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Abstract. In the online minimum-cost metric matching problem, we
are given an instance of a metric space with k servers, and must match
arriving requests to as-yet-unmatched servers to minimize the total dis-
tance from the requests to their assigned servers. We study this problem
for the line metric and for doubling metrics in general. We give O(log k)-
competitive randomized algorithms, which reduces the gap between the
current O(log2 k)-competitive randomized algorithms and the constant-
competitive lower bounds known for these settings.

We first analyze the “harmonic” algorithm for the line, that for each
request chooses one of its two closest servers with probability inversely
proportional to the distance to that server; this is O(log k)-competitive,
with suitable guess-and-double steps to ensure that the metric has aspect
ratio polynomial in k. The second algorithm embeds the metric into a
random HST, and picks a server randomly from among the closest avail-
able servers in the HST, with the selection based upon how the servers
are distributed within the tree. This algorithm is O(1)-competitive for
HSTs obtained from embedding doubling metrics, and hence gives a ran-
domized O(log k)-competitive algorithm for doubling metrics.

1 Introduction

In the online minimum-cost metric matching problem, the input is a metric
space (V, d) with k pre-specified servers S ⊆ V . The requests R = r1, r2, . . . , rk
(with each ri ∈ V ) arrive online one-by-one; upon arrival each request must be
immediately and irrevocably matched to an as-yet-unmatched server. The cost of
matching request r to server f(r) ∈ S is the distance d(r, f(r)) in the underlying
metric space. The goal is to find a matching f that approximately minimizes the
total cost

∑
i d(ri, f(ri)). We study the problem in the framework of competitive

analysis, comparing the cost of our algorithm’s matching to the cost of the best
offline matching from R to S. (This minimum cost bipartite perfect matching
problem can be easily solved offline.)

The online problem was introduced in the early 1990’s by Kalyanasundaram
and Pruhs [4], and by Khuller, Mitchell, and Vazirani [6]. Both papers gave
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deterministic 2k − 1-competitive algorithms, which is the best possible even
when the metric is a star with k leaves with the servers at the leaves. For the star
example, any randomized algorithmmust be Ω(Hk)-competitive, and the natural
randomized greedy algorithm is indeed O(Hk)-competitive, where Hk is the kth

harmonic number. In 2006, Meyerson et al. [9] showed that the randomized
greedy algorithm, which assigns to a uniformly random closest server, is O(log k)-
competitive when the metric is a α-hierarchically well-separated tree (α-HST)
with suitably large separation α between levels, namely with α = Ω(log k).
This implies an O(log3 k)-competitive randomized algorithm for general metrics
using randomized embeddings into HSTs [2]. Bansal et al. [1] gave a different
algorithm which is O(log k)-competitive on 2-HSTs, resulting in an O(log2 k)
competitive algorithm on general metrics. It remains an open problem to close
the gap between O(log2 k) and Ω(log k) for general metrics.

The gap is even worse when we consider natural special classes of metrics such
as the line, or grids, or doubling metrics. For points on the line, the best deter-
ministic lower bound is only 9.001 [3] (with the randomized lower bound being
even weaker), and no algorithms better than those that apply to general metrics
are known for neither the line nor doubling metrics, both in the deterministic
and randomized settings.

Results and Techniques. In this paper, we give randomized algorithms for re-
stricted classes of metrics. In particular, we show O(log k)-competitive random-
ized algorithms for the online metric matching problem on the line metric and
on doubling metrics. (For the rest of this section, we assume that the aspect ratio
of the metric, namely the maximum-to-minimum distance ratio, is O(k3)—this
can be achieved with only a constant factor loss using the guess-and-double
framework, details in the full version.)

Our first algorithm is the natural randomized Harmonic algorithm: letting sL
and sR be the closest available left and right servers to the current request r, we
assign r to sL with probability

1/d(r,sL)
1/d(r,sL)+1/d(r,sR) =

d(r,sR)
d(sL,sR) ,

and to sR with the remaining probability. If dmax and dmin are the largest and
smallest distances between any two servers, we show:

Theorem 1. The Harmonic algorithm is O(log dmax

dmin
)-competitive for the line.

