Y′ at the same
time. Let the probability of getting the head (H) and the tail (T) of the fair coin be
1
2 . For the unfair coin, let the probability of getting the head (H′) be 2

3 and getting

the tail (T′) be 1
3 . Consider the alphabet

Δ = {r, w, b, call, ret} of atomic events
which stand for read, write, beep, call,
and return. Now an execution of bar
could be as follow.
Case 1. read(x), flip the coins and see
HT′, call to recursively bar, read(x), flip
the coins and see HH′ or TT′, beep, flip
the coins and see HT′ or TH′, return from
the recursive call, flip the coin and see
HH′ or TT′, write(x), flip the coins and
see HT′ or TH′, exit the program.
Or Case 2. read(x), flip the coins and
see TH′, call recursively bar, read(x),

proc bar(){
read(x);

flip(YY′);
if(YY′==HH′||YY′=TT′) {

beep;

else if(YY′==HT′)
bar();

else
bar();}

flip(YY′);while(YY′==HH′||
YY′==TT′)

write(x);

flip(YY′);
exit;}

flip the coins and see HH′ or TT′, beep, flip the coins and see HT′ or TH′, return from
the recursive call, flip the coins and see HH′ or TT′, write(x), flip the coins and
see HT′ or TH′, exit the program. Then the nested word 7w = r.call.r.b.ret.w.ret
with nesting relation ν = {(2, 5)} models this execution of bar where ν encodes
the recursive call of bar.

The probability of the word 7w is the probability of the execution of Case 1
plus the probability of the execution of Case 2 which equals (1 · 16 ·1 ·

3
6 ·

3
6 ·

3
6 ·

3
6)+

(1 · 26 · 1 ·
3
6 ·

3
6 ·

3
6 ·

3
6) =

1
32 . Now we model bar using a nondeterministic nested

weighted automata over Δ = {r, w, b, call, ret} and a strong bimonoid. We use
the strong bimonoid ([0, 1],⊕, ·, 0, 1) where the operation ⊕ is the bounded sum

Weighted Nested Word Automata and Logics over Strong Bimonoids 143

of Example 1(3). The WNWA has five states {q0, . . . , q4}. The non-zero initial
and final weights and non-zero transition weights are defined as follows.

ι(q0) = ι(q1) = κ(q4) = 1, δint(q0, r, q2) = 1, δint(q1, r, q2) = 1,

δcall(q2, call, q0) = 1/6, δcall(q2, call, q1) = 2/6, δint(q2, b, q3) = 3/6,

δint(q3, w, q3) = 3/6, δint(q3, ret, q4) = 3/6, δret(q3, q2, ret, q3) = 3/6.

Then the automaton assigns the probability 1
32 to the nested word 7w.

2. Alur et al. [1] point out how a procedural computer execution program may
be represented by finite or infinite nested words. The total computation time of
a nondeterministic program can be modeled as the behavior of a WNWA over
the strong bimonoid N ∗ of Example 1(5).

3. In algebraic path problems we count only paths with desired properties.
This leads to strong bimonoids which are not distributive and hence not a semir-
ing. For a range of examples, we refer the reader to [16], section 3.2.

A function S : NW (Δ)→ K is called a nested word series or series (over Δ and
K). We call S : NW (Δ)→ K regular if S = ‖A‖ for some WNWA A. The series
S is a regular step function if S assumes only finitely many values and for each
k ∈ K, S−1(k) = {nw ∈ NW (Δ) | S(nw) = k} is regular. The set of all series
over Δ and K is denoted by K〈〈NW (Δ)〉〉.

Let L ⊆ NW (Δ). The characteristic function �L ∈ K〈〈NW (Δ)〉〉 of L is
defined by �L(nw) = 1 if nw ∈ L and �L(nw) = 0 otherwise. Then L is regular
iff the characteristic series �L : NW (Δ)→ B is regular.

Lemma 1. Any regular step function S : NW (Δ)→ K is regular.

For the proof of the following partial converse, we can adjust the proof of The-
orem 11 of [10] as well as several other results from the theory of weighted
automata over words to the nested word setting.

Theorem 1. Let K be a bi-locally finite strong bimonoid and let S : NW (Δ)→
K be regular. Then S is a regular step function.

4 Weighted Logics on Nested Words

Let Δ be an alphabet. The formulas of the monadic second-order logic of nested
words are given by the syntax:

ϕ ::= x = y | Laba(x) | x ≤ y | ν(x, y) | x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Δ, x, y are first-order variables and X is a second-order variable. We
denote by MSO the set of all monadic second orders formulas over Δ.

Let ϕ ∈ MSO and let Free(ϕ) be the set of all free variables of ϕ. Let V be
a finite set of first-order and second-order variables such that Free(ϕ) ⊆ V . A
(V , nw)-assignment γ is a function mapping first-order variables in V to elements
of dom(nw) and second-order variables in V to subsets of dom(nw). If x is a first-
order variable and i ∈ dom(nw), then γ[x→ i] is the (V ∪ {x}, nw)-assignment

144 M. Droste and B. Pibaljommee

which assigns x to i and equals γ on V \ {x}. Similarly, γ[X → I] is defined
for I ⊆ dom(nw). The other definitions of the semantics are as usual. We write
(nw, γ) |= ϕ if ϕ holds in nw under the assignment γ.

We encode pairs (nw, γ) with (V , nw)-assignment γ as nested words ((w, ν), σ)
as usual (cf. [7,8]) over the extended alphabet ΔV = Δ × {0, 1}V and with the
same nesting relation as nw. We call ((w, ν), σ) valid, if σ arises from a (V , nw)-
assignment. Clearly the language NV = {(nw, σ) ∈ NW (ΔV) | (w, σ) is valid}
is regular. If ϕ ∈ MSO with Free(ϕ) ⊆ V , we let LV(ϕ) = {(nw, σ) ∈ NV |
(nw, σ) |= ϕ}, the language defined by ϕ . We abbreviate and L(ϕ) = LFree(ϕ)(ϕ).
Note that in case that ϕ is a sentence, i.e., Free(ϕ) = ∅, we consider L(ϕ) as a
subset of NW (Δ).

Let Z ⊆ MSO. A language L ⊆ NW (Δ) is Z-definable if L = L(ϕ) for a
sentence ϕ ∈ Z. The set EMSO comprises all MSO formulas ϕ of the form
∃X1 . . . ∃Xm.ψ, where ψ contains only quantification over first-order variables.

Theorem 2. (Alur and Madhusudan [2]) A nested word language L ∈ NW (Δ)
is regular iff L is MSO-definable iff L is EMSO-definable.

Now we introduce our weighted monadic second order logics on nested words
over strong bimonoids. We follow the approach of [7] for strings and semirings,
cf. [19] for nested words and semirings and [11] for strings and strong bimonoids.
We assume that the strong bimonoid K is equipped with a function − : K →
K satisfying 0̄ = 1 and 1̄ = 0. We will regard ¯ as ”complement function”
and use it to define the semantics of the negation of formulas. Note that any
strong bimonoid can be equipped with such a function by letting 0̄ = 1, 1̄ = 0,
and defining ā for a ∈ K \ {0, 1} arbitrarily. In all of this section, let K =
(K,+, ·, ,̄ 0, 1) be a strong bimonoid with complement function. The set MSO(K)
of weighted MSO formulas over K and Δ is given by the following grammar:

ϕ ::= k | x = y | Laba(x) | x ≤ y | ν(x, y) | x ∈ X | ¬ϕ
| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

where k ∈ K and a ∈ Δ. Let ϕ ∈ MSO(K) and Free(ϕ) ⊆ V . The weighted
semantics [[ϕ]]V of ϕ is a function from NW (ΔV) to K. Let (nw, σ) ∈ NW (ΔV).
If (nw, σ) is not valid, we put [[ϕ]]V (nw, σ) = 0. If (nw, σ) with nw = (a1 . . . an, ν)
is valid, we define [[ϕ]]V (nw, σ) ∈ K inductively as in Table 1. For the products
over dom(nw), we follow the natural order of dom(nw) resp. the lexicographic
order on the power set of dom(nw).

In the following, we shortly write [[ϕ]] for [[ϕ]]Free(ϕ). Similarly to the string
case (Proposition 3.3 of [7]) we can show that for every finite set V of variables
containing Free(ϕ) the semantics [[ϕ]]V and [[ϕ]] are consistent with each other,
i.e., ([[ϕ]]V , (nw, σ)) = ([[ϕ]], (nw, σ|Free(ϕ))) for every valid (nw, σ) ∈ NW (ΔV).

We call a formula ϕ ∈ MSO(K) Boolean ([4]) if it does not contain constants
k ∈ K\{0, 1} and does not use disjunction or existential quantifications. Clearly,
every Boolean formula ϕ can be considered as a classical (unweighted) MSO-
formula defining the language of L(ϕ). Then [[ϕ]] = �L(ϕ). Clearly, Boolean
formulas capture the full power of classical MSO logic. In particular, for every
regular language L ⊆ NW (Δ) there is a Boolean sentence ϕ such that �L = [[ϕ]].

Weighted Nested Word Automata and Logics over Strong Bimonoids 145

Table 1. MSO(K)-semantics

[[k]]V (nw, σ) = k for all k ∈ K [[x = y]]V(nw, σ) =

{
1, if σ(x) = σ(y)
0, otherwise,

[[Laba(x)]]V(nw, σ) =

{
1, if aσ(x) = a
0, otherwise,

[[x ≤ y]]V(nw, σ) =

{
1, if σ(x) ≤ σ(y)
0, otherwise,

[[ν(x, y)]]V(nw, σ) =

{
1, if ν(σ(x), σ(y))
0, otherwise,

[[x ∈ X]]V(nw, σ) =

{
1, if σ(x) ∈ σ(X)
0, otherwise,

[[¬ϕ]]V (nw, σ) = [[ϕ]]V (nw, σ), [[ϕ ∨ ψ]]V(nw, σ) = [[ϕ]]V (nw, σ) + [[ψ]]V (nw, σ),

[[ϕ ∧ ψ]]V(nw, σ) = [[ϕ]]V (nw, σ) · [[ψ]]V (nw, σ),

[[∃x.ϕ]]V (nw, σ) =
∑

i∈dom(nw)

[[ϕ]]V∪{x}(nw, σ[x → i]),

[[∃X.ϕ]]V (nw, σ) =
∑

I⊆dom(nw)

[[ϕ]]V∪{X}(nw, σ[X → I]),

[[∀x.ϕ]]V (nw, σ) =
∏

i∈dom(nw)

[[ϕ]]V∪{x}(nw, σ[x → i]),

[[∀X.ϕ]]V (nw, σ) =
∏

I⊆dom(nw)

[[ϕ]]V∪{X}(nw, σ[X → I]).

Example 4. Consider the strongbimonoidN ∗ ofExample 1(5).Letnw ∈ NW (Δ).
Define ϕ = ∃x∃y.(ν(x, y) ∧ ∀z.((x < z ∧ z < y) → ((∀w.¬ν(z, w)) ∧ 1))) where
ϕ → k abbreviates ¬ϕ ∨ (ϕ ∧ k). Then [[ϕ]](nw) is the sum of the lengths of open
nested intervals in nw without further nesting inside.

We call a formula ϕ ∈ MSO(K) almost unambiguous if it is constructed from
constants k (k ∈ K) and Boolean formulas, using disjunction, conjunction, and
negation. A formula ϕ ∈ MSO(K) is called syntactically restricted, if it satisfies
the following conditions:

1. Whenever ϕ contains a conjunction ψ ∧ ψ′ as subformula but not in the
scope of a universal first order quantifier, then either ψ and ψ′ are almost
unambiguous, or ψ or ψ′ is Boolean.

2. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is a Boolean.
3. Whenever ϕ contains ∀x.ψ or ¬ψ as a subformula, then ψ is almost unam-

biguous.

We let srMSO(K) comprise all syntactically restricted formulas of MSO(K), and
EMSO(K) all MSO(K)-formulas ϕ of the form ϕ = ∃X1 . . . ∃Xn · ψ such that
ψ contains only first order quantifications. We put srEMSO(K) = srMSO(K) ∩
EMSO(K). The goal of this section is to prove the following two results.

Theorem 3. Let K be any strong bimonoid with complement function, and let
S : NW (Δ)→ K be a series. Then the following are equivalent:

(1) S is regular.
(2) S is srMSO(K)-definable.
(3) S is srEMSO(K)-definable.

146 M. Droste and B. Pibaljommee

Theorem 4. Let K be any bi-locally finite strong bimonoid with complement
function, and let S : NW (Δ)→ K be a series. The following are equivalent:

(1) S is regular.

(2) S is EMSO(K, Δ)-definable.

For the proofs of the implications (2) → (1) of Theorem 3 resp. 4 we will pro-
ceed by induction over the structure of the formula, using the following lemma.
Its proof involves automata constructions for sums, products, projections, and
inverse projections of regular nested word series.

Lemma 2. Let ϕ, ψ ∈MSO(K).

(a) If ϕ is almost unambiguous, then [[ϕ]] is a regular step function.

(b) If [[ϕ]] is a regular step function, then so is [[¬ϕ]].
(c) If [[ϕ]] and [[ψ]] are regular step functions, then [[ϕ ∨ ψ]] and [[ϕ ∧ ψ]] are also

regular step functions.

(d) Let [[ϕ]] and [[ψ]] be regular. Then [[ϕ ∨ ψ]] is regular. If ϕ or ψ is Boolean,
then [[ϕ ∧ ψ]] is regular.

(e) If [[ϕ]] is regular, then [[∃x.ϕ]] and [[∃X.ϕ]] are regular.

(f) If [[ϕ]] is a regular step function, then [[∀x.ϕ]] is regular.

Proof of Theorems 3 and 4, (1)⇒ (3) and (1)⇒ (2): We construct a WNWA A
over K and Δ with initial and final weights in {0, 1}, then we explicitly describe
an srEMSO(K) sentence ϕ such that ||A|| = [[ϕ]].
(2)⇒ (1): In case of Theorem 3, we show for any ϕ ∈ srMSO(K, Δ) that [[ϕ]] is
regular by induction over the structure of ϕ. If ϕ is almost unambiguous, then by
Lemmas 2 and 1, [[ϕ]] is regular. For the closure under disjunctions, the permitted
conjunctions and existential quantifications, we apply Lemma 2. If ϕ contains
∀X.ψ as a subformula, then ψ and hence also ∀X.ψ is also Boolean, so [[∀X.ψ]]
is regular. Finally, if ϕ contains ∀x.ψ or ¬ψ as a subformula, then ψ is almost
unambiguous. By Lemma 2, [[∀x.ψ]] and [[¬ψ]] are regular. Hence [[ϕ]] is regular.
In case of Theorem 4, we show for any ϕ ∈ EMSO(K, Δ) that [[ϕ]] is a regular
step function; then by Lemma 1, [[ϕ]] is regular. For this, we apply Lemma 2 in
combination with Theorem 1 for existential quantifications and universal first
order quantifications.

As a consequence, we obtain that the lattice-valued implication problem is
decidable.

Corollary 1. Let L be a bounded lattice. Given two arbitrary MSO-sentences
ϕ, ψ ∈ MSO(L), it is decidable whether [[ϕ]] ≤ [[ψ]].

Proof. All our proofs for Theorem 4, implication (2) → (1), are constructive.
Hence we effectively obtain representations of [[ϕ]] and [[ψ]] as regular step func-
tions, i.e. we obtain their finitely many values assumed and automata for the
languages where they are assumed. Then it is easy to check whether [[ϕ]](nw) ≤
[[ψ]](nw) for each nw ∈ NW (Δ).

Weighted Nested Word Automata and Logics over Strong Bimonoids 147

5 Conclusion

We have shown that weighted nested word automata and suitably restricted
weighted MSO logic are expressively equivalent where the weights can be taken
from any strong bimonoid. Moreover, this equivalence extends to the full weighted
existential MSO logic if the operations of the weights satisfy local finiteness as-
sumptions.

In the theory of formal power series, weights were always assumed to be taken
from semirings, i.e., distributive strong bimonoids. This assumption ensures that
the usual multiplication of matrices is associative which enables the develop-
ment of deep algebraic treatments of weighted automata, cf. [12,25,15,5,9], also
[7,8] for weighted automata and logics on words and [19] for the commutative
semiring-weighted nested word setting. In [11], it was recently shown that the
classical Büchi-Elgot-type result and the results of [7,8] also extend to weighted
automata and logics over words where the weights are taken from a strong bi-
monoid. Here, we have developed this result for the nested word setting. Our
arguments employed explicit automata constructions. Together with the results
of [11], this raises the question which other results and algorithms ([21]) from
the rich theory of semiring-weighted automata can be extended to more general
quantitative settings.

References

1. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. Logical Methods in Computer Sci-
ence 4(4:11), 1–44 (2008)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journal of the
ACM 56(3), article 16, 1–43 (2009)

3. Birkhoff, B., von Neumann, J.: The logic of quantum mechanics. Annals of
Math. 37, 823–843 (1936)

4. Bollig, B., Gastin, P.: Weighted versus Probabilistic Logics. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 18–38. Springer, Heidelberg
(2009)

5. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Monographs in
Theoretical Computer Science, vol. 12. Springer (1988)

6. Ćirić, M., Droste, M., Ignjatović, J., Vogler, H.: Determinization of weighted finite
automata over strong bimonoids. Inform. Sciences 180, 3497–3520 (2010)

7. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Com-
puter Science 380, 69–86 (2007); Special issue of ICALP 2005

8. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: [9], ch. 5
9. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.

EATCS Monographs in Theoretical Computer Science. Springer (2009)
10. Droste, M., Stüber, T., Vogler, H.: Weighted automata over strong bimonoids.

Information Sciences 180, 156–166 (2010)
11. Droste, M., Vogler, H.: Weighted automata and multi-valued logics over arbitrary

bounded lattices. Theoretical Computer Science 418, 14–36 (2012); Extended ab-
stract in DLT 2010

148 M. Droste and B. Pibaljommee

12. Eilenberg, S.: Automata, Languages, and Machines, Volume A. Pure and Applied
Mathematics, vol. 59. Academic Press (1974)

13. Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computa-
tion. Research Studies Press LTD, Hertfordshire (2001)

14. Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Basel (2003)
15. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monographs in Theo-

retical Computer Science. An EATCS Series, vol. 6. Springer (1986)
16. Lengauer, T., Theune, D.: Unstructured Path Problems and the Making of Semir-

ings. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519,
pp. 189–200. Springer, Heidelberg (1991)

17. Li, Y.M.: Finite automata based on quantum logic and monadic second-order quan-
tum logic. Science China Information Sciences 53, 101–114 (2010)

18. Mallya, A.: Deductive Multi-valued Model Checking. In: Gabbrielli, M., Gupta, G.
(eds.) ICLP 2005. LNCS, vol. 3668, pp. 297–310. Springer, Heidelberg (2005)

19. Mathissen, C.: Weighted logics for nested words and algebraic formal power series.
Logical Methods Computer in Science 6, 1–34 (2010); Special issue of ICALP 2008

20. Mohri, M.: Minimization algorithms for sequential transducers. Theoretical Com-
puter Science 234, 177–201 (2000)

21. Mohri, M.: Weighted automata algorithms. In: [9], ch. 6
22. Qiu, D.: Automata theory based on quantum logic: some characterizations. Infor-

mation and Computation 190, 179–195 (2004)
23. Qiu, D.: Automata theory based on quantum logic: Reversibilities and pushdown

automata. Theoretical Computer Science 386, 38–56 (2007)
24. Schützenberger, M.P.: On the definition of a family of automata. Information and

Control 4, 245–270 (1961)
25. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.

Texts and Monographs in Computer Science. Springer (1978)
26. Ying, M.: Automata theory based on quantum logic (I) and (II). Int. J. of Theoret.

Physics 39, 985–995, 2545-2557 (2000)
27. Ying, M.: A theory of computation based on quantum logic (I). Theoretical Com-

puter Science 344, 134–207 (2005)

A Fast Suffix Automata Based Algorithm

for Exact Online String Matching

Simone Faro1 and Thierry Lecroq2

1 Università di Catania, Viale A.Doria n.6, 95125 Catania, Italy
2 Université de Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France

faro@dmi.unict.it, thierry.lecroq@univ-rouen.fr

Abstract. Searching for all occurrences of a pattern in a text is a fun-
damental problem in computer science with applications in many other
fields, like natural language processing, information retrieval and com-
putational biology. Automata play a very important role in the design of
efficient solutions for the exact string matching problem. In this paper we
propose a new very simple solution which turns out to be very efficient in
practical cases. It is based on a suitable factorization of the pattern and
on a straightforward and light encoding of the suffix automaton. It turns
out that on average the new technique leads to longer shift than that
proposed by other known solutions which make use of suffix automata.

1 Introduction

The string matching problem consists in finding all the occurrences of a pattern
P of length m in a text T of length n, both defined over an alphabet Σ of size σ.
Automata play a very important role in the design of efficient string matching
algorithms. For instance, the Knuth-Morris-Pratt algorithm [6] (KMP) was the
first linear-time solution, whereas the Backward-DAWG-Matching algorithm [3]
(BDM) reached the optimal O(n logσ(m)/m) lower bound time complexity on
the average. Both the KMP and the BDM algorithms are based on finite au-
tomata; in particular, they respectively simulate a deterministic automaton for
the language Σ∗P and the deterministic suffix automaton of the reverse of P .

The efficiency of string matching algorithms depends on the underlying au-
tomaton used for recognizing the pattern P and on the encoding used for simu-
lating it. The efficient simulation of nondeterministic automata can be performed
by using the bit parallelism technique [1]. For instance the Shift-Or algorithm,
presented in [1], simulates the nondeterministic version of the KMP automa-
ton while a very fast BDM-like algorithm, (BNDM), based on the bit-parallel
simulation of the nondeterministic suffix automaton, was presented in [8].

Specifically the bit-parallelism technique takes advantage of the intrinsic par-
allelism of the bitwise operations inside a computer word, allowing to cut down
the number of operations that an algorithm performs by a factor up to w, where
w is the number of bits in the computer word. However the correspondent encod-
ing requires one bit per pattern symbol, for a total of &m/ω' computer words.
Thus, as long as a pattern fits in a computer word, bit-parallel algorithms are

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 149–158, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

150 S. Faro and T. Lecroq

extremely fast, otherwise their performances degrades considerably as &m/ω'
grows. Though there are a few techniques [9,2,4] to maintain good performance
in the case of long patterns, such limitation is intrinsic.

In this paper we present a new algorithm based on the efficient simulation of
a suffix automaton constructed on a substring of the pattern extracted after a
suitable factorization. The new algorithm is based on a simple encoding of the
underlying automaton and turns out to be very fast in most practical cases, as
we show in our experimental results.

The paper is organized as follows. In Section 2 we briefly introduce the basic
notions which we use along the paper. In Section 3 we review the previous
results known in literature based on the simulation of the suffix automaton of
the searched pattern. Then in Section 4 we present the new algorithm and some
efficient variants of it. In Section 5 we compare the newly presented solutions
with the suffix automata based algorithms known in literature. We draw our
conclusions in Section 6.

2 Basic Notions and Definitions

Given a finite alphabet Σ, we denote by Σm, with m ≥ 0, the set of strings
of length m over Σ and put Σ∗ =

⋃
m∈N

Σm. We represent a string P ∈ Σm,
also called an m-gram, as an array P [0 . .m − 1] of characters of Σ and write
|P | = m (in particular, for m = 0 we obtain the empty string ε). Thus, P [i] is
the (i + 1)-st character of P , for 0 � i < m, and P [i . . j] is the substring of P
contained between its (i+1)-st and the (j+1)-st characters, for 0 � i � j < m.
For any two strings P and P ′, we say that P ′ is a suffix of P if P ′ = P [i . .m−1],
for some 0 � i < m, and write Suff (P) for the set of all suffixes of P . Similarly,
P ′ is a prefix of P if P ′ = P [0 . . i], for some 0 � i < m. In addition, we write
P · P ′, or more simply PP ′, for the concatenation of P and P ′, and P r for the
reverse of the string P , i.e. P r = P [m− 1]P [m− 2] · · ·P [0].

For a string P ∈ Σm, the suffix automaton of P is an automaton which
recognizes the language Suff (P) of the suffixes of P .

Finally, we recall the notation of some bitwise infix operators on computer
words, namely the bitwise and “&”, the bitwise or “|”, the left shift “(”
operator (which shifts to the left its first argument by a number of bits equal to
its second argument), and the unary bitwise not operator “∼”.

3 Previous Efficient Suffix Automaton Based Solutions

In this section we present the known solutions for the online string matching
problem which make use of the suffix automaton for searching for all occurrences
of the pattern. Most of them are filtering based solutions, thus they use the suffix
automaton for finding candidate occurrences of the pattern and then perform
an additional verification phase based on a naive algorithm.

A Fast Suffix Automata Based Algorithm for Exact Online String Matching 151

The Backward DAWG Matching Algorithm

One of the first application of the suffix automaton to get optimal pattern match-
ing algorithms on the average was presented in [3]. The algorithm which makes
use of the suffix automaton of the reverse pattern is called Backward-DAWG-
Matching algorithm (BDM). Such algorithm moves a window of size m on the
text. For each new position of the window, the automaton of the reverse of P
is used to search for a factor of P from the right to the left of the window. The
basic idea of the BDM algorithm is that if the backward search failed on a letter
c after the reading of a word u then cu is not a factor of p and moving the be-
ginning of the window just after c is secure. If a suffix of length m is recognized
then an occurrence of the pattern was found.

The Backward Nondeterministic DAWG Matching Algorithm

The BNDM algorithm [8] simulates the suffix automaton for P r with the bit-
parallelism technique, for a given string P of length m. The bit-parallel repre-
sentation uses an array B of |Σ| bit-vectors, each of size m, where the i-th bit
of B[c] is set iff P [i] = c, for c ∈ Σ, 0 � i < m. Automaton configurations are
then encoded as a bit-vector D of m bits, where each bit corresponds to a state
of the suffix automaton (the initial state does not need to be represented, as it
is always active). In this context the i-th bit of D is set iff the corresponding
state is active. D is initialized to 1m and the first transition on character c is
implemented as D ← (D & B[c]). Any subsequent transition on character c can
be implemented as D ← ((D (1) & B[c]) .

The BNDM algorithm works by shifting a window of length m over the text.
Specifically, for each window alignment, it searches the pattern by scanning the
current window backwards and updating the automaton configuration accord-
ingly. Each time a suffix of P r (i.e., a prefix of P) is found, namely when prior
to the left shift the m-th bit of D&B[c] is set, the window position is recorded.
A search ends when either D becomes zero (i.e., when no further prefixes of P
can be found) or the algorithm has performed m iterations (i.e., when a match
has been found). The window is then shifted to the start position of the longest
recognized proper prefix.

When the pattern size m is larger than ω, the configuration bit-vector and
all auxiliary bit-vectors need to be split over &m/ω' multiple words. For this
reason the performance of the BNDM algorithm degrades considerably as &m/ω'
grows. A common approach to overcome this problem consists in constructing
an automaton for a substring of the pattern fitting in a single computer word,
to filter possible candidate occurrences of the pattern. When an occurrence of
the selected substring is found, a subsequent naive verification phase allows to
establish whether this belongs to an occurrence of the whole pattern.

However, besides the costs of the additional verification phase, a drawback of
this approach is that, in the case of the BNDM algorithm, the maximum possible
shift length cannot exceed ω, which could be much smaller than m.

152 S. Faro and T. Lecroq

The Long BNDM Algorithm

Peltola and Tarhio presented in [9] an efficient approach for simulating the suffix
automaton using bit-parallelism in the case of long patterns. Specifically the al-
gorithm (called LBNDM) works by partitioning the pattern in *m/k+ consecutive
substrings, each consisting in k = *(m− 1)/ω++ 1 characters. The m− k*m/k+
remaining characters are left to either end of the pattern. Then the algorithm
constructs a superimposed pattern P ′ of length *m/k+, where P ′[i] is a class of
characters including all characters in the i-th substring, for 0 ≤ i < *m/k+.

The idea is to search first the superimposed pattern in the text, so that only
every k-th character of the text is examined. This filtration phase is done with
the standard BNDM algorithm, where only the k-th characters of the text are
inspected. When an occurrence of the superimposed pattern is found the occur-
rence of the original pattern must be verified. The time for its verification phase
grows proportionally tom/ω, so there is a threshold after which the performance
of the algorithm degrades significantly.

The BNDM Algorithm with Extended Shift

Durian et al. presented in [4] another efficient algorithm for simulating the suffix
automaton in the case of long patterns. The algorithm is called BNDM with
eXtended Shift (BXS). The idea is to cut the pattern into &m/ω' consecutive
substrings of length w except for the rightmost piece which may be shorter.
Then the substrings are superimposed getting a superimposed pattern of length
ω. In each position of the superimposed pattern a character from any piece
(in corresponding position) is accepted. Then a modified version of BNDM is
used for searching consecutive occurrences of the superimposed pattern using
bit vectors of length ω but still shifting the pattern by up to m positions. The
main modification in the automaton simulation consists in moving the rightmost
bit, when set, to the first position of the bit array, thus simulating a circular
automaton. Like in the case of the LBNDM, algorithm the BXS algorithm works
as a filter algorithm, thus an additional verification phase is needed when a
candidate occurrence has been located.

The Factorized BNDM Algorithm

Cantone et al. presented in [2] an alternative technique, still suitable for bit-
parallelism, to encode the nondeterministic suffix automaton of a given string
in a more compact way. Their encoding is based on factorizations of strings in
which no character occurs more than once in any factor. It turns out that the
nondeterministic automaton can be encoded with k bits, where k is the size of
the factorization. Though in the worst case k = m, on the average k is much
smaller than m, making it possible to encode large automata in a single or
few computer words. As a consequence, their bit-parallel variant of the BNDM,
called Factorized BNDM algorithm (F-BNDM) based on such approach tends
to be faster in the case of sufficiently long patterns.

A Fast Suffix Automata Based Algorithm for Exact Online String Matching 153

4 A New Fast Suffix Automaton Based Algorithm

The efficiency of suffix automata based algorithms for the exact string matching
problem resides in two main features of the underlying automaton: the efficiency
of the adopted encoding and the size of the automaton itself.

Regarding the first point it turns out that automata admitting simpler en-
coding turns out to be more efficient in practice. This is the case, for instance,
of the automata which admit a bit parallel encoding. Moreover longer automata
lead to larger shifts during the searching phase when a backward scan of the
window is performed.

In this section we present a new algorithm for the online exact string matching
problem based on the simulation of a suffix automaton constructed on the pat-
tern P . The basic idea behind the new algorithm is straightforward but efficient.
It consists in constructing the suffix automaton of a substring of the pattern in
which each character is repeated at most once. This leads to a simple encoding
and, by convenient alphabet transformations, to quite long automata.

The resulting algorithm is named Backward-SNR-DAWG-Matching (BSDM),
where snr is the acronym of substring with no repetitions. In what follows we
describe separately the preprocessing and the searching phase of the algorithm.

The Preprocessing Phase

Given a pattern P , of length m, over an alphabet Σ of size σ, we say that
a substring S = P [i . . j] of P is a substring with no repetitions (snr) if any
character c ∈ Σ appears at most once in S. It turns out trivially that |S| ≤
min{σ,m}. Moreover an snr admits a suffix automaton where do not exist two
states having incoming transitions labeled with the same character.

The preprocessing phase of the BSDM algorithm consists in finding the max-
imal snr of the pattern, i.e. an snr with the maximal length. In particular it
finds a pair of integers value (s, �), where 0 ≤ s < m is the starting position of
the maximal snr of P , and 1 ≤ � ≤ m− s is the length of such a substring.

For instance, given the pattern P = abcabdcbabd, we have that abc, abdc,
cba are all snr of P . The substring abdc, of length 4, is a maximal snr of P .

In many practical cases the length of the maximal snr is not large enough
if compared with the size of the pattern. This happens especially for patterns
over small alphabets, as in the case of genome sequences, or for patterns with
characters occurring many times, as in the case of a natural language text.

In order to allow longer snr it is convenient to use a condensed alphabet whose
characters are obtained by combining groups of q characters, for a fixed value q. A
hash function hash : Σq ← {0, . . . ,max−1} can be used for combining the group
of characters, for a fixed constant value max. Thus a new condensed pattern Pq

of length m − q + 1, over the alphabet {0, . . . ,max − 1}, is obtained from P .
Specifically we have Pq[i . . j] = hash(P [i] · · ·P [i+ q− 1]) · · ·hash(P [j] · · ·P [j +
q− 1]) for 0 ≤ i, j ≤ m− q, where Pq = Pq[0 . .m− q]. The maximal snr is then
computed on Pq to get a longer suffix automaton.

154 S. Faro and T. Lecroq

Table 1. The average length of the maximal snr in patterns randomly extracted
from a genome sequence (on top), a protein sequence (in the middle) and a natural
language text (on bottom). The snr have been computed using condensed alphabets
on q characters, where q ranges from 1 to 8.

q/m 2 4 8 16 32 64 128 256 512 1024 2048 4096

1 1.72 2.62 3.20 3.64 3.89 3.99 4.00 4.00 4.00 4.00 4.00 4.00
2 1.00 2.86 5.45 7.61 9.19 10.41 11.23 11.97 12.64 13.09 13.21 13.27
4 - 1.00 4.94 12.33 22.91 32.75 39.89 45.12 50.84 54.29 57.17 59.82
6 - - 3.00 10.81 24.56 42.19 55.69 66.31 74.35 82.48 88.50 97.82
8 - - 1.00 8.98 24.50 51.55 88.03 116.33 140.82 163.20 175.24 183.42

q/m 2 4 8 16 32 64 128 256 512 1024 2048 4096

1 1.91 3.46 5.43 6.98 8.20 9.27 10.08 10.95 11.70 12.27 12.91 13.69
2 1.00 2.96 6.53 12.03 17.28 21.04 24.24 27.32 30.02 32.30 34.84 36.61
4 - 1.00 4.99 12.84 27.29 49.85 71.44 88.44 99.13 111.73 125.03 132.34
6 - - 2.99 10.85 25.03 45.34 62.62 73.88 82.87 90.78 99.09 106.52
8 - - 1.00 8.99 24.62 53.25 92.54 126.52 152.86 172.15 195.92 217.41

q/m 2 4 8 16 32 64 128 256 512 1024 2048 4096

1 1.99 3.81 6.25 7.83 8.96 9.83 10.46 11.07 11.51 12.18 12.91 14.42
2 1.00 2.99 6.84 12.98 19.01 23.30 26.77 29.68 32.79 35.38 37.80 40.03
4 - 1.00 5.00 12.94 26.86 43.01 55.50 64.67 72.94 79.03 87.22 97.85
6 - - 3.00 10.99 26.42 50.79 73.93 92.90 104.13 115.86 132.07 148.79
8 - - 1.00 9.00 24.83 53.98 96.14 128.96 152.85 175.50 189.52 203.14

For instance if q = 3 the pattern P = abcabdcb is condensed in a new pattern
P3 = hash(abc) · hash(bca) · hash(cab) · hash(abd) · hash(bdc) · hash(dcb).

The size max of the new condensed alphabet depends on the available memory
and on the size of the original alphabet Σ. An efficient method for computing a
condensed alphabet was introduced by Wu and Manber [10], and then adopted
also in [7]. It computes the shift value by using a shift-and-addition procedure
and in particular hash(c1, c2, . . . , cq) =

(∑q
i=1(ci (shq−i)

)
mod max where

ci ∈ Σ for i = 1, . . . , q. The value of the shift sh depends on max and q.
Table 1 shows the average length of the maximal snr in patterns randomly

extracted from a genome sequence, a protein sequence and a natural language
text, for different values of q and m, and with max = 216. When 1 ≤ q ≤ 4 we
use the value sh = 2 for computing the hash value, while we use sh = 1 when
q > 4. It turns out that the length of the maximal snr, though quite less than m
in most cases, is quite larger than the size of a computer word (which typically
is 32 or 64). This leads to larger shift in a suffix automata based algorithm.

The procedure which computes the maximal snr of P using a condensed
alphabet is shown in Fig. 1. The procedure iterates two indices, i and j along
the pattern, starting from the leftmost character. At each iteration the value
of i is incremented by one position, and the value of j is incremented in order
to make the substring Pq[j . . i] an snr of Pq. At the end of each iteration, if
the substring Pq[j . . i] is longer than the temporary maximal snr found in the
previous iterations, then the values of s and � are updated accordingly.

The time complexity of the resulting procedure is O(m) while the space re-
quired is O(max).

A Fast Suffix Automata Based Algorithm for Exact Online String Matching 155

Hash(P, i, q, b)
1. c ← P [i]
2. for j ← i + 1 to i + q − 1 do
3. c ← (c � b) + P [j]
4. return c

MaxSnr(P,m, q, b)
1. for c ← 0 to Max − 1 do δ(c) ← False

2. s ← � ← 0
3. j ← 0
4. for i ← 0 to m − q do
5. c ← Hash(P, i, q, b)
6. if δ(c) then
7. d ← Hash(P, j, q, b)
8. while d �= c do
9. δ(d) ← False

10. j ← j + 1
11. d ← Hash(P, j, q, b)
12. δ(d) ← False

13. j ← j + 1
14. δ(c) ← True

15. if � < i− j + 1 then
16. � ← i − j + 1
17. s ← j
18. return (s, �)

Positions(P,s, �, q, b)
1. for c ← 0 to Max − 1 do pos(c) = −1
2. for i ← 0 to � − 1 do
3. c ← Hash(P, s + i, q, b)
4. pos(c) ← i
5. return pos

BSDM(P,m, T, n, q, b)
1. (s, l) ← MaxSnr(P,m, q, b)
2. pos ← Positions(P, s, �, q, b)
3. j ← � − 1
4. r ← s + �
5. while j < n do
6. c ← Hash(T, j, q, b)
7. i ← pos(c)
8. if i ≥ 0 then
9. k ← 1

10. while k ≤ i and P [s + i− k] = T [j − k] do
11. k ← k + 1
12. if k > i then
13. if k = � then
14. if P = T [j − r + 1 . . j − r + m]
15. then output (j − s − � + 1)
16. else j ← j − k
17. j ← j + �

Fig. 1. The pseudocode of the algorithm BSDM and its auxiliary procedures. The input
parameters q and b represent, respectively, the size of the group of characters used in
the condensed alphabet and the value sh used for computing the hash function.

The Searching Phase

Let P be a pattern of length m over an alphabet Σ of size σ, and let Pq be the
corresponding pattern, of lengthm−q+1, obtained from P by using a condensed
alphabet. Let s and � be, respectively, the starting position and the length of
the maximal snr in the Pq. During the searching phase the BSDM algorithm
works using a filtering method. Specifically it first searches for all occurrences
of the substring Pq[s . . s + � − 1] in the text. For this purpose the text is also
scanned by using a condensed alphabet. When an occurrence is found, ending
at position j of the text, the algorithm naively checks for the whole occurrence
of the pattern, i.e. if P = T [j − s− �+ 1 . . j − s− �+m].

A function pos : {0, . . . ,max−1} → {0, . . . , �−1} is defined for all characters
in the condensed alphabet. In particular for each 0 � c < max the value of
pos(c) is defined as the relative position in Pq[s . . s+ �− 1] where the character
c appears, if such position exists. Otherwise pos(c) is set to −1. More formally
pos(c) = i if there exists i < � such that Pq[s + i] = c and −1 otherwise, for
0 � c < max. Observe that if position i exists such that i < � and Pq[s+ i] = c,
then it is unique, since the substring Pq[s . . s + � − 1] has no repetitions of
characters. The function pos is computed in O(m) time and O(max) space by
using the procedure Position shown in Fig. 1.

The pos function defined above is then used during the searching phase for
simulating the suffix automaton of the maximal snr of the pattern. Observe that,
since there is no repetition of characters, at most a single state could be active
at any time. Thus the configuration of the suffix automaton can be encoded by

156 S. Faro and T. Lecroq

using a single integer value of &log �' bits, which simply indicates the active state
of the automaton, if any. Otherwise it is set to −1.

The algorithm works by sliding a window on length �+ q − 1 along the text.
At each attempt a condensed character c is computed from the rightmost q char-
acters of the window. If c is not present in the maximal snr of the pattern, i.e.
if pos(c) = −1, then the window is advanced � positions to the right. Otherwise
(if pos(c) � 0) the position i where character c appears in the maximal snr is
computed by setting i = pos(c). Then the text and the pattern are compared,
character by character, from positions s+ i and j − s− �+ i, respectively, until
a mismatch occurs or until position s in the pattern is passed.

If a mismatch occurs, no prefix of the substring has been recognized and the
window is simply advanced � positions to the right.

Otherwise, if position s in the pattern is passed, then a prefix of the substring
has been recognized. If we read exactly � characters in T then an occurrence of
the substring has been found and a naive verification follows in order to check the
occurrence of the whole pattern. If we read less than � characters we recognized a
prefix of the substring and the window is advanced in order to align he character
of position s in the pattern with the starting position of the recognized prefix
in the text. The searching phase of the algorithm is shown in Fig. 1. It has a
O(nm) worst case time complexity and requires O(max) space.

5 Experimental Results

In this section we briefly present experimental evaluations in order to under-
stand the performances of the newly presented algorithm and to compare it
against the best on suffix (factor) automata based string matching algorithms. In
particular we tested the following algorithms: the Backward-DAWG-Matching
algorithm [3] (BDM); the Backward-Nondeterministic-DAWG-Matching algo-
rithm [8] (BNDM); the Simplified version of the BNDM algorithm [9] (SBNDM);
the BNDM for algorithm long patterns [9] (LBNDM); the Factorized BNDM al-
gorithm [2] (F-BNDM); the BNDM algorithm with Extended Shift [4] (BXS);
and the new Backward-SNR-DAWG-Matching algorithm using condensed alpha-
bets with groups of q characters, with 1 ≤ q ≤ 8 (BSDMq)

All the algorithms listed above could be enhanced by using fast loops, q-grams
and other efficient techniques. However this type of code tuning goes beyond the
scope of this paper. Thus we tested only the original versions of the algorithms.

All algorithms have been implemented in the C programming language and
have been tested using the Smart tool [5]. The experiments were executed locally
on an MacBook Pro with 4 Cores, a 2 GHz Intel Core i7 processor, 4 GB RAM
1333 MHz DDR3, 256 KB of L2 Cache and 6 MB of Cache L3. Algorithms have
been compared in terms of running times, including any preprocessing time.

For the evaluation we use a genome sequence, a protein sequence and a nat-
ural language text (English language), all sequences of 4MB. The sequences are
provided by the Smart research tool. In all cases the patterns were randomly
extracted from the text and the value m was made ranging from 2 to 4096. For
each case we reported the mean over the running times of 500 runs.

A Fast Suffix Automata Based Algorithm for Exact Online String Matching 157

Table 2. Experimental results on a genome sequence (on top), a protein sequence (in
the middle) and natural language text (on bottom)

Experimental results on a genome sequence
m 2 4 8 16 32 64 128 256 512 1024 2048 4096

BDM 21.04 14.66 9.90 7.40 5.94 5.15 4.79 4.68 4.90 5.42 7.22 10.59
BNDM 19.52 12.56 8.92 6.72 5.50 5.55 5.51 5.47 5.58 5.49 5.50 5.49
SBNDM 12.25 9.13 7.66 6.27 5.14 5.14 5.12 5.13 5.12 5.13 5.13 5.14
BXS 19.57 13.88 9.27 6.88 5.47 5.15 4.99 5.52 523.2 - - -
F-BNDM 15.49 10.74 8.71 7.09 5.78 5.10 5.03 5.03 5.02 5.03 5.05 5.05
LBNDM 27.62 15.24 9.79 7.28 5.80 5.38 5.36 8.45 26.93 25.28 22.50 20.67
BSDM 20.94 17.49 14.42 13.05 11.99 11.52 11.55 11.39 11.42 11.38 11.46 11.50

BSDM2 11.43 9.26 8.66 8.31 7.82 7.44 7.15 6.89 6.60 6.51 6.37 6.24
BSDM3 - 7.44 5.92 5.57 5.43 5.38 5.33 5.31 5.28 5.30 5.28 5.28
BSDM4 - 9.67 5.61 4.99 4.79 4.73 4.66 4.64 4.63 4.63 4.66 4.66
BSDM5 - - 5.99 5.00 4.77 4.66 4.61 4.58 4.57 4.56 4.58 4.58
BSDM6 - - 6.86 5.09 4.69 4.58 4.53 4.49 4.50 4.47 4.50 4.50
BSDM7 - - 8.81 5.25 4.71 4.55 4.51 4.47 4.45 4.47 4.47 4.49
BSDM8 - - 14.88 5.57 4.80 4.56 4.51 4.50 4.48 4.48 4.49 4.50

Experimental results on a protein sequence
m 2 4 8 16 32 64 128 256 512 1024 2048 4096

BDM 9.82 8.20 7.05 5.80 4.91 4.59 4.53 4.57 4.73 5.30 7.14 10.60
BNDM 9.27 7.67 6.74 5.61 4.81 4.83 4.80 4.80 4.81 4.80 4.82 4.83
SBNDM 9.25 5.93 4.96 4.59 4.41 4.57 4.57 4.57 4.58 4.57 4.62 4.58
BXS 8.41 7.19 6.41 5.45 4.69 4.53 4.39 4.29 4.27 4.17 4.28 105.3
F-BNDM 11.94 8.06 6.22 5.32 4.91 4.79 4.63 4.64 4.62 4.65 4.64 4.65
LBNDM 19.66 12.60 8.84 6.51 5.79 4.88 4.54 4.40 4.34 4.46 6.20 10.44
BSDM 8.37 7.58 7.15 6.89 6.63 6.37 6.14 5.92 5.71 5.56 5.47 5.37

BSDM2 8.29 6.04 5.44 5.15 5.07 4.99 4.99 4.97 4.95 4.93 4.94 4.95
BSDM3 - 6.58 5.25 4.85 4.71 4.64 4.62 4.59 4.59 4.58 4.60 4.60
BSDM4 - 9.71 5.49 4.89 4.68 4.59 4.56 4.53 4.52 4.52 4.50 4.53
BSDM5 - - 6.04 5.07 4.79 4.68 4.65 4.61 4.61 4.61 4.62 4.64
BSDM6 - - 7.02 5.19 4.79 4.64 4.60 4.58 4.59 4.57 4.58 4.61
BSDM7 - - 9.02 5.38 4.82 4.64 4.62 4.58 4.58 4.60 4.58 4.59
BSDM8 - - 15.11 5.68 4.94 4.70 4.64 4.63 4.62 4.61 4.59 4.58

Experimental results on a natural language text
m 2 4 8 16 32 64 128 256 512 1024 2048 4096

BDM 10.50 9.27 7.89 6.29 5.33 4.93 4.73 4.99 4.98 5.51 7.34 10.82
BNDM 10.02 8.74 7.50 6.06 5.20 5.25 5.23 5.25 5.23 5.25 5.25 5.26
SBNDM 9.68 6.39 5.47 5.01 4.76 4.99 4.99 4.99 4.99 4.97 4.98 4.98
BXS 9.12 8.25 7.20 5.91 5.06 4.76 4.50 4.35 4.27 4.09 3.92 3.90
F-BNDM 12.36 8.45 6.64 5.75 5.30 5.04 4.72 4.67 4.66 4.67 4.67 4.67
LBNDM 20.36 13.38 9.38 6.83 5.56 4.99 4.63 4.44 4.35 4.38 4.62 5.69
BSDM 8.90 8.35 7.72 7.15 6.71 6.43 6.16 6.01 5.85 5.79 5.69 5.61

BSDM2 8.41 6.24 5.62 5.37 5.27 5.23 5.18 5.14 5.11 5.09 5.08 5.08
BSDM3 - 6.76 5.40 5.00 4.85 4.79 4.74 4.71 4.69 4.67 4.70 4.71
BSDM4 - 9.88 5.62 4.95 4.76 4.65 4.62 4.61 4.61 4.56 4.57 4.62
BSDM5 - - 6.02 5.00 4.75 4.65 4.62 4.59 4.59 4.55 4.60 4.63
BSDM6 - - 7.05 5.16 4.78 4.64 4.59 4.57 4.58 4.54 4.58 4.60
BSDM7 - - 9.26 5.41 4.84 4.66 4.60 4.56 4.59 4.56 4.57 4.58
BSDM8 - - 16.07 5.80 4.96 4.72 4.67 4.62 4.60 4.54 4.53 4.55

158 S. Faro and T. Lecroq

Table 2 shows experimental results on the three different sequences. Running
times are expressed in thousands of seconds. Best times have been boldfaced and
underlined. It turns out that the BSDM algorithm is really competitive against
the most efficient algorithms which make use of suffix automata. The versions
based on condensed characters obtain in many cases the best results, especially
in the case of the genome sequence and of the natural language text. Otherwise
SBNDM and BXS obtain the best times for short and long patterns, respectively.

6 Conclusions and Future Works

We presented a new simple and efficient algorithm, named Backward-SNR-
DAWG-Matching, based on suffix automata. It uses a very simple encoding of
the automaton, consisting in a single integer value, but obtains larger shift on
average than that obtained by algorithms based on the bit parallel encoding.

In our future works we intend to tune the algorithm in order to make it
competitive with the most efficient algorithms in practical cases. This includes
the use of fast loops, q-grams and most efficient hash functions for implementing
the condensed alphabets. We would also investigate the possibility of tuning the
hash function in order to reflect only the size of the set of characters appearing
in the pattern. Another possible line for enhancing the performances of the
algorithm is to make it recognize factors instead of suffixes.

References

1. Baeza-Yates, R., Gonnet, G.H.: A new approach to text searching. Commun.
ACM 35(10), 74–82 (1992)

2. Cantone, D., Faro, S., Giaquinta, E.: A Compact Representation of Nondeterminis-
tic (Suffix) Automata for the Bit-Parallel Approach. In: Amir, A., Parida, L. (eds.)
CPM 2010. LNCS, vol. 6129, pp. 288–298. Springer, Heidelberg (2010)

3. Crochemore, M., Rytter, W.: Text algorithms. Oxford University Press (1994)
4. Ďurian, B., Peltola, H., Salmela, L., Tarhio, J.: Bit-Parallel Search Algorithms

for Long Patterns. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 129–140.
Springer, Heidelberg (2010)

5. Faro, S., Lecroq, T.: Smart: a string matching algorithm research tool. Univ. of
Catania and Univ. of Rouen (2011), http://www.dmi.unict.it/~faro/smart/

6. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(1), 323–350 (1977)

7. Lecroq, T.: Fast exact stringmatching algorithms. Inf. Process. Lett. 102(6), 229–235
(2007)

8. Navarro, G., Raffinot, M.: A Bit-Parallel approach to Suffix Automata: Fast Ex-
tended String Matching. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448,
pp. 14–33. Springer, Heidelberg (1998)

9. Peltola, H., Tarhio, J.: Alternative Algorithms for Bit-Parallel String Matching.
In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS,
vol. 2857, pp. 80–93. Springer, Heidelberg (2003)

10. Wu, S., Manber, U.: A fast algorithm for multi-pattern searching. Report TR-94-
17, Depart. of Computer Science, University of Arizona, Tucson, AZ (1994)

http://www.dmi.unict.it/~faro/smart/

P(l)aying for Synchronization�

Fedor Fominykh and Mikhail Volkov

Institute of Mathematics and Computer Science,
Ural Federal University, 620000 Ekaterinburg, Russia

FedorFo@yandex.ru, Mikhail.Volkov@usu.ru

Abstract. Two topics are presented: synchronization games and syn-
chronization costs. In a synchronization game on a deterministic finite
automaton, there are two players, Alice and Bob, whose moves alternate.
Alice wants to synchronize the given automaton, while Bob aims to make
her task as hard as possible. We answer a few natural questions related
to such games. Speaking about synchronization costs, we consider de-
terministic automata in which each transition has a certain price. The
problem is whether or not a given automaton can be synchronized within
a given budget. We determine the complexity of this problem.

1 Introduction and Overview

A complete deterministic finite automaton (DFA) A = (Q,Σ) (here and below
Q stands for the state set and Σ for the input alphabet) is called synchronizing
if there exists a word w ∈ Σ∗ whose action brings A to one particular state no
matter at which state w is applied: q · w = q′ · w for all q, q′ ∈ Q. Any word w
with this property is said to be a reset word for the automaton.

Synchronizing automata serve as transparent and natural models of error-
resistant systems in many applications (coding theory, robotics, testing of reac-
tive systems) and reveal interesting connections with symbolic dynamics, substi-
tution systems and other parts of mathematics. The literature on synchronizing
automata and their applications is rapidly growing so that even the most recent
surveys [12,15] are becoming obsolete. A majority of research in the area focuses
on the so-called Černý conjecture but the theory of synchronizing automata also
offers many other interesting questions. In the present paper we introduce two
new directions of the theory and obtain some initial results in these directions.

Section 2 concerns with synchronization games on DFAs. In such a game on
a DFA A , there are two players, Alice (Synchronizer) and Bob (Desynchronizer),
whose moves alternate. Alice who plays first wants to synchronize A , while Bob
aims to prevent synchronization or, if synchronization is unavoidable, to delay
it as long as possible. Provided that both players play optimally, the outcome
of such a game depends only on the underlying automaton so studying synchro-
nization games may be considered as a way to study synchronizing automata.
The most natural questions here are the following. Given a DFA A , how to

� Supported by the Russian Foundation for Basic Research, grant 10-01-00793.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 159–170, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

160 F. Fominykh and M. Volkov

decide who wins in the synchronization game on A ? If Alice wins, how many
moves may she need in the worst case, in particular, is there a polynomial of n
that bounds from above the number of moves in any game on a DFA with n
states for which Alice has a winning strategy? It turns out that these questions
can be answered by applying more or less standard techniques. This may be a
bit disappointing but as a byproduct, we reveal a somewhat unexpected relation
between synchronization games and a version of the Černý conjecture.

In Section 3 we consider weighted automata. A deterministic weighted automa-
ton (DWA) is a DFA A = (Q,Σ) endowed with a function γ : Q × Σ → Z+

where Z+ stands for the set of all positive integers. In other words, each transition
of a DWA has a certain price being a positive integer. Then every computation
performed by A also gets a certain cost, namely, the sum of the costs of the tran-
sitions involved. If a DWA happens to be synchronizing and w ∈ Σ∗ is its reset
word, then one can assign to w a cost measured, say, by the maximum among all
costs of applying the word w at a state in Q. While in the non-weighted case one
is usually interested in minimizing synchronization time, that is, the length of
reset words, in the weighted case it is quite natural to minimize synchronization
costs. A basic problem here is to determine, whether or not a given DWA can
be synchronized within a given budget B ∈ Z+, in other words, whether or not
A admits a reset word whose cost does not exceed B. We demonstrate that this
problem is PSPACE-complete.

Besides initial questions discussed in this paper, each of the two outlined
research directions leads to several intriguing open problems. We present and
briefly discuss three such problems in Section 4.

2 Playing for Synchronization

The idea to consider synchronization as a game has independently arisen in [1]
and [3]. In [1] a one-player game has been used to prove a lower bound on
the minimum length of reset words for a certain series of ‘slowly’ synchronizing
automata. In [3] a specific synchronization process arising in software testing has
been analyzed in terms of a two-player game. The game that we consider here
basically follows the model of [1] but is a two-player game as in [3].

Now we describe the rules of our synchronization game. It is played by two
players, Alice and Bob say, on an arbitrary but fixed DFA A = (Q,Σ). In the
initial position each state in Q holds a coin but, as the game progresses, some
coins may be removed. The game is won by Alice when all but one coins are
removed. Bob wins if he can keep at least two coins unremoved indefinitely long.

Alice moves first, then players alternate moves. The player whose turn it is to
move proceeds by selecting a letter a ∈ Σ. Then, for each state q ∈ Q that held
a coin before the move, the coin advances to the state q · a. (In the standard
graphical representation of A as the labelled digraph with Q as the vertex set
and the labelled edges of the form q

a−→ q · a, one can visualize the move as
follows: all coins simultaneously slide along the edges labelled a.) If after this
several coins happen to arrive at the same state, all of them but one are removed
so that when the move is completed, each state holds at most one coin.

P(l)aying for Synchronization 161

Move b Move a

a, b

b

b

b

ba

a a

a

a, b

b

b

b

ba

a a

a a, b

b

b

b

b
a

a a

a

Fig. 1. Moves in a synchronization game

Fig. 1 illustrates the rules. Its upper part shows a typical position in a game
on a 5-state automaton with 2 input letters a and b. The left lower part shows
the effect of the move b while the right lower part demonstrates the result of the
move a. Observe that in the latter case the dark-gray coin has been removed
because it and the light-gray coin had arrived at the same state.

Let a1, a2, . . . , ak with ai ∈ Σ be a sequence of moves in the synchronization
game on A = (Q,Σ) and let w = a1a2 · · · ak. It is easy to see that the set of
states holding coins after this sequence of moves coincides with the image of Q
under the action of the word w. Thus, sequences of moves that lead to Alice’s
win correspond precisely to reset words for A . Therefore Bob wins on each DFA
which is not synchronizing. Can he win on a synchronizing automaton? Yes, he
can and, for instance, we show that Bob wins on synchronizing automata in the
famous Černý series.

Černý [4] found for each n > 1 a synchronizing automaton Cn with n states
and 2 input letters whose shortest reset word has length (n− 1)2. The states of
Cn are the residues modulo n and the input letters a and b act as follows:

m · a =

{
1 for m = 0,

m for 1 ≤ m < n;
m · b = m+ 1 (mod n).

The automaton is shown in Fig. 2.

Example 1. For each n > 3, Bob has a winning strategy in the synchronization
game on Cn.

162 F. Fominykh and M. Volkov

n−2

n−1

0

1

2

a

a a

a
b

b
a

b

b

.

Fig. 2. The Černý automaton Cn

Proof. Observe that in Cn, the only state where two coins can meet is the state 1;
moreover, this can happen only provided the move a has been played and before
the move the states 0 and 1 both held a coin. We may assume for certainty that
in this situation it is the coin arriving from 0 that is removed after the move.

Under this convention, the winning strategy for Bob is as follows. Bob only
has to trace the coins that cover the states n−1 and 1 in the initial position. For
his moves he must always select the letter a except two cases: when the chosen
coins cover either n − 2 and 0 or 0 and 2 in which cases Bob must select b.
This way Bob can always keep the coins two steps apart from each other thus
preventing them of being removed.

On the other hand, it is easy to find DFAs on which Alice has a winning strategy.
For instance, a DFA A is called definite in [9] if there exists an n > 0 such that
every input word of length at least n is a reset word for A . Clearly, on each
definite automaton, Alice always wins by selecting her moves at random.

The rules of our game readily guarantee that, given a DFA A = (Q,Σ), one
of the players must have a winning strategy in the synchronization game on
A . If Alice has a winning strategy, consider a shortest winning sequence of her
moves. Then it is clear that each move in this sequence creates a position that
could not have appeared after an earlier move. However, the number of possible
positions of the game does not exceed 2|Q|− 1 since each position is specified by
the subset of states that currently hold coins. Therefore, if Alice has a winning
strategy, she should be able to win after less than 2|Q| moves. Thus, one can
decide which player has a winning strategy in the game on A by an exhaustive

search through all |Σ|2|Q|+1

words of length 2|Q|+1 over Σ in which letters in the
odd positions are Alice’s moves and ones in the even positions are Bob’s replies.
Of course, this brute force procedure is extremely inefficient and it is natural
to ask whether an efficient—say, polynomial in the number of states—algorithm
exists. A positive answer can be deduced from the next observation.

Lemma 1. Alice has a winning strategy in the synchronization game on a DFA
if and only if she has a winning strategy in every position in which only two
states of the DFA hold coins.

Proof. If Alice has no winning strategy for a position P with two coins, C and C′

say, then Bob has a winning strategy for P . If Bob plays in the initial position

P(l)aying for Synchronization 163

according to this strategy, that is, selects his moves only on the basis of the
location of the coins C and C′, as if there were no other coins, the two coins
persist forever so that Alice loses the game. (Here we assume that whenever one
of the coins C and C′ meets some third coin on some state in the course of the
game, then it is this third coin that gets removed.)

Conversely, if Alice can win in every position in which only two states hold
coins, she can use the following strategy. In the initial position she chooses a
pair of coins, C and C′ say, and plays as if there were no other coins, that is, she
applies her winning strategy for the position in which C and C′ cover the same
states as they do in the initial position and all other coins are removed. This
brings the game to a position in which either C or C′ is removed. Then Alice
chooses another pair of coins and again plays as if these were the only coins, and
so on. Since at least one coin is removed in each round, Alice eventually wins.

Observe that Lemma 1 implies a cubic (in the number n of states of the under-
lying DFA) upper bound on the number of moves in any game that Alice wins.
Indeed, suppose she uses the strategy just described and works with a pair of
coins C and C′. Let qi and q

′
i be the states holding the coins C and C′ after the ith

move of Alice. Then if Alice plays optimally, we must have {qi, q′i}
= {qi+j , q
′
i+j}

whenever j > 0. Indeed, the equality {qi, q′i} = {qi+j , q
′
i+j} means that wherever

Alice moves C and C′ by her (i + 1)th, . . . , (i + j − 1)th moves, Bob can force
Alice to return the coins by her (i+ j)th move to the same states that the coins
occupied after her ith move. Then Bob can force Alice to return C and C′ to
the same states also by her (i+2j)th, (i+ 3j)th, . . . moves, whence none of the
two coins can ever be removed, a contradiction.

Hence the number of Alice’s moves in any round in which she works with
any fixed pair of coins does not exceed

(
n
2

)
. Moreover, in every synchronizing

automaton there exist states q and q′ such that q · a = q′ · a for some letter a.
Therefore Alice can remove one coin by her first move. After that she needs at
most n− 2 rounds to remove n− 2 of the remaining n− 1 coins. We thus obtain:

Corollary 1. If Alice has a winning strategy in the synchronization game on a
DFA with n states, she can win in at most

(
n
2

)
(n− 2) + 1 moves.

Now we return to the decidability question.

Theorem 1. Let A = (Q,Σ) be a DFA with |Q| = n and |Σ| = k. There
exists an algorithm that in O(n2k) time decides who has a winning strategy in
the synchronization game on A .

Proof. We describe the algorithm rather informally. First we construct a new
DFA P = (P ×{0, 1}∪{s}, Σ) where P is the set of all positions with two coins
(each such position is specified by a couple of states holding coins) and s is an
extra state. The action of the letters is defined as follows: all letters fix s and if
p ∈ P is the position in which two states q, q′ ∈ Q hold coins, x ∈ {0, 1}, and
a ∈ Σ, then

(p, x) · a =

{
(p′, 1− x) if q · a
= q′ · a,
s otherwise,

164 F. Fominykh and M. Volkov

where p′ is the position in which q · a and q′ · a hold coins. Thus, the automaton
P encodes ‘transcripts’ of all games starting in positions in P ; the extra bit x
controls whose turn it is to move: Alice moves if x = 0 and Bob moves if x = 1.
Clearly, P has n2 − n+ 1 states and k(n2 − n+ 1) edges (transitions).

We mark the state s and then recursively propagate the marking to P×{0, 1}:
a state of the form (p, 0) is marked if and only if there is an a ∈ Σ such that
(p, 0) · a is marked and a state of the form (p, 1) is marked if and only if for
all a ∈ Σ the states (p, 1) · a are marked. Clearly, the marking can be done by
a breadth-first search in the underlying digraph of P with all edges reversed.
The well known time estimate for breadth-first search in a graph with v vertices
and e edges is O(v + e), see, e.g., [5, Section 22.2], whence we conclude that the
marking can be completed in O(n2k) time. It follows from the construction of P
and from the marking rules that Alice can win in the game starting at a position
p ∈ P if and only if the state (p, 0) is marked. This and Lemma 1 readily imply
that Alice has a winning strategy in the game on A if and only if all states of
the form (p, 0) get marked (or, equivalently, all states of P get marked).

Though Corollary 1 and Theorem 1 are worth being registered (as they answer
the most natural questions related to synchronization games), the reader ac-
quainted with the theory of synchronizing automata immediately realizes that
these results closely follow some more or less standard patterns. Now we proceed
with a more original contribution.

Suppose that Alice has a winning strategy in a synchronization game on an n-
state DFA. Corollary 1 provides an cubic upper bound for the number of moves
in the game. What about lower bounds? Our next result provides a transparent
construction from which we can extract a quadratic lower bound.

Theorem 2. Let A = (Q,Σ) be a synchronizing automaton with |Q| = n,
|Σ| ≥ 2 and let � be the minimum length of reset words for A . There exists a
DFA D with 2n states such that Alice wins in the synchronization game on D
but needs at least � moves for this.

Proof. We fix a letter b ∈ Σ and a state q0 ∈ Q. Now let D = (Q × {0, 1}, Σ)
where for each q ∈ Q the action of an arbitrary letter a ∈ Σ is defined as follows:

(q, 0) · a = (q · a, 1), (q, 1) · a =

{
(q, 0) if a = b,

(q0, 1) otherwise.

We call D the duplication of A . Fig. 3 shows the duplication of the Černý
automaton Cn from Fig. 2 (with the state 0 in the role of q0).

Suppose that Alice opens the game by selecting a letter a
= b. After that
only states of the form (q, 1) hold coins. Bob must reply with the move b since
he loses immediately otherwise. After that coins cover the states (q, 0) with
q ∈ Q · a ∪ {q0}. Now if Alice spells out a reset word for A , she wins. Indeed,
as soon as Bob selects a letter different from b, he loses immediately, and if he
replies with b to all Alice’s moves, each pair (Alice’s move, Bob’s move) has the
same effect as applying the letter selected by Alice in the DFA A .

P(l)aying for Synchronization 165

(n−2, 0)

(n−1, 0)

(0, 0)

(1, 0)

(2, 0)(n−2, 1)

(n−1, 1)

(0, 1)

(1, 1)

(2, 1)

b

b
a, b

b

a

a

a

ab

b

b

b

b

a

a a

aa

.

Fig. 3. The duplication of the automaton Cn

On the other hand, Alice needs at least � moves to win if Bob replies with b
to each of her moves. Indeed, if Bob plays this way and a winning sequence of
Alice’s moves forms a word w ∈ Σ∗, then after the last move of the sequence
every state (q, 1) with q ∈ Q ·w still holds a coin. Thus, for Alice to win, w must
be a reset word for A , whence the length of w is at least �.

We denote by Dn the duplication of the Černý automaton Cn. Combining
Theorem 2 and the fact that the minimum length of reset words for Cn is (n−1)2,
we obtain that Alice needs at least (n − 1)2 moves to win on Dn. (In fact, the
exact number of moves needed is easily seen to be (n− 1)2 + 1.) Thus, we have
found a series of k-state DFAs (k = 2n is even) on which Alice’s win requires
a quadratic in k number of moves. A similar series can be constructed for odd k:
we can just add an extra state to Dn and let both a and b send this added state
to the state (q0, 1).

We notice that the duplication of an arbitrary DFA belongs to a very spe-
cial class of synchronizing automata as it can be reset by a word of length 2.
A somewhat unexpected though immediate consequence of Theorem 2 is that
a progress in understanding synchronization games within this specific class may
lead to a solution of a major problem in the theory of synchronizing automata.

Corollary 2. If for every n-state synchronizing automaton with a reset word of
length 2 on which Alice can win, she has a winning strategy with O(n2) moves,
then every n-state synchronizing automaton has a reset word of length O(n2).

Recall that all known results on synchronization of n-state DFAs (see [10] and [14]
for the best bounds) guarantee only the existence of reset words of length Ω(n3).

166 F. Fominykh and M. Volkov

3 Paying for Synchronization

Let A = (Q,Σ, γ) be a DWA, where γ : Q × Σ → Z+ is a cost function. For
w = a1 · · · ak ∈ Σ∗ and q ∈ Q, the cost of applying w at q is

γ(q, w) =

k−1∑
i=0

γ
(
q · (a1 · · ·ai), ai+1).

If A is a synchronizing automaton and w is its reset word, then the cost of
synchronizing A by w is defined as γ(w) = maxq∈Q γ(q, w). The intuition for
this choice of γ(w) is as follows: we use w to bring A to a certain state from an
unknown state, and therefore, we have to take the most costly case into account1.

0 1

23

a, 1

b, 1
b, 1

b, 1

a, 1

a, 1

a, 1b, 16

Fig. 4. A deterministic weighted automaton

Fig. 4 shows a DWA (transition costs are included in the labels) and illustrates
the difference between two optimization problems: minimizing synchronization
cost and minimizing the length of reset words. The shortest reset word for the
DWA is b3 but the cost of synchronizing by b3 is 48. On the other hand, the
longer word a2baba2 manages to avoid the ‘expensive’ loop at the state 3 whence
the cost of synchronizing by a2baba2 is only 7.

We study in the computational complexity of the following decision problem:

Synchronizing on Budget: Given a DWA A = (Q,Σ, γ) and a positive
integer B, is it true that A has a reset word w with γ(w) ≤ B?

Here we assume that the values of γ and the number B are given in binary.
(The unary version of Synchronizing on Budget can be easily shown to be
NP-complete on the basis of the NP-completeness of the problem Short Reset

Word [11,6]: given a DFA A and a positive integer �, is it true that A has a
reset word of length �?)

1 Of course, in some situations other definitions of the cost of synchronization may
make sense. For instance, if we treat synchronization in the flavor of Section 2, that
is, as the process of moving coins initially placed on all states in Q to a certain state,
it is natural to define the cost of the process as

∑
q∈Q γ(q, w). The results that follow

can be adapted to this setting mutatis mutandis.

P(l)aying for Synchronization 167

Theorem 3. Synchronizing on Budget is PSPACE-complete.

Proof. By Savitch’s theorem [8, Section 4.3], in order to show that Synchro-

nizing on Budget lies in the class PSPACE, it suffices to solve this problem in
polynomial space by a non-deterministic algorithm. A small difficulty is that for
some instances (Q,Σ, γ;B) of Synchronizing on Budget, every reset word
w satisfying γ(w) ≤ B may be exponentially long in |Q| and so even if our al-
gorithm correctly guesses such a w, it would not have enough space to store its
guess. To bypass the difficulty, the algorithm should guess w letter by letter. It
guesses the first letter of w (say, a), applies a at every state q ∈ Q and saves
two arrays: {q · a} and {γ(q, a)}. Each of the arrays clearly requires only poly-
nomial space. Then the algorithm guesses the second letter of w and updates
both arrays, etc. At the end of the guessing steps the algorithm check whether
all entries of the first array are equal (if so, then w is indeed a reset word for
(Q,Σ)) and whether the maximum number in the second array is less than or
equal to B (if so, then synchronization is indeed achieved within the budget B).

To show that Synchronizing on Budget is PSPACE-complete, we use a re-
duction from a problem concerning partial automata. A partial finite automaton
(PFA) is a pair A = (Q,Σ), where Q is the state set and Σ is the input alphabet
whose letters act onQ as partial transformations. Such a PFA is said to be carefully
synchronizing if there existsw = a1 · · ·a� with a1, . . . , a� ∈ Σ such that q · ai with
1 ≤ i ≤ � is defined for all q ∈ Q · (a1 · · · ai−1) and |Q · w| = 1. Every word w
with these properties is called a careful reset word forP . Informally, a careful reset
word synchronizes A and manages to avoid any undefined transition.

Martyugin [7] has recently proved that the next problem is PSPACE-complete:

Careful Synchronization: Is a given PFA carefully synchronizing?

It is the problem that we reduce to Synchronizing on Budget. Our reduction
relies on a known fact whose proof is included for the reader’s convenience.

Lemma 2. The minimum length of careful reset words for carefully synchroniz-
ing PFAs with n states does not exceed 2n − n− 1.

Proof. Given a PFA A = (Q,Σ) with |Q| = n, consider the set of the non-empty
subsets of Q and let each a ∈ Σ act on P ⊆ Q as follows:

P · a =

{
{q · a | a ∈ Σ} provided q · a is defined for all q ∈ P ,
undefined otherwise.

We obtain a new PFA P, and it is clear that w ∈ Σ∗ is a careful reset word for
A if and only if w labels a path in P starting at Q and ending at a singleton.
A path of minimum length does not visit any state of P twice and stops as
soon as it reaches a singleton. Hence the length of the path does not exceed the
number of non-empty and non-singleton subsets of Q, that is, 2n − n− 1.

Now take an arbitrary instance of Careful Synchronization, that is, a PFA
A = (Q,Σ). We assign to A an instance of Synchronizing on Budget as
follows. First, extend the action of each letter a ∈ Σ to the whole set Q letting

168 F. Fominykh and M. Volkov

q $ a =

{
q · a if q · a is defined in A ,

q otherwise.

These extended actions give rise to a DFA A ′ with the same state set Q and
input alphabet Σ. Further, let |Q| = n, and define γ : Q×Σ → Z+ by the rule:

γ(q, a) =

{
1 if q · a is defined in A ,

2n otherwise.

This makes A ′ a DWA. The construction is illustrated by Fig. 5. Finally, let
B = 2n − 1. Observe that the binary presentations of B and of the values of γ
are of a linear in n size so that the construction requires only polynomial time
in the size of the PFA A .

0 1

23

a

b
b

b

a

a

a

=⇒

0 1

23

a, 1

b, 1
b, 1

b, 1

a, 1

a, 1

a, 1b, 16

Fig. 5. Transforming a partial automaton into a weighted automaton

We aim to show that the PFA A is carefully synchronizing if and only if the
DWA A ′ can be synchronized within the budget B. Indeed, if w is a careful reset
word for A , then w can be applied to every state in A . This implies that w labels
the same paths in A ′ as it does in A whence w synchronizes A ′ and involves
only transitions with cost 1. Therefore γ(q, w) is equal to the length of w for each
q ∈ Q and so is γ(w) = maxq∈Q γ(q, w). By Lemma 2 w can be chosen to be of
length at most 2n− n− 1, whence γ(w) ≤ 2n− n− 1 < 2n− 1 = B. Conversely,
if w is a reset word for A ′ with γ(w) ≤ B, then γ(q, w) ≤ 2n− 1 for each q ∈ Q,
whence no path labelled w and starting at q involves any transition with cost
2n. This means every transition in such a path is induced by a transition with
the same effect defined in A . Therefore w can be applied to every state in A .
Since all paths labelled w are coterminal in A ′, they have the same property in
A and w is a careful reset word for A .

4 Open Problems

Complexity of synchronization games. In the context of synchronization games,
many natural complexity-theoretical questions arise. As an example, consider the
following decision problem in the flavor of the problem Short Reset Word

mentioned in Section 3:

P(l)aying for Synchronization 169

Short SynchroGame: given a DFA A and a positive integer �, is it true that
Alice can win the synchronization game on A in at most � moves?

Problem 1. Find the computational complexity of Short SynchroGame.

One can use the duplication construction from the proof of Theorem 2 to reduce
Short Reset Word to Short SynchroGame. This implies that the latter
problem is NP-hard. However, it is not likely that Short SynchroGame lies
in NP, and moreover, we suspect that the problem is PSPACE-complete.

Road Coloring Games. A digraph G in which each vertex has the same out-
degree k is called a digraph of out-degree k. If we take an alphabet Σ of size k,
then we can label the edges of such G by letters of Σ such that the resulting
automaton will be complete and deterministic. Any DFA obtained this way is
referred to as a coloring of G.

The famous Road Coloring Problem asked for necessary and sufficient condi-
tions on a digraph G to admit a synchronizing coloring. The problem has been
recently solved by Trahtman [13] and the solution implies that if G has a syn-
chronizing coloring, then such a coloring can be found in O(n2k) time where n
is the number of vertices and k is the out-degree of G, see [2].

Now consider the following Rood Coloring game. Alice and Bob alternately
label the edges of a given digraph G of out-degree k by letters from an alphabet
Σ of size k (observing the rule that no edges leaving the same vertex may get the
same label) until G becomes a DFA. Alice who plays first wins if the resulting
DFA is synchronizing, and Bob wins otherwise.

Problem 2. Is there an algorithm that, given a digraph G of constant out-degree,
decides in polynomial in the size of G time which player has a winning strategy
in the Road Coloring game on G?

Observe that there are digraphs on which Alice wins by making random moves
(for instance, the underlying digraphs of the automata in the Černý series can be
shown to have this property); on the other hand, Bob can win on some digraphs
admitting synchronizing colorings.

Synchronization Games on Weighted Automata. As a synthesis of the two topics
of this paper, one can consider synchronization games on DWAs where the aim
of Alice is to minimize synchronization costs while Bob aims to prevent syn-
chronization or at least to maximize synchronization costs2. In particular, we
suggest to investigate the following problem that can be viewed as a common
generalization of Short SynchroGame and Synchronizing on Budget.

SynchroGame on Budget: Given a DWA A = (Q,Σ, γ) and a positive in-
teger B, is it true that Alice can win the synchronization game on A with a se-
quence w of moves satisfying γ(w) ≤ B?

Problem 3. Find the computational complexity of SynchroGame on Budget.

2 Such games may resemble the current economic games within the European Union.

170 F. Fominykh and M. Volkov

Acknowledgement. The authors are grateful to the anonymous referees for
their remarks and a number of useful suggestions that have been incorporated
in the present version of the paper.

References

1. Ananichev, D.S., Volkov, M.V., Zaks, Y.I.: Synchronizing automata with a letter
of deficiency 2. Theor. Comput. Sci. 376, 30–41 (2007)

2. Béal, M.-P., Perrin, D.: A quadratic algorithm for road coloring. Technical report,
Université Paris-Est (2008), http://arxiv.org/abs/0803.0726

3. Blass, A., Gurevich, Y., Nachmanson, L., Veanes, M.: Play to Test. In: Grieskamp,
W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 32–46. Springer, Heidelberg
(2006)

4. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikalny Časopis Slovensk. Akad. Vied 14(3), 208–216 (1964)
(in Slovak)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, McGraw-Hill, Cambridge (2009)

6. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19,
500–510 (1990)

7. Martyugin, P.V.: Complexity of Problems Concerning Carefully Synchronizing
Words for PFA and Directing Words for NFA. In: Ablayev, F., Mayr, E.W. (eds.)
CSR 2010. LNCS, vol. 6072, pp. 288–302. Springer, Heidelberg (2010)

8. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
9. Perles, M., Rabin, M.O., Shamir, E.: The theory of definite automata. IEEE Trans.

Electronic Comput. 12, 233–243 (1963)
10. Pin, J.-E.: On two combinatorial problems arising from automata theory. Ann.

Discrete Math. 17, 535–548 (1983)
11. Rystsov, I.K.: On minimizing length of synchronizing words for finite automata.

In: Theory of Designing of Computing Systems, pp. 75–82. Institute of Cybernetics
of Ukrainian Acad. Sci. (1980) (in Russian)

12. Sandberg, S.: Homing and Synchronizing Sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

13. Trahtman, A.: The Road Coloring Problem. Israel J. Math. 172(1), 51–60 (2009)
14. Trahtman, A.N.: Modifying the Upper Bound on the Length of Minimal Synchro-

nizing Word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 173–180. Springer, Heidelberg (2011)

15. Volkov, M.V.: Synchronizing Automata and the Černý Conjecture. In: Mart́ın-
Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27.
Springer, Heidelberg (2008)

http://arxiv.org/abs/0803.0726

Synchronizing Automata of Bounded Rank�

Vladimir V. Gusev

Institute of Mathematics and Computer Science,
Ural Federal University, 620083 Ekaterinburg, Russia

vl.gusev@gmail.com

Abstract. We reduce the problem of synchronization of an n-state au-
tomaton with letters of rank at most r < n to the problem of synchro-
nization of an r-state automaton with constraints given by a regular
language. Using this technique we construct a series of synchronizing
n-state automata in which every letter has rank r < n and whose reset
threshold is at least r2 − r − 1 Moreover, if r > n

2
, such automata are

strongly connected.

1 Introduction

A complete deterministic finite automaton A is called synchronizing if the action
of some word w resets A , that is, leaves the automaton in one particular state
no matter at which state w is applied. Any such word w is said to be a reset word
for the automaton. The minimum length of reset words for A is called the reset
threshold of A and is denoted by rt(A). Synchronizing automata often serve as
natural models of error-resistant systems. For a brief introduction to the theory
of synchronizing automata we refer the reader to the recent surveys [12,15]. The
interest to the field is heated by the famous Černý conjecture.

In 1964 Jan Černý [5] constructed for each n > 1 a synchronizing automaton
Cn with n states whose reset threshold is equal to (n − 1)2. Soon after that
he conjectured that these automata represent the worst possible case. In other
words, every synchronizing automaton with n states can be synchronized by a
word of length (n − 1)2. Despite intensive research, the best upper bound on
the reset threshold of synchronizing automata with n states achieved so far is

cubic. Classical bound is n3−n
6 , see [10]. A slightly better bound n(7n2+6n−16)

48 has

been claimed in [14]. Though the Černý conjecture is open in general, it has been
confirmed for some restricted classes of synchronizing automata, see [1,6,8,13,16].
For some classes quadratic upper bound is established, see [4,11].

In the present paper we approach the following question: how does the reset
threshold of an automatonA depend on the ranks of letters in A ? More formally,
consider a synchronizing n-state automaton A with k letters and let r1, r2, . . . , rk
be their ranks. What is the upper bound on the reset threshold of A in terms of

� Supported by the Russian Foundation for Basic Research, grant 10-01-00793, and
by the Presidential Program for young researchers, grant MK-266.2012.1. Author is
also grateful to Erasmus Mundus Action 2 Partnerships — Triple I.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 171–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

172 V.V. Gusev

n and r1, r2, . . . , rk? In full generality, this question appears to be very hard. In
this paper we focus on examples with “large” reset threshold and bounded rank.
There have already been some related results in the literature. Synchronizing
automata with a letter of deficiency 2 were considered in [3] while in [2] a series
of slowly synchronizing automata in which all letters deficiency 2 was reported.

We say that an automaton A is of bounded rank r if every letter of A has
rank at most r. We present a uniform approach to deal with such automata. We
illustrate this approach by constructing a series of automata of bounded rank r
with reset threshold at least r2 − r − 1.

2 Preliminaries

Let A = (Q,Σ) be a complete deterministic finite automaton. Here Σ is an
input alphabet and Q is a set of states. For an arbitrary state q ∈ Q and a letter
a� ∈ Σ we denote by q ·a� the image of the state q under the action of the letter
a�. Let S · a� =

⋃
q∈S q · a� for any S ⊆ Q. The rank of a letter a� denoted by

rk(a�) is the cardinality of the set Q · a�. The defect of a letter a� is equal to
|Q| − rk(a�), where |Q| is the cardinality of Q.

Let us fix some orderings of Q = {q1, q2, . . . qn} and Σ = {a1, . . . , ak}. We
associate with an arbitrary letter a� a square (0, 1)-matrix M(a�) of order n by
the following rule:M(a�)[i, j] = 1 if qi ·a� = qj , otherwiseM(a�)[i, j] = 0. We call
the set 〈M(a1), . . . ,M(ak)〉 the matrix representation of the automaton A and
write A = 〈M(a1), . . . ,M(ak)〉. We can uniquely extend the domain of mapping
the M(·) from Σ to Σ∗ in accordance with the equation M(uv) = M(u)M(v),
where u, v ∈ Σ∗. It is not hard to see the following important property of the
matrix representation: for every word w we have M(w)[i, j] = 1 if qi · w = qj ,
otherwise M(w)[i, j] = 0. This immediately implies that a word w is a reset
word of A if and only if M(w) has a column of 1’s.

We will denote the rank of a matrix M by rk(M). Note that the rank of a
letter a� and the rank of the corresponding matrix M(a�) are equal, i.e. rk(a�) =
rk(M(a�)). Throughout the paper we also make use of the following notation.
Let M be a set of square matrices. Then define M k = {M1 ·M2 · . . . ·Mk |Mi ∈
M for 1 ≤ i ≤ k} and M ∗ =

⋃∞
k=1 M k.

Let us introduce the matrix representation of the Černý automaton Cn =
〈An, Bn〉 of order n. We denote the i-th row of the matrix An by An[i, .]. Let ei
denote the row vector whose only non-zero entry is equal to 1 and is located in
position i.

An[i, .] =

{
e2, if i = 1

ei, if i
= 1
, Bn[i, .] =

{
ei+1, if i
= n

e1, if i = n
.

The matrix An corresponds to the action of the letter a, the matrix Bn corre-
sponds to the action of the letter b. Later on we will need the following statement
concerning reset words of Cn (Proposition 3 in [7]).

Proposition 1. Every reset word of the automaton Cn contains at least n2 −
3n+ 2 occurrences of the letter b and at least n− 1 occurrences of the letter a.

Synchronizing Automata of Bounded Rank 173

3 Main Results

For the sake of simplicity throughout this section we consider automata only over
two letters. All definitions and propositions can be easily generalized. Consider
an n-state automaton A given by a pair of matrices A and B. We say that the
set of matrix pairs σ = 〈(X,Y), (Γ,Δ)〉 is a decomposition of the automaton A
if:

(i) X,Γ are (0, 1)-matrices of size n by r
(ii) Y,Δ are (0, 1)-matrices of size r by n
(iii) A = XY , B = ΓΔ
(iv) every row of X,Y, Γ,Δ has only one occurrence of 1.

We say that decomposition is unavoidable if every column of X and Γ also
contains at least one occurrence of 1.

The introduced definition implies that for any decomposition we have r ≥
max{rk(A), rk(B)}. Moreover, for any such r we can easily construct some
decomposition. For example, matrix Y may consist of different rows of A in
lexicographic order (or any other order). The number of different rows is exactly
rk(A). Thus, if r > rk(A), then the lexicographically largest row appears in Y
several times. Let j be the position of the i-th row of A in lexicographic order.
Then the i-th row of X is equal to ej . It is not hard to see that defining in
the same way matrices Γ and Δ gives us a decomposition of A . Moreover, if
r = rk(A) = rk(B), then this decomposition is unavoidable. We notice that even
in case r = rk(A) = rk(B) there could exist several different decompositions.

Suppose now that we are given a decomposition σ = 〈(X,Y), (Γ,Δ)〉 of an au-
tomaton A , where X has size n by r. We are to define the reduced automaton Aσ

that is going to be a key object of this paper. The automaton Aσ has {1, . . . , r}
as the set of states. The action of the input alphabet Σ′ = {yγ, yx, δx, δγ} (these
are letters, but expressed as two symbols for convenience) is given by the cor-
responding (0, 1)-matrices M = {Y Γ, Y X,ΔX,ΔΓ} of size r by r. We notice
that every row of the matrices X,Y, Γ,Δ contains only one occurrence of 1, so
their products have the same property. Thus automaton Aσ is deterministic and
complete.

Example 1. Let D be the automaton shown in Fig. 1 on the left (this automaton
first appeared in [2] as D ′′

5). We can define two decompositions of D as follows:

σ1 : A =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)(
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
, B =

(
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)(
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

)
;

σ2 : A =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)(
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
, B =

(
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)(
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
.

The reduced automaton Dσ1 is shown in the middle of Fig. 1. The letter yγ is
omitted, since it acts as identity mapping. The action of the letter δγ coincides

174 V.V. Gusev

2

1 3

5 4

a

a, b

a, b

a
b

b

a, b

1 2

34

δx

yx

δx, yx

δx, yx

δx, yx

1 2

34

yx

yx

yx

δx

δx

δx, yx

Fig. 1. Automata D , Dσ1 and Dσ2

with the action of yx. The reduced automaton Dσ2 is shown in Fig. 1(right).
Since the actions of letters yx, yγ, δγ coincide, we keep only yx on the picture.

This example shows that reduced automata may be significantly different.

Recall that a permutation matrix is a square (0, 1)-matrix with exactly one 1
in each row and exactly one 1 in each column. It is not hard to see that every
permutation matrix P satisfies PPT = I, where PT is a transpose and I is the
identity matrix. The following simple proposition gives a way to obtain several
decompositions of a given automaton. The proof of this fact is straightforward.

Proposition 2. Let A be an automaton with a decomposition 〈(X,Y), (Γ,Δ)〉.
Then for any pair of permutation matrices P and Q of appropriate size,

〈(XP,PTY), (ΓQ,QTΔ)〉

is also a decomposition of A .

The next propositions show the reason of our interest in the automaton Aσ.
It turns out that the reduced automaton inherits important properties of the
original automaton A .

Proposition 3. Let A be a synchronizing automaton given by a pair of ma-
trices A and B. Then for every decomposition σ = 〈(X,Y), (Γ,Δ)〉 the reduced
automaton Aσ is synchronizing and rt(Aσ) ≤ rt(A) + 1. Moreover, if the de-
composition σ is unavoidable, then rt(Aσ) ≤ rt(A).

Proof. Since A is synchronizing, there is a matrix W ∈ {A,B}rt(A) such that it
contains a column of 1’s. We can representW as a product of matrices X,Y, Γ,Δ
in accordance with σ. Thus, W = SW ′T , where S ∈ {X,Γ}, T ∈ {Y,Δ} and
W ′ ∈ Mrt(A)−1. Observe that the matrix YWX is of order r and also contains
a column of 1’s. Moreover, it can be represented as a product of matrices in M
of length rt(A) + 1. Hence, the automaton Aσ is synchronizing and its reset
threshold is at most rt(A) + 1. In case of an unavoidable decomposition the
matrix W ′T has to contain a column of 1’s. Thus W ′TX ∈ Mrt(A) can play a
role of reset word. So, the inequality rt(Aσ) ≤ rt(A) holds true.

Proposition 4. Let A be a strongly connected automaton given by a pair of ma-
trices A and B. Then for every unavoidable decomposition σ = 〈(X,Y), (Γ,Δ)〉
the reduced automaton Aσ is also strongly connected.

Synchronizing Automata of Bounded Rank 175

Proof. Let us fix arbitrary i, j ∈ 1, r. Now we are to construct a path from i to
j in automaton Aσ. Since every row of Y contains 1, there exists i′ such that
Y [i, i′] = 1. The decomposition σ is unavoidable, thus there exists j′ such that
X [j′, j] = 1. Since A is strongly connected, we have a matrix W ∈ {A,B}∗
such that W [i′, j′] = 1. It is clear that YWX [i, j] = 1. Moreover, YWX ∈ M∗.
Therefore, Aσ is strongly connected.

In order to obtain an upper bound on rt(A) using rt(Aσ), we introduce a new
notion. Let 〈A ,F 〉 be a pair of automata, where F has initial and final states.
We say that A is synchronizing with constraint F if there is a word w such
that w resets A and is also accepted by F . The minimum length of such a word
w is called the constrained reset threshold with respect to F and is denoted by
rtc(A ,F). We will often omit the explicit reference to the automaton F , since
it will be known from the context.

We would like to note that the constrained reset threshold can grow expo-
nentially with the number of states in the automaton A even if the automaton
F is fixed. Such an example can be obtained by a slight modification of the
3-letter automaton A 3

pfa(n) from [9]. Let us define automaton A (k) = (Qk, Σ).
Alphabet Σ is equal to {a, b, c}. Let pi be i-th prime number (p1 = 2). Then
Qk = {(i, j) | 1 ≤ i ≤ k, 0 ≤ j ≤ pi − 1}. Actions of letters are defined as
follows:

(i, j) · a =

{
(i, j + 1), j < pi − 1,

(i, 0), j = pi − 1;
(i, j) · b = (i, 0);

(i, j) · c =
{
(i, j), j < pi − 1,

(1, 1), j = pi − 1.

Let F be the minimal automaton of the language ba∗c. We claim that con-
strained reset threshold of A (k) with respect to F grow exponentially with the
number of states in the automaton A (k).

Let ba�c be the shortest constrained reset word. Note that Qk ·b = {(i, 0) | 1 ≤
i ≤ k}. The action of letter a preserves the first component of any state. There-
fore, Qk · ba� = {(i, xi) | 1 ≤ i ≤ k}, where xi is uniquely defined. Since
|Qk ·ba�c| = 1 we have xi = pi−1. It is not hard to see that (i, 0) ·ba� = (i, pi−1)
if and only if � ≡ pi − 1 (mod pi). Thus, � is the smallest non-negative solution
of the following system of simultaneous congruences: � ≡ pi − 1 (mod pi) for all
1 ≤ i ≤ k. It follows from Chinese remainder theorem that � = p1p2 . . . pk − 1.
Since A (k) has only p1 + p2 + . . . pk states our claim follows. Growth rate is
estimated in [9].

Let R be the automaton shown in Fig. 2. It has {S, Y X, Y Γ,ΔX, ΔΓ,Z} as
the set of states. For the sake of readability, zero state Z is not presented in the
picture. For all letters � ∈ Σ′ we have Z · � = Z. If the action of a letter � on
a state q is not shown in the picture then q · � = Z. The state S is the initial
state of the automaton R and the states Y X, Y Γ,ΔX,ΔΓ are final. From now
on the automaton R will be the only constraint automaton we consider.

176 V.V. Gusev

Y X Y Γ

ΔΓΔX

S

yx
yγ

δγ
δx

yx

δγ

yγ

δx

yγ

δγ

δx

yx

Fig. 2. Automaton R

Proposition 5. Let A be an automaton given by a pair of matrices A and B.
Then for every decomposition σ = 〈(X,Y), (Γ,Δ)〉 automaton Aσ is synchroniz-
ing with constraint R if and only if A is synchronizing. Moreover, rtc(Aσ)−1 ≤
rt(A) ≤ rtc(A)+1. If the decomposition σ is unavoidable then rtc(Aσ) ≤ rt(A).

Proof. If A is synchronizing, then synchronizability of Aσ with constraint R
and lower bounds on the reset threshold of A immediately follow from the proof
of Proposition 3. Representations of the constructed matrices YWX andW ′TX
as a product of matrices in M satisfy the constraint R.

Now let the matrix W = SW ′P be a matrix corresponding to some con-
strained reset word w of Aσ, where S ∈ {Y,Δ} and P ∈ {X,Γ}. We notice
that W can be represented as a product of matrices in M that the automaton
R accepts. Then it is not hard to see that the matrix S′WP ′ has a column of
1’s and can be represented as a product of matrices A and B, where S′, P ′ are
defined as follows:

S′ =

{
X, if S = Y,

Γ, if S = Δ;
P ′ =

{
Y, if P = X,

Δ, if P = Γ.

Thus, S′WP ′ can play the role of a reset word for A and we get rt(A) ≤
rtc(A) + 1.

Proposition 5 immediately implies that there is a function f(r) such that rt(A) ≤
f(r) for any 2-letter automaton A of bounded rank r. Note that automaton A
can have arbitrary many states. Proposition 5 can also be used in order to give
a tight estimate for the reset threshold of an automaton of bounded rank. Let
En be defined as follows:

i · a =

⎧⎪⎨⎪⎩
2, if i = 1,

3, if i = 2,

i, if i > 2;

i · b =

⎧⎪⎨⎪⎩
3, if i = 1,

i+ 1, if 1 < i < n,

1, if i = n.

Automaton E5 is shown in Fig. 3.
Let 〈A,B〉 be the matrix representation of En (in accordance with given num-

bering). We define the decomposition σn as follows: the matrix Y is obtained

Synchronizing Automata of Bounded Rank 177

from A by deleting the second row and the matrix Δ is obtained from B by
deleting the first row. The matrices X,Γ are uniquely determined by Y and Δ.
For example for n = 5 we get:

σ5 : A =

(
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)(
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
, B =

(
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)(
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

)
.

By a straightforward computation we get Y X = An−1, Y Γ = In−1, ΔX =
ΔΓ = Bn−1, where In−1 is the identity matrix of order n − 1. The reduced
automaton for E5 is shown on the right in Fig. 3. We have omitted the actions of
yγ, δγ to improve readability. Notice that 〈Y X,ΔΓ 〉 is a matrix representation
of the automaton Cn−1. We can use this fact and Proposition 1 to estimate the
constrained reset threshold. So, let w ∈ Σ′ be a constrained reset word of minimal
length for Eσn . By Proposition 1 w has at least (n−1)2−3(n−1)+2 = n2−5n+6
occurrences of δx, δγ and n−2 occurrences of yx. Notice that (yx)2 is not a factor
of w, otherwise we could obtain a shorter constrained reset word by reducing
(yx)2 to just yx. Therefore, after every occurrence of yx, except maybe the last
one, there is an occurrence of δx, δγ or yγ. Since w is accepted by R we conclude
that yx is followed by yγ. Hence, we get |w| ≥ n2 − 5n + 6 + n − 2 + n − 3 =
n2 − 3n+ 1. Proposition 5 implies n2 − 3n+ 1 ≤ rt(En) ≤ n2 − 3n+ 2.

We notice that there is also another way to determine the reset threshold of
En. It is presented in an extended version of [2] (submitted).

Now we use the series En as a base for constructing 2-letter automata of
bounded rank r with “large” reset threshold. The automaton En has been chosen
for the following reason. Computational experiments show that for small number
of states n, upper bound n2 − 3n + 2 on reset threshold is optimal for 2-letter
automata of bounded rank n−1. Thus, we hope that generalizations of the series
En will have reset thresholds close to be optimal.

Proposition 6. For every r < n there is a synchronizing 2-letter n-state au-
tomaton of bounded rank r whose reset threshold is at least r2 − r− 1. If r > n

2 ,
then such an automaton is strongly connected.

Let us fix the number of states n, rank r and defect d = n− r. The automaton
En essentially was reduced to Cn−1. Now we are going to reverse this procedure.

2

1 3

5 4

a

b

a, b

b

b

b

a

aa

1 2

4 3

δxδx

δx

δx, yx
yx

yxyx

Fig. 3. The automaton E5 and its reduced automaton

178 V.V. Gusev

We look for an automaton that can be reduced to Cr. More precisely, consider
a solution X,Y, Γ,Δ of the following system of matrix equations: Y X = Ar,
Y Γ = Ir, ΔX = ΔΓ = Br, such that:

(i) X,Γ are (0, 1)-matrices of size n by r
(ii) Y,Δ are (0, 1)-matrices of size r by n
(iii) every row of X,Y, Γ,Δ has only one occurrence of 1
(iv) every column of X and Γ contains at least one occurrence of 1.

Arguing as before, we get rtc(Y X, Y Γ,ΔX,ΔΓ) ≥ r2 − r − 1. Consider the au-
tomaton A = 〈XY, ΓΔ〉. It has n states and the rank of each letter is bounded by
r. Since 〈(X,Y), (Γ,Δ)〉 is an unavoidable decomposition of A , then by Propo-
sition 5 we conclude that A is synchronizing. Moreover, its reset threshold is at
least r2 − r − 1. A simple solution with required properties can be found in the
following form:

X =

⎛⎝X ′

e1
Ar

⎞⎠ , Y =
(
0r,d | Ir

)
, Γ =

⎛⎝Γ ′

e1
Ir

⎞⎠ , Δ =

(
0r−1,d+1 | Ir−1

ed

)
,

whereX ′, Γ ′ are arbitrary (0, 1)-matrices of size d−1 by r with unique occurrence
of 1 in each row. Here 0r,d denotes zero matrix of size r by d. This completes
first part of the proof.

We need a more complicated solution in order to get a strongly connected
automaton. If r = n − 1, then the automaton En satisfies the conditions of
our proposition. Suppose now that r
= n − 1. Then the desired solution is the
following:

X =

⎛⎝M
e1
Ar

⎞⎠ , Y =
(
0r,d | Ir

)
, Γ =

⎛⎝M
e1
Ir

⎞⎠ , Δ =

⎛⎝ Id−1 | 0d−1,r+1

0r−d,2d | Ir−d

ed

⎞⎠ ,

where M =

(
e2
e3
...
ed

)
is matrix of size d − 1 by r. The proof that the automaton

〈XY, ΓΔ〉 is strongly connected is straightforward and technical. We will omit
it.

4 Conclusion and Discussion

We suggest to study a relationship between the reset threshold of an automaton
and ranks of its letters. We hope that presented techniques will lead to a better
understanding of this relationship. It may also be used to obtain new examples
or in the study of existing ones. We would like to mention several questions
concerning the presented approach. First, it can be seen from example 1 that the
reduced automaton is not uniquely defined. Is there a “canonical” reduction or a
most “convenient” one? Second, different automata may have the same reduced
automaton. In other words, an automaton A is equivalent to an automaton B
if Aσ = Bσ′ for some decompositions σ, σ′. Essentially, this means that the
problem of synchronization of A coincides with the problem of synchronization
of B. Is there a transparent characterization of such equivalence classes?

Synchronizing Automata of Bounded Rank 179

References

1. Almeida, J., Steinberg, B.: Matrix Mortality and the Černý-Pin Conjecture. In:
Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 67–80. Springer,
Heidelberg (2009)

2. Ananichev, D., Gusev, V., Volkov, M.: Slowly Synchronizing Automata and Di-
graphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65.
Springer, Heidelberg (2010)

3. Ananichev, D.S., Volkov, M.V., Zaks, Y.I.: Synchronizing automata with a letter
of deficiency 2. Theor. Comput. Sci. 376, 30–41 (2007)

4. Béal, M.-P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of
a synchronizing word in one-cluster automata. Int. J. Found. Comput. Sci. 22(2),
277–288 (2011)

5. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikalny Časopis Slovensk. Akad. Vied 14(3), 208–216 (1964) (in
Slovak)

6. Dubuc, L.: Sur les automates circulaires et la conjecture de Černý. RAIRO Inform.
Théor. Appl. 32, 21–34 (1998) (in French)

7. Gusev, V.V.: Lower Bounds for the Length of Reset Words in Eulerian Automata.
In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945, pp. 180–190.
Springer, Heidelberg (2011)

8. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. Comput.
Sci. 295, 223–232 (2003)

9. Martyugin, P.V.: Lower bounds for the length of the shortest carefully synchro-
nizing words for two- and three-letter partial automata. Diskretn. Anal. Issled.
Oper. 15(4), 44–56 (2008) (in Russian)

10. Pin, J.-E.: On two combinatorial problems arising from automata theory. Ann.
Discrete Math. 17, 535–548 (1983)

11. Rystsov, I.K.: Estimation of the length of reset words for automata with simple
idempotents. Cybernetics and Systems Analysis 36(3), 339–344 (2000)

12. Sandberg, S.: 1 Homing and Synchronizing Sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

13. Trahtman, A.N.: The Černý conjecture for aperiodic automata. Discrete Math.
Theor. Comput. Sci. 9(2), 3–10 (2007)

14. Trahtman, A.N.: Modifying the Upper Bound on the Length of Minimal Synchro-
nizing Word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 173–180. Springer, Heidelberg (2011)

15. Volkov, M.V.: Synchronizing Automata and the Černý Conjecture. In: Mart́ın-
Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27.
Springer, Heidelberg (2008)

16. Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. Theo-
ret. Comput. Sci. 410, 2992–2998 (2009)

Automatic Theorem-Proving

in Combinatorics on Words

Daniel Goč, Dane Henshall, and Jeffrey Shallit

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1 Canada
{dhenshall,dgoc,shallit}@uwaterloo.ca

Abstract. We describe a technique for mechanically proving certain
kinds of theorems in combinatorics on words, using finite automata and a
package for manipulating them. We illustrate our technique by applying
it to (a) solve an open problem of Currie and Saari on the lengths of
unbordered factors in the Thue-Morse sequence; (b) verify an old result
of Prodinger and Urbanek on the paperfolding sequence and (c) find
an explicit expression for the recurrence function for the Rudin-Shapiro
sequence. All results were obtained by machine computations.

Dedicated to the memory of Sheng Yu (1950–2012): friend and colleague

1 Introduction

The title of this paper is a bit of a pun. On the one hand, we are concerned
with certain natural questions about automatic sequences: sequences over a finite
alphabet where the n’th term of the sequence is expressible as a finite-state
function of the base-k representation of n. On the other hand, we are interested
in answering these questions purely mechanically, in an automated fashion.

Letx = (a(n))n≥0 be an infinite sequence over a finite alphabetΔ. Thenx is said
to be k-automatic if there is a deterministic finite automatonM taking as input the
base-k representation of n, and having a(n) as the output associated with the last
state encountered [2]. In this case, we say thatM generates the sequence x.

We write x[i] = a(i), and we let x[i..i + n− 1] denote the factor of length n
beginning at position i in x. A sequence is said to be squarefree if it contains no
factor of the form xx, where x is a nonempty word, and is said to overlapfree
if it contains no factor of the form ayaya, where a is a single letter and y is a
possibly empty word.

In Figure 1, we give, as an example, an automaton generating the well-known
Thue-Morse sequence t = t(0)t(1)t(2) · · · = 011010011001 · · · [3]. The input is
n, expressed in base 2, and the output is the number contained in the state last
reached. Thus t(n) is the sum, modulo 2, of the binary digits of n. In a celebrated
result, Thue proved [27,28,4] that the sequence t is overlapfree.

For at least 25 years, researchers have been interested in the algorithmic de-
cidability of assertions about automatic sequences. For example, in one of the
earliest results, Honkala [19] showed that, given an automatonM , it is decidable
if the sequence generated by M is ultimately periodic.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 180–191, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automatic Theorem-Proving in Combinatorics on Words 181

0

0 1

0
1

1

Fig. 1. A finite automaton generating the Thue-Morse sequence

Recently, Allouche et al. [1] found a different proof of Honkala’s result using a
more general technique. Using this technique, they were able to give algorithmic
solutions to many classical problems from combinatorics on words such as

Given an automaton, is the generated sequence squarefree? Or overlapfree?
The technique of Allouche et al. is at its core, very similar to work of Büchi,

Bruyère, Michaux, Villemaire, and others, involving formal logic; see, e.g., [5].
The basic idea is as follows: given the automatonM , and some predicate P (n) we
want to check, we alterM by a series of transformations to a new automatonM ′

that accepts the base-k representations of those integers n for which P (n) is true.
Then we can check the assertion “∃n P (n)” simply by checking if M ′ accepts
anything (which can be done by a standard depth-first search on the underlying
directed graph of the automaton). We can check the assertion “∀n P (n)” by
checking if M ′ accepts everything. And we can check assertions like “P (n) holds
for infinitely many n” by checking if M ′ has a reachable cycle from which a final
state is reachable.

Using this idea, Allouche et al. were able to show to reprove, purely mechan-
ically using a computer program, Thue’s classic result on the overlapfreeness of
the the Thue-Morse sequence.

Later, the technique was applied to give decision procedures for other proper-
ties of automatic sequences. For example, Charlier et al. [6] showed that it can
be used to decide if a given k-automatic sequence

– contains powers of arbitrarily large exponent;
– is recurrent;
– is uniformly recurrent.

A sequence is said to be recurrent if every factor that occurs, occurs infinitely
often. A sequence x is said to be uniformly recurrent if it is recurrent and fur-
thermore for each finite factor w occurring in x, there is a constant c(w) such
that two consecutive occurrences of w are separated by at most c(w) positions.

More recently, variations of the technique have been used to

– compute the critical exponent;
– compute the initial critical exponent;
– decide if a sequence is linearly recurrent;
– compute the Diophantine exponent.

(For definitions of these terms see [25].)

182 D. Goč, D. Henshall, and J. Shallit

2 The Decision Procedure

In [6] we have the following theorem:

Theorem 1. If we can express a property of a k-automatic sequence x using
quantifiers, logical operations, integer variables, the operations of addition, sub-
traction, indexing into x, and comparison of integers or elements of x, then this
property is algorithmically decidable.

Let us outline how the decision procedure works. First, the input to the decision
procedure: an automaton M = (Q,Σk, Δ, δ, q0, τ) generating the k-automatic
sequence x. Here

– Q is a nonempty set of states;
– Σk := {0, 1, . . . , k − 1};
– Δ is the output alphabet;
– δ : Q×Σ → Q is the transition function;
– q0 is the initial state; and
– τ : Q→ Δ is the output mapping.

In this paper, we assume that the automaton takes as input the representation
of n in base k, starting with the least significant digit; we call this the reversed
representation of n and write it as (n)k. We allow leading zeroes in the repre-
sentation (which, because of our convention, are actually trailing zeroes). Thus,
for example, 011 and 01100 are both acceptable representations for 6 in base 2.

We might also need to encode pairs, triples, or r-tuples of integers. We handle
these by first padding the reversed representation of the smaller integer with
trailing zeroes, and then coding the r-tuple as a word over Σr

k. For example, the
pair (20, 13) could be represented in base-2 as

[0, 1][0, 0][1, 1][0, 1][1, 0],

where the first components spell out 00101 and the second components spell out
10110. Of course, there are other possible representations, such as

[0, 1][0, 0][1, 1][0, 1][1, 0][0, 0],

which correspond to non-canonical representations having trailing zeroes; these
are also permitted.

Rather than present a detailed proof, we illustrate the idea of the decision
procedure in the proof of the following new result:

Theorem 2. The following problem is algorithmically decidable: given two k-
automatic sequences x and y, generated by automata M1 and M2, respectively,
decide if x is a shift of y (that is, decide if there exists a constant c such that
x[n] = y[n+ c] for all n ≥ 0).

Proof. We first create an NFA M that accepts the language

{(c)k : ∃ n such that x[n]
= y[n+ c]}.

To do so, on input (c)k, M

Automatic Theorem-Proving in Combinatorics on Words 183

– guesses w1 = (n)k nondeterministically (perhaps with trailing zeroes ap-
pended),

– simulates M1 on w1,
– adds n to c and computes the base-k representation of w2 = (n+ c)k digit-

by-digit “on the fly”, keeping track of carries, as necessary, and simulates
M2 on w2, and

– accepts if the outputs of both machine differ.

We now convert M to a DFA M ′, and change final states to non-final (and vice
versa). Then M ′ accepts the language

{(c)k : x[n] = y[n+ c] for all n ≥ 0}.

Thus, x is a shift of y if and only ifM ′ accepts any word, which is easily checked
through depth-first search. �

Remark 1. As we can see, the size of the automata involved depends, in an un-
pleasant way, on the number of quantifiers needed to state the logical expression
characterizing the property being checked, because existential quantifiers are im-
plemented through nondeterminism, and universal quantifiers are implemented
through nondeterminism and complementation (which is implemented in a DFA
by exchange of the role final and non-final states). Thus each new quantifier
could increase the current number of states, say n, to 2n using the subset con-
struction. If the original automata have at most N states, it follows that the
running time is bounded by an expression of the form

22
. .
.2p(N)

where p is a polynomial and the number of exponents in the tower is one less
than the number of quantifiers in the logical formula characterizing the property
being checked.

This extraordinary computational complexity raises the natural question of
whether the decision procedure could actually be implemented for anything but
toy examples. Luckily the answer seems to be yes — at least in some cases —
as we will see below.

The algorithms we discuss were implemented by the first two authors, inde-
pendently, using two different programs. The results in Sections 3 and 4 have
been double-checked with these separate implementations, which should give
some confidence about the results.

Remark 2. Prior art: as a referee points out, very similar ideas are contained in
the work of Glenn and Gasarch [14,15] on implementing a decision procedure
for WS1S, the weak second-order theory of one successor. The main differences
between their work and ours are (a) we work with base-k encodings of integers,
instead of unary encodings, and (b) we apply our ideas to solve some interest-
ing open problems about automatic sequences, instead of checking randomly-
generated sentences.

184 D. Goč, D. Henshall, and J. Shallit

3 Borders

A word w is bordered if it begins and ends with the same word x with 0 <
|x| ≤ |w|/2; Otherwise it is unbordered. An example in English of a bordered
word is entanglement. A bordered word is also called bifix in the literature, and
unbordered words are also called bifix-free or primary.

Bordered and unbordered words have been actively studied in the literature,
particularly with regard to the Ehrenfeucht-Silberger problem; see, for example,
[13,20,10,11,16,17,7,18,22,12], just to name a few.

Currie and Saari [8] studied the unbordered factors of the Thue-Morse se-
quence t. They proved that if n
≡ 1 (mod 6), then t has an unbordered factor
of length n. (Also see [24, Lemma 4.10 and Problem 4.1].) However, this is not
a necessary condition, as

t[39..69] = 0011010010110100110010110100101,

which is an unbordered factor of length 31. Currie and Saari left it as an open
problem to give a complete characterization of the integers n for which t has an
unbordered factor of length n.

The following theorem and proof, quoted practically verbatim from [6], shows
that, more generally, the characteristic sequence of n for which a given k-
automatic sequence has an unbordered factor of length n, is itself k-automatic:

Theorem 3. Let x = a(0)a(1)a(2) · · · be a k-automatic sequence. Then the
associated infinite sequence b = b(0)b(1)b(2) · · · defined by

b(n) =

{
1, if x has an unbordered factor of length n;

0, otherwise;

is k-automatic.

Proof. The sequence x has an unbordered factor of length n

iff

∃ j ≥ 0 such that the factor of length n beginning at position j of x is unbordered

iff

there exists an integer j ≥ 0 such that for all possible lengths l with 1 ≤ l ≤ n/2,
there is an integer i with 0 ≤ i < l such that the supposed border of length l
beginning and ending the factor of length n beginning at position j of x actually
differs in the i’th position

iff

there exists an integer j ≥ 0 such that for all integers l with 1 ≤ l ≤ n/2 there
exists an integer i with 0 ≤ i < l such that x[j + i]
= x[j + n− l+ i].

Now assume x is a k-automatic sequence, generated by some finite automaton.
We show how to implement the characterization given above with an automaton.

We first create an NFA that given the (j, l, n)k guesses the base-k representa-
tion of i, digit-by-digit, checks that i < l, computes j+ i and j+n− l+ i on the

Automatic Theorem-Proving in Combinatorics on Words 185

fly, and checks that x[j + i]
= x[j + n− l + i]. If such an i is found, it accepts.
We then convert this to a DFA, and interchange accepting and nonaccepting
states. This DFA M1 accepts (j, l, n)k such that there is no i, 0 ≤ i < l such
that x[j+ i] = x[j+n− l+ i]. We then use M1 as a subroutine to build an NFA
M2 that on input (j, n)k guesses l, checks that 1 ≤ l ≤ n/2, and calls M1 on the
result. We convert this to a DFA and interchange accepting and nonaccepting
states to get M3. Finally, this M3 is used as a subroutine to build an NFA M4

that on input n guesses j and calls M3.
The characteristic sequence of these integers n is therefore k-automatic. �

Since the proof is constructive, one can, in principle, carry out the construction
to get an explicit description of the lengths for which the Thue-Morse sequence
has an unbordered factor.

Doing so results in the following theorem:

Theorem 4. There is an unbordered factor of length n in t if and only if the
base-2 representation of n (starting with the most significant digit) is not of the
form 1(01∗0)∗10∗1.

Proof. The proof of this theorem is purely mechanical, and it involves performing
a sequence of operations on finite automata. The second author wrote a program
in C++, using his own automata package, to perform these operations. There
are four stages to the computation, which are described in detail below.

Stage 1

Let T be the automaton of Figure 1 generating the Thue-Morse sequence t.
Stage 1 takes T as input and outputs an automaton M1, where M1 accepts
w ∈ ({0, 1}4)∗ if and only if w is the base-2 representation of some (n, j, l, i) ∈ S1,
where

S1 = {(n, j, l, i) : 0 < l ≤ n/2 and i < j and t[j + i]
= t[n+ j − l + i]}. (1)

The size of M1 was only 102 states. However, since the input alphabet for M1

is of size 24 = 16, a considerable amount of complexity is being stored in the
transition matrix. Stage 1 passed all 1.3 million tests meant to ensure that M1

corresponds to S1.

Stage 2

The purpose of Stage 2 is to remove the variable i by simulating it. The resulting
machine, after being negated, accepts (n, j, l) iff the length n factor of t starting
at index j has a border of length l. So Stage 2 produces the automatonM2, which
is the negation of the result of simulating i. More formally, M2 accepts a word
w ∈ ({0, 1}3)∗ if and only if w is the base-2 representation of some (n, j, l) ∈ S2,
where

S2 = {(n, j, l) :
 ∃ i for which (n, j, l, i) ∈ S1} (2)

186 D. Goč, D. Henshall, and J. Shallit

The size ofM2 after subset construction was 8689 states, and it minimized down
to 127 states. The output of Stage 2 passed all 1.6 million tests meant to ensure
that M2 corresponds to S2.

Stage 3

The purpose of Stage 3 is to remove l by simulating it. By the end of Stage 3,
most of the work has already been done. The output of Stage 3, M3, accepts an
input word w ∈ ({0, 1}2)∗ if and only if w is the base-2 representation of some
(n, j) ∈ S3, where

S3 = {(n, j) :
 ∃ l such that (n, j, l) ∈ S2} (3)

or, in other words

S3 = {(n, j) : t has an unbordered factor of length n at index j}. (4)

The size ofM3 after subset construction was 1987 states, and it minimized down
to 263 states. The output of Stage 3 passed all 1.9 million tests meant to ensure
that M3 corresponds to S3.

Stage 4

Finally, Stage 4 simulates j on M3 and negates the result. So the output of
Stage 3 is an automaton that accepts the binary representation of a positive
integer n > 1 if and only if the Thue-Morse word has no unbordered factor of
length n. Formally put, the automaton M4 produced by Stage 4 accepts a word
w ∈ {0, 1}∗ if and only if w is the base-2 representation of some n ∈ S4, where

S4 = {n ∈ N : n > 1,
 ∃ j for which (n, j) ∈ S3}. (5)

The size of M4 after subset construction is 2734 states, and it minimized to 7
states. M4 accepts the reverse of 1(01∗0)∗10∗1. Therefore the Thue-Morse word
has an unbordered factor of length n if and only if the base-2 representation of
n (starting with the most significant digit) is not of the form 1(01∗0)∗10∗1.

The total computation took 9 seconds of CPU time on a 2.9GHz Dell XPS
laptop. �

Remark 3. Here are some additional implementation details.
In order to implement the needed operations on automata, we must decide on
an encoding of elements of (Σn

k)
∗. We could do this by performing a perfect

shuffle of each individual word over Σ∗
k , or by letting the alphabet itself be

represented by k-tuples. The decision represents a tradeoff between state size
and alphabet size. We used the latter representation, since (a) it makes the
algorithms considerably easier to implement and understand and (b) decreases
the number of states needed.

It was mentioned earlier how many tests were passed in each stage. In order
to make sure that the final automaton is what we expect, a number of tests are
run after each stage on the output of that stage.

Automatic Theorem-Proving in Combinatorics on Words 187

For example, let x be an automatic sequence. The testing framework requires
a C++ function which given n computes x[n]. Before any operations are done,
the automaton given for x is tested against the C++ function to make sure that
they match for the first 10,000 elements. Then, at each stage before Stage 4
the resulting automaton is tested to give confidence that the operations on the
automata are giving the desired results.

For example, after Stage 2 of computing the set of lengths for which there
exists an unbordered factor of an automatic sequence x, we expect the machine
M2 to accept the language S2, where

S2 = {(n, j, l) :
 ∃ i for which x[j + i] = x[n+ j − l+ i]} (6)

This is then tested by making sureM2 accepts (n, j, l)k if and only if (n, j, l) ∈ S2

for all n, j, l ≤ 1400. These tests were invaluable to debugging, and provide
confidence in the final result of the computation.

Finally, we have to address the issue of multiple representations. It is easy
to forget that automata accept words in Σk

∗, and not integers. For some op-
erations, such as complement and intersection, it is crucial that if one binary
representation is accepted by the automaton, then all binary representations
must be accepted.

4 Additional Results on Unbordered Words

We also applied our decision procedure above to two other famous sequences:
the Rudin-Shapiro sequence [23,26] and the paperfolding sequence [9].

For a word w ∈ 1(0 + 1)∗, we define aw(n) to be the number of (possibly
overlapping) occurrences of w in the (ordinary, unreversed) base-2 representation
of n. Thus, for example, a11(7) = 2.

The Rudin-Shapiro sequence r = r(0)r(1)r(2) · · · is then defined to be r(n) =
(−1)a11(n). It is a 2-automatic sequence generated by an automaton of four
states.

The paperfolding sequence p = p(0)p(1)p(2) · · · is defined as follows: writing
(n)200 as 1i0aw for some i ≥ 0 some a ∈ {0, 1}, and some w ∈ {0, 1}∗, we have
p(n) = (−1)a. It is a 2-automatic sequence generated by an automaton of four
states.

Theorem 5. The Rudin-Shapiro sequence has an unbordered factor of every
length.

Proof. We applied the same technique discussed previously for the Thue-Morse
sequence.

Here is a summary of the computation:

Stage 1: 269 states
Stage 2: 85313 states minimized to 1974
Stage 3: 48488 states minimized to 6465
Stage 4: 6234 states.

188 D. Goč, D. Henshall, and J. Shallit

The Stage 4 NFA has 6234 states. We were unable to determinize this automa-
ton directly (using two different programs) due to an explosion in the number
of states created. Instead, we reversed the NFA (creating an NFA for LR) and
determinized this instead. The resulting DFA has 30 states, and upon minimiza-
tion, gives a 1-state automaton accepting all strings. �

Theorem 6. The paperfolding sequence has an unbordered factor of length n if
and only if the reversed representation (n)2 is rejected by the automaton given
in Figure 4.

49

1213

12

0

1

1

1

8

3

1

1

0

0

10

6

14

7

5

0

1

0

0

11

0

0

0
15

0,1

0 1

1
16

1

0
1

11

1

1

0

0

0

0

1

0,10

Fig. 2. A finite automaton for unbordered factors in the paperfolding word

Proof. We applied the same technique discussed previously for the Thue-Morse
sequence.

Here is a summary of the computation: 6 seconds cpu time on a 2.9GHz Dell
XPS laptop.

Stage 1, 159 states
Stage 2, 1751 minimized down to 89 states
Stage 3, 178 minimized down to 75 states
Stage 4, 132 minimize down to 17 states . �

5 Other Problems

We applied our technique to some other problems. First, we considered the
squares in the paperfolding sequence. In 1979, Prodinger and Urbanek [21] char-
acterized the squares in the paperfolding sequence, using a case analysis. We
verified this by creating an automaton to accept the language

{(n)2 : ∃ i p[i..i+ n− 1] = p[i + n..i+ 2n− 1]}.

Automatic Theorem-Proving in Combinatorics on Words 189

The resulting automaton (most significant-digit first) is depicted below, from
which we recover the Prodinger-Urbanek result that the only squares xx in x
have lengths |x| = 1, 3, or 5.

0

10

11

Fig. 3. Lengths of squares in the paperfolding sequence

Next, we computed a new explicit expression for the recurrence function Rr(n)
and recurrence quotient for the Rudin-Shapiro sequence r. Here Rr(n) is the
smallest integer m such that every factor of r of length m contains as a factor
all the factors of length n. Allouche and Bousquet-Mélou gave the estimate
Rr(n + 1) < 172n for n ≥ 1. (Actually, their result was more general, as it
applies to any “generalized” Rudin-Shapiro sequence.) We used our method to
prove the following result:

Theorem 7. Let r = (r(n))n≥0 be the Rudin-Shapiro sequence. Then

Rr(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5, if n = 1;

19, if n = 2;

25, if n = 3;

20 · 2t + n− 1, if n ≥ 4 and t = &log2(n− 1)'.

Furthermore, the recurrence quotient

sup
n≥1

Rr(n)

n

is equal to 41; it is not attained.

Proof. We created a DFA to accept

{(m,n)2 : (m−20 ·2t−n+1, n) : n ≥ 4 and m = R(n) and t = &log2(n−1)'}.

We then verified that the resulting DFA accepted only pairs of the form (0, n)2
for n ≥ 4.

For the recurrence quotient, the local maximum is evidently achieved when
n = 2r + 2 for some r ≥ 1; here it is equal to (41 · 2r + 2)/(2r + 2). As r → ∞,
this clearly approaches 41 from below. �

190 D. Goč, D. Henshall, and J. Shallit

6 Open Problems

Which of the problems mentioned in § 1 are algorithmically decidable for the
more general class of morphic sequences?

Can the techniques be applied to detect abelian powers in automatic sequences?

References

1. Allouche, J.P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of an
automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)

2. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press (2003)

3. Allouche, J.P., Shallit, J.O.: The ubiquitous Prouhet-Thue-Morse sequence. In:
Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications,
Proceedings of SETA 1998, pp. 1–16. Springer, Heidelberg (1999)

4. Berstel, J.: Axel Thue’s Papers on Repetitions in Words: a Translation, vol. 20.
Publications du Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal (February 1995)

5. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bull. Belgian Math. Soc. 1, 191–238 (1994); Corrigendum, Bull. Belg.
Math. Soc. 1, 577 (1994)

6. Charlier, É., Rampersad, N., Shallit, J.: Enumeration and Decidable Properties
of Automatic Sequences. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS,
vol. 6795, pp. 165–179. Springer, Heidelberg (2011)

7. Costa, J.C.: Biinfinite words with maximal recurrent unbordered factors. Theoret.
Comput. Sci. 290, 2053–2061 (2003)

8. Currie, J.D., Saari, K.: Least periods of factors of infinite words. RAIRO Inform.
Théor. App. 43, 165–178 (2009)

9. Dekking, F.M., Mendès France, M., van der Poorten, A.J.: Folds! Math. Intelli-
gencer 4, 130–138, 173–181, 190–195 (1982), erratum 5 (1983)

10. Duval, J.P.: Une caractérisation de la période d’un mot fini par la longueur de ses
facteurs primaires. C. R. Acad. Sci. Paris 290, A359–A361 (1980)

11. Duval, J.P.: Relationship between the period of a finite word and the length of its
unbordered segments. Discrete Math. 40, 31–44 (1982)

12. Duval, J.P., Harju, T., Nowotka, D.: Unbordered factors and Lyndon words. Dis-
crete Math. 308, 2261–2264 (2008)

13. Ehrenfeucht, A., Silberger, D.M.: Periodicity and unbordered segments of words.
Discrete Math. 26, 101–109 (1979)

14. Glenn, J., Gasarch, W.I.: Implementing WS1S Via Finite Automata. In: Raymond,
D.R., Yu, S., Wood, D. (eds.) WIA 1996. LNCS, vol. 1260, pp. 50–63. Springer,
Heidelberg (1997)

15. Glenn, J., Gasarch, W.I.: Implementing WS1S Via Finite Automata: Performance
Issues. In: Wood, D., Yu, S. (eds.) WIA 1997. LNCS, vol. 1436, pp. 75–86. Springer,
Heidelberg (1998)

16. Harju, T., Nowotka, D.: Periodicity and unbordered words: a proof of the extended
duval conjecture. J. Assoc. Comput. Mach. 54, 1–20 (2007)

17. Holub, S.: A proof of the extended Duval’s conjecture. Theoret. Comput. Sci. 339,
61–67 (2005)

Automatic Theorem-Proving in Combinatorics on Words 191

18. Holub, S., Nowotka, D.: On the relation between periodicity and unbordered factors
of finite words. Internat. J. Found. Comp. Sci. 21, 633–645 (2010)

19. Honkala, J.: A decision method for the recognizability of sets defined by number
systems. RAIRO Inform. Théor. App. 20, 395–403 (1986)

20. Nielsen, P.T.: A note on bifix-free sequences. IEEE Trans. Inform. Theory IT-19,
704–706 (1973)

21. Prodinger, H., Urbanek, F.J.: Infinite 0–1-sequences without long adjacent identical
blocks. Discrete Math. 28, 277–289 (1979)

22. Rampersad, N., Shallit, J., Wang, M.W.: Inverse star, borders, and palstars. In-
form. Process. Lett. 111, 420–422 (2011)

23. Rudin, W.: Some theorems on Fourier coefficients. Proc. Amer. Math. Soc. 10,
855–859 (1959)

24. Saari, K.: On the Frequency and Periodicity of Infinite Words. Ph.D. thesis, Uni-
versity of Turku, Finland (2008)

25. Shallit, J.: The critical exponent is computable for automatic sequences. In: Am-
brož, P., Holub, S., Masáková, Z. (eds.) WORDS 2011: 8th International Confer-
ence. Elect. Proc. Theor. Comput. Sci., pp. 231–239 (2011), revised version, with
L. Schaeffer, http://arxiv.org/abs/1104.2303v2

26. Shapiro, H.S.: Extremal problems for polynomials and power series. Master’s thesis,
MIT (1952)

27. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906); reprinted in Nagell, T. (ed.) Selected Mathematical Papers of Axel
Thue, pp. 139–158. Universitetsforlaget, Oslo (1977)

28. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67 (1912); reprinted in Nagell, T. (ed.) Selected
Mathematical Papers of Axel Thue, pp. 413–478. Universitetsforlaget, Oslo (1977)

http://arxiv.org/abs/1104.2303v2

How to Synchronize the Heads

of a Multitape Automaton

Oscar H. Ibarra1,� and Nicholas Q. Tran2

1 Department of Computer Science,
University of California, Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Mathematics & Computer Science,
Santa Clara University, Santa Clara, CA 95053, USA

ntran@math.scu.edu

Abstract. Given an n-tape automaton M with a one-way read-only
head per tape and a right end marker $ on each tape, we say that M is
aligned or 0-synchronized (or simply, synchronized) if for every n-tuple
x = (x1, . . . , xn) that is accepted, there is a computation on x such that
at any time during the computation, all heads, except those that have
reached the end marker, are on the same position. When a head reaches
the marker, it can no longer move. As usual, an n-tuple x = (x1, . . . , xn)
is accepted if M eventually reaches the configuration where all n heads
are on $ in an accepting state. In two recent papers, we looked at the
problem of deciding, given an n-tape automaton of a given type, whether
there exists an equivalent synchronized n-tape automaton of the same
type. In this paper, we exhibit various classes of multitape automata
which can(not) be converted to equivalent synchronized multitape au-
tomata.

Keywords: multitape automata, aligned, synchronized, semilinear, de-
cidable, undecidable, 1-reversal counters, reversal-bounded counters.

1 Introduction

Motivated by reachability analyses of string programs using multitrack finite-
state automata [9], we recently introduced and studied multitape finite automata
whose heads are k-synchronized, i.e, never more than k cells apart for some fixed
k. Synchronized multitape machines are easier to work with and yet they can
be converted to multitrack machines and hence also have decidable decision
problems. The following decision question, namely synchronizability, naturally
arises regarding multitape machines:

– given a multitape machine M , is there a k-synchronized machine M ′ of the
same type, for some k, such that L(M) = L(M ′) ?

� Supported in part by NSF Grants CCF-1143892 and CCF-1117708.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 192–204, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

How to Synchronize the Heads of a Multitape Automaton 193

Formally, a (one-way) n-tape deterministic finite automaton (DFA) M is a finite
automaton with n tapes where each tape contains a string over input alphabet
Σ. Each tape is read-only and has an associated one-way input head. We assume
that each tape has a right end marker $ (not in Σ). On a given n-tuple input
x = (x1, . . . , xn), M starts in initial state q0 with all the heads on the first
symbols of their respective tapes. The transition function of M consists of rules
of the form δ(q, ai, . . . , an) = (p, d1, . . . , dn) (resp., = ∅). Such a rule means
that if M is in state q, with head Hi on symbol ai, then the machine moves
Hi one cell to the right on its input tape if di = 1 (resp., does not move Hi if
di = 0), and enters state p (resp., halts). When a head reaches the end marker
$, that head has to remain on the end marker. The input x is accepted if M
eventually reaches the configuration where all n heads are on $ in an accepting
state. Let M be an n-tape DFA and k ≥ 0. M is k-synchronized if for every
n-tuple x = (x1, . . . , xn) that is accepted, the (unique) computation on x is such
that at any time, no pair of input heads, neither of which is on $, are more than
k cells apart. Notice that, since the condition in the definition concerns pairs of
heads that are both on symbols in Σ, if one of these two heads is on $, then
we can stipulate that the condition is automatically satisfied, irrespective of the
distance between the heads. In particular, if k = 0, then all heads move to the
right synchronously at the same time (except for heads that reach the right end
marker early).

The above definitions generalize to n-tape nondeterministic finite automata
(NFAs). Now, k-synchronized requires that every n-tuple x = (x1, . . . , xn) that
is accepted has an accepting computation on x such that at any time during
the computation, no pair of input heads, neither of which is on $, are more
than k cells apart. The definitions can also be generalized to n-tape deter-
ministic pushdown automata (DPDAs) and n-tape nondeterministic pushdown
automata (NPDAs), which may even be augmented with a finite number of
reversal-bounded counters. At each step, each counter (which is initially set to
zero) can be incremented by 1, decremented by 1, or left unchanged and can
be tested for zero. The counters are reversal-bounded in the sense that there is
a specified r such that during any computation, no counter can change mode
from increasing to decreasing and vice-versa more than r of times. A counter is
1-reversal if once it decrements, it can no longer increment. It is easy to show
that an r-reversal counter can be simulated by &(r + 1)/2' 1-reversal counters
(see, e.g., [4]).

A nondeterministic counter machine (NCM) is an NFA augmented with a
counter. Note that an NCM is a special case of an NPDA where the stack
alphabet consists of only one symbol, in addition to a distinguished bottom-of-
the-stack symbol B which is never modified. Hence the stack can be thought of as
a counter since it can only push or pop the same symbol, which would correspond
to incrementing or decrementing the stack height by 1. The count is zero when
the stack contains only the bottom symbol B. DCM is the deterministic version
of NCM.

194 O.H. Ibarra and N.Q. Tran

A machine is k-ambiguous if there are at most k accepting computations for
any input. Note that unambiguous is the same as 1-ambiguous, and deterministic
is a special case of unambiguous.

In two recent papers [2,6], we showed the following theorems (where “syn-
chronized” was called “weakly synchronized”):

Theorem 1 ([2]). The following problems are undecidable, given a 2-ambiguous
2-tape (and hence multitape) NFA M :

1. Is M k-synchronized for a given k?
2. Is M k-synchronized for some k?
3. Is there a 2-tape (multitape) NFA M ′ that is 0-synchronized (or k-synchro-

nized for a given k, or k-synchronized for some k) such that L(M ′) = L(M)?

The stack (resp., counter) of an NPDA (resp., NCM) is r-reversal if the num-
ber of times it changes mode from pushing to popping (resp., incrementing to
decrementing) and vice-versa during any computation is at most r times.

Theorem 2 ([6]). The following problems are undecidable, given a 2-ambiguous
2-tape 3-reversal NPDA M over Σ∗× a∗, where Σ is an alphabet with at least 2
symbols and a is a symbol.

1. Is M k-synchronized for a given k?
2. Is M k-synchronized for some k?
3. Is there a 2-tape NPDA M ′ that is 0-synchronized (or k-synchronized for a

given k, or k-synchronized for some k) such that L(M ′) = L(M)?

Theorem 3 ([6]). The following problems are undecidable, given a 3-ambiguous
2-tape NCM (resp., a 2-tape 1-reversal NCM) M over Σ∗ × a∗, where Σ is an
alphabet with at least 2 symbols and a is a symbol.

1. Is M k-synchronized for a given k?
2. Is M k-synchronized for some k?
3. Is there a 2-tape NCM or 2-tape NPDA M ′ that is 0-synchronized (or k-

synchronized for a given k, or k-synchronized for some k) such that L(M ′) =
L(M)?

We note that parts (1) and (2) of the above theorems have been shown to be
decidable when the machine is unambiguous (i.e., 1-ambiguous) [2,6].

In this paper, we exhibit various classes of multitape automata which can or
cannot be converted to equivalent synchronized multitape automata. In partic-
ular, we show that if M is a 2-tape NPDA (even when augmented with several
1-reversal counters) over x∗1 × x∗2 for some strings x1, x2, then M can always
be converted to a 0-synchronized 2-tape 1-reversal NCM (i.e., once the counter
decrements, it can no longer increment). This result is tight in the sense that
there are 2-tape DFAs over a∗ × a∗, 3-tape DFAs over a∗ × a∗ × a∗, and 2-
tape DPDAs over a∗b∗ × a∗, (where a, b are distinct symbols) that cannot be
accepted by 0-synchronized 2-tape NFAs, 3-tape NPDAs, and 2-tape NPDAs, re-
spectively. We also show, rather unexpectedly, that an n-tape NPDA augmented
with 1-reversal counters over B1×· · ·×Bn, where each Bi is of the form x∗1 · · ·x∗k
(for some nonnull strings x1, . . . , xk), can always be converted to a synchronized
n-tape DFA with 1-reversal counters (i.e., deterministic and no stack).

How to Synchronize the Heads of a Multitape Automaton 195

2 Preliminaries

A language L is letter-bounded if it is a subset of a∗1 · · · a∗n for some distinct
letters (symbols) a1, . . . , an. L is bounded if it is a subset of w∗

1 · · ·w∗
n for some

(not necessarily distinct) nonnull strings w1, . . . , wn. When there is no confusion
from the context, we shall refer to letter-bounded also as bounded.

Given an n-tuple (x1, . . . , xn), denote by AL(x1, . . . , xn) an n-track string
where the symbols of xi’s are left-justified (i.e., the symbols are aligned) and
the shorter strings are right-filled with blanks (λ) to make all tracks the same
length. For example, AL(01, 1111, 101) has 01λλ on the upper track, 1111 on
the middle track, and 101λ on the lower track. Given a set L of n-tuples, define
AL(L) = {AL(x) | x ∈ L}.

The following lemma can be easily verified.

Lemma 1. Let L a set of n-tuples.

1. L is accepted by a 0-synchronized n-tape NFA if and only if AL(L) is regular.
2. L is accepted by a 0-synchronized n-tape NPDA if and only if AL(L) is

context-free.

The next lemma says that a k-synchronized automaton can always be converted
to an equivalent 0-synchronized automaton. The conversion uses a “finite buffer”
in the states.

Lemma 2. If L is accepted by a k-synchronized n-tape automaton (e.g., an n-
tape NFA, n-tape NPDA, n-tape NCM, etc.) M for some k, then M can be
converted to an equivalent 0-synchronized n-tape automaton of the same type.

Let N be the set of nonnegative integers and k be a positive integer. A sub-
set Q of Nk is a linear set if there exist vectors v0, v1, . . . , vn in Nk such that
Q = {v0 + t1v1 + · · · + tnvn | t1, . . . , tn ∈ N}. The vectors v0 (referred to as
the constant vector) and v1, . . . , vn (referred to as the periods) are called the
generators of the linear set Q. The set Q ⊆ Nk is semilinear if it is a finite
union of linear sets. The empty set is a trivial (semi)linear set, where the set
of generators is empty. Every finite subset of Nk is semilinear – it is a finite
union of linear sets whose generators are constant vectors. Semilinear sets are
closed under (finite) union, complementation and intersection. It is known that
the disjointness, containment, and equivalence problems for semilinear sets are
decidable [3].

Let Σ = {a1, . . . , ak}. For w ∈ Σ∗, let |w| is the number of letters in w, and
|w|ai denote the number of occurrences of ai in w. The Parikh image P (w) of
w is the vector (|w|a1 , . . . , |w|ak

); similarly, the Parikh image of a language L is
defined as P (L) = {P (w) | w ∈ L}.

It is known that the Parikh image of a language L accepted by an NPDA
(i.e., L is context-free) is an effectively computable semilinear set [8]. This was
generalized in [4]:

196 O.H. Ibarra and N.Q. Tran

Theorem 4

1. If L ⊆ Σ∗ is accepted by an NPDA with reversal-bounded counters, then
P (L) is an effectively computable semilinear set.

2. If L ⊆ w∗
1 · · ·w∗

n is accepted by an NPDA with reversal-bounded counters
(where w1, . . . , wn are nonnull strings), then QL = {(i1, . . . , in) | wi1

1 · · ·win
n

∈ L} is an effectively computable semilinear set.

We will need the following result from [4]:

Theorem 5. The emptiness (Is L(M) = ∅ ?) and infiniteness (Is L(M) infinite
?) problems for 1-tape NPDAs with reversal-bounded counters are decidable.

3 Synchronizabilty of Multitape NPDAs

Our first result shows that a 2-tape NPDA (possibly augmented with reversal-
bounded counters) on unary inputs can always be converted to an equivalent
0-synchronized 2-tape 1-reversal NCM.

Theorem 6. Let r, s ≥ 1. Every 2-tape NPDA M with reversal-bounded coun-
ters over (ar)∗ × (bs)∗ can be converted to an equivalent (i.e., they accept the
same language) 0-synchronized 2-tape 1-reversal NCM M ′.

Proof. Let A be the 2-track symbol AL(a, b) and B be the 2-track symbol
AL(a, λ). We construct from M a 1-tape NPDA M1 with two additional coun-
ters, C1 and C2. M1 accepts the bounded language (i.e., a subset of A∗B∗)
L1 = {AL((ar)m, (bs)n) | rm ≥ sn, ((ar)m, (bs)n) ∈ L(M)} as follows, when
given input AiBj :

1. M1 reads the input and checks that i = sn for some n and i + j = rm for
somem. It also stores the value sn in counter C1 and the value rm in counter
C2.

2. M1 then simulates the computation of M on ((ar)m, (bs)n) by decrementing
(i.e., reversing) the counters C1 and C2. When M accepts, M1 accepts.

Now M1 is an NPDA with reversal-bounded counters. From Theorem 4, the
Parikh image of any language accepted by an NPDA with reversal-bounded coun-
ters over a bounded language (in this case over the languageA∗B∗) is a semilinear
set. Hence, the set {(i, j) | AiBj ∈ L(M1)} is semilinear, i.e., a finite union of lin-
ear sets. Let Q be one of these linear sets. Then it has the form Q = {(v01, v02)+
t1(v11, v12) + · · · + tn(vn1, vn2) | t1, . . . , tn ∈ N}. We now describe a 1-tape 1-
reversal NCM accepting the language {Av01+t1v11+···+tnvn1Bv02+t1v12+···tnvn2 |
t1, . . . , tn ∈ N}. The vij ’s can be hard-coded in the finite-state control. On input
AiBj , the NCM first moves the input head v01 cells to the right and increments
the counter by v02. Then for 1 ≤ i ≤ n, the machine executes the following pro-
cess ti ≥ 0 times (where ti is nondeterministically chosen): Moves the head vi1
cells to the right and increments the counter by vi2. When the head reaches the

How to Synchronize the Heads of a Multitape Automaton 197

end of the input segment Ai, the NCM checks that j (of Bj) is equal to the value
stored in the counter. It follows (since 1-tape 1-reversal NCM languages are ob-
viously closed under union) that L(M1) can be accepted by a 1-tape 1-reversal
NCM M2. From M2, we can then directly construct a 0-synchronized 2-tape 1-
reversal NCM M ′ accepting {((ar)m, (bs)n) | rm ≥ sn, ((ar)m, (bs)n) ∈ L(M)}.

Similarly, we can construct a 0-synchronized 2-tape 1-reversal NCM M ′′ ac-
cepting {((ar)m, (bs)n)) | rm < sn, ((ar)m, (bs)n) ∈ L(M)}. Finally, we con-
struct from M ′ and M ′′ a 0-synchronized 2-tape 1-reversal NCM M ′′′ accepting
L(M ′) ∪ L(M ′′) = L(M). �

Corollary 1. We can construct, given a 2-tape NPDA M with reversal-bounded
counters over w∗

1 × w∗
2 for some nonnull strings w1 and w2, an equivalent 0-

synchronized 2-tape 1-reversal NCM M ′.

Proof. Let w1 = a1 · · ·ar and w2 = b1 · · · bs for some r, s ≥ 1 and symbols
a1, . . . , ar, b1, . . . , bs. We construct from M a 2-tape NPDA M1 with reversal-
bounded counters that accepts {((ar)m, (bs)n) | (wm

1 , w
n
2) ∈ L(M). Then from

Theorem 6 we can construct a 0-synchronized 2-tape 1-reversal NCMM2 equiva-
lent toM1. Finally, fromM2 we can construct a 0-synchronized 2-tape 1-reversal
NCM M ′ equivalent to M . �

The ideas in the proofs of Theorem 6 and Corollary 1 can be used to also show:

Corollary 2. Every language over w∗
1w

∗
2 accepted by a 1-tape NPDA with

reversal-bounded counters can be accepted by a 1-tape 1-reversal NCM.

The next result shows that Theorem 6 is tight in that it cannot be extended to
the following cases: (1) one tape is binary, even under the restriction that the
input on that tape is bounded, and (2) when there are three unary tapes.

Theorem 7

1. L = {(a3ib2i, ci) | i > 0} can be accepted by 2-tape 1-reversal DCM but
cannot be accepted by a 0-synchronized 2-tape NPDA.

2. L = {(a3i, b2i, ci) | i > 0} can be accepted by 3-tape DFA but cannot be
accepted by a 0-synchronized 3-tape NPDA.

Proof. For part 1, clearly L can be accepted by a 2-tape 1-reversal DCM. Sup-
pose L can be accepted by a 0-synchronized (k-synchronized for a given k, or
k-synchronized for some k) 2-tape NPDA M . Then AL(L) is context-free by
Lemma 1. Let

t = (a3mb2m, cm)

be the tuple in L where m is the Ogden’s pumping lemma constant for L.
We mark the m symbols AL(a, c) in AL(t). According to Ogden’s lemma,

AL(t) can be written as UV XY Z where V Y has at least one marked position;
V XY has at most m marked positions; and UV kXY kZ is in L for every k ≥ 0.

198 O.H. Ibarra and N.Q. Tran

We have the following cases:

1. Y has a marked position: this means that |Y | ≥ 1, Y consists solely of
AL(a, c), and V is either empty or consists solely of AL(a, c). The word
UV VXY Y Z does not have the correct number of b’s on its upper track, and
cannot be in L, a contradiction.

2. V has a marked position: this means that |V | ≥ 1, V consists solely of
AL(a, c), and Y is either empty or consists solely of AL(a, c), AL(a, λ), or
AL(b, λ).
(a) Y is empty: same as case 1.
(b) Y consists solely of AL(a, c): same as case 1.
(c) Y consists solely of AL(a, λ): same as case 1.
(d) Y consists solely of AL(b, λ): the strings UV k+1XY k+1Z are of the form

AL(xa3m+k|V |b2m+k|Y |, xcm+k|V |),

where 3m + k|V | = 3(m + k|V |), which implies that |V | = 0, a contra-
diction.

For part (2), L can be accepted by a 3-tape DFA, but we can show (as in part
1) that L cannot be accepted by a 0-synchronized 3-tape NPDA. �

Even though Theorem 7 is a negative result, we now show that synchronization
of n-tape NPDAs (even with reversal-bounded counters) over B1 × · · · × Bn,
where each Bi is of the form x∗i1 · · ·x

∗
iki

(for some nonnull strings xi1 , . . . , xiki),

is decidable.

Theorem 8. It is decidable to determine, given an integer k ≥ 0 and an n-
tape NPDA M with reversal-bounded counters over B1 × · · · × Bn, whether M
is k-synchronized.

Proof. We prove the theorem for the case of 2 tapes. The same technique works
for any number of tapes. Let M be a 2-tape NPDA, where the string on tape 1
is from w∗

1 · · ·w∗
r and the string on tape 2 is from z∗1 · · · z∗s , for some r, s ≥ 1 and

nonnull strings w1, . . . , wr, z1, . . . , zs. Construct a (1-tape) NPDA M1 with r+s
1-reversal counters C1, . . ., Cr , D1, . . ., Ds that accepts the language L(M1) =
{wi1

1 · · ·wir
r z

j1
1 · · · zjss | (wi1

1 · · ·wir
r , z

j1
1 · · · zjss) ∈ L(M)}. M1 operates as follows

when given the input wi1
1 · · ·wir

r z
j1
1 · · · zjss : It reads the input and guesses its

decomposition and stores i1, . . . , ir, j1, . . . , js in counters C1, . . . , Cr, D1, . . . , Ds.
Then M1 simulates the computation of M on (wi1

1 · · ·wir
r , z

j1
1 · · · zjss), using the

integers stored in the counters. M1 accepts if and only if M accepts. From part
2 of Theorem 4,

QL(M1) = {(i1, . . . , ir, j1, . . . , js) | wi1
1 · · ·wir

r z
j1
1 · · · zjss ∈ L(M1)}

is an effectively computable semilinear set.
Next, we construct from M a 2-tape NPDA M ′ which simulates M faithfully

except that it halts and rejects if, during the computation, the heads of M

How to Synchronize the Heads of a Multitape Automaton 199

are more than k cells apart (when neither head is on $). Note that the finite-
state control can check that the distance between the heads is no more than
k during the computation, since k is given. Clearly L(M ′) ⊆ L(M), and M
is k-synchronized iff L(M) = L(M ′). To decide this condition, we construct
from M ′ (as above), an NPDA with 1-reversal counters M ′

1 such that L(M ′
1) =

{wi1
1 · · ·wir

r z
j1
1 · · · zjss | (wi1

1 · · ·wir
r , z

j1
1 · · · zjss) ∈ L(M ′)}. Then Q(L(M ′

1)
is also

semilinear. Clearly, L(M) = L(M ′) iff L(M1) = L(M ′
1). The result follows, since

the equivalence of semilinear sets is decidable [3]. �

Note that Theorem 8 is the best possible in the sense that if the string on one
of the tapes is allowed to come from Σ∗ (where Σ contains at least two letters),
the problem becomes undecidable for 2-tape NPDA (even without counters), by
Theorem 2, part 2. However, for n-tape NFAs over Σ∗ × B1 × · · · × Bn−1 (i.e.,
no stack and no counters), the problem is decidable [2].

The next proposition shows that the 2-tape NCM in Theorem 6 cannot be
replaced with a 2-tape NFA.

Proposition 1. The unary language L = {(am, bn) | m > 0, n = 2m}can be
accepted by a 2-tape DFA M but cannot be accepted by any 0-synchronized 2-
tape NFA.

Proof. It is easy to see that L can be accepted by a 2-tape DFA. However, it
cannot be accepted by any 0-synchronized 2-tape NFA M . For supposeM has p
states. Consider the tuple (ap, b2p). Then for some 1 ≤ k ≤ p, (ap+k, bp+k+p) will
also be accepted, a contradiction. In fact L cannot be accepted by k-synchronized
2-tape NFA for any k, since we know that such a machine can be converted to
be 0-synchronized. �

Note that byTheorem6, the languageL above canbe accepted by a 0-synchronized
2-tape 1-reversal NCM M . Such a machine can be constructed as follows: Given
(am, bn),M moves both heads to the right simultaneously in (0-sync) while incre-
menting the counter for every a.When the first head reaches $, the secondheaduses
the counter (which would now havem) and checks that length of the remaining b’s
ism (i.e., n = 2m). Note that theM is actually a 2-tape 1-reversal counter DCM.

It was shown in [2] that it is decidable to determine, given a unary 2-tape
NFA (i.e., the inputs are over a∗ × b∗), whether it is k-synchronized for some k
(i.e., k is not specified). It is open whether this problem is decidable for unary
2-tape NPDAs and unary 2-tape NCMs. We will show that for some extensions
of these models, the problem is undecidable.

An n-tape 1-reversal 2-pushdown automaton is an n-tape NFA augmented
with two pushdown stacks, each of which makes at most one reversal. Similarly,
a deterministic n-tape 2-counter machine is an n-tape DFA augmented with two
counters.

The emptiness problem for 1-tape 1-reversal 2-pushdown automata is unde-
cidable [1], and the halting problem for deterministic 2-counter machines without
an input tape (where the counters are initially zero) is undecidable [7].

200 O.H. Ibarra and N.Q. Tran

Proposition 2. The following problems are undecidable, given a 2-tape 1-
reversal 2-pushdown automaton (resp., a deterministic 2-tape 2-counter ma-
chine) M over unary inputs from a∗ × b∗:

1. Is M k-synchronized for a given k ?
2. Is M k-synchronized for some k ?

Proof. Let T be a one-tape 1-reversal 2-pushdown automaton. We construct
a 2-tape 1-reversal 2-pushdown automaton M which, when given input (ai, b),
operates as follows: Without moving the heads, M simulates the computation of
T on some input y (by guessing the symbols comprising y) and if T accepts, M
moves its first head to the right until it reaches the end marker and then moves
its second head to the right end marker and accepts. Then either L(T) = ∅
and M is 0-synchronized, or L(T)
= ∅ and M is not k-synchronized for any k.
It follows that M is k-synchronized for some k (or a fixed k) iff the language
accepted by T is empty, which is undecidable.

Similarly, if T is a deterministic 2-counter machine (without an input tape),
we construct a deterministic 2-tape 2-counter machine M which, when given
(ai, b), first simulates T and if T halts, then M proceeds as above. �
It follows from Theorem 2 part 1 (resp., part 2) that it is undecidable to deter-
mine, given a 2-ambiguous 2-tape 3-reversal NPDA M with 1-reversal counters
over Σ∗ × a∗, whether M is k-synchronized for a given k (resp., for some k).
However, part 3 of Theorem 2 is decidable for this machine, since the answer is
always yes, as the following result indicates:

Theorem 9. Every n-tape NPDA M with 1-reversal counters over Σ∗ × B1 ×
· · · ×Bn−1, can be converted to an equivalent 0-synchronized n-tape NPDA M ′

with 1-reversal counters.