Hence, with using guess-and-double to ensure dmax/dmin = O(k3), we get an
O(log k)-competitive algorithm for the line.

Our proof uses a coupling argument: we consider two runs of the Harmonic
algorithm, the first starting with some set S of servers and the second with
the set (S ∪ {s1} \ {s2})—i.e., differing from S in exactly one server. We show
that the expected difference in cost between these two runs of Harmonic is
O(log dmax

dmin
) · d(s1, s2). Now, if we construct a sequence of hybrid algorithms

(each of which first follows the optimal algorithm, and at some point switches
to the Harmonic algorithm), we can use the coupling argument to compare the
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runs of adjacent pairs on these sequences to bound the difference between our
algorithm and Opt. This idea is similar to the path-coupling idea of Bubley and
Dyer, used to show mixing of Markov chains.

Our second algorithm Random-Subtree generalizes to the broader class of dou-
bling metrics. It first embeds the metric into a random distance-preserving Δ-
degree α-HST, and then runs a certain randomized greedy algorithm on this
new instance, where Δ and α are constants that depend on the doubling di-
mension. At first glance, using a O(1)-HST seems bad, since Meyerson et al.
showed that their randomized greedy algorithm requires a large separation α
in the HST. However, we avoid the lower bound (a) by using the fact that the
bad examples require large degrees, whereas HSTs obtained from the line and
doubling metrics have small degree, and (b) by altering the randomized greedy
algorithm slightly (in a way we will soon describe). At a high level, we show
that if a metric can be embedded into an α-HST where each vertex has at most
Δ children, our randomized algorithm is O(HΔ/ε)-competitive on such an HST,
so long as α ≥ (1 + ε)HΔ. (See Theorem 5 for a precise statement.) Since all
doubling metrics admit such embeddings (for values of Δ,α depending only on
the doubling dimension) with O(log k) expected stretch, we get:

Theorem 2. The randomized algorithm Random-Subtree is O(log k)-
competitive for online metric matching on doubling metrics, and hence also for
the line.

The improvement from O(log3 k) in [9] (for general metrics) to O(log k) (for
doubling metrics) is due to both the nature of doubling metrics and the HSTs
arising from them, and also due to our algorithm Random-Subtree differing from
that of [9]. Instead of picking a uniformly random available server closest to
the request in the HST, we use the following procedure: starting off at the
lowest ancestor of the request that contains an available server, our algorithm
repeatedly moves us to a uniformly random subtree of this node that has an
available server until we reach a leaf/server. Note that our process does not pick
a random closest server, but biases towards available servers in subtrees with
few available servers. This results in such subtrees being empty earlier, which
in turn results in fewer choices higher up in the tree for future requests. Our
potential function-based analysis refines the one from [9] by using this property.

The rest of the paper is as follows. We present some notation and prelimi-
naries in Section 2. The Harmonic algorithm is analyzed in Section 3, and the
Random-Subtree algorithm presented and analyzed in Section 4. Due to lack
of space, many proofs are deferred to the full version. Also in the full version,
we present a third algorithm that is O(log k) competitive for matching on the
line. This algorithm also embeds the line into a random HST, but then runs
deterministically on the resulting HST to give this guarantee.

Other Related Work. The paper [5, Section 2.2] gave a lower bound of 9 for
deterministic algorithms on the line via a reduction from the so-called cow-
path problem; they conjectured this lower bound was tight for the line, which
was disproved in [3]. [5] also conjectured that the work function algorithm (see,
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e.g., [8]) obtains an O(1)-competitive ratio on the line; this was disproved by
Koutsoupias and Nanavati [7], who showed an Ω(log k) lower bound (and an
O(k) upper bound) for the work function algorithm. There is no algorithm, either
randomized or deterministic, currently conjectured to be O(1)-competitive.

2 Notation and Preliminaries

An instance of the problem is given by a metric (V, d) with servers at S ⊆ V ,
where |S| = k. As mentioned in [9], we can assume without loss of generality
that all requests also arrive at vertices in S (with only a constant factor loss in
the competitive ratio). Hence, in the rest of the paper, we assume that S = V ,
and hence |V | = |S| = k. Moreover, we assume there is only one server at each
node, as this is only for ease of exposition and the algorithms easily extend to
multiple servers at nodes.

An α-HST (Hierarchically well-Separated Tree) is defined as a rooted tree
where all edges at depth i have weight c/αi for some fixed constant c. Here, the
edges at depth 0 are those incident to the root, etc. An HST is Δ-ary if each
node has at most Δ children. For the case of the line metric, we assume that
the aspect ratio of the points containing the servers (which, recall, is defined

as
maxx,y∈S d(x,y)
minx,y∈S d(x,y) ) is O(k3); in the full version, we show that this loses only a

constant factor in the competitiveness. This allows us to embed these points
into distributions of dominating binary 2-HSTs with expected stretch O(log k).
Furthermore, for HSTs that are constructed from the line, we refer to the width of
a tree as the maximum line-distance between any two points within the tree. For
doubling metrics we cannot make such a general assumption on the aspect ratio;
however, by suitably guessing the value of Opt and running the HST construction
algorithms only for the top O(log k) levels, one can still give a reduction to the
problem on bounded-degree HSTs with only an O(log k)-expected loss. (Details
in the full version.)

For a node a of a tree, let T (a) represent the subtree rooted at a. Also, define
the level of a to be the maximum number of edges on a path from a to a leaf
of T (a). When referring to servers to be assigned by requests, we will refer to
servers that have not yet been assigned to as “available”, “free”, or “unassigned”.
We will use Opt to denote both the optimum matching as well as its cost.

3 The Harmonic Algorithm for the Line

To prove the performance guarantee for the Harmonic algorithm given by
Theorem 1, we first give a lemma which analyzes the expected difference in cost
between running Harmonic on all the requests and running the optimal algo-
rithm for just the first step, and Harmonic thenceforth. Then, we show that using
this bound in a “hybrid argument” proves Theorem 1. (This is essentially the
path-coupling idea of Bubley and Dyer.) For a request sequence σ = r1, . . . , rk,
let gσ be the matching obtained by assigning r1, . . . , rk using Harmonic. Let
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N(rt) be the set of available neighboring servers to rt—those which are closest
to rt on the left or right and available at time t−. Define hσ to be a matching
obtained by first matching r1 to an given server s1 ∈ N(r1), and then using
Harmonic to assign r2, . . . , rk. We will use G for the algorithm producing gσ
and H for hσ.

Lemma 3 (Hybrid Lemma). If distances between servers are in Z ∩ [0, Γ ],

EG

[ k∑

i=1

d(ri, gσ(ri))

]

− EH

[ k∑

i=1

d(ri, hσ(ri)

]

≤ O(log Γ ) · d(r1, s1).

In other words, the expected cost of G for any request sequence is at most the
expected cost of H on the same request sequence plus O(log Γ ) · d(r1, s1)—
the difference is proportional to the length of this forced initial assignment.
This immediately gives us Theorem 1—let us show this fact before we prove
Lemma 3.

Proof of Theorem 1. Given any request sequence σ and an optimal matching
fσ for this sequence such that fσ(r1) ∈ N(r1), we can define a sequence of
hybrid matchings {ht

σ}kt=0, where h
t
σ is obtained by matching the first t requests

r1, . . . , rt in σ to fσ(r1), . . . , fσ(rt) and the remaining requests rt+1, . . . , rk to
gσ(rt+1), . . . , gσ(rk). Note that h0

σ is just the Harmonic matching gσ, and hk
σ

produces the optimal matching fσ. Moreover, by ignoring the servers in {fσ(ri) |
i ≤ t} and just considering rt+1, . . . , rk as the request sequence, Lemma 3 implies

E[
∑k

i=t+1 d(ri, h
t
σ(ri))] ≤ E[

∑k
i=t+1 d(ri, h

t+1
σ (ri))]+O(log Γ )·d(rt+1, fσ(rt+1)),

since we can regard the assignment rt+1 → fσ(rt+1) ∈ N(rt+1) as the assignment
r1 → s1 used in Lemma 3. (It can be checked that the optimal assignment indeed
assigns r1 to a server in N(r1).) Now, by adding

∑t
i=1 d(ri, fσ(ri)) to both sides,

E[
∑k

i=1 d(ri, h
t
σ(ri))] ≤ E[

∑k
i=1 d(ri, h

t+1
σ (ri))] +O(log Γ ) · d(rt+1, fσ(rt+1)).