Proof. (Sketch) We illustrate the construction for n = 2. Let M be a 2-tape
NPDA over Σ∗ × x∗1 · · ·x∗r . We construct a 2-tape NPDA M ′ which will accept
L(M) as follows. M ′ will need 2r additional 1-reversal counters, C1, . . ., Cr,
D1, . . ., Dr. Given an input (w, xi11 · · ·xirr), M ′ starts by nondeterministically
guessing and storing i1 in C1 and D1, i2 in C2 and D2, . . ., ir in Cr and Dr. Then
M ′ simulates the computation of M on (w, xi11 · · ·xirr) moving the two heads in
0-sync using counters C1, . . ., Cr ; whenever the second head ofM has consumed
an xi segment, Ci is decremented. The second tape of M ′ and the counters D1,
. . ., Dr are used to verify the guessed values i1, . . ., ir; the second head of M ′

moves in sync with the first head and decrements Di whenever it moves right of
an xi segment. We omit the details. �
If in Theorem 9, all input tapes are bounded, we can prove a stronger result. We
will need the following lemma:

Lemma 3. Let Σ be an alphabet and L ⊆ x∗1 · · ·x∗m × y∗1 · · · y∗n. Define the 2-
track alphabet Δ = (Σ ∪ {λ})× (Σ ∪ {λ}). Then for some k and nonnull strings
u1, . . . , uk in Δ∗, AL(L) ⊆ u∗1 · · ·u∗k.
Proof. By induction. Recall that bounded languages (over subsets of x∗1 · · ·x∗m,
for some nonnull strings x1, . . . , xm) are closed under union.

How to Synchronize the Heads of a Multitape Automaton 201

1. m = 0: L ⊆ AL(λ, y1)
∗ . . . AL(λ, yn)

∗.
2. n = 0: L ⊆ AL(x1, λ)

∗ . . . AL(xm, λ)
∗.

3. m = n = 1: Given a string z = z1z2 . . . zr and 0 ≤ k ≤ r, define pre(z, k) to
be the prefix of x consisting of the first k symbols of z. In the following, let
x and y be nonnull strings. Define

ew =
lcm(|x|, |y|)

|w| , w ∈ {x, y};

vi,j,k,l = AL(xipre(x, k), yjpre(y, l))

for 0 ≤ i ≤ ex, 0 ≤ j ≤ ey, 0 ≤ k ≤ |x|, 0 ≤ l ≤ |y|;
B(x, y) =

⋃
i,j,k,l

v∗ex,ey,0,0vi,j,k,lAL(x, λ)
∗AL(λ, y)∗.

Then AL(L) ⊆ B(x1, y1), since for any i, j ≥ 0

AL(xi, yj) = AL(xkex , xkey) ·AL(xr , ys)

for some k, r, s ≥ 0, and either r < ex or s < ey (· denotes concatenation).
The string on the right is a member of v∗ex,ey,0,0vr,s,0,0 AL(x, λ)

∗ · AL(λ, y)∗.
Note that B(x, y) contains more strings than AL(xi, yj). The parameters l
and k allow using a prefix of x or y instead of λ’s as padding symbols in the
alignment of xi and yj. These additional words will be used in the next case.

4. mn > 1: In the following, let clr(z, k) be the circular left shift of a nonnull
string z by k positions, and let post(z, k) be the postfix consisting of the last
k symbols of the string z. Define

Ck = B(x1, y1)B({clr(x1, k), x2, . . . , xm}, {y2, . . . , yn}), 0 ≤ k ≤ |x1|
Dk = B(x1, y1)B({post(x1, k), x2, . . . , xm}, {y2, . . . , yn}), 0 ≤ k ≤ |x1|
El = B(x1, y1)B({x2, . . . , xm}, {clr(y2, l), y2, . . . , yn}), 0 ≤ l ≤ |y1|
Fl = B(x1, y1)B({x2, . . . , xm}, {post(y2, l), y2, . . . , yn}), 0 ≤ l ≤ |y1|

and B({x1, . . . , xm}, {y1, . . . , yn}) =
⋃

k,l (Ck ∪Dk ∪ El ∪ Fl). Then AL(L)

⊆ B({x1, . . . , xm}, {y1, . . . , yn}). To see this, consider AL(xi11 . . . ximm , yj11 . . .
yjmm) where the exponents are nonnegative. There are two cases:
(a) |xi11 | ≥ |y

j1
1 |: there exist i and k such that |xi1pre(x1, k)| = |y

j1
1 | and

AL(xi11 . . . ximm , yj11 . . . yjmm) = AL(xi1pre(x1, k), y
j1
1) ·AL(post(x1,

|x1| − k)xi1−i−1
1 xi22 . . . ximm , yj22 . . . yjnn).

Note that if i1 − i− 1 > 0,

post(x1, |x1| − k)xi1−i−1 = clr(x1, k)
i1−i−1post(clr(x1, k), |x1| − k),

and hence AL(xi11 . . . ximm , yj11 . . . yjmm) is either in Ck (if i1− i− 1 > 0) or
Dk (otherwise).

(b) |xi11 | < |y
j1
1 |: same as the above case with the roles of x1 and y1 reversed.

�

202 O.H. Ibarra and N.Q. Tran

Theorem 10. Every n-tape NPDAM with 1-reversal counters over x∗11 · · ·x∗1m1

×· · ·×x∗n1 · · ·x∗nmn
can be converted to an equivalent 0-synchronized DFAM ′ with

1-reversal counters. (Note thatM ′ is deterministic and has no pushdown stack.)

Proof. We prove the result when M has only two input tapes. The proof easily
generalizes to multitapes.

Let L = L(M) ⊆ x∗1 · · ·x∗r × y∗1 · · · y∗s , where the xi’s and the yi’s are nonnull
strings over some alphabet Σ.

1. From Theorem 9, L can be accepted by a 0-synchronized 2-tape NPDA M1

with 1-reversal counters.
2. Define the 2-track alphabet Δ = (Σ ∪ {λ})× (Σ ∪ {λ}).
3. From M1, we can easily construct a 1-tape NPDA M2 with 1-reversal coun-

ters such that L(M2) = AL((L(M1)) = AL(L) ⊆ Δ∗.
4. From Lemma 3, L(M2) ⊆ u∗1 · · ·u∗k for some k and nonnull strings u1, . . . , uk

in Δ∗.
5. In a recent paper [5], it was shown that if a 1-tape NPDA with 1-reversal

counters accepts a language that is a subset of v∗1 · · · v∗t , where v1, . . . , vt
are (not necessarily distinct) nonnull strings over some alphabet, then the
language is also be accepted by a DFA with 1-reversal counters (i.e., the
machine is deterministic and no stack).

6. It then follows from (3), (4) and (5) that L(M2) = AL(L) can be accepted
by a DFA M3 with 1-reversal counters.

7. From M3, we can then directly construct a 0-synchronized DFA M ′ with
1-reversal counters accepting L. �

4 Synchronizability of 2-Tape NFAs with 1-Reversal
Counters

The next result concerns 2-tape NFAs with 1-reversal counters.

Theorem 11. It is undecidable to determine, given a 2-ambiguous 2-tape NFA
M , whether there exists a 2-tape NFA M ′ with 1-reversal counters that is 0-
synchronized (or k-synchronized for a given k, or k-synchronized for some k)
such that L(M ′) = L(M).

Proof. Let Σ = {0, 1,#} and I be an instance of PCP over the alphabet {0, 1}.
Define the language

L = {(x#z, y#iw) | x, y, z, w ∈ {0, 1}∗, i > 1, x
= y} ∪
{(x#w, x#iw) | x,w ∈ {0, 1}∗, i > 1, x is a solution to PCP instance I}.

Clearly, L can be accepted by a 2-tape NFA. Note that first part of L can be
accepted deterministically in 0-sync mode. It is easily verified that if the PCP
instance has no solution, then L(M) can be accepted by a 0-synchronized 2-tape
NFA (even without 1-reversal counters).

How to Synchronize the Heads of a Multitape Automaton 203

Now suppose the PCP instance I has a solution. Assume that L can be ac-
cepted by some 0-synchronized 2-tape NFA M ′ with 1-reversal counters. Then
AL(L) can be accepted a 1-tape 2-track NFA M ′′ with 1-reversal counters.

Let x be a solution to I. Fix this x and consider all the tuples of the form
(x#w, x#|w|+1w), where w ∈ {0, 1}+. Then the 2-track strings of the form
AL((x#w, x#|w|+1w)) are accepted by M ′′. Now it is known [1] that any 1-tape
NFA with 1-reversal counters can be converted to an equivalent machine that
runs in linear time; so we may assume that M ′′ runs in linear time. Suppose M ′′

has s counters. A configuration of M ′′ is an (s+1)-tuple (q, v1, . . . , vs), where q
is a state and (v1, . . . , vs) are the values of the counters.

Consider a 2-track input of the form AL((x#w, x#|w|+1w)) where |w| = n
This input is accepted by M ′′. Clearly, the number of possible configurations
when the input head of M ′′ reaches AL((x#w, x#|w|+1)) is O(ns).

Now consider another input AL((x#u, x#|u|+1u)) where |u| = n and u
= w.
Since there are 2n binary strings of length n, AL((x#u, x#|u|+1w)) will also
be accepted by M ′′ for n large enough. It follows that (x#u, x#|w|+1w) will be
accepted by M ′. This is a contradiction.

The 2-tape NFA Mcan be made 2-ambiguous. We omit the construction. �

5 Conclusions

We studied the decision problem of whether a given multitape machine M can
be converted into an equivalent k-synchronized machine M ′ for various classes
of NPDA and obtained answers ranging from ‘always possible’ to ‘decidable’ to
‘undecidable’.

References

1. Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Computer
and System Sciences 8, 315–332 (1974)

2. Eğecioğlu, Ö., Ibarra, O.H., Tran, N.Q.: Multitape NFA: Weak Synchronization
of the Input Heads. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S.,
Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 238–250. Springer, Heidelberg
(2012)

3. Ginsburg, G., Spanier, E.: Bounded Algol-like languages. Trans. of the Amer. Math.
Society 113, 333–368 (1964)

4. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems.
J. Assoc. Comput. Math. 25, 116–133 (1978)

5. Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-
way and two-way deterministic machines. In: Proc. 13th Int. Conf. on Automata
and Formal Languages, AFL 2011 (2011)

6. Ibarra, O.H., Tran, N.Q.: Weak Synchronization and Synchronizability of Multitape
Pushdown Automata and Turing Machines. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.)
LATA 2012. LNCS, vol. 7183, pp. 337–350. Springer, Heidelberg (2012)

204 O.H. Ibarra and N.Q. Tran

7. Minsky, M.: Recursive unsolvability of Post’s problem of Tag and other topics in
the theory of Turing machines. Ann. of Math. (74), 437–455 (1961)

8. Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13, 570–581
(1966)

9. Yu, F., Bultan, T., Ibarra, O.H.: Relational String Verification Using Multi-track
Automata. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp.
290–299. Springer, Heidelberg (2011); Extended version in International J. Found.
of Comput. Sci. 22, 1909–1924 (2011)

Regular Ideal Languages
and Their Boolean Combinations

Franz Jahn, Manfred Kufleitner�, and Alexander Lauser�

FMI, University of Stuttgart, Germany
jahnfz@studi.informatik.uni-stuttgart.de,
{kufleitner, lauser}@fmi.uni-stuttgart.de

Abstract. We consider ideals and Boolean combinations of ideals. For
the regular languages within these classes we give expressively complete
automaton models. In addition, we consider general properties of regular
ideals and their Boolean combinations. These properties include effective
algebraic characterizations and lattice identities.

In the main part of this paper we consider the following deterministic
one-way automaton models: unions of flip automata, weak automata, and
Staiger-Wagner automata. We show that each of these models is expres-
sively complete for regular Boolean combination of right ideals. Right
ideals over finite words resemble the open sets in the Cantor topology
over infinite words. An omega-regular language is a Boolean combination
of open sets if and only if it is recognizable by a deterministic Staiger-
Wagner automaton; and our result can be seen as a finitary version of this
classical theorem. In addition, we also consider the canonical automaton
models for right ideals, prefix-closed languages, and factorial languages.

In the last section, we consider a two-way automaton model which is
known to be expressively complete for two-variable first-order logic. We
show that the above concepts can be adapted to these two-way automata
such that the resulting languages are the right ideals (resp. prefix-closed
languages, resp. Boolean combinations of right ideals) definable in two-
variable first-order logic.

1 Introduction

The Cantor topology over infinite words is an important concept for classifying
languages over infinite words. For example, an ω-regular language is determinis-
tic if and only if it is a countable intersection of open sets, cf. [18, Remark 5.1].
There are many other properties of ω-languages which can be described using
the Cantor topology, see e.g. [12,15]. Ideals are the finitary version of open sets in
the Cantor topology. A subset P of a monoid M is a right (resp. left, two-sided)
ideal if P M ⊆ P (resp. MP ⊆ P , MP M ⊆ P). In particular, a language L ⊆ A∗

is a right ideal if LA∗ ⊆ L. A filter is the complement of an ideal. Thus over
finite words, a language L ⊆ A∗ is a right filter if and only if it is prefix-closed,
� The last two authors were supported by the German Research Foundation (DFG)

under grant DI 435/5-1.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 205–216, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

206 F. Jahn, M. Kufleitner, and A. Lauser

i.e., if uv ∈ L implies u ∈ L. Prefix-closed languages correspond to closed sets
in the Cantor topology. A language L ⊆ A∗ is a two-sided filter if and only if
it is factorial (also known as factor-closed or infix-closed), i.e., if uvw ∈ L im-
plies v ∈ L. Our first series of results gives effective algebraic characterizations
of right (resp. left, two-sided) ideal languages and of Boolean combinations of
such languages. In addition, we give lattice identities for each of the resulting
language classes. As a byproduct, we show that a language is both regular and
a Boolean combination of right (resp. left, two-sided) ideals if and only if it is
a Boolean combination of regular right (resp. left, two-sided) ideals, i.e., if I is
the class of right (resp. left, two-sided) ideals and REG is the class of regular
languages, then REG ∩BI = B(REG ∩ I). Here, B denotes the Boolean closure.

The second contribution of this paper consists of expressively complete (one-
way) automaton models for right ideals, for prefix-closed languages, for factorial
languages, and for Boolean combinations of right ideals. The results concerning
ideals and closed languages are straightforward and stated here only to draw a
more complete picture. Our main original contribution are automaton models
for regular Boolean combinations of right ideals. We always assume that every
state in an automaton is reachable from some initial state, i.e., all automata in
this paper are accessible.

– A flip automaton is an automaton with no transitions from final states to
non-final states, i.e., it “flips” at most once from a non-final to a final state.
Consequently, every minimal complete flip automaton has at most one final
state which has a self-loop for each letter of the alphabet. Paz and Peleg
have shown that if a language L is recognized by a complete deterministic
automaton A, then L is a right ideal if and only if A is a flip automaton [11].
A language is a regular Boolean combination of right ideals if and only if it is
recognized by a union of flip automata (which do not have to be complete).

– An automaton is fully accepting if all states are final. A word u is rejected
in a fully accepting automaton A if and only if there is no u-labeled path
in A which starts in an initial state. Nondeterministic fully accepting au-
tomata are expressively complete for prefix-closed languages. Moreover, if a
language L is recognized by a deterministic trim automaton A, then L is
prefix-closed if and only if A is fully accepting.

– A path automaton is an automaton A such that all states are both initial
and final, i.e., a word u is accepted by A if there exists a u-labeled path
in A. Both deterministic and nondeterministic path automata recognize ex-
actly the class of regular factorial languages. This characterization can be
implicitly found in the work of Avgustinovich and Frid [1].

– An automaton is weak if in each strongly connected component either all
states are final or all states are non-final. Any run of a weak automaton
flips only a bounded number of times between final and non-final states.
Nondeterministic weak automata can recognize all regular languages. On the
other hand, if a language L is recognized by a deterministic automaton A,
then L is a Boolean combination of right ideals if and only if A is weak.
Weak automata have been introduced by Muller, Saoudi, and Schupp [10].

Regular Ideal Languages and Their Boolean Combinations 207

– Deterministic Staiger-Wagner automata over infinite words have been used
for characterizing ω-languages L ⊆ Aω such that both L and Aω \ L are
deterministic [16]. Acceptance of a run in a Staiger-Wagner automaton only
depends on the set of states visited by the run (but not on their order or
their number of occurrences). We show that, over finite words, deterministic
Staiger-Wagner automata are expressively complete for Boolean combina-
tions of right ideals. In particular, deterministic Staiger-Wagner automata
and deterministic weak automata accept the same class of languages.

We note that flip automata, fully accepting automata, and weak automata yield
effective characterizations of the respective language classes. For example, in
order to check whether a deterministic automaton A recognizes a Boolean com-
bination of right ideals, it suffices to test if A is weak. Moreover, the above autom-
aton models can easily be applied to subclasses of automata such as counter-free
automata [9]. This immediately yields results of the following kind: A regular
language L is both star-free and a Boolean combination of right ideals if and
only if its minimal automaton is weak and counter-free.

For some classes of languages it is more adequate to use two-way autom-
ata. The relation between two-way automata and ideals (resp. closed languages,
Boolean combinations of ideals) is more complex than for one-way automata. In
the last section, we consider deterministic partially ordered two-way automata
(po2dfa). Partially ordered automata are also known as very weak, 1-weak, or lin-
ear automata. We give restrictions of po2dfa’s which define the right ideals (resp.
prefix-closed languages, Boolean combinations of right ideals) inside the po2dfa-
recognizable languages. The class of languages recognized by po2dfa has a huge
number of equivalent characterizations; these include the variety DA of finite
monoids, two-variable first-order logic, unary temporal logic, unambiguous poly-
nomials, and rankers; see e.g. [17,4]. Some of these characterizations admit natu-
ral restrictions which are expressively complete for their ideal (resp. prefix-closed,
Boolean combination of ideals) counterparts. We introduce one-pass flip po2dfa
(resp. one-pass fully accepting po2dfa, one-pass po2dfa) as expressively complete
automaton models for right ideals (resp. prefix-closed languages, Boolean combi-
nations of right ideals) inside the class of po2dfa-recognizable languages. For def-
initions of these automaton models, we refer the reader to Section 5. The main
challenge for each of the above automaton models is showing closure under union
and intersection since standard techniques, such as sequentially executing one au-
tomaton after the other, cannot be applied. As a complementary result we see
that weak one-pass two-way dfa’s have the same expressive power as their one-
way counterparts, i.e., recognize regular Boolean combinations of right ideals.

2 Preliminaries

Throughout this paper, A is a finite alphabet. The set of finite words over the
alphabet A is denoted by A∗; it is the free monoid over A. The neutral element
is the empty word ε. The set of nonempty words is A+ = A∗ \ {ε}. If a language
L ⊆ A∗ satisfies LA∗ ⊆ L (resp. A∗L ⊆ L, A∗LA∗ ⊆ L), then L is a right ideal

208 F. Jahn, M. Kufleitner, and A. Lauser

(resp. left ideal, two-sided ideal). If L = A∗ \ K for some right (resp. left, two-
sided) ideal K, then L is prefix-closed (resp. suffix-closed, factorial). Factorial
languages are also known as factor-closed or infix-closed. Boolean combinations
consist of complementation, finite unions, and finite intersections.

Green’s relations on a monoid M are defined as follows. For x, y ∈ M let
x ≤R y (resp. x ≤L y, x ≤J y) if there exist s, t ∈ M such that x = ys
(resp. x = ty, x = tys). We set x R y if both x ≤R y and y ≤R x. The
relations L and J are defined similarly involving ≤L and ≤J , respectively. An
element x ∈ M is idempotent if x = x2. In every finite monoid M there exists
a number ω ≥ 1 such that xω is idempotent for all x ∈ M . A homomorphism
h : A∗ → M recognizes a language L ⊆ A∗ if L = h−1(P) for some P ⊆ M ,
i.e., u ∈ L if and only if h(u) ∈ P . A monoid M recognizes L if there exists a
homomorphism h : A∗ → M recognizing L. For every regular language L there
exists a unique minimal finite monoid Synt(L) which recognizes L (and which
is effectively computable as the transition monoid of the minimal automaton).
It is the syntactic monoid of L, and it is naturally equipped with a recognizing
homomorphism hL : A∗ → Synt(L), called the syntactic homomorphism. A
language is regular if and only if its syntactic monoid is finite, see e.g. [12].

Lattice identities are a tool for describing classes of languages (these language
classes form so-called lattices). Lattice identities can be defined in the general
setting of free profinite monoids [6]. In this paper, we only introduce the ω-
notation. We inductively define ω-terms over a set of variables Σ: Every x ∈ Σ
is an ω-term; and if x and y are ω-terms, then so are xy and (x)ω . For a number
n ∈ N and an ω-term x, we define x(n) inductively by (xy)(n) = x(n)y(n),
(xω)(n) = x(n)n!, and x(n) = x for x ∈ Σ, i.e., x(n) is the word obtained by
replacing all exponents ω in x by n!. Intuitively, xω is the idempotent element
generated by x with respect to all regular languages. A regular language L
satisfies the lattice identity x→y for ω-terms x and y if there exists n0 ∈ N such
that for all n ≥ n0 and for all homomorphisms h : Σ∗ → A∗ the implication
h

(
x(n)

)
∈ L ⇒ h

(
y(n)

)
∈ L holds. It satisfies x ↔ y if x → y and y → x.

3 Ideals and Their Boolean Combinations

Many interesting properties over finite words can be stated as follows: There
exists a prefix (resp. suffix, factor) which has some desirable property L ⊆ A∗

and we do not care about subsequent actions. This immediately leads to the
right ideal LA∗ (resp. left ideal A∗L, two-sided ideal A∗LA∗). Such languages
and their Boolean combinations arise naturally, see e.g. [2,7]. We give effective
algebraic characterizations and lattice identities for the regular ideal languages
(Proposition 1) and the regular Boolean combinations of ideals (Theorem 1). In
the case of ideals, the proof is straightforward and relies on the following simple
fact. If h : M → N is a surjective homomorphism between monoids and I ⊆ M
as well as J ⊆ N are right ideals (resp. left ideals, two-sided ideals), then h(I)
and h−1(J) are also right ideals (resp. left ideals, two-sided ideals), i.e., ideals
are closed under homomorphic and inverse homomorphic images.

Regular Ideal Languages and Their Boolean Combinations 209

Proposition 1. Let L ⊆ A∗ be a regular language recognized by a surjective
homomorphism h : A∗ → M onto a monoid M . The following are equivalent:
1. L is a right ideal (resp. left ideal, two-sided ideal).
2. h(L) is a right ideal (resp. left ideal, two-sided ideal).
3. L satisfies the lattice identity y → yz (resp. y → xy, y → xyz).

In particular, property (2) yields decidability of whether a given regular language
is a (right, left, or two-sided) ideal of A∗ because the syntactic homomorphism
hL : A∗ → Synt(L) and the set hL(L) are effectively computable. Moreover,
regular (right, left, and two-sided) ideals are closed under union, intersection, and
inverse homomorphisms. They do not form so-called positive varieties because
they are not closed under residuals (even though right ideals are closed under
left residuals, and left ideals are closed under right residuals), cf. [12]. An easy
example is L = abA∗ over the alphabet A = {a, b}; we have a ∈ Lb−1 = L ∪ {a}
and aa �∈ Lb−1, showing that Lb−1 is not a right ideal.

In the next theorem, we consider Boolean combinations of ideals. Note that if
h : M → N is a surjective homomorphism and I, J are ideals of M , then in gen-
eral, we have h(I \ J) �= h(I) \ h(J). Another obstacle for Boolean combinations
of ideals is the following: If L is regular and a Boolean combination of ideals
Ki, then the Ki need not be regular. As a byproduct of our characterization in
Theorem 1, we see that in the above situation, one can find regular ideals K ′

i

such that L is a Boolean combination of the languages K ′
i.

Theorem 1. Let L ⊆ A∗ be a language recognized by a surjective homomor-
phism h : A∗ → M onto a finite monoid M . Then the following are equivalent:
1. L is a Boolean combination of right (resp. left, two-sided) ideals.
2. h(L) is a union of R-classes (resp. L-classes, J -classes).
3. L satisfies the lattice identity z(xy)ωx ↔ z(xy)ω (resp. s(ts)ωz ↔ (ts)ωz,

s(ts)ωz(xy)ωx ↔ (ts)ωz(xy)ω).

Since Theorem 1 (2) can be verified effectively for the syntactic homomorphism,
it is decidable whether a given regular language is a Boolean combination of
right ideals (resp. left ideals, two-sided ideals).

Every R-class is the set difference between two right ideals. Thus if L is a
Boolean combination of (arbitrary) right ideals and if L is recognized by h :
A∗ → M , then by Theorem 1, the language L can also be written as a Boolean
combination of right ideals Ki such that each Ki is recognized by h. The situation
for Boolean combinations of left ideals (resp. two-sided ideals) is similar.

For finite monoids, J is the smallest equivalence relation such that R ⊆ J
and L ⊆ J , see e.g. [12, Proposition A.2.5 (2)]. Hence, it follows from Theorem 1
that a regular language L is a Boolean combination of two-sided ideals if and only
if L is both a Boolean combination of right ideals and a Boolean combination of
left ideals.

In Boolean combinations of right ideals, intuitively speaking, what happens is
that the end of words is “concealed.” Appending a new symbol as an end-marker
to a language yields a Boolean combination of right ideals. Specifically, if L is

210 F. Jahn, M. Kufleitner, and A. Lauser

language over A \ {a}, then La is a Boolean combination of right ideals of A∗

because La = LaA∗ \ LaA+. In Section 5, we will avoid this “revealing” of the
end of the word by the right end marker by considering one-pass automata.

4 One-Way Automaton Models

As usual, an automaton A = (Q, A, δ, Q0, F) is given by a finite set of states Q,
an input alphabet A, a transition relation δ ⊆ Q × A × Q, a set of initial states
Q0 ⊆ Q, and a set of final states F ⊆ Q. For transitions (p, a, q) ∈ δ we write
p a q and we inductively extend the transition relation to words: q ε q for all
q ∈ Q; and p au q if there exists some r ∈ Q such that p a r u q. A run on a
word a1 · · · an with ai ∈ A is a sequence of states q0q1 · · · qn such that q0 ∈ Q0
and qi−1

ai qi for all i. We always assume that all states are accessible, i.e., for
every q ∈ Q there exist q0 ∈ Q0 and u ∈ A∗ such that q0

u q. A word u ∈ A∗

is accepted by A if there exist p ∈ Q0 and q ∈ F such that p u q. The language
recognized by A is L(A) = {u ∈ A∗ | u is accepted by A}. The automaton A is
complete if for every p ∈ Q and for every a ∈ A there exists at least one state
q ∈ Q such that p a q; it is trim if for every q ∈ Q there exists u ∈ A∗ and
p ∈ F such that q u p; and it is deterministic if |Q0| = 1 and for all p ∈ Q and
all a ∈ A there is at most one state q ∈ Q with p a q.

In the remainder of the section, we give automaton models for regular right
ideals, prefix-closed languages, factorial languages, and Boolean combinations
of right ideals. The results concerning ideals and closed languages are straight-
forward and presented here only for the sake of completeness. Our main orig-
inal contribution is Theorem 2, where we give three automaton descriptions
of Boolean combinations of ideals: deterministic weak automata, deterministic
Staiger-Wagner automata, and unions of deterministic flip automata.

A flip automaton is an automaton such that p ∈ F and p a q implies q ∈ F .
The idea is that, in every run, flip automata can “flip” at most once from non-
accepting to accepting. Note that the language of a complete flip automata
remains unchanged if we add a self-loop q a q for every state q ∈ F and every
letter a ∈ A.

Proposition 2. Let L ⊆ A∗ be recognized by a complete deterministic automa-
ton A. Then the following are equivalent:
1. L is a right ideal.
2. A is a flip automaton.
3. L is recognized by some complete (nondeterministic) flip automaton.

The equivalence of (1) and (2) in Proposition 2 is due to Paz and Peleg [11]. Of
course, not every complete nondeterministic automaton which recognizes a right
ideal has to be a flip automaton. Note that arbitrary (i.e., non-complete and
nondeterministic) flip automata can recognize all regular languages.

A fully accepting automaton is an automaton in which all states are final, i.e.,
F = Q. The only possibility to reject a word is a missing outgoing transition

Regular Ideal Languages and Their Boolean Combinations 211

at some point of the computation. Complementing Proposition 2 leads to the
following characterization of fully accepting automata.

Corollary 1. Let L ⊆ A∗ be recognized by a deterministic trim automaton A.
Then the following are equivalent:
1. L is prefix-closed.
2. A is fully accepting.
3. L is recognized by some (nondeterministic) fully accepting automaton.

A path automaton is an automaton such that every state is both initial and final,
i.e., Q0 = F = Q. In particular, a path automaton accepts a word u ∈ A∗ if and
only if there exists a path p u q for some p, q ∈ Q.

Corollary 2. Let L ⊆ A∗ be a regular language. Then L is factorial if and only
if L is recognized by a path automaton.

For deterministic transition relations, the statement of Corollary 2 can be found
implicitly in the work of Avgustinovich and Frid [1].

An automaton is weak if for every strongly connected component C ⊆ Q, we
either have C ⊆ F or C ∩ F = ∅. The concept of weak automata has been
introduced by Muller, Saoudi, and Schupp [10] for alternating tree automata.
A Staiger-Wagner automaton is given by B = (Q, A, δ, q0, T) where T ⊆ 2Q.
Acceptance of a run by a Staiger-Wagner automaton only depends on the set of
states visited by the run. A run q0q1 · · · qn is accepting if {q0, q1, . . . , qn} ∈ T ;
and a word is accepted if it has an accepting run.

Lemma 1. Let A = (Q, A, δ, Q0, F) be a weak automaton. Then there exists T
such that the Staiger-Wagner automaton B = (Q, A, δ, Q0, T) recognizes L(A).

Our next result shows that both deterministic weak automata and deterministic
Staiger-Wagner automata are expressively complete for Boolean combinations
of right ideals. Moreover, if a deterministic automaton A recognizes a Boolean
combination of right ideals, then, by Lemma 1, the automaton A itself can be
equipped with a Staiger-Wagner acceptance condition. A third automaton model
for Boolean combinations of right ideals is given by unions of (not necessarily
complete) deterministic flip automata. This last property follows form Theorem 1
since the inverse homomorphic image of every R-class of a finite monoid is
recognizable by a flip automaton.

Theorem 2. Let L ⊆ A∗ be recognized by a deterministic automaton A. Then
the following are equivalent:
1. L is a Boolean combination of right ideals.
2. A is weak.
3. L is recognized by some deterministic Staiger-Wagner automaton.
4. L is a finite disjoint union of languages L(Bi) such that each Bi is a deter-

ministic flip automaton.

212 F. Jahn, M. Kufleitner, and A. Lauser

We note that both nondeterministic weak automata and nondeterministic Staiger-
Wagner automata are expressively complete for the class of all regular languages.

Remark 1. Proposition 2 (resp. Corollary 1, Theorem 2) yields another deci-
sion procedure for the class of regular right ideals (resp. prefix-closed languages,
Boolean combinations of right ideals). In the case of Proposition 2, this was first
observed by Paz and Peleg [11]. Moreover, the above decidability results can of-
ten be combined with other automaton models. For example, a well-known result
of McNaughton and Papert says that a language is definable in first-order logic if
and only if its minimal automaton is counter-free [9]. Together with Theorem 2,
we see that a language L is a first-order definable Boolean combination of right
ideals if and only if the minimal automaton of L is weak and counter-free. �

5 Two-Way Automaton Models and Languages in DA
The results in the previous section can easily be translated into characterizations
of regular left ideals (resp. suffix-closed languages, Boolean combinations of left
ideals) by considering automata which read the input from right to left. Vary-
ing the direction of the head movement naturally leads to two-way automata.
The situation for arbitrary two-way automata is more involved than for one-
way automata; the main reason is that two-way automata are usually defined
using left and right end markers. On the other hand, if L ⊆ (A \ {a})∗, then
La = LaA∗ \ LaA+. This shows that by adding an explicit end marker, every
language becomes a Boolean combination of right ideals. To overcome this, we
introduce the notion of one-pass two-way automata; these automata stop pro-
cessing the input as soon as they read the right end marker. Now, the problem
with classes of one-pass two-way automata is that, in general, they are not closed
under union and intersection (since standard techniques, such as executing one
automaton after the other, cannot be applied). We have no satisfactory solution
for arbitrary two-way automata, but we show that the concepts of Section 4
can be adapted to a well-known subclass of two-way automata, namely deter-
ministic partially ordered two-way automata (po2dfa). The class of languages
recognized by po2dfa is a natural subclass of the star-free languages which has a
huge number of different characterizations, see e.g. [17,4]. The most prominent
of these characterizations is definability in two-variable first-order logic. By a
description of algebraic means, it is the language variety DA, i.e., the class of
regular languages satisfying the lattice identity p(xy)ωq ↔ p(xy)ωx(xy)ωq. As a
byproduct, we show that some of the other characterizations of po2dfa recogniz-
able languages also admit natural counterparts for right ideals and their Boolean
combinations.

A two-way automaton is a tuple A = (Z, A, δ, X0, F). The finite set of states
Z = X ∪̇ Y is partitioned into right-moving states X (for neXt) and left-moving
states Y (for Yesterday). The states in X0 ⊆ X are initial and states in F ⊆ Z
are final. On input u ∈ A∗, the tape content is �u� where � and � are new
symbols marking the left and right end of the tape, respectively. Initially, the

Regular Ideal Languages and Their Boolean Combinations 213

head is at the first letter of u. The direction in which the input is processed can be
controlled by A. The idea is that before a transition is made, the head movement
is performed, and the direction of the movement depends only on the destination
state of the transition. The left end marker � must not be overrun. More formally,
the transition relation satisfies δ ⊆ (Z × A × Z) ∪ (Y × {�}× X) ∪ (X × {�} × Z).
As for one-way automata, we write z a z′ instead of (z, a, z′) ∈ δ. More formally,
a configuration is a pair (z, i) ∈ Z × N where z is the current state and i is the
current position on the tape. Suppose position i is labeled by a ∈ A ∪ {�, �}.
Then a transition (z, i) �A (z′, j) between configurations exists if z a z′ and
j = i + 1 (for z′ ∈ X) or j = i − 1 (for z′ ∈ Y). A computation of A on input u
is a sequence

(z0, i0) �A · · · �A (zt, it)

of configurations such that z0 ∈ X0, i0 = 1, ik ∈ {0, . . . , |u| + 1} for 1 ≤ k < t,
and it = |u| + 2. Note that position 0 is labeled with the left end marker � and
the position |u| + 1 is labeled with the right end marker �. The computation
is accepting if zt ∈ F is final and the input u is accepted if there exists an
accepting computation for it. Note that by the signature of the transition relation,
the left end marker � cannot be trespassed. One-way automata may be seen
as special cases with Y = ∅. The language L(A) recognized by A is L(A) =
{u ∈ A∗ | A accepts u}.

A two-way automaton is deterministic if |X0| = 1 and for all z ∈ Z and all
a ∈ A∪{�, �} there exists at most one z′ ∈ Z with z a z′. For technical reasons,
we also consider the empty automaton (Z = δ = X0 = F = ∅) as deterministic.
It is complete if for all z ∈ Z and all a there exists z′ ∈ Z with z a z′ (more
precisely, we require the existence of z′ if either z ∈ Y and a ∈ A∪{�} or if z ∈ X
and a ∈ A∪{�}). A two-way automaton is one-pass if z
 z′ implies z = z′. The
idea is that a two-way automaton has finished “one pass” when it encounters
the right end marker � for the first time; hence for a one-pass automaton, the
acceptance of a word is determined by the state when scanning � for the first
time. The automaton is partially ordered if there exists a partial ordering � of
the states such that transitions are non-descending, i.e., if z a z′, then z � z′.
In other words, once a state is left in a partially ordered automaton, it is never
re-entered. We abbreviate “deterministic partially ordered two-way automaton”
by po2dfa.

Schwentick, Thérien, and Vollmer [14] have shown that po2dfa are expressively
complete for DA. The main result of this section is a characterization of right
ideals (resp. prefix-closed languages, Boolean combinations of right ideals) in
DA in terms of subclasses of one-pass po2dfa.

As for one-way automata in Section 4, we get right ideals in DA if the recog-
nizing automaton is a flip automaton. For a flip automaton, a transition z a z′

with final state z implies that z′ is final. As an intermediate step, we get a
characterization in terms of unambiguous monomials. A monomial is a language
P = A∗

1a1 · · · A∗
kakA∗

k+1 where Ai ⊆ A and ai ∈ A. It is unambiguous if every
word u ∈ P has a unique factorization u = u1a1 · · · ukakuk+1 with ui ∈ A∗

i .

214 F. Jahn, M. Kufleitner, and A. Lauser

Theorem 3. Let L ⊆ A∗. The following are equivalent:
1. L ∈ DA(A∗) is a right ideal.
2. L is a finite union of unambiguous monomials A∗

1a1 · · · A∗
kakA∗.

3. L is recognized by a complete flip one-pass po2dfa.

Property (2) in Theorem 3 states that unambiguity of monomials and the ideal
property can be achieved simultaneously which is non-trivial. A two-way au-
tomaton is fully accepting if all its states are final. As for one-way automata,
this yields prefix-closed languages (at least for DA). The following result for
prefix-closed languages is easily deduced from Theorem 3.

Corollary 3. Let L ⊆ A∗. The following are equivalent:
1. L ∈ DA(A∗) is prefix-closed.
2. L is recognized by a fully accepting one-pass po2dfa.

We now turn to general one-pass po2dfa. A convenient intermediate step from
languages in DA to automata are rankers. A ranker is a word in {Xa, Ya | a ∈ A}∗.
Intuitively, a ranker r represents a sequence of instructions Xa for “next a-
position” and Ya for “previous a-position” which is processed from left to right.
That is, for a word u = a1 · · · an with aj ∈ A and a position i ∈ {0, . . . , n + 1}
we set ε(u, i) = i and

Xar(u, i) = r(u, min {j > i | aj = a}),
Yar(u, i) = r(u, max {j < i | aj = a}).

If a nonempty ranker r starts with an Xa-modality, then we say that r is an X-
ranker ; and we define r(u) = r(u, 0), i.e., the evaluation of X-rankers starts at
the beginning of the word u. Symmetrically, if r starts with Ya, then r(u) =
r(u, n + 1). As usual, min ∅ and max ∅ are undefined. Thus a nonempty ranker
r either defines a unique position r(u) in a word u or r(u) is undefined. For
example, XaYbXc(bac) = 3 whereas XaYbXc(cba) is undefined. For a ranker r we
set L(r) = {u ∈ A∗ | r(u) is defined}.

Theorem 4. Let L ⊆ A∗. The following are equivalent:
1. L ∈ DA(A∗) is a Boolean combination of right ideals.
2. L is a finite union of unambiguous monomials A∗

1a1 · · · A∗
kakA∗

k+1 such that
{ai, . . . , ak} � Ai for all i ∈ {1, . . . , k}.

3. L is Boolean combination of languages L(r) for X-rankers r.
4. L is recognized by a one-pass po2dfa.

Right ideals are the finitary version of open sets in the Cantor topology over
infinite words. It is therefore not surprising that a large part of Theorem 4
reduces to infinite words: The proof of the implication from (1) to (2) relies on
a result of Diekert and Kufleitner [5, Theorem 6.6]. The step from (2) to (3)
uses a characterization of X-rankers over infinite words [3, Theorem 3]. Showing
the implication from (3) to (4) is the most technical part. In particular, one has
to show that one-pass po2dfa are closed under union and intersection. Here, the

Regular Ideal Languages and Their Boolean Combinations 215

respective result for po2-Büchi automata cannot be applied directly, but showing
closure under union and intersection resembles techniques which were developed
for deterministic po2-Büchi automata [8]. Finally, the step from (4) back to (1)
easily follows by combining the characterization of po2dfa due to Schwentick,
Thérien, and Vollmer [14, Theorem 3.1] with Theorem 1.

It is decidable whether a given regular language belongs to DA. Therefore,
using Proposition 1 and Theorem 1, it is decidable whether a regular language is
recognized by an arbitrary (resp. flip, fully final) one-pass po2dfa. The temporal
logic version of X-rankers is denoted TLX[Xa, Ya], cf. [3]; it is a fragment of
deterministic unary temporal logic TL[Xa, Ya] over the modalities Xa and Ya.
The logic TL[Xa, Ya] is expressively complete for DA, and TLX[Xa, Ya] defines
the right ideals in DA.

In analogy to Theorem 4, there is also an expressively complete two-way
automaton model for Boolean combinations of ideals. A two-way automaton is
weak if for every strongly connected component either all states are final or all
states are non-final. Note that every partially ordered automaton is weak. The
following result is our only general result for arbitrary (not partially ordered)
deterministic two-way automata.

Proposition 3. A regular language is a Boolean combination of right ideals if
and only if it is recognized by a deterministic weak one-pass two-way automaton.

Not every deterministic one-pass two-way automaton recognizing a Boolean com-
bination of right ideals needs to be weak. Therefore, the equivalence of (1) and
(4) in Theorem 4 does not follow from Proposition 3. Also note that the analogue
of Proposition 3 does not work for right ideals (resp. prefix-closed languages) and
deterministic flip (resp. fully accepting) one-pass two-way automata since deter-
ministic two-way automata can also reject an input by an infinite cycle in its
computation.

Remark 2. We use the shortcut “nfa” for nondeterministic finite automaton, and
“po1” for partially ordered one-way. Using this notation, we have the following
inclusions between language classes recognizable by partially ordered automata:

po1dfa � one-pass po2dfa � po2dfa � po2nfa = po1nfa.

The following (very similar) languages show that the inclusions are strict. The
language {a, c}∗ ab {a, b, c}∗ is recognizable by some one-pass po2dfa but not by
a po1dfa. The language {a, b, c}∗

ab {b, c}∗ is recognizable by a po2dfa but not by
any one-pass po2dfa. Finally, the language {a, b, c}∗

ab {a, b, c}∗ is recognizable
by some po1nfa but not by any po2dfa. The equivalence of po2nfa and po1nfa
is due to Schwentick, Thérien, and Vollmer [14]. For each of the above language
classes the membership problem is decidable: The class po1dfa corresponds to R-
trivial monoids [14], one-pass po2dfa correspond to R-classes of monoids in DA
(Theorem 1 and Theorem 4). The algebraic equivalent of po2dfa is the variety of
finite monoids DA [14], and po2nfa are expressively complete for the level 3/2
of the Straubing-Thérien hierarchy [14] which is decidable by a result of Pin and
Weil [13]. �

216 F. Jahn, M. Kufleitner, and A. Lauser

Acknowledgments. We thank the anonymous referees for several suggestions
which helped to improve the presentation of the paper, and we are also grateful
for bringing to our attention the works of Avgustinovich and Frid [1] and of Paz
and Peleg [11].

References
1. Avgustinovich, S.V., Frid, A.E.: Canonical Decomposition of a Regular Factorial

Language. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS,
vol. 3967, pp. 18–22. Springer, Heidelberg (2006)

2. Beauquier, D., Pin, J.-É.: Languages and scanners. Theor. Comput. Sci. 84(1), 3–21
(1991)

3. Dartois, L., Kufleitner, M., Lauser, A.: Rankers over Infinite Words. In: Gao, Y.,
Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 148–159. Springer,
Heidelberg (2010)

4. Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order
logic over finite words. Int. J. Found. Comput. Sci. 19(3), 513–548 (2008)

5. Diekert, V., Kufleitner, M.: Fragments of first-order logic over infinite words. The-
ory Comput. Syst. 48, 486–516 (2011)

6. Gehrke, M., Grigorieff, S., Pin, J.-É.: Duality and Equational Theory of Regu-
lar Languages. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 246–257. Springer, Heidelberg (2008)

7. Kufleitner, M., Lauser, A.: Around dot-depth one. In: Dömösi, P., Iván, S. (eds.)
AFL 2011, pp. 255–269 (2011)

8. Kufleitner, M., Lauser, A.: Partially ordered two-way Büchi automata. Int. J.
Found. Comput. Sci. 22(8), 1861–1876 (2011)

9. McNaughton, R., Papert, S.: Counter-Free Automata. The MIT Press (1971)
10. Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating Automata, the Weak Monadic

Theory of the Tree, and its Complexity. In: Kott, L. (ed.) ICALP 1986. LNCS,
vol. 226, pp. 275–283. Springer, Heidelberg (1986)

11. Paz, A., Peleg, B.: Ultimate-definite and symmetric-definite events and automata.
J. Assoc. Comput. Mach. 12(3), 399–410 (1965)

12. Perrin, D., Pin, J.-É.: Infinite words. Pure and Applied Mathematics, vol. 141.
Elsevier (2004)

13. Pin, J.-É., Weil, P.: Polynomial closure and unambiguous product. Theory Comput.
Syst. 30(4), 383–422 (1997)

14. Schwentick, T., Thérien, D., Vollmer, H.: Partially-Ordered Two-Way Automata:
A New Characterization of DA. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.)
DLT 2001. LNCS, vol. 2295, pp. 239–250. Springer, Heidelberg (2002)

15. Staiger, L.: ω-languages. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal
Languages, vol. 3, pp. 339–387. Springer (1997)

16. Staiger, L., Wagner, K.W.: Automatentheoretische und automatenfreie Charakter-
isierungen topologischer Klassen regulärer Folgenmengen. Elektron. Inform.-verarb.
Kybernetik 10(7), 379–392 (1974)

17. Tesson, P., Thérien, D.: Diamonds are forever: The variety DA. In: Gomes, G., et
al. (eds.) Semigroups, Algorithms, Automata and Languages 2001, pp. 475–500.
World Scientific (2002)

18. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, ch. 4, pp. 133–191. Elsevier (1990)

Hyper-minimization
for Deterministic Tree Automata

Artur Jeż1,� and Andreas Maletti2,��

1 Institute of Computer Science, University of Wrocław
ul. Joliot-Curie 15, 50-383 Wrocław, Poland

aje@cs.uni.wroc.pl
2 Institute for Natural Language Processing, Universität Stuttgart

Pfaffenwaldring 5b, 70569 Stuttgart, Germany
andreas.maletti@ims.uni-stuttgart.de

Abstract. Hyper-minimization aims to reduce the size of the represen-
tation of a language beyond the limits imposed by classical minimization.
To this end, the hyper-minimal representation can represent a language
that has a finite difference to the original language. The first hyper-
minimization algorithm is presented for (bottom-up) deterministic tree
automata, which represent the recognizable tree languages. It runs in
time O(�mn), where � is the maximal rank of the input symbols, m is
the number of transitions, and n is the number of states of the input tree
automaton.

1 Introduction

Hyper-minimization for deterministic finite-state string automata (dfa) [17] al-
lows us to reduce the size of a dfa at the expense of a finite number of errors. The
original article [2] that introduced hyper-minimization and its theoretical foun-
dations also presented the first hyper-minimization algorithm, which was subse-
quently improved to O(mn) [1] and to O(m log n) [4,8], where m is the number of
transitions and n is the number of states of the input dfa. Thus, the fastest hyper-
minimization algorithms have the same asymptotic time complexity as the fastest
algorithms for dfa minimization [9]. Since hyper-minimization trivially reduces
to minimization [8], faster hyper-minimization algorithms would imply faster
minimization algorithms, which have remained elusive. Hyper-minimization was
already generalized to weighted dfa [13] and to dfa over infinite strings [15]. An
overview of existing hyper-minimization algorithms can be found in [12].

We generalize hyper-minimization to deterministic tree automata (dta) [5,6],
which have applications in XML processing [10] and natural language process-
ing [11]. We faithfully generalize the existing definitions from dfa to dta. Thus,

� Financial support provided by the Polish National Science Centre (NCN) grant DEC-
2011/01/D/ST6/07164.

�� Financial support provided by the German Research Foundation (DFG) grant
MA 4959/1-1.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 217–228, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

218 A. Jeż and A. Maletti

...

...
�

...

...
�

γ

σ

α ...

σ

α σ

α/β/γ α/β/γ

Fig. 1. Illustration of the difference locations in a context: along the path to the root
(left) and off this path (middle), and illustration of the tree language L(Mex) of Ex. 2

our hyper-minimization for dta is based on a congruence that is similar to the
context-language equivalence used in dta minimization [3]. The fastest known
algorithm for dta minimization [7] runs in time O(�m logn), where � is the max-
imal rank of the input symbols, m is the number of transitions, and n is the
number of states of the input dta. The hyper-minimization algorithm that we
present has the run-time complexity O(�mn), which is slightly worse than tradi-
tional minimization, but we believe that our algorithm can be improved using the
standard techniques used in hyper-minimization of dfa. We sketch the improved
version in Sect. 5.

Dta hyper-minimization is not a straightforward adjustment of dfa hyper-
minimization. While they share the same principal structure, the actual prop-
erties used in the algorithms are different. The main reason for the differences
is the location of the errors in the recognized context language. They can not
only occur in the successor states (as for dfa) but can also occur in sibling
states (see Fig. 1). This yields that several foundational results for dfa hyper-
minimization [2] do not faithfully generalize to dta. Nevertheless, we borrow
much of the surrounding infrastructure from the existing hyper-minimization
algorithms [8,14] and despite the theoretical differences, we obtain an efficient
hyper-minimization algorithm following the approach of [1].

2 Preliminaries

The set of all nonnegative integers is IN, and we let [k] = {i ∈ IN | 1 ≤ i ≤ k} for
every k ∈ IN. The cardinality of a finite set S is denoted by |S|. The symmetric
difference S , T of sets S and T is (S − T) ∪ (T − S). If S , T is finite, then
S and T are almost equal. A binary relation ∼= on S is an equivalence if it is
reflexive, symmetric, and transitive. We often present them as partitions of S.

An alphabet Σ is a finite set, and a ranked alphabet (Σ, rk) consists of an
alphabet Σ and a mapping rk : Σ → IN, which assigns a rank to each symbol
of Σ. For every k ∈ IN, we let Σk = rk−1(k) be the set of all symbols of rank k.
In the following, we typically denote the ranked alphabet (Σ, rk) by just Σ. For
a set T , we let Σ(T) = {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T }. The set TΣ(Q)
of Σ-trees with states Q is the smallest set T such that Q ∪ Σ(T) ⊆ T . We
write TΣ for TΣ(∅). The height ht(t) of t ∈ TΣ(Q) is recursively defined as

Hyper-minimization for Deterministic Tree Automata 219

follows: ht(q) = 0 for all q ∈ Q and ht(σ(t1, . . . , tk)) = 1 + max {ht(ti) | i ∈ [k]}
for all σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q). The set states(t) is the minimal set Q such
that t ∈ TΣ(Q). The set of positions of a tree t ∈ TΣ(Q) is denoted by pos(t),
of which those that are labeled by q ∈ Q form the set posq(t). Finally, for every
t ∈ TΣ(Q), q, q′ ∈ Q, and w ∈ posq(t), the tree t[q′]w is obtained from t by
relabeling the occurrence of q at w to q′.

A context c is a tree of TΣ∪{�}(Q), in which the special nullary symbol �
occurs exactly once. The set of all such contexts is CΣ(Q), and we write CΣ

for CΣ(∅). For every c ∈ CΣ(V) and t ∈ TΣ∪{�}(Q), the tree c[t] ∈ TΣ∪{�}(Q)
denotes the tree obtained from c by replacing the unique occurrence of � by t. A
tree t′ ∈ TΣ(Q) is a subtree of t ∈ TΣ(Q) if there exists a context c ∈ CΣ(Q) such
that t = c[t′]. The subtree is strict if t
= t′. The depth of a context c ∈ CΣ(Q)
is recursively defined by dp(�) = 0 and

dp(σ(t1, . . . , ti−1, c, ti+1, . . . , tk)) = 1 + dp(c)

for every σ ∈ Σk, index i ∈ [k], context c ∈ CΣ(Q), and t1, . . . , tk ∈ TΣ(Q).
A deterministic tree automaton (dta) [5,6] is a tuple M = (Q,Σ, δ, F) where

Q is a finite set of states, Σ is a ranked alphabet of input symbols, δ : Σ(Q)→ Q
is a (partial) transition function, and F ⊆ Q is a set of final states. The dta M is
total if δ is total. The transition function δ extends to δ : TΣ(Q)→ Q by δ(q) = q
for every q ∈ Q and δ(σ(t1, . . . , tk)) = δ(σ(δ(t1), . . . , δ(tk))) for every σ ∈ Σk

and t1, . . . , tk ∈ TΣ(Q). We let L(M)qq′ = {c ∈ CΣ | δ(c[q′]) = q} for every
q, q′ ∈ Q. Moreover, L(M)q′ =

⋃
f∈F L(M)fq′ contains all contexts c such that

c[q′] takes M into a final state and L(M)q = δ−1(q)∩TΣ contains all (stateless)
trees that take M into the state q. The dta M recognizes the tree language
L(M) =

⋃
f∈F L(M)f . In the following, we assume that every considered dta M

is trim (or equivalently: has only reachable states), which means that L(M)q
= ∅
for every q ∈ Q.

An equivalence ∼= on Q is a congruence (on the dta M) if we have that
δ(σ(q1, . . . , qk)) ∼= δ(σ(q′1, . . . , q

′
k)) for every σ ∈ Σk and q1 ∼= q′1, . . . , qk

∼= q′k.
Two states q, q′ ∈ Q are equivalent, which is denoted by q ≡M q′ (or just q ≡ q′),
if L(M)q = L(M)q′ . We sometimes use those notions for states from different
dta over the same ranked alphabet with the obvious meaning. Note that ≡M is a
congruence, and actually, the coarsest (i.e., least refined) congruence on M that
respects F , which means that a final state cannot be equivalent to a nonfinal
state. The dta M is minimal if there exists no equivalent dta with strictly fewer
states. It is well-known that M is minimal if and only if it does not have two
different, but equivalent states. For every dta M , an equivalent minimal dta can
be computed efficiently using an adaptation [7] of Hopcroft’s algorithm [9],
which runs in time O(�m log n) where � = max rk(Σ) is the maximal rank of
the input symbols, m = |dom(δ)| is the number of transitions, and n = |Q| is
the number of states. From now on, let M = (Q,Σ, δ, F) be a minimal dta,
which automatically yields that M is trim. Finally, we recall a central notion
from [2] that will also be important in our setting. A state q ∈ Q is a kernel

220 A. Jeż and A. Maletti

state if L(M)q is infinite. Otherwise q is a preamble state. The sets of kernel and
preamble states are denoted by Ker(M) and Pre(M), respectively.

3 Hyper-minimal Automata

The goal of hyper-minimization for a given dta M is the efficient computation
of a dta that is as small as possible (measured by the number of states) and
recognizes a tree language with finite difference to L(M). A dta for which such a
strictly smaller dta does not exist is called ‘hyper-minimal’, and we investigate
the properties of these dta here. Before we can start, we need to introduce the
main notions of this contribution and some essential properties.

For the rest of the section, we consider a minimal dta M = (Q,Σ, δ, F).
To simplify the theoretical discussion, we assume that M is total. This can be
achieved by adding a sink state ⊥ as the target of all missing transitions of a
partial dta. It should be noted that all properties of this section trivially extend
to partial dta. The totality assumption made is purely a convenience.

A minimal dta is obtained by identifying and merging equivalent states. Ac-
cordingly, our goal is to obtain a hyper-minimal dta by identifying and merging
almost equivalent states, where ‘almost equivalent’ has the usual mathematical
meaning (i.e., equivalent up to a finite number of differences).

Definition 1 (cf. [2, Def. 2.2]). The states q, q′ ∈ Q are almost equivalent,
written q ∼ q′, if L(M)q , L(M)q′ is finite.

Example 2. The running example dta Mex is (Q,Σ, δ, F), where

– Q = {qα, qβ , qγ , qσ,⊥},
– Σ = Σ0 ∪Σ2 with Σ0 = {α, β, γ} and Σ2 = {σ},
– F = {qσ, qγ}, and
– δ returns ⊥ except that for every σ0, σ′

0 ∈ Σ0 we have

δ(σ0) = qσ0 δ(σ(qσ0 , qσ′
0
)) = qσ δ(σ(qα, qσ)) = qσ .

It recognizes the tree language {γ}∪ {cn[σ(σ0, σ′
0)] | n ∈ IN, σ0, σ

′
0 ∈ Σ0}, where

c = σ(α,�), c0 = �, and cn+1 = cn[c] for every n ∈ IN (see Fig. 1). Note that Mex
is minimal. However, qβ and qγ are almost equivalent because

L(Mex)qβ = {cn[σ(�, σ0)] | n ∈ IN, σ0 ∈ Σ0} ∪ {cn[σ(σ0,�)] | n ∈ IN, σ0 ∈ Σ0}
L(Mex)qγ = {�} ∪ L(Mex)qβ .

The state qα is neither almost equivalent to qβ nor to qσ. .

We immediately observe that for all q1 ∼ q2 there is an integer k ∈ IN such
that δ(c[q1]) = δ(c[q2]) for all c ∈ CΣ with dp(c) > k. Since the difference
L(M)q1 ,L(M)q2 is finite, we can select k such that it is strictly larger than the
depth of any context in the difference. For any context c of depth at least k we
obtain that δ(c[q1]) and δ(c[q2]) are equivalent, and thus, equal by minimality.

Hyper-minimization for Deterministic Tree Automata 221

In contrast to the string case, the converse of the previous statement is not true,
which shows that the generalization is nontrivial. In a dta not only the succes-
sor, but also the sibling states determine the almost equivalence (see Fig. 1).
Although qα and qβ have the same successor states in Ex. 2, they are not almost
equivalent as they expect different sibling states.

Clearly, almost equivalence is an equivalence on Q. Next, we show that it is
even a congruence on M . In contrast to the context equivalence that respects F ,
the almost equivalence ∼ clearly need not respect F (see Ex. 2 where qγ ∼ qβ
but qγ ∈ F and qβ /∈ F).

Lemma 3 (see [2, Lm. 2.10]). For all q ∼ q′ and contexts c ∈ CΣ, we have
δ(c[q]) ∼ δ(c[q′]). In particular, ∼ is a congruence.

Proof. For each context c′ ∈ L(M)δ(c[q]),L(M)δ(c[q′]) we have that the context
c′[c] ∈ L(M)q,L(M)q′ . Clearly, different c′ yield different contexts c′[c], so there
can only be finitely many such contexts c′ because L(M)q , L(M)q′ is finite,
which proves that δ(c[q]) ∼ δ(c[q′]). The latter property is a simple consequence
of the former via particular contexts of depth 1 and the standard piecewise
replacement. Let σ ∈ Σk and q1 ∼ q′1, . . . , qk ∼ q′k be almost equivalent states.
Moreover, for each q ∈ Q, let tq ∈ L(M)q be arbitrary. Then

δ(σ(q1, . . . , qk)) = δ(σ(�, tq2 , . . . , tqk)[q1])

∼ δ(σ(�, tq2 , . . . , tqk)[q
′
1]) = δ(σ(q′1, q2, . . . , qk)) = δ(σ(tq′1 ,�, tq3 , . . . , tqk)[q2])

∼ . . .

∼ δ(σ(tq′1 , . . . , tq′k−1
,�)[q′k]) = δ(σ(q′1, . . . , q

′
k)) . �

To complete the essential definitions, two dta M and N are almost equivalent if
L(M) and L(N) are almost equal. Naturally, this is an equivalence relation on
dta. Next, we relate the states of almost equivalent dta in order to prepare our
characterization of hyper-minimal dta.

Lemma 4. Let M = (Q,Σ, δ, F) and N = (P,Σ, μ,G) be minimal dta that are
almost equivalent. Then L(M)δ(t) and L(N)μ(t) are almost equal for all t ∈ TΣ.

Proof. For every L ⊆ TΣ , let t−1L = {c ∈ CΣ | c[t] ∈ L}. Since L(M) and L(N)
are almost equal, also t−1L(M) and t−1L(N) are almost equal. Together with
t−1L(M) = L(M)δ(t) and t−1L(N) = L(N)μ(t), we proved the statement. �

Now we make hyper-minimality precise. The dta M is hyper-minimal if all almost
equivalent dta are at least as large (i.e., have at least as many states). We already
remarked that we want to obtain hyper-minimal dta with the help of merging.
In a merge of q ∈ Q into q′ ∈ Q we redirect all transitions leading to q into q′.
Formally, for every two different states q, q′ ∈ Q, the dta merge(M, q → q′) is
(Q− {q}, Σ, δ′, F − {q}) where for every s ∈ Σ(Q− {q})

δ′(s) =

{
q′ if s ∈ δ−1(q)

δ(s) otherwise.

222 A. Jeż and A. Maletti

Lemma 5. If q ∼ q′ and q is a preamble state, then merge(M, q → q′) and M
are almost equivalent.

Proof. Let merge(M, q → q′) = (Q′, Σ, δ′, F ′). The set D = L(M)q , L(M)q′

is finite because q ∼ q′. We select � with � > ht(c) for every c ∈ D. Let
t ∈ TΣ be such that ht(t) ≥ � + |Q|. First we replace all subtrees t′ ∈ L(M)q

in t by just q. In this way, we obtain the tree u. Note that δ(t) = δ(u) and
ht(u) ≥ � because ht(t′) ≤ |Q| for all t′ ∈ L(M)q since q is a preamble state. Let
posq(u) = {w1, . . . , wn} with w1 < · · · < wn be the occurrences of q in u. For
each i ∈ [n], let ci = (u[q′]w1 · · · [q′]wi−1)[�]wi be the context obtained from u by
replacing the first i− 1 occurrences by q′ and the occurrence wi by �. Note that
ht(ci) = ht(u) ≥ �, which allows us to obtain

δ(t) = δ(u) = δ(c1[q]) = δ(c1[q
′]) = δ(c2[q]) = · · · = δ(cn[q

′])
†
= δ′(t) ,

where † holds because δ and δ′ coincide on all transitions not involving q. Con-
sequently, merge(M, q → q′) and M agree on all tall trees as desired. �

Example 6. Recall the dta Mex = (Q,Σ, δ, F) of Ex. 2. If we merge qβ into qγ ,
then we obtain the dta merge(Mex, qβ → qγ), which is (Q−{qβ}, Σ, δ′, F) where
δ′ returns ⊥ except that for every σ0, σ

′
0 ∈ Σ0 we have

δ′(α) = qα δ′(β) = qγ δ′(γ) = qγ

δ′(σ(qσ0 , qσ′
0
)) = qσ δ′(σ(qα, qσ)) = qσ . .

Now we can characterize hyper-minimality [2]. The characterization allows us to
easily determine whether M is hyper-minimal. Recall that a dta is minimal if
and only if it does not have two different, but equivalent states. The condition
for hyper-minimality is similar, but adds a restriction to preamble states.

Theorem 7. The minimal dta M is hyper-minimal if and only if every pair of
different, but almost equivalent states consists of only kernel states.

Proof. We start with the “only if”-direction. Suppose that there exist two dif-
ferent, but almost equivalent states q, q′ ∈ Q such that q is a preamble state.
Then M is not hyper-minimal because merge(M, q → q′) is strictly smaller and
almost equivalent to M by Lm. 5. For the converse, let N = (P,Σ, μ,G) be a
hyper-minimal dta that is strictly smaller (i.e., |P | < |Q|) and almost equivalent
to M . The product dta M ′ = (Q× P,Σ, δ × μ, F ×G) is given by

(δ × μ)(σ(〈q1, p1〉, . . . , 〈qk, pk〉)) = 〈δ(σ(q1, . . . , qk)), μ(σ(p1, . . . , pk))〉

for every σ ∈ Σk and 〈q1, p1〉, . . . , 〈qk, pk〉 ∈ Q × P . Since M is minimal, let
tq ∈ L(M)q for every q ∈ Q. If q ∈ Ker(M), then select tq such that ht(tq) ≥ |Q|2.
By the pigeon-hole principle with |P | < |Q|, there must exist different q1, q2 ∈ Q
and p ∈ P such that (δ × μ)(tq) = 〈q, p〉 for q ∈ {q1, q2}. Consequently, q1 ∼ q2
because L(M)q1 and L(N)p as well as L(M)q2 and L(N)p are almost equal by
Lm. 4. This in turn yields that q1 and q2 are kernel states of M by assumption.

Hyper-minimization for Deterministic Tree Automata 223

Algorithm 1. Structure of our dta hyper-minimization algorithm [2,8]
Require: a dta M
Return: an almost equivalent hyper-minimal dta

M ← Minimize(M) // complexity: O(�m log n)
2: K ← ComputeKernel(M) // complexity: O(�m)

∼ ← {〈q, q′〉 ∈ Q2 | L(M⊗)〈q,q′〉 is finite} // see Sect. 4
4: for all B ∈ (Q/∼) do

select qB ∈ B such that qB ∈ K if possible
6: for all q ∈ B −K do

M ← merge(M, q → qB) // complexity: O(1)
8: return M

Moreover, 〈q1, p〉 and 〈q2, p〉 are kernel states of M ′ by the selection of the ac-
cess trees with ht(tq1) ≥ |Q|2 ≤ ht(tq2) (because the trees tq1 and tq2 can be
pumped [5,6]). Now, for the sake of a contradiction, let c ∈ L(M)q1 , L(N)p.
Then {c[t] | t ∈ L(M ′)〈q1,p〉} ⊆ L(M) , L(N). Since 〈q1, p〉 is a kernel state
of M ′, the set L(M ′)〈q1,p〉 is infinite. This contradicts that M and N are almost
equivalent, so consequently, L(M)q1 , L(N)p = ∅, and L(M)q2 , L(N)p = ∅ in
the same manner. Thus, q1 and q2 are equivalent and q1 = q2 by the minimality
of M , which shows that the dta N cannot exist. �

Example 8. The dta Mex of Ex. 2 is not hyper-minimal since qβ ∼ qγ and both
states are preamble states (see Ex. 2). However, with a little effort we can show
that the dta merge(Mex, qβ → qγ) is hyper-minimal (see Ex. 6). .

4 Hyper-minimization

The previous results suggest a hyper-minimization algorithm, which we sketch
in Alg. 1. We work with the (potentially non-total) dta M = (Q,Σ, δ, F) now.
In addition, we let � = max rk(Σ), m = |dom(δ)|, and n = |Q|. Algorithm 1
simply determines the kernel states and the almost equivalence using methods
that we describe later. It then merges states (by simply changing a reference)
according to the conditions of Lm. 5, which guarantees that the result is almost
equivalent. Finally, Thm. 7 shows that the obtained dta is hyper-minimal.

Corollary 9 (of Lm. 5 and Thm. 7). Algorithm 1 returns a hyper-minimal
dta that is almost equivalent to M .

In Alg. 1 we use Minimize, which implements classical dta minimization [5,6,3]
in time O(�m logn) using an adaptation of Hopcroft’s algorithm [9,7]. The
procedure ComputeKernel computes the kernel states of M using any fast
algorithm for computing strongly connected components in a graph (e.g., Tar-
jan [16]). The next proposition shows the trivial problem translation.

Proposition 10. Ker(M) can be computed in time O(�m).

224 A. Jeż and A. Maletti

qσ ⊥

qα qβ qγ

Fig. 2. The graph derived from the dta of Ex. 2

Proof. We turn our dta M into the graph (Q,E), where

E = {(q, δ(t)) | t ∈ dom(δ), q ∈ states(t)} .

It is simple to observe that q ∈ Ker(M) if and only if it is reachable from a non-
trivial strongly connected component of the graph (Q,E) [see [8] for details]. �

Example 11. The kernel states of the dta Mex of Ex. 2 are {qσ,⊥}, which is
easily determined from the graph displayed in Fig. 2.

The final component is the identification of the almost equivalent states, which
also determines the overall run-time of our hyper-minimization algorithm. For
this final component, we use an adapted version of an algorithm from [1], which
is simple but not the fastest. In the next section, we sketch how the currently
fastest algorithms for dfa almost equivalence [4,8] can be adjusted to our dta
setting.

To simplify the presentation, we assume that δ(s) = ⊥ for the special to-
ken ⊥ /∈ Q if δ(s) is undefined. Note that we do not add ⊥ to Q, so we do not
make M total. In contrast, we just introduce a notational convenience.

Definition 12. The exclusive-or single-point self-product of M is the dta

M⊗ = (P ∪ P 2, Σ, δ ∪ δ′, F ′)

such that P = Q ∪ {⊥} with ⊥ /∈ Q,

– F ′ = {〈q, q′〉 | either q ∈ F or q′ ∈ F}, and
– for every σ ∈ Σk, i ∈ [k] and q, q′, q1, . . . , qk ∈ P

δ′(σ(c[〈q, q′〉])) = 〈δ(c[q]), δ(c[q′])〉 ,

where c = σ(q1, . . . , qi−1,�, qi+1, . . . , qk) and at least one of the δ-entries has
to be defined (i.e., Q ∩ {δ(c[q]), δ(c[q′])}
= ∅).

– δ′ is undefined otherwise. .
In other words, only the paired states in which one state is final and the other is
nonfinal are now final states in M⊗. The transitions on pairs run componentwise
with an explicit sink state component as long as at least one component is
still a “normal” state. This special treatment is necessary to correctly handle
partial dta.

Hyper-minimization for Deterministic Tree Automata 225

Proposition 13. We can construct M⊗ in time O(�mn).

Proof. Clearly, we can create the states in time O(n2). Since M is minimal, we
have n ≤ m, which yields O(n2) ⊆ O(mn). Clearly, for each transition in M ,
we construct at most O(�n) copies of that transition, which yields that we can
construct all transitions in time O(�mn), where we assume that transition look-
ups run in constant time. �

Example 14. Now we can handle the dta Mex of Ex. 2 as a partial dta. The
dta (Mex)⊗ is (Q ∪Q2, Σ, δ ∪ δ′, F ′), where

– F ′ = {〈qσ, qα〉, 〈qσ, qβ〉, 〈qσ,⊥〉, 〈qγ , qα〉, 〈qγ , qβ〉, 〈qγ ,⊥〉}sym, where Lsym is
the symmetric closure of L, and

– some interesting transitions of δ′ include

δ′(σ(〈qα, qβ〉, qσ)) = δ′(σ(qα, 〈qσ,⊥〉)) = 〈qσ,⊥〉
δ′(σ(〈qβ , qγ〉, qα)) = δ′(σ(〈qβ , qγ〉, qβ)) = δ′(σ(〈qβ , qγ〉, qγ)) = 〈qσ, qσ〉
δ′(σ(qα, 〈qβ , qγ〉)) = δ′(σ(qβ , 〈qβ , qγ〉)) = δ′(σ(qγ , 〈qβ , qγ〉)) = 〈qσ, qσ〉 . .

For the sake of the next theorem, we assume that M⊗ is total to avoid a distinc-
tion between ⊥ and undefinedness. It can easily be checked that the argument
also works for partial dta.

Theorem 15. L(M⊗)〈q,q′〉 is finite if and only if q ∼ q′ for every q, q′ ∈ Q.

Proof. Let M⊗ = (Q′, Σ, δ′, F ′). Clearly, δ′(c[〈q, q′〉]) = 〈δ(c[q]), δ(c[q′])〉 for ev-
ery c ∈ CΣ , which can be proven using standard induction. Now

c ∈ L(M⊗)〈q,q′〉 ⇐⇒ δ′(c[〈q, q′〉]) ∈ F ′ ⇐⇒ 〈δ(c[q]), δ(c[q′])〉 ∈ F ′

⇐⇒ either δ(c[q]) ∈ F or δ(c[q′]) ∈ F ⇐⇒ c ∈ L(M)q , L(M)q′ .

This strong correspondence shows the statement because the finiteness of either
set (L(M⊗)〈q,q′〉 or L(M)q , L(M)q′) implies the finiteness of the other and
L(M)q , L(M)q′ is finite if and only if q ∼ q′. �

The finiteness of L(M⊗)〈q,q′〉 for all states 〈q, q′〉 can be determined easily (using
standard algorithms) in linear time in the number of transitions of M⊗. Since
the number of transitions of M⊗ is O(�mn), we can obtain ∼ in time O(�mn).

Example 16. In the dta Mex of Ex. 2 we have qα
∼ qβ as demonstrated by the
recursive transitions for 〈qα, qβ〉 in Ex. 14. Moreso, qβ ∼ qγ because the language
L((Mex)⊗)〈qβ ,qγ〉 is finite (it contains only �). .

Since we already proved that Alg. 1 is correct and have now established the
run-time, we can state our main theorem.

Theorem 17. Hyper-minimization of M can be performed in time O(�mn).

Proof. We run Alg. 1, which runs in time O(�mn) because Line 3 runs in this
time bound as demonstrated in this section. Finally, Cor. 9 proves the algorithm’s
correctness. �

226 A. Jeż and A. Maletti

5 Discussion

In this section, we shortly discuss two minor issues. First, we demonstrate that
dta minimization can be reduced in linear time to dta hyper-minimization. In
the string case, this is achieved [8] with a new distinguished symbol that takes
every state back to the initial state, thus making all states kernel states. Since
we do not have a single initial state in a dta, we use a slightly different con-
struction. Let M = (Q,Σ, δ, F) be a dta that is not necessarily minimal. For
every q ∈ δ(Σ0), let −→q /∈ Σ be a new symbol of rank 1. Moreover, we use
the two new symbols → and �, which are of rank 0 and 1, respectively, and
a new state ı /∈ Q. We construct the dta M ′ = (Q ∪ {ı}, Σ′, δ′, F) such that

ı M
→

−→q1

−→qn

�

Fig. 3. Illustration

– Σ′ = Σ ∪ {−→q | q ∈ δ(Σ0)} ∪ {→,�},
– δ′(t) = δ(t) for all t ∈ dom(δ),
– δ′(→) = ı and δ′(�(ı)) = ı, and
– δ′(−→q (ı)) = q for all q ∈ δ(Σ0).
– All remaining transitions are undefined.

Clearly, M ′ can be constructed in linear time
in the size of M . The construction is illus-
trated in Fig. 3. Clearly, all reachable states in M ′ are kernel states. It is easy to
see that a dta in which all reachable states are kernel states is hyper-minimal if
and only if it is minimal. Consequently, we can hyper-minimize M ′ to obtain a
minimal dta M ′′ for L(M ′). From M ′′ we can obtain a minimal dta for L(M) by
dropping all transitions involving the newly introduced symbols. Thus, we have
reduced minimization to hyper-minimization, which shows that the complexity
of dta minimization is a lower bound on the complexity of hyper-minimization.

Second, we sketch an improved version of our hyper-minimization algorithm,
which uses the structure of the fastest dfa hyper-minimization algorithms [4,8].
First of all, we assume that M is total. We only present the computation of the
almost equivalence because only this part needs to be improved to obtain the
time bound O(�m logn), which is also the time complexity of the fastest dta
minimization algorithm [7]. Before we present the algorithm, we establish an
auxiliary result.

Proposition 18. Let M be minimal and q, q′ ∈ Q. We have q ∼ q′ if and only
if for each context c ∈ CΣ(Q) we have

– δ(c[q]) ∼ δ(c[q′]), and
– δ(c[q]) = δ(c[q′]) if states(c) ∩Ker(M)
= ∅.

Proof. The “only if” direction is a straightforward generalization of Lm. 3. For
the converse, we simply take the trivial context �. �
Proposition 18 shows that we need a completely new mechanism (compared to
the string case) to compute the successor states. We define the successor states,
where we keep two dta: (i) the original dta M0 to enforce the equality constraints
of the second item of Prop. 18 and (ii) a dta M obtained by successive merges
to capture the almost equivalence.

Hyper-minimization for Deterministic Tree Automata 227

Algorithm 2. Algorithm computing ∼.
Require: minimal dta M = (Q,Σ, δ, F)
Return: the almost equivalence ∼ represented as a partition

M0 ← M where M0 = (Q,Σ, δ0, F) // keep a copy of the input dta M
2: π(q) ← {q} for all q ∈ Q // trivial initial blocks

h ← ∅ // empty hash map of type h : QC → Q
4: I ← Q; P ← Q // states that need to be considered and current states

while I �= ∅ do
6: select q ∈ I and remove it from I

if HasValue(h, succM,M0
q) then

8: q′ ← Get(h, succM,M0
q) // retrieve state in bucket succM,M0

q of h
Swap(q′, q) if |π(q′)| ≥ |π(q)| // exchange roles of q′ and q

10: P ← P − {q′} // state q′ will be merged into q
I ← I ∪ {r ∈ P | t ∈ δ−1(q′), r ∈ states(t)} // add predecessors of q′ in P
to I

12: M ← merge′(M, q′ → q) // merge state q′ into q (do not remove q′)
π(q) ← π(q) ∪ π(q′) // q′ and q are almost equivalent

14: h ← Put(h, succM,M0
q , q) // store q in h under key succM,M0

q

return π

Definition 19. Let M0 = (Q,Σ, δ0, F) and M be dta. For every state q ∈ Q,
let succM,M0

q : C → Q be the mapping such that for every c ∈ C

succM,M0
q (c) =

{
δ0(c[q]) if states(c) ∩Ker(M)
= ∅
δ(c[q]) otherwise,

where C = {σ(q1, . . . , qi−1,�, qi+1, . . . , qk) | σ ∈ Σk, i ∈ [k], q1, . . . , qk ∈ Q}.

In other words, we compute with the original transition mapping δ0 for all transi-
tion contexts containing a kernel state and use the current transition mapping δ
for all other transition contexts. Let us attempt to explain Algorithm 2. Its over-
all structure is the same as in the string case [4,8]. We only changed the details
to suit the new needs in the dta case. Roughly speaking, the algorithm first
copies the input dta in order to have the original transition mapping available.
Then it creates a block for each state. In I it keeps a set of states that need to
be processed, and in P it stores the set of states that are still useful. Both are
initially Q and we also create a hash map h of type h : QC → Q, which initially
has no entries. Clearly, the key set of this hash map is highly complex. The algo-
rithm iteratively extracts a state q from I and computes its successors succM,M0

q .
It then looks succM,M0

q up in the hash-map h, and simply stores them in h if
they are so far unassociated. If the successors already have an entry in h, then
the algorithm extracts the state with the same successors from h, compares the
sizes of their respective blocks, and merges the state q′ belonging to the smaller
block into the one belonging to the bigger block. We use a variant of our merging
procedure here, which does not delete the state q′. It also updates the blocks to

228 A. Jeż and A. Maletti

reflect the merge, and it adds all states that have transitions leading to q′ to I
for processing because their successors have changed. The algorithm terminates
when the set I is empty. The time complexity of this algorithm can be analyzed
as in the string case [8]. Finally, its correctness still needs to be established.

References

1. Badr, A.: Hyper-minimization in O(n2). Int. J. Found. Comput. Sci. 20(4), 735–746
(2009)

2. Badr, A., Geffert, V., Shipman, I.: Hyper-minimizing minimized deterministic finite
state automata. RAIRO Theor. Inf. Appl. 43(1), 69–94 (2009)

3. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata: Techniques and applications (2007),
http://tata.gforge.inria.fr/

4. Gawrychowski, P., Jeż, A.: Hyper-minimisation Made Efficient. In: Královič, R.,
Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 356–368. Springer, Heidelberg
(2009)

5. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
6. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 3, ch. 1, pp. 1–68. Springer (1997)
7. Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimization

of tree automata. Theoret. Comput. Sci. 410(37), 3539–3552 (2009)
8. Holzer, M., Maletti, A.: An n log n algorithm for hyper-minimizing a (minimized)

deterministic automaton. Theoret. Comput. Sci. 411(38-39), 3404–3413 (2010)
9. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.

In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 189–196.
Academic Press (1971)

10. Hosoya, H.: Foundations of XML Processing: The Tree-Automata Approach. Cam-
bridge University Press (2011)

11. Knight, K.: Capturing practical natural language transformations. Machine Trans-
lation 21(2), 121–133 (2007)

12. Maletti, A.: Notes on hyper-minimization. In: Proc. 13th Int. Conf. Automata and
Formal Languages, pp. 34–49. Nyíregyháza College (2011)

13. Maletti, A., Quernheim, D.: Hyper-minimisation of deterministic weighted finite
automata over semifields. In: Proc. 13th Int. Conf. Automata and Formal Lan-
guages, pp. 285–299. Nyíregyháza College (2011)

14. Maletti, A., Quernheim, D.: Optimal hyper-minimization. Int. J. Found. Comput.
Sci. 22(8), 1877–1891 (2011)

15. Schewe, S.: Beyond hyper-minimisation — minimising DBAs and DPAs is NP-
complete. In: Proc. 30th Int. Conf. Foundations of Software Technology and Theo-
retical Computer Science. LIPIcs, vol. 8, pp. 400–411. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2010)

16. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Com-
put. 1(2), 146–160 (1972)

17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, ch. 2, pp. 41–110. Springer (1997)

 http://tata.gforge.inria.fr/

On the State and Computational Complexity

of the Reverse of Acyclic Minimal DFAs

Galina Jirásková 1,� and Tomáš Masopust 2,��

1 Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovak Republic

jiraskov@saske.sk
2 Institute of Mathematics, Academy of Sciences of the Czech Republic

Žižkova 22, 616 62 Brno, Czech Republic
masopust@math.cas.cz

Abstract. We study the state complexity of the reverse of acyclic min-
imal deterministic finite automata, and the computational complexity of
the following problem: Given an acyclic minimal DFA, is the minimal
DFA for the reverse also acyclic? Note that we allow self-loops in acyclic
automata. We show that there exists a language accepted by an acyclic
minimal DFA such that the minimal DFA for its reverse is exponential
with respect to the number of states, and we establish a tight bound
on the state complexity of the reverse of acyclic DFAs. We also give a
direct proof of the fact that the minimal DFA for the reverse is acyclic if
and only if the original acyclic minimal DFA satisfies a certain structural
property, which can be tested in quadratic time.

1 Introduction

The reverse of a machine or of a language is one of the classical operations
in automata and formal language theory. However, in comparison with other
operations, such as the boolean operations, the descriptional complexity of the
reverse of regular languages is exponential in the worst case with respect to
the number of states of minimal deterministic finite automata (DFAs). This
paper demonstrates that this also holds true for a subclass of regular languages
accepted by acyclic minimal DFAs. To prevent confusion with DFAs accepting
only finite languages, it is important to explain here that we allow self-loops in
acyclic automata. Thus, the notion of acyclic stands for automata without cycles
of length two or more. This definition is adapted from the literature [7,15,16,18].

The first part of this paper studies the state complexity of the reverse of
acyclic minimal DFAs, and proves that the tight bound for this subclass is 2n−1,
where n is the number of states of the input acyclic DFA. This bound can be met
by an acyclic DFA over a ternary alphabet with a dead state, or by an acyclic
DFA over a growing alphabet without the dead state. It remains open whether

� Research supported by VEGA grant 2/0183/11 and by grant APVV-0035-10.
�� Research supported by the GAČR grant P202/11/P028, and by RVO: 67985840.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 229–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

230 G. Jirásková and T. Masopust

or not the upper bound can be met by an acyclic DFA over a binary alphabet
independently on the presence of the dead state, as well as by an acyclic DFA
over a fixed alphabet that has no dead state.

The exponential blow-up of states for this operation motivates the following
computational complexity problem: Given an acyclic minimal DFA accepting a
regular language, is the minimal DFA for the reverse of the language also acyclic?
Surprisingly, the answer to this question depends only on a certain structural
property of the input automaton which can be tested by a known algorithm with
a quadratic-time complexity with respect to the size of the input automaton. This
means that we do not need to compute the whole automaton for the reverse to
answer the question. Although this result can be derived from other results
concerning piecewise testable languages, as discussed in the conclusions, as far
as the authors know it has never been proved directly in this context. Therefore,
in the second part of this paper, we prefer to present a direct proof of the fact
that the reverse is acyclic if and only if the original minimal acyclic automaton
satisfies a structural property discussed below.

This problem can be generalized to many other operations and types of au-
tomata. It deserves attention especially in the case of operations that are of
interest in practical applications and have exponential state complexity, such as
projections or abstractions for DFAs [1,6,8,9].

2 Preliminaries and Definitions

The cardinality of a set Σ is denoted by |Σ|. An alphabet is a finite non-empty
set. The free monoid generated by an alphabet Σ is denoted by Σ∗. A string
over Σ is any element of Σ∗. The empty string (the identity of Σ∗) is denoted
by ε. The length of a string w is denoted by |w|. A language over Σ is any subset
of Σ∗.

A nondeterministic finite automaton (NFA) is a 5-tuple N = (Q,Σ, δ,Q0, F),
where Q is a finite non-empty set of states, Σ is an input alphabet, Q0 ⊆ Q is
the set of initial states, F ⊆ Q is the set of final states, and δ : Q×Σ → 2Q is a
transition function which can be inductively extended to the domain 2Q × Σ∗.
The language accepted by N is defined as the set L(N) = {w ∈ Σ∗ | δ(Q0, w) ∩
F
= ∅}.

An NFA N = (Q,Σ, δ,Q0, F) is a complete deterministic finite automaton
(DFA) if |Q0| = 1, and |δ(q, a)| = 1 for each state q in Q and each input symbol
a in Σ. In that case, we identify singleton sets of states with their elements,
that is, we write q for a singleton set {q}. Moreover, we consider the transition
function δ to be a total mapping from Q×Σ to Q that can be extended to the
domain Q×Σ∗.

Two states of a DFA are distinguishable if there exists a string w which is
accepted from one of the states and rejected from the other one. Otherwise, the
two states are equivalent. A DFA is minimal if all its states are reachable from
the initial state, and no two different states are equivalent. A DFA is acyclic if all
strongly connected components [4] of the directed graph of the DFA are trivial,

On the Complexity of the Reverse of Acyclic Minimal DFAs 231

that is, they consist only of one element [7,15,16,18]. Note that this definition
allows self-loops.

The subset automaton corresponding to an NFA N = (Q,Σ, δ,Q0, F) is the
DFA N ′ = (2Q, Σ, δ′, Q0, F

′), in which F ′ = {R ⊆ Q | R∩F
= ∅} and δ′(R, a) =
δ(R, a) for each set R in 2Q and each symbol a in Σ. The subset automaton N ′

accepts the same language as the automaton N , but it need not be minimal
since some of its states may be unreachable or equivalent.

The reverse wR of a string w is inductively defined as follows: εR = ε and
(va)R = avR for a string v in Σ∗ and a symbol a in Σ. The reverse of a language
L is the language LR = {wR | w ∈ L}. The reverse of a DFAM = (Q,Σ, δ, q0, F)
is the NFA MR obtained from M by reversing all the transitions and by swap-
ping the role of the initial and final states, that is, MR = (Q,Σ, δR, F, {q0}),
where δR(q, a) = {p ∈ Q | δ(p, a) = q}. It is known that the states of the subset
automaton corresponding to the reverse of a minimal DFA are pairwise distin-
guishable [2,3,11]. For the sake of completeness, we give a short proof of this fact
here.

Lemma 1 ([2,3,11]). All distinct states of the subset automaton corresponding
to the reverse of a minimal DFA are pairwise distinguishable.

Proof. Let MR be the reverse of a minimal DFA M . Let q be an arbitrary state
of the NFAMR. Since state q is reachable inM , there exists a string wq accepted
by MR from q. Furthermore, the string wq is not accepted from any other state
of MR; otherwise, there would be two distinct computations of the DFA M on
the string wR

q . It follows that the states of the subset automaton corresponding

to MR are pairwise distinguishable since two distinct subsets of the state set of
MR must differ in a state q, and therefore the two subsets are distinguished by
the string wq. �

3 Main Results

This section presents the main results of this paper. First, we show that the
worst-case state complexity of the reverse of a language represented by a minimal
acyclic DFA is exponential in the number of states of the DFA. As a consequence
of this result, we get that the direct construction of the minimal automaton
for the reverse may be computationally unfeasible. This motivates the study of
structural properties that would be helpful in deciding the question whether or
not the minimal DFA for the reverse of a language is acyclic, if the language
is represented by a minimal acyclic DFA. We prove that the acyclicity of the
minimal DFA for the reverse is equivalent to a structural property testable in
quadratic time.

Recall that in the general case, the worst-case state complexity of the reverse
of a language represented by an n-state DFA is 2n [5,10,11,12,19]. Our next
result shows that for acyclic DFAs, the upper bound on the state complexity of
the reverse is 2n−1.

232 G. Jirásková and T. Masopust

Fig. 1. The minimal acyclic DFA with the exponential reverse

Lemma 2. Let M be an acyclic minimal DFA with n states. Then the minimal
DFA accepting the reverse of the language L(M) has no more than 2n−1 states.

Proof. Let M = (Q,Σ, δ, q0, F) be an n-state acyclic minimal DFA, and con-
struct the NFA MR for the reverse by swapping the role of the initial and final
states, and by reversing all transitions. As M is acyclic, we can topologically
order its states from left to right so that no transition goes from right to left.
Let q be the rightmost state in this order. Since M is complete, q has self-loops
under all symbols from Σ. If q is not final, it is the dead state of M , and we can
remove it before constructing MR, that is, the subset automaton corresponding
to MR has no more than 2n−1 states. On the other hand, if q is final, it ap-
pears because of the self-loops in all reachable states of the subset automaton
corresponding to MR. This again gives the upper bound 2n−1 on the number of
states. The proof is complete. �

The following results show that the upper bound is tight.

Lemma 3. There exists an acyclic minimal DFA M with n states over the
alphabet {a, b, c} such that the minimal DFA accepting the reverse of the language
L(M) has 2n−1 states.

Proof. Consider the DFA shown in Fig. 1. To construct its reverse, omit the dead
state d, make state qn−2 initial and state q0 final, and reverse all the transitions.
To simplify the proof, rename the states of the resulting NFA as shown in Fig. 2.
We show that each subset of {0, 1, . . . , n− 2} is reachable in the corresponding
subset automaton.

Fig. 2. The reverse of the DFA shown in Fig. 1; states renamed for the simplicity of
the proof

On the Complexity of the Reverse of Acyclic Minimal DFAs 233

Fig. 3. The minimal acyclic DFA without the dead state with the exponential reverse

The proof is by induction on the size of subsets. Each singleton set {i} is
reached from the initial state {0} by ci. Each subset {i1, i2, . . . , ik} of size k,
where 2 ≤ k ≤ n− 1 and 0 ≤ i1 < i2 < · · · < ik ≤ n− 2, is reached from the set
{0, i3 − i2, i4 − i2, . . . , ik − i2} of size k − 1 by the string abi2−i1−1ci1 since

{0, i3 − i2, i4 − i2, . . . , ik − i2} a−→

{0, 1, i3 − i2 + 1, i4 − i2 + 1, . . . , ik − i2 + 1} bi2−i1−1

−→

{0, i2 − i1, i3 − i1, i4 − i1, . . . , ik − i1}
ci1−→ {i1, i2, i3, i4, . . . , ik} .

This gives 2n−1 reachable states of the subset automaton, which are all pair-
wise distinguishable by Lemma 1. �

Note that the bound 2n−1 in the previous lemma follows naturally from the
presence of the dead state, which is ignored in the construction of the reversed
automaton. The next lemma shows, however, that the bound 2n−1 can also be
met by an acyclic DFA without the dead state, but in this case we need an
alphabet of exponential cardinality in comparison with the number of states,
and it is not known whether the cardinality can be fixed.

Lemma 4. There exists an acyclic minimal n-state DFA M without the dead
state over a growing alphabet such that the minimal DFA accepting the reverse
of the language L(M) has 2n−1 states.

Proof. Let Σn = {a} ∪ {bS | S ⊆ {1, 2, . . . , n} and n ∈ S} be an alphabet con-
sisting of a symbol a, and 2n−1 symbols bS – one for each subset S of {1, 2, . . . , n}
with n ∈ S.

Define an n-state acyclic DFA M over Σn with the state set {1, 2, . . . , n},
where 1 is the initial state and n is the sole final state. By symbol a, state n goes
to itself, and every other state i goes to state i+1. By symbol bS , every state in
S goes to state n, and every other state goes to itself. Fig. 3 demonstrates this
construction for n = 3.

In the subset automaton corresponding to the reverse of the DFA M , each
subset S of {1, 2, . . . , n} containing state n is reached from the initial state {n}
by the symbol bS . By Lemma 1, all these states are pairwise distinguishable, and
the lemma follows. �

As a consequence of the previous three lemmata we get the following result.

234 G. Jirásková and T. Masopust

Theorem 1. Let L be a language accepted by an acyclic minimal DFA with n
states. Then the minimal DFA accepting the reverse of the language L has at
most 2n−1 states. The bound is met by a ternary acyclic DFA with the dead
state, or by an acyclic DFA over a growing alphabet without the dead state. �

Now we turn to the problem whether the minimal DFA for the reverse of an
acyclic minimal DFA is also acyclic. Theorem 1 implies that it may be com-
putationally unfeasible to directly construct the minimal DFA for the reverse.
Therefore, we study structural properties of acyclic minimal DFAs to solve the
problem. To this end, we need several definitions.

For two states p and q of a DFA M = (Q,Σ, δ, q0, F), we write p ≺ q if p
= q
and state q is reachable from state p, that is, there exists a string w in Σ∗ such
that q = δ(p, w). A state p is called maximal if there exists no state q such that
p ≺ q. Denote by Σ(q) the set of all symbols appearing on the self-loops of state
q, that is, Σ(q) = {a ∈ Σ | δ(q, a) = q}.

Let Σi ⊆ Σ and δi be the restriction of the transition function δ of the DFA
M to the domain Q × Σi. Denote by Γ (Σi) the directed graph obtained from
the deterministic automaton (Q,Σi, δi, q0, F) by ignoring the labels of edges and
eliminating the multi-edges. A connected component of the directed graph Γ (Σi)
with respect to a node q is the set of all nodes which are connected with q by a
path disregarding the orientation of edges.

The following theorem characterizes the structural property which will be
useful to derive the polynomial-time algorithm testing acyclicity of the reversed
automaton. Although this result can be indirectly derived from other results con-
cerning piecewise testable languages, as discussed in the conclusions, we prefer
to give a direct proof of this fact here.

Theorem 2. Let M be an acyclic minimal DFA. The minimal DFA accepting
the reverse of the language L(M) is acyclic if and only if for each state p of M ,
the connected component of the graph Γ (Σ(p)) containing state p has a unique
maximal state with respect to the relation ≺.

Proof. Let M = (Q,Σ, δ, q0, F) be an acyclic minimal DFA and assume that the
minimal DFA for the reverse, denoted by

M ′ = (Q′, Σ, δ′, F, {R ⊆ Q | q0 ∈ R}) ,

where Q′ ⊆ 2Q, is acyclic. The DFA M ′ is obtained from M by setting F to
be the set of initial states, reversing all the transitions, converting the obtained
NFA to a DFA, and minimizing the DFA. Each subset containing the initial state
q0 of M is set to be a final state of M ′.

Assume that M ′ is acyclic. For the sake of contradiction, assume that there
exists a state p in Q such that the connected component of the graph Γ (Σ(p))
containing state p has two distinct maximal states. Since state p is a maximal
state of this component, there exists a state q in that component that is maximal
and different from p. The DFA M is acyclic, thus either p
≺ q or q
≺ p. Without
loss of generality, we assume that q
≺ p. Then, there exist a state r in Q and two

On the Complexity of the Reverse of Acyclic Minimal DFAs 235

strings u, v in Σ(p)∗ such that δ(r, u) = p and δ(r, v) = q. Since M is minimal,
states p and q are distinguished by a string w in Σ∗. Let w be accepted from p
and rejected from q as depicted in Fig. 4; the other case is symmetric.

Fig. 4. Two maximal states p and q of the component Γ (Σ(p)) containing p

Consider the computation of M ′ on the string

wR uR vR uR vR uR vR uR vR . . . ,

and let the computation be

F
wR

→ Z
uR

→ X1
vR

→ Y1
uR

→ X2
vR

→ Y2 · · · .

Since w is accepted by M from p but rejected from q, state p is in Z but q is
not. Moreover, since p has a loop on each symbol in Σ(p), it occurs in every Xi

and Yi. Now, consider the state r. It occurs in every set Xi since p goes to r by
uR in M ′. However, r does not occur in any Yi because otherwise we would have

r
v→ q

uvuvuv···uvu−→ q
w→ f

in M for a final state f of M ; thus, string w would be accepted from state q,
which is a contradiction. Now consider a sequence X1, Y1, X2, Y2, . . . of subsets
of the states of M . Since we only have a finite number of such subsets, there
exists a cycle in this sequence. Let X and X ′ be two consecutive subsets on this
cycle. Then state r is in exactly one of X and X ′. Without loss of generality, let
r ∈ X . Since M is minimal, state r is reached in M from the initial state q0 by a
string x ∈ Σ∗. It follows that xR is accepted from X in M ′. On the other hand,
since M is deterministic and r /∈ X ′, string xR is not accepted from X ′ in M ′.
Thus X and X ′ are not equivalent, and therefore the cycle is not a self-loop.
This contradicts our assumption that M ′ is acyclic.

To prove the converse implication, assume that for each state p of M , the
connected component of the graph Γ (Σ(p)) containing p has a unique maximal
state with respect to the relation ≺. For the sake of contradiction, assume that

236 G. Jirásková and T. Masopust

there exists a cycle of length at least two in the DFA M ′. Let S and T be two
different sets on this cycle. Without loss of generality, we can assume that there
exists a state r in M with r /∈ S and r ∈ T . Assume that S goes to T by a
string u, and T goes to S by a string v on the cycle in M ′, see Fig. 5. For i ≥ 0,
let pi = δ(r, uR(vRuR)i) be the states of M reached from the state r by strings
uR(vRuR)i. Then all the states pi belongs to S. Since M is acyclic, there exists
j such that pj goes to itself on each symbol occurring in uv, denoted by Σ(uv).
Since pj is in S and goes to itself on each symbol from Σ(uv), it is also in T .
Denote p = pj . Then p is maximal with respect to Σ(uv). Now the aim is to find
another maximal state in the connected component of Γ (Σ(uv)) containing p.

To this aim, let si = δ(r, vR(uRvR)i) for i ≥ 0. Since M is acyclic, there exists
an index k such that sk goes to itself on each symbol from Σ(uv). Set q = sk.
State q is in the same connected component as p since both p and q are reached
from r in M . We need to show that q
= p. Assume to the contrary that q = p.
Then state r is reached in M ′ from state p by the string (vu)kv. Since state p is
in T , state r is in S, which is a contradiction. Hence states p and q are distinct
maximal states in the same connected component of the graph Γ (Σ(uv)). Since
M is acyclic, either p
≺ q or q
≺ p. Assume that q
≺ p, and consider the graph
Γ (Σ(p)). Then Γ (Σ(uv)) ⊆ Γ (Σ(p)), state p is maximal with respect to Σ(p),
and states p and q are connected in the graph Γ (Σ(p)). State q or a successor
of q is maximal in the same connected component of Γ (Σ(p)), but it is different
from p because q
≺ p. �

Now we demonstrate this technique on the following example.

Example 1. Consider the minimal DFA depicted in Fig. 6 (left). We have Σ(1) =
{a, b}. Fig. 6 (right) shows the graph Γ (Σ(1)). The only connected component
of Γ (Σ(1)) has two maximal states, namely 1 and d. By Theorem 2, the minimal
DFA accepting the reverse of the language accepted by the DFA in Fig. 6 (left)
has a cycle, as shown in Fig. 7. �

Notice that this technique requires to consider complete minimal DFAs and it
works neither for incomplete DFAs nor for complete DFAs that are not mini-
mal. The previous example does not work if we ignore the dead state. In addi-
tion, in the case of non-minimal automata, we can have two different maximal
accepting/non-accepting states that can be equivalent.

The condition whether for each state p of M , the connected component of
Γ (Σ(p)) containing state p has a unique maximal state with respect to the

Fig. 5. A cycle in the minimal DFA M ′ for the reverse

On the Complexity of the Reverse of Acyclic Minimal DFAs 237

Fig. 6. An acyclic DFA and its graph Γ (Σ(1))

Fig. 7. The minimal DFA for the reverse of the language accepted by the DFA in Fig. 6
(left)

relation ≺ can be tested using the algorithm presented by Trahtman [18]. The
algorithm runs in time O(n2), where n is the sum of the number of states and the
number of transitions in M . As a consequence, we have the following theorem.

Theorem 3. Let M be an acyclic minimal deterministic finite automaton with
m states and k transitions. Let n = mk. There exists an algorithm solving the
problem of acyclicity of the minimal deterministic automaton for the reverse of
the language L(M) in time O(n2). �

4 Conclusions

We discussed the state complexity of acyclic minimal DFAs, and the problem of
deciding whether or not the minimal DFA for the reverse of a language is acyclic
if the language is represented by an acyclic minimal DFA. We showed that the
minimal DFA for the reverse is acyclic if and only if the minimal acyclic DFA
for the original language possesses a special structural property. This property
can be tested in quadratic time using the result of Trahtman [18], even though
the construction of the minimal DFA for the reverse may be exponential.

We could also ask the opposite question: Is there a structural property ensur-
ing that the minimal DFA for the reverse of a language is acyclic if the language
is represented by a minimal DFA with a cycle? As far as the authors know, this

238 G. Jirásková and T. Masopust

question is open. Let us also mention that the work by Trahtman is motivated
by the investigation of a proper subclass of the class of regular languages, the
class of so-called piecewise testable languages introduced by Simon in [13].

A piecewise testable language over an alphabet A is a finite boolean com-
bination of languages of the form A∗a1A

∗a2A
∗ . . . A∗akA

∗, where k ≥ 0 and
ai ∈ A. Simon [14] characterized piecewise testable languages as the class of
languages with J -trivial syntactic monoids, see also Stern [15]. Stern suggested
a polynomial-time algorithm of order O(n5) deciding whether or not a regular
language is piecewise testable in [16]. Trahtman [18] improved this result by
presenting an algorithm running in time quadratic in the size of the input, and
provided a package TESTAS implementing the algorithm in [17].

Recently, Polák and Kĺıma [7] have mentioned another method for the veri-
fication of piecewise testability of a regular language. However, this method is
based on the construction of a so-called biautomaton, which requires both the
minimal DFA for a language and the minimal DFA for its reverse. According
to Theorem 3, this construction may be unfeasible because of the complexity
reasons.

Acknowledgements. The authors gratefully acknowledge useful suggestions
and comments of the anonymous referees.

References

1. Boutin, O., Komenda, J., Masopust, T., Schmidt, K., van Schuppen, J.H.: Hier-
archical control with partial observations: Sufficient conditions. In: Proc. of IEEE
Conference on Decision and Control and European Control Conference (CDC-ECC
2011), Orlando, Florida, USA, pp. 1817–1822 (2011)

2. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for def-
inite events. In: Proc. of the Symposium on Mathematical Theory of Automata.
MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Institute of Brooklyn, New
York (1963)

3. Champarnaud, J.M., Khorsi, A., Paranthoën, T.: Split and join for minimizing:
Brzozowski’s algorithm, http://jmc.feydakins.org/ps/c09psc02.ps

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

5. Jirásková, G., Šebej, J.: Note on Reversal of Binary Regular Languages. In: Holzer,
M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 212–221.
Springer, Heidelberg (2011)

6. Jirásková, G., Masopust, T.: On a structural property in the state complexity
of projected regular languages. Theoretical Computer Science (in press, 2012),
doi:10.1016/j.tcs.2012.04.009

7. Kĺıma, O., Polák, L.: On biautomata. In: Proc. of NCMA 2011. books@ocg.at,
vol. 282, pp. 153–164. Austrian Computer Society (2011)

8. Komenda, J., Masopust, T., van Schuppen, J.H.: Synthesis of controllable and
normal sublanguages for discrete-event systems using a coordinator. Systems &
Control Letters 60(7), 492–502 (2011)

http://jmc.feydakins.org/ps/c09psc02.ps

On the Complexity of the Reverse of Acyclic Minimal DFAs 239

9. Komenda, J., Masopust, T., van Schuppen, J.H.: Supervisory control synthesis of
discrete-event systems using a coordination scheme. Automatica 48(2), 247–254
(2012)

10. Leiss, E.: Succinct representation of regular languages by boolean automata. The-
oretical Computer Science 13, 323–330 (1981)

11. Mirkin, B.G.: On dual automata. Kibernetika 2, 7–10 (1966) (in Russian); English
translation: Cybernetics 2, 6–9 (1966)

12. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theoretical Computer Science 320, 315–329 (2004)

13. Simon, I.: Hierarchies of Events with Dot-Depth One. Ph.D. thesis, Dep. of Applied
Analysis and Computer Science, University of Waterloo, Canada (1972)

14. Simon, I.: Piecewise Testable Events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

15. Stern, J.: Characterizations of some classes of regular events. Theoretical Computer
Science 35, 17–42 (1985)

16. Stern, J.: Complexity of some problems from the theory of automata. Information
and Control 66(3), 163–176 (1985)

17. Trahtman, A.N.: A Package TESTAS for Checking Some Kinds of Testability. In:
Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 228–232.
Springer, Heidelberg (2003)

18. Trahtman, A.N.: Piecewise and Local Threshold Testability of DFA. In: Freivalds,
R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 347–358. Springer, Heidelberg (2001)

19. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)

Implementing Computations

in Automaton (Semi)groups

Ines Klimann, Jean Mairesse, and Matthieu Picantin

Univ Paris Diderot, Sorbonne Paris Cité, LIAFA, UMR 7089 CNRS, Paris, France
{klimann,mairesse,picantin}@liafa.univ-paris-diderot.fr

Abstract. We consider the growth, order, and finiteness problems for
automaton (semi)groups. We propose new implementations and compare
them with the existing ones. As a result of extensive experimentations, we
propose some conjectures on the order of finite automaton (semi)groups.

Keywords: automaton (semi)groups, growth, order, finiteness, mini-
mization.

1 Introduction

Automaton (semi)groups — short for semigroups generated by Mealy automata
or groups generated by invertible Mealy automata — were formally introduced
a half century ago (for details, see [10,7] and references therein). Over the years,
important results have started revealing their full potential. For instance, the
article [9] constructs simple Mealy automata generating infinite torsion groups
and so contributes to the Burnside problem, and, the article [5] produces Mealy
automata generating the first examples of (semi)groups with intermediate growth
and so answers the Milnor problem.

The classical decision problems have been investigated for such (semi)groups.
The word problem is solvable using standard minimization techniques, while the
conjugacy problem is undecidable [16]. Here we concentrate on the problems
related to growth, order, and finiteness.

1 3

2

3 |2 3 |2

1 |1
2 |3

1 |1
2 |1

1 |1
2 |2
3 |2

1 2 3

1 |3
2 |2
3 |1

3 |1

1 |3
2 |2

1 |2
2 |3
3 |1

Fig. 1. A Mealy automaton and its dual

To illustrate, consider the two Mealy automata of Fig. 1. They are dual, that
is, they can be obtained one from the other by exchanging the roles of stateset
and alphabet. A (semi)group is associated in a natural way with each automaton

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 240–252, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Implementing Computations in Automaton (Semi)groups 241

(formally defined below). The two Mealy automata of Fig. 1 are associated with
finite (semi)groups. Their orders are respectively: on the left a semigroup of
order 234, on the right a group of order 1 494 186 269 970 473 680 896 = 264 ·34 ≈
1.5× 1021.

Several points are illustrated by this example:

– An automaton and its dual generate (semi)groups which are either both
finite or both infinite (see [12,2]).

– The order of a finite automaton (semi)group can be amazingly large. It makes
a priori difficult to decide whether an automaton (semi)group is finite or not.
Actually, the decidability of this question is open (see [10,2]).

– The order of the (semi)groups generated by a Mealy automaton and its dual
can be strikingly different. It suggests to work with both automata together.

The contributions of the present paper are three-fold:
– We propose new implementations (in GAP [8]) of classical algorithms for the

computation of the growth function; the computation of the order (if finite);
the semidecision procedure for the finiteness.

– We compare the new implementations with the existing ones. Indeed, there ex-
ist twoGAP packagesdedicated toMealy automata and their associated (semi)
groups: FR by Bartholdi [4] and automgrp by Muntyan and Savchuk [11].

– We realize systematic experimentations on small Mealy automata as well
as randomly chosen large Mealy automata. These serve as testbeds to some
conjectures on the growth types of the associated (semi)groups, as well as
on the order of a (semi)group.

The structure of the paper is the following. In Section 2, we present basic notions
on Mealy automata and automaton (semi)groups. In Section 3, we give new
implementations and compare them with the existing ones. Section 4 is dedicated
to experimentations and to the resulting conjectures.

2 Automaton (Semi)groups

2.1 Mealy Automaton

If one forgets initial and final states, a (finite, deterministic, and complete)
automaton A is a triple

(
A,Σ, δ = (δi : A → A)i∈Σ

)
, where the set of states A

and the alphabet Σ are non-empty finite sets, and where the δi’s are functions.

A Mealy automaton is a quadruple(
A,Σ, δ = (δi : A→ A)i∈Σ , ρ = (ρx : Σ → Σ)x∈A

)
,

such that both (A,Σ, δ) and (Σ,A, ρ) are automata. In other terms, a Mealy
automaton is a letter-to-letter transducer with the same input and output al-
phabets. The transitions of a Mealy automaton are

x
i|ρx(i)−−−−→ δi(x) .

242 I. Klimann, J. Mairesse, and M. Picantin

The graphical representation of a Mealy automaton is standard, see Fig. 1.

The notation x
u|v−−→ y with u = u1 · · ·un, v = v1 · · · vn is a shorthand for the

existence of a path x
u1|v1−−−→ x1

u2|v2−−−→ x2 −→ · · · −→ xn−1
un|vn−−−−→ y in A.

In a Mealy automaton (A,Σ, δ, ρ), the sets A andΣ play dual roles. So we may
consider the dual (Mealy) automaton defined by d(A) = (Σ,A, ρ, δ), that is:

i
x|y−−→ j ∈ d(A) ⇐⇒ x

i|j−→ y ∈ A .

It is pertinent to consider a Mealy automaton and its dual together, that is to
work with the pair {A, d(A)}, see an example in Fig. 1.

Let A = (A,Σ, δ, ρ) and B = (B,Σ, γ, π) be two Mealy automata acting on
the same alphabet; their product A×B is defined as the Mealy automaton with
stateset A×B, alphabet Σ, and transitions:

xy
i|πy(ρx(i))−−−−−−−→ δi(x)γρx(i)(y) .

2.2 Generating (Semi)groups

Let A = (A,Σ, δ, ρ) be a Mealy automaton. We view A as an automaton with an
input and an output tape, thus defining mappings from input words over Σ to
output words over Σ. Formally, for x ∈ A, the map ρx : Σ∗ → Σ∗, extending ρx :
Σ → Σ, is defined by:

ρx(u) = v if ∃y, x u|v−−→ y .

By convention, the image of the empty word is itself. The mapping ρx is length-
preserving and prefix-preserving. It satisfies

∀u ∈ Σ, ∀v ∈ Σ∗, ρx(uv) = ρx(u)ρδu(x)(v) .

We say that ρx is the production function associated with (A, x). For x =
x1 · · ·xn ∈ An with n > 0, set ρx : Σ∗ → Σ∗, ρx = ρxn ◦ · · · ◦ ρx1 .

Denote dually by δi : A
∗ → A∗, i ∈ Σ, the production mappings associated

with the dual Mealy automaton d(A). For v = v1 · · · vn ∈ Σn with n > 0, set
δv : A∗ → A∗, δv = δvn ◦ · · · ◦ δv1 .

Definition 1. Consider a Mealy automaton A. The semigroup of mappings
from Σ∗ to Σ∗ generated by ρx, x ∈ A, is called the semigroup generated by A

and is denoted by 〈A〉+. A semigroup G is an automaton semigroup if there
exists a Mealy automaton A such that G = 〈A〉+.

A Mealy automaton A = (A,Σ, δ, ρ) is invertible if all the mappings ρx : Σ → Σ
are permutations. Then the production functions ρx : Σ∗ → Σ∗ are invertible.

Definition 2. Let A = (A,Σ, δ, ρ) be invertible. The group generated by A is
the group generated by the mappings ρx : Σ∗ → Σ∗, x ∈ A. It is denoted by 〈A〉.

Implementing Computations in Automaton (Semi)groups 243

Let A = (A,Σ, δ, ρ) be an invertible Mealy automaton. Its inverse is the Mealy
automaton A−1 with stateset A−1 = {x−1, x ∈ A} and set of transitions

x−1 j|i−→ y−1 ∈ A−1 ⇐⇒ x
i|j−→ y ∈ A .

A Mealy automaton is reversible if its dual is invertible. A Mealy automaton A

is bireversible if both A and A−1 are invertible and reversible.

Theorem 1 ([2,12,13]). The (semi)group generated by a Mealy automaton is
finite if and only if the (semi)group generated by its dual is finite.

2.3 Minimization and the Word Problem

Let A = (A,Σ, δ, ρ) be a Mealy automaton. The Nerode equivalence on A is the
limit of the sequence of increasingly finer equivalences (≡k) recursively defined
by:

∀x, y ∈ A, x ≡0 y ⇐⇒ ρx = ρy ,

∀k � 0, x ≡k+1 y ⇐⇒ x ≡k y and ∀i ∈ Σ, δi(x) ≡k δi(y) .

Since the set A is finite, this sequence is ultimately constant; moreover if two con-
secutive equivalences are equal, the sequence remains constant from this point.
The limit is therefore computable. For every element x in A, we denote by [x]
the class of x w.r.t. the Nerode equivalence.

Definition 3. Let A = (A,Σ, δ, ρ) be a Mealy automaton and let ≡ be the
Nerode equivalence on A. The minimization of A is the Mealy automaton m(A) =
(A/≡, Σ, δ̃, ρ̃), where for every (x, i) in A×Σ, δ̃i([x]) = [δi(x)] and ρ̃[x] = ρx.

This definition is consistent with the standard minimization of “determinis-
tic finite automata” where instead of considering the mappings (ρx : Σ →
Σ)x, the computation is initiated by the separation between terminal and non-
terminal states. Using Hopcroft algorithm, the time complexity of minization is
O(ΣA logA), see [1].

By construction, a Mealy automaton and its minimization generate the same
semigroup. Indeed, two states of a Mealy automaton belong to the same class
w.r.t the Nerode equivalence if and only if they represent the same element in
the generated (semi)group.

Consider the word problem:

Input: a Mealy automaton (A,Σ, δ, ρ); x,y ∈ A∗.
Question: (ρx : Σ∗ → Σ∗) = (ρy : Σ∗ → Σ∗)?

The word problem is solvable by extending the above minimization procedure.
FR uses this approach, while automgrp uses a method based on the wreath re-
cursion [7].

244 I. Klimann, J. Mairesse, and M. Picantin

3 Fully Exploiting the Minimization

Consider the following problems for the (semi)group given by a Mealy automa-
ton: compute the growth function, compute the order (if finite), detect the
finiteness. The packages FR and automgrp provide implementations of the three
problems. Here we propose new implementations based on a simple idea which
fully uses the automaton structure.

3.1 Growth

Consider a Mealy automaton A = (A,Σ, δ, ρ) and an element x ∈ A∗. The length
of ρx, denoted by |ρx|, is defined as follows:

|ρx| = min{n | ∃y ∈ An, ρx = ρy} .

The growth series of A is the formal power series given by∑
g∈〈A〉+

t|g| =
∑
n∈�

#{g ∈ 〈A〉+ ; |g| = n} tn .

In words, the growth series enumerates the semigroup elements according to
their length. This is an instanciation of the notion of spherical growth series for
a finitely generated semigroup. Observe that the series is a polynomial if and
only if the semigroup is finite.

Using the Generic Algorithm. Since the word problem is solvable, it is possible to
compute an arbitrary but finite number of coefficients of the growth series. Indeed
for each n, generate the set of elements of length n by multiplying elements
of length n − 1 with generators and detecting-deleting duplicated elements by
solving the word problem. The functions Growth from automgrp and WordGrowth

from FR both follow this pattern. Therefore the structure of the underlying
Mealy automaton is used only to get a solution to the word problem (in fact,
both Growth and WordGrowth are generic, in the sense that they are applicable for
any (semi)group with an implemented solution to the word problem).

New Implementation. We propose a new implementation based on a simple
observation. Knowing the elements of length n − 1, Nerode minimization can
be used in a global manner to obtain simultaneously the elements of length n.
Concretely, with each integer n ≥ 1 is associated a new Mealy automaton An

defined recursively as follows:

An = m(An−1 ×m(A)) and A1 = m(A) .

Here, we assume, without real loss of generality, that the identity element is one
of the generators (otherwise simply add a new state to the Mealy automaton
coding the identity). This way, the elements of An are exactly the elements of
length at most n.

Implementing Computations in Automaton (Semi)groups 245

AutomatonGrowth := function (arg)

local aut , radius , growth , sph , curr , next , r;

aut:=arg [1]; # Mealy automaton

if Length(arg)>1 then radius:=arg [2];

else radius:= infinity ;

fi;

r := 0; curr := TrivialMealyMachine ([1]);

next := Minimized (aut);

aut := Minimized (next+TrivialMealyMachine (Alphabet(aut)));

sph := aut!. nrstates - 1; # number of non -trivial states

growth := [next !.nrstates -sph];

while sph >0 and r<radius

do Add(growth ,sph);

r := r+1; curr := next;

next := Minimized (next*aut);

sph := next !.nrstates -curr !. nrstates ;

od;

return growth;

end;

Note that AutomatonGrowth(aut) computes the growth of the semigroup 〈aut〉+,
while AutomatonGrowth(aut+aut^-1) computes the growth of the group 〈aut〉.

Experimental Results. First we run AutomatonGrowth and FR’s WordGrowth on the
Grigorchuk automaton, a famous Mealy automaton generating an infinite group.
For radius 10, AutomatonGrowth is much faster, 76 ms as opposed to 9 912 ms1.
The explanation is simple: WordGrowth calls the minimization procedure 57 577
times while AutomatonGrowth calls it only 12 times. Here are the details.

gap > aut := GrigorchukMachine ;; radius:= 10;;

gap > ProfileFunctions ([Minimized]);

gap > WordGrowth (SCSemigroupNC (aut), radius); time;

[1, 4, 6, 12, 17, 28, 40, 68, 95, 156, 216]

9912

gap > DisplayProfile ();

count self/ms chld/ms function

57577 7712 0 Minimized

7712 TOTAL

gap > ProfileFunctions ([Minimized]);

gap > AutomatonGrowth (aut , radius); time;

[1, 4, 6, 12, 17, 28, 40, 68, 95, 156, 216]

76

gap > DisplayProfile ();

count self/ms chld/ms function

12 72 0 Minimized

72 TOTAL

1 All timings displayed in this paper have been obtained on an Intel Core 2 Duo
computer with clock speed 3,06 GHz.

246 I. Klimann, J. Mairesse, and M. Picantin

Now we compare the running times of the implementations for the compu-
tation of the first terms of the growth series for all 335 bireversible 3-letter
3-state Mealy automata (up to equivalence). In Tab. 1, some computations
with FR’s WordGrowth or with automgrp’s Growth could not be completed in
reasonable time for radius 7.

Table 1. Average time (in ms)

radius 1 2 3 4 5 6 7

FR’s WordGrowth 3.4 29.0 555.0 8 616.5 131 091.4 2 530 170.3 ?

automgrp’s Growth 0.7 2.8 16.9 158.9 1 909.0 22 952.8 ?

AutomatonGrowth 0.6 1.8 5.9 28.9 187.3 1 005.9 7 131.4

3.2 Order of the (Semi)group

Although the finiteness problem is still open, some semidecision procedures en-
able to find the order of an expected finite (semi)group. FR and automgrp use
orthogonal approaches. Our new implementation refines the one of FR and re-
mains orthogonal to the one of automgrp.

automgrp’s Implementation. The GAP package automgrp provides the func-
tion LevelOfFaithfulAction, which allows to compute—very efficiently in some
cases—the order of the generated group. The principle is the following. Let
A = (A,Σ, δ, ρ) be an invertible Mealy automaton and let Gk be the group gen-
erated by the restrictions of the production functions to Σk. If #Gk = #Gk+1

for some k, then 〈A〉 is finite of order #Gk. This function can be easily adapted
to a non-invertible Mealy automaton.

Observe that LevelOfFaithfulAction cannot be used to compute the growth
series. Indeed at each step a quotient of the (semi)group is computed. On the
other hand LevelOfFaithfulAction is a good bypass strategy for the order com-
putation. Furthermore, it takes advantage from the special ability of GAP to
manipulate permutation groups.

FR’s Implementation and the New Implementation. Any algorithm computing
the growth series can be used to compute the order of the generated (semi)group
if finite. It suffices to compute the growth series until finding a coefficient equal
to zero. This is the approach followed by FR. Since we proposed, in the previous
section, a new implementation to compute the growth series, we obtain as a
byproduct a new procedure to compute the order. We call it AutomSGrOrder.

Experimental Results. The orthogonality of the two previous approaches can be
simply illustrated by recalling the introductory example of Fig. 1. Neither FR’s
Order nor AutomSGrOrder are able to compute the order of the large group, while
automgrp via LevelOfFaithfulAction succeeds in only 14 338 ms. Conversely,
AutomSGrOrder computes the order of the small semigroup in 17 ms, while an
adaptation of LevelOfFaithfulAction (to non-invertible Mealy automata) takes
2 193 ms.

Implementing Computations in Automaton (Semi)groups 247

3.3 Finiteness

There exist several criteria to detect the finiteness of an automaton (semi)group,
see [2,3,6,14,15, ...]. But the decidability of the finiteness is still an open question.
Each procedure to compute the order of a (semi)group yields a semidecision
procedure for the finiteness problem. Both packages FR and automgrp apply a
number of previously known criteria of (in)finiteness and then intend to conclude
by ultimately using an order computation.

We propose an additional ingredient which uses minimization in a subtle way.
Here, the semigroup to be tested is successively replaced by new ones which are
finite if and only if the original one is finite. It is possible to incorporate this
ingredient to get two new implementations, one in the spirit of FR and one in
the spirit of automgrp. The new implementations are order of magnitudes better
than the old ones. Both are useful since the fastest one depends on the cases.

3.3.1 md-Reduction of Mealy Automata and Finiteness
The md-reduction was introduced in [2] to give a sufficient condition of finiteness.
The new semidecision procedures start with this reduction.

Definition 4. A pair of dual Mealy automata is reduced if both automata are
minimal. Recall that m (resp. d) is the operation of minimization (resp. dual-
ization). The md-reduction of a Mealy automaton A consists in minimizing the
automaton or its dual until the resulting pair of dual Mealy automata is reduced.

The md-reduction is well-defined: if both a Mealy automaton and its dual au-
tomaton are non-minimal, the reduction is confluent [2]. An example of md-
reduction is given in Fig. 2.

a b

A

0 |1
2 |3

0 |3
2 |1

1 |0
3 |2

1 |0
3 |2

d

0 1

3 2

a |a
b |b

a |b

a |a
b |b

a |b

b |a b |a

m

13 02

a |a
b |b

a |b
b |a

dmdmd
ab

md∗(A)

0123 |0123

Fig. 2. The md-reduction of a pair of dual Mealy automata

The sequence of minimization-dualization can be arbitrarily long: the mini-
mization of a Mealy automaton with a minimal dual can make the dual automa-
ton non-minimal.

If A is a Mealy automaton, we denote by md∗(A) the corresponding Mealy
automaton after md-reduction.

248 I. Klimann, J. Mairesse, and M. Picantin

Theorem 2 ([2]). A Mealy automaton A generates a finite (semi)group if and
only if md∗(A) generates a finite (semi)group.

This is the starting point of the new implementations. We use an additional fact.
We can prune a Mealy automaton by deleting the states which are not accessible
from a cycle. This does not change the finiteness or infiniteness of the generated
(semi)group [3].

3.3.2 The New Implementations
The design of procedure IsFinite1 is consistent with the one of AutomatonGrowth.
Hence IsFinite1 is much closer to FR than to automgrp. Here we propose a
version that works with the automaton and its dual in parallel.

IsFinite1 := function (aut , limit)

local radius , dual , curr1 , next1 , curr2 , next2;

radius := 0;

aut := MDReduced (Prune(aut)); dual := DualMachine (aut);

curr1 := MealyMachine ([[1]] ,[()]); curr2 := curr1;

next1 := aut; next2 := dual;

while curr2!. nrstates <>next2!. nrstates and radius <limit

do radius := radius + 1; curr1 := next1;

next1 := Minimized (next1*aut);

if curr1!. nrstates <>next1!. nrstates

then curr2 := next2;

next2 := Minimized (next2*dual);

else return true ;

fi;

od;

if curr2!. nrstates = next2!. nrstates then return true ; fi;

return fail ;

end;

The procedure IsFinite2 is a refinement of automgrp’s LevelOfFaithfulAction:
the minimization is called on the dual and can be enhanced again to work in
parallel on the Mealy automaton and its dual.

IsFinite2 := function (aut ,limit)

local f1, f2, next , cs, ns, lev;

aut := MDReduced (Prune(aut));

if IsInvertible (aut) then f1:= Group; f2:= PermList;

else f1:= Semigroup ; f2:= Transformation ;

fi;

lev := 0; cs := 1; ns := Size(f1(List(aut!.output ,f2)));

aut := DualMachine (aut); next := aut;

while cs<ns and lev <limit

do lev := lev +1; cs := ns; next := Minimized (next*aut);

ns := Size(f1(List(DualMachine (next)!.output ,f2)));

od;

if cs=ns then return true ; else return fail ; fi;

end;

Implementing Computations in Automaton (Semi)groups 249

Experimental Results. Tab. 2 presents the average time to detect finiteness of
(semi)groups generated by p-letter q-state invertible or reversible Mealy au-
tomata with p + q ∈ {5, 6}. To get a fair comparison of the implementations,
what is given is the minimum of the running times for an automaton and its
dual (see Theorem 1).

Table 2. Average time (in ms) to detect finiteness of (semi)groups

2- 3- 2- 4- 3- 3-

FR aut Fin1 Fin2 FR aut Fin1 Fin2 FR aut Fin1 Fin2

0.68 0.81 0.49 0.49 36.36 1.79 0.52 0.62 1 342.12 3.78 0.61 0.70

FR: FR’s IsFinite; aut: automgrp’s IsFinite; Fin1: IsFinite1; Fin2: IsFinite2

4 Conjectures

The efficiency of the new implementations enables to carry out extensive exper-
imentations. We propose several conjectures supported by these experiments.

Recall the example given in the introduction. The (semi)groups generated by
the Mealy automaton and its dual were strikingly different, with a very large
one and a rather small one. This seems to be a general fact that we can state as
an informal conjecture:

Whenever a Mealy automaton generates a finite (semi)group which is very
large with respect to the number of states and letters of the automaton, then its
dual generates a small one.

Observation: Any pair of finite (semi)groups can be generated by a pair of dual
Mealy automata, see [2, Prop. 9]. The standard construction leads to automata
whose sizes are related to the orders of the (semi)groups. Therefore it does not
contradict the informal conjecture.

#〈A〉+

#〈d(A)〉+

4 000

102 104 106 108 1010 1012 1014 1016 1018 1020 1022

Fig. 3. Size of 〈A〉+ vs. size of 〈d(A)〉+

Fig. 3 illustrates this informal conjecture: for A covering the set of all 3-letter
3-state invertible Mealy automata, the endpoints of each segment represent re-
spectively the order of 〈A〉+ and of 〈d(A)〉+, for all pairs detected as being finite.

To assess finiteness, the procedures IsFinite1 and IsFinite2 have been used.
If the tested Mealy automaton and its dual were both found to have more than
4000 elements, the procedures were stopped, and the (semi)groups were supposed
to be infinite. Based on the informal conjecture, we believe to have captured all
finite groups. If true:

250 I. Klimann, J. Mairesse, and M. Picantin

x

2

2

2
2

2

1

ρx = (1, 2, . . . , p)
∀y
= x, ρy = (1, 3, . . . , p)

4.1: among invertible automata: Mp,q

x

1

ρx = (1, 2)
∀z
= x, ρz = ()

4.2: among 2-letter invertible automata: M2,q

y x̄

1,2
(plus p if even)

ρx̄ = t(1, 2, . . . , p)t−1

ρy = (1, 3, . . . , p)

t =

{
() for p even
(p, p+1

2) for p odd

4.3: among 2-state invertible automata: Mp,2

x
y

ρx = (1, 2, . . . , p)
ρy = (1, 3, . . . , p)
∀z
∈ {x, y}, ρz = ()

4.4: among bireversible automata: Bp,q

Fig. 4. Automata conjectured to generate the largest finite automaton groups

– There are 14 089 Mealy automata generating finite (semi)groups among the
233 339 invertible or reversible 3-letter 3-state Mealy automata;

– The group generated by Fig. 1-right is the largest finite group.

Our next conjectures are concerned with the largest finite groups that can be
generated by automata of a given size.

Consider the family of p-letter q-state Mealy automata (Mp,q)p+q>5 displayed
on Fig. 4.1 for p > 2 and q > 2, while the specializations for p = 2 and q = 2
are displayed on Fig. 4.2 and Fig. 4.3. The example of Fig. 1-right is M3,3.

Conjecture 1. The group 〈Mp,q〉 is finite. Every p-letter q-state invertible Mealy
automaton generates a group which is either infinite or has an order smaller
than #〈Mp,q〉.

If true, Conjecture 1 implies the decidability of the finiteness problem for automa-
ton groups.Without entering into the details of the experimentations, we consider
that Conj. 1 is reasonably well supported for p+ q < 9. As for actually computing
#〈Mp,q〉, here are the only cases with q > 2 for which we succeeded:

∀q, 4 ≤ q ≤ 8, #〈M2,q〉 = 22
q−1+

(q−2)(q−1)
2 −2 ,

#〈M3,3〉 = 264 · 34, #〈M3,4〉 = 2325 · 313, #〈M4,3〉 = 2288 · 3422 .

These groups are indeed huge. Incidentally, the finiteness of 〈Mp,q〉 is checked
for p + q < 11 and the informal conjecture is supported further by computing
the order of the much smaller semigroups generated by the duals:

#〈d(Mp,q)〉+ 2 3 4 5 6 7 8

2 - - 219 1 759 13 135 94 143 656 831
3 - 238 1 552 8 140 37 786 162 202 · · ·
4 89 1 381 12 309 87 125 · · · · · · · · ·
5 131 6 056 67 906 602 656 · · · · · · · · ·
6 337 22 399 302 011 · · · · · · · · · · · ·
7 351 74 194 · · · · · · · · · · · · · · ·

Implementing Computations in Automaton (Semi)groups 251

Experimentally, the finite groups generated by bireversible Mealy automata seem
to be much smaller. Consider the family of bireversible automata (Bp,q)p,q of
Fig. 4.4. The group 〈Bp,q〉 is isomorphic to Sq

p, while the group 〈d(Bp,q)〉 is
isomorphic to �q. Again, the following is reasonably well supported for p+q < 9:

Conjecture 2. Every p-letter q-state bireversible Mealy automaton generates a
group which is either infinite or has an order smaller than #〈Bp,q〉 = p!q.

Our last conjecture is of a different nature and deals with the structure of infinite
automaton semigroups.

Conjecture 3. Every 2-state reversible Mealy automaton generates a semigroup
which is either finite or free of rank 2.

The conjecture has been tested and seems correct for reversible 2-state Mealy
automata up to 6 letters. In the experiments, a semigroup generated by a p-letter
automaton is conjectured to be free if its growth series coincides with (2t)n up
to radius p2/2 and if its dual generates a seemingly infinite group.

References

1. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley (1974)

2. Akhavi, A., Klimann, I., Lombardy, S., Mairesse, J., Picantin, M.: On the finite-
ness problem for automaton (semi)groups. Internat. J. Algebra Comput. (accepted,
2012), arXiv:cs.FL/1105.4725

3. Antonenko, A.S.: On transition functions of Mealy automata of finite growth.
Matematychni Studii 29(1), 3–17 (2008)

4. Bartholdi, L.: FR Functionally recursive groups — a GAP package, v.1.2.4.2 (2011),
http://www.uni-math.gwdg.de/laurent/FR/

5. Bartholdi, L., Reznykov, I.I., Sushchanskĭi, V.I.: The smallest Mealy automaton of
intermediate growth. J. Algebra 295(2), 387–414 (2006)

6. Bondarenko, I.V., Bondarenko, N.V., Sidki, S.N., Zapata, F.R.: On the
conjugacy problem for finite-state automorphisms of regular rooted trees,
ArXiv:math.GR/1011.2227

7. Cain, A.J.: Automaton semigroups. Theor. Comput. Sci. 410, 5022–5038 (2009)
8. The GAP Group: GAP – Groups, Algorithms, and Programming, v.4.4.12 (2008),

http://www.gap-system.org

9. Grigorchuk, R.I.: On Burnside’s problem on periodic groups. Funktsional. Anal. i
Prilozhen. 14(1), 53–54 (1980)

10. Grigorchuk, R.I., Nekrashevich, V.V., Sushchanskĭi, V.I.: Automata, dynamical
systems, and groups. Tr. Mat. Inst. Steklova 231, 134–214 (2000)

11. Muntyan, Y., Savchuk, D.: automgrp Automata Groups— a GAP package, v.1.1.4.1
(2008), http://finautom.sourceforge.net/

12. Nekrashevych, V.: Self-similar groups. Mathematical Surveys and Monographs,
vol. 117. American Mathematical Society, Providence (2005)

http://www.uni-math.gwdg.de/laurent/FR/
http://www.gap-system.org
http://finautom.sourceforge.net/

252 I. Klimann, J. Mairesse, and M. Picantin

13. Savchuk, D.M., Vorobets, Y.: Automata generating free products of groups of or-
der 2. J. Algebra 336(1), 53–66 (2011)

14. Sidki, S.N.: Automorphisms of one-rooted trees: growth, circuit structure, and
acyclicity. J. Math. Sci. (New York) 100(1), 1925–1943 (2000), algebra, 12

15. Silva, P.V., Steinberg, B.: On a class of automata groups generalizing lamplighter
groups. Internat. J. Algebra Comput. 15(5-6), 1213–1234 (2005)

16. Šuniḱ, Z., Ventura, E.: The conjugacy problem is not solvable in automaton groups
(2010), arXiv:math.GR/1010.1993

On the Descriptional Complexity of the Window

Size for Deterministic Restarting Automata

Martin Kutrib1 and Friedrich Otto2

1 Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

2 Fachbereich Elektrotechnik/Informatik, Universität Kassel
34109 Kassel, Germany

otto@theory.informatik.uni-kassel.de

Abstract. We investigate the descriptional complexity of restarting au-
tomata, an automaton model inspired from linguistics. More precisely,
we study the impact of the window size. For window sizes of at least two,
it is shown that between any two levels of the RW- and RRW-automata
hierarchy, there are savings in the economy of description of the auto-
mata which cannot be bounded by any recursive function. This is true
even if the automata are deterministic and/or stateless. The trade-off
between window sizes two and one is recursive for deterministic devices.
In addition, we establish polynomial upper bounds for the trade-offs be-
tween RRWW-automata with window sizes k + 1 and k for all k ≥ 2.

Keywords: restarting automaton, window size, descriptional complex-
ity, non-recursive trade-off.

1 Introduction

Restarting automata have been introduced in [4] in order to model the so-called
“analysis by reduction,” which is a technique used in linguistics to analyze sen-
tences of natural languages that have free word order. This technique consists in
a stepwise simplification of an extended sentence such that the (in)correctness of
the sentence is not affected. A restarting automaton M consists of a flexible tape
with end markers, a read/write window of a fixed size k ≥ 1, and a finite-state
control. It works in cycles, where each cycle begins with the window at the left
end of the tape and M being in the initial state. During a cycle M scans its
current tape contents from left to right and executes a single length-reducing
rewrite step. The cycle ends with a restart that takes the window back to the
left end of the tape and that resets M to the initial state. A computation is
completed by a tail computation that is similar to a cycle but that ends with
accepting or rejecting the input. In its rewrite steps M may introduce non-input
symbols, so-called auxiliary symbols. This type of restarting automaton is called
an RRWW-automaton. By placing certain restrictions on the definition, we ob-
tain various subclasses of restarting automata (see, e.g., [16]).

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 253–264, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

254 M. Kutrib and F. Otto

One of the most obvious parameters for restarting automata is the size of the
read/write window. It is known that for restarting automata without auxiliary
symbols, the size of the read/write window yields an infinite strict hierarchy of
language classes [13]. Thus, it is natural to ask for the impact of this parameter
on the size of the automata. Here we establish the following answers to this
question. For RW- and RRW-automata and all k ≥ 2, there are savings in the
economy of description which cannot be bounded by any recursive function when
changing from window size k to window size k + 1. This is true even if the
automata are deterministic and/or stateless. This result is proved by reducing
the halting problem for Turing machines on empty input to strictly monotone
semi-Thue systems which, in turn, are simulated by restarting automata. Now a
general result from [2,6] that is a slightly generalized and unified form of a result
of Hartmanis [1] can be applied to obtain the intended non-recursive trade-offs.
Interestingly, the trade-off between window size two and one is recursive for
deterministic devices. In addition, we establish polynomial upper bounds for the
trade-offs between RRWW-automata with window sizes k + 1 and k for k ≥ 2.

Restarting automata in connection with descriptional complexity issues are
also dealt with in [3,10,11]. Further results and references on both topics can be
found, for example, in the surveys [2,16].

This paper is structured as follows. After recalling the necessary definitions on
restarting automata we present some basics on descriptional complexity. Then
we describe a semi-Thue system for Turing machine histories, which is the base
for the reduction. In the subsequent section we derive our main results. We
conclude with open and untouched questions for further investigations.

2 Notation and Definitions

For a finite alphabet Σ, Σ∗ is the set of all words over Σ, and Σ+ = Σ∗ � {λ},
where λ denotes the empty word. The length of a word w is written as |w|.
We use ⊆ for inclusions and ⊂ for strict inclusions. The powerset of a set S is
denoted by 2S.

An RRWW-automaton M is given by an 8-tuple M = (Q,Σ, Γ, c, $, q0, k, δ),
where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape
alphabet containing Σ, the symbols c, $
∈ Γ serve as markers for the left and
right border of the work tape, respectively, q0 ∈ Q is the initial state, k ≥ 1
is the size of the read/write window, and δ is a transition relation that assigns
finite sets of possible transitions to pairs of the form (q, u), where q ∈ Q is a
state and u is a possible content of the read/write window. There are four types
of transition steps: move-right steps (MVR) that shift the window one position
to the right and change the internal state, rewrite steps that replace the factor u
contained in the window by a shorter word v, in this way also shortening the
tape, change the internal state, and place the window immediately to the right
of v, restart steps (Restart) that place the window over the left end of the tape
and reset the internal state to q0, and accept steps (Accept) that halt and accept.
If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that M
rejects in this situation. The letters in Γ �Σ are called auxiliary symbols.

On the Descriptional Complexity of the Window Size 255

A configuration of M is a string αqβ, where q ∈ Q, and either α = λ and
β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$}. Here q ∈ Q represents the
current state, αβ is the current content of the tape, and it is understood that
the read/write window contains the first k symbols of β or all of β when |β| ≤ k.
A restarting configuration is of the form q0cw$, where w ∈ Γ ∗. If w ∈ Σ∗, then
q0cw$ is an initial configuration.

Each computation of M consists of a finite sequence of cycles that is followed
by a tail computation (see Section 1). By x 1cM y we denote the execution of
a cycle that transforms the restarting configuration q0cx$ into the restarting
configuration q0cy$. By L(M) = {w ∈ Σ∗ | M has an accepting computation
on input w } we denote the language accepted by M .

As each cycle of a computation of M can be seen to consist of three phases,
the transition relation of M can be described more compactly through so-called
meta-instructions [15] of the form (E1, u→ v, E2), where E1 and E2 are regular
languages, and u→ v stands for a rewrite step of M . On trying to execute this
meta-instructionM will get stuck (and so reject) starting from the configuration
q0cw$, if w does not admit a factorization of the form w = w1uw2 such that
cw1 ∈ E1 and w2$ ∈ E2. If, however,w does have factorizations of this form, then
one such factorization is chosen nondeterministically, and q0cw$ is transformed
into q0cw1vw2$. In order to describe the tails of accepting computations we use
meta-instructions of the form (c ·E ·$,Accept), which lead to acceptance starting
from a configuration of the form q0cw$ for w ∈ E.

Here we are also interested in certain restricted variants of RRWW-automata.
Automaton M is an RWW-automaton if it must restart immediately after per-
forming a rewrite operation. An RRWW-automaton is an RRW-automaton, if no
auxiliary symbols are available, and it is an RR-automaton if each rewrite step
u→ v satisfies the property that v is a scattered subword of u. Analogously, we
obtain RW- and R-automata from the RWW-automaton. We use the prefix det-
to denote deterministic types of restarting automata, and for any k ≥ 1 and any
type X of restarting automaton, we use X(k) to denote the restarting automata
of type X that have a read/write window of size k. Further, for any type X of
automaton, L (X) denotes the class of languages that are accepted by automata
of type X.

Concerning the influence of the size of the read/write window on the power
of the various types of restarting automata, the following results are known.

Theorem 1 ([10,11,13]).
1. L (RWW(1)) = L (det-RRWW(1)) = REG ⊂ L (RR(1)).
2. L (pref-X(k)) ⊂ L (pref-X(k + 1)) for all k ≥ 1, pref ∈ {λ, det}, and X ∈
{R,RR,RW,RRW}.

Each cycle C of an RRWW-automaton M contains a unique configuration of
the form cxquy$ such that q is a state and (q′, v) ∈ δ(q, u) is the rewrite step
that is applied during this cycle. By Dr(C) we denote the right distance |uy$| of
this cycle. A sequence of cycles C1, C2, . . . , Cn is called monotone if Dr(C1) ≥
Dr(C2) ≥ · · · ≥ Dr(Cn) holds. A computation ofM is calledmonotone if the cor-
responding sequence of cycles is monotone, and the RRWW-automaton M itself

256 M. Kutrib and F. Otto

is called monotone if each of its computations that starts from an initial config-
uration is monotone. To illustrate the way in which monotone RR(1)-automata
can accept non-regular languages we present a simple example.

Example 2. LetM0 be the RR(1)-automaton on Σ = {a, b} that is given through
the following meta-instructions (see above):

(1) (c · (aa)∗ · a, b→ λ, (bb)∗ · $), (4) (c · (aa)∗, a→ λ, (bb)∗ · $),
(2) (c · (aa)+, b→ λ, (bb)∗ · b · $), (5) (c · (aa)∗ · a, a→ λ, (bb)∗ · b · $).
(3) (c · $,Accept),

The automaton M0 processes inputs of the form ambn. In fact, it alternately
removes the first occurrence of the letter b and the last occurrence of the letter a.
To distinguish between these two cases it uses the parity of the number of a’s
and the parity of the number of b’s. Hence, M0 is monotone, and it accepts the
non-regular language L(M0) = { ambn | n ≥ 0, m = n or m = n+ 1 }. �

2.1 Descriptional Complexity

We recall some notation for descriptional complexity. Following [2] we say that a
descriptional system S is a set of finite descriptors such that eachD ∈ S describes
a formal language L(D), and the underlying alphabet alph(D) over which D
represents a language can be read off fromD. The family of languages represented
(or described) by S is L (S) = {L(D) | D ∈ S }. For every language L, the set
S(L) = {D ∈ S | L(D) = L } is the set of its descriptors in S. A complexity
measure for a descriptional system S is a total recursive mapping c : S → N.

Example 3. Monotone det-RRWW-automata can be encoded over some fixed al-
phabet such that their input alphabets can be extracted from the encodings.
The set of these encodings is a descriptional system S, and L (S) is the family
of deterministic context-free languages DCFL [5].

Examples for complexity measures for deterministic restarting automata are
the total number of symbols, that is, the length of the encoding (length), or the
product of the number of states and the number of possible window contents,
that is, the number of transitions (trans). �

Here we only use complexity measures that are recursively related to length.
If there is a total recursive function g : N × N → N such that, for all D ∈ S,
length(D) ≤ g(c(D), |alph(D)|), then c is said to be an s-measure. If, in addition,
for any alphabet Σ, the set of descriptors in S describing languages over Σ is
recursively enumerable in order of increasing size, then c is said to be an sn-
measure. Clearly, length and trans are sn-measures for restarting automata.

Whenever we consider the relative succinctness of two descriptional systems S1
and S2, we assume the intersection L (S1)∩L (S2) to be non-empty. Let S1 and
S2 be descriptional systems with complexity measures c1 and c2, respectively.
A total function f : N → N is an upper bound for the increase in complexity
when changing from a descriptor in S1 to an equivalent descriptor in S2, if for

On the Descriptional Complexity of the Window Size 257

all D1 ∈ S1 with L(D1) ∈ L (S2), there exists a D2 ∈ S2(L(D1)) such that
c2(D2) ≤ f(c1(D1)).

If there is no recursive upper bound, the trade-off is said to be non-recursive.
Non-recursive trade-offs are independent of particular sn-measures. For estab-
lishing non-recursive trade-offs the following general result is useful that is a
slightly generalized and unified form of a result of Hartmanis [1].

Theorem 4 ([2]). Let S1 and S2 be two descriptional systems for recursive
languages such that any descriptor D in S1 and S2 can effectively be converted
into a Turing machine that decides L(D), and let c1 be a measure for S1 and c2 be
an sn-measure for S2. If there exists a descriptional system S3 and a property P
that is not semi-decidable for descriptors from S3, such that, given an arbitrary
D3 ∈ S3, (i) there exists an effective procedure to construct a descriptor D1

in S1, and (ii) D1 has an equivalent descriptor in S2 if and only if D3 does not
have property P , then the trade-off between S1 and S2 is non-recursive.

For deterministic RRWW- and RWW-automata, some non-recursive trade-offs
have been obtained in [3]. In the following we show non-recursive trade-offs be-
tween restarting automata with window sizes k+1 and k by reduction of the halt-
ing problem for Turing machines on empty tape. In order to apply Theorem 4,
we use the family of deterministic one-tape Turing machines as descriptional
system S3. Property P is not halting on empty input. Next, given an arbitrary
deterministic one-tape Turing machine M , that is, a descriptor D3 ∈ S3, we
must construct a det-RW(k+ 1)-automaton, that is, a descriptor D1 in S1, that
has an equivalent det-RW(k)-automaton, that is, a descriptor in S2, if and only
if M halts on empty input.

3 A Semi-Thue System for Turing Machine Histories

Any deterministic one-tape Turing machine can be transformed into an equiva-
lent one that never reenters its initial state, cannot print blanks, halts only in a
particular halting state, and halts if and only if it accepts. So, we may assume
without loss of generality that M is such a machine.

First we construct a semi-Thue system which generates strings that are encod-
ings of the whole history of computations of M . Simulations of Turing machines
by Thue systems have also been used, for example, in [7,14,17]. Afterwards a
det-RW(3)-automaton is constructed from this semi-Thue system.

So, let Q be the state set ofM , where q0 is the initial state, qf is the particular
halting state, and Γ is the tape alphabet disjoint from Q containing the blank
symbol. We assume that the transition function δ maps from Q × Γ to Q ×
Γ × {left, right}, that is, there are no stationary moves. A configuration of M
is represented by a word from Γ ∗ ·Q · Γ ∗, where x1 · · ·xiqxi+1 · · ·xn is used to
express that M is in state q, scanning tape symbol xi+1, and x1 · · ·xn is the
support of the tape inscription. So, the initial configuration on empty tape is q0.

The semi-Thue system T = 〈S, P 〉 consists of an alphabet S and a finite binary
relation P ⊆ S∗ × S∗. The pairs (u, v) ∈ P are called rules and are written as

258 M. Kutrib and F. Otto

u→ v. These rules are extended to words over S∗ as follows: s⇒ t iff there exist
x, y, u, v ∈ S∗ such that s = xuy, t = xvy, and (u → v) ∈ P . The reflexive and
transitive closure of ⇒ is denoted by ⇒∗.

The semi-Thue system T will be used to encode the history of a computation
of M in a single word. In order to track the whole history of a computation
in a word, dummy symbols carrying some information are embedded into con-
figurations. This information uniquely identifies the rule of T that was used to
generate the corresponding dummy symbol. In this way the information carried
by the dummy symbols in a word encoding the history of a computation of M
allows us to uniquely reverse this computation. Moreover, to avoid ambiguity the
symbols to the left of the state symbol are distinguished from those to the right
of the state symbol, and the state symbol itself carries additional information
about whether the tape symbol currently being scanned is to the left or to the
right of the state symbol. The alphabet S of T is defined as

S = {	,
} ∪ −→Q ∪←−Q ∪ −→Γ ∪←−Γ ∪DL ∪DR ∪H, where

DL = {Lz | z ∈ (
−→
Q × ({
} ∪←−Γ)) ∪ (({	} ∪ −→Γ)×←−Q) },

DR = {Rz | z ∈ (
−→
Q × ({
} ∪←−Γ)) ∪ (({	} ∪ −→Γ)×←−Q) }, and

H = { Iz | z ∈ (
−→
Q × {
}) ∪ ({	} ×←−Q) }.

Here 	 and
 are the left and right endmarkers,
−→
Q and

←−
Q are disjoint copies

of Q, where −→q ∈ −→Q and ←−q ∈ ←−Q mean state q such that the currently scanned

tape symbol is the one to the right or the one to the left, and
−→
Γ and

←−
Γ are

disjoint copies of Γ such that
−→
Γ and

←−
Γ indicate tape symbols such that the state

symbol is to their right or to their left, respectively. The symbols Lz and Rz are
dummy symbols to the left or to the right of the symbol representing the state,
and the symbols Iz are intermediate symbols.

Next we define the rules of T . The histories of the computations of M are

of the form 	(
−→
Γ ∪DL)

∗ · (−→Q ∪←−Q) · (←−Γ ∪DR)
∗
. For each dummy symbol Lz

and Rz and each state qi ∈ Q� {qf}, we define the rules

−→qiRz → LzLz
−→qi and Lz

←−qi →←−qiRzRz,

which are used to move the state symbol towards the currently scanned tape
symbol. If the currently scanned symbol is non-blank, a transition δ(qi, xi) =
(qj , xj , right) of M is simulated by the rules

−→qi←−xi → L(−→qi ,←−xi)
−→xj−→qj and −→xi←−qi → L(−→xi,

←−qi)
−→xj−→qj .

If xi is the blank symbol, then the tape symbol is represented by an endmarker.
So, we include the rules

−→qi
→ L(−→qi ,�)I(−→qi ,�)
 and L(−→qi ,�)I(−→qi ,�) → L(−→qi ,�)
−→xj−→qj , and

	←−qi → 	L(�,←−qi)I(�,←−qi) and L(�,←−qi)I(�,←−qi) → L(�,←−qi)
−→xj−→qj .

Observe that the rules are uniquely determined by the dummy symbols Lz and Iz
on the right-hand sides.

On the Descriptional Complexity of the Window Size 259

Symmetrically, a transition δ(qi, xi) = (qj , xj , left) of M is simulated by the
rules

−→qi←−xi → ←−qj←−xjR(−→qi ,←−xi) and −→xi←−qi →←−qj←−xjR(−→xi,
←−qi),

−→qi
 → I(−→qi ,�)R(−→qi ,�)
 and I(−→qi ,�)R(−→qi ,�) → ←−qj←−xjR(−→qi ,�), and

	←−qi → 	I(�,←−qi)R(�,←−qi) and I(�,←−qi)R(�,←−qi) →
←−qj←−xjR(�,←−qi).

Also these rules are uniquely determined by the dummy symbols Rz and Iz
on the right-hand sides. The semi-Thue system T can simulate computations
of M . As on the left-hand side of each rule there is a state symbol for which δ
is defined, or there is a corresponding symbol from H , and as δ is undefined for
the halting state qf , no further derivation step is possible for any encoding of a
halting configuration of M . In the following, we consider the computation of M
on empty input. So, Lh(M) = {w | 	−→q0
 ⇒∗ w } is the set of histories that
can be derived from the unique initial configuration of M on empty input in an
arbitrary number of steps. It is worth mentioning that Lh(M) is finite if and
only if M halts on empty input.

Next we construct a det-RW(3)-automaton M ′ = (Q′, Σ, Γ, c, $, q′0, 3, δ
′) that

accepts exactly the words of Lh(M) with endmarkers chopped off. To this end,
let Q′ = {q′0}, and set Σ = Γ = S � {	,
}. Basically, the idea is to let M ′

apply the rewriting steps of T in reversed manner, that is, whenever T applies a
rule s→ t to expand a string, M ′ reduces the string by rewriting the substring t
by s. Whenever an endmarker is involved in a rule, M ′ can apply the same rule
where the endmarkers are replaced by its own endmarkers. So, letK be the set of
right-hand sides of rules of T where the endmarkers 	 and
 have been replaced
by the delimiters c and $, respectively, and for each rule (s → t) ∈ P , let s′

(and t′) be obtained from s (and t) by replacing any endmarker accordingly.
Then we define

δ′(q′0, z) = (q′0,MVR), if z /∈ K, and

δ′(q′0, t
′) = (q′0, s

′), if t′ ∈ K and (s→ t) ∈ P.

Finally, M ′ accepts if and only if an input can be reduced to the encoding of the
initial configuration of M on empty input, that is, δ′(q′0, c

−→q0$) = Accept.
All rules of T are strictly increasing. Therefore, each rewrite step of M ′ short-

ens the tape. Moreover, any rewrite step occurs with a state symbol or a symbol
from H in the read/write window. Whenever a state symbol occurs that is la-
beled by a right (left) arrow, then the two symbols to the left (to the right)
of it determine uniquely the rule to be applied. Further, if a symbol from H
occurs, then this symbol uniquely determines the rule to be applied. Thus,M ′ is
deterministic. As M ′ only executes an accept step on the encoding of the initial
configuration ofM on empty input, it follows that M ′ accepts exactly the words
of Lh(M) with endmarkers chopped off. So, we obtain the following proposition.

Proposition 5. From a deterministic one-tape Turing machine M , one can
effectively construct a deterministic RW(3)-automaton for the language Lh(M).

260 M. Kutrib and F. Otto

4 The Descriptional Impact of the Window Size

In order to generalize the above approach to arbitrary window sizes, let Σ̃ =

{ x̃ | x ∈ Σ } be a disjoint copy of Σ, and let ϕk : Σ∗ → 2(Σ∪Σ̃)∗ be the finite
substitution defined by ϕk(x) = {x, x̃k} (x ∈ Σ).