Summing this over all values of t ≤ k − 1, and using that h0
σ = gσ and hk

σ = fσ,

E[
∑k

i=1 d(ri, gσ(ri))] ≤ E[
∑k

i=1 d(ri, fσ(ri))] +O(log Γ ) ·∑k
i=1 d(ri, fσ(ri)).

The left side is the expected cost of Harmonic, and the right side is the cost of
the optimal matching, which proves Theorem 1. �

3.1 Proof of the Hybrid Lemma: A Coupling Argument

We now prove Lemma 3. Here is the high-level idea: recall that G is just a run
of Harmonic, whereas H first forces r1 → s1 (a server adjacent to r1 on the line)
and then runs Harmonic. So, just after r1 has been assigned, either both G and
H have the same set of free servers, or their symmetric difference is a pair of
servers with no other free servers between them. (Think of the location of the
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free servers in one run as being obtainable from the free servers in the other run
by moving a single server without jumping over any free servers, and let δ1 be
this random distance.) Now we will couple the random runs of G and H so that
this property will continue to hold (or the set of servers will become the same,
after which they will proceed in lock-step). We prove that the expected difference
in the costs of the two algorithms will be O(log Γ ) ·E[δ1]. Since E[δ1] = d(r1, s1)
by the probabilities in the Harmonic algorithm, Lemma 3 follows.

For convenience, we will say that the request rt is assigned at time t, and we
refer to the situation just before this assignment as being at time t−, and the
situation just after as time t+; note that (t−1)+ = t−. Let AG(t) be the set of free
servers at time t+ when running algorithm G, and AH(t) be similarly defined
for algorithm H . Note that if at time t+, AG(t) = AH(t), then the expected
difference in costs between algorithms G and H on requests rt+1, . . . , rk is 0.
Thus, we can without loss of generality only consider the time instants where
AG(t) 	= AH(t).

Let g1 be the only element of AG(1) \ AH(1) and h1 the only element of
AH(1) \ AG(1). Let δt = d(gt, ht) be the distance between these two servers.
We now give a coupling π between the executions of G and H—equivalently a
coupling between the evolutions of sets AG(t) and AH(t)—from the two different
starting configurations. For a valid coupling, the marginals should give us a
faithful execution of Harmonic on AG(1) and AH(1) respectively. We define a
coupling π maintaining the invariant that |AG(t) \AH(t)| = 1 = |AH(t) \AG(t)|,
so we need to also define the coupling only on such pairs of states. By symmetry,
assume that g1 is to the left of h1; we will maintain the invariant that gt lies
to the left of ht. Also, when we start, there are no available servers between
g1 and h1, and we will also maintain the invariant that there are no available
servers between gt and ht, so we need only define the coupling over such pairs
of states.

For the coupling π, we will write Prπ[E ] to denote the probability of an event
E . This coupling also induces marginals on G and H , which we indicate by
PrG[E ]. We write r →G s if G assigns r to s, and NG(rt) will be the (at most
two) neighboring free servers to the request rt in G. (Analogous definitions hold
for H .) If r →G sg and r →H sh, then Δc(r) := d(r, sg) − d(r, sh). Note that
Δc(r) can be negative.

Now, for the coupling π, there are four cases to consider when the request rt
arrives:

• Case 0: rt’s neighboring servers are identical in both G and H ,
• Case 1: rt lies to the left of both gt and ht but gt ∈ NG(rt),
• Case 2: rt lies between gt and ht (so gt ∈ NG(rt) and ht ∈ NH(rt)), and
• Case 3: rt lies to the right of both gt and ht but ht ∈ NH(rt).

The fact that these are the only four cases follows from the invaraints we maintain
in the coupling. Let us now define the coupling for these cases. (For lack of space,
we defer the first and last cases to the full version.)

– For Case 1, we have the following situation:
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w

x

z

s1 rt gt ht

Set p = w−z
w and q = w−z

w+x . We define the coupling π for this case:

Event Assignments Prπ δt+1 − δt Δc(rt)
1 rt →G s1, rt →H s1 1− p 0 0
2 rt →G gt, rt →H s1 p− q w 2z − w
3 rt →G gt, rt →H ht q −x −x

Note that rt goes to s1 with probability 1− p and to gt with probability p,
hence the coupling is faithful run of G. And rt goes to s1 with probability
1− q and to ht with probability q, as it should in H .

– In Case 2, we have the following situation:

x

z

gt htrt s2s1

w y

Set p = x+y−z
x+y and q = w+z

w+x , and define the coupling as follows:

Event Assignments Prπ δt+1 − δt Δc(rt)
1 rt →G s2, rt →H h 1− p y y
2 rt →G g, rt →H h p+ q − 1 −x 2z − x
3 rt →G g, rt →H s1 1− q w −w

Note that rt goes to gt with probability p and to s2 with probability p, hence
the coupling is faithful run of G. And rt goes to s1 with probability 1 − q
and to ht with probability q, as it should in H .

Define Qi,n to be the worst-case probability of the distance between gt′ and ht′

eventually going above n (for some future time t′), conditioned on d(gt, ht) = i
at time t—here the worst-case is taken over all possible future request sequences,
and all feasible arrangements of any number of common servers in AG(t)∩AH(t),
subject to the constraint that the distance between gt and ht is equal to i (and
where gt is to the left of ht and no free servers between them).

Lemma 4. The coupling maintains the following properties:
(i) At each step t, if δt+1 	= 0, then Δc(rt) ≤ δt+1 − δt. If δt+1 = 0, then
Δc(rt) ≤ δt.

(ii) Qi,n ≤ i/n.

Proof. Property (i) follows by inspection of the above tables. For the proof of
Property (ii), clearly Qn,n = 1 for all n. Now, fix some n, and suppose we know
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that for all j > δt, we have Qj,n ≤ j/n. Note that for the above four cases,
each of these requests at time t either makes δt+1 = 0 (after which it can never
reach n), keeps δt+1 = δt, or makes distance δt+1 more than δt (upon which we
can apply induction to get a bound on Qδt,n). We thus enumerate over all four
possibilities:

– For case 0, the distance does not change, and so there is nothing to show.
– For case 1, we get Qx,n = (p− q)Qx+w,n+(1− p)Qx,n. This gives us Qx,n =

p−q
p Qx+w,n, and using the inductive hypothesis for Qx+q,n, we get Qx,n ≤

(1− q/p)(x+ w)/n = x/n.
– For case 2, we have Qx,n = (1−p)Qx+y,n+(1− q)Qx+w,n ≤ z

x+y (x+ y)/n+
x−z
x+w (x+ w)/n = x/n.

– For case 3, we get Qx,n = (p− q)Qx+w,n+(1− p)Qx,n. This gives us Qx,n =
p−q
p Qx+w,n, and so Qx,n ≤ (1 − q/p)(x+ w)/n = x/n.

In all cases, assuming that Qj,n ≤ j/n for all j > x, we see that Qx,n ≤ x/n.
This completes the proof of the lemma.

We can now prove Lemma 3. We want to bound EG[
∑k

i=1 d(ri, gσ(ri))] −
EH [

∑k
i=1 d(ri, hσ(ri)], but since π’s marginals are faithfully running G and H ,

we can use linearity of expectatitions to bound

Eπ

[ k∑

i=1

d(ri, gσ(ri))−
k∑

i=1

d(ri, hσ(ri)

]

= Eπ

[ k∑

i=1

Δc(rk)

]

.