Proposition 6. Let k ≥ 3. From a deterministic one-tape Turing machine M ,
one can construct a det-RW(k)-automaton for the language ϕk(Lh(M)).

Proof. Each word w ∈ ϕk(Lh(M)) is obtained from a word w′ ∈ Lh(M) by
replacing s ≥ 0 symbols, where a symbol is replaced by k consecutive marked
copies of itself. A det-RW(k)-automatonM ′′ accepting ϕk(Lh(M)) simulates the
det-RW(3)-automaton for Lh(M) as long as no symbol x̃ from Σ̃ appears in the
window. Whenever this happens, M ′′ moves the window to the right until it
contains k copies of x̃. If this is not possible, M ′′ halts and rejects. Otherwise,
it rewrites x̃k into x and restarts. This construction is effective. �

In order to complete the proof of the non-recursive trade-offs we modify the
Turing machines as follows. First a deterministic one-tape Turing machine M
is transformed into a machine M̂ having three tracks on its single tape. The
first track is used to simulate M on empty input. On the second track a unary
counter is maintained, which is initially set to one. Then M̂ starts to simulateM
on empty input. After every simulation step, M̂ marks the current tape square,
remembers the current state, moves to the counter, and increases it by one.
Afterwards it computes n2 in unary on the third track, where n is the value of
the counter. Now it changes to a special test state for one time step, and moves
across the n2 tape squares marked on the third track. The set of test states can
simply be implemented as a disjoint copy of the state set. Finally, M̂ changes
again to a test state for one time step, clears the third track, returns to the tape
position at which the simulation of M has been interrupted, and changes to the
state remembered. It then simulates the next step of M and so on. Clearly, the
language L(M̂) accepted by M̂ is finite if and only if L(M) is finite.

Theorem 7. For X ∈ {det-RW, det-RRW} and all k ≥ 3, the trade-off from
X(k)-automata to X(k − 1)-automata is non-recursive.

Proof. As mentioned above, this theorem is proved using Theorem 4. Given a
deterministic one-tape Turing machine M , we first construct the Turing ma-
chine M̂ as explained above. Then, a det-RW(k)-automaton M ′′ for the lan-
guage ϕk(Lh(M̂)) is obtained according to Proposition 6. Clearly, M ′′ can also
be seen as a det-RRW(k)-automaton. It remains to be shown that ϕk(Lh(M̂)) is
accepted by an X-automaton with window size k−1 iff M halts on empty input.

If M halts on empty input, then so does M̂ . Hence, Lh(M̂) and ϕk(Lh(M̂))
are finite. Thus, ϕk(Lh(M̂)) is regular, and so it is accepted by X-automata with
window size k − 1. On the other hand, let M ′ be an X-automaton with window
size k − 1, and let w ∈ ϕk(Lh(M̂)) such that w only contains symbols from Σ̃.
If w 1cM ′ w′, then w′ /∈ ϕk(Lh(M̂)), as in a single cycle M ′ shortens its tape

On the Descriptional Complexity of the Window Size 261

content by at least one symbol, rewriting a substring of length at most k − 1.
Therefore, if M ′ accepts the language ϕk(Lh(M̂)), then it can do so only by
accepting tail computations, which means that ϕk(Lh(M̂)) is regular.

Let R ⊂ Σ∗ be the regular language of all words over Σ that contain an even
number of test state symbols (see above). Then ϕk(Lh(M̂)) ∩R is also regular.
However, since in every step during the simulation of M̂ by the semi-Thue system
a dummy symbol is inserted, the lengths of the words in ϕk(Lh(M̂))∩Σ∗ increase
with every step of M̂ . In particular, the lengths increase at least by n2 when M̂
moves across the n2 marked squares on its third track after having simulated
the nth step of M . Before M̂ starts these moves, it has changed to a test state
for an odd number of times. At the end of these moves it again changes to a
test state. Therefore, all words in ϕk(Lh(M̂)) ∩ Σ∗ that are encodings of the
configurations during these moves are filtered out by the intersection with R.
So, there are gaps of arbitrary sizes in the sequence of the lengths of the words
in ϕk(Lh(M̂))∩R. It follows that ϕk(Lh(M̂)) is not context-free if it is infinite.
Since we know already that it is regular, it must be finite. As ϕk(Lh(M̂)) is finite
if and only if M halts on empty input, the theorem follows. �

The computational power of stateless restarting automata has been studied
in [8,9]. The construction of a det-RW(3)-automaton for the language Lh(M)
preceding Proposition 5 provides, in fact, a stateless automaton. Moreover, the
generalization to ϕk(Lh(M)) shown in Proposition 6 does not require additional
states. Furthermore, the proof of Theorem 7 reveals that nondeterminism can-
not help to accept ϕk(Lh(M̂)) by an RW- or RRW-automaton with window size
k− 1. This implies the following theorem, where we use the prefix stl- to denote
stateless types of restarting automata.

Theorem 8. For all X ∈ {stl-det-RW, stl-det-RRW, det-RW, det-RRW, stl-RW,
stl-RRW,RW,RRW} and all k ≥ 3, the trade-off from X(k)-automata to X(k−1)-
automata is non-recursive.

From the reduction of the halting problem for Turing machines on empty tape
some undecidability results are obtained.

Theorem 9. For all X ∈ {stl-det-RW, stl-det-RRW, det-RW, det-RRW, stl-RW,
stl-RRW,RW,RRW} and all k ≥ 3, infiniteness is not even semi-decidable, and
finiteness, regularity, and context-freeness are undecidable for X(k)-automata.

Proof. Given an arbitrary deterministic one-tape Turing machine M , an X(k)-
automaton accepting the language ϕk(Lh(M)) or ϕk(Lh(M̂)) can effectively be
constructed by Proposition 6. Since ϕk(Lh(M)) is finite if and only if M halts
on empty input, the non-semi-decidability of infiniteness and the undecidability
of finiteness follow immediately.

The proof of Theorem 7 shows that the language ϕk(Lh(M̂)) is context-free if
and only ifM halts on empty input. This implies the undecidability of regularity
and context-freeness. �

262 M. Kutrib and F. Otto

So far, we obtained trade-offs between window sizes k and k − 1 only for k ≥ 3.
In order to investigate the trade-offs between window size one and two, we re-
call from [10,11,13] that L (R(1)) = L (RW(1)) = L (RWW(1)) = REG and
L (det-RR(1)) = L (det-RRW(1)) = L (det-RRWW(1)) = REG ⊂ L (RR(1)) =
L (RRW(1)) = L (RRWW(1)) (see Theorem 1). Interestingly, the trade-off be-
tween window size two and one is recursive for deterministic devices.

Lemma 10. Every deterministic restarting automaton with window size two is
monotone.

Proof. Assume that a deterministic restarting automaton M with window size
two performs a rewrite step cxquy$ 1 cxvq′y$. The right distance of this cycle
is |uy$|, and |v| ≤ 1. Due to the deterministic behavior, the rewrite step of the
next cycle cannot occur before the read/write window contains the first symbol
following x. So, the right distance of the next cycle is at most 1 + |vy$| ≤ |uy$|.
Therefore, M is monotone. �

Theorem 11. For X ∈ {det-RW, det-RRW}, the trade-off from X(2)-automata
to X(1)-automata is recursive.

Proof. One fundamental result in [5] shows that monotone det-R- and mono-
tone det-RRWW-automata accept exactly the class DCFL. In particular, a con-
struction is presented that transforms a deterministic and monotone restarting
automaton into an equivalent deterministic pushdown automaton. Another fun-
damental result of [19,20] is the decidability of regularity for deterministic push-
down automata. The effective procedure reveals a recursive upper bound for the
number of states of an equivalent deterministic finite automaton. �

The precise trade-off for the conversion from deterministic restarting automata
with window size two to ones with window size one is a challenging task for
further investigations. One point is to determine a good upper bound. The upper
bound for the DPDA to DFA conversion from [20] reads as follows: Let M be a
deterministic pushdown automaton with n states, t stack symbols, and h is the
length of the longest word pushed in a single transition. If L(M) is regular, then

22
O(n2 log n+log t+log h)

states are sufficient for a DFA to accept L(M). The second
point is to determine matching or at least good lower bounds. The following
lower bound for the DPDA to DFA conversion can be found in [2,12]. Let n ≥ 1
be an integer. Then there is a language Ln that is accepted by a deterministic
pushdown automaton of size O(n3), and each equivalent DFA has at least 22

n

states.
Concerning RRWW-automata, it has been shown in [18] that, for all k ≥ 2,

L (RRWW(k + 1)) = L (RRWW(k)). In fact, one can effectively construct an
equivalent RRWW(k)-automaton M2 = (Q2, Σ, Γ2, c, $, q0, k, δ2) from a given
RRWW(k + 1)-automaton M1 = (Q1, Σ, Γ1, c, $, q0, k + 1, δ1). Actually, the con-
struction presented in [18] satisfies the inequalities

|Q2| ∈ O(|Q1|3 · |Γ1|2k+2) and |Γ2| ∈ O(|Q1|2 · |Γ1|2k+3).

On the Descriptional Complexity of the Window Size 263

When taking the complexity sn-measure trans, that is, the product of the number
of states and the number of possible window contents, then we obtain |Q2| ∈
O(trans(M1)

3) and |Γ2| ∈ O(trans(M1)
3) and, hence, trans(M2) ∈ O(trans(M1)

3 ·
trans(M1)

3k) = O(trans(M1)
3k+3).

Corollary 12. For all k ≥ 2, the trade-off between RRWW(k+1)-automata and
RRWW(k)-automata is at most polynomial, where the degree of the polynomial
depends on the window size k.

5 Conclusion

It remains to determine the trade-off between nondeterministic RW- and RRW-
automata with window size two and those of window size one. Here the situation
is different from that for deterministic machines. The proof of Theorem 11 does
not generalize for at least two reasons. First, regularity is undecidable for context-
free languages and, second, in [13] it is shown that there is a nondeterministic
RR(1)-automaton that accepts a non-context-free language.

The impact of the window size on the descriptional complexity of (non)de-
terministic R-, RR-, and RWW-automata is also a promising field for further
investigations.

References

1. Hartmanis, J.: On Gödel speed-up and succinctness of language representations.
Theoret. Comput. Sci. 26, 335–342 (1983)

2. Holzer, M., Kutrib, M.: Descriptional complexity – An introductory survey. In:
Scientific Applications of Language Methods, pp. 1–58. Imperial College Press
(2010)

3. Holzer, M., Kutrib, M., Reimann, J.: Non-recursive trade-offs for deterministic
restarting automata. J. Autom. Lang. Comb. 12, 195–213 (2007)

4. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting Automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

5. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart
operation. J. Autom. Lang. Comb. 4, 287–311 (1999)

6. Kutrib, M.: The phenomenon of non-recursive trade-offs. Int. J. Found. Comput.
Sci. 16, 957–973 (2005)

7. Kutrib, M., Malcher, A.: When Church-Rosser becomes context-free. Int. J. Found.
Comput. Sci. 18, 1293–1302 (2007)

8. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless deterministic restarting au-
tomata. Acta Inform. 47, 391–412 (2010)

9. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata and
restarting automata. Int. J. Found. Comput. Sci. 21, 781–798 (2010)

10. Kutrib, M., Reimann, J.: Optimal simulations of weak restarting automata. Int. J.
Found. Comput. Sci. 19, 795–811 (2008)

11. Kutrib, M., Reimann, J.: Succinct description of regular languages by weak restart-
ing automata. Inform. Comput. 206, 1152–1160 (2008)

264 M. Kutrib and F. Otto

12. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Symposium on Switching and Automata Theory (SWAT 1971),
pp. 188–191. IEEE (1971)

13. Mráz, F.: Lookahead hierarchies of restarting automata. J. Autom. Lang. Comb. 6,
493–506 (2001)

14. Narendran, P., Ó’Dúnlaing, C., Rolletschek, H.: Complexity of certain decision
problems about congruential languages. J. Comput. System Sci. 30, 343–358 (1985)

15. Niemann, G., Otto, F.: On the power of RRWW-automata. In: Ito, M., Păun,
G., Yu, S. (eds.) Words, Semigroups, and Transductions - Festschrift in Honor of
Gabriel Thierrin, pp. 341–355. World Scientific (2001)

16. Otto, F.: Restarting Automata. In: Ésik, Z., Martin-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications. SCI, vol. 25, pp. 269–303.
Springer, Heidelberg (2006)

17. Post, E.L.: Recursive unsolvability of a problem of Thue. J. Symbolic Logic 12,
1–11 (1947)

18. Schluter, N.: Restarting Automata with Auxiliary Symbols and Small Lookahead.
In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,
pp. 499–510. Springer, Heidelberg (2011)

19. Stearns, R.E.: A regularity test for pushdownmachines. Inform. Control 11, 323–340
(1967)

20. Valiant, L.G.: Regularity and related problems for deterministic pushdown auto-
mata. J. ACM 22, 1–10 (1975)

A Disambiguation Algorithm

for Finite Automata and Functional Transducers

Mehryar Mohri

Courant Institute of Mathematical Sciences and Google Research
251 Mercer Street,

New York, NY 10012, USA

Abstract. We present a new disambiguation algorithm for finite au-
tomata and functional finite-state transducers. We give a full description
of the algorithm, including a detailed pseudocode and analysis, and sev-
eral illustrating examples. Our algorithm is often more efficient and the
result dramatically smaller than the one obtained using determinization
for finite automata or an existing disambiguation algorithm for trans-
ducers based on a construction of Schützenberger. In a variety of cases,
the size of the unambiguous transducer returned by our algorithm is
only linear in that of the input transducer while the transducer given
by the construction of Schützenberger is exponentially larger. Our algo-
rithm can be used effectively in many applications to make automata
and transducers more efficient to use.

1 Introduction

Finite automata and transducers are used in a variety of applications in text
and speech processing [10,13], bioinformatics [8], image processing [1], optical
character recognition [6], and many others. In these applications, automata and
transducers are often the result of various complex operations and in general
are not efficient to use. Some optimization algorithms such as determinization
can make their use more time-efficient. However, the result of determinization is
sometimes prohibitively large and not all finite-state transducers are determiniz-
able [7,11].

This paper presents and analyzes an alternative optimization algorithm,
disambiguation, which in practice can have efficiency benefits similar to de-
terminization. Our disambiguation algorithm is novel and applies to finite au-
tomata, including automata with ε-transitions, and to functional finite-state
transducers, that is those representing a partial function. Disambiguation re-
turns an automaton or transducer equivalent to the input that is unambiguous,
that is one that admits no two accepting paths labeled with the same (input)
string. In many instances, the absence of ambiguity can be useful to make search
more efficient by reducing the number of paths to explore for very large automata
or transducers with several hundred thousand or millions of transitions in text
and speech processing or in bioinformatics, and there are many other critical
needs for the disambiguation of automata and transducers.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 265–277, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

266 M. Mohri

For finite automata, one way to proceed to obtain an unambiguous and equiv-
alent automaton is simply to apply the standard determinization algorithm. But,
as we shall see, for some input automata our algorithm can take exponentially
less time than determinization and return an equivalent unambiguous automaton
exponentially smaller than the one obtained by using determinization.

For finite-state transducers, disambiguation applies to a broader set of trans-
ducers than those that can be determinized using the algorithm described in
[11], it applies to any functional transducer. In contrast, it was shown by [3]
that a functional transducer is determinizable if and only if it additionally veri-
fies the twins property [7,11,2]. Our disambiguation algorithm is also often dra-
matically more efficient and results in substantially smaller transducers than
those obtained using a disambiguation algorithm based on a construction of
Schützenberger [16,15], also described by E. Roche and Y. Schabes in the intro-
ductory chapter of [14]. In particular, when the input transducer is unambiguous,
our algorithm simply returns the same transducer, while the result of the algo-
rithm presented in [14] can be exponentially larger.

The remainder of this paper is organized as follows. In Section 2, we introduce
the notation and basic concepts needed for the presentation and analysis of
our algorithm. In Section 3, we present our disambiguation algorithm for finite
automata in detail, including the proof of its correctness and a brief description
of its extension to finite automata with ε-transitions. In Section 4, we show
how the algorithm can be be used to disambiguate functional transducers and
illustrate it with several examples.

2 Preliminaries

We will denote by ε the empty string. A finite automaton A with ε-transitions
is a system (Σ,Q, I, F,E) where Σ is a finite alphabet, Q a finite set of states,
I ⊆ Q the set of initial states, F ⊆ Q the set of final states, and E a finite
multiset of transitions, which are elements of Q× (Σ ∪ {ε})×Q. We denote by
|A| = |Q|+ |E| the size of an automaton A, that is the sum of the number states
and transitions defining A.

A path π of an automaton is an element of E∗ with consecutive transitions.
The label of a path is the string obtained by concatenation of the labels of its
constituent transitions. We denote by P (p, x, q) the set of paths from p to q
labeled with x or, more generally, by P (R, x,R′) the set of paths labeled with x
from some set of states R to some set of states R′. We also denote by P (R,R′)
the set of all paths from R to R′. An accepting path is an element of P (I, F). The
language accepted by an automaton A is the set of strings labeling its accepting
paths and is denoted by L(A). Two automata A and B are said to be equivalent
when L(A) = L(B).

We will say that a state p can be reached by a string x when there exists a path
from an initial state to p labeled with x. When two states can be reached by the
same string, we say that they are co-reachable. We will also say that two states p
and q share a common future when they admit a common string x to reach a final

A Disambiguation Algorithm for Finite Automata 267

state, that is when there exists a string x such that P (p, x, F) ∩ P (q, x, F)
= ∅.
For any subset s ⊆ Q and x ∈ Σ∗, we will denote by δ(s, x) the set of states
that can be reached from the states in s by a path labeled with x.

A finite-state transducer is a finite automaton in which each transition is
augmented with an output label, which is an element of (Δ ∪ {ε}), where Δ is
a finite alphabet. For any transducer T , we denote by T−1 its inverse, that is
the transducer obtained from T by swapping the input and output label of each
transition.

We will use the standard algorithm to compute the intersection A∩A′ of two
automata A and A′ [12], whose states are pairs formed by a state of A and a state
of A′, and whose transitions are of the form ((p, q), a, (p′, q′)), where (p, a, q) is
a transition in A and (p′, a, q′) in A′.

An automatonA is said to be trim if all of its states lie on some accepting path.
It is said to be unambiguous if no string x ∈ Σ∗ labels two distinct accepting
paths, finitely ambiguous if there exists k ∈ N such that no string labels more
than k accepting paths, polynomially ambiguous if there exists a polynomial P
with coefficients in N such that no string x labels more than P (|x|) accepting
paths. The finite, polynomial, and exponential ambiguity of an automaton with
ε-transitions can be tested in polynomial time [4].

3 Disambiguation Algorithm for Finite Automata

In this section, we describe in detail our disambiguation algorithm for finite
automata. The algorithm is first described for automata without ε-transitions.
The extension to the case of automata with ε-transitions is discussed later. Our
algorithm in general does not require a full determinization. In fact, in some cases
where the determinization creates 2n states where n is the number of states of
the input automaton, the cost of our new algorithm or the size of its output is
only in O(n).

3.1 Description

Figure 1 gives the pseudocode of the algorithm. The first step of the algorithm
consists of computing the automaton A ∩ A and of trimming it by removing
non-coaccessible states (line 1). The cost of this computation is in O(|A|2) since
the complexity of intersection is quadratic and since trimming can be done in
linear time. The automaton B thereby constructed can be used to determine
in constant time if two states q and r of A that can be reached from I via the
same string share a common future simply by checking if (q, r) is a state of B.
Indeed, by definition of intersection, this property holds iff (q, r) is a state of
B. As shown by the following proposition, the automaton B is in fact directly
related to the ambiguity of A.

Proposition 1 ([4]). Let A be a trim finite automaton with no ε-transition. A
is unambiguous iff no coaccessible state in A∩A is of the form (p, q) with p
= q.

268 M. Mohri

Disambiguation(A)

1 B ← Trim(A ∩A)
2 for each i ∈ I do
3 s ← {i′ : i′ ∈ I ∧ (i, i′) ∈ B}
4 I ′ ← Q′ ← Q′ ∪ {(i, s)}
5 Enqueue(Q, (i, s))
6 for each (u, u′) ∈ I ′2 do
7 R ← R ∪ {(u, u′)}
8 while Q �= ∅ do
9 (p, s) ← Head(Q)

10 Dequeue(Q)
11 if

(
(p ∈ F) and (� ∃(p′, s′) ∈ F ′ with (p′, s′) R (p, s))

)
then

12 F ′ ← F ′ ∪ {(p, s)}
13 for each (p, a, q) ∈ E do
14 t ← {r ∈ δ(s, a) : (q, r) ∈ B}
15 if

(� ∃((p′, s′), a, (q, t)) ∈ E′ with (p′, s′) R (p, s)
)
then

16 if ((q, t) �∈ Q′) then
17 Q′ ← Q′ ∪ {(q, t)}
18 Enqueue(Q, (q, t))
19 E′ ← E′ ∪ {(

(p, s), a, (q, t)
)}

20 for each (p′, s′) s.t.
(
(p′, s′)R (p, s)

)
and

(
(p′, s′), a, (q′, t′)

) ∈ E′ do
21 R ← R ∪ {(q, t), (q′, t′))}
22 return A′

Fig. 1. New disambiguation algorithm for finite automata

Proof. Since A is trim, the states of A ∩ A are all accessible by construction.
Thus, a state (p, q) in A ∩ A is coaccessible iff it lies on an accepting path,
that is by definition of intersection, iff there are two paths π = π1π2 ∈ P (I, F)
and π′ = π′

1π
′
2 ∈ P (I, F) with π1 ∈ P (I, p) and π′

1 ∈ P (I, q), with π1 and π′
1

sharing the same label and π2 and π′
2 also sharing the same label. Thus, A is

unambiguous iff p = q. �

The algorithm constructs an unambiguous automaton A′ = (Q′, E′, I ′, F ′). The
set of states Q′ are of the form (p, s) where p is a state of A and s a subset of the
states of A. Line 2 defines the initial states which are of the form (i, s) with i ∈ I
and s a subset of the states in I sharing a common future with i. The algorithm
maintains a relation R such that two states of A′ are in relation via R iff they
can be reached by the same string from the initial states. In particular, since all
initial states are reachable by ε, any two pair of initial states are in relation via
R (lines 6-7).

The algorithm also maintains a queue Q containing the set of states (p, s) of
Q′ left to examine and for which the outgoing transitions are to be determined.
The queue discipline, that is the order in which states are added or extracted
fromQ is arbitrary and does not affect the correctness of the algorithm. However,
different orderings can result in different but equivalent resulting automata.

A Disambiguation Algorithm for Finite Automata 269

0

a
b

1

a

b

2

a
c

3

d

d

(0, {0})

a
b

(1, {1, 2})

a

(1, {1})
b

(2, {1, 2}

a

(2, {2})

c

(3, {3})

d

d

d

d (0, {0})

(1,
{0, 1, 2})

a

(1, {0, 1})

b

(2, {2})c

a

b

c

(3, {3})

d

a
b

c

d

d

(a) (b) (c)

Fig. 2. Illustration of the disambiguation algorithm. (a) Automaton A. (b) Result of
disambiguation algorithm applied to A. One of the two dashed transitions is disallowed
by the algorithm. (c) Result of determinization applied to A.

At each execution of the loop of lines 8-21, a new state (p, s) is extracted from
Q (lines 9-10). To avoid an ambiguity due to finality, state (p, s) is made final
only if there is no final state (p′, s′) ∈ F ′ in relation with (p, s) (lines 11-12).

Each outgoing transition (p, a, q) of p is then examined. Line 14 defines t to be
the subset of the states of A that can be reached from a state of s by reading x
but excludes states q′ that do not share a common future with q. This is because
the subsets are used to detect ambiguities. If q and q′ do not share a common
future even though there are paths with the same label x reaching them, these
paths cannot be completed to reach a final state with the same label. Thus, if X
is the set of strings leading to a state (p, s) of Q′, the subset s contains exactly
the set of states r of A that can be reached via X from I and that share a
common future with p.

To avoid creating two paths from I ′ to (q, t) with the same labels, the tran-
sition from (p, s) to (q, t) with label q is not created if there exists already one
from (p′, s′) to (q, t) for a state (p′, s′) that can reached by a string also reaching
(p, s) (condition of line 15). Note that if (p, s) is extracted from Q before a state
(p′, s′) with (p′, s′)R(p, s), then the transition from (p, s) to (q, t) is created first
and the one from (p′, s′) to (q, t) not created. This is how the queue discipline
directs the choice of the transitions created.

Lines 16-18 add (q, t) to Q′ when it is not already in Q′ and line 19 adds the
new transition defined to E′. After creation of this transition, the destination
state (q, t) is then put in relation with all states (q′, t′) reached by a transition
labeled with a ∈ Σ from a state (p′, s′) that is in relation with (p, s).

Figure 2 illustrates the application of the algorithm in a simple case. Observe
that states 1 or 2 are not included in the subset of (0, {0}) in the automaton
of Figure 2(b) since 0 does not share a common future with 1 or 2. Figure 2
also shows the result of the application of determinization to the same example.
As can be seen from this example, in some instances, determinization creates
more transitions than disambiguation. Some states created by the disambigua-
tion algorithm may be non-coaccessible, that is, they may admit no transition
to a final state because their output transitions were not constructed to avoid

270 M. Mohri

0

a
b

1
a

2
a
b

...
a
b

n-1
a
b

n
a
b

0

a
b

1a

1’

b

2a

b

2’
a

...
a
b

n-1
a
b

n

b

a

3’
a

(n-1)’
a

a

(a) (b)

Fig. 3. Examples of automata A for which determinization returns an exponentially
larger automaton while our algorithm returns A (for (a)) or an automaton whose size is
linear in A (for (b)). (a) Automaton representing the regular expression (a+b)∗a(a+b)n,
whose minimal deterministic equivalent has size Ω(2n). (b) Automaton representing
the regular expression (a + b)∗(a(a + b)n + ban), whose determinization results in an
automaton with Ω(2n) states.

generating ambiguity. These states and the transitions leading to them can be
removed in linear time using a standard trimming algorithm. In the case of the
automaton of Figure 2(b), the state whose dashed transition is not constructed
can be trimmed.

More generally, note that when the input automaton is unambiguous, the
subsets created by our algorithm are reduced to singletons: by Proposition 1, a
subset cannot contain two distinct states in that case. In such cases, our algo-
rithm simply returns the same automaton A. The work done after computation
of B is also linear in |A|. In contrast, the determinization of A may lead to a
blow-up, even when the automaton is unambiguous. In particular, for the stan-
dard case of the non-deterministic automaton of Figure 3(a) representing the
regular expression (a + b)∗a(a + b)n, it is known that determinization creates
2n+1 − 1 states. However, this automaton is unambiguous and our algorithm
returns the same automaton unchanged. The automaton of Figure 3(b) is sim-
ilar but is ambiguous. Nevertheless, it is not hard to see that again the size of
the automaton returned by determinization is exponential and that that of the
automaton output by our algorithm is only linear.

3.2 Analysis

The termination of the algorithm is guaranteed by the fact that the number
of states and transitions created must be finite. This is because the number of
possible subsets s of states of A is finite, thereby also the number of pairs (p, s)
created by the algorithm where p is a state of A and s a subset. Also, the number
of transitions created at a state (p, s) is at most equal to the number of states
leaving p in A. In the worst case, the algorithm may create exponentially many
subsets and thus the computational complexity of the algorithm is exponential.
In many practical cases, however, this worst case behavior is not observed. In
particular, the automaton returned by our disambiguation algorithm is substan-
tially smaller than the one obtained by application of determinization.

We will now show that the automaton returned by the algorithm is unam-
biguous using the following lemma.

A Disambiguation Algorithm for Finite Automata 271

Lemma 1. Let (q, t) and (q′, t′) be two states constructed by algorithm Disam-

biguation run on input automaton A, then (q, t) R (q′, t′) iff (q, t) and (q′, t′)
are co-reachable.

Proof. We will show by induction on the length of strings x that if two states
(q, t) and (q′, t′) are both reachable by x, then (p, s) R (q′, t′). The steps of lines
6-7 ensure that (q, t) R (q′, t′) when both states are initial, that is, when they
are reachable by ε. Assume that it holds for all strings x of length less than or
equal to n. Let x = x′a be a string of length n + 1 with x′ ∈ Σ∗ and a ∈ Σ
and assume that (q, t) and (q′, t′) are both reachable by x. Then, there exists
a state (p, s) reachable by x′ and admitting a transition labeled with a leading
to (q, t) and similarly a state (p′, s′) reachable by x′ and admitting a transition
labeled with a leading to (q′, t′). Then, by the induction hypothesis, we have
(p, s) R (p′, s′), thus (q, t) R (q′, t′) is guaranteed by execution of the steps of
lines 20-21. This proves the implication corresponding to one side. The converse
holds straightforwardly by construction (lines 6-7 and 20-21). �

Proposition 2. The automaton A′ returned by algorithm Disambiguation

run on input automaton A is unambiguous.

Proof. Let π1 and π2 be two paths in A
′ from I ′ to F ′ with the same label x ∈ Σ∗.

If x = ε, π1 is a path from some initial state (i1, s1) to (i1, s1) and similarly π2
a path from some initial state (i2, s2) to (i2, s2). All initial states are in relation
(lines 6-7), therefore at most one can be made final (lines 11-12). This implies
that (i1, s1) = (i2, s2) and π1 = π2. Let (q1, t1) be the destination state of π1 and
(q2, t2) the destination state of π2. Since (q1, t1) and (q2, t2) are both reachable
by x, by Lemma 1, we have (q1, t1) R (q2, t2). Since no two distinct equivalent
states can be made final (lines 11-12), we must have (q1, t1) = (q2, t2).

If x = ε, this implies that the two paths π1 and π2 coincide. If x
= ε, x can be
written as x = x′a with x′ ∈ Σ∗ and a ∈ Σ and π1 and π2 can be decomposed
as π1 = π′

1e1 and π2 = π′
2e2 with e1 and e2 transitions labeled with a leading

to (q1, t1). Let (p1, s1) be the destination state of π′
1 and (p2, s2) the destination

state of π′
2. Since π

′
1 and π′

2 are both labeled with x′, by Lemma 1, we have
(p1, s1) R (p′1, s

′
1). By the condition of line 15, if (p1, s1)
= (p′1, s

′
1), (p1, s1) and

(p′1, s
′
1) cannot both admit a transition labeled with a and leading to the same

state (q1, t1). Thus, we must have (p1, s1) = (p′1, s
′
1). Proceeding in the same

way with π′
1 and π′

2 and so on shows that the paths π1 and π2 coincide, which
concludes the proof. �

The following lemmas will be used to show the equivalence between the automa-
ton returned by the algorithm and the input automaton.

Lemma 2. Let (p, s) be a state constructed by algorithm Disambiguation run
on input automaton A. If (p, s) is reachable by the strings u and v in A′, then the
set of states reachable by u in A and sharing a common future with p coincides
with the set of states reachable by v in A and sharing a common future with p .

272 M. Mohri

Proof. We show by recurrence on the length of u that if state (p, s) is reachable
by u in A′, then s is the set of states reachable by u and sharing a common future
with p. This property holds straightforwardly for u = ε by the construction of
lines 2-5. Assume now that it holds for all u of length less than or equal to n.
Let u = u′a with u′ ∈ Σ∗ of length n and a ∈ Σ. If (p, s) is reachable by u,
there must exist some state (p′, s′) reachable by u′ and admitting a transition
labeled with a leading to (p, s). By the induction hypothesis, s′ is the set of
states reachable by u′ and sharing a common future with p′. By definition of s
(line 14), s = {q ∈ δ(s′, a) : (q, p) ∈ B}, thus the states in s are all reachable
by u and share a common future with p. Conversely, let q be a state reachable
by u and sharing future with p. There is a transition labeled with a from some
state q′ reachable by u′. Since q′ admits a transition to q labeled with a and p′

admits a transition labeled with a to p, and p and q share a common future, p′

and q′ must also share a common future. By the induction hypothesis, s′ is the
set of states reachable by u′ and sharing a common future with p′, therefore q′

is in s′. Since q ∈ δ(q′, a) and q shares a common future with p, this implies that
q is in s. This shows that the states in s are those reachable by u and sharing a
common future with p. �
Lemma 3. Let A′ be the automaton returned by algorithm Disambiguation

run on input automaton A. Let q be a state reachable in A by string x. Then,
there exists a state (q, t) in A′ for some subset t such that (q, t) is reachable by
x in A′.

Proof. We will prove the property by induction on the length of x. The property
straightforwardly holds for x = ε by the construction steps of lines 2-5. Assume
now that it holds for all strings of length less than or equal to n and let x = ua
with u a string of length n and a ∈ Σ. If q is reachable by string x in A,
then there exists a state p0 in A reachable by u and admitting a transition
labeled with a leading to q. By the induction hypothesis, there exists a state
(p0, s0) in A′ reachable by u. Now, the property clearly holds for (q, t0) if the
transition labeled with a leaving (p0, s0) is constructed at lines 15-19, with t0
defined at line 14. Otherwise, by the test of line 15, there must exist in A′ a
distinct state (p1, s

′
0) admitting a transition labeled with a leading to (q, t0)

with (p1, s
′
0) R (p0, s0). Note that we cannot have p1 = p0, since the same string

cannot reach two distinct states (p0, s0) and (p0, s1). Now, since (p1, s
′
0) admits

a transition labeled with a leading to (q, t0), p1 must admit a transition labeled
with a and leading to q. Thus, p1 and p0 share a common future in A. Since
(p1, s

′
0) R (p0, s0), by Lemma 1, they are reachable by a common string v. Thus,

both u and v reach (p0, s0). By Lemma 2, this implies that the set of states in A
reachable by u and v and sharing a common future with p0 are the same. Since
p1 and p0 share a common future in A and v reaches both p0 and p1, u must
also reach p1 in A.

If u reaches (p1, s
′
0), then (q, t0) can be reached by x since (p1, s

′
0) admits a

transition labeled with a leading to (q, t). Otherwise, by the induction hypothesis,
there must exist a distinct state (p1, s1) in A

′ reachable by u, with p1 admitting
a transition labeled with a to q. Reapplying the argument already presented for

A Disambiguation Algorithm for Finite Automata 273

(p0, s0) to (p1, s1), either we find a path in A′ labeled with x to a state (q, t1),
or there exists a state (p2, s2) in A′ with the same property as (p0, s0) with
p2 distinct from p1 and p0. Since the number of distinct such states is finite,
reiterating this process guarantees finding a path in A′ labeled with x to a state
(q, tk) after some finite number of times k. Thus, the property holds in all cases.

�

Lemma 4. Let A′ be the automaton returned by algorithm Disambiguation

run on input automaton A, then L(A′) ⊆ L(A).

Proof. The proof argument is similar to that of Lemma 3. Let x be a string
reaching a final state q0 ∈ F in A. By Lemma 3, there exists a state (q0, t0)
in A′ reachable by x. If state (q0, t0) is made final (lines 11-12), this shows
that x is accepted by A′. Otherwise, there must exist a final state (q1, t

′
0) with

(q1, t
′
0) R (q0, t0). Note that this implies that q1 is final. Note also that we have

q1
= q0 since two states (q0, t0) and (q0, t
′
0) cannot be co-reachable with t′0
= t0.

Since (q1, t
′
0) R (q0, t0), there exists a string x1 reaching both states. Since (q0, t0)

is reachable by both x and x1, by Lemma 2, the set of states in A reachable by
x and sharing a common future with q0 and those reachable by x1 and sharing
a common future with q0 are the same. q1 shares a common future with q0 since
both states are final and q1 is reachable by x1, therefore q1 is reachable by x.

Now, if x reaches (q1, t
′
0), this shows that x is accepted by A′. Otherwise, by

Lemma 3, there exists a state (q1, t1) in A′ reachable by x. We can reapply to
(q1, t1) the same argument as for (q0, t0) since q1 is a final state. Doing so, we
either find a final state in A′ reachable by x or a state (q2, t2) in A

′ with the same
properties as (q0, t0) with q0, q1, and q2 all distinct. Since the number of states
of A′ is finite, reiterating this process guarantees finding a final state reachable
by x. This concludes the proof. �

Proposition 3. The automaton A′ returned by algorithm Disambiguation

run on input automaton A is equivalent to A.

Proof. By construction, a path ((p1, s1), a1, (p2, s2)) · · · ((pk, sk), ak, (pk+1, sk+1))
is created in A′ only if the path (p1, a1, p2) · · · (pk, ak, pk+1) exists in A, and a
state (p, s) is made final in A′ only if p is final in A. Thus, if a string x = a1 · · · ak
is accepted by A′ it is also accepted by A, which shows that L(A′) ⊆ L(A). the
reverse inclusion holds by Lemma 4.

The following theorem follows directly by Propositions 2 and 3.

Theorem 1. The automaton A′ returned by algorithm Disambiguation run
on input automaton A is an unambiguous automaton equivalent to A.

Note that the states disallowed via the condition of our algorithm are the min-
imal ones that can be safely removed from the subsets to check the presence of
ambiguities.

274 M. Mohri

0

1a

4

ε

2
ε

5
a

3

b

c

b
d

(0, {0, 4})

(1, {1, 2, 5})
a

(4, {0, 4})

ε

(2, {1, 2, 5})
ε

(5, {1, 2, 5})
a

(3, {3})

b
c

b

d

(a) (b)

Fig. 4. (a) Automaton A with ε-transitions. (b) Unambiguous automaton equivalent
to A returned by our disambiguation algorithm. The dashed transition is disallowed
by the algorithm.

3.3 Disambiguation of Automata with ε-Transitions

Our algorithm can also be extended to the case of automata with ε-transitions.We
briefly describe that extension. Let A be an input automaton with ε-transitions.
Here, the automaton B used to determine pairs of states sharing the same future
is obtained similarly by computing the intersection A∩A by using an ε-filter [12]
and by trimming the result by removing non-coaccessible states and transitions.
For any set R of states of A, let ε[R] denote the ε-closure of R, that is the set of
states reachable from states of R via paths labeled with ε.

To extend the algorithm to cover the case of automata with ε-transitions, it
suffices to proceed as follows. The initial states are defined by the set of (i, s)
with i ∈ I and s = {q ∈ ε[I] : (i, q) ∈ B}. At line 14, δ(s, a) is defined as the
set of states reachable from s by reading a, including via ε-transitions. Finally,
the relation R is extended to ε-transitions as follows: for each (p′, s′) such that
(p′, s′) R (p, s) and ((p, s), ε, (q′, t′)) ∈ E′, (p′, s′) is put in relation with (q′, t′).
Figure 4 illustrates the application of our algorithm in that case.

4 Disambiguation of Finite-State Transducers

In this section, we consider the problem of determining an unambiguous trans-
ducer equivalent to a given functional finite-state transducer, that is a finite-state
transducer representing a (partial) rational function, or equivalently one asso-
ciating at most one output string to any input string. The functionality of a
finite-state transducer T can be tested efficiently from the transducer T ◦ T−1

as shown by [2].

Theorem 2 ([2]). There exists an algorithm for testing the functionality of a
finite-state transducer T with output alphabet Δ in time O(|E|2 + |Δ| |Q|2).

One possible algorithm for finding an unambiguous transducer equivalent to a
functional transducer is determinization [11], however, as discussed earlier, not
all functional transducers admit an equivalent deterministic transducer. Fig-
ure 5(a) shows an example of such a functional transducer which in fact is
unambiguous. A trim functional transducer is determinizable iff it admits the
twins property [3].

A Disambiguation Algorithm for Finite Automata 275

0

1a:a

3

a:b

2
a:a

4
a:b

a:a

a:b

0

1a:ε

2

a:a 3

b:a

b:ε (0, {0})

(1, {1, 2})a:ε

(2, {1, 2})

a:a (3, {3})

b:a

b:ε

(a) (b) (c)

Fig. 5. (a) Unambiguous finite-state transducer admitting no sequential or determin-
istic equivalent. (a) Functional transducer T . (b) Disambiguated transducer equivalent
to T returned by our algorithm. One of the two dashed transitions is disallowed by the
algorithm.

We will describe instead a disambiguation algorithm does not require that ad-
ditional property. It is known that any functional transducer can be represented
by an unambiguous transducer [9,5]. For a functional transducer, by definition,
two accepting paths with the same input label have the same output labels.
Thus, for disambiguating a functional transducer, only input labels matter and
our automata disambiguation can be readily applied to create an unambiguous
transducer equivalent to an input functional transducer. Our disambiguation
algorithm gives a constructive proof of the existence of an equivalent unambigu-
ous transducer for a rational function. The different possible cross-sections of the
construction of [9] correspond to different orders in which transitions are visited
and disallowed by our algorithm. Figure 5(b)-(c) illustrates the application of
the algorithm in the case of a simple functional transducer.

As already pointed out, our algorithm compares favorablywith the existing dis-
ambiguation algorithm for finite-state transducers of Schützenberger [16,15]. That
construction can be concisely described as follows. Let D be a deterministic au-
tomaton obtained by determinization of the input automaton A of the functional
transducer T , that is the automaton obtained by removing the output labels of T .
Then, the algorithm consists of composingD with T using the standard composi-
tion algorithm for finite-state transducers while disallowing finality of two compo-
sition states (p, s) and (q, s) with the same determinization subset s and distinct
states p and q of T , and similarly disallowing all but one transition labeled with a
from two states (p, s) and (q, s) to the same state, to avoid generating ambiguities.
As can be seen from this description, the algorithm requires the determinization
of A. This is implicit in the description of this construction in [14].

In contrast, our disambiguation algorithm that does not require the deter-
minization of A and as seen in the previous sections can return exponentially
smaller automata than those returned by determinization is some cases. Consider
for example the finite-state transducers defined as the automata of Figure 3 with
each transition augmented with an output label identical to its output label. The
construction of Schützenberger requires for those transducers the determiniza-
tion of the input automata, thus its cost as well as the size of the result are
exponential with respect to the size of the output as already discussed in Sec-
tion 3. Unlike that construction, as in the automata case, our algorithm returns
the same transducer or returns one whose size is only linear in that of the input.

276 M. Mohri

0

1
a:b

b:b

2
a:ε

b:ε

3

a:b

c:b

4

a:ε

b:ε

b:b

d:b

c:ε

(a)

(0, {0})

(1, {1, 2})
a:b

b:b

(2, {1, 2})
a:ε

b:ε

(3, {3})

a:b

c:b

(4, {4})

a:ε

b:ε

b:b

d:b

c:ε

(b)

(0, {0})

(1, {1, 2, 3})

a:b

(2, {1, 2, 3})

a:ε

(3, {1, 2, 3})
a:b

(1, {1, 2})

b:b

(2, {1, 2})

b:ε

(3, {3})

c:b

(4, {4})

a:ε

b:ε

b:b

d:b

c:ε

a:ε

b:ε

b:b

d:b

c:ε

(c)

Fig. 6. Disambiguation of functional transducers. (a) Functional transducer T . (b)
Unambiguous transducer equivalent to T returned by our algorithm. The dashed tran-
sitions are disallowed by the algorithm. (c) Unambiguous transducer returned by the
disambiguation construction of Schützenberger [16,15].

The subsets definedby our disambiguation algorithmare never larger than those
defined in the subset construction of determinization. This is because for a state
(p, s) constructed in the algorithm, only states sharing a common future with p are
kept in the subset s. In addition to making the size of the subsets shorter, this also
reduces the number of states created: two possible states (p, s′) and (p, s”) in the
construction of Schützenberger are reduced to the same (p, s) after removal from s′

and s” of the states not sharing a common future with p. This leads in many cases
to transducers exponentially smaller than those generated by the construction of
Schützenberger and similar improvements in time efficiency.

The observation just emphasized can be illustrated by the simple example of
Figure 6. The transducer T of Figure 6(a) is functional but is not unambiguous.
Figure 6(b) shows the result of our disambiguation algorithm which is an unam-
biguous transducer equivalent to T with the same number of states. In contrast,
the transducer created by the construction of Schützenberger (Figure 6(c)) has
several more states and transitions and some larger subsets.

5 Conclusion

We presented a new and often more efficient algorithm for the disambigua-
tion of finite automata and functional transducers. This algorithm is of great

A Disambiguation Algorithm for Finite Automata 277

practical importance in a variety of applications including text and speech pro-
cessing, bioinformatics, and in many other applications where they can be used
to increase search efficiency. We have also designed a natural extension of these
algorithms to some broad families of weighted automata and transducers de-
fined over different semirings. We will present these extensions as well as their
theoretical analysis in a longer version of this paper.

Acknowledgments. I thank Cyril Allauzen and Michael Riley for discussions
about this work. This research was supported by a Google Research Award.

References

1. Albert, J., Kari, J.: Digital image compression. In: Handbook of Weighted Au-
tomata. Springer (2009)

2. Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. Journal
of Automata, Languages and Combinatorics 8(2), 117–144 (2003)

3. Allauzen, C., Mohri, M.: Finitely subsequential transducers. International Journal
of Foundations of Computer Science 14(6), 983–994 (2003)

4. Allauzen, C., Mohri, M., Rastogi, A.: General algorithms for testing the ambiguity
of finite automata and the double-tape ambiguity of finite-state transducers. Int.
J. Found. Comput. Sci. 22(4), 883–904 (2011)

5. Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbucher
(1979)

6. Breuel, T.M.: The OCRopus open source OCR system. In: Proceedings of
IS&T/SPIE 20th Annual Symposium (2008)

7. Choffrut, C.: Contributions à l’étude de quelques familles remarquables de fonctions
rationnelles. Ph.D. thesis, Université Paris 7, LITP: Paris, France (1978)

8. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press
(1998)

9. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press (1974)
10. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computa-

tional Linguistics 20(3) (1994)
11. Mohri, M.: Finite-state transducers in language and speech processing. Computa-

tional Linguistics 23(2), 269–311 (1997)
12. Mohri, M.: Weighted automata algorithms. In: Handbook of Weighted Automata,

pp. 213–254. Springer (2009)
13. Mohri, M., Pereira, F.C.N., Riley, M.: Speech recognition with weighted finite-

state transducers. In: Handbook on Speech Processing and Speech Communication.
Springer (2008)

14. Roche, E., Schabes, Y. (eds.): Finite-State Language Processing. MIT Press (1997)
15. Sakarovitch, J.: A construction on finite automata that has remained hidden.

Theor. Comput. Sci. 204(1-2), 205–231 (1998)
16. Schützenberger, M.P.: Sur les relations rationnelles entre monoides libres. Theor.

Comput. Sci. 3(2), 243–259 (1976)

Synchronization of Automata

with One Undefined or Ambiguous Transition

Pavel V. Martyugin

Ural Federal University,
620083 Ekaterinburg, Russia

martugin@mail.ru

Abstract. We consider the careful synchronization of partial automata
with only one undefined transition and the generalized synchronization
of nondeterministic automata with only one ambiguous transition. For
each of the two cases we prove that the problem of checking whether
or not a given automaton is synchronizable is PSPACE-complete. The
restrictions of these problems to 2-letter automata are also PSPACE-
complete.

Keywords: Synchronizing words, Careful synchronization, Nondeter-
ministic automata, Computational Complexity.

1 Introduction

A deterministic finite automaton (DFA) is a triple A = (Q,Σ, δ), where Q is
a finite set of states, Σ is a finite alphabet and δ is a totally defined transition
function. Denote byΣ∗ the freeΣ-generated monoid with the empty word λ. The
function δ extends in a natural way to the action Q×Σ∗ → Q. This extension is
also denoted by δ. A DFA A = (Q,Σ, δ) is called synchronizing if there exists
a word w ∈ Σ∗ whose action resets A , that is, leaves the automaton in one
particular state no matter at which state in Q it started: δ(q, w) = δ(q′, w) for
all q, q′ ∈ Q. Any word w with this property is said to be a reset or synchronizing
word for the automaton A .

A conjecture proposed by Černý in [2] states that every synchronizing DFA
with n states can be synchronized by a word of length at most (n − 1)2. There
have been many attempts to prove it but they all have failed so far. The best
upper bound known up to date is n(7n2 + 6n + 16)/48, see [14]. Černý in [2]
describes an algorithm that checks whether a given DFA with n states and
k letters is synchronizing or not. This algorithm takes O(n2k) time, i.e. it is
polynomial in n and k. A survey of results concerning synchronizing words can
be found in [15].

The notion of a synchronizing word can be generalized to the case of automata
with a partial transition function (PFA) and to the case of nondeterministic finite
automata (NFA). A partial finite automaton (PFA) is a triple A = (Q,Σ, δ),
where Q is a finite set of states, Σ is a finite alphabet and δ is a partial function

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 278–288, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Synchronization with One Undefined Transition 279

from Q × Σ to Q. The function δ can be undefined on some pairs from the set
Q×Σ. Denote by 2Q the set of all subsets of Q. The function δ can be naturally
extended to 2Q ×Σ∗ as follows. We put δ(q, λ) = q for every q ∈ Q. Let q ∈ Q,
a ∈ Σ, w ∈ Σ∗. If both states p = δ(q, w) and δ(p, a) are defined, then we put
δ(q, wa) = δ(p, a). If S ⊆ Q, w ∈ Σ∗ and the values δ(q, w) are defined for all
states q ∈ S, then we put δ(S,w) = {δ(q, w)|q ∈ S}.

A PFA A = (Q,Σ, δ) is called carefully synchronizing, if there is a word
w ∈ Σ∗ such that the value δ(Q,w) is defined and |δ(Q,w)| = 1. We say that
such a word w is a carefully synchronizing word (c.s.w.) for the automaton A .
A c.s.w. for some PFA synchronizes it and does not ”break” it in the sense that
no undefined transition is ever used.

Clearly, as each DFA is also a PFA, c.s.w. for a DFA is also synchronizing for
it. Therefore, thee careful synchronization of PFA is a natural generalization of
the synchronization of DFA.

The Černý-type problem can be also considered for PFA. Let c(n) be the
maximal length of the shortest c.s.w. among all carefully synchronizing PFA
with n states. It follows from [12] and [5] that Ω(3n/3) ≤ c(n) ≤ O(n2 · 4n/3).
This means that the length of the shortest c.s.w. may not be polynomial in n.
This length may not be polynomial in n even for 2-letter PFA, see [11]. Checking
whether a given PFA is carefully synchronizing is harder then checking whether
a given DFA is synchronizing. Indeed, synchronizablity of a DFA can be checked
in polynomial time but checking whether a given PFA is carefully synchronizing
is PSPACE-complete. The restriction of this problem to the class of 2-letter PFA
is also PSPACE-complete, see [13].

The synchronization of DFA is fast and easy to check, the careful synchro-
nization for an arbitrary PFA is slow and hard to check. We have a problem:
where does the precise border between simplicity and hardness lie? In this pa-
per we consider a subclass of the class of all PFA which are very close to DFA,
namely, PFA with only one undefined transition. It turns out that already in this
simple case checking whether a given PFA is carefully synchronizing is PSPACE-
complete. We will also prove the PSPACE-completeness of the same problem for
PFA with a binary alphabet.

There is another point of view to the definition of PFA. We can consider
an undefined transition not as a forbidden transition, but as a transition which
maps a state to some unknown state. Such transition is equivalent in some sense
to a nondeterministic mapping which maps the state to the set of all states.
Thus, it is natural to consider synchronization for nondeterministic automata.

A nondeterministic finite automaton (NFA) is the triple A = (Q,Σ, δ) such
that Q is a finite set of states, Σ is a finite alphabet, and δ is a function from
Q×Σ to 2Q. The function δ can be naturally extended to the set 2Q ×Σ∗. Let
S ⊆ Q, a ∈ Σ, then we put δ(S, a) =

⋃
q∈S

δ(q, a). We also put δ(S, λ) = S. Let

S ⊆ Q, w ∈ Σ∗, w = ua, a ∈ Σ and the set δ(S, u) is defined, then we put
δ(S,w) = δ(δ(S, u), a).

Let A = (Q,Σ, δ) be an NFA and w ∈ Σ∗. The word w is D1-directing (D1-
d.w.) (or D1-synchronizing) if δ(q, w)
= ∅ for all q ∈ Q and |δ(Q,w)| = 1. The

280 P.V. Martyugin

word w is D2-directing (D2-d.w.) if δ(q, w) = δ(Q,w) for all q ∈ Q. The word w
is D3-directing (D3-d.w.) if

⋂
q∈Q

δ(q, w)
= ∅. The NFA A is called D1, D2 or D3-

directable if there is a D1, D2 or D3-directing word for it. D1-directability was
first studied in [1]. The definitions in the form presented here were introduced
and D2- and D3-directability were first studied in [6].

The D1, D2 and D3-directability reduce to the ordinary synchronization when
the NFA under consideration is a DFA. The D1 and D3-directability reduce to
the careful synchronization in the case when an NFA is a PFA. A state z in an
automaton is called a zero state if every letter of the automaton is defined on the
state z and maps z to itself. Directable NFA with a zero state were investigated
in [7]. The D2-directability is a generalization of the careful synchronization for
automata with a zero state.

Let d1(n), d2(n) and d3(n) be the maximal lengths of the shortest D1, D2

or D3-directing words for NFA with n states, respectively. The following lower
and upper bounds of the length of the shortest directing words were obtained
in [5, 8, 9, 12]:

2n − n ≤ d1(n) ≤ Θ(2n);

2n − n− 1 ≤ d2(n) ≤ Θ(2n);

Ω(3n/3) ≤ d3(n) ≤ Θ(n2 · 4n/3).

It is proved in [13] that the problems of checking whether a given NFA is D1,
D2, or D3-directable are PSPACE-complete even for 2-letter automata.

For NFA, we can ask the the same question as for PFA: where is the precise
border between simplicity and hardness. In this paper we consider a class of
NFA with a totally defined transition relation such that there exists only one
ambiguous transition which maps one state to a set of two states. In such NFA
A = (Q,Σ, δ) for any q ∈ Q, a ∈ Σ we have |δ(q, a)| ∈ {1, 2} and |δ(q, a)| = 2
for only one pair (q, a). The class of such NFA is very close to the class of all
DFA, but we prove that the problem of checking the D1 and D2-directability are
PSPACE-complete for NFA with one ambiguous transition even if only 2-letter
automata are considered.

What about D3-synchronization? The NFA A = (Q,Σ, δ) is called complete
if for any state q ∈ Q and for any letter a ∈ Σ it follows that δ(q, a)
= ∅.
The class of complete NFA contains the class of NFA with only one ambiguous
transition. Every D3-directable complete NFA with n states has a D3-d.w. of
length at most 1+n(n−1)(n−2)/2, see [6,9]. A polynomial time algorithm that
checks whether a given NFA is D3-directable is described in [6]. That is why the
D3-directability of complete NFA is much simpler than D1 and D2-directability.

Let us give some auxiliary notation. Let w ∈ Σ∗. Denote by |w| the length of
the word w. Let i, j ∈ {1, . . . , |w|}. Let w[i] denote the i-th letter of the word w.
Denote the word w[i]w[i+1] · · ·w[k] by w[i, k]. For an automaton A = (Q,Σ, δ)
and q ∈ Q, a ∈ Σ, we denote δ(q, a) by q.a if there is no chance of confusion.
We also denote δ(S,w) by S.w for any subset S ⊆ Q and for any word w ∈ Σ∗.

Synchronization with One Undefined Transition 281

Moreover, we denote singleton {q} as q without brackets. In particular, if we
have δ(q1, a) = {q2} in some NFA, we denote δ(q1, a) = q2.

2 Classes of Automata and Computational Problems

The first class that we consider is a class of automata with only one undefined
transition. The PFA A = (Q,Σ, δ) is a PFA with one undefined transition if
δ(q0, a0) is undefined for some q0 ∈ Q, a0 ∈ Σ and δ(q, a) is defined for all
(q, a) ∈ Q×Σ \ {(q0, a0)} (this means that |δ(q, a)| = 1). Every PFA is a special
case of NFA in the sense that if δ(q, a) is undefined in PFA, then δ(q, a) = ∅ in
the corresponding NFA. Therefore, we can define D1, D2 or D3-d.w. for PFA.

Lemma 1. Let A = (Q,Σ, δ) be a PFA with the zero state z ∈ Q. Then the
set of all c.s.w., the set of all D1-d.w., the set of all D2-d.w. and the set of all
D3-d.w. are equal for A .

Proof. Let w be a c.s.w. for A . In this case for any state q ∈ Q we have |q.w| = 1.
Moreover, z.w = z. Therefore, q.w = z
= ∅. Therefore, Q.w = z = q.w for any
q ∈ Q. Moreover,

⋂
q∈Q

q.w = z
= ∅. Thus, the word w is D1, D2 and D3-directing.

Let w be a D1-d.w. for A , then |Q.w| = 1 and q.w
= ∅ for any q ∈ Q. Thus
w is a c.s.w.

Let w be a D2-d.w. for A , then for any state q ∈ Q we have q.w = Q.w. The
state z is a zero state. Therefore, z = z.w = Q.w = q.w
= ∅ for any state q ∈ Q.
Thus w is a c.s.w.

Let w be a D3-d.w. for A , then
⋂

q∈Q

q.w
= ∅. Let q ∈ Q. We have, z.w = z.

Therefore, z ∈ q.w. A is a PFA. Therefore, |q.w| ≤ 1. Therefore, q.w = z. Thus,
w is a c.s.w.

For D1 and D2-d.w. a stronger fact has been proved in [7].

Lemma 2. Let A = (Q,Σ, δ) be an NFA with a zero state z ∈ Q. Then the set
of all D1-d.w. for A is equal to the set of all D2-d.w. for A .

Let A = (Q,Σ, δ) be a PFA with one undefined transition δ(q, a). In previous
lemma we forbid to use the mapping δ(q, a). But we can treat this situation
in a different way. We can imagine that the transition δ(q, a) is not forbidden
but maps the state q to an unknown state. Thus, in this case we have an NFA
with only one ambiguous value δ(q, a) which is equal to the set of all states.
So this is not a “simplest” nondeterministic case because we can consider an
NFA B = (Q,Σ, δ) such that for any pair (q, a) except some (q0, a0) it follows
|δ(q, a)| = 1, but |δ(q0, a0))| = 2. The class of such NFA is very close to the class
of all DFA. We call such an automaton an NFA with one ambiguous transition.

We study the computational complexity of careful synchronization and di-
rectability of automata. Namely we consider the following computational
problems.

282 P.V. Martyugin

Problem: CARSYN
Input: A PFA A = (Q,Σ, δ).
Question: Is the automaton A carefully synchronizing?

Problem: D1DIR (D2DIR, D3DIR)
Input: An NFA A = (Q,Σ, δ).
Question: Is the automaton A D1 (D2, D3)-directable?

Let PROBLEM be any problem in {CARSYN, D1DIR, D2DIR, D3DIR}. If we
consider the restriction of PROBLEM to all possible automata over an alphabet
of size ≤ k for some fixed k, then we call such a problem k-PROBLEM (for
example, 2-CARSYN or 3-D1DIR). We denote by PROBLEM ONE UNDEF
the restriction of PROBLEM to the class of all automata with one undefined
transition. We denote by PROBLEM ONE AMBIG the restriction of PROB-
LEM to the class of all automata with one ambiguous transition. We use the
polynomial-time reducibility ≤p of problems. The following lemma is trivial. The
square brackets in the next lemma denote an optional expression.

Lemma 3. Let PROBLEM ∈ {CARSYN, D1DIR, D2DIR, D3DIR} and k ≥ 2
be an integer. Then

1. PROBLEM ONE UNDEF ≤p PROBLEM;

2. [k−]PROBLEM ONE UNDEF ≤p [k−]PROBLEM;

3. PROBLEM ONE AMBIG ≤p PROBLEM;
4. [k−]PROBLEM ONE AMBIG ≤p [k−]PROBLEM;

5. 2-PROBLEM ONE UNDEF ≤p [k−]PROBLEM ONE UNDEF;

6. 2-PROBLEM ONE AMBIG ≤p [k−]PROBLEM ONE AMBIG.

We show that almost all problems listed above are PSPACE-complete. At first,
we prove that these problems belong to PSPACE.

Lemma 4. Let PROBLEM ∈ {CARSYN, D1DIR, D2DIR, D3DIR} and let
k ≥ 2 be an integer. Then all possible problems [k−] PROBLEM [ONE UNDEF]
and [k−] PROBLEM [ONE AMBIG] belong to PSPACE.

Proof. It is already proved in [13] that the problems CARSYN, D1DIR, D2DIR,
D3DIR and the corresponding k-problems for k ≥ 2 are PSPACE-complete.
Therefore, from Lemma 3 we obtain that all considered problems are in PSPACE.
The proof of this fact is very simple. It is a consequence of Savitch’s theorem
(which states that PSPACE=NPSPACE) because any carefully synchronizing
or directing word can be nondeterministically applied to a given PFA or NFA
using O(n2) bits of memory where n is the number of states.

In Section 3 we prove that all ONE UNDEF problems are PSPACE-complete.
In Section 4 we prove that problems D1DIR and D2DIR ONE AMBIG are
PSPACE-complete. In Section 5 we reduce all problems to 2-letter alphabet
and prove that all considered 2-problems (except of D3DIR ONE AMBIG) are
PSPACE-complete.

Synchronization with One Undefined Transition 283

3 Automata with One Undefined Transition

Theorem 1. The problems CARSYN(D1DIR, D2DIR, D3DIR) ONE UNDEF
are PSPACE-complete.

Proof. From Lemma 4 we have that the problems are in PSPACE. To prove
the PSPACE-hardness, we use the reduction of the classical PSPACE-complete
problem FINITE AUTOMATA INTERSECTION to our problems. We reduce
the instance of initial problem to an instance of problem CARSYN ONE UN-
DEF. The input of this instance shall be a PFA B with a zero state. Therefore,
due to Lemma 1 this instance shall be also a required instance for the problems
D1DIR, D2DIR and D3DIR ONE UNDEF.

We use the PSPACE-complete problem FINITE AUTOMATA INTERSEC-
TION (see [10] and [4]). We consider deterministic finite automata of the form
A = (Q,Σ, δ, s, F) as recognizers, where Q is a set of states, Σ is an alphabet, δ
is a totally-defined transition function, s ∈ Q is an initial state and F ⊆ Q is a
set of final states. Let w be a word in Σ∗. The automaton A accepts the word
w if and only if δ(s, w) ∈ F .

Problem: FINITE AUTOMATA INTERSECTION
Input: The number k ≥ 2 and the recognizers A0 = (Q0, Σ, δ0, s0, F0), . . .

Ak−1 = (Qk−1, Σ, δk−1, sk−1, Fk−1).
Question: Is there a word w ∈ Σ∗ such that

δ0(s0, w) ∈ F0, . . . , δk−1(sk−1, w) ∈ Fk−1?

We reduce this problem to the problem CARSYN ONE UNDEF. Let recogniz-
ers A0 = (Q0, Σ

′, δ0, s0, F0), ,Ak−1 = (Qk−1, Σ
′, δk−1, sk−1, Fk−1) be an

input of the problem FINITE AUTOMATA INTERSECTION. We construct a
PFA with one undefined transition B = (Q,Σ, δ) such that there is a c.s.w. for
the automaton B if and only if the recognizers A0, . . . ,Ak−1 have a common
accepting word.

Let Σ = Σ′ ∪ {b, c}, Σ′ ∩ {b, c} = ∅ and Q = Q0 ∪ · · · ∪ Qk−1 ∪ T ∪ U ,
where T = {t0, . . . , tk−1} and U = {u−k, u−k+1, . . . uk−2, uk−1} and the sets
Q0, Q1, . . . , Qk−1, T , and U are pairwise disjoint. Let us define the function δ.
If q ∈ Qi for some i ∈ {0, . . . , k − 1} and a ∈ Σ′, then

δ(q, a) = δi(q, a), δ(q, b) = si, δ(q, c) =

{
ui, if q ∈ Fi;
ti, if q ∈ Qi \ Fi.

Let i ∈ {0, . . . , k − 1} and a ∈ Σ′, then

δ(ti, a) = ti, δ(ti, b) = si, δ(ti, c) =

{
ti−1, if i > 0;
undefined, if i = 0.

Let i ∈ {−k, . . . , k − 1} and a ∈ Σ′, then

δ(ui, a) = ui, δ(ui, b) =

{
si mod k, if i > −k;
u−k, if i = −k. , δ(ui, c) =

{
ui−1, if i > −k;
u−k, if i = −k.

284 P.V. Martyugin

F0

Fk−1

F1

s0

s1

sk−1

t0

t1

tk−1

� � �

� � �

� � �

u0

u1

uk−1

u−k

u−k+1

u−1

� � �

�

�

�

�

�

�

�

�

�

Fig. 1. Automaton B

Only the transition δ(t0, c) is undefined in the PFA B. The state u−k is a zero
state. Figure 1 represents the automaton B. Solid and dotted lines stand for the
action of c and b, respectively. The actions of letters from Σ′ are not drawn.

Let v ∈ Σ′∗ be a word accepted by all the recognizers A0, . . . ,Ak−1. Let us
prove that the word bvc2k is a c.s.w. for the PFA B. Indeed, δ(Q, b) is defined
and δ(Q, b) = {s0, . . . , sk−1, u−k}. All recognizers A0, . . . ,Ak−1 accept the word
v ∈ Σ′∗. Hence, δ0(s0, v) ∈ F0, . . . , δk−1(sk−1, v) ∈ Fk−1. Therefore, the function
δ(•, v) is defined on the set {s1, . . . , sk} and δ({s0, . . . , sk−1}, v) ⊆ F0∪. . .∪Fk−1.
Hence δ(Q, bvc) ⊆ {u−1, u0, . . . , uk−1}. Therefore, δ(Q, bvc2k) = u−k. Thus the
word bvc2k is a c.s.w. for the PFA B.

Otherwise, let B be carefully synchronizing and let w be the shortest c.s.w.
for B. Note that w[1]
= c because Q.c is not defined. Let w′ ∈ Σ′∗. The value
Q.w′c is also undefined. Furthermore, Q.w′b = {s0, · · · , sk−1, u−k} = Q.b and
the word w cannot start with w′. Therefore, w[1] = b. We have Q.w[1] = Q.b =
{s0, · · · , sk−1, u−k}. For every i ∈ {0, . . . , k − 1} the set Q.b contains exactly
one state from the set Qi. For every state from Qi, each letter from Σ′ moves
it to some state from Qi. Therefore, for every i ∈ {0, . . . , k − 1} and for every
word v ∈ Σ′∗, we have |Q.bv ∩ Qi| = 1. Moreover, si.vb ⊆ Qi.vb = si. Hence
Q.bvb = Q.b, i.e. the word bvb cannot be a prefix of the shortest c.s.w. Therefore,
the word w starts with bvc for some v ∈ Σ′∗.

The letters from Σ′ do not move states from the sets T and U . Therefore, there
is no reason to use letters from Σ′ after bvc before using the letter b. Note that
si.vc ∈ {ti, ui}. Hence, for every y ∈ {0, . . . , k − 1}, if the state si.vc

y+1 exists,
then it belongs to {ti−y, ui−y}. If the set Q.bvcy+1 exists, then it contains the
state u−k and exactly one state from every pair {ti−y, ui−y} for i ∈ {0, . . . , k−1}.
We have ti−y.b = ui−y.b = s(i−y) mod k. Therefore, Q.bvc

y+1b = Q.b. Hence, the
word w cannot start with bvcy+1b for y < k. Therefore, the word w starts with
bvck+1.

Synchronization with One Undefined Transition 285

If there exists i ∈ {0, . . . , k − 1} such that si.vc = ti, then the state si.vc
k+1

is undefined and we obtain a contradiction. Hence si.vc = ui for any i. Hence,
for any i ∈ {0, . . . , k− 1} the word v maps the state si to a state from Fi. Thus,
v is a common accepting word for the recognizers A1, . . . ,Ak.

Therefore, the PFA B is carefully synchronizing if and only if there exists a
common accepting word for A0, . . . ,Ak−1. Now the statement of the theorem
follows from Lemma 1, because every shortest c.s.w. is the shortest D1(D2, D3)-
d.w. for PFA with a zero state.

4 Automata with One Ambiguous Transition

Theorem 2. The problems D1DIR ONE AMBIG and D2DIR ONE AMBIG
are PSPACE-complete.

Proof. From Lemma 4 we have that the problems are in PSPACE. To prove the
PSPACE-hardness we use the problem FINITE AUTOMATA INTERSECTION.

We reduce every instance of this problem to an instance of the problem
D1DIR. The input of the latter instance will be an NFA C with a zero state.
Let k ≥ 2 and recognizers A0 = (Q0, Σ

′, δ0, s0, F0), . . . ,
Ak−1 = (Qk−1, Σ

′, δk−1, sk−1, Fk−1) be an input of the problem FINITE AU-
TOMATA INTERSECTION. We construct an NFA C = (Q,Σ, δ) with one
ambiguous transition such that there is a D1-d.w. for the automaton C if and
only if the recognizers A0, . . . ,Ak−1 have a common accepting word.

Let Σ = Σ′ ∪ {b, c}, Σ′ ∩ {b, c} = ∅ and Q = Q0 ∪ · · · ∪ Qk−1 ∪ T ∪ U ,
where T = {t0, . . . , tk−1} and U = {u−2k+1, u−2k+2, . . . uk−2, uk−1} and the sets
Q0, Q1, . . . , Qk−1, T , and U are pairwise disjoint.

Let us define the function δ.
If q ∈ Qi for some i ∈ {0, . . . , k − 1} and a ∈ Σ′, then

δ(q, a) = δi(q, a), δ(q, b) = si, δ(q, c) =

{
ui, if q ∈ Fi;
ti, if q ∈ Qi \ Fi.

Let i ∈ {0, . . . , k − 1} and a ∈ Σ′, then

δ(ti, a) = ti, δ(ti, b) = si, δ(ti, c) =

{
ti−1, if i > 0;
{t0, tk−1}, if i = 0.

Let i ∈ {−2k + 1, . . . , k − 1} and a ∈ Σ′, then δ(ui, a) = ui,

δ(ui, b) =

{
si mod k, if i > −2k + 1;
u−2k+1, if i = −2k + 1.

, δ(ui, c) =

{
ui−1, if i > −2k + 1;
u−2k+1, if i = −2k + 1.

Only the transition δ(t0, c) in this NFA is ambiguous. The state u−2k+1 is a zero
state. The construction of the NFA C is very similar to the construction of the
PFA B from Theorem 1. The differences are that the transition t0.c is defined
but it is ambiguous and the number of states in the set U is 3k − 1 instead of

286 P.V. Martyugin

F0

Fk−1

F1

s0

s1

sk−1

t0

t1

tk−1

� � �

� � �

� � �

u0

u1

uk−1

u−k

u−k+1

u−1 u−k−1

u−2k+1

� � �

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 2. Automaton C

2k. Figure 2 represents the automaton C , where solid and dotted lines stand for
the action of respectively c and b.

Similarly to the proof of Theorem 1, we obtain that if v ∈ Σ′∗ is a word
accepted by all the recognizers A0, . . . ,Ak−1, then the word bvc3k−1 is a D1-
d.w. for the NFA C . Otherwise, let w be the shortest D1-d.w. for C . It can be
proved that the word w starts with bvc2k for some v ∈ Σ′∗. The proof is very
similar to the proof of the same fact for the word bvck+1 in Theorem 1.

Aiming at a contradiction, suppose that there exists i ∈ {0, . . . , k − 1} such
that si.v /∈ Fi and si.vc = ti. In this case, t0 ∈ si.vc

k. Therefore, si.vc
2k−1 ⊇

t0.c
k−1 = T . We have T.a = T for a
= b and u−2k+1 /∈ T . Hence we need at least

one letter b after the word bvck+1 to obtain the D1-d.w. But (T ∪ u−2k+1).b =
{s0, . . . , sk−1, u−2k+1} = Q.b. We obtain a contradiction with the minimality of
w. Therefore, si.v ∈ Fi for any i ∈ {0, . . . , k−1}. Thus, v is a common accepting
word for recognizers A0, . . . ,Ak−1.

Now the statement of the theorem follows from Lemma 2, because every D1-
d.w. is the D2-d.w. for NFA with a zero state. The theorem is proved.

5 Automata with Binary Alphabet

The automata B and C from the proof of Theorem 1 and 2 can have arbitrary
number of letters. What about automata with binary alphabet?

Lemma 5. Let A be a PFA with one undefined transition (NFA with one am-
biguous transition) with n states and m letters. Then there exists a 2-letter PFA
with one undefined transition (NFA with one ambiguous transition) F2(A) with
nm states such that the automaton A is carefully synchronizing (D1, D2, D3-
directable) iff the automaton F2(A) is carefully synchronizing (D1, D2, D3-
directable).

Synchronization with One Undefined Transition 287

Proof. If A = {Q,Σ, δ} is a PFA with one undefined transition (NFA with one
ambiguous transition), Q = {q0, . . . , qn−1} (n > 1) and Σ = {a0, . . . , am−1}
(m > 2) we can suppose without loss of generality that |δ(qi, aj)| = 1 for each
j > 0. Define a reduction F2 as follows: F2(A) = (Q′, {x, y}, γ) where Q′ =
Q×Σ and γ((qi, aj), x) = (qi, amin{j+1,m−1}) and γ((qi, aj), y) = δ(qi, aj)×{a0}.
Then obviously F2(A) is a PFA with one undefined transition (NFA with one
ambiguous transition) too.

Define f : {x, y}∗y → Σ+ recursively: f(xiy) = amin{i,m−1}, and f(vyxiy) =
f(vy)f(xiy) for v ∈ {x, y}∗. It can be easy proved that for any q ∈ Q, a ∈ Σ and
γ((q, a0), f

−1(a)) = (δ(q, a), a0).
Let w ∈ Σ∗ be a c.s.w.(D1,D2 or D3-d.w.) for A and let w′ ∈ f−1(w). We

have by our assumption |δ(qi, aj)| = 1 for each j > 0, particularly for j = 1.
Hence, |q.xy| = 1 for each q ∈ Q′ and Q′.xy ⊆ Q × {a0}. Hence, γ(Q′, xyw′) ⊆
γ(Q×{a0}, w′) = (δ(Q,w)×{a0}). Therefore xyw′ is a c.s.w.(D1,D2 or D3-d.w.)
for F2(A).

Let u be a c.s.w. (D1,D2 or D3-d.w.) for F2(A). In this case, |γ(Q′, uxy)| =
1 and γ(Q′, uxy) = (δ(Q, f(uxy)), a0). Therefore, the word f(uxy) is a c.s.w.
(D1,D2 or D3-d.w.) for A .

Theorem 3. 1. The problems 2-CARSYN (D1DIR,D2DIR,D3DIR)
ONE UNDEF are PSPACE-complete;

2. The problems 2-D1DIR(D2DIR) ONE AMBIG are PSPACE-complete.

Proof. We consider the problem 2-CARSYN ONE UNDEF. Let us use Lemma
5 to automata B = (Q,Σ, δ) from Theorem 1. We obtain F2(B) is a PFA with
two letters and one undefined transition. We also obtain that B is carefully
synchronizing iff F2(B) is carefully synchronizing. The PFA B is an input of an
instance of CARSYN ONE UNDEF, the PFA F2(B) is an input of an instance
of 2-CARSYN ONE UNDEF. The PFA F2(B) has |Σ| · |Q| states. Thus, we
have a polynomial in time reduction. Therefore, the problem 2-CARSYN ONE
UNDEF is PSPACE-complete. The PSPACE-completeness of other problems
can be proved similarly using Theorems 1 and 2 and Lemma 5.

Acknowledgement. The author acknowledges support from the Presidential
Programm for young researchers, grant MK-266.2012.1.