But by Lemma 4(i), we know that Δc(rk) ≤ (δ2 − δ1) + (δ3 − δ2) + · · · + (δq −
δq−1) + δq, where δq+1 = 0 for the first time. This is at most 2δq = 2δmax. So it
remains to bound Eπ[δmax]. We see that

Eπ[δmax | δ1] =
Γ∑

l=1

Pr
π
[δmax ≥ l|δ1] ≤

∑

l

Qδ1,l ≤
Γ∑

l=1

δ1/l = O(log Γ ) · δ1

by Lemma 4(ii) and the definition of Qj,n. So Eπ[δmax] = O(log k) ·Eπ[δ1]. Now

if the two servers adjacent to r1 were s1 and h1, then we have E[δ1] =
d(r1,h1)
d(h1,s1)

·
0 + d(r1,s1)

d(h1,s1)
· d(h1, s1) = d(r1, s1). This proves the hybrid lemma (Lemma 3).

4 The Random-Subtree Algorithm

We now turn to showing that a different randomized algorithm gives an O(log k)
competitive ratio for the line; the proof generalizes to doubling metrics too. To
start off, we use the fact that binary 2-HSTs approximate the line metric with
O(log k) expected stretch. It is not difficult to show that the (deterministic)
greedy algorithm on a binary 2-HST is O(log k)-competitive compared to the
optimal solution on the tree, which implies an O(log2 k)-competitive ratio in
all. In this section, we show that randomization helps: a certain randomized
greedy algorithm is O(1)-competitive on the binary 2-HST, giving us a different
O(log k)-competitive algorithm for the line. In fact, the proof extends to HSTs
obtained from doubling metrics, and hence proves Theorem 2.
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The Algorithm. Let us define the algorithm Random-Subtree for online metric
matching on an arbitrary HST as follows: when a request r comes in, consider
its lowest ancestor node a whose subtree T (a) also contains a free server. Now
we choose a random free server in the subtree rooted at a as follows: from among
those of a’s children whose subtrees contain a free server under them, we choose
such a child of a uniformly at random, and repeat this process until we reach
a leaf/server s—we then map r to server s. Observe that ours is a different
randomized greedy algorithm from that in [9], which would have chosen a server
uniformly at random from among all of the servers in T (a). Our main theorem
is the following.

Theorem 5. The algorithm Random-Subtree is 2(1 + 1/ε)HΔ-competitive on
Δ-ary α-HSTs, as long as α ≥ max((1 + ε)HΔ, 2).

Since the line embeds into binary 2-HSTs with expected stretch O(log k), we
get an O(log k)-competitive randomized algorithm for the line. Moreover, in
the full version, we show that an algorithm for Δ-ary α-HSTs satisfying the
property above (with Δ = O(1)) implies an algorithm for doubling metrics with
an additional loss of O(log k); this proves Theorem 2.

The proof of the theorem goes thus: we first just consider the edges incident to
the root (which we call root-edges) of an Δ-ary α-HST, and count the number
of times these edges are used. Specifically, we show that for any sequence of
requests, the number of requests that use the root-edges in our algorithm is
at most HΔ times the minimum number of requests that must use these root-
edges. This “root-edges lemma” is the technical heart of our analysis; getting
HΔ instead of Hk (obtained in [9]) requires defining the right potential function,
and carefully accounting for the gain we get from using the Random-Subtree
algorithm rather than the randomized greedy algorithm of [9].

Having proved the root-edges lemma, notice that for any fixed vertex v in an
HST, the subtree rooted at v is another HST on which we can apply the root-
edges lemma to bound the cost incurred on the edges incident to v. Consequently,
applying this for every internal vertex in the HST and summing up the results
shows that the total cost remains at most O(HΔ) ·Opt, as long as the parameter
α for the HST is larger than HΔ.