References

1. Burkhard, H.V.: Zum Längenproblem homogener Experimente an determinierten
und nicht-deterministischen Automaten. Elektronische Informationsverarbeitung
und Kybernetik 12, 301–306 (1976)

2. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Mat.-
Fyz. Cas. Slovensk. Akad. Vied. 14, 208–216 (1964) (in Slovak)

3. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–
510 (1990)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

288 P.V. Martyugin

5. Gazdag, Z., Ivan, S., Nagy-Gyorgy, J.: Improved upper bounds on synchroniz-
ing nondeterministic automata. Information Processing Letters 109(17), 986–990
(2009)

6. Imreh, B., Steinby, M.: Directable nondeterministic automata. Acta Cybernet-
ica 14, 105–115 (1999)

7. Imreh, B., Imreh, C., Ito, M.: On directable nondeterministic trapped automata.
Acta Cybernetica 16, 37–45 (2003)

8. Ito, M., Shikishima-Tsuji, K.: Some Results on Directable Automata. In:
Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever
(Salomaa Festschrift). LNCS, vol. 3113, pp. 125–133. Springer, Heidelberg (2004)

9. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific, Singapore
(2004)

10. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, pp. 254–266 (1977)

11. Martyugin, P.: Lower bounds for the length of the shortest carefully synchro-
nizing words for two- and three-letter partial automata. Diskretn. Anal. Issled.
Oper. 15(4), 44–56 (2008)

12. Martyugin, P.V.: A Lower Bound for the Length of the Shortest Carefully Syn-
chronizing Words. Russian Mathematics (Iz. VUZ) 54(1), 46–54 (2010)

13. Martyugin, P.V.: Complexity of Problems Concerning Carefully Synchronizing
Words for PFA and Directing Words for NFA. In: Ablayev, F., Mayr, E.W. (eds.)
CSR 2010. LNCS, vol. 6072, pp. 288–302. Springer, Heidelberg (2010)

14. Trahtman, A.N.: Modifying the Upper Bound on the Length of Minimal Synchro-
nizing Word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 173–180. Springer, Heidelberg (2011)

15. Volkov, M.V.: Synchronizing Automata and the Černý Conjecture. In: Mart́ın-
Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27.
Springer, Heidelberg (2008)

Restarting Tiling Automata�

Daniel Pr̊uša1 and Frantǐsek Mráz2

1 Czech Technical University, Faculty of Electrical Engineering
Karlovo náměst́ı 13, 121 35 Prague 2, Czech Republic

prusapa1@cmp.felk.cvut.cz
2 Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 25 Prague 1, Czech Republic

frantisek.mraz@mff.cuni.cz

Abstract. We present a new model of a two-dimensional computing
device called restarting tiling automaton. The automaton defines a set
of tile-rewriting, weight-reducing rules and a scanning strategy by which
a tile to rewrite is being searched. We investigate properties of the in-
duced families of picture languages. Special attention is paid to picture
languages that can be accepted independently of the scanning strategy.
We show that this family strictly includes REC and exhibits similar clo-
sure properties. Moreover, we prove that its intersection with the set of
one-row languages coincides with the regular languages.

Keywords: two-dimensional languages, tiling systems, restarting
automata.

1 Introduction

Recently there were developed several theoretical models for picture languages,
which simultaneously can describe many “naturally” specified picture languages
and have some desirable theoretical properties like closure properties under sev-
eral regular operations [5].

A prominent place belongs to the class of recognizable picture languages
(REC), which is based on tiling systems. Several automata models can accept
REC. Among others online tessellation automata (2OTA) based on cellular au-
tomata, tiling automata (TA) and Wang automata (WTA).

Anselmo, Giammarresi and Madonia [1] introduced tiling automata (TA) as
a generalization of one-dimensional automata into 2D, which in general has the
same descriptional power as 2OTA and recognize exactly the class of picture
languages REC. The idea is to equip a tiling system with a scanning strategy
– an order in which all symbols of an input picture are scanned with several
properties: each symbol of the input picture is visited exactly once, and at the
time a position is visited, all the positions needed for computing the resulting

� The authors were supported by the Grant Agency of the Czech Republic: the first
author under the project P103/10/0783 and the second author under the projects
P103/10/0783 and P202/10/1333.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 289–300, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

290 D. Pr̊uša and F. Mráz

symbol (according to the rules of the given tiling system) have been already
visited.

Such a scanning strategy enables them to define deterministic TA. Neverthe-
less, deterministic TAs are weaker than their nondeterministic variant and they
recognize a class of picture languages incomparable by inclusion with the class
of languages accepted by the 4-way finite automata (4FA) [3].

Wang automata (WTA) introduced by Lonati and Pradella [7] are based on
Wang tiling systems, which use tiles (square pictures of size 2×2) with colors
on their edges. Wang automata use also a kind of scanning strategy. In contrast
to [1], the authors limit the scanning strategies to “polite” strategies, which do
not enable the automaton “to jump” between not adjacent positions. Moreover,
the next visited position should be computable locally from the symbol at the
current position and its neighborhood without knowing the size of the scanned
picture. Once again, the nondeterministic Wang automata recognize REC and
their deterministic variant is weaker.

Here we introduce a new automata model called two-dimensional restarting
tiling automaton (2RTA), which is a generalization of tiling automata [1] and si-
multaneously borrows stepwise reductions from the so-called restarting automata
[9]. A 2RTA can rewrite pictures according to a given finite set of tile-rewriting
rules. Each rewriting changes exactly one symbol and it is required that the
symbol is replaced by another symbol with lower weight. One rewriting consists
of scanning the current picture according to the given scanning strategy until
a place (tile) is found which can be rewritten according to some of the rules
of the automaton. Then, one of the possible rewriting rules is applied and the
automaton restarts its computation. The automaton repeats the rewriting until
it cannot rewrite anymore. If the resulting picture belongs to a given local lan-
guage, the automaton accepts, otherwise it rejects. In contrast to a restarting
automaton, a 2RTA has no states. It is easy to see that 2RTAs are at least as
strong as tiling systems.

Barták [2] studied a version of 2RTA (called two-dimensional restarting au-
tomaton) with a fixed scanning strategy, which scans the picture row by row
from the top to the bottom and left-to-right in each row.

The structure of the paper is the following. Section 2 recalls basic notions
from the theory of picture languages. Next, in Section 3 we introduce scanning
strategies, 2RTAs and show several closure properties for the class of languages
accepted by 2RTAs with given scanning strategy. Moreover, we introduce a new
class of languages which can be accepted by 2RTAs equipped with any strategy
– strategy independent – si-2RTL. Further we show that si-2RTL is closed under
intersection, union, mirroring and projection. Section 4 presents a limited version
of two-dimensional Turing machines, which are used to show that si-2RTL is a
proper superset of REC and that the class of picture languages accepted by 4FA
is included into deterministic si-2RTL. Section 5 shows that si-2RTL restricted
to one-dimensional pictures equals to the regular (string) languages. In Section
6, we conclude by summarizing why it is important to study the new classes of
automata and picture languages.

Restarting Tiling Automata 291

2 Basic Definitions

This section gives basic definitions on two-dimensional (2D) objects, languages
and 2D specific operations.

Definition 1. A picture over a finite alphabet Σ is a two-dimensional matrix
whose elements are from Σ. The set of all pictures over Σ is denoted by Σ∗,∗.
A picture language over Σ is a subset of Σ∗,∗.

Let P be a picture over Σ. We denote the number of rows and columns of P by
rows(P) and cols(P), respectively. The pair (rows(P), cols(P)) is called the size
of P . The empty picture Λ is defined as the only picture of size (0, 0). The set of
all pictures of size (m,n) over Σ is denoted by Σm,n. Assuming 1 ≤ i ≤ rows(P)
and 1 ≤ j ≤ cols(P), P (i, j) (or shortly Pi,j) identifies the symbol located in the
i-th row and the j-th column in P .

Two (partial) binary operations are used to concatenate pictures. Let P and
Q be pictures over Σ of sizes (k, l) and (m,n), respectively. The column con-
catenation P �Q is defined iff k = m, the row concatenation P �Q is defined iff
l = n. The products are specified by the following schemes:

P �Q =

P1,1 . . . P1,l Q1,1 . . . Q1,n

...
. . .

...
...

. . .
...

Pk,1 . . . Pk,l Qm,1 . . . Qm,n

P �Q =

P1,1 . . . P1,l

...
. . .

...
Pk,1 . . . Pk,l

Q1,1 . . . Q1,n

...
. . .

...
Qm,1 . . . Qm,n

We also define Λ �P = P �Λ = Λ �P = P �Λ = P for any picture P .
In addition, we introduce the clockwise rotation PR, vertical mirroring PVM

and horizontal mirroring PHM.

PR =

Pm,1 . . . P1,1

...
. . .

...
Pm,n . . . P1,n

PVM =

P1,n . . . P1,1

...
. . .

...
Pm,n . . . Pm,1

PHM =

Pm,1 . . . Pm,n

...
. . .

...
P1,1 . . . P1,n

Let π : Σ → Γ be a mapping between two alphabets. The projection by π
of P ∈ Σm,n is the picture P ′ ∈ Γm,n such that P ′(i, j) = π (P (i, j)) for all
1 ≤ i ≤ m, 1 ≤ j ≤ n. Note that each of the above introduced operations can
be naturally extended to languages.

Let S = {1,2,�,⊥,#} be a set of special markers (sentinels). In the text we
always implicitly assume that Σ ∩S = ∅ for any alphabet Σ. For P ∈ Σm,n, we
define a boundary picture P̂ over Σ ∪ S of size (m + 2, n + 2). The content is
given by the following scheme.

292 D. Pr̊uša and F. Mráz

P

#

#

#

#

1

1
...

2

2
...

⊥ ⊥ ⊥ ⊥. . .

� � � �. . .

Usually, only # is used to distinguish the border. Our version simplifies the
definition of bounded computations, keeping the recognition abilities unchanged.

3 Two-Dimensional Restarting Tiling Automata

Our model of a two-dimensional restarting automaton is based on the following
two concepts. The first one is the tiling automaton [1], which nondeterministi-
cally guesses an inverse image of an input picture according to rewriting rules of
a given tiling system and checks whether the inverse image belongs to a given local
language. The second one is the (one-dimensional) restarting automaton (namely
shrinking restarting automaton [6]) that iteratively simplifies the input string until
either a correct “simple” string is obtained and the input is accepted or until the
simplification gets stuck, inwhich case the input is rejected.During each simplifica-
tion, the automaton scans the current string, performs a single rewriting operation
and restarts. Each rewriting must be shrinking, i.e., weight-decreasing. A variant
of the following model has already been studied by Barták in [2]. His model called
two-dimensional restarting automaton used a fixed scanning strategy.

A tiling automaton [1] is a tiling system equipped with a scanning strategy,
which determines the order in which all the positions of an input picture are
visited. A scanning strategy must satisfy several requirements: each position
must be visited exactly once, when a position is scanned, all three neighbors of
the position needed for computing inverse image of the respective tile must have
been already visited (and stored in a suitable data structure).

Cherubini and Pradella [4] added some more requirements to the scanning
strategy and later they studied such scanning strategies together with another
model of automata which use tiles with colors on their border, the so-called
Wang tiles [7,8]. Nevertheless, but we will follow the more general approach
based on [1]. A scanning strategy is represented by a single starting position in
the picture, which will be one of its corners, and a partial computable function
f : N4 → N2 where f(i, j,m, n) is the next scanned position after scanning the
position (i, j) in a picture of size (m,n), N denotes the set of all positive integers.
The starting position will be represented simply as an integer cs ∈ {1, 2, 3, 4}
with the meaning 1 for the top-left corner, 2 for the top-right corner, 3 for the
bottom-right corner and 4 for the bottom-left corner of a picture. In contrast
to [1] and [4], we will not consider any additional restrictions on the scanning
strategy only that if (i0, j0) is a starting position on a picture P of size (m,n) (for
any m,n > 0), then the sequence of positions visited according to this strategy
(i0, j0), (i1, j1), . . . , (i(m+1)(n+1)−1, j(m+1)(n+1)−1) is a permutation of the set of

Restarting Tiling Automata 293

positions of all tiles of size (2, 2) in the extended picture P̂ . A scanning strategy
will be represented as a pair ν = (cs, f).

Barták [2] used the following fixed scanning strategy νrow = (1, frow) scanning
a picture row by row from left to right with the starting position (1, 1) and the
next position function

frow(i, j,m, n) =

{
(i, j + 1) if j < n+ 1;
(i+ 1, 1) if j = n+ 1, i < m.

Definition 2. A two-dimensional restarting tiling automaton, referred to as
2RTA, is a 6-tuple M = (Σ,Γ,Θf , δ, ν, μ), where Σ is a finite input alphabet,
Γ is a finite working alphabet (Γ ⊇ Σ), Θf ⊆ (Γ ∪ S)2,2 is a set of accepting
tiles, ν = (cs, f) is a scanning strategy, μ : Γ → N is a weight function and
δ ⊆ {(U → V) | U, V ∈ (Γ ∪ S)2,2} is a set of rewriting rules satisfying the
condition that in every rule u → v only a single position of u, containing a
symbol a from Γ , is changed into some b ∈ Γ such that μ(b) < μ(a).

Symbols from Γ �Σ are called auxiliary symbols and must not be contained in
any input word. On a given input picture P ∈ Σm,n, the automaton M works
in phases. Each phase starts in a starting position (i0, j0) corresponding to the

corner cs of the boundary picture P̂ , that is,

– (1, 1) for cs = 1,

– (1, n+ 1) for cs = 2,

– (m+ 1, n+ 1) for cs = 3, and

– (m+ 1, 1) for cs = 4.

Then M scans the current picture using a window of size (2, 2) which is moved
according to the scanning strategy ν. Let ν(r,m, n) denote the sequence of the
first r positions of a picture of size (m,n) visited according to the scanning
strategy ν. WhenM finds a tile for which a rewriting rule is defined it performs
one of the possible rewritings and finishes the phase by restart (i.e., it goes to the
to the corner indicated by cs again). When no rewriting rule can be executed for
the whole picture, the automaton verifies whether the picture belongs to L(Θf)
– the local language defined by Θf – and if so, it accepts. Formally:

Definition 3. LetM = (Σ,Γ,Θf , δ, ν, μ) be a two-dimensional restarting tiling
automaton, P1, P2 be two pictures over the alphabet Γ of the same size (m,n)
and ν((m+1)(n+1),m, n) = (i0, j0), . . . , (i(m+1)(n+1)−1, j(m+1)(n+1)−1). We say
that the picture P1 can be directly reduced to picture P2, denoted by P1 1M P2,
if there exists an integer s, 0 ≤ s < (m+ 1)(n+ 1), such that P̂1(k, l) = P̂2(k, l)

for all pairs of the indices k, l, where 1 ≤ k ≤ rows(P̂1), 1 ≤ l ≤ cols(P̂1) except
the pairs (is, js), (is, js + 1), (is + 1, js), (is + 1, js + 1) and there exists a rule

P1(is, js) P1(is, js + 1)
P1(is + 1, js) P1(is + 1, js + 1)

→ P2(is, js) P2(is, js + 1)
P2(is + 1, js) P2(is + 1, js + 1)

in δ.

294 D. Pr̊uša and F. Mráz

Moreover, there is no rule in δ that could be applied to any tile
P1(ir, jr) P1(ir, jr + 1)

P1(ir + 1, jr) P1(ir + 1, jr + 1)
, where 0 ≤ r < s. We say that P1 can be re-

duced to P2 (denoted by P1 1∗M P2) if there exists a sequence of reductions
Q1 1M Q2, Q2 1M Q3, . . . , Qn−1 1M Qn, where n ≥ 1, Q1 = P1 and Qn = P2.
Obviously, the relation 1∗M is the reflexive and transitive closure of the relation
1M.

Let M = (Σ,Γ,Θf , δ, ν, μ) be a 2RTA. The language accepted by M is the
set L(M) = {P ∈ Σ∗,∗ | ∃Q ∈ Γ ∗,∗ : P 1∗M Q and Q ∈ L(Θf)}.
2RTA is by definition nondeterministic, as on a tile one of several rewriting
rules with the same left-hand side can be applied. We define a deterministic
version of two-dimensional restarting automata (2DRTA) by requiring that no
two rewriting rules can have the same left-hand side.

Definition 4. A deterministic two-dimensional restarting automaton, referred
to as 2DRTA, is a 2RTA M = (Σ,Γ,Θf , δ, ν, μ) with the set of rewriting rules δ
satisfying one additional condition that for every tile T ∈ (Γ ∪S)2,2 there exists
at most one rule with the left-hand side T in δ.

To illustrate our definition we present a deterministic 2RTA accepting the lan-
guage of all squares over a one-letter alphabet

L = {P ∈ an,n | n ≥ 0}.

Example 1. Let M = (Σ,Γ,Θf , δ, μ) be a deterministic 2RTA with Σ = {a},

Γ = {a, 1}, δ =

{
�
1 a

→ # �
1 1

,
1 a
a a

→ 1 a
a 1

}
, Θf =

{
�
1 1

,
� �
1 a

,

� �
a a

,
� #
a 2 ,

a 2
a 2 ,

a 2
1 2 ,

1 2
⊥ #

,
a 1
⊥ ⊥ ,

a a
⊥ ⊥ ,

1 a
⊥ ,

1 a
1 a

,
1 1
1 a

,

1 a
a 1

,
a 1
a a

,
a a
1 a

,
a a
a a

,
#
#

}
.

The automaton has the single auxiliary symbol 1, which is used to mark the
main diagonal of the picture in order to check that the input is a square picture.
The weight function μ is defined in a way that the only allowed rewriting is from
a to 1, e.g. μ(a) = 2 and μ(1) = 1.

Barták [2] showed several closure properties of his two-dimensional restarting
automata and related them to other classes of picture languages like 2OTA, REC
and tiling systems. Unfortunately several of his results are conjectures only. The
class 2RTA with the scanning strategy ν will be denoted as ν-2RTA. Next we
will show that for any scanning strategy ν, the class of languages recognizable
by ν-2RTA (denoted as L(ν-2RTA)) is closed under projection.

Lemma 1. For each scanning strategy ν, L(ν-2RTA) is closed under projection.

Proof. Let Σ1, Σ2 be two finite alphabets and let ϕ : Σ1 → Σ2 be a projection.
We will prove that if a picture language L1 ⊆ Σ∗,∗

1 is accepted by a ν-2RTA A1,
then L2 = ϕ(L1) is accepted by a ν-2RTA A2.

Restarting Tiling Automata 295

First, the automaton A2 starts to “reverse” the projection ϕ on the input
picture starting from the lower right corner of the picture and then simulates a
computation of A1. The process of reversing the projection and the simulation
of A1 can be mixed. Nevertheless, the picture is accepted only when all symbols
of the picture are “reversed” [10]. �

Actually the technique used in the proof of Lemma 1 can be easily extended
in such a way that each symbol x of the input picture is first replaced by the
pair (x, x) and then two computations of two different 2RTAs can be simulated
– the first one operating on the first elements of the pairs and the second one
operating on the second elements of the pairs. Clearly, in this way it is possible
to construct 2RTA for accepting union and intersection of any two given 2RTAs.
Hence we have the following.

Corollary 1. For any scanning strategy ν, L(ν-2RTA) is closed under union
and intersection.

The above results concerning 2RTAs indicate that for some properties the scan-
ning strategy employed by an 2RTA does not put any restriction on its power.
In the following we will use the class of languages which can be accepted using
each scanning strategy. Formally, a language L is strategy independent, if for each
scanning strategy ν, there exists a ν-2RTAM such that L(M) = L. The class of
all strategy independent languages will be denoted as si-2RTL. Similarly we can
define deterministic strategy independent languages accepted by deterministic
2RTA. The respective class of languages will be denoted as si-2DRTL.

Corollary 2. Both si-2RTL and si-2DRTL are closed under projection, union
and intersection.

Theorem 1. Both si-2RTL and si-2DRTL are closed under vertical and horizon-
tal mirroring and rotation.

Proof. Let L be a picture language in si-2RTL and let ν = (c, f) be any scanning
strategy. We will prove, e.g., LVM ∈ L(ν-2RTA). Define νVM = (cVM, fVM) as
follows: cVM = 1 if c = 2, cVM = 2 if c = 1, cVM = 3 if c = 4, cVM = 4 if c = 3
and

fVM (i, j,m, n) = (i1, n+ 2− j1) where f (i, j,m, n) = (i1, j1).

There is a νVM-2RTA M = (Σ,Γ,Θf , δ, ν
VM, μ) such that L = L(M). Define

a mapping π : Γ ∪ S → Γ ∪ S fulfilling π(1) =2, π(2) =1 and π(a) = a for
all a ∈ (Γ ∪ {�,⊥}). Modify M to a ν-2RTA M′ = (Σ,Γ,Θ′

f , δ
′, ν, μ), where

Θ′
f = π(ΘVM

f), and for each rewriting rule U → V in δ, the mirrored rule

π(UVM)→ π(V VM) is inserted into δ′. Then,M′ accepts P iffM accepts PVM,
implying L(M′) = LVM. If M is deterministic, M′ is deterministic too. �

Theorem 2. Let ν be a scanning strategy such that the last position scanned
according to ν on pictures of all (positive) sizes is always the same corner (con-
taining the sentinel #). Then the class L(ν-2DRTA) is closed under complement.

296 D. Pr̊uša and F. Mráz

Proof. A deterministic 2RTA M = (Σ,Γ,Θf , δ, ν, μ) rejects an input picture
P , when P 1∗M Q, no rule from δ can be applied on any subpicture of Q
and Q
∈ L(Θf). It is possible deterministically detect the situation when
M has no applicable rewriting rule – when it scans the last position accord-
ing to ν and it has no applicable rule in δ. At this moment, an ν-2DRTA
M′ = (Σ,Γ ′, Θ′

f , δ
′, ν, μ′) accepting the complement of L(M) can start ad-

ditional verification whether M accepts the picture. Then M′ accepts iff M
rejects. For the full construction see [10]. �

Using similar techniques as above, it is possible to prove closure on both col-
umn and row concatenations for L(νrow-2RTA). Unfortunately, we do not know
whether si-2RTL is closed under column and row concatenations.

4 Two-Dimensional Bounded Turing Machines and 2RTAs

For technical reasons, we introduce a limited version of Turing machine working
on pictures. Let H = {R,L,D,U, Z} be the set of head movements. The first
four elements denote directions: left, right, up, down. Z stands for zero (none)
movement. Let υ : S → H be a mapping such that υ(1) = R, υ(2) = L,
υ(�) = D, υ(⊥) = U and υ(#) = Z.

Definition 5. A (non-deterministic) two-dimensional bounded Turing ma-
chine, 2BTM for short, A = (Q,Σ, Γ, δ, q0, QF) is a Turing machine working on
a two-dimensional tape with a finite set of states Q containing the initial state q0,
an input alphabet Σ, a working alphabet Γ (⊇ Σ), where Γ ∩S = ∅, a set of final
states QF ⊆ Q and a transition relation δ : (Q\QF)×(Γ∪S)→ 2Q×(Γ∪S)×H sat-
isfying for any pair (q, a) ∈ (Q\QF×(Γ∪S) and each element (q′, a′, d) ∈ δ (q, a):
– a ∈ S implies d = υ(a) and a′ = a, and
– a /∈ S implies a′ /∈ S.

We say that A is a deterministic 2BTM (2DBTM), if for for each q ∈ Q and
a ∈ Γ ∪ S it holds |δ(q, a)| ≤ 1.

In the initial configuration of A on an input picture P ∈ Σ∗,∗, its tape contains
P̂ , its control unit is in state q0 and the head scans the top-left corner of P . When
P = Λ, the head scans the bottom-right corner of P̂ containing #. The machine
accepts P iff there is a computation of A starting in the initial configuration on
P and finishing in an accepting state from QF .

Definition 6. Let k ∈ N be an integer such that during each computation of
M over any picture from Σ∗,∗ each tape field is visited at most k times. Then,
we say that M is a constant-visit-2BTM (cv-2BTM, for short). We will denote
deterministic cv-2BTM by cv-2DBTM.

In contrast to 2BTM, all computations of an cv-2BTM are finite and have time
complexity t(m,n) = O(mn) for pictures of size (m,n). It is easily seen that
cv-2BTM and cv-2DBTM can simulate 2OTA and 2DOTA, respectively. Thus we
get the following.

Restarting Tiling Automata 297

Theorem 3. REC is included in L(cv-2BTM), DREC is included in
L(cv-2DBTM).

For each 4FA A there exists a constant k such that in any accepting computation
of A on an input picture P , the head of A visits any symbol of P at most k
times. It is possible to show that even deterministic cv-2BTM can simulate any
(nondeterministic) 4FA.

Theorem 4 ([10]). L(4FA) is included in L(cv-2DBTM).

In [10], we showed how to construct a language not in REC, but accepted by a
cv-2DBTM. Define LD over Σ = {0, 1, 2} consisting of pictures P = Q �C �QVM

where C ∈ {2}∗,1, each row ofQ contains exactly one symbol 1 and each diagonal
of Q parallel to the minor diagonal contains at most one symbol 1. An example
of such a picture follows.

0 1 0 0 2 0 0 1 0

0 1 0 0 2 0 0 1 0

0 0 0 1 2 1 0 0 0

1 0 0 0 2 0 0 0 1

Proposition 1 ([10]). LD is in L(cv-2DBTM) \ REC.

Further we will relate cv-2BTMs and 2RTAs

Theorem 5. For any scanning strategy ν, L(cv-2BTM) is included in
L(ν-2RTA) and L(cv-2DBTM) is included in L(ν-2DRTA).

Proof. Let M = (Q,Σ, Γ, δ, q0, QF) be a cv-2BTM. We describe a ν-2RTA
T = (Σ,Γ ′, Θf , δ

′, ν, μ′) such that L(T) = L(M). The idea is to simulate a
computation of M over any input P ∈ Σ∗,∗. If M scans the tape field f and
the control unit is in state q, then T stores q into f . A set of rewriting rules is
designed for changing the current configuration of M into a configuration after
a single step of M.

Let k = |Γ |, m = max{k, 5} and I = {0, . . . , k}. Elements in Γ ′ are of five
types:

1. a ∈ (Σ ∪ S), μ′(a) = mk + 4, is an initial input symbol,
2. (i, a) ∈ (I × Γ), μ′((i, a)) = mi+3, represents a field containing a, the head

ofM is not placed here, at most i instructions ofM can be performed over
the field,

3. (i, a, q) ∈ (I × Γ ×Q), μ′((i, a, q)) = mi + 1, the same meaning of a and i
as above, moreover, the head ofM scans this field and the control unit is in
the state q,

298 D. Pr̊uša and F. Mráz

4. (i, a, q, d) ∈ (I × Γ ×Q×H), μ′((i, a, q, d)) = mi, the same meaning of a, i
and q as above, moreover,M will move from this field in the direction d,

5. (i, a, q, b) ∈ (I × Γ ×Q× Γ), μ((i, a, q, b)) = mi + 2, an auxiliary symbol
with the meaning: M moved to this field containing a in the state q from a
neighboring field by an instruction which writes b.

There is no loss of generality in assuming thatM moves the head in each compu-
tation step and enters a state in QF only when it scans the bottom right corner
of P . The specification of rewriting rules and Θf follows. For each a ∈ Σ, there
is a rule creating the representation of the initial configuration:

�
1 a

→ # �
1 (k, a, q0)

.

For each instruction (q, a)→ (q′, a′, R) in δ, rules matching the following patterns
are added:

(i, a, q) (j, b)
s t

→ (i, a, q, R) (j, b)
s t

,
(i, a, q) b

s t
→ (i, a, q, R) b

s t
,

(i, a, q, R) (j, b)
s t

→ (i, a, q, R) (j, b, q′, a′)
s t

,

(i, a, q, R) b
s t

→ (i, a, q, R) (0, b, q′, a′)
s t

,

(i, a, q, R) (j, b, q′, a′)
s t

→ (i− 1, a′) (j, b, q′, a′)
s t

,

(i− 1, a′) (j, b, q′, a′)
s t

→ (i− 1, a′) (j, b, q′)
s t

,

where i, j ∈ I, 0 < i ≤ k, b ∈ Γ \ S, s, t ∈ Σ ∪ S ∪ (I × Γ). By writing an
auxiliary symbol of the form (i, a, q, d) on the tape, we ensure that T cannot
start to simulate simultaneously two instructions of M moving from a field in
different (e.g. opposite) directions.

A special attention has to be paid to the situation, when the head ofM moves
outside P . We do not represent such a configuration, but rather the following
configuration reached by applying a next instruction of the form (q′,2)→ (q′′,2
, L). Thus, the set of rules is completed by

(i, a, q) 2
s t

→ (i− 1, a′, q′′) 2
s t

.

The weight function μ has been defined to conform the rules. Similar rules
are added also for the remaining instructions which move the head of M left,
up or down.

Restarting Tiling Automata 299

Θf contains all the tiles of the form
(i, a, qf) 2
⊥ #

, for all a ∈ Γ , i ∈ I, qf ∈ QF

and all the tiles of the form
a b
c d

, where a, b, c, d ∈ (Σ ∪ S) ∪ (I × Γ) except

the tiles of the form
a 2
⊥ #

, where a ∈ (Σ ∪ S) ∪ (I × Γ). This ensures the

rewriting process finishes only ifM reaches an accepting state (with its head at

the bottom right corner). If P = Λ, then P̂ =
#
#

. This tile is in Θf iff M

accepts Λ. To finish the proof, it is easy to see that whenM is deterministic, T
is deterministic as well. �

Note that the simulation of a cv-2BTM by a 2RTA does not depend on the
employed scanning strategy. Using Theorem 3, Theorem 4 and Proposition 1 we
obtain the following.

Corollary 3. REC is a proper subclass of si-2RTL, DREC is a a proper subclass
of si-2DRTL, L(4FA) ⊂ si-2DRTL.

5 2RTA Working over One-Row Pictures

These automata can be quite powerful when we have freedom to design a suitable
scanning strategy. They can accept also non-regular (one-dimensional) languages
[10]. On the other hand, a simple strategy νrow leads to the recognition of regular
languages only.

Lemma 2 ([10]). Let A = (Σ,Γ,Θf , δ, νrow, μ) be a νrow-2RTA accepting a
one-dimensional picture language (L(A) ⊆ Σ1,∗ = Σ∗). There is a cv-2BTM M
such that L(M) = L(A).

Each cv-2BTM accepting only one-row pictures recognizes a regular language
([10]). This gives the following consequences.

Proposition 2. If a νrow-2RTA accepts a one-dimensional picture language,
then it is a regular language.

Corollary 4. Both L(νrow-2RTA) and si-2RTL restricted to one-dimensional
picture languages are equal to the class of regular languages.

6 Conclusions

We have introduced a new two-dimensional model of restarting tiling automa-
ton. An arbitrary scanning strategy makes it quite powerful. However, when we
restrict to languages recognizable independently on the strategy, we obtain a
family (si-2RTL) exhibiting good properties. It is a proper superset of REC and
has nearly the same closure properties. Namely, we showed that si-2RTL is closed

300 D. Pr̊uša and F. Mráz

under union, intersection, projection, mirroring and rotation. When considering
one-row inputs only, the family collapses to the class of regular languages.

Deterministic 2RTAs lead to family si-2DRTL, which is an extension of DREC.
Beside DREC, it includes also L(4FA). These facts demonstrate the significance
of the model and entitle us to see si-2DRTL as an important family of determin-
istically recognizable picture languages.

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling
recognizable two-dimensional languages. Theoretical Computer Science 410, 3520–
3529 (2009)

2. Barták, J.: Recognition of picture languages. Master thesis, Faculty of Mathematics
and Physics, Charles University, Prague (2008)

3. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Proceedings of the
8th Annual Symposium on Switching and Automata Theory (SWAT 1967), pp.
155–160. IEEE Computer Society, Washington, DC (1967)

4. Cherubini, A., Pradella, M.: Picture Languages: FromWang Tiles to 2D Grammars.
In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 13–46.
Springer, Heidelberg (2009)

5. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer-Verlag
New York, Inc., New York (1997)

6. Jurdziński, T., Otto, F.: Shrinking restarting automata. Int. J. Found. Comput.
Sci. 18(2), 361–385 (2007)

7. Lonati, V., Pradella, M.: Picture Recognizability with Automata Based on Wang
Tiles. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.)
SOFSEM 2010. LNCS, vol. 5901, pp. 576–587. Springer, Heidelberg (2010)

8. Lonati, V., Pradella, M.: Towards More Expressive 2D Deterministic Automata. In:
Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA
2011. LNCS, vol. 6807, pp. 225–237. Springer, Heidelberg (2011)

9. Otto, F.: Restarting Automata. In: Ésik, Z., Mart́ın-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications. SCI, vol. 25, pp. 269–303.
Springer, Heidelberg (2006)

10. Pr̊uša, D., Mráz, F.: New models for recognition of picture languages: Sgraffito
and restarting tiling automata. Research Report CTU–CMP–2012–08, Center for
Machine Perception, K13133 FEE Czech Technical University, Prague, Czech Re-
public (March 2012)

Crossing the Syntactic Barrier:
Hom-Disequalities for H1-Clauses

Andreas Reuß∗ and Helmut Seidl

Technische Universität München
{a.reuss,seidl}@in.tum.de

Abstract. We extend H1-clauses with disequalities between images of
terms under a tree homomorphism (hom-disequalities). This extension
allows to test whether two terms are distinct modulo a semantic inter-
pretation, allowing, e.g., to neglect information that is not considered
relevant for the intended comparison. We prove that H1-clauses with
hom-disequalities are more expressive than H1-clauses with ordinary
term disequalities, and that they are incomparable with H1-clauses with
disequalities between paths. Our main result is that H1-clauses with
this new type of constraints can be normalized into an equivalent tree
automaton with hom-disequalities. Since emptiness for that class of au-
tomata turns out to be decidable, we conclude that satisfiability is decid-
able for positive Boolean combinations of queries to predicates defined
by H1-clauses with hom-disequalities.

1 Introduction

Analyses of tree-manipulating programs can nicely be specified by means of
Horn clauses. This approach has successfully been applied to such different
kinds of programming formalisms as Prolog programs and cryptographic pro-
tocols [4,1,9,8]. Pure Horn clauses have difficulties, though, to express negative
information such as that two values must be different. In order to compensate
for this deficiency, we have extended Horn clauses with disequality constraints.
It turns out that when extending the decidable class of H1-clauses [14], again
a decidable class is obtained [12,13]. The class H1 differs from general Horn
clauses in that the terms in the heads may contain at most one constructor and
no variable may occur twice in a head.

Disequality on terms or subterms, however, may be too imprecise in the pres-
ence of semantic interpretations because syntactically distinct terms may rep-
resent the same value. One of the simplest forms of such interpretations are
homomorphisms. Homomorphisms allow, e.g., to relabel nodes, to select specific
subtrees (depending on labels), or permute subtrees. In the tree representation
of a tuple of trees, a suitable homomorphism thus allows to select individual
components. Perhaps most useful in the context of cryptographic protocols is
the possibility of disequalities modulo homomorphisms to compare messages
∗ The author was supported by the DFG Graduiertenkolleg 1480 (PUMA).

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 301–312, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

302 A. Reuß and H. Seidl

while disregarding irrelevant information such as random padding or session
keys. Analyses of anonymity violation or non-interference [6,2,3] may search for
values which are independent of sender identities or secret subparts, respectively.

Example 1. Consider the following example where the predicates pu, pv model
the set of states reaching stages u, v of a protocol. For simplicity, assume that
the value at stage u is obtained from the value at stage v by combining the value
at v with a secret value under a data constructor f , where the secret value is
taken from some set input . This can be formalized by the following clauses:

pu(f(Z, Y)) ⇐ high(Z), pv(Y)
high(secret(X)) ⇐ input(X)

where the value Y at stage v may contain secrets as well. Now assume that we
want to verify that the public view of values at stage u is independent of the
secrets included into the values. Here, the public view of a value is realized by a
homomorphism H which maps the constructor secret (along with its respective
subtrees) to some constant � and is the identity for the remaining constructors.
Then a potential violation of the independence could be expressed by:

error ⇐ pu(X), pu(Y), X �=H Y

where �=H applies disequality to the images under H. ��

In [12,13], we extended the normalization procedure for H1 from [9,7] to clauses
with term disequality constraints and disequality constraints between paths.
This procedure transforms every finite set of H1-clauses with term disequality
constraints into an equivalent finite set of automata clauses with term disequal-
ity constraints [10] and thus allows to decide whether or not a given query is
satisfiable. Our goal here is to make this approach work also in presence of
homomorphisms. The first step in this direction is to introduce finite tree au-
tomata with disequality constraints modulo homomorphisms and to prove that
k-finiteness is decidable for these. In order to do so, we build on techniques pro-
vided in [10]. Related automata techniques have been proposed in [5] which do
not only apply to term disequalities but also to disequalities between paths.

In the second step, we then indicate how, based on these new automata, a
similar normalization procedure can be realized as has been applied in [9,12,13].
Particular care for this extension is required at the splitting rule. This rule allows
to remove variables from a clause which do not occur in the head. Also, a refined
argument must be applied to prove termination of the procedure.

2 Preliminaries

Terms and Constraints. We consider ordered ranked trees made up of symbols
from a ranked alphabet (Σ, ar) where Σ denotes a set of symbols and ar : Σ →
N ∪ {0} specifies each symbol’s arity. If the arities of symbols are understood,
then the ranked alphabet is denoted by Σ alone. For a ranked alphabet Σ and a

Crossing the Syntactic Barrier: Hom-Disequalities for H1-Clauses 303

set V = {X1, X2, . . .} of variables, the set TΣ(V) of (finite ordered) trees over Σ
and V consists of all terms t given by the grammar: t ::= Xi | a | b(t1, . . . , tk)
where a, b ∈ Σ, and a has arity 0, while b has arity k > 0. For a tree t, the
expression vars(t) denotes the set of variables occurring in t. The tree t is called
ground if t does not contain any variable X ∈ V. The set of ground terms is
also denoted by TΣ . A literal A is an expression of the form p(t) where p is a
unary predicate and t ∈ TΣ(V). Non-unary predicates can be integrated in our
framework, too, by equipping their arguments with an implicit constructor of the
same arity as the predicate. A term constraint is a conjunction of disequalities
s �= t for terms s, t. A substitution θ is a mapping θ : V → TΣ(V). We write θt
and θA for the result of applying θ to the term t and the literal A, respectively.
θ is called ground if θXi is ground for all i. The substitution θ satisfies the term
constraint φ (denoted by: θ |= φ) if it satisfies each constraint occurring in φ.
The substitution θ satisfies the constraint s �= t if θs �= θt.

Tree Homomorphisms. For a given ranked alphabet Σ, a tree homomorphism
H maps each symbol f ∈ Σ of arity k ≥ 0 to a term t(X1, . . . , Xk), i.e., a
term containing only variables from the set {X1, . . . , Xk}. The mapping H∗ :
TΣ(V) �→ TΣ(V) is then recursively defined as H∗(X) = X for X ∈ V, and
H∗(f(t1, . . . , tk)) = H(f)(H∗(t1), . . . , H∗(tk)) = t[H∗(t1)/X1, . . . , H∗(tk)/Xk].
Here, H∗(s) is ground whenever s is ground. The function H−1 reverses the
effect of applying H∗, i.e., H−1s = {t | H∗t = s}. We extend H∗ and H−1 for sets
of terms T by defining H∗T = {H∗t | t ∈ T } and H−1T = {t | H∗t ∈ T }. For
notational convenience, we may also write He instead of H∗e, meaning that the
mapping H∗ is applied to the expression e.

A hom-disequality is an expression s �=H t where s, t ∈ TΣ(V). In case that
both s and t are ground terms, s �=H t is equivalent to H∗s �= H∗t. A ground
substitution θ satisfies a hom-disequality s �=H t if (and only if) θs �=H θt, i.e.,
H∗(θs) �= H∗(θt). For a substitution θ (not necessarily ground) and a homomor-
phism H, let θH denote the substitution given by: θHX = H∗(θX). Then it holds
that H∗ ◦ θ = θH ◦ H∗, i.e., for every term t, we have: H∗(θt) = θH(H∗t).

For monotone Boolean combinations of term disequalities and hom-disequali-
ties, satisfiability is recursively defined by:

θ |= (φ1 ∧ φ2) iff (θ |= φ1) ∧ (θ |= φ2)
θ |= (φ1 ∨ φ2) iff (θ |= φ1) ∨ (θ |= φ2)

For convenience, we also define the hom-equality s =H t ⇔ ¬(s �=H t).

Horn Clauses with Constraints. A constrained Horn clause c is given by

B0 ⇐ B1, . . . , Bm, φ

where B0, . . . , Bm are literals and φ is a either a conjunction of term disequalities
or a conjunction of hom-disequalities. The left-hand side B0 is the head of the
clause c while the sequence B1, . . . , Bm, φ denotes the body or precondition of
c. The constraint φ imposes an additional restriction on the applicability of the

304 A. Reuß and H. Seidl

clause. A constraint φ which is always true can be omitted. Assume that we
are given a finite set C of constrained Horn clauses. Then the least model MC
of C is the least set M of ground facts p(t), t ∈ TΣ , such that MC ⊇ TC(MC).
Here, the operator TC is defined as follows. Assume that M is any set of ground
facts p(t). Then TC(M) is the set of all ground facts θB0 where θ is a ground
substitution, B0 ⇐ B1, . . . , Bm, φ is in C, θB1, . . . , θBm ∈ M , and θ |= φ. The
language {t ∈ TΣ | p(t) ∈ MC} of p is also denoted by [[p]]C . For convenience, we
also consider the set [[p]]iC = {t ∈ TΣ | p(t) ∈ T i

C (∅)} which consists of all trees t
where the fact p(t) can be derived by at most i rounds of fixpoint iteration.

H1-Clauses, Normal Clauses, Automata Clauses. Let us briefly introduce the
subclasses of Horn clauses which we consider here. Essentially, these classes are
obtained from the classes considered in [12] by replacing constraints consisting of
disequalities between terms with constraints consisting of disequalities between
terms modulo a given tree homomorphism. Thus, a Horn clause is an H1-clause
if the term t in the head p(t) contains at most one constructor, and no variable
occurs twice in t. For convenience, we adopt the convention that the variables in
the heads of H1-clauses are enumerated X1, . . . , Xk, i.e., t either equals X1 or is
of the form f(X1, . . . , Xk) for a constructor of arity k where the case of atoms is
subsumed by choosing k = 0. Moreover for a distinction, variables not occurring
in the head will be denoted Y, Y1, . . .

The Horn clause is a normal clause if it is of the form:

p(f(X1, . . . , Xk)) ⇐ p1(Xi1), . . . , pr(Xir), φ

where all variables occurring in the body of the clause also occur in the head.
Moreover, the Horn clause is an automata clause if additionally each variable Xi

occurring in the head occurs exactly once in the literals occurring in the body
and the head contains exactly one constructor, i.e., the clause has the form:

p(f(X1, . . . , Xk)) ⇐ p1(X1), . . . , pk(Xk), φ .

In particular, each normal clause as well as each automata clause is an H1-clause.
In the following, we do not differentiate between tree automata and (finite) sets
of automata clauses. The predicates and clauses of a set of automata clauses
correspond to the states and transition rules of the corresponding tree automaton
and vice versa.

As with ordinary Horn clauses or Horn clauses with term [12] or path [13]
constraints, every set N of normal clauses can be transformed to an equivalent
set A of automata clauses whose predicates correspond to conjunctions p1∩ . . .∩
pj , j ≥ 0, of original predicates pi from N .

Lemma 1. For every finite set N of normal clauses, a finite set A of automata
clauses can be constructed with [[p]]N = [[p]]A for each predicate p of N . ��

Effects of Tree Homomorphisms. Tree homomorphisms are rather expressive.
E.g., a homomorphism may

Crossing the Syntactic Barrier: Hom-Disequalities for H1-Clauses 305

– rename constructors: H∗(g(X1)) = h(X1)
– delete constructors: H∗(g(X1)) = X1

– delete subtrees: H∗(f(X1, X2)) = g(X2)
– add constructors: H∗(f(X1, X2)) = f(g(X1), h(g(X2)))
– copy subtrees: H∗(g(X1)) = f(X1, X1)
– permute subtrees: H∗(f(X1, X2)) = f(X2, X1)
– combine two or more of these features.

3 Expressiveness

This section compares automata classes extended with term, path, and hom-dis-
equalities. (Unlabeled) path disequalities are expressions X.π �= Y.π′ where X, Y
are variables and π, π′ are paths specifying subterms of trees as (possibly empty)
sequences of numbers. E.g., t.1.2 denotes the second child of the first child of t
if it exists, and is undefined otherwise. The ground substitution θ satisfies the
disequality X.π �= Y.π′ if either of (θX).π or (θY).π′ is undefined, or both are
defined but the resulting terms differ.

First we show that hom-disequalities cannot be simulated by term disequali-
ties, by presenting a specific language defined through a set of automata clauses
which cannot be defined by a finite set of automata clauses with path disequal-
ities only. Intuitively, path constraints can only express disequalities between
subterms of at most a certain depth d as specified as part of the correspond-
ing path expression. Hom-disequalities, however, may disregard an unbounded
number of constructors on top of the tree.

Let Σ = {a, s, f} where a, s and f have arities 0, 1 and 2, respectively. Let H
be the homomorphism defined by: Hs = X1 while terms rooted a or f are not
changed by H. Consider the language L = {f(t1, t2) | t1 �=H t2}. The following
automaton with hom-disequalities accepts L through predicate p.

�(a) ⇐
�(s(X1)) ⇐ �(X1)
�(f(X1, X2)) ⇐ �(X1),�(X2)
p(f(X1, X2)) ⇐ �(X1),�(X2), X1 �=H X2

Lemma 2. There is no tree automaton for L with path disequalities only. ��

Proof. Assume for a contradiction that an automaton A with path disequalities
exists which accepts L through a predicate p. It is known [11,5,13] that to A,
a complement automaton B with path equalities only can be constructed such
that there is a predicate p which accepts the complement language L given by:
L = TΣ \L = {f(t1, t2) | t1 =H t2}∪ {a}∪ {s(t) | t ∈ TΣ}. Let d be the maximal
depth of a path occurring in B. For a ground term t, let rt1, rt2, . . . denote the
infinite sequence of terms defined by: rti = sd(f(t, si(a))). Then for t �=H t′, it
holds that for all i, j, rti =H rtj and rti �=H rt′j , but for all paths π occurring in

306 A. Reuß and H. Seidl

B, rti.π �= rtj .π if i �= j. As there are infinitely many sequences (rti) but only
finitely many clauses, B has a clause

p(f(X1, X2)) ⇐ q1(X1), q2(X2), φ

such that for two terms t, t′ with t �=H t′, there are two terms t1, t2 from the se-
quence (rti) and two terms t3, t4 from the sequence (rt′i) such that both f(t1, t2)
and f(t3, t4) are in [[p]]B by application of this clause. Especially, t1, t3 ∈ [[q1]]B
and t2, t4 ∈ [[q2]]B. Since φ is a conjunction of path equalities, φ must be equiv-
alent to true because t1.π �= t2.π for all paths π occurring in B. But then the
clause also accepts the term f(t1, t4) for p — contradiction. ��
Now consider the set C:

�(a) ⇐
�(f(X1, X2)) ⇐ �(X1),�(X2)
p(f(X1, X2)) ⇐ �(X1),�(X2), X1 �= X2.1

for Σ = {a, f}. The language [[p]]C is not accepted by any automaton with hom-
disequalities since hom-disequalities cannot directly access arbitrary subtrees
independent of the labels in the tree. Let us denote by T the language [[p]]C of p
w.r.t. C. We have T = {f(t, a) | t ∈ TΣ} ∪ {f(t, f(t1, t2)) | t, t1, t2 ∈ TΣ , t �= t1}.
Lemma 3. There is no tree automaton A with hom-disequalities only that de-
fines a predicate p with [[p]]A = T . ��

Proof. This example is the unlabeled-path variant of the corresponding example
from [13] which provides the language [[p]]C that is accepted by an automaton
with path disequalities but not by any automaton with term disequalities only.

Assume for a contradiction that an automaton A with hom-disequalities exists
which accepts T through a predicate p. As in Lemma 2 we construct the com-
plement automaton B with hom-equalities only, containing a predicate p which
accepts the language [[p]]B = T = TΣ \ T = {a} ∪ {f(t, f(t, s)) | s, t ∈ TΣ}.
Case 1: If both X1 and X2 occur in Hf , then it holds for each equality of B
that l =H r if and only if l = r, and we refer to the proof in [13] that for T no
automaton with term equalities exists.
Case 2: If Hf ∈ {X1, X2, g} for a ground term g, then each equality l =H r
either is vacuously true or false (in case g �= Ha), so that B may be considered an
automaton with term equalities only, and as in Case 1, the proof in [13] applies.
Case 3: Assume therefore that Hf equals a term t = f(t1, t2) where t only
contains the variable X1 (respectively X2). Then we define d(t) to be the maximal
i ≥ 0 so that the path 1i (respectively 2i) is defined for t. Then l =H r iff d(l) =
d(r). The contradiction now follows from an argument analogous to Lemma 2
based on the fact that there are infinitely many values d(t) but only finitely
many clauses in B. ��
Automata with term disequalities can be simulated by path-disequality au-
tomata [13]. Thus, automata with hom-disequalities are incomparable to path-
disequality automata, while both classes are more expressive than automata with
term disequalities only.

Crossing the Syntactic Barrier: Hom-Disequalities for H1-Clauses 307

4 Automata with Hom-Disequalities

In this section we first show that to every set of automata clauses A with hom-
disequality constraints, a generalized automaton with (ordinary) term disequal-
ities AH can be constructed such that H[[p]]A = [[p]]AH . Secondly, we show that
it is decidable for AH, every predicate p and number k whether |[[p]]AH | < k —
and thus, whether |H[[p]]A| < k.

The class HDA (Hom-Disequality-Automata) of general automata with dise-
quality term constraints consists of finite sets of clauses of the form:

p(t) ⇐ p1(X1), . . . , pk(Xk), φ (k ≥ 0)

where p, p1, . . . , pk are unary predicates, t is a term with vars(t) ⊆ {X1, . . . , Xk},
and φ is a conjunction of disequalities ti �= tj which may only mention variables
from {X1, . . . , Xk}. The set vars(t) of variables occurring in the head of such
a clause c is denoted hv(c) while its complement with respect to {X1, . . . , Xk},
i.e., the set of variables occurring only in the body of c, is denoted bv(c). The
number of disequalities in a clause c is denoted dc(c).

Lemma 4. Let A be a finite set of automata clauses with hom-disequalities
t1 �=H t2 for an arbitrary tree homomorphism H. Then an HDA AH can be
constructed such that for every predicate p and ground term t, [[p]]AH = H[[p]]A.

Proof. Note that an analogous lemma has been provided by Godoy et al. for
tree automata with disequalities between paths [5]. AH is obtained from A by
transforming each clause c of the form:

p(f(X1, . . . , Xk)) ⇐ p1(X1), . . . , pk(Xk), φ

with φ = l1 �=H r1 ∧ . . . ∧ lm �=H rm, m ≥ 0 to the new clause c′:

p(H∗(f(X1, . . . , Xk))) ⇐ p1(X1), . . . , pk(Xk), φ′

with φ′ = H∗l1 �= H∗r1 ∧ . . . ∧ H∗lm �= H∗rm. Instead of [[q]]AH = H[[q]]A for
all predicates q, we prove by induction that [[q]]iAH

= H[[q]]iA for all i ≥ 0 and
all q, with the base case [[q]]0AH

= H[[q]]0A = ∅. Recall that H∗θs = θHH∗s for
terms s, where θH = {Xi �→ H∗θXi}. For a collection of terms t1, . . . , tk, let
θ = {Xi �→ ti} (hence θH = {Xi �→ H∗ti}). Now assume that f(t1, . . . , tk) ∈
[[p]]i+1

A by application of the clause c, i.e., tj ∈ [[pj]]iA for all 1 ≤ j ≤ k and
θ |= lj �=H rj for all 1 ≤ j ≤ m. By induction hypothesis, the first condition
holds iff H∗tj ∈ [[pj]]iAH

∀1 ≤ j ≤ k. The latter condition means that for all
1 ≤ j ≤ m we have H∗θlj �= H∗θrj , which is equivalent to θHH∗lj �= θHH∗rj

(for all j). Thus, f(t1, . . . , tk) ∈ [[p]]i+1
A through application of c if and only if

H∗tj ∈ [[pj]]iAH
∀1 ≤ j ≤ k and θH |= H∗lj �= H∗rj ∀1 ≤ j ≤ m, which is

equivalent to H∗f(t1, . . . , tk) ∈ [[p]]i+1
AH

through application of c′, with the ground
substitution θH, since H(f)(H∗t1, . . . , H∗tk) = H∗f(t1, . . . , tk). ��
Example 2. Consider the homomorphism:

H = {b �→ a, f(X1, X2) �→ g(X1, g(X1, a))}

where all other constructors are preserved. Then the set of automata clauses:

308 A. Reuß and H. Seidl

p(b) ⇐
p(f(X1, X2)) ⇐ p(X1), p(X2), X1 �=H f(X2, X2)

is transformed into the following set of clauses:

p(a) ⇐
p(g(X1, g(X1, a))) ⇐ p(X1), p(X2), X1 �= g(X2, g(X2, a))

Note that the variable X2 no longer occurs in the head of the second clause,
while the variable X1 occurs more than once. ��

Deciding k-Finiteness of HDA. We proceed along the lines of deciding k-finiteness
of automata with term disequalities in [12]. This base algorithm, though, must
be extended as now heads are no longer just single constructor applications.
Moreover, not all variables occurring in preconditions necessarily also occur in
the head of a clause. Again, we start with a semi-algorithm that decides for a
given HDA A, a predicate p, and a number k ≥ 1 whether |[[p]]A| ≥ k, by com-
puting in every round i, i ≥ 1, the sets [[q]]iA for all predicates q until |[[p]]iA| ≥ k
after some round i. Here, the sets [[q]]iA can be computed from the sets [[q′]]i−1

A
by applying the implications c ∈ A — starting with [[q]]0A = ∅ for all q.

In order to obtain an algorithm, we establish an upper bound for the number of
rounds which are needed for deciding HDA-k-finiteness. By a counting argument
(analogous to [12]), it suffices to increase the sets [[q]]iA only up to k+

∑
c∈A dc(c)

trees for each predicate q �= p. Our claim is based on the following lemma which
says that each term constraint φ of a clause c “filters out” no more than dc(c)
trees. More precisely, if a clause q1(t) ⇐ α1, q2(X), α2, φ can produce a tree for
predicate q1 in round i, and X ∈ vars(t), then the clause can produce at least
|[[q2]]i−1

A |−|φ|X trees until round i, where |φ|X denotes the number of disequalities
in φ which mention X .

Lemma 5. Let A be an HDA, and c ∈ A a clause q(t) ⇐ p1(X1), . . . , pk(Xk), φ.
Assume that we are given a ground substitution θ |= φ with Xiθ ∈ [[pi]]dA ∀
i ∈ {1, . . . , k} for some d ≥ 0. Then |[[q]]d+1

A | ≥ max{|[[pi]]dA|−dc(c) | Xi ∈ hv(c)}.

Proof. Let Xj ∈ hv(c) and φ ≡ C1∧ . . .∧Cm, m = dc(c). Reorder the Ci s. t. Xj

is mentioned exactly in C1, . . . , Cl, 0 ≤ l ≤ m. Choose θ s.t. θ |= Cl+1 ∧ . . .∧Cm

and Xiθ ∈ [[pi]]dA for all i ∈ {1, . . . , k} \ {j}. Making C1, . . . , Cl true by choosing
θ(Xj) can be considered as an instance of the pigeonhole principle implying that
there are at least |[[pj]]dA| − l ≥ |[[pj]]dA| −m different trees in [[pj]]dA which satisfy
all Ci, 1 ≤ i ≤ l. Since Xj ∈ hv(c), each of them can be used in combination
with the trees Xiθ, i �= j, to produce one tree for [[q]]d+1

A . ��

Our main theorem considers a procedure which iteratively constructs all facts
p(t) with a proof depth less than or equal to some m ≥ 0 which depends only on
the number k, the number of predicates occurring in A, and the total number of
disequalities in A. The theorem generalizes the one in [12] in that now variables
have to be taken into consideration which only occur in the precondition of a
clause but not in the head, and the heads of clauses are not restricted to terms
with exactly one constructor.

Crossing the Syntactic Barrier: Hom-Disequalities for H1-Clauses 309

Theorem 1. Let A be an HDA with n predicates and d =
∑

c∈A dc(c) disequal-
ity constraints. Let k be a positive number. Then for all predicates p, it holds
that |[[p]]A| < k if and only if |[[p]]n(d+k)

A | < k. ��

Corollary 1. Let A be an HDA. Then for all predicates p and numbers k ≥ 0,
it can be effectively decided whether |[[p]]A| ≤ k. Moreover, if |[[p]]A| ≤ k, then
[[p]]A can be effectively computed. ��

From Lemma 4 and Corollary 1, we conclude:

Corollary 2. Let A be a finite set of automata clauses (with hom-disequalities).
Then for all predicates p it can be effectively decided whether [[p]]A = ∅. ��

Corollary 3. Let A be a finite set of automata clauses. Then for all predicates p
and numbers k > 0 it can be effectively decided whether |H[[p]]A| < k. Moreover,
in case that |H[[p]]A| = m < k, a sequence t1, . . . , tm ∈ [[p]]A can be effectively
constructed such that the terms Hti, i = 1, . . . , m, are pairwise distinct. ��

5 H1-Normalization

In this section, we describe the normalization procedure which constructs for
every finite set C of H1-clauses with hom-disequalities a finite set N of nor-
mal clauses with hom-disequalities which is equivalent to C. Thus, this general
procedure is quite in-line with the normalization procedures for unconstrained
H1-clauses [9,7] or H1-clauses with term disequalities [12] or path disequalities
[13]. The normalization procedure consists of three rules, resolution, splitting,
and propagation, each of which adds finitely many simpler clauses which are im-
plied by the current set of clauses. These rules are repeatedly applied until the
set of clauses becomes saturated. The following paragraphs briefly collect the
three types of normalization rules. A significant modification w.r.t. [12] only is
required when it comes to splitting. We refer to the current set of all implied
clauses (whether originally present or added during normalization) as C, while
N ⊆ C denotes the current subset of normal clauses in C.

Resolution: Complex queries in preconditions are simplified by a resolution
step with a normal clause. Assume that C contains a clause h ⇐ α1, p(t), α2, ψ.
If N has a clause p(f(X1, . . . , Xk)) ⇐ β, φ, and t = f(t1, . . . , tk), then

h ⇐ α1, α
′, α2, ψ ∧ ψ′

is added with α′ = β[t1/X1, . . . , tk/Xk] and likewise, ψ′ = φ[t1/X1, . . . , tk/Xk].

Splitting: Splitting removes variables that are not contained in the head of
a clause. Assume that C contains a clause h ⇐ α, ψ and Y is a variable which
occurs in the precondition α, ψ but neither occurs in h nor in any literal q(t) with
t �= Y within α. Then we can rearrange α into a sequence α′, q1(Y), . . . , qr(Y)
where α′ does not contain Y . Let ψ contain n disequalities involving Y .

310 A. Reuß and H. Seidl

In the case of term disequalities, the key issue is to decide whether the con-
junction [[q1]]N ∩ . . . ∩ [[qr]]N contains less than n + 1 terms — and if so, to
provide all terms of this set. In presence of the homomorphism H however, this
is no longer sufficient. Instead, we must refer to the number of images of terms
from [[q1]]N ∩ . . .∩ [[qr]]N under H. In order to do so, we apply Lemma 1 from Sec-
tion 4 and construct for N an HDA A such that [[p]]A = H[[p]]N for all predicates
p of N . By Corollary 3, we can decide k-finiteness (choosing k = n + 1) of the
conjunction of the qi with respect to this automaton. If only n′ < n + 1 terms
are in the set H([[q1]]N ∩ . . .∩ [[qr]]N), the corollary provides us with n′ witnesses
in the set [[q1]]N ∩ . . . ∩ [[qr]]N whose images under H are pairwise distinct.

Let H([[q1]]N ∩ . . .∩ [[qr]]N) contain m terms. If m > n, then we add the clause
h ⇐ α′, ψ′ to the set C where ψ′ is obtained from ψ by removing all disequalities
that mention Y . If m ≤ n, let t1, . . . , tm be the terms as provided by Corollary
3. Then we add to C all clauses

h ⇐ α′, ψ[ti/Y], i = 1, . . . , m

Example 3. Consider again the clause

error ⇐ pu(X), pu(Y), X �=H Y

from the example in the introduction (here, we use X, Y, Z . . . as variable names),
and assume that H[[pu]]N = {t} for some ground term t = f(�, b), where N
denotes the whole (current) subset of normal clauses. One potential pre-image
of t then is the term t′ = f(secret(a), b). Applying splitting for variable Y (and
assuming t′ ∈ [[pu]]N), we obtain the new clause

error ⇐ pu(X), X �=H f(secret(a), b)

Now applying splitting for variable X results in

error ⇐ f(secret(a′), b) �=H f(secret(a), b)

for some (possibly different) pre-image f(secret(a′), b) ∈ [[pu]]N of t. The dise-
quality of the clause turns out to be false, which is due to the fact that pu does
not accept two or more terms that are different modulo H. ��

Propagation: Consider clauses p(X1) ⇐ q1(X1), . . . , qr(X1), ψ where ψ only
contains the variable X1 (or none). Assume that r > 0, and N contains normal
clauses qj(f(X1, . . . , Xk)) ⇐ αj , ψj for j = 1, . . . , r. Then

p(f(X1, . . . , Xk)) ⇐ α1, . . . , αr, ψ1 ∧ . . . ∧ ψr ∧ ψ′

is added where ψ′ = ψ[f(X1, . . . , Xk)/X1].
The correctness of the construction can be proven along the lines in [12]:

Theorem 2. Let C denote a finite set of H1-clauses. Let C denote the set of
all clauses obtained from C by adding all clauses according to the resolution,
splitting and propagation rules. Then the subset N of all normal clauses in C is
equivalent to C, i.e., [[p]]C = [[p]]N for every predicate p occurring in C. ��

Crossing the Syntactic Barrier: Hom-Disequalities for H1-Clauses 311

Termination of H1-normalization is achieved by avoiding to add certain clauses
that are subsumed by the current set of clauses. Two clauses hi ⇐ αi, φi, i = 1, 2,
are said to belong to the same family if they agree in their heads hi and their
preconditions αi consist of the same set of literals. The two clauses still may
differ in their disequality constraints φi. A clause h ⇐ α, φ is subsumed by a
set of clauses h ⇐ αi, φi, i = 1, . . . , n, from the same family, if φ implies the
disjunction

∨n
i=1 φi. Subsumed clauses can be omitted as they do not contribute

new facts to the least model of a set of clauses.

Theorem 3. Let C denote a finite set of H1-clauses. Let C denote the set of
clauses obtained from C by adding all clauses according to resolution, splitting
and propagation, that are not subsumed. Then C is finite.

Proof. Since the number of predicates and constructors is finite, there are only
finitely many distinct heads of clauses. The number of literals occurring in pre-
conditions is bounded since new literals p(t) are only added for subterms t of
terms already present in the original set C of clauses. Therefore, the number of
families of clauses occurring during normalization is finite. For each family f let
ψC,f denote the (possibly empty) disjunction of constraints of clauses of C which
belong to f . Each clause that is added to C extends one of the finitely many
constraints ψC,f to ψC,f ∨ φ for a conjunction of disequalities φ. The number of
variables in each constraint ψC,f is bounded since neither resolution with normal
clauses nor splitting does introduce new variables, while propagation steps may
introduce fresh variables, but directly produces normal clauses.

Now consider a sequence ψi, i ≥ 1, of conjunctions of hom-disequalities. It
remains to show that the disjunction

∨m
i=1 ψi, m ≥ 1, eventually becomes stable,

i.e., there exists some M such that
∨m

i=1 ψi =
∨M

i=1 ψi for all m ≥ M . In order
to construct such an M consider the sequence ψH,i, i ≥ 1, of ordinary term
disequalities where ψH,i is obtained from ψi by replacing each hom-disequality
s �=H t with H(s) �= H(t). Then θ is a solution to ψi, iff H ◦ θ is a solution to
ψH,i. In [12] we have shown that disjunctions of sequences of conjunctions of
ordinary term disequalities are ultimately stable. Therefore, there exists an M ′

such that
∨m

i=1 ψH,i =
∨M ′

i=1 ψH,i for all m ≥ M ′. Then we choose the constant
M as M ′. In order to prove that the sequence

∨m
i=1 ψi for m ≥ M ′ is implied by∨M ′

i=1 ψi, assume that θ is a solution of
∨m

i=1 ψi for some m ≥ M ′. Then H◦θ is a
solution of

∨m
i=1 ψH,i and therefore also of

∨M ′

i=1 ψH,i. Consequently, θ must also
be a solution of

∨M ′

i=1 ψi. Therefore, we conclude that also
∨m

i=1 ψi =
∨M ′

i=1 ψi

for all m ≥ M . This implies that eventually all clauses that can be added are
subsumed. Therefore, the normalization procedure terminates. ��

According to Theorem 2 and Theorem 3, for every finite set C of H1-clauses
with hom-disequalities an equivalent finite set N of normal clauses can be
constructed. By Lemma 1, N can then be transformed into an equivalent fi-
nite set A of automata clauses. Finally, by Corollary 2, emptiness is decidable
for every predicate defined by A. Altogether, we obtain:

312 A. Reuß and H. Seidl

Theorem 4. To every finite set C of H1-clauses with hom-disequality constraints,
a finite set A of automata clauses can be effectively constructed such that for every
predicate p of C, [[p]]C = [[p]]A. In particular, emptiness is decidable. ��

6 Conclusion

We have shown that finite sets of H1-clauses with hom-disequalities, i.e., dis-
equalities between images of terms under a given tree homomorphism, can be
effectively transformed into finite tree automata with hom-disequalities. Since
emptiness is decidable for these automata, we have provided a procedure to de-
cide arbitrary conjunctive or disjunctive queries to predicates defined by such
clauses. It remains for future work to explore how Horn clauses, extended with
hom-disequalities can be applied to the verification of security properties of pro-
tocols, such as anonymity or non-interference [6,2].

References

1. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
CSFW, pp. 82–96 (2001)

2. Bugliesi, M., Rossi, S.: Non-interference proof techniques for the analysis of cryp-
tographic protocols. Journal of Computer Security 13(1), 87–113 (2005)

3. Chatzikokolakis, K.: Probabilistic and Information-Theoretic Approaches to
Anonymity. Ph.D. thesis, École polytechnique (2007)

4. Frühwirth, T.W., Shapiro, E.Y., Vardi, M.Y., Yardeni, E.: Logic programs as types
for logic programs. In: LICS, pp. 314–328 (1991)

5. Godoy, G., Giménez, O., Ramos, L., Àlvarez, C.: The hom problem is decidable.
In: STOC, pp. 485–494. ACM (2010)

6. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

7. Goubault-Larrecq, J.: Deciding H1 by resolution. IPL 95(3), 401–408 (2005)
8. Goubault-Larrecq, J., Parrennes, F.: Cryptographic Protocol Analysis on Real C

Code. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363–379. Springer,
Heidelberg (2005)

9. Nielson, F., Riis Nielson, H., Seidl, H.: Normalizable Horn Clauses, Strongly Rec-
ognizable Relations, and Spi. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002.
LNCS, vol. 2477, pp. 20–35. Springer, Heidelberg (2002)

10. Reuß, A., Seidl, H.: Bottom-Up Tree Automata with Term Constraints. In:
Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 581–593.
Springer, Heidelberg (2010)

11. Seidl, H., Neumann, A.: On Guarding Nested Fixpoints. In: Flum, J., Rodríguez-
Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 484–498. Springer, Heidelberg
(1999)

12. Seidl, H., Reuß, A.: Extending H1-clauses with disequalities. IPL 111(20), 1007–
1013 (2011)

13. Seidl, H., Reuß, A.: Extending H1-Clauses with Path Disequalities. In: Birkedal, L.
(ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 165–179. Springer, Heidelberg (2012)

14. Weidenbach, C.: Towards an Automatic Analysis of Security Protocols in First-
Order Logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp.
314–328. Springer, Heidelberg (1999)

Factor and Subsequence Kernels

and Signatures of Rational Languages

Ahmed Amarni and Sylvain Lombardy

Laboratoire d’informatique Gaspard-Monge
University Paris-Est Marne-la-Vallée

{Ahmed.Amarni,Sylvain.Lombardy}@univ-mlv.fr

Abstract. The kernels are popular methods to measure the similarity
between words for classification and learning. We generalize the defi-
nition of rational kernels in order to apply kernels to the comparison
of languages. We study this generalization for factor and subsequence
kernels and prove that these kernels are defined for parameters chosen
in an appropriate interval. We give different methods to build weighted
transducers which compute these kernels.

1 Introduction

In classification and learning, kernel methods, like support vector machines, are
widely used ([1–3]). In many domains, like speech and handwritten document
recognition, or computational biology, the kernel methods offer a simple and
efficient answer for classification and pattern matching.

In this paper we consider rational kernels, introduced in [4] and extensively
studied in [5]. We generalize the constructions introduced in [5] and define the
kernels between rational languages. Kernels are usually defined between words
and measure the similarity between a word and a witness. We consider here the
comparison between two languages: a word (or even a language) can be evaluated
with respect to a known corpus. We will define this kernel in such a way that
the value of the word is higher if it is closer to small words of the corpus.

In Section 2, we present basic notions on weighted automata and transducers.
In Section 3, we define the rational kernels of languages. For positive definite
symmetric kernels, we define rational signature of languages as the behaviour
of weighted transducers. We focus in the last sections on two specific rational
kernels (and signatures). First, in Section 4, we consider factor kernels, second,
in Section 5, we consider sequence kernels. For each of these kernels, we show
how it corresponds to the behaviour of weighted automata. We also study, for
applications, which values of the parameters involved in these kernels allow us
to evaluate them. On top of this study, we provide an efficient construction for
the subsequence signature of rational languages.

2 Basic Notions and Definitions

The definitions of weighted automata and weighted transducers given in this
part follow the classical definitions (cf. [6] or [7]).

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 313–320, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

314 A. Amarni and S. Lombardy

2.1 Weighted Automata

Let A be an alphabet. A R-automaton A over A∗ is an automaton where each
transition, initial arrow and final arrow is endowed with a weight in R. The
weight of a computation is the product of weights along this computation, and
the weight of a word accepted by such an automaton is the sum of the weights of
accepting computations. If a word is not accepted by A then its weight is set to
zero. A R-automatonA thus realizes a mapping from words into R; this mapping
can be seen as a formal power series. This series is called the behaviour of the
R-automaton, and R-automata are equivalent if their behaviour is the same. For
every word w in A∗, we denote by A(w) the weight associated to w by A.

2.2 Weighted Transducers

Let A and B be two alphabets. Like R-automata, R-transducers over A∗ × B∗

are transducers endowed with weights in R. The transition labels of our R-
transducers are in (A ∪ {ε})× (B ∪ {ε}) (ε is the empty word). There are two
ways to consider a R-transducer.

First, as a weighted acceptor: each computation is labeled by a pair of words
in A∗ ×B∗; the weight of a pair of words is therefore the sum of the weights of
all accepting computations for this pair. The R-transducer T realizes a mapping
from A∗×B∗ into R, and for every pair (u, v) in A∗×B∗, T (u, v) is the weight in
R associated to (u, v). A weighted transducer realizing a rational kernel is such
an acceptor.

Second, as a translator: if (u, v) is the label of a computation with weight k,
this computation reads the input u and outputs the word v with weight k. Then,
the image of a word u by the transducer is the sum of the weighted outputs of
all transitions with input u. This image is therefore a polynomial over B∗ with
coefficients in R, or even a formal power series, if there are infinitely many
computations with input u; we denote by T (u) the image of u by T . For the
realization of signatures, the weighted transducers are seen as translators.

3 Rational Kernel of Languages and Signatures

In this paper, the kernels we consider are particular cases of rational kernels
studied in [4].

Definition 1. Let T be a R-transducer over A∗ × A∗. The rational kernel K
induced by T is the application of A∗ × A∗ into R realized by T : K(u, v) =
T (u, v), for every pair of words u and v.

We address in this paper the extension of kernels defined for words to kernels for
rational languages. Since the kernels are defined in R, it is natural to consider
linear extensions. Contrary to the extension proposed in [5], on the one hand,
we deal with infinite languages and thus our automata are not acyclic, on the
other hand, we consider languages through their characteristic series in R, which
is not a closed semiring, and where summation issues arise.

Factor and Subsequence Kernels and Signatures of Rational Languages 315

Definition 2. Let K be a rational kernel, and let L and H be two languages.
The rational kernel of parameter μ applied to L and H is defined by

Kμ(L,H) =
∑

u∈L,v∈H

K(u, v)μ|u|+|v|. (1)

If μ is a formal parameter, Kμ(L,H) is a formal power series. It is defined as
soon as the rational kernel is defined for each pair of words. For applications,
it may be interesting to evaluate this series. Then, the radius of convergence
depends on the nature of the kernel.

We focus in this paper on positive definite symmetric rational kernels (cf. [5]).
These kernels are defined as scalars product of rational signatures.

Definition 3. Let A and B be two alphabets. Let T be an R-transducer over
A∗ × B∗. The T -signature of a word w in A∗ is T (w). The T -signature of
parameter μ of a language L included in A∗ is

σμ(L) =
∑
w∈L

T (w)μ|w|. (2)

Proposition 1. If T is an R-transducer, the T -signature with parameter μ of
a language is realized by a transducer Tμ.

The T -signature of a language L with parameter μ is therefore a power series
over B∗ whose coefficients are series in R[[μ]]. For each value of μ in the radius of
convergence, the T -signature of a rational language L is a rational power series
over B∗.

If L is a rational language, the characteristic series of L is realized by any
unambiguous automaton A recognizing L (for instance the minimal automaton
of L), seen as an automaton with multiplicities, and the T -signature of L is
realized by the application of the transducer Tμ (Proposition 1) on A.

The componentwise product (Hadamard product) of the T -signatures of two
languages L and H is called the T -indicator series Iμ(L,H) of L and H .

The T -kernel of rank k and the T -kernel of two languages L and H are
respectively defined as

K(k)
μ (L,H) =

∑
w∈Bk

〈σμ(L), w〉〈σμ(H), w〉, (3)

Kμ(L,H) =

∞∑
k=0

K(k)
μ (L,H) =

∑
w∈B∗

〈σμ(L), w〉〈σμ(H), w〉. (4)

The T -norm of a language L is defined as ||L||μ =
√
Kμ(L,L) and can be

evaluated if μ belongs to the radius of convergence.

Proposition 2. Let T be a R-transducer over A∗×B∗, and let Tμ be the trans-
ducer that realizes the T -signature with parameter μ. Then, the T -kernel with
parameter μ is realized by the transducer T −1

μ ◦ Tμ.

316 A. Amarni and S. Lombardy

p q r

a | ε a | a a | ε
a | a a | a

a | a
(a) The transducer computing χ

p q r

a | με a | μa a | με
a | μa a | μa

a | μa
(b) The transducer computing Ψμ

Fig. 1. Transducer extracting factors. Every transition is valid with any letter in input:
transitions a | a copy the input on the output, transitions a | ε have no output.

4 Factor Signature

The similarity between two words can be evaluated by the factor kernel. we
first extend this to languages. As symmetric rational kernels, factor kernels are
characterized by signatures.

4.1 Factor Signature of Words

Let w be a word of length n in A∗. Let (i, l) be in [0;n− 1]× [1;n− i]; the factor
of w with offset i and length l is f(w, i, l) = wi+1 . . . wi+l. Let fact(w) be the set
of admissible pairs (i, l) describing a factor of w.

Definition 4. Let w be a word. The factor signature of w is the linear combi-
nation defined by:

χ(w) =
∑

(i,l)∈fact(w)

f(w, i, l). (5)

Proposition 3. Let T be the N-transducer of Figure 1(a). T computes the fac-
tor signature.

4.2 Factor Signature of Languages

The factor signature of a language L with parameter μ is the series defined as

Ψμ(L) =
∑
w∈L

χ(w)μ|w|. (6)

The signature Ψμ is realized by the transducer of Figure 1(b). By metonymy, in
the sequel, this transducer is called Ψμ.

If L is a language, let Factn(L) be the number of factors of length n in L, we
consider the entropy of L, E(L):

E(L) = lim sup
n→∞

log2(Factn(L))

n
. (7)

Proposition 4. Let L be a rational language. If μ belongs to [0; 1
2E(L) [, the factor

signature Ψμ(L) is defined.

Factor and Subsequence Kernels and Signatures of Rational Languages 317

1 2

a b

b

(a) The minimal automaton of L2

p

1

2

μ∗ + μ+

μ∗

μa

μb
μbμ+a

μ∗μ+b

(b) An automaton realizing Ψμ(L2)

Fig. 2. The factor signature of L2 = a∗b∗

p

1

2

(μ∗ + μ+)2

(μ∗)2

μ2a

μ2b

μ2b(μ+)2a

(μ∗μ+)2b

Fig. 3. The factor indicator series Iμ(L2, L2)

Notice that 2E(L) is in [1; |A|], where A is the alphabet; therefore if μ is smaller
than 1/|A|, Ψμ(L) is defined.

Example 1. L2 = a∗b∗ is recognized by the deterministic automaton A2 of Fig-
ure 2(a). The application of Ψμ to A2, followed by the ε-transition removal gives
the automaton of Figure 2(b).

Proposition 5. If μ is in [0; 1
|A| [, where A is the alphabet, for every pair of

languages L and H, the factor kernel Kμ(L,H) is defined.

Example 2. If L = a∗b∗, the factor indicator series Iμ(L2, L2) is realized by
the automaton of Figure 3. This automaton is the square of the automaton of
Figure 2(b).

5 Subsequence Signature and Kernel

Subsequences kernels, also called gappy n-gram kernels are rational kernels (cf.
[8]) which involve a decay factor λ. We extend them to languages and obtain
therefore kernels (described by signatures) with two parameters.

5.1 Subsequence Signature of Words

Let w be a word in A∗, for every k in [1;n], every increasing sequence s of length
k with values in [1; |w|] leads to a word v of length k such that vi = wsi : v is the
subsequence of w indexed by s and is denoted by σ(w, s). We denote the length
of s by |s| and we define the width of s as �(s) = sk − s1 + 1. Let S(w) be the
set of increasing sequences in [1; |w|].

318 A. Amarni and S. Lombardy

p q r
a | a

a | a
a | λε

a | λε

a | a
(a) A transducer erasing inner letters.

pp

qq

rq

a | ε
a | a

a | a

a | a+ λε

a | a
a | ε

(b) A transducer computing the
subsequence signature.

Fig. 4. From factors to subsequences

Definition 5. Let w be a word. The subsequence signature of w with parameter
λ is the linear combination defined as:

ϕλ(w) =
∑

s∈S(w)

λ�(s)−|s|σ(w, s). (8)

The signature ϕλ(w) can be evaluated for any value of λ in]0; 1]. If λ = 1, the
coefficient of a word v in ϕλ(w) is the number of occurences of v as a subsequence
in w, and ϕ1(λ) is known as the Magnus transformation (cf. [9]) of w; if λ = 0
every subsequence with a hole is discarded, and ϕλ(w) = χ(w).

Proposition 6. There exists a N[λ]-rational transduction τλ such that ϕλ =
τλ ◦ χ.

As a consequence ϕλ is the N[λ]-rational relation realized by the transducer of
Figure 4(b) which is the composition of transducers of Figure 1(a) and
Figure 4(a).

This definition of the subsequence signature leads to a kernel which is slightly

different than the one given in [5], which is equal to K
(k)
λ (u, v)λ2k, where K

(k)
λ

is the kernel defined in our framework.

5.2 Subsequence Signature of Languages

The subsequence signature of a language L is the bivariate series defined by:

Φλ,μ(L) =
∑
w∈L

ϕλ(w)μ
|w|. (9)

For numerical applications, this signature can be evaluated. The following propo-
sition gives values of parameters for which the signature is defined.

Proposition 7. Let L be a rational language. For all μ in [0; 1
2E(L) [and λ in

[0; 1
μ2E(L) [, Φλ,μ(L) is defined.

Proposition 8. The function Φλ,μ which maps a language to its subsequence
signature is a rational function.

Factor and Subsequence Kernels and Signatures of Rational Languages 319

p

q

r

a | με
a | μa

a | μa

a | μa+ μλε

a | μa
a | με

Fig. 5. The subsequence signature of a language: the transducer Φλ,μ = τλ ◦ Ψμ

1 2

3
μ∗

μ∗ + μ∗μ+μμ+a

μ+μ+b

(λμ)∗(λμ)+μb

(λμ)∗μa

(λμ)∗μb

Fig. 6. An automaton realizing the subsequence signature of L2 = a∗b∗

Example 3. Let L2 = a∗b∗. The minimal automaton of L2 is given on Figure 2(a).
The subsequence signature of L2 is obtained by the application of Φλ,μ on this
automaton. After ε-removal and state merging we get the automaton of Figure 6.

The subsequence signature allows to define a parametrized norm for rational
languages. This norm is an indicator about the richness of subsequences in the
language. The subsequence norm of L with parameter (λ, μ) is:

‖L‖μ,λ =

√∑
u∈A∗

〈Φλ,μ(L), u〉2. (10)

Proposition 9. Let L be a rational language over an alphabet A. If λ and μ
are two non negative reals such that μ is in [0; 1

|A| [and λ is in [0; 1
μ|A| − 1[, then

‖L‖μ,λ is defined.

5.3 Direct Computation of the Automaton Realizing the
Subsequence Signature

We focus in this part on the computation of the realization of the subsequence
signature of a rational language. (A similar construction exists for factor signa-
tures). We consider a rational language L recognized by standard deterministic
automaton A: there is no incoming transition to the initial state of A.

Let Q be the set of states of A. We define the Q×Q matrix E(x) as follows.
For every pair of states (p, q), Ep,q(x) = kx, where k is the number of transitions
from p to q. En

p,q(x) = kxn if there are exactly k paths of length n from p to q,
and E∗

p,q(x) is the series that counts the number of paths of each length between
p and q.

320 A. Amarni and S. Lombardy

Proposition 10. Let A be a standard deterministic automaton which accepts a
language L. Let Q be the set of states of A, and let E(x) be the parametrized
matrix defined as above. The subsequence signature of L with parameters λ and
μ is realized by the automaton B with the same set of states Q as A, and defined
by:
– The initial state i of B is the initial state of A.
– For each state p
= i, p is final in B with weight k =

∑
q∈T E

∗(μ)p,q if k
= 0.
– For each state r, for each letter a ∈ A, there is a transition from i to r with
label a and weight k =

∑
q∈Q E∗(μ)i,qμδ(a)q,r if k
= 0.

– For each state p
= i , each state r
= i for each letter a ∈ A, there is a transition
from p to r with label a and weight : k =

∑
q∈QE

∗
p,q(λμ)μδ(a)q,r if k
= 0.

Example 4. This construction applied to L2 directly gives the automaton drawn
in Figure 6.

References

1. Burges, C.: A tutorial on support vector machines for pattern recognition. Data
Mining Knowledge Discovery 2, 121–167 (1998)

2. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-
sification using string kernels. Journal of Machine Learning Research 2, 419–444
(2002)

3. Kontorovich, L., Cortes, C., Mohri, M.: Kernel methods for learning languages.
Theoretical Computer Science 405, 223–236 (2008)

4. Cortes, C., Haffner, P., Mohri, M.: Rational kernels. In: Becker, S., Thrun, S.,
Obermayer, K. (eds.) NIPS, pp. 601–608. MIT Press (2002)

5. Cortes, C., Haffner, P., Mohri, M.: Rational kernels: Theory and algorithms. Jour-
nal of Machine Learning Research 5, 1035–1062 (2004)

6. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monographs in Theo-
retical Computer Science. An EATCS Series, vol. 5. Springer (1986)

7. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
8. Cortes, C., Haffner, P., Mohri, M.: Positive Definite Rational Kernels. In: Schölkopf,

B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 41–56.
Springer, Heidelberg (2003)

9. Sakarovitch, J., Simon, I.: Subwords. In: Combinatorics on Words. Encyclopedia of
Mathematics and its Applications, vol. 17, pp. 104–144. Addison-Wesley, Reading
(1983)

Multi-Tilde-Bar Derivatives

Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot

LITIS, Université de Rouen, 76801 Saint-Étienne du Rouvray Cedex, France
{pascal.caron,jean-marc.champarnaud,ludovic.mignot}@univ-rouen.fr

Abstract. Multi-tilde-bar operators allow us to extend regular expres-
sions. The associated extended expressions are compatible with the
structure of Glushkov automata and they provide a more succinct repre-
sentation than standard expressions. The aim of this paper is to examine
the derivation of multi-tilde-bar expressions. Two types of computation
are investigated: Brzozowski derivation and Antimirov derivation, as well
as the construction of the associated automata.

1 Introduction

Regular expression word derivatives have been introduced in [5] by Brzozowski
in order to compute language quotients via expression derivatives: for any word
w, the language denoted by the derivative of a regular expression E w.r.t. w
is the left quotient of the language denoted by E w.r.t. w. Regular expression
derivation plays a fundamental role in theory of automata. In particular, under
the assumption that the set D of all the derivatives of a regular expression E
is finite, it is possible to construct a FA (finite automaton) with D as a set of
states that recognizes the language denoted by E.

Word derivatives handle unrestricted regular expressions; they are themselves
expressions and they provide a DFA (deterministic finite automaton), as far as
the ACI (associativity, commutativity and idempotence) properties of the sum of
two expressions are used. Alternative types of derivation have been designed since
Brzozowski’s seminal work. Partial derivatives, due to Antimirov [2], only address
simple regular expressions; they are sets of expressions and they provide both
a DFA and a NFA (non-deterministic finite automaton). Antimirov derivatives
have been recently extended to unrestricted regular expressions [10]; extended
partial derivatives are sets of sets of expressions and they provide a DFA, a NFA
and an AFA (alternating finite automaton) [11]. Some derivations are based on
the linearization of the (simple) input expression: let us cite the continuations
of Berry and Sethi [4], the c-continuations of Champarnaud and Ziadi [14] and
the derivatives of Ilie and Yu [18]. Let us mention that Antimirov derivation has
been extended to the case of weighted rational expressions [21,13].

As reported in [2], the concept of derivation has been successfully used to
investigate the properties of regular expressions [17,15,7,20,3,1]. More recently,
Brzozowski introduced a new approach for studying the state complexity of regu-
lar languages, based on the counting of their quotients (or of their derivatives) [6].

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 321–328, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

322 P. Caron, J.-M. Champarnaud, and L. Mignot

Moreover, derivatives provide a useful tool to implement regular matching algo-
rithms [23,16], or scanner generators as reported in [22].

A close topic is the derivation of new operators that extend regular expres-
sions. For example, the computation of the derivatives of an approximative reg-
ular expression (that denotes a languages at a bounded distance from a given
language) has been presented in [12]. The aim of this paper is to investigate the
derivation of the multi-tilde-bar expressions introduced in [8,9]. These expres-
sions are built upon simple operators and multi-tilde-bar operators and their
main interest is that they are compatible with the structure of Glushkov au-
tomata and more succinct than standard expressions. We provide formulae for
the computation of word and partial derivatives of multi-tilde-bar expressions
and investigate the properties of these derivatives.

The next section gathers classical notions concerning regular languages, regu-
lar expressions and finite automata; it also recalls the definition and main prop-
erties of multi-tilde-bar operators. The definition of the quotient of the language
of an extended to multi-tilde-bar expression is introduced in Section 3. Section 4
is devoted to the computation of the Brzozowski derivatives of an extended ex-
pression and Section 5 to the computation of the Antimirov derivatives. In both
cases, the construction of the associated automaton is provided.

2 Preliminaries

We recall some definitions and notation concerning regular languages, regular
expressions , finite automata and multi-tilde-bar expressions. For further details
about these topics, we refer to classical books such as [24].

Languages, Regular Expressions and Automata
An alphabet is a finite set of symbols. Given an alphabet Σ, any subset of
Σ∗ is a language over Σ. The set of regular languages over Σ is denoted by
Reg(Σ∗) and is defined as the smallest family of languages containing ∅ and {a}
for every symbol a in Σ and closed under union, catenation and Kleene star.
A regular expression E over an alphabet Σ is inductively defined by E = 0,
E = 1, E = a, E = (F + G), E = (F · G), E = (F ∗) with a a symbol in
Σ, and F and G two regular expressions over Σ. The language denoted by a
regular expression is inductively defined by L(0) = ∅, L(1) = {ε}, L(a) = {a},
L(F +G) = L(F) ∪ L(G), L(F ·G) = L(F) · L(G) and L(F ∗) = L(F)∗, with a
a symbol in Σ, and F and G two regular expressions over Σ. By construction,
the language denoted by a regular expression is regular. The alphabetic width
|E| of E is the number of occurrences of symbols of Σ appearing in E. A finite
automaton A is a 5-tuple (Σ,Q, I, F, δ) whereΣ is an alphabet,Q is a finite set of
states, I ⊂ Q a set of initial states, F ⊂ Q a set of final states and δ ⊂ Q×Σ×Q
a set of transitions. The set δ can be seen as a function from Q×Σ to 2Q defined
by q′ ∈ δ(q, a) ⇔ (q, a, q′) ∈ δ. The domain of the function δ can be extended
to 2Q × Σ∗ by setting, for all Q′ ⊂ Q, δ(Q′, ε) = Q′, δ(Q′, a) =

⋃
q∈Q′ δ(q, a),

δ(Q′, a · w) = δ(δ(Q′, a), w) for all word w in Σ∗ . The language recognized by
the automaton A is the set L(A) = {w ∈ Σ∗ | δ(I, w) ∩ F
= ∅}. A language

Multi-Tilde-Bar Derivatives 323

L is recognizable if there exists an automaton that recognizes it. The set of
recognizable languages overΣ is denoted by Rec(Σ∗). Kleene theorem [19] asserts
that Reg(Σ∗) = Rec(Σ∗). Consequently , for every regular language L, there
exist an automaton A and an expression E such that L = L(E) = L(A).

The Multi-tilde-Bar Operators [8,9]
The unary operators tilde, denoted by , and bar, denoted by are defined for

every expression E by L(E) = L(E) ∪ {ε} and L(E) = L(E) \ {ε}. They are
extended to multi-tilde-bar operators, which are applied to a list of expressions,
according to the following definitions.

Let n be a positive integer. For convenience, the list (E1, . . . , En) of expres-
sions is denoted by E1,n. Similarly, a catenation E1 · · ·En is denoted by E1···n.
The set of integers {1, . . . , n} is denoted by �1, n�. The subset of pairs (i, j) such
that if 1 ≤ i ≤ j ≤ n is denoted by �1, n�2≤. The set of finite lists of pairs in

�1, n�2≤ is denoted by Sn.
Let S be a list in Sn. Let k be in �1, n�. The list S≤k (resp. S≥k) is defined

by S≤k = ((i, f) ∈ S | f ≤ k) (resp. S≥k = ((i − k + 1, f − k + 1) ∈ S | i ≥ k)).
Let us notice that a renumbering is performed for the computation of S≥k. A
list S is said to be free if for all pairs (i, f), (i′, f ′) in S such that (i, f)
= (i′, f ′),
�i, f� ∩ �i′, f ′� = ∅. Let L1, . . . , Ln be n nonempty regular languages over Σ
and w be a word in L1 · · ·Ln. A sequence (w1, . . . , wn) satisfying w1 · · ·wn =
w ∧ ∀k ∈ �1, n�, wk ∈ Lk is said to be a split up of w over (L1, . . . , Ln).

Multi-tilde-bar operators are a natural combination of multi-tilde and multi-
bar operators [9]. The respective role of tildes and bars is explicited in the two
following definitions.

Definition 1. Let (w1, . . . , wn) be a split up of a word w over a list of languages
(L1 ∪ {ε}, . . . , Ln ∪ {ε}). Let T be a free list in Sn. The sequence (w1, . . . , wn)
is generated by the list T if it holds: wk = ε if k ∈

⋃
(i,f)∈T �i, f� and wk ∈ Lk

otherwise.

Bars are used to forbid some combinations of tildes. Consequently, the satisfac-
tion of a bar by a sequence has to be defined with a list of tildes as a context.

Definition 2. Let E1,n be a list of n expressions. Let (w1, . . . , wn) be a split up
of a word w over (L(E1) ∪ {ε}, . . . , L(En) ∪ {ε}) generated by a free list T in
Sn. Let b = (i, f) be a pair in �1, n�2≤ \ T . The bar b is said to be satisfied by
(w1, . . . , wn) w.r.t. T if at least one of the three following conditions is satisfied:

(1) there exists a pair t in T such that t overlaps b,
(2) there exists a pair t in T such that b is included in t,
(3) wi · · ·wf
= ε.

According to the two previous definitions, the language denoted by a multi-tilde-
bar can be expressed as follows:

Definition 3 ([8]). Let E1,n be a list of expressions over an alphabet Σ and L′

be the list (L(E1)∪ {ε}, . . . , L(En)∪ {ε}) of languages. Let B and T be two lists

324 P. Caron, J.-M. Champarnaud, and L. Mignot

in Sn such that B ∩ T = ∅. The multi-tilde-bar E =
T ;B

(
E1,n

)
denotes the

language

L(E)=

{
w ∈ Σ∗ |there exists a split up of w over L′ generated by a free

sublist T ′ of T satisfying every bar in B w.r.t. T ′.

}

Example 1. Let us consider the EMRE E1 defined by

E1 =
(1,1),(2,2);(1,2)

(
(a∗b), (b∗a)

)
· a∗ (i.e. (a∗b)(b∗a) · a∗).

The language denoted by E1 is the set
L(E1) = (((L(a∗b) ∪ {ε}) · (L(b∗a) ∪ {ε})) \ {ε}) · L(a∗).

Definition 4. Let Σ be an alphabet. An Extended to multi-tilde-bar Regular
Expression (EMRE) over Σ is inductively defined by:

E = 0, E = 1, E = a,
E = E1 + E2, E = E1 · E2, E = E∗

1 , E =
T ;B

(
E1,n

)
,

where E1, . . . , En are any n EMREs over an alphabet Σ, a is any symbol in
Σ and T and B are any two disjoint lists in Sn.

Definition 5. An EMRE is said to be total if and only if for any of its multi-
tilde-bar subsexpressions

T ;B

(
E1,n

)
it holds T ∪B = �1, n�2≤.

Lemma 1 ([8]). Any EMRE admits an equivalent total one.

3 Quotient Formulae

We now recall the inductive computation of the quotient w−1(L) of a language
L w.r.t. a word w in Σ∗, that is the set {w′ ∈ Σ∗ | ww′ ∈ L}.

Lemma 2. Let L be language in Reg(Σ∗) and w be a word in Σ∗. The quotient
w−1(L) of L w.r.t. w is inductively computed as follows:

ε−1(L) = L, (aw′)−1(L) = w′−1(a−1(L)),
a−1(∅) = a−1({ε}) = a−1({b}) = ∅, a−1(a) = {ε},

a−1(L1 ∪ L2) = a−1(L1) ∪ a−1(L2), a−1(L∗
1) = a−1(L1) · L∗

1,

a−1(L1 · L2) =

{
a−1(L1) · L2 ∪ a−1(L2) if ε ∈ L1,
a−1(L1) · L2 otherwise.

where L1 and L2 are any two languages in Reg(Σ∗), a and b are any two
distincts symbols in Σ and w′ is any word in Σ∗.

Lemma 3. Let E =
T ;B

(
E1,n

)
be a total EMRE over an alphabet Σ. Then:

L(E) =

({ε | (1, n) ∈ T} ∪ (L(E1) \ {ε}) · L(T≥2;B≥2

(
E2,n

)
)

∪ ⋃
(1,k−1)∈T (L(Ek) \ {ε}) · L(T≥k+1;B≥k+1

(
Ek+1,n

)
)

)
.

Corollary 1. Let E =
T ;B

(
E1,n

)
be a total EMRE over an alphabet Σ and

let a be a symbol in Σ. Then:

a−1(L(E)) =

(
a−1(L(E1)) · L(T≥2;B≥2

(
E2,n

)
)

∪⋃
(1,k−1)∈T a−1(L(Ek)) · L(T≥k+1;B≥k+1

(
Ek+1,n

)
)

)

Multi-Tilde-Bar Derivatives 325

4 Word Derivatives of an EMRE

The set of all the word derivatives of a regular expression can be infinite. How-
ever Brzozowski derivation yields a finite set of derivatives (called dissimilar
derivatives) based on the use of the +ACI operator that is associative, commu-
tative and idempotent. We extend these results to the case of EMREs and give
the construction of the dissimilar derivative DFA of an EMRE.

Definition 6. Let E be regular expression over the alphabet Σ and w be a word
in Σ∗. The dissimilar derivative d

da
(E) of E w.r.t. w is inductively computed as

d
dε
(E) = E, d

daw′ (E) = d
dw′ (

d
da
(E)),

d
da
(0) = d

da
(1) = d

da
(b) = 0, d

da
(a) = 1,

d
da
(F +G) = d

da
(F) + d

da
(G), d

da
(F ∗) = d

da
(F) · F ∗,

d
da
(F ·G) =

{ d
da
(F) ·G+ACI

d
da
(G) if ε ∈ L(F),

d
da
(F) ·G otherwise.

where F and G are any two regular expressions over the alphabet Σ, a and b are
any two distincts symbols of Σ and w′ is any word in Σ∗.

Definition 7. Let E =
T ;B

(
E1,n

)
be a total EMRE over an alphabet Σ, let

a be a symbol in Σ and w be a word in Σ∗. Then:

d
da

(E) =

(
d
da

(E1) · T≥2;B≥2

(
E2,n

)
+ACI

∑
ACI (1,k−1)∈T

d
da

(Ek) · T≥k+1;B≥k+1

(
Ek+1,n

)
)
,

d
dw

(E) =

{
E if w = ε,
d

dw′ (
d
db
(E)) if w = b · w′ ∧ b ∈ Σ ∧ w′ ∈ Σ∗.

Proposition 1. The derivative of an EMRE E w.r.t. a word w denotes the set
w−1(L(E)).

Proposition 2. The set of dissimilar derivatives of an EMRE is finite.

Definition 8. Let E be an EMRE over an alphabet Σ and DE be the set of
the dissimilar derivatives of E. Let A = (Σ,Q, I, F, δ) be the automaton defined
by Q = DE, I = {E}, F = {E′ ∈ Q | ε ∈ L(E′)}, ∀E′ ∈ Q, ∀a ∈ Σ,
δ(E′, a) = { d

da
(E′)}. The automaton A is the dissimilar derivative DFA of E.

Proposition 3. The dissimilar derivative DFA of an EMRE E recognizes L(E).

Example 2. Let us consider the total EMRE E1 = (a∗b)(b∗a) · a∗ defined in

Example 1. Successive dissimilar derivatives of E are computed as follows:
d
da
(E1) = a∗b · (b∗a) · a∗ + a∗ = E2

d
db
(E1) = (b∗a) · a∗ + b∗a · a∗ = E3

d
da
(E2) = a∗b · (b∗a) · a∗ + a∗ = E2

d
db
(E2) = (b∗a) · a∗ = E4

d
da
(E3) = a∗ = E5

d
db
(E3) = b∗a · a∗ = E6

d
da
(E4) = a∗ = E5

d
db
(E4) = b∗a · a∗ = E6

d
da
(E5) = a∗ = E5

d
db
(E5) = 0

d
da
(E6) = a∗ = E5

d
db
(E6) = b∗a · a∗ = E6

326 P. Caron, J.-M. Champarnaud, and L. Mignot

E1 E2

E3

E4

E6 E5

a

b

a

b

a

b

a

b

a

a

b

Fig. 1. The Dissimilar Derivative DFA of E1

5 Partial Derivatives of an EMRE

Partial derivatives [2] of a regular expression are defined as follows.

Definition 9. The partial derivative of a regular expression E w.r.t. a word w
is the set ∂

∂a
(E) of expressions inductively computed as follows:

∂
∂ε
(E) = E, ∂

∂aw′ (E) = ∂
∂w′ (

∂
∂a
(E)),

∂
∂a
(0) = ∂

∂a
(1) = ∂

∂a
(b) = ∅, ∂

∂a
(a) = {1},

∂
∂a
(F +G) = ∂

∂a
(F) ∪ ∂

∂a
(G), ∂

∂a
(F ∗) = ∂

∂a
(F) · F ∗,

∂
∂a
(F ·G) =

{ ∂
∂a
(F) ·G ∪ ∂

∂a
(G) if ε ∈ L(F),

∂
∂a
(F) ·G otherwise.

where: F and G are any two regular expressions over the alphabet Σ, a and b
are any two distincts symbols of Σ and w′ is any word in Σ∗ and for any set of
expressions E, ∂

∂a
(E) =

⋃
E∈E

∂
∂a
(E), L(E) =

⋃
E∈E L(E).

We now define the partial derivatives of a total EMRE.

Definition 10. Let E =
T ;B

(
E1,n

)
be a total EMRE over an alphabet Σ,

let a be a symbol in Σ and w be a word in Σ∗. Then:

∂
∂a

(E) =

(
∂
∂a

(E1) · T≥2;B≥2

(
E2,n

)
∪⋃(1,k−1)∈T

∂
∂a

(Ek) · T≥k+1;B≥k+1

(
Ek+1,n

)
)
,

∂
∂w

(E) =

{
{E} if w = ε,
∂

∂w′ (
∂
∂b
(E)) if w = b · w′ ∧ b ∈ Σ ∧ w′ ∈ Σ∗.

Proposition 4. Let E =
T ;B

(
E1,n

)
be a total EMRE over an alphabet Σ

and w be a word in Σ∗. Then L(∂
∂w

(E)) = w−1(L(E)).

By definition, a partial derivative of an expression E is a set of expressions and
each of these expressions is called a derivated term of E. We show that the set D′

E

of all the derivated terms of an EMRE E is finite and we give the construction
of the derivated term NFA.

Lemma 4. Let E =
T ;B

(
E1,n

)
be a total EMRE over an alphabet Σ and

let w be a word in Σ+. Then:
∂
∂w

(E) ⊂ ⋃
w=uv∧v =ε

⋃n
k=1

∂
∂v

(Ek) · T≥k+1;B≥k+1

(
Ek+1,n

)
.

Multi-Tilde-Bar Derivatives 327

Proposition 5. Let E be a total EMRE . Then: (#D′
E) ≤ |E|+ 1.

Definition 11. Let E be an EMRE over an alphabet Σ . Let A = (Σ,Q, I, F, δ)
be the automaton defined by Q = D′

E, I = {E}, F = {E′ ∈ Q | ε ∈ L(E′)},
for any expression E′ ∈ Q, for any symbol a in Σ, δ(E′, a) = ∂

∂a
(E′). The

automaton A is the derivated term NFA of E.

Proposition 6. The derivated term automaton of an EMRE E recognizes L(E).

Example 3. Let us consider the total EMRE E1 = (a∗b)(b∗a) · a∗ defined in

Example 2. Successive derivated terms of E are computed as follows:
∂
∂a
(E1) = {a∗b(b∗a) · a∗, a∗)}

= {E′
2, E

′
3}

∂
∂b
(E1) = {(b∗a) · a∗, b∗a · a∗}

= {E′
4, E

′
5}

∂
∂a
(E′

2) = {a∗b(b∗a) · a∗} = {E′
2}

∂
∂b
(E′

2) = {(b∗a) · a∗} = {E′
4}

∂
∂a
(E′

3) = {a∗} = {E′
3}

∂
∂b
(E′

3) = ∅
∂
∂a
(E′

4) = {a∗} = {E′
3}

∂
∂b
(E′

4) = {b∗a · a∗} = {E′
5}

∂
∂a
(E′

5) = {a∗ = {E′
3}

∂
∂b
(E′

5) = {b∗a · a∗} = {E′
5}

E1 E′
2 E′

4 E′
5 E′

3

a

a

b

b

a

b
a

a

b

b

a

Fig. 2. The Derivated Term NFA of E1

6 Conclusion

We have shown how the Brzozowski derivation and the Antimirov one can be
applied to the case of (simple) regular expressions extended to multi-tilde-bar
operators. The computation of the c-continuations for such expressions has been
already investigated even though it is not presented here. The main interest
of c-continuations is that they allow us to efficiently implement Glushkov and
Antimirov NFAs. We also intend to generalize these derivations to the case of
unrestricted regular expressions extended to multi-tilde-bar operators.

References

1. Almeida, M., Moreira, N., Reis, R.: Antimirov and Mosses’s rewrite system revis-
ited. Int. J. Found. Comput. Sci. 20(4), 669–684 (2009)

2. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. Theoret. Comput. Sci. 155, 291–319 (1996)

328 P. Caron, J.-M. Champarnaud, and L. Mignot

3. Antimirov, V.M., Mosses, P.D.: Rewriting extended regular expressions. Theor.
Comput. Sci. 143(1), 51–72 (1995)

4. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret.
Comput. Sci. 48(1), 117–126 (1986)

5. Brzozowski, J.A.: Derivatives of regular expressions. J. Assoc. Comput.
Mach. 11(4), 481–494 (1964)

6. Brzozowski, J.A.: Quotient complexity of regular languages. Journal of Automata,
Languages and Combinatorics 15(1/2), 71–89 (2010)

7. Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata,
and sequential networks. Theor. Comput. Sci. 10, 19–35 (1980)

8. Caron, P., Champarnaud, J.M., Mignot, L.: Erratum to “acyclic automata and
small expressions using multi-tilde-bar operators”. [Theoret. Comput. Sci. 411(38-
39), 3423–3435] (2010); Theor. Comput. Sci. 412(29), 3795–3796 (2011)

9. Caron, P., Champarnaud, J.M., Mignot, L.: Multi-bar and multi-tilde regular op-
erators. Journal of Automata, Languages and Combinatorics 16(1), 11–26 (2011)

10. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial Derivatives of an Extended
Regular Expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011)

11. Caron, P., Champarnaud, J.M., Mignot, L.: A general frame for the derivation of
regular expressions (submitted, 2012)

12. Champarnaud, J.-M., Jeanne, H., Mignot, L.: Approximate Regular Expressions
and Their Derivatives. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS,
vol. 7183, pp. 179–191. Springer, Heidelberg (2012)

13. Champarnaud, J.M., Ouardi, F., Ziadi, D.: An efficient computation of the equation
K-automaton of a regular K-expression. Fundam. Inform. 90(1-2), 1–16 (2009)

14. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives, and finite
automaton constructions. Theoret. Comput. Sci. 239(1), 137–163 (2002)

15. Conway, J.H.: Regular algebra and finite machines. Chapman and Hall (1971)
16. Frishert, M.: FIRE Works & FIRE Station: A finite automata and regular expres-

sion playground. Ph.D. thesis, Eindhoven University, Netherlands (2005)
17. Ginzburg, A.: A procedure for checking equality of regular expressions. J.

ACM 14(2), 355–362 (1967)
18. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)
19. Kleene, S.: Representation of events in nerve nets and finite automata. Automata

Studies Ann. Math. Studies 34, 3–41 (1956)
20. Krob, D.: Differentation of K-rational expressions. Internat. J. Algebra Com-

put. 2(1), 57–87 (1992)
21. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.

Theor. Comput. Sci. 332(1-3), 141–177 (2005)
22. Owens, S., Reppy, J.H., Turon, A.: Regular-expression derivatives re-examined. J.

Funct. Program. 19(2), 173–190 (2009)
23. Sulzmann, M., Lu, K.: Partial derivative regular expression pattern matching (De-

cember 2007) (manuscript)
24. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of

Formal Languages. Word, Language, Grammar, vol. I, pp. 41–110. Springer, Berlin
(1997)

On Positive TAGED

with a Bounded Number of Constraints

Pierre-Cyrille Héam�, Vincent Hugot��, and Olga Kouchnarenko

FEMTO-ST CNRS 6174, University of Franche-Comté & INRIA/CASSIS, France
{pierre-cyrille.heam,vincent.hugot,olga.kouchnarenko}@inria.fr

Abstract. Tree Automata With Global Equality Constraints (aka. pos-
itive TAGED, or TAGE) are a variety of Bottom-Up Tree Automata, with
added expressive power. While there is interest in using this formalism to
extend existing regular model-checking frameworks – built on vanilla tree
automata – such a project can only be practical if the algorithmic com-
plexity of common decision problems is kept tractable. Unfortunately,
useful TAGE decision problems sport very high complexities: Membership
is NP-complete, Emptiness and Finiteness are both ExpTime-complete,
Universality and Inclusion are undecidable. It is well-known that restrict-
ing the kind of equality constraints can have a dramatic effect on com-
plexity, as evidenced by Rigid Tree Automata. However, the influence of
the number of constraints on complexity has yet to be examined. In this
paper, we focus on three common decision problems: Emptiness, Finite-
ness and Membership, and study their algorithmic complexity under a
bounded number of equality constraints.

1 Introduction

Tree Automata are a pervasive tool of contemporary Computer Science, with ap-
plications running the gamut from XML processing [8] to program verification.
Since their original introduction in the fifties, they have spawned an ever-growing
family of variants, each with its own characteristics of expressiveness and decision
complexity. Notable among them is the sub-family of Tree Automata With Con-
straints, which increases the expressiveness of vanilla tree automata by providing
some means of comparing subtrees. Examples of such devices are are Automata
With Equality and Disequality Constraints [4], Automata with Constraints on
Brothers [2], and Visibly Tree Automata with Memory and Constraints [3]. In
this paper, we focus on one of the latest strains: Tree Automata With Global
Equality Constraints (TAGE) [6,5]. Their increased expressiveness is well paid
for in terms of algorithmic complexity: Membership is NP-complete, Emptiness
and Finiteness are both ExpTime-complete [1], Universality and Inclusion are
undecidable. While those complexities are fairly prohibitive, restrictions on the
constraints can dramatically simplify some problems — for instance Rigid Tree
� This author is supported by the project ANR 2010 BLAN 0202 02 FREC.

�� This author is supported by the French DGA (Direction Générale de l’Armement).

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 329–336, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

330 P.-C. Héam, V. Hugot, and O. Kouchnarenko

Automata (RTA) [9], a more restrictive class of TAGE, enjoy a trivial, linear-time
decision procedure for Emptiness. An application of TAGE of particular interest
is the extension of regular model-checking techniques, where the increased ex-
pressiveness permits a wider range of applications. For such extensions to be
practical, algorithmic complexities must be kept tractable — for instance RTA

achieve that for Emptiness by restricting the kind of equality constraints which
may be taken; in contrast, the present paper studies how bounding the num-
ber of constraints influences the complexity of three common decision problems:
Emptiness and Finiteness (Sec. 3) are shown to be in PTime for one constraint,
and ExpTime-complete for two or more; Membership (Sec. 4) is shown to stay
in PTime, regardless of how high the bound is.

2 Preliminaries

Relations and Intervals. Let R ⊆ Q2 be a binary relation on a set Q; we
denote by R+, R∗ and R≡ its transitive, reflexive-transitive, and equivalence clo-
sure (symmetric-reflexive-transitive), respectively. Unless explicitly stated oth-
erwise, reflexive closures are taken on dom(R) = { x | ∃y : xRy or yRx }, even
if R has been introduced as a relation on the larger set Q. The integer interval
[n, m] ∩ Z is written �n, m�.

Trees. We denote by N∗ the set of words over N; if v, w ∈ N∗, then v.w stands
for the concatenation of the words v and w. A ranked alphabet is a finite set Σ of
symbols, equipped with an arity function arity : Σ → N. The subset of symbols of
Σ with arity n is denoted by Σn, and the notation σ/n is shorthand for “σ, with
arity σ = n”. The set T (Σ) of trees over Σ is defined inductively as the smallest
set such that Σ0 ⊆ T (Σ) and, if n � 1, σ ∈ Σn and u1, . . . , un ∈ T (Σ), then
σ(u1, . . . , un) ∈ T (Σ). If t is a tree, then the set of positions (or nodes) Pos(t) ⊆
N∗ is defined inductively by Pos(t) = {ε} if t ∈ Σ0 and Pos

(
σ(u1, . . . , un)

)
=

{ε} ∪ { k.αk | k ∈ �1, n� , αk ∈ Pos(uk+1) } otherwise, where n is the arity of σ.
We see a tree t as a function t : Pos(t) → Σ which maps a position to the
symbol at that position in t. Positions are equipped with a non-strict (resp.
strict) partial order � (resp.
), such that α � β iff β is a prefix of α (resp.
α � β and α �= β). The subtree of a tree t at position α ∈ Pos(t) is the tree
t|α such that Pos(t|α) = { β | α.β ∈ Pos(t) } and ∀β ∈ Pos(t|α), t|α(β) = t(α.β).
Subterms are ordered by the relations u � v ⇐⇒ ∃α ∈ Pos(v) : v|α = u and
u
 v ⇐⇒ u � v ∧ u �= v. Note that α � β =⇒ t|α � t|β. Two positions α
and β are incomparable, written α � β, if neither α � β nor β � α. The size of
a tree t is denoted by ‖t‖ and defined by ‖t‖ = |Pos(t)|.

Tree Automata. Let Q be a finite set of symbols of arity 0, called states,
such that Q ∩ Σ = ∅. A transition is a rewrite rule σ(q1, . . . , qn) → q, where
q1, . . . , qn, q ∈ Q and σ ∈ Σn. A bottom-up non-deterministic finite tree automa-
ton (tree automaton, or TA for short) over Σ is a tuple A = 〈Σ, Q, F, Δ〉, such that
F ⊆ Q and Δ is a finite set of transitions. A run of A on a term t ∈ T (Σ) is a tree
ρ : Pos(t) → Q such that for all α ∈ Pos(t), t(α)(ρ(α.1), . . . , ρ(α.n)) → ρ(α) ∈ Δ.

TAGED+ with Bounded Constraints 331

A run ρ is a q-run if ρ(ε) = q, and it is called accepting (or successful) if ρ(ε) ∈ F .
A set of trees is called a language. The set of all trees on which there exists a
q-run of A is written Lq(A), and the set of trees on which there exists an accept-
ing run is denoted by L(A) =

⋃
q∈F Lq(A), and called the language recognised

(or accepted) by A.

Tree Automata with Equality Constraints: TAGE. A TAGE, or “positive
TAGED” [6] is a tuple A = 〈Σ, Q, F, Δ,�〉, where 〈Σ, Q, F, Δ〉 is a tree automaton
over Σ and � ⊆ Q2 is a binary relation on Q. The underlying tree automaton
〈Σ, Q, F, Δ〉 is denoted by ta (A). A run of a TAGE A on a tree t is a run of ta (A)
on t satisfying the equality constraints of �, which is to say: for all positions
α, β ∈ Pos(t), if ρ(α)� ρ(β) then t|α = t|β. An accepting run of A is a run of
A which is accepting for ta (A); accepted languages are defined similarly to TA.
The Membership problem for TAGE is NP-complete [6]. Emptiness and Finiteness
are ExpTime-complete, whereas Universality and Inclusion are undecidable [9,
Table 1]. Following the respective definitions of runs, it is straightforward that
for every TAGE A, L(A) ⊆ L(ta (A)). A TAGE A is said to be rigid (i.e. a RTA) if
� ⊆ idQ, i.e. if every constraint is of the form p� p. The standard disjoint union
of two TAGE A and B is a TAGE A � B, such that L(A � B) = L(A) ∪ L(B) [6].
Two TAGE A and B are said to be equivalent if L(A) = L(B).

TAGE-Specific Notations. Throughout this paper, any TAGE X will be assumed
to have attributes of the form 〈X :Σ, X :Q, X :F, X :Δ, X :�〉. In addition, A
will simply be assumed to be 〈Σ, Q, F, Δ,�〉. We write the modification of an
existing TAGE as �X | <modifs>�, where <modifs> is a comma-separated list
of attribute changes. For brevity, within the scope of �X | · · · � any unqualified
attribute x stands for X :x — this takes precedence over the A :x convention.
For instance, �X | � := ∅� is the bare tree automaton associated with X , or
ta (X). Modifications of the form “x := f(x)” will just be written “f(x)”; for
instance �X | Q \ {q} � is X from which the state q has been removed, as with
“Q := Q \ {q}” (or even “X :Q := X :Q \ {q}”). Of course in this example the
modification “F \ {q}” is completely omitted, as it is implied by “Q \ {q}”, given
that by definition X :F ⊆ X :Q. The same goes for the removal of all the rules
of X :Δ and constraints of X : � that used q.

Tree Automata With Bounded Equality Constraints: TAGEk. A TAGEk,
where k ∈ N, is a TAGE whose number of constraints is at most k. In other words,
a TAGEk A is such that Card (�) � k. By extension, we also denote by TAGEk the
set of all automata which are TAGEk. Note that trivially TAGEk ⊆ TAGEk+1 ⊆ TAGE.

3 The Emptiness and Finiteness Problems

Lemma 1 (Incomparable Positions). Let A be a TAGE with the constraint p� q,
and ρ an accepting run of A on a tree t. Assume that both those states are
involved in the run: {p, q} ⊆ ran ρ; then any two distinct positions α, β ∈
ρ−1({p, q}), α �= β, are incomparable: α � β.

332 P.-C. Héam, V. Hugot, and O. Kouchnarenko

Proof. Since α, β ∈ ρ−1({p, q}) and {p, q} ⊆ ran ρ and p� q, we have t|α = t|β
Suppose wlog. that α
 β, then t|α
 t|β; this is absurd since t|β cannot be
structurally equal to one of its own strict subterms. Therefore α � β.

Lemma 2 (Rigidification). For every TAGE1 A, there exists an equivalent RTA B
whose size is at most quadratic in that of A.1

Proof. If A has no constraints, or a rigid constraint (p� p), then B = A. Assume
A has a constraint of the form p� q, with p �= q, and suppose wlog. that p, q /∈ F .
Building Blocks. We let B¬

p = �A | Q\{p} �, B¬
q = �A | Q\{q} �, Bp = �B¬

q |
F := {p} , Δ := Δp� —where Δp is B¬

q :Δ from which all rules where p appears
in the left-hand side have been removed, and Bq, which is defined symmetrically
to Bp. Lastly, Bpq is built to accept the intersection of the languages of Bp and
Bq; using the standard product algorithm, it has a single final state qf = (p, q).
Note that they are all vanilla tree automata. Construction. We let

B = B¬
p � B¬

q � �A | Q′, Δ′, qf � qf�, with

{
Q′ = (Q \ {p, q}) � (Bpq :Q)
Δ′ = Δqf

pq � (Bpq :Δ)
,

where Δqf
pq is A :Δ from which all left-hand side occurrences of p or q have been

replaced by qf. Equivalence. Let t ∈ L(A), accepted through a run ρ; one
of the following is true: (1) neither p nor q appears in ρ (2) p appears, and q
does not (3) q appears, and p does not (4) both p and q appear. In the three
first cases, the constraints are not involved, and t is accepted by: (1) both B¬

p

and B¬
q (2) B¬

q (3) B¬
p . In case (4), a subterm evaluating to p will belong to

Lp(A) by definition, and also to Lq(A) as it needs to be equal to another extant
subterm evaluating to q. Furthermore, p and q can only appear at the root of
each subruns, lest p� q be trivially violated. Therefore, a successful run of B
can be constructed by simply substituting all p and q subruns by qf-runs of Bpq.
Thus t ∈ L(B). Conversely, let t ∈ L(B); it is immediately seen by construction
that L

(
B¬

p

)
⊆ L(A) and L

(
B¬

q

)
⊆ L(A). Suppose that t is accepted through

a run of the third and last part of B (namely �A | · · · �); then every qf-subrun
can be replaced by either a p-run or a q-run of A. The result of this operation
is trivially an accepting run of ta (A); there remains to observe that it satisfies
p� q, because the corresponding subtrees must be equal given the constraint
(qf, qf) ∈ B :�. Thus t ∈ L(A). Size & Time. All building blocks are of size
O(‖A‖), except Bpq, which is of size O(‖A‖2). Globally, the size of B is at
most quadratic in that of A. The construction is also straightforwardly done in
quadratic time.

Proposition 3 (Emptiness). The Emptiness problem is in PTime for TAGE1, and
ExpTime-complete for TAGE2.

Proof. TAGE1. Emptiness is testable in linear time for RTA [9], therefore the empti-
ness of A is testable in quadratic time using the construction of Lemma 2. TAGE2.
1 Note that the general construction for TAGE is exponential [6, Thm. 10].

TAGED+ with Bounded Constraints 333

σ

σ

x1

σ

x2

σ

x3

. . . σ

xn−1

xn

σ

x

σ

x

σ

x

. . . σ

x

x

Fig. 1. Language L

Overview. We reduce the test of the emptiness of the intersection of n tree
automata A1, . . . , An, which is an ExpTime-complete problem, to the empti-
ness of a TAGE2 A. This is similar to the arguments of [5, Thm. 1], the major
difference being that we can only use two constraints instead of an unbounded
number of constraints. The idea is to take advantage of the fact that an explicit
equality constraint between two positions effectively enforces an arbitrary num-
ber of implicit equality constraints on the sub-positions. Assumptions. It is
assumed wlog. that n � 2 and the sets of states of the Ai are pairwise disjoint;
that is to say, ∀i, j ∈ �1, n� , i �= j ⇒ (Ai :Q) ∩ (Aj :Q) = ∅. Furthermore,
it can be assumed that each Ai has exactly one final state qfi. If that is not
the case, then Ai can be modified to be so, which results in its size doubling
in the worst case. Language. We define the language L as the set of trees of
the form given in Figure 1[p333], where σ is a fresh binary symbol and for all i,
xi ∈ L(Ai) and x = xi. Note that this implies that x ∈

⋂
i L(Ai), and therefore

L is empty iff
⋂

i L(Ai) is empty. Automaton. We build a TAGE2 A that accepts
L, by first building a universal tree automaton U , of final state qu. Then, we let
A = 〈Σ, Q, F, Δ,�〉, where

Q = (
⊎

i Ai :Q) � (U :Q) �
{

qu
1 , . . . , qu

n−1, qv
1 , . . . , qv

n−1
}

� {qf}
F = {qf} qu � qu, qu

1 � qv
1 Σ = (

⋃
i Ai :Σ) � {σ/2}

Δ = { σ(qu
1 , qv

1) → qf } ∪ (
⋃

i Ai :Δ) ∪ (U :Δ) ∪{
σ(qu, qu

k+1) → qu
k

∣∣ k ∈ �1, n − 2�
}

∪
{

σ(qu, qu) → qu
n−1

}
∪{

σ(qfk, qv
k+1) → qv

k

∣∣ k ∈ �1, n − 2�
}

∪
{

σ(qfn−1, qfn) → qv
n−1

}
.

Note that we have L(A) = L and ‖A‖ = O (
∑n

k=1 ‖Ai‖), which concludes the
proof.

Proposition 4 (Finiteness). The Finiteness problem is in PTime for TAGE1, and
ExpTime-complete for TAGE2.

Proof. TAGE1. Finiteness is testable in linear time for RTA [9], therefore the
finiteness of A is testable in quadratic time using the construction of Lemma 2.

334 P.-C. Héam, V. Hugot, and O. Kouchnarenko

TAGE2. We reduce the Emptiness problem for TAGE2 to the Finiteness problem.
Given a TAGE2 A, we build

A′ = � A | Q � {p} , F := {p} , Σ � {σ/1} , Δ′�
where Δ′ = Δ ∪ { σ(qf) → p | qf ∈ F } ∪ { σ(p) → p } .

A′ is also a TAGE2. If A accepts the empty language, then so does A′. Conversely,
if t ∈ L(A), then σ∗(t) ⊆ L(A′), and thus L(A′) is infinite. Consequently, the
language of A′ is finite iff that of A is empty. This, combined with Prp. 3[p332],
shows that TAGE2-Finiteness is ExpTime-hard; since the general problem for
TAGE is ExpTime [6, Thm. 14], TAGE2-Finiteness is ExpTime-complete.

4 The Membership Problem

Let us begin with some general observations and notations. We will need to
reason about the relation �; unfortunately, it is not an equivalence relation. For
instance, given the constraints p� r and r � q it is tempting, but in general
wrong, to infer p� q by transitivity. The crux of the matter here is whether the
state r actually appears in the run: if it does, p� q is effectively implied, but if it
does not, then both constraints p� r and r � q are moot. Lemma 5 shows that,
given the knowledge (or the assumption) of a set P ⊆ dom� of the constrained
states which are actually present in runs, the constraints of � are interchangeable
with an equivalence relation, which we call the togetherness relation.

Lemma 5 (Togetherness). Let A be a TAGE and P ⊆ dom�. Then any run ρ
such that (ran ρ) ∩ (dom�) = P is accepting for A if and only if it is so for
AP = �A | � :=

(
�∩P 2)≡

�, where the closure is meant under dom(�∩P 2).

Given a P , we denote by �P =
(
�∩P 2)≡ this equivalence relation, and say that

“p and q are together wrt. P ” if p �P q. Its equivalence classes are denoted by
GP = dom(�∩P 2)/�P , and called groups. If t is a tree, we write ∼ for the similarity
relation on t, defined on Pos(t)2 such that α ∼ β ⇐⇒ t|α = t|β. We denote by
St the quotient set Pos(t)/∼ of the similarity classes of t.

Lemma 6 (Housing Groups). Let A be a TAGE, P ⊆ dom� and ρ a run of A on
a tree t, such that (ran ρ) ∩ (dom�) = P . Then ρ satisfies the constraints of �
if and only if ∀G ∈ GP , ∃CG ∈ St : ρ−1(G) ⊆ CG.

Given the hypothesis of P and given a successful run ρ on t, we call the map
G �→ CG a P -housing of ρ in t, which is said to be compatible with ρ, and we
denote by Ht

P = GP → St the set of all possible P -housings on t.

Proposition 7 (Membership). Given an arbitrary but fixed n ∈ N, the Member-
ship problem for TAGEn is in PTime — albeit with an overhead exponential in n.

TAGED+ with Bounded Constraints 335

Proof. Let A be a TAGEn, and t a tree. The Housing Lemma (6[p334]) has already
established that a run ρ of A on t satisfies � iff there exists a housing h ∈ Ht

P

which is compatible with ρ, where P = (dom�)∩(ran ρ) is the set of constrained
states which actually appear in the run. Our strategy to check the membership of
t will simply be to try each possible P ⊆ dom� successively, by attempting, for
each possible housing h ∈ Ht

P , to craft an accepting run ρ of ta (A) compatible
with h. There are at most 22n possible P , and given a choice of P , there are
|St||GP | � ‖t‖2n

P -housings on t, which gives at most 4n · ‖t‖2n tests in total.
Note that since n is a constant, this remains polynomial. There only remains to
show that given a choice of P and h ∈ Ht

P , the existence of a compatible run
can be tested in polynomial time. To do so, we use a variant of the standard
reachability algorithm, where only the states of P may appear, and the states
of a given group G ∈ GP may only appear at the positions assigned to them by
the chosen housing h. Formally, given a choice of P and a housing h ∈ Ht

P , there
exists such a run iff ΦP,h

t (ε) ∩ F �= ∅, where

ΦP,h
t (α) =

⎧⎪⎪⎨
⎪⎪⎩ q ∈ Q

∣∣∣∣∣∣∣∣
t(α)(p1, . . . , pn) → q ∈ Δ

∀i ∈ �1, n� , pi ∈ ΦP,h
t (α.i)

q ∈
⋃
GP =⇒ α ∈ h ([q]�P)

q /∈ dom(�) \ P

⎫⎪⎪⎬
⎪⎪⎭ .

The reader will notice that, were the last two conditions removed, ΦP,h
t (α) would

simply be the set of reachable states at position α. The additional two constraints
are O(1) operations, thus ΦP,h

t (·) does run in polynomial time; there only remains
to show that our algorithm does what is expected of it. There are two points to
this: (1) no false negative: every successful run is subsumed by some ΦP,h

t (·) (2)
no false positive: every run subsumed by some ΦP,h

t (·) is accepting.
(1) Let ρ a successful run for A, and P = (ran ρ) ∩ (dom�); then by the

Housing Lemma, it satisfies �P , and there exists a housing h ∈ Ht
P with which

it is compatible. We propose that ρ is subsumed by ΦP,h
t (·), which is to say

that for each position α ∈ Pos(t), we must have ρ(α) ∈ ΦP,h
t (α). Indeed, let

α any position, and q = ρ(α); we check that q satisfies all four conditions for
belonging to ΦP,h

t (α). The first condition is trivially satisfied since ρ is a run.
The second one will be the hypothesis of our recursion which, quite conveniently,
evaluates to true vacuously if α is a leaf. The third condition is taken care of
by the Housing Lemma: suppose q ∈

⋃
GP ; then there is a group G ∈ GP

such that q ∈ G (in fact G = [q]�P), and ρ−1(G) ⊆ h(G). Thus we have the
chain α ∈ ρ−1({q}) ⊆ ρ−1(G) ⊆ h(G), and in particular α ∈ h([q]�P). The
fourth and last condition is trivial given our choice of P : Assume its negation
q ∈ dom(�) \ P , then you have q /∈ ran ρ, which is absurd.

(2) Let ρ be a run subsumed by ΦP,h
t (·), for some P and h. By the fourth

condition, (ran ρ) ∩ (dom(�) \ P) = ∅, and thus (ran ρ) ∩ (dom�) ⊆ P . Let

336 P.-C. Héam, V. Hugot, and O. Kouchnarenko

α ∈ Pos(t); by the third condition, if ρ(α) ∈ G ∈ GP , then α ∈ h(G); in other
words, ρ−1(G) ⊆ h(G), thus by the Housing Lemma2, ρ is successful.

5 Conclusions

In the case of Emptiness and Finiteness we have shown that, perhaps somewhat
counter-intuitively, while the limitation to a single equality constraint does lead
to tremendously easier complexities (from ExpTime-hardness to quadratic deci-
sion procedures), the addition of a second constraint suffices to reintroduce the
full complexity of the general, unbounded problem.
This stands in contrast to the behaviour of the Membership problem which, while
NP-complete in general, becomes polynomial once the number of constraints is
bounded by a constant, regardless of the size of that constant — though admit-
tedly “polynomial” is in that case quite unlikely to mean “efficient” for anything
but the smallest constants. Nevertheless, this suggests a potentially more scal-
able alternative to the existing SAT encoding approach [7].

Acknowledgements. Our thanks go to the reviewers, especially for the sug-
gestion of a simpler approach to the TAGE1 parts of Propositions 3 and 4.

References
1. Barguñó, L., Creus, C., Godoy, G., Jacquemard, F., Vacher, C.: The emptiness

problem for tree automata with global constraints. In: LICS, pp. 263–272. IEEE
Computer Society (2010)

2. Bogaert, B., Tison, S.: Equality and Disequality Constraints on Direct Subterms in
Tree Automata. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp.
161–171. Springer, Heidelberg (1992)

3. Comon-Lundh, H., Jacquemard, F., Perrin, N.: Visibly tree automata with memory
and constraints. CoRR abs/0804.3065 (2008)

4. Dauchet, M., Mongy, J.: Transformations de noyaux reconnaissables d’arbres, Forêts
RATEG. Ph.D. thesis, LIFL (France) (1981)

5. Filiot, E., Talbot, J.-M., Tison, S.: Tree Automata with Global Constraints. In:
Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 314–326. Springer,
Heidelberg (2008)

6. Filiot, E., Talbot, J.-M., Tison, S.: Tree automata with global constraints. Int. J.
Found. Comput. Sci. 21(4), 571–596 (2010)

7. Héam, P.-C., Hugot, V., Kouchnarenko, O.: SAT solvers for queries over tree au-
tomata with constraints. In: ICST (CSTVA ws.), pp. 343–348. IEEE (2010)

8. Hosoya, H.: Foundations of XML Processing: The Tree-Automata Approach. Cam-
bridge University Press (2010), http://books.google.fr/books?id=xGlH3ADxwn4C

9. Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata and applications. Inf.
Comput. 209(3), 486–512 (2011)

2 The watchful reader will notice that we are slightly cheating here, because
Lem. 6[p334] as written requires (ran ρ) ∩ (dom�) = P . The inclusion is enough
for the “if” part, as shown by the relevant halves of the proofs of Lem. 6[p334] and
Lem. 5[p334]. Alternatively, one could replace P and h by adequate P ′ ⊆ P and
h′ ∈ H

t
P ′ such that we have equality and preserve subsumption. Either way this is

an easy technicality with no bearing on any other part of this paper.

http://books.google.fr/books?id=xGlH3ADxwn4C

SDFA: Series DFA for Memory-Efficient Regular

Expression Matching�

Tingwen Liu1,2, Yong Sun1,3, Li Guo1,3, and Binxing Fang3

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2 Graduate University of Chinese Academy of Sciences, Beijing, China

3 National Engineering Laboratory for Information Security Technologies, Beijing
{liutingwen,suny}@software.ict.ac.cn

Abstract. Regular expression (RegEx) matching plays an important
role in various network, security and database applications. Deterministic
finite automata (DFA) is the preferred representation to achieve online
RegEx matching in backbone networks, because of its one single pass
over inputs for multiple RegExes and guaranteed performance of O(1)
memory bandwidth per symbol. However, DFA may occupy prohibitive
amounts of memory due to the explosive growth in its state size. In this
work, we propose Series DFA (SDFA) to address the problem. The main
idea is to cut a complex RegEx into several ordered and small RegExes
carefully, and then concatenate their compact DFAs in series to match.
Experimental results show that SDFA can achieve significant reduction
in memory size at the cost of limited number of memory bandwidth.

1 Introduction

Deep Packet Inspection (DPI), which searches for predefined signatures over the
content of packet payloads, is considered as a powerful and important method
in network and security applications. Recently regular expressions (RegExes)
are replacing exact strings as the de facto standard to specify signatures in
most open-source tools [9, 6] and commercial devices. The primary reason is
the expressive power, simplicity and flexibility of RegExes. Deterministic Finite
Automata (DFA) is an ideal representation for high-speed RegEx matching,
because multiple RegExes can be compiled into a composite DFA that performs
matching over inputs in a single pass with a guaranteed robust performance of
O(1) memory bandwidth per byte. However, the composite DFA constructed
for real-world RegEx sets may experience state explosion, as a result it usually
consumes prohibitive amounts of memory.

In this paper, we focus on state reduction by cutting complex RegExes into
well-designed and ordered RegEx fragments that can be compiled into com-
pact DFAs. To match equivalently as uncutted RegExes, we propose Series DFA

� Supported by the National High-Tech Research and Development Plan of China
under Grant No. 2011AA010703; the National Natural Science Foundation of China
under Grant No. 61070026 and No. 61003295.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 337–344, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

338 T. Liu et al.

(SDFA) that concatenates the compact DFAs with epsilon transitions in the
order of their appearance. We further introduce some optimizations to improve
the memory consumption and memory bandwidth of SDFA. Different from prior
work [1], SDFA works over RegExes directly to achieve the reduction of states,
which makes it being constructed easily and quickly even for large-scale RegEx
sets. We perform a systematic experimental study on real RegEx sets and our
synthetic RegEx set. The results show that SDFA achieves significant memory
reduction, and shows almost the same matching speed comparing with the com-
posite DFA.

2 Related Work

With the widespread use of RegExes in various applications, research interests
focus on designing data structures, algorithms and architectures to support fast
and memory-efficient RegEx matching. In this context, how to reduce the huge
memory consumption is the hotspot of related researches for those matching
solutions based on DFAs. In general, prior work can be classified into three
categories: DFA compression, partial determinization and history auxiliary.

DFA compression solutions try to achieve memory reduction by compressing
the transition table for a given DFA [5, 3, 8, 7]. They are based on the observation
of many common values in the table. However, the memory usage, which have
been reduced by 95% after compressing, are still very huge as the composite
DFA for real RegEx sets usually costs multiple terabytes. These solutions are
orthogonal to our work and can be used to compress the compact DFAs in SDFA.

Partial determinization solutions address the problem by constructing hybrid
automata [1] or multiple parallel DFAs [13, 10] at the cost of determinacy by
allowing multiple states active during the matching process. Our work improves
upon these solutions because our DFAs constructed for the cutting RegEx frag-
ments are compact enough, and are activated when necessary.

History auxiliary solutions introduce counters, queues and other data struc-
tures as auxiliary memory to avoid duplication of states by recording matching
history [4, 11]. However, the benefit of state reduction does not come for free.
They either experience an exponential growth in the size of auxiliary memory,
or require much time to update auxiliary memory after processing each symbol.

3 Technical Overview of Series DFA

3.1 State Complexity for RegExes

An analysis of state complexity for DFA of individual RegEx that does not have
OR relationship (|) is represented in [13]. Here we consider RegExes in the
combination of ^, one unconstrained repetition * and one constrained repetition
(three types: fixed repetition {j}, range repetition {j,i} and at-least repetition
{j,}) of wildcards, and the detail is shown in Table 1.

SDFA: Series DFA for Memory-Efficient Regular Expression Matching 339

Table 1. State complexity for individual RegEx with k characters

RegEx Feature Example State Complexity

without constrained repetitions of wildcards ^abcd, abcd O(k)
^ab.*cd, ab.*cd

with ^, one fixed or one at-least repetition ^ab.{j}cd O(k + j)
^ab.{j,}cd

with ^ and one range repetition ^ab.{j,i}cd O(k(i− j))

with only one fixed or one at-least repetition ab.{j}cd O(k + 2j)
ab.{j,}cd

with only one range repetition ab.{j,i}cd O(k(i− j) + 2i)

From the table, we can find that unconstrained repetitions do not cause state
explosion when individual RegEx is compiled into a DFA in isolation (case 1).
Constrained repetitions of wildcards lead to exponential growth in DFA state size
for individual RegEx not starting with ^ (case 4 and case 5). Because the DFA
needs to record the prefix part within each wildcard. The situation becomes
even worse when multiple RegExes with constrained repetitions are compiled
together into a composite DFA. Because there are more combinations of prefixes
and more wildcards in these RegExes.

By comparison, RegExes of the former three cases do not result in a large
DFA. Therefore, if we cut RegExes of the latter two cases into multiple RegEx
fragments of the former three cases, we can construct a compact DFA for each
fragment. In this paper, we investigate its feasibility to reduce DFA state size.

3.2 Main Idea of SDFA

In order to facilitate description, we call a RegEx as its fragments’ father, each
fragment as its son. For a given RegEx, the first (last) fragment is called its
eldestson (youngestson), correspondingly other fragments are non-eldestsons
(non-youngestsons). To match multiple RegExes together in a single pass, all
the eldestsons are compiled into a composite DFA, and each non-eldestson is
compiled into an individual DFA. SDFA organizes all the DFAs in series and
perform matching in the follow way: at the beginning only the initial state of
the composite DFA is active, all the individual DFAs are sleep; SDFA will add a
new instance of the initial state of one individual DFA when its preceding DFA
matches successfully, and delete an instance when it moves to the dead-state.

We use an example of two RegExes ba[^a]*bad.{2}cd and de[^e]{3} to
show how SDFA works in detail. It first locates all unconstrained and con-
strained repetitions in the two RegExes, and then cut them into five fragments:
ba, ^[^a]*bad, ^.{2}cd, de, ^[^e]{3} at these positions. Note that all the non-
eldestsons begin with ∧, because a fragment begins to match from position j+1
of input string only when its preceding fragment matches successfully at position
j. Fragments ba and de, which are the eldestsons of the two RegExes, are com-
piled into a composite DFA. Now we describe how to construct a SDFA with the

340 T. Liu et al.

DFA accepting ^[^a]*bad

DFA accepting ^[^e]{3}

DFA accepting ^.{2}cd
DFA accepting ba and de

b

0 1

2

3
4

d

e
d

d

b

a
b

d

b

d

5

Ø

6 7 8
b

a
d

a

b

.
[^d]

b

9 Ø

10

11
13

.

.

c

[^d]

.[^c]

12 d14 Ø

15 16

17

[^e]
[^e]

.e

e
[^e]

e

Fig. 1. SDFA accepting ba[^a]*bad.{2}cd and de[^e]{3}. For each DFA, the state in
green (red) is its initial (accepting) state. Transitions to the initial states are omitted.

0

b

1

a

2

5

d

3

5

e

4

5
14

b

1

6
15

a

2

7
16

b

1

17

a

2

5

b

1

6

a

2

7

d

3

8
9

e

4

10
14

e

0

11

c

0

12

d

3

13

activate 5 from 2
by transition

matching matchingactivate 5 from 2
by transition

activate 9 from 8
by transition

activate 14 from
4 by transition

activate 14 from
4 by transition

Active
State
Set

Fig. 2. SDFA traversal with input badebababadeecd

four DFAs, as shown in Fig. 1. The initial state of the composite DFA (state 0)
is the initial state of the SDFA, and the accepting states of DFAs constructed for
the youngestsons (state 13 and 17) are the accepting state of the SDFA. For the
accepting states of the other DFAs, adding an epsilon (ε) transition that does
not consume any symbol to the initial state of the DFA constructed for its fol-
lowing brother. As shown in Fig. 1, the SDFA accepting ba[^a]*bad.{2}cd and
de[^e]{3} has 21 states, while the state-minimized DFA has 58 states (omitted
here for readability).

In Fig. 2, we show the matching process of the SDFA in Fig. 1 over input
string badebababadeecd. For example, fragment de is matched two times at
the fourth and the twelfth symbol, and then SDFA activates state 14 along
an epsilon transition. The first activation reports a successful match of ba[^a]
*bad.{2}cd after processing the seventh symbol, while the second de-activates
immediately because state 14 moves to the dead-state along the next symbol e.

4 Optimization for Series DFA

Essentially SDFA trades memory size (size of states) with memory bandwidth
(size of active state set). In this section, we propose some techniques to optimize
the two metrics by improving the cutting process and matching process of SDFA.

4.1 Optimization in Cutting Process

Determining the cutting positions is the main challenge for the construction of
good SDFA. Cutting at the repetitions of any character range will have low

SDFA: Series DFA for Memory-Efficient Regular Expression Matching 341

memory size but high memory bandwidth as each fragment is too short. In con-
trast, cutting only at the repetitions of wildcards will have low memory band-
width but high memory bandwidth. Here we give a simple but striking way to
finish the determination quantitatively. We define the number of characters al-
lowed in a character range as its size. Then we introduce a threshold μ: if the size
of a character range is more than μ, we think the range is large enough to be cut
at the positions of its repetitions. When μ is set to 256, the SDFA is essentially a
composite DFA for the complete RegEx set because no RegEx is cut.

Furthermore, to obtain good SDFA, the cutting process should comply with
the following three rules. In fact, we can also consider these rules trying to
combine several adjacent fragments into one.

Rule 1: No constrained repetitions or unconstrained repetitions in any eldest-
son. Because repetitions of large character ranges need to duplicate states to
record all possible prefixes when multiple RegExes are compiled together as
mentioned before. Therefore the composite DFA constructed for eldestsons that
violate this rule will experience state explosion.

Rule 2: No constrained repetitions after unconstrained repetitions in each frag-
ment. Obviously eldestsons that satisfy rule 1 also follow this rule. For each non-
eldestson, if it violates this rule, it may belong to case 4 or case 5 in Table 1,
and cause exponential growth of state size in the worst case.

Rule 3: No constrained repetitions or unconstrained repetitions after range
repetitions in each fragment. All the eldestsons also follow this rule just as de-
scribed above. Any non-eldestson failing to comply with this rule falls into case
3 in Table 1, whose complexity is product.

These rules allow non-eldestsons to have more than one unconstrained rep-
etitions. One vivid example is RegEx Cookie\s+Monster\s+server\s+engine

in Snort system. It can be cut into fragments Cookie and ^s+\s+Monster\s+

server\s+engine if set μ no less than the size of \s.
The point that need to be made is that these rules are sufficient conditions but

not necessary conditions to combine adjacent fragments. An example is RegEx
ba[^a]*bad.{2}cd in Fig. 1. The fragment ^[^a]*bad.{2}cd obviously violate
Rule 2, however its DFA does not experience exponential growth in state size.
Because the occurrence of a makes ^[^a]* fails to consume bad, as a result the
DFA needn’t to take into consideration that bad may appear in the constrained
repetition .{2}. Snort and other intrusion detection systems have many RegExes
of this type, for example \/OvCgi\/[^\.]*\.exe[^\x20]{2000,}.

4.2 Optimization in Matching Process

Most DPI applications such as Snort and L7-Filter are only interested in knowing
the set of patterns to be fired by a packet. We call this type of matching as left-
most matching, which is formally defined as below.

Left-Most Matching: Consider the matching process M as a function from a
pattern P and a string S to a power set of S, such that, M(P, S) ={substring
S′ of S|S′ is the left-most substring which is accepted by the DFA of P}.

342 T. Liu et al.

Table 2. Primary information of experimental RegEx sets (μ = 1)

RegEx # of % of * % of {} min-length # of # of
set RegExes repetitions repetitions range NFA states 7-DFA states

l7filter 107 46.7 21.5 1–76 3325 29047
backdoor 158 36.1 1.3 2–77 3580 6164
synset 300 59 18.7 11-225 19751 > 106

This specialty can be exploited to decrease memory bandwidth. As left-most
matching is enough to know the fired RegExes, once a RegEx is reported it is
safe to set its all non-eldestson DFAs inactive forever. To our knowledge, SDFA
is the first automata that uses left-most matching to improve matching process.
Because all kinds of previous methods must go through the step of constructing
a sort of composite finite automata for the complete RegEx set. When a RegEx
is matched, they cannot guarantee that the states that have been traversed by
the RegEx will not be accessed by other RegExes. On the contrary, SDFA is able
to ensure that the fragment DFAs of one RegEx will never be accessed by other
RegExes. For the same reason, the composite DFA in SDFA needs to have an
always active instance.

5 Experimental Results

We design three representative RegEx sets, as shown in Table 2. Column 3 (4)
is the percent of RegExes containing constrained (unconstrained) repetitions of
character ranges in each set. The first RegEx set is extracted from L7-Filter [6]
system, and the second set is from backdoor rule file in Snort [9] system. The
third RegEx set is generated by open-source RegEx generator [2]. As shown in
column 7, the three RegEx sets can be compiled into 7 DFAs of 29047, 6164 and
more than 106 states respectively with multiple parallel DFAs [13].

We make experiments using two real traffic traces from different links: one
trace named download is downloaded from [12], the size is 254 MB; the other
trace named capture is captured in the interface of a backbone network, the size
is 1,538 MB. We also generate some synthetic traces of 50 MB with open-source
trace generator [2] under pm = {0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9}. Value pm is used
to model the likelihood of experiencing malicious traffic.

5.1 Evaluation of Memory Consumption

In this section, we use the size of DFA states to evaluate memory consumption
of SDFA for the three RegEx sets. Table 3 shows the summary of state size for
different values of μ. We can draw the following conclusions from Table 3.

First, DFA-based solutions are infeasible to perform matching for large RegEx
sets containing constrained repetitions and unconstrained repetitions. As men-
tioned before, SDFA is in fact a composite DFA when μ is 256. However, the
state size is more than 107 (inf) in this case for all experimental RegEx sets.

SDFA: Series DFA for Memory-Efficient Regular Expression Matching 343

Table 3. State size of SDFA on varying μ

value state size of composite DFA / state sums of individual DFAs / # of DFAs
of μ l7filter backdoor synset

1 5689 / 3293 / 103 2034 / 3009/144 9507 / 20322 / 321
64 6438 / 3246 / 93 45072 / 1451/58 inf / inf / 173
128 inf / 2618 / 56 45072 / 1451/58 inf / inf / 173
256 inf / 0 / 1 inf / 0 / 1 inf / 0 / 1

Second, the number of DFAs decreases as the increase of μ while the state
size of the composite DFA grows with μ. The primary reason is that high μ
makes some character ranges become small, and SDFA does not cut RegExes at
the occurrence of unconstrained repetitions and constrained repetitions of small
character ranges. As a result, the eldestsons have more symbols especially more
repetitions, which lead to the rapid increase in the state size of the composite
DFA. However, the sum of states in individual DFAs appears complexly. The
primary reason is that constrained repetitions may appear in the middle of non-
eldestsons for large μ, which results in exponential growth in state size even for
an individual DFA.

Third, SDFA can greatly reduce memory consumption. When μ is 1, the
three SDFAs have 8982, 5043 and 29379 states respectively in all, which can
be encoded in on-chip memory directly even without compression. The result is
closed to that of NFA, and better than that of multiple parallel DFAs (7-DFA).

5.2 Evaluation of Matching Performance

In this section, we evaluate matching performance of SDFA, which is measured
by the size of active state sets. We construct a SDFA for each given RegEx set
with μ = 1, and observe its active set size on real traces and synthetic traces in
average case and maximum case. In fact, both the average size and the maximum
size of active sets increase with μ. When μ = 1, SDFA has the worst average size
and maximum size, because it cuts RegExes at the occurrence of repetitions of
any character range, as a result fragments are matched frequently.

The result of backdoor set on its synthetic traces is shown in Fig. 3. As l7filter
and synset have the similar behavior, we omit them here due to page limitation.
We can find that: First, left-most matching can really improve the matching
performance of SDFA, especially in average size. Second, the average size grows
slowly with the increase of pm, while the change of maximum size is uncertain.

Fig. 4 shows the results of active set size on real traffic traces for each RegEx
set. Each connection carries an application protocol, so almost every packets can
be matched by RegExes in l7filter set. As a result, we can regard the behavior
of l7filter set as the performance of SDFA under an attack. From Fig. 4 we can
find that SDFA works well under attacks, although the maximum size is a little
big. The average active set size of SDFA is very close to that of a composite
DFA. As each RegEx set can be constructed into 7 DFAs, its average size and

344 T. Liu et al.

0 0.15 0.3 0.45 0.6 0.75 0.9
0
2
4
6
8

10
12
14
16
18
20

S
iz

e
of

 A
ct

iv
e

S
ta

te
 S

et

Value of pm

avg

max

opt−avg

opt−max

Fig. 3. Size of active state sets for back-
door set on its synthetic traces

l7filter synset backdoor
0

4

8

12

16

20

S
iz

e
of

 a
ct

iv
e

st
at

e
se

t opt−avg+download
opt−max+download
opt−avg+capture
opt−max+capture

Fig. 4. Size of active state sets for three
experimental RegEx sets on real traces

maximum size are both 7. Obviously SDFA is suitable to perform large-scale
RegEx matching in different high-speed network environments.

References

1. Becchi, M., Crowley, P.: A Hybrid Finite Automaton for Practical Deep Packet
Inspection. In: Proc. ACM CoNEXT Conference, pp. 1–12 (2007)

2. Becchi, M.: Regular Expression Processor, http://regex.wustl.edu/
3. Ficara, D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G., Di Pietro, A.: An

Improved DFA for Fast Regular Expression Matching. ACM SIGCOMM Computer
Communication Review 38(5), 29–40 (2008)

4. Kumar, S., Chandrasekaran, B., Turner, J., Varghese, G.: Curing Regular Ex-
pressions Matching Algorithms from Insomnia, Amnesia, and Acalculia. In: Proc.
ACM/IEEE ANCS, pp. 155–164 (2007)

5. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to Ac-
celerate Multiple Regular Expressions Matching for Deep Packet Inspection. In:
Proc. ACM SIGCOMM, pp. 339–350 (2006)

6. Levandoski, J., Sommer, E., Strait, M.: Application Layer Packet Classifier for
Linux, http://l7-filter.sourceforge.net/

7. Liu, T., Yang, Y., Liu, Y., Sun, Y., Guo, L.: An Efficient Regular Expressions
Compression Algorithm From A New Perspective. In: Proc. IEEE INFOCOM,
pp. 2129–2137 (2011)

8. Liu, Y., Guo, L., Liu, P., Tan, J.: Compressing Regular Expressions’ DFA Table by
Matrix Decomposition. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS,
vol. 6482, pp. 282–289. Springer, Heidelberg (2011)

9. Roesch, M.: Snort - Lightweight Intrusion Detection for Networks. In: Proc.
USENIX LISA, pp. 229–238 (1999)

10. Rohrer, J., Atasu, K., van Lunteren, J., Hagleitner, C.: Memory-Efficient Distribu-
tion of Regular Expressions for Fast Deep Packet Inspection. In: Proc. IEEE/ACM
CODES+ISSS, pp. 147–154 (2009)

11. Smith, R., Estan, C., Jha, S.: XFA: Faster Signature Matching with Extended
Automata. In: Proc. IEEE S&P, pp. 187–201 (2008)

12. The Shmoo Group: Internet Traffic Traces, http://cctf.shmoo.com/
13. Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and Memory-Efficient

Regular Expression Matching for Deep Packet Inspection. In: Proc. ACM/IEEE
ANCS, pp. 93–102 (2006)

The Removal of Weighted ε-Transitions�

Sylvain Lombardy1 and Jacques Sakarovitch2

1 LIGM, Université Paris-Est Marne-la-Vallée
2 LTCI, CNRS / Telecom ParisTech

Abstract. The removal of ε-transitions in weighted automata leads to
infinite summation when cycles of such transitions are allowed. This pa-
per presents both an algorithm for that purpose, and a framework in
which the algorithm is correct.

Introduction

This work addresses the problems raised by the writing of an algorithm for the
removal of the ε-transitions in automata with weights in Q or R. The solution
consists in both an algorithm and the setting of a consistent and sensible frame-
work in which the algorithm can be used.