The Analysis. Consider a Δ-ary α-HST T with a set of requests R ∪ R′ such
that the requests in R originate at the leaves of T , and those in R′ originate at
the root. We assume that the number of servers in T is at least |R ∪ R′|. Let
T1, T2, . . . , TΔ denote the Δ child subtrees of T . Without loss of generality, we
assume that T has exactly Δ child subtrees. We will use R(Ti) to denote the set
of requests that originate in subtree Ti. Let ni be the number of servers in Ti,
and let M∗ =

∑Δ
i=1 max(|R ∩ R(Ti)| − ni, 0). The following fact gives a lower

bound for Opt.

Fact 6. In any assignment of requests in R ∪ R′ to servers, at least M∗ + |R′|
requests use root-edges.
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The following crucial lemma upper-bounds the expected cost incurred by the
algorithm on just the root edges.

Lemma 7 (Root-Edges Lemma). Let the random variable M count the num-
ber of requests in R ∪ R′ that use a root-edge when assigned by the algorithm
Random-Subtree.

E[M ] ≤ HΔ · (M∗ + |R′|).
Proof. Let the k requests R∪R′ be labeled r1, r2, . . . , rk, where r1 is the earliest
request and rk is the latest request. The request rt is assigned at time t, and
we refer to the situation just before this assignment as being at time t−, and
the situation just after as time t+. Note that t− for t = 1 (denoted as 1−)
represents the time before any request assignments have been made, and t+ for
t = k (denoted as k+) represents the time after all request assignments have
been made. Let Rt = {rt, rt+1, . . . , rk}, the set of requests at time t− that have
yet to arrive. At time t−, let ni,t be the number of available servers in tree Ti.
A subtree Ti is said to be open at time t− if ni,t > 0 (there are available servers
at time t− in Ti). Let ηt be the number of open subtrees of T at time t−.

Define the first min(ni,t, |Rt ∩ R(Ti)|) requests of Ti to be the local requests
of Ti at time t− (these are the ones in R(Ti) that have the lowest numbered
indices), and the remaining requests in Ti to be the global requests of Ti at time
t−.1 Let Li,t and Gi,t be the set of local and global requests in Ti at time t−,
and let Lt := ∪iLi,t and Gt := ∪iGi,t. For convenience, we say that a request rj
becomes global at time t if rj is local at time t−, but rj is global at time t+. Let
requests in Rt := Rt ∩R′ be called root requests of T at time t−.

As a sanity check, note that at the beginning (at time 1−), the set of pending
requests R1 = R∪R′, the number of pending requests in subtree Ti is ni,1 = ni,
the number of global requests in Ti is |Gi,1| = max(|R ∩ R(Ti)| − ni, 0) (so the
total number of global requests at time 1− is M∗), and the number of root
requests is |R1| = |R′|.

Recall that global requests of Ti must assign to servers outside of Ti: while an
optimal offline algorithm can identify where to assign these global requests, an
online algorithm may assign a global request from Ti to some subtree Tj that
only has as many servers as future requests, which causes some local request
in Tj to become global. Hence we want to upper-bound the number of future
requests in Rt+1 that become global due to our assignment for rt. We associate
with each request in Rt a “cost” at time t− which represents this upper bound.
Later, we will use the cost function to define the potential function. The cost
function at time t− is Ft : Rt → Z≥0; we say it is well-formed if it satisfies two
properties:

– Ft(rj) = 0 if and only if rj ∈ Lt (i.e., it is a local request at time t−), and
1 The idea behind calling requests local/global is this: assuming no servers in Ti are
used up by requests from other subtrees, the local servers will be assigned within Ti

by our algorithm, whereas the global ones will be assigned to other subtrees (and
hence use a root-edge). Of course, as servers within Ti are used by requests in other
subtrees, some local requests become global.
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– for all global and root requests rj ∈ Gt ∪ Rt, Ft(rj) is an upper bound on
the random variable ηj , the number of open subtrees at time j−.

Constructing the Well-Formed Cost Functions. We set F1(rj) = Δ (the degree
of the tree) for all rj ∈ G1 ∪ R1 (global and root requests at time 1−), and
F1(rj) = 0 for all rj ∈ L1 (local requests at time 1−). It is immediate that the
map F1 is well-formed.