Such an algorithm for Boolean automata belongs to basic automata theory
and amounts to the computation of the transitive closure of the graph of ε-
transitions, more or less intertwined with the construction of the resulting proper
automaton itself. The same algorithm for weighted automata also corresponds to
a transitive closure computation but is far more complex. Above all, the closure
may not exist: if the automaton contains a cycle of ε-transitions then the sum
of the weights along the paths following this cycle may well be not defined, as
in Q1 in Fig.1. For that reason, mathematically oriented works on automata,
such as [1] or [3], have ruled out the possibility of having cycles of ε-transitions
in automata, either explicitly with the hypothesis of cycle-free automata, or im-
plicitly by considering the discrete topology on the weight semiring. As a result,
Q2 in Fig.1 is considered in the quoted works as an incorrect object. Neverthe-
less Probabilistic automata, with weights in Q or R (equipped with the natural
topology), or distance automata, with weights in Zmin, are computational mod-
els that one should be apt to deal with.

a |1ε |1
Q1 a |1ε | 1

2Q2

Fig. 1. A non-valid automaton Q1, and Q2 that should be considered valid

Given a K-automaton A, the first question is then:
Q1.— How to compute a proper automaton equivalent to A?
� Work Supported by ANR Project 10-INTB-0203 VAUCANSON 2.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 345–352, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

346 S. Lombardy and J. Sakarovitch

A possible answer consists in a generalisation of the algorithm in the Boolean
case, that takes the weights into account. Fig.2 shows a Q-automaton with ε-
transitions and an equivalent proper Q-automaton. The generalisation raises
correctness and termination issues, far less trivial than in the Boolean case.
But above all, computations involved in the algorithm may lead to undefined
summations. When this occurs, the behaviour of the automaton is not defined,
and the automaton is said to be non-valid. Of course, we want the validity of an
automaton be a property defined intrinsically and not depending upon a certain
algorithm, nor upon a certain execution of an algorithm. A question that comes
thus even before Q1 is:
Q0.— When is a K-automaton A a valid K-automaton?
This paper puts forward a new definition of valid weighted automata, that allows
to give a consistent answer to both Q0 and Q1. This definition is a strengthening
of the one proposed in [7,8]. Both definitions coincide for all usual weight struc-
tures. They give rise to a consistent theory and allow for instance to speak of
the behaviour of Q2 in Fig.1 or to state that Q3 in Fig.2 is valid and equivalent
to Q4. It turns out that the older definition is not accurate enough to analyse
the situations that occur in the computation of the behaviour of automata with
weights in an arbitrary semiring. The new definition, presented at Sect.1, does
not change the one of behaviour of automata, leaving thus unchanged all other
results of the theory (Kleene–Schützenberger’s theorem, etc.).

a |1

b |1

ε | 1
2

ε |−1

2Q3
a | 2

3

b | 2
3

b | 1
3 a | −2

3

2
3

4
3

Q4

Fig. 2. A transformation which needs theoretical foundation

The ε-transition removal algorithm, described at Sect.2, is then guaranteed to
work properly on a valid automaton. As the algorithm implies block summations,
it may happens that it successfully terminates on non-valid automata such as
those shown at Fig.3.

ε |1
ε |1

ε |1 ε |−1

Q5
ε |1

ε |1

ε |− 1
2 ε |− 1

2Q6

Fig. 3. Two non-valid Q-automata on which the closure algorithm succeeds

Which raises the next question:
Q2.— Is it decidable whether a given K-automaton A is valid or not?
At Sect.3, a positive answer to Q2 is given when K is what we call a star
congruous topological ordered positive semiring. In a second step, the cases of R

The Removal of Weighted ε-Transitions 347

and Q (which were our primary aim) are settled by considering automata in
which every weight is replaced by its absolute value, bringing back to the former
case.

In conclusion, this paper fills the effectively gap that was left open by our
definition of valid automata in [7,8]. The algorithms described in the paper have
been implemented in Vaucanson [9].

Due to severe space constraints, classical definitions and notation are under-
stood and to be found in [7], proofs are omitted and the resulting paper is rather
an extended abstract. A complete version of the paper is accessible in the ArXiV
repository [4].

1 Valid Weighted Automata

Topological Semirings. We deal with weight semirings such as B, N, Z, Q or R,
and also the ‘tropical’ semiring Zmin = 〈Z ∪ +∞, min, + 〉 or Rat A∗. But the
semiring structure is weak and the general definitions have to take all cases into
account (cf. Exm. 1).

We consider topological semirings (TS) in order to define the star as an infinite
sum. The discrete topology makes any semiring a TS, and it is the natural one
on B, Z, Zmin. On Q or R, the natural topology is induced by the Euclidean
distance, on Rat A∗, by the inclusion order, and on N = N ∪ +∞, it is the one
for which every strictly increasing sequence converges to +∞; we denote by N∞
the same semiring equipped with the discrete topology, in which the stationary
sequences only converge.

An element k in K is starable if the family {kn}n∈N is summable (cf. [7]) and
its sum k∗ is the ‘star of k’. A k in Q is starable if, and only if, it is smaller
than 1. In Zmin, only the non negative integers and +∞ are starable. In N ,
every element is starable, whereas in N∞ only 0 and +∞ are starable. A TS K
is starable (resp. non-starable) if so is every element of K (resp. if no element
different from 0K is starable): B, N , or Rat A∗ are starable semirings, N, Z, are
non-starable semirings. The semirings N∞, Q, or S below, are neither starable
nor non-starable semirings.

Example 1. Let S be the semiring of 2 × 2-matrices of non negative integers,
generated by 0S =

(
0 0
0 0

)
, x =

(
1 0
0 1

)
= 1S, and y =

(
0 1
1 0

)
, and quotiented by

x + y = ∞S = ∞S + x = ∞S + y. In S equipped with the discrete topology, 0S,
∞S and y are starable, whereas x = y2 is not.

Series We denote by A the alphabet, by A∗ the free monoid it generates, and
by ε the empty word. The semiring K〈〈A∗〉〉 of series over A∗ with coefficients
in K is equipped with the simple convergence topology. Any proper series is then
starable. An arbitrary series s is written s = s0 + sp where s0 = <s, ε>ε is the
constant term of s and sp its proper part.

Under the assumption that K is a strong semiring (which holds1 silently from
now on), the following holds:
1 Strongness is not so restrictive: in particular, all semirings quoted above are strong.

348 S. Lombardy and J. Sakarovitch

Proposition 1 ([5,7,8]). A series s of K〈〈A∗〉〉 is starable if, and only if, s0 is
starable and, in this case, s∗ = (s∗

0 sp)∗s∗
0 = s∗

0(sp s∗
0)∗ holds.

Weighted Automata. In the sequel, A = 〈 Q, A, E, I, T 〉 is a K-automaton (K
is understood) where E ⊆ Q×(A ∪ ε)×K×Q is the set of weighted transitions.
The label of the transition e = (p, x, k, q) is x, its weight is k, and its weighted
label, w-label for short, written w(e), is the monomial k x. For consistency with
the definitions to come, the set E cannot contain two distinct transitions with
the same source, destination, and label. Likewise, the weight of a transition is
never equal to 0K. The automaton A is finite if Q is finite, and this condition
holds from now on.

The w-label of a path c in A, written w(c), is the product of the w-labels of
the transitions of c. We denote by W (P) the family of w-labels of paths in any
family P of paths of A. A computation in A is a path together with the initial
and final functions taken into account.

The set of transitions E may be seen as a Q×Q-matrix, the transition ma-
trix of A, and A is then written as A = 〈 I, E, T 〉. With A, we associate the
automaton of ε-transitions A0 = 〈 I, E0, T 〉, where E0 is the restriction of E to
ε-transitions.

The Behaviour of a K-automaton A, denoted by A, is, by definition, the sum
of the w-labels of the computations of A. For the behaviour be well-defined, it
is then necessary that this family of w-labels be summable. It should not be
a sufficient condition if we want the definition of validity be consistent with
natural computations on automata.

Let E∗ be the free monoid generated by the set of transitions E of A. The set
of paths of A is a (local) rational subset PA of E∗. A rational set of paths of A
is any rational subset of E∗ contained in PA.

Definition 1. A K-automaton A is valid if, and only if, the family of w-labels
of any rational set of paths of A is summable.

We denote by PA(p, q) the family of paths with source p and destination q; A
is said (with a slight abuse) to have summable co-terminal paths if, for every p
and q in Q, W

(
PA(p, q)

)
is summable. A valid automaton has summable co-

terminal paths (and its behaviour is thus well-defined), but the converse is not
true, as shown by the three examples of Fig.4. They have only ε-transitions, as
explained by Proposition 2.

Proposition 2. A K-automaton A is valid if, and only if, A0 is.

Example 2. (a) Let e be the loop of the S-automaton T1: W
(
(e2)∗)

is not
summable (cf. Exm. 1). (b) Let e be the loop of the N∞-automaton T2:
W ((e)∗) is not summable. (c) Let e and f be the two transitions of the
N∞-automaton T3 that form a cycle: W ((ef)∗) is not summable.

The Removal of Weighted ε-Transitions 349

ε |y

(a) T1

ε |+∞

ε |1

ε |1

(b) T2

ε |1

ε |1

ε |+∞

(c) T3

Fig. 4. Three non-valid automata

Coverings. A covering (cf. [7]) is an automata morphism which induces a bi-
jection between the outgoing transitions of a state and its image, and then a
bijection between computations. The following implies in particular that any
covering of a valid automaton is valid, a property that strongly speaks for Defi-
nition 1.

Theorem 1. A K-automaton A is valid if, and only if, any covering of A has
summable co-terminal paths.

Transition matrix. Formation of paths corresponds to matrix multiplication,
and, for every integer n, the (p, q)-entry of the matrix En is the sums of the
w-labels of paths of length n from p to q in A.

Proposition 3. If A = 〈 I, E, T 〉 is valid, then E is starable and |||A||| = I ·E∗ ·T
holds.

The converse of Proposition 3 does not hold (cf. [7]). As K〈〈A∗〉〉Q×Q is homeo-
morphic to KQ×Q〈〈A∗〉〉, Propositions 1, 2, and 3 yield:

Proposition 4. If A = 〈 I, E, T 〉 is valid, then the matrix E0 is starable and
|||A||| = I · (E0

∗ · Ep)∗ · E0
∗ · T holds.

Algorithm 1 below does not compute the matrix E0
∗ itself (what would be called

the ε-closure), but directly the matrix E0
∗ · Ep and the vector E0

∗ · T that form
the proper automaton B = 〈 I, E0

∗ · Ep, E0
∗ · T 〉 equivalent to A.

2 The Weighted Closure Algorithm

The ε-transitions of A will be eliminated one after the other. The elimination
process is different when the transition is a loop, the loop blowing and when the
transition links two distinct states, the transition killing.

Loop Blowing Let e = (q, ε, k, q) be an ε-loop of A around state q.

– If k is not starable, then blow(e) is impossible, and fails.
– If k is starable, then blow(e) yields LBe(A) by the following:

(i) every f = (q, x, h, r) is changed into f ′ = (q, x, k∗h, r);2
(ii) T (q) := k∗ T (q) ; (iii) and finally e is removed.

No ε-transition is created by the loop blowing but the operation may fail.
2 In any TS, the product k∗h = h + k k∗h is never equal to 0K for h �= 0K.

350 S. Lombardy and J. Sakarovitch

Transition Killing. Let e = (p, ε, k, q) be an ε-transition of A, with p �= q.

– kill(e) is authorized only if there is no ε-loop around q.
– In this case, kill(e) yields TKe(A) by the following:

(i) for every f = (q, x, h, r), with x in Aε,
(a) if there exists g = (p, x, l, r), then g is changed

into g′ = (p, x, l + k h, r) or suppressed if l + k h = 0K;
(b) otherwise, g = (p, x, k h, r) is created if k h �= 0K.

(ii) T (p) := T (p) + k T (q) ; (iii) and finally e is removed.

A transition killing, if allowed, never fails but may create new ε-transitions.

An ε-R emoval Algorithm is made with these two atomic operations:

Algorithm 1. Epsilon Transition Removal Algorithm
for every state q in A do

if exists ε-loop e on q then
blow(e) and A := LBe(A)

end if
for every ε-transition e incoming in q do

kill(e) and A := TKe(A)
end for

end for

Algorithm 1 applied to Q3 yields Q4 at Fig.2; Fig.5 shows the intermediate
steps: a transition killing from (a) to (b), and a transition blowing from (b)
to (c); killing the last ε-transition in (c) yields Q4.

p q

a |1

b |1

ε | 1
2

ε |−1

2

(a)

p q

a |1

b |1
ε |−1

b | 1
2

ε | −1
2

1

2

(b)

p q

a | 2
3

b |1
ε |−1

b | 1
3

2
3

2

(c)
Fig. 5. A transition killing and a transition blowing

Theorem 2. Algorithm 1 applied to a valid K-automaton computes an equiva-
lent proper K-automaton.

Algorithm 1 is correct as both blowing and killing operations preserve the be-
haviour of a valid K-automaton. After a state q is processed in Algorithm 1, no
ε-transition ends in q anymore and thus none will be created in the sequel of the
execution: the algorithm terminates.

In contrast with the Boolean case, termination is not so obvious in the weighted
case. For instance, the ‘LIFO policy’ which is commonly used in algorithms for
transitive closure of graphs may lead to endless procedures in the weighted case.

The Removal of Weighted ε-Transitions 351

3 Decision Algorithm

We give here sufficient conditions on K such that the answer to Q2 is positive.
All semirings we want to be able to deal with fulfill one of them.

Two situations yield trivial answer to Q2: when the star does not occur in the
computation of the behaviour of A0, or when the star does not induce infinite
summation in K. A K-automaton A is said to be cycle-free ([3,2]) if the automa-
ton A0 of ε-transitions of A does not contain any cycle. From Proposition 2,
follow then the next two statements.

Proposition 5. Every cycle-free K-automaton is valid, whatever K.

For non-starable semirings, this sufficient condition is also necessary.

Proposition 6. If K is a non-starable semiring, then a K-automaton is valid
if, and only if, it is cycle-free.

The star reduces to a finite sum in k-closed semirings ([6]).

Proposition 7. Every K-automaton is valid if K is a k-closed semiring.

3.1 The Case of Topological Ordered Positive Semirings

A semiring K is an ordered positive semiring (OPS, for short) if it is equipped
with an ordering � such that, for every x, y, z in K, it holds:

0K � x and x � y =⇒
{

x + z � y + z and xz � y z
}

.
A topology and an ordering on K are consistent if whenever u = {un}n∈N and
v = {vn}n∈N are two sequences in K such that u converges to a limit �, and, for
every n, un � vn � �, then v converges to �.

Definition 2. A topological ordered positive semiring (TOPS, for short) is both
a TS and an OPS where topology and ordering are consistent. We call star
congruous a TOPS where the domain of star is closed downward.

The semirings B, Rat A∗, R+, Q+, Zmin3, N or N∞ are TOPS; all are star
congruous but N∞.

Theorem 3. If Algorithm 1 succeeds on a K-automaton A, where K is a star
congruous TOPS, then A is valid.

Algorithm 1 succeeds on T3 (cf. Fig.4(c)) although it is not valid.

3.2 The Case of R and Q

In R, topological completeness implies that summability is equivalent to absolute
summability. For an R-automaton A, let abs(A) be the R+-automaton obtained
by replacing every weight k with the absolute value |k|.
3 In min-plus semirings, the ordering is the inverse of the usual ordering.

352 S. Lombardy and J. Sakarovitch

Theorem 4. An R-automaton A is valid if, and only if, abs(A) is valid.

As Q is not complete, summability is not equivalent to absolute summability
anymore. As Q is a subsemiring of R, we may apply however the same procedure
to Q-automata as to R-automata, and since Q is closed for every operation
performed in Algorithm 1, the result is a Q-automaton.

References

1. Berstel, J., Reutenauer, C.: Les séries rationnelles et leurs langages. Masson (1984);
translation: Rational Series and Their Languages. Springer (1988)

2. Ésik, Z., Kuich, W.: Finite automata. In: Droste, M., et al. (eds.) Handbook of
Weighted Automata, pp. 69–104. Springer (2009)

3. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Springer (1986)
4. Lombardy, S., Sakarovitch, J.: On the weighted closure problem. Available on

ArXiV (to appear, 2012)
5. Lombardy, S., Sakarovitch, J.: Derivation of rational expressions with multiplicity.

Theoret. Computer Sci. 332, 141–177 (2005)
6. Mohri, M.: Generic ε-removal and input ε-normalization algorithms for weighted

transducers. Int. J. Foundations Computer Sci. 13, 129–143 (2002)
7. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009);

corrected English translation of Éléments de théorie des automates, Vuibert (2003)
8. Sakarovitch, J.: Rational and recognisable power series. In: Droste, M., et al. (eds.)

Handbook of Weighted Automata, pp. 105–174. Springer (2009)
9. Vaucanson, www.vaucanson-project.org

www.vaucanson-project.org

Weighted LTL with Discounting�

Eleni Mandrali

Department of Mathematics, Aristotle University of Thessaloniki
54124 Thessaloniki, Greece
elemandr@math.auth.gr

Abstract. We introduce a weighted linear temporal logic over infinite
words with weights and discounting parameters over Rmax. We translate
the formulas of a syntactically defined fragment of our logic to weighted
Büchi automata with discounting. We prove that every ω-recognizable
series with discounting is the image of a series definable by a formula of
this syntactic fragment through a strict alphabetic epimorphism.

1 Introduction

Linear temporal logic (LTL for short) was introduced by Pnueli in 1977 [8].
The translation of LTL formulas to automata is one of the ways to develop
model checking techniques, successfully investigated in [9]. Hence, the weighting
of LTL and the investigation of its relation to weighted ω-automata is a first
step for the development of quantitative model checking theories. In [6] and
[4] the authors considered a weighted LTL over finite distributive De Morgan
lattices, and over strong bimonoids, respectively. LTL has been extended to a
quantitative setting incorporating discounted methods in [1,5]. In those cases
the authors considered as underlying structure the interval [0, 1] with operations
max and min . Weighted model checking tools were recently introduced in [5].

In this work, we introduce a weighted linear temporal logic for infinite words
with discounting parameters d (0 ≤ d < 1) over Rmax. Infinite words are over the
powerset of a finite set of atomic propositions AP . The semantics of our weighted
LTL formulas are infinitary series and our goal is to investigate their relation
to ω-recognizable series with discounting. After presenting some preliminary
notions in the second section, in Section 3 we introduce weighted generalized
Büchi automata with discounting and ε-transitions, and we prove that they are
equivalent to weighted Büchi automata with discounting. In Section 4, we define
the syntax of formulas of the weighted LTL by the grammar: ϕ ::= k | a | ¬a |
ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ | �ϕ where k ∈ Rmax and a ∈ AP . The discounting
parameters d are being involved in the semantics of the next ©, until U, and
always � operators. Using weights from Rmax is the reason why negation is

� This research has been co-financed by the European Union (European Social Fund
- ESF) and Greek national funds through the Operational Program ”Education
and Lifelong Learning” of the National Strategic Reference Framework (NSRF) -
Research Funding Program: Heracleitus II.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 353–360, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

354 E. Mandrali

restricted to atomic propositions, in contrast to [6], [4] where negation is applied
to every formula of the proposed logics. Nevertheless, in [6] the values obtained
by logical operations are finite. Given any formula of a syntactic fragment of our
logic we construct a weighted generalized Büchi automaton with discounting
and ε-transitions recognizing its semantics. For this translation we follow the
approach investigated in [2,10]. More precisely, the states of the automaton
are sets of formulas satisfying discrete conditions of consistency, and the final
subsets are defined with respect to the until operators. As in [2] we shall use
ε-transitions to reduce formulas. In that paper the goal of the reduction is the
production of sets of formulas whose elements are atomic formulas, or their
negations, or formulas with outermost connective the next operator. In our case,
that approach does not allow the effective computation of the weights of the
transitions. In order to achieve this, we consider in each state a unique maximal
formula (according to subformula relation) that will indicate the induction (and
thus the operations) connecting the formulas k ∈ Rmax of each state. The ε-
transitions will be used to reduce the maximal formula of a set, and to ensure
that the state set of the automaton is finite.

Finally, we prove that every ω-recognizable series with discounting is the image
of a series definable by a formula of the syntactic fragment of our logic, through
a strict alphabetic epimorphism.

2 Preliminaries

Let A be an alphabet, i.e., a finite non-empty set. As usual we denote by A+

(resp. Aω) the set of finite (resp. infinite) non-empty words over A and by ε the
empty word. An infinite word w = a0a1 . . . ∈ Aω (where ai ∈ A for all i ≥ 0)
will be also written as w = w(0)w(1) . . . with w(i) = ai for every i ≥ 0. For
every i ≥ 0 we shall denote by w≥i the infinite suffix of w starting at position i,
i.e., w≥i = w(i)w(i + 1) Moreover, we shall write w<i for the prefix of w of
length i, i.e., w<i = w (0) . . . w (i− 1) . Obviously w<0 = ε.

In this paper, we consider the max-plus (or arctic) semiring Rmax = (R+ ∪
{−∞}, sup,+,−∞, 0)1 where R+ = {r ∈ R | r ≥ 0} and −∞+x = −∞ for every
x ∈ R+ ∪ {−∞}. We extend the multiplication · over R+ by letting x · (−∞) =
(−∞) · x = −∞ for every x ∈ R+ ∪ {−∞}. Then, for every p ∈ R+ ∪ {−∞} the
mapping p : Rmax → Rmax given by x �−→ p · x is an endomorphism of Rmax.
Conversely, every endomorphism of Rmax is of this form (see Lemma 15 in [3]).
We shall alternatively denote the multiplication of Rmax and the composition
operation of endomorphisms of Rmax also by concatenation.

A family d =
(
da
)
a∈A

of endomorphisms of Rmax with 0 ≤ da < 1 for every
a ∈ A is called a d-discounting over A and Rmax. For every finite word w =
a0a1 . . . an−1 ∈ A+ we shall denote by dw the morphism da0da1 . . . dan−1 and by

dε the identity mapping id on Rmax. We put dw =
∏
a∈A

d
|w|a
a where |w|a denotes

the number of a’s in w.

1 Here we use sup instead of max since we need to compute over infinite words.

Weighted LTL with Discounting 355

An infinitary formal power series (series for short) over the alphabet A and
the semiring Rmax is a mapping s : Aω → Rmax. We write (s, w) instead of
s(w) for w ∈ Aω and call it the coefficient of s at w. The class of all infinitary
series over A and Rmax is denoted by Rmax 〈〈Aω〉〉 . For s, r ∈ Rmax 〈〈Aω〉〉 and
k ∈ Rmax the maximum max(s, r), the scalar sum k + s and the sum s + r
are defined elementwise, i.e., (max(s, r), w) = max((s, w), (r, w)), (k + s, w) =
k + (s, w), (s+ r, w) = (s, w) + (r, w) for every w ∈ Aω .

Let s ∈ Rmax 〈〈Aω〉〉 . The image Im(s) of s is the set Im(s) = {k ∈ Rmax |
∃w ∈ Aω with (s, w) = k}.We say that s has bounded image if there is anm ∈ R+

such that k ≤ m for every k ∈ Im(s). Consider two alphabets A,B and a strict
alphabetic epimorphism h : A∗ → B∗, i.e., h (a) ∈ B for every a ∈ A. Then h
can be extended to a mapping h : Aω → Bω by letting h(w) = (h(w(i)))i≥0 for
every w ∈ Aω. For every series s ∈ Rmax 〈〈Aω〉〉 with bounded image we define
the series h(s) ∈ Rmax 〈〈Bω〉〉 by (h(s), u) = sup

w∈h−1(u)

((s, w)) for every u ∈ Bω .

For a finite set C we denote by P (C) the powerset of C.

3 Weighted Generalized Büchi Automata with
Discounting and ε-Transitions

In this section we introduce weighted generalized Büchi automata with discount-
ing and ε-transitions, and weighted Büchi automata with discounting and ε-
transitions. We prove that these two models are equivalent and also equivalent
to weighted Büchi automata with discounting introduced in [3]. Throughout this
section, A will denote an alphabet.

Definition 1. (i) A weighted generalized Büchi automaton with ε-transitions
(ε-WGBA for short) over A and Rmax is a quadruple M = (Q,wt, in,F), where
Q is the finite state set, wt : Q× (A ∪ {ε})×Q→ Rmax is a mapping assigning
weights to the transitions of the automaton, in : Q → Rmax is the initial dis-
tribution and F = {F1, . . . , Fk} is the set of final subsets, with Fi ∈ P (Q) , for
every 1 ≤ i ≤ k. Moreover, for every t ∈ Q × {ε} ×Q we require wt (t) = 0, or
wt (t) = −∞. Finally, for every (q, ε, q′) ∈ Q × {ε} × Q with wt ((q, ε, q′)) = 0,
and every i ∈ {1, . . . , k} , q ∈ Fi if-f q

′ ∈ Fi.
(ii) An ε-WGBA is a weighted Büchi automaton with ε-transitions (ε-WBA

for short) if k = 1, i.e., there is only one final subset.
(iii) An ε-WBA is a weighted Büchi automaton (WBA for short) if wt (t) =

−∞ for every t ∈ Q×{ε}×Q. In this case it suffices to define wt over Q×A×Q.

Let w = a0a1 . . . ∈ Aω with ai ∈ A (i ≥ 0) . A path Pw of M over w is an infinite
sequence of transitions Pw = ((qj , bj, qj+1))j≥0, bj ∈ A ∪ {ε} (j ≥ 0) , such that
w = b0b1 The set of states that appear infinitely often along Pw is denoted
by InQ(Pw). Given a d-discounting, the d-weight of Pw (or simply weight) is
the value weightM(Pw) = in (q0) +

∑
j≥0

dw<ij
· wt((qj , bj, qj+1)), where for j = 0

we set ij = 0, and for j ≥ 1 we let ij ≥ 0 be the unique position of w with

356 E. Mandrali

w<ij = b0b1 . . . bj−1.Observe that the infinite sum converges; its value is bounded
by M ·

∑
i≥0

mi = M · 1/(1−m), where M = max{wt(t) | t ∈ Q× (A ∪ {ε})×Q}

and m = max {da | a ∈ A} .
The path Pw is called successful if InQ(Pw)∩Fi
= ∅, for every i ∈ {1, . . . , k} .

The set of all successful paths ofM is denoted by succ (M) . The d-behavior (or
simply behavior) of M is the infinitary series ‖M‖ : Aω → Rmax with coefficients
specified, for every w ∈ Aω, by (‖M‖ , w) = sup

Pw∈succ(M)

(weightM(Pw)). This

supremum exists in Rmax since the values weightM(Pw) are uniformly bounded.
Two ε-WGBA are called equivalent if they have the same behavior. Following

the construction used in [10] to convert generalized Büchi automata to Büchi
automata we can prove that for every ε-WGBA with d-discounting over A and
Rmax there exists an equivalent ε-WBA with d-discounting over A and Rmax.
Moreover, the two conditions imposed on the ε-transitions in Definition 1, i.e.,
the restriction of their weights to the set {0,−∞} and the condition concerning
the final subsets, allow us to produce from every ε-WBA with d-discounting over
A and Rmax an equivalent WBA with d-discounting over A and Rmax. A series
s : Aω → Rmax is called d-Büchi recognizable or (d, ω)-recognizable if there is a
WBA M such that s = ‖M‖.

4 Results

In this section, we first introduce a weighted linear temporal logic (weighted LTL
for short) with discounting over the max-plus semiring. Let AP be a finite set of
atomic propositions. We shall use the symbols a, b, c to denote elements in AP .
Moreover, d will denote a discounting over P (AP) and Rmax.

Definition 2. The syntax of the formulas of the weighted LTL over AP and
Rmax is given by the grammar

ϕ ::= k | a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ | �ϕ

where k ∈ Rmax and a ∈ AP.

We denote by LTL (Rmax, AP) the class of all weighted LTL-formulas over AP
and Rmax. Next, we represent the semantics of formulas ϕ ∈ LTL (Rmax, AP) as
infinitary series ‖ϕ‖d in Rmax 〈〈(P (AP))ω〉〉.

Definition 3. Let ϕ ∈ LTL (Rmax, AP) . The d-semantics of ϕ is a series
‖ϕ‖d ∈ Rmax 〈〈(P (AP))ω〉〉 defined inductively as follows. We let for every
w ∈ (P (AP))

ω

- (‖k‖d , w) = k

- (‖a‖d , w) =
{

0 if a ∈ w (0)
−∞ otherwise

- (‖¬a‖d , w) =
{

0 if a /∈ w (0)
−∞ otherwise

- (‖©ϕ‖d , w) = dw(0) ·(‖ϕ‖d , w≥1) - (‖�ϕ‖d , w) =
∑
i≥0

dw<i ·(‖ϕ‖d , w≥i)

Weighted LTL with Discounting 357

- (‖ϕ ∨ ψ‖d , w) = max ((‖ϕ‖d , w) , (‖ψ‖d , w))
- (‖ϕ ∧ ψ‖d , w) = (‖ϕ‖d , w) + (‖ψ‖d , w)

- (‖ϕUψ‖d , w) = sup
i≥0

(∑
0≤j<i

dw<j · (‖ϕ‖d , w≥j) + dw<i · (‖ψ‖d , w≥i)

)
.

Inductively we can prove that for every ϕ ∈ LTL (Rmax, AP), ‖ϕ‖d has a
bounded image and the supremum and infinite sum appearing in the defini-
tions of U and �, respectively are well defined. Alternatively we shall denote by
true the formula 0 ∈ Rmax.

A formula ϕ ∈ LTL (Rmax, AP) is boolean if it does not contain any con-
stants k ∈ Rmax	 {0,−∞} . Moreover, two formulas ϕ, ψ ∈ LTL(Rmax, AP) are
equivalent, denoted by ϕ ≡ ψ, if for every w ∈ (P (AP))

ω
we have (‖ϕ‖d , w) =

(‖ψ‖d , w). For ϕ, ψ, ξ ∈ LTL (Rmax, AP) , where ξ is boolean, it is straightfor-
ward to show the following equivalences.
ϕUψ ≡ ψ ∨ (ϕ ∧© (ϕUψ)) © (ϕUψ) ≡ (©ϕ)U (©ψ) ϕ ∧ true ≡ ϕ

�ϕ ≡ ϕ ∧© (�ϕ) © (ϕ ∧ ψ) ≡ (©ϕ) ∧ (©ψ) ξ ∧ ξ ≡ ξ
© (�ϕ) ≡ � (©ϕ) © (ϕ ∨ ψ) ≡ (©ϕ) ∨ (©ψ) .

A formula ϕ ∈ LTL (Rmax, AP) is called reduced if (a) for every subformula
of the form ϕ1 ∧ . . . ∧ ϕk with k ≥ 2 it holds: ϕi
= true for every 1 ≤ i ≤ k,
and ϕi
= ϕj for every boolean ϕi, ϕj with 1 ≤ i < j ≤ k, and (b) no until
operator is in the scope of any next operator. For every ϕ ∈ LTL (Rmax, AP) we
can effectively construct an equivalent reduced formula by applying the previous
equivalences. We shall denote this formula by ϕre. Next, we define a syntactic
fragment of our logic.

Definition 4. A formula ϕ ∈ LTL (Rmax, AP) will be called weakly operated
if whenever it contains subformulas of the form �ψ1, or ψ2Uψ3, then ψ1, ψ2, ψ3

may contain the operators U and � applied to boolean formulas only.

We denote by WOLTL (Rmax, AP) the class of all weakly operated formulas of
LTL (Rmax, AP). An infinitary series s ∈ Rmax 〈〈(P (AP))

ω〉〉 is called woLTL-
d-definable if there is a formula ϕ ∈WOLTL (Rmax, AP) such that s = ‖ϕ‖d .

Our aim is to construct for every reduced weakly operated formula ϕ an ε-
WGBA with d-discounting accepting its semantics. We shall need the subsequent
concepts. First we recall the notion of the closure of a formula. So, let ϕ ∈
LTL (Rmax, AP) . The closure cl(ϕ) of ϕ is the smallest set C such that (i)
ϕ ∈ C, (ii) if ψ∧ξ ∈ C or ψ∨ξ ∈ C or ψUξ ∈ C, then ψ, ξ ∈ C, (iii) if©ψ ∈ C
or �ψ ∈ C, then ψ ∈ C.
Furthermore, a subset B of cl (ϕ) will be called ϕ-consistent if whenever B
= ∅
it holds: (i) For every a ∈ AP : a ∈ B ⇒ ¬a /∈ B, and ¬a ∈ B ⇒ a /∈ B, (ii)
ϕ ∈ B, (ii) ψ ∧ ξ ∈ B ⇒ ψ ∈ B and ξ ∈ B, (iii) ψ ∨ ξ ∈ B ⇒ ψ ∈ B or ξ ∈ B,
(iv) ψUξ ∈ B ⇒ ψ ∈ B or ξ ∈ B, (v) �ψ ∈ B ⇒ ψ ∈ B.

For every ϕ-consistent set B
= ∅, and every ψ ∈ cl (ϕ) , there exists a maximal
(according to subset relation) ψ-consistent subset of B. We shall denote this set
by MB,ψ. From now on we shall denote a ϕ-consistent set B by Bϕ.

358 E. Mandrali

Definition 5. Let ϕ ∈ LTL (Rmax, AP) and Bϕ be a ϕ-consistent set. The finite
set next (Bϕ) of formulas is defined in the following way. We set next (∅) =
{−∞} and for Bϕ
= ∅

- if ϕ = a or ϕ = ¬a, a ∈ AP, or ϕ = k, k ∈ Rmax, then next (Bϕ) = {true} ,
- if ϕ = ψ ∧ ξ, then
next (Bϕ) =

{
ψ′ ∧ ξ′ | ψ′ ∈ next

(
MBϕ,ψ

)
, ξ′ ∈ next

(
MBϕ,ξ

)}
,

- if ϕ = ψ ∨ ξ, then next (Bϕ) = next
(
MBϕ,ψ

)
∪ next

(
MBϕ,ξ

)
,

- if ϕ =©ψ, then next (Bϕ) = {ψ} ,
- if ϕ = ψUξ, then
next (Bϕ) =

{
ϕ ∧ ψ′ | ψ′ ∈ next

(
MBϕ,ψ

)}
∪
{
ξ′ | ξ′ ∈ next

(
MBϕ,ξ

)}
,

- if ϕ = �ψ, then next (Bϕ) =
{
ϕ ∧ ψ′ | ψ′ ∈ next

(
MBϕ,ψ

)}
.

Clearly, every formula in next (Bϕ) is a finite conjunction of the form
∧

1≤i≤k

ψi

where for every 1 ≤ i ≤ k, ψi ∈ cl (ϕ), or ψi = true, or ψi = −∞.
Next, we define inductively for every formula ϕ and every Bϕ a mapping

vBϕ : next (Bϕ)→ Rmax. We let v∅ (−∞) = −∞. Now, assume that Bϕ
= ∅.
For ϕ = a, or ϕ = ¬a with a ∈ AP we set v{ϕ} (true) = 0, and for ϕ = k ∈

Rmax, v{ϕ} (true) = k.
For ϕ = ψ ∧ ξ, we let vBϕ (ψ′ ∧ ξ′) = vMBϕ,ψ

(ψ′) + vMBϕ,ξ
(ξ′) where ξ′ ∈

next
(
MBϕ,ξ

)
and ψ′ ∈ next

(
MBϕ,ψ

)
. Next, let ϕ = ψ ∨ ξ. Then, for every ϕ′ ∈

next
(
MBϕ,ψ

)
∪next

(
MBϕ,ξ

)
, we let vBϕ (ϕ′) = max

(
vMBϕ,ψ

(ϕ′) , vMBϕ,ξ
(ϕ′)
)

where abusing the notations vMBϕ,ψ
(ϕ′) (resp. vMBϕ,ξ

(ϕ′)) will stand for −∞
whenever ϕ′ /∈ next

(
MBϕ,ψ

)
(resp. next

(
MBϕ,ξ

)
).

Assume that ϕ = ©ψ. Then, for the unique element ψ of next (Bϕ) we
set vBϕ (ψ) = 0. For ϕ = �ψ, we set vBϕ (ϕ ∧ ψ′) = vMBϕ,ψ

(ψ′) where ψ′ ∈
next

(
MBϕ,ψ

)
. Finally, for ϕ = ψUξ, we let vBϕ (ϕ ∧ ψ′) = vMBϕ,ψ

(ψ′) where

ψ′ ∈ next
(
MBϕ,ψ

)
, and vBϕ (ξ′) = vMBϕ,ξ

(ξ′) with ξ′ ∈ next
(
MBϕ,ξ

)
.

Now, we consider the formulas ϕ1, . . . , ϕj ∈ WOLTL (Rmax, AP) with ϕ1

being reduced, and the sequence Bϕ1 , . . . , Bϕj with the following properties. For
every 1 ≤ l ≤ j − 1, if ϕl is reduced, then ϕl+1 ∈ next (Bϕl

) , otherwise ϕl+1 =
(ϕl)re . Then we will say that Bϕj is reachable by Bϕ1 . The set reach (Bϕ1) of all
reachable by Bϕ1 sets of formulas is finite and effectively computable. Observe
that, since ϕ1 is reduced, the formulas ϕl (1 ≤ l ≤ j) satisfy the second condition
in the definition of reduced formulas. This implies that reduction when applied
only reduces conjunctions. We give an example to show that restricting ϕ1 to
the weakly operated fragment is the key to ensure that reach (Bϕ1) is finite.
We let ϕ = � (� (a ∧ 2)) and Bϕ = {ϕ,� (a ∧ 2) , a ∧ 2, a, 2} . Then, for every

j ≥ 1, every consistent set of the formula ϕ ∧

⎛⎝ ∧
1≤i≤j

ψi

⎞⎠ with ψi = � (a ∧ 2)

(1 ≤ i ≤ j) belongs to the set reach (Bϕ) , and hence reach (Bϕ) is not finite.

Let ϕ, ψ ∈ WOLTL (Rmax, AP). For every π ∈ P (AP) the triple (Bϕ, π, Bψ)
is called a next transition if the following two conditions hold: (i) For every

Weighted LTL with Discounting 359

a ∈ AP we have a ∈ Bϕ ⇒ a ∈ π and ¬a ∈ Bϕ ⇒ a /∈ π, and (ii) ϕ is reduced
and ψ ∈ next (Bϕ) . Moreover, for every Bϕ, Bϕre with Bϕ
= ∅ and Bϕre
= ∅
the triple (Bϕ, ε, Bϕre) is called an ε-reduction transition. In the subsequent
definition ϕ is assumed to be reduced.

Definition 6. Let ϕ ∈ WOLTL (Rmax, AP) . We define the ε-WGBA Aϕ=
(Q,wt, in,F) with d-discounting over P (AP) and Rmax as follows. We set

• Q =
⋃
Bϕ

({Bϕ} ∪ reach (Bϕ)) ,

• in (Bψ) =

{
0 if ϕ = ψ

−∞ otherwise
for every Bψ ∈ Q,

• wt ((Bψ, π, Bξ)) =

⎧⎨⎩
vBψ

(ξ) if (Bψ, π, Bξ) is a next transition
0 if (Bψ, π, Bξ) is an ε-reduction transition

−∞ otherwise
for every (Bψ , π, Bξ) ∈ Q× (P (AP) ∪ {ε})×Q, and

• F = {Fϕ′Uϕ′′ | ϕ′Uϕ′′ ∈ cl (ϕ)} where

Fϕ′Uϕ′′=

{
Bϕ ∈ Q | Bϕ
= ∅, ϕ =

∧
1≤i≤k

ϕi with ϕi
= ϕ′Uϕ′′, 1 ≤ i ≤ k

}
, for

every ϕ′Uϕ′′ ∈ cl (ϕ) .

Observe that for every ϕ′Uϕ′′ ∈ cl (ϕ) and every non-empty Bψ,Bψre ∈ Q the
relation Bψ ∈ Fϕ′Uϕ′′ implies that Bψre ∈ Fϕ′Uϕ′′ , and vice-versa. Thus, the
ε-transitions of the automaton are well defined. We note that if ϕ contains no U
operators, then we have no acceptance conditions, which means that all infinite
paths are successful.

We present an example. Let ϕ = � (a ∧ 2) , and AP = {a, b}. Then, Aϕ =
(Q,wt, in,F) with Q = {q1, . . . , q5} where q1 = ∅, q2 = {−∞} , q3 = {true} ,
q4 = {ϕ, a ∧ 2, a, 2} , q5 = {ϕ ∧ (true ∧ true) , ϕ, a ∧ 2, 2, a, true ∧ true, true} .
The states with initial weight 0 are the sets q1, q4. The transitions with weight
different from −∞ are the following: wt ((q4, π, qj)) = 2, where π ∈ P (AP) with
a ∈ π, and j = 1, 5, and wt ((q3, π, qi)) = wt ((q5, ε, q4)) = wt ((qk, ε, qk)) = 0
where π ∈ P (AP) , and i = 1, 3, k = 2, 3, 4. The automaton has no final subsets.

For every reduced ϕ ∈WOLTL (Rmax, AP) we can prove by induction on the
structure of ϕ that ‖Aϕ‖ = ‖ϕ‖d . By this, and the fact that for every ε-WGBA
with d-discounting there is an equivalent WBA with d-discounting we conclude
Theorem 1. Finally, the last result of our paper, stated in Theorem 2, assigns
to every WBA over P (AP) and Rmax a weighted weakly operated LTL-formula
ϕ whose semantics is projected to the behavior of the automaton via a strict
alphabetic epimorphism (i.e., a letter-to-letter morphism).

Theorem 1. Every woLTL-d-definable series over P (AP) and Rmax is (d, ω)-
recognizable.

Theorem 2. Let s ∈ Rmax 〈〈(P (AP))
ω〉〉 be a (d, ω)-recognizable series over

Rmax and P (AP). Then there is a finite set of atomic propositions ÃP ⊃ AP ,

360 E. Mandrali

a strict alphabetic epimorphism h from P
(
ÃP
)

to P (AP) and a woLTL-d̃-

definable series r ∈ Rmax

〈〈(
P
(
ÃP
))ω〉〉

such that h (r) = s, where d̃ =(
d̃π′
)
π′∈P(ÃP)

is a discounting over P
(
ÃP
)

and Rmax determined for every

π′ ∈ P
(
ÃP
)
by d̃π′ = dh(π′).

5 Conclusion

We have defined a weighted LTL over infinite words with weights and discount-
ing parameters over Rmax, and have connected weakly operated formulas to
WBA with discounting. Whether the full fragment of our LTL exceeds or not
(d, ω)-recognizability is an open and important question to study. In [7] the au-
thors connect the fragment of weakly operated formulas of the weighted LTL
with discounting to weighted first order logic with discounting, ω-star-free series
with discounting, and weighted counter-free Büchi automata with discounting.
Finally, another perspective is to investigate complexity fragments, as well as
decidability results for our construction.

Acknowledgement. The author would like to thank the three anonymous
referees, and especially one of them, for useful remarks.

References

1. De Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the Future in Sys-
tems Theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)

2. Dermi, S., Gastin, P.: Specification and verification using temporal logics. In:
D’Souza, D., Shankar, P. (eds.) Modern Applications of Automata Theory, IISc,
Research monographs, vol. 2. World Scientific (2011)

3. Droste, M., Kuske, D.: Skew and infinitary formal power series. Theoret. Comput.
Sci. 366, 189–227 (2006)

4. Droste, M., Vogler, H.: Weighted automata and multi-valued logics over arbitrary
bounded lattices. Theoret. Comput. Sci. 418, 14–36 (2012)

5. Faella, M., Legay, A., Stoelinga, M.: Model checking quantitative linear time logic.
Electron. Notes Theor. Comput. Sci. 220, 61–77 (2008)

6. Kupferman, O., Lustig, Y.: Lattice Automata. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)

7. Mandrali, E., Rahonis, G.: Weighted first order logic with discounting (in prepa-
ration)

8. Pnueli, A.: The temporal logics of programs. In: 18th IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 46–67 (1977)

9. Vardi, M., Wopler, P.: Reasoning about infinite computations. Inform. and Com-
put. 115, 1–37 (1994)

10. Wolper, P.: Constructing Automata from Temporal Logic Formulas: A Tutorial. In:
Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS, vol. 2090,
pp. 261–277. Springer, Heidelberg (2001)

Automata with Modulo Counters

and Nondeterministic Counter Bounds

Daniel Reidenbach and Markus L. Schmid�

Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom

{D.Reidenbach,M.Schmid}@lboro.ac.uk

Abstract. We introduce and investigate Nondeterministically Bounded
Modulo Counter Automata (NBMCA), which are two-way one-head au-
tomata that comprise a constant number of modulo counters, where the
counter bounds are nondeterministically guessed, and this is the only
element of nondeterminism. NBMCA are tailored to recognising those
languages that are characterised by the existence of a specific factori-
sation of their words, e. g., pattern languages. In this work, we subject
NBMCA to a theoretically sound analysis.

Keywords: Multi-head automata, Counter automata, Modulo coun-
ters, Stateless automata, Restricted nondeterminism.

1 Introduction

In the present paper we introduce and study a novel automata model, the Nonde-
terministically Bounded Modulo Counter Automata (NBMCA for short), which
comprise several two-way input heads and a number of counters. These NBMCA
are suitable algorithmic tools for recognising those languages that are charac-
terised by the existence of a specific factorisation of their words, e. g., pattern
languages, and are a generalisation of the Janus automata that have been in-
troduced and applied in [11] in order to investigate the membership problem
for pattern languages. In [11], NBMCA with exactly two input heads are used.
In the present work we focus on NBMCA with only one head, since we can
easily simulate several input heads by just a single one. For every counter of
an NBMCA an individual counter bound is provided, and every counter can
only be incremented and counts modulo its counter bound. The current counter
values and counter bounds are hidden from the transition function, which can
only check whether a counter has reached its bound. By performing a reset on
a counter, the automaton nondeterministically guesses a new counter bound be-
tween 0 and |w|, where w is the input word. This guessing of counter bounds is
the only possible nondeterministic step of NBMCA, and the transition function
is defined completely deterministically. We can interpret the counter bounds as

� Corresponding author.

N. Moreira and R. Reis (Eds.): CIAA 2012, LNCS 7381, pp. 361–368, 2012.
� Springer-Verlag Berlin Heidelberg 2012

362 D. Reidenbach and M.L. Schmid

positions of the input and, by means of the counter values, the input head can
be moved to these positions.

Two aspects of this approach seem to be particularly worth studying. Firstly,
all additional resources the automaton is equipped with, namely the counters, are
tailored to storing positions in the input word. We can observe that this aspect is
not really new; in fact, the idea of separating the mechanisms of storing positions
from the functionality of actually processing the input is formalised in the models
of partially blind multi-head automata (see, e. g., Ibarra and Ravikumar [7]),
Pebble Automata (see, e. g., Chang et al. [1]) and automata with sensing heads
(see, e. g., Petersen [10]). Given this similarity between NBMCA and established
automata models regarding their emphasis on storing positions in the input
word, there is still one difference: the counters of NBMCA are quite limited in
their ability to change the positions they represent, since their values can merely
be incremented, and their bounds are guessed. The question arises whether or
not, for automata using counters as additional resources, their ability to count
in both directions is essential with respect to the expressive power.

The second aspect is that the nondeterminism of NBMCA, which merely
allows positions in the input word to be guessed, differs quite substantially from
the common nondeterminism of automata, which provides explicit computational
alternatives. Nevertheless, automata often use their nondeterminism to actually
guess a certain position of the input. For example, a pushdown automaton that
recognises {wwR | w ∈ Σ∗} needs to perform an unbounded number of guesses
even though only one specific position, namely the middle one, of the input needs
to be found. Despite this observation, the nondeterminism of NBMCA might
be weaker, as it seems to solely refer to positions in the input. Hence, we also
investigate the question of whether or not it is essential that the nondeterminism
is explicitly provided by a nondeterministic transition function in order to exploit
it to the full extent, in terms of expressive power.

In order to understand the character of these novel, and seemingly limited,
resources NBMCA can use, the present paper compares the expressive power
of these automata to that of the well-established, and seemingly less restricted,
models of multi-head and counter automata. Furthermore, we study some basic
decision problems for NBMCA as well as stateless versions of NBMCA, with and
without restricted nondeterminism.

Note that, due to space constraints, all proofs have been omitted.

2 Definitions

Let N denote the set of all positive integers and let N0 := N∪ {0}. The symbols
⊆ and ⊂ refer to subset and proper subset relation, respectively. For an arbitrary
alphabet Σ, a word (over Σ) is a finite sequence of symbols from Σ, and ε stands
for the empty word. The symbol Σ+ denotes the set of all nonempty words over
Σ, and Σ∗ := Σ+ ∪ {ε}. For the concatenation of two words u, v we write u · v
or simply uv, and uk denotes the k-fold concatenation of u. The notation |K|
stands for the size of a set K or the length of a word K.

Automata with Modulo Counters and Nondeterministic Counter Bounds 363

For an arbitrary class of automata, such as the set DFA of deterministic
finite automata, the expression “a DFA” refers to any automaton from DFA.
For an arbitrary automaton M , L(M) denotes the set of all words accepted
by M and, for an arbitrary class A of automata, let L(A) := {L(M) | M ∈
A}. For every k ∈ N let 1DFA(k), 2DFA(k), 1NFA(k) and 2NFA(k) denote
the class of deterministic one-way, deterministic two-way, nondeterministic one-
way and nondeterministic two-way automata with k input heads, respectively.
For a comprehensive survey on multi-head automata the reader is referred to
Holzer et al. [3] and to the references therein.

Next, we define the central automata model of this paper. A Nondetermin-
istically Bounded Modulo Counter Automaton, NBMCA(k) for short, is a two-
way one-head automaton with k counters. More precisely, it is a tuple M :=
(k,Q,Σ, δ, q0, F), where k ∈ N is the number of counters, Q is a finite nonempty
set of states, Σ is a finite nonempty alphabet of input symbols, q0 ∈ Q is
the initial state and F ⊆ Q is the set of accepting states. The mapping δ :
Q×Σ×{t0, t1}k → Q×{−1, 0, 1}×{0, 1, r}k is called the transition function. In-
stead of writing transitions in the form δ(C) = S, we use the notation C →δ S. If
δ is obvious from the context, we simply write C → S. An input toM is any word
of the form �w$, where w ∈ Σ∗ and the symbols �, $ (referred to as left and right
endmarker, respectively) are not in Σ. Let (p, b, s1, . . . , sk)→δ (q, r, d1, . . . , dk).
We call the element b the scanned input symbol and r the input head movement.
For each j ∈ {1, 2, . . . , k}, the element sj ∈ {t0, t1} is the counter message of
counter j, and dj is called the counter instruction for counter j. The transition
function δ of an NBMCA(k) determines whether the input heads are moved to
the left (ri = −1), to the right (ri = 1) or left unchanged (ri = 0), and whether
the counters are incremented (dj = 1), left unchanged (dj = 0) or reset (dj = r).
In case of a reset, the counter value is set to 0 and a new counter bound is non-
deterministically guessed between 0 and the current input length. Hence, every
counter is bounded, but these bounds are chosen in a nondeterministic way. In
order to define the language accepted by an NBMCA, we need to define the
concept of an NBMCA computation.

Let M be an NBMCA and w := a1 · a2 · · · · · an, ai ∈ Σ, 1 ≤ i ≤ n. A configu-
ration of M (on input w) is an element of ĈM := {[q, h, (c1, C1), . . . , (ck, Ck)] |
q ∈ Q, 0 ≤ h ≤ n+ 1, 0 ≤ ci ≤ Ci ≤ n, 1 ≤ i ≤ k}. The pair (ci, Ci), 1 ≤ i ≤ k,
describes the current configuration of the ith counter, where ci is the counter
value and Ci the counter bound. The element h is called the input head position.

An atomic move of M is denoted by the relation 1M,w over the set of con-
figurations. Let (p, b, s1, . . . , sk) →δ (q, r, d1, . . . , dk). Then, for all ci, Ci, 1 ≤
i ≤ k, where ci < Ci if si = t0 and ci = Ci if si = t1, and for every
h, 0 ≤ h ≤ n + 1, with ah = b, we define [p, h, (c1, C1), . . . , (ck, Ck)] 1M,w

[q, h′, (c′1, C
′
1), . . . , (c

′
k, C

′
k)]. Here, the elements h′ and c′j , C

′
j , 1 ≤ j ≤ k, are de-

fined in the following way. h′ := h+ r if 0 ≤ h+ r ≤ n+1 and h′ := h otherwise.
For each j ∈ {1, . . . , k}, if dj = r, then c′j := 0 and, for some m ∈ {0, 1, . . . , n},
C′

j := m. If, on the other hand, dj
= r, then C′
j := Cj and c′j := cj + dj

mod (Cj + 1).

364 D. Reidenbach and M.L. Schmid

In order to describe a sequence of (atomic) moves of M (on input w) we use
the reflexive and transitive closure of the relation 1M,w, denoted by 1∗M,w. M
accepts the word w if and only if ĉ0 1∗M,w ĉf , where ĉ0 := [q0, 0, (0, C1), . . .,
(0, Ck)] for some Ci ∈ {0, 1, . . . , |w|}, 1 ≤ i ≤ k, is an initial configuration,
and ĉf := [qf , h, (c1, C1), . . . (ck, Ck)] for some qf ∈ F , 0 ≤ h ≤ n + 1 and
0 ≤ ci ≤ Ci ≤ n, 1 ≤ j ≤ k, is a final configuration. In every computation of an
NBMCA, the counter bounds are nondeterministically initialised, and the only
nondeterministic step an NBMCA is able to perform during the computation
consists in guessing a new counter bound for some counter.

3 Expressive Power, Hierarchy and Decidability

An NBMCA can be regarded as a finite state control with additional resources.
Thus, it is quite similar to classical nondeterministic multi-head automata. The
essential differences between the models are those addressed in Section 1. Hence,
in order to gain insights with respect to the question of whether these differences
affect the expressive power, we study the problem of simulating classical non-
deterministic multi-head automata by NBMCA and vice versa. It is almost ob-
vious that NBMCA can be simulated by nondeterministic multi-head automata
as NBMCA can be interpreted as just a further restricted version of them. So
multi-head automata intuitively seem to be more powerful.

Theorem 1. For every k ∈ N, L(NBMCA(k)) ⊆ L(2NFA(2k + 1)).

The converse question, i. e., whether arbitrary multi-head automata, and par-
ticularly their unrestricted nondeterminism, can be simulated by NBMCA, is
more interesting. It can be done by using a modulo counter of the NBMCA in
order to simulate an input head of the 2NFA(k) in the following way. The mod-
ulo counter first guesses |w| as counter bound, which is done by reseting it and
checking, by means of the input head, whether or not the guessed bound equals
|w|, and then the counter value can be used in order to store the position of the
input head. Since the counter value cannot be decremented, a decrement has to
be performed by |w| − 1 increments.

However, for reasons that shall be explained later, we aim for a simulation that
is more economic with respect to the usage of modulo counters. More presicely,
we want to use a single modulo counter in order to store the positions of two
input heads of a 2NFA(k), i. e., the counter value and the counter bound each
represent a distinct input head position. A step of the 2NFA(k) is then simulated
by first moving the input head of the NBMCA successively to all these positions
stored by the counters and record the scanned input symbols in the finite state
control. After that, all these positions stored by the counters must be updated
according to the transition function of the 2NFA(k). It turns out that this is
possible, but, since counter values cannot be decremented and counter bounds
cannot be changed directly, the constructions are rather involved and require
some technical finesse. Furthermore, we need an additional counter which is also
used in order to simulate the possible nondeterministic choices of the 2NFA(k).

Automata with Modulo Counters and Nondeterministic Counter Bounds 365

Theorem 2. For every k ∈ N, L(2NFA(k)) ⊆ L(NBMCA(&k2 '+ 1)).

The above results show that neither the restrictions on the counters of NBMCA
nor the special nondeterminism constitute a restriction on the expressive power.
Thus, NBMCA can be used whenever classical multi-head automata can be ap-
plied, but due to their specific counters and nondeterminism they are particularly
suitable algorithmic tools for recognising those languages that are characterised
by the existence of a certain factorisation for their words, such as pattern lan-
guages (see [11]).

The tight use of the modulo counters in the previous simulation turns out
to be worth the effort, as it allows us to prove a hierarchy result on the class
NBMCA by applying a classical hierarchy result concerning multi-head automata
(Monien [9]).

Corollary 1. For every k ∈ N, L(NBMCA(k)) ⊂ L(NBMCA(k + 2)).

Next, we investigate the decidability of the emptiness, infiniteness, universe,
equivalence, inclusion and disjointness problem with respect to languages given
by NBMCA. From the fact that all these problems are undecidable even for
1DFA(2) (cf., Holzer et al. [3]) and Theorem 2, it follows that all these problems
are also undecidable for NBMCA. However, it is a common approach to further
restrict automata models with undecidable problems in order to obtain sub-
classes with decidable problems. One respective option is to require the automata
to be reversal bounded (see, e.g., Ibarra [4]). Hence, for all m1,m2, l, k ∈ N, let
(m1,m2, l) -REV-NBMCA(k) denote the class of NBMCA(k) that perform at
most m1 input head reversals, at most m2 counter reversals and resets every
counter at most l times in every accepting computation (here, input head re-
versals are defined in the same way as by Ibarra [4], whereas a counter reversal
is an increment of the counter in case that it has already reached its counter
bound). We can directly apply a result by Ibarra [4] about reversal-bounded
counter machines in order to obtain the following:

Theorem 3. The emptiness, infiniteness and disjointness problem for the class
(m1,m2, l) -REV-NBMCA are decidable.

Next, we investigate the decidability properties of (m,∞, l) -REV-NBMCA, i. e.,
the number of counter reversals is not bounded anymore. This question is moti-
vated as follows. Ibarra [4] shows for counter machines that if only the reversals
of the input head are bounded and counter reversals are unrestricted, then the
typical decision problems remain undecidable. However, while a counter rever-
sal of a counter machine can happen anytime in the computation and for any
possible counter value, a counter reversal of an NBMCA strongly depends on
the current counter bound, i. e., as long as a counter is not reset, all the counter
reversals of that counter happen at exactly the same counter value. Hence, the
modulo counters of (m,∞, l) -REV-NBMCA are still restricted, since the num-
ber of resets is bounded, and the question arises whether or not this restriction
is strong enough to maintain positive decidability results. The following answers
this question in the negative, even for small m and k, and no counter resets:

366 D. Reidenbach and M.L. Schmid

Theorem 4. The emptiness, infiniteness, universe, equivalence, inclusion and
disjointness problems are undecidable for (3,∞, 0) -REV-NBMCA(3).

4 NBMCA without States

In this section, we consider NBMCA without states. Stateless versions of au-
tomata have recently been introduced by Yang et al. [12], where they are com-
pared to P-Systems. Ibarra et al. [6] and Frisco and Ibarra [2] investigate stateless
multi-head automata, whereas Ibarra and Eğecioğlu [5] consider stateless counter
machines. Kutrib et al. [8] study stateless restarting automata.

A stateless NBMCA (SL-NBMCA for short) can be regarded as an NBMCA
with only one internal state that is never changed. Hence, the component refer-
ring to the state is removed from the transition function and transitions do not
depend anymore on the state. As a result, the acceptance of inputs by accepting
state is not possible anymore. So for stateless NBMCA we define the input to
be accepted by a special accepting transition, i. e., the transition that does not
change the configuration of the automaton anymore. On the other hand, if the
automaton enters a configuration for which no transition is defined, then the in-
put is rejected and the same happens if an infinite loop is entered. For example,
(b, s1, . . . , sk)→ (r, d1, . . . , dk) is a possible transition for an SL-NBMCA(k) and
(b, s1, . . . , sk)→ (0, 0, 0, . . . , 0) is an accepting transition. An SL-NBMCA(k) can
be given as a tuple (k,Σ, δ) comprising the number of counters, the input alpha-
bet and the transition function. We now consider an example for the languages
Sk := {ak, ε}, k ∈ N. The following SL-NBMCA(5) recognises exactly S3.

Definition 1. Let MS3 := (5, {a}, δ) ∈ SL-NBMCA(5), where δ is defined by
(�, t0, t0, t0, t0, t0) →δ (1, 1, 1, 1, 1, r), (a, t1, t1, t1, t1, t0) →δ (−1, 1, 1, 1, 1, 1),
(�, t0, t0, t0, t0, t1) →δ (1, 1, 0, 0, 0, 0), (a, t1, t0, t0, t0, t1) →δ (1, 0, 1, 0, 0, 0),
(a, t1, t1, t0, t0, t1) →δ (1, 0, 0, 1, 0, 0), (a, t1, t1, t1, t0, t1) →δ (1, 0, 0, 0, 1, 1),
($, t1, t1, t1, t1, t0)→δ (0, 0, 0, 0, 0, 0).

The question of whether or not states are really necessary for a model, i. e.,
whether it is possible to simulate automata by their stateless counterparts, is
probably the most fundamental question about stateless automata. Regarding
SL-NBMCA, we can observe that every NBMCA with states can be turned into
an equivalent one without states. Hence, the loss of the finite state control does
not lead to a reduced expressive power of the model.

Theorem 5. For every M ∈ NBMCA(k), k ∈ N, with a set of states Q, there
exists an M ′ ∈ SL-NBMCA(k + &log(|Q|+ 1)'+ 2) with L(M) = L(M ′).

For the simulation of NBMCA by SL-NBMCA as well as for the automaton MS3

(see Definition 1), it is vital that certain counters have a counter bound of 1.
Due to the lack of states, this need for counters to be initialised with a counter
bound of 1 involves considerable technical challenges.

Automata with Modulo Counters and Nondeterministic Counter Bounds 367

Next, we use the model of stateless NBMCA in order to investigate a more
general question in automata theory regarding limited nondeterminism. Usu-
ally, the nondeterminism is mainly controlled by the finite state control, i. e.,
certain states allow nondeterministic steps whereas others enforce a determin-
istic transition. Hence, nondeterminism can be switched on and off and, thus,
it is a resource the automaton may use, but it is not forced to. These consid-
erations suggest that the finite state control plays an important role regarding
restricted nondeterminism and it is not obvious what consequences, in this re-
gard, an abolishment of the finite state control may have. In the following we
try to answer this question by employing SL-NBMCA. As shown in the previous
section, if we allow an unbounded number of modulo counters, a finite state
control can be simulated and, thus, nondeterminism can be controlled in the
usual way. Therefore we consider SL-NBMCA(1) and, furthermore, we assume
the input head to operate in a one-way manner. In order to restrict the nonde-
terminism of the model, we simply limit the number of possible resets for the
modulo counter. More precisely, in any computation the first k applications of
a reset operation reset the counter in accordance with the definition, whereas
every further application of a reset is simply ignored. We shall refer to this model
by 1SL-NBMCAk(1), where k stands for the number of possible resets.

This way of restricting automata is unusual compared to the common restric-
tions that are found in the literature. This can be illustrated by considering input
head reversal bounded automata as an example (see, e. g., Ibarra [4]). An input
head reversal bounded automaton is an automaton that can recognise each word
of a language in such a way that the number of input head reversals is bounded.
There is no need to require the input head reversals to be bounded in the non-
accepting computations as well, as this does not constitute a further restriction.
This is due to the fact that we can always use the finite state control to count
the number of input head reversals in order to interrupt a computation in a
non-accepting state as soon as the bound of input head reversals is exceeded.
However, regarding stateless automata this is not necessarily possible anymore,
and it seems that it is a difference whether a restriction is defined for all possible
computations or only for the accepting ones. Our definition of bounded resets
introduced above avoids these problems by slightly changing the model itself,
i. e., in every computation it loses the ability to reset the counter after a number
of resets. For every k ∈ N, there are languages that require at least k resets:

Theorem 6. For every k ∈ N, there exists a language L ∈ L(1SL-NBMCAk(1))
with L /∈ L(1SL-NBMCAk′ (1)) for every k′ ∈ N, k′ < k.

Moreover, by applying Theorem 6 and a simple set-theoretic reasoning, we can
show that there are languages that can be recognised by a 1SL-NBMCAk(1),
but cannot be recognised by any 1SL-NBMCAk+1(1).

Theorem 7. There exist infinitely many k ∈ N such that L(1SL-NBMCAk(1))
and L(1SL-NBMCAk+1(1)) are incomparable.

The above results yield the following conclusions: For every k ∈ N, there is a
language that can be recognised by a 1SL-NBMCA(1) with k, but not with k−1

368 D. Reidenbach and M.L. Schmid

resets. This meets our expectation of nondeterminism being a useful resource en-
hancing the expressive power of automata. Theorem 7, on the other hand, does
not fit with the usual results on restricted nondeterminism, as it shows that ex-
pressive power is lost by increasing the nondeterminism, i. e., for infinitely many
k ∈ N, there is a language that can be recognised by a 1SL-NBMCA(1) with k,
but not with k+1 resets. Considering the strong restrictions of 1SL-NBMCAk(1),
it is maybe not surprising that without any states the nondeterminism cannot
be controlled anymore and, thus, a result of the sort mentioned above can be
obtained. However, proving this behaviour is quite involved and, to the knowl-
edge of the authors, it is the first result in the literature that formally establishes
such a connection between finite state control and nondeterminism.

References

1. Chang, J.H., Ibarra, O.H., Palis, M.A., Ravikumar, B.: On pebble automata. The-
oretical Computer Science 44, 111–121 (1986)

2. Frisco, P., Ibarra, O.H.: On Stateless Multihead Finite Automata and Multi-
head Pushdown Automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS,
vol. 5583, pp. 240–251. Springer, Heidelberg (2009)

3. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata:
Origins and directions. Theoretical Computer Science 412, 83–96 (2011)

4. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM 25, 116–133 (1978)

5. Ibarra, O.H., Eğecioğlu, Ö.: Hierarchies and Characterizations of Stateless Mul-
ticounter Machines. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609,
pp. 408–417. Springer, Heidelberg (2009)

6. Ibarra, O.H., Karhumäki, J., Okhotin, A.: On stateless multihead automata: Hi-
erarchies and the emptiness problem. Theoretical Computer Science 411, 581–593
(2010)

7. Ibarra, O.H., Ravikumar, B.: On partially blind multihead finite automata. Theo-
retical Computer Science 356, 190–199 (2006)

8. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata and
restarting automata. International Journal of Foundations of Computer Science 21,
781–798 (2010)

9. Monien, B.: Two-way multihead automata over a one-letter alphabet. RAIRO In-
formatique Théorique 14, 67–82 (1980)

10. Petersen, H.: Automata with sensing heads. In: Proc. 3rd Israel Symposium on
Theory of Computing and Systems, pp. 150–157 (1995)

11. Reidenbach, D., Schmid, M.L.: A Polynomial Time Match Test for Large Classes
of Extended Regular Expressions. In: Domaratzki, M., Salomaa, K. (eds.) CIAA
2010. LNCS, vol. 6482, pp. 241–250. Springer, Heidelberg (2011)

12. Yang, L., Dang, Z., Ibarra, O.H.: On stateless automata and p systems. Interna-
tional Journal of Foundations of Computer Science 19, 1259–1276 (2008)

Author Index

Allauzen, Cyril 66
Amarni, Ahmed 313
Amavi, Joshua 78

Berlinkov, Mikhail V. 90
Brzozowski, Janusz 5

Caron, Pascal 321
Ceccherini-Silberstein, Tullio 101
Chabin, Jacques 78
Champarnaud, Jean-Marc 321
Coornaert, Michel 101
Crespi Reghizzi, Stefano 113

Degano, Pierpaolo 125
Droste, Manfred 138

Ehrenfeucht, Andrzej 25

Fang, Binxing 337
Faro, Simone 149
Ferrari, Gian-Luigi 125
Fiorenzi, Francesca 101
Fominykh, Fedor 159

Gao, Yuan 1
Gastin, Paul 28
Goč, Daniel 180
Guo, Li 337
Gusev, Vladimir V. 171

Héam, Pierre-Cyrille 329
Henshall, Dane 180
Hugot, Vincent 329

Ibarra, Oscar H. 192

Jahn, Franz 205
Jeż, Artur 217
Jirásková, Galina 229

Klimann, Ines 240
Kouchnarenko, Olga 329

Kufleitner, Manfred 205
Kutrib, Martin 253

Lauser, Alexander 205
Lecroq, Thierry 149
Liu, Tingwen 337
Lombardy, Sylvain 313, 345

Mairesse, Jean 240
Maletti, Andreas 217
Mandrali, Eleni 353
Martyugin, Pavel V. 278
Masopust, Tomáš 229
Mezzetti, Gianluca 125
Mignot, Ludovic 321
Mohri, Mehryar 265
Monmege, Benjamin 28
Mráz, Frantǐsek 289

Oliveira, José N. 52
Otto, Friedrich 253

Pibaljommee, Bundit 138
Picantin, Matthieu 240
Pr̊uša, Daniel 289

Reidenbach, Daniel 361
Réty, Pierre 78
Reuß, Andreas 301
Riley, Michael 66
Rozenberg, Grzegorz 25

Sakarovitch, Jacques 345
Salomaa, Kai 1
San Pietro, Pierluigi L. 113
Schmid, Markus L. 361
Seidl, Helmut 301
Shallit, Jeffrey 180
Sun, Yong 337
Šunić, Zoran 101

Tran, Nicholas Q. 192

Volkov, Mikhail 159

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	In Memoriam Sheng Yu
	References

	In Search of Most Complex Regular Languages
	Introduction
	Conditions for the Complexity of Languages
	Properties of a Single Language
	Unary Operations
	Binary Operations
	The Witness

	Properties of a Single Language
	Unary Operations
	Binary Operations
	Boolean Operations
	Product

	Combined Operations with Um(a,b,c) and Un(b,a,c)
	Combined Operations with ``Dialects'' of Un(a,b,c)
	Witnesses Over Quaternary Alphabets
	Witnesses Un(a,b,c,d) and U"0362Un(a,b,c,d)
	Witnesses Vn(a,b,c,d) and V"0362Vn(a,b,c,d)
	Witnesses Wn(a,b,c,d) and W"0362Wn(a,b,c,d)

	Conclusions
	References

	A Formal Framework for Processes Inspired by the Functioning of Living Cells
	References

	Adding Pebbles to Weighted Automata
	Introduction
	Motivations
	Language Modeling
	Weighted Linear Temporal Logic

	Preliminaries
	Weighted Expressions with Pebbles
	Series Over a Partial Monoid

	Weighted Automata with Pebbles
	From Automata to Expressions
	Generalized Pebble Automata
	Automata to Expressions: 0-layered Generalized pebWA
	Automata to Expressions: Generalized pebWA

	From Expressions to Automata
	Evaluation of Pebble Weighted Automata
	Discussion
	References

	Typed Linear Algebra for Weigthed (Probabilistic) Automata
	Introduction
	Typed Linear Algebra
	Weighted Automata as MatS Arrows
	Weighted Automata Homomorphisms
	Summary
	Current and Related Work
	References

	Regular Papers
	A Pushdown Transducer Extension for the OpenFst Library
	Introduction
	Definitions
	Dyck Languages
	Pushdown Automata and Transducers

	Implementation
	Algorithms
	Expansion
	Composition
	Shortest Distance and Shortest Path
	Pruned Expansion
	Replacement
	Discussion

	Applications
	Recognition
	Parsing
	Translation
	Discussion

	References

	Weak Inclusion for Recursive XML Types
	Introduction
	Preliminaries
	Weak Inclusion for Possibly-Recursive Tree Grammars
	Implementation and Experiments
	Related Work and Discussion
	References

	Synchronizing Automata on Quasi-Eulerian Digraph
	Synchronizing Automata and the Černý Conjecture
	Exponents of Primitive Matrices vs. Reset Lengths
	Markov Chains and a New Extension Method
	Quasi-Eulerian Automata
	References

	Cellular Automata on Regular Rooted Trees
	Introduction
	Definitions and Background
	The Free Monoid *
	Configurations and Tree Shifts
	Forbidden Blocks and Shifts of Finite Type
	Cellular Automata and Sofic Tree Shifts

	Unrestricted Rabin Graphs and Automata
	Graphical Representation
	Unrestricted Rabin Automata and Sofic Shifts
	Deterministic and Co-deterministic Presentations

	Full-Tree-Patterns and Finite-Tree Automata
	Finite-Tree Automata

	References

	Strict Local Testability with Consensus Equals Regularity
	Introduction
	First Definitions and Properties
	Consensual Languages with Regular and Subregular Bases
	Consensual Languages over Non-regular Bases
	Conclusion
	References

	Nominal Automata for Resource Usage Control
	Preliminaries
	Usages
	Usage Automata
	Variable Finite Automata on Data Words

	Properties of Usages and UA
	Model Checking
	References

	Weighted Nested Word Automata and Logics over Strong Bimonoids
	Introduction
	Strong Bimonoids
	 Nested Words and Weighted Nested Word Automata
	Weighted Logics on Nested Words
	Conclusion
	References

	A Fast Suffix Automata Based Algorithm for Exact Online String Matching
	Introduction
	Basic Notions and Definitions
	Previous Efficient Suffix Automaton Based Solutions
	A New Fast Suffix Automaton Based Algorithm
	Experimental Results
	Conclusions and Future Works
	References

	P(l)aying for Synchronization
	Introduction and Overview
	Playing for Synchronization
	Paying for Synchronization
	Open Problems
	References

	Synchronizing Automata of Bounded Rank
	Introduction
	Preliminaries
	Main Results
	Conclusion and Discussion
	References

	Automatic Theorem-Proving in Combinatorics on Words
	Introduction
	The Decision Procedure
	Borders
	Additional Results on Unbordered Words
	Other Problems
	Open Problems
	References

	How to Synchronize the Heads of a Multitape Automaton
	Introduction
	Preliminaries
	Synchronizabilty of Multitape NPDAs
	Synchronizability of 2-Tape NFAs with 1-Reversal Counters
	Conclusions
	References

	Regular Ideal Languages and Their Boolean Combinations
	Introduction
	Preliminaries
	Ideals and Their Boolean Combinations
	One-Way Automaton Models
	Two-Way Automaton Models and Languages in DA
	References

	Hyper-minimization for Deterministic Tree Automata
	Introduction
	Preliminaries
	Hyper-minimal Automata
	Hyper-minimization
	Discussion
	References

	On the State and Computational Complexity of the Reverse of Acyclic Minimal DFAs
	Introduction
	Preliminaries and Definitions
	Main Results
	Conclusions
	References

	Implementing Computations in Automaton (Semi)groups
	Introduction
	Automaton (Semi)groups
	Mealy Automaton
	Generating (Semi)groups
	Minimization and the Word Problem

	Fully Exploiting the Minimization
	Growth
	Order of the (Semi)group
	Finiteness

	Conjectures
	References

	On the Descriptional Complexity of the Window Size for Deterministic Restarting Automata
	Introduction
	Notation and Definitions
	Descriptional Complexity

	A Semi-Thue System for Turing Machine Histories
	The Descriptional Impact of the Window Size
	Conclusion
	References

	A Disambiguation Algorithm for Finite Automata and Functional Transducers
	Introduction
	Preliminaries
	Disambiguation Algorithm for Finite Automata
	Description
	Analysis
	Disambiguation of Automata with -Transitions

	Disambiguation of Finite-State Transducers
	Conclusion
	References

	Synchronization of Automata with One Undefined or Ambiguous Transition
	Introduction
	Classes of Automata and Computational Problems
	Automata with One Undefined Transition
	Automata with One Ambiguous Transition
	Automata with Binary Alphabet
	References

	Restarting Tiling Automata
	Introduction
	Basic Definitions
	Two-Dimensional Restarting Tiling Automata
	Two-Dimensional Bounded Turing Machines and 2RTAs
	2RTA Working over One-Row Pictures
	Conclusions
	References

	Crossing the Syntactic Barrier: Hom-Disequalities for H1-Clauses
	Introduction
	Preliminaries
	Expressiveness
	Automata with Hom-Disequalities
	H1-Normalization
	Conclusion
	References

	Short Papers
	Factor and Subsequence Kernels and Signatures of Rational Languages
	Introduction
	Basic Notions and Definitions
	Weighted Automata
	Weighted Transducers

	Rational Kernel of Languages and Signatures
	Factor Signature
	Factor Signature of Words
	Factor Signature of Languages

	Subsequence Signature and Kernel
	Subsequence Signature of Words
	Subsequence Signature of Languages
	Direct Computation of the Automaton Realizing the Subsequence Signature

	References

	Multi-Tilde-Bar Derivatives
	Introduction
	Preliminaries
	Quotient Formulae
	Word Derivatives of an EMRE
	Partial Derivatives of an EMRE
	Conclusion
	References

	On Positive TAGED with a Bounded Number of Constraints
	Introduction
	Preliminaries
	The Emptiness and Finiteness Problems
	The Membership Problem
	Conclusions
	References

	SDFA: Series DFA for Memory-Efficient Regular Expression Matching
	Introduction
	Related Work
	Technical Overview of Series DFA
	State Complexity for RegExes
	Main Idea of SDFA

	Optimization for Series DFA
	Optimization in Cutting Process
	Optimization in Matching Process

	Experimental Results
	Evaluation of Memory Consumption
	Evaluation of Matching Performance

	References

	The Removal of Weighted ε-Transitions
	Valid Weighted Automata
	The Weighted Closure Algorithm
	Decision Algorithm
	The Case of Topological Ordered Positive Semirings
	The Case of R and Q

	References

	Weighted LTL with Discounting
	Introduction
	Preliminaries
	Weighted Generalized Büchi Automata with Discounting and -Transitions
	Results
	Conclusion
	References

	Automata with Modulo Counters and Nondeterministic Counter Bounds
	Introduction
	Definitions
	Expressive Power, Hierarchy and Decidability
	without States
	References

	Author Index