Now at each time t+, we will define the next function Ft+1 using Ft. For
this, first consider time t−, and suppose that the map Ft is well-formed. The
easy case first: If rt ∈ Lt, then define Ft+1(r) = Ft(r) for all r ∈ Rt. In this
case if a request in Rt is a local/global/root request at time t−, it remains a
local/global/root request at time t+, so Ft+1 is still well-formed.

On the other hand, suppose rt ∈ Gt ∪ Rt, i.e., it is a global or root request.
Recall there are ηt open subtrees at time t−. Each open subtree Ti contains
|Rt∩R(Ti)| requests and ni,t free servers, so if |Rt∩R(Ti)| ≥ ni,t then assigning
rt to a server in this subtree would cause some request rj in Rt ∩ R(Ti) to
become global at time t (because ni,t+1 would become ni,t − 1). In this case,
define at(Ti) := j, the index of the request rj that turns global in subtree
Ti. Else, if no request in Rt ∩ R(Ti) would become global, set at(Ti) := k + i
(which cannot be the index of any request, since there are only k requests).
Let At = {at(Ti) | Ti open at time t−}; note that |At| = ηt. Now denote the
elements of At by {pj}ηt

j=1 such that p1 < p2 < · · · < pηt .
(Another sanity check: we claim that the last entry pηt > k; indeed, if rt is

a global or root request, there must be some open subtree Ti which has more
available servers than requests.) Now, let Ti be the subtree that rt assigns to,
chosen by picking out of the open subtrees uniformly at random. We now define
the map Ft+1 at time t+. There are two cases to consider:

– If at(Ti) > k (i.e., none of the requests in R(Ti) ∩ Rt+1 become global due
to assigning rt), then we set Ft+1(r) = Ft(r) for all requests r ∈ Rt+1.

– If at(Ti) ≤ k, then say at(Ti) = pηt−q+1 in the ordering given above (i.e.,
at(Ti) was the qth largest value in At). Now assign Ft+1(r) = Ft(r) for all
r ∈ Rt+1 \ {rat(Ti)}, and Ft+1(rat(Ti)) = q − 1.

Showing that this map Ft+1 is well-formed is deferred to the full version. Note
that maps Ft and Ft+1 are either the same or differ on at most one request rj that
becomes global at time t, in which case Ft+1(rj) becomes positive. Moreover,
Ft′(rj) = Ft+1(rj) for all times t′ ∈ [t+ 1, j].

The Potential Function Analysis. We are now in a position to define the potential
function,

Φt =
∑

r∈Rt

HFt(r), (4.1)

where we consider H0 = 0. Also, define ρt to be the number of requests that
our algorithm has already matched outside of their subtrees at time t−. The
root-edges lemma follows immediately from the following claim, proved using
induction.
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Lemma 8. For all t ∈ [1, k + 1], E[Φt + ρt] ≤ HΔ · (M∗ + |R′|).
(Proof given in the full version.) Since ρk+1 = M and Φk+1 = 0, using Lemma 8
with t = k + 1 finishes the proof of the root-edges lemma.

The next lemma bounds the total cost, not just the cost on the root edges, by
considering every subtree in the HST and applying the root-edges lemma to each
subtree.

Lemma 9. Consider a Δ-ary α-HST T , any set R of requests at the leaves of
T , and requests R′ at the root of T , such that |R ∪R′| is at most the number of
servers in T . If Alg(R ∪R′, T ) denotes the cost of Random-Subtree on requests
R ∪R′ on tree T , and Opt(R ∪R′, T ) the cost of the optimal solution, we have

E[Alg(R ∪R′, T )] ≤ c ·HΔ ·Opt(R ∪R′, T )

for c = 2(1 + 1/ε) as long as α ≥ max{2, (1 + ε)HΔ}.
The lemma above directly proves Theorem 5. As an aside, note that 2-HSTs that
have large degree, or binary HST’s that have α ≈ 1 (say α = 1 + 1/ log k), can
both simulate star metrics, on which we have an Ω(log k) lower bound—hence
we do need some relationship between α and Δ.
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